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“Hope is a good thing, maybe the best of things, and no good thing ever dies.” 
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Abstract (deutsch) 

Einleitung: Sicherer und effektiver Transfer von Short-interfering-RNA-/Short-hairpin-RNA-

Molekülen (siRNA/shRNA) zum Zweck der RNA-Interferenz war eine der größten 

Herausforderungen der vergangenen 20 Jahre. Als Alternative zu den herkömmlichen 

Transferprotokollen wurde eine Transkingdom-RNA-Interferenz (tkRNAi) vorgeschlagen. Die 

hier vorgestellte Arbeit hat die Effizienz und Wirksamkeit eines verbesserten Bakterien-

Übertragungssystems zur Hemmung der humanpapillomvirus-16-(HPV16)-E7-spezifischen 

mRNA oraler Plattenepithelkarzinom-Zellen (oral squamous cell carcinoma , OSCC) untersucht. 

Methodik und Ergebnisse: Zunächst wurden Plasmide konstruiert, welche neben einer 

therapeutischen shRNA zwei unterschiedliche Proteine kodieren. Das erste „Invasin“ verleiht 

nichtinvasiven, nichtpathogenen Bakterien einen invasiven Phänotyp. Das zweite Protein 

„Listeriolysin O“ zeigt sich dafür verantwortlich, dass die therapeutischen shRNA-Moleküle 

nach bakterieller Invasion in der Zielzelle freigesetzt werden. Nach bakterieller Transfektion der 

Tumorzellen, wurde die Fähigkeit der modifizierten Bakterien, in Tumorzellen einzudringen und 

sich dort zu sammeln mittels Fluoreszenzmikrokospie nachgewiesen. Die Effizienz des Transfers 

und der Expression der shRNA wurde durch die Messung des Expressionsniveaus von kleiner 

siRNA und der Zielgen-mRNA mit qRT-PCR bestimmt; bestätigt per Western-Blot. Ein 

signifikanter Abfall des IC50 von anti-HPV16-E7 CEQ221-E7 in oraler Plattenepithelkarzinom-

Zellen im Vergleich zu CEQ221-GFP; und eine höhere Gesamtapoptose sowie eine aktivierte 

Caspase-3-Aktivierung bestätigten den funktionellen Effekt der durch die bakterielle Abgabe 

vermittelten Hemmung des HPV16-E7. 

Schlussfolgerungen: Transkingdom-RNA-Interferenz ist ein wirksames Instrument zur 

Hemmung spezifischer Zielgene in Säugetierzellen. Es wurde zum ersten Mal nachgewiesen, 

dass tkRNAi das HPV16-E7-Gen beim oralen Plattenepithelkarzinom hemmen, Apoptose 

auslösen und die Proliferationsaktivität senken kann, was schließlich zum Tod von Zielzellen 

führt. 



   
 

5 
 

Abstract (englisch) 

Introduction: Safe and effective delivery of short interfering RNA/short hairpin RNA 

(siRNA/shRNA) molecules for the purpose of RNA interference was one of the biggest 

challenges in the past 20 years. Transkingdom RNA interference (tkRNAi) was suggested as an 

alternative to the traditional delivery protocols. This work aimed to evaluate the efficiency and 

the potency of an improved bacterial delivery system in inhibiting human papilloma virus 16 

(HPV16)-E7-specific mRNA in oral squamous cell carcinoma (OSCC). 

Method and Results: Firstly, shRNA plasmids were constructed and transformed in the CEQ221 

bacteria to construct the delivery vehicles. After bacterial transfection of the tumor cells, the 

ability of the modified bacteria to penetrate and collect in the tumor cells was confirmed by 

fluorescent microscopy. Efficiency of shRNA delivery and expression was confirmed by 

measuring the expression level of small siRNA and target gene mRNA via qRT-PCR; followed 

by a confirmation via western blot. Significant drop in the IC50 of the CEQ221-E7 targeting 

HPV16-E7 in oral squamous carcinoma cells as compared to their control counterparts CEQ221-

GFP; and higher total apoptosis and activated caspase-3 activation confirmed the functional 

effect of the bacterial delivery-mediated inhibition of the HPV16-E7. 

Conclusion: Transkingdom RNA interference is a potent tool to inhibit specific target genes in 

mammalian cells. It was proved for the first time that tkRNAi is capable of inhibiting HPV16-E7 

gene in oral squamous cell carcinoma triggering apoptosis and lowering proliferation activity and 

eventually leading to target cell death. 
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1. Introduction 

RNA interference (RNAi) is regarded as one of the most reliable tools to specifically inhibit 

selected genes in mammalian cells. The mechanism was firstly described by Fire et al., 1998 in 

the model organism Caenorhabditis elegans as a naturally occurring mechanism, depends on 

introduction of 21 nucleotides (nt) long double-stranded RNAs (dsRNA) into target cells to 

inhibit a certain gene by post-transcriptionally destroying its messenger RNA (mRNA). Briefly 

described, the introduced dsRNA is cleaved by Dicer, one of the RNAse III family enzymes, into 

21-23 nt long double-stranded small interfering (siRNA). RNA-induced silencing complex 

(RISC, a protein complex already exists in mammalian cells cytoplasm) incorporates the siRNA 

and unwinds the double strand. The antisense siRNA combined with RISC targets and cleaves 

the homologous mRNA by base pairing interaction. The Argonaute 2 (AGO2) component of 

RISC contains an endonuclease activity that cleaves the target mRNA and the resulting mRNA 

fragments are destroyed by cellular exonucleases (Rand et al., 2005; figure 1). The imperfect 

complementarity as in case of microRNA cause translational repression and mRNA decay by 

deadenylation (Bagga et al., 2005). Eventually, the target mRNA and hence the target gene 

expression becomes inhibited. For longer gene silencing effects expression vectors encoding 

short hairpin RNA (shRNA) were developed, where plasmids containing shRNA expression 

cassettes under the control of strong promotors are delivered to target cells. The shRNA typically 

consists of a sense strand, a complementary antisense strand and a hairpin loop of 11 nt long (and 

hence the name). Beside siRNA and shRNA, RNAi can also endogenously be triggered by 

microRNA, which are produced and processed in the nucleus to be transported to the cytoplasm 

to bind the RISC protein and initiate the gene silencing pathway. Gene silencing by RNAi 

strategy has many advantages over the other antisense-strategies since the RNAi effectors are 

highly specific and easy to be designed along with their long-lasting gene silencing effect as in 

case of using shRNA (Castanotto and Rossi, 2009). Another advantage is that siRNAs/shRNAs 

can be recycled after the cleavage of the target mRNA (Burnett and Rossi, 2012). This strategy 

could be optimized to be used in treatment of many diseases such as cancer since RNAi has the 

power to target undruggable targets in tumor cells (Stege et al., 2010). 
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Figure 1: Diagrammatic representation of the RNA interference pathway in mammalian cells 

using double stranded hairpin RNA. The RISC-siRNA complex interacts with the target gene 

mRNA according to sequence complementarity and eventually lead to inactivation and hence 

inhibition of target gene expression (original picture not included in previous publications). 

 

The main challenge for the therapeutic application of RNAi lies in safely and effectively 

delivering the RNAi effectors to the target cells (Krühn et al., 2009). Despite proven efficiency 

and specificity of siRNA in gene silencing, some issues needed to be addressed before clinical 

application. The siRNA has to be delivered to the target cell cytoplasm in order to engage with 

RISC proteins and proceed with RNAi cascade (Chen et al., 2018). The naked siRNAs are 

chemically unstable and would be fastly degraded by endonucleases upon systemic 

administration (Hickerson et al., 2008; Kanasty et al., 2012). Besides, their negative charges and 

heavy molecular weight make it hard to penetrate the negatively-charged cell membranes. 

Although the half-life of siRNA can be prolonged by chemical modification, the modified 

siRNA showed lower potency and specificity (Behlke et al., 2008, Nguyen and Szoka, 2012). 
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Moreover, the applied RNAi effectors could be distributed to unwanted sites producing 

unwanted immunogenic, inflammatory or toxic responses (Kong et al., 2007). 

After internalization, siRNA will be entrapped in the pinocytotic vesicle. The next challenge will 

be to escape the internalization endocytotic vesicle to engage with the cell machinery in the 

cytoplasm to proceed with the RNA interference pathway (Du Rietz et al., 2020). It was 

suggested that a delivery carrier would help overcoming both cell membrane and endocytotic 

vesicle penetration barriers. Moreover, the used delivery carrier has to be nontoxic, able to 

deliver the RNAi effectors to the target cell cytoplasm in decent concentrations, able to penetrate 

tumor mass, able to penetrate the target cell membrane and the endocytotic vesicle and whenever 

possible, do not carry the siRNA/shRNA to unwanted sites. Currently used siRNA/shRNA 

delivery systems can be generally classified into viral and nonviral delivery systems (Chen et al., 

2018). 

Non-pathogenic viruses have many characters qualifying them to be carriers for RNAi effectors. 

After the required genetic modification, viruses can carry shRNA expression cassettes under the 

control of an expression promotor and terminator, able to produce stable and prolonged 

expression of the required siRNA and subsequently a stable and prolonged inhibition of the 

target gene in the target cells (Dong et al., 2019). Although viruses represent a very robust 

siRNA delivery vehicles, some disadvantages appeared. Viruses do not penetrate neither cell 

membranes nor internalization vesicle and therefore require a delivery vehicle. Moreover, 

viruses integrate their genome in the target cell genome raising safety issues. Viruses can also 

result in toxic, immunogenic, mutagenic and off target effects (Gherardini et al., 2014; Schagen 

et al., 2004).  

Several molecules were suggested to be conjugated with siRNA or shRNA to transport them to 

the cytoplasm of the target cells. For instance, exosomes, nanoparticles and high-density 

lipoproteins. Exosomes are phospholipid bilayer vesicles and were successfully used to deliver 

soluble drugs due to their ability to overcome natural barriers. Nanoparticles can be engineered 

to have lower toxicity and immunogenicity and to overcome the physical barriers facing the 

successful delivery of siRNAs which makes them good candidates as delivery vehicles. Indeed, 

systemic delivery of siRNA using nanoparticles as delivery vectors showed successful gene 

silencing in therapeutic levels (Miele et al., 2012). Lipid-based nanoparticles delivery systems 
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such as liposomes, solid lipid nanoparticles and nanostructured lipid carriers showed remarkable 

success especially when modified to be biocompatible and biodegradable. Polymer-based 

nanoparticle delivery is another category of nanoparticles used in the delivery of RNAi, where it 

is easy to incorporate the negatively charged nucleic acids on the surface of those nanoparticles 

due to surface positive charge. In addition, Lipid-polymer hybrid nanoparticles were developed 

to overcome the disadvantages of lipid- and polymer-based nanoparticles as a delivery system 

for RNAi. Nanoparticles showed variable chemical and physical properties, good cellular uptake 

and produced stable and efficient inhibition of the target genes. Otherwise, further research is 

required to ensure the safety of nanoparticles after systematic administration (Chen et al., 2018; 

Miele et al., 2012; Reynolds et al., 2017). To minimize the off-target effects of RNAi and the 

toxicity and immunogenicity of the delivery agents, more research has focused on targeted 

delivery. Conjugating the siRNA/shRNA-vector to an aptamer, peptide and antibody or to folate 

will result in tumor-targeted delivery of the siRNA/shRNA to the desired sites (Guo et al., 2017; 

Powell et al., 2017). 

Microbial therapy, includes oncolytic viral therapy and bacterial anticancer therapy, gained a lot 

of attention in the past 20 years (Forbes et al., 2018). Several modes of action of the bacteria on 

the target cancer cells after delivery were suggested. Direct killing of the target cells after 

competing on nutrients, production of toxins, induction of apoptosis, bursting of the target cell 

by uncontrolled bacteria replication or activation of immune response against the tumor areas 

were among the mechanisms by which the bacteria kill the target tumor cells (Forbes et al., 

2018). Historically ancient Egyptians have connected tumor regression with bacterial infection 

(Wong and Slavcev, 2015).  Willian B. Coley observed as early as 1890 an association between 

bacterial infection and tumor regression. Afterwards, he tried to experimentally reproduce those 

findings by injecting patients with live Streptococcus pyogenes and later by injecting killed 

Streptococcus pyogenes or Serratia marcescens with some success. However, his results were 

not widely accepted by the scientific community because he was unable to explain the 

mechanism of tumor regression induced by the bacteria (Felgner et al., 2017). Recently, bacteria 

have emerged as a potential anticancer therapeutic due to a better understanding of tumors and 

their microenvironment and the advances in molecular biology techniques allowed the 

manipulation of bacterial genes and the ability to produces specifically engineered bacteria to 

better serve the purpose. Several candidates were suggested as bacteria delivery agents. For 
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instance, Salmonella spp. proved successful as a delivery transporter in vitro but provoked 

relatively strong side effects upon systemic administration which required attenuation before in 

vivo application. On the other hand, attenuation may drastically affect therapeutic efficiency 

(reviewed in details in Felgner et al., 2017). Bacillus Calmette-Guérin vaccine (BCG) is the most 

successful bacterial treatment of superficial bladder cancer (Herr and morales, 2008). Several 

bacterial candidates provided many advantages as delivery vehicles for anticancer therapeutic 

such as Listeria monocytogenes, Clostridium novyi, Salmonella spp and E. coli.   

The biggest advantage of the bacteria as delivery vehicles for anticancer therapeutics is that they 

are easy to be manipulated using standard and cheap molecular biology techniques. Bacteria are 

engineered either to be attenuated or to enhance their anti-tumor activity. In order to enhance 

safety and decrease toxicity, certain gene deletions were applied to known pathogens. For 

instance, deletion of the gene responsible for endotoxin production in Clostridium novyi; and the 

deletion of some genes from Salmonella spp. resulting in loss of some certain components of 

lipopolysaccharides and hence decreasing toxicity (Low et al., 2016). Auxotrophic bacterial 

mutants were engineered to be dependent on certain nutrients and in the absence of such 

nutrients, they fail to grow and multiply. Optimally, the needed nutrients would only exist in the 

tumor microenvironment (Pawelek et al., 1997). Bacteria can also be engineered for the 

enhancement of tumor targeting ability. Salmonella was modified to express integrin-binding 

RGD on the bacterial surface, which led to more than 1000-fold bacterial accumulation in 

integrin expressing tumor cells and xenografts as compared to controls (Park et al., 2016).  

   

Bacteria can be used to carry proteins, DNA or RNA exhibiting anti-tumor effects. In most cases, 

the delivery will be in the form of a plasmid carrying and expression cassette in the control of a 

strong promotor that uses, upon expression, the target cell machinery to produce siRNA, proteins 

or directly initiate cell death cascade after bacterial accumulation in the tumor area. Autolysis of 

the bacteria themselves is granted by the depletion of nutrients (especially in case of auxotrophs) 

or due to accumulation of byproducts (Forbes, 2010).   
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Following bacterial accumulation in the tumor area, several strategies were suggested for them to 

act against tumors. a) Delivery of bacteria expressing cytotoxic agents (Ryan et al., 2009), induce 

apoptosis (Loeffler et al., 2008) or produce prodrug enzyme (Austin and Huber, 1993). In case of 

prodrug enzymes, an anticancer agent will be administered systematically as a prodrug in an 

inactive form, where activation of the prodrug requires and enzyme produced by the therapeutic 

bacteria locally in the tumor areas only, and hereby decreasing off target effect and toxicity. b) 

Enhancing immune reaction against tumors by delivery of immune modulators, which lead 

eventually to immune sensitization against the tumor (Binder et al., 2013). c) Targeting tumor 

stroma such as destroying the intratumoral blood vessels (Niethammer et al., 2002).  d) Targeting 

specific genes that decrease tumor cell resistance, proliferation or metastasis. 

 

Transkingdom RNA interference technology was developed by Xiang et al., 2006. They 

succeeded to produce genetically modified bacteria capable of producing shRNA and efficiently 

capable of penetrating and delivering the RNAi effectors to the target cells. For this purpose, a 

‘transkingdom RNA interference plasmid’ (TRIP) was generated. Basically, this plasmid 

composed of the shRNA expression cassette controlled by a strong promoter and terminator. 

Another component of TRIP is the inv gene from Yersinia pseudotuberculosis, which encodes 

for the expression of invasin protein on the bacterial cell surface. This protein interacts with β1-

integrin receptor on target cell surface and mediates the internalization of the bacterial cell to the 

target cell (Young et al., 1992). The third component is the HlyA gene from Listeria 

monocytogenes which produce listeriolysin O, the pore-forming toxin. When released, 

listeriolysin O leads to rupture of the endosomal membrane causing the shRNA with other 

components to reach the cytoplasm (Mathew et al., 2003 and Xiang et al., 2006). 

 

Cancer cells can acquire resistance against chemotherapeutics and subsequently increasing 

toxicity resulting from modifying the anticancer agents' therapeutic doses. Human papilloma 

virus-induced carcinogenesis was found to be associated with decrease in levels of TP53 and 

hypophosphorylated retinoblastoma proteins (pRb).  It was found that inhibition of E6/E7 

proteins via RNA interference resulted in more than 4-fold increase in sensitivity of HPV-

positive cervical cell to cisplatin (Rajasekaran et al., 2017; Xu et al., 2020). Developing new 
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modulators of p-gp, the efflux pump responsible for the extracellular extrusion of the anticancer 

agent, is one of the classical approaches to address the persistent problem of chemotherapeutic 

resistance. Combination of chemotherapeutic agent with one of the p-gp modulators would 

inhibit the efflux pump and decrease the therapeutic dose of the chemotherapeutic agent and 

hence decrease the possible toxicity (Xu et al., 2020). Natural products such as Epoxylathyrane 

derivatives were suggested as p-gb modulators using a mechanism known as collateral sensitivity 

(Reis et al., 2017, Reis et al., 2020).   
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2. Aims of the work 

This work aimed to design a bacterial transport vehicle carrying shRNA against HPV16-E7 

protein in OSCC cells with the intention to answer the following questions: 

1- Can the tkRNA bacteria penetrate the OSCC cells? 

2- Can the bacteria-carried shRNA inhibit HPV16-E7? 

3- Would that inhibition affect the ability of the tumor cells to proliferate? 

4- Can Epoxylathyrane derivatives compound modulate the multi-drug resistance phenotype? 

 



   
 

14 
 

3. Materials and Methods 

3.1 Cell lines and culture 

The HPV16-positive oral squamous cancer cell line (UPCI-SCC-090) was grown on DMEM 

medium (Biowhittaker, Walkersville, MD) enriched with 10% foetal calf serum (Gibco/BRL, 

Grand Island, NY) and 1mM L-glutamine. The human gastric carcinoma cells (EPG85-257RDB) 

and the pancreatic carcinoma cells (EPP85-181P) and their established drug-resistant variants 

were grown on Leibovitz L-15 medium (Biowhittaker, Walkersville, MD) enriched by 10% 

foetal calf serum (Gibco/BRL, Grand Island, NY), 1mM L-glutamine, 6.25 mg/L feutin, 80 IE/L 

insulin, 2.5 mg/L transferring, 0.5 g/L glucose, 1.1 g/L NaHCO3, 20 000 kIE/L trasylol and 1% 

minimal essential vitamins. All cell lines were grown at 37 °C and 5% CO2 in humified 

atmosphere.  

3.2 Construction of transkingdom shRNA expression vectors. 

The construction of the RNAi plasmid was performed according to Ahmed et al., 2015. Briefly, 

the DNA inserts of two complementary oligodeoxynucleotides (Eurofins MWG, Ebersberg, 

Germany) containing the shRNA sense strand, a short spacer loop, the shRNA antisense strand, 

and multiple deoxythymidines as a terminator were designed. The inserts contain as well the 

complementary sequence of the BamHI at one end and the sequence of SalI at the other end 

(figure 2). Inserts were prepared by annealing the sense and antisense oligodeoxynucleotides 

(Eurofins MWG, Germany) targeting HPV-16 E7 (sense: 5'- GATCC TCT CTA CTG TTA TGA 

GCA ATT ATT CAA GAG TAA TTG CTC ATA ACA GTA GAG ACT TTT TTT TTT G -3' 

and antisense: 5'- TCG ACA AAA AAA AAA TCT CTA CTG TTA TGA GCA ATT ATC TCT 

TGA AAA TTG CTC ATA ACA GTA GAG AG-3') or targeting GFP (sense: 5'-GAT CCG 

ACG GTA TCG ATA AGC TTG ATT TCA AGA GAA TCA AGC TTA TCG ATA CCG TCT 

TTT TTT TTT G-3' and antisense: 5'-TCG ACA AAA AAA AAA GAC GGT ATC GAT AAG 

CTT GAT TCT CTT GAA ATC AAG CTT ATC GAT ACC CTG G-3'). After linearizing the 

short hairpin RNA expression vector pMBV43-H3 (Cequent, Cambridge, MA, USA) using 

BamHI and SalI, sticky end ligation of the annealed anti- HPV16-E7 and anti-GFP inserts was 

performed to produce pMBV43-H3-E7 and pMBV43-H3-GFP plasmids respectively. The 

plasmids were then sent for sequencing (GATC Biotech AG, Konstanz, Germany). After 
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confirming the sequence, the constructs were transformed into CEQ221 bacteria (Cequent, 

Cambridge, MA, USA) by heat shock protocol producing CEQ221-E7 and CEQ221-GFP 

bacteria. 

 

Fig. 2: Diagrammatic representation of the pMBV43 H3 plasmid vector map and the shRNA 

insert. The insert is flanked by the BamHI and the SalI sequences to facilitate the digestion and 

the sticky end ligation of a new insert. Typically, the insert comprises a sense strand, antisense 

strand, the loop and the multiple Thiamin termination site (original picture not included in 

previous publications).  

3.3 Transfection of the oral carcinoma cells with tkRNA bacteria 

The CEQ221-E7 and CEQ221-GFP bacterial colonies were inoculated in 7 ml LB medium with 

50 mg/ml kanamycin and 50 μg/ml 2,3-Diaminopropionic Acid (DAP; Sigma, St. Louis, MO, 

USA) incubated overnight at 37 °C with shaking. Meanwhile, the tumor cells were cultured in 10 

cm petri dishes, 6-wells plates or LapTek II Chamber slides. From the overnight bacterial 

culture, 1 ml was inoculated in 100 ml LB medium 50 mg/ml kanamycin, 50 μg/ml 2,3-

Diaminopropionic acid and 2mM IPTG (Carl Roth GmbH, Germany) in 1 l Erlenmeyer flask, 

and incubated on a shaker at 37 °C and 200 rpm until OD600 = 0.5 is reached. Bacteria were 

washed twice in PBS, diluted in serum-free DMEM medium and added to human cells at 
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multiplicity of infection or MOI of 1:500 (which represent the ratio of the infecting bacteria to 

one cell of tumor), and incubated for 2 hours. Afterwards, washing twice with PBS follows and 

culture on serum containing DMEM medium supplemented with 100 U/ml penicillin, 100 μg/ml 

streptomycin, 2.5 μg/ml amphotericin, 150 μg/ml gentamicin, and 100 μg/ml kanamycin. 

3.4 Fluorescence microscopy for bacterial penetration detection 

In order to confirm the bacterial penetration to the epithelial cells, cells were cultured in LapTek 

II Chamber slides, treated with the bacteria as described and stained with DAPI after 3, 6, 12 and 

15 hours of the beginning of the co-incubation. Cells were washed twice with PBS and once with 

DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride; Sigma, St. Louis, MO, USA) working 

solution (DAPI 2% in methanol) then covered with DAPI working solution and incubated for 15 

minutes at 37°C. DAPI was then discarded and cells were washed with methanol, mounted, 

examined and photographed using fluorescent microscope (Keyence BZ-8000, Keycence; 

Ahmed et al., 2015). 

3.5 Quantification of shRNA expression 

Quantification of the expression level of anti-E7 and anti-GFP shRNAs in treated cells was 

determined by real-time qRT-PCR as described in details in Ahmed et al., 2015 and Ahmed and 

Lage, 2019. Forward primers were designed for the detection of the siRNA inserts of HPV16-E7 

(5'-TAA TTG CTC ATA ACA GTA GAG A-3') and GFP (5'-

ATCAAGCTTATCGATACCGTC-3'), while a universal reverse primer was provided with the 

QuantiMir RT Kit and was used as a reverse primer. Human U6 snRNA control was used as a 

reference gene; and its sequence was 5'-CGC AAG GAT GAC ACG CAA ATT C-3'. Fold 

change values for the anti-HPV16-E7 and anti-GFP siRNA relative to the human U6 snRNA 

expression as well as to untreated tumor cells for calibration were calculated for each replicate of 

each sample using LC data analysis software and RelQuant software for relative quantification 

(Roche Diagnostics, Mannheim, Germany). 

3.6 Quantitative Real-Time PCR  

As described in details in Ahmed et al., 2015, quantitative analysis of HPV16-E7 gene 

expression was performed by real-time qRT-PCR with a LightCycler apparatus and SYBR-

Green Fluorescent dye (Roche Diagnostics, Mannheim, Germany). The measured expression 
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levels were normalized for expression of the reference gene enzyme GAPDH1. Specific 

oligodeoxynucleotide primers used for amplification of each target were as follows: HPV16-E7-

fw 5'-AGA AAC CCA GCT GTA ATCAT-3' and HPV16-E7-rev 5'- TTA TGG TTT CTG AGA 

ACA GA-3'; GAPDH1-fw 5'-TGA ACG GGA AGC TCA CTG G-3' and GAPDH1-rev 5'-TCC 

ACC ACC CTG TTG CTG TA-3'. Fold change values for the HPV16-E7 gene expression 

relative to the GAPDH1 gene expression as well as to untreated tumor cells for calibration were 

calculated for each replicate of each sample using LightCycler data analysis software and 

RelQuant software for relative quantification (Roche Diagnostics, Mannheim, Germany). 

3.7 Western blotting 

In Brief, the whole-cell lysates were prepared by RIPA Lysis Buffer (Merck Millipore, 

Massachusetts, USA) after the previously described culture and bacterial transfection of the 

tumor cells. Using Pierce BCA Protein Assay Kit (Pierce, Rockford, USA), protein concentration 

was measured; diluted, denatured and processed in polyacrylamide gel and transferred to an 

Amersham nitrocellulose membrane (GE Healthcare Life Sciences, UK). Blocking of the 

membranes followed using Odyssey blocking buffer (LI-COR Biosciences, Lincoln, NE, USA). 

Mouse monoclonal antibody raised against amino acids 1-98 representing full length E7 of 

HPV16 origin was used to determine the E7 levels (sc-6981, Santa Cruz Biotechnology, Dallas, 

TX, USA); while anti-GAPDH antibody (ab8245, abcam, Cambridge, UK) was used as an 

internal control. Immunoblots were visualized and photographed using Odyssey imaging system 

(LI-COR Biosciences, Lincoln, NE, USA) and analysed with Odyssey software. 

3.8 Cell proliferation assay 

Sulforhodamine B (SRB) staining-based test was used to evaluate the proliferative activity of the 

tumor cells. Briefly, 7.5 × 103/mL UPCI-SCC-090 were cultured in 96-well plates in triplicates 

for 2 days. Bacterial transfection using different dilutions and MOIs of both CEQ221-E7 and 

CEQ221-GFP bacteria according to the described protocol was performed and plates were 

incubated for 5 days. 10% cold trichloroacetic acid was used to fix the cells for 1 hour at 4 °C 

followed by five times washing with tap water. Staining of the cells was done using 0.4% SRB in 

1% acetic acid for 10 min at room temperature; cells were then washed by 1% acetic acid and 

left to dry overnight. Before measurement, cells were suspended in 20 mM Tris-HCl, pH = 10 

for 1 hour at room temperature and plates were measured at 562 nm against the reference 
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wavelength of 690 nm. The IC50 represents how much bacterial MOI is needed to inhibit 50% of 

the tumor cells in vitro. Mean IC50 values of at least three independent experiments for both 

CEQ221-E7 and CEQ221-GFP bacteria were calculated by Graph-Pad Prism5 program. 

3.9 Detection of apoptosis using flowcytometry 

To measure the intracellular levels of active caspase-3 and total apoptosis, flow cytometry was 

used. Tumor cells were cultured in six-well plates and incubated for 1 day then transfected with 

CEQ221-E7 or CEQ221-GFP bacteria according to the above-described protocol. Using FITC 

Active Caspase-3 Apoptosis Kit and FITC Annexin V apoptosis detection kit (BD 

PharmingenTM, BD Biosciences), active caspase-3 and total apoptosis was measured 

respectively. According to the kit manufacturer’s instructions, treated cells were trypsinized, 

washed in PBS and stained. Determination of the levels of active caspase-3 and total apoptosis 

was done using BD Accuri C6 flow cytometer (BD PharmingenTM, BD Biosciences) by 

collecting 10000 events. BD Accuri C6 software was used to process the data. Three independent 

experiments for each cell line were performed and the mean values were calculated. 
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4. Results 

After constructing the transkingdom shRNA plasmids using the standard laboratory protocols, 

sequencing followed to confirm the correctness of the sequences. Successful clones were 

transformed in CEQ-221 competent bacteria and hereby, producing the CEQ-221-E7 or CEQ-

221-GFP bacterial strains. To test the capability of the bacteria to penetrate and collect in the 

cytoplasm of the mammalian tumor cells, the engineered bacteria were incubated with the OSCC 

cells and stained with DAPI stain at different time intervals. Bacteria were seen collecting 

around the cytoplasm of the transfected cells after 3 hours of the co-incubation (figure 3). Lower 

numbers of bacteria could be encountered afterwards until no bacteria could be seen after 15 

hours of co-incubation. After confirming the arrival of the bacterial transport vehicles, and hence 

the shRNA plasmids, to the target cells cytoplasm, we needed to evaluate the efficiency of 

shRNA expression. The generated cDNA produced by small RNA quantification kit (Quantimir) 

from OSCC cells transfected with CEQ-221-E7 or CEQ-221-GFP plasmids was used in an qRT-

PCR test to measure the expression of the anti-HPV16-E7 and the anti-GFP shRNAs. Human U6 

snRNA was used as a reference gene to quantify the differential expression of the studied 

siRNAs. High levels of anti-HPV16-E7 and anti-GFP siRNA were noticed in corresponding 

transfected cells as compared to untreated cells. 

The level of downregulation of the HPV16-E7 gene mRNA by the expressed anti-HPV16-E7 

siRNA was evaluated by relative quantification qRT-PCR. The results were normalised against 

the GADPH1 gene and compared to CEQ221-GFP-treated and untreated tumor cells. After 3 

days of co-infection, the E7 mRNA expression in cells received the bacterially delivered shRNA 

directed against HPV16-E7 was only 61% of E7 mRNA expression in control OSCC cells. 

Corresponding inhibition of the E7 protein could be confirmed using western blot. 

The functional consequences of E7 inhibition on the treated tumor cells was examined by 

measuring the levels of activated caspase-3, total apoptosis and SRB-dependent cell proliferation 

assay. Activated caspase-3 in CEQ221-E7-treated tumor cells was 8.8-fold higher than of 

untreated cells, while CEQ221-GFP-treated showed 2.2-fold increase in caspase-3 expression 

level as compared to untreated cells. Meanwhile, total apoptosis in CEQ221-E7-treated tumor 

cells was 6.4-fold higher than of untreated cells, while, CEQ221-GFP-treated cells exhibited 2-

fold increase in total apoptosis level as compared to untreated cells. The IC50 of the CEQ221-E7 
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bacteria was 1:130 ± 19 MOI fold in comparison to 1:530 ± 93 MOI in the CEQ221-GFP 

bacteria. 

 

Fig. 3: Representative image of OSCC cells stained with DAPI and examined by fluorescent 

microscope before and 3 hours after co-incubation with the CEQ221-E7 bacteria to illustrate 

bacterial penetration (original picture not included in previous publications). 
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5. Discussion 

Several approaches were used to confront the human papilloma virus since it first appeared in 

1963. Treatment of HPV-induced carcinogenesis faced some challenges due to lack of 

inflammatory reaction which delays the immune response against the newly formed tumor cells. 

Another factor is the high diversity of the tumors and antigen differences that requires 

subsequently different therapies to different tumors (Chang et al., 2010; Singhania et al., 2012). 

Therapeutic vaccines against HPV-induced carcinogenesis did not show much success. While 

prophylactic vaccines proved successful against HPV infection and HPV-induced tumors 

subsequently, it may require many years of applying good vaccination programs to decrease the 

infection and the incidence rates (Zhou et al., 2013). Therefore, different approaches were 

required to provide treatment alternatives. In order to eradicate the tumor cells without affecting 

the neighboring cells and tissues, researchers focused on molecular targeted therapy, aiming at 

genes with specific genetic or epigenetic alterations limited to the cancer cells and not present in 

normal cells. Although molecular therapy proved successful invitro, some problems appeared 

upon in vivo application such as side effects, resistance, lack of specificity and lack of targetable 

genetic changes in many tumors (reviewed in Zhou et al., 2018). RNA interference was 

suggested for the treatment of HPV-induced carcinogenesis and the early work showed induction 

of apoptosis in the HPV-infected tumor cells invitro (Singhania et al., 2012).   

In order to address the persistent issue of delivery of shRNA to target cells, a new bacterial 

delivery system was designed and optimized for this purpose. Bacterial delivery of shRNA 

molecules has many advantages over both viral and non-viral delivery system. Beside it is easy 

and cheap to construct, tkRNA directly overcomes the issue of nuclease degradation since the 

shRNA will be protected inside the bacteria. Moreover, some bacteria preferentially grow in the 

hypoxic solid tumors due to focal lack of vascularization (due to fast growth of the cancer is not 

usually met by fast growing capillary network); which render a systematically administered 

bacteria more prone to target cancerous tissue rather than normal tissue; and therefore, 

decreasing off target toxicity (Gardlik and Fruehauf, 2010; guyen and Fruehauf, 2008). Hypoxic 

tropism has limitations because small tumors lacking necrotic hypoxic will be less invaded by 

the therapeutic bacteria. This limitation was addressed by using facultative anaerobes such as 

Salmonella spp. and E. coli instead of strict anaerobes (Diaz et al., 2005; Pawelek et al., 1997). 
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In this case, after systemic administration, bacteria will be cleared from the circulation by the 

immune system after reaching different tissues and organs, but preferentially to the hypoxic 

tumor masses. The complex and atypical capillary network enhance the process of entrapment of 

the bacteria within the tumor areas (Forbes et al., 2018). The mode of anticancer effects after 

localization in the tumor masses is largely dependent on bacterial strain. While many bacterial 

strains have direct cytotoxic effect, other bacteria such as Salmonella spp. do not possess such 

cytotoxic capabilities due to either their inherent probertites or due to attenuation required before 

systemic application. In this case, the host immune response decides the potency of the anti-

tumor effects of the bacteria (Avogadri et al., 2005). 

Because of their size and charge, it is not possible for the siRNA molecules to directly cross the 

tumor cell membrane. Therefore, Once reaching the tumor mass in a therapeutic concentration, 

bacteria are designed to cross the tumor cell membrane owing to the invasin protein expressed on 

the bacterial wall by the inv locus of Yersinia pseudotuberculosis integrated in the shRNA 

plasmid. Invasin protein interacts with β1 integrin on the tumor cell membrane; which is 

upregulated in less differentiated tumor cells providing selective penetration to tumor cells 

(Buttaro and Fruehauf, 2010; Critchley et al., 2004; Birmingham et al., 2008). In this experiment, 

the efficiency of delivery at different MOIs and time intervals was showed by DAPI fluorescent 

staining. The bacteria could be seen in the cytoplasm around the tumor cells nuclei with 

maximum penetration noticed within the first three hours of the bacteria-tumor cells co-

incubation. Bacterial degradation followed, due to lack of nutrients (especially DAP), until 

almost no bacteria could be seen after 15 hours of co-incubation. For illustration we presented 

the results of MOI 1:1000 (figure 3). To avoid non-specific tumor cell death due to transfection 

and based on our previous work (Lage and Krühn, 2010; Ahmed and Lage, 2019), we used the 

MOI 1:500 for our further experiments. 

Following introduction of the shRNA molecules into the target cell, they will be entrapped in a 

membrane-bound endocytotic vesicle. The RNAi effectors have to escape the pinocytotic vesicle 

to the cytoplasm in order to interact with the RNAi endogenous machinery and target mRNA; 

which represent another challenge facing RNAi successful application (Chang et al., 2010). To 

overcome this issue, our shRNA plasmid is endorsed with HlyA gene expressing the pore-

forming listeriolysin O which acts on the lysis of the entry vesicle bringing the RNAi effectors in 
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direct contact with the RNAi machinery. Plentiful expression of the shRNA targeting GFP and 

E7 after their bacterial delivery was measured by qRT-PCR in oral cancer cells. These results 

provide evidence of successful endocytotic vesicle escape and shRNA expression.  

Our most relevant results showed that the delivered shRNA efficiently knocked out the HPV16-

E7 expression in oral cell lines used as confirmed by qRT-PCR and western blot. Other delivery 

strategies produced comparable levels of E7 inhibition following anti-E7 shRNA delivery 

(Chang et al., 2010; Zhou et al., 2013). Subsequent lower tumor cell proliferation ability was 

observed following E7 gene knockdown as anticipated by previous studies (Hong et al., 2009, Xi 

et al., 2016). High levels of total apoptosis and active caspase-3 were observed on the tumor cells 

treated with CEQ221-E7 bacteria as compared to those treated with CEQ221-GFP suggesting 

that apoptosis is the major pathway of cell death after bacterial delivery-mediated HPV16-E7 

gene inhibition. Direct correlation was found between E6/E7 inhibition and increased levels of 

P53 and pRb (Singhania et al., 2012; Xi et al., 2016) explaining the strong apoptotic signal 

following HPV-E7 inhibition in our experiments. Previous reports suggested that expression of 

E7 resulted in downregulation of pRB protein leading to G1 checkpoint failure and subsequently 

leading to uncontrolled cell proliferation (Singhania et al., 2012). 

According to Forbes, 2010, the perfect vehicle for anticancer drug delivery should possess the 

following characters: 1) selectively lethal to the tumor cells thus increasing the therapeutic index; 

2) controllable; 3) adjustable to the tumor microenvironment; 4) can be detected from the 

outside; and 5) self-propelled enabling it to infiltrate the tumor masses.  Bacteria can be 

engineered to perform all the above-mentioned functions. Many bacterial strains tend to 

accumulate and proliferate in tumor masses due to hypoxia. Besides, bacteria will be entrapped 

in the complex vasculature of the growing tumor, which normally represent an obstacle against 

the conventional anticancer agents (Forbes, 2010). Moreover, bacteria can be designed to express 

chemotactic receptor on their surfaces, which can direct them to certain chemotactic factors in 

tumors (Kasinskas and Forbes, 2007). As a result, bacteria will be cleared from circulation by the 

immune system but meanwhile they will thrive in the immune-privileged cancerous masses 

(Dang et al., 2004; Kasinskas and Forbes, 2007). In addition, the ability of the bacteria to move 

and to leave the blood vessels to the intercellular space is a key feature of the anticancer bacterial 

therapy. Upon reaching and colonization in the tumor massed, the inflammatory cells at the 
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periphery of the tumor masses will inhibit the escape of the bacteria to the systemic circulation.  

Bacteria can be modified to express prodrugs or prodrugs activating enzymes such as cytotoxic 

agents (Ryan et al., 2009), cytokine to provoke immune system (Loeffler et al., 2008), and tumor 

specific antigens and antibodies (Groot et al., 2007). It was also found that bacteria are able to 

transfer genetic material to mammalian cells such as shRNA for the purpose of RNA 

interference. While shRNA delivery through expression vector produces strong and more stable 

effect, it is harder to control. Bacteria were also used to transfer shRNA to target cell for gene 

silencing and for gene triggering. Another advantage of the bacteria as a delivery vector for 

shRNA to tumor cells is that bacteria can be identified and monitored from the outside. Bacteria 

can be labelled by fluorescence, magnetic resonance or positron emission (Min et al., 2008). 

Systemic application caused some side effects as well such as off target effect of siRNA, acute 

liver failure due to toxicity and activation of interferon I (Forbes et al., 2018). Local application 

of the therapeutic bacteria, as we suggest in our work by choosing an oral tumor as a model, 

would overcome the three prementioned drawbacks. For instance, oral administration of 

Salmonella showed reduced toxicity and preservation of the anti-tumor activity. However, oral 

route in human might be different from that of murine models. Topical application of anti-HIV, 

RNAi-based treatments faced some problems such as low pH of the mucous membranes, 

degradation by nucleases and difficulties in penetrating the superficial layers especially when 

hyperkeratotic (Chen et al., 2009). 

Although bacteria represent an interesting alternative to the traditional gene delivery and 

anticancer therapeutics, some drawbacks and challenges appeared. a) bacteria carrying antibiotic 

resistance genes are generally not considered safe and especially when used in vivo. b) Live 

bacteria cannot be sterilized; meaning it is very hard to ensure that therapeutic bacteria are not 

contaminated with other pathogenic or non-pathogenic bacteria. c) Administered dose do not 

correlate with the therapeutic dose. It depends on many factors sch as the used bacterial strain, 

the transported anticancer agent, the hypoxic state of the targeted tissue, the inflammatory and 

immune status of the tumor and other factors, which make it difficult to adjust the therapeutic 

dose. To overcome this obstacle, case-to-case pre-administration analysis and tumor angiography 

are required. d) Infection is associated with variable degrees of toxicity. The early use of 

antibiotic would contain the infection but it will also prematurely abort the therapeutic trial 
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decreasing its outcome. e) the full mechanism is not totally understood. Besides, specificity and 

side effects are still unclear. f) despite intensive bacterial anticancer research, few studies 

successfully reached clinical trials. Clearly what applies in vitro do not essentially applies in 

vivo. Moreover, murine models are not identical to human models. Besides the heterogenicity of 

tumor cannot be replicated experimentally. g) Little is understood about bacterial tropism, side 

effects upon systemic administration, off target effect and the possibility of combining bacteria 

with other anticancer therapies (reviewed in details in Forbes et al., 2018). 

In this work, we aimed to cover another aspect of HPV-related carcinogenesis. Human papilloma 

virus associated tumors are often associated with multi-drug resistance phenomena, where cancer 

cells developed resistance against structurally and functionally unrelated compounds (Efferth et 

al., 2019). Herewith, we tested a group of 16 Epoxylathyrane derivatives to evaluate their 

possible MDR modulating effect by targeting more than one MDR mechanism. Parental tumor 

cells were grown alongside with their drug-resistant counterparts and the drug-resistant 

phenotype was preserved by continuous addition of the corresponding selecting 

chemotherapeutic agent (either daunorubicin or mitoxantrone). After co-incubating a series of 

double fold serial dilution of the test substances with the tumor cells, an SRB-based test was 

performed and the IC50 was calculated. The compounds 8, 15 and 16 showed the best results and 

were tested afterwards for induction of apoptosis using flow cytometry-based total apoptosis and 

caspase-3 detection kits. Among the three successful candidates was the compound 8 that 

showed the best overall performance against MDR. The MDR modifying activity was referred to 

their unique structure especially having hydroxyl function at position C-15 but also due to the 

aromaticity of the substituent together with the presence of heteroatoms (Reis et al., 2020). 

In addition to the previously mentioned results, we used the RNAi technology to tackle the 

persistent problem of multi-drug resistance of gastric cancer cells to anticancer agents 

(unpublished data, the manuscript is in preparation). Based on previous publications we selected 

five microRNA candidates that might be involved in the atypical MDR in cancer cells. The 

differential expression of the five candidates was performed using qRT-PCR and revealed higher 

expression of the of mir-548d-3p in atypical MDR BCRP/ABCG2-positive gastric carcinoma 

cells (EPG85-257RNOV) as compared to their parental drug-sensitive counterpart (EPG85-

257P). This was followed by inhibition of the mir-548d-3p and the effects of the inhibition on 
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the expression of BCRP/ABCG2 was evaluated. Inhibition of mir-548d-3p resulted in 

downregulation of BCRP/ABCG2 expression level and hence increased the sensitivity of the 

drug-resistant EPG85-257RNOV cells to mitoxantrone and eventually lead to substantial 

increase in mitoxantrone-dependent apoptosis. 

Bacterial delivery represents a promising alternative for the classic delivery strategies for 

shRNA. Using the advantage that RNAi effectors molecules are protected inside bacterial cell, 

beside the comparatively easier way to transfect the bacteria with the required plasmid and its 

ability to multiply in the bacterial cell and hence multiplying the copies of the interfering RNAi 

molecules. Bacteria can carry large amounts of heterogenic DNA, which is not the case with 

other alternatives such as viruses. Taken together with the possibility of integrating some other 

genes within the infecting plasmid helping the cell to penetrate the target cell and helping the 

shRNA to escape the pinocytotic vesicles. Although hypoxia and necrosis in the tumor area 

represent a hurdle against chemo- and radiotherapy, it is considered advantageous for the 

bacterial therapy since it helps the bacteria to accumulate in the tumor masses and hence 

enhancing specificity. Bacterial therapy can also be potentiated by chemotherapy or radiation. 

That would lead to the reduction of the doses and the duration of exposure of chemo- or 

radiotherapeutic agents required for the patients, and hence decreasing the side effects associated 

with their use (Dang et al., 2004). Finally, in comparison to viruses, bacteria are safer, well 

tolerated in in vivo trials and easily controlled using antibiotics. In this work, we highlighted the 

availability of bacteria as robust, effective and safe delivery vehicles for the interfering shRNA 

molecules in HPV16-positive oral carcinomas. Inhibition of E7 mRNA resulted in a 

corresponding triggering to the caspase-dependent apoptosis signal. Transkingdom RNAi 

represents a good alternative to substitute current delivery strategies of the RNAi effectors 

especially in topically accessible tumors such as skin and oral cavity tumors. 
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