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Abstract

Background: Anticoagulation therapy with heparin is a frequent treatment in intensive care units and is monitored by activated
partial thromboplastin clotting time (aPTT). It has been demonstrated that reaching an established anticoagulation target within
24 hours is associated with favorable outcomes. However, patients respond to heparin differently and reaching the anticoagulation
target can be challenging. Machine learning algorithms may potentially support clinicians with improved dosing recommendations.

Objective: This study evaluates a range of machine learning algorithms on their capability of predicting the patients’ response
to heparin treatment. In this analysis, we apply, for the first time, a model that considers time series.

Methods: We extracted patient demographics, laboratory values, dialysis and extracorporeal membrane oxygenation treatments,
and scores from the hospital information system. We predicted the numerical values of aPTT laboratory values 24 hours after
continuous heparin infusion and evaluated 7 different machine learning models. The best-performing model was compared to
recently published models on a classification task. We considered all data before and within the first 12 hours of continuous
heparin infusion as features and predicted the aPTT value after 24 hours.

Results: The distribution of aPTT in our cohort of 5926 hospital admissions was highly skewed. Most patients showed aPTT
values below 75 s, while some outliers showed much higher aPTT values. A recurrent neural network that consumes a time series
of features showed the highest performance on the test set.

Conclusions: A recurrent neural network that uses time series of features instead of only static and aggregated features showed
the highest performance in predicting aPTT after heparin treatment.

(JMIR Med Inform 2022;10(10):e39187) doi: 10.2196/39187
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Introduction

Thromboembolic complications are associated with increased
mortality [1,2]. Risk factors for deep venous thrombosis and
pulmonary embolism include, for example, immobility,
malignancy, higher age, and a history of thromboembolism
[3,4]. Anticoagulation by drugs is applied either prophylactically
to prevent thromboembolism [5] or therapeutically to treat
existing thromboembolic complications, which reduces mortality
[6].

In perioperative normal care wards, prophylactic and therapeutic
anticoagulation is frequently performed subcutaneously by
low–molecular weight heparins [5]. In the perioperative setting,
prophylactic anticoagulation is indicated in patients with
intermediate or high risk for thromboembolism. This includes,
for example, most trauma surgeries, elective orthopedic surgeries
with consecutive immobility of the lower limbs, and major
abdominal or thoracic surgery, particularly in the presence of
malignant and inflammatory processes [5].

In critical illness, the risk for venous thromboembolism is
increased in almost all patients due to the combination of general
risk factors related to chronic disease and intensive care unit
(ICU)–associated risk factors, including sedation, immobility,
or central venous catheters [7]. In intensive care, prophylactic
or therapeutic anticoagulation is regularly applied intravenously
by continuous unfractionated heparin, particularly during renal
failure or hemodynamic instability [8]. The short half-life of
the anticoagulant and the possibility of antagonizing heparin
with protamine are advantages of unfractionated heparin in these
vulnerable patients [9]. However, poor controllability is an issue.
Consequently, overdosing with hemorrhagic or underdosing
with thrombotic complications may occur [10]. Hence,
therapeutic unfractionated heparin application requires
monitoring. The dosing of unfractionated heparin is performed
by determination of activated partial thromboplastin time (aPTT)
in patients' blood [11]. Based on older studies, the pursued aPTT
target is approximately a 1.5 to 2.5-times prolongation of the
reference clotting time [11-13] although individual targets are
usually defined. Achieving the aPTT target within 24 hours has
been associated with increased survival in patients with
pulmonary embolism [6]. However, due to patient- and
disease-related variations, achieving the aPTT target within 24
hours is challenging.

Nowadays, big data sets are generated by digital patient data
management systems in ICU routine. Machine learning (ML)
approaches that include individual information from large data
sets may help to predict aPTT at an earlier stage than can routine
blood sampling. Previous results of applying ML to predict
aPTT show great promise [14-17]. Some authors [16,17]
consider the numerical value of aPTT and consequently the
prediction of aPTT as a regression task. We prefer the prediction
of the numerical value since it makes no assumption of the aPTT
target range. However, most recent literature on similar-sized
data sets consider aPTT after heparin treatment as a multiclass
prediction with 3 distinct ranges (subtherapeutic, therapeutic,
or supratherapeutic) [14,15,18].

In previous model comparison studies [15,16,18], it has been
demonstrated that artificial neural networks show the highest
performance on aPTT prediction tasks.

Recently, a systematic review of ML approaches on predicting
aPTT after heparin administration highlighted that still multiple
innovations are required before ML-assisted heparin dosing is
ready for clinical practice [19].

We compared multiple ML models on our patient cohort and
are, to our knowledge, the first to apply a recurrent neural
network model that takes the dynamics of variables in the form
of time series into account. At the outset of the study, we
specified inclusion criteria that resulted in 5926 distinct hospital
admissions. On this cohort, we trained and evaluated multiple
ML models on the aPTT prediction task. To allow comparison
of the recurrent neural network model with previously published
models [14,15,18], we subsequently used our model in a
classification setup.

The aim of this analysis is to evaluate whether ML models can
accurately predict subsequent aPTT measurements well (12
hours) in advance. In the future, data-driven approaches could
help clinicians to adjust heparin dosing to improve time in the
target range aPTT after 24 hours.

Methods

Data Selection Criteria
The database system for surgical and intensive care patients at
Charité – Universitätsmedizin Berlin (Charité) was first adopted
in 2012 and over time rolled out to all ICUs. Since we extracted
data in November 2021, we considered a time period from 2012
to October 31, 2021. We selected patients and hospital
admissions that satisfied the following inclusion criteria: at least
18 years old at the beginning of treatment, received a minimum
of 1000 IU of heparin, received some of the heparin as
continuous infusion, had at least a single aPTT measurement
after 12 hours and before 36 hours after the intravenous
treatment commenced, and had weight and height documented
(within reasonable limits: height between 25 cm to 250 cm,
weight between 3 kg to 300 kg).

Ethics Approval
Ethics approval for this study was obtained by the Charité ethics
committee (vote #EA4/241/21).

Feature Selection and Prediction Targets
We extracted patient characteristics (age, gender, height,
weight), laboratory values (aPTT, bilirubin, C-reactive protein,
creatinine, quick value, platelet count), whether patients received
dialysis or a form of extracorporeal membrane oxygenation
(ECMO) treatment, and routinely collected scores (therapeutic
intervention scoring system 10 [TISS-10], simplified acute
physiology score [SAPS-II], sequential organ failure assessment
[SOFA], acute physiology and chronic health evaluation II
[APACHE II]) from the hospital information system.
Furthermore, we extracted the time of the start and end of each
heparin dosing, concentration, and administration rate. Heparin
can be administered as a bolus or as a continuous infusion. All
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data were restricted to the time period 7 days prior to treatment
to 36 hours after treatment started.

Our goal was to predict the aPTT 24 hours after initiation of
continuous heparin treatment. However, not all patients had a
laboratory measurement exactly 24 hours after the treatment
with heparin. Thus, any aPTT measurement between 12 to 36
hours after heparin treatment began was accepted as the
prediction target. In case multiple values were recorded between
12 hours and 36 hours, we chose the value that was closest to
24 hours after continuous treatment started. Consequently, only
values that were taken before or within 12 hours after continuous
heparin treatment commenced were available as features for
the model (including any aPTT measurement in that time frame).
Hospital stays were left aligned, and the start of the continuous
intravenous heparin delivery corresponded to time zero.

Handling of Missing Data
The data we used for our study were collected during routine
care and were not of uniform quality across all hospital
admissions. A typical problem when using retrospective data
for ML is missing observations [20-22]. This problem is
exacerbated for the recurrent neural network, as it expects an
input for every feature every 2 hours.

The static values of gender, age, height, and weight had no
missing values and were replicated for every timestamp. The
one-hot–encoded variables, including ECMO treatment, dialysis,
bolus delivery of heparin, and continuous delivery of heparin,
were set to 0 if no other value was recorded for a given
timestamp. Other features (eg, laboratory measurements and
scores) were filled in a 2-step process as follows: (1) If a
previous value was recorded within 7 days prior to continuous
heparin treatment, those values were forward filled; (2) Any
still missing values were replaced by the mean across the
training population.

Only using the above 2-step procedure discards information
about which measurement is from the patient at the given
timestamp. Since it has been shown that the missing pattern can
be informative [23], we included an “indicator” variable for
each variable filled in the 2-step process that is 1 if the value
was measured at the given timestamp and 0 if it was imputed.

Together with the indicator variables, each model sees 35
different input variables.

The recurrent neural network, thus, may see time series between
t = –168 (7 days prior to continuous heparin delivery) to t= 12.
In general, however, patients’ time series are not of the same
length.

Models and Variable Encoding
The input data consisted of numerical and categorical variables.
Categorical variables (gender, ECMO treatment, dialysis
treatment, continuous heparin administration, bolus heparin
administration) were one-hot encoded. Each option for a
categorical variable resulted in 1 input dimension that could
either be 1 or 0. One-hot–encoded variables were not further
scaled and were directly used as input features.

Other numerical variables were standardized before being fed
into the model. Mean and SD were estimated only on the
training data set.

We compared 6 models that take a single value per feature and
1 model that takes the entire time series of features. Some
features were constant over the course of treatment (age, gender,
height, and weight), while the other features changed frequently.
Models that take a single value per feature received the
last-observed value before the 12-hour cutoff. The recurrent
neural network received time series, resampled to 2-hour
intervals, for each feature. If multiple measurements were taken
within 2 hours, those values were replaced by the mean over
this 2-hour window. Static variables were repeated for each
timestamp. The prediction target (a single aPTT measurement)
is log-transformed during model training. The log transformation
is discussed in the Results section. All model parameters are
optimized on the mean-squared error (MSE) loss function.
Additionally, we evaluated the mean absolute error and the
explained variance for each model.

The 6 regression models were linear regression, elastic net,
generalized linear model, support vector machine regression
(SVR), K-nearest neighbor regression (KNN), and regression
trees. We optimized hyperparameters using a grid search with
5-fold cross-validation. For the cross-validation, training and
validation data were combined. The hyperparameter grids are
shown in Table 1.

The models, cross-validation, and the grid search routine were
from the scikit-learn package [24] and implemented in Python
(The Python Software Foundation).
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Table 1. Hyperparameters for each static model.

HyperparametersModel

NoneLinear regression

α = (10–4, 10–3, 10–2, 10–1, 1, 2, 3)

L1ratio = (0, 0.1, … 1.0)

Elastic net

Power = (0, 1, 2, 3)

α = (10–2, 10–1, 1, 2, 3)

GLMa

Kernel = (“linear,” “poly,” “rbf,” “sigmoid”)

Degree = (2, 3, 4, 5, 6)
SVRb

K = (2, 3, 4, 5, 6, 7, 8, 9, 10)

Weights = (“uniform,” “distance”)
KNNc

Max_depth = (2, 3, 4, 5, unlimited)

Min_samples_split = (2, 3, 4, 5, 6)

Min_samples_leaf = (1, 2, 3, 4, 5)

Regression trees

aGLM: generalized linear model.
bSVR: support vector machine regression.
cKNN: K-nearest neighbor regression.

Recurrent Neural Network Model
This model consists of a gated recurrent unit (GRU), which can
process a time series of arbitrary length and a fully connected
network that uses the output of the GRU as input. Since we are
only interested in predicting a single value, only the last output

of the GRU is fed into a 3-layer fully connected model. No
activation function is used between the output of the GRU and
the first fully connected layer. The outputs of the 2 fully
connected layers have rectified linear unit activation functions
[25], and the final layer has no activation function. A schematic
overview can be seen in Figure 1.

Figure 1. Schematic overview of input features, recurrent neural network, and feedforward network. GRU: gated recurrent unit.

As for the previously described models, the recurrent neural
network was optimized on the MSE. For experiments with the
recurrent neural network, weights were optimized on the training
set, and the results between experiments were compared on the
validation set. We used the Adam optimizer with L2 penalty
[26]. For each experiment, we chose weights with the lowest
error on the validation set, which may occur before the
maximum number of epochs are reached.

This model is significantly more costly to train compared to
“static” models. Therefore, we did not perform a systematic
hyperparameter optimization but ran several experiments with
different hyperparameters and handpicked the best set of
hyperparameters, which are shown in the Results section.
Hyperparameters for the GRU submodel are hidden size (n=1,
2, 3, …), bidirectional connection (True, False), and the number
of layers (n=1, 2, 3, …).

The 3-layered fully connected submodel had the number of
neurons in each layer as 3 hyperparameters. Hyperparameters
related to the training are the learning rate, L2 penalty, and the
maximum number of epochs.

Patients have a different number of inputs per feature, since
they receive their continuous heparin treatment at different times
within their hospital stay. Thus, for training, we are limited to
a batch size of 1 but accumulate multiple batches before weights
are updated. To combat overfitting, we used an L2 penalty on
the weights in the fully connected part of the model and chose
weights on the epoch with the highest performance on the
validation set.

All models and training scripts are available on github [27].

Classification Models
To phrase aPTT prediction as a classification task, we used the
3 ranges first introduced by Ghassemi et al [14] of

JMIR Med Inform 2022 | vol. 10 | iss. 10 | e39187 | p. 4https://medinform.jmir.org/2022/10/e39187
(page number not for citation purposes)

Boie et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


subtherapeutic for values below 60 s, therapeutic for values
between 60 s to 100 s, and supratherapeutic for values above
100 s for the aPTT measurements. We compared our GRU
model to the logistic regression model from Ghassemi et al [14]
and the feedforward neural networks models by Su et al [15]
and Li et al [18]. All parameters were taken from the reference
literature for the respective model. For the feedforward networks
from Su et al [15] and Li et al [18], we used cross-entropy [28]
as a loss function with early stopping since the loss functions
are not mentioned in the references.

The 3 classification models are retrained on the training split
and receive the last value of each feature before the 12-hour
cutoff in the same manner as the “static” regression models.
The GRU is not retrained on the classification task, but the
numeric predictions are binned into the 3 ranges post hoc. We
evaluated the models on macroaveraged precision,
macroaveraged recall, macroaveraged F1-score, and accuracy
[29].

Results

Patient Cohort
A flow diagram of consecutively applied filter criteria (specified
in the methods section) to the entire patient cohort is shown in
Figure 2. The selection criteria resulted in 5926 hospital
admissions from a total of 5742 unique patients. Given that
fewer than 4% of admissions occurred for previously admitted
patients, we considered hospital admissions to be independent
events. Basic patient characteristics and missing values are
documented in Table 2.

Before model training or parameter estimation for mean and
SD were performed, the admissions were split into training
(n=3800), validation (n=945), and test (n=1181) samples. We
ensured that different admissions by the same patient were in
the same fold.

Figure 2. Flow diagram of unique patients and admissions that satisfy the specified inclusion criteria. aPTT: activated partial thromboplastin time; IV:
intravenous line.
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Table 2. Basic characteristics of the study cohort. The third column indicates how many patients do not have a single measurement during the hospital
admission.

Patients missing for entire stay, n (%)Value (N=5926)Feature

0 (0)70.62 (60.95-77.74)Age (years), median (IQR)

0 (0)Gender, n (%)

N/Aa1910 (32)Female

N/A4016 (68)Male

0 (0)172 (164-178)Height (cm), median (IQR)

0 (0)77 (66-90)Weight (kg), median (IQR)

442 (7.46)5 (2-8)SOFAb, median (IQR)

449 (7.58)36 (27-47)SAPS IIc, median (IQR)

525 (8.86)17 (12-23)APACHE IId, median (IQR)

5755 (97.11)10 (5-15)TISS-10e, median (IQR)

0 (0)449 (7.57)Dialysis, n (%)

0 (0)76 (1.28)ECMOf, n (%)

0 (0)42.6 (36.1-54.6)aPTTg (s), median (IQR)

2529 (42.69)0.6 (0.35-1.24)Bilirubin (mg/dL), median (IQR)

1782 (30.07)56.2 (18.6-118.8)CRPh (mg/L), median (IQR)

71 (1.20)67 (39-90)Gfri (count), median (IQR)

32 (0.54)1.01 (0.74-1.56)Creatinine (mg/dL), median (IQR)

17 (0.29)76 (64-87)Quick value (%), median (IQR)

19 (0.32)204 (139-292)Platelet count (per nL), median (IQR)

0 (0)32398 (9500-90000)Total heparin administered (IU), median (IQR)

aN/A: not applicable.
bSOFA: sequential organ failure assessment.
cSAPS II: simplified acute physiology score II.
dAPACHE II: acute physiology and chronic health evaluation II.
eTISS-10: therapeutic intervention scoring system 10.
fECMO: extracorporeal membrane oxygenation.
gaPTT: activated partial thromboplastin time.
hCRP: C-reactive protein.
iGfr: glomerular filtration rate.

Distribution of aPTT Values
A histogram of measured aPTT before and after treatment is
shown in Figure 3. In our cohort, both aPTT distributions before

and after heparin treatment are narrowly peaked with a heavy
tail. Values above 100 s occur very rarely. Small peaks are
visible at 240 s where the laboratory reports some values as
>240 s, which is mapped to 240 s.
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Figure 3. Histogram of aPTT values before treatment (a) and after treatment (b) with intravenous heparin. The histogram was obtained through binning,
using 120 bins between minimal and maximal values. Shaded regions indicate regions identified in Ghassemi et al [14] and Su et al [15]. aPTT: activated
partial thromboplastin time.

The effect of heparin treatment on the entire cohort is clearly
seen by the shift of the distribution. The difference in means is
8.64 s (95% CI 7.72-9.56; P<.001). The first 4 moments of the
distribution of aPTT at t=0 and at t=24 are documented in Table
3. The mean aPTT value is higher after continuous heparin
delivery compared to before treatment. Skew and kurtosis (while
smaller after treatment) quantifiably indicate that the aPTT
distribution is not symmetric and has a heavy tail. This fact
makes the prediction of aPTT challenging. To make the learning
task easier for our models, we log-transform the target variable
to reduce skew and kurtosis. In effect, this makes “rare” events
in the original distribution easier to predict.

The distribution that we observed in the Charité cohort contrasts
with the aPTT values that are documented by other authors. Su
et al [15] and Ghassemi et al [14] base their modeling studies
on the Medical Information Mart for Intensive Care (MIMIC)
II/III and eICU databases. The distribution of aPTT on the eICU
database [15] is more heavy tailed than is the MIMIC cohort,
however, less so than is our cohort. The 3 treatment categories
reported in those works are indicated as shaded regions in Figure
3b. However, we do not classify our cohort into these categories
but treat the prediction of aPTT after treatment as a regression
problem.

Table 3. Statistical description of the binned distribution of aPTT values before continuous heparin treatment (t=0), 24 hours after continuous treatment
commenced (t=24), and the log-transformed distribution after 24 hours.

Log (aPTT [t=24])aPTT (t=24)aPTTa (t=0)

592659264850Observations, n

3.8349.2840.64Mean

0.11608.19561.55Variance

1.914.746.11Skew

5.3726.7142.93Kurtosis

aaPTT: activated partial thromboplastin time.

Model Comparisons
In this section, the results of comparing 7 different models on
the prediction of aPTT (see Table 4) are shown. Models 1-6
received only the last-measured values of each input feature
before the 12-hour cutoff. We optimized hyperparameters for
each model using a grid search and 5-fold cross-validation. The
reported results are based on the test data that was not included
in the 5 folds. A full description of the used grids appears in the

Methods section. The best parameters for Models 1-6 are
documented in Multimedia Appendix 1.

Model 7 (recurrent neural network) consumes the entire time
series, resampled to 2-hour timestamps, for each input feature.
We experimented also with resampling to 1-hour time steps and
4-hour time steps and found that the performance was similar
(see Multimedia Appendix 1 for numerical results).

It is the most complex model in the comparison and ingests data
from up to 7 days before continuous treatment to 12 hours after
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continuous treatment is administered. A systematic
hyperparameter optimization for Model 7 was not performed;
hence, we are underestimating the performance of the recurrent
neural network in comparison to other models.

However, the recurrent neural network model achieved the
highest score on the explained variance and MSE metrics. It
ranked second to the SVR model on the mean absolute error

(which penalizes outliers less than does the MSE). The SVR
models ranked second to the recurrent neural network model
on explained variance and MSE.

CIs were obtained by taking 1000 random samples of the same
size as the test set, with replacement. Given that the distribution
had a small number of large outliers, which had a significant
effect on the quantity of interest, the CIs are wide.

Table 4. Comparison of different models for explained variance (higher is better), mean-squared error (lower is better), and mean absolute error (lower
is better) obtained by resampling 1000 samples from the test set.

MAEbMSEaExplained varianceModel

0.474 (0.45-0.497)0.487 (0.425-0.556)0.163 (0.115-0.211)Linear regression,

test set value, (95% CI)

1

0.474 (0.453-0.497)0.484 (0.433-0.554)0.168 (0.124-0.214)Elastic net regression2

0.473 (0.450-0.5)0.484 (0.422-0.556)0.169 (0.121-0.21)GLMc3

0.442 (0.418-0.469)0.476 (0.406-0.554)0.203 (0.161-0.244)Support vector regression4

0.502 (0.477-0.528)0.529 (0.460-0.597)0.101 (0.055-0.140)Nearest neighbors5

0.471 (0.447-0.495)0.492 (0.427-0.563)0.154 (0.108-0.198)Decision tree regression6

0.454 (0.432-0.477)0.459 (0.4-0.523)0.21 (0.165-0.254)Recurrent NNd7

aMSE: mean-squared error.
bMAE: mean absolute error.
cGLM: generalized linear model.
dNN: neural network.

Prediction of aPTT by the Recurrent Neural Network
Model
In this section we present the results of the recurrent neural
network model and compare predictions with measured values
on the test set. Multiple experiments with the model were
performed, and the best handpicked parameters are shown in
Table 5.

Predictions and measurements are shown in Figure 4. The
distributions of aPTT values in the test data alone show a similar

distribution as the aPTT values over the entire data set (cf Figure
3 and Figure 4 right panel). The histogram of predictions of the
recurrent neural network model has a similar shape (cf Figure
4 top panel and Figure 4 right panel).

Direct comparisons between predictions and measurements can
be seen in the center of Figure 4. The model can predict the
majority of aPTT values very well. Although some outliers are
predicted accurately, there are a few outliers above 150 s where
predictions fall below 75 s. Likewise, some predicted outliers
do not manifest as actual outliers.

Table 5. Best hyperparameters for the recurrent neural network model.

ValueParameter

1e–3Learning rate

Single GRUa layer; 3 feedforward layers with 10, 5, and 1 output neurons,
respectively

Layers

5Hidden size (GRU)

TrueBidirectional

16Accumulate gradient batches

0.2L2 penalty on all weights

aGRU: gated recurrent unit.
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Figure 4. Predictions versus measurements. The figure shows predicted (abcissa) and measured aPTT (ordinate) after 24 hours in the central panel.
Only predictions on the test set are shown. The dashed diagonal line indicates a perfect match between prediction and measurement. Above and to the
right are binned distributions of all predictions and measurements, respectively. aPTT: activated partial thromboplastin time.

Comparison With Classification Models
In the previous sections, we have seen that the recurrent neural
network shows the highest performance on the regression task.
However, it is also apparent that not all predictions are accurate.
To understand whether improvements needed to occur on the
models or on data quality aspects, we rephrased the problem as
a classification task to be able to compare the performance of
the trained model with the 3 most recently published
classification models [14,15,18]. Each of the 3 models was
trained on our data set (details in the Methods section).

Our recurrent neural network scored the highest performance
in recall and F1-score. The simplest model (logistic regression
by Ghassemi et al [14]) had the highest precision, and the
feedforward neural network by Li et al [18] had the highest
accuracy (see Table 6 for results). No single model outperformed
the others on all 4 metrics, and the appropriate model may be
chosen depending on which metric is considered most relevant.

The fact that the best-published models show a comparable
performance indicate that significant improvements require a
closer monitoring of patients, additional tests, and improved
data quality.

Table 6. Comparison of different models when formulating activated partial thromboplastin time prediction as a classification task. For each metric,
a higher score is better.

AccuracyF1-scoreRecallPrecisionModel

0.8290.3980.3960.411GRUa

0.8250.3560.3570.707Ghassemi [14]

0.8340.3160.3380.357Su [15]

0.8380.3380.3500.430Li [18]

aGRU: gated recurrent unit.
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Discussion

Principal Findings
In this study, we analyzed and predicted the effect of heparin
treatment on a cohort of 5742 patients and 5926 hospital
admissions 24 hours after continuous application. A statistically
significant shift of aPTT measurements compared to the
beginning of the treatment was observed. Most patients’ aPTT
measurements were within 35 s to 75 s; however, some patients
showed much higher aPTT values, leading to a challenging
prediction problem with a long-tailed distribution. We
demonstrated that ML models can aid in predicting the aPTT
values 12 hours in advance. Additionally, we have shown that
using the time series of variables improves predictive
performance.

Some underlying medical conditions, while occurring rarely,
are known to cause much higher aPTT values. These medical
conditions include lupus anticoagulants or deficiencies in the
intrinsic (deficiency in factors IX or X) or extrinsic pathways
(deficiency in factors VII) [30,31]. These conditions are not
routinely checked for and are only diagnosed when advanced
lab testing is ordered.

Established guidelines aim for a prolongation of aPTT by 1.5
to 2.5 times [11-13]. Since patients have different aPTT values
before heparin is administered, the target value according to the
guidelines is different. Furthermore, medical professionals may
define individual anticoagulation targets that do not match a
prolongation of 1.5 to 2.5 times the baseline value. Thus, we
consider aPTT prediction to be a regression problem as Kong
et al [16] and Smith et al [17] have done. A model that predicts
aPTT several hours before blood is drawn and analyzed can
serve as a valuable aid in adjusting the heparin dosing to meet
the patient’s aPTT target earlier.

In principle, aPTT can be predicted continuously. However, to
allow a comparison between models that make a single
prediction based on measurements at a single point in time and
a model that consumes the entire time series, we fixed 2 time
points (at 12 hours and 24 hours after continuous treatment
started). Models can use data available at 12 hours and make a
prediction for 24 hours after continuous treatment starts. The
cutoff after 12 hours is arbitrary and could be reasonably made
at a different time. The second point in time is motivated by the
observation that reaching the aPTT target within 24 hours is
associated with favorable outcomes [6]. The recurrent neural
network showed the best performance, and its predictions were

analyzed in detail. Although most samples were predicted well,
an unsolved problem is that rare cases exhibit a remarkably high
aPTT and are not captured by the model. As mentioned earlier,
underlying medical conditions are known to cause significantly
longer aPTT. We hypothesized that, for significantly improved
predictions, either testing of conditions that cause a long aPTT
or much more frequent measurements of aPTT combined with
dosing adjustments are required.

Recent literature on aPTT prediction after heparin treatment
considers 3 distinct ranges [14,15,18]. In order to compare our
model to those in the literature, we binned our predictions into
subtherapeutic, therapeutic, and supratherapeutic as introduced
by Ghassemi et al [14]. We observed that our model showed a
higher recall and F1-score than did the other models. Arguably,
the setup that we chose was the most difficult compared to the
references since we predicted a single aPTT value 12 to 36 hours
in advance. Others made predictions 4 to 6 hours [15] or 4 to 8
hours [14] in advance or averaged aPTT measurements between
4 and 24 hours [18].

Limitations
Other anticoagulants, such as warfarin or argatroban, were not
considered. We expect that only a small sample of patients, if
any, are receiving heparin together with anticoagulants and,
therefore, decided not to take it into account as is common in
similar studies [19].

It is well known that the laboratory conditions can affect the
ranges of aPTT measurements [32]. The aPTT measurements
were all reported by the same laboratory. Thus, the model may
not be applicable to other centers and laboratories without
parameter fine-tuning.

Modeling decisions that may negatively affect the model
performance are the resampling of time series to 2-hour
intervals. This resampling might miss significant changes in
some variables. Furthermore, handling of missing data by
forward and mean imputation could be improved by multiple
imputation methods.

Conclusions
Anticoagulation therapy with heparin monitored by the aPTT
laboratory assay is a widely used procedure in ICUs. It is well
known that heparin dosing is challenging due to high interpatient
variability. In the future, ML may help to suggest personalized
dosing recommendations. We demonstrated that a model based
on time series performs best.
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