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Weyl semimetals harbor topological Fermi-arc surface states which determine the nontrivial charge
current response to external fields. We here study the quasiparticle decay rate of Fermi arc states
arising from their coupling to acoustic phonons, as well as the phonon-limited conductivity tensor
for a clean Weyl semimetal slab. Using the phonon modes for an isotropic elastic continuum with
a deformation potential coupling to electrons, we determine the temperature dependence of the
quasiparticle decay rate, both near and far away from the arc termination points. By solving the
coupled Boltzmann equations for the bulk and arc state distribution functions in the slab geometry,
we show how the linear response conductivity depends on key parameters such as the temperature,
the chemical potential, the geometric shape of the Fermi arcs, or the slab width. The chiral nature of
Fermi arc states causes an enhancement of the longitudinal conductivity along the chiral direction
at low temperatures, together with a 1 /T2 scaling regime at intermediate temperatures without
counterpart for the conductivity along the perpendicular direction.

I. INTRODUCTION

Reaching a firm understanding of three-dimensional
Weyl semimetal (WSM) materials represents an impor-
tant goal of modern condensed matter physics [1-7].
WSMs are characterized by a gapped quasiparticle spec-
trum throughout the Brillouin zone, with the exception of
an even number of nondegenerate band touchings called
Weyl nodes. Due to the breaking of inversion and/or
time-reversal symmetry, Kramers degeneracy is absent
and relativistic Weyl fermions represent the relevant low-
energy degrees of freedom. The Weyl nodes act as sources
(or sinks) of Berry curvature and thus can be associated
with a topological charge [8]. As a consequence, many in-
teresting physical effects of topological origin have been
predicted and observed in WSMs. For instance, WSMs
allow for striking manifestations of the chiral Adler-Bell-
Jackiw anomaly [9, 10], such as a negative magnetoresis-
tivity in parallel electric and magnetic fields [11-18]. The
relativistic low-energy Weyl cone spectrum and the as-
sociated nontrivial response to external electromagnetic
fields [19, 20] represent clear hallmarks of Weyl materials.

The gapless bulk Weyl nodes must coexist on general
grounds with gapless and topologically protected Fermi-
arc surface states, which connect the projections on the
surface Brillouin zone of different Weyl nodes. These sur-
face states are chiral, i.e., have a unidirectional sense of
propagation, and define open curves as Fermi surface seg-
ments [21-34]. The Fermi arc parts of the Fermi surface
seamlessly merge with the bulk quasiparticle parts at the
arc termination points [6, 23, 35, 36]. Upon approaching
the latter points, the penetration depth of the Fermi-arc
surface states into the bulk diverges.

Angle-resolved photoemission spectroscopy (ARPES)

and scanning tunneling microscopy (STM) experiments
have confirmed the existence of Fermi arc states in var-
ious transition metal compounds such as TaAs, TaP,
NbAs, or NbP [4, 5, 37-46]. Moreover, for the magnetic
WSM material Co3zSnySs, Fermi arc states have been
observed by ARPES and STS [47, 48]. These surface-
sensitive probe techniques have shown that the geomet-
ric shape and the corresponding spin orientations of a
constant-energy arc in the surface Brillouin zone depends
on the specific WSM material. At the same time, how-
ever, Fermi-arc surface states are directly responsible for
a plethora of universal (material-independent) phenom-
ena, e.g., density of states oscillations [49], supercur-
rent oscillations [50], unusually quantized semiclassical
orbits in a magnetic field [51, 52|, or anomalous charge
[22, 28, 53, 54] and heat transport [55, 56]. Fermi arc
states are also connected to the anomalous Hall effect
in magnetic WSMs [15, 35, 57]. The latter has recently
been observed experimentally [58—61].

Based on topological arguments, one may expect that
arc states give rise to non-dissipative transport phenom-
ena. However, the gapless nature of WSMs implies that
this is a rather subtle issue. Indeed, if arc and bulk
states are connected by some arc-bulk scattering mech-
anism, arc transport will generally be dissipative. Such
a mechanism has been identified in terms of elastic dis-
order scattering in Ref. [24], see also Ref. [62]. We note
that Weyl points survive the presence of weak disorder
[63, 64], which also implies that arc states remain well-
defined [25, 65]. Disorder can arise due to randomly
distributed impurities or due to sample inhomogeneities
[66, 67]. However, ultrahigh mobilities have been re-
ported for WSM materials, e.g., NbP [53], and disorder
could even be eliminated altogether in fully controlled



artificial (metamaterial) WSM realizations [68§].

In this work, we study the quasiparticle decay rate
of Fermi arc states and the temperature-dependent con-
ductivity for a clean (disorder-free) WSM slab, assuming
that acoustic phonons provide the most important elec-
tron scattering and equilibration mechanism. We note
that this quasiparticle decay rate also governs the en-
ergy transfer between electrons and phonons [69]. We
will not take into account optical phonons, which have
recently been studied both theoretically [70-75] and
experimentally [76-78], but instead focus on acoustic
phonons which dominate at low temperatures. While
we investigate phonon-induced effects on the electronic
properties of WSMs, it is also of significant interest to
study electron-induced effects on phonon observables.
For instance, recent works have addressed the Kohn
anomaly [79-81], quantum oscillations of the sound ve-
locity [82, 83| in WSMs, and the phonon magnetochiral
effect where one finds a direction-dependent sound veloc-
ity in a magnetic field [84-86]. Future theoretical work
could study such phenomena using the framework pre-
sented below.

Let us next describe the structure of this article, along
with a summary of our main results. In Sec. II, we de-
scribe our model. The electronic properties of a WSM are
modeled in terms of a well-known inversion-symmetric
two-band model with broken time reversal symmetry,
featuring just two Weyl nodes [87]. We consider a slab
geometry with finite width L along the Z direction, see
Fig. 1, where the Weyl points are separated by the vec-
tor 2kw2Z in the bulk Brillouin zone and the chiral di-
rection is denoted by the unit vector ¢. In Sec. ITA
we diagonalize the electronic problem with boundary
conditions parametrized by a phenomenological angle «
[56]. At fixed energy, we obtain chiral Fermi-arc surface
states whose dispersion generally has a curved geometri-
cal shape in the surface Brillouin zone: For a = 0, one
finds straight arcs, while @« — /2 corresponds to widely
open arcs. Next, in Sec. II B, we specify our model for
the phonon Hamiltonian based on isotropic elastic con-
tinuum theory, see also Refs. [88-90]. We assume that
acoustic phonons couple to electrons via the deforma-
tion potential, see Sec. IIC. (Our theory can also be
adapted to other phonon models, e.g., as obtained from
ab initio calculations [91].) We introduce the relevant
Bloch-Griineisen temperature scales in Sec. IID.

In Sec. III, we apply Boltzmann theory to the case of
phonon-induced transport in the WSM slab geometry of
Fig. 1. In Sec. IIT A, we present the Boltzmann equa-
tions for the bulk and arc state distribution functions.
We here focus on the linear response regime, where a
linearized version of the Boltzmann equations is suffi-
cient, see Sec. III B. Since sound velocities are typically
two orders of magnitude below the Fermi velocity, we
also implement a quasi-elastic approximation. Finally,
in Sec. III C, we discuss the decay rate for bulk quasipar-
ticles and the applicability conditions for our theory.

In Sec. IV, we address the temperature-dependent de-

cay rate I' of Fermi arc states. This rate receives contri-
butions from arc-arc scattering, see Sec. IV A, and from
arc-bulk scattering, see Sec. IV B, and it may be observed
through the linewidth of ARPES peaks [92]. We find dif-
ferent temperature scaling regimes which depend on the
position along the arc. At low temperatures and away
from the arc edges, the arc-arc contribution dominates
and yields I' oc T2 because arc-bulk scattering is acti-
vated in general. However, the activation energy for arc-
bulk scattering vanishes upon approaching the arc edges,
where we find a low-temperature regime with I oc 7°/2.

In Sec. V, we discuss the temperature dependence of
the conductivity tensor. We first provide qualitative ar-
guments for the longitudinal conductivity along the chiral
direction (o), see Sec. V A, and along the perpendicular
direction (o, ), see Sec. VB. We find the same power law
scaling for both conductivities at very low (o;; o< 1/7T)
and at high (0;; o< 1/T') temperatures. However, the chi-
rality of arc states admits an intermediate regime with
Oyy < 1 / T? which has no counterpart in o,,. We then
describe a numerical solution of the coupled Boltzmann
integral equations in Sec. VC. The corresponding re-
sults confirm our qualitative analysis in Secs. VA and
V B. Apart from the temperature dependence of o;;, we
study the effects of changing the surface parameter «,
the chemical potential pu, or the slab width L.

The paper concludes with an outlook in Sec. VI. Tech-
nical details have been relegated to several Appendices.
Throughout, the electron charge is denoted by e < 0 and
we often set kg = h = 1.

II. MODEL

In this section, we describe the model employed in our
study. In Sec. IT A, we introduce a two-band model for
electrons in a WSM slab with only two Weyl nodes [87].
We impose boundary conditions which depend on a phe-
nomenological angle a quantifying the curvature of topo-
logical Fermi arc states in the surface Brillouin zone [56].
A description of acoustic phonons using elastic contin-
uum theory [88-90] is given in Sec. IIB. To allow for
a theoretical description of phonon-mediated scattering
of arc as well as bulk electron states, in Secs. II A and
IIB we give expressions for electron wavefunctions and
phonon displacement fields in the bulk of the slab as well
as near its surfaces. In Sec. IIC we discuss electron-
phonon coupling in the framework of the deformation po-
tential, using the wavefunctions and displacement fields
calculated in Secs. I A and 11 B to construct the electron-
phonon matrix elements. We discuss characteristic tem-
peratures of our model in Sec. IID.

A. Electronic model and Fermi arc states

We start from a well-known two-band model for a
WSM with only two Weyl nodes [20, 24, 56, 87| sepa-
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Figure 1. WSM slab geometry. (a) The sample is infinitely
extended along the (y, z)-directions, with conserved momen-
tum k| = (ky, k), and has the transverse width L along the
z-direction. Fermi-arc surface states are sketched in the sur-
face Brillouin zone for o > 0 and constant energy £ > 0. (b)
Arc shapes in the (ky, k.)-plane, see Eq. (2.19), for the sur-
face state at © = —L/2 with constant energy e = 0.2kwv and
different angles o = 0,0.4,0.8,1.2 (from left to right). The
shaded discs indicate phase space regions where bulk states
are present. They appear slightly elongated in the z-direction
due to the anisotropy of the bulk dispersion relation.

rated in the z direction in reciprocal space. We consider
a slab geometry for which the system is taken as infinitely
extended in the y and z directions, see Fig. 1. We use
the notation r = (x,r|), where r| = (y,2) contains the
in-plane coordinates, and use &, ¢, and Z to denote the
unit vectors in the directions of the coordinate axes. In
the same way, the momentum is written as k = (k., k),
where the in-plane momentum k|| = (ky, k) is conserved
because of translation symmetry in the y and z direc-
tions. We write k = |k| and k) = |k|. In the z-direction,
the slab has the width L. We choose the origin of the co-
ordinate system such that the surfaces of the slab are at
x==xL/2.

The electrons are described by the two-band Hamilto-
nian [20, 24, 56, 87|

Hy(k) = v (0gke + oyky) + m(k;) o,

v

(k) = 5 (K ). (2.1)

where k, = —i0/0zx, 04, are Pauli matrices acting in a
combined spin-orbital space, and v is the Fermi velocity.
The time-reversal symmetry breaking parameter kyw >
0 determines the distance between the two Weyl points
in momentum space, which are at k = (0,0, £kw) and
energy € = 0. (The separation between the two Weyl
points is assumed to be parallel to the sample surfaces.)
A lattice model that has Eq. (2.1) as its low-energy limit
was considered in Ref. [36]. One easily checks that Hy is
invariant under inversion I,

Ho (ks k) = 02 Ho (<ko, —k)) 02,

(2.2)

and under the magnetic twofold rotation symmetry
C2;ET7

Ho(k‘x,k”) ZUZHS(—kx,k|‘)O'Z (23)
Although these symmetries are not essential for the tem-
perature dependence of the low-temperature conductiv-
ity, their presence helps to simplify our expressions.

At x = £L/2 we impose boundary conditions for the
two-component spinor |®(r)), parameterized by the an-
gles ay [93]

|®(£L/2,1))) = £M (ax)|(EL/2,1))),

M(a) = oycosa+ o, sina.

(2.4)

Equation (2.4) automatically ensures that the trans-
verse component of the charge current vanishes at the
slab surfaces. Inversion symmetry imposes the condition
a_ = —ay = «. Similar boundary conditions have been
used before for related WSM models [24] and for different
geometries [56, 94, 95]. The boundary condition (2.4) is
compatible with the magnetic twofold rotation symme-
try (2.3) and forces the pseudospin for © = +L/2 to be
in the yz-plane, at an angle a.y with the positive (4) or
negative (—) y axis. Specifically, setting a_ = —ay = a,
Eq. (2.4) implies that

{€x(a)|@(+L/2)) =0, (2.5)
where
~( Lsin(r/4+ a/2)
1. Bulk states
The bulk spectrum of the Hamiltonian (2.1) is
s = 0202 + )+ m2(ks). ()
The corresponding bulk eigenstates are !
b ik-r
B0, () = €™ [6ic ). (28)
with the normalized two-component spinors |i .,)
1
|£k,77> = O
Ve m(k.)? +02(k2 + k2)
O
X ( iy T m(kz) ) . (2.9)
v(ky + iky)

1 In this section, for the sake of notational simplicity, we omit var-
ious 27 normalization factors of the plane wave states which are
fully restored from Sec. III on. Our expressions for the coupling
matrix elements G describing the various scattering processes are
not affected by this notational simplification.



The bulk states have velocity
v (k) = Biel)

201 4 . 5
v (kwa:(b—)k kyy) Ukzm((lzj)z (2.10)
k. kwek’n

In this work, we consider a positive chemical potential
w much larger than temperature, so that the negative
energies 61(2)_ can be disregarded; we will drop the index
7 henceforth. For energies 0 < & < vkw/2, which is the
range corresponding to well-separated Weyl nodes, the

bulk density of states (DoS) is

_ kwe 2e 2e
ny (e) = 92,2 (\/1 + . \/1 vkw> . (2.11)

With the help of the boundary condition (2.4), we may
find expressions for the bulk eigenstates of Hy near the
surfaces of the slab at = £L/2. Labeling the states
at the boundary by the in-plane momentum k; and a
positive transverse momentum k, > 0, we write the bulk
states near the surface at ©+ = £L/2 as the combination
of an incident plane wave at transverse momentum =k,
and a reflected wave at transverse momentum Fk,,

b)+ iky (z ik)-r
@ (r)) = eF TR Ty ) (212)
_ lecl_;,ku eq:ikw(a::FL/2)+ikH~rH |£($km,k“)>7
where
<§:ﬁ:(a)|§(:|:km,k )>
r,fmku = I (2.13)

(€x(a) |§(1sz,k”)>

is the (unitary) reflection amplitude. For k, = 0 (bulk
modes propagating parallel to the surfaces), one has
Tfﬁku = 1, while for k, = m(k.) = 0 (bulk modes
propagating perpendicular to the interface), one finds

—lx

Thy dey = 1€

2. Fermi-arc surface states

In addition to the bulk solutions (2.12), which have
real transverse momentum £k,, there are Fermi-arc sur-
face states localized at x = +L/2 with imaginary k, =
ir+(ky) [87]. The corresponding two-component spinor
eigenstates decay exponentially away from the respective
surface with decay length x5 ' (k)),

s)* K T ik r
(810 (1)) = 2 (k) e CNOFEIR N e ()
(2.14)
where we find

k2

kit (k) = Fhysina — m(k:) Cos . (2.15)
v

The arc state (2.14) exists only for k) for which s (k) >

0, and the dispersion relation is given by

(s)£

€k, = +uvk, cosa —m(k,)sina. (2.16)

The velocity of the arc states near the surface at x =
+L/2 is locally orthogonal to the constant-energy arc in
the surface Brillouin zone,

V(S)i(ku) = +v COS(O{)Q — gvsin(a)z
n Ty

(2.17)

In later calculations, we will find it convenient to em-
ploy the variables (e, k) instead of k| = (ky, k.) to pa-
rameterize the arc states at the surface at x = +L/2.
Using Eq. (2.16), we see that constant-energy arc states
form an open curve in the surface Brillouin zone. The
termination points correspond to an inverse penetration
depth s+ (k) — 0, so that the arc states spread over
the entire sample and surface and bulk states merge [93].
The arc at constant energy € > 0 extends in the interval

_ 2
—kw(e) < k. <kwl(e), kw(e)=Fkwy/1— ”

(2.18)
If the variables (e, k,) are used, the y-component of the
momentum as a function of the energy and k, is given by

e +m(k,)sina

kE(e k) =+ 2.1
v (& k2) V COS v (2.19)
and the inverse decay length becomes
Ew(€)2 — ]4?2
= ——7 =, 2.2
R4 (67 kz) ka COS v ( 0)

When expressed in terms of the energy, k4 is the same
for both surfaces, so that we may omit the index =+ if we
use the variable combination (g, k).

For a@ = 0, one obtains a straight Fermi arc with
—kw < k, < kw for all ¢ and kff = +e/v. Moreover,
for ¢ — 0, we observe that kyw(g) = kw for arbitrary a.
Arc shapes in the surface Brillouin zone for a few char-
acteristic values of (a, €) are illustrated in Fig. 1(b). The

k.-resolved DoS associated with Fermi arc states is given
by

dk \ 1
npa (e, ky) = /—ya (s fsf(”)i) -

= , (2.21)
2 27TV cos o

for —kw(e) < k. < kw(e). The total DoS of the arc
states is obtained by integrating Eq. (2.21) over k.,

nea(e) = %W(E)

= - 2.22
2m2v cos o ( )

Equation (2.22) predicts a very large DoS for widely open
Fermi arc curves with « approaching 7/2, which arises
because the total arc length diverges in this somewhat
artificial limit.

While the penetration depth diverges when approach-
ing the arc ends for k, — +kw(e), the minimal pene-
tration depth occurs at the arc center. For k, = 0, we
find k=1 ~ (2cos a)/kw at small energies, see Eq. (2.20).
Throughout, we assume that kw L > 1, so that Fermi arc



states on opposite surfaces have exponentially small over-
lap away from the arc termination points. Large WSM
crystals of dimensions up to 1.5 mm have been reported
in the literature [43], corresponding to kwL ~ 106 for
typical values of kw. This justifies the neglect of the
overlap of the arc states of opposing surfaces.

B. Phonon model

In this work, we study how low-energy quasiparticles
in WSMs, arc states as well as bulk states, are scattered
by acoustic phonons in the slab geometry of Fig. 1(a).
Within the isotropic elastic continuum description, the
properties of acoustic phonons are determined by only
two elastic constants, the longitudinal and transverse
sound velocities ¢; and ¢;, where ¢; < ¢ [88]. The
sound velocities ¢; and ¢; are typically much smaller than
the Fermi velocity v of the electrons. For example, for
TaAs, one has ¢; ~ 2 x 10> m/s and a Fermi velocity
v~ 1.16 x 10° m/s [96], so that ¢; /v ~ 1072, We note
that the optical phonon gap in WSMs is typically of or-
der 10 meV. For instance, density functional calculations
for the magnetic WSM material ZrCosSn find an optical
phonon gap ~ 15 meV [97]. Our theory neglects optical
phonons and holds for energies well below this scale.

Quite generally, we may distinguish three types of
acoustic phonons in the slab geometry: longitudinal bulk
phonon modes of wavevector q = (¢,qy), for which
the displacement field ug is collinear with q; transverse
bulk phonon modes, for which ugq is perpendicular to q;
and Rayleigh modes, which are exponentially localized
at one of the two surfaces at x = L /2. For each three-
dimensional wavevector q, there are one longitudinal and

two transverse bulk modes with frequencies Qg) = ¢q

and Q.(;f ) = c:q, respectively; for each in-plane wavevec-
tor q|, there is additionally one Rayleigh mode at each
interface.

While the full phonon spectrum for an isotropic elas-
tic continuum in the slab geometry is known [88, 90, 98],
for a theory of phonon-mediated scattering between bulk
electrons, between arc states, and between arc and bulk
states, it is sufficient to know the phonon modes in the
bulk and in the vicinity of the surfaces at x = +L/2, re-
spectively. For this purpose, it suffices to consider an in-
finite or semi-infinite geometry, which considerably sim-
plifies calculations. Note that the same approach was
taken in Sec. ITA for the electronic wavefunctions.

The equation of motion for the displacement field
u(r,t) = u(r)e ¥ is

—Q%u=cVu+ (¢ —c)V(V - u). (2.23)
Since the transverse phonon modes have no deformation
potential, in the interior of the slab only the longitudinal
acoustic mode couples to the electrons. For a longitudi-
nal mode with wavevector q, the displacement is in the

direction

@D (q) = (q22 + q))/q- (2.24)

The corresponding displacement field is

eiq-r
) = f da—s
2008
(2.25)

where pjs is the volume mass density and ag) is the an-
nihilation operator for the longitudinal phonon mode.

At the surfaces with * = +L/2, we apply stress-free
boundary conditions [88],

[0 (@) + oy (~q)] .

(7 —2¢1)V - u = —2¢20,u,,
0 = Opuy + Oylg,

0= Byus + Doty (2.26)

The boundary conditions are compatible with the in-
version symmetry I and the magnetic twofold rotation
symmetry Co,T. To find the displacement fields in the
vicinity of the surfaces at * = £L/2, it is necessary to
consider the transverse phonon modes, too. The reason
is that the boundary condition at « = £L/2 couples lon-
gitudinal and transverse modes. The transverse modes
can be separated into a mode for which the displacement
u is in the plane spanned by # and ¢ = q; /g, and a
mode for which u is perpendicular to both & and §. The
boundary condition at x = +L/2 only mixes the first of
these two transverse modes with the longitudinal mode.
The displacement of this transverse mode is in the direc-
tion (¢ — ¢=q))/q and we choose

4 (q) = i(q)@ — .4)/q (2.27)

so that we have
i ()" =~ (),

The second transverse phonon mode is a horizontal shear
wave, which is not mixed with the longitudinal mode
upon reflection at the surface. This mode has no as-
sociated deformation potential and, hence, need not be
discussed further.

Upon reflection from the interface, the in-plane
wavevector q|| and the frequency (2 are conserved, but the
transverse wavevector component ¢, is not. Specifically,
a transverse mode with transverse wavevector component
+q, (with ¢, > 0) incident on the surface at © = +L/2
is reflected as a superposition of a transverse mode with
Fq. and a longitudinal mode with transverse wavevector

component
1
bt = = Jq2e2 — qﬁc?.
Cl

In the same way, a longitudinal mode with transverse
wavevector component +¢, incident on the surface at
x = +L/2 is reflected as a superposition of a longitudinal

A=1,t. (2.28)

(2.29)



mode with F¢, and a transverse mode with transverse
wavevector component

(“) = *\/q cf *qHCt

(2.30)
J

A)+,in
‘(Zm ?qH (I)

where qf(c/\)‘) = Q-

Fiae@FL/2 50 (dg, ) +Z

Explicit expressions for the reflection amplitudes s*

The normalized displacement field Wq)‘zlﬂut " of a mode in-

cident on the surface at © = £L/2 with a longitudinal
(A = 1) or transverse (A = t) polarization contains con-
tributions from the incident and the reflected waves,

N N FigM N (@ FL/2) ) (

A
Sh.a T4, q)), (2.31)

are given in App. A. In the same way, one

finds that the normalized displacement field of a phonon reflected from the surface at x = +L/2 in mode A is

1 ~ * (A0 ’
wNEout () — ej“%(ﬁLmu(A)(?qx,q”) + Z gV M) gy (wF L/2) (N ) (g, qj)-

Gz »q|

Since ¢; < ¢, the transverse wavenumber qg(gl’t) of the
longitudinal mode may be imaginary. If that is the case,
the longitudinal phonon mode decays exponentially away
from the surface at * = +L/2. Equation (2.31) also
holds in this case, provided the square root with positive
imaginary part is chosen in Eq. (2.29).

Equation (2.23) also allows for solutions that are ex-
ponentially localized at the surfaces at z = +£L/2.
These are called Rayleigh modes and their frequency is
[90, 99, 100]

O = cpy,

S (2.33)

where cg < ¢;. The precise value of the Rayleigh-mode
velocity cg depends on the ratio ¢;/¢; [100]. The Rayleigh
mode may be considered as a superposition of longitudi-

= / dqy / dq ——=

A=t

/ dq)| ———=

el T {

2/) QO‘)

s o

qj
2pM qH

A, A),out I
where a((h?qu and afh?quou are the annihilation oper-

ators for a longitudinal (A = [) or transverse (A = t)
bulk phonon of in-plane wavevector q and transverse
wavector component =+¢, incident on or reflected from
the interface at © = +L/2, respectively, and agﬁ)i is the
annihilation operator for a Rayleigh surface phonon of
in-plane wavevector q at the interface at x = £1/2.

The phonon model described here captures the essen-

qm(:li:ll,in(x)a()\):l:,in +w

(R)+ (R)%x (R)+£t
q  TW (z)a

(2.32)

qz,9||

(

nal and transverse phonon modes with imaginary q,,

MNR) A e o
¢ =i [}~ g,
Cx

A=1,t. (2.34)

The normalized displacement field for the Rayleigh mode
at the surface at = £L/2 then reads

W(R)i(aj) - Z (/}’ R+ i\q“ H|(zFL/2)
A/

aN) (FN ) qp),
. (N,R)+ .
where the coefficients sq are determined by the
boundary conditions. The normalization of the displace-
ment field for the Rayleigh modes is chosen such that
fd:c\wg;”)i(a:)|2 = 1. We again refer to App. A for de-
tailed expressions for the coefficients.

Combining contributions from bulk and surface modes,
we may write the displacement field in the vicinity of the
interface at x = +L/2 as

(2.35)

(A)i,out*( ) (A)£,outt
Gz ,q|| qz,—q qz,—q

(2.36)

—q —q ’

(

tial physics of phonon-induced scattering in WSMs while
allowing for analytical progress. Since WSMs are typi-
cally found in anisotropic materials [43], where also so-
called chiral phonon modes are possible [101] (for ex-
periments on WSMs with broken inversion symmetry,
see Ref. [102]), this model may be too simple to allow
for a detailed quantitative comparison with experimen-
tal data. However, many low-T transport phenomena
are directly linked to scattering properties of topological



arc states which are largely independent of the detailed
phonon model.

C. Electron-phonon interaction

Next we address the coupling between electrons and
phonons, where we focus on the electron-phonon inter-
action Hamiltonian H,, resulting from the deformation
potential. Other coupling mechanisms or more exotic vi-
brational modes, such as chiral phonons [101, 103], may
also emerge in low-energy WSM theories. For example,
the coupling to unconventional pseudoscalar phonons can
generate a deformation potential that is different for Weyl
nodes of opposite chiralities [70, 71]. Furthermore, elastic
gauge field interactions (“pseudo-magnetic fields”) have
been addressed in Refs. [71, 104-108], and piezoelectric
interactions can be important in WSMs with broken in-
version symmetry [109]. With minor modifications, such
types of couplings can be included in our theory, see
also Ref. [98]. For definiteness, however, we focus on
the deformation potential which often gives the dominant
electron-phonon coupling in WSM materials [69, 71, 110].

We here assume that the electron-phonon interaction
is diagonal in spin-orbital space and given by [89, 98]

Hep = goV -u(r), (2.37)
with a deformation potential coupling go (of dimension
energy). The displacement field u(r) is expressed in
terms of phonon creation and annihilation operators as in
Eq. (2.36). Using Thomas-Fermi theory for a simple esti-

J
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mate [69, 111], one obtains gg ~ n/np(1), where n is the
electron density and ny(e) the bulk DoS, see Eq. (2.11).
We therefore expect large values of gy for 0 < pu < vkw.
However, since g is affected by screening processes, it is
difficult to reliably estimate its value for realistic materi-
als. Strong electron-phonon couplings have recently been
reported for the type-II WSM material WPy [78].

For phonon-mediated scattering of electrons in the in-
terior of the slab, there is a contribution from longitudi-
nal phonons only. Upon substitution of Egs. (2.8) and
(2.25) into Eq. (2.37), we find that the matrix element

for scattering between bulk states |<I>f(b)> is of the form
[26]
b b bbl) 0t
(@ 1| 2) = G5 (a) — o))

k. The bulk-bulk amplitudes Gy x+ are

(2.38)

with q =k’ —

G =i ﬁg‘j” (61 161)- (2.39)
l M

We note in passing that the factor (£ |€x) in Eq. (2.39) is
characteristic for Weyl fermions and causes a suppression
of intra-node backscattering. Since this factor is absent
for conventional fermions, the bulk-bulk decay rate is re-
duced by a factor 1/2 in the Weyl case, see Eq. (3.27)
below.

Taking the phonon modes to be in thermal equilibrium
at temperature T', according to Fermi’s Golden Rule, the
corresponding bulk-bulk transition rate is

+ [ns(QY) + 1]5(® — O + Q(”)} (2.40)

where np(Q) is the Planck function (Bose-Einstein function at zero chemical potential).

To obtain the matrix elements for scattering between arc states, or between arc and bulk states, at the surface at
x = +£L/2, we substitute Egs. (2.12) and (2.14) for the electronic states and Egs. (2.36) for the displacement field.
This gives arc-bulk interaction matrix elements of the form

(b)+ (S)i 2 : (bsA)=+ A)+,in
<q)k’ ki ‘Hep@ku / 442G K20z (agw?q” -
A1t

(\)%,0utt (bsR): ([ (R)£ _ (R)£f
4z,—q| )+gk’ku (qH —qy )

(2.41)
with q = kh — k. Because Hy, is local, there is no direct phonon-induced scattering between arc states at different
surfaces. Of course, electrons may transition between different surfaces via intermediate bulk states. Such processes
are accounted for in the Boltzmann theory that will be developed in Sec. III. Detailed expressions for the arc-arc
amplitudes G(*) and the arc-bulk amplitudes GP% and G+ are given in App. B, where we also specify the
matrix elements of H.p, for bulk-arc and arc-arc scattering.

The arc-arc, arc-bulk, and bulk-arc transition rates have contributions from scattering mediated by longitudinal
bulk, transverse bulk, and Rayleigh phonons. In particular, the arc-bulk transition rate has the form

bs)+ de bsA) s:l: s:l:
Wit =an 0 [T EIGLE P {nn (@@ — 6% - 00) + (a0 + 16 - e + 009))
A=t
bsR)+ 2 b s b +
+ 27|G0 D {nB(Qg?)a(gf{,) el = ) + np (D) + 1)0(e) — &) +ng>)}, (2.42)

where q = k“ —k| and q = (¢,,q). Expressions for the bulk-arc and arc-arc transition rates are given in App. B.



D. Characteristic temperatures

For conventional electron-phonon coupled systems, the
crossover temperature separating the low- and high-
T regimes is the Bloch-Griineisen temperature Tpg =
2¢phkr, where cpp is the sound velocity and kp the
Fermi momentum [112]. Only phonons with momen-
tum ¢ ~ 2kp can efficiently backscatter electrons. The
frequency of such phonons is ~ 2c¢pnkp. Clearly, for
T <« Tpg, such processes are rare events, while they
proliferate for T' > Tpg.

For the WSM model considered in this paper, it is use-
ful to introduce an “effective Bloch-Griineisen” crossover
temperature as

kBTBG = Clkw. (243)

The rationale behind Eq. (2.43) is that momentum ex-
change for arc-arc scattering and for scattering between
the Weyl cones is naturally limited by ¢ < kw, since 2kw
is the distance between the Weyl points and the “length”
of the Fermi arcs in reciprocal space. For T <« Tgq,
phonons with ¢ < kw dominate the phonon-induced
scattering. For arc states, scattering is then local in re-
ciprocal space. For bulk states, the two Weyl points are
effectively decoupled if T' <« Tgg.

In practice, Tgg can weakly depend on other param-
eters, e.g., the angle «, the chemical potential p or
the relevant phonon mode. We here disregard such de-
tails and use the longitudinal sound velocity ¢; to de-
fine the effective Bloch-Griineisen temperature. (Note
that the various phonon mode velocities differ by fac-
tors of order one, which is not relevant for the defini-
tion of a crossover scale.) To give an estimate, for the
WSM material TaAs, the closest pair of Weyl nodes is
separated by kw =~ 0.17/ag, with the lattice constant
ag ~ 3.4x1071% m [43]. Using ¢; ~ 2 x 103 m/s [96, 113],
we obtain Tgq ~ 13 K.

For bulk quasiparticles, there is a second characteristic
temperature for intra-node scattering processes, which
is the conventional Bloch-Griineisen temperature corre-
sponding to the radius p/v of the Fermi surface at each
Weyl node,

kpTS = 2c1/v. (2.44)

We observe that for 0 < p < vkw, an intermediate tem-
perature regime opens up,

b)

TE <« T < Tsa, (2.45)

where the phonon-induced inter-node backscattering of
bulk quasiparticles is frozen out but backscattering pro-
cesses within a given Weyl node can proliferate at the
same time.

III. BOLTZMANN THEORY

We now describe the Boltzmann approach [111] for
the calculation of phonon-induced electronic transport

observables in a clean WSM slab, using the model dis-
cussed in Sec. II. The applicability of the Boltzmann
equation requires that the slab width L > v/u is much
larger than the electron wavelength and that L > ¢;/T
is much larger than the thermal phonon wavelength. We
consider a chemical potential T" <« p < kwwv, so that
the two Fermi surfaces at the two Weyl nodes are well
separated in reciprocal space. This condition automati-
cally ensures that the slab width is much larger than the
typical transverse width of the arc states.

We consider the linear response of the system to a ho-
mogeneous electric field E| = E,§ + E.Z applied par-
allel to the surface, see Fig. 1(a). Along the transverse
direction, the current must vanish (J, = 0) such that
the induced transverse gradient of the electrochemical
potential will be implicitly determined by E, .. The re-
lation between the in-plane electrical field E| and the
in-plane current density J; defines the conductivity ten-
sor Jj = GE|. The resistivity tensor is then given by
p=6"".

In Sec. IIT A, we discuss the Boltzmann equations for
a WSM slab in a uniform in-plane electric field, using
the transition rates for phonon-induced scattering from
Sec. ITC. Since we study only the linear transport regime
in this work, it is sufficient to linearize the distribution
functions and the collision integrals with respect to the
applied electric field, see Sec. IIIB. In addition, the
smallness of the ratio between sound and Fermi velocities
allows us to employ a quasi-elastic approximation such
that the linearized Boltzmann equations can be solved
for each electron energy e separately. Conditions for the
validity of the Boltzmann approach and the various ap-
proximations used are discussed in Sec. III C.

A. Boltzmann equation

The Boltzmann equation describes the dynamics
and the spatial variations of the distribution functions
1ib)(r, t) and flii)i(r” ,t) of bulk electrons and arc states.
For the case of a time-independent homogeneous in-plane
electric field E|, the distribution functions are indepen-
dent of r| and ¢. Moreover, we assume that the typical
time for bulk-arc scattering is large in comparison to the
transit time across the width of the slab, so that the bulk
distribution function is also independent of the transverse
coordinate z. (The precise conditions are discussed in
Sec. IITC.) With these simplifications, the Boltzmann
equation takes the form

b vy 1 sb)+
B ah =" + 7 Ei V% (31)
s)+ s)*+ bs)+
0 O S A (3.2)

where Z(0?) (0= 70s)E  and T(5)E are the collision
integrals for bulk-bulk, bulk-arc, arc-bulk, and arc-arc



scattering, respectively?. The factor 1/L in Eq. (3.1)
arises from a proper consideration of the normalization
of bulk and surface electron states. Specular reflection at
the surfaces of the slab at x = £L/2 implies the condi-
tions

(3.3)

f(k Ky f( ke k)’

consistent with the form (2.12) of the bulk states at the
sample surfaces. We will use Eq. (3.3) to restrict consid-

J

bb) dFk!, 7 (80) £
7 = [ / 27 Wik ¢!

09 _ dk'

ku

kH k’

The transition rates W®» and W) are given in Egs.
(2.40) and (2.42), respectively. The transition rate W (s?)
is given in Eq. (B10), and the collision integrals for bulk-
arc and arc-arc scattering can be found in App. C. Our
expressions for the transition rates ensure that these col-
lision integrals vanish identically in thermal equilibrium.
Next we observe that the in-plane current density

9

has contributions from the bulk and from the current
carried by the arc states,

dk
Jl(\b) B /(QW)SVI(Ib)(k) lib)’
s dk

Here vﬁb)(k) is the in-plane velocity of bulk states, see

Eq. (2.10), and vl(‘s)i(ku) is the velocity of the arc states

at the surface at x = +£L/2, see Eq. (2.17). The factor L
in Eq. (3.6) arises because we consider two-dimensional
current densities, so the bulk current density is actually
integrated over x, which produces the factor L. The
transverse response to the applied field is characterized
by the difference eV of the chemical potentials for the
surface states at the surfaces at © = L/2 and x = —L/2,

(s)
eVl/(dkl fku — /5 kH7

27)? FA(€£(H)+)

J = J(b (3.5)

(3.6)

(3.7)

(3.8)

where npa (€) is the DoS of arc states in Eq. (2.22).

2 In addition, there is a Berry curvature component along the z-
direction. However, this term does not generate a net Hall re-

W(sb)i )]

eration of the bulk distribution function flib) to positive
values of k.

The collision integrals are then expressed in terms of
the transition rates discussed in Sec. IIC. For the bulk-
bulk and arc-bulk collision integrals, we have

b bb b b
)W )

187))}.

W bs)E ()%
fku ) Wi lzu fku 1-

(

B. Linear response and quasi-elastic approximation

To linear order in the applied electric field, we may
expand the arc-state distribution function as

an(E(S)i)

()£ _ (s)+ (s)% kj

fkn (ku )+ k RO , (39)
k)

where np(e) = 1/(e€=#/T 4+ 1) is the Fermi-Dirac distri-
bution function. Similarly, the linearized bulk distribu-

is encoded by gpﬁ’). With this Ansatz,

the collision integrals are expanded to linear order in @fcb)

tion function fl((b)

and gof:‘)i, whereas the distribution functions on the left-
hand side of Egs. (3.1) and (3.2) can be replaced by the
equilibrium distribution functions.

After linearization, the Boltzmann equation becomes

woy 1 sb)+
—eEy - H (k):jé )+ZZ‘71£ =, (3.10)

s)£ bs)+ ss)+
—eBy - v (k) = BT + g0, (3.11)
where the linearized collision integrals for bulk-bulk and

arc-bulk scattering are given by

dk:’ dk/
7 _ u W — o), (3.12)
bs :I: dk/ dkH b DE=
IEII : k’ kn (4‘0&’) - (‘Ol(ﬂw) )-

The bulk-bulk kernel Wl((l/)bl)( reads

sponse and can safely be ignored here.
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Wi = 2m1G0) 12 { s (00) + ni (=) + Q)]a(ell) — = — o)
+ np(QP) +1 - np(el!) — D)6 — P + Q<l>)} (3.13)
where q = k/ — k, and the arc-bulk kernel is given by
) dqe | (bsh)+ b
Wi llH 2 Z/ T skﬁ,qm|2 {[nB(Q( ) +nF(6fjl) + M8 - sf(su) — o)
BDE= b BDE=
+ B (Q5Y) + 1 ne (el — Q<A>>]5(a§j s+ Q(’\))}
bsR)+ b s)t
+ 272G P { o (D) + np (20 + Qo (e) — =% — o)
+ 21 () + 1 — np(el* — qu>)}5(5§(’i) et + Qg?)} , (3.14)

where q = kﬁ — k. Contributions involving phonon
emission or absorption can easily be identified in the
above expressions. Expressions for the bulk-arc and arc-

arc collision terms along with the associated kernels are
specified in App. C, see Eq. (C3).

Since the sound velocities ¢;, ¢;, and cr are gener-
ally much smaller than the Fermi velocity v, the typical
change of the electronic energy is small in comparison to
the characteristic energy scales p and kwov for chemical
potential T' <« p < kwwv. This motivates the “quasi-
elastic” approximation, in which the phonon energies are
dropped from the energy-conserving delta functions in
Egs. (3.13), (3.14) and (C3). The phonon energies are
retained in the arguments of the Planck functions ng
and Fermi-Dirac functions ng.

Because energy is conserved after making the quasi-
elastic approximation, it is advantageous to use the en-
ergy ¢ to label bulk states and arc states. For the bulk
states, we eliminate the transverse momentum £k, in fa-
vor of ¢; for the arc states, we replace k, in favor of €.
The integration over k;, (for bulk states) and over k;, (for
arc states) in the expressions for the collision integrals
can be performed with the help of the delta functions of
energy in the scattering kernels of Egs. (3.13), (3.14) and
(C3), using

Kl . 1
/ 5 6(51((,) —g)= — o
0o 47 27T|’Uw (e k”)|

dk;, 1
/—ycS(e(s)i—e):?, (3.15)
27 2mlvy” ™ (e, kL)
where (5 k) = asfﬁ/akm and vg(f)i(s,kz) =

(?&:E(H)i /Ok,, are the x and y components of the velocities

of bulk and arc states, respectively, see Egs. (2.10) and
(2.17). The range of k.-values at energy ¢ is —kw(e) <
k. < kw(e), see Eq. (2.18).

In this notation, the equations of motion for the linear-

(

response corrections to the distribution function read

Z

ss)t
Jékj ,

(sb)i

e,k 3 16)

(b) (bb)
—eBy v P(e k) = T2 +

—€E|| . Vﬁs)i(f, k?z) = jg(f;:z)i + (317)
where the collision integrals are obtained from Egs. (3.12)
using the procedure described above. We refer to App. C
for a detailed discussion of these collision integrals. The
expressions (3.5)—(3.8) for the in-plane current density

and the transverse voltage then become

(»)
30 o L/ dj [ de Vv (5K) (_an(5)><p(b)
I @m)2 ) 27 )0 k)| de sk

3% = / v e k) (_dnp(€)>%

27r ‘D(S (e, k2)| de
and

s)+ (s)—
9021)@ (pe, _an(E)
de '

/dkzz de
eV, = =
5 | 2 s ko)
(3.19)

Since in the quasi-elastic approximation the energy e is
conserved, the label ¢ will be dropped from the expres-
sions if no confusion is possible. Finally, we note that
the inversion symmetry of the problem allows to reduce
the number of degrees of freedom by one half. The corre-
sponding symmetry relations are summarized in App. C.

C. Scattering rate for bulk electrons

The scattering rate for bulk electrons is given by

wbb)

(bb) _
Ly Wi 1o

(3.20)

see Eq. (3.13). The probability of bulk-arc scattering for
an electron incident on the surface at x = +L/2 is given
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AT A CO R
where vg(cb)(k) is the transverse velocity, see Eq. (2.10). A
necessary condition for the use of Fermi’s Golden Rule
to calculate the transition rates is

PE* <« 1. (3.22)

Since the rates for phonon-induced scattering are
strongly temperature dependent, this condition is always
satisfied at sufficiently low temperatures. We here also
assume that

(b)
sty _ vz (k)|
P K 7Lr§f”) . (3.23)

This inequality ensures that the transit time of electrons
between opposite surface is less than the escape time
into the arc states, so that the distribution function of
electrons in the bulk is uniform across the cross section
of the slab. The inequality (3.23) follows from the in-
equality (3.22) if the bulk mean free path for electron-
phonon scattering is larger than the slab width L, but
it may still be satisfied if that is not the case. (In the

ultra-low temperature regime T < T; ébc);, the rate Fl({bb) in
Eq. (3.23) should be replaced by the transport scattering
rate, which leads to an even weaker condition on the slab
width L than Eq. (3.23).)

We now consider the regime p < kwv, where the in-

termediate temperature window T]gb();, < T <« Tgg opens

up. Here the Bloch-Griineisen temperature ng for intra-
node scattering of bulk quasiparticles has been defined in
Eq. (2.44). Within this temperature window, the scat-
tering rate for bulk quasiparticles with energy ¢ = u can
be calculated from Eq. (3.20), see also App. C, as

b)2
F(bb) _ 1'\0 TT:]}(% E(bb,?)7
TBG

(3.24)

where Ty is a characteristic energy scale for the electron-
phonon scattering rate,

r, — 96k

3.25
pyvcv’ ( )

and 2(°»2) is a dimensionless numerical constant. For
i < kwv, we find 2¢%2) = 1/87. On the other hand,
in the high-temperature limit 7' > Tgc (but still 7' <
kwv), one arrives at a similar result as in Eq. (3.24),

7T
3

BG

r® —=r, E(bbﬂ)’

(3.26)

but with a different numerical constant (1. For 1 <
kwv, we obtain 201 = 2=2(00.2) gince now bulk quasi-
particles can also be efficiently scattered between differ-
ent Weyl nodes. In the low temperature limit 7" < TébG,
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inter-node scattering is suppressed and intra-node scat-
tering implies

3
L) _ FOTTE(bb,B)
Ba

with the numerical constant Z(**3) = 7¢(3)/4r. Here
¢(s) is the Riemann zeta function and ((3) ~ 1.202.
Using gg ~ 1 €V and the above-mentioned TaAs ma-
terial parameters with py; &~ 12 g/cm?® for a rough es-
timate, we