Supporting Information:

Electron delocalisation in conjugated sulfur heterocycles probed by resonant Auger spectroscopy

Jessica B. Martins,^{*,†} Carlos E. V. de Moura,[‡] Gildas Goldsztejn,[¶] Oksana Travnikova,^{§,∥}

Renaud Guillemin,^{§,||} Iyas Ismail,^{§,||} Loïc Journel,^{§,||} Dimitrios Koulentianos,^{§,⊥} Mario

Barbatti,^{#,}[@] Alexsandre F. Lago,[△] Denis Céolin,[∥] Maria Luiza M. Rocco,[∇] Ralph Püttner,^{††} Maria Novella Piancastelli,^{§,‡‡} Marc Simon,^{§,∥} and Tatiana Marchenko^{*,§,∥}

†Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France.

[‡]Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States of America.

¶ISMO, CNRS, Université Paris-Saclay, 91405 Orsay, France.

§Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France.

||Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, France.

⊥Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96 Gothenburg,

Sweden.

#Aix-Marseille University, CNRS, ICR, Marseille, France.

@Institut Universitaire de France, 75231 Paris, France.

△Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), 09210-580, Santo André, São Paulo, Brazil.

∇Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil. ††Fachbereich Physik, Freie Universität Berlin, D-14195 Berlin, Germany.

\$\$Department of Physics and Astronomy, Uppsala University, SE-751 20 Uppsala, Sweden.

E-mail: martinsbjessica@gmail.com; tatiana.marchenko@sorbonne-universite.fr

Table of Contents

1	Ato	omic coordinates S-	3
	1.1	Thiophene (C_4H_4S) S-	3
	1.2	Thiazole (C_3H_3NS)	3
	1.3	Thiolane (C_4H_8S) : envelope enantiomer (C_S)	.3
	1.4	Thiolane (C_4H_8S) : twisted enantiomer (C_2)	-4
	1.5	Atomic Numbering	4
2	Mo	lecular Orbitals S-	5
	2.1	Thiophene (C_4H_4S) S-	$\cdot 5$
		2.1.1 Ground State at RHF level	$\cdot 5$
		2.1.2 Ground State at CASSCF level	$\cdot 5$
		2.1.3 S 1s Excited State B_1 at IS-MCSCF level $\ldots \ldots \ldots \ldots \ldots \ldots $ S-	.5
		2.1.4 S 1s Excited State B_2 at IS-MCSCF level $\ldots \ldots \ldots \ldots \ldots \ldots $ S-	.5
	2.2	Thiazole (C_3H_3NS)	$\cdot 5$
		2.2.1 Ground State at RHF level	$\cdot 5$
		2.2.2 Ground State at CASSCF level	5
		2.2.3 S 1s Excited State A' at IS-MCSCF level $\ldots \ldots \ldots \ldots \ldots \ldots $ S-	-6
		2.2.4 S 1s Excited State A'' at IS-MCSCF level $\ldots \ldots \ldots \ldots \ldots \ldots $ S-	-6
	2.3	Thiolane (C_4H_8S) : envelope enantiomer (C_S)	-6
		2.3.1 Ground State at RHF level	6
		2.3.2 Ground State at CASSCF level	6
		2.3.3 S 1s Excited State A'' at IS-MCSCF level $\ldots \ldots \ldots \ldots \ldots \ldots $ S-	-6
		2.3.4 S 1s Excited State A' at IS-MCSCF level $\ldots \ldots \ldots \ldots \ldots \ldots $ S-	6
	2.4	Thiolane (C_4H_8S) : twisted enantiomer (C_2)	$\cdot 7$
		2.4.1 Ground State at RHF level	$\cdot 7$
		2.4.2 Ground State at CASSCF level	$\cdot 7$
		2.4.3 S 1s Excited State B at IS-MCSCF level	$\cdot 7$
		2.4.4 S 1s Excited State A at IS-MCSCF level	7
3	Nat	cural Bond Orbitals Analysis S-	8
	3.1	NBO Results for Thiolane in the envelope enantiomeric form (C_S)	-8
	3.2	NBO Results for hyperconjugation interactions	8
	3.3	NBO Orbital Energy Differences	9
	3.4	Off-Diagonal NBO Fock Matrix elements	10

1 Atomic coordinates

All geometries were optimized at the second-order Møller–Plesset perturbation theory (MP2) level of theory using the aug-cc-pCVTZ-DK. The optimized Cartesian geometry (in Å) is given below.

1.1 Thiophene (C_4H_4S)

S	0.00000000000	0.00000000000	1.189455000000
С	0.00000000000	1.235991000000	-0.006416000000
С	0.00000000000	0.711333000000	-1.266678000000
С	0.00000000000	-0.711333000000	-1.266678000000
С	0.000000000000	-1.235991000000	-0.006416000000
Н	0.00000000000	2.272899000000	0.28470200000
Н	0.000000000000	1.315539000000	-2.16178100000
Н	0.00000000000	-1.315539000000	-2.16178100000
Н	0.000000000000	-2.272899000000	0.28470200000

1.2 Thiazole (C_3H_3NS)

С	-0.029117143510	1.230250919559	0.000000000000
С	-1.294760425589	0.711255592189	0.000000000000
Н	0.218944539938	2.290361040790	0.000000000000
Н	-2.239936830616	1.257914517777	0.000000000000
S	1.174521703420	-0.009948747855	0.000000000000
С	-0.099748814013	-1.207170769507	0.000000000000
N	-1.321325559214	-0.697522083156	0.000000000000
Н	0.070495704022	-2.284659640211	0.00000000000

1.3 Thiolane (C_4H_8S): envelope enantiomer (C_S)

S	-0.58609000000	-1.153394000000	0.00000000000
С	0.264076000000	-0.183227000000	1.281221000000
Η	-0.260072000000	-0.302291000000	2.230058000000
Η	1.281479000000	-0.562423000000	1.400480000000
С	0.264076000000	1.269039000000	0.776771000000
Η	-0.630064000000	1.774248000000	1.143102000000
Η	1.128466000000	1.802740000000	1.177625000000
С	0.264076000000	-0.183227000000	-1.281221000000
Η	-0.260072000000	-0.302291000000	-2.230058000000
Η	1.281479000000	-0.562423000000	-1.400480000000
С	0.264076000000	1.269039000000	-0.776771000000
Η	-0.630064000000	1.774248000000	-1.143102000000
Н	1.128466000000	1.802740000000	-1.177625000000

1.4 Thiolane (C₄H₈S): twisted enantiomer (C₂)

S	0.00000000000	0.00000000000	-1.234075676045
С	1.330248506536	-0.187406857579	0.013731300901
Н	1.644013826977	-1.232183002915	0.049175445674
Н	2.185457876429	0.423255850869	-0.283206784382
С	0.722158508350	0.250365611037	1.347262674846
Н	1.296525236537	-0.143168850102	2.190247384468
Н	0.737037436408	1.342705780907	1.413465437568
С	-0.722158508350	-0.250365611037	1.347262674846
Н	-0.737037436408	-1.342705780907	1.413465437568
Н	-1.296525236537	0.143168850102	2.190247384468
С	-1.330248506536	0.187406857579	0.013731300901
Н	-1.644013826977	1.232183002915	0.049175445674
Н	-2.185457876429	-0.423255850869	-0.283206784382

1.5 Atomic Numbering

Figure S1: Molecular geometries and atom numbering for thiolane in (a) twisted and (b) envelope conformations, (c) thiophene, and (d) thiazole.

2 Molecular Orbitals

Molecular orbitals, at Restricted Hartree-Fock (RHF) level and natural orbitals, at Complete Active Space Self-Consistent Field (CASSCF) and Inner-Shell Multiconfigurational Self-Consistent Field (IS-MCSCF) level, using the aug-cc-pCVTZ-DK.

2.1 Thiophene (C_4H_4S)

2.1.1 Ground State at RHF level

2.1.2 Ground State at CASSCF level

 $\begin{array}{c} 1a_1^{(2.0)} \ 1b_2^{(2.0)} \ 2a_1^{(2.0)} \ 3a_1^{(2.0)} \ 2b_2^{(2.0)} \ 4a_1^{(2.0)} \ 3b_2^{(2.0)} \ 1b_1^{(2.0)} \ 5a_1^{(2.0)} \ 6a_1^{(2.0)} \ 4b_2^{(2.0)} \ 7a_1^{(2.0)} \\ 5b_2^{(2.0)} \ 8a_1^{(2.0)} \ 6b_2^{(2.0)} \ 9a_1^{(2.0)} \\ 10a_1^{(1.996)} \ 2b_1^{(1.982)} \ 11a_1^{(1.976)} \ 7b_2^{(1.970)} \ 3b_1^{(1.951)} \ 1a_2^{(1.919)} \ 4b_1^{(0.089)} \ 2a_2^{(0.057)} \ 8b_2^{(0.033)} \ 12a_1^{(0.026)} \end{array}$

2.1.3 S 1s Excited State B_1 at IS-MCSCF level

 $\begin{array}{c} 1a_1^{(1.0)} \ 1b_2^{(2.0)} \ 2a_1^{(2.0)} \ 3a_1^{(2.0)} \ 2b_2^{(2.0)} \ 4a_1^{(2.0)} \ 3b_2^{(2.0)} \ 1b_1^{(2.0)} \ 5a_1^{(2.0)} \ 6a_1^{(2.0)} \ 4b_2^{(2.0)} \ 7a_1^{(2.0)} \\ 5b_2^{(2.0)} \ 8a_1^{(2.0)} \ 6b_2^{(2.0)} \ 9a_1^{(2.0)} \\ 10a_1^{(1.997)} \ 2b_1^{(1.996)} \ 11a_1^{(1.976)} \ 7b_2^{(1.971)} \ 3b_1^{(1.956)} \ 1a_2^{(1.964)} \ 4b_1^{(1.010)} \ 2a_2^{(0.052)} \ 8b_2^{(0.033)} \ 12a_1^{(0.024)} \end{array}$

2.1.4 S 1s Excited State B_2 at IS-MCSCF level

 $\begin{array}{c} 1a_1^{(2.0)} \ 1b_2^{(2.0)} \ 2a_1^{(2.0)} \ 3a_1^{(2.0)} \ 2b_2^{(2.0)} \ 4a_1^{(2.0)} \ 3b_2^{(2.0)} \ 1b_1^{(2.0)} \ 5a_1^{(2.0)} \ 6a_1^{(2.0)} \ 4b_2^{(2.0)} \ 7a_1^{(2.0)} \\ 5b_2^{(2.0)} \ 8a_1^{(2.0)} \ 6b_2^{(2.0)} \ 9a_1^{(2.0)} \\ 10a_1^{(1.999)} \ 2b_1^{(1.933)} \ 11a_1^{(1.983)} \ 7b_2^{(1.985)} \ 3b_1^{(1.945)} \ 1a_2^{(1.897)} \ 4b_1^{(0.106)} \ 2a_2^{(0.059)} \ 8b_2^{(0.995)} \ 12a_1^{(0.037)} \end{array}$

2.2 Thiazole (C_3H_3NS)

2.2.1 Ground State at RHF level

2.2.2 Ground State at CASSCF level

 $\begin{array}{l} 1a'\,{}^{(2.0)}\,\,2a'\,{}^{(2.0)}\,\,3a'\,{}^{(2.0)}\,\,4a'\,{}^{(2.0)}\,\,5a'\,{}^{(2.0)}\,\,6a'\,{}^{(2.0)}\,\,7a'\,{}^{(2.0)}\,\,8a'\,{}^{(2.0)}\,\,1a''\,{}^{(2.0)}\,\,9a'\,{}^{(2.0)}\,\,10a'\,{}^{(2.0)}\,\,11a'\,{}^{(2.0)}\,\,15a'\,{}^{(2.0)}\,\,15a'\,{}^{(2.0)}\,\,15a'\,{}^{(2.0)}\,\,16a'\,{}^{(1.969)}\,\,2a''\,{}^{(1.982)}\,\,17a'\,{}^{(1.975)}\,\,18a'\,{}^{(1.969)}\,\,3a''\,{}^{(1.943)}\,\,4a''\,{}^{(1.912)}\,\,5a''\,{}^{(0.093)}\,\,6a''\,{}^{(0.069)}\,\,19a'\,{}^{(0.034)}\,\,20a'\,{}^{(0.026)}\end{array}$

2.2.3 S 1s Excited State A' at IS-MCSCF level

 $\begin{array}{l} 1a'\,{}^{(1.0)}\,\,2a'\,{}^{(2.0)}\,\,3a'\,{}^{(2.0)}\,\,4a'\,{}^{(2.0)}\,\,5a'\,{}^{(2.0)}\,\,6a'\,{}^{(2.0)}\,\,7a'\,{}^{(2.0)}\,\,8a'\,{}^{(2.0)}\,\,1a''\,{}^{(2.0)}\,\,9a'\,{}^{(2.0)}\,\,10a'\,{}^{(2.0)}\,\,11a'\,{}^{(2.0)}\,\,13a'\,{}^{(2.0)}\,\,14a'\,{}^{(2.0)}\,\,15a'\,{}^{(2.0)}\,\,15a'\,{}^{(2.0)}\,\,16a'\,{}^{(1.933)}\,\,2a''\,{}^{(1.992)}\,\,17a'\,{}^{(1.986)}\,\,18a'\,{}^{(1.981)}\,\,3a''\,{}^{(1.936)}\,\,4a''\,{}^{(1.892)}\,\,5a''\,{}^{(0.110)}\,\,6a''\,{}^{(0.072)}\,\,19a'\,{}^{(0.997)}\,\,20a'\,{}^{(0.040)}\end{array}$

2.2.4 S 1s Excited State A" at IS-MCSCF level

 $\begin{array}{l} 1a'\,{}^{(1.0)}\,\,2a'\,{}^{(2.0)}\,\,3a'\,{}^{(2.0)}\,\,4a'\,{}^{(2.0)}\,\,5a'\,{}^{(2.0)}\,\,6a'\,{}^{(2.0)}\,\,7a'\,{}^{(2.0)}\,\,8a'\,{}^{(2.0)}\,\,1a''\,{}^{(2.0)}\,\,9a'\,{}^{(2.0)}\,\,10a'\,{}^{(2.0)}\,\,11a'\,{}^{(2.0)}\,\,13a'\,{}^{(2.0)}\,\,14a'\,{}^{(2.0)}\,\,15a'\,{}^{(2.0)}\,\,16a'\,{}^{(1.991)}\,\,2a''\,{}^{(1.997)}\,\,17a'\,{}^{(1.976)}\,\,18a'\,{}^{(1.972)}\,\,3a''\,{}^{(1.969)}\,\,4a''\,{}^{(1.954)}\,\,5a''\,{}^{(1.01)}\,\,6a''\,{}^{(0.067)}\,\,19a'\,{}^{(0.037)}\,\,20a'\,{}^{(0.025)}\end{array}$

2.3 Thiolane (C_4H_8S): envelope enantiomer (C_S)

2.3.1 Ground State at RHF level

 $\begin{array}{l} 1a'\,{}^{(2.0)}\,\,1a''\,{}^{(2.0)}\,\,2a'\,{}^{(2.0)}\,\,3a'\,{}^{(2.0)}\,\,2a''\,{}^{(2.0)}\,\,4a'\,{}^{(2.0)}\,\,3a''\,{}^{(2.0)}\,\,5a'\,{}^{(2.0)}\,\,6a'\,{}^{(2.0)}\,\,\\ 7a'\,{}^{(2.0)}\,\,4a''\,{}^{(2.0)}\,\,8a'\,{}^{(2.0)}\,\,9a'\,{}^{(2.0)}\,\,5a''\,{}^{(2.0)}\,\,10a'\,{}^{(2.0)}\,\,11a'\,{}^{(2.0)}\,\,6a''\,{}^{(2.0)}\,\,12a'\,{}^{(2.0)}\,\,\\ 7a''\,{}^{(2.0)}\,\,13a'\,{}^{(2.0)}\,\,8a''\,{}^{(2.0)}\,\,9a''\,{}^{(2.0)}\,\,14a'\,{}^{(2.0)}\,\,15a'\,{}^{(2.0)}\,\,12a$

2.3.2 Ground State at CASSCF level

 $1a' {}^{(2.0)} 1a'' {}^{(2.0)} 2a' {}^{(2.0)} 3a' {}^{(2.0)} 2a'' {}^{(2.0)} 4a' {}^{(2.0)} 3a'' {}^{(2.0)} 5a' {}^{(2.0)} 6a' {}^{(2.0)} 7a' {}^{(2.0)} 4a'' {}^{(2.0)} 8a' {}^{(2.0)} 9a' {}^{(2.0)} 5a'' {}^{(2.0)} 10a' {}^{(2.0)} 11a' {}^{(2.0)} 6a'' {}^{(2.0)} 12a' {}^{(2.0)} 7a'' {}^{(2.0)} 8a'' {}^{(2.0)} 13a' {}^{(1.999)} 9a'' {}^{(1.972)} 14a' {}^{(1.997)} 15a' {}^{(1.976)} 10a'' {}^{(0.031)} 16a' {}^{(0.024)}$

2.3.3 S 1s Excited State A" at IS-MCSCF level

2.3.4 S 1s Excited State A' at IS-MCSCF level

 $\begin{array}{l} 1a'\,{}^{(1.0)}\,\,1a''\,{}^{(2.0)}\,\,2a'\,{}^{(2.0)}\,\,3a'\,{}^{(2.0)}\,\,2a''\,{}^{(2.0)}\,\,4a'\,{}^{(2.0)}\,\,3a''\,{}^{(2.0)}\,\,5a'\,{}^{(2.0)}\,\,6a'\,{}^{(2.0)}\,\,7a'\,{}^{(2.0)}\,\,4a''\,{}^{(2.0)}\,\,8a'\,{}^{(2.0)}\,\,9a'\,{}^{(2.0)}\,\,5a''\,{}^{(2.0)}\,\,10a'\,{}^{(2.0)}\,\,11a'\,{}^{(2.0)}\,\,6a''\,{}^{(2.0)}\,\,12a'\,{}^{(2.0)}\,\,7a''\,{}^{(2.0)}\,\,8a''\,{}^{(2.0)}\,\,13a'\,{}^{(1.999)}\,\,9a''\,{}^{(1.989)}\,\,14a'\,{}^{(1.999)}\,\,15a'\,{}^{(1.988)}\,\,10a''\,{}^{(0.024)}\,\,16a'\,{}^{(1.000)} \end{array}$

2.4 Thiolane (C_4H_8S): twisted enantiomer (C_2)

2.4.1 Ground State at RHF level

2.4.2 Ground State at CASSCF level

2.4.3 S 1s Excited State B at IS-MCSCF level

2.4.4 S 1s Excited State A at IS-MCSCF level

3 Natural Bond Orbitals Analysis

Calculations were done using the Inner-Shell approach for Restricted Open-Shell Hartree-Fock method (IS-ROHF). The basis set aug-cc-pCVTZ-DK and 4^{th} order Douglas-Kroll-Hess (DKH) relativistic corrections were applied.

3.1 NBO Results for Thiolane in the envelope enantiomeric form (C_S)

Table S1: Results from Second-order Perturbation Theory Analysis of Fock Matrix in NBO Basis. Stabilisation energies $\Delta E^{(2)}$ for the hyperconjugation interactions in eV. Symmetrically equivalent NBO interactions are omitted due to redundancy.

Melecule	NBO Orbital		Stabilisation Energy $\Delta E^{(2)}$				
Molecule	Donor	Acceptor	Ground	S $1s^{-1}\sigma^*$	S $2p_x^{-1}p_z^{-1}\sigma^*$	S $2p_x^{-1}p_y^{-1}\sigma^*$	S $2p_y^{-1}p_z^{-1}\sigma^*$
Thiolane	$\sigma_{\rm C1-H1}$	$\sigma^*_{ m S-C1}$	0.02	0.07	0.20	0.28	0.26
envelope	$\sigma_{\rm C1-C2}$	$\sigma^*_{ m S-C1}$	< 0.01	0.05	0.14	0.13	0.12
$C_4H_8S(C_s)$	$\sigma_{\rm C2-C4}$	$\sigma^*_{ m S-C1}$	0.16	0.18	0.25	0.25	0.26

3.2 NBO Results for hyperconjugation interactions

Table S2: Results from the Second-order Perturbation Theory Analysis of Fock Matrix in NBO Basis. Stabilisation energies $\Delta E^{(2)}$ for the hyperconjugation interactions in eV. Symmetrically equivalent NBO interactions are omitted due to redundancy.

	NBO Orbital		Stabilisation Energy $\Delta E^{(2)}$				
Molecule	Donor	Acceptor	Ground	S $1 {\rm s}^{-1} \sigma^*$	S $2p_x^{-1}p_z^{-1}\sigma^*$	$S 2p_x^{-1}p_y^{-1}\sigma^*$	S $2p_y^{-1}p_z^{-1}\sigma^*$
$\begin{array}{c} {\rm Thiophene} \\ {\rm C}_{4}{\rm H}_{4}{\rm S} \end{array}$	$np_{\rm S}~(sp^2)$	$\sigma^*_{ m C1-C2}$	0.14	0.13	0.09	0.10	0.09
Thiazole	$np_{\rm S}~(sp^2)$	$\sigma^*_{\rm C1-C2}$	0.12	0.12	0.08	0.09	0.08
C_3H_3NS	$np_{\rm S}~(sp^2)$	$\sigma^*_{ m C3-N}$	0.14	0.10	0.07	0.07	0.07
Thiolane $C_4H_8S(C_2)$	$np_{\rm S}~(sp^2)$	$\sigma^*_{\rm C1-C2}$	0.06	0.05	0.03	0.03	0.03
Thiolane $C_4H_8S(C_s)$	$np_{\rm S}~(sp^2)$	$\sigma^*_{\rm C1-C2}$	0.05	0.04	0.02	0.02	0.02

3.3 NBO Orbital Energy Differences

Table S3: Orbital Energy Differences $(\epsilon_a - \epsilon_d)$ for the Second-order Perturbation Theory Analysis of Fock Matrix in NBO Basis (in Hartree). Symmetrically equivalent NBO interactions are omitted due to redundancy.

	NBO	Orbital	Orbital Energy Differences $\epsilon_a - \epsilon_d$				
Molecule	Donor	Acceptor	Ground	S $1s^{-1}V$	$\mathrm{S}~2p_x^{-1}p_z^{-1}\mathrm{V}$	$S 2p_x^{-1}p_y^{-1}V$	$S 2p_y^{-1}p_z^{-1}V$
	$np_{ m S}$	$\pi^*_{\rm C1-C2}$	0.48	0.65	0.84	0.83	0.84
Thiophopo	$\pi_{\rm C3-C4}$	$\pi^*_{\mathrm{C1-C2}}$	0.53	0.50	0.52	0.52	0.52
СНЯ	$\sigma_{\rm C1-H1}$	$\sigma^*_{ m S-C1}$	1.19	1.05	0.97	0.97	0.96
$0_4 \Pi_4 S$	$\sigma_{\rm C1-C2}$	$\sigma^*_{ m S-C1}$	1.42	1.27	1.20	1.20	1.19
	$\sigma_{\rm C2-H2}$	$\sigma^*_{ m S-C1}$	1.16	1.02	0.93	0.92	0.92
	$np_{ m S}$	$\pi^*_{\mathrm{C1-C2}}$	0.58	0.68	0.86	0.86	0.87
	$np_{ m S}$	$\pi^*_{\mathrm{C3-N}}$	0.46	0.58	0.75	0.75	0.76
	$\pi_{\rm C3-N}$	$\pi^*_{\mathrm{C1-C2}}$	0.58	0.56	0.58	0.58	0.57
	$\pi_{\rm C1-C2}$	$\pi^*_{\mathrm{C3-N}}$	0.51	0.45	0.45	0.45	0.45
Thiazole	$\sigma_{\rm C1-H1}$	$\sigma^*_{ m S-C1}$	1.20	1.04	0.97	0.96	0.96
C_3H_3NS	$\sigma_{\rm C3-H3}$	$\sigma^*_{ m S-C3}$	1.18	1.00	0.91	0.90	0.90
	$\sigma_{\rm C1-C2}$	$\sigma^*_{ m S-C1}$	1.42	1.27	1.21	1.21	1.21
	$\sigma_{\rm C3-N}$	$\sigma^*_{ m S-C3}$	1.54	1.35	1.26	1.26	1.24
	$\sigma_{\rm C2-H2}$	$\sigma^*_{ m S-C1}$	1.17	1.02	0.94	0.93	0.93
	$np_{\rm N}$	$\sigma^*_{ m S-C3}$	0.98	0.81	0.72	0.71	0.70
Thiolane	$\sigma_{\rm C1-H1}$	$\sigma^*_{ m S-C1}$	1.07	0.93	0.85	0.92	0.76
twisted	$\sigma_{\rm C1-C2}$	$\sigma^*_{ m S-C1}$	1.19	1.04	0.96	1.01	0.88
$C_4H_8S(C_2)$	$\sigma_{\rm C2-H4}$	$\sigma^*_{ m S-C1}$	1.06	0.91	0.80	0.73	0.73
Thiolane	$\sigma_{\rm C1-H1}$	$\sigma^*_{ m S-C1}$	1.08	0.94	0.86	0.81	0.76
envelope	$\sigma_{\rm C1-C2}$	$\sigma^*_{ m S-C1}$	1.19	1.04	0.96	0.92	0.88
$C_4H_8S(C_s)$	$\sigma_{\rm C2-C4}$	$\sigma^*_{ m S-C1}$	1.06	0.91	0.80	0.76	0.73

3.4 Off-Diagonal NBO Fock Matrix elements

Table S4: Off-Diagonal NBO Fock Matrix elements for the Second-order Perturbation Theory Analysis of Fock Matrix in NBO Basis (in Hartree). Symmetrically equivalent NBO interactions are omitted due to redundancy.

Molecule	NBO Orbital		Off-Diagonal NBO Fock Matrix elements F_{da}				
Molecule	Donor	Acceptor	Ground	S $1s^{-1}V$	$\mathrm{S}~2p_x^{-1}p_z^{-1}\mathrm{V}$	$S 2p_x^{-1}p_y^{-1}V$	$S \ 2p_y^{-1}p_z^{-1}V$
	$np_{\rm S}$	$\pi^*_{\rm C1-C2}$	0.127	0.075	0.060	0.060	0.064
Thiophopo	$\pi_{\rm C3-C4}$	$\pi^*_{\mathrm{C1-C2}}$	0.112	0.100	0.092	0.093	0.093
СИС	$\sigma_{\rm C1-H1}$	$\sigma^*_{ m S-C1}$	< 0.010	0.037	0.059	0.063	0.063
$O_4 \Pi_4 S$	$\sigma_{\rm C1-C2}$	$\sigma^*_{ m S-C1}$	< 0.010	0.027	0.051	0.047	0.049
	$\sigma_{\rm C2-H2}$	$\sigma^*_{ m S-C1}$	0.067	0.072	0.079	0.082	0.082
	$np_{\rm S}$	$\pi^*_{\rm C1-C2}$	0.121	0.074	0.061	0.061	0.065
	$np_{\rm S}$	$\pi^*_{\mathrm{C3-N}}$	0.146	0.086	0.074	0.075	0.080
	$\pi_{\rm C3-N}$	$\pi^*_{\rm C1-C2}$	0.134	0.134	0.132	0.132	0.133
	$\pi_{\rm C1-C2}$	$\pi^*_{ m C3-N}$	0.103	0.067	0.062	0.063	0.063
Thiazole	$\sigma_{\rm C1-H1}$	$\sigma^*_{ m S-C1}$	0.014	0.035	0.057	0.061	0.061
C_3H_3NS	$\sigma_{\rm C3-H3}$	$\sigma^*_{ m S-C3}$	0.027	0.048	0.068	0.072	0.077
	$\sigma_{\rm C1-C2}$	$\sigma^*_{ m S-C1}$	< 0.010	0.031	0.055	0.051	0.052
	$\sigma_{\rm C3-N}$	$\sigma^*_{ m S-C3}$	< 0.010	0.034	0.054	0.050	0.051
	$\sigma_{\rm C2-H2}$	$\sigma^*_{ m S-C1}$	0.063	0.066	0.074	0.076	0.071
	$np_{\rm N}$	$\sigma^*_{ m S-C3}$	0.112	0.117	0.131	0.136	0.136
Thiolane	$\sigma_{\rm C1-H1}$	$\sigma^*_{ m S-C1}$	0.019	0.040	0.063	0.069	0.067
twisted	$\sigma_{\rm C1-C2}$	$\sigma^*_{ m S-C1}$	0.012	0.036	0.058	0.056	0.056
$C_4H_8S(C_2)$	$\sigma_{\rm C2-H4}$	$\sigma^*_{ m S-C1}$	0.058	0.064	0.072	0.073	0.074
Thiolane	$\sigma_{\rm C1-H1}$	$\sigma^*_{ m S-C1}$	0.018	0.038	0.063	0.068	0.067
envelope	$\sigma_{\rm C1-C2}$	$\sigma^*_{ m S-C1}$	0.011	0.034	0.056	0.055	0.056
$C_4H_8S(C_s)$	$\sigma_{\rm C2-C4}$	$\sigma^*_{\rm S-C1}$	0.056	0.061	0.068	0.070	0.074