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COMMENTARY

Is the future of peer review automated?
Robert Schulz1, Adrian Barnett2, René Bernard3, Nicholas J. L. Brown4, Jennifer A. Byrne5, Peter Eckmann6, 
Małgorzata A. Gazda7, Halil Kilicoglu8, Eric M. Prager9, Maia Salholz‑Hillel1, Gerben ter Riet10, Timothy Vines11, 
Colby J. Vorland12, Han Zhuang13, Anita Bandrowski6 and Tracey L. Weissgerber1*    

Abstract 

The rising rate of preprints and publications, combined with persistent inadequate reporting practices and problems 
with study design and execution, have strained the traditional peer review system. Automated screening tools could 
potentially enhance peer review by helping authors, journal editors, and reviewers to identify beneficial practices and 
common problems in preprints or submitted manuscripts. Tools can screen many papers quickly, and may be par‑
ticularly helpful in assessing compliance with journal policies and with straightforward items in reporting guidelines. 
However, existing tools cannot understand or interpret the paper in the context of the scientific literature. Tools can‑
not yet determine whether the methods used are suitable to answer the research question, or whether the data sup‑
port the authors’ conclusions. Editors and peer reviewers are essential for assessing journal fit and the overall quality of 
a paper, including the experimental design, the soundness of the study’s conclusions, potential impact and innova‑
tion. Automated screening tools cannot replace peer review, but may aid authors, reviewers, and editors in improving 
scientific papers. Strategies for responsible use of automated tools in peer review may include setting performance 
criteria for tools, transparently reporting tool performance and use, and training users to interpret reports.
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Introduction
Peer review is a cornerstone of scientific publishing 
that, ideally, provides high quality assessments on large 
numbers of submitted manuscripts. Rising publication 
rates have increasingly strained this system. While many 
papers benefit from peer review, problematic papers 
are still published [1]. This may include papers with 
fundamental flaws in design, analysis or inference, or 
fraudulent papers. Correcting errors after publication is 
extremely burdensome [2, 3]; hence, focusing on preven-
tion may be more efficient. Inadequate reporting is also 
common in published studies [4–6], making it difficult 
for reviewers to evaluate manuscripts. Published papers 
are routinely missing information needed to assess the 

risk of bias. Statistical errors are also common [7, 8]. 
Evidence that peer review substantially improves report-
ing, or catches errors or questionable research practices, 
is limited [9, 10]. The lack of a comprehensive reviewer 
training system may contribute to problems with peer 
review [11].

Automated screening in academic publishing is not 
new, and may offer a unique opportunity to improve 
scientific papers. Publishers have been using automated 
tools to detect plagiarism for more than a decade [12]. 
Journals could potentially use screening tools to improve 
reporting before sending papers to reviewers, or enhance 
peer review by drawing reviewers’ attention to oppor-
tunities for improvement. The growing adoption of pre-
prints offers another opportunity to use automated tools 
to help authors to improve their papers [13]. While pre-
prints allow scientists to receive feedback before pub-
lishing their work in a journal, comments on preprints 
are uncommon [14]. Automated tools could help to fill 
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this gap. Some publishers are experimenting with using 
automated tools to check for factors such as statistical 
reporting errors [15], ethics statements, blinding, rand-
omization and sample size calculations [16].

Our experience suggests that automated screening is 
most powerful when many tools are applied simultane-
ously to assess various aspects of reporting. The ScreenIT 
pipeline, which includes a growing set of automated 
tools, has been used to post public reports on more than 
23,000 bioRxiv and medRxiv COVID-19 preprints [17]. 
While this approach was adopted to support authors and 
readers in assessing the flood of COVID-19 preprints, it 
demonstrates the feasibility and potential of widespread 
automated screening. Table  1 provides a brief overview 
of some tools that have been used to screen preprints or 
papers. Given these developments, it is important to con-
sider the strengths and limitations of automated screen-
ing and how one might responsibly integrate these tools 
into the editorial process.

Main text
How can automated screening help peer review?
Peer review includes three areas of assessment: jour-
nal fit, research and reporting quality, and compliance. 
The “fit” assessment considers whether the manuscript 

aligns with the journal’s aims and scope and is typically 
performed by journal editors or administrators [24]. Fit 
may also include basic assessments, such as confirming 
that the submission is a legitimate scientific paper that 
falls into one of the journal’s accepted article types. The 
research and reporting quality assessment examines 
many factors, including scientific rigor, novelty, antici-
pated impact, significance to the field, relevance to 
medical practitioners, the wider scientific community 
and society, and the quality of writing and data pres-
entation. This broad assessment is typically performed 
by reviewers, although editors may also contribute. 
Compliance assessment determines whether the article 
complies with relevant policies. This includes ethical 
standards (e.g., plagiarism, consent, or ethical approval 
statements), funder requirements (e.g., grant num-
bers, clinical trial registrations), and journal require-
ments (e.g., compliance with formatting guidelines, 
reporting guidelines or open data policies). The jour-
nal editorial office may assess aspects of compliance, 
although reviewers may also comment on adherence 
to reporting guidelines or other compliance elements 
that impact research and reporting quality.  The com-
pliance and research and reporting quality assessments 
provide authors with valuable feedback, while all three 

Table 1  Examples of automated tools used to screen preprints, submitted papers or publications

Tool Screening topics and rationale

Sciscore [18] Many factors, including:
RRIDs: Unique persistent identifiers that allow readers to determine exactly what resource (e.g., cell line, anti‑
body, model organism, software) was used
Ethics & consent statements: Required for legal compliance
Blinding & randomization: The failure to blind or randomize experiments is associated with overestimated 
effect sizes
Sample size calculations: Provide information about whether the study was designed and powered to detect 
an effect of an expected size
Sex/gender: Effects may differ according to sex or gender

ODDPub [19] Open data, open code: Open data and open code make it easier to reproduce analyses, identify potential 
errors, and re-use data

Limitation-recognizer [20] Author-acknowledged limitations: Every study has limitations. Acknowledging limitations provides essential 
context that allows readers to interpret the study results

Barzooka [21] Bar graphs of continuous data: Many datasets can lead to the same bar graph and the actual data may suggest 
different conclusions from the summary statistics alone. These graphs should be replaced with dot plots, box 
plots or violin plots

Jetfighter [22] Rainbow color maps: Rainbow color maps are not colorblind accessible, and create visual artifacts for readers 
with normal color vision

Trial registration
number screener

Clinical trial registration numbers: Clinical trials must be registered in an International Clinical Trials Registry 
Platform registry, and this number must be reported in publications. This makes it easier to detect practices like 
outcome switching

Statcheck [7] Misreported p-values: p-values that do not match the reported test statistic and degrees of freedom are com‑
mon and can sometimes alter study conclusions

Scite reference check Citation of retracted papers, or papers with corrections or errata: Checking cited papers for editorial notices can 
help to identify potentially problematic citations

Seek and blastn (semi-automated) [23] Confirms that nucleotide sequences were correctly identified: Incorrect identification or use of nucleotide 
sequences makes it difficult to interpret or reproduce study results. Results from this tool require confirmation 
from an expert reviewer
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assessments help editors to decide which papers to 
publish.

We believe that in their current form, automated 
tools have the most potential to aid in assessing compli-
ance. This may also include some routine aspects of the 
research and reporting quality assessment (e.g., com-
pliance with elements of reporting guidelines, such as 
CONSORT [25], PRISMA [26], or ARRIVE [27]). The 
broader research quality and journal fit assessments are 
best left to expert human reviewers and editors. While 
limited in scope, using automated tools to aid in assess-
ing compliance and basic reporting quality items would 
fill an important gap. Editorial offices often lack the 
expertise and capacity to check all compliance criteria. 
Many “best practice” criteria are routinely neglected by 
reviewers and editors. These include criteria such as fol-
lowing reporting standards, or transparently presenting 
statistical results [28].

Strengths and limitations of automated screening
Automated screening tools may be able to address sev-
eral limitations of peer review [24]. Traditional peer 
review often fails to address widely accepted, but subop-
timal, research practices and guideline details. Examples 
include incomplete reporting of criteria to assess risk of 
bias [6], ambiguous or incorrect citations [29], lack of 
open data or code [30], incorrect statistical calculations 
[31], and underreporting of ethics [32], sex as a biological 
variable [33], and limitations statements [34]. Whereas 
traditional peer review requires time and effort [35], tools 
can quickly screen many papers and provide individual-
ized feedback on some of the items included in trans-
parency and reporting guidelines. Automated screening 
may also raise awareness of the existence of guidelines 
and the need for better practices. In addition to detecting 
potential problems or missing information, tools can also 
detect beneficial practices (e.g. open data, open code). 
Tools can be adapted to assess different types of studies, 
such as in vitro, preclinical or clinical research, or differ-
ent study designs.

Despite these advantages, automated tools have impor-
tant limitations [17]. Tools make mistakes. They can-
not always determine whether an item is relevant to a 
given paper, especially when reporting is poor. Further-
more, tools that assess reporting quality may not cap-
ture information that reflects the methodological quality 
of the experiment. Automated screening tools typically 
use algorithms or machine learning to recognize pat-
terns, with varying levels of sophistication. Existing tools 
are not capable of understanding or interpreting the 
research in the context of the scientific literature. They 
cannot determine whether the methods used are suit-
able to answer the research question, or whether the 

data support the authors’ conclusions. A deeper under-
standing is essential for assessing innovation, impact, and 
some elements of scientific rigor. Notably, many of these 
limitations may also apply to human reviewers, especially 
those who are not trained in peer review or are reviewing 
papers outside their area of expertise.

Considerations for responsible use of automated screening
Within the editorial process, potential users of auto-
mated tool reports include authors, journal editors, 
administrative staff, and reviewers. Introducing tools into 
the editorial process requires careful consideration and 
pilot testing. Reports should be interpreted by a knowl-
edgeable reader and could be targeted across phases and 
to different stakeholders, such as journal editors and 
peer reviewers. Simply introducing reports into a system 
where many peer reviewers receive minimal training in 
manuscript review may have unintended consequences. 
Some reviewers might uncritically rely on the reports, 
rather than using the reports as supplemental informa-
tion and focusing on impact, innovation, and other fac-
tors that the existing tools cannot reliably assess [36]. 
Authors and reviewers who are not familiar with the 
reports, or who regularly use suboptimal practices iden-
tified by tools, may not understand why the items men-
tioned in reports are important or how to implement 
better practices. All users should also be aware that tools 
make mistakes. Tool performance, as measured by F1 
scores, sensitivity and specificity, should be transparently 
reported, along with known performance issues to aid all 
users in gauging the effectiveness of the tools. F1 scores 
are calculated as the harmonic means of precision and 
recall.

Integrating automated screening into the editorial pro-
cess also requires technical solutions. Adding new tools 
to manuscript submission systems is time consuming 
and can be expensive. Sometimes publishers expect tool 
developers to cover these costs, which far exceed pro-
ject budgets for open source tool developers. Systems to 
quickly and inexpensively integrate tools into manuscript 
submission platforms are urgently needed.

There are also many opportunities to expand and 
improve the tools themselves. ScreenIT shows that inte-
grating tools into a combined pipeline allows us to screen 
for more features, including criteria that are relevant 
to different study designs or disciplines. Furthermore, 
ScreenIT includes several instances where different tools 
screen for similar items. These include features like open 
data and open code, clinical trial registrations, the use of 
problematic cell lines, and attrition. Even in these cases, 
our experience indicates that combining reports from 
multiple tools gives a more complete picture than using 
a single tool. Different tools may screen different parts of 
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the manuscript, detect different criteria, or be optimized 
for different types of papers. Publishers will want to 
select the subset of tools that meets their needs, or adapt 
the tools to suit their reporting requirements. Automated 
tools could also be developed for other applications, such 
as trial registries and funding applications.

Several other factors should be considered to ensure 
that automated screening tools meet the scientific com-
munity’s needs. Research should systematically assess 
factors that one could examine with automated screen-
ing, and identify those that have the most impact on the 
interpretation of study results. This would guide tool 
developers in determining what types of tools are most 
urgently needed. The level of reporting that a tool detects 
is also important. A tool to detect blinding, for example, 
could be designed to determine whether any statement 
about blinding is present, whether blinding was used at 
any phase of the study, or whether individual stakeholder 
groups were blinded (e.g., patients, caregivers, out-
come assessors, or data analysts). Tools that detect any 
statement may be most useful for items that are rarely 
addressed, whereas tools that assess nuanced reporting 
are better for commonly reported items.

Finally, we need to consider the user experience and 
needs of the scientific community. Reports should be 
carefully designed, with feedback from researchers and 
publishers, and combined with educational materi-
als to provide authors with clear guidance about how 
to improve their paper. The scientific community needs 
to identify the most responsible way to share reports. 
At what phase of peer review should reports be shared 
with editors, peer reviewers, and authors? When screen-
ing preprints, should reports be shared only with the 
authors, reviewers, and editors, or should reports be 
publically available to readers? We also need standards 
for transparently reporting tool performance and limi-
tations, and determining how these criteria should fac-
tor into the reporting and interpretation of tool results. 
If automated screening becomes widespread, publishers 
and toolmakers may need to protect against gaming.

Outlook
Editors and peer reviewers are essential for assessing 
journal fit and research and reporting quality, includ-
ing scientific rigor, the soundness of the study’s con-
clusions, potential impact, and innovation. Automated 
screening tools may play a valuable supporting role in 
assessing compliance and some elements of research 
and reporting quality, such as compliance with report-
ing guidelines. Automated screening may also be useful 
in systematically raising awareness about the problems 
with widely accepted, suboptimal practices that might 

be overlooked in peer review. While the future of peer 
review may include reports from automated tools, 
knowledgeable reviewers should use these reports 
responsibly. Future work should enhance existing tools, 
simplify integration of tools into editorial systems, and 
train reviewers, editors and authors to use tool reports 
to improve papers. If successful, automated tools could 
reduce poor reporting and educate researchers about 
reporting best practices.
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