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Chapter 1

Introduction

Cabalgaron tres dias, y le dijo: “;Oh, rey del tiempo
y substancia y cifra del siglo!, en Babilonia me
quisiste perder en un laberinto de bronce con
muchas escaleras, puertas y muros; ahora el
Poderoso ha tenido a bien que te muestre el mio,
donde no hay escaleras que subir, ni puertas que
forzar, ni fatigosas galerias que recorrer, ni muros
que veden el paso.”

Luego le desatd las ligaduras y lo abandoné en la
mitad del desierto, donde murié de hambre y de sed.

Borges, Una Leyenda Ardbiga (Historia de los dos
Reyes y los dos Laberintos, como Nota de Burton)

In Borges’s narrative of the two kings and their two labyrinths, the king of Babylonia seeks to humiliate the
king of Arabs and bids him into a labyrinth built so confusing and subtle that no man would venture to
enter it. Despite the many walls, stairways, and doors, the king of Arabs finds the door out of the labyrinth
and invites his host to see his own labyrinth in turn. Back in his own country, the king of Arabs gathers his
army and returns to Babylonia, where he takes its king captive. He binds him to a camel and both ride for
three days, when he finally takes revenge on the king of Babylonia and shows him a labyrinth, which has
no doors, no galleries, and no walls. It is the plain of the desert where he leaves the king of Babylonia alone,
who dies of hunger and thirst.

Embarking on a scientific research project in the theory of condensed matter one naturally finds oneself
being trapped in a labyrinth constructed of diverging integrals, inapplicable or uncontrolled approximations,
equations which either too few or too many terms, and eventually the bottomless task of numerical
implementation and interpretation of the obtained data. The full Schrodinger equation for the quantum
mechanical many-body problem features a complexity and subtlety hardly anybody would venture to solve
exactly. First-principle methods and aé-initio calculations using density-functional theory yield reliable
results for static problems but hold severe methodological problems as the precise form of the equation
that has to be solved is still unknown.

Instead, physicist have been working hard during in the past one hundred years and have invented an
abundance of prototype models and approximation methods to overcome walls and open closed doors.
Some of these have led to hitherto unknown fields of study, some of them have even become of enormous
technological importance. These methods and ideas, being restricted to our field of interest, which is
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non-equilibrium quantum transport theory, can be classified into a handful categories or paradigms. These
are certainly mutually non-exclusive; they are by no means complete but only meant to give a rough sketch
of the global picture.

Some simple, most often non-interacting problems can be solved exactly and serve as a reference for
perturbation theory with which corrections due to weak interactions, small couplings, or dilute contam-
ination of clean samples by impurity-doping can be obtained. On the formal level of the actual theory,
the discussion of such limiting cases comprises the linearisation of equations, the negligence of memory
effects by choosing appropriate asymptotic time scales on which the dynamics turns out to be Markovian,
or to eliminate any time-dependent dynamics by only considering a system’s stationary state. The use
of perturbation theory as a means to extend knowledge by studying small modifications of an already
solved problem is one of the methodological pillars of theoretical physics. The application of diagrammatic
expansions, partial summations of series, or the theory of Green functions have become invaluable tools for
theorists in many-body physics and have also fostered research and investigation of the formal methods
themselves.

Without suitably refined computational techniques and no understanding of fundamental physical
mechanisms, which is often encountered in science, especially when qualitatively new physics are discovered,
a consistent macroscopic description of a physical system provides first theoretical insight. Without reverting
to a microscopic derivation, phenomenological theories evade the many-body problem at the expense of
obtaining only a description of observable physics. The historical examples of this approach to condensed
matter theory include the famous Drude and Sommerfeld theories of electrical conductance, where the
material’s parameters are not substantiated microscopically but kept as phenomenological constants in the
equations. Corroborating the macroscopic theory by a microscopic one is a difficult task. In some cases,
this has been achieved, as for example the phenomenological theory of superconductivity due to London
has been replaced by the microscopic theory of Bardeen, Schriefter, and Cooper. In general, however, the
understanding of electrical conductance of bulk materials and its fundamental physical mechanisms has led
to the discovery and research of a plethora of materials, parameter regimes, and exotic phenomenology,
which still constitutes the basis of today’s research in condensed matter theory.

As an intermediate step between only describing the phenomenology of a physical system and being
drowned in the details of exact microscopic modelling, one often employs the strategy of replacing compli-
cated physics by simple effective models. The Anderson model, where the effect of magnetic impurities in
bulk materials is described by the influence of this very impurity per se instead of the detailed quantum
mechanical structure of an atomistic model, is one example for such a treatment. Even large systems of
interacting particles can be submitted to such an approach. The Fermi-liquid paradigm subsumes the effect
of electron—electron interactions of a large Fermi system in the formation of particle-like entities, which
can be treated by an effective theory of weakly interacting quasi-particles.

Probably the most drastic and radical way of simplifying the many-body problem is the reduction of the
number of interacting particles. This approach goes beyond the mere exploitation of self-similar structures
on different scales as the many flavours of renormalisation-group methods do or the restriction to the
physics of low-dimensional systems. It leads to the emergence of a mesoscopic world on a nanometre scale
that is interfacing the microscopic and the mesoscopic level and thereby allows us to study the cross-over
from single-particle physics to collective phenomena. Pursuing this reductionistic idea consistently to the
absolute minimum eventually leads to the notion of quantum nanostructures, artificial atoms, and single-
molecule devices, whose study has been fostered by the enormous advance in experimental technology in
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the past decades. The paradigm of simplification by reduction and the study of the quantum transport
theory of quantum nanostructures and single-molecule devices constitutes the physical foundation of this
thesis.

In the high-temperature, sequential-tunnelling regime of molecular electronics for the Anderson—
Holstein model, there are no obstructing walls of analytic magic; there are no misleading doors of cryptic
approximations. Both rate equations and master equations are linear equations whose precise matrix
structure can be derived from general expressions, and due to their linearity, the numerical implementation
is straightforward. Being stripped of obvious obfuscating features, without the need to model a single-
molecule junction with all its details, and relying on the power of bare and simple models to which
complexity and structure can be added step by step, the problem still constitutes a labyrinth, although rather
in the sense of Borges. It asks for the mere survival, for understanding the equations’and their solutions’
structure from a fundamental point of view. In this sense, the task we have taken in this thesis is to do
better than the king of Babylonia and to survive in the Borgesian desert of molecular electronics.

1.1  Quantum Nanostructures

Quantum nanostructures are confined quantum mechanical systems of spatial extension on a nanometre
scale. They are realisations of textbook examples of simple quantum systems like a potential well, whose
semiconductor realisation is termed “quantum dot” for it resembles a zero-dimensional system." A quantum
nanostructure allows fundamental quantum mechanics to be monitored and investigated experimentally.
Of course, this is not the only possibility to study quantum mechanics on the single-particle level. Single
ions stored in Paul traps (Leibfried e# al., 2003), for instance, are much better isolated from the environment
than quantum dots are and admit a precise control of their physics using frequency-stabilised laser beams.
The physical parameters like the energy spectrum and oscillator strengths, however, are inherent to the
atomic species being used and cannot be tailored like in artificially created semiconductor structures.

The interaction of the quantum nanostructure with the macroscopic world is in general achieved by
measuring absorption and transmission properties of either photons, where the coherent quantum optical
properties of the nanostructure are observed, or electrons, where it is the electrical transport properties that
are investigated. In both cases, the nanostructure is interacting with infinitely large reservoirs, either due
to spontaneous emission of photons into the surrounding radiation field or by the coupling to metallic
electrodes via tunnel junctions. The theoretical description is that of an open quantum system, namely
system—bath interactions. The abstract Hamiltonian used to describe these is

H=Hg+ Hg + Hg g,

with a free system Hg, a free particle reservoir, that is the metallic electrodes, which act as the environment
Hg, and a system—bath interaction Hg g, which in our case will be an Anderson-type tunnel coupling.
In the context of this work, we assume the tunnel coupling to both electrodes to be weak such that the
non-equilibrium dynamics can be treated by perturbation theory in Hg_g. The main difference between
optical and electrical investigation of nanostructures lies in the type of the bath. Due to the conservation
of particle number in fermionic reservoirs, the quantum mechanics of the interacting nanostructure is
severely restricted, as for instance linear superpositions of neutral and charged states, which in quantum

" For a review on the physics of quantum dots, see Kouwenhove & Marcus (1998) or Kouwenhoven ez al. (2001).
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Figure 1.1: Abstract model of a quantum nanostructure:
one or more localised electronic levels indicated by the
solid line, coupled to both a source (left) and a drain (right)
electrode held at temperature kg T. The bias or source—drain
voltage is the difference of the leads’ chemical potentials
Ya, which are assumed to be of the same modulus yg, =
—UR= %eVsd, such that the potential drop is symmetric at
both tunnel junctions. The gate voltage is the distance of
the localised system from the energetic zero.

optics give rise to Rabi oscillations, cannot be formed. Yet, the conservation of particle number allows to
measure particle currents through the nanostructure by using two reservoirs instead of only one, a source
and a drain electrode, which inject and extract charges by tunnelling. In Figure 1.1, we show the abstract
model of such a quantum nanostructure. The two electrodes are labelled by their geometric position as
left (L) and right (R). Their difference in chemical potential yy —ur gives rise to a source—drain voltage,
also known as bias eVyq := y, — pur. We assume the voltage drop from each electrode to be symmetric with
respect to the localised system, py, = —pyr = %eVSd. Since the general direction of particle transport through
the nanostructure is from higher to lower chemical potential, we commonly use the notion of source (S) and
drain (D) electrode instead of left and right. The source electrode is hereby defined as the one with higher,
that is positive, chemical potential, which for example for positive bias voltage is the left electrode. Some
experimental set-ups allow for attaching an additional electrode, a gate electrode, with which the energetic
position of the nanostructure inside the bias window can be freely adjusted, and the nanostructure can be
tuned through resonances or the Coulomb-blockade diamonds. Experiments with a scanning tunnelling
microscope for example do not fall in this category (Qiu e al, 2003). Since there the quantum nanostructure,
which most often is a complex molecule, is located between the tip of the microscope and an underlying
substrate, such systems cannot be gated by construction.

In the absence of Coulomb repulsion, the model of a single electronic level being confined between two
metallic electrodes can be solved in closed form. This “resonant tunnelling” model, whose transmission
tunction is a Lorentzian with its width I being given by the Golden-Rule expressions due to the tunnel
couplings, is the simplest model for a quantum nanostructure. With more than one level or Coulomb
repulsion between the electrons in two spin-degenerate levels, the system becomes highly non-trivial,
the most obvious effect being the emergence of Coulomb blockade physics.* Theoretical approaches to
solve the problem in certain limits include renormalisation group calculations (Karrasch ez al., 2006) or
effective low-temperature theories (Schrieffer & Wolff, 1966) that show the emergence of Kondo physics
(Pustilnik & Glazman, 2005), which can be studied experimentally (Goldhaber-Gordon e al., 1998). The
electronic spin being not only a degree of freedom of the nanostructure but also of the metallic electrodes
inspires the study of transport properties with ferromagnetic leads. The alignment of the quantum dot’s
spin with respect to the electrodes’ magnetisation significantly influences the electronic transparency of the

* See Grabert & Devoret (1992) as a general reference on single-charge tunnelling in quantum nanostructures.
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nanostructure (Braig & Brouwer, 2005; Braun ez al., 2004). In our study of suspended carbon nanotubes, we
shall recover systems of similar abstract structure.

'The quantum-dot paradigm allows us to build models for more complicated nanostructures. Sequential
arrays of two or more quantum dots are being studied intensively in the literature (Gurvitz, 1998; Wegewijs
& Nazarov, 1999). In such systems, one can observe coherent and quantum optical effects in the two-level
system defined by the localised two-dot system (Brandes, 2005). There, coherent superpositions between
different charge states are allowed. An electron occupying the nanostructure can be in either of the two
quantum dots: it can also occupy both of them simultaneously being in a linear superposition of the
respective wave functions. As we shall see in this thesis, a parallel array of electronic levels, which models
a multi-orbital nanostructure, also allows for coherent dynamics, although different from the sequential
systems’ dynamics.

1.2 Single-Molecule Junctions

Quantum dots are characterised by their electronic properties and thus resemble an artificial atom: a
molecule can also sustain internal vibrations of the individual nuclei against each other. The transport
properties of single-molecule junctions are therefore expected to show traces of the molecular vibrations in
the current—voltage or noise characteristics3 In the fabrication and experimental set-ups of these junctions,
which forms a research field of its own (Cuniberti e al., 2005), one also has to rely on less controllable
chemical methods instead of purely lithographic ones as they are used for semiconductor devices. Many of
today’s experiments thus focus on the qualitative detection of transport properties (Park ez a/., 2000). The
study of carbon nanotubes and their quantitative conductance properties has attracted significant interest
in molecular electronics not only because of their relation to graphene physics but also due to the good
control of the fabrication process of nanotube based devices (Leturcq ef al., 2009; Sapmaz et al., 2006).

The primitive model of a single-molecule junction is defined by the presence of a few vibronic modes that
are coupled to the electronic levels. In molecular physic, one commonly employs the Born-Oppenheimer
approximation to separate the apparently slow vibronic motion from the fast electronic motion and obtains
an adiabatic potential of the vibronic dynamics for each electronic state of the molecule. In this picture, the
main effect of having a different number of charges on the molecule consists of a shift of the oscillator’s
equilibrium position and a change of the vibrational frequency. The resonant tunnelling model of a quantum
nanostructure, which deals with discrete charges, is thus easily extended to the simplest model of a single-
molecule junction by linearly coupling the system’s total charge to the oscillator coordinate. This model,
which is known as the Anderson—-Holstein model, for it combines the Anderson impurity model and the
Holstein polaron, is described by the system Hamiltonian*

Hs = eqdid, + hob'b + Y Ahowdd, (b +b), (1.2.1)
o o

where we have only included the charging effect on the oscillator’s equilibrium position. Models with
charge-dependent frequencies are discussed for instance by Wegewijs & Nowack (2005a) and Koch &

3 See for instance Koch (2006) or Galperin e# al. (2007) for a review.

* The notation is d, for the localised system’s electronic operators with electronic spin ¢ and b for the annihilation operator of
the harmonic oscillator with frequency w. The electron—phonon coupling constant is denoted by A. In this thesis, we conveniently
use natural units by setting /i =1 and e =1. We only keep the explicit reference to these constants in the Golden-Rule rates T, the
oscillator quantum #Aw, and the applied voltages eV to comply with the common use of language.
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von Oppen (2005a). In this thesis, we shall be concerned with the generic Anderson—Holstein model and,
as symmetry-induced degeneracies of electronic orbitals are a second property that, in addition to the
vibronic structure, distinguishes single-molecule junctions from quantum-dot systems, in particular its
generalisation to degenerate and near-degenerate multi-orbital molecules.

Coulomb repulsion between the electrons in two spin-degenerate levels is usually modelled by adding
the term Unyn, to the system Hamiltonian. Such a term being quartic in the electronic operators renders
the system Hamiltonian non-diagonal in the product space of the spin-degenerate electronic levels. In
second-order perturbation theory, this is, however, irrelevant, as Wick’s theorem need not be applied. One
can simplify the problem by either setting U =0, and deal with non-interacting on-site physics, or by
letting U — oo, which allows at most one excess charge on the molecule. Only in the sequential-tunnelling
approximation, the assumption of strong Coulomb blockade, U — o0, is up to combinatorial factors in the
Golden-Rule rates, equivalent to completely ignoring electronic spin. To state the full model concretely, we
define the free electronic reservoirs as non-interacting Fermi-gas electrodes in the wide-band limit with
constant and unit density of states v,

- t
Hg = Z €koCryqChoas
koo
where the index a € {L,R} labels the respective reservoir. Instead of the geometric indices left and right we
also use the indices S and D for source and drain, respectively. The system—bath interaction is given by a
bi-linear tunnel coupling of the common form3

Hs g =Hr = Z tkmdickm +h.c.

koa

In concrete applications, we shall assume the tunnel amplitudes t,, to depend only on the reservoir and
spin indices, be the same for all wave vectors k, that is tx,, = t5a,and be real t44 = £, .. The tunnel amplitudes
define the Golden-Rule rates T'y = 2Wﬂv|tm|2, which in the resonant tunnelling model determine the width
of the Lorentzian-shaped transmission function.

A linear electron—phonon coupling like the one used in the Anderson—Holstein model can easily be
eliminated by means of a canonical transformation. This transformation, called the polaron transformation,’
essentially applies the shift operator to the charged sector of the molecular Hilbert space. Both the on-site
energy &4 and the charging energy U are renormalised, and the transformation of the electronic on-site
operators can be subsumed in imprinting a matrix structure on the bare tunnel amplitudes f44. The matrix
elements of the renormalised tunnel amplitudes define the Franck—-Condon matrix, which weighs the
electronic transitions of the molecule due to tunnelling by the wave-function overlap of the respective
vibronic states and thus incorporates the Franck-Condon principle of molecular physics. For the Anderson—
Holstein model, the resulting expressions are known in closed form. For more complicated molecular
systems, like the E®e Jahn-Teller Hamiltonian of chapter 3.5, the system Hamiltonian has to be diagonalised
numerically. The representation of the original operators in terms of the diagonal basis then defines the
matrix-valued renormalisation of the tunnel amplitudes, which is explicated in more detail in appendix E.

5 Since in this context they are the same, we use the notations Hs_g, for the system—bath interaction and Hr for the Anderson-
type tunnelling Hamiltonian synonymously.

® For a full discussion of the polaron transformation for the single-mode model, see Mahan (2000, chap 4.2), Koch (2006,
app. A), or appendix E.3 of this thesis. The generalisation to the two-level Anderson—Holstein model is given in chapter 5.1.
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The application of the polaron transformation to solve the electron—phonon coupling requires the
tunnelling to the electrodes to be sufficiently weak to treat the matrix-valued tunnelling by perturbation
theory. The lowest-order perturbative regime of molecular electronics, sequential tunnelling of single
charges, gives rise to two different descriptions, rate equations and master equations. The study of these
equations and their mutual relation is the central topic of this thesis.

'The opposite of the weak-coupling limit is the perturbative quantum limit (Mitra e# a/., 2004): the
resonant tunnelling problem is solved exactly and, using the non-equilibrium Keldysh technique, the
electron—phonon coupling is treated as a perturbation. Using single-particle S-matrix methods only,
Wingreen e al. (1988) succeed to obtain an exact solution of the transport problem in a very restricted
regime. The many-body properties of the electronic reservoirs do, however, lead to a significant modification
of the differential conductance peaks as it is shown by Flensberg (2003).

A completely different form of coupling a molecule’s vibrational modes to its electronic degrees of
freedom is due to the interaction of a suspended carbon nanotube’s bending mode with an externally
applied magnetic field (Shekhter ez al, 2006). The minimal coupling in the molecular Hamiltonian
intertwines the charge and the electronic and thus also the oscillator’s momentum via the vector potential
A(7). The equivalent of the polaron transformation is not defined by the displacement operator, being the
exponential of the momentum, but by the exponential of the coordinate %, thereby reversing the role of
coordinate and momentum in this type of single-molecule junction. The additional phase-factor in the
renormalised tunnel amplitudes then allows for Aharonov—Bohm physics due to the delocalised vibrational
wave function of the oscillating carbon nanotube.

Nanoelectromechanical devices and in particular shuttle devices (Donarini, 2005) are very similar to the
concept of Anderson—Holstein molecules. In contrast to an internal, on-site harmonic oscillator mode, it is
the harmonic coupling of the nanostructure to the metallic electrodes, which gives rise to oscillations of
the nanostructure as a whole. Abstractly, such systems are modelled by using position-dependent tunnel
amplitudes t, = t,(x). The general purpose of shuttle mechanisms is not so much the implementation
of molecular physics on the nanometre scale but rather the interaction of mesoscopic oscillators with
single-charge tunnelling, for example pumping single electrons through a quantum nanostructure on the
time scale of the shuttle’s oscillation frequency.

Besides the vibronic degrees of freedom there are other molecule-specific properties that do influence
the transport properties of single-molecule junctions and which are being studied in the literature. The
orientation of the magnetisation of magnetic molecules, caged in a Cgo-fullerene, can be changed under the
influence of tunnelling electrons. Sophisticated technological set-ups would thus allow an experimentalist
to store and read magnetic information by applying electric currents (Elste & Timm, 2005; Timm &
Elste, 2006). Using larger molecules with geometries more complicated than the cylindrical structure
of carbon nanotubes or the spherical symmetry of fullerenes, one can access and study the transport
properties due to the molecule’s different conformational configurations (Thijssen ez a/., 2006), for example
the current-induced switching behaviour of meta- and bistable molecules (Elste e# a/., 2008).

Outline of the Thesis

After having introduced the general types of quantum nanostructures and single-molecule junctions that
we consider in this thesis, chapter 2 will lay out the theoretical framework of master equations and rate
equations. We present a discussion of Markovian master equations from a formal point of view stressing the
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implications of the Lindblad—Kossakowski representation theorem for the formal structure of the equation
and its physical restrictions. A derivation of these equations from the von Neumann equation is given first
by a brute-force expansion of the propagators in terms of the tunnelling Hamiltonian to introduce the most
common approximations used in the literature. Using a more rigorous approach due to Davies and others,
we re-derive the equations in a different manner thus evading the use of many of the aforementioned
approximations. Instead, the same results will be obtained by a careful choice of initial conditions and
asymptotic time scales. The rigorous approach results in a natural distinction of the weak-coupling limit
in master equations for the full reduced density matrix and rate equations for the electronic and vibronic
populations only depending on the spectral structure of the system Hamiltonian.

These two types of Markovian kinetic equations for the quantum transport problem of molecular
electronics have been used and are used by a number of research groups in applications involving simple
prototype models as well as complicated and very detailed modelled systems. These two equations have
defined two difterent, hardly overlapping strands of the theory; their distinction, their interplay, and their
mutual relation have inspired and motivated this thesis. The main influences and stimuli of the discussions
on the following one hundred and fifty pages are mostly due to the works of Koch, von Oppen, and
Timm?7 as well as Wegewijs,® who specialise on the rate-equation part of the weak-coupling theory. Besides
the master-equation formulation of quantum transport through spin-degenerate quantum dots due to
Braun e al. (2004), master equations are applied to single-molecule junctions in the works of Richter and
Grifoni,” who model complex molecules like carbon nanotubes and benzene rings. Common to many
of these discussions especially on the master-equation side is a focus on the numerical treatment, which
unfortunately tends to neglect the principal investigation of the fundamental transport properties due to
the presence of electronic degeneracies. As also both of the descriptive strands, master equations and rate
equations, are developed in separate groups and applications, this thesis strives to provide a unifying picture
and conceptual framework of the weak-coupling limit of molecular electronics. The scientific results are
therefore not presented in the order of publication but rather in a conceptually consistent way. Parts of this
thesis have already been published in Schultz ez a/. (2008) (chapter 3.5) and Schultz & von Oppen (2008)
(chapter 6), as well as a collaboration with an experimental group in Leturcq ez a/. (2009) (chapters 3.3.2
and 3.4). A publication of the results of chapter 5 is in preparation.

'The treatment of quantum transport theory by rate equations is an intuitive approach to the problem
by the use of Fermi’s Golden Rule, and we focus on this type of transport equations in chapter 3 first.
Motivated by recent experiments on suspended carbon nanotubes, we discuss several generic phenomena
of the equations when being applied to molecular electronics. Especially the Franck—Condon blockaded
regime is discussed, as there the experiments show both signatures that can be explained by single-level
rate-equation models and signatures that cannot be grasped by such a simplified description. The detailed
treatment of the rate equation pursued in this chapter is particularly important in the application to
experiments as one can thus understand which part of the observed phenomenology is already due to the
qualitative properties of the rate-equation dynamics between states of different energy and which part of the
phenomenology explicitly relies on the coherent dynamics inside degenerate or near-degenerate subspaces
of the electronic Hamiltonian. The chapter will be concluded by a discussion of the transport properties of
an E®e Jahn-Teller molecule, which exhibits a strong current suppression due to a complicated interplay

7 See for instance Koch (2006) and Timm (2008).
8 See for instance Wegewijs & Nowack (2005a,b) and Reckermann ez al. (2008).
9 See for instance Donarini e# al. (2006), Begemann e a/. (2008), and Darau ez al. (2008).



Single-Molecule Junctions ¢

of spectral distortions and a Berry-phase induced selection rule in the Franck—Condon matrix elements.

As a preparation for the discussion of the master-equation dynamics of the reduced density matrix, we use
chapter 4 to discuss single- and two-level resonant tunnelling without interactions be it electron—electron
repulsion or electron—phonon interaction. The discussion approaches the steady-state dynamics from two
different points of view. First we derive an exact solution using the Keldysh formalism and then obtain
the weak-coupling limit by letting the tunnelling-induced broadening I of the electronic levels tend to
zero. We then contrast these results with the ones obtained from a full master-equation treatment of the
reduced density matrix.

The extension of the results of chapter 4 to molecular electronics and the transport theory of single-
molecule junctions is the topic of chapter 5. We discuss the generic properties of multi-orbital single-
molecule junctions from the Hamiltonian point of view thus deriving first results for the application of the
master equation itself. We develop an intuitive understanding of the stationary dynamics of the master
equation by first considering only the dynamics of the bare electronic levels and then adding complexity
step by step. By doing so, we see how the basic results are modified by the introduction of vibronic levels and
the interaction of the localised system with the continuum of reservoir levels. This approach to complicated
dynamics guarantees an intuitive understanding of the equations’ results, which will come in handy in the
last part of this chapter. Throughout this chapter, we specialise on two fundamental models for two-level
single-molecule junctions, which only differ in their symmetry properties under rotations in the electronic
Hilbert space. We discuss the dependence of the models’ behaviour in the parameter space on the degree
of symmetry and examine several phenomena and regimes in detail. The chapter will be closed by a
generalisation of the model to multi-mode reservoirs, which provides a first extension of the basic theory
to systems such as carbon nanotubes.

'The last chapter of this thesis is concerned with a two-fold problem. The purely academic problem consists
in recombining both master equations and rate equations in a single conceptual framework that allows for
a continuous interpolation between the regime where either equation is applicable. Such an endeavour is
complicated by the fact that any expansion of the von Neumann equation has to ensure conditions on the
positivity of the density matrix. We use the notion of the “singular-coupling limit”, which is an extension of
the commonly employed weak-coupling limit, to achieve this result. The interplay between the two types of
equations is, however, also the purpose of a discussion that wants to treat small external perturbations that
break symmetry-induced degeneracies or system-immanent near-degeneracies on a conceptually consistent
level. Using the singular-coupling limit, we derive a suitable master equation for such situations and discuss
its properties in the spirit of the previous chapters. We thus also obtain an intuitive understanding of the
influence of near-degeneracies on the steady-state properties of single-molecule junctions. A discussion
of the two models of single-molecule junctions from chapter 5 and their generalisation to arbitrary linear
electron—phonon couplings concludes this final chapter.
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Chapter 2

'The Weak-Coupling Limit

b
Also zuerst: Was hat man unter [ f(x)dx zu verstchen?

Riemann, Ueber die Darstellbarkeit einer Function
durch eine trigonometrische Reibe.

Except for very few and mostly physically unspectacular cases, the transport problem through a quantum
nanostructure cannot be solved in closed form. The paradigm model that admits an analytic solution,
which is used both as a reference for more complicated systems and as a starting point for perturbation
expansions, is resonant tunnelling through a single, spinless electronic level, which is coupled to two
Fermi-gas electrodes. Anderson’s original model comprises a spin-degenerate level. In this thesis, we do
not consider electronic spin at all, since its first appearance in the transport dynamics is for fourth-order
expansions in the tunnelling Hamiltonian. This is, however, beyond the scope of the weak-coupling limit,
for which we want to derive and discuss the Markovian kinetic equation in this chapter.

On-site interactions like Coulomb repulsion render the resonant tunnelling problem highly non-trivial,
and only approximative solutions of the Schrédinger equation can be obtained. For the study of molecular-
electronics devices, however, electron—phonon interactions are those of primordial interest. The polaron
model, an interaction being linear in both the occupation number of the device and the coordinate of
the local oscillator, can be solved in closed form. If the vibronic frequency is sufficiently large, it is the
coupling of the device to the electrodes, which remains the complicating perturbation. The model can be
solved exactly for transport through a single electronic level interacting with a single vibrational mode
using single-particle techniques like an S-matrix treatment (Glazman & Shekhter, 1988; Wingreen ez al.,
1988, 1989). As soon as one takes into account the many-body nature of the electronic reservoirs, only
approximate solutions by either expanding the equations of motion of the many-body Green functions
(Flensberg, 2003) or by applying the Keldysh method for strong coupling to the electrodes (Mitra ez al,
2004) have been obtained so far. In both approaches, the investigation of the many-body dynamics of the
problem shows non-zero correlations between the localised system and the electronic reservoirs.

'The tunnelling interaction couples two intrinsically different systems: a finite-sized nanostructure, and
an infinitely extended bath that can be assumed to be so inert that the interaction only affects the properties
of the nanostructure and the backaction of the system to the bath can be neglected. With being “finite
sized”, we mean being modelled in a finite-dimensional Hilbert space. Although the oscillator spectrum is
unbounded, the polaron model can be well approximated by a finite truncation of the oscillator rendering
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it essentially finite-dimensional. If the coupling is assumed to be weak, an obvious approximation of
the Schrédinger equation or more precisely the von Neumann equation, for the transport problem is a
non-equilibrium problem, is to find a linear equation for the reduced density matrix pg of the quantum
nanostructure. The reduced density matrix is the full density matrix being traced over the environment’s
degrees of freedom in thermal equilibrium. By interpreting this object as the szaze of the system, we
effectively incorporate the assumption of vanishing backaction onto the reservoirs. A theory in terms of
the reduced density matrix can only make sense, if there are no persistent correlations between between the
localised states and the bath, a setting which is opposed to the discussion for instance of Flensberg (2003).
'This can safely be assumed, when the temperature of the reservoirs is sufficiently large, definitely larger than
the Kondo temperature. The equation ought to be linear, for it is supposed to describe the lowest-order
correction due to the tunnel coupling. It is also required to be Markovian, because we are interested in the
stationary or long-time behaviour of the system, where we can neglect transient dynamics and memory
effects. The equation we are interested in is the master equation in the abstract form

< ps(1) = Kps(0).

The infinitesimal generator K has to fulfil several formal conditions that are obtained from physical
reasoning. First, IC has to define a semi-group of bounded operators U(t). Then the time-evolution is
Markovian. We cannot, and we do not, expect U to be a group, in which case the dynamics would be
reversible. The full Schrédinger dynamics, of course, defines a unitary group that can be evolved both
tforwards and backwards in time. Due to the coupling to an infinite reservoir, the reduced dynamics will
show dissipative effects rendering an evolution backwards in time impossible. The semi-group property
also allows the dynamics to converge to a unique stationary state regardless of the initial condition. This
property is very important, because here we are interested in the long-time behaviour, the asymptotic
dynamics, and the steady-state properties of the system. Second, in order to map density matrices onto
density matrices, U has to be trace preserving, Tr(U(t)p) =Tr(p) =1. Third, since any density matrix has
non-negative spectrum, U also has to map positive matrices onto positive matrices. Contrary to physical
intuition, positivity alone is not enough. In fact, we require U to fulfil the condition of being completely
positive. Not just for the ease of mathematical proof but also from the physicists’ point of view one can
argue for this property to hold. Stinespring (1955) defines a linear, positive map T acting on a C*-algebra' A
to be completely positive, when the map T acting on A®C™" by T(A®C™"):= T(A)®C™" is positive
Jor all neN. A completely positive map is a linear, positive map that remains positive when the system
space is trivially extended by one that does not take part in the mapping at all. Davies (1976b) gives an
intuitive argument why complete positivity is indeed a physical requirement and not just a mathematical

subtlety.

“If H is the Hilbert space of a system localised in some box and there exists a particle with n
degrees of freedom so far away from the box that there is no interaction between the two then
the Hilbert space for the system plus particle is H®C". An operation on the system which
does not affect the distant particle is described by a positive linear map T, on*> L(H&®C")

" Since the density matrix is an operator itself, the infinitesimal generator of its time evolution has to be defined on a space of
operators, which is closed under multiplication. The mathematical concept of C*-algebras realises such a space.

* Davies denotes the set of all bounded linear operators acting on a vector space V by L£( V). Since the notation collides with
our notation for the Liouvillian, we shall not use it any further except for this quote.
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such that
T.(A®B)=T(A)®B

for some positive linear map on £(#) and all Ae L(#H) and Be L(C"). But L(H&C") is
isomorphic to the # x n matrix algebra over £(#) and T}, is the map described above. Therefore
T, is positive, and T is completely positive.”

As simple the definition of complete positivity is and as easy it is to understand, one is tempted to ask
why complete positivity is actually zore than positivity alone. Is there an example of a map that is positive
but not completely positive? Benatti & Floreanini (2005) in their review on completely positive maps and
entanglement give a such an example:

Let T be the transposition map on C>*2, T(N):=NT for a matrix N e C>2. Since the spectrum is
invariant under transposition, sp(N) =sp(NT), positive matrices are mapped onto positive matrices: T is
positive. Consider the matrix

c (C2><2 ® CZXZ‘

S © o O
S © o O
—_ o O =

[\
—_— O O

The matrix M is clearly positive as its spectrum is sp(M) = {1,0}. The operator T®Id on C***®C?** maps
M into

1 0 0 O
110 0 1 O
M = (T ®1d)(M) = - ,
210 1 0 O
0 0 0 1

with sp(M") = {+1}. Hence, M is not positive. It is obvious that the choice of M is crucial in this example
and that M is a very special matrix. Indeed M is the projection |y)(y]| of |y):= %(|0)®|O)+|1)®]1)) €
C2®C?. The vector |y) is the state vector of an entangled state. The definition of complete positivity and
the above example suggest that the notion of entanglement, which is #he non-classical effect of quantum
mechanics, and complete positivity are closely related. Peres (1996) and Horodecki ez a/. (1996) combine
this in the observation that for any entangled state p on the product space A®B there is a positive map
T on A whose lift T®Idpg has negative eigenvalues. They prove that also the reverse implication holds
true, thus being able to characterise separable and entangled states by the action of an operator and not by
knowing its factorisation. For simple cases they can even identify a linear map that can be employed as an
entanglement detector.

Theorem. A state p acting on C*@C? or C*@C? is separable if and only if its partial transposition is a positive

opemtor.

The requirement of complete positivity severely restricts the form of the generators of Markovian master
equations. This is the essence of a representation theorem for completely positive maps by Stinespring (1955)
stating that it is necessary and sufficient for a linear operator T on a C*-algebra A to be completely positive

3 The partial transposition is a map acting on a product space. It factorises into the transposition operator on one of the factors
and the identity map on the other T®Id, like in the above example.
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that is has the representation T(A) = VTAV, for A,V € A. The representation of a trace-preserving, strongly-
continuous, completely positive semi-group is due to a theorem by Lindblad (1976) and simultaneously by
Gorini e# al. (1976), which states as a necessary and sufficient condition for its infinitesimal generator to
have the form

. 1
p=-1[H,p]+ ) ax (ViPVjT - E{VJTVhP}) .
kl
with the coeflicient matrix (ay;) being hermitian and positive. The equation can be diagonalised

p=-1[H,p]+ > yk (ZAkPAE - Al Agp - PAiAk) :
k

The first term of the above representations is a Hamiltonian term, for example the free evolution of an
unperturbed system. The second term, which describes the influence of a perturbation or coupling to an
infinite reservoir generates the dissipative dynamics and hence is called “dissipator”. The striking implication
of Lindblad’s theorem* is that the representation is not only sufficient but also necessary. Any Markovian
master equation that has to meet the requirements of generating trace-preserving and completely positive
dynamics has to have Lindblad form. If not, the generated dynamics will lack either the property of
trace-preservation or that of complete positivity. Due to the representation theorem of Stinespring (1955),
we can see that most often, an improper master equation will be likely to violate complete positivity.
That the dynamics has to be completely positive and not just positive alone has been identified as the
source of many restrictions on the dynamics. Gorini e# al. (1976, sec. III) show for example that for the
reduced dynamics of a two-level system, the relaxation times of the diagonal and the off-diagonal elements
of the density matrix p, called transverse and longitudinal relaxation times, respectively, have to obey the
inequality 2T, < T}. This inequality is well-known and has been verified experimentally in many cases
(Blum, 1981, chap. 7.4.2). Yet, Pechukas (1994) refers to experiments with strong system—bath coupling where
it is violated. He thus questions the requirement of complete positivity for the dynamics of open quantum
systems, because he does not believe in the argument that the dynamics has to take care of an additional
inert system—called the witness or ancilla W—that does not interact with the system itself. Pechukas says

“One may reasonably well doubt this argument. It is very powerful magic: W sits apart from
S+R [R being the reservoir] and does absolutely nothing; by doing so, it forces the motion of
S to be completely positive, with dramatic physical consequences ...”

He further claims that

“... completely positive dynamics is an artifact of product initial conditions. In general, reduced
dynamics need not be completely positive.”

He therefore suggests to drop complete positivity as a condition for the quantum-dynamical semigroup.
Since, however, there is no mathematical criterion for the generators of positive quantum-dynamical
semigroups, Pechukas restricts the set of initial conditions to those that generate positive dynamics. Alicki
(1996) responds to Pechukas, and he is right with his statement, that this set of initial conditions cannot
be characterised. In their review, Shaji & Sudarshan (2005) embark on the problem again. They claim
that for instance in quantum-information processing “there is sufficient control over the system to be able

* Although, the theorem has been proven both by Lindblad and Gorini ez a/., we adopt the reference to Lindblad, which is
widely used in the literature.
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to initialize its state to one that is decoupled from its environment”. They also stress, however, “that it is
perfectly reasonable to assume that in many situations there might be initial correlations between the system
and its environment”. This statement leaves the question open, as to which are the proper conditions on the
quantum-dynamical semigroup when initial correlations do matter. Due to the close relation of complete
positivity and entanglement, the topic might come into the focus of quantum information processing and
entanglement theory again. But the discussion also clearly states that as long as a factorisation of the density
matrix can be assumed at least for the initial conditions, complete positivity is the formally correct form of
positivity to be required. In this thesis, we go along with this assumption; we follow the general route in
the literature on quantum transport theory and do not assume any initial correlations between the localised
system and its fermionic environments. Such correlations are the signatures of strong coupling and low
temperatures, which are not the parameter regimes we want to discuss here. We thus incorporate the Born
approximation of factorised density matrices in the initial conditions alone, well aware that it implies a
completely positive quantum dynamics.

2.1 Standard Derivations

In the physics literature, one finds several derivations of Markovian master equations for the quantum
transport problem through weakly-coupled systems. Most common are three variants, an expansion of the
propagator of the von Neumann equation (Rammer, 1998), a real-time diagrammatic technique that is an
application of the Keldysh idea (Konig, 1998), and the iteration of the von Neumann equation (Breuer &
Petruccione, 2002, chap. 3.3). Timm (2008) reviews all of these proving their equivalence. This result is not
surprising, since all these techniques rely on an expansion of the propagator of the Schrédinger equation.
In the following, we sketch the iterative method according to Breuer & Petruccione (2002) and use it
to introduce the necessary assumptions and approximations with which the resulting equation is made a
Lindblad-compliant master equation.

Consider the abstract Hamiltonian H = Hs+Hg+Hg g of a system Hg, its environment Hf, and a
system—bath interaction Hg_g. We shall further specify the system—bath interaction in the course of the
derivation; at this stage we only require it to be bi-linear, that is both linear in the system and the bath
operators. In the interaction picture, the von Neumann equation for the density matrix is

d

3P (0 =—1[Hy g, p'(1)] (2.1.0)

with its formal solution
t
p(1) = p(0) =1 [ [HEg(s).p'(5)] ds.

Re-inserting this expression into Equation (2.1.1) and tracing over the bath with its equilibrium distribution
pL, where Trg([H é—E( t),p" (0)]) =0 is assumed,’ we obtain the first iteration of the von Neumann equation
for the reduced density matrix ,oIS =Trg(p!)

%pls(t) = [t ([HL (0, [ (5), 6191 s

5 The vanishing of this commutator amounts to factorised initial conditions like the ones we have discussed before as well as
centred bath operators, whose equilibrium expectation value is zero.
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'This equation is simplified by the Born approximation p(t) ~ ps(t)®pg stating that correlation effects
between the system and the bath are neglected. As we shall see in the next section and also is pointed
out by Timm (2008), the use of projection operators in the derivation of this equation, only requires the
Born approximation for the initial conditions. After changing the integration over s into one over ¢—s, the
Markov approximation is justified by assuming a fast decay of the correlations of the system itself thus
extending the range of integration to infinity while keeping the density matrix in the integrand constant,

d

= Is(t):_/o“ Trg ([ HL s (), [HE (1~ 5), p'(1)]]) ds. (2.1.2)

When dealing with fermions, the system—bath interaction—in the interaction picture—is generally set to
(Breuer & Petruccione, 2002, pp. 134)

Hy (1) = Y. e dicg () + cf(£)dge ",
ko

with bath operators cx(t) in the interaction picture and system operators d,; in the Schrodinger picture.
The eigenvalue of Hg with respect to |o) is denoted &,. For simplicity of notation, we have set all tunnel
amplitudes 4, = 1. For the derivation of a concrete set of equations, they can easily be inserted in the final
form of the abstract master equation. We further abbreviate the bath correlation functions

Ti(er) = fooo e Trg (Cl(s)ck(O)PE) ds and Ti(er) = /Ooo e’ Trg (Ck(S)CI(O)PE) ds,

where the time evolution of the bath operators is with respect to the free bath Hamiltonian. The master
equation for a non-interacting system, meaning without any on-site interaction like Coulomb repulsion, is,
after an expansion of the double-commutator structure of Equation (2.1.2) and replacing the bath correlation
functions as well as the eigenvalues of the system’s Hamiltonian in the free time evolution,

d —1(e r—¢&4 1(e r—¢&4 ™
P80 =2 e e Loy (1) do () + e dopl (1)l Ti(eo)

k oo’

_e’(sa’_sﬂ)td:;,dgpls(t)fk(sg) —e_l(sa'_sa)tdadifpls(t) Fk(—sg)}+h.c. (2.1.3)

The equation in the Schrodinger picture is obtained by transforming the reduced density matrix back into
that picture.

If we consider the same theory again, albeit with an interaction that only depends on the particle numbers
such as Coulomb repulsion, the expressions are modified; however, only slightly. In this case we have to care
about the order of the free system’s propagator Ug within the chain of operators. In principle, this means
that the state d;rz |o1) propagates with a frequency including the interaction energy, that is the charging
energy due to Coulomb repulsion. Assume that for one additional particle, we have to pay the extra energy
&ine in addition to the added particle’s energy. As an example, we pick one of the Hg g Hg gps®pE terms
in the expansion of the double commutator of Equation (2.1.2) without replacing the bath correlation
functions and the system’s Hamiltonian

/R+ e’HstdZe_’Hste’HS(t_s)dgre_’HS(t_S)pIS(t)(ck(t)ck(t - s)pE) ds.
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Such a term describes the self-energy correction of the retarded branch of the density matrix by an electron
tunnelling off and back onto the system. As the expression is written, the frequency generated by the free
system’s Hamiltonian depends on the wave function provided by the reduced density matrix. Assume this
wave function to be some unspecified |y), which is a many-body wave function, a Fock state of particles, say
a doubly-occupied quantum dot. We consider the dynamical phase due to the time evolution and connect

the individual exponential factors to the terms of the non-interacting master equation®

esz(t—s) dg,e—zHS(t—s) |V/> _ €lHS(t_S)dg/€_w‘V(t_S) |1//>
_ ez(ew\,,/—s,,,)(t—s)|w\o_l>
_ e—z(s[,/—s;m)(t—s)wl\a/)

In the second step, we add the particle |o)

e'stdle st [y\o') = et dfe ™ [y\o') = exp (1(eproryuo — Egror)) [(W\O") U o)

In total, we obtain the exponential factor

exp(z(s(w\,,,)ua—ew\ar — &g/ +Eint) t) exp(z(e(,r +sim)s)
=exp(1(&y\ o+ €0+ Eine— Ey\ g — 07— Eine ) £ ) €XP(1(E07 + Ein ) )

=exp(1(es—eo)t) exp(1(eq +&int )s).

Only the frequency of the time evolution for the period when the electron has been removed from the
nanostructure is modified by the interaction energy, which in this example is released in addition to the
single-particle energy &,/. The oscillatory pre-factor of the non-interacting master equation, which is given
by the part of the above term depending on ¢, persists. In the chosen example, it is the Fourier transform
of the bath—bath correlation function, which includes the factor depending on s, that has to account for
the number of particles in the wave function it actually operates on. The simple accounting for Coulomb
interaction like this is not possible for higher-order expansions, when, in order to simplify the computations,
WicK’s theorem has to be applied. Although the Coulomb interaction maps the single- and many-particle
states onto themselves with the correct value of the energy, the Hamiltonian is not diagonal in the sense of
being a direct product of single-particle Hamiltonians. Hence, a reduction of the many-body dynamics to
the evaluation of single-particle Green functions is not possible.

As the master equation (2.1.3) stands, it is obvious that it cannot fulfil Lindblad’s conditions for a
completely positive, trace-preserving dissipator. For example, the second factor for the dl pdyr term, for
0 #0', can only come from the hermitian conjugate part of the line in which o < ¢’; however, the bath
correlation functions Iy (—&,) # I} (—£47). The only remedy of this problem is to formally impose a restriction
on the terms by inserting 84, into the sum. Then the dipdc terms actually are ZdeS(t)dg ReTk(-¢4),
which is the wanted term. The thus obtained equation decouples populations from coherences between
states of different energy. It does, however, retain coherences between degenerate states.

The approximation &4/ is either called secular or rotating-wave approximation, the latter due to its
analogy in quantum optics (Breuer & Petruccione, 2002, chap. 3.3). It is justified when the intrinsic time

¢ Our notation is reminiscent of set theory: [y\¢) is the many-body wave function |y} with the particle o being removed.
7 One can show that this is the case for all terms.
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scale of the system 7g is much larger than the relaxation time 7 of the reservoir. It is, of course, clear that
in the case when both time scales are approximately equal, 75 ~ 7, the rotating-wave approximation cannot

be used.

2.2 'The Necessity of a Rigorous Approach

'The above presented derivation of a master equation in the weak-coupling limit and its equivalent formula-
tions are very intuitive and can be applied straightforwardly to many different problems. It is possible to
expand the equation to higher orders, including for example co-tunnelling (K6nig ez a/, 1997; Leijnse &
Wegewijs, 2008). The approach is perturbative and as such the full machinery of quantum many-body theory
can be applied (K6nig, 1998). On the contrary, there are also some disadvantages, which suggest a more
rigorous approach. The Markov property, for example, is not a natural result of the second-order expansion
of the propagator, but it has to be justified with the relaxation times of the bath correlation functions that
such an approximation is actually valid. This becomes more and more complicated as higher-order processes
take place on different time scales, and it is by far not clear whether the Markov property holds for all
of them simultaneously. The Born approximation, the factorisation of p into the system’s and the bath’s
density matrices for all times, is introduced by assuming fully inert reservoirs. Several attempts have been
made, particularly in the discussion of the low-temperature properties of molecular-electronics devices, to
include correlations of system and bath and then arrive at a Markovian master equation. Flensberg (2003),
for example, uses such obtained equations to correct the single-particle S-matrix calculations of Wingreen
et al. (1989). The most critical approximation of the whole derivation is the rotating-wave approximation.
It is necessary to make the master equation compliant with Lindblad’s conditions. The drawback is its
assumption on the large separation of time scales 7g and 1g. Each of these approximations has its own
justification. Yet, all of them are needed at the same time to derive a sensible Markovian master equation.
One may therefore raise the question to which extent these approximations can be built into the theory: in
which way do they emerge from a rigorous treatment of the von Neumann equation? In the seventies of
the twentieth century, the theory of Markovian master equations has been put on rigorous mathematical
grounds. The work of Lindblad (1976) and Gorini ez al. (1976) defines the goal by proving necessary and
sufficient conditions for completely positive and trace-preserving infinitesimal generators. Davies (1974,
1976a) provides an extensive set of articles on the derivation of Markovian master equations and their
properties. Diimcke & Spohn (1979) discuss the various generators being used in the literature, and they
single out Davies’s result as the only one compliant with Lindblad’s conditions.

'The great advantage of the mathematical treatment over the straightforward perturbative one is the
emergence of all of the above approximations just by a careful choice of conditions on the system—bath
Hamiltonian. As we shall show in chapter 6, it is also suitable to access the regime g ~ Tp where the
rotating-wave approximation fails and thereby stains the master equation with the property of non-positivity.

2.3 Davies’s Method

We consider the abstract Hamiltonian H = Hg®Id+Id® Hg + Hs_g, acting on the product Hilbert space
of the system and its environment Hs®Hg. Since we want to use projection operators on the individual
Hilbert spaces in order to separate the reduced dynamics from the full dynamics, we formulate the theory
in terms of direct products of Hamiltonians. Hg describes a finite-dimensional system S, a microscopic
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quantum system like a quantum dot or a single molecule, being coupled to an infinitely large environment E,
a Bose or Fermi bath, say, via a bi-linear interaction term Hg g. Davies’s derivation of a Markovian master
equation for the reduced dynamics consists of three steps. First, the system—bath interaction is considered
a perturbation and the Hamiltonian is rewritten with a scaling parameter. Second, the dynamics of the
system is obtained by using projection operators, which essentially trace out the environment’s degrees of
freedom. Third, the von Neumann equation is integrated and the strength of the perturbation is sent to
zero on the slow Markovian time scale.

2.3.1 Scaling Method

Any expansion of a complicated function or operator is in fact a limit process. The definition of the
differential of any function f:R — R is given by the limit of the difference quotient
f/(x) = limf(x+£) _f(x)‘
e—0 &
'This means that the first-order Taylor expansion of any differentiable function, which equivalently serves as
the definition of the derivative itself, is

flx+e)=f(x)+ f(x)e+p(x,¢).

'The remainder ¢(x,¢) has the property that it vanishes fast enough, when ¢ — 0, which means that it is of
higher order than O(¢)

L oGl
e—0 &£

0.

In this sense, perturbation theory for operators would have to attach a small parameter to the perturbation,
perform an expansion and finally let the small parameter tend to zero. Hence, we should rather work with
the rescaled Hamiltonian

HE = Hg®1d + Id ® Hg + {Hg g,

in order to rigorously account for the perturbative nature of Hg_g. From the mathematical point of view,
Kato (1966) is the key reference for properties of perturbed (semi-)groups. Given a solvable differential
equation with some unspecified operator A,

u=Au

with solution u(¢) = U(t)u(0) and a (bounded) perturbation B, the equation &t = A+&B can be solved and
yields the perturbed solution u(t) = U(#;€)u(0). The important property of the perturbed solution is that
for t in a finite interval, U(#;&) - U(t) uniformly as £ — 0. On first sight this means that we would not be
able to arrive at a non-trivial result for the perturbative treatment of the system—bath coupling problem
by letting £ - 0. However, the uniform convergence only holds on finife time intervals. The long-time
dynamics and in particular the stationary properties do not comply with Kato’s theorems, leaving us in
a position to employ a proper limit process to derive a non-trivial perturbative result for the dynamics
on a long time scale. Although this is rather non-intuitive from the perspective of Rayleigh-Schrodinger
perturbation theory, where the expansion parameter is finally set to unity, we shall show in chapter 4 how
the perturbed stationary solution of the resonant tunnelling problem can be obtained exactly the way
pursued in this chapter.
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2.3.2 Projection Operators

The problem we want to solve consists of two separate ingredients: the free evolution of the system and the
bath, both of which we can solve analytically, and the system—bath interaction that mixes these dynamics.
The projection-operator approach aims at a formal separation of the underlying Hilbert space that respects
the natural structure of the problem H =Hs®?Hpg being a product space. One defines a linear projection P
onto the system’s variables; its complement Q =1-P then projects onto the bath’s degrees of freedom. The
projection operator approach, known as the Zwanzig—Mori technique in statistical mechanics,® can also be
employed in the generic derivation of Markovian master equation for quantum transport problems (Timm,
2008).

For the given problem, we define the image of P as the set of reduced density matrices of the Hilbert
space multiplied by the equilibrium distribution of the bath. We are only interested in the dynamics of the
system and consider the bath so large and so inert that it can be assumed to rest in equilibrium for all times,

Pp = (Trgp) ® p.

Again, this is the point, where the backaction of the system onto the bath is effectively neglected for
the definition of the system’s actual state. The backaction is, however, not set to zero as all its effects are
described by the complementary projection due to Q. In order for the projections to separate system and
bath dynamics and leave this mixing to the system—bath interaction untouched, some assumptions have to
be posed on the system—bath coupling. We have to require that PHs_g P vanishes as well as its projection
under Q. This is generally the case for a bi-linear coupling of the form V ®B with system operators V
and bath operators B, which are centred with respect to the equilibrium distribution, Trg(B) =0. The
Liouville operator Lp:=[H,p] is split into its individual contributions similarly to the Hamiltonian H,
L= Ls@1d+1d® LE+ELg . The tollowing properties hold for projections of L% under P and Q (Benatti

& Floreanini, 2005, sec. 3.2)

1. Factorised density matrices form an invariant subspace of P:
P(ps ® pE) = ps ® pE.
2. 'The system’s Liouvillian £L3®1d commutes with P
P(Ls®ld)p =Tre(Ls ®1d)p) ® pp = (Ls ® 1d) Trr(p) ® pr = (Ls ® 1d) Pp.
3. 'The environment’s Liouvillian Id® L, is both an element of the right and the left kernel of P:
(Id® Lg)Pp=(1d® Lg) Trg p® pg = Trg p ® Lgpg =0,

and
P(ld® Lg)p = Trg((Id ® Lg)p) ® pg = 0.

The second property holds, because of £¢ being a commutator, the trace over the environment
degrees of freedom only involving the product of L and p, and by the cyclic property of the trace
Tr([A,B]) =0 for every A, B.

¥ See for instance Reichl (1998, chap. S10.L1) or Forster (1975).
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4. Due to the above,

PLP(ps®pr) =P (Ls®1d)(ps®pr) = Ls(ps®pE ),
PL Qp=EPLs £ Qp=ETrg(Ls £ Qp) ®pE,
QLP(ps®pr) = EQLs £ (ps®pE).

For the easy application of the projection operators in the following calculations, we shall use the condensed
notation £LF<:=PLQ for any Liouvillian L.

2.3.3 Derivation and Proof

With the preparations from the previous two sections, we derive a Markovian master equation from the
von Neumann equation. The route we shall be following has first been published by Davies (1974) and is
pedagogically reviewed by Spohn & Lebowitz (1978, sec. 3).

Given a Hamiltonian H and the projection P onto the space of factorised density matrices, the von
Neumann equation, p=—1[H,p] =—-1Lp, can be split into two coupled equations,

%'Pp(t):—1'P£73p(t)—173£Qp(t) (2.3.12)
%Qp(t)=—zQ£’Pp(t)—1Q£Qp(t). (2.3.1b)

Equation (2.3.1b) can be integrated by use of the variation-of-constants formula’
Qp(t) = e"ﬁQQtQp(O) —1 /Ot e_’CQQ(H)EQPPp(s) ds. (2.3.2)
As we have pointed out before, we have to choose a particular initial condition, namely a factorised density

matrix, such that Qp(0) = 0. By inserting the integral into Equation (2.3.1a) and using the definition of P,
we obtain an equation for the reduced density matrix pg,

d t 92 (1
aps(t)@’PE:_lﬁPPPS(t)@PE_j(; LPRe 1) 9P pg(5) @ p ds.

Before proceeding with another application of the variation-of-constants formula, we use the already
calculated projections of £¢ and simplify the equation symbolically;®

%Ps(f) ® pg = —1(Ls ®1d) (ps(t) ® pg) - € j;tTrE (£S—Ee_1£5(t_s)£S—E) (ps(s)®@pe)ds. (2.3.3)

In this form the equation is very reminiscent of the standard results of perturbation theory, except one

? 'The theory of ordinary differential equations, whose results can, at least formally, be used here, provides the variation-of-
constants formula (Konigsberger, 2000, p.154) to obtain a particular solution x,, of an inhomogeneous ordinary differential equation.
If ©(¢) is the fundamental matrix of the homogeneous problem x = A(t)x, a particular solution of the inhomogeneous problem
x=A(t)x+b(t) is then given by

OO ftdfl(s)b(s)ds.

> We make use of the idempotence of the projection operators, which yields Qe_IEQQtQ =Qe Q.
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very important property: Equation (2.3.3) is an equation for the reduced density matrix ps® pg alone. The
Born-approximation, explicitly using a factorised density matrix for all times, is not necessary here. For
factorised initial conditions, it is no approximation at all but exact. The integral form of Equation (2.3.3) is

t
0

— -1 s : —1L% (s—u
ps(t) =e ﬁstPs(O)-fzf e Est! ){j;) TrE(ES—Ee £X )£S—EPE)Ps(u)d“} ds,

where we dropped the tensor-product notation for convenience, keeping the notion of pg only for the trace
over the environment’s degrees of freedom. In this form, we still have to work with an equation where the
dissipative part is of the abstract form

/ot /: K(t,s—u)p(u)duds.

The actual strategy for deriving a Markovian master equation should be to manipulate the equation so
long until it assumes a form that is again a variation-of-constants formula for ps(t) and then obtain the
associated differential equation. We therefore first reverse the order of integration and then shift the inner
integral by setting s:=u+v,

./(;t/:duds > /(;t/;dsdu > /(;t/(;t_udvdu.

With these manipulations, we actually transform

/(;t /:K(t,s—u)p(u)du ds = /;t[)t_u K(t,v)dvp(u)du,

which is close to the aimed goal. In our context, the kernel K(¢,v) actually is K*(t,v), which, due to the
now simpler form, is more open for limiting procedures than before. The integral equation for the reduced
density matrix for finite £ is

-1 t —1 et t=s 1 v -1 E'V
ps(t) =e cStPs(O)—fZ/O e st s){/o e'"s" Try, (ES—Ee “ ﬁS—EPE) dV} ps(s)ds.

We change to the interaction picture by factorising out the time-evolution due to Lg,

—-1Lgt 1

ps(t) = e pg (1),

and multiply the whole equation with e'’st. Then,
t t—s
pIS(t) = pIS(O) - & /(; e'bss {'/(; e'£sV Try (L'S_EeﬂLSVES_EpE) dv} e b pIS (s)ds. (2.3-4)
The final step is to rescale time 7= &t, because, as we have pointed out before, our interest lies in the

long-time behaviour of the system, whose asymptotic time scale is 7. The integration over s is transformed
into one over ¢ = &2, and thus

ps (1) = p5(0) - /; e'ssE {/052 £V Trg (ES_Eef’EEVES_EpE) dv} e 5e ps(0)do. (2.3.5)
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From here on, the derivation of the Markovian master equation reduces to a discussion of the limiting

—1L%y

behaviour of the operator in curly brackets, which due to the term e still depends on the scaling

variable. We then need to understand the action of the free system’s evolution operators, which also depend
on &, and finally prove that the solutions of the integral equation converge to the solution of the limiting
equation.

It is plausible that in our context the integral operator

/8
KE(T) = /(; ezLSv TI‘E (,C,S_Eeilﬁfv[,s_EpE) dv
converges in some sense™ for £ — 0 to
K= /:) elﬁsv Trg (ES_Ee—l(Lg®Id+Id®£E)vES_EpE) dv.

'This suffices to approximate

L2 = _pE LT
s e {f & ezﬁgvTrE (£S—Ee 1L vﬁS—EPE) dv}e 1Ls 2
0

by
LsZ o0 _ 1L T
RIST {/‘ L5 Ty (£S—Ee z(£s®Id+Id®LE)v£S_EPE) dv}e s
0

In the beginning, we had assumed the system S to be of finite dimension. The free propagator, due to Hg
being self-adjoint, has a representation in terms of its eigenvalues and spectral projections

e—zﬁst _ Z e—zwat&x’
a

with & indexing the eigenspaces of Lg. The spectral projections &, are related to the spectral projections P;
OfHS = ZijPj by
60([) = Z Pmppn .

Em—En=Wq

For any operator A on Hg, we note the following property:

lim e_lﬁsg%Ae_’Esf%p(a)dG:ZE,XAS/;lim/ e_l(w“_w’;)f%p(a)da
£-0Jo ap £50J0

1 ! —1(Wag—wWg)s
:O%EaASﬁtlin;Z ./_te (wa=wp)s () ds
T T
:ZEaAEﬁéa,ﬁﬁ) P(O)dff:ZgaAga/O p(o)do.
a,p a
We define the time average of A to be

A= ZSD(AE = lim 1 /t eSS A oS s,
: ® i 2t

-t

" See appendix A for the details.
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and conclude with the limit of Equation (2.3.5) after 7 has been re-substituted

t_
pL(t)=pl- & fo Rpl ds, (2.3.6)
which solves the Markovian master equation

Lok = -ERok(0) (2:37)
The concrete form of this master equation for the single-molecule devices treated in this thesis is formulated
in appendix B.

Up to now, convergence has only been established for the integral operator. Proving the convergence of
the solutions p* of Equation (2.3.5) to the solution p of Equation (2.3.7) is of purely mathematical interest
and provides no additional physical insight. Since here we are mainly interested in the derivation of the
master equation and an understanding of its individual contributions and where they come from, we refer
for the mathematical subtleties and formal details to Davies (1974).

Spohn & Lebowitz (1978) and Davies (1974) give a very elegant argument why the time average of K
produces the secular or rotating-wave approximation, which decouples the populations from the coherences
of non-degenerate states of p. They note that the generator of the dissipative dynamics K commutes with
the free evolution of the system. By definition K =Y, £,KE, and exp(-1Lst) = ¥ exp(—1w,t)E,y, which
leaves

e s Re st = S REpe! (! = 3N £,6,KE Ege! e = Y € KE, = K.
a,f ap Y y

We assume that Hg is non-degenerate, which renders its eigenspaces one-dimensional. A system
Hamiltonian Hg with spin degeneracy due to electronic spin should be considered non-degenerate in
the present context. For generic Anderson models, the system—bath interaction, which is the tunnelling
Hamiltonian Hr, respects the spin symmetry such that H as a whole commutes with the spin operator.
Electronic spin is therefore conserved in the dynamics, and coherent superpositions of states with different
spin need not be taken care of.”* Denote the space of diagonal density matrices by D. The free system’s
evolution leaves D and only® D invariant, for

peD < e p=p

But due to the vanishing commutator of K and exp(~1£Lgt) and the non-degeneracy of Hg also

peD = KpeD.

* The only effect of spin degeneracy in the master-equation dynamics is, as we shall see in chapter 3, repulsion of particles due
to the on-site Coulomb interaction as well as an additional factor of 2 for all rates that describe tunnelling of a particle onto the
device. This factor accounts for the freedom to choose an electron of either spin from the fermionic reservoir, a freedom that is
not given for the tunnelling back to the electrodes, as there the spin of the particle is already fixed and only jumping into a hole of
the same spin is allowed.

5 For the reverse implication, assume p = (|or)+|B)) ((a|+(B|) =|a) (a|+|B) (B|+2Re|a) (B|. Then the time evolution of the
density matrix in terms of the time evolution of the states is

p(t) = o) al +|B) (Bl + 2Re e ¥ ) ( B,

which is different from p unless wq = wg.
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It is plausible that also the semi-group generated by K leaves D invariant. The consequence of this is that for
non-degenerate systems, the master equation splits into two equations, a rate equation for the populations
pii of the reduced density matrix, and one only transforming its coherences p;;. In particular, any long-time
limit or stationary state described by a master equation in the weak-coupling limit will zof retain coherences
between states of different energy in the density matrix. In view of an energy—time uncertainty relation, the
theory is physical, because for t — oo, we would expect all states to be of sharp energy, where the energy is
only renormalised by the perturbation on a scale given by O(¢*HZ_1.). In our model, all energy differences
are assumed to be much larger than O(§?Hg ;). For £ — 0, any energy involved in the problem, be it the
thermal energy kpT or a vibrational excitation quantum hw, is much larger than §&2HZ 1. In chapter 6, we
shall present a formulation of the master equation and its derivation that describes the situation when the
energy scale induced by the tunnel coupling is not the smallest scale of the problem. The above argument
can be generalized to partially degenerate Hamiltonians. Then the space D comprises the density matrices
that are block-diagonal in the energy basis and coherences between degenerate states have to be taken into
account, while coherences between non-degenerate states can be ignored in the dynamics.

One may ask why this derivation of the master equation goes the route via integral equations instead of
integro-differential equations that appear in the standard perturbative treatment. The reasons are two-fold.
First, the mathematical treatment of integro-differential equations is much more complicated, because
differential operators always induce a question of the domain of definition. The integral calculus is much
more handy, as integrability is a much weaker condition on a function than differentiability. Second, the
outer integral that arose from using the variation-of-constants formula provides the averaging of the fast
oscillating time scale of Hg, which, although it is exact, is termed the rotating-wave approximation in the
literature. The differential derivation lacks this and as thus cannot lead to a completely positive generator
unless the averaging is inserted by hand.

Without the secular approximation, the resulting equations are known as the Bloch-Redfield equations
(Timm, 2008), which are widely used in the literature. Diimcke & Spohn (1979) discuss four generators
of semi-groups, among which are Davies’s results K and the Bloch—Redfield generator. They show that
by construction Davies’s generator is the limit of a positive operator and therefore positive itself. Using
Hg = Qo;, a non-degenerate two-level system, being linearly coupled to a bath of thermal bosons, Dumcke
& Spohn (1979) and Benatti & Floreanini (2005, Example 3.4) show that the Bloch—-Redfield generator is
positive only for 8 =0 that is an infinitely hot bath. Although the Bloch—Redfield equation derives from a
perturbative ansatz, perturbation theory for non-equilibrium problems has to care for the positivity of p.
Since positive operators do not form a vector space but only a convex cone, this implies restrictions to the
theory when compared with standard perturbation theory for retarded Green functions, which actually
does take place in a Hilbert space.

2.4 Expectations of Observables

Besides computing the stationary solution of the master equation, we are also interested in the calculation
of experimentally observable quantities. As these are generally traces of a self-adjoint operator with respect
to the stationary density matrix, they only show some and not the full non-equilibrium information that is
encoded in p.

Here, we concentrate on the stationary current (I,) through the tunnel junction of electrode a. The
higher moments, describing the fluctuation and noise characteristics of the current, provide information
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about the time-dependent dynamics. The giant Fano factor in Anderson—Holstein type single-molecule
junctions deep in the Franck—Condon blockade regime for example (Koch & von Oppen, 2005b) is a
signature for the self-similar avalanche transport of electrons through such a device.

In the specific setting of molecular electronics, the system—bath interaction is the tunnel Hamiltonian

Hr = Z tm,czadg +h.c.

kao

for a localised, spinless™ system with its electronic levels being labelled by 0. Any electron—phonon
interaction is assumed to have been eliminated by means of the polaron transformation or numerical
diagonalisation of Hg, such that the tunnel amplitudes ¢, are in fact matrices.

'The stationary current I, is the time-derivative of the number operator N, of particles in the respective
reservoir and can be evaluated using the Heisenberg equation of motion (Wingreen & Meir, 1992)

le
lo=—2 taoCl do — h.c.
ko

In natural units A =1, e=1, this is twice the negative imaginary part of the operator Y i, tmc;xda. The
tunnelling Hamiltonian Hr is twice the real part of this operator. By definition of the operators and
TrE(ch pE) =0, it is clear that the system trace of I, with respect to the reduced density matrix vanishes,

Trs,g (Iaps ® pE) = 0.

The straightforward approach to compute the stationary current following the idea of section 2.1 is to start
with the fu/l, that is system plus bath, density matrix p in the trace,

(Io) = Trs,g (Inp).

Integrating the von Neumann equation once and inserting the result in the above equation yields

(1)(0) = Trsue (Tup(0) =1 [ T[H.p()) ds).

In the interaction picture, the commutator only involves the tunnelling Hamiltonian H and as such

(1)) = Trses (B(9)p1(0) =1 [ 140, 1)1 (5) s ).

At this stage, the crucial Born approximation p = ps®pg, and the Markov approximation are used to yield a
formula that can be evaluated by simple integration

(La)(0) = = Trseg ([T B (e - )16 (1) ds ). (2.4.0)

As straightforward and easy to use this approach may seem, it bears a very serious problem in the last step.
As it is clear from the above calculation, the Born-approximation has to be applied exactly at the right

" We ignore the electronic spin for convenience, since here it does not add any new physics to the problem but due to the
necessary bookkeeping of the spin indices complicates the notation.
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step of the derivation. Using a factorised density matrix and integrating the von Neumann equation do
not commute. But any approximation, if it were well-defined, should be valid from the very beginning
of a derivation or not at all. One assumes that p has a certain form globally, not just from the third step
onwards. We therefore discard this derivation and revert to the projection-operator approach.

WEe split the expectation value (I,) into two parts by inserting Id=P+Q,

(Lx) = TrS+E(IuPp) + TrS+E(Ioch)'

The first term naturally vanishes, because Pp = (Trg p) ® pg, and by construction the system—bath coupling
and hence I, has zero expectation value with respect to the equilibrium distribution of the electrodes. The
time evolution of Qpg,g is due to Equation (2.3.2),

t
Qp(t) = ef’ﬁfggtp(o) -1 ./o eﬂLEQQ(H)EEQPPp(s)dS.

The Liouvillian P £°Q acting on a factorised density matrix is é£g_g. Like before, we use a factorised density
matrix only as the initial condition. By definition of the current operator Iy = Ny = —1[ Ny, H] = ~1[ Ny, Hr ]
being the time derivative of the number operator of electrode «, it also acquires a factor £ and shares the

properties of Ht under the projection operators,

t
(L)1) = ~rTrsue (1 [ 1505 4Pp(s)ds ).

We shall apply the same approximations as before, essentially repeating the calculations that led to the
Markovian master equation in section 2.3.3. There, the derivation was facilitated by the use of an integral
representation. The current operator itself also is a time derivative, and thus an integral representation is
realised by considering the number operator N. The formal manipulations of section 2.3.3 lead to

(Ng)(t) = —1Trs,g (Ez /(;t j(;H Iae_’ﬁvﬁs_E dvPp(s) ds)

On the Markovian time scale, this is

! % —1L%
(Ng)(7) = =1 Trs,g f f Iye Ls gdvPp(o)do),
o Jo
which, by the same arguments, converges to

T oo

lgim(Na)(T) = —1Trs,g (/ / Iye " Es*ER) £ o dv Pp (o) da) .
-0 o Jo

'This result is the integral representation of Equation (2.4.1) in the Schrédinger picture; however, its derivation
is consistent with all approximations. An explicit formula for the application to single-molecule devices is

given in appendix B.1.
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Chapter 3

'The Rate Equation

By the action of the rotating-wave approximation—the averaging over the fast oscillating time scale defined
by the localised system’s Hamiltonian—the dynamics in the weak-coupling limit can be classified according
to the spectral structure of Hg. For degenerate states, one has to compute the master equation for all
elements of the reduced density matrix, not only the populations but also the off-diagonal elements, the
coherences. We term this equation the “degenerate master equation” or master equation for short. For
non-degenerate states, on the contrary, the large energy differences’ occurring in the averaging imply a
decoupling of the populations from the coherences. The dynamics of these states is described by a rate
equation. The full master equation of a weakly coupled quantum nanostructure is a rate equation between
the degenerate subspaces® and a degenerate master equation inside each of them.

It is the paradigm of this thesis to begin the discussion with simple and intuitive models and, after
having understood these, add complexity step by step. We reflect the classification of the kinetic equations
depending on the system’s Hamiltonian in the structure of the following chapters.

In this chapter, we ignore the substructure of the energy manifolds and only discuss dynamics between
states of different energies. We shall see that the rate equation describing these systems or this part of the
full system shows a very rich phenomenology. In chapters 4 and 5, we discuss the case of degenerate states;
near-degenerate states, where the energy difference is small compared with all other energy scales of the
problem and is of the order of the tunnelling-induced broadening T', are treated in chapter 6.

Rate equations are an intuitive description of the transport problem: although they have to be derived
from the von Neumann equation rigorously, their dynamics can be understood as a succession of jump
processes between well-defined states with the rates being given by Fermi’s Golden Rule. Sequential
tunnelling of electrons onto and off the device is the lowest-order effect, namely of order O(H7.), that is
second-order perturbation theory in the system—bath interaction.

The rate-equation description has been applied to various problems of molecular electronics, for instance
strong electron—phonon coupling (Koch & von Oppen, 2005b) and pseudo-Jahn—Teller effects (Reckermann
et al., 2008). Using an effective low-energy Hamiltonian, as it is obtained by means of the Schrieffer-Wolff
transformation (Schrieffer & Wolff, 1966), tunnelling of two electrons, pair-tunnelling, or co-tunnelling,
becomes accessible by rate equations. Alternatively, higher-order expansions of the single-particle T-matrix?

" In this respect, “large” always means large with respect to the energy scale of the tunnelling-induced broadening I' = O (H?).

* We shall also use the term “energy manifold” in the following.

3 See for instance Averin & Nazarov (1990) for the general idea and Koch e a/. (2004) for the application to rate equations in
molecular electronics.
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of the scattering problem also provide rates for pair- and co-tunnelling processes that can be included in
a rate-equation treatment. Although a consistent expansion of the von Neumann equation would have
to account for off-diagonal elements of p via virtual processes like in the implementation of Leijnse &
Wegewijs (2008), the rate equation formalism yields a remarkably good qualitative description (Koch ez al,
2006a). A rigorous derivation of rate equations for higher-order tunnelling processes is, unfortunately,
difficult if not infeasible. The Markov regime only covers one distinguished time scale &2¢. Co-tunnelling
occurs on a time scale £*¢, which is much shorter. It is thus problematic to judge whether the dynamics on
both time scales are concurrently Markovian and, if not, what the non-Markovian dynamics look like.

The general form of the rate equation for a single-molecule device in the weak-coupling limit, which
describes the sequential-tunnelling regime, is

ph=> WhZiph - > Wk pl. (3.0.1)
p,m p,m

The occupation probabilities p} are the diagonal elements of the reduced density matrix pj := |n;q) (n;q|.
'The system Hamiltonian Hg operates on a product space of electronic and vibrational degrees of freedom
Hs =He ® Hyip- We therefore divide the labelling of the states into charge states 7, and vibronic excitations
g, p. Since we want to avoid the use of too many primed symbols like q’, our notation using the symbol p
is more subtle. Equipped with an upper or lower index, for example p, or pi, the symbol is the occupation
probability of the state indicated by the index. Without an index, the label p is like g just a variable counting
vibronic excitations. Due to this distinction, there should be no ambiguity. The devices we want to describe
have only three charge states, neutral n =0, singly charged n =1, and doubly charged n = 2. For all of the
examples and problems in this chapter, we assume spinless electrodes and single-level molecules, which
implies no double occupation. For the application in chapter 3.5, we consider the much more common
modelling with spin-degenerate electrodes and nanostructures where we exclude double occupation by
additionally assuming strong Coulomb blockade U — oo. In this case, however, the freedom to choose
electrons of either spin for tunnelling has to be accounted for by factor of 2 in all rates that describe
tunnelling onto the device. Apart from this, there is no qualitative difference in the two approaches as long
as we only describe sequential tunnelling. Higher-order tunnel processes show Kondo correlations due to
spin-exchange in co-tunnelling (Pustilnik & Glazman, 2005).

The rates W,1}, are proportional to the probability for jumping from |n;q) to |[m; p). Sequential tunnelling,
that is tunnelling of single particles, immediately implies |7 —#n| =1. In the molecular-electronics framework
with an Anderson—Holstein Hamiltonian the rates W = fT are a product of two terms: a Fermi function
f,which is the probability to find an electron or hole in the leads to match the energy difference e —el
and the Golden-Rule rate for the actual transition. For our model of a single-molecule junction, this rate
is 1§ = Lyt MPi—the product of the Golden-Rule rate I'y of the bare tunnelling Hamiltonian Hr and
the Franck—-Condon factor M?4, which is the squared overlap integral of the oscillator wave functions
associated with either charge state in the polaron picture. For the transition from neutral to singly charged,
this is the overlap between the undisplaced and the displaced wave function MP1=|( p|e_’\(b+_b) |q)|°.
For the Anderson—Holstein molecule, the Franck—-Condon matrix is symmetric in p and q. For other
electron—phonon couplings, for instance charge-dependent oscillators, this need not be the case.

'The description in terms of a rate equation does not include signatures of tunnel-induced broadening; the
temperature of the reservoirs is so large with respect to the energy scale of the tunnelling Hamiltonian that
the device’s levels become sharp. Compared with the exact transmission function of the resonant tunnelling
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problem, the weak-coupling limit is the regime I'/kgT — 0, when the Lorentzian spectral function, whose
width is the tunnelling-induced broadening I of the electronic levels, converges to a §-function localised at
the unperturbed system’s energy.

'The rate equation (3.0.1) has a gain and a loss term. The first term describes probability flowing into the
state |n;q) and thus increasing pi, while the second accounts for processes reducing the probability pi. In
the stationary state, both contributions balance each other. The steady-state condition, pj =0 for all # and
q, differs from the condition of detailed balance, which is much stronger. Detailed balance implies that the
flow of probability between every pair of states is balanced: w7 p‘ﬁ =wizp ph.

The time-dependent dynamics of the rate equation can be simulated with the help of the Metropolis—
Hastings algorithm of Monte-Carlo theory presented in appendix C. This algorithm computes the quantum
trajectories of individual electrons that tunnel onto and off the device with probabilities being given by the
rates W. 'This intuitive picture of the physics makes the understanding of the time-dependent dynamics easy,
as one can trace such a Monte-Carlo simulation easily by hand. The properties of the long-time behaviour
and the stationary distribution are, however, not easy to grasp by simply iterating the hopping dynamics
manually. For the Monte-Carlo simulation to converge, a huge number of trajectories has to be computed.
'Thus, for the stationary distribution, one has to revert to the picture of balanced flows of probability, which
is considerably different from the simple electron-hopping picture. For the identification of tunnelling
cascades in the time-dependent dynamics and the thus induced fundamental transport processes, the
Monte-Carlo simulation of the rate equation are an invaluable, which the application for instance in Koch
& von Oppen (2005b) or the discussion of the EQe Jahn—Teller molecule in chapter 3.5 show.

We can use the balance condition implied by the equation p} =0 to identify different classes of states
and their properties in the long-time limit. Consider a state |j) with population pj, its loss rate Wy and
the gain rates from other states |i), Wl; Depending on Wqy, and VVI;, we distinguish three categories of
states, which are sketched in Figure 3.1.

Generic States

By interpreting all states |j) communicates with as one large state manifold, this part of the rate equations
reduces to an effective two-level system: the state in question and everything else. The stationary-state
equation thus is

Woutpj = Z lenpz < Vvin-
i

The ratio Win/Woyut is an upper bound for the steady-state occupation of |j). A lower bound can be
established by noting that 1> p;> Wi! /W,.p; for every i, which is not very handy unless more is known
about the p;. The intuitive feeling, however, is that states with large outflow and small inflow will acquire
small, states with large inflow but small outflow will acquire a large population in the stationary state. The
other two classes of states are the extreme cases of this situation.

Sources of Probability

These states are characterised by W, =0 for all i, or at least for all states i that take part in the dynamics
after a vibrational cut-off has been introduced. These states occur rather rarely. They do not play a significant
role in the dynamics, since every bit of occupation probability that is put into them is immediately pushed
out: they are emitting probability, such that p; =0 is a valid solution for these emitting states. This class of



32 Chapter3 The Rate Equation

N

Figure 3.1: Illustration of the three classes of states. Sources
(A), which emit probability and therefore solve the master
equation with pa =0, sinks (E), which absorb probability
and therefore solve the stationary equation with pr =1,and
states that are populated and depopulated by the dynamics
by the respective entry and exit rates (B,C,D).

states is also a good description for states with a large number of exit but only a small number of entry
channels, because Wi,/ Wy ~ 0. Consider for example the high-lying vibronic states of a single-molecule
device at moderate bias voltage. These states can be populated from all other states above, but from none of
those lying energetically lower. We consider these as sources of probability and of not much relevance for
the dynamics, thus also legitimating a finite cut-off of the phonon number in the numerical evaluation
of the rate equation. This fact is also explained by Koch e# a/. (2006b) where for small electron-phonon
coupling, the large number of exit states generates a drift towards the low-lying vibrational states, eventually
stabilising the system against the heating dynamics caused by the large Franck—Condon factors M7+,
which allow the system to slowly climb the vibrational ladder towards highly excited vibronic states.

Sinks of Probability

These states are the opposite of those discussed before. They have a finite inflow, but Woye = 0. An example
is the state |1;0) in Figure 3.2. In contrast to the sources of probability, these states occur quite frequently.
If such a state appears in the dynamics, the solution of the rate equation is p;=1; p is a pure state. Due
to Woue =0, for all other states Wlfl =0, too. And as such, this state does not occur in the rate equation
except for its own dynamics. We call such states absorbing, because they absorb probability. If there is
more than one absorbing state in a system, the rate equation cannot be solved uniquely. In order to restore
uniqueness, a relaxation mechanism or some other form of communication between the states has to be
included that provides a small exit rate Woy, which serves as a regularisation of the rate equation and
restores the uniqueness of the stationary solution. Absorbing states are also called “dark states”, because
since all probability is locked in them, there cannot be a finite current through the system. As we shall
see in the next paragraph, a finite stationary current is always connected to both non-zero probability and
non-zero exit rates. In the presence of a dark state, no state can fulfil both conditions simultaneously.

'The stationary current through a molecular-electronics device in the rate-equation formalism follows
from similar considerations: the current is increased by processes that add electrons to the nanostructure,
and it is decreased when electrons are extracted from it. For the single-level Anderson—-Holstein model,
the actual expression* is

Iy = Z [W(f:l?apg - mfi»_()),qapﬂ ) (3.0.2)
p-q

* Although this is just the expectation value of the stationary current, we tacitly drop the angular brackets, since in this thesis,
the current will only appear as its expectation value.
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(a)

Figure 3.2: Illustration of possible jump processes for a molecule in the Coulomb blockade. We use the common picture showing
Fermi functions for the electronic reservoirs L/R, which for the chosen bias voltage act as source (S) and drain (D), respectively,
and the single-impurity level of the molecule. The vibronic degrees of freedom is indicated by the parabolic potentials. Since
not only the charged but also the neutral molecule has a vibronic quantum number, we keep track of the vibrational state by
also drawing the oscillator potential on top of the Fermi levels of the electrodes. The possible tunnelling processes thus are very
intuitive to understand by means of conservation of energy. (a) The transition that theoretically could carry a finite current. (b)
The transition that locks the electron on the molecule, thus obstructing any finite current.

where the lead-dependent rates W,ﬂ:‘,},a only take into account tunnelling at electrode «, that is whzd -
Yo WhZ1 . Using the rate equation (3.0.1) for the single-level model, one immediately finds

I+ 1Ir == pgs
g

which in the stationary state p =0 amounts to equal currents through the left and the right tunnel junction
and is a manifestation of the Ramo—Shockley theorem (Blanter & Biittiker, 2000, chaps. 3.1 and 5.2).

'The computation of the stationary current is a two-step process: first, one has to compute the stationary
distribution P, which balances the in- and outflow of probability for every state. One then uses pstar to
compute I. While the second step is easy and complies with the electron-hopping picture, the first is not.
We consider a trivial example, an Anderson—Holstein molecule inside the Coulomb-blockade, like it is
sketched in Figure 3.2. We choose eV,q > 2hw and eV, < —1eV,4. The hopping of single electrons could, in
principle, go on forever, as the transition |0;0) — [1;1) is inside the conduction window and not obstructed
by the conservation of energy. However, since there is a finite probability to jump into [1;0), which cannot
be left at all, the probability for sustaining the current-carrying transition converges to zero as t — oo.

'The stationary distribution of the vibronic excitations is in general not a Gibbs ensemble with respect to
the temperature of the reservoirs. The tunnelling dynamics produce vibrational non-equilibrium. Physically,
there, however, are many mechanisms that are not part of our model, which cause relaxation and drive the
vibronic distribution back to its equilibrium state. We therefore include a phenomenological relaxation
term in the rate equation that precisely fulfils this purpose (Koch ez a/.,, 2004). The additional term in the
equation for p is

1
- pa—ply > ph (3.0.3)
P

where pd; is the Gibbs ensemble of the harmonic oscillator pd; := Z e Pahe with Z = 24 péq and B being
the inverse temperature of the Fermi-gas electrodes. Such a term drives the non-equilibrium distribution p}
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towards the equilibrium ensemble on a typical time scale 7. In contrast to tunnelling, the relaxation term
induces transitions within a charge manifold. Thus, as relaxation and tunnelling take place in different
sectors of the dynamics, they will define two time scales. Their mutual interaction will be shown to determine
the precise form of differential conductance peaks in chapter 3.5. However, for the first three of the following
sections, we restrict the discussion to the full non-equilibrium dynamics of the rate equation (3.0.1)

3.1 Generic Observations

In contrast to the intrinsic model parameters charging energy, electron—phonon coupling, and tunnel
amplitudes, the experimentally accessible quantities are the temperature of the reservoirs, the gate voltage
Vg, and the source—drain voltage V4. These enter the rate equation through the Fermi factors in the
rates W/, which only change significantly when the chemical potential of an electrode matches the
energy difference of the transition |n; p) = |[1;q), 4o = £ —€h. From the perspective of the vibronic ground
state, this means that by sweeping the voltages, a resonance occurs whenever a molecular level passes the
Fermi level of one of the leads, which is a picture compatible with the resonant-tunnelling model. Due
to the changes in the rates, the stationary distribution and hence also the stationary current through the
device will only change at these resonances. The steps in the current—voltage diagram or equivalently the
peaks in the differential conductance can thus be mapped onto the spectrum of the system’s Hamiltonian
Hg. In this sense, the current-voltage diagram given by the rate equation provides a spectroscopy of the
free, unperturbed molecule. Computations using S-matrix or many-body techniques come to a similar
conclusion. The non-interacting formulation of the famous Meir-Wingreen formula (Wingreen ez a/, 1989,
Equation (37)), which is essentially the Landauer formula, depends on the transmission function, hence the
retarded propagator and thus the spectral function of the device. In the weak-coupling limit I' - 0, the
spectral function converges to a sequence of J-functions each localised at the various excitation frequencies
of the molecule’s vibrational modes. The height of the thus produced steps in the stationary current profile
and whether they increase or decrease the current is a result of the complex interplay of Franck—-Condon
factors, tunnel amplitudes, and the internal dynamics of the system.

In the differential-conductance diagram dI/d V4 as a function of both source—drain and gate voltage,
as shown for example in Figures 3.5 or 3.9, the resonances appear as straight lines marking the change of
the involved Fermi functions from zero to one. Given the difference in energy of a resonance by Ag, the
equation for such a line is

1
Ae+eVg—ya:As+eVgi§eVSd:0.

For an Anderson—Holstein molecule, A¢ is the difference in vibrational energy Ae = (p—g)hw, when the

resonance is |0;q) = |L1; p).We assume positive bias such that the left electrode acts as source with yy, = %eVSd.
'The upper sign is due to processes at the drain electrode; the lower sign describes processes at the source

electrode. Rewriting the above equation as one for the bias,
eViqg = F2(eVy + Ae).

Lines with negative slope occur for resonances at the drain electrode, lines with positive slope indicate
resonances at the source electrode. This property of the dI/dV diagram is very helpful for the spectroscopic
identification of tunnel processes and the reverse engineering of the physical mechanisms that lead to a
certain phenomenology. It can also be obtained by a simple gedankenexperiment. Fix the bias voltage at
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some value and scan the gate voltage through the conduction window defined by eV4. The left boundary
of the Coulomb-blockade diamond, the one with negative slope, occurs at negative gate voltages and
thus corresponds to hitting the Fermi level of the drain electrode with the molecular level. Similarly, the
positive-slope line marks the alignment of the molecular level with the source electrode’s Fermi edge.

For a rate equation, the stationary solution has to fulfil several conditions. If the n=0 or n =1 charge
sector has zero occupation probability, the stationary current is zero. Consider the current at the source
electrode. The forward current is given by the outflow rates of the n =0 sector, the backward current by
those from the n=1 sector. If 37, pl=0, the current at the source electrode is only determined by the
backscattering contribution from the molecule to the lead. The same argument holds for the current
through the drain’s tunnel junction, such that there is a net current flowing from the molecule to both
electrodes and not #hrough the device as the relation I, = —Ig requires for the stationary state. In the same
spirit, it is clear that states with a finite rate Wy, can never acquire unit occupation. The dynamics can never
lock the electrons in actually transparent states. In the description of a two-level system by a degenerate
master equation, the particles can, however, be locked on the device due to destructive interference of two
degenerate wave functions, which each taken individually are transparent’ In the rate-equation description,
there are situations where due to selection rules and spectral distortions the molecule develops absorbing
states, but these require complex molecular Hamiltonians, for example the E®e Jahn—Teller molecule, which
we discuss in chapter 3.5.

'The decision whether the addition of new tunnelling channels due to a change in bias actually increases
the stationary current or not crucially depends on the Franck—-Condon factors and thus on the quantum
mechanical modelling of the molecule. If the Franck-Condon matrix M?4 is well-behaved, that is with
a maximum at the elastic vibronic transitions |q) — |q) and the matrix elements M?? being decreasing
for inelastic transitions, that is larger |[p—gq|, the differential conductance at the vibronic resonances will
in general be positive. Such behaviour of the Franck—-Condon matrix elements can be found for rather
small electron—phonon coupling A, see Figure 3.3 (a) and (b). Under certain circumstances, the addition
of a new resonance by increasing the bias can reduce the stationary current. We view such behaviour as a
signature of non-trivial Franck—-Condon factors, where the maximal wave function overlap is for elastic and
inelastic transitions with a finite number of oscillator quanta being excited and other elastic or low-energy
transitions being suppressed, Figure 3.3 (c). Negative differential conductance essentially means that by
adding more channels for tunnelling, the effective through-put of current decreases. The new channel must
have certain non-trivial properties, for example having extremely small Franck-Condon matrix elements or
being an (almost) absorbing state.

3.2 Franck-Condon Blockade

'The structure of the Franck—Condon factors strongly depends on the precise quantum mechanical model
of the electron—phonon interaction. The matrix not only shows the parabolic behaviour that moves the
maximum from M for a larger coupling strength. It also shows oscillations, which for example lead to
M" =0 for A =1. The behaviour of the Franck-Condon matrix elements becomes more intuitive by only
considering the slice M1°. These are the matrix elements of the displacement operator e MU'=b) with
respect to the harmonic oscillator ground state. The displacement of the harmonic oscillator ground state

generates a coherent state. As it is well-known from the quantum mechanics of the harmonic oscillator,

5 See chapter 5.3.
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Figure 3.3: Franck—~Condon matrices M?? for different values of the electron—phonon coupling A. Weak coupling 1 =0.1 (a),
intermediate coupling A =1 (b), and strong coupling A =4 (c).. The Franck-Condon factors are normalised to the unit interval for
each value of the electron—phonon coupling constant to increase contrast. The colour code is white for zero and black for unity.

the expansion of the coherent state in the undisplaced Fock-state basis is given by the Poisson distribution,
and as such

This distribution has the property that for large enough A, it develops a maximum at non-zero q. A similar
property follows for all other slices M*4, see Figure 3.3. The immediate consequence for electronic transport
through a molecule with strong electron—phonon coupling is an exponential suppression of the low-lying
q— p transitions. And as such, due to the very small exit rate Wy, of the |n;q) states with small q at
low bias, these states will acquire the largest part of probability, which in turn implies an exponentially
suppressed stationary current. The time-dependent dynamics, accessible through a computation of the
current—current autocorrelation function or a Monte-Carlo simulation of the electron hopping, shows how
the electrons are transported in charge avalanches over the device (Koch & von Oppen, 2005b).

In the Anderson—Holstein model, the Franck-Condon blockade effect is immediately seen in the formal
structure of the Franck—-Condon matrix. Yet, the blockade effect is generic for general linear electron—phonon
couplings, which depending on the type of model can be very complicated and only be solved numerically.
Any linear electron—phonon coupling describes a displacement of the equilibrium position of the molecular
vibrations. It is the spatial confinement of the low-lying vibronic wave functions by the adiabatic potential
and the implementation of the Franck—Condon principle, which demands to treat electronic transitions
from one adiabatic potential to another locally in space, which cause an exponential suppression of the
overlap integrals of the low-lying vibronic excitations for strongly displaced adiabatic potentials. Regardless
of the precise nature of the linear electron—phonon coupling, Franck—-Condon blockade physics are a
generic effect due to strong coupling. Leturcq ez a/. (2009) demonstrate the Franck—Condon blockade
experimentally in suspended carbon nanotubes. As it is shown in this article, the longitudinal stretching
mode of the nanotube has a linear electron—phonon coupling of order O(1), which is the regime in which
a Franck—Condon blockade should appear in conductance measurements. In Figure 3.4, we show their
experimental data for several Coulomb-blockade diamonds. In addition to the suppression of the stationary
current, there is more structure that is caused by the Franck—Condon physics. There is a pronounced
asymmetry of the current maximum of each charge resonance with respect to the gate voltage, such that
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the Coulomb diamonds appear to be tilted. This is an immediate consequence of asymmetric coupling of
the molecular structure to the electrodes and the exponential suppression of the low-lying Franck-Condon
matrix elements. A detailed discussion of this physics is given in the next section. The negative differential
conductance peaks in Figure 3.4 are probably the most puzzling phenomenon in the nanotube’s conductance
properties, because it is difficult to imagine from the electronic hopping picture how negative differential
conductances can appear in a single-level rate equation. We shall show in the following that there are
indeed structures in the Franck—-Condon matrix that can produce negative differential conductance peaks;
however, a direct comparison of Figures 3.4 and 3.5 (a) reveals that the Franck—-Condon effect as it manifests
itself in the rate-equation treatment is not the cause of the experimentally observed structure. Although
we cannot fully explain the measured effect in the Franck—Condon blockaded regime, we believe that
an extension of the model to include degenerate orbitals like in chapter 3.5, and thus accounting for the
complicated electronic structure of carbon nanotubes, is better suited to explain this phenomenology than
the single-level rate-equation treatment.

In the following, we stick to the abstract Anderson—Holstein model and discuss the effects due to
the generic structure of its Franck-Condon matrix. Besides the Franck—Condon blockade itself, this
is the appearance of negative differential conductance peaks in Figure 3.5 (a), which is a result of the
complicated interplay of balancing probability flow in the stationary state and the oscillatory structure of
the Franck—Condon factors.

We choose the voltages such that the molecular ground state is placed slightly above the Fermi level of
the drain electrode. Raising the bias voltage, there is a resonance |0;0) — |1;qo) passing the Fermi level of
the source electrode and thereby generating a step in the current—voltage characteristics. As it is apparent
from Figure 3.5 (b), there is a certain qq that results in an, albeit small, zegative step. Obviously, exactly at
this point, the shape of the Franck-Condon matrix has a special form. By inspection of the matrix, we find
that due to the parabolic structure of the Franck—-Condon matrix and the oscillations inside the parabola,
the newly added channel for this particular resonance is characterised by both a very small inelastic matrix
element, as it is typical for the Franck-Condon blockade, and a very small elastic factor M9°4°. This property
is contrary to the behaviour at the resonances before qo, where although the inelastic rates are still small,
the elastic rates are rapidly increasing to values of order unity.
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Figure 3.5: Negative differential conductance due to non-trivial Franck-Condon matrix elements. A =4, kg T =0.05/w. (a) Full
dI/dV diagram. The colour code is blue for negative, white for zero, and red for positive values. The short blue lines perpendicular
to the respective strong vibrational sidebands show negative differential conductance peaks for this model. (b) Zoom into the first
vibronic sideband to show that the effect is not restricted to the large-bias regime, where it is most pronounced, but is generic to
all vibronic sidebands. The effect also occurs for resonances at the source electrodes, which are discussed in the text. Due to the
absence of spin degeneracy, the problem is invariant under changing the sign of the gate voltage by simultaneously exchanging the
role of molecule and leads.

We consider a two-state model, whose possible transitions are sketched in Figure 3.6, to show that
the addition of channels that are not only weakly coupled to the vibronic ground state but also lacking
transparency in the elastic tunnelling process is likely to reduce the transmitted current. In this model,
we have introduced the quantity f, reminiscent of a Fermi function, to account for the availability of the
resonance at the source electrode, that is f € {0,1}. All other resonances are either available or not for either
value of f. The effect also occurs for resonances at the drain electrode pictured in Figure 3.5 (b), which, due
to the negligence of electronic spin, is obtained from the situation discussed here by exchanging the role of
molecule and leads. According to the diagram in Figure 3.6, the matrix representation® of this model is

_rlOf_rOO 0 rOO (z_f)I‘lO Pg
0 _ rll _ 2r10 0 rll 1
Lp= 00 10 00 Pg : (3.2.1)
r a® g 0 P
frl() rll 0 _(z_f)rl()_rll p}

The stationary state for the situation before the vibronic resonance is easily computed. Before the resonance,
when f =0, it is only the vibronic ground states, which contribute to the dynamics. Due to lack of energy
of the tunnelling electrons, the excited vibronic states cannot be populated and are thus emitting states

with zero stationary probability. The stationary solution before the resonance is thus p)=p} =1, and the
stationary current is T%°. If we choose generic values for the rate I'" and I'! of the order of T, opening

the resonance will increase the stationary current as the additional tunnel channels compensate the loss of

¢ The Golden-Rule rates are 7 = 27”11M P4 without the Fermi function. The rates in the rate equation (3.0.1) are W = fT. We
only denote the reduced density matrix as a column vector of the diagonal elements, not mentioning any off-diagonal elements,
since the master equation we use is only a rate equation.
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stationary probability in pY) due to the normalisation Tr(p) =1 more than enough. Consider the simple
example of identical rates '/ = T; the resonance is equivalent to the ground-state transition and also has
the same inelastic rate. In this case, the Liouvillian itself is proportional to I', and as such the stationary
solution of the rate equation (3.2.1) is independent of T
p8=%, pé:%, =, pi=%-

'The neutral ground state is less populated than before the resonance, but with the additional inelastic
channel the stationary current I, = 2T p)+2T pfy = 3T is larger than Iy, (f =0) = iT. The addition of such a
resonance produces a positive step in the stationary current.

In order to illustrate the effect of a non-trivial Franck—Condon matrix, where the additional resonance has
both small inelastic and elastic rate, we consider the extreme case with T™ = 0. We set T% =1 for simplicity.
From the diagram in Figure 3.6, it is immediately clear that p} is an emitting state, hence p} =0. For f =1,
when the additional tunnelling channel is opened and the resonance is contributing to the dynamics, there
are two equivalent and independent possibilities for electrons to traverse the nanostructure

FOO rOO 1'*10 rlO
|0;0) — [1;0) —> [0;0) and ]0;0) — |1;1) —> |0;0),
and hence p) = p? as well as p{ = p}. The stationary solution of the rate equation is thus

1
0 0 11
0 1 > D1 3

3’ po=0, p

1
b 3
The stationary current is I (f =1) = %(1+1’10), which is larger than I, (f =0) =1, only if I > 1. For van-
ishing elastic rate I'"!, the inelastic rate T'° has to be at least half the elastic rate I to produce a positive
step in the stationary current when the resonance has been made available by an increased bias. If not, the
system will show negative differential conductance.

There is one value of the linear electron—phonon coupling A, which exactly corresponds to the situation
I'"'=0, namely A =1. In this situation, the Franck-Condon matrix elements are given by the Poisson
distribution, which determines the Franck—Condon factors M4° and as such M = M0 = ¢!, Thus ' =%
and, according to the above discussion, the current step has to be positive, which is indeed the observed
phenomenology.

In Figure 3.6, we show the numerical solution of the rate equation for arbitrary tunnel rates. We plot the
difference It (f =1)—1Ir,(f = 0) as a function of the ratio of the elastic rates I'!/T%. The different curves

%, and T'° has been set to unity. The first observation is that no matter

correspond to different values of
what the inelastic rate is, for equal elastic rates, the current step will always be positive. Indeed, even for
/1% > 1, negative differential conductance will never be observed. If, however, the ratio is much less than
one, the blue curves become negative, which corresponds to the case T, T « T%. The Franck—Condon
matrix of the Anderson—Holstein molecule shows oscillations along the diagonal elements for strong
electron—phonon couplings. The maximal elastic rate appears for a vibronic excitation q~4,5. For higher
excitations, the elastic rates decrease. As also the inelastic rates are very small in this regime, we encounter
the situation discussed exemplary with the two-state model.

In general, the dynamics of the full vibronic system is more complicated than in our two-state model,

because also higher-order inelastic transitions |0;q) ~ |L;q+k) and their mutual interplay control the
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Figure 3.6: Two-state model to illustrate the mechanism that generates negative differential conductance in the rate-equation
treatment. Left: The sequential-tunnelling processes between source and drain (S/D) and the molecule M are indicated. The
states are resolved with respect to the electrodes. The neutral population is given by the sum of the S and the D contributions.
The rate for the process [0;1) —|1;0) is (2— f)I'°, one addend for jumping from the source and one for jumping from the drain
electrode onto the molecule. We abbreviate f-:=1- f. Right: The difference of the stationary currents before (f = 0) and after the
resonance (f =1). The inelastic rate I'? is set to unity, and I'% is scanned between 0.05 (red) and 6 (blue). Negative differential
conductance can be observed when both I' « I'% and I'® « ', and hence I'"' ~ ' « T°.

stationary dynamics. The elastic rates are, however, generically suppressed and due to the enormous
spreading of the Franck—Condon parabola, most of the inelastic rates are also very small. The mechanism
we have shown here therefore persists to higher-order transitions, rendering the appearance of negative
differential conductance a generic effect of Franck—Condon blockaded single-molecule devices.

3.3 Asymmetry

Besides the intrinsic properties of the molecular device’s model itself, also the bare tunnel couplings I, have
a significant influence on the qualitative steady-state transport behaviour. Two main effects will be in the
focus of our attention: negative differential conductance eftects and a shift of the maxima of the differential
conductance, best visible in the Franck-Condon blockade regime. The precise value of the coupling of the
molecule to the conducting leads is probably the least controllable parameter in the problem. A profound
understanding of its effect on the transport characteristics is therefore essential for the application of simple
molecular models like the Anderson—Holstein model to experiments.

3.3.1 Negative Differential Conductance

Koch & von Oppen (2005a) report negative differential conductances for asymmetrically coupled devices.
'The numerical results for the stationary current at zero gate voltage shown in Figure 3.8 show exaggerated
steps that, for larger voltages, reduce to a value that is independent of the asymmetry. A numerical simulation
with various ratios of I'1,/Tr shows two effects: the height of the exaggerated step is independent of the
asymmetry, and the width of the exaggerated current step at each vibrational resonance broadens as the
ratio of the couplings increases. Since we already know that it is the Fermi functions in the rates that
define the positions of the steps, this effect suggests a competition of the decreasing Fermi function 1- f for
backscattering the particle from the new resonance into the electrode with the respective tunnel coupling.
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Figure 3.7: Transition rates in the highly asymmetric set-

T 1 up I' =T, /Tr >>1at zero gate voltage. The electron—phonon
A . A .
- - coupling is assumed to be A~1, such that the Franck—
T f Condon matrix element ' ~ 0, which is a condition for
f observing negative differential conductance due to asym-

metric coupling. By setting I'z =1, we ignore the finite
value of the Franck—-Condon matrix element M°°, which
r 1 however only rescales the stationary current.

We analyse this effect within a simple two-state model. For simplicity, we assume M" =0, which actually is
the case for electron—phonon couplings A =1 and M" being very small for A close to unity, which is the
regime of intermediate electron—phonon coupling. This choice of A is essential for the effect to occur. In the
discussion of the Franck-Condon blockade in the previous section, we have already seen that the generic
oscillations of the Franck—Condon matrix elements along the g’ = q line have a non-negligible effect on
the stationary-state properties of the system. We further set the coupling to the right electrode to unity as
well as all other Franck—Condon factors keeping I7,/Tr =T as the only parameter. The rate equation for
this model, whose structure is shown in Figure 3.7, is

-T(1+f) 0 1 1+T(1-£) \ (P9

L= 0 -I-(1-f) f 0 o
p r T+(1-f) -(1+f) 0 Y
fT 0 0 -1-T(1-£)/ \ pi

In contrast to the model of the previous section, here we consider zero gate voltage such that the additional
inelastic resonance is opened for tunnelling both at the source and at the drain electrode. The stationary
solution of the rate equation is

T ST fT 0
P _(Lr+(1—f)’r’1+r(1—f))po

The occupation probability of the vibronic ground state pJ is determined by the normalisation condition
Cnp pd =1. The stationary current at the resonance, shown in Figure 3.8, is characterised by three regimes.

Before the First Vibronic Resonance
If the first vibronic resonance is not yet part of the dynamics, the system has too little energy to excite

oscillator quanta and f = 0. The solution of the rate equation in this regime is

1
T
=(L,0,I,0) —.
pr=( )T
The stationary current through the left lead becomes I (f =0) =Tp} = %, which is the resonant tunnelling

TR
FL + FR

result I = with I'g =1 and I, =T. For very large asymmetry, this becomes approximately I, (f =0) ~ 1.
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Figure 3.8: Negative differential conductance due to asymmetric coupling to the electrodes for a full molecule (a) and a model
system with cut-off at g =1 like the one treated exemplary in the text (b). The solid line in graph (b) indicate I( f =0), %I (f=0),
and 2I(f =0). The parameters are A =1, kgT =0.03/iw, and I, is varied from 10T (red) to the unphysical value of 10000Ir (blue),
which, however, shows the effect discussed in the text.

Far Beyond the First Vibronic Resonance

When the bias voltage is large enough to excite the additional oscillator quantum, there is a region in the
current—voltage characteristics, where the eftect of the asymmetry is no longer present. In the model this
condition is expressed by only setting f =1. Here, the solution of the rate equation is

T
=(LLI,T) —/——.
= )20+
'The stationary current is larger than before the resonance, because the electrons have more tunnel channels

at their disposal

r

3 3
I(f=1) =2Tpg + I'py = 21T EIL(f =0).

The Exaggerated Regime

Due to the asymmetric coupling to the electrodes, there is an intermediate, a cross-over regime, where the
current is exaggerated with respect to the just discussed regime in which the resonance is fully developed.
This cross-over is characterised by already f =1but still T (1-f) =8> O(1). In this regime, the rate equation

is solved by
0

240
1448

pl=(1,1,T,T)

For these parameters, the stationary current acquires a backscattering contribution from the molecule to
the lead, which due to I'(1- f) = § has a finite rate,

1) r
I.(8 > 1) = 2Tp) + Tpg — p) = (3——) —.
1+68/) 24T

0 240
1+6 146~
I~ % For large values of T, this current can again be approximated by I, ~ 2, which is independent of

For the larger part of this regime, we can safely assume § > 1 such that =< ~1as well as 1,leading to
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the asymmetry, as it is expected from the numerics. For generic values of T, we can compare It, with the
current at the fully established resonance, where no backscattering is present,
2T 3 T

_ 2 —cr(r-2),

IL(6>>1)—IL(8=O)=m 21+T

with the common denominator C being a positive number. The difference is positive for I' > 2. For most
asymmetric couplings, the stationary current in the intermediate regime, where there is a significant
backscattering from the molecule to the strongly coupled electrode, is larger than the one in the fully
developed first vibronic sideband. Moreover, the actual value of the current only slightly depends on the
backscattering rate, rendering the current profile in this regime the saturated plateau shown in Figure 3.8.

3.3.2 Asymmetry of the Differential Conductance Diagram

Besides the observation of negative differential conductance, another generic effect of asymmetric coupling
in the sequential-tunnelling regime is the shift of the region of maximal current in the current-voltage
diagram. The such induced asymmetry in the diagram itself generates the impression of a tilted diagram,
particularly in the Franck-Condon blockade regime, where the Coulomb diamonds do not touch. This
effect has recently been observed in experiments on suspended carbon nanotubes (Leturcq ez al., 2009). In
Figure 3.9, we show the numerical evaluation of the rate equation for the Anderson-Holstein molecule in
the Franck—Condon blockade regime, A = 3.3, with symmetric coupling I, =T (a) and with asymmetric
couplings I, =100Ig (b). The symmetry of the current—voltage diagram with respect to the gate voltage is
broken: the graph appears to be tilted.

'The balance condition in steady-state helps to understand the long-time behaviour of the reduced density
matrix, from which the stationary current is computed easily. The Franck—Condon blockade regime is
helpful insofar as due to the exponential suppression of the low-lying vibrational excitations, the exit rates
of these states are small compared with the ones of highly-excited vibronic states. With the reasoning
of the introduction to this chapter we infer that only the states close to the vibronic ground state can
acquire significant occupation probability and thus only these have to be considered in the calculation of the
stationary current. The numerical results of Figures 3.9 (c) and (d) corroborate this reasoning. We analyse
the system’s properties by slicing the current—voltage diagram at a source—drain voltage of about eVg =10Aw
and only changing the gate voltage from either side of the Coulomb-blockade diamond through the
conduction window. The energetic situation in the three extreme cases, alignment of the vibronic ground
state at either Fermi edge or symmetrically in-between, is pictured in Figure 3.10. We first discuss the
symmetric-coupling case and explicate the differences due to asymmetric coupling.

If the vibronic ground state of the molecule is aligned close to the Fermi level of the drain electrode
like in Figure 3.10 (a), the only transition allowed from [1;0) is the elastic one into |0;0). Due to the
Franck—Condon blockade, its rate is exponentially suppressed. The neutral state, on the contrary, has a
much higher exit rate. The source—drain voltage has been chosen so large that those states for which the
Franck—Condon matrix elements M1° are finite are inside the conduction window. Thus the exit rate of
|0;0) is at least max{I'"°|q e N}, which is of order unity. With the balance condition for the stationary state,
we conclude that almost all of the probability will be stored in the almost absorbing state [1;0), such that the
stationary current is determined by the Franck—Condon factor for the transition |1;0) ~ |0;0) to the drain
electrode. In the opposite case, the vibronic ground state being slightly below the Fermi edge of the source
electrode, Figure 3.10 (c), the roles of the charged and neutral state are exchanged. The Franck-Condon
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Figure 3.9: Asymmetry of the dI/dV due to asymmetric coupling to the electrodes. The parameters are kgT = 0.05/w, 1 =3.3.
The symmetric configuration Iy, = I'g is shown in (a) for the differential conductance and in (c) for the stationary population as a
function of the gate voltage, when eV,g =10/w is held fixed. The same diagrams for asymmetric coupling I't, =100TR are shown in

(b) and (d).

suppressed rates affect the transition |0;0) ~ |1;0), leaving the neutral state with an exponentially suppressed
exit rate. The charged state, on the contrary, can be left by exciting many vibronic states on the molecule
by an electron tunnelling to the drain electrode. By the same reasoning as before, in this situation, almost
all of the occupation probability will be stored in the neutral state |0;0), and the stationary current, this
time evaluated as Iy, is again small. The only situation, where there is significant population both in the
charged and in the neutral state, is for a symmetric alignment of the level between the two Fermi edges,
Figure 3.10 (b). There, the exit rate from |0;0) equals that of [1;0), and we expect maximal current through
the device, symmetrically decreasing for a change of the gate voltage in either direction.

By introducing an asymmetry in the tunnel amplitudes, the above argument is modified. Assume that
it is the coupling to the source electrode, which is greater. Then the point of maximal current, being the
one for which both rates onto and off the molecule are approximately equal, is shifted to higher gate
voltage, Figures 3.9 (c) and (d). The reduced number of accessible vibronic states for tunnelling from the
source electrode compensates the larger bare coupling. The argument can be repeated for any value of the
source—drain voltage, finally yielding the tilted form of the current—voltage diagram in Figure 3.9 (b).

3.4 Strong Relaxation

All of the phenomenology of rate equations presented so far is intrinsically vibrational non-equilibrium
physics. It is a result of the ideal model of the nanostructure being only coupled to the fermionic reservoirs.
For a more realistic description of quantum transport through single-molecule devices, other eftects due
to a non-ideal environment have to be modelled. In the introduction to this chapter, we have set-up the
phenomenological mechanism (3.0.3) for incorporating thermal equilibration of the vibrational distribution
into the rate-equation formalism. In this section, we sketch how in the regime of strong relaxation, which
corresponds to very small 7, the stationary current profile can be calculated and by comparison with
experiments can be used to extract an estimate for the linear electron—phonon coupling constant from the
data (Leturcq e al., 2009).



Strong Relaxation 45

]

(a)

D D

Figure 3.10: Energetic situation for the three stages encountered by sweeping the gate voltage of a single-molecule junction in the
Franck-Condon blockade: (a) Ground state close to the drain electrode. Due to the large number of oscillator quanta that can
be excited, the rate for populating the molecule from the source electrode is large, whereas due to the exponentially suppressed
Franck—Condon factors, the rate for leaving the vibronic ground state towards the drain electrode is very small. (b) Ground state
symmetrically placed in the conduction window. The rates for tunnelling onto and off the molecule are approximately equal as due
to the rather large number of oscillator levels inside the conduction window, the Franck—Condon blockade is overcome for either
tunnelling process. (¢) Ground state close to the source electrode. This is the same situation like in (a) just with the rates at the
tunnel junctions being interchanged.

'The general formula for the stationary current through the tunnel junction at electrode & of a single-
molecule junction is
o= S WAL - S WL
qp qp
If the stationary density matrix is sufficiently strongly localised in the low-energy states or the bias voltage
is large enough such that for the current Ig through the source electrode, the backscattering contribution of
pilis negligible, the formula becomes a function of p} alone

1
Is =T ZM‘H’f((q -p)hw + eVy — EeVSd)pg.
qp

This expression can be evaluated by hands, when both the Franck—Condon matrix elements M and the
tform of the stationary density matrix, the distribution of the vibronic occupations, are known. Most often,
especially for strong electron—phonon coupling, the vibrational distribution function cannot be accessed
analytically, because this effect is a genuine non-equilibrium dynamics.

For very strong vibronic relaxation, 7 — 0, the rate equation’ p = (£T+%£R)p is dominated by the
relaxation term L, the dissipation due to tunnelling L1 being a small perturbation and thus almost
negligible. Then p} assumes a thermal equilibrium distribution with respect to the vibronic excitations. For
small temperatures kgT << hw, we effectively have pl = p% 89,4, and

I'p

0 _
pO_FD+rs.

In this case, the stationary current for zero gate voltage, close to a certain resonance, |0;0) — |1;¢), say, is

Is=Ts > M®p} + Is fsM°pf,
q<q’

7 This is a symbolic notation of the rate equation in terms of Liouville operators L.
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because we can safely assume f((g-p)hw-1eVyy)=1for p=0and g<q’. The Fermi function for the
resonance |0;0) — [1;q") is abbreviated by fg. Its derivative with respect to the source—drain voltage is

4!
d(eViq)”® ~ 2kpT

fs(1=fs)

and as such, since directly at the resonance fs(eViq=2q"hw) =3,

dI ,
——(eVig = 2¢'hw) = TgPIM1°

d _ BIo o gofs(-fs) 1 Isho g0
d(eViq)

d(eVsd)fS - FS+FD ZkBT - SkBT FS+FD

Apart from system parameters like temperature and tunnel couplings, the differential conductance at the
q'th resonance is proportional to the Franck—-Condon matrix element of the inelastic transition |0;0) — |1;g").
'This number is the Poisson distribution, which we have discussed in connection with the Franck—Condon
blockade in section 3.2. In Figure 3.11, we show the differential conductance for zero gate voltage and various
values of the electron—phonon coupling A, as well as the Poisson distribution that fits the peaks heights.

One thing is striking, when we compare the numerical plots with the Poisson distribution, namely the
height of the resonant tunnelling peak |0;0) — |1;0). This peak is higher than it ought to be according to
the above reasoning: for equal and unit coupling I's = I'p =1, like in Figure 3.11, it is actually twice as high.
At zero bias eV,q =0, we also have to include the backscattering contribution due to p! in the stationary
current. Then

Is = TsM™ (fspo — (1- fs)py) = TsM™ (fs - py)-
The differential conductance at zero bias is therefore

dls
d(eVy)

d 1

= TsM%.
d(eVSd)fS SkBT S

(eVig = 0) = [sM™

FD+FS
Ip
discussion of the inelastic peaks. For equal and unit coupling to the leads, like in Figure 3.11, this factor is

just 2.

The resonant tunnelling peak is scaled by a factor 1/p =

compared to what we expect from the

'The distribution of the differential conductance peaks according to a Poisson distribution has been
successfully measured experimentally for suspended carbon nanotubes by Leturcq e a/. (2009) and used
for an estimate of the actual value of A. The agreement with the experiment shows that not only the
Franck-Condon blockade is an observable phenomenon in quantum transport through single-molecules,
but also supports the applicability and the use of the Anderson—Holstein model, which causes the actual
form of the Franck—Condon matrix elements.

3.5 'The E®e Jahn—Teller Effect

As a conclusion to this chapter, we discuss a model in which relaxation effects as well as selection rules
and spectral distortions characterise the current—voltage diagram. The model gives some insight into the
transport properties of more complex molecules and serves as an application of the previously discussed
techniques. The material covered in section has been published in Schultz ez a/. (2008).

We consider a molecular Hamiltonian with two degenerate electronic levels, labelled by a pseudo-spin ¢
being linearly coupled to two degenerate vibronic modes with coordinates Qg and Q.. We assume that these
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degeneracies derive from geometric symmetries of the molecule and that the electron—phonon interaction
respects this symmetry as well. As Jahn & Teller (1937) show, such molecules are geometrically unstable. The
energetic ground state is a non-symmetric conformation of the molecular frame and appears to be distorted.
This effect, the Jahn—Teller effect, is due to a type of electron—phonon interaction, whose complexity and
phenomenological richness goes beyond the simple Anderson—Holstein model. In principle it can also be
extended to quadratic or higher order in the normal-mode coordinates. In appendix D, we discuss details
of the Jahn—Teller effect in general. For the model treated in this section, whose quantum-mechanics we
discuss in appendix E, we assume that in the neutral state, there is no electron—phonon coupling and the
vibrational physics are that of an isotropic two-dimensional harmonic oscillator. In the singly-charged
configuration, however, we model the molecule to be Jahn-Teller active, featuring an electron—phonon
coupling of the respective type. Jahn—Teller effects are commonly classified according to the degeneracy
of the interacting electronic and vibronic degrees of freedom. The group-theoretical symbols explained
in the appendix denote a double degeneracy by E; non-degenerate modes are denoted A or B. To avoid
confusion, one labels the electronic degeneracy with capital letters, E, and the vibronic degeneracy with
lower-case letters, e. A particular Jahn-Teller effect is then denoted as the tensor product of both spaces.
'The model we have defined so far is thus of E®e-type. Typical examples of molecular geometries that
show this type of Jahn—Teller effect are triangular, tetrahedral, and octahedral molecules. Bersuker (2006)
discusses real-world examples of such molecules, their physics, and their chemistry. For an octahedral
complex, a central atom surrounded by an octahedron of six ligands, the double degeneracy can be traced
back to the crystal-field splitting of the five-fold degenerate d-orbitals of the central atom into a three-fold
degenerate sector—denoted by T—and an energetically lower-lying two-fold degenerate sector, which
is the E sector we are considering here (Ludwig & Falter, 1988, chap. 8.3). In Bersuker’s formulation, the
Hamiltonian of the linear E®e Jahn—Teller effect is

1 1 hw
Hgge = eVgnd + E(Pg + (‘-)ZQ(%) + E(Psz + wng) + )te_ (QGUx + Qeo'y) ng, (3-5-1)
0

where the Pauli matrices o; operate in the electronic Hilbert space; scalars are to be understood as being
multiplied with the identity matrix in this space. Although the model has degenerate electronic orbitals,
we describe its transport properties using rate equations. This has several reasons. First, although they
cannot grasp the full physics due to the degenerate eigenspaces of the system’s Hamiltonian, rate equations
do, however, model the physics berween energy manifolds. It is the purpose of this example to show how
selection rules and spectral distortions influence the transport characteristics. We shall show in the following
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section that the observed effects are independent of the chosen basis of the degenerate subspace, which
renders the rate-equation description a good approximation of this dynamics. Second, we assume infinite
charging energy U — oco. As we shall show in chapter s, effects due to the coherent interaction of the
degenerate levels are most pronounced for finite and non-zero U. Infinite U drives the phenomenology
towards the one observed in the rate-equation setting. Third, as we finally prove in chapter 6, the rate-
equation description for degenerate systems has a well-defined physical meaning as the correct theory
for levels whose energy difterence (Q is large compared to the tunnelling-induced broadening I' but small
compared to kgT. Since placing a symmetric molecule inside a tunnel junction will always have some effect
on the degenerate level structure, the degenerate rate-equation description can serve to account also for
these effects.

3.5.1 Berry Phase and Selection Rule

Since its adiabatic potential, which is invariant under rotations in the (Qg, Q. )-plane, the two-dimensional
isotropic harmonic oscillator has a conserved integer angular-momentum quantum number that is defined
by the displacement of the degenerate oscillations 6 and ¢

L,:= (QGPS_Q£P6)~

St o=

Due to the presence of an electron—phonon coupling, it is the total angular momentum,
1
] = LZ + EO'Z)

which is conserved in the EQe Jahn-Teller effect. There are two arguments to prove this, an algebraic
one and one that utilises the conical intersection of the adiabatic potentials sketched in Figure D.1 in
the appendix. Given the fundamental commutators for Pauli matrices, [0,0;] =213 €;x 0% and those for
coordinates and momenta [Q,-,P]-] =1hd;j, we can evaluate the commutator of J with the E® e Hamiltonian.
'The only relevant terms come from the electron—phonon coupling:

[Q@O'x’Lz] =1Q¢0x, [Qeoy:Lz] = IQBO')/)

1 1
[QG%ﬁEUZ]:_lQBGy; [Qsayxiaz]:_lQeax-

And thus [Qg0yx+Q.0y,]] =0, and the eigenvalues of J are good quantum numbers.

If we diagonalise the electron—phonon interaction in the electronic Hilbert space, we obtain a potential
energy surface in the adiabatic basis. When we use polar coordinates (r,¢) in the space spanned by
the displacements Qg and Q; such that Qg =rcos¢ and Q, =rsing, this transformation is for the EQe
Jahn-Teller Hamiltonian (Bersuker & Polinger, 1989, chap. 3.1.1)

1 [e~19/2  om19/2
§= % o912 _p19/2]"
'The diagonal basis of the potential energy obtained by this transformation is a mixture of electronic and

vibrational degrees of freedom as the polar angle of the degenerate vibronic Hilbert space appears explicitly.
'The thus computed potential energy surface is the well-known mexican-hat potential, a graphical illustration
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of which is shown in Figure D.1 in the appendix,

1 hw
Ukge = —0’r* + \—r0,.

2 o
In the transformed vibronic coordinates, this potential is also U(1)-symmetric, and the angular wave
function ought to have the form

v~ el
Due to the conical intersection at the origin, the potential has an intrinsic geometric phase that determines
the properties of the angular momentum j. Berry (1984) has introduced the concept of geometric phases in

contrast to the dynamical phase e~l/hE

of quantum mechanics. He shows that for certain potentials, a system
that is adiabatically transported around a closed path in its parameter space acquires an additional phase
that strongly depends on the path. This dependence is only on the homotopy class of the path. The phase is
invariant under homeomorphisms, that is smooth deformations of the path. It is a topological property of
the adiabatic potential. The probably best-known example of a geometric phase is the Aharonov—Bohm
effect, where the geometric phase is caused by a magnetic flux and experimentally visible in an interference
pattern. Mead (1992) and Yarkony (1996) extensively review the role of both geometric phases and conical
intersections in molecular physics. They remark that despite their abstract formulation these concepts are
important for the quantum mechanics of molecules as they involve and result from the symmetry properties
of the problem. Berry (1984) explicitly computes the geometric phase for the mexican-hat potential, the
electron—phonon coupling of the linear EQe Jahn-Teller problem. The phase has the value 7 if the path
encloses the point of degeneracy and zero else. This means that the irreducible representations of the
symmetry group of the mexican-hat potential, which actually rotate the potential or, equivalently, transport
the system around the degeneracy, also add the geometric phase to the wave function. And as such, to restore
invariance under the symmetry group, the total angular momentum has to be Aalf integer: |j| € 3 (2N+1).

If there was no Berry phase in the system and the conserved angular-momentum quantum number in
the Jahn—Teller active state was an integer, the sequential-tunnelling dynamics would also conserve the
angular momentum. The tunnelling would factorise with respect to the angular motion and split into
several non-interacting angular-momentum sectors, which would have their individual tunnelling dynamics.
Tunnelling could only change the radial excitation of the wave function and the only relevant physical effect
would be the distortion of the harmonic oscillator spectrum. Besides the problem of a non-unique stationary
solution of the master equation, the model would behave like a parallel array of Anderson—Holstein models
with distorted oscillator spectra. But in the E®e Jahn—Teller Hamiltonian there is a Berry phase, which
due to the half-integer angular momentum couples the individual angular sectors of the eigenfunctions
and thus yields non-trivial transport properties of the single-molecule junction. Any eigenstate of the
linear E® e Hamiltonian can be expanded in terms of an electronic wave function and the eigenstates of
the two-dimensional harmonic oscillator in polar coordinates, which are discussed in detail in appendix E.1
(Longuet-Higgins ez al., 1958)

. in . 1 in . 1
15, n) = Z[A’n,|+)]]— o)+ B+ 5,,4)]_

n

We keep the expansion coefficients A’ and B/} as symbols without further specification. As it is shown
in appendix E, the matrix elements (0;m,n’|Hr|1;j,n) of the tunnel Hamiltonian Hr vanish unless the



so Chapter3 The Rate Equation

angular momenta of the neutral and the charged state satisfy the selection rule

j=mx+x .
/ 2
'The implications of this selection rule are two-fold. First, it causes many zeros in the Franck-Condon matrix
and thereby drastically reduces the complexity of the tunnelling dynamics. And second, in contrast to the
factorised tunnelling dynamics sketched above for the case of zero Berry phase, the angular momentum
sectors of the linear EQe Jahn-Teller molecule are connected and thus allowing for transitions

1 0;
|O;m>|—>’1;m:|:£),_>{ | m) }|—>

|0;m+1)

By the tunnelling-induced change of the angular momentum of the oscillator dynamics, there can be a
step-by-step advancing in angular momentum space. Koch ez a/. (2006b) find a similar phenomenon for
Anderson—Holstein systems with a single harmonic oscillator in the limit of very small electron—phonon
coupling. For small A, the polaron transformation—the displacement operator—is approximated

e—/l(btb) Nl A(bJr -b),

such that the predominant inelastic sequential tunnel events are

|05q)
I
|0; q) |,q> B 1 (051 e
|1;q1)
|05 +2)

This slow advancing yields a highly non-equilibrium vibrational distribution, which is eventually stabilised
by relaxation processes.

In the linear E®e Jahn-Teller problem, the selection rule is exact, meaning that forbidden transitions
have zero probability and can only be observed if some other mechanism such as vibrational relaxation
interferes with the selection rule. We shall show in the course of this discussion that such treatment is
absolutely necessary to render the stationary solution of the rate equation for the transport problem unique
and obtain a well-defined current-voltage profile.

3.5.2 Current Blockade

In the previous section, we have introduced and derived a selection rule for sequential-tunnelling transitions
in the angular-momentum quantum number. As it is shown in appendix E.2, the charged system is spectrally
distorted: the radial excitation spectrum is not equidistant. In Figure 3.13 we show the eigenvalues of both
charge states ordered by their respective (half-)integer angular momentum. The reduction of the energy in
the Jahn—Teller active state with respect to the harmonic oscillator energy grows with angular momentum.
Figure E.1 shows the eigenvalues of the E®e Jahn—Teller Hamiltonian plotted against the electron—phonon
coupling: the radial ground states of higher lying angular-momentum eigenstates experience a much faster
fall-off than the states with small j. This property of the Jahn-Teller spectrum leads to an isolation of
radial ground states with large j in the tunnelling dynamics for certain well-chosen voltages. In Figure 3.14,
we have chosen such voltages and shifted the spectra accordingly such that the transitions in the master
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Figure 3.12: Differential conductance of the E®e Jahn-Teller molecule with intermediate electron—phonon coupling A =1 and
strong Coulomb-blockade U — oo, such that only single occupancy of the molecule is possible. The parameters are kgT =0.01%w,
equal coupling I of the electronic levels to the electrodes, and relaxation times (a) T=107o, (b) 7= 10° 7o, and (c) 7=10° 7o, where
70 =1/To. The colour code is black for negative, grey for zero, and white for positive values. The numerics show a strong current
blockade for negative gate voltage only and a step-like pattern of positive and negative differential conductance peaks.

equation can only proceed from diamonds (charged state) to lower-lying circles (neutral states), which
accounts for the conservation of energy, and only to adjacent columns, which implements the selection rule.

Given the parameters of the figure, we see that all states |I;§,0) with [j| > 2 are isolated. Once they are
occupied, there is no allowed transition to a neutral state, and hence no possibility for uncharging the
molecule. Transitions to neutral states that are allowed by energy conservation, for example |1;%,0) ~ |0;0,0)
are forbidden by the selection rule. And those that are accessible by the selection rule have too high energy
due to the spectral distortion of the Jahn—Teller effect. In this situation the electron is locked on the device
and, due to the infinite charging energy, no current can flow through the molecule. The particular states
|1;7,0) for larger j are absorbing states and hence are dark and non-conducting states. In contrast to the
already explained theory, there is not just one absorbing state but a large, actually an infinite number of
them. Without further alterations of the model, this would lead to non-unique stationary states of the
equation. We therefore have to include the phenomenological relaxation mechanism (3.0.3) that, accounting
for higher-order tunnel processes or relaxation of the vibronic configuration towards thermal equilibrium,
breaks the selection rule slightly. Besides ensuring a unique solution of the stationary rate equation, such
mechanisms define a second time scale, whose eftects on the transport properties will be discussed in
section 3.5.3.

Any relaxation mechanism will ultimately drive the system to the lowest energy state, the ground state.
Whenever one of the absorbing states can be reached by a tunnel cascade from [0;0,0), there is a finite
probability of locking the system in that absorbing state for very long time. The stationary current through
the device will be strongly suppressed in these regimes, the amount of suppression strongly depending on
the magnitude of the relaxation time scale.

'This mechanism of a current blockade is different from the Coulomb blockade. Here, we make explicit
use of excited absorbing states, that is states that are non-conducting whereas at the same time, the electronic
ground states, whose conductance properties define the Coulomb-blockade diamonds in the current—voltage
diagram, are transparent. It is the two-dimensional spectrum, the dependence on two quantum numbers,
that allows for a selection rule, which, in cooperation with the spectral distortions leads to the observed
phenomenology.
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In Figure 3.12, we show numerical results for the differential conductance of our model with equal
coupling to the electrodes I'y = Iy for some I. The graphs have been obtained by a treatment of the problem
with rate equations. If one were strictly applying the rules of chapter 2, rate equations would be unsuitable
as the problem has many degeneracies. Indeed, it is the degeneracies of the Jahn—Teller Hamiltonian that
actually produce the rich phenomenology. Due to the selection rule in angular momentum, we can, however,
show that the current blockade is a generic eftect, which is independent of the implementation of the
model as a rate equation or a degenerate master equation.

In chapter 2, we have argued that any weak-coupling dynamics naturally split into a rate equation between
the different energy manifolds and a degenerate master-equation description inside each degenerate subspace.
Given any coherent superposition of neutral states of the Jahn-Teller molecule of the same energy

|)’) = Z Am,n |O§ m, 1’1) s

where m and n are related by the condition m+2n = const. In contrast to the harmonic oscillators, the
Jahn-Teller-active states are only doubly degenerate, such that a general wave function of its degenerate

eigenspace has the form

IB) :=bj|L; j, n'y + b_|L; -, n'y.
The Franck—Condon factor for a transition |§) — |y) would be

2 2
1 Hr B = 3 abpl0smon Hrltjn)| =[S ay by (0s% 1, Hltjw')
m,n,+j +j

Whatever coherent superposition the system actually is in, due to the breaking of the large degeneracy of
the isotropic harmonic oscillator down to E; = E_; in the Jahn-Teller active state, the selection rule still
isolates the absorbing states. The isolation of these is a property of the whole energy manifold, which in this
case comprises only two states. The observed phenomenology is the phenomenology of the rate-equation
dynamics between the energy manifolds and not related to any effects of the coherent master equation at
all. By this reasoning describing electronic transport through the linear E®e Jahn—Teller molecule using
rate equations for the study of its generic current blockade is justified.

'The numerical results plotted in Figure 3.12 show this current blockade and reveal two important aspects of
its phenomenology. It obviously breaks the structural—not only quantitative—symmetry of the differential
conductance in the sign of the gate voltage. The spectral trapping of the system only occurs in the charged
state, and the relevant distortions are related to a lowering of the energy due to the Jahn—Teller effect. For
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negative bias, trapping occurs when the molecular ground state is aligned or energetically close to the
Fermi level of the drain electrode, which means negative gate voltage. Alignment with the Fermi level of
the source electrode, and hence positive gate voltage, cannot produce the trapping effect in this model, as
it is seen in the energy diagrams in Figure 3.14 (b) and (d). In this voltage regime, the cross-over of the
equidistant harmonic oscillator levels with the distorted Jahn—Teller eigenenergies appears at too large
angular momenta that can never be reached from the current-carrying states.

'The current suppression itself shows up as a cascade of negative and positive conductance peaks. We
already showed that in the linear EQe Jahn-Teller effect, there is not just one absorbing state; due to the
large spectral distortions at high angular momentum, they appear as an infinite set. Once such a state is
connected to the current-carrying, low-lying states by a tunnel cascade with finite probability;® the system
is blockaded and, if it was conducting at lower bias, will show negative differential conductance. In contrast,
if the bias is raised to such a magnitude that the absorbing state becomes conducting again, which means
that the cross-over of harmonic oscillator levels with Jahn-Teller eigenenergies is shifted to higher angular
momentum, the system can become transparent again, permit a stationary current, and thus produces a
positive differential conductance peak. This mechanism applies for each state [1;},0) individually, which
causes the step-like pattern in the differential conductance diagram.

'The cascade that produces the first “block” of suppressed current for low bias, kicks the system into the
3

first absorbing state [1;3,0) by advancing from the ground state

1 3
|0;0,0) — |1 5,1) = [0;1,0) — |1 5,0). (3-5.2)
The positive differential conductance peak is determined by the availability of energy for the transition
3
I1; 5,0) ~10;1,0)

from the molecule to the drain electrode. The line is therefore paralle/ to the boundary of the Coulomb-
blockade diamond at negative gate voltage. The negative differential conductance peak, on the contrary,
marks the availability of sufficient energy for the transitions

1 3
|0;0,0) — |1 E,l) and |0;1,0) — |1;5,0),

which, since they are transitions from the neutral to the charged molecule, involve tunnelling processes
at the source electrode and thus are marked by lines perpendicular to the negative-gate boundary of the

Coulomb-blockade diamond.

3.5.3 A Second Time Scale due to Relaxation

'The analysis of the linear EQe Jahn-Teller effect’s transport properties and the attempt to attribute negative
and positive differential conductance peaks to certain tunnelling transitions—the spectroscopy of the rate
equations—proves to be more difficult iz praxi than it has been suggested by the theory developed so far.
'There is an obvious mismatch of the peaks’ maxima and their theoretically predicted positions. What, on
first sight, is even more disturbing but actually is the key to the problem, is a dependence of these shifts on

® This means that the cascade has to be rather short, and the Franck-Condon matrix elements have to be sufficiently large.
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Figure 3.14: Illustration how the spectral distortions due to the E®e Jahn-Teller effect and the Berry-phase induced selection rule
characterise the possible tunnelling processes, the emergence of absorbing states, and the qualitative asymmetry of the dI/dV
diagram with respect to the gate voltage. The spectra of both the neutral (circles) and the charged (diamonds) state of the system
have been overlaid and shifted with respect to each other to indicate the energetic situation for the respective tunnelling. The
electron—phonon coupling is A =1. (a) and (b) eViq =2hw and eV, = 7%hw. The molecule is aligned close to the Fermi level of the
drain electrode. (a) Tunnelling at the drain electrode, where the emergence of absorbing states is clearly seen. (b) Tunnelling at the
source electrode, where no tunnelling channels are obstructed. (c) and (d) Alignment of the molecule close to the Fermi level of
the source electrode, eV, = 1 iw. (c) Tunnelling at the drain electrode, where in the low-j sector no absorbing states are observed
and hence no current blockade. (d) Tunnelling at the source electrode. Although the energy difference are smaller than in (b) still
no channel is obstructed.

6 T T T T 6
A
(a) AN
// X\ 3
4 | \\ -
> | >
< / <= 0
S S
zr / \ 1
/ ~ b
J I\
_ i
0 — —
I 1 I 1 I 1 _6 I
-1.7 -1.6 -1.5 -1.4 -2 -1.5 -1 -0.5 0

eVya/hw eVy/hw

Figure 3.15: The two types of peak-shifts due to vibronic relaxation. (a) Nestling shifts, which continuously change the line shape
and the position of the maximum due to the presence of two time scales. The relaxation time assumes values between 7 =47, (red)
and 7=12807 (blue). (b) Discrete rigid shifts, which are due to high-energy entry states into the trapping cascades and a signature
of the non-equilibrium stationary vibronic distribution. The relaxation time is chosen between 7=107 (red) and 7=409607¢
(blue). The other parameters are A =1, kgT = 0.05hw, eV, = —-0.5Aw (a) and eV, =—0.26iw (b).
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the relaxation time 7, which we have introduced in order to regularise the strict selection rule and remove
the thus caused non-uniqueness of the stationary density matrix. Inspection of the numerical data reveals
two types of shifts, which we plot exemplary in Figure 3.15. The first type, Figure 3.15 (a), is a “nestling” of the
high-7 curves against the low-energy shoulders of the low-7 limit, which serves as an envelope function for
all relaxation effects of this type. The second type, Figure 3.15 (b), is a rigid shift of the negative differential
conductance peak towards lower energy. The rigid shifts can be easily understood by noting that in contrast
to the nestling shifts, they are of discrete nature. Their position cannot be tuned continuously by changing
the relaxation time 7. By verification with the Jahn—Teller spectrum, one can match the position of the
lines with transitions in the tunnelling dynamics, although not the low-energy cascades, which we used to
explain the current blockade. The shifted negative differential conductance peaks correspond to high-energy
transitions that open the cascade into the absorbing state. Weaker relaxation implies a stationary vibrational
distribution that is less concentrated at the vibronic ground state: it is in stronger non-equilibrium. And
as such, highly excited states can play a more important role in the stationary tunnelling dynamics. They
eventually determine the energetic threshold for the current blockade if such a resonance has lower energy
than the one emerging from the vibronic ground state. The spectrum of the linear EQe Jahn-Teller effect,
Figures 3.13 and 3.14, is so much distorted also in the higher radial excitations that such a behaviour is
plausible. In the Anderson—Holstein model, such an effect is not found, as there the oscillator spectrum is
equidistantly spaced and undistorted. Whether different tunnelling processes involve high-energy states or
low-energy states does not leave its fingerprint in the spectroscopic picture of the difterential conductance
diagram.

'The mechanism causing the rigid shifts of the resonances is contrasted by the properties of the nestling
shifts. Depending on the strength of the phenomenological relaxation, the maxima move continuously
and are damped. But they never leave the area marked by the curve given by the low-7 limit. In order to
explain this phenomenon, we have to understand the time-dependent dynamics of the system. We consider
the Monte-Carlo trajectory of the system at the voltages (eVy,eVyq) = (=0.5hw,~2hw), which is shown in
Figure 3.16 (a). The implementation of the Monte-Carlo simulation is the Metropolis—Hastings algorithm
presented in appendix C. The curve in Figure 3.16 (a) shows the number of charges that have passed through
the left tunnel junction after the simulation time t. The current is then given by the slope of the graph. By
inspection of the figure, one notices two properties of the dynamics. The increase of transmitted charge
with time is interrupted once in a while for a relatively long period. The closer look at the Monte-Carlo
data shows that this happens whenever the system is in a absorbing state and is waiting to be freed by the
relaxation mechanism. But apart from these interruptions, the current flow is apparently undisturbed. This
is seen in the quite regular and identical slope of the curve for every section between two trapping events.
We infer that the relaxation mechanism, and thus the trapping effect itself, constitutes a second time scale
in the transport problem, being opposed to the tunnelling dynamics, which is of order O(H?%). The bare
tunnelling time is defined as 7 :=1/Iy: the second time scale due to relaxation is of order 7. We combine
our observations and conclusions to state an ad-hoc two-level model, with which we can simulate the effect
of the two time scales’ interplay and thereby understand their influence on the resonance positions.

Consider the two-level system, which is sketched in Figure 3.16 (b), with a absorbing state |§) and a state
|ae) from which the electron can tunnel to the drain electrode, say the absolute ground state of the charged
molecule. The current is given by the inverse of the time T, the electron spends on the molecule. In our
model, this time is characterised by the sum of the trapping time 7 and the time the electron needs to leave
the second, non-absorbing state. The rate to leave this latter state is the product of the bare tunnelling
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Figure 3.16: (a) Monte-Carlo simulation of electron transport through the E®e Jahn—Teller molecule in the regime of current
suppression. A =1, kgT =0.05hw, 7=5000170, (eVy,eViq) = (—0.5hw,-2hw). The transport of electrons through the single-molecule
junction is once in a while interrupted for a rather long period of time, when the electron is locked in one of the absorbing states
and waiting for relaxation towards a conducting state. (b) Effective two-level model for the explanation of the two time scales’
interplay. The state |f3) is assumed to be an absorbing state, which can only be left towards |a) via an internal relaxation process
on a typical time scale 7. From the state |a), the electron can tunnel off to the drain electrode on a time scale 7/(1-f) as it is
explained in the text.

rate 1/7¢ and the probability 1- f to find an empty state of appropriate energy in the drain electrode, where
f is this electrode’s Fermi function f(eVy—up). The typical time for tunnelling from |«) out to the leads is
thus 7o/(1-f) and the stationary current can be estimated as

1 1 1-f

IOC = = .
Ttotal T+ﬁ (l_f)T+TO

(3-53)

Being differentiated with respect to the source—drain voltages, this yields the relation

ﬂ o If 1-11 ‘

dv 2kgT
For vanishing 7, that is for instantaneous relaxation or absence of absorbing states, the current of this model
would be

)
0=—""".
7o

The differential conductance is accordingly

dIy 1

bl I f,

dV ~ 2kgT of

where the peak’s maximum is defined by the condition

2 2 2
(i) () 7o
v 2kgT 2kgT

It is at the very voltage for which f = 7, which is the usual resonance condition. For a model with just a single
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Figure 3.17: (a) Fit of the differential conductance peaks of the nestling shifts of Figure 3.15 with the result (3.5.3) of the minimalistic
model shown in Figure 3.16 (b) minimalistic model. (b) Correlation of the fit values of 7 with the ones used in the numerical
simulations. Apart from the regime, where the relaxation-induced physics happens at the same time scale as the tunnelling,
The O¢ Thumerical, Which corroborates our explanation of the data using the two-level model.

time scale, be it a quantum dot or a single-level molecule, the stationary current through the drain electrode
in the configuration we are considering is only determined by the Fermi function 1- f (] —sg’ —up), that
is the probability to find an empty state in the leads with just the energy necessary for the vibrational
transition |1;g) ~ |0;q"). The maximum of the differential conductance peak is thus located at the bias
voltage for which p, =&l —sg,. Of course, this result has been expected from the resonant tunnelling model
and is reproduced by our model. With a finite relaxation time 7 and hence more than one time scale present
in the problem, the position of the peak is given by the roots of the second derivative of I in Equation (3.5.3).
'The maximum of the peak is thus to be found at the very voltages 2eV, +eVyq for which

To
270+ T

or equivalently 2eV; + eV,q = 2kgT In ( ot T) .

F(eVy - i) = -

The consequences of finite 7 for the line shape are twofold. As a purely quantitative effect, the height of
the peak in dI/dV decreases with increasing 7. As a qualitative effect, however, the position of the peak is
shifted logarithmically slow towards higher bias voltages.

The simple model compares remarkably well to the numerical rate-equation results. We focus on a single
peak in the dI/dV diagram and study its line shape for different values of the phenomenological relaxation
rate 7. The effect of increasing 7—red to blue curves in Figure 3.17 (a)—is a reduction of the peak’s height
and a shift of its maximum towards lower energy. Since the resonance occurs at negative source—drain
voltages, this means increasing eVq, just as it is predicted by the model. We finally fit the results of the
model, Equation (3.5.3), to the data in Figure 3.17 (a). Comparing the fitted values for 7 with the parameters
of the numerical simulation, in Figure 3.17 (b), we see how well this simplified model describes the interplay
of the two time scales. The only deviations occur when both time scales are of comparable magnitude,
7=0(79). For a sufficiently large separation of time scales, the agreement is nearly perfect.
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Chapter 4

Non-Interacting Two-Level Quantum Dots

In the previous chapter, we have given a thorough discussion of quantum transport through single molecules
in the sequential-tunnelling regime using rate equations. These equations, which describe the tunnelling
dynamics between the different degenerate subspaces of the system Hamiltonian, are very versatile in their
application and show a rich phenomenology in the stationary current. The dynamics inside a degenerate, or
near-degenerate, subspace of Hg, cannot be described by rate equations as the rotating-wave approximation,
which essentially removes all coherences in the density matrix, cannot be applied to such systems. For these,
the master equation for the full density matrix has to be solved including its oft-diagonal elements. Of
course, the density matrix is a self-adjoint operator and can thus be diagonalised. The associated master
equation for the stationary state is then rewritten as a rate equation. But a priori we do not know anything
about the nature of the eigenbasis of p. In the simplest case, it would be constant in the (eVy,eV,q)-plane
and as such the difference between the proper master equation and an ad-hoc rate-equation description
would only be of quantitative nature. In the general case, however, the eigenbasis will show a non-trivial
dependence on the voltages causing a qualitative influence of the coherences onto the steady-state properties.

In this chapter, as an intermediate step between the discussions of rate equations and the full molecular
master equation, we present the treatment of a non-interacting two-level quantum dot to model the
electronic part of a degenerate two-orbital molecule. This system can be discussed both by kinetic equations
and in the weak-coupling limit of an exact Keldysh treatment. With the Keldysh formalism, we compute
the analytic solution of the sequential-tunnelling problem and the diagonal basis of the stationary density
matrix. The result can be integrated into a pseudo-spin formulation of the internal dynamics of the
quantum dot. Such a formulation will become more important in chapter s, as it turns out that most of the
master-equation phenomenology for molecules can be understood in this picture best.

The physics of non-interacting quantum dots is actually rather simple and unspectacular. It becomes more
interesting and colourful in the interacting case; however, then a closed analytic solution cannot be obtained.
'The physics of the interacting quantum dot can be discussed using various methods, most prominently
renormalisation group methods' at zero or small temperature. Although these methods give some insight
into the physics of the interacting quantum dot, their full power has not yet been unleashed as even the
formulation for physically interesting cases, such as large temperatures, proves to be very complicated
and involved. Most of the two-level quantum dot physics that is discussed with weak-coupling methods
and master equations, relates to serial quantum dots, when the tunnelling electrons traverse the two dots

' See for example (Karrasch ez al., 2006).
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sequentially (Gurvitz, 1998). Here, we focus on parallel structures: both levels of the dot are coupled to both
electrodes. This set-up resembles the degenerate Anderson—Holstein and Jahn—Teller molecules that we
shall discuss in the next chapter. Resonant tunnelling through parallel quantum dots in different settings
has been discussed by Shahbazyan & Raikh (1994), who investigate the connection of the two-level and
the single-level problem, and Braun e# al. (2004), where the spin-degeneracy of a quantum dot coupled to
ferromagnetic leads is investigated.

In the following discussion of non-interacting degenerate quantum dots, we shall acquaint ourselves
with some intuition for the role of the physics introduced by the off-diagonal elements of the density
matrix. From the rate-equation point of view, their physical consequences are difficult to imagine, because
the interpretation of sequential tunnelling as electrons hopping between well-defined states like in the
Monte-Carlo simulation of the rate equation is not possible due to the inclusion of linear superpositions of
the degenerate orbitals in the dynamics.

4.1 Resonant Tunnelling

'The resonant tunnelling model is a toy-model for studying transport through quantum nanostructures. In
the non-interacting case, it can be solved exactly using an abundance of different methods. Here, we present
a way using the Keldysh method (Brouwer, 2005) that permits the computation of the occupation numbers
in the long-time limit. The presented method will then be extended to the case of two degenerate levels
in the next section. We assume the electronic reservoirs to be spinless and perfect non-interacting Fermi
gases held in equilibrium at temperature kgT. Their density of states is assumed to be constant over the
relevant energy interval, the wide-band limit, and denoted by v. With the notation introduced in chapter 1,
the resonant-tunnelling Hamiltonian is

Hp 1 = sderd + Z skchcka + Z (taclad + t;chka) .
ka ka

We refrain from mentioning the gate voltage eV}, explicitly; it can be restored in the Hamiltonian by shifting
the single-particle energy g4+ £4+¢eV,. The Golden-Rule expressions® for the hopping rates induced b
gle-p gy g P pping y
the tunnelling Hamiltonian are T, := 2Zv|t, 2. The rate-equation for weak-coupling transport through the
g h q pling P g
nanostructure is

p1= Zrocfvc(sd)PO_erx(l_foc(fd))Pl
« [»1
1= Potpi1.
'This equation has the stationary solution

1

po = fZ(l—fa(fd)) and p; = % > Tafu(ea).

Using the exact solution of the Dyson equation for the dot operators, we shall recover this result in
the limit ' - 0. We denote the Green functions as follows: G4 is the Green function of the free resonant

* Although this is the general definition, in the following, we shall discard the constants and set v=1 and use natural units
h =1. We also stick to the notational convention introduced in appendix B.1 that left out indices imply the respective sum.
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level. The dot’s Green function with respect to the full Hamiltonian will simply be denoted by G. The
electrode’s free Green functions are given an index to indicate the lead—left or right—and the wave vector
of the respective particles Gy,. The upper index R, A, or K is an abbreviation for the retarded, advanced, or
Keldysh Green function, respectively. Green functions without this index are matrices in Keldysh space. In
terms of the dot’s operators, these are (Brouwer, 2005)

GR(t)=—10(1)({d(),d"(0)}) G (t)=G"
G<(t) = 1(d"(¢)d) G (t) =—1(d(r)d")
GX(t) =G (1)+G™(t) =—1([d.d"()]) A(t) =1(G*(t)-G”(1)).

For the stationary solution, we only need to consider equal-time correlators, which relate to their Fourier
decomposition by

d
G- f G(w) 22,
2m
'The occupation number of the charged state is related to the lesser Green function

p1="Tr(p(t)d'd) = Tr (psrac d'(£)d (1)) = —1G*(1,1). (4.1.1)

By pstat, we denote the stationary, long-time limit of the reduced density matrix. The Dyson equation
G =Gg+Gy4ZG is solved for the dot’s Green function

G=(G'-2)".
'The retarded and advanced components as well as the Keldysh component of the dot’s self-energy are
R/A 2 ~R/A 2 Ty r
VM) = |tal G (@) =F1m ) |ta] 8 (ex—w) = ¥127 =F15,
ka ko o4
(W) = Y |ta? G (@) = =210 Y |tal* 8 (ex—w) (1-2fal(er) ) = =1 > Ta(1-2fu (w)).
ka ka a
The free fermions’ Green functions are
G%A(w) = Fi1nd (e — w), G,Ifa(w) =-2md(ex - w)(l - 2fa(sk)).

'The free Green function of the dot itself in Keldysh space is?

1 K\\ !
—2m16(eq—w)G
Ggl(w)=(“"€(c)l+”1 (‘i ) d))
w—eg—11

[w—eq+1n 2m6(sd—w)G(Ii<((w—£d)2+t12)
- 0 w—gq—11]

3 The retarded and advanced components of the free dot’s Green function are obvious, the infinitesimal 17 is for a convenient
treatment of unbounded integrals and will be sent to zero later. The Keldysh component is noted for completeness. It is the
anticommutator of the free level’s operators, which in analogy to the free fermionic Keldysh Green function is §(e4—w) times the
occupation number, essentially a constant, which will drop out in the course of the calculations.
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As we see from this expression, the Keldysh component of the free dot’s inverse Green function G7' is

P ’ y P d
proportional to 8(w—¢q)((w—-&4)*+#*). This term vanishes identically in the limit # — 0, because the
d-function is only supported on the roots of the second factor. Then, in the limit -0,

—& l£ 1 A PN B
G(w)=(w 8+ ’ z“igdfjjz( )))
1 (w—sd—lg —zZaFa(l—Zfa(w)))_

_(w—sd)2+(g)2 0 w-gqg+15
'The Keldysh component and the spectral function are

K (w) =21 Zals(122/e(@))
e T

r

(0-eq)2+(5)"

>

1A(w) =G (w)-GR(w) =1

The occupation of the dot’s level in the stationary state is given by p;=—1/ G*(w) ‘;—‘7‘1’ where

271 % (th r(x(l_zfoc(w)) _1)

G (w) = %(GK(“’)HA((‘))) :_T(w—sd)2+(£)2 g

such that finally
r dw

~eap e (527

1= Za:r—; ffa(w)(w

In the weak-coupling limit I' — 0, the Lorentzian in the integral turns into a §-function centred at w = ¢,
from which we recover the rate-equation result in Equation (4.1.1).

4.2 Two-Level Resonant Tunnelling

By adding a second level to the resonant-tunnelling Hamiltonian, we generalise the previous calculation
from scalar Green functions to matrix-valued Green functions. The linear algebra used in the Keldysh
treatment is extended to using block-matrices.

A parallel quantum dot, which is the bare electronic model for the single-molecule junctions we shall
treat in the next chapter, is equivalent to the resonant tunnelling model with two degenerate levels. The
levels are non-interacting, such that the nanostructure can hold two particles at the same time without
additional cost in energy and Wick’s theorem can be applied. With the same fermionic reservoirs as before,

the Hamiltonian is

HRT,=). eodid, + > skclacka + (twcladg + tzadlcka) )
4 ka

kao

For simplicity, we assume real tunnel amplitudes t,, € R. For the degenerate model, &, = ¢4. The two levels
define a pseudo-spin |1) and || ), the indices ¢ and 7 denote either orientation in summations. In analogy
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to electronic spin notation, ¢ has the opposite value of 0; a similar notation applies to the lead index . We
keep the different energies ¢, as long as possible in the following derivation, because we shall need some of
these expressions in chapter 6. The Golden-Rule rates acquire an additional index for the electronic level,
[9:= 27”1/|t0“,|2, and the cross-coupling rate y, := %”vtaT tq) is introduced.

4.2.1  Solution Using the Keldysh Formalism

In the first part of the discussion, we solve the degenerate two-level resonant tunnelling problem with the
Keldysh formalism as it has been introduced in the previous section. The calculation shows how the exact
solution and the weak-coupling approach by the master equation coincide in the limit I' - 0.

For the free propagators of the dot, we set in analogy to the discussion before

1

w—¢1)GX(w
Gg/A(CU) _ (a)E(;ilﬂ (1) ) and G(If(CU) =-2m (6( TO)GT ( ) (S((IJ_QO)GF((U)) .

w—¢E 11

The last equation follows from (dd,)o o< 847; there are no off-diagonal elements of the unperturbed
system’s Green functions. Like before, we have introduced the free dot’s Keldysh Green function, which
will drop out from the calculation when # — 0. Inverting the free Green function is straightforward. We
just have to keep in mind that all matrices are indeed matrices of block matrices. We thus find

- (4 4) - ((ca;ﬁ —<c§>(;§§<_g69>‘1),

Its Keldysh part is the diagonal matrix

Ky o G%(w)@(w—sT)((w—sT)zﬂf) 0 )
(Gd) (@) 271( 0 Gf(w)é(w—el)((w—ei)zﬂf) '

'This term vanishes identically in the limit # — 0. In contrast to the dot’s free Green functions, the self-energy
acquires an oft-diagonal part in the pseudo-spin variables,

R/A R/A
Za{ (w) = Z tOCUtDtTGkD{ (w) and Zlér(w) = Z taUtOCTG}foc(w)-
ka ka

'The solution of the Dyson equation is

o (G sR_(GR)TGK(6h) sk ((6R)Tesk sk T

I A e T
) ((G(I})—I_ZR)‘I ((Gcllk)—l_ZR)‘lzK((Gé\)—l_zA)‘l _(GR GRZKGA)
o ((Ghy"-z4)” oot )

From this expression, the lesser Green function follows to be

G == (GX+14) = %[(1 + %GRZK)GA -GR(1+ %ZKGA)].

N | =
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In the following calculation, we first compute the retarded and advanced components of the Green functions
to obtain the spectral function and discuss its properties; in the second step, we cover the Keldysh component.
The Spectral Function

In the limit # — 0, we evaluate the retarded and advanced Green functions by simply inverting the two-by-
two matrix given by the Dyson equation

-1
RIA, N _ ((~RAY] GRA\ (w-e2i +13
G (w)—((Gd) 2 )(w)—( sl w-gil
[ ) )
JFI%((w—&il%)(w_flil%))il (w_slil%)il

From here on, we restrict the discussion to the degenerate problem ¢4 := ¢y = ¢,. The determinant of the
inverse Green function (GR)™ is

det(GR)_l(w) = (w-¢q) (w—sd + zg) - ;L(l"Tl”l -9 = (w - &q) (w—sd + zg) - iA.

The quantity A:=T"T*—y? is proportional to det(X®*) and describes the asymmetry of the couplings to
the electrodes. If all couplings were equal, f4; =1, then I'” =y and thus A = 0. Also in the case of proportional
coupling fqt = (tq), with { being independent of the lead index «, we find A = 0. For the full Green function,
we find for non-zero A

'
1 w—gg+1% -12
R _ dTisy 2
GY(w) = 1 y _ |-
54 2

(w-eg)(w—gq+15) -1

Its imaginary part and thus the spectral function is

1 rt A -
s et — () E) i (G F)

‘a) — &+ ZE - (w—ey)

Performing the limit A — 0 properly;* this expression converges to

1 rt y\ 2(r
A(w) = 2ImGR(w) = ( ) ( )5((0—8 ).
‘w—ed+ 1—‘ y It -y I ¢

* Due to the formal structure of these terms being f,(w) = — 0 for n — oo, these functions
converge to zero pointwise for almost every w. Indeed, the only value of w, where the pointwise convergence cannot be established
is the root w = &9. Depending on the speed of convergence of a, and thus on the integral F,, := fR fu(w)dw, there are three possible
scenarios:

1. If a, — 0 faster than the denominator diverges. Then F, — 0, too, and the limit f, (@) — 0 pointwise for all w is established.
2. If, however, a, — 0 slower than the divergence of the denominator, F, — oo and the limit of f,(w) is ill-defined.

3. In the intermediate case, the integral F, = F is constant. All mass of f, will then be concentrated at the singular point
w = &9, and accordingly f,(w) > Fé(w—¢o).

It is the third case, the convergence to a §-function, which we usually encounter in our calculations.
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Due to the condition A =0, both matrices in the above expression have zero determinant. They also
commute and thus admit a common eigenbasis for their eigenvalues ;=0 and A, =T. The eigenvectors
are ;= (y,-T") and e, = (y,TV). The first matrix maps e; onto Aje; =0 and e, onto A,ey, the second matrix
does the opposite. In this basis the spectral function decouples into a resonant tunnelling contribution and
an orthogonal localised state,

Adiag(w) = ;FF (r 0) + % (0 0) 0(w—¢q).
2

‘w—sd+z 0 0 0T

'The decoupling into a single resonant tunnelling model and an additional localised state is a consequence
of the Hamiltonian of the system. A unitary transformation in the dot’s electronic Hilbert space . can
accomplish a decoupling of one level from the electronic leads. The degeneracy &1 = ¢, guarantees the
invariance of the free dot’s Hamiltonian under any unitary transformation. In this regime, the two-level
problem reduces to an effective single-level problem. This property, which will become important for the
transport properties of the interacting molecular model, has already been noted by Shahbazyan & Raikh
(1994) and Chudnovskiy (2005). The quantity A is, by definition, proportional to the determinant of the
retarded or advanced self-energy ZR/A. This determinant being zero causes at least one of the eigenvalues
to be zero as well, which means that in the eigenbasis of the self-energy, the corresponding eigenstate has
zero self-energy. It is therefore not influenced by the presence of the fermionic reservoirs: it is decoupled
from the electrodes. The §-function in the spectral function is the signature of this effect.

A generalisation of the decoupling to an arbitrary number of localised levels being coupled to an arbitrary
number of electrodes is due to Berkovits ez a/. (2004), who show that the rank of the coupling matrix defines
the number of effectively coupled levels. If the coupling constants t4, form a matrix (W)qg = tge € C™",
the retarded/advanced self energy is proportional to ¥4 o« WTW € C"™" a square matrix in the vector
space spanned by the electronic states (Mahaux & Weidenmiiller, 1969, chap. 4.2). The rank of a matrix is
defined as the dimension of its image. Let A€ C™*" be an arbitrary matrix, then

rank(A) := dim(range(A)) < min(m, n).

If A was surjective, for example, rank(A) = m; if A was injective, rank(A) = n. For the product of two
matrices, one therefore finds

rank(A - B) < min(rank(A), rank(B)).

'The rank of the self energy and therefore the number of levels that are effectively coupled to the electrodes
is less than rank (2®2) < min(m,n). For example, three levels coupled to five electrodes cannot be reduced
generically. But four levels coupled to two electrodes are at most two levels coupled to two electrodes.

The Keldysh Component

The Keldysh component of the Green function G is the product GREKG? of the retarded and advanced
Green functions with the Keldysh component of the self energy

(@) == S-20) (1),

Ya r(}c
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Since we assume all couplings to be real, the Green functions read in symbolic notation

A B rt
R _ K Y A _ ~Rx
G _( ) z ~(y ri)’ G =G,

and their product is

GRyKGA _ |A’T"+AyB* +ByA* +|B'T*  AI'B*+AyD*+|B[*y+BI'D*
~ \BI'A*+|Bl*y+DyA*+DI*B* |B[*T"+ByD*+DyB*+|DI'T* |

We first consider the diagonal elements

6K (@) - ~1 5, (1-2fu(w)) ;A|2[[(w_£d)2+ (r_l) ]Fi— iy"‘ (r' - 1) +Tiyzz]-

’(w—ed)(w—sd+1%)— 2

The element Gﬁ follows by replacing 1<>|. We use the original definitions of I' and y in terms of the
coupling constants t,, to reduce the complexity of this expression

-1y (1-2f,
Gﬁ(w) _ lZoc( f(w)> z(r;(w_sd)2+%ré)
(w—sd)zyw—sdﬂg—m‘

-13,(1-2f4(w)) . ) A
5| Ta(w—eq)™+—T5 ).
(o2

(w—sd)2|w—sd+1%—

Gl (w)

A
4(w—¢q)

The off-diagonal element of GKis

-1 Z(X(l - 2fa(w))

K
Gij(@) = ; . P
(w—é‘d) ‘w—&‘d-i-lz—m‘

(volo-ea? + L (w-ea)rt-1D) - 334).

We add the spectral function and the Keldysh component of the full Green function to obtain G*(w),
which integrated over the frequencies is the occupation number of the pseudo-spin states.

GT<T(CU) _ Z(xfa(w) Z(FT+ A rl)

a _ 27&
w—£d+zg—4(w;‘_£d) 4(w-eq)
G (w) = Zafel0) 2(Fi+4( 2 )zrécT)
w—sd+z%—m W—Ed
1 A y1-2fa(®) (0
Gi(w) = 2Z{fa(w)()’a_—y&)_’_—(r&_r&) .
w-earit-gt| 4(w-eq)? 4 (w-¢&q)

We reduce these results to the expressions we would expect from a master-equation treatment. Since there
are many variables of order O(H?%), we adopt the scaling-variable approach from chapter 2.3.1. We rescale
the tunnel amplitudes f45 = Etye. Then TS = ETY, yo > E2pg, and A E*A. The limit & — 0 is performed
in the same manner as the previously discussed limit A — 0, such that the weak-coupling result for the
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integrated lesser Green function of the two-level resonant tunnelling problem is

1 | A Ya—Ya
G< _ a & « a .
T Za:fa(sd) ()’a—)’d riﬂﬂ; (4.2.1)

Before we continue with the discussion of the master equation for this system, we remark on the
discrepancy of the descriptions by either Green functions or density matrices. In contrast to the density
matrix, which is a projection onto wave functions, the many-particle methods work with occupation
numbers. In the two-level problem, the diagonal matrix elements of G< are nof occupation probabilities of
the individual levels like they are given by the diagonal elements of the respective density matrix. Due to
the definition

Gy = <d:§d0> >

there is also a contribution of the two-particle wave function term |1|)(1{| of the density matrix. The
two-particle state has a different wave function than the single-particle states; moreover, (¢|0G) =0. The
number operator n,, however, has non-zero and equivalent matrix elements on both |o) and |65). We thus
have the identity

G;U =Po t P2

which implies that at least the difference of the diagonal elements of both G* and p are the same
Gt =Gl = pr =Py

The oft-diagonal elements of both operators also coincide, G5; = ps5. By interchanging particles and
holes, we can compare the probability for neutral and double occupation, pg and p,. For vanishing eV,
Po = P2, for then the non-interacting system is particle-hole symmetric. In the general case, however,
p2=(did,dld;) and po=((1-did,)(1-dlds)). And thus po—p; =1-TrG<. Using the solution for the
lesser Green function in the weak-coupling limit, Equation (4.2.1), TrG* =Y, fa(&4) and hence

po—p2=1-) falea). (4.2.2)

4.2.2 'The Master Equation

We use the master equation, which we have derived in chapter 2 and explicitly formulated in appendix B.1,
and set the Coulomb-interaction term to zero: U = 0. From this point of view on the master equation, we
can see, after some reformulation, the immediate effect of the virtual interaction of the two degenerate
levels, which is expressed in the off-diagonal element of the self energy, ;. The non-interacting master
equation, where we drop the argument of the Fermi function f,(eq) for notational convenience, because it
is only the single-particle energy or the gate voltage, respectively, is

po = =) fulupot Y (1= fa)(Tgpa+Ts ps+2yaRepr)
pr = =Y (- f)Tap2+ ) fa(TapotTdps—2yaRepy,)
po = D(faldpo+(1=fu)TEp2) = (fuld+ (1= £)TF ) o= va(1-2f) Repy,
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pr = Z(f“y“po_(l_fa)yaPZ)_%Z(l_zfa))/apl_%rpﬂ.

The imaginary part of the density matrix, Imp,,, does neither couple to the populations p;, nor to the real
part of the oft-diagonal element Repy,. It solves the von Neumann equation

, r
Im ppy === Impyy, (4.2.3)

with Impy | (¢) =Imp; l(O)e_gt. We are only interested in the stationary state of the reduced density matrix
and are thus allowed to assume Impy;(0) =0; hence Impy (#) =0 for all ¢ is a valid solution.

The Equation for the Stationary State

In the stationary state, p =0, the left-hand side of the above master equation vanishes identically. The
equation for the off-diagonal element of p can thus be solved

pes = H2 5 palfopo- (1= f)p) - S0 -2)yep ).

We insert this expression into the master equation and obtain an eftective rate equation for the diagonal
elements of p; however, the rates and hopping processes have a more complicated structure than before. The
technique of rewriting the full master equation as an effective rate equation for the populations has been
introduced by Gurvitz (1998) in the discussion of serial quantum dots in the high-voltage limit, eVq — oo.
'The interpretation of the effective rates as rates is difficult. They do have a functional dependence on the
voltages that goes beyond that of a Golden-Rule expression. They can also become zero or negative, such
that this equation ought to be interpreted more as a balance equation for the probability flow between the
states than hopping processes. The equation for example for pg =0 becomes

pOvar[ 42(1_fﬁ YaY/;] 4pzz[;[(1_f“)(1r_fﬁ)y“yﬁ]

v

- [r” 22(1—2@)””]

This equation describes incoherent tunnelling over the device by adding two coherent tunnelling processes.
By the same procedure, a similar equation is obtained for the population of the doubly occupied state, from

p2:0)

(1 _foc)(l _fﬁ))’ocyﬁ]

Psza[F ~430-4) y"‘”]wpozﬁ:[ 3 -3r [FV‘ZZ(I—Zfﬁ)yWﬁ]

4%

'The equation for either charged state, p, =0, couples both parts of the pseudo-spin p, <> ps:

Z[rg >0 2fﬂ)yayﬁ]+p22(1 £ [rg+22(1 1) Mﬁ]

YaVB -0

—pgz[farf’ (1= fu)T7 - (1- zmza zf,;)y“”]waz(l 2£)(1-2p)
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'The Pseudo-Bloch Equation

In analogy to the discussion of electronic spin valves by Braun e a/. (2004), one can describe the dynamics by
a rate equation for the populations and a Bloch-equation for the pseudo-spin S = (2Repy;,2Impy,p1—py ).
'The equation for the populations of the different charge states is’

d PO -2fa (1= fa) 0 Po 1 1-fo -
T = Zr 2y -1 20-£) || » +§Z —(1-2f4) | S - 7iq. (4.2.4)
P2 0 fa -2(1-fa) ) \ P2 “ ~fa

'The Bloch-equation for the pseudo-spin is

d

Eg = % Za:[zfocpo - (1 - zfa)Pl - 2(1 _fa)pz]ﬁa - %Fg (4-2-5)

We express the stationary current in terms of the occupations and the pseudo-spin. Since
Iy = falapo — (1= fu)Tap2 + frx(z FZPV - 2y4 Repm-,) -(1- fw)(z Typy +2Ya ReP06>>

this expression reads in pseudo-spin notation

1 2a po) g
I‘x = EF“ _(1_2f(x) . pl - ES . fla.
_Z(I_frx) p2

'This equation shows the influence of the alignment of the pseudo-spin on the magnitude of the stationary
current. If Zag -1iq =0, the current would only be determined by the populations of the nanostructure.
Moreover, since S; = py—p, and in the non-interacting model S, =0, the influence of the off-diagonal
elements of p is only encoded in the x-component of the pseudo-spin.

4.2.3 'The Diagonal Basis

In the final section of this chapter, we join the two paths leading to the description of the non-interacting
two-level quantum dot: the Keldysh method, which provides the exact solution for the stationary transport
problem in terms of expectation values of the number operators, and the weak-coupling master equation,
which in its pseudo-spin formulation allows an intuitive perception of its physics. We use the Keldysh result
to find the diagonal basis of the density matrix, which transforms the master equation into a rate equation
for the populations. The stationary integrated lesser Green function of the problem in the weak-coupling
limit is, according to the calculations of section 4.2.1,

r r a” ya
Zfoc( d)( ’ Va ?jﬁ_?g)- (4.2.1)

'The two addends of the sum over the lead index & commute and therefore admit a common eigenbasis.
Although the lesser Green function is not the reduced density matrix but rather G = p+p,1d, we are still

5 See appendix B.2 for the full equation, of which this is the non-interacting version.
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allowed to use the linear algebra of G* to determine the eigenbasis of p, because by definition also G and
p commute. The unitary transformation that maps the states |1) and ||) into the eigenbasis |+) is

)=+ ()7 (s va=)(l)

where the coefficients a, b, and d are defined by

a:=y,—ya b= F(1+Fé—(l"‘i+l"g), d? = 4a® + b

The transformation of the reduced density matrix follows immediately

1
pr= a((d+b)p++(d—b)p_—4aRep+_)
1
py= ﬁ((d—b)p++(d+b)p,+4aRep+,)
1
Repy = g(Za(p+—p_)+2bRep+_).

Since the transformation V' is unitary, the trace of the density matrix is the same in both coordinate
systems. The y-component of the pseudo-spin is irrelevant for the dynamics and therefore omitted: here,
our notation is compressed to S = (Sy,S,). Under V, the pseudo-spin transforms according to

= = 1(b =2a)\-
sd._Vs._E(M b)s.

Using these transformations, we are able to show that the master equation collapses into a rate equation.
We consider the pseudo-Bloch equation and show that the equation for the populations is actually in-
dependent of Rep, _. Then, similarly to the argument for setting S, =0, S, =0 is a valid solution for the
reduced dynamics, which then only depends on the populations of the states without admitting coherent
superpositions. The invariance of the scalar product under a unitary transformation implies

S-tig = (V7I84) fig = Sq- Viig =2 S4- #iC.
'The pseudo-magnetisation 7, in the diagonal basis is

a1 (2(byaa(t}-Th)) _ 1 255yp(T5-T5)

“7d\ 4ay,+b(TE-12) ) d \day,+b(Ti-TY))

The eigenbasis of G is defined by the property that the projection of 7, onto the x-axis of the eigenbasis
is independent of «. The equation for the x-component in the pseudo-Bloch equation (4.2.5) is, also due to
the normalisation po+p;+p2 =1,

[8:= Y[ 2fupo-(1-2fa) =201 fo)p: | (i),

o

zz[po—p2—1+za:fa](?z§)x =0.
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(a)

Figure 4.1: Geometric construction of the diagonal system of the stationary reduced density matrix in pseudo-spin space. The
pseudo-spin aligns parallel to a line that connects the tips of the pseudo-magnetisations 7i,. The diagonal system is rotated
such that the pseudo-spin is along the z'-axis and has no x’-component, which renders the master equation a rate equation. In
Figure (a) a rather general choice of tunnel amplitudes is shown; in Figure (b) the case of parallel magnetisations shows that in the
eigensystem, the pseudo-magnetisations are parallel to the z'-axis, which is also the axis along which the pseudo-spin aligns. (c)
Numerical results for the evolution of the pseudo-spin while sweeping the bias voltage from -5 to 5. The tunnel amplitudes are
try =11, 1, =1.2, try =2, and tg, = 1. The red line drawn by the pseudo-spin is parallel to the z-axis of the rotated (and rescaled)
coordinate system.

'The last equality, the vanishing of the bracket and thus Sy itself; is a property of the stationary solution of
the problem, which we have obtained in the Keldysh analysis, Equation (4.2.2), po—p2=1->4 fa-

We have thus found, by a discussion of the Keldysh Green functions in the weak-coupling limit, the
diagonal basis of the reduced density matrix. This diagonal basis is that basis, in which the stationary
master equation assumes the form of a rate equation. Without interactions, be it electron—electron or
electron—phonon interaction, this basis is independent of the external parameters, that is both the bias and
the gate voltage. The plot of a numerical simulation in Figure 4.1 (c) shows this behaviour clearly. The trace
of the pseudo-spin is a straight line through the origin; its slope is what is expected from the criterion on
the pseudo-magnetisations in the eigensystem, we have established above.

The results from the combined analysis of Green functions and master equation lead to a graphical
construction of the diagonal system of p. From the perspective of pseudo-Bloch equations, this seems most
natural: the pseudo-spin S aligns parallel to the z’-axis of a coordinate system, whose x’-axis is oriented
such that the projections of the magnetisations onto this axis are equal. In Figure 4.1, we show several thus
constructed coordinate systems. Diagram (a) is a rather general choice of pseudo-magnetisations. Dia-
gram (c) shows the numerically evaluated pseudo-spin aligning along the z’-component of the eigensystem.
Diagram (b) shows the construction for n4 1 ng, which corresponds to that line in parameter space on
which the Hamiltonian can be rotated into a single impurity scattering problem plus an isolated electronic
level. When A =0, that is there is some number { being independent of « such that, ty, = (a1,

20 2
g =TI 0 and #z=T}| ©

o

(1-¢%) (1-¢%)
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and both magnetisations are parallel. Then the geometric alignment and the normalisation 74| =T, =
(1+¢*)T] imply in the eigensystem of the stationary reduced density matrix

nd = (0,0,T,).

The x’-components of the magnetisations in the eigensystem are not only equal, but they are zero. Since
S;=p1—py and p;=ps+p, the occupation probabilities in terms of the pseudo-spin components are p;/; =
%( P1£S;). Then the master equation for p; and p; in the eigenbasis reads

%(PliSZ) = %Zrtx(2ftxp0_P1+2(1_fa)P2+(1_2fa)SZ)
¥ % Zra(zfaPO_(1_2fa)P1_2(1_fa)P2+Sz)

= {Zzar“f“po_zarafa(PﬁSz) for +
2Z¢xroc(1—f(x)P2—Zara(l—fa)(pl—sz) fOI'—

Choosing the plus sign, this equation reduces to the rate equation of the single-level resonant tunnelling
problem. Choosing the minus sign instead, the equation becomes a resonant tunnelling problem that
switches between singly and doubly occupied states of the quantum dot. In this case, there is one state that
is always occupied but does not take part in the tunnelling dynamics, which is a picture fully consistent

with the decoupling property of the full Hamiltonian.



Chapter s

'The Master Equation

In the previous chapter, we have analysed the transport theory of a non-interacting resonant tunnelling
model with two degenerate levels from two difterent points of view, an exact Keldysh treatment and the
weak-coupling limit using a master equation. We have shown how the asymmetric coupling of the device
to the conducting electrodes uniquely determines the diagonal basis of the reduced density matrix and
that this basis is independent of the applied voltages. The simplicity of this result relies on the absence of
any interaction in the model. In the field of molecular electronics, interactions are of two fundamentally
different types: electron—electron interactions, which is essentially Coulomb-repulsion, and electron—phonon
interactions, which are a conceptual extension of the resonant tunnelling model to single-molecule junctions
and thus constitute their defining property. Electron—phonon interactions not only give rise to inelastic
transitions when a tunnelling electron excites internal vibrations, but due to the renormalisations of the
Hamiltonian by the polaron transformation, they also induce an effective electron—electron interaction,
which, depending on the molecular model, can be attractive or repulsive. Models for single-molecule
junctions have a generic electron—electron interaction, U # 0. In our treatment, we therefore always include
a repulsive Coulomb interaction in the model. The steady-state transport phenomenology will roughly
distinguish two regimes: vibronic excitations below the double charging threshold, defined by the charging
energy U, where the system’s physics will be determined by the electron—electron interaction, and excitations
above the double charging threshold, where the current—voltage characteristics are similar to those of a
non-interacting, U = 0, system.

The direct formal consequence of interactions in the transport problem is that the y-component of the
pseudo-spin cannot be set to zero in the master equation; it does not decouple from the populations like in
Equation (4.2.3). The pseudo-Bloch dynamics will take place in the full three-dimensional unit ball. The
y-component of the pseudo-spin couples to the x-component and the populations via the principal-value
integrals that define pseudo-magnetic fields in the pseudo-Bloch equations of appendix B.2. These integrals,
which are the imaginary parts of the bath correlation function (Breuer & Petruccione, 2002, p. 135), are
due to the continuum of bath states and both types of the aforementioned interactions. We therefore expect
more complicated pseudo-spin dynamics than in the non-interacting quantum dot, where this dynamics
essentially is the motion along a line in the (x,z)-plane of the pseudo-spin components when the bias
voltage is swept. The slope of this line is uniquely determined by the pseudo-magnetisations of the electrodes,
hence the tunnel amplitudes #,4. In contrast to the non-interacting resonant tunnelling model, where the
effect of the system’s multi-level structure on the stationary current profile is only of quantitative nature, the
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models for single-molecule junctions discussed in this chapter will show physics being qualitatively different
from the rate-equation treatment. The pseudo-magnetic field induces a precession of the pseudo-spin in
the time-dependent dynamics and thus cause processes inside the singly charged sector of the reduced
density matrix. The new dynamics is extending the physics of rate equations: it consists of processes that
do neither involve a change in the electron number of the device nor do they modify the vibronic quantum
number, as they only mediate between the degenerate electronic states.

In this chapter, we shall first present the two generic molecular models and their properties under unitary
transformations in the electronic Hilbert space .. These will turn out to be of general interest as the
discussion in chapter 4 has shown that certain choices of the tunnel amplitudes t,, in Ht reduce the
complexity of the problem by decoupling single levels from both of the conducting electrodes. We shall
see that the notion of decoupling single levels from single electrodes is of paramount importance for
understanding the physics of the degenerate master equation. The generic behaviour below the double-
charging threshold is discussed by stripping the model of all its vibronic structure and considering a two-level
interacting quantum dot only. The effect of the coherent dynamics, a suppression of the stationary current
and the non-trivial deformation of the differential conductance peaks along with regions of strong negative
differential conductance will be most clear in such a treatment. In a second step, we shall analyse the role
of the pseudo-magnetic fields, the Coulomb interaction, and the vibronic level structure for the stationary
transport properties. Most of the new phenomenology will be restricted to the low-lying vibrational
excitations, except for strong electron—phonon coupling, where it is the also highly excited states that are
affected by the intrinsic pseudo-spin dynamics. The discussion of the E®b Jahn-Teller molecule, which will
take place in the last but one section of this chapter, will show how the breaking of the rotational symmetry
of the full Hamiltonian in the electronic Hilbert space removes the generality of the previously discussed
physics from the model. The parameter space will develop regions of completely different phenomenology.
For certain couplings, the effects of the degenerate level structure will be striking, for others the transport
properties will hardly differ from a rate-equation treatment. Motivated by recent transport measurements
on suspended carbon nanotubes, we conclude the chapter by generalising our findings to systems with

electronic multi-mode reservoirs.

5.1 Electron-Phonon Coupling and Polaron Transformation

Our model of a single-molecule junction with electronic degeneracies is the generalisation of the spinless
Anderson-Holstein model, which has been introduced in chapter 1.2 and has been used throughout most
of chapter 3

Hg = (eq +eVy)(ny +ny) + Unyny + hwb'b + Hep ph-

The generic form of a linear electron—phonon coupling is
Hep = ho(b' + b)% S didder = ho(b +b) (AOId +3 /\,-ai) ,

where we adopt the pseudo-spin notation from the previous chapter using Pauli matrices 0;. Since the system
is assumed to be degenerate in the electronic Hilbert space H,j, we can diagonalise the electron—phonon

" In general, we shall set ¢4 = 0 as it only renormalises the gate voltage. We nonetheless keep it in this section to illustrate the
renormalisations of the energies by the polaron transformation.



Electron-Phonon Coupling and Polaron Transformation 75

coupling matrix

Hepp = Ahw(b +b)(Agld + A0).

Due to the polaron transformation, the energies of the bare electronic levels will be shifted by (1g+A.)?,
the polaron-shift. In the polaron picture, which is the starting point for the derivation of a weak-coupling
theory, degeneracy of the on-site levels is only guaranteed for either A¢ or A, being zero. If not, the theory
will either result in a rate-equation treatment as the large energy differences will trigger the decoupling of
coherences due to the rotating-wave approximation or, if the coupling constants are small enough, in a
theory that is able to catch near-degeneracies. Such a theory will be the central focus of chapter 6.

'The electron—phonon coupling we shall be concerned with in this chapter is thus

Heph = Ahw(b' +b) (ny £ ny).

Choosing the plus sign, we obtain the simplest generalisation of the Anderson—Holstein molecule to two
electronic levels. We refer to this model as the “Anderson—Holstein molecule” in the following.* The minus
sign, on the contrary, makes the electron—phonon coupling that of an E®b Jahn—Teller effect. This flavour
of the Jahn-Teller effect is a simplified version of the E® (b;+b,) Jahn-Teller effect, which, as it is shown in
appendix D, arises as the second possible decomposition of the degenerate E* term besides the E®e effect.
Bersuker & Polinger (1989) discuss the E® (b;+b;) model in their chapter 3.2.1. If the frequency of the
second harmonic oscillator becomes very large, such that only its vibrational ground state contributes to the
tunnelling dynamics, this oscillator becomes irrelevant and thus leads to the notion of the E®b Jahn-Teller
effect, with two electronic levels being linearly coupled to a single oscillator mode only.

The electronic reservoirs are the usual free Fermi-gas electrodes without electronic spin, and the tunnelling
part of the Hamiltonian is the same as in the two-level resonant tunnelling model of chapter 4,

Hy =Y taech dy+hec.

kao
For notational convenience, because we shall use and discuss many different points and regions in the
parameter space of Hr, we define the tuple I':= (F{,Fﬁ,l“g{,ré) to refer to the chosen tunnel couplings?3
'The elimination of the linear electron—phonon interaction in the full Hamiltonian H is achieved by a

generalisation of the polaron transformation from one to two electronic levels. The transformation of the
oscillator’s operators is

b b= Agn,.

'The free oscillator’s Hamiltonian and the electron—phonon interaction become

2
hwb b + ho(b" +b) > Aong = hob'b - ho (Z /\gng) :

* Although, we have used the terms Anderson—Holstein molecule and Jahn-Teller molecule before to name different models,
we shall use them nonetheless for notational convenience. There will be no ambiguity, as we do not discuss single-level models in
this chapter.

3 Note that the I'’s are the bare Golden-Rule rates and not the tunnel couplings t«¢ of the tunnelling Hamiltonian. Since
they only differ by numerical factors and the square, we do, however, use the I'’s as the reference and therefore call them coupling
constants or tunnel couplings. Due to our numerical implementation being in terms of fas, most of the numerical tunnel couplings
that we are using will appear as squares.



76 Chapter 5 The Master Equation

E 14, 9) [tLa) \E

o, q) [V, q) It.q)

0,9) 0,9)

> >

x/€o x/€y

Figure 5.1: Adiabatic potentials of the molecular models considered in this chapter in units of the oscillator length &, =\/#/w in
the polaron picture. Anderson—Holstein molecule (left) and the E®b Jahn-Teller molecule (right) after the polaron transformation.
The first three vibronic wave functions are indicated in order to visualise the dependence of their overlap integrals on the involved
electronic states in the Jahn-Teller case.

Distributing the contributions proportional to #, to a renormalisation of the single-particle energies and
the product term to a renormalisation of the Coulomb interaction, the renormalisation of the physical
quantities is*

£q > €4 — ,\Zhw, U~ U- ngn(MM)/thw, and £, o t‘we%g(btb)'

The shift of the single-particle energies can be absorbed in a global shift of energy and hence a mere
renormalisation of the gate voltage eVj. The renormalisation of the charging energy U can pose a problem
in the Anderson—Holstein case, because due to the possible presence of two electrons on the molecule,
an initially non-interacting system acquires a negative charging energy. Quantum transport through
nanostructures with negative U and thus attractive Coulomb interaction are discussed in Koch ez al.
(2007). The problem of negative U is not present in the Jahn—Teller molecule, as there the shift is positive:
-sgn(A4A;) =1. The polaron transformation is usually interpreted as a displacement of the adiabatic
potentials for the vibronic degrees of freedom, see Figure 5.1. Occupying a Jahn—Teller molecule with two
electrons amounts to shifting the potential once in one direction and then back. The adiabatic potential
of the two-electron state is the same as the potential of the neutral one only shifted in energy by 2e4+ U.
Hence in the two-particle state the total renormalisation of €4 and U due to the unitary transformation is
zero. If, in order to compare to the Anderson—Holstein case, it is split into contributions to ¢4 and U, the
renormalisation of U is positive. The Jahn-Teller effect induces a repulsive interaction between the electrons
in the polaron picture, and the case of negative U need not be considered here.

5.2 Decoupling of an Electronic Level

For specific choices of the tunnel couplings ¢4, the Hamiltonian can be further simplified. In the previous
chapter, such simplifications have occurred in the sense that the actual two-level problem reduced to an
effective single-level problem whenever the coupling constants met certain conditions, namely a vanishing

* We set A:=|A,| for notational convenience.
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determinant of the non-interacting self energy. On the level of the full Hamiltonian this condition can also
be implemented using unitary transformations in H.j; however, due to the polaron transformation, there is
additional vibronic structure in the tunnelling Hamiltonian.

'The two electronic levels of the molecule are degenerate, and as such any linear combination of the two
ought to be a solution of the Schrédinger equation. We look for distinguished bases of the electronic Hilbert
space in which the problem takes a manageable form. Glazman & Raikh (1988) use such an approach to
transform a system initially coupled to two electrodes into one that is only coupled to a single electrode and
then show the existence of a Kondo effect in that problem. Crucial in their case is the condition of zero bias,
which amounts to the energetic degeneracy of the two electronic leads. We proceed in the same fashion,
only transforming the system’s levels instead of the electrodes’, a variation of the theme, which is also used
for instance in Shahbazyan & Raikh (1994) or more generally in Berkovits ez al. (2004). We apply a unitary
transformation in the two-dimensional complex vector space H, spanned by the operators dy and d,

d:=cosfdy +e'?sinfd, and d_:=-e'?sinfd; +cosfd,.

All parts of the Hamiltonian except the tunnelling are invariant under this transformation. The tunnelling
Hamiltonian Ht becomes

Hr=) c,ta((tM cos 0 + tqye'? sin 0)d, + (tay cos 0 — tare'?sin6)d_) + h.c. (5.2.1)
ko

If the condition t4 cos = t,re~'?sin is fulfilled for every «, the second term in Equation (5.2.1) will vanish,
and the system will only couple the state d., to the electrodes, thus reducing it to an effective single-level
system with tunnelling matrix elements ‘t;ff‘z = |ta1|*+|tay|. In the case of scalar couplings, that is a system
without phonons, this condition, which we call the decoupling condition, reads

t t
¢ =arg 1 and 6 =arctan | “l|, (5.2.2)

tay |tocT|

being independent of a. For real’t,,, this condition is exactly the condition A o< det(X) =0 of chapter 4.
Applied to the transport problem through a single-molecule junction, this condition being satisfied would
reduce all the coherent dynamics due to the degenerate two-level structure to the rate-equation transport
problem of a single-level Anderson—Holstein molecule. For generic tunnel couplings, which do not fulfil
the decoupling condition (5.2.2), one can fix one particular electrode & and apply the unitary transformation
with the thus defined ¢, and 6,. This suffices to decouple the electronic level |-) from electrode a. Hence
without satisfying the decoupling condition, the generic tunnel coupling T has at least one zero entry.

Including phonons in the model, we have to distinguish the Anderson—Holstein and the Jahn—Teller
case; for their decoupling properties are different. We assume arbitrary real tunnel amplitudes ¢4, and
choose « to be either the source or the drain electrode. We then define the unitary transformation with
angles according to Equation (5.2.2), tan@ =t /te+. For the particular electrode a, the second term in
Equation (5.2.1) then reads

cza ta) COS H(e_)”(btb) _ e M(t'-b) )d_. (5.2.3)

'The electron-phonon coupling of the Anderson—Holstein molecule is characterised by the condition A+ =1,

5 In this chapter, we always assume real t,,, which means ¢ = 0.
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thus rendering the term (5.2.3) zero. In the decoupling regime, this term is zero for both values of «, that is
for both electrodes; such a molecule is equivalent to a single-level molecule.

'The Jahn-Teller molecule has A =—1; making a detailed discussion of the matrix-valued tunnel am-
plitudes necessary. Transforming the molecular Hamiltonian into the polaron picture corresponds to
shifting the adiabatic potential of the oscillator by /214y, where &; is the oscillator length, £ = \/h/_w
The element of the Franck—Condon matrix at row g and column ¢’ is the overlap integral of the origi-
nal vibrational state g’ with the shifted oscillator’s state g—the scalar product of the displaced and the
undisplaced wave function. Compared to the Anderson—-Holstein model, in the Jahn—Teller molecule the
adiabatic potential of the electronic state |1) is shifted to the opposite side of the adiabatic potential of
|4). The modulus of the matrix elements is independent of the direction of the shift; however, the sign is
not. A transition between states that differ by an even number of excited oscillator quanta is independent
of the direction of the displacement, because the wave functions have the same parity, and their scalar
product is symmetric under a parity transformation. Such a parity transformation x — —x is equivalent
to reversing the direction of the displacement due to the polaron transformation. A transition involving
an odd number of excitations, |g—q'| = 2k+1, is sensitive to the direction of the shift, because the parity

MET=b) _ g=A(b"-b) only the

of the scalar product of the initial and final state is different. In the matrix e
matrix elements belonging to excitations of an even number of oscillator quanta cancel. In the pre-factor

. A (bT— . I
of d., the matrix t,ycosfe Ab b)+t(xlsmee“b b)

, there are no cancellations expected. Only in the case
of equal coupling, ¢4, =1 for all « and o, the matrix elements for excitations of an odd number of quanta
cancel in this matrix. In that special case, the Hamiltonian decouples transitions with an even number of
excited quanta, |g—q'| = 2k, from d_ and all transitions with |g—q’| =2k+1 from d.. The system decouples
into two independent subsystems with disjoint spectra, each of which could be treated by rate equations in
the weak-coupling limit, because the decoupling also removes the degeneracy in each subsystem. As simple
and tempting such a configuration and a treatment by rate equations may seem, the resulting system of

equations cannot be solved uniquely.

5.3 Anderson—Holstein Molecules

The behaviour of the system at energies below the first vibronic sideband can be understood by considering
a quantum nanostructure without phonons or with just one excited vibronic level. This simplifies the
equations drastically. We split the treatment into two more instances: we first analyse the numerics for
a master equation without the principal-value terms. The thus obtained equations are much easier to
understand than the full equations, albeit they miss a vital part of the dynamics and as such should be
considered unphysical. In the second step, we include the principal-value terms, which in the pseudo-Bloch
description for the pseudo-spin of the degenerate two-level system of appendix B.2 define pseudo-magnetic
fields. Most often the result will be a mere regularisation or smoothing of the result without principal
values. There are some cases, for example very large charging energy, where the principal-value integral
significantly influence the numerical results driving the phenomenology towards the one already seen in
rate-equation treatments of the problem.

'The electron—phonon coupling of the Anderson—Holstein molecule is proportional to the unit matrix in
the degenerate electron space H,j. For every choice of basis of the degenerate electrons, the electron—phonon
coupling is the same, because by such transformations only the tunnelling Hamiltonian is affected. We
fix the charging energy between the first and the second vibronic sideband, U =2.35Aw, such that we
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Figure 5.2: Generic behaviour of the Anderson—Holstein molecule at zero gate voltage with parameters U = 2.35hw, kg T = 0.05hw,
A =11, and couplings T = (1,1.52,1.12,1.62). (a) Stationary Current I, (b) differential conductance dI/dV. The colour code is
Red: rate equations, Green: master equation without principal-value terms, Blue: master equation with principal-value integrals.
The rate-equation treatment shows the expected spectroscopy of the molecular Hamiltonian. The master equation without
principal-value terms describes a system that is non-conducting between zero bias and the double-charging threshold eVyy =2U.
The principal-value terms partially restore a finite current and smooth the current suppression on an energy scale, which is
independent of kgT.

can observe vibronic effects both with and without double occupation, and we set the temperature to
kgT =0.05hw. We always contrast the numerical master-equation result with the one obtained from a
rate-equation description of the same system. Although prima facie such a treatment is an uncontrolled
simplification of the problem, it gives some insight into the physics of the coherent dynamics. It will be an
important result of chapter 6 to give a physical meaning of the rate-equation description of degenerate
nanostructures as being the proper treatment for near-degenerate systems with energy differences much
larger than the tunnelling-induced energy scale.

'The numerical results for the stationary current and the differential conductance for a typical coupling T
are shown in Figure 5.2. As it is expected, the rate equation (red) shows a spectroscopic picture of the different
elastic and inelastic transitions of the molecule. At zero bias, there is the elastic transition |0,q) — |o,q). At
eVq =2nhw, we see the inelastic vibrational transitions |0,q) —|0,g+n). At the double-charging threshold
eViq =2U, the two-particle excitation peak |0,q) —|07,q) is visible, and at eVyy =2U -nhw, there is a peak
from the transition |66,q) —|0,q+n), where Coulomb energy is converted into vibronic energy. The master
equation (green and blue), on the contrary, shows a much less intuitive behaviour. The spectral resonances
are smeared out or completely suppressed, there is a negative difterential conductance peak close to zero
bias, also at certain voltages, there is no current flowing through the device at all. Most importantly, there is
a significant difference between the treatment with principal-value terms (blue) and without them (green).

Using the master equation in its original form (B.3.12)—~(B.3.1d), we give an explanation of the mechanism
that renders the stationary current of the Anderson—Holstein molecule zero for certain values of the applied
voltages. For eV 4 = 2eV, + U, the suppression occurs irrespectively whether we take the principal-value terms
into account or not, because as we shall see in the following sections, at this very voltage the principal-value
terms cancel to zero. We work in a low-bias regime and at moderate couplings. There is no Franck—-Condon
blockade effect, such that we can restrict the discussion to just the electronic states without phonons and
no double occupation of the system. We choose the coupling constants to be I' = (1,1,0,2), for as we have
shown in the previous section, this choice of couplings with one tunnel amplitude being zero is generic for
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the master equation. The only exception is the case of the decoupling regime, in which the Hamiltonian
can be reduced to a single impurity problem and thus be treated by rate equations. The generic form of the
tunnelling Hamiltonian, where we use the original labels |1), |{) instead of |+), is

Hr = Z [CiL(tLTdT + tlel) + CIRditRl] +h.c.
k

We consider a positive bias voltage, 0 < eVq < 2U, the distance between these values being larger than kgT.
In this case, fa2 =0, and we drop the index 1 from the Fermi factors for singly charging the molecule:
fa = far such that we have for the Fermi-factors

fr=0=1-fr.

By definition fgy =0, and hence yr =0, such that the |t)-level is completely decoupled from the drain
electrode. We see from the master equation (B.1.1a) without the principal-value terms that py; does not
couple to the singly-charged populations p,. The neutral population py also does not couple to py,, and due
to the small bias p, =0. The master equation thus reduces to a rate equation with the state p; becoming
absorbing: it is a state that can be populated but not depopulated by the tunnelling dynamics. Due to
frI1s #0, there is a finite flow of probability into py: however, its exit rate vanishes,

Z(l —fa)l“aT = (1 —fL)FLT + (1 —fR)FRT =0- FLT + (1 —fR) -0=0.

Since we are not in the decoupling regime, the system does not split into two subsystems with a non-unique
stationary solution. The unique stationary density matrix of the problem as we discuss it here is the pure
state

p =11 (5:3.1)

In this configuration, the system is locked in |1), and because of the high charging energy, no other electron
can be used to transport a stationary current across the device. The system develops a dark state. In contrast
to the dark states encountered in the physics of the E®e Jahn-Teller molecule in chapter 3.5, here the
state is dark because of destructive interference of the two paths that the electron can use to traverse the
nanostructure. Although none of the rates need to be zero explicitly, the linear superposition of states due
to the electronic degeneracy produces an eftective zero exit rate. By this property, the presence of dark states
and the decoupling of levels from the drain electrode emerges as a paradigm in the physics of degenerate
two-level nanostructures. This pattern is modified by the pseudo-magnetic fields and vibronic effects both
in intermediate and strong electron—phonon coupling regimes.

We remark that the density matrix of a dark state outside the Coulomb blockade can only be of the form

(altg)+c2lba))(cf (1.ql+c (1.4ql),

with constants ¢; € C, and cannot involve neutral or doubly charged populations. If the dark state were
p=340q pd with all a; >0, the stationary current through the source lead would be

Ig = Zfs((p -q)hw+ eVg)Fquaqu #0,
)&
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which amounts to the statement that the state is not dark at all. A similar argument shows the property for
the doubly occupied state p =3, b, pl. If the solution of the master equation is unique, only a pure state
with a single electron can be locked on the device, when the coherent superposition of both degenerate
electronic states interfere destructively. If the state was a mixed state, each participating wave function
would have to be a dark state of its own. Thus each wave function would define a stationary solution of the
master equation, which would thus be no longer uniquely solvable.

For the chosen tunnel coupling T = (1,1,0,2), the stationary solutions are the following. For positive bias,
the Hamiltonian is already in the generic form with the |1)-level being decoupled from the drain electrode.
'The stationary solution is given by Equation (5.3.1). For negative bias, the states have to be rotated into a
suitable basis in which the state |-) := %(H) —|1)) is decoupled from the left electrode, which for negative
bias acts as drain. The stationary density matrix, which solves the master equation, is then the pure state

p=|-)(-| and hence

00 0 0
C1fo 1 -1 0
P=310 -1 1 o

00 0 0

For a more quantitative understanding and also in order to explain the finite linear conductance at zero bias,
we turn to the explanation of the zero-bias behaviour of the system. We discard the principal-value terms
for the time being and neglect all vibrational excitations. For eV4 < 2hw, there is not enough energy in the
system to permanently excite the oscillator. Using the vector structure of the pseudo-Bloch equations of
appendix B.2 without the principal-value terms, the number of equations reduces to just three. Using the
normalisation of the density matrix, po+ p; =1, we only have to consider two equations. The equation for

the pseudo-spin S is then solved by

¢ Zal2fepo = (- fop)
2p(1- fp)Tp "

'The equation for the populations on the other hand is

2fapo - (1—
fppo— (1= fg)p1 ., fig = 0.

;(—zfapo + (1= fa)p1)Ta + azﬁj SRy iy -

Using the normalisation condition of the occupation probabilities and inserting one equation into the other,
we obtain

_ Sup a1 fp) [TaTp — fia ]
Lap(1= fo) (1+ fg) [Talp ~ i 7ig]

from which the remaining density matrix is easily derived. The graph in Figure 5.3 shows a plot of the thus

3 (5.3.2)

computed pseudo-spin § in the (x,z)-plane. It displays the cross-over from one dark-state solution to
another when the bias voltage changes sign. Equation (5.3.2) is readily evaluated in two limiting cases. At zero
bias, fy = % and thus p; = %, Po= % There the pseudo-spin is evaluated zero, S= %Za ﬁa(po—%pl) =0 and
also the stationary current vanishes as it is expected at this voltage I(eV,q=0) = foIy po—3 (1- fa) I p1 = 0.
For finite bias, when only the Fermi factor of the source electrode will contribute to the dynamics, fo = 8, s,
and due to the normalisation of the pseudo-magnetisation |7ig|* = T2, we find p; =1. Here,we recover the
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1
0.75 i Figure 5.3: The graph shows the dynamics of the pseudo-
. spin evaluated by the master equation without principal-
0.5 _ values terms for I'=(1,1,0,2), kgT =0.05hw, and V¢
A . [-3hw,3hw]. Since the y-component vanishes identically,
0.25 - we only plot the dynamics in the (x,z)-plane. As it is
. explained by the calculation in the text, the pseudo-spin
0 . aligns at S =(~1,0) for eVyg=-3%w and at S=(0,1) for
1 eV =3hw. It vanishes identically at zero bias. The dots
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dark state of the above discussion with S = —FﬁlﬁD.
'The finite current close to zero-bias can formally be explained by a contradiction argument. Assume that
for the chosen coupling T, the current through the left lead, Iy, is zero,

1
I, = il (1= p1) - 5(1 = fu)lLpr— (1- f1.)2yL. Repyy = 0.

The stationary master equation p =0 is, with I“Ii =Ty,

ATL(=p1) - %(1 - fu)TLp, — (1= fL)2yL Repyy = 0.

Subtracting these two, we obtain the condition

%(1 - fu)IL(pt —py) =0.

Given this equation, a necessary condition for It = 0 therefore is that either the bias is so large that f;, =1 or
S;=0. From the above discussion, we know that for positive bias, when f; =1, S, #0,and at V4 =0, fi, = %,
and S, = 0. For finite temperature, both quantities fi, and S; are continuous in eV, such that the condition
cannot be fulfilled at all up to a voltage of order kgT above zero bias. By contradiction I, # 0 in this range.
Physically, the finite current stems from the finite 1- f;, in this range, where the decoupled state is not
dark. In the picture of sequentially hopping electrons, the particle populates the decoupled state from the
source electrode and then, with finite probability, can leave it again towards the source electrode. A similar
backscattering effect is the source of the exaggerated vibronic sidebands discussed in chapter 3.3, where due

to the asymmetric coupling of the device, I's(1- fg) is of order unity for a large range of voltages.

5.3.1 'The Role of the Pseudo-Magnetic Fields

'The most non-intuitive terms in the master equation for the two-level system immersed in a fermionic
bath are the pseudo-magnetic fields that essentially are principal-value integrals over the bath degrees
of freedom. The bath itself, a collection of uncountably many degrees of freedom, is the source of two
physical phenomena: Due to the infinite recurrence time of a particle that is scattered into the bath degrees
of freedom back to the localised state, a continuum of states essentially acts as a source of relaxation.
Renormalisation of the localised states’ energies, also known as Lamb shift, is the second eftect of such
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an environment. Breuer & Petruccione (2002, chap. 3.3.1) show in their microscopic derivation of the
weak-coupling limit that the Lamb shift is the imaginary part of the bath-bath correlation function. We
shall return to the Hamiltonian interpretation of the Lamb shift in more detail in chapter 6.

We begin the discussion of the principal-value terms by an analysis of the self energy of a localised level
interacting with a continuous bath via a scalar interaction such as the tunnelling Hamiltonian Hr. The free
retarded Green function of the bath, with # being set to unity for convenience, is GR(t) = —10(t)e k",
The self energy of the localised level |o) is

Zd:Z,A]‘Q-#HTG’lj(t)HTdt:_l./];gv/ﬂ.%+v(s)|to‘|ze_l£tdtd£
k

= @ 2= @ 2 2
__l,/];g - delt,| —( 73/ . de+mv(0))\t6\ ~r|te] .

'The principal-value integral vanishes in the wide-band limit v(&) =v =1 of the model for the electronic
reservoir. So there is no signature of these terms in non-interacting single-particle physics. Here, we are
interested in the non-equilibrium dynamics of the reduced density matrix of the localised system. The
diagrammatic technique that one should apply here is due to an expansion of the von Neumann equation
for Trg (p) ® pr. This implies additional steps compared to the standard treatment of resonant tunnelling:
the density matrix is a projector and as such, the perturbative expansion applies to both the vector with the
retarded propagator and its dual with the advanced propagator. Since we only consider the reduced density
matrix, all self-energy terms include the trace over the environmental degrees of freedom. In contrast to the
derivation above, the energy integrals are over the density of states times the Fermi function, which under
suitable conditions destroys the symmetry of the integrand and therefore causes a finite principal-value
integral. The diagrams that are relevant for these terms are those that relate the singly charged sector of the
reduced density matrix to itself. In the graphical language of Rammer (1998) these are the following two

p(1) z - p(t) p(1) ; - plt)

These diagrams relate the reduced density matrix p at time t to one at some earlier time fy. The circles

diagrams

mark the bra- and the ket-vector of p = |y)(y|. The upper branch is the retarded propagator of the ket,
while the lower branch is the advanced propagator of the bra. Similar to the Keldysh technique or the
real-time diagrammatic technique by Konig (1998), the interaction is not restricted to one branch but can
rather connect the two. The wiggly line represents the virtual emission or absorption of a bath electron.
The left diagram corresponds to terms of the symbolic form (pHrG*Hr) and the right term represents
terms of the form (HpGRHrp). We denote the vertices due to the tunnelling Hamiltonian as matrices

rT rl _
y T -y T

The matrix X is used when the virtual intermediate state is neutral, ¥, is used for intermediate states that
are doubly occupied. The minus sign in the off-diagonal element as well as the interchanged order on
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the diagonals is due to this definition, which is also explained in appendix B.1. We obtain the following
expression—modulo constant factors—for the sum of the two diagrams

lim./];% / +{Zop(l_f)ez(sl—so—s+zr])t+22pfe—z(sz—sl—s—u1)t

7—0
+p20(1_f)e—z(sl—eo—s—zr])t+p22fez(sz—s1—s+m)t}dtd&

'This expression is a matrix. For simplicity we refrain from mentioning the index of the source and drain
electrode. We also use the convergence-generating factor e I, whose justification and necessity is illustrated

in appendix A. After performing the integral over time, we obtain

1 1
lim / Zop(l-f) ——————Zppf ———
n—0 R{ OP( f)€1—80—€+111 zpfez—el—s—lﬂ
—pXo(1-f) ————+p2E f — tde.
pZol f)£1—£0—€—111 P 2f£2—£1—£+111}
In the case of a rate-equation treatment of the reduced dynamics, we only consider the diagonal elements
of the above matrix and assume p to be diagonal. The matrix structure reduces to Zp = pZo. Then, and the

same property holds for the terms involving X,, the integrals for the terms with X,

. 1 1
L%fﬂg{zop(l—f)m—on(l—f)—}dﬁ (5.3-4)

& —€&—€—11
only yield the imaginary part of the integral formula (A.o.2), which is the §-function contribution that
amounts to the direct hopping transitions. If, on the contrary, the full reduced density matrix is used,
the commutator of p and the X’s is non-zero. The upper diagonal element of the matrix defined by the
expression (5.3.3), and we only discuss this as an example, because it couples coherences to populations, is

1 1
I M pr+ypi) (1= ) —————=(Tpr=ypi ) f————
nlf(l) R{( pr+yp1)( f)81—80—8+“1 (Tps yp”)fez—s

1—&€—1y

1 1
—(Ttpy+ - ) (T'py— e
(T pr+pny)(1-1) p—— +(Ipy Pri)’)fez_el_gﬂﬂ} €
The contribution from p4 is treated like in Equation (5.3.4) before and only yields the §-function contribution,
which need not worry. The contribution involving the off-diagonal element, however, is

1 1
’11—{% mypN{ ]R( f)el_so—g—{-ll’l e Rfsz—fl_e_m 8}

Due to the fact that in the wide-band limit P/ %d £ =0, the principal-value contribution of this expression
cancels exactly only in the absence of interactions, &, —¢; = & — &, in which case the expression becomes the
direct, the §-function contribution.

Summing the above findings, the principal value integrals that appear in the weak-coupling theory of
system—bath interactions only appear for systems with degeneracies or near-degeneracies. Interactions
render the frequencies of the free unperturbed propagator for the virtual intermediate states that involve
either zero or two particles different: e, —&; # &, —¢&o. Then the principal-value terms for the self-energy terms
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that couple populations with oft-diagonal elements will not cancel. They therefore express an interference
phenomenon of the free evolution of the two different virtual paths of the system.

Reversal of the Current Suppression

'The finite principal-value integrals and thus the pseudo-magnetic fields have a well hidden origin in the
self-energy terms of the perturbative expansion of the reduced density matrix. They are rather difficult to
fully understand by the intuition coming from the hopping-electron picture of rate equations. But they serve
an important physical purpose. In the previous section, we have seen that without the pseudo-magnetic
fields, the stationary state of any device below the double-charging threshold is a dark state with the
electron being locked on the molecule. In a suitably chosen coordinate system of the electronic Hilbert
space H,|, the stationary pseudo-spin aligns parallel to é,. Without loss of generality, we can assume that
the pseudo-magnetic field B is not parallel to the pseudo-spin S. The direction of § is defined by the
coupling constants of the drain electrode. We are therefore free to choose the couplings to the source
electrode to generate an x-component of the full pseudo-magnetic field B. The precession term BxS in the
pseudo-Bloch equation (B.3.2a) will rotate the pseudo-spin out of the dark state into a linear superposition
of states some of which have finite coupling to the drain electrode. These contributions will allow the
electron to leave the nanostructure towards the drain electrode and allow for a non-zero stationary current
through the device.

What we have just argued by words can be made more rigorous by an explicit discussion of the pseudo-
Bloch equation below the charging threshold, where we can safely assume p, = 0. For simplicity, we consider
a system without any vibronic interactions.

§= 2 Y- fTeS + 5 E[2fupo - (1 fop Jia = 3 Bariax S,

[24 [24

where the pseudo-magnetic fields are of strength

Be - in _Sal®) 4, %P/ 1= fal®) 4,

o eVg+U—s eVg—s

For small temperatures, when the Fermi-functions can be approximated by f(e) ~1-0(¢), the integrals
are evaluated as
D+eVo+U

2nB, ~ In +1n
D+ eV,

po — Vg
po—eVg—U

~

o —€Vy ‘
po—eVg—U ’

for an electronic band with infinite bandwidth, D — co. A finite temperature regularises the divergences at
the resonances of By at pq = eV, and py, = eV, +U. 'These divergences are the reason why in the two-level
system, the limit kgT — 0 cannot be performed easily. The physical reason for this is rather obvious. Due to
the asymmetric coupling of the nanostructure to the electrodes, one expects a splitting of the degenerate
levels of the order O(H7.) = O(T). In the weak-coupling limit, this splitting cannot be resolved by the
Fermi-gas electrodes as we shall show in chapter 6. At zero or very low temperature, however, one expects
the master equation to be able to resolve the tunnelling-induced splitting completely. For this regime, a
different approach than the one chosen in this thesis must be employed. The principal-value integrals have
opposite sign at each of the two resonances making the pseudo-magnetic field B, vanish along the line
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Figure 5.4: Stationary current through a single-molecule device without vibrons (a) and with vibrons (b) in the Anderson—Holstein
configuration A = L.1. The coupling is T = (1,1.5%,1.1%,1.6>). The other parameters are kg T = 0.05Aw, and = 2.35hw.

Yo =eVy+1U in the (eVj,eViq)-plane. This line crosses the eV,-axis exactly in the particle~hole symmetric
point of the Anderson model.

By mapping the electronic operators d)f ~ f, and ch > —gkq onto (phase shifted) holes and denoting the
respective number operators by 71 with appropriate indices, the electronic part of the Anderson Hamiltonian
is mapped into

H=(2eV+U) - (eVy+ U) (g + 1)) + Uiyt + Y ekg — . Ekaltka + Hr.
ka ka
By interpreting the terms with sums over k as the Hamiltonian of a reservoir of Aoles, the transformed
Hamiltonian is identical to the original one for zero bias and eV, =—3U. For the master equation at
this point in the (eV,,eV,q)-plane one immediately infers the identity of electronic populations and hole
populations pf = p, and pl} = po. At zero bias, obviously p, = 0, hence pg =0 and I =0, which corresponds
to the fact that at these voltages, the system is Coulomb blockaded.

'The relation to particle-hole symmetry is not surprising, as a non-zero pseudo-magnetic field derives
from the asymmetry of particles and holes, the difference of the propagation frequency in the virtual
intermediate states |0) and |1|), and the source’s pseudo-magnetic fields are invariant under a shift along
the line eVyq =2eV,+U.

According to our generic choice of tunnel couplings, the x-component of the drain’s pseudo-magnetisation
fip is always zero, and the current blockade found in the previous discussion will only be visible when
By =Bg=0. Braun e al. (2004) find a similar behaviour for a spin-degenerate single-electron transistor;
however, their current suppression does not yield I =0 in general. In the final part of this chapter, we discuss
a situation similar to theirs and be able to fully explain the phenomenology of their system.

For a quantitative discussion of the precise dependence of the stationary current on the pseudo-magnetic
fields, we solve the stationary master equation for a tunnel coupling T = (1,¢%,1,0) with ¢+ 0. Then the
pseudo-magnetisations are

ny, = 0 and ﬁR =

—_= o O
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Figure 5.5: The pseudo-magnetic field 27By, (solid line),
the stationary population of the neutral state, both in
the simplified model discussed in the text (dashed) and
the full solution of the stationary master equation with
kgT =0.001%w (green), such that the logarithmic expres-
. p sion for the pseudo-magnetic fields can be used, and tunnel
|- ‘ ‘ ' ‘ ‘ | coupling T = (1,1,1,0). The analytic solution fits the numer-
ical data very well in the regime eV,q € [0,2U].
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and for fi, =1=1-fg, that is for finite and positive bias, the stationary pseudo-Bloch equation reads

) 2¢ 0 —(1—52)5)/ _S)’
55 =po| O |-|0|-Br|(1-€)S.—2¢S. |- Br| S«
%—52 % 288); 0

'The solution for the neutral population is thus

-1
et (5) o2 (- 5) (55)
Po—[2+e +(BL +2&e° (1 B, + 2B, . (5-3-5)

'The full suppression of the stationary current, which in this voltage regime is just I, = I7 po, is obtained
at the zeros of the pseudo-magnetic field associated with the source electrode. For Bg — 0, the neutral
population pg — 0, and hence I1, =0 in this limit. We show a numerical evaluation of Equation (5.3.5) in
Figure 5.5 along with the solution of the stationary master equation. The good agreement of the numerical
evaluation and the analytical discussion is not surprising, as we explicitly solve the master equation for the
chosen range of voltages.

Note that although it is tempting, the limit ¢ — 0 is not allowed in this result. Due to the decoupling of
the ||)-state from both electrodes at € =0, the equations cannot be solved uniquely. In the derivation of the
above result, we had to assume & # 0 in order to divide by e. If we had not had assumed this, one equation
would have dropped out and the uniqueness of the stationary solution would have been lifted.

5.3.2 Effects due to Charging Energy and Vibronic Excitations

After we have discussed the general role of the pseudo-magnetic fields and their importance for maintaining
non-zero stationary currents through the device, we shall shortly dwell on the effect of vibronic excitations
as well as the extreme cases of zero and infinite charging energy on the pseudo-magnetic fields.

A system without intrinsic Coulomb repulsion should not show effects due to principal-value integrals;
the symmetry of the virtual intermediate states with either zero or two particles on the device, which is
expressed in the condition U =0, should yield a cancellation of the two contributing terms in the master
equation. This is only true as long as the system is completely devoid of any intra-molecular interaction.
Electron—phonon interactions like the one of the Anderson—Holstein molecule do break this symmetry and
produce finite pseudo-magnetic fields in the master equation. When we recall the derivation of the master
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equation and the relevant principal-value terms from the previous section, we realise that the frequency of
the free propagation between two vertices of the scalar tunnelling interaction is either e;—¢&;—€ or &;—gg—¢.
In the vibration-less model with U=0: &;—¢; = ¢—¢&o. For a system with vibronic excitations, we have
to keep the index of the respective vibronic excitations. The state from which we start computing the
corrections due to the tunnelling interaction shall be [1;q) with energy &] = &;+ghw = e4+eV,+qhw. The
virtual transitions then involve states |0;p) and |2;p), and the energy differences become

sz—sl (p—q)hw+e,—&
q

el—eb = (g-p)hw+ei—eo.
Both terms are only equal for g = p. In general the difference in the vibronic excitations amounts to a
state-specific artificial Coulomb interaction U4 such that

e —el = (P~ hw=¢] —ef +2(p — q)hw = &] —ef + UM,

By rewriting the terms in the fashion shown above, we see how the electron—phonon interaction introduces
a far more subtle interaction of particles and holes than the bare Coulomb interaction would have been
capable of. There is no effect, however, on the line eV, = 0, where &;—¢¢ = 0, if the pseudo-magnetisations
1P are symmetric matrices. For the Anderson-Holstein and the E®b Jahn-Teller molecule, this symmetry
is provided. In models, where for instance the oscillator’s frequency differs in the charged and in the neutral
state, [ # 71 (Koch & von Oppen, 2005a). We illustrate the vanishing of the principal-value terms for
the non-interacting molecule at zero gate voltage. Consider a typical integral term in the master equation,

P O gepf IO SCD_pf IO,

q)hw—e (g-pho-e ') (p-q)hw+é g-p)ho—e
SICI -f(e)
(p—q)hw+éd +P/ (q—p)hw—sd

:0)

which vanishes due to the symmetry of the principal-value integral. The general effect due to these terms
in the transport characteristics is much less pronounced than in the setting that we have discussed before.
For finite gate voltage, the main contributions of the principal-value terms are localised at the vibronic
resonances. They are lost in the thermal structure of the resonance only causing a slight deviation of the
shape of the differential conductance peaks from the profile determined by the Fermi functions alone, as it
is shown in Figure 5.6. For finite U and generic coupling with one electronic level being decoupled from
the drain electrode, the pseudo-magnetic fields in the pseudo-Bloch equation for $7 are

Pr N AP f(e—ps) 1- f(e—ps)
BS'(us) =75 [P (p—q)hw+U+eVg—sd£+Pf (q—p)hw+eVg—sd8 ' (53.6)

We assume the electronic bands of the leads to be wide enough to ensure Pf 1de~0. Then to abbreviate
the principal-value integrals, we define the symbol

P(¢&) f 0_8
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Figure 5.6: A comparison of the line shape of differen-
L5 ] tial conductance peaks obtained by a rate-equation treat-
N r 1 ment (black) and a non-interacting degenerate Anderson—
= 1 F - Holstein molecule (red). The influence of the principal-
< L i value integrals is due to U = 0 very small, but the peak’s line
shape is different from the derivative of the Fermi func-
0.5 r T tion, which determines the line shape in the rate equation.
r ] The maximum is slightly shifted, the peak is smaller and
0 . L . . its shoulders are slightly asymmetric. The parameters are

9.8 9.9 10 10.1 10.2 kT =0.01hw, T = (0.75%,1,1.5%,1), A =11, and eV, = 4hw.

eVya/hw

and the definition of the pseudo-magnetic fields, Equation (5.3.6), takes the simpler form
Bi(us) = 3 B (us) =3, )’gp[P((P ~q)hw+eVy+ U~ ps) = P((q - p)hw + eV ~ Hs)]- (5-3.7)
p p

'The functions P(&g) are symmetric in their argument P(¢p) = P(—¢o). They assume their maximal value
at & =0 and have logarithmic tails for |¢y| > co. The two terms in the bracket of Equation (5.3.6) have
their maxima at the resonances with yg = (p—q)hw+eVy+U and us = (q— p)hw+eVy, respectively. Their
difference vanishes for U =2(p—q)hw, which is a condition that affects at most one term in the sum over
p. Independently of p, all addends vanish simultaneously at eV, —pgs=1U. Our conclusions from the
previous sections remain valid as also in the full master equation of the Anderson—Holstein molecule, the
pseudo-magnetic fields vanish at eV 4 = 2eV, + U, where the coherent current blockade is re-established. The
current blockade can, however, not be seen in the stationary current without a finite Coulomb interaction
on the molecule, for it is a Coulomb-blockade effect. The detailed structure of the voltage-dependent
magnitude of the pseudo-magnetic fields is irrelevant for the qualitative structure of the current—voltage
characteristics. As long as Bg is neither diverging nor vanishing, I (eVy,eVyq) will represent an approximate
spectroscopy of Hs. In the case U — oo, the zeros of Bg are shifted to infinity as well, and the specific
structure of Bg that produces the dip in the stationary current will vanish. The coherent current blockade
of the Anderson—Holstein molecule is only then clearly visible in the stationary current, when the charging
energy is of the order of several hw.

'The discussion of the role of the pseudo-magnetic fields in the setting of the previous paragraph has
provided several important results. Finite pseudo-magnetic fields ensure a non-zero stationary current
through the device in contrast to the master equation with zero pseudo-magnetic fields, which is stationary
in a pure and hence a non-conducting state. The finite charging energy produces two peaks in Bg(eVyq)
with opposite signs, such that there is a line in the (eVy,eV,q)-plane at which the fields vanish, and a
coherent current blockade is visible. The change of the fields as a function of the voltages allows for the
deviations from the spectroscopic picture found in the numerical data.

5.3.3 Strong Electron—Phonon Coupling

Whenever we eliminate a linear electron—phonon coupling term in the system’s Hamiltonian Hg by a
polaron transformation and thereby imprint a vibronic matrix structure onto the tunnelling-matrix elements
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Figure 5.7: Stationary current of the Anderson—Holstein molecule in the Franck-Condon blockade regime for A =4 (a) and for
intermediate coupling A = 1.1 (b). Although the obvious effect of strong electron—phonon coupling is a suppression of the stationary
current at the Coulomb-blockade line and the double-charging threshold, the current profile develops sharp spikes at larger bias.
The parameters are U =10iw and T = (1,1,1.52,0).

of Hr, we would like to generalise the findings for the transport properties of the bare electronic levels to
the molecular model. Such is easiest when the main vibronic transitions are elastic and do not change the
vibronic quantum number g of the molecule. The Franck-Condon matrix M will often have its maximum
along the line g =¢q and on average be monotonically decreasing for larger differences |g—g’|. Then the
molecule will only develop vibrational sidebands in the differential conductance. The Franck-Condon
matrix can also have non-trivial structure, as it is the case for strong electron—phonon couplings where
the matrix elements M?" are exponentially suppressed for small g, ¢’, and the inelastic transitions with
rates of order unity appear for larger vibronic quantum numbers. Such a matrix structure leads to transport
effects like the Franck—Condon blockade and avalanche transport that cannot be explained by using a
generalisation of the models without vibronic excitations, as has been shown first by Koch & von Oppen
(2005b) and is explained in detail in several sections of chapter 3. The model of an Anderson—-Holstein
molecule considered in this chapter also develops non-trivial transport properties for large electron—phonon
couplings. By non-trivial, we mean that an understanding of the differential conductance has to rely on the
vibronic structure of the model explicitly. The obvious effect of strong electron—phonon coupling would be
a mere shift of the conduction maximum. Since for finite charging energy, there is an I =0 trough in the
current—voltage diagram, the maxima of I, which are originally, that is for small electron—phonon couplings,
located at the Coulomb-blockade peak and the double-charging threshold, move towards the trough. The
vibronic sidebands’ influence, little peaks at the respective voltages, becomes more and more exaggerated,
resulting in the sharp peaks seen in Figure 5.7 (a).

If we compute the stationary current for large bias and Coulomb repulsion, say eVyq = 20Aw and U =10hw,
the master equation without the principal-value terms shows a conduction window between eV, = —%eVsd
and eV, = 1eV,q—U, see Figure 5.8 (a). In principle, we would not expect any Franck-Condon blockade
effect in this regime, as although one level could be decoupled from the drain electrode, for eV, =-U,
electrons in the source still have enough energy to excite about ten oscillator quanta, which is enough to
overcome the blockade. The numerical data, however, shows a strong suppression of the stationary current
indicating that there is indeed a Franck—-Condon blockade effect present even at such large bias. Due to the
fact that in the investigated voltage regime, the two-particle state is wizhin the bias window, the behaviour
of the master equation will change from drain-decoupling for positive gate voltages to source-decoupling
at gate voltages close to the drain’s Fermi level. This is easy to understand as decoupling from the drain
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Figure 5.8: The Anderson—Holstein molecule with U =10%w, held at eVq = 20Aw. The gate voltage is swept from eV, = -15iw to
eV, =5hw and T = (1,1,1.5%,0). The electron—phonon coupling is A = 1.1 (red) and A = 4 (green). Diagram (a) shows the stationary
current without the pseudo-magnetic field contributions, where due to the decoupling of one of the electronic states from the
source electrode, the Franck-Condon blockade is seen despite the large bias voltage. Diagram (b) shows the same situation for the
full master equation. The additional precession of the molecule’s pseudo-spin allows for a widening of the conduction window and
the development of the current steps into little peaks similar to those seen in Figure 5.7.

does not produce a dark state at all; the bias window provides enough energy to overcome the double
charging threshold. Deep in the Franck-Condon blockade regime, however, the |0,0) — |0,0) transition is
exponentially suppressed and therefore a candidate for a dark state. The access to the two-particle state,
which can convert charging energy to vibronic energy and thus overcome the Franck-Condon blockade, can
be obstructed by simply decoupling one state from the source electrode. Such reasoning allows us to solve the
master equation close to the Fermi level of either electrode, obtaining I =0. Only when eV, ~ —U/2, neither
decoupling mechanism can generate a dark state and the system will transport a finite current as it is shown
in Figure 5.8 (a). The pseudo-magnetic fields act as a turnstile that moves population from the dark state
into the other, conducting state. This has two consequences, which are seen in Figure 5.8 (b). Independent
of the strength of the electron—phonon coupling, the conduction window defined by the Coulomb blockade
for double occupation is widened beyond eV € [—%eVSd,%eVSd— U]. For strong electron—phonon coupling,
both decoupling mechanisms can be overcome with the help of the pseudo-magnetic fields, such that we
finally observe the current profile shown in Figure 5.8 (b).

5.4 Jahn—Teller Molecules

Jahn-Teller molecules, as we have defined them in section 5.1, have an electron—phonon coupling that only
differs slightly from that of the Anderson-Holstein molecule. The Jahn-Teller coupling is not proportional
to the unit-matrix in the electronic Hilbert space . but proportional to 0. It is diagonal but not invariant
under unitary transformations of the electronic operators and thus breaks the rotational symmetry of the
system Hamiltonian in #,,. If we applied the rotation we have used previously to decouple one electronic
level from the drain electrode, we now would also induce an off-diagonal electron—phonon coupling term,

o ( cosf sm@) (1 0 ) (cos@ —sm0) = cos 200, — sin 200, .

—sinf@ cosf)\0 -1)\sin@ cos6
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Although by a suitable rotation, one of the electronic levels can be decoupled from the drain electrode in
Hr, it is still connected to that reservoir indirectly via the electron—phonon coupling. In the polaron picture,
the decoupling can only be achieved for certain parts of the matrix-valued tunnelling elements, namely
those involving even transitions |q) — |q+2k) with q+2k € Ny. The generality of a coupling I' =(1,1,0,1) is
no longer given. The physics of this model, especially for voltages beyond the first vibronic sideband, will
therefore be much less generic than the one of the highly symmetric Anderson—Holstein molecule.

We discuss three different aspects of the coherent transport properties of the E®b Jahn—Teller molecule.
Close to the decoupling line in the parameter space of the tunnel amplitudes, the low-bias behaviour is
characterised by an almost vanishing pseudo-spin. This effect, which is caused by the pseudo-magnetic fields,
restores a rate-equation behaviour of the system even in the stationary solution. The current suppression
that is generic for transport through Anderson-Holstein molecules will be difficult to observe, as soon as
vibronic excitation participate in the tunnelling dynamics. The decoupling mechanism that leads to the
creation of a dark state is not independent of the tunnelling matrix elements t,,. We show which conditions
have to be posed on the parameters, in order to observe the current blockade also in the first vibronic
sideband. The o,-coupling of the E®b Jahn—Teller molecules has also signatures in the transition matrix
elements that enter the master equation. The Franck-Condon matrices® MZ? for transitions involving |1)
differ from those for || ). By inspection of the adiabatic potentials in Figure 5.1, we have seen that the overlap
of even and odd oscillator wave functions differ in their sign depending on the direction of the displacement
due to the polaron transformation. A rate equation is insensitive to such a sign, because it only involves the
square modulus M2? = | M2, which is independent of the direction of the displacement and therefore
independent of ¢. The master equation, however, allows tunnelling into and out of linear superpositions of
the two degenerate states, and as such the product Z\;If qu 1 enters the problem, which is negative for odd
and positive for even differences |p—g|. Due to the negative sign of y47, the pseudo-magnetic fields are
more complicated in their structure, being less effective in restoring a finite current at low bias.

5.4.1 Killing a Pseudo-Spin

Close to the regime in the parameter space of Ht, where the decoupling condition (5.2.2) is satisfied and
the electronic self-energy matrix has only rank one, the pseudo-magnetic fields show their real power in
the Jahn—Teller molecule. Without them, there is an additional peak below the first vibronic sideband
compared to the spectroscopic picture, see Figure 5.9 (a). Consider the system in a basis, where, like in the
Anderson—Holstein molecule, one level is decoupled from the drain electrode. Since we are close to the
decoupling line, this level is only very weakly coupled to the source electrode as well. In the Jahn—Teller
model, the decoupling from the drain electrode only affects the even vibronic transitions. This is in contrast
to the Anderson—Holstein molecule, where the decoupling is independent of the vibronic structure of the

10 10
« and I';” do not

system. In particular, this means that in the EQb Jahn—Teller model, the quantities y
vanish in the rotated basis.

The additional peak is due to a balance condition. The rates for the process |0;0) — |{;0) at the source
electrode, which is suppressed due to the almost decoupling Fgf ~ 0, and those for the inelastic process
|1;0) = |0;1) at the drain electrode, which is exponentially suppressed by the Fermi function 1- /', are
of the same order and hence contribute to the steady-state dynamics. After we have switched on the
pseudo-magnetic fields, the picture is completely different. There is no current suppression, there is no

~ »;-
¢ Note that in the Jahn-Teller molecule, we need to discuss the wave-function overlap M27 = (p|e**" =) |q).
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Figure 5.9: (a) Differential conductance dI/dV of the E®b Jahn-Teller molecule close to the decoupling line. The parameters
are U =2.35hw, kT =0.02hw, A =1.1,and T = (1,1.5%, (1+¢)?,1.5*) with £ =107°. Green: master equation without principal-value
terms, Red: master equation with principal-value terms. Components of the pseudo-spin S S, (green), S, (green), and S; (red)
for the master equation without (b) and with (c) pseudo-magnetic fields. In (c) the pseudo-spin is damped to zero.

additional peak, and the stationary distribution is reminiscent of a rate-equation result because, as it is seen
in the data of Figure 5.9 (c), S ~0. This result is striking and unexpected, because due to the complicated
vibronic structure, there is no obvious reason why the pseudo-magnetic fields, which up to now only worked
as a regularising and current-restoring mechanism should influence the physics so much as to force the
pseudo-spin to vanish. The explanation is due to the missing decoupling of the inelastic transitions in the
Jahn-Teller molecule that actually produced the additional peak in Figure 5.9 (a).

We explain the mechanism in two steps. First, we show the implications of a vanishing pseudo-spin
in the decoupling regime, and then we show that § actually equals zero. Due to the partial instead of
the full electronic decoupling caused by the Jahn-Teller structure, the model does not separate into two
independent systems as long as not all ¢4, are equal. Hence the term “decoupling” has only a meaning in
the case of a purely electronic nanostructure without phonons. For the sake of notational simplicity, we
shall use the term nonetheless.

Consider a system with vanishing pseudo-spin. Then py =p,, and the pseudo-Bloch equation for the
populations (B.3.2b) in the chosen voltage regime before the first vibronic sideband and the double-charging
threshold, where fs=1, fp =0 with p,=0 and p?jo =0,is

1
rspo = Eerl.

'The solution is, due to the normalisation po+p; =1,

which for example for I'p =T results in po=py=p; = % In contrast to a rate-equation result, where for
I's #I'p also py # py, here both states are equally occupied. Due to S, =0, the reduced density matrix of
the singly-charged wave-functions is proportional to the unit matrix and as such it is invariant under any
unitary transformation in H,. It is therefore of no relevance at all in which basis of the electronic Hilbert
space we work, when we want to prove the vanishing of S.

We assume that the decoupling condition is satisfied exactly and consider a basis of the electronic Hilbert
space, where accordingly one of the states, ||}, say, is decoupled from both electrodes in the sense that
1“2? =99 =0 for all &. Due to the special vibronic matrix structure of the Jahn-Teller molecule, the pseudo-
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magnetic fields do 7ot vanish if the decoupling condition is satisfied exactly—in the Anderson—Holstein
model, B, would be zero in such a configuration. Consider the pseudo-Bloch equations for S, and py,

1 1
FSPO_EFDPI_EFDSZ :Bxsy

1 1
—Fsp0+ EFDp1+EFDSZ =0.

Adding both equations implies B,S, = 0, which due to By # 0 for the Jahn-Teller molecule means S, = 0.
We put this result into the pseudo-Bloch equation for the remaining components of the pseudo-spin

1
~5 TS, +B:Sy =0

1
= TDSy +(BeS:~B:Sx) =0.

For S, =0, the first equation implies S, = 0; then the second equation is solved by S, = 0, which finally states
the result S =0.

This result is somewhat non-intuitive. The Anderson—Holstein model is not continuous in parameter
space at the decoupling condition, as there it decouples into two independent systems. The Jahn—Teller
molecule, on the contrary is continuous at the decoupling condition except for the configuration tqs =1 for
all @ and o, where also the Jahn—Teller molecule decouples into two independent systems. Since as long as
the solution of the problem is unique and well-defined, the theory is continuous in Hr, this allows us to
study the Jahn—Teller molecule close to the decoupling line by computing an approximate solution with
parameters for which the decoupling condition is satisfied exactly.

'The Jahn—Teller molecule intrinsically tends to show rate-equation dynamics in the stationary current
profile. The cause of this effect is the inability to decouple one electronic level from the drain electrode
for generic tunnel couplings completely. In some special cases, this is, however, possible thus producing a
completely different phenomenology. Due to the possible cross-over of these different types of stationary
physics, the Jahn—Teller molecule is difficult to understand from a generic point of view.

5.4.2 Coherent Suppression of the Stationary Current

'The main result of the discussion of the Anderson—Holstein molecule of section 5.3 is the generic appearance
of a coherent current blockade for bias voltages below the double-charging threshold. Due to the o, electron—
phonon coupling in the Jahn-Teller problem, we shall lose this blockade-effect in the Jahn-Teller molecule
in the first vibronic sideband. Still, there are some parameter regimes, where it re-appears, making explicit
use of the vibronic structure of the problem. In Figures 5.10 (a) and (b), we show numerical data for both
models illustrating the difterence.

We consider a tunnel coupling T' = (1,1,0,1). Obviously the current blockade is present in the positive
bias, positive gate regime, although different from the Anderson—Holstein molecule as we shall explain in
the next section. We choose the new basis |+) = %(H) £|1)) of H,. For negative bias and positive gate, the
decoupling from the drain electrode is only achieved for the even excitations of the |-)-level and the odd
excitations of the |+)-level. For the transitions at the source electrode, there are no cancellations.

In Figure 5.11, we show the available direct transitions from the source electrode to the molecule and from
there to the drain electrode at voltages in the first vibronic sideband. By choosing the electron—phonon
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Figure 5.10: Comparison of the Anderson—Holstein (a) and the E®b Jahn—Teller molecule (b) at U =2.35hw, kT =0.05hw,
I'=(1,1,0,1),and A =11 In the Jahn-Teller molecule, the broken symmetry of the Hamiltonian in the electronic Hilbert space
causes a qualitatively different behaviour for positive and negative bias. The current suppression, being the generic effect in the
Anderson—Holstein molecule, is only partly visible.

coupling A =1.1, we place the system close to a point, where the overlap of |0,1) with |o,1) is very small. For
A =1.0, it actually vanishes. We thus obtain a situation, in which the state |+,1) is strongly coupled to |0,0),
from which it gains population, and very weakly connected to everything else, especially those states it loses
population to. This state will therefore achieve a very high population in steady state. The molecule will not
gain significant transparency by having the first vibronic excitation in the energy window; indeed, it will rest
in a stationary configuration of high vibrational non-equilibrium, even population inverted. The localisation
of this current blockade effect to a small regime of the applied voltages is due to the pseudo-magnetic
fields, which, like before, rotate the system out of the absorbing state thus restoring a finite current. The
increment of the stationary current due to the vibronic resonance does, however, vanish at the zero of the
pseudo-magnetic field. The Anderson—-Holstein current blockade in the first vibronic sideband can be
observed in Jahn-Teller molecules, although only for a small volume of the parameter space.

5.4.3 Signatures of Negative Franck—-Condon Matrix Elements

In the Jahn-Teller molecule, the different signs of Franck-Condon matrix elements will effectively damp the
x-component of the pseudo-magnetic field, which in turn results in a clearly visible current blockade with
a much broader profile than it is expected from the equivalent Anderson—Holstein model, see Figure 5.10
at positive bias, positive gate and Figure 5.12. The z-component of the pseudo-magnetic field is the same
both for Anderson—Holstein and Jahn—Teller molecules;

(BY). = X B (T2 - 121).
pa

The Golden-Rule rates are Fﬁf—rﬁf = y|MPI(13,-t2)). In the Anderson-Holstein model, the x-
component of the pseudo-magnetic field, which is the current-restoring force, is

(B?)x = Z Bgf2y§q,
pa

7 For the notation, see appendix B.2.
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Figure 5.11: Tunnelling possibilities for the Jahn-Teller molecule at zero gate voltage and inside the first vibronic sideband. We
indicate the possible transitions between source (S), molecule (M), and drain (D) by directed arrows without denoting the explicit
rates. Left: General energetic situation. Middle situation after a unitary transformation in #He has decoupled the |-)-states
from the even and the |+)-states from the odd vibronic transitions at the drain electrode. Right: Situation after the vanishing
of the Franck—Condon factor for A =1 has been taken into account and the state |+;1) becomes (almost) absorbing and causes a
suppression of the stationary current also in the first vibronic sideband.
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where the coupling is 241ty |[ME?|?. The Franck-Condon matrix elements just appear as a positive weight
for the principal-value integrals. In the Jahn-Teller case, however,
P20 = 2 vtatay V] sgo (W7 1277),

which, when being summed over p, leads to a suppression of the fields’ x-component compared with the
Anderson—-Holstein molecule because sgn(MTp qu 1) is alternating in g and p. As an example of this
effect, we compare the Anderson-Holstein molecule and its Jahn—Teller counterpart for a special choice
of parameters, where the effect is most clearly seen. The numerical evaluation of the stationary current
for eV, =0 is shown in Figure 5.12 but the structure is equally well visible in Figure 5.10 (b). We use a
tunnel coupling T'=(1,1,1,0) like in the previous section, which for positive bias is already in the form
of having one electronic level being decoupled from the drain electrode. This isolates the effect of the
small pseudo-magnetic field by not introducing any oft-diagonal electron—phonon coupling. Like for the
Anderson—Holstein molecule, the system features a current blockade below the charging energy, which is
partly lifted by the pseudo-magnetic fields. The numerical data, however, show that the blockade’s profile
resembles the one found in the treatment of the Anderson—Holstein molecule wizhout the principal-value
terms. Due to the o,-structure of the Jahn—Teller molecule’s electron—phonon coupling, the current-restoring
x-component of the pseudo-magnetic field is less effective. To gain some insight into the analytical structure
of the effect, we solve the stationary master equation for just one occupied electronic level by assuming
U to be very large, kgT very small, and the bias voltage positive and such that neither the zero bias nor
vibronic or charging effects have to be considered. We incorporate the physics of the Jahn—Teller molecule
by splitting the pseudo-magnetic field into the x- and z-component. Due to our specific choice of tunnel
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02 | Figure 5.12: Effects of small pseudo-magnetic field in the
x-direction. The parameters are U =2.35hw, kg T = 0.05hw,
~ 3 A=11,eVy=0,and I = (1,1,1,0). The stationary current of
the Anderson—Holstein molecule is shown in green, the
0.1 one of the Jahn-Teller molecule in red. The suppression of
| the latter to a curve reminiscent of the current suppression
in absence of any pseudo-magnetic fields is due to the small
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couplings, this is equivalent to distinguish between left and right as 711, 11 é, and #ig 1} ;. With the tunnel
coupling T = (1,1,1,0), the pseudo-Bloch equation is

X 2 0 -B.S,
55: 0|po-|0]|-|B.S.-2B,S.
1 1

'The equation for the population simplifies to S, =5po—1. Using the result of the respective calculation in
section 3.3, with £ =1 and due to the tunnel couplings the identification By, = By and B = B, we obtain the
population of the vibronic ground state of the neutral molecule

CB) <o),

PO T 18B2 1 4(B, —B.)?

'The precession out of the dark state is induced by the source’s fields parallel to é,, whereas the perturbation
induced renormalisation of the eigenenergies, being proportional to B, in this particular configuration are
due to the interaction with the drain’s continuum of states. The stationary current in this voltage regime is
proportional to pg, and in contrast to the Anderson—Holstein molecule, where the pseudo-magnetic field is
in general quite large, in the Jahn—Teller case with small B, over a wide range of voltages, we encounter a
situation where current profile is determined by the master equation without the precession terms.

5.5 Multi-Mode Reservoirs

Motivated by the recent experiments on suspended carbon nanotubes by Sapmaz ez al. (2006) and especially
by Leturcq e# al. (2009), we use the final part of this chapter to generalise the theory developed so far to
multi-mode reservoirs. A multi-mode reservoir has more than one eigenstate per eigenvalue, similarly
to degenerate multi-orbital quantum nanostructures. Such an extension provides the first step from our
abstract models towards the description of realistic and experimentally accessible quantum nanostructures
that show a steady-state current—voltage characteristics that goes beyond the descriptive capabilities of the
single-level Anderson—Holstein model using rate equations. Although, as we have shown in chapter 3.2, the
rate-equation treatment can well account for certain parts of the phenomenology found by Leturcq ez a/.
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S TG D Figure 5.13: Set-up of a suspended carbon nanotube, which
is used in the experiment by Leturcq ez al. (2009). The basic
configuration consists of a source electrode (S), a drain

QD electrode (D), and a back-gate electrode (BG). Attaching
e the top gate (TG) on the nanotube creates the quantum dot
(QD) by a deformation of the nanotube to tunnel junctions.
BG In such set-ups, parts of the nanotube itself act as source

and drain electrode.

(2009), it fails to explain the ubiquitous negative differential conductance peaks parallel to the vibrational
sidebands in the measurements shown in Figure 3.4. The rate-equation treatment of the Franck—-Condon
blockaded Anderson-Holstein model only produces negative differential conductance peaks perpendicular
to the vibrational sidebands.

Carbon nanotubes are cylindrical structures of rolled graphene sheets. Graphene itself is a two-dimensional
layer of the graphite crystal. The investigation both theoretically and experimentally of graphene and carbon
nanotubes has become a major branch of condensed matter theory in recent years.® Graphene has a bipartite
honeycomb lattice. Its Brillouin zone comprises two Fermi points, called K and K, at which the dispersion
forms two linear cones. The tip of these cones touch exactly in the Fermi point, such that the two degenerate
“valleys” and the linearity of the dispersion relation close to the Fermi energy give rise to a description of
the electronic low-energy properties in terms of a massless Dirac equation. It is this fact, which has made
graphene such a grateful object for theoretical investigation. Taking into account both valley degeneracy
and the degeneracy due to electronic spin, graphene is a fourfold degenerate system. Rolling a sheet of
graphene into a single-wall carbon nanotube can produce different types of systems with respect to their
conductance properties; the fourfold degeneracy, however, persists.

A typical transport experiment of this type has a carbon nanotube being suspended between two metallic
electrodes and attached to a top gate electrode, as it is shown in Figure 5.13. In such an experiment, parts of
the carbon nanotube also serve as electrodes for the central system. Due to the valley degeneracy in the
electronic structure, we therefore have to model reservoirs with an additional degree of freedom. Contrary
to the situation with electronic spin, the tunnel junctions, which are deformed parts of the graphene lattice,
are not expected to conserve the valley quantum number. The Anderson-Holstein model mainly considered
in this chapter is easily extended to this situation. For simplicity of the discussion, we neglect the electronic
spin and only concern ourselves with the effects due to valley degeneracy. We modify the tunnel amplitudes
tas and add an index 7 for the respective valley quantum number of the carbon nanotube part of the
electrode: tyr,s. The Golden-Rule rates are rewritten as well yielding I'7, and yar. It is clear that with
eight instead of previously four amplitudes, a decoupling of a single electronic level from one electrode
is no longer generically possible. Consider the non-interacting self energy with respect to tunnelling at

5 :(ZTI‘;T ZTYUCT)
ZTYUCT erjcr

In general, this matrix has full rank. But since it is hermitian, we can find a basis of the electronic Hilbert

electrode «

space H, that renders at least one of the Z,’s diagonal. Since in the master equation both X,’s are weighed
with the Fermi function of the respective electrode, a simultaneous eigenbasis for both self energies can

¥ As a general reference, see Kane & Mele (1997) and Castro Neto ez al. (2009).
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in general not be found for arbitrary voltages. The non-interacting self-energy matrix X, is the product
W W, of the coupling matrix (W )4 = tar,o. Due to this property, it is not only hermitian but also positive.
Given any vector X with its dimension being the number of electronic levels on the nanostructure. Then,

2% = T WIw,x = (W,2)T(Wex) = [WaE)* > 0.

In the eigenbasis of X, the diagonal elements therefore do define proper Golden-Rule rates. If we chose X
to be the drain electrode’s self energy Xp, its oft-diagonal element is zero, and below the double-charging
threshold when the voltages are chosen such that the pseudo-magnetic fields vanish, B = 0, the master
equation is a rate equation. The physics is similar to the situation in single-mode reservoirs treated before.
Although the coupling to a two-mode reservoir thwarts the locking mechanism that produced the current
suppression before, the stationary current is defined by the eigenvalues £* and £~ of Zp. In case these
differ very much 0 <X~ «< X%, the stationary distribution is almost completely localised in the eigenstate
of £7, hence I~ X™. Like before, the pseudo-magnetic fields provide an intra-dot coupling, which moves
population to the more strongly coupled eigenstate, thereby increasing the stationary current away from
the particle-hole symmetric line, where Bg =0. If the smaller eigenvalue was actually zero, as it is the case
for the single-mode reservoir we have discussed so far, there would be a full current suppression to I =0. By
adjusting the asymmetry of the couplings to the reservoirs, the dip in I due to this coherent suppression
effect can be tuned over a wide range corresponding to X" #0 and £~ =0, where =0, to 2" =X~ , where
the current suppression is absent and I is maximal and finite. In Figure 5.14, we show numerical data for a
vibration-less system (a) and an Anderson—Holstein molecule (b). We scan the tunnel amplitudes such
that the smaller eigenvalue of Xp is increased from zero to *. In accordance with our reasoning, the
minimal value of the current before the double-charging threshold is lifted from zero until the suppression
is completely absent. A similar behaviour is found in quantum spin valves (Braun ez a/,, 2004), where due to
the magnetisation of the reservoirs, the orientation of the electronic spin is not conserved in the tunnelling
and the dot’s electron can indeed tunnel in two equivalent electronic states of the reservoir. In contrast to
our discussion, where it is wave-function overlaps that define the tunnel amplitudes and thus give raise to
differences in the respective moduli, Braun ez a/. (2004) only consider phase-differences due to different
alignment of the electronic spins on the dot and in the ferromagnetic leads.

In the spirit of Berkovits ez a/. (2004), we generalise our findings. Assume M to be the number of modes
in the leads and N to be the number of degenerate levels on the nanostructure. According to Berkovits ez al.
(2004), the number of effectively coupled modes and levels is given by the rank of the self-energy matrix
Y =X4+24, which is bounded from above by rank (X) <min(M,N). Assume rank (X) = and the effective
self-energy matrix X’ € C™" hence being quadratic. Then rank (X[) defines the number of levels on the dot
that cannot be decoupled from the drain electrode. In the single-mode reservoirs discussed in this chapter,
r=2 and rank(Z{y) =1. For our model of a carbon nanotube, r=2 and also rank(X) = 2. The number
r—rank(X[) therefore defines the number of possible dark states of the system. For the steady-state master
equation to be uniquely solvable, there can, however, be at most one dark state. One therefore has to restrict
the tunnel amplitudes such that 0 < r—rank(Z[;) <1is always ensured.

In Figure 5.14 (c), we show the differential conductance of the Anderson—Holstein molecule being
coupled to a two-mode reservoir as a function of both gate and bias voltage. The numerical data exhibit
regions of strong negative differential conductance for positive gate voltage being aligned parallel to the
vibronic sideband. This structure is very reminiscent of the one seen in the experimental data shown in
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Figure 5.14: (a) Two-mode reservoir interacting with a two-level quantum dot with U =2.35hAw, kg T = 0.05hAw. (b) Two-mode
reservoir interacting with an Anderson—Holstein molecule. U =10hw, kgT =0.05%w, and Ay = 1, =1.1. The coupling to the left
electrodes are equal and set to unity, and the ones to the right electrode are try =14, try,, = tr)+ =0. The coupling tg,, is
scanned from 0 to 1.4 (red to blue curves) in order to increase the eigenvalues of Zg from (£7,2%) = (0,1.4), where the effect of
the two-mode reservoir is absent, linearly to (£7,2%) = (1.4,1.4), where the coherent current blockade is gone. (c) Differential
conductance of the Anderson—Holstein molecule attached to a two-mode reservoir for varying source—drain and gate voltage. The
couplings for the two modes of the reservoir are chosen I’y = (1,1,1.52,0.12) and I[; = (0.82,1,1.42,0.252), and the temperature is
increased to kgT = 0.1%w. The colour code is blue for negative, white for zero, and red for positive values.

Figure 3.4 and in the experiment by Leturcq ez a/. (2009). However, before an application of the theory as
an explanation of the experiment, we have to issue a caveat.

A suspended carbon nanotube shows several modes of oscillations and vibrations, for instance longitudinal
stretching modes, bending modes, or the breathing mode of the cylindrical structure. Leturcq ez al. (2009)
identify the longitudinal stretching mode as the one whose vibronic sidebands are observed in the data.
Combining the effective Dirac equation for the low-energy properties of the nanotube with the theory of
elasticity, they derive an estimate for the electron—phonon coupling A* ~10/L, [nm]. Since the circumference
of the nanotube L, is of the order of a few nanometres, the coupling constant is well localised in the regime
of order unity. A fit of the differential conductance peaks according to the idea discussed in chapter 3.4
shows that A2~ 10, which is large enough to observe Franck—-Condon blockade physics in the conductance
measurements, see Figure 3.4.

'Thus, Leturcq ez al. (2009) work in the Franck—-Condon blockaded regime with strong vibrational
relaxation, whereas we consider the full vibrational non-equilibrium dynamics at moderate electron—
phonon coupling. Our model of the single-molecule junction still does not incorporate electronic spin. We
thus do not model the full fourfold degeneracy of a carbon nanotube, which is likely to introduce additional
coherent physics to the dynamics. Due to the large number of tunnel amplitudes in a multi-mode model
and the thus broken symmetry of the Hamiltonian in the electronic Hilbert space, the parameter space is
highly non-generic, a similar behaviour as already seen in the treatment of the E®b Jahn—Teller molecule.
As long as the generic structure of the tunnel amplitudes in suspended carbon nanotube quantum dots is
unknown, a systematic study is infeasible. With these restrictions, the numerical data cannot reproduce the
experiment quantitatively but only give qualitative tendencies.

Nonetheless, the interplay of the two reservoir modes and their influence on the coherent current
suppression as well as the generic negative differential conductance found in the multi-orbital treatment
of Anderson—Holstein-type models using master equations is expected to open the view for a profound
understanding of the transport characteristics of suspended carbon nanotubes.
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'The Singular-Coupling Limit

The course of every intellectual, if he pursues his journey
long and unflinchingly enough, ends in the obvious ...

Huxley, Point Counter Point

In the previous two parts of this thesis, we have investigated the transport properties of quantum nano-
structures such as quantum dots and single-molecule junctions by two fundamentally difterent approaches.
Although both are situated in the regime of weak system—bath interactions, whose mathematical theory we
have presented in chapter 2, the applicability of a description in terms of rate equations difters from the
one using degenerate master equations. The principal distinction of these two is the scale of the energy
differences of the system whose transport properties are to be modelled. It is the purpose of this last chapter
to embed both descriptions in a larger context and by doing so derive a theory that is able to interpolate
the descriptive gap between rate equations and master equations (Schultz & von Oppen, 2008).

We shall derive and discuss a scaling regime, which in the mathematical theory of Markovian master
equations is known as the “singular-coupling limit”" but has received rather little if no attention at all in
the application to transport theory for quantum nanostructures. We give a motivation both on practical and
purely theoretical, that is methodological, considerations to justify the extension of the available theoretical
descriptions to the singular-coupling limit. In analogy to the introduction of the master equation in
chapters 4 and 5, a simple example of a non-interacting system will help to clarify the physical idea
underlying the approach and the ansatz used in the derivation of the kinetic equation. Using the methods
developed in chapter 2, we then derive a suitable master equation. We also compare the result to perturbative
methods typically employed in quantum transport theory and show how these have to be modified to
properly reproduce the result of Davies’s method. We finally prove our claim of being able to bridge the
gap between rate equations and master equations by an application of the method to molecular electronics.

6.1 Motivation

At first sight, it is unclear why the description of weak-coupling quantum transport has to be extended to a
larger context. In the actual derivation of the equations in chapter 2, there was no choice except modelling
the system with a degenerate or a non-degenerate Hamiltonian. The first choice results in the degenerate

" see for example Breuer & Petruccione (2002, chap. 3.3.3) or Spohn (1980, chap. V.C).
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master-equation description applied in chapter 5, while the second amounts to using rate equations as
being done in chapter 3. Tertium non datur. In the more detailed discussion, however, it becomes apparent
that there has to be a third option, as numerous questions being raised by the theory and its experimental
applications could not be answered satisfactorily otherwise. These arguments naturally separate into two
groups.

6.1.1 Practical

The first extension of the quantum transport theory to more complex systems than those being described
by rate equations is to allow for degenerate system Hamiltonians. But when one is honest with physics,
there is no real degeneracy in nature at all. Take for instance the hydrogen atom: its Hamiltonian has a
large symmetry group and thus many degenerate levels. But the more detailed the discussion becomes
and the better the experimental resolution of energy measurements, the less of the symmetry actually
survives, for instance due to spin-orbit coupling or the Lamb shift. External perturbations that are not an
intrinsic part of the isolated system in the gas-phase, for instance electric or magnetic fields, yield a splitting
of formerly degenerate levels, known as the Stark or Zeeman eftects. Yet, degenerate levels are a very
good approximation for some systems in rather clean environments. We therefore also have to distinguish
between non-degenerate and nearly degenerate systems, the precise notion of which we shall define later.

In the theory of molecular electronics, one eftect is always mentioned and predominant in the discussion
between experimentalists and theorists: the lifting of any degeneracy by the probably asymmetric coupling
of the quantum nanostructure to the electronic reservoirs. In general, the coupling is achieved by physi- or
chemisorption of the atoms at the edge of the molecule to the metallic electrodes, which necessarily implies
the breaking of geometric symmetries by the junction geometry, or an underlying substrate. The theoretical
model as an Anderson-type impurity does not account for these effects. It explicitly models degenerate levels,
free baths, and the tunnelling Hamiltonian as a perturbation. Any splitting due to asymmetric coupling to
the electrodes has to come out of the perturbative calculation as a renormalisation of the eigenenergies
of the localised level. But all other energy renormalisations are due to symmetry-breaking mechanisms
not yet incorporated in our models. How would these have to be accounted for in the Hamiltonian? We
have tried to account for such effects in the concluding section of Schultz ez al. (2008). But the answer
given in that article is not satisfactory at all, because the problem turns out to be two-fold. There has to
be a renormalisation of the eigenenergies of the isolated and unperturbed system and there has to be a
way to account for small perturbations of the initially degenerate Hamiltonian. The actual problem comes
about as the first is an effect that is obtained a posteriori by solving the master equation, while the second
is an ingredient to be added a priori to the theoretical model. The third choice between rate equations
and degenerate master equations must provide an answer, such that both types of splitting can be treated
consistently and on equal footing.

6.1.2 'Theoretical

Also on the purely theoretical side, the distinction of transport theory into rate equations and degenerate
master equations is problematic. Considering the derivation of the Markovian master equation in the
weak-coupling limit like in chapter 2, the decoupling of the oft-diagonal elements of the reduced density
matrix is due to the vanishing commutator of the quantum-dynamical semigroup with all diagonal density
matrices provided the Hamiltonian is non-degenerate. A two-level system with energies &; and ¢, will
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be described by a rate equation for every non-zero splitting Q:= ey —¢|. A degenerate Hamiltonian, on the
contrary, obeys completely different physics in the weak-coupling limit and shows a phenomenology that
cannot be described by rate equations. The weak-coupling theory that has been developed so far and is
actually used in the quantum transport theory of nanostructures is obviously non-continuous for Q — 0.
'The theory is unable to describe near-degeneracies.

One could, as a remedy, not implement the rotating-wave approximation and work with the full master
equation for a finite splitting Q) while keeping all off-diagonal matrix elements of the reduced density
matrix in the equation, One would expect that for large enough splitting the oftf-diagonal elements of p
eventually decouple from the populations. The resulting equations, known as the Bloch-Redfield equations
(Timm, 2008) are, however, not positive at all as has been shown by numerous authors, for instance Dumcke
& Spohn (1979) and Benatti & Floreanini (2005, Example 3.4). Although the Bloch-Redfield equations are
continuous for Q) — 0, where they yield the master equation used in chapter 5, they defy their proper use for
finite and therefore large splitting, where one hopes to recover the rate equations and the decoupling of the
oft-diagonal elements of the reduced density matrix from its populations.

There is the need of a master equation that both retains coherences between near-degenerate states and
tulfils the criteria for generating completely positive dynamics.

6.2 Motivation of the Ansatz

We use a simple non-interacting example calculation to illustrate the physics of our approach and to justify
the ansatz for the derivation of the master equation in the singular-coupling limit. This example is in the
spirit of chapter 4, where we discuss a non-interacting model to show fundamental properties of electronic
transport theory for degenerate nanostructures. The process of obtaining the weak-coupling expressions
from the exact solution of the problem serves as the key idea of the approach.

We consider a single-electron transistor with two electronic levels labelled by o € {1,]}, the z-component
of their pseudo-spin, having an energy difference Q2 := &4 —¢|, and being coupled to two spinless fermionic
reservoirs, a source and a drain electrode labelled by «. The Hamiltonian of this system is in natural units
where fi=1

= —(nT -ny)+ Zskack Cka + Z t(wck dys +h.c.

kao

For these non-interacting electronic states the retarded propagator can be computed exactly as it has been
done for the degenerate mode in chapter 4. The spectral function is

| (mw 9y ars y[<w—%><w+%>—%1)
(@-2+5) ((r D)o 5[ Wl -4]  Tesdyer’y [

A(w) =

'The coupling constants are the same as in chapter 4. For a non-trivial solution of the degenerate problem
(=0, we have to assume A #0 generically as otherwise one of the levels would decouple from both
electrodes. Since we want to show the continuity of the approach at =0, A #0 has necessarily to be
assumed. By replacing w := w+ , the off-diagonal element of the spectral function becomes

ww+Q)-2
Ay (w) = y{w(w=9)-3)

‘(w+1—)(w+Q+1 )+V‘
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We discuss this expression both in the weak- and in the singular-coupling limit, showing that only in the
latter it is non-zero. Following the definition and treatment of the problem in chapter 2, the weak-coupling
limit can be applied, when the tunnelling-induced broadening of the electronic levels defines the smallest
energy scale of the problem. We rescale t44 = £ty and then let £ — 0. The rescaled expression Aa(w)
converges to zero almost everywhere, except at the four roots of its denominator. The stationary properties of
the system are described by the equal time correlator, the integral of the spectral function over all frequencies
Jg A(w)dw. For non-interacting electrons, one would expect the sum-rule fp Ay (w)dw =0 to hold. Since
both levels are coupled to the same electrode, they do, however, interact. A non-zero correlation therefore
indicates the renormalisation of the electronic operators due to the system—bath interaction Ht. In the
present case, the integral [ Ay (w)dw can only then be non-zero if all mass of the integrand becomes
localised in its singularities, which form a null set,

52 Q Q 2 52 Q Q 2
‘WLZZZ 5F—2§+1Fi2 (?) —)/2 N W3,4=Z 61—‘—25—11—‘:&2 (g) _y2 5

where we also have defined the abbreviation 8T :=TT~T*+. By use of the residue theorem, we evaluate the
integral and find
2y0T?

)

which obviously tends to zero for £ — 0. The stationary-state properties of the non-degenerate two-level

(6.2.1)

% '/RA%(W)CIW = 1(Res(w1) + Res(w,)) =

system in the weak-coupling limit do not show any correlations between the two states. This is what is
expected from physical reasoning. On the level of Markovian master equations, this fact is encoded in the
application of the rotating-wave approximation, which the theory owes to the derivation in chapter 2 via
an integral equation for p in the interaction picture. Our considerations regarding the spectral function
once more show that the rotating-wave approximation is not an approximation, but the exact treatment.
Odur result is important with respect to the judgement of the applicability of the Bloch—Redfield equations
to non-degenerate systems. The discussion of the behaviour of the exact solution of the non-interacting
problem shows that the decoupling of the oft-diagonal elements of the reduced density matrix from the
populations is indeed dictated by the weak-coupling hypothesis. The Bloch-Redfield equations are therefore
no proper implementation of this setting in the theory of Markovian master equations at all.

'The singular-coupling limit, on the contrary, serves as the approximation hypothesis when both the
tunnelling-induced broadening I' and the level-splitting Q) are of the same order. If we repeat the above
calculation, however, with Q — £2Q also being rescaled, or simply replace the quantity in Equation (6.2.1),

we obtain
2y0T?

1
— [ AL (w)dw = ,
2nﬁ% n(w) I(I2+4(Q2-92))
which is finite. Already the expressions for the roots of the spectral function’s denominators suggest that Q)
has to scale with &2. In that case

2
w1)2=%[5r—20+1r:&2\/02—y2], W3,4=f

4

(6.2.2)

2[5r—29—zr¢2 -y .



Derivation of the Master Equation 105

Our result also shows that for general rescaling Q + £#Q neither <2 nor 8> 2 would result in a previously
unknown regime. A scaling slower than the weak-coupling due to the tunnelling Hamiltonian would result
in the standard weak-coupling result for non-degenerate systems, hence a rate equation, with eventually O
being set to zero. A faster scaling, on the contrary, would produce a system that is effectively degenerate,
hence the kinetic equation will be the degenerate master equation. The limit of Ai , is therefore non-zero
in the singular-coupling limit, 8 =2, only, showing that although the system is non-degenerate, some
correlations between the electronic levels are retained in the limit. Then Q is called a near-degeneracy.

At first sight, this result has an unphysical feel. This is because one expects, due to the energy—time
uncertainty relation, the stationary density matrix to be localised at energy-eigenstates. Coherences between
non-degenerate states describe linear superpositions of these states, whose energy would not be sharp. This
reasoning is, however, neglecting the fact that the weak-coupling limit, the singular-coupling limit, or in
fact any expansion of the von Neumann equation for the reduced density matrix is perturbation theory up
to second order in the tunnelling Hamiltonian. In perturbation theory, the unperturbed energy eigenbasis
of the system is modified due to the perturbation. The above result and the persisting correlations indicate
the renormalisation of the unperturbed states of the system due to second-order perturbation theory. The
unperturbed states are, however, only mixed with states whose separation in energy is of the same order as
the tunnelling-induced splitting, namely of order O(H7.). Hence only the localised states with Q ~ T show
non-trivial coherences.

In the introduction to this chapter, we have complained that the master equation in the weak-coupling
limit was not continuous in the limit Q — 0. The singular-coupling limit, however, is. Consider Equa-
tion (6.2.1) and set Q) =0 defore sending & — 0. This results in exactly the same expression for the integral
as if we had sent Q — 0 in the singular-coupling expression Equation (6.2.2). On the contrary, if we let
Q — oo in Equation (6.2.2), the off-diagonal element of the spectral function A4 - 0 everywhere, as we
would expect from our experience with the rotating-wave approximation the weak-coupling limit. The
singular-coupling limit applied to the off-diagonal correlations of the non-interacting two-level Anderson
model therefore converges both for vanishing and for infinite splitting Q to the results one would have
expected from the weak-coupling limit of vanishing and finite Q, respectively. The scaling Q + £%Q is thus
a good candidate for the derivation of an interpolating theory between the degenerate master equation and
the non-degenerate rate equation; it is the third option asked for in the introduction.

6.3 Derivation of the Master Equation

For the derivation of the master equation in the singular-coupling limit, we recall the main result of
the discussion in the previous paragraph. The exact solution of the non-interacting resonant tunnelling
problem provides us with the insight that the cross-over regime, in which the lowest-order perturbative
transport properties tend from correlations between degenerate levels to vanishing correlations between non-
degenerate levels, is properly described by a modified scaling in which not only the tunnelling Hamiltonian
is sent to zero but also the near-degenerate sector of the system Hamiltonian. The ratio of the splitting
Q and the tunnelling-induced broadening T' is kept fixed in this process. Using a scaling approach the
system’s Hamiltonian or, equivalently, that part of Hg, which is considered a near-degeneracy, also has to be
rescaled. In this section, we apply this result to the derivation of a Markovian master equation following
the method of Davies (1974), which we have already used in chapter 2 to derive the kinetic equation in the
weak-coupling limit.
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After having derived the master equation in the singular-coupling limit, we shall discuss standard
derivations of master equations for the transport problem. By doing so, we place the mathematical results
into the physical context and also give some intuitive feeling and understanding for the underlying physics.
We first consider the perturbative approach of Rammer (1998), which is related to the real-time diagrammatic
perturbation theory of Kénig (1998). We then show how the derivation of the Bloch—Redfield equations
can be consistently extended to properly include correlations between non-degenerate states and thereby
substantiate the findings in Braun e a/. (2004) and Darau ¢# al. (2008). Although the results are formally
simple, for obtaining them in the first place one has to rely the scaling ansatz of the singular-coupling limit
and consistently include it in the derivations of the kinetic equations.

6.3.1  Davies’s Method Reviewed

We first review the steps used for obtaining a master equation in the weak-coupling limit in chapter 2.3
and then include the necessary modifications in the ansatz to account for the singular-coupling limit. By
doing so, the difference between the two approaches will become clear from a theoretical and formal point
of view.

For the derivation of the weak-coupling limit, we use the Hamiltonian
H® = Hq + Hg + éHg_5.
Using projection operators P and Q to obtain a theory for the reduced density matrix of the localised

system, the theory leads to an integral equation for pg

t
0

t—s
ps(t) = ¢ E5'ps(0) - & [ e S { e e (Lo e Ls ) dv} ps(s)ds.

In the interaction picture, the equation is

! 1 N t=s 1 v -1 EV —1 N
PIs(t):PIs(O)—fZ/O e'ts {/0 e'™s Trg (ES—Ee £ ﬁS—EPE) dV}e £55 pg(s)ds.

In the limit £ — 0, given the necessary conditions, the term in brackets converges to
K:= / e_lﬁss TI'E (ﬁs_Ee_l(£S+£E)s£s_EpE) ds. (6.3.1)
0

'The oscillating terms in the integral equation yield a time average of the fast time scale of Hg, which
eventually leads to the decoupling of the off-diagonal elements of pg from the populations, the rotating-wave
approximation.

In the singular-coupling limit, the rescaled Hamiltonian is different:
HE = Esz + Hg + st_E.

Notice that with this ansatz we consider the fi// system Hamiltonian to be of order &2. In a complicated
molecular electronics problem, for example the Anderson—-Holstein model discussed in chapter 5.3 with
near-degenerate electronic levels, the scaling on/y applies to the restriction of the system’s Hamiltonian to
that subspace of the full Hilbert space in which is it assumed to be nearly degenerate. In our simplified
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model also Lg is rescaled by €%, and the integral equation for the reduced density matrix becomes

! t=s -1 EV —1 N
ps(t) = p(0) - 52/(; e’fzﬁss{/(; ! Lsv Trg (Es_Ee £ ﬁs_EPE) dv}e £Ls ps(s)ds.  (6.3.2)

'The limiting equation for the reduced density matrix is then, due to the additional factors of the scaling
variable £,

ps =18 Lgps - fzfo Trg (Ls-pe “**Ls_ppr) ds ps. (6.3.3)

'The averaging over the fast oscillating time scale of the system’s Hamiltonian drops out this time, because as
not only time is rescaled to the Markovian time scale &2t but also the system’s Liouvillian is, the exponentials
used for the transformation into the interaction picture lose all dependence on &.

As it is plausible from Equation (6.3.1), the linear operator of the master equation in the singular-coupling
limit is formally obtained by assuming Q) = 0 in the dissipator K but retaining the term in the free-evolution
Hamiltonian. This is achieved by adding —1[ Hs, ps] to the degenerate master equation of appendix B. The
splitting Q) does not appear in the dissipator and the Fermi functions coming from the trace over the bath
degrees of freedom, because due to the limit £ - 0, the temperature of the bath is assumed to be too large to
resolve the splitting: I', ) << kpT. A straightforward perturbative expansion of the von-Neumann equation
without the rotating-wave approximation would yield such a dependence and result in the Bloch—-Redfield
equations, which are not of Lindblad-type.

'The master equation in the singular-coupling limit has several important properties. The splitting Q only
appears in the Hamiltonian part of the equation. In a pseudo-Bloch description for a two-level system, this
is usually interpreted as the action of pseudo-magnetic field being directed along the z-axis. In fact, any
Pauli decomposition of a two-level Hamiltonian Hg = };Q);0; generates the corresponding precession due
to a pseudo-magnetic field,

-1[Hs,p] = -1 ) Q;S;[0i, 0] = ~QxS.
1]

On the contrary, the pseudo-magnetic fields that naturally occur in the master equation from the bath-
correlation functions are a Hamiltonian contribution to the master equation.* Whereas B, is a renormalisa-
tion of the energies, By generates an intra-dot tunnelling term. Any perturbation-induced renormalisation
of energy is, in second order perturbation theory, of order O(H7). Thus, the a priori included splitting
Q and the a posteriori obtained renormalisation due to perturbation theory, the Lamb shift, are of the
same order, namely O(H7.). In the presented theory using the singular-coupling limit, both are treated
on equal footing: as a Hamiltonian term and not being resolved by the bath correlation functions. In the
high-temperature regime, which we are considering here, the tunnelling-induced splitting of a degeneracy
can never be resolved as steps of increasing current in the current—voltage characteristics of the quantum
transport problem. In order to do so, a /ow-temperature theory has to be employed.

6.3.2 Other Approaches

After we have understood the singular-coupling limit from the formal and mathematical perspective, we
turn to its incorporation into the standard techniques being used for quantum transport problems. From

* This is well-known and being mentioned for example in Braun ez a/. (2004) and Braig & Brouwer (2005).
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the discussion of the general derivation of a Markovian master equation in the weak-coupling limit in
chapter 2, it is clear that brute-force perturbation theory, the expansion of time-evolution operators in the
von Neumann equation or its iterative solution, cannot produce a consistent theory like Davies’s approach
does. This is due to the fact that perturbation theory of the von Neumann equation has to ensure the
positivity of the density matrix. In the weak-coupling limit, we have seen that the remedy is brought about
by justifying reasonable approximations like the Born-approximation, the Markov-approximation, and the
rotating-wave approximation. We therefore try to reason what additional assumptions and approximations
have to be included in the perturbative treatment to fully reproduce the previous section’s results. It will
turn out that the key idea is the scaling of Hg and the proper counting of orders of £ to obtain a true
second-order equation.

Perturbation Theory

'The perturbation theory for the reduced density matrix due to Rammer (1998) is similar to the real-time
diagrammatic technique by Kénig (1998) or in fact any diagrammatic technique at all. Consider for example
the diagrams due to self-energy corrections by Hr:

€ <

p(t) p(to) p(to)

R 5]

Gemmmmmaeean®

These diagrams depict the virtual tunnelling of an electron onto the nanostructure for an intermediate
time T, leaving a hole in the reservoirs and propagating in state |o) at frequency +1 Q. They only serve as
an illustration and are therefore not labelled completely. Using a highly symbolic notation in order not
to confuse the reader by unnecessary constants and formal overload, the essential parts of the integrals
described by these diagrams are

Hre™s "Hy

with an integration over 7 and being multiplied by the bath correlation functions. It is the difference of
the free oscillation frequency between the two near-degenerate states that produces all complications and
eventually a non-positive operator for the master equation. In the cross-over regime of small splitting, the
perturbation and the free evolution with frequency (/2 have to be treated equal. This is quite non-intuitive,
because it actually demands to do perturbation theory in the system Hamiltonian, which, however, can be
solved exactly. The scaling approach demonstrates that this logic is spoiled. Perturbation theory always
implies that the energy scale induced by the perturbation is the smallest scale of the problem; in the
weak-coupling limit, for example, we have I' < Q,kgT. The symbol “«<” means a relation obtained by
some scaling & — 0: both quantities are infinitely far away from each other. There is no numerical trick to
overcome the barrier imposed by the relation “<<”. Equivalently, we can understand the relation a << b such
that for all ce R™, ac << b. Hence, in order to discuss the regime Q ~ T, also the system Hamiltonian has to
be regarded a perturbation.

In the diagrammatic language this reads as follows: We assume the perturbation due to electronic
tunnelling to be instantaneous, a quantum jump process. This is a simplification, of course: natura non facit
salti. It always depends on the time resolution with which the problem is scrutinized. Rabi oscillations in
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the problem of a two-level system interacting with a resonant light field are an example where the transition
between the two levels is continuous in time. On the Markovian time scale considered here, the tunnelling
is seen as an instantaneous process. But if Hg is comparable to Hr, the free time evolution with frequency
Q has to be on the same time scale and hence proceed instantaneously. To account for this, the symbolic
self-energy diagrams from before should therefore rather be drawn as

(1) p(1) (1)

g\/(\f/]%—b—é) G > é)

There is no trace of the free system’s time evolution present in the self-energy corrections. This is in

p(t)

accordance with the form of Davies’s dissipator, where in contrast to the weak-coupling limit all effect of
Lg is lost in the singular-coupling limit. More formally, one could keep the scaling variables and rewrite
the self energy
(7:8°2)"

|

EHre™ T 2 TEHT = EHy (Z n—)) ¢Hy = EHpéHT + O(EY),

n

without the free propagator appearing at all. By including the scaling and consistently counting all orders
of it, the singular-coupling limit is thus recovered by the standard perturbative methods.

Remedy of the Bloch-Redfield Equation

A similar argument suffices to remedy the Bloch—Redfield equation for sequential tunnelling. We recall that
these are obtained by a perturbative expansion of the von Neumann equation in the tunnelling Hamiltonian
Hr by only applying the Born and the Markov approximation, but none else. This means that all bath
correlation functions include the splitting Q). We therefore find terms of the form

Q
f(eVg + 5 Ha) |tcw|2

in the full equation’s dissipator. Like in the previous paragraph, we restore the scaling variable £ and perform
a Taylor expansion, as for non-zero temperature, the Fermi functions are smooth,

Q , Q
f(evgiég_#a)mmf %f(eVg—/,ta)|ftM|2:|:f (eVg—ya)fzglftmlﬁ...
:f(eVg_Ha)|£taa’2+O(f4)-

By counting the orders of £ consistently, the dissipator, which itself is already of order O(&?) loses all
dependence on the splitting Q, which is the result of section 6.3.1.

In the treatments of the problem by Braun ez a/. (2004, Sec. VI) and Darau ez al. (2008), it is this argument,
which is used to obtain a master equation for a near-degenerate system. Although the resulting equation is
correct, one should always bear in mind that such an expansion of the bath correlation functions is only a
remedy of the non-positive Bloch-Redfield equations and not an approximation that is applied to simplify
the problem.



mmo Chapter 6 The Singular-Coupling Limit

There is, however, one caveat for the remedy of perturbation theory. If one counted the orders of &
properly, the first correction of the sequential-tunnelling dissipator due to non-zero splitting Q, would
appear at O(&*), which is the co-tunnelling regime. For the derivation of a fourth-order master equation,
we might want to take such contributions of the near-degeneracy into account. As it is clear from the
discussion of the Bloch—Redfield equation in chapter 2.1, these terms are still not of Lindblad-type and as
such would not yield a completely positive contribution to the dissipator. This comes about as, although
one could view co-tunnelling as happening on a Markovian time scale, the corrections due to splitting
would only describe sequential tunnelling, which need not be Markovian.

6.3.3 'The “Singularity” of the Limit

'The notion of the singular-coupling limit is actually rather old. Hepp & Lieb (1973) are the first to define
the setting in the context of the theory of Lasers and their non-equilibrium dynamics. Although, so they
write, the description of an inert reservoir and its interaction with a localised system is quite at hands, “it
is quite another matter to prove that the effect of the reservoir is really as tame as it would appear to be.
Since different reservoirs can produce different stationary states for the laser, the reservoir is of paramount
importance to the laser.” Hepp & Lieb classify several types of reservoirs according to their time-correlation
function

k(1) ::/Re’“’t(clcw)odw,

where the operator ¢, is the annihilation operator of a free particle of the bath with energy w. For
equilibrated fermions, (c/ ¢,,)o would be the Fermi function f(w),and x(t) would be its Fourier transform.
Hepp & Lieb distinguish two fundamental types of reservoirs: if the support of «, which is that part of the
domain of the correlation function where « # 0, has a finite measure, they call the reservoir regular. If the
support of k has measure zero, which usually means that the correlation function is localised in a single
point x(t) o< §(t), the reservoir is called singular. Hepp & Lieb use this term, because the energy of a
singular reservoir “has neither an upper nor a lower bound”.

Palmer (1977) maps Hepp & Lieb’s definition of the singular-coupling limit as a property of the reservoir
to an equivalent limit, where the system’s Hamiltonian is of the same order as the system—bath interaction
squared: “singular-coupling” then becomes a property of the syszem. This latter idea is the situation we have
been discussing in this chapter and is the result of our physical reasoning concerning the quantum transport
problem. The details of Palmer’s calculation are sketched in appendix F.

6.4 Applications

In the following two sections, we apply the singular-coupling limit to different transport problems, a
two-level Anderson model and the molecular models that one can derive from it. We show that we are
able to access the transport regime that lies between the description by rate equations and the description
by the degenerate master equation. Both have been studied extensively in chapters 3 and 5, respectively.
The reasoning that had actually led our discussion to considering the singular-coupling limit was the focus
on the system Hamiltonian’s energy scale and its relation to the tunnelling-induced energy scale. The
discussion of all these energy scales, including the one of the bath, allows us to give physical meaning to the
rate-equation description of degenerate systems, which in general would be considered wrong. The relation
between the different energy scales of the system €, the bath kg T, and the system—bath interaction I' as it
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is described by the degenerate master equation is
Q < T « kgT.

Since in the degenerate master equation we actually assume Q = 0, this seems a contradiction. But in this
regime there are no signatures of ) neither in the dissipator nor in the Hamiltonian part of the master
equation, and as such it is just not present, which means it is effectively zero.
In the singular-coupling limit, we have shown by the discussion so far that we are able to access the
energy regime
O, T < kgT.

We cannot overcome the barrier Q) << kgT' by increasing the numerical value of the splitting Q, as the
relation is the result of a limit process. From the localised system’s perspective the reservoirs are infinitely
hot and by the definition of “infinity”, they will stay so for every finite value of Q. Instead for QO — oo, we
obtain an infinite distance of the splitting to the tunnelling induced broadening I'. As we shall demonstrate
within the discussion of the first example, ) — oo yields a solution of the stationary master equation with
all off-diagonal elements of the reduced density matrix being zero. The master equation thus only couples
the populations p;;. The ignorant implementation of a rate equation for describing quantum transport
through a degenerate nanostructure is, however, exactly the same equation. We can therefore interpret the
description of a multi-level system by a degenerate rate equation as accessing the energy regime

I' < Q <« kgT.

The splitting is too large to maintain the coherent physics of the degenerate (or near-degenerate) master
equation, which is the meaning of the relation I' <« Q, but it is still too small to be resolved by the bath
correlation functions, for Q) << kgT. Such an energetic resolution could only be achieved if

'« Q, kgT,

which is not reachable from the level of master equations but only by using the non-degenerate rate
equation for the electronic and vibronic populations of the molecule that we have discussed in chapter 3.

6.4.1 Quantum Dots

'The first example of a quantum transport problem in the singular-coupling limit is the simplest nanostructure
we can think of: resonant tunnelling through two levels. The formal result of the singular-coupling limit is
that the splitting Q has to be added to the degenerate master equation only as a Hamiltonian term. In
terms of a pseudo-Bloch equation, this is a pseudo-magnetic field directed along the z-axis. The equations
we use in chapter 5 are therefore recast as

—

5= Z[fa1P0+ (far— (1= fwr) ) p1—(1- faz)Pz] Za:?a fart (1= fa) ]S (B+Qé;) xS (6.4.1)

d PO —2fm (1~ fa1) 0 | 1~ ful

dt = Zr 2far ~far=(=fu)  2(1-fa2) +— faz (1-fum) I’I(X (6.4.2)
PZ 0 Ja2 ~2(1- fa2) —fa2

[\.)
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10°
Figure 6.1: Fit of the reduced density matrix’s off-diagonal
- 107 element Repy, (red) and Impy, (green) as a function of the
;‘ splitting Q by the function f(Q) = 375 (solid line each).
= 1072 The hyperbolic relaxation of the coherence effects is very
§ clear for larger splitting. For small €, there are deviations
o from the fit, as the terms due to I do still play a significant
~ 107 role. The model has been evaluated as U =2.35kw, eVyq =
-2.35hw, such that the pseudo-magnetic field vanishes
1074 and only the influence of the splitting is observed. The

couplings are T' = (1,1,0,1), and Q € [0,500].

The off-diagonal element of the reduced density matrix py) = 5 (S +1S,) is determined by the equation

NEDY [falpo + %(faz ~ (1= fw))pr - (1- faz)PZ] Ya = (%F +1(B; + Q)) P+ %1Bx5z’

o

where I':= ¥, To( faz + (1= fa1) ) has been abbreviated. In steady-state, py, =0, and we can solve the above
equation for

1

IT+1(B,+Q)

pri = {Z [fapo+ 5 (foa = (1= fa))pr = (1= fa)ps | v+ %szsz} -
«

In the limit Q — 0, the equation tends to the result already known from the treatment of degenerate systems;
the singular-coupling limit is a theory, which is continuous at Q = 0 by construction. Although this seems
to be a trivial observation, it has to be noted since the description by rate equations and degenerate master
equations alone constitutes a theory that is 7o# continuous at ) = 0. The singular-coupling limit thus meets
expectations on this side. On the other hand, since all terms in the equation for py; are either constant or
bounded by a finite number like for example |p;;| <1 by definition, we can estimate

1

la,—‘ S C,
;T +1(B, +Q)

1
lpnl < C 5‘ (6.4.3)

for some positive constants C,C’ < co. Hence py; -0 as O — oo. The precession induced by Qé; is so
fast that the master-equation dynamics due to tunnelling can only resolve the averaged dynamics of the
pseudo-spin, which is its projection onto the z-axis. The asymptotic master equation in steady-state, p =0,
is solved by a diagonal density matrix and hence is only a rate equation for the populations. In the singular-
coupling limit, the Hamiltonian term given by Q does not couple to the diagonal elements of p, and as
such the asymptotic equation is the very equation that one would have formulated for a degenerate system,
if one had used a rate equation instead of a degenerate master equation. As we have pointed out in the
introduction to this section, this is consistent with the description one would expect in the energy regime
[ << Q «< kpT. The master equation in the singular-coupling limit therefore also meets the requirements at
the border to rate equations and thus is the desired interpolating theory between both rate equation and
degenerate master equation. We show the evolution of p4, the real part of which being the quantity that
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15 Figure 6.2: Plot of the stationary current of an interacting
1. two-level quantum dot T = (1,1.5%,1.5%,1) at eVy=0asa
0.5 function of the splitting Q computed with the master equa-
o I tion in the singular-coupling limit. The Coulomb energy
- 05 is U =2.35hw. The splitting Q ~ T is measured in units of
1. 2n
1.5 0 "
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determines the coherent contribution to the stationary current, as a function of Q in Figure 6.1. Although
the estimate (6.4.3) only provides an upper bound, the asymptotes do well fit against a hyperbola. In
Figure 6.2, we plot the current-voltage characteristics of the two-level interacting Anderson model. We use
the master equation in the singular-coupling limit and increase the numerical value of the splitting Q2 from
zero onwards. The signatures of the coherent on-site dynamics, the suppression due to the decoupling of one
level from the drain electrode and its smoothing out by the influence of the pseudo-magnetic fields vanish
as Q) becomes larger. The tip of the current suppression curve, which for Q=0 lies at |eV4|= U, moves,
because the zero of Bg+€, which determines the tip’s position, is being shifted as a function of Q. Although
the strong current suppression is lost within one order of magnitude of (), the actual recovery of the flat
current profile is algebraically slow in the splitting. Such effects should be observable experimentally as
even the master equation in the singular-coupling limit features a generic negative differential conductance
for very larger energy differences Q.

We want to note that since there are two points of exact current suppression, one for positive and one
for negative bias, which for Q=0 are at [eVy| = U, as the splitting Q) is increased both move into the same
direction in Figure 6.2. The pseudo-spin description provides an intuitive graphical framework to explain
this fact and relates the direction of the tip’s motion to the orientation of the pseudo-magnetisations 7.

We consider the configuration shown in Figure 6.3 (a) and (b). For negative bias (a), the dynamics is
understood easiest in the drain-decoupled basis with é,/ 1} 7. The residual pseudo-magnetic field induced
by electronic tunnelling is directed along 7g; for positive bias (b), the situation is reversed. The tip of the
current suppression curve is found at the very voltage3 eVStcilp’i where the full pseudo-magnetic field

(Bs(ev™) + Qé.) |lip. (6.4.4)

In the regime where the current suppression is active, that is below the double-charging threshold, the
source’s pseudo-magnetic field itself is an increasing function of the bias voltage,* Figure 6.3 (c). To decide
whether e\/'st(;p *(Q) is an increasing or decreasing function of Q, which defines the direction of the tip’s
motion in the Figure, we have to understand the alignment of Bg with respect to 7.

3 With the additional superscript +, we indicate whether we refer to the tip at positive or negative bias voltage.
* For this discussion, we assume eV, = 0. The generalisation of the argument to finite gate voltage is straightforward.
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Figure 6.3: Relations of the pseudo-magnetic fields and the splitting ) for negative (a) and positive (b) source—drain voltage. The
coupling parameters are T = (1,1.5%,1.5%,1). Depending on the sign of (#ir,).~ (7R ), the point of exact current suppression moves
either to positive or to negative bias for increasing Q. (c) Qualitative behaviour of the source electrode’s pseudo-magnetic field Bg
with U =2.35kw for kgT =0, when the principal-value integral can be evaluated as a logarithm.

'The value of the principal-value integrals that multiply the pseudo-magnetisation rig to form the source’s
pseudo-magnetic field Bg is

21Bs (ps) = P (6.4)

fs(S) f f s(€)
with pg= %|eVSd|. In Figure 6.3 (c), we show the qualitative behaviour of the pseudo-magnetic fields:
for eV < U, the integral is negative, and for eV,4 > U it is positive. From the geometric construction in
Figure 6.3, we see that |1’§s(eVSt(iiP ") is an increasing function of Q. But since for negative bias the pseudo-
magnetic field has to be anti-parallel to 7R, the integral (6.4.5) has to be negative with increasing modulus.
From Figure 6.3 (), we see that in order to become more negative, the voltage has to tend to zero. Hence
thp’ — 0 as Q) — oo. For positive bias, condition (6.4.4) requires Bg 1} #iy,, which by the same argument
amounts to thlp’ —2U for Q) — oo. Therefore, as () is increased, both tips move from eVUp’ =+U towards
positive bias. If (1i1,);—(nir), >0 that is the opposite case of the just discussed scenario, the geometric
construction shows that both tips would move towards negative bias. Due to this argument, we understand
that the motion of the current suppression curve’s tip as a function of the splitting € has to be unidirectional.

The direction is defined by the sign of the difference of the pseudo-magnetisations’ z-components.

6.4.2 Molecules

The second application of the singular-coupling limit to the quantum transport theory are the molecular
models, whose degenerate formulation we have discussed in chapter 5, the Anderson—Holstein molecule
and the E®b Jahn—Teller molecule. To conclude the section, we also show that we can treat molecules with
general linear electron—phonon coupling, which, due to the asymmetric polaron shift is only possible in the
singular-coupling limit.

Anderson—Holstein Molecules

'The Anderson—Holstein molecule is the simplest extension of the two-level Anderson model to single-
molecule junctions. Both electronic levels are linearly coupled to the vibrational mode, and most importantly,
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Figure 6.4: Scan of Q at eV, =0, eV € [-5hw,5hw], U =2.35hw, (a) Anderson-Holstein molecule with A =1.1,T = (1,1.5%,1.5%,1).
The splitting is not measured in units of 4w but, due to the singular-coupling limit Q ~ I in units of 2Xv,. (b) E®b Jahn-Teller
molecule for the same parameters.

by the same coupling constant. The phenomenology of the degenerate, 2 =0, model shows the coherent
current suppression with steps and peaks at the positions of the vibronic excitations. As we have discussed
in chapter 5.3, for intermediate electron—phonon coupling, the model’s behaviour is a superposition of the
phenomenology of the electronic levels and the vibronic sideband structure.

In the numerical evaluation of I(eV4) as a function of Q) in Figure 6.4 (), the current suppression is lifted
for larger splitting ), and the small vibronic peaks develop into well-defined steps of the current profile,
which are typical for the rate-equation treatment. Due to different tunnelling-induced pseudo-magnetic
fields BY, for each vibronic excitation but constant splitting Q, the lifting of the coherent structure and the
recovery of the flat profile is different for each sideband. In Figure 6.4 (a), the various vibronic sidebands
emerge at different values of Q.

Jahn—Teller Molecules

For molecules with the E®b Jahn-Teller eftect, the linear electron—phonon coupling is defined by Ay =-4,.
We have discussed the consequences of the thus broken symmetry of the Hamiltonian in the electronic
Hilbert space H, for the degenerate transport characteristics in chapter 5.4. Due to the inability to decouple
all vibronic excitations of a single electronic level from the drain electrode, the coherent current blockade
being the generic phenomenology of Anderson—Holstein molecules is in general only visible if the zero of
the source’s pseudo-magnetic field is at a voltage below the first vibronic sideband. In Figure 6.4 (b), we
show the Q-dependent stationary current at zero gate voltage for intermediate charging energy. As we
have claimed, the current blockade is localised close to zero bias and vanishes quickly as the splitting € is
increased. Since the zero of Bg, where the current blockade is tully developed, is shifted towards higher
voltages for large charging energy and therefore far beyond the first vibronic sideband, systems with larger
Coulomb repulsion will not show any suppression at all.

For finite Q, however, we can shift the zero of Bg so far that it enters a voltage regime below the first
vibronic sideband. Then the vibronic ground state of the system can become dark and a coherent current
blockade for finite Q) can be observed. We show our findings in Figure 6.5, where we plot the current
suppression due to finite Q. Figure 6.5 (a) shows the current profile for eV, = —~hw and varying splitting
Q. The dip in the stationary current for Q~0.6 is due to the mentioned effect. Diagrams (b) and (c)
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Figure 6.5: (2) Scan of Q for the Jahn-Teller molecule at eV, = —Aw, T = (1.72,1,1.4°,1), U =10Aw, 1 =1.1,and k3T = 0.02Aw. (b)
stationary current for Q =0, eV, €[0,5hw], eV, € [-2.5hw,2.5hw]. (c) same plot, however, with Q = 0.6, where similarly to the
Anderson—Holstein molecule, a trough in the stationary current due to the coherent blockade effect is visible.

show a complete current-voltage profile in the (eVj,eVyq)-plane. For Q=0 (b), the current suppression is
absent for all voltages. For Q=0.6 (c), on the contrary, there is a deep trough of suppressed current, slightly
reminiscent of the phenomenology of the Anderson—Holstein molecule, but only for the first vibronic
sideband and negative gate voltage.

General Electron—-Phonon Coupling

In the introduction to the degenerate master equation in chapter 5, we have considered the general situation
of linear electron—phonon couplings. For degenerate electronic systems, these can be always diagonalised
leaving only the identity and the 0, component of the electron—phonon coupling matrix in the electronic
Hilbert space H,

A=XNld+ .0

Due to the polaron transformation, after which we are in the position to actually derive the master equation,
because all vibronic structure has been transferred to the tunnelling matrix elements, the system’s electronic
levels will acquire an energy difference

/\% - /\2 = (AO + /12)2 - (AO - /12)2 = 4/1()AZ.

For the degenerate theory, Q =0, we have to choose either the Anderson—-Holstein model, A, =0, or the
E®b Jahn-Teller model, 19 =0. Using the theory of this chapter, however, we can go beyond this sharp
distinction and consider molecules with both Ay and A, being non-zero to form hybrids between both
models. Such models are interesting, because the different electron—phonon coupling of the system’s
levels amount to different Franck—-Condon matrices. In chapter 3, we have discussed the influence of the
Franck—Condon matrix on the transport properties at the level of rate equations and we have found a
remarkably strong dependence of the phenomenology on the details of the model. For general two-level
systems, the singular-coupling limit allows us to study molecules where one level is only weakly coupled but
the other is already in the Franck—-Condon blockade regime. The current suppression then competes with
the coherent physics due to the polaron shift Q =41\, which allows for a precession of the pseudo-spin
between the Franck—~Condon blockaded state and the state with intermediate electron—phonon coupling.
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Figure 6.6: Stationary current of a single-molecule junction with general electron—phonon coupling. We set 1, =4 while A4 € [1,4];
U =2.35h0,T = (1,1,1,1.1%), kg T = 0.02 w0, eV, =0,and eV, €[0,10Aw]. (a) scan without taking into account the different polaron
shifts of the levels, (b) scan wizh the polaron shifts. One can clearly see that assuming always a degeneracy produces more structure
in the cross-over regime than modelling the asymmetric polaron shift as a near-degeneracy.

In Figure 6.6, we show the numerically computed stationary current for zero gate voltage as a function
of the bias and Ay, where A} =4, such that the respective level is Franck—-Condon blockaded for low bias. In
Figure (a), we ignore the asymmetric polaron shift: in Figure (b), we incorporate it via the singular-coupling
limit O =4, =A7-A7.

For Ay = Ay, the system is fully Franck-Condon blockaded in the low-bias regime, where both diagrams
show the known suppressed current profile. In the opposite case with A| =4 and A4 =1, only one of the states
is in the Franck—Condon blockade, while the other ought to have a finite conductance. This is, however, only
the case for source—drain voltages before the first vibronic sideband. In this regime, the Franck—-Condon
blockaded state seems to be almost decoupled from both electrodes compared to the couplings of |1).
'This is due to the exponentially suppressed elastic rate Ffo. Due to be defined by virtual transitions, the
x-component of the pseudo-magnetic field By is, however, quite large. Following the arguments given
in chapter 5.4.1, the pseudo-spin S° of the vibronic ground state vanishes as a whole, and the stationary
current is determined by the conductance of the [1) state alone, I ~ 3 T{°, which is of order unity. After the
bias voltage has been raised beyond the first vibronic sideband eV,q > 2fw, this picture breaks down, and
the stationary current vanishes almost completely.

In principle, a suppression of the stationary current for finite bias needs an absorbing state. In the
master-equation dynamics, such a state is usually generated by a unitary transformation, which removes
one of the tunnel couplings to the drain electrode. A Franck-Condon blockaded state like ||) in this
example already has an almost vanishing tunnel coupling, although with respect to both electrodes, such
that also the process for populating the state is suppressed. The difference of the Franck-Condon matrices
tor difterent electron—phonon couplings and the availability of the first vibronic sideband do, however,
provide a mechanism to overcome this restriction and populate the Franck—Condon blockaded state, lock
the electron on the molecule, and suppress the stationary current until the double-charging threshold,
where a finite current can be transported by the second electron on the molecule.

'The Franck—Condon matrix of a molecule with intermediate electron—phonon interaction A ~1, Fig-
ure 3.3 (b), is quite centred at the elastic |0;q) ~ [1;q) transitions and allows inelastic transitions |0;q) —
|1;q+k) with small k~1,2 to proceed at similar rates. The Franck—-Condon blockaded molecule on the
contrary allows |0;0) — [1;q) for larger q only. Due to the asymmetric electron—phonon coupling treated
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here, the molecule can use the |1)-state to climb the vibronic ladder from the ground state via several
inelastic tunnel processes and then exploit the finite overlap of a highly excited vibronic state with the
ground state of the Franck—-Condon blockaded state ||) to populate ||;0), from which it cannot escape
to the drain electrode due to the Franck-Condon blockade. The probability to climb the vibronic ladder
with rates of order O(107") is large compared to the exponentially suppressed I'"°, such that |{;0) becomes
absorbing with an entry channel that, similarly to the E®e Jahn—Teller molecule discussed in chapter 3.5 is
a tunnel cascade involving highly excited vibronic states.

Between the first vibronic sideband and the double-charging threshold, we therefore expect a suppression
of the stationary current, which is verified in the numerical data of Figure 6.6 (a) and (b). In the cross-over
regime Ay = A}, the fully degenerate treatment shows a regime where neither suppression mechanism, the
Franck—Condon blockade and the climbing of the vibronic ladder, is fully applicable. There, we expect
a finite current due comparable Franck—-Condon matrix elements and non-zero pseudo-magnetic fields.
Such a structure is indeed observed in Figure 6.6 (a).

If we treat the system consistently and start with degenerate states before the polaron transformation,
and incorporate only the energy difference due to the polaron shift, the finite current for intermediate
electron—phonon couplings is damped by the additional action of the pseudo-spins’ precession due to Qé.
There is no cross-over effect.
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Conclusion

If we shadows have offended,
Think but this, and all is mended,
That you have but slumberd here
While these visions did appear.

Shakespeare, 4 Midsummer Night’s Dream

In the course of the research that has led to this thesis, we realised that in the model approach to molecular
electronics—being opposed to any ab-initio treatment—there were two descriptive concepts for the weak-
coupling physics being used in the literature: rate equations, which are an intuitive implementation of the
sequential electronic hopping picture by Fermi’s Golden Rule, and master equations for the full reduced
density matrix, which are applied to more complex nanostructures featuring orbital degeneracies. In the
first part, we presented a derivation of these equations from the full von Neumann equation, which is due
to Davies, where the distinction in rate and master equations is only determined by the spectral structure
of the system Hamiltonian. Davies’s approach rests on astonishingly few assumptions, as for example the
Markov property is a result of the choice of an asymptotic time scale, which at the same time causes the
collapse of the master equation into a rate equation for non-degenerate systems. We were thus able to
distinguish between phenomenology due to the coherences in the reduced density matrix and physics being
intrinsic to the rate-equation part of the master equation.

In the following, we gave a thorough account on the phenomenology of the thus obtained rate equations
when being applied to common models of molecular electronics. Although the equation describes the
sequential tunnelling of electrons between well-defined states, we emphasised the importance of first
computing the stationary probability distribution, which is dynamically balancing all probability flow,
before modelling the current—voltage characteristics using the dynamical picture of electrons hopping onto
and off the quantum nanostructure. As a result, we were able to understand various phenomena due to
strong electron—phonon coupling, asymmetric coupling to the electrodes, and strong vibronic relaxation.
Some of these were related to experimental observations, and we succeeded in isolating their essential
physical mechanisms in effective two-state models. In the example of electronic transport through an E®e
Jahn-Teller molecule, we could thus model the interplay of two time scales in the dynamics and reproduce
the relaxation-induced deformation of differential-conductance peaks very accurately. Furthermore, we
understood the Berry-phase induced current blockade also as a consequence of the two-dimensional
structure of both the electronic and the vibronic Hilbert space.
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Although, as we showed in chapter 3, the current blockade effect in the EQe Jahn—Teller molecule is
independent of the basis of the electronic Hilbert space, due to the degeneracy, the problem would have had
to be dealt with by a master equation for the full reduced density matrix and not by rate equations for the
electronic populations alone. Being well aware of the resulting loss of the intuitive electron-hopping picture
in a description by master equations, we first embarked on a discussion of a non-interacting two-level
quantum dot. The absence of Coulomb interaction and the availability of a closed solution for the transport
problem makes this system a controlled environment in which the dynamics of the master equation can be
contrasted with the exact results of a Keldysh analysis. We found that the only effect of the coherences
so far, is to rotate the eigenstates of the free system in the electronic Hilbert space by an angle that is
defined by the tunnel amplitudes. A description in terms of the pseudo-spin defined by the degenerate
two-level system partially restores intuition as the master equation being recast as a pseudo-Bloch equation
predicts the spin’s stationary orientation according to the pseudo-magnetisations of the electrodes, which
are defined by the very tunnel amplitudes

Leaving the protected sandbox and turning to molecular models in chapter 5, we had to include both
electron-electron interactions and electron—phonon interactions in the theory. The pseudo-spin description
proved to be useful as we found that the free choice of basis in the electronic Hilbert space leads to a
generic form of the tunnelling Hamiltonian, in which one of the electronic levels is disconnected from
one electrode. Along with finite charging energy, this causes a suppression of the stationary current
over a wide range of voltages. The generic suppression of the current and its partial restoration by the
pseudo-spin’s precession due to virtual intermediate states in the electronic reservoirs is the paradigm of all
master-equation phenomenology in the present context. Understanding its physics allows us to explain
the steady-state behaviour of multi-level single-molecule junctions in a wide range of parameter regimes
with complicated electron—phonon coupling like the E®b Jahn—Teller effect and also persists when the
number of electronic modes in the reservoirs is increased. The latter, which leads to a generalisation of the
decoupling paradigm in terms of the rank of the non-interacting self energy with respect to tunnelling at a
single electrode, is a first step towards modelling real-life systems such as suspended carbon nanotubes,
which enjoy a growing interest in transport experiments.

With the phenomenology of the two types of equations being so different, although they have been
derived by the same method, we sought to find a way to connect both descriptions. Having such a description
is also justified from a practical, non-methodological point of view, as one could imagine an external field,
a magnetic field, say, which allowed to tune a two-level system’s energies from the degenerate master-
equation regime to the non-degenerate rate-equation regime. Using again the controlled environment
of the non-interacting two-level system, we realised that the cross-over regime could be accessed by not
only letting the tunnelling-induced broadening tend to zero in the derivation, but also the induced energy
difference thus keeping their ratio fixed in perturbation theory. By using Davies’s method again, we did not
correct the unusable Bloch—Redfield equations by a suitable approximation but rather derived the results
consistently from beginning to end.

With our previously sharpened intuition of master equation dynamics, we could understand the additional
contributions due to near-degeneracies to the precession dynamics of the molecular pseudo-spin in steady-
state. The connection to rate equations was then achieved by letting the numerical value of the energy
differences tend to infinity, which means we let the near-degeneracy become very large with respect to the
tunnelling-induced broadening. This reproduces the rate equation description of a degenerate nanostructure
and thereby closes the circle from rate equations to master equations—there and back again.
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Having laid the conceptual basis with a profound understanding of the transport properties of simple
model systems, we can extend the work into several directions. The two most immediate generalisations are
to give up the restriction on the number of electronic levels and to consider the coherent dynamics in a
degenerate electronic Hilbert space of dimension larger than two, or to consider different asymptotic time
scales and hence go beyond the sequential-tunnelling regime.

Systems with more than two degenerate levels might show different transport phenomena than the
one’s found in this work. Although we have accounted for the situation of an arbitrary number of levels
and reservoir modes from the point of view of the decoupling mechanism in chapter 5.5, a quantum
nanostructure with three degenerate electronic levels can for example model the adiabatic potential of the
quadratic E®e Jahn-Teller effect (Bersuker & Polinger, 1989, chap. 3.1.1) and enter the regime of strong
electron—phonon interactions with physics beyond the Franck-Condon blockade. Braig & Brouwer (2005)
formulate the general master equation and give numerical results for a number of examples, but the precise
interplay and the role of the individual oft-diagonal elements of the reduced density matrix remains unclear.
'The extension to three or more levels not only enlarges the number of independent elements of p but due to
Coulomb repulsion also reshufles the structure of the different energy manifolds, because the dimension of
the degenerate Hilbert space depends on the number of excess charges by a binomial factor. It is therefore
not clear whether density matrix theory, which relies on wave functions, or general many-body methods
like Green function analysis, which deal with the particle number instead, are more appropriate to cope
with the growing complexity of the molecular Hilbert space.

Considering the master-equation description beyond the sequential-tunnelling regime, is experimentally
relevant as, for instance, co-tunnelling generates vibronic sidebands inside the Coulomb blockade (Luefte
et al., 2008), which can be measured experimentally (Huettel e# a/, 2008). The rate-equation formalism can
be generalised by a further expansion of the von Neumann equation in terms of the tunnelling Hamiltonian.
Leijnse & Wegewijs (2008) even keep the formal coherences between different oscillator states in their
master equation. As we have shown in this work, such expansions have to be treated very carefully when
dealing with degenerate or near-degenerate systems. Although, for example, a consistent expansion of
the propagator in terms of the tunnelling Hamiltonian to fourth order would yield a contribution of a
sequential-tunnelling process o< £2H7 combined with one from the near-degeneracy §2Q, such terms are
not of Lindblad form thus posing a potential threat to positivity. In the sense of Davies’s derivation of the
master equation, only the slowest asymptotic time scale defines the Markov regime. And so a consistent
treatment of higher-order tunnelling necessarily amounts to allow for non-Markovian contributions, where
Lindblad’s theorem is not valid.

From a mathematical perspective, the discussion of non-Markovian contributions is necessary to obtain
a consistent picture of the system—bath interactions. In the application of effective and ad-hoc theories to
experiments one cannot but help to acknowledge the power of these, mathematically incomplete, theories.
We have shown how even a sequential-tunnelling rate-equation description suffices to account for the
asymmetries in the transport characteristics of suspended carbon nanotubes although these systems feature
many degenerate levels and a complex electronic structure. It is thus important to not only ask for a complete
and rigorous description but also to ask why the ad-hoc expansions yield so astonishingly good results.
Posed differently, although the perturbative approach is missing terms, why are these of no importance and
can we devise situations, where they do become important and determine the transport properties?

For this endeavour, we need more sensitive probes for the non-equilibrium reduced density matrix than
just the stationary current. Already in this work, we have seen that current—voltage profiles can mimic
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the rate-equation behaviour although the coherences are non-zero. Thus a consequent next step in an
investigation of the non-equilibrium dynamics would be to consider the higher-order cumulants of the
stationary current, that is shot noise and skewness. From the microscopic and theoretical approach, one
could also simulate the time evolution of a single pure state under the master equation. For rate equations,
the Metropolis—Hastings algorithm proved a useful tool in unravelling the tunnelling cascades that lead to
certain features in the steady-state transport characteristics. Simulating the time evolution under the fully
coherent master equation with a quantum-jump technique or quantum-state diffusion might provide a
similar useful insight into the pure-state dynamics.

The theory that we have presented in this work is an effective high-temperature theory. This is seen at
two stages. First, by performing perturbation theory, and especially using the scaling approach, we always
stick to the regime I' << kg T'. For the master equation, this has the eftect that neither a near-degeneracy nor
the tunnelling-induced energy renormalisations can be resolved energetically by the bath. Second, once the
master equation in the weak- or singular-coupling limit has been obtained, the low-temperature regime
cannot be accessed by simply letting kg T — 0. The most obvious argument, why the two limits—except for
single-level models—do not commute, although one could formally set kgT =0 in the Fermi functions, is
the divergence of the principal-value integrals that exactly describe the tunnelling-induced renormalisations,
we wish to resolve energetically. In order to access the low-temperature regime, were kgT << T or kT ~T,
by Markovian master equations, we would have to employ a scaling strategy similar to the idea underlying
the singular-coupling limit.
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Convergence Properties

In this first appendix, we give some further details on the convergence of the operator K*(7) — K, which is
required in the derivation of the master equation in chapter 2.3. We first calculate the limit by hands like it
is usually done in condensed matter physics. We then discuss the role of the convergence-generating factor
1, which is commonly used in the calculation of typical integrals. In the last part, we then give the precise
criteria for the convergence of the operator as they are posed by Davies (1974).

The Non-Rigorous Calculation

. . . —108 -
We assume for the time being that as 7/& — 0o, we can approximate e *“"* by e (£s*£E)! We thus only

need to consider the convergence of

i o8 Crers
K*(7)(ps ® p) = _/0 e Trg (ﬁs-Ee (EsHLe)uLs pps ® PE) du.

Replacing the Liouville operator L£g_g by the commutator with Hs_g, we find the explicit action of K on a
reduced density matrix pg

. /&
R (7)(ps ® pE) = /0 e'“5" Trg I:HS—Ex e TR [Hy g, ps ® PE]] du.
By the definition of the Liouville operator, we have the operator identity
e (EsHLE A = Uy (1) AU (1),

with the unperturbed propagators Us(t):=e™"#s* and Uy(t) := e~ (Fs*HE)! With all these preparations,
we can state the operator K in full detail:
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The cyclic property of the trace allows us to insert the free propagator of the bath and thereby extend
the free system’s time-evolution operator Ug to the free time-evolution operator Uy of the unperturbed
Hamiltonian,

Uo(~u)Hs g Uo(u)Hs g (ps®pg) Uo(—1) Uo (1))
Uo(~u)Hs £ Uo(4) (ps®pE) Hs £ Uo(—u) Uo (1))
Uo(—u) Uo(u)Hsg(ps®pr) Uo(—u)Hs g Uy (1))
Uo(-u) Uo () (ps®pg) Hs £ Uo(~u) Hs £ Uo (1)) } du.

- /8

KE(n)(psope) = [ {Tre
—TI'E
—TI‘E

/N NN /N

+TI‘E

We replace the time-evolution operator Uy by an explicit time dependence of the system—bath Hamiltonian,

. /&
K*(7)(ps ® pr) = /0 Trp (Hs-g (u)Hs 5 (ps ® pe) — Hs-g(ps ® pp)Hs-g (1)) du + h.c.

In our choice of system—bath interaction, we completely ignore the electronic spin, for it only complicates
notations and does not add qualitatively different physics. The quantum number ¢ only labels an internal
electronic degree of freedom of the system, such that we have

Hg g = Z l‘k[mCLxdg +h.c..

kao

Here we assume a non-interacting system Hamiltonian Hg. In the presence of Coulomb repulsion, the
propagation frequency of the operators depends on the number of particles in the wave function it is acting
on, like it is shown in chapter 2.1. Then the time dependence of the operators is

cza(u) = e_le"”ch and  df(u) = e dl.

'The terms appearing in the integral have for instance the form

7 S o (e (s () s © )

kao

After converting the sum over k into an integral [, dev(e) with the density of states v(¢), we consider the
individual addends with respect to ¢ and, because it is the integral we are interested in, ignore the tunnel
amplitudes |tgq)*

/&
15(7)2'/(; /I‘Re_’(s_s”)”v(s)fa(e)dedu.

This integral is to be understood as an operator acting on d,d, ps. The trace over the bath results in the
equal-time two-point function, which for fermions is the Fermi function fy (&) = f(e€-qa). In order to
be able to evaluate the integral, we need to pose some conditions on the density of states v(e). Let v be
square integrable, bounded, and piecewise continuous. Square integrability is a sufficient condition for the
existence of the Fourier transform. Boundedness in addition guarantees integrability, which we need to
state the final result. By assuming a bounded density of states, we explicitly exclude exotic reservoirs with
van-Hove singularities. Since we usually adopt the wide-band limit, such systems are excluded from the
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discussion anyway. The piecewise continuity allows us to evaluate the function at every point of its domain.
'The Fermi function is bounded and for non-zero temperature also continuous everywhere, and hence
h:=vf has the same properties as v itself. The Fourier transform of h is called / and exists by definition of
h. 'The integral thus becomes

/&2

(1) = f "”’”f ’guh(s)dsdu:/(; o e'““h(u)du

0 fwelfa“h(u)du:m(sg),
where , is the half-sided Fourier transform. We conclude that the operator

= lim K%(7) = hm Kf( ) (A.o.1)

T—>00

does in fact exist.

The Convergence-generating Factor

The actual computation of the half-sided Fourier transform /1, can be tedious if not impossible. We would
rather like to exchange the order of integration and instead compute the integral

I, = va(e)f(e) fﬂ% e (et g de.

'This is, however, not possible as due to the non-existence of the integral over time, the exchanging of
integrals is forbidden. By rewriting the integrals as the limits of well-behaved functions, we can achieve the
existence of a related integral, which will be helpful for the actual calculations,

./];v/Re_’(s_e“)tv(s)f(s)dsdtz'/ﬂ‘v/RLi_r)r(l)e_’(5_8“_’”)tv(£)f(8)d£dt
:lim/+fRe‘l(H”‘l”)tV(s)f(s)dedt
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=}1Lna ]R v(e)f(e) fR +e*’<€*80*’">fdtds

= —zlim/ v(s)f(s);ds
-0 JR e—g5—11
Due to the existence of the smoothed integral over time, the limit can be taken out of the integral and
both integrations can be interchanged. The solution to the integral is then achieved by using a well-known
theorem, for which an intuitive proof is given in Merzbacher (1998, appendix A, Equation (A.19)). For any
integrable, piecewise continuous function g

. 8(e) 1 gle)
lim [ 5= f 8 4e — 1ng(0). (A.0.2)

The convergence-generating factor e """ is therefore not an artificial construct just to make the integrals
converge, but rather the proper description of the interchange of integrals over energy and time. The general
assumption of being able to model the electronic reservoirs in the wide-band limit and thus approximate
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v(e) by a constant is no contradiction to the required assumption of integrability. If we set g=vf in
Equation (A.0.2) and let v(¢) = v = const,, the principal-value integral would not converge. In the numerical
treatment, we thus impose a large but finite bandwidth D, within which v(e) = v and tacitly assume this in
every calculation involving the principal-value integrals.

The Mathematical Theorem

Davies (1974, Theorem 2.1) gives the precise conditions on the convergence of the operator K*(7) that have
to be met in order that the weak-coupling limit is well-defined.

1. For all 7; >0 there is a constant C such that for {<land 0<7< 7
|| <c.
2. 'The convergence to K has to be such that for 0< 7o <7< 7
. Ey el -
-] -
uniformly with respect to 7€ [79,71].

Davies shows that these conditions can be replaced by only requiring the bath correlation functions to
be integrable (Davies, 1974, Theorem 3.1), which in the wide-band limit with finite bandwidth D can in
general be assumed to hold true.



Appendix B

Explicit Form of the Master Equation

B.1 Master Equation

In this appendix, we give an explicit representation of the master equation derived in chapter 2.3 for
a degenerate two-level molecule with arbitrary Coulomb interaction U. For treating the effect due to
Coulomb repulsion, we use the fact that the master equation is diagonal in charge states and thus need not
to take into account any superpositions of states with a different number of electrons on the device. With
this restriction, which for sequential tunnelling is exact, the action of the system’s free Hamiltonian is

Hs|o) = &1]o) = (ea+eVg)|o)

Hg|06) = &3|06) = (2614 U)|06).

As we have shown in chapter 2.1, one therefore has to be careful when evaluating the self-energy corrections
to the unperturbed propagator as the free evolution frequency between two interaction vertices depends on
the state the system is in. Since the master equation only accounts for perturbation theory up to second
order in the tunnelling Hamiltonian, the failure of Wick’s theorem is no problem; there are no contractions
to be computed.

'The symbols we are using are defined by

po=10:a)(0sal,  psi=losa(osal,  pii=pz+pd,  p3:=I1sq) (Tsql.

The first entry of the ket specifies the charge state of the molecule and the second the number of excited
quanta of the harmonic oscillator in the polaron picture. For the electronic two-level system, we use the
pseudo-spin notation o € {1,| }, where ¢ denotes the opposite state of o. A similar notation is used for the
electrode index a. The electrons are fermions, which requires to choose a definition of the wave function of
the doubly occupied state: |2) :=|1]) = dlrd;r |0). The matrix elements of the molecular terms in the tunnelling
Hamiltonian for having a neutral or a doubly occupied state therefore differ by a sign

(Mg dl [ 1) =t = (Lleadf 10y (1]egd]] 1) =ty = — (1| t5d] | 0).

We also assume real tunnel matrix elements and the wide-band limit for the electronic reservoirs, that is
the density of states is independent of energy and then set to unity for convenience. We define several
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short-hands for the transition rates and cast them into the form of Golden-Rule rates:*

_2n
pq . pdb e _ ETap tpg.

2
M= o |dAf, ¥l
h at “al h al “at

n

The matrix t2 is an element of the matrix-valued tunnel amplitude generated by the polaron transformation
t9 =t (ple™*(*'"P) g). A missing index on T or y indicates that the sum over the respective index is
implied. The symbol P [ stands for the principal-value integral.

—Zfa(sl—eo)l"pquJrE(l fa(€1 Sg))Fo’f?Pg
ap

aop
+Z(1—f“(sf—sg))y§q2Rep§& (B.r.12)
p3= Z(l fae3=eN)) T 3+ 3 fulel - )Tiept
aop
Zfa(sz—el 1P2Rep? . (B.r.1b)

pa == fa(sz & )rpq (l_f“(sl _80))qu]

ap

[ fale-el)pit (1= fael —€D) )y [Repl,
ap

+Z:fa(£1 —80)Fggpng(l—fa(eg—e?))rggpé’)]

1- fao
ijd { Yaq+ 7 fP(S) VZP}Impff,-, (B.r.1c)
ef—el-e —&5—¢€

&7

Pas = E[fa(sl—so)yﬁppé’ (SACENS

—EZP[—fm—el)y (1= fulef ) v (b2 + D)
_%;[fa(sz_gi)rpq (1_foc(5i1 ))rqp]Paa
52 f el SOt L o o,

17

lZP/d { fa( ) pq 1- fvt( ) qp}(pg PO’) (BIId)

82—81—8 81 —8

Some cosmetic simpliﬁcations can be applied by noting that ['?1 =T'%” and abbreviating the Fermi factors

= f(el —el-uqy) and fF) = f(eh —el —uy) = f (el + U~el - o). In the Anderson—Holstein case, A, = A5,
also yP4=yiP 'The stationary current through lead & can either be computed using the formulae given
in section 2.4 or be derived from the above equations of motion by noting that this current is given by
the a-contribution of the expression -3, ( ph—p). This is due to the Ramo—Shockley theorem (Blanter
& Biittiker, 2000, chaps. 3.1 and 5.2). Given the capacitances of the tunnel junctions, cf, and cR, the total

' Although we mention the density of states v and PlancK’s constant # explicitly, we tacitly assume their values to be unity, as
they will not play any role in the theory.
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current through the device is
cLQRr + crQL
CR t+ CL,

I:

with Q, being the number of charges leaving reservoir « per unit time. For equal capacitances cg = cf,,
the steady-state particle currents through both junctions are equal and exactly described by the change of
probability of the neutral and charged state of the system. Either way we find*

To= far Ta P - Z(l IV - Y[ (1 T - £ |l
§ e (B.1.2)
_Z[(l_fal )Yk gYZPPRepr.
pq

'The current is assumed to be positive, when it is flowing ouz of the respective electrode. For positive bias,
one therefore finds I, = —IR.

B.2 Pseudo-Bloch Representation

'The only non-diagonal elements of the density matrix that remain non-zero in our treatment of the
molecular-electronics devices are those between degenerate (or near-degenerate) states. We only discuss
electronic two-level systems, which define a pseudo-spin on and inside the Bloch-sphere. As the Hilbert
space of the singly charged molecule is the product H,;, ® C?, the pseudo-spin also acquires a vibronic
index. We define S for every vibronic level g obtaining $9 with

S§=2Rep{, §,:=2Imp{, §:=pl-pl.

The explicit representation of the master equation in terms of the pseudo-spin $7 and the populations of
the three charge states p; is

Z[2fqp”3ppo +(fRA - (1= £ AP ) pl -2 f kL
___23[ 7 (1= £3) [raP §9- (B4 BYP) x §1

The pseudo-magnetisation 757 is defined by the tunnel couplings,

2y5!
nhd .= 0
Pq P4
rocT ral

'The pseudo-magnetic fields are defined by the principal-value terms and are parallel to the pseudo-

magnetisations 74

qu: ZP/ *‘Dq and Egp: E’P/ fa(€ *qp.

82—81 81—80—8

* For notational convenience we usually drop the angular brackets denoting the expectation value.
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The index indicates the excess charge of the virtual intermediate state. For the numerical implementation,
these integrals imply a large but finite bandwidth D, since in the wide-band limit, the integral over the full
real line diverges logarithmically. The equation for the populations is

d p§ 1 _zé%ql;%q Pq(igfflq)rgqi qp (;Jq Pq p§
a b ZEE 2fa1 1 _fazroc _(l_f(xl )roc 2(1—fa2)1"a b
o) F7\ o gt 0D \pl
Pq
1 1- al . 0 R
=) 0 |ah%.SP+| fOT |5k S
*p 0 0
1 0 0
+§Z ~(1-fIy |78P.s7+] o |ndP.sPY.
ap 0 _ 9P
a2

B.3 Equations for Systems without Phonons

We can often understand the fundamental physics of a molecular electronics device by first discussing
the dynamics with the bare electronic levels and then adding the vibronic structure on top. We therefore
formulate the above master equation in terms of the electronic state alone. Formally, this is achieved by
removing all vibronic indices.

B.3.1  Master Equation

'The master equation without the vibronic indices simplifies as several of the coupling constants become
equal and can be taken outside the brackets.

po=- Zf‘xlraPoJr Z(l_f(xl)r(xopa+ Z(l_focl))’aZRePtr& (B.3.12)
p2==3 (1= fu2)Tap2+ Y. farlusPo— . fazVu2Repos (B.3.1b)

pa :_Z[fazraé+(1_focl)roc0:|P0_Za:[_fa2+(l_fal)]YaReP06

]l e o8 1-/ale)
+Za:[f“1r“"p°+(l_f“Z)r“"pz] H;P‘/‘d {82—61—8 e-g—¢

pa&:Za:[falpo_(l_faZ)PZ:I)’a_%za:[_fa2+(1_f(xl):|)’(x(Po+P6)_%Za:[fa2+(l_f(xl):|rapad
_ilza:'])fde{ fa(e) +1_f0c(8)}(1—~a0_ oc{f)PU[f

}ya Impys (B.3.1¢)

E—&—& &—& —¢&

—%1;73_/‘515{ fu(®) +1_f“(£)}ya(p5—pg). (B.3.1d)

Er—&—& &—&—¢&

The stationary current through the tunnel junction at electrode « is obtained by contracting Equation (B.1.2)

Ioc = falrapo - (1 _f(xZ)raPZ - Z[(l _fal)rtxa _faZFaé]PU - [(1 _focl))/a +fa2)’a:|2RePN-

o
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B.3.2 Pseudo-Bloch Representation

Just like for the master equation for the molecule, the system without phonons can be described by an
equation for the pseudo-spin and the populations

N | =

$=2 Y [2fapot (fur- (=) 2120 fu)pa a5 [ fer+ (- fa) [FaS-BxS, - (B320)

J Po ] —2fu (1= fa1) 0 Po ] 1-fu .
m P :Ezroc 2fm —fur—(=fu) 2(-fx2) || 11 +EZ far— (1= fu1) |Ha-S, (B.3.2b)
P2 * 0 fa2 -2(1-fa2) J \ P2 * —fa2

B % ZP/ fa(s)(Ul_E . %)deﬁa. (B3.20)

'The stationary current in this notation is

1 1 .z
In =Ty [fapO - E((l _fa) _focZ)Pl - (1 _faZ)PZ] - 5((1 _ftx) +f(x2)ntx -S.
By considering the dynamics of the electronic levels only and neglecting any oscillator excitations, our
equations acquire a form similar to those of Braun e a/. (2004). There, however, the pseudo-magnetisations
are the actual magnetisations of ferromagnetic reservoirs, whereas in our context they are defined by the

tunnel amplitudes.

B.4 Numerical Implementation

'The numerical implementation of the above equations is straightforward. The density matrix is mapped to

a vector
Po
pp 0 0 0 p1
0 Pt PN o1 P
0 pyy P O p2
0 0 0 P2 RepN
Impy,

'The extension to the system with phonons is done by defining a cut-off N of the phonon number and
enumerating the individual states by the vibronic index: for example

0
b
!
por|*)
N
Py
Splitting the off-diagonal element of p into its real and imaginary part has the advantage that the master
equation becomes a linear equation in a rea/ vector space. The numerical algorithms available for real-valued
problems are much faster than those involving complex numbers, although the possibility of operator-
overloading of C++ simplifies the treatment of complex variables drastically. The master equation can thus
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be written—not just symbolically or with superoperators but actually—
p = Mop,

where M is a suitable matrix implementing the above linear equation. Its unique steady-state solution is
tound by computing the kernel of the matrix M and normalising the result with respect to the populations3
'The kernel of M is the solution of the linear equation Mp = 0. To find this, one replaces one, say the ith, of
the equations with the normalisation condition |p|| =1. The thus obtained matrix M’ for the linear system
has empty kernel and the solution to the linear system

Mp=é, (B.4.1)

where ¢; is the vector with the ith element being one and all others zero, is the normalised stationary
density matrix in vector form. If the solution to Equation (B.4.1) is not unique, this is an indicator that the
master equation splits into two or more independent sub-systems. This behaviour is seen for instance in
the decoupling regime for the master equation, chapter 5.1 or in the non-equilibrium treatment of the E®e
Jahn-Teller problem, chapter 3.5, where the appearance of many dark states renders the solution non-unique.

3 Obviously, if p = (po,pt>py,p2,Repry, Impyy ), the trace norm is || p| = po+pr+py + pa.
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'The Metropolis—Hastings Algorithm

'The Monte-Carlo technique is a powerful and widely used stochastic method for approximating integrals
numerically. For example, the area enclosed by an arbitrary curve C in the plane might be difficult to
compute by implementing Riemann’s method by further and further subdividing geometric partitions of
area to be computed. Using a huge number of randomly chosen points of the plane and dividing them into
two sets: inside and outside the closed curve, the number

Nin

Ac(N)= —2
C( ) Nin""Nout

approximates the area enclosed by the curve as the total number of chosen points N = Nj, + Ny = 00.

'The Monte-Carlo technique can also be used to solve the master equation of the weak-coupling transport
problem. At first sight, such an approach is unnecessary as the master equation is a linear system of equations
and can be easily solved numerically. Also the time evolution of the density matrix can be computed by
exponentiating the Liouvillian, which is only a finite-dimensional matrix. What a Monte-Carlo simulation,
however, produces in addition is a time-evolution of the system in terms of guantum jumps. This corresponds
to the intuitive picture of single particles hgpping from the electrodes onto the molecule and back again.
One thus simulates a single quantum trajectory of a pure state under the Schrédinger equation. By summing
over many realisations of a trajectory, one obtains the mixed ensemble that is given by the time evolution of
the density matrix due to the master equation. We thus get a very good picture of what the system actually
does in a single realisation of the stochastic time evolution defined by the von Neumann equation. We can
trace the trajectory into dark or almost absorbing states like in chapter 3.5 and thus not only understand
the actual mechanism of a current suppression but follow the time evolution of the system through tunnel
cascades, which in turn helps to understand the conditions to actually observe such a current suppression.
By simulating the time-dependent current through the device, one also obtains an intuitive feeling of the
different time scales that are present in the system’s dynamics. We used such a technique to understand
the relaxation-induced modifications of the differential conductance peaks in chapter 3.5. Koch & von
Oppen (2005b), for example, use Monte-Carlo simulations to show that the time-dependent transport of
charges through a Franck-Condon blockaded Anderson-Holstein molecule proceeds in self-similar charge
avalanches. The Metropolis—Hastings algorithm, which is due to Metropolis e# a/. (1953) and Hastings
(1970), used for the simulation of rate-equation dynamics is very simple and intuitive:'

' See for instance Koch (2006, appendix F).
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Given a state |i) with exit channels | f) and associated transition probabilities T/, the probability
of a hopping event between time t and t+dt is given by the exponential distribution

pexit(t)dt = Z I‘i_’fe_(Zf riﬁf)tdt‘
f

If an event occurs, the target channel is chosen according to the distribution

ri~f
Prarger(f) = W

There are two widely used methods available to port this concept to general master equations, which
actually provide a rigorous derivation of the Metropolis—Hastings algorithm from the equations them-
selves: quantum-state diffusion (Gisin & Percival, 1992), which is a purely stochastic interpretation of the
Schrédinger equation, and the quantum-jump approach (Dalibard ez 4/, 1992; Dum ez al., 1992). Gisin ez al.
(1993) show numerically that quantum-state diffusion implies the quantum-jump technique and since the
latter is technically less involved and more intuitive, we shall focus thereon.

'The quantum-jump approach to open systems has first been used in the field of quantum optics, but
it is equally well applicable to electronic transport problems. Plenio & Knight (1998) review the history
and the conceptual background of the technique and give a broad overview over possible applications. The
approach divides the Markovian dynamics of the master equation in two sets of processes: a coherent
evolution due to an effective Hamiltonian and discontinuous jump processes. Assume a quantum-optical
two-level system |g) and |e) with an externally applied laser field. The field will drive Rabi oscillations
of the two-level system, mixing |¢) and |e). Once in while, a photon will be emitted spontaneously in
the surrounding radiation field, which acts as a dissipative environment, and the system will be reset to
the ground state |g). This process is interpreted as a measurement on the quantum mechanical two-level
system that projects the superpositions «|g)+f|e) onto |g); it induces the collapse of the wave function.
'The theoretical description relies on the Lindblad form of the Markovian master equation for the reduced
density matrix p,

p= —z[HS,p]+g(ZapaT—aTap—paTa)

= —z[HS—zgaTa,p]+yapa+

= —1[Hegp]+yapa’,

with a coupling constant y and bosonic bath operators a, a'. By rewriting the master equation in this way,
part of the dissipative Lindblad dynamics has been absorbed into an effective, non-self-adjoint operator
H.g:=Hg—1 %a*a. 'The second operator on the right-hand-side of the master equation is interpreted as the
jump operator S, acting on a pure state |y)(y| by

Sly) (vl = yaly) (yla',

which on the wave-function level of quantum mechanics corresponds to the map |y) = /yaly). In an
infinitesimal time step, the operator S removes a photon from the combined atom—field system, and we can
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count this photon as having been emitted spontaneously. The probability that a quantum jump occurs in
the time interval [t,t+dt] is given by (Carmichael, 1993, chap. 7.4)

Piump()dt = Tr(Sp(t))dt

Dalibard ez al. (1992) and Dum ez a/. (1992) provide a numerical algorithm, which implements this interpre-
tation of the master equation

1. If the system is in state |y), determine the jump probability pjump ().
2. Draw a random number and decide whether a jump has occurred or not.

3. If the system jumps, map |y) — a|y) and renormalise the wave function. If the system does not jump,
continue the non-unitary time evolution generated by the effective Hamiltonian [y) + e "Hei?|y/)

and renormalise.
4. Repeat the above procedure for many time steps.

5. Repeat the computation of the single trajectory such that an ensemble average for the time-dependent
evolution of observables is obtained.

'The connection to the implementation of the Metropolis—Hastings algorithm for rate equations is made
by an explicit application of the quantum-jump technique to the rate equation. For simplicity, we only
consider a two-state system, a quantum dot, whose reduced dynamics is given by an explicit evaluation of

the Lindblad equation

po=—-Wotdd  (cTe) po— WO poddT(cTe) +2W 0 cctYdpydT
pr=-w"d d(cch)pi- W pidtd(cch)+2w 7 (T e)d  pod.

'The equations assume the familiar form

0—1 1-0

Po==T"""po+I"""p1
p'l — _I‘l—>0p1+r0—>1p0,
for the suitably redefined rates

1=t 2w%Ycfe) and 1702 2W0(cct).

The notation is self-explanatory: the index indicates the charge state of the system and W'~/ is the wave-
function overlap of the transition |i) ~ |j), which together with the factor of two and the bath correlation
function constitutes the transition rate. Normalisation of the probability distribution po+p; =1is implied.
'The operators d are dot operators, ¢ abstractly describes the bath particles, and (-) denotes averaging with
respect to the equilibrium bath distribution. Using the fact that there are only two states, we have

dp() =0= d]Lpl.

As such the dot operators correspond to the projection operators d'd = |1)(1] and dd' =[0)(0]. Since there
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is no coherent internal dynamics, Hg =0, the effective Hamiltonian in matrix form? is

wol(cTe) 0 ) .

Hy=—
off = 7 ( 0 Wl_’o(ccT)

The vanishing of Hg is a consequence of assuming zero gate voltage. For finite gate or, for instance, a
molecule with an internal harmonic oscillator dynamics, Hg is diagonal in the chosen basis. The time
evolution generated by Hg only amounts to a dynamic phase. This is different from the quantum optics
problem, where the external field couples the atomic states, in which case Hg would be non-diagonal. The
coherent evolution between two quantum jumps is, due to H.g being non-hermitian, an exponentially
damped evolution of the two charge states. The jump operator is given by its action on the density matrix

Sp =2WHcTe)d pod + 2W = cctdpod”.

'The induced “collapse operator” that projects onto the respective charge state is3

C = \2woi(cte)d" +\2w=0(cctyd.

Combining all of the above, we see how the quantum-jump approach being applied to a rate equation
realises the Metropolis—Hastings algorithm. The time evolution of a wave function |i) between two jumps
is

[i(£)) = e Hert[i(0)) = €721 |i(0)) .

Then the probabilities decay according to
pi(0) =[i(0) (i(t)] =™ " pi(0)
and the probability for a quantum jump in time [¢,¢+d¢] is
Piump(£)dt = Tr(Sp(£))dt = T dt,

which is the result obtained by direct application of the Metropolis—Hastings algorithm. The rate equation
for a single molecule between two electronic leads is treated the same way. Additional vibronic degrees of
freedom do not add new internal dynamics; since there are no coherences between states with different
phonon number considered in the rate equation, the eftective Hamiltonian is also diagonal in the phonon
number.

* We set é:=|0) and é; :=|1).
3 Note that we do not sum over the states |j) as there is only one of them, namely the other charge state.
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'The Jahn—Teller Effect

In molecular physics, where one uses the Born—-Oppenheimer approximation’ to separate the fast electronic
motion from the slow dynamics of the nuclei, there is a connection between orbital degeneracy, that is
degeneracy of electronic states, and the spatial symmetry of the molecular geometry. Jahn & Teller (1937)
discuss the stability of nuclear geometries that have the same symmetry as the degenerate electronic orbitals.
By an exhaustive investigation for an enormous number of point groups they are able to prove a theorem®

“All non-linear nuclear configurations are ... unstable for an orbitally degenerate electronic
state.”

As the striking consequence for the equilibrium configuration of the molecule, they infer

“...if we know of a polyatomic molecule that the nuclei in the equilibrium configuration do
not all lie on a straight line, then we know at the same time that its ground electronic state
does not possess orbital degeneracy.”

'They construct perturbations of the potential energy of the molecule from the symmetric configuration in
terms of the normal modes® {Q; } of the molecule that do respect the invariance under the respective point
group and show that none of these perturbed potential energies has a minimum at the origin. Ruch &
Schonhofer (1965) and Blount (1971) give a rigorous proof of the Jahn—Teller theorem in terms of group
theory.

The Jahn-Teller theorem has severe implications for the kinematics of the molecule: the potential energy
term of the nuclear part of the Hamiltonian has no local minimum at the symmetric configuration {Q; =0}.
There is at least one normal coordinate along which the potential energy is lowered. Such a mode is said
to be Jahn—Teller active. The geometry of the molecule in equilibrium is therefore 7oz invariant under
symmetry group that produces the orbital degeneracy, but it appears to be distorted. These distortions are
so-called Jahn—Teller distortions.

In their extensive textbooks on the Jahn-Teller effect, Bersuker & Polinger (1989) and Bersuker (2006)
clarify two widespread misunderstandings of the Jahn-Teller effect. First, the Jahn—Teller distortion does

' See for instance Baym (1990, pp. 471).

* A proof by example is, of course, no proof at all. Jahn & Teller check the theorem for a great number of cases and hereby,
since they are unable to construct a counter example, suggest the validity of their theorem.

3 The quantities Q; are measured with respect to the symmetric configuration; they denote the displacement of the respective
normal coordinate of the molecular vibration from the symmetric geometry.
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Figure D.1: Illustration of the adiabatic potential energy surfaces of the E®e (left) and the E®b (right) Jahn—Teller effect. Whereas
the E®b Jahn-Teller effect only has the harmonic oscillators shifted with respect to each other, the E®e Jahn—Teller effect’s
adiabatic potential is obtained from the E®b effect’s by a rotation about a vertical axis from where it acquires its two-dimensional
structure.

not remove the degeneracy. Although for a specific set of normal coordinates {Q;}, the electronic energies
of the previously degenerate orbitals differ, there are still other points {Q!} in configuration space with
exactly the same energy. This is due to the fact that by the invariance also of the perturbed potential energy
under the symmetry group G, any element g of that group can generate another configuration from any
given solution without changing the energy. The breaking of the symmetry is spontaneous. The symmetric
solution of the problem at {Q; =0} is itself invariant under G, but the energetic ground states are not. The
graphical representation of the potential energy terms for the Jahn—Teller effects treated in this thesis
illustrate this property in Figure D.1.

Bersuker’s second remark concerns the Born—-Oppenheimer approximation. The picture of separable
electronic and nuclear degrees of freedom is void in Jahn-Teller problems. Close to the point of degeneracy
{Q; =0}, the different sheets of the adiabatic potential energy surfaces, which actually intersect in that
very point, come very close to each other. One of the basic assumptions for using the Born-Oppenheimer
approximation is that the energetic difference of two such sheets is large compared with the energy Aw of
the nuclear vibrations. Under this assumption, it is guaranteed that excitations of normal modes cannot
change the electronic state of the molecule and therefore do not mix the electronic and vibronic degrees of
freedom that the Born—-Oppenheimer approximation pursues to separate. In the Jahn-Teller problem, such
a situation is not given as the potential energy surfaces intersect. A separate discussion of electronic and
nuclear dynamics is not possible, and the Schrédinger equation of the fu// problem has to be solved instead.

We sketch the mathematics and the group theory that are necessary to acquire some understanding of
the Jahn—Teller effect. The material is compiled from Jahn & Teller (1937) and Bersuker (2006) for the
physics and Cornwell (1997) for the group theory.

Given a group G with elements g, we denote their representations* by I'(g). Representations T of G
are linear transformations—matrices—on a vector space X. A representation I' of G is called irreducible
if the only I'-invariant subspaces of X are the empty set and X itself. The different irreducible represen-
tations are given symbols according to their dimensionality: dim(A) =1, dim(B) =1 (this representation
is antisymmetric under rotations), dim(E) =2, dim(7T) =3, dim(G) =4 (this representation is sometimes

* Although we use the same symbol as for the Golden-Rule rates, there ought to be no confusion between the two concepts.
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also denoted by I'), and dim(H) =5. A subscript g or u refers to the behaviour—gerade (even) or ungerade
(odd)—under parity transformations. A number as a subscript is used to distinguish different irreducible
representations of the same dimension and parity.

'The nomenclature of different Jahn-Teller effects is a tensor product of the representation of the electronic
states (in capital letters) and the representation of the vibrational states (in lower-case letters). The EQb
Jahn-Teller effect is due to a two-fold electronic degeneracy coupled to a single vibrational mode, the T®h
problem is due to a three-fold electronic degeneracy coupled to a five-fold vibrational degeneracy.

'The proof of the Jahn-Teller theorem amounts to computing perturbations of the potential energy V/
around a configuration that is invariant under some group G. Consider an irreducible representation I’
of G and the associated normal coordinate Qr, which is the coordinate describing the amplitude of the
I'-symmetric deformation, for example a breathing mode; see Bersuker & Polinger (1989, pp. 16) for other
concrete examples. Then if ¢, and ¢, are nuclear wave functions of the irreducible representation T, the
matrix element

/ A%
ng = (¢U|E|‘Pp>

defines the linear electrostatic force driving the system out of the symmetric configuration. If Fg;) vanishes,
the Qr» mode will be stable. The Jahn—Teller theorem states that for non-linear molecules, there is always a
set of indices such that Fg; is non-zero and therefore that there is always one mode along which distortions
are unstable. Due to time-reversal symmetry F, g;, is real and symmetric. Due to the orthogonality relations
of irreducible representations,; it will vanish as long as I is not an element of the symmetrised product
representation [I'?] (Bersuker, 2006). Equivalently, F};;, =0 if the identity representation is not present
in the product I'[T?] (Jahn & Teller, 1937). A simple example is the electronic basis of both the E®b
and the E®e Jahn—Teller effect. Molecules exhibiting these Jahn—Teller effects are for example octahedral
complexes. Due to the presence of a rotational symmetry C,, of order n >2 in their symmetry group, there
are two-dimensional irreducible representations Ey with k < n. The symmetrised square is

A1+BI+BZ for 2k = %
A1+ Ey else.

By the interaction of single-level molecular vibrations of type B or B, with an electronic doublet of type
Ey, the first case produces the E® (b;+b;) Jahn—Teller effect. Similarly, doubly degenerate vibrations of
type E,i cause the instability in E®e systems, when interacting with electronic orbitals of Ej-type. For a
derivation of the Hamiltonians in terms of wave functions we refer to Bersuker & Polinger (1989, chap. 3.1.1).

5 The Wigner—Eckart theorem is one example of a well-known application of these orthogonality theorems to physics.
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Appendix E

Franck—Condon Matrix Elements of the
E®e Jahn—Teller Molecule

In this appendix, we discuss the quantum mechanics of the two charge states of the E®e Jahn—Teller
molecule, whose transport properties are analysed in chapter 3.5, and their connection by the tunnelling
Hamiltonian. In the neutral state, we assume the molecular coordinates to behave like an isotropic two-
dimensional harmonic oscillator; in the singly charged state, the molecule is supposed to be E®e Jahn-Teller
active. We assume the charging energy so large that there is at most one electron on the molecule. The
potential energy terms of both charge states are U(1)-symmetric in the plane spanned by the degenerate
distortions such that a natural description of their quantum mechanics uses polar coordinates. In the first
section, we discuss the quantum mechanics of the two-dimensional harmonic oscillator in polar coordinates.
'The results will serve as a basis for the numerical diagonalisation of the E®e Jahn-Teller Hamiltonian in
section E.2. In the third section of this appendix, we show how the numerically computed eigenstates of
the neutral and the charged configuration are used to compute the Franck—-Condon matrix in the E®e
Jahn-Teller transport problem.

E.r 'The Two-Dimensional Isotropic Harmonic Oscillator

The two-dimensional isotropic harmonic oscillator is a standard problem that is given to students in
the introductory course on quantum mechanics. Once the solution for the one-dimensional problem is
known, it can be generalised to higher dimensions with ease. The cartesian representation, which makes
the problem so simple, is, however, of no use to us, because due to the rotational symmetry of the E®e
Jahn-Teller Hamiltonian, the harmonic oscillator has to be solved in po/ar coordinates. Pauling & Wilson
(1935, chapter IV-17) give a thorough and comprehensible solution to the problem.

The stationary Schrédinger equation for the harmonic oscillator of unit mass' in dimensionless polar
coordinates is

1 1
-3 20 - 53+ 0| w(r0) =280 (r.g).

Due to the U(1)-symmetry of the potential energy, there is an associated angular-momentum quantum

" For reasons of readability, we also set i=1. Planck’s constant can be reintroduced at any stage of the calculation by the
mapping w + 7 and E ~ h%
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number, which is conserved, and we can use the separation ansatz

1me
b

y(r.9) = x(r)e

which provides an ordinary differential equation for the radial wave function y(r),
1 2
—X"——X'+(m—2+w2r2))(=2Ex. (E.r)
r
We let 1 — 0, approximate w”r*~2E » w”r?, and find as the asymptotic equation for r — oo
4wty =0,

which, by the same approximation, is the asymptotic form of the differential equation —y" +(w?*r*~w) y =0,
w2
whose bounded solution is yaqymp(r) =€~ 2" . This suggests to further separate the asymptotic solution

from y such that with the ansatz y(r) = 3" P(r), we find

1 2
Py (Zwr— —)P’+ (m—z +2w—2E)P=O. (E.r.2)
r T

This equation can be solved in closed form using confluent hypergeometric functions of the first kind
1F1(d,b,2),

E E
_ -m, -2 l_m_; _ 2 _a\m, =z 1+m_5 2
P(r)=Cir"w 21F 5 J-mrw |+ C(-r)"w2 1R 5 A+mrrw|. (E.r.3)

The constants C; and C, are constants of integration and are determined by the initial conditions of the
g y

problem. The functions | F; have special properties that characterise the solution (Abramowitz & Stegun,

1970, chapter 13),

1. The confluent hypergeometric function 1 Fi(a,—b,z) is undefined for all non-negative integers b € Ny.
In that case, the respective part of the solution (E.1.3) is set to zero. Without loss of generality, we
set m >0 in Equation (E.1.3), since Equation (E.r.1) is invariant under the change of sign m — —m.
We therefore only have to care about the second addend in Equation E.1.3. In the case m =0, both
hypergeometric functions are equal.

2. For positive integers n and k, the confluent hypergeometric function of the first kind is related to the
generalised Laguerre polynomial L;" by

1F1(k}’l+1Z)_( .)'k()

3. 'There is a series expansion

1F(abz)= Y (a)nz

neNg (b)ﬂ m

in terms of the Pochhammer symbol (x), := [T}_g (x+k).
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Due to the existence of a series expansion of 1Fj, we can rewrite P(7) =Y ,cn, @n? p2nem

and neglect all
unnecessary pre-factors. With the knowledge of P/(r) and P"(r), we use the differential equation (E.r.2)

to derive a recursion relation for the coefficients a,,. Let k:= E/w, then

ann 20 (2+n+1+m-k)
a,  (2n+2+m)?+m?

Gn+1

behaves like 5, and hence a, » (‘;) . For large r, it is the higher-order

monomials that contribute most to the value of the serles which means that for large r the radial wave

For large n, the ratio

function will approximately® behave like P(r) ~r"e 57 The asymptote of the radial wave function

would therefore not yield a square-integrable function, since lim,_, r"" = co. If, however, 2n+1+m =k,
the series terminates and due to P being a polynomial of degree k-1, y(r) e L*(R") can be ensured.
Considering the exact series expansion of F; in terms of Pochhammer symbols, the finite polynomial
degree of P translates into the condition that there exists some n € Ny, which enumerates the radial wave
functions, such that

2n+l+m=k < (a),=0 < a=-n.

This means that a has to be a negative integer. Since a=3(1+m—Z), this puts the condition on the

eigenvalues of the Hamiltonian to be integer multiples of the oscillator quantum, which is well-known

from the discussion of the problem in cartesian coordinates. Collecting all of the above results, we finally

state:

. Due to ae-N, %l_k =—n and thus |m—k|€2N+1. This condition in turn implies that also the
difference between n and m has to be odd.

2. 'The angular momenta are bounded by the energy m < k. Because m €N, k €N, too, and k-1 can be
the maximal value of m. Put differently, m is a lower bound for all possible values of k.

3. Since a=-n€-N and m >0, the solution permits a representation in terms of generalised Laguerre
polynomials.

'The radial solution of the two-dimensional isotropic harmonic oscillator is

(k (r2n+1)) !
P(r) = C(—r)’”wa_ll Ty (P ).
(==

The energy eigenvalues of the Hamiltonian in terms of angular momenta and radial excitation number are
E=w(m+2n+1) withneN.

'The graphical representation of these eigenvalues in terms of m and k is shown in the left diagram of

Figure E.1.

* Using Formula 13.5.17 in Abramowitz & Stegun (1970), this approximation is recovered from the leading terms.
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Figure E.1: Left: Location of the energy eigenstates with respect to angular momentum and radial excitation (m,n). Right:
Spectrum of the E®e Jahn-Teller problem for the lowest excited states as a function of the electron—phonon coupling A. Curves
with the same colour are radial excitations of the system with the same angular momentum j. The Jahn—Teller energy is defined as

Ejp:= ghw.

E.2 'The E®e Jahn—Teller Hamiltonian

Similar to the two-dimensional harmonic oscillator, the EQ e Jahn—Teller Hamiltonian (Bersuker & Polinger,
1989, chap. 3.1) comprises two degenerate oscillators whose coordinates Qg and Q. are coupled to two
degenerate electronic levels |[+) and |-). The adiabatic potential, which, due to the invalidity of the Born—
Oppenheimer approximation, can only serve as an idea of this problem’s quantum mechanics, is the
well-known “mexican-hat potential” (Figure D.1). We use Pauli matrices as operators in the pseudo-spin
space spanned by the degenerate electronic levels’ and neglect all references to the electronic spin. The
linear* E®e Jahn—Teller Hamiltonian is

1 1 hw
Hpge = eVg + 5(pg +w?Qp) + E(PSZ +w*Q) + /\—e (Qpox + Qc0y).
0

The strength of the electron—phonon interaction is characterised by the dimensionless constants A; the
quantity €o =+/h/w is the oscillator length for unit mass. The electron—phonon interaction can be recast in
polar coordinates (r,¢) of the coordinate space spanned by the degenerate oscillator modes

0 ei?
(Qg0x+Qsay)—r(ei(p 0 )
A technique to diagonalise the Jahn—Teller Hamiltonian has first been proposed by Longuet-Higgins
et al. (1958). They consider the Jahn—Teller problem in terms of the eigenbasis of the two-dimensional
isotropic harmonic oscillator. This is a natural treatment as for A =0, the Jahn—Teller problem reduces to
the harmonic oscillator being decoupled from the electronic modes. The basis in which we shall work

3 To be precise, we set é =|+) and é; =|-).

*'The symmetry-preserving expansion of the electron—phonon coupling can, in principle, be performed up to arbitrary order.
Bersuker & Polinger (1989) also discuss the physics of the quadratic terms. Here, we restrict ourselves to the linear terms in the
expansion: the linear Jahn—Teller effect.

5 Bersuker & Polinger (1989) use a different coupling constant, Vi := Av/hw?, with which the E®e electron—phonon coupling
is VE(QQO'X+Q€0'},).
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is the electronic basis |+),|—) multiplied with the eigenbasis of the two-dimensional isotropic harmonic
oscillator in polar coordinates. With the results of the previous section and the diagram in Figure E.1, it
is more convenient to use the energy k instead of the radial excitation number # as the second quantum
number besides the angular momentum m. We label the states of the problem |+;k,m) with k€N and
me[—-k+1,—-k+3,...,k—1]. For given m, the possible radial excitations are determined by the condition
n=1(k-(m+1)), which in the previous section was the condition for the radial wave function to be square
integrable. As we show in chapter 3.5, the Jahn—Teller Hamiltonian conserves the total momentum j:=m :I:%
of the vibronic angular momentum m and the z-component of the electronic pseudo-spin. The fact that, in
contrast to the harmonic oscillator and the obvious symmetry of the adiabatic potential in Figure D.1, the
conserved momentum is ha/f~integer can also be attributed to the Berry phase of 7 that is present due to the
conical intersection of the two sheets in the adiabatic potential. Indeed, the E®e Jahn—Teller Hamiltonian
was one of the first systems where the existence of a geometric phase was actually shown (Berry, 1984).
Due to the conservation of j, the Hamiltonian separates into blocks with fixed j. By the definition of the
total angular momentum, the symmetry restricts m to be in the range [j—3,j+1]. In the following, we
neglect the explicit mentioning of j in all quantities as we focus only on one j-subspace of the Hilbert space.
'The conservation of angular momentum induces not only a mixing between the two electronic states and
but also a mixing between electronic and vibronic states. As such, the Born—-Oppenheimer approximation
breaks down and the full Schrédinger equation has to be solved.

Given j, the |+)-state has angular momentum m" := j—1 =:m and the |-)-state has m™ = j+1 =m+1.
The energy quantum numbers are an odd integer larger than the respective m™ or m™. Thus the possible
quantum numbers k in the |+)-state are m+(2n+1), and m™+(2n+1) = m+(2n+2) in the |-)-state. In
terms of n and m, that subset of the basis of the Hilbert space with fixed j comprises the states

[+sm+(2n+1),m) and |-m+1+(2n+1),m+1).

These can be ordered according to the energy quantum number m+1 with I € Ny. The basis, in which the
Jahn-Teller Hamiltonian factorises into block matrices with fixed total angular momentum j, is

ey:=|+m+1,m)
ey:=|—m+2,m+1)
e3:=|+;m+3,m)

eq:=|—3sm+4,m+1)
ey :=|Hsm+1,m)
€42 = |sm+1+1,m+1)

'The only non-vanishing matrix elements of the Jahn-Teller electron—phonon interaction are (Longuet-
Higgins et al., 1958)

A= {k,m|Qg—1Qc|k+1,m+1) = (k+1,m+1|Qg+1Q;| k,m),
Bim = {k,m|Qg—1Q;|k-1,m+1) = (k—-1,m+1|Qg+1Q; | k,m),
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which are evaluated as

Akm:\/%(k+m+l) and Bkm:\/%(k—m—l).

Gathering all of the above results, the E® e Hamiltonian being restricted to total angular momentum j

turns out to be

m+1 A’}—‘;\/ﬁ 0 0 0

A/ m+l m+2 ALe1 0 0

0o 0 ALe1 m+3  ARm+2 0
Ege ~ 0 0 Mevmez  omesa AR
0 0 0 ALe2 mas

With a large but finite cut-off, this matrix is easily diagonalised with the help of standard numerical methods.
If the above treatment is repeated for each value of the total angular momentum j, the coupling-dependent
behaviour of the Jahn-Teller spectrum of Figure E.1 is obtained. From the Figure, it is obvious that in
the regimes of small and large electron—phonon coupling respectively, the system is characterised by a
completely different set of quantum numbers. For weak coupling, the quantum states are those of the
two-dimensional harmonic oscillator in polar coordinates, and the energies are found by perturbation
theory (Bersuker & Polinger, 1989, chap. 4.1.2). For strong couplings, the behaviour is different. We define
the Jahn—Teller energy Ejr:= ’\;hw and compute the approximate minimum of the lower sheet of the
potential energy surface in Figure D.1 in the radial direction (Bersuker & Polinger, 1989, chap. 4.2.1)

jZ
TON/le()(l-FF).

The excitation energies for the dynamics of the lower sheet are well approximated by

1 h2'2
Eﬁj%ha)E(fl+z)+—]—

E
2 JT-
2r0

'The strong-coupling spectrum is that of a quantum mechanical rigid rotor of unit mass with angular
momentum j and moment of inertia 3 plus harmonic oscillations in the radial directions, which are
enumerated by some quantum number 71 € Ny. Due to the strong-coupling assumption, the energy is
dominated by the oscillator, and the rotor spectrum appears as a rotational sideband structure in Figure E.1.
In contrast to the weak-coupling regime, where due to the two-dimensional harmonic oscillator structure, the
angular momentum defines the minimal energy of the respective irreducible component of the Hamiltonian,
the strong-coupling regime has no such lower bound. The qualitatively different asymptotes for weak and
strong coupling of states with fixed j, shine some light onto the cross-over behaviour of the energies, the
rapid fall-off, when sweeping the electron—phonon coupling. For fixed electron—phonon coupling A, this
tall-off produces very pronounced distortions in the spectrum of the system and by that property has a
significant effect on the transport properties of E®e Jahn-Teller molecules as the discussion in chapter 3.5
shows. Judd (1977) tries to give an explanation of the oscillatory behaviour of the eigenvalues and the
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accidental pseudo-degeneracy of states with the same n. His approach does not explain the underlying
physics but succeeds in computing the position of these pseudo-degeneracies rather accurately. He observes
that the Hamiltonian of the linear ys® 154 (and similarly the linear E®e) Jahn—Teller effect with angular
momentum j = —3 is exactly that of a displaced harmonic oscillator. Since the solutions of the latter are well
known, perturbation theory in j+3 up to third (and even sixth) order results in corrections of the energies
in terms of Bessel-functions of the first kind.

E.3 Calculation of the Franck—Condon Matrix

'The Franck—-Condon matrix is the heart of the tunnelling dynamics. It describes the wave-function overlap
between the vibronic states in the charged and in the neutral state of the molecule and is thus the correction
of the electronic Golden-Rule rate due to the electron—phonon coupling. In the Anderson-Holstein model,
where only one phonon is coupled to a single electronic state, the electron—phonon interaction is

Hgpn = Mo (b' + b)d'd.
'The matrix elements of Ht enter the tunnel rates as the square moduli

M = |(159]d" 039"},

where the first quantum number labels the number of electrons on the molecule and the second the vibronic
state. This model can be diagonalised analytically by a canonical transformation (Mahan, 2000, chap. 4.2),

which results, among energy renormalisations, in the mapping
ds e M0 g,

This operator is the displacement-operator, which shifts the potential energy by /21, into the direction of
the positive axis. The thus generated states are coherent states of the harmonic oscillator, and the distribution
of the displaced states in terms of the original Fock states are described by generalised Laguerre polynomials.
The Franck—-Condon matrix of this model has elements® (Koch, 2006)

gt ()

2
~[(0se ¢ g 0iq)

2
g A ' o
= (AQ Te™ %L,? q(ﬂ)) ,
where we have abbreviated g:= min{q,q'} and Q :=max{q,q’}. The second line is due to our freedom to
shift the origin of the integration in the spatial basis or, equivalently, the definition of the adjoint. Adding
more electronic states to the system without additional interactions would not change this form of the

Franck—Condon matrix.

¢ One has to bear in mind that the displacement operator is unitary but not hermitian. In a scalar product, it cannot be operated
to both the bra and the ket. In general, the operators are assumed to operate to the right.
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For the case of an E®e Jahn-Teller molecule things are more difficult, but the general scheme persists. We
have already obtained a first part of the transformation |+;n,m) ~ |0;n,m) by diagonalising the molecular
Hamiltonian. In the diagonal basis, there are pseudo-spin degrees of freedom, which have no meaning in
the unoccupied state. We have to represent both the eigenbasis of the Jahn-Teller effect and the tunnel
Hamiltonian Ht as matrices in the electronic Hilbert space and transform Ht according to the map
induced by the eigenbasis.

In the following, we consider block-matrices of electronic states and do not explicitly mention the
vibrational degrees of freedom. It is convenient to consider the full electronic system as a fictitious spin-1
system. The zero component of its z-component then describes the neutral state, whereas the +1 components
correspond to the z-component of the Jahn—Teller pseudo-spin. Using the order

éi=+), é:=10), é&:=|-),
the creation and annihilation operators are identified with the respective entries in the matrix’

did, 4 dld
d, 1 d_
dtd, d° d'd

The full set of quantum numbers is |s;q) =|s)®|q), such that the above matrix is block-diagonal in the
vibrational degrees of freedom. The matrix of the eigenvectors of the E®e Jahn-Teller Hamiltonian can be
decomposed into four blocks, which are only acting in the Jahn—Teller pseudo-spin space spanned by é;

A B
U= ,

which after including the neutral states and using the above defined matrix representation of second

and é3,

quantisation reads

Usnd quant =

O S »
S = O
O ow

For the representation of the tunnelling Hamiltonian Hp =Y, l‘wiciadi +h.c. in this Hilbert space, we
only consider one addend of the sum over the electrode index «

0 ter O
HTOC t;+ 0 t;_ >
0 t,. O

'The diagonalisation of the molecular Hamiltonian implies a transformation of Hr,. For the Anderson—
Holstein model, this results in the polaron transformation and the matrix-valued renormalisation of the

7 The notation means that for instance the matrix representation of the operator dtd,

1 0 0
did,~[o o ol.
00 0



Calculation of the Franck—-Condon Matrix 149

bare tunnelling rates. In the Jahn-Teller case, the Franck-Condon matrix is

0 ATty +Clt, 0
M, = U Hp U = | A2 +Ct: 0 Bt:, +Dt*_|,
0 Bty +D't,_ 0

and finally ng, = |M2q'|2. The renormalisation of the tunnelling Hamiltonian and thus the rates for
changing the internal state of the molecule by an electron jumping onto or off the molecule is given by the
block-matrices

(=| Mg |0) = (B tqs + Dt_) and  (+| My |0) = (ATtay + CTty )

and their hermitian conjugates.

The E®e Jahn-Teller Hamiltonian has a conserved quantity: the total angular momentum j:= m=1. The
tunnelling between the leads and the Jahn—Teller molecule will therefore be restricted by selection rules in
the angular momentum m. The above developed scheme helps to find these without tedious calculations.
WEe recall that each state of the singly charged sector, |j,n), can be written as |s;m,n) with s € {+,-}. Putting
the pseudo-spin state as a superscript to the m variable, one has |m~,n) and |m*,n), respectively. We are
only interested in the behaviour of the angular-momentum quantum numbers, which justifies to ignore
the n-part of the matrices by implying a suitable block-matrix structure. After the diagonalisation of the
Jahn-Teller Hamiltonian with the scheme presented in the previous section, each j-block of the eigenbasis
has the pseudo-spin structure®

(<m+|m+> <m+|m‘>).

(m~|m*) (m~|m~)
From this, we construct the block matrices A,B,C, and D:
A=(m"|m*), B=(m"|m”), C=(m |m"), D=(m |m").
'The Franck-Condon block matrices are accordingly
(Atg, +Cty_ ) =[{m" |ty +(m”|t;_]|m")
(Bty,+Dty ) =[(m*|ty, +(m”|t;_]|m")

for jumping off the molecule. We recall the relation m™ = m™ +1 for constant j from the previous section
and find the possible tunnel events, which amounts to identifying a selection rule,’

|+;m) > |O;m)+|0;m—l>
|-sm) > |0;m)+|0;m+1)

|0;m) = |+sm+1)+|+;m) +|—sm—1) +|—;m)

8 The notation of the scalar product, (m*|m™), say, represents that sub-matrix of the eigenbasis that, in the example, maps the
m~ components onto the m* components.

? 'The notation of this selection rule is only valid as an indication of which states are mapped onto which. It is zos the actual
map itself.
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These rules state that by tunnelling off the molecule the angular momentum in the |-)-state is never lowered,
while in the |+)-state it is never raised. By tunnelling onto the molecule, the rule is reversed. In addition to
the prescription of a certain direction of the tunnelling event in angular momentum space, the step-size is
restricted to one. In the language of the total angular momentum j, the effect of the selection rule is that a
tunnelling event can change the angular momentum or total angular momentum only by one-half;®

|0;m) — [1;m + %) N {lo;mﬂ)} N {|l;mi%)}m

|0;m) m3)

© Again, we refrain from denoting the radial excitations and only mention the charge and angular momentum quantum
numbers; [0;m) are neutral, and [1;j) are the charged states with m being integer and j being half-integer.
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'The Mathematical Theory of the
Singular-Coupling Limit

In order to understand that the formulation of the singular-coupling limit by Palmer (1977) is equivalent to
the original definition by Hepp & Lieb (1973), we need to introduce a mathematical formulation of second
quantisation. For references regarding the material covered in this appendix, see Davies (1976b, chap. 8) and
Bratteli & Robinson (1996, chap. 5.2.1). An application of the formalism to physics is given by Salmhofer
(1999).

Palmer formulates a Hamiltonian Hy® that by a suitable rescaling of the basis of the underlying Hilbert
space shows the singular bath correlation function that Hepp & Lieb (1973) use to define the notion
of singular reservoirs. He also states a weak-coupling problem H, which is the Hamiltonian used in
chapter 6, and proves that Hy can be mapped onto Hi proving that both formulations are equivalent. We
give a formulation of his proof, which without referring to Palmer’s mathematical rigour, elucidates the
equivalence of the two models and thus explains the terminology of the “singular-coupling limit”.

Fa Second Quantisation and Canonical Anticommutation Relations

In the mathematical-physics literature, second quantisation of quantum mechanics is formulated using C*-
algebras. From a single-particle Hilbert space H, for instance’ H = L*(R,dw), one constructs a fermionic

Fock space (Bratteli & Robinson, 1996) by directly adding n-fold direct products of H

f:@(éﬂ).

n>0 \ asym

'The space @y, H is the n-fold antisymmetric direct product of the single-particle Hilbert space: it is a
space that describes n fermions. The direct sum in the definition of the Fock space accounts for the varying
particle number in second quantisation. For n=0, 1 = C is the vacuum space. We also denote by y(") a
vector in the n-particle Hilbert space, that is an n-particle wave function.

Creation and annihilation operators are defined as elements of a C*-algebra over the Fock space, which

puts the whole machinery of functional analysis at our hands. For every f € H, one can define operators

" This is the space of functions f:R — R that are square-integrable with respect to the Lebesgue measure dw.
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a(f) and a'(f) acting on the Fock space by their action on the vacuum

a(f)y'@ =0 and a'(fy®@ =7

Similarly, without denoting the antisymmetrisation explicitly, their action on n-particle states is given by

a(f) (@& fu)=Vn(f.fi) O fu
a () (i@ f,) =Vn+1f®fi®--8f,.

The scalar product (-,-) is the one defined in the single-particle Hilbert space #. The elements of the
n-particle Hilbert space are antisymmetric combinations, and as such the Pauli principle

a'(f)a'(f)=0

is effective. By this property, the canonical anticommutation relations take the form

{a(f).a'(g)} = (f,g)Id. (Fr1)

Notice that they assume the form generally used in physics for f and g being elements of the orthonormal
basis of . This formulation, in contrast to the standard physics method, allows us to redefine the creation
and annihilation operators under invariance of the canonical anticommutation relations if we modify the

single-particle Hilbert space accordingly. This property is the key to Palmer’s proof.

F.2 'The Singular-Coupling Limit

Hepp & Lieb (1973) define singular reservoirs as being those with singular, that is §-like, time correlation
function. A very simple construction of such a singular reservoir is a Fermi gas with infinite temperature.

Then
K(t):/Re’“’t(chw)odw,

where the ¢, creates a fermion with energy w and (-)o is the trace with respect to the Fermi distribution,
becomes the Fourier transform of a constant. Another construction, which is given by Palmer (1977), Spohn
(1980, chap. V. C 2), and Friegerio & Gorini (1976), is comprehensibly reviewed in Accardi ez a/. (1992). Let
H* = L*(R,dw). Define the time evolution of a single-particle wave function f € H* by f;(w) =" f(w).
Also define a single-parameter family f*(w):= f(&w) of functions with time evolution?

fi(w)= e fi (@) = e T f(Ew).
Then a scaled Hamiltonian of the open quantum system is defined by
Hy = H§ ® Id+1d ® Hy + Hy g,

with HE ; := Q®a*(f*) +h.c. The operator Q is an arbitrary bounded operator acting on the system, and
the creation and annihilation operators of the reservoir particles are labelled by a superscript to indicate the

2
* Friegerio & Gorini (1976) for example use Gaussian representations of the wave functions with £ (w) = e~ (f)7/8+147,



The Mapping by Palmer 153

picture they belong to. The bath operator is assumed to be quasi-free in the sense that it operates on @ H
by operating on the single-particle Hilbert spaces only

H§(ﬁ®f2®---®f,,):i(ﬁ®f2®---®HSE°ﬁ®---®fn).

'The action on the single-particle spaces is then assumed to generate the previously defined time evolution.
'The time correlation function of the reservoir is

k(1) = (a7 (f7)a*(f*)o
_ <asc,1'(e—zwrff)asc<ff>0

=" f(Ew)f(§w))o

_ 10T 2 2 1

- [ e f(E ) T et
which for £ -0 converges to a §-function at 7 =0, since it is the Fourier transform of a function G(&w).
For the proof, see for instance Accardi ez a/. (1992, Example 2).

F.3 'The Mapping by Palmer

We discuss the integrated von Neumann equation (2.3.4) for the construction of the singular-coupling limit
of the previous section and then apply the transformation of Palmer in order to obtain the equation for the

SC

singular-coupling limit (6.3.2), which we use in this thesis. Consider Equation (2.3.4) being applied to H p

phe) = ph0) == [Tl [T Ty (£ e E L ) dv} e pl(o)do,

where all operators superscripted with “sc” are scaled by &. The key mappings from Hepp and Lieb’s
formulation of the singular-coupling limit to Palmer’s are a rescaling of time 7 = &*¢ and of frequency w = £ w,
which induces a dilation of the single-particle Hilbert space. The singular-coupling limit uses w, whereas
the equivalent weak-coupling formulation relies on w. The consequences of the second transformation are
most important. First the reservoir Hamiltonian is transformed H}® = §2H}s, as the dilation only affects the
eigenvalues of the Hamiltonian. In order to keep the reservoir’s equilibrium distribution invariant,

B (HYS - 1) = B (HE - ),
we also have to rescale temperature and the chemical potential
EZﬁwc — ﬁsc and ‘MWC — fzysc.

By performing the transformation from the weak-coupling limit to Hepp and Lieb’s formulation, a finite
weak-coupling temperature ¢ will become infinitely large, which substantiates the physical interpretation
of the singular-coupling limit and its quantum transport phenomenology we have given in chapter 6: from
the perspective of the isolated system, the bath appears to have infinite temperature and is not able to
resolve any of the system’s quantum mechanics energetically.
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By rescaling not only temperature and chemical potential but also the times o = &5, 7= £*t, and v = E%u,
the von Neumann equation eventually assumes the form

t sc g2 t=s sc g2 10582y Asc L5 E2g
P10 - ph(0) = =" [ 3| [ sty (£ e UL o) dul e E5E pl(s)ds. (B
'The mapping of the Liouvillians is actually a mapping of the Hamiltonian
EPH* = PHY + PHy + £Q @ a*(f°) + he.

into
H"™ = 8HY + H{ + £Q ® a™(f) + h.c.

The system Hamiltonian Hg is untouched HY® = HY and the reservoirs are transformed by Hy® = &2Hj.
'The final task for proving the equivalence of the two notions is to adjust the factors of & in the system—bath
interaction in Equation (F.3.1), for which we use the machinery introduced in the first section of this
appendix.

By defining new wave functions f := &f¢ with now? f e H" = L?(R,dw), we need to modify the creation
and annihilation operators such that the canonical anticommutation relations remain invariant. We

remember the general relation
{a(f).a"(9)} = (/. )4,

where the inner product is taken in the single-particle Hilbert space H. Consider two wave functions

£%,8° € H*. Then
8o = [ @0y g@a)do= [ 10 gow)dw = 5(F g

Hence if we map a"°(f):= £a™(f*), and for the creation operator accordingly,

{a(f%),a™(g")} = (@ (f), ™ (&)}

With this result, the transformation of the system-bath interaction is

1
Qea(f%) = zQea™(f).

such that finally 2L . = ££¢;, and Equation (F.3.1) becomes Equation (6.3.2) thus proving the claimed

equivalence of the two formulations of the singular-coupling limit.

3 Note the different Lebesgue measure.
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Zusammentassung der Ergebnisse

Bei der Modellierung realistischer physikalischer Systeme mit dem Anspruch, experimentelle Ergebnisse
addquat zu beschreiben, erfihrt die theoretische Physik seit jeher ein grundsitzliches Dilemma. Effektive,
generische Modelle miissen erweitert und damit komplexifiziert werden, wodurch im allgemeinen nicht
nur die Moglichkeit der geschlossenen analytischen Losbarkeit verloren geht. Vielmehr leidet oftmals auch
die physikalisch intuitive Interpretation der beschreibenden Gleichungen und ihrer Lésungen.

Im Kontext der Transporttheorie einzelner Molekiile, der Molekularelektronik, manifestiert sich dieser
Zwiespalt in der Spezialisierung der Markovschen Dynamik schwach mit den Elektroden wechselwir-
kender Nanostrukturen auf zwei vollkommen unterschiedliche Typen linearer Gleichungen. Je nach der
elektronischen Struktur des molekularen Modells und seines Entartungsgrades, folgt die asymptotische
Dynamik entweder einer Ratengleichungen fiir die Besetzungszahlen der elektronischen und vibronischen
Niveaus und damit dem intuitiven Bild einzelner elektronischer Sprungprozesse, oder sie gehorcht einer
Mastergleichungen fiir die volle reduzierte Dichtematrix, die Besetzungszahlen und Kohirenzen zwischen
entarteten Zustinden koppelt.

Die Intention der vorliegenden Arbeit ist, den durch die Mastergleichungen im Vergleich zur Raten-
gleichung bedingten Verlust an physikalischer Intuition fiir das stationire Verhalten des Systems durch
eine ausfithrliche und an den funktionalen Strukturen der Gleichung orientierten Darstellung zu beheben.
Im Zuge einer sorgfiltigen Herleitung der Markovschen Gleichungen aus der von-Neumann-Gleichung
mit einer der mathematischen Theorie linearer System-Bad-Wechselwirkungen entlehnten Methode wird
die Unterscheidung in die zwei Gleichungstypen — im Gegensatz zur vorherrschenden Praxis — nicht als
zweckdienliche Niherung, sondern als Resultat der asymptotischen Zeitskala interpretiert. Die Markov-
sche Dynamik komplexer molekulare Modelle separiert somit einerseits in Ratengleichungen zwischen
Zustinden unterschiedlicher Energie andererseits in Mastergleichungen innerhalb entarteter Unterrdume
des molekularen Hilbertraums.

Bereits das stationdre Verhalten der Ratengleichungsdynamik zeigt Signaturen, die nicht mit dem
intuitiven Bild sequentiell springender Elektronen zu erkliren sind. In vielen experimentell relevanten
Parameterbereichen wird die Phinomenologie vollstindig durch das dynamische Gleichgewicht zwi-
schen Landungs- und Entladungsprozessen, zwischen Absorption und Emission einzelner molekularer
Schwingungsquanten bestimmt. Um die Strom-Spannungscharakteristik zu verstehen, reicht nicht allein
die Betrachtung der einzelnen Sprungraten. Vielmehr muf} zuvor die stationdre Ratengleichung vollstindig
gelost werden, um die aus dem Gleichgewicht der elektronischen Sprungprozesse resultierende Wahr-
scheinlichkeitsverteilung zu erhalten, die den Strom bestimmt. Dies wird an mehreren prototypischen
Beispielen, unter anderem einem Jahn-Teller-aktiven Molekiil mit mehreren Schwingungsmoden und der
Anwendung der Theorie auf ein kiirzlich durchgefiihrtes Transportexperiment an Kohlenstoffnanoréhrchen,
demonstriert.



Das einfachste Modell einer Nanostruktur, die nicht mehr allein mittels einer Ratengleichung beschrie-
ben werden kann, besitzt zwei entartete elektronische Niveaus. Die Diskussion der Mastergleichung fiir
die volle reduzierte Dichtematrix dieses Modells erfolgt in zwei Schritten: Die vollstindige Berechnung
der Transporteigenschaften eines verallgemeinerten Resonanten Tunnelmodells zeigt erste, quantitative
Einflisse der Kohirenzen auf den stationéren transmittierten Strom. In der anschlieffenden Diskussion
der Mastergleichung fiir das molekulare Modell entfaltet sich das grundlegende Paradigma dieser Glei-
chung. Die Betrachtung der vollen reduzierten Dichtematrix erlaubt durch die Wahl spezieller Basen des
elektronischen Hilbertraums, einzelne Molekilniveaus von einer Elektrode zu entkoppeln. Die damit
einhergehende Unterdriickung des stationdren Stroms durch Coulomb-Blockade-Effekte wird durch die
Wechselwirkung des lokalisierten Systems mit dem Kontinuum der Badzustinde teilweise aufgehoben,
stellt jedoch, wie anhand mehrer Beispiele demonstriert wird, die generische Physik dieser System dar.

Die Verbindung von Ratengleichung und Mastergleichung, deren Herleitung durch das blofle qualitative
Kriterium, ob eine Entartung vorhanden ist oder nicht, eine konzeptionelle Unstetigkeit in den Modellpa-
rametern darstellt, beschliefit die Arbeit. Um diese Liicke der Theorie zu schliefien wird — wiederum im
Riickgriff auf die mathematischen Methoden abstrakter System-Bad-Wechselwirkungen — das Konzept
der Fastentartung betrachtet. Energiedifferenzen derselben Gréflenordnung wie die storungsinduzierten
Renormierungen der molekularen Energieniveaus werden in die Stérungstheorie der von-Neumann-
Gleichung miteinbezogen. Mit der Herleitung einer entsprechenden Mastergleichung fiir fastentartete
Systeme und der Diskussion ihrer Eigenschaften und ihrer generischen Dynamik, gelingt die Interpolation
von Ratengleichungen und Mastergleichungen mittels eines einzelnen Parameters: des numerischen Werts
der Fastentartung. Damit wird der konzeptionelle Kreis von Ratengleichungen zu Mastergleichungen
konsistent geschlossen, dem die Arbeit durch das Tolkiensche Wort Rechnung trigt: ,Hin und wieder
zurtck®.



