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Abstract 

 

Revealing the bonding and time-evolving atomic dynamics in functional materials with 

complex lattice structures can update the fundamental knowledge on rich physics therein, and 

also help to manipulate the material properties as desired. As the most prototypical 

chalcogenide phase change material, Ge2Sb2Te5 has been widely used in optical data storage 

and non-volatile electric memory due to the fast switching speed and the low energy 

consumption. However, the basic understanding of the structural dynamics on the atomic scale 

is still not clear. Using femtosecond electron diffraction, structure factor calculation and 

TDDFT-MD simulation, we reveal the photoinduced ultrafast transition of the local correlated 

structure in the averaged rock-salt phase of Ge2Sb2Te5. The randomly oriented Peierls distortion 

among unit cells in the averaged rock-salt phase of Ge2Sb2Te5 is termed as local correlated 
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structures. The ultrafast suppression of the local Peierls distortions in individual unit cell gives 

rise to a local structure change from the rhombohedral to the cubic geometry within ~ 0.3 ps. 

In addition, the impact of the carrier relaxation and the large amount of vacancies to the ultrafast 

structural response is quantified and discussed. Our work provides new microscopic insights 

into contributions of the local correlated structure to the transient structural and optical 

responses in phase change materials. Moreover, we stress the significance of femtosecond 

electron diffraction in revealing the local correlated structure in the subunit cell and the link 

between the local correlated structure and physical properties in functional materials with 

complex microstructures.       
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Due to the growth of the global amount of data, the demand for data storage and processing 

is increasing exponentially [1]. Chalcogenide phase change materials (PCMs) have been 

singled out as one of the best classes of prospective materials for all-photonic storage/memory 

[2] and electronic phase-change memory [1]. A laser or electrical pulse stimulates nonvolatile 

switching between a crystalline and an amorphous phase with atypically large differences in 

the optical-reflectivity and the electrical-resistivity. During such a structural phase switching, 

the crystallization process is the time-limiting step, while the amorphization process is the 

energy-intensive step. To optimize these two steps, one hot topic is to modulate the local 

structural geometry in the atomic level in the most prototypical phase-change material 

Ge2Sb2Te5 (GST-225) and the similar alloys along the tie-line of GeTe-Sb2Te3 [3-9]. The 

crystallization speed has been improved from tens of nanoseconds to sub-nanosecond by 

introducing prestructural ordering [4] and crystal precursors [5]. On the other hand, the energy 

consumption for the amorphization can be reduced by introducing the premelting disordering 

[6] and controlling the local atomic switching [7]. The recent theoretical studies [8, 9] propose 

that an ultrafast electronic excitation can reduce the energy consumption by introducing a direct 

solid-solid amorphization bypassing the molten state in GST-225. Overall, engineering the local 

structures in GST-225 play a key role in improving the performance of the structural switching. 

The crystalline GST-225 is an averaged rock-salt phase, accompanied by local distortions 

and huge vacancy concentrations, as shown in Fig. 1a. The anion sub-lattice is fully occupied 

by Te atoms, whereas the cation sites are populated by Ge (40%), Sb (40%) and vacancies (20%) 

randomly [3]. The local structure in individual unit cell of GST-225 is rhombohedrally distorted 

with random orientation to eight equivalent distortions along the <111> directions [9, 10, 11]. 

Such local distortions with shorter and longer Ge(Sb)-Te bonds is termed as local Peierls 

distortions as shown in Fig. 1a (bottom). From a chemical perspective, the half-filled p-band of 

Ge (Sb/Te) forms two bonds to the left and right atoms, and this bonding structure is termed 

resonant bond [12], metavalent bond [13], or multicenter hyperbonding [14]. The randomly 
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oriented Peierls distortions in GST-225 are a typical characteristic of local correlated structures 

in crystalline functional materials [15-20]. What is common to material systems with local 

correlated structures is that there exists a distinction between the local symmetry and the 

average symmetry imposed by the crystal lattice [15]. Photoexcitation of GST-225 triggers a 

drastic optical contrast within 100-200 femtoseconds, which has been attributed to the depletion 

of electrons from the metavalent bonds [21, 22]. Besides such an electronic structure 

modulation, breaking the bond alignment [23] and the medium range order of the lattice 

structure [24] may also induce a significant change of the optical matrix elements. However, 

the precise knowledge on the ultrafast structural response is still not clear. The atomic motions 

after femtosecond laser excitation have been studied extensively by time-resolved molecular 

dynamics simulation, ultrafast spectroscopy and ultrafast electron/X-ray diffraction. 

Nevertheless, the developed structural response models, including the phonon-driven symmetry 

change [25, 26], the rattling motion [23], the selective bond breaking [8, 9] and the simple 

thermal response [21, 22], do not provide a consistent picture. The local Peierls distortions in 

the rock-salt phase of GST-225, which may associate with the highly damped Raman-inactive 

phonon mode in Ref. 22, is always neglected in previous studies. 

Ultrafast electron/X-ray probes enable a direct access to transient atomic and electronic 

motions in a broad range of fundamental physical processes after femtosecond laser excitation 

[27-35]. Here we report the photo-induced local structural dynamics in phase change material 

GST-225 revealed with a combination of femtosecond electron diffraction, structure factor 

calculation and time-dependent density-functional theory molecular dynamic simulations 

(TDDFT-MD). The high temporal resolution of ~ 150 fs in our experimental system [36, 

37], which is comparable to the highest vibration period of phonons in GST-225 [22], 

enables a direct access to the ultrafast structural response induced by electronic excitation. 

A consistent physical scenario towards an ultrafast transition of the local correlated 

structure is unveiled.     
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Fig. 1. The crystalline structure and the transient structural dynamics of GST-225. (a) (top) 

A supercell structure of the rock-salt phase GST-225. The length of three axes of single 

unit cell is 6.01 Å. (bottom) A schematic illustration of randomly oriented Peierls 

distortions with longer (~ 3.15 Å) and shorter (~ 2.85 Å) Ge(Sb)-Te bonds in the subunit 

cell. The gray arrows indicate the orientation of the adjacent local rhombohedral structures. 

(b) (top) The transmission diffraction pattern and the radially averaged intensity 

distribution (background subtracted) at a negative delay. The inset displays a better 

separation of (111) and (200) reflections by controlling the current of the magnetic lens 

positioned after the sample. (bottom) The change in diffraction intensity from -0.2 to 60 ps, 

by subtracting the intensity distribution at negative delay with 2300 nm and 4.6 mJ/cm2 

laser pump. (c) (d) The temporal evolution of the normalized Bragg reflection intensities 

with 2300 nm (4.6 mJ/cm2) and 500 nm (0.61 mJ/cm2) laser pump. The solid lines are the 

fits with a monoexponential function. 

a 

b 

c 
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In the experiment, we use a femtosecond laser pulse to excite the GST-225 nanofilm with 

a thickness of 15 nm (see details in Supplementary Material [38]). A femtosecond electron 

pulse diffracts off the transient lattice structure at varying time delays. The transmission 

diffraction pattern and the radially averaged intensity distribution of the rock-salt phase GST-

225 are shown in Fig. 1b (top). The change in diffraction intensity in Fig. 1b (bottom) shows a 

transient decrease of the Bragg reflection intensities after femtosecond laser excitation. To 

analyze the detailed temporal evolution, we fit an empirical back-ground function (exponential 

plus second-order polynomial) and pseudo-Voigt line profiles to the peaks in the radial averages 

at each pump-probe delay [55]. 

Since the band gap of GST-225 is 0.4 ~ 0.5 eV [56], we choose to pump with two different 

wavelengths, i.e. 2300 nm (0.54 eV) and 500 nm (2.48 eV), in order to investigate the possible 

impact of the carrier relaxation to the structural response [57]. The relative intensity changes of 

several Bragg reflections with 2300 nm and 500 nm optical pump are depicted in Fig. 1c and 

Fig. 1d. We fit the temporal evolution of the intensity with a monoexponential function, 

convolved with a Gaussian function of 150 fs FWHM to account for the instrument response 

function. For each reflection, the time constant is nearly the same for 500 nm and 2300 nm laser 

excitation. With increasing pump fluence, the temporal evolution of the intensities and the 

corresponding time constants are summarized in Fig. S1-S2 and Table 1-2 in Supplementary 

Material. In these measurements, the density of the excited electrons, i.e. (0.69-2.43)×1015 cm-

2, with 2300 nm laser pump (~2-7 mJ/cm2) is comparable with the density of (0.59-1.57)×1015 

cm-2 for 500 nm laser excitation (~0.3-0.8 mJ/cm2) (see density calculation in Supplementary 

Material). The similar structural response with 500 nm and 2300 nm laser excitation is obtained. 

Whether the carrier relaxation will impact the amorphization process at a higher pump fluence 

[57] needs to be studied further, but at the low to medium pump fluence, we do not observe 

distinct structural responses with low to high photon energy excitation.   
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The local Peierls distortion is randomly oriented along the <111> directions in the 

averaged rock-salt phase of GST, therefore, we focus on the intensity change of the (111) 

reflection as shown in Fig. 2. To avoid the possible impact of the heat accumulation [58], 

experiments at room temperature (Fig. 2a) and at 112 K (Fig. 2b) are performed. The temporal 

evolution of the intensities in Fig. 2a and 2b clearly indicate an ultrafast intensity decay of the 

(111) reflection. See detail on the data processing in Fig. S3-S6. The time constant of 0.1 - 0.3 

ps for the (111) reflection is significantly smaller than other Bragg reflections in Fig. 1, which 

may relate to the local Peierls distortion. In conventional crystalline material, the Peierls 

distortion is generally induced by electronic instability, and a femtosecond laser excitation gives 

rise to a suppression of such structural distortion by coherent phonons [25, 27, 29]. Regarding 

GST-225, the Peierls distortions are local and randomly oriented along the <111> directions, 

therefore, the suppression of adjacent local Peierls distortions across unit cells should be 

incoherent as illustrated in Fig. 2c. In particular, the photoexcitation flattens the potential energy 

surface along the <111> directions and enables the opposite movement of the Ge(Sb) and Te 

atom, giving rise to the local structural transition from the rhombohedral to the cubic geometry. 

With different pump fluences, the time constant for the intensity decay of the (111) reflection 

is 0.1 - 0.3 ps as shown in Fig. 2d, smaller than the period of the A1g phonon mode in GeTe 

[25]. A quasi-linear dependence of the amplitude of the (111) intensity change on the pump 

fluence is shown in Fig. S7. 
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Fig. 2. (a) (b) with 2300 nm laser pump, (left) Normalized intensity change of the (111) 

reflection as a function of the time delay at room temperature and 112 K respectively. The 

solid line is the fit with a monoexponential function; (right) Overall change in diffraction 

intensity from negative to positive delays. (c) The 2D square nets indicates the suppression 

of the local distortions with random orientation among unit cells. The Ge/Sb atoms (purple 

balls) move towards the high symsmetry position (the corresponding movement of Te atom 

is not shown for simplification). In the subunit cell, the sketch of the atomic displacement 

along the [111] direction and the corresponding potential energy surface change are shown. 

(d) Time constants of the intensity decay of the (111) reflection with different pump fluences 

for 500 nm and 2300 nm laser excitation at room temperature and 112 K. The error bars 

correspond to 68.3% confidence intervals of the fit. The measurements carried out at 112 K 

are marked with green balls.  
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Fig. 3. Calculated and experimental anisotropic intensity change associated with the 

suppression of the local rhombohedral structure. (a) By structure factor calculation, the 

relative intensity change of Bragg reflections (|F|2) with (top) only the offset displacement of 

Ge atom and (bottom) the opposite displacement of Ge/Sb and Te atom along the [111] 

direction. The zero displacement position indicates the site in an ideal rock-salt phase. The 

offset displacement of atoms along the [111] direction represents the local rhombohedral 

structure in individual unit cell. (b) The measured anisotropic intensity change within 0.3 ps, 

i.e. the larger intensity change of the (111) reflection than that of (200) and (220) reflection. 

(c) Calculated intensity change with the displacement of Ge from -0.15 Å to 0 Å, Sb from -

0.08 Å to 0 Å, Te from 0.08 Å to 0 Å, and the vibrations of Te atoms (μTe ~ 0 to 0.2 Å).   

(a) (b) 

Experiment Calculation 

Calculation Calculation 

(c) 
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To quantify the suppression of the local rhombohedral structure, we perform the structure 

factor calculation. Note that for crystalline materials with local correlated structures, such as 

the randomly oriented Peierls distortions in adjacent unit cell in GST-225, the diffraction 

intensity is calculated by a summation over all unit cells included. If the atomic motions 

associated with such local distortions are uncorrelated across unit cells, the structure factor 

calculation of a single unit cell can be used to evaluate the diffraction intensity change of the 

overall lattice. See details about the structure factor calculation in Supplementary Material. Fig. 

3a shows the calculation results on two displacement models, indicating the transition from the 

rhombohedral to the cubic configuration (-0.15 Å to 0 Å). In the first model, only the offset 

displacement for the Ge atom along the [111] direction is considered because the lighter Ge 

atom is expected to move more easily than the heavier Te and Sb atoms, while in the second 

model, the opposite displacement of Ge/Sb and Te atom along the [111] direction is used. The 

same anisotropic intensity change for the two models is observed, i.e. the intensity of the (111) 

reflection is decreased significantly while the intensity of the (200) and (220) reflection is 

remained or enhanced. In Fig. 3b, we extract the experimental intensity change within 0.3 ps, 

where the intensity decay of the (111) reflection is almost done. As seen, the intensity of the 

(111) reflection is decreased remarkably while the intensity for the (200) and (220) reflection 

remains, which is qualitatively in agreement with the structure factor calculation in Fig. 3a.  

For a more precise structure factor calculation, two points need to be considered. First, in 

the averaged rock-salt phase of GST-225, the length of the shorter Ge-Te bond in Ge-centered 

local rhombohedral structure is ~ 2.84 Å (~ 2.82 Å), while the shorter Sb-Te bond in Sb-

centered local rhombohedral structure is ~ 2.91 Å (~ 2.88 Å) at 100 k (300 k) [9]. Second, with 

electronic excitation, the strong local force would drive large vibrations of Te atoms around 

vacuum sites within 0.5 ps [59]. With the combination of the bond length discrepancy and the 

local vibrations of Te atoms (see details in Supplementary Material), the calculated intensity 

change in Fig. 3c agrees better with the experimental results in Fig. 3b. 
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We further confirm the photo-induced suppression of local Peierls distortions by 

performing TDDFT-MD simulations in the averaged rock-salt phase of GST-225. See 

b c 

a 

b a 
b 

a 

T = 0 ps T = 0.84 ps 

1% excitation 6% excitation 

Fig. 4. Simulation results of bond length in linear triatomic bonding geometry in the supercell 

of GST-225 before and after the electronic excitation. (a) (left) The bond length distribution 

within the supercell before laser excitation. The tilted distribution indicates a shorter and a 

longer bond in a linear triatomic bonding geometry. (right) The bond length distribution at 

0.84 ps (integration from 0.72 ps to 0.96 ps) after 6% electronic excitation. (b) (c) The 

temporal evolution of the ratio between the length of line a and line b (indicated in (a)) with 

1% and 6% electronic excitation respectively. The decrease of the the ratio, i.e. the ellipticity, 

indicates the suppression of the bond length discrepancy in a linear triatomic bonding 

geometry.                
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detailes about the simulation in Supplementary Material. The photoexcitation effect is 

simulated by moving a certain percent of electrons from the valence band maximum states 

to the conduction band minimum states, similar to the method in Ref. 25. In order to 

characterize the bond length discrepancy in the supercell, the bond pairs in each linear triatomic 

bonding geometry, such as the Te-Ge-Te and the Te-Sb-Te, are tracked during the temporal 

evolution. The contour map in Fig. 4a displays the distribution of the collected bond pairs. At 

the ground state (T=0 ps), the elliptical distribution of the contour map in Fig. 4a (left) 

indicates the shorter and the longer bond in most bond pairs, an intrinsic character of the local 

Peierls distortions. After electronic excitation, as shown in Fig. 4a (right), the ellipticity of 

the contour map is reduced, i.e. the bond length discrepancy in bond pairs is reduced. We 

quantify the change of the bond length discrepancy by calculating the ellipticity of the contour 

map, i.e. the ratio between the length of line a and line b for the brown zone. The maximum 

electronic excitation in our experiment is ~ 1% (see the calculation in Supplementary Material), 

therefore we perform 1% and 6% electronic excitation in the simulation. The temporal 

evolutions of the ellipticity are displayed in Fig. 4b and Fig. 4c (each data point is the statistic 

over ± 120 fs). The ellipticity has decreased apparently from 1.6 to around 1, indicating the 

suppression of the local Peierls distortions. Moreover, the change of the ellipticity completes 

within 0.3~0.6 ps, which agrees with the timescale of the ultrafast intensity decay of the (111) 

reflection in Fig. 2. Therefore, the simulation result coincides with the physical model of the 

photo-induced suppression of local Peierls distortions concluded from the experimental results. 

The time-resolved bond length distribution by counting the Te-Ge-Te and the Te-Sb-Te 

geometry is shown in Fig. S9. 

Using femtosecond electron diffraction, structure factor calculation and TDDFT-MD 

simulations, we reveal the ultrafast suppression of the local Peierls distortions in the averaged 

rock-salt phase of GST-225. Distinct from the model of the rattling motion [23], the selective 
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bond breaking [8, 9] and the simple thermal response [21, 22], a local structural transition from 

the rhombohedral to the cubic geometry within ~ 0.3 ps is demonstrated. Since the Peierls 

distortion is randomly oriented along the <111> directions, the atomic displacements associated 

with the suppression of Peierls distortions are coherent within single unit cell while they are 

incoherent across unit cells. Therefore, such local structural transition is intrinsically different 

from the conventional long-range symmetry change, such as the rhombohedral-to-cubic 

transition in GeTe driven by the coherent A1g phonon mode [25]. The highly damped Raman-

inactive phonon mode observed in GST-225 in Ref. 22 should be attributed to the ultrafast 

suppression of the local Peierls distortions instead of the vacancy sites. The timescale of the 

ultrafast local structural transition is comparable to that of the ultrafast dielectric function 

change [21, 22], therefore the local structural transition is expected to contribute to the dielectric 

function change (see discussion in Supplementary Material).     

A direct solid-solid amorphization bypassing the molten state has long been pursued in 

GST-225 [6-9, 57, 59, 60]. In contrast to the enhancement of the Peierls distortions with rising 

temperature [9], the identified ultrafast suppression of the local Peierls distortions here is photo-

induced. The similar ultrafast structural responses with 2300 nm and 500 nm laser pump 

indicates no significant impact of the carrier relaxation to the structural dynamics [57]. We 

expect upon increasing the pump fluence, the suppression of the Peierls distortions will be the 

intrinsic process driving the system towards the amorphization phase, which is distinct from 

the model of the selective breaking of the longer bonds in the local distortion [9, 61]. See more 

discussion on the possible direct amorphization based on the ultrafast local structural transition 

in Supplementary Material.        

The local correlated structure (which is also termed as correlated disorder in Ref. 15), such 

as the randomly oriented Peierls distortions in GST-225 and BaTiO3 (see Ref. 15), is an intrinsic 

structural character in many functional crystalline materials and is important for the particular 
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function of interest [15, 16]. With conventional crystallography technique (such as static X-ray 

diffraction) determining the space group, only the long-range order is clearly detected and the 

local correlated structure is hidden. How to characterize the local correlated structure and 

establish the link between the physical properties and the disorder is challenging. Intrinsically, 

such local correlated structures by electronic instability is expected to be released in an ultrafast 

way after femtosecond laser excitation. The corresponding ultrafast atomic motions can be 

isolated by monitoring the ultrafast intensity changes of diffraction peaks (we present in this 

work and in Ref. 62), the diffuse scattering [63] and the pair distribution function. Then the 

local correlated structures can be visualized and identified directly with time-resolved 

diffraction method, such as ultrafast electron diffraction. We anticipate that the comprehensive 

analysis of the ultrafast structural responses in our work will help to reveal the local correlated 

structure [15-20] in crystalline functional materials, and deepen the understanding of the local 

structural dynamics in halide perovskites [64, 65] and order-order/disorder structural transitions 

in thermoelectric materials [66-69] and ferroelectric-paraelectric transitions [70, 71].       

 

 

Data and materials availability 

All data needed to evaluate the conclusions in the paper are present in the paper and the 

Supplementary Materials. Materials related to this paper may be requested from the 

corresponding author Yingpeng Qi or Ralph Ernstorfer. 
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