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1A Summary

Control over the intracellular localisation of RNA is an important aspect of post-transcriptional regula-
tion, especially for highly polarised cells like neurons. The presence of specific transcripts in axons and
dendrites, together neurites, is determined by cis-active elements called zipcodes and ultimately allows
neurons to locally synthesise required proteins and adapt quickly to cues of the local environment. This
capability is important for the correct function of synapse remodelling and memory formation and a
disruption of RNA localisation in neurons has been associated with several neurodegenerative diseases.

Using RNA sequencing a vast number of transcripts can be detected in neurites of neuronal model
systems. With over 7500 transcripts even the neurite core transcriptome, which I summarised from
the published datasets generated in the last decade, contains at least half or a third of the full neuronal
transcriptome. Whether all of these transcripts should be considered localised to neurites or if this
designation is better determined by differential expression analysis between compartments is still
difficult to answer. For one thing, no strong overlap of transcripts with localisation based on significant
enrichment in many individual datasets exists and also my integrated analysis utilising batch correction
did only generate a relatively small set of differentially expressed genes, which however tend to have
more conserved enrichment. Secondly, several transcripts that are generally considered as classical
localised transcripts, like the Actb mRNA, are not relatively enriched in neurites, even if they are strongly
expressed there.

Relying on a set of transcripts with consistent neurite enrichment based on datasets from primary
murine neurons I designed Nzip, a massively parallel reporter assay (MPRA) aimed at the identification
of unknown zipcodes. Based on 16 candidate sequences determined from the first experiment, it was
possible to identify 2 new zipcode motifs utilising a secondary library with a mutational analysis
approach: the let-7 miRNA seed sequence CUACCUC and an (AU), repeat motif. The compartmental
quantification of miRNAs and associated protein machinery indicates a stronger activity of let-7 in
soma, providing a potential mechanism for its zipcode activity. Additionally, also the (AU), motif is also
associated with lower read counts in soma and several identified binding proteins have known effects
on RNA stability, indicating that it likely also affects RNA localisation through stability regulation.

Building on my observations that assignment of RNA localisation state based on either detection or
enrichment in neurites both is problematic and that Nzip mainly identified motifs conferring neurite
enrichment by RNA stability, I argue that a clear distinction between localised and not-localised tran-
scripts may not be an accurate description of the biological system. Instead, zipcodes likely affect the
probability of a given transcript to reach neurites and there may also be different mechanisms that affect
the tendency for localisation as measured by enrichment or detection. Whether this is a more accurate

description of RNA localisation mechanics as well as the exact functions of the zipcodes I identified



should be further investigated in future studies.

As a second part of my work I have contributed to studying the human neurodegenerative disease
amyotrophic lateral sclerosis (ALS). This affliction is mainly characterised by the degradation of motor
neurons usually starting at the synapses between axons and skeletal muscle, the neuromuscular junction
(NMJ), and in many cases is known to be caused by mutations in several RNA binding proteins affecting
RNA localisation. Among these is the FUS protein, whose mutations often disrupt its exclusive nuclear
localisation and thus can lead both to a loss-of-function as well as a toxic gain-of-function trough
availability of new RNA targets in the cytoplasm.

To study a disease like ALS a cellular model system for human neurons is needed, which repli-
cates the relevant molecular signatures of affected motor neurons, specifically including the axonal
containing neurite compartment. I have characterised the transcriptome and proteome of induced motor
neurons (iMN) generated by expression of NGN2, ISL1 and LHX3 transcription factors. This system
showed expected expression of marker genes throughout motor neuron differentiation as well as proper
specification of neurite compartment and similarity with signatures of electrophysiological maturity.

Using the iMN model system I performed investigative analysis for the effect of ALS patient derived
FUS mutations on the proteome and transcriptome, specifically including effects pronounced in the
neurite compartment. With this I identified many differentially expressed genes already associated with
ALS or FUS mutations, which, however, span a very wide field of functional associations and to my
understanding are more likely linked to a disruption of normal FUS activity. However, I also observed
a more consistent and rarely reported pattern of down-regulation of genes building the extracellular
matrix around the NMJ, which was specifically notable in the neurites of cells with cytoplasmic localised
P525L FUS. Additionally, I found a very similar pattern of down-regulation in neurites for genes passing
the secretory pathway, known target transcripts of FUS, as well as those with a G-quadruplex motif,
which has been identified as a potential binding site for both FUS and other ALS associated RBPs. This
highlights a potential toxic gain-of-function for FUS as well as a particular pathway which may be
important in the axonal degeneration in ALS. Validation of this observation including any potential
significance of an overlap between the affected gene groups I identified should be the focus of further

work.



1B Zusammenfassung

Die Kontrolle iiber die intrazelluldre Lokalisation von RNA is ein wichtiger Aspekt der post-tran-
skriptionalen Regulation, insbesondere fiir stark polarisierte Zellen wie Neuronen. Die Prisenz von
bestimmten RNA Molekiilen in Axonen oder Dendriten, zusammen Neuriten, wird durch cis-aktive
Elemente, sogenannte "Zipcodes’, bestimmt und erlaubt ultimativ, dass Neuronen schnell auf Reize
reagieren und benétigte Proteine dort lokal synthetisieren konnen. Diese Fahigkeit ist essentiell, damit die
Remodellierung von Synapsen und das Bilden von Erinnerungen korrekt funktioniert, weiterhin wurde
die Storung von RNA-Lokalisation mit der Pathophysiologie mehrerer neurodegenerativer Erkrankungen
in Zusammenhang gebracht.

Durch RNA Sequenzierung kann eine grof3e Anzahl von Transkripten in Neuriten von Modellsyste-
men fiir Neuronen identifiziert werden. Mit tiber 7500 verschiedenen Transkripten enthilt selbst das
Kerntranskriptom, das ich aus den veréffentlichten Datensitzen der letzten Jahre zusammengestellt habe,
nahezu ein Drittel oder die Halfte des kompletten neuronalen Transkriptoms. Ob all diese Transkripte
tatsdchlich als lokalisiert angesehen werden sollten oder ob diese Bezeichnung besser durch differenzielle
Expression zwischen Zellfraktionen bestimmt werden sollte, ist schwer zu beurteilen. Einerseits gibt
es keine klare Ubereinstimmung von Transkripten mit differenzieller Lokalisation zwischen einzelnen
Datensétzen und auch mit meiner integrativen Datenanalyse inklusive Batch-Korrektur konnte ich nur
ein relativ kleines Set an differenziell exprimierten Transkripten identifizieren. Zum anderen gibt es
einige Transkripte, die im allgemeinen als lokalisiert angesehen werden, wie beispielsweise die Actb
mRNA, die allerdings trotzdem keine relative erhohte Expression in Neuriten aufzeigen, auch wenn sie
dort stark exprimiert sind.

Mit einem Set von in primiren murinen Neuronen konsistent Neurit-angereicherten Transkripten
habe ich 'Nzip’ konstruiert, ein massiv paralles Reporter Experiment mit dem Ziel unbekannte Zipcodes
zu identifizieren. Mit 16 potentiellen Sequenzen, die in einem ersten Experiment entdeckt wurden und
einem Mutations-Analyse Ansatz war es moglich 2 neue Zipcodes zu bestimmen: die let-7 miRNA
Zielsequenz CUACCUC und ein (AU), Motiv. Die Zellfraktion-spezifische Quantifizierung von miRNAs
und ihrer assoziierten Proteinmaschinerie legt zusatzlich nahe, dass die Aktivitit von let-7 im Zellkrper
starker ist, was einen potentiellen Mechanismus fiir diese Zipcode Aktivitét liefert. Weiterhin wurde
auch fiir das (AU), Motiv eine dhnliche Reduzierung von RNA Molekiilen in Zellkorper festgestellt und
einige der dazu identifizierten Bindeproteine konnen die Stabilitait von RNA beeinflussen, sodass dieses
Motif RNA Lokalisation vermutlich ebenfalls tiber Stabilitatsregulation kontrolliert.

Aufbauend auf meinen Beobachtungen, dass die Designation des RNA Lokalisationsstatus basierend
auf entweder Detektion oder Anreicherung in Neuriten problematisch ist, und dass Nzip primér Motive

identifiziert hat, die RNA Anreicherung durch Stabilitit kontrollieren, bin ich der Auffassung, dass
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eine klare Unterscheidung zwischen lokalisierten und nicht lokalisierten Transkripten nicht unbedingt
einer akkuraten Beschreibung entspricht. Stattdessen halte ich es fiir zutreffender, dass Zipcodes die
Wabhrscheinlichkeit beeinflussen, dass eines gegebenes Transkript den Zellkorper verlasst, und dass
potentiell unterschiedliche Mechanismen die Priasenz und Anreicherung von Transkripten in Neuriten
kontrollieren. Ob dieses Modell von RNA Lokalisation korrekt ist sowie die exakte Funktionsweise der

entdeckten Zipcodes, muss allerdings noch durch weitere Untersuchungen kontrolliert werden.

Der zweiten Teil meiner Arbeit widmet sich der Erforschung der neurodegenerativen Erkrankung
Amyotrophe Lateralsklerose (ALS). Diese zeichnet sich vor allem dadurch aus, dass Motorneuronen
beginnend an den Synapsen zwischen Axonen und Muskeln, der neuromuskularen Endplatte (NME),
degenerieren. Weiterhin gibt es RNA bindende Proteine, deren Mutationen die Krankheit auslosen
konnen. Unter diesen befindet sich das FUS Protein, dessen Mutation oft seine Lokalisation im Zellkern
beeintrichtigt und damit sowohl zu funktionalem Verlust als auch zu neuen toxischen Funktionen durch
das Binden anderer RNA Molekiile im Zytoplasma fithren kann.

Um eine Krankheit wie ALS zu erforschen ist ein zellulires Modellsystem fiir humane Neuronen
erforderlich, das relevante molekulare Signaturen der betroffenen Motorneuronen und insbesondere der
Axon- und Neurit-Fraktion abbildet. Ich habe das Transkriptom und Proteom von induzierten Motor-
neuronen (iMN) charakterisiert, die durch die Expression von NGN2, ISL1 und LHX3 generiert werden.
Dieses System zeigt die wahrend der Motorneuron-Differenzierung erwarteten Expressionsmuster sowie
klar spezifizierte Neurite und Ahnlichkeit zu elektrisch aktiven Signaturen.

Mit dem iMN System habe ich eine erste Untersuchung der Effekte von FUS Mutationen aus ALS
Patienten auf das Proteom und Transkriptom und insbesondere die Neurit Fraktion durchgefiihrt. Dabei
habe ich einige differentiell exprimierte Gene gefunden, die bereits mit ALS oder FUS Mutationen
assoziert wurden, allerdings auch ein sehr breites funtionales Spektrum umfassen und daher vermutlich
mit der Stérung von normaler FUS Funktion zusammenhingen. Zusatzlich habe ich aber auch eine
konsistente und bisher weniger beachtete Expressionsreduktion von Genen der extrazellularen Matrix
nahe der NME beobachtet, die insbesondere in Neuriten von Zellen mit zytoplasmatischem P525L FUS
prasent ist. Weiterhin habe ich dhnliche Muster mit reduzierter Expression von den Genen gefunden,
die den Sekretionsweg passieren, bekannte Bindeziele von FUS sind, oder ein G-Quadruplex Motiv
besitzen, wobei letzteres als potentielle Bindestelle fiir FUS und andere ALS assoziierte Proteine identifi-
ziert wurde. Auch wenn diese Beobachtungen einen potentiellen toxischen Funktionsgewinn fiir FUS
darstellen und einen bestimmten molekularen Pfad hervorheben, der wichtig fiir den Verlauf von ALS
sein konnte, miissen sie noch durch weitere Studien verifiziert werden, da insbesondere die Signifikanz

einer Uberschneidung der von mir identifizierten betroffenen Gen-Gruppen bisher nicht klar ist .
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2 Introduction

The distribution of individual RNA molecules to specific places within a cell, or the localisation of RNA,
plays an important role in many cellular functions given that it affects several aspects of RNA biology
ranging from accessibility of the RNA to locally available factors to the origin point of translation and
new proteins (Chin & Lécuyer, 2017; Lécuyer et al., 2007). It is therefore not surprising that specific
control of RNA localisation is a common occurrence not only in all types of eukaryotes (Das et al.,
2021; Engel et al., 2020) but even in bacteria (Nevo-Dinur et al,, 2011). Of course, the well studied
nuclear export of mRNA and non-coding transcripts is the most common occurrence of RNA transport
across cellular compartments, even if this aspect of RNA biology is generally considered as a part of
transcription and RNA maturation rather than RNA localisation (Rodriguez et al., 2004; Williams et al.,
2018). However, the nuclear localisation of both coding and non-coding transcripts, mostly through
retention in the nucleus, has recently also emerged as an area of research interest in RNA localisation
(Halpern et al., 2015; Lubelsky & Ulitsky, 2018).

While sub-cellular localisation of RNA to other parts of the cell has been studied for a long time, many
aspects of it are still not fully understood. Especially in animals, RNA localisation occurs throughout
different stages of development from embryonic patterning controlled by specific localisation of maternal
mRNA in the oocyte and asymmetric cell division (Medioni et al., 2012), over localisation of transcripts
to cellular organelles (Fazal et al., 2019; Kraut-Cohen et al., 2013) to RNA localisation in axons and
dendrites of neurons (Costa et al., 2021; Engel et al., 2020). Based on the studies of all these systems several
mechanisms that control RNA localisation have been discovered and can be summarised into three broad
categories. First, RNA can be enriched at specific points in the cell by anchoring the transcripts there.
This mechanism is best described in the oocytes and embryos of flies (Trcek & Lehmann, 2019), but also
occurs in others systems and can rely both on passive diffusion and active transport (Becalska & Gavis,
2009; Forrest & Gavis, 2003). Secondly, the protection from degradation or preferential degradation of
RNA in a specific compartment can also lead to local enrichment of transcripts. However, this mechanism
also has so far mainly been shown to be utilised in developing drosophila melanogaster (L. Chen et al.,
2014) with some evidence of nonsense mediated decay controlling transcripts in neuronal outgrowths
(Colak et al.,, 2013; Notaras et al., 2020) and also still depends on additional transport mechanisms for
transcripts to reach their destination. And finally the third mechanism to achieve RNA localisation is
the active transport of transcripts usually along the actin or microtubule cytoskeleton (de Heredia &
Jansen, 2004), or possibly alongside vesicles (Cioni et al., 2019; Liao et al., 2019). Since such transport
of RNA has to be mediated by motor proteins, it occurs through the transport of ribonucleoprotein
particles (RNPs). The amount of transcripts an average RNP contains is still a matter of debate with

evidence for both multiplexing of different transcripts (Gao et al., 2008) as well as claims of only single
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molecule transcript transport (Batish et al., 2012). Additionally, it is generally assumed that transcripts
inside transport RNPs are translationaly repressed (Besse & Ephrussi, 2008; Pimentel & Boccaccio, 2014;
Wells, 2006), which has specifically been shown for RNPs incorporating fragile X mental retardation
protein (FMRP) (Darnell et al., 2011) or pumilio (PUM) protein (Zahr et al., 2018).

Overall there are several mechanisms and many more individual factors that influence RNA localisation
in the cytoplasm and together they all contribute to a system that can be quite complex even for
individual transcripts, but is of course not the same between different ones. While RNA localisation
patterns play important roles in multiple cell types (Das et al., 2021; Engel et al., 2020), some of the
few well described localisation machineries have been shown to work similarly across different cellular
systems. One of the best examples for this is the IGF2BP1 (also known as ZBP1 or IMP1) mediated
localisation of (3-actin (Actb) mRNA to both axonal growth cones (Bassell et al., 1998; Leung et al., 2006)
and dendrites (Tiruchinapalli et al., 2003) as well as the leading edges of fibroblasts, where it was first
identified as a localised RNA (Kislauskis et al., 1994; Ross et al., 1997).

2.1 Neurons as experimental model systems for sub-cellular RNA localisation

Neurons have emerged as the cellular model that is most often used to study RNA localisation, not only
because their large size and complex morphology allows for comparatively easy separation of the cell
body and neuronal outgrowths, but also because disruption of RNA localisation can strongly impact neu-
ronal function and cause diseases (Mofatteh, 2021). The first experiments and observations suggesting
local translation and therefore localised RNA at axons and dendritic synapses were made already over
40 years ago based on the detection of localised polysomes and translation activity (Steward & Levy,
1982; Tobias & Koenig, 1975). The first clear evidence for local presence of RNA itself came with the
discovery of Map2 and Camk2a transcripts in dendrites (Burgin et al., 1990; Garner et al., 1988) followed
by that of [3-actin mRNA in axonal growth cones (Bassell et al., 1998; Leung et al., 2006). Experiments
with neurons of the sea slug aplysia also showed that local translation in axonal pre-synapses can be
activated by stimulation and that there exists a larger set of transcripts localised to neurites (Martin
et al., 1997; Moccia et al., 2003). Initially, the numbers of different transcripts identified in neurites by
these and other, mainly microarray based, studies only reached a few hundred (Lein et al., 2007; Moccia
et al., 2003; Poon et al., 2006; A. M. Taylor et al., 2009; Zhong et al., 2006), but with the emergence of next
generation sequencing and therefore increasingly more sensitive detection capabilities this figure soon
increased first to the often cited figure of approximately 2500 transcripts (Cajigas et al., 2012; Gumy
et al,, 2011) and then to above ten thousand in more recent publications (Briese et al., 2016; Maciel et al.,
2018; Minis et al., 2014; Rotem et al., 2017; Taliaferro et al., 2016; Zappulo et al., 2017). Similarly, these

studies started focusing more on transcripts with relative enrichment in the neurite compartment and
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their numbers as opposed to the absolute number of transcripts detectable at all.

Building on a large body of research, neuronal RNA localisation has been studied in several species and
different neuronal subtypes, mainly cortical, hippocampal and motor neurons, either derived from pri-
mary sources or generated from stem cells. Additionally, several different techniques for the separation
of neurites have been established, the most common being separation outgrowths alongside porous
filter membranes (Poon et al., 2006; Zappulo et al., 2017) or the groves of microfluidic chambers (Saal
et al., 2014; A. M. Taylor et al., 2009), which are only a few um wide and are supposed to exclude the
slightly larger dendrites and allow harvesting of only axons. Other approaches have analysed RNA of
the neuropil from hippocampal CA1 stratum radiatum, an anatomic regions, which lacks neuronal cell
bodies and mainly consist of dendrites, mixed with some axons and non-neuronal cells (Cajigas et al.,
2012; Tushev et al.,, 2018; Zhong et al., 2006). Regardless of the approach, very few clear differences
between RNA localisation to axon and dendrites have been described so far, with the exception of few
individual transcripts with specific localisation, like the exclusively dendritic Map2 transcript (Garner
et al., 1988). Also, since no single technique allows for the separation of both axons and dendrites, no
direct comparison of the transcripts in these compartments has been possible so far. However, recent
advances in proximity labelling of RNA at specific subcellular sites based on localised marker proteins
might allow such studies in the future (Fazal et al., 2019). While axons and dendrites do have important
functional and molecular differences, especially at the pre- and post-synapse, in my work I am focusing
on RNA generally localised to all neuronal outgrowths, summarised under the term neurites, which is
the most easily obtained cell fraction and encompasses all available experimental models.

Apart from bulk analysis of RNA from neurons physically separated into soma and neurites, several
additional approaches have allowed further insights into the organisation of the neuronal subcellular
transcriptome. Some investigations into smaller sub-compartments of neurons, like axonal growth
cones or nanobiopsies of dendritic cytosol, reported only a small subset of more specific transcripts
(Poulopoulos et al., 2019; Toth et al., 2018), whereas studies of synaptosomes, which incorporate only
slightly larger cell fractions, allowed the analysis of responses across nearly the whole transcriptome

(B.]J. Chen et al., 2017; Most et al., 2015).

Of course, the interest in localised RNA in neurons is strongly based on the expectation that this
presence of transcripts is functionally relevant and allows localised generation of new proteins. Indeed, it
has been shown that local translation in neurites and especially near synapses is important for neuronal
functions including synaptic plasticity, memory formation and neural regeneration, but also axonal
branching and even retrograde signalling to the nucleus (Cioni et al., 2018; Holt & Schuman, 2013;

Tasdemir-Yilmaz & Segal, 2016). Direct evidence of local translation in neurites and these functions
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comes from several studies, that used sequencing of RNA fragments covered by the ribosome during
active translation (Ribo-Seq) or at least ribosome bound transcripts (Ainsley et al., 2014; Ouwenga
et al., 2017; Shigeoka et al.,, 2016; Zappulo et al., 2017). The considerable overlap between actively
translated transcript sets and generally localised transcripts (von Kiigelgen & Chekulaeva, 2020) as well
as indication that a large fraction of the local proteome is derived from local translation (Zappulo et al.,
2017), indicate that the comparatively easier study of the localised transcriptome is a good proxy for the

contribution of local translation to local protein functions.

2.2 Zipcodes and RBPs - elements controlling RNA localisation

The control over which RNA is localised to a specific compartment in a cell is generally encoded by
cis-active elements, which are also called zipcodes, like the first localisation element identified in the
[3-actin mRNA (Kislauskis et al., 1994). Zipcodes, like many other cis-active elements, are most often
found in the 3’'UTR of mRNAs and usually allow the binding of associated trans-factors and thereby a
connection to the localisation machinery (Andreassi & Riccio, 2009; Gomes et al., 2014). These trans-
factors are most often RNA binding proteins (RBPs), which are able to bind many different transcripts
with similar motifs. While considerable effort has been undertaken towards the characterisation of RBP
sequence preferences (Dominguez et al.,, 2018; Ray et al., 2013), the resulting motifs are often short or
promiscuous and therefore yield a very wide prediction of potential transcript targets. Large numbers of
RBP targets were also reported by studies directly measuring the interaction of an RBP with RNA using
crosslinking immunoprecipitation (CLIP), like FMRP which can bind hundreds of different transcripts
(Darnell et al., 2011). Furthermore, transcripts can have multiple binding sites for the same or different
RBP as well as other trans-factors, leading to a complex interplay of different regulation factors that
can both increase binding specificity but also lead to competition for target binding (Gomes et al., 2014;
Iadevaia & Gerber, 2015).

Finally, even in the case of well studied binding motifs like the 54nt zipcode of (3-actin mRNA bound
by IGF2BP1 (Kislauskis et al., 1994), orthogonal binding sites in other target transcripts like Gap43,
which has no sequence homology to 3-actin, can also lead to RNA localisation (Donnelly et al., 2011).
Additionally, the binding site for IGF2BP1 in the 3-actin mRNA also overlaps with a binding site for
ELAVLA4 (also known as HUD; Kim et al., 2015), another RBP which has been implicated in the localisation

of 3-actin and Gap43 transcripts (Yoo et al., 2013).
Similarly to the 3-actin zipcode, most other RNA localisation elements described so far were all

identified in case studies of individual genes, most of which were known to be localised, had localised

proteins products or are known targets of localised RBPs. The non-coding regions of transcripts from
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Arc (Kobayashi et al., 2005), Bc1 (Muslimov et al., 2006), Bdnf (An et al., 2008; Oe & Yoneda, 2010),
Camk?2a (Blichenberg et al., 2001; Huang et al., 2003; Mori et al., 2000), and Map2 (Blichenberg et al.,
1999) were all studied using reporter assays, which allowed determination of certain sequence fragments
with the capability to drive localisation towards neurites. However, many of the localisation elements
identified by these approaches are not clearly defined as a specific sequence motif and only describe a
broad region of the transcript 3’UTR, which confers zipcode activity.

Only in few cases it was possible to identify a sequence motif or a trans-acting RBP, which binds a
specific element: the A2 response element (A2RE) originally identified as a zipcode in Mbp transcripts
(Ainger et al., 1997) also provides localisation activity for the Map2a or reporter transcripts in neu-
rons and is dependent on the heterogeneous nuclear ribonucleoprotein (hnRNP) A2 (Shan et al., 2003).
Furthermore, it is also present in the Bdnf, Camk2a, Arc, and Bc1 transcripts where it similarly can
drive localisation, which can also be mediated by hnRNP A/B (Raju et al., 2011). While the neuritic
localisation of Bc1 has also been shown to be dependent on hnRNP A2, the direct binding is based on
a structural motif overlapping the A2RE, where the contribution of the primary sequence is not clear,
but the interaction is linked to activity correlated intracellular calcium levels (Muslimov et al., 2006;
Muslimov et al., 2014). Another defined sequence motif identified as a zipcode in the Camk2a 3’UTR is
the cytoplasmic poly-adenylation element (CPE), with its known binding protein CPEB (Huang et al.,
2003). While no further reports on its effect on RNA localisation have been made, there is extensive
knowledge about the effect of the CPE on translational control (Ivshina et al., 2014), a level of regulation
that has also be reported for the A2RE (Kosturko et al., 2006). As such, it is not clear whether the effect
of CPE on localisation is specific to the Camk2a transcript or also present in other transcripts, however
there are many transcripts potentially regulated by it, as a CLIP study of the drosophila ortholog orb

identified over 3000 targets of CPEB (Stepien et al., 2016).

Another more recently discovered zipcode is the structural RNA G-quadruplex motif that induces
neurite localisation in Camk2a and Psd95 transcripts, but is also present in others known to be localised
like Bdnf and Shank1 (Subramanian et al., 2011; Y. Zhang et al., 2014). The same studies identifying
the zipcode activity of the RNA G-quadruplex have also shown that it is a binding site for FMRP, a
neuronal protein with many functions and strong influence on translation or neuronal and synaptic
transcripts as well as neurological disorders (Mofatteh, 2021; Thelen & Kye, 2020). Furthermore, several
other RBPs like FUS and TDP43, which are also linked to both RNA transport and neurodegenerative
diseases, have now been shown to bind the same motif (Imperatore et al., 2020; Ishiguro et al., 2016).
In addition to their functions in RNA localisation these RBPs share other functional capabilities like

control of translation (Efimova et al., 2017; Z. Li et al., 2001) and interaction with complexes that mediate
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miRNA dependent silencing of transcripts (Kawahara & Mieda-Sato, 2012; Muddashetty et al., 2011).
Similarly, further proteins that mainly regulate other aspects of RNA biology, most often translation,
have also been implicated to affect RNA localisation. This includes the Staufen proteins, which among
other functions are also involved in the regulation of stress granules, that can globally inhibit trans-
lation (Thomas et al., 2009) and control localisation of their own transcript both during development
of drosophila oocytes and in asymmetric neuroblast differentiation (P. Li et al., 1997; Vessey et al.,
2012). Additionally, it was shown that Staufen associates with many RNA granules (Furic et al., 2008;
Heraud-Farlow et al., 2013), including actively transported granules (Jeong et al., 2007) and also affects
synaptic plasticity and long-term potentiation in the brain (Lebeau et al., 2008). Similarly, the Pumillo
proteins, which are also required for neuronal development, have as well been implicated in mRNA

transport and formation of stress granules (Menon et al., 2004; Zahr et al., 2018).

In summary, the complexity of well studied individual factors that control RNA localisation and often
other aspects of RNA biology can not be understated and many of these factors also interact with one
another, further complicating the prediction of their exact effects in RNA localisation. This pattern of
complex interactions governing localisation of individual transcripts of concurrently controlled regulons
likely extends from the known examples into a much larger field of unknown ones (Costa et al., 2021;
Turner-Bridger et al., 2020). The interplay of several factors, often with both different target transcripts
and potentially using orthogonal binding motifs, also highlights that many RBPs may not strictly bind
to a specific sequence motif, but rather employ structural and context clues to achieve combinatorial

control of transcript target sets (Dominguez et al., 2018).

2.3 Massively parallel reporter assays

While several zipcodes and RNA localisation factors are quite well described, the number of known
zipcodes and associated localisation factors is relatively small compared to the complexity and extent of
the neurite localised transcriptome. Therefore, it is generally expected that several unknown zipcode
motifs and associated RPBs exist which control localisation of the many transcripts that have not been
studied in depth (Gomes et al., 2014; Kar et al., 2018).

One emerging approach to uncover unknown control elements like zipcodes combines both the advan-
tages of next generation sequencing techniques and the principle of reporter assays already used in
early studies of RNA localisation elements. A sequencing based approach requires the generation of
distinct RNA pools, which is of course ideal in the neuronal system where neurites and soma can be
physically separated and also allows the analysis of a very large number of individual reporters at the

same time. Therefore, these approaches, usually called massively parallel reporter assays (MPRAs), have
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allowed the discovery of control elements for stability and translation control of RNAs (Oikonomou
et al., 2014; Rabani et al., 2017; Yartseva et al., 2017; Zhao et al., 2014) as well as nuclear RNA localisation
(Lubelsky & Ulitsky, 2018; Shukla et al., 2018).

Several technical aspects of the MPRA approach as well as choices in assay design can have strong
impacts on the obtained results, which is especially important to consider with an assay for a new model
system like neuronal RNA localisation. Foremost is the selection of the set of genes or sequences to
be analysed in the MPRA. Different strategies have been employed to select these sequence pools: the
most common approach is informed manual or guided selection of differently sized sets of biologically
relevant genes (Lubelsky & Ulitsky, 2018; Rabani et al., 2017; Shukla et al., 2018; Yartseva et al., 2017),
but other approaches include the pre-screening of randomised oligos (Wissink et al., 2016), selection of
conversed sequences (Oikonomou et al., 2014) or analysis of different mutations of a single sequence
to obtain detailed insights (Zhao et al., 2014). Since cis-active elements, and especially localisation
associated ones like zipcodes, are most often located in the 3’'UTR of a transcript (Andreassi & Riccio,
2009; Gomes et al., 2014), it is reasonable to include only this part of the transcript sequences in the
assay.

While it would be possible to build a reporter system for the whole 3’UTR of a large set of genes,
this is technically quite challenging due to the very wide range of sequence lengths and would also
not even provide any information about the specific position of any potential zipcodes. Therefore,
the genes selected for analysis in an MPRA are usually subdivided into many equally sized sequence
fragments, which not only reduces technical noise in the reporter libraries, but also aids with streamlining
analysis. This subdivision can be done in two different ways: either by selecting specific, potentially
overlapping, tiles with a defined offset along each sequence (Lubelsky & Ulitsky, 2018), or by using
random fragmentation and size selection of a sequence pool (Yartseva et al., 2017). While the latter
offers potentially more distinct fragments and therefore a theoretically higher positional resolution for
identifying active elements, it also more heavily depends on high quality technical performance and
readouts to achieve this. Additionally, pre-defined sets of sequences allow for easier analysis and quality
control with RNA sequencing, since one can check for exact sequence matches.

Whichever set of genes and reporter sequences are chosen and generated for an MPRA, they have
to be converted into an actual reporter library pool, that can be used in the desired model system. While
some model systems like developing embryos allow direct injection of RNA (Yartseva et al., 2017), this is
not possible in neurons, where a transfection system that also works well with the non-proliferative
cells has to be used. Such a system is usually based on an initial plasmid library pool, in which additional
experimental parameters can be fine tuned to the model system, like utilisation of a neuron specific

promoter. Furthermore, the source of neurons, or any other cells, is also an important parameter, not
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only because reliance on an established and well described system like primary neurons further cultured
in vitro determines the data quality obtainable from the assay, but also because the initial selection of
genes with potential active elements is usually built on knowledge that also derives from the same or at
least commonly used model systems. Finally, the reporter RNA in the cellular system has to be separated
into distinct functional groups material for RNA sequencing library generation. In the case of zipcodes
for neuronal RNA localisation, this can be achieved through the same physical separation procedures

that allow identification and quantification of localised transcripts in neurites.

2.4 RNA-Seq: high throughput data and their analysis

Regardless of whether one wants to study transcriptomics, perform an MRPA or study other aspects of
RNA biology, the most common method to identify and quantify many different RNA molecules in one
experiments is RNA sequencing (RNA-Seq). This approach relies on reverse transcription of RNA into
cDNA, which can be identified and quantified using next generation sequencing (NGS) machines. While
NGS was originally developed as a tool to identify the primary sequence of genomic DNA fragments, in
modern transcriptomics it is mainly used to quantify the number of reads associated with a specific
transcript or gene and therefore also allows differential expression analysis (Stark et al., 2019).

A similar analysis approach was already possible based on RNA microarrays before the emergence
of sequencing. However, microarrays are limited to the detection and quantification of known and
predefined transcript sequences and are also limited by the dynamic range of the probe scanner and
have higher noise levels than RNA-seq, where the dynamic range is also only limited by sequencing
depth (Wang et al., 2009; Wilhelm et al., 2008). Similarly to microarrays, other high throughput methods,
like mass spectrometry protein measurements, can usually also provide only intensity based readouts.
Nonetheless, modern shotgun proteomics are similarly to RNA-Seq in their ability to quantify the
whole proteome in a single experiment, relying on the identification of peptides fragments to obtain
summarised quantification of individual proteins (Tyanova et al., 2016).

All high-throughput methods have technical biases and uncertainties, which need to be accounted
for in the analysis to achieve proper quantification of molecules. In RNA-Seq based transcriptomics
one major source of such uncertainty are over-amplified cDNA duplicates generated during PCR based
library construction. The most common approach to overcome this issue is the introduction of unique
molecular identifiers (UMIs), which are short randomised sequences tags introduced early on in the
cDNA or library preparation. The UMIs are then part of the sequenced reads and allow the distinction
between artificially duplicated cDNA fragments and true biological signal from multiple RNA fragments
with the same sequence (Kivioja et al., 2012).

Many different approaches or methods built on RNA sequencing exist, like different transcript
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selection procedures for mRNA (oligo-dT selection) or the total transcriptome (depletion of ribosomal
RNA). However, regardless of the approach or specific question, the basic steps in analysis of RNA-Seq
data are always similar: first read sequences need to be mapped to the genome or transcriptome to
subsequently allow summarisation of gene or transcript counts. These counts then have to be normalised
and potentially filtered before differential expression analysis can be performed (Conesa et al., 2016).
Genome alignment of RNA-Seq reads to specific positions is performed with tools like STAR, that
perform a full sequence based alignment of reads (Dobin et al., 2013), but require a secondary step to
obtain the counts of reads mapped to each gene body. Alternative tools like salmon have emerged more
recently, which use k-mer based matching of reads to known transcript sequences to directly perform
quantification (Patro et al., 2017). This approach is computationally much faster than other methods and
always includes partially estimated counts of individual overlapping transcript isoforms, but also looses
some accuracy for very small or lowly expressed RNAs (Wu et al., 2018) and only allows quantification
and no other analysis like identification of novel transcripts or splice sites (Stark et al., 2019).

The normalisation of RNA-Seq gene or transcript abundances, which are generally correlated to
expression levels, needs to account for the fact that read counts are derived from individually identified
molecules. This is also the biggest difference between RNA-Seq and other high throughput methods like
mass spectrometry or microarrays, which produce intensity measurements. The distribution of these
counts is intrinsically biased to samples with a higher sequencing depth and, in the case of mRNA or
total RNA sequencing, but not necessarily for other protocols, also towards the transcript length, since
random fragmentation produces more readable fragments from longer transcripts (Conesa et al., 2016;
Stark et al., 2019). Normalisation for these two parameters does, depending on the order of normalisation,
generated either RPKM (reads per kilobase per million) or TPM (transcripts per million) values (Wagner
et al., 2012). While these values give good indications of relative transcript expression levels within or,
in the case of TPM, also between samples, they are not suited for differential expression analysis, since
the relative expression levels are not always directly comparable between samples (Bullard et al., 2010;

Dillies et al., 2013; Wagner et al., 2012).

2.5 Differential expression analysis and integration of multiple datasets

After counts from RNA-Seq have been generated and quality controlled, depending on the tools utilised,
either raw or properly normalized values can used for differential expression (DE) analysis, which allows
the calculation of relative expression changes between two experimental conditions expressed as log2
fold change values. Some of the most popular tools for DE analysis are DESeq2 (Love et al., 2014), which
was specifically developed for RNA-Seq data, and limma (Ritchie et al., 2015), which was originally

developed for microarray data, but can be used on any kind of expression data. DEseq2 operates
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on raw counts, since it performs it’s own normalisation, which includes calculation of size factors
controlling sequencing depth of samples that are modelled based on a negative binomial distribution
of the underlying count values. This approach allows for a robust estimation of baseline expression
levels, even with a relatively small number of samples and also for genes with low counts. However, it
also assumes that genes with similar expression levels also have similar dispersion, in order to allow
correction of the dispersion measured for individual genes from few samples by the observed average of
similarly expressed genes (Love et al., 2014).

In order to determine and enumerate expression changes between different samples, both DESeq2
and other DE tools utilise a generalised linear model (GLM) that allows fitting of coefficients for user
defined experimental variables. These coefficients are derived from a statistical model provided for any
set of samples, which can accommodate anything from a simple comparison between two conditions to
a design with several co-factors and experimental variables. DESeq2 controls for the strong effect of
very low expression on log2 fold change values by correction of initial values with a secondary GLM
fit and enables testing for statistical significance with the Wald test (Love et al., 2014). Both this test
for significance and the GLM are build with the assumption that the majority of analysed genes does
not differ between conditions and changes occur equally likely in either direction, i.e. that log2 fold
change values are centred around zero with a normal distribution. Other tools for DE analysis generally
share most assumptions made by DESeq2, but differ in the exact algorithms used for individual steps
of the analysis. The limma tool for example, also is based on fitting of a GLM and groups similarly
expressed genes by variability to increase the statistical accuracy of log2 fold change values, but does
not itself contain steps for normalisation, which makes it also applicable to DE analysis of data types
other than RNA-Seq (Ritchie et al., 2015). A GLM supported analysis of multiple samples and effects
at the same time provides several benefits, but also makes proper model design and normalisation of
read counts more difficult. The sharing of information in a larger set of samples and consideration of
known covariates can increase the statistical power of the model, even if DE is only calculated for a
given subset of conditions (Ritchie et al., 2015). Additionally, multiple comparisons can potentially be
done in the same singular modelling step, which improves both the runtime and comparability of results
within a given experiment.

As large sets of biological samples can often not be generated and processed at the same time, the
emergence of processing correlated batch effects is a common issue in DE analysis, but can be somewhat
mitigated by appropriate study design, even though additional correction may still be necessary (Leek
et al., 2010). This problem can also be overcome by using batch correction approaches, several of
which were developed for genomics or microarray studies before the wide spread usage of RNA-Seq.

If the batch variables are known, for example from different processing times of samples, then it is
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possible to correct systematic differences in expression values using empirical Bayes models. This
approach is similar to GLM based determination of fold differences between conditions, as it also allows
borrowing of information from several genes to estimate and consecutively remove a global effect of
a certain batch variable on expression (Johnson et al., 2007). Since this approach can only adjust for
known batch variables, another method called surrogate variable analysis (SVA) was developed, which
allows batch correction after determination of unexplained singular vectors, or principal components,
within the residual expression variation not correlated to known parameters of interest (Leek & Storey,
2007). Another approach to determine batch factors is to focus on a set of negative control genes like
ubiquitously expressed house keeping genes or, especially for RNA-Seq, exogenous spike-in controls.
This approach minimizes the risk that any known or determined batch factors correlate with a biological
signal of interest, which could get lost during batch correction, and has been implemented as the remove
unwanted variation (RUV) method by Risso et al. (2014). It has also been shown that batch correction is
highly beneficial for DE analysis, especially for large collections of data, and can even be applied without
explicit knowledge about negative control genes by including all genes as a proxy (RUVs approach)
(Peixoto et al., 2015; Risso et al., 2014).

Another possible complication for DE analysis is breaking of assumptions in the used models. While
this is very unlikely to occur during analysis of the full transcriptome, it is possible in an analysis with a
reduced number of genes or under circumstances where DE is very common. Such conditions are most
likely within in a reporter assay context, where several analysed transcripts share a similar sequence
and the experimental design may intentionally produce many positive results. Additionally, MPRAs
or other reporter libraries also have further deviation from standard transcriptome sequencing, like a
more homogeneous read length distribution and often either specifically designed fragments that can be
mapped to a known reference set or unknown fragments for which count bins over genomic or 3’'UTR
regions need to be generated. Therefore analysis of such data often uses only a very simple approach
that only includes basic sequencing depth normalisation, generation of log ratios between conditions
of interest and potentially statistical test for the significance of differences (Lubelsky & Ulitsky, 2018;
Oikonomou et al., 2014; Yartseva et al., 2017), even if more sophisticated analysis including model fitting

are possible if one ascertains that all model assumptions are met (Rabani et al., 2017).
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2.6 The importance of localised RNA in disease - ALS and the FUS protein

While basic research leading to a better understanding of how RNA localisation in general and within
neurons in particular is an important goal in itself, there is also considerable interest in understanding
its importance in neurodegenerative diseases. Several RNA binding proteins that have been tightly
linked to different diseases, like SMN to spinal muscular atrophy, FMRP to fragile X syndrome as well as
FUS and TDP43 to frontotemporal dementia and amyotrophic lateral sclerosis (ALS), have indeed also
been associated with local RNA localisation (Thelen & Kye, 2020). Correspondingly, disruption of RNA
localisation has also been identified has a hallmark of several neurodegenerative diseases including ALS,
but it is so far not clearly understood, whether this is a cause of or a symptom underlying the molecular
disease pathways (Mofatteh, 2021).

ALS in particular is an incurable disease that ultimately leads to death about 2-5 years after diagnosis
due to the irreversible loss of motor neurons. While the exact cause and progression of the disease
are not fully understood, one common theory is that the degradation starts at the synapses between
motor neurons and muscles, the neuromuscular junction (NMJ), and slowly progresses from there with a
"dying-back’ phenomenon (Dadon-Nachum et al.,, 2011). The exact mechanisms of how this degradation
and loss of motor neurons occurs involves many cellular pathways in a complicated network and as
such is still a matter of ongoing research. A good overview of the molecular pathology of ALS has
been given by J. P. Taylor et al. (2016). As ALS can occur both with and without a familiar genetic
background, a considerable amount of research into mutations that are most often associated with
especially the familiar origin of the disease has been conducted. The most important of these proteins
include SOD1, a mitochondrial enzyme for which most mutations gain a toxic function, C9ORF, a gene in
which CGG-repeat expansion leads to ALS, as well as the RBPs TDP43 and FUS, which both lose nuclear
localisation and become part of inclusion bodies in ALS (J. P. Taylor et al., 2016). This aggregation
as well as disrupted degradation of proteins, specifically including TDP43, is also one of the most
common hallmarks of most forms of sporadic and familiar ALS. Additionally, protein aggregation and
miss-folding, which also affects other ALS associated proteins like SOD1 and FUS, as well as generally
increased ER stress has also been reported as a common occurrence in ALS. Furthermore, the molecular
pathology of ALS also involves disruption of axonal transport, homeostasis, and the local transcriptome
and translatome (Suzuki et al., 2020), as well as contributions from non-neuronal cells, especially glia,
towards the disease (Haidet-Phillips et al., 2011). A final mechanistic link between the genes, whose
mutations are associated with ALS, which has so far not been investigated in depth, is the structural
G-quadruplex motif, which can also act as a zipcode in neurons (Maltby et al., 2020; Subramanian et al.,
2011). Not only can both FUS and TDP43 bind this motif (Imperatore et al., 2020; Ishiguro et al., 2016), it

can also be formed by the hexanucleotide repeats within COORF (Haeusler et al., 2014).
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In order to study ALS one either needs to rely on mouse models that can replicate the human disease,
or use in vitro generated human motor neurons as a model system. As importance of disease related
processes inside axons are reinforced by the fact that the dying back phenomenon starts there, an in
vitro model system that allows separation of soma and neurites is a promising approach towards this
particular field of study. The generation of motor neurons can either be achieved by differentiation of
stem cells after natural activation of signalling pathways through small molecules (Amoroso et al., 2013)
or by induced expression of neurogenic transcription factors (Hester et al., 2011; Mazzoni et al., 2013).
Both of these approaches can yield motor neurons, however, induced differentiation is often possible
in a shorter time frame, achieves higher differentiation efficiency and also yields more reproducible
results, even if the resulting cells may not fully recapitulate specific motor neuron subtypes formed
in vivo (Davis-Dusenbery et al., 2014). In addition to their ease of handling, in vitro generated motor
neurons have the added benefit that ALS associated mutations can easily be introduced in a wild type
cell line, or corrected in a phenotypic cell line.

Of particular interest for basic research into the molecular mechanics of ALS is the FUS protein,
which is not only the second most common cause of familiar ALS with around 5% of all such cases
(Kwiatkowski et al., 2009), but also has been associated with frontotemporal dementia (FTD), another
neurodegenerative disease that has molecular similarities to ALS, but affects the brain rather than motor
neurons (J. P. Taylor et al., 2016). Furthermore, FUS can affect both RNA transport and local translation in
axons, where the presence of mutant protein also impedes synaptic activity (Lopez-Erauskin et al., 2018).
Additionally, most ALS associated mutations of FUS occur in its 15th exon, which codes for its nuclear
localisation sequence (NLS) and a considerable portion of its neurotoxic potential has been ascribed
to a gain-of-function related to an increased cytoplasmic localisation of FUS (Efimova et al., 2017).
These aspects indicate that mutant FUS protein most likely induces ALS by a toxic gain-of-function,
which is assumed to be linked to both its propensity towards formation of aggregates (Sun et al., 2011)
and its ability to bind cytoplasmic transcripts that are normally not available to it (Hoell et al., 2011).
Nevertheless, FUS also serves a plethora of other functions, including DNA repair, transcriptional
regulation, splicing, and RNA transport (Efimova et al., 2017), whose impediment through mutations
may also contribute to cellular ALS mechanisms and thereby complicate identification of individual

pathways contributing to disease etiology.
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2.7 Aims of my thesis

The work I have performed for this thesis all revolves around and tries to improve our understanding of
the particulars, mechanisms and implications of RNA localisation in neurons.

Towards this end I aim to leverage newly generated and available public RNA-Seq data and integrate
them into an encompassing and robust summary of a systems level view of localised transcripts based on
both presence and enrichment in neurites. Further, I use this knowledge to design an MPRA to identify
so far unknown zipcode elements within the 3’'UTR space of commonly neurite localised transcripts.
Using, first, the combination a of data driven selection procedure and curation for reliable signals and,
second, a mutation analysis approach I want to identify the sequences identity and potential mechanisms
of novel candidate zipcode elements.

Additionally, I apply omics analysis of RNA and protein expression in a motor neuron model with the
aim of gaining further insights into potential disease mechanisms of ALS. For this I first need to ascertain
the usability of an induced motor neuron (iMN) model generated from controlled differentiation of
human induced pluripotent stem cells (hiPSC) by generating a detailed characterisation including the
local transcriptome and proteome. Using differential expression analysis between different patient
derived FUS mutant and specific isogenic control motor neurons I then aim to identify individual or
groups of genes that show potentially compartment specific expression changes linkable to the ALS

associated mutations.
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3 Material and methods

3.1 Comparison of RNA-Seq data from neuronal compartments

All experimental procedures regarding the generation of RNA-Seq data from PCN described in this

section 3.1 were performed by Sayaka Dantsuji.

3.1.1 PCN generation and cell culture

Primary neurons were dissected from cortex of E14 mouse embryos and cultured in neurobasal A media
supplemented with B27 (1:50), Glutamax (1:100) and penicillin-streptomycin (1:1000). For subsequent
separation of neurons, cells were grown on microporous membrane filter insets, which also allowed
cells to be grown in co-culture with astrocytes, which were as well obtained from mouse embryos and
placed in the wells before culture of neurons began. Medium was changed regularly and after 9 days in

vitro (DIV9) cells were fixed with 100% methanol prior to compartment separation and RNA extraction.

3.1.2 Compartment separation and generation of RNA-Seq libraries

For separation of neuronal compartments, first the soma growing on top of the filter insets were collected
with cold PBS and transferred into Trizol (Thermo Fischer) after removal of PBS. The filters were cleaned
using cotton swabs and then also transferred to Trizol (see Ludwik et al. (2019) for a detailed protocol).
RNA was extracted from Trizol using chloroform/isopropanol extraction according to manufacturers
recommendations. Integrity of collected RNA samples was analysed using Bioanalyser and efficiency of
compartment separation was ascertained based on qPCR.

RNA sequencing libraries were generated in triplicates from 120ng of total RNA using the TruSeq
Stranded Total RNA library kit (Illumina, RS-122-2201) according to manufacturers protocol. The final

libraries were sequenced using an Illumina NextSeq500 machine with 151 single end read cycles.

3.1.3 RNA-Seq analysis using PiGx

For publicly available RNA-Seq data from compartment separated neurons, I obtained raw data deposited
with the NCBI GEO repository from the following studies: Briese et al. (2016), Cajigas et al. (2012),
Ciolli Mattioli et al. (2019), Farris et al. (2019), Middleton et al. (2019), Minis et al. (2014), Nijssen et al.
(2018), Poulopoulos et al. (2019), Taliaferro et al. (2016), Toth et al. (2018), Tushev et al. (2018), and
Zappulo et al. (2017). For datasets without available fastq data, I used the un-normalised counts provided
in the supplementary files of the respective studies (Maciel et al. (2018) and Rotem et al. (2017)). For
processing of fastq files, I used the PiGx RNA-Seq pipeline (version 0.0.10) (Wurmus et al., 2018), which

included quality and adapter trimming performed with trim_galore, genome mapping with STAR
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(Dobin et al., 2013) and read counting with R (GenomicAlignemts: : summarizeOverlaps). The
necessary genome and transcriptome files were downloaded from ENSEMBL: Mus musculus, GRCm38,
version 96; Rattus norvegicus, 6.0, version 98; Homo sapiens, GRCh38, version 97. Genes from human or
rat datasets were assigned to orthologous mouse genes based on biomaRt annotation (Durinck et al.,
2009) with exclusion of many-to-many orthologs and genes without any orthologs. In the case of
multiple human or rat genes orthologous to a single mouse gene, I only assigned the highest expressed
gene as an ortholog to mouse. To obtain TPM values, I normalised read counts of all samples to average
transcript length based on respective genome annotation and to total reads per sample. Then I averaged
TPM values for datasets and compartments and only retained genes with an average TPM >1 in a given
dataset for comparison.

Additionally RNA-Seq libraries from PCN were generated by Sayaka Dantsuji. I processed these data as
described above using PiGx, however the data also showed evidence of DNA contamination so I only
used genes with htseq-based log2 read counts ratios of exon/intron>2.5 and sense/antisense strand > 2

for any further analysis of this dataset.

3.1.4 Differential expression analysis

I performed differential expression analysis for samples from neurite and soma compartments individ-
ually within each dataset on raw counts of all genes with average TPM>0 (across all samples) using
DESeq2 (Love et al., 2014). Genes with significant (adj. p-value <0.05) enrichment with log2 fold change
(log2fc) at least 0.5 I considered as localised (for either compartment).

In order to perform differential expression analysis on all datasets at the same time, I removed unwanted
variation between the datasets using the RUVs approach (Risso et al., 2014). Using kBET, a k-nearest
neighbour test method for batch effects (Buttner et al., 2019), I determined k=14 to be best number
of factors of unwanted variation to remove, as it showed the smallest difference between expected
and observed batch effect. I then used DESeq2 with a model considering all 14 numerical factors as
determined by RUVs as well as the dataset-identity as covariates to determine the differential expression
between neurites and soma for all datasets.

In addition to differential expression I also extracted variance stabilised counts from the DESeq2 model

and used those for principle component analysis.

27



3.2 Neuronal zipcode identfication protocol (Nzip)

All experimental procedures described in this section 3.2 were performed by colleagues from the
Chekulaeva lab and MDC: Sayaka Dantsuji generated all Nzip library pools, obtained PCN and performed
sequencing of Nzip libraries (3.2.2-3) as well as small RNA libraries (3.2.6); Marina Chekulaeva performed
RNA affinity pulldown with help from Nadja Zerna (3.2.7); Samantha Mendonsa generated PCN protein
lysate for mass spectrometry (3.2.7); and Marieluise Kirchner (from the lab of Philipp Mertins) performed
mass spectrometry measurements and raw data processing (3.2.7-8). Additional analysis of miRNAs
counts in small RNA-Seq data and of Nzip mutation libraries was performed by collaborators from the

Weizman institute (Maya Ron, Igor Ulitsky).

3.2.1 Design of Nzip reporter library

For the selection of genes with a potentially unknown zipcode in the 3’UTR , I used neurite and soma
compartment separated RNA-Seq data both from the PCN data generated in our group and from other
published datasets derived from primary neurons (Briese et al., 2016; Middleton et al., 2019; Minis et al.,
2014; Rotem et al., 2017; Taliaferro et al., 2016; Tushev et al., 2018). I considered genes localised to
neurites in a given dataset if they had log2fc >0 with an adj. p-value <0.05. For the selection across
datasets I also calculated the average and median of all significant log2fc values across the datasets
and classified genes as unanimously neurite localised if no significant enrichment in soma (log2fc
<0, adj. p-value <0.05) existed. Then I selected genes with both consistent and sufficiently strong
neurite localisation by taking those that showed: (1) neurite localisation in at least 4 datasets with a
median log2fc >1 and either unanimous neurite enrichment or an average log2fc >1; or (2) neurite
localisation in at least 5 datasets with median log2fc >0 and additionally either mean or median log2fc
>1 or unanimous neurite localisation. To ensure compatibility of this resulting Nzip selection with our
PCN model system I then removed all genes that did not have a significant neurite enrichment in our
PCN data (log2fc >0, adj. p-value <0.05). Further manual curation of this gene list was performed to: (1)
ensure inclusion of genes with described zipcodes or neurite localisation elements: Actb (Kim et al., 2015;
Kislauskis et al., 1994), Arc (Kobayashi et al., 2005), Bc1 (Muslimov et al., 2006), Bdnf (An et al., 2008; Oe
& Yoneda, 2010), Camk2a (Blichenberg et al., 2001; Huang et al., 2003; Mori et al., 2000; Subramanian
et al., 2011), Cdc42 (Ciolli Mattioli et al., 2019), and Map2 (Blichenberg et al., 1999)); (2) add genes with
strong or consistent neurite localisation in other non-primary datasets, either published (Taliaferro
et al., 2016; von Kugelgen & Chekulaeva, 2020; Zappulo et al., 2017) or in-house: Rab13, Net1, Hmgn5,
2410006H16Rik, Pfdn5, Tagln2, Pfdn1, Cryab, Rpl14, Eef1b2, and Eeflal; (3) remove genes with functions
in nucleus or translation (Polal - DNA polymerase, Ezh2 - Polycomb complex, Smc4 - Chromosome

structure, Cenpb - Centromere structure, Ncl - nucleolus, Pink1 - mitochondrial damage response; and
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(4) restrict the number of ribosomal proteins in list of enriched transcripts to a smaller subset, also with

sufficiently long 3’UTR to use for tiling (Rplp2, Rpl12, Rpl39, Rpl37, Rps28, Rpsa, Rps24, Rps23, Rps18).

I used the biomaRt ENSEMBL interface (Durinck et al., 2009) to download the 3'UTR sequences of
all transcript isoforms annotated to these genes. For all different isoforms of the same gene I merged
the overlapping sequences to obtain continuous unique sequences of each. For genes with multiple
sequences obtained in this manner I relied on transcript annotation as well as genome browser tracks
from the PCN data to select a single expressed and functional 3'UTR sequence. In the case of Cflar and
Cdc42 Iincluded two different 3’UTR sequences in the selection each derived from alternative last exons.
For the genes Hdac5 and Arhgap11a I obtained different but partially overlapping or heavily repetitive
3’UTR sequences, which I manually merged into a single one containing all unique sequence elements.
This resulted in a final set of 99 3’'UTR sequences derived from 97 different genes (Table S3).

For each of these sequences I generated 75nt or 100nt tiles for sequences with total length above 500nt
with 15 or 25nt offsets so that each sequence was covered from start (5°) to end (3’). For the last remaining
part of each sequence I either extended the last tile to a maximum size of 80nt or 110nt respectively or
added an additional shortened tile. Additionally I added 5 scrambled (randomised) tiles for each of the
first tile of Camk2a, Actb and Bcl. The final set encompassed 4813 tiles and was ordered including 3’

and 5’ cloning adapters.

3.2.2 Generation of Nzip reporter library pools

The synthesized oligo tile pool was PCR amplified based on the cloning adapters and then cloned into
the 3’UTR of a synapsin promoter driven GFP cassette in a plamsid allowing for lentiviral packaging
(Addgene #20945).

Lentiviral particles were generated in HEK 293T cells and concentrated using Lenti-X concentrator

(631232 Takara Bio) before application to cortical neurons at around DIV5.

3.2.3 Generation of Nzip sequencing libraries

RNA material from PCN transfected with the Nzip reporter library was collected as described above (see
3.1.2) in two initial experiments at DIV14 or in one (confirmation) experiment at DIV9. For the two initial
experiments neurons were inhibited with 50 uM AP5 and 10 uM NBQX for 16h before harvesting of RNA
material. In one of these experiments the neurons were depolarized after the silencing treatment with
55mM KCl for 1h. Additionally, the material obtained from soma compartment of these experiments was
further separated using NE-PER nuclear and cytoplasmic extraction reagents (Thermo Fisher Scientific)

to obtain RNA from these compartments.
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For preparation of Nzip sequencing libraries 600ng total RNA treated with DNAse and a custom
protocol utilising Superscript III (Thermo Fischer) was used with specific first and second strand primers
designed to only bind and amplify the common adapter sequence of all tiles and add UMI sequences
with staggered lenghts to the 3’ start of each sequence fragment (Table S1). Final amplification of
the library was performed using NEBNext High-Fidelity 2X PCR Master Mix and added the binding
sequences for Illumina sequencing and barcoding to the libraries. The final libraries were sequenced
after purification and dilution using an Illumina NextSeq 500 sequencer with either paired-end 76nt
reads (initial experiments) or single-end 151nt reads (confirmation experiment). All experiments were

performed in triplicates.

3.2.4 Nzip reporter library data analysis

To obtain read and UMI counts from the Nzip libraries I build a data processing workflow utilising
umi_tools (Smith et al., 2017) for identification and error correction of UMIs and salmon (Patro et
al., 2017) for mapping reads to the full sequence set of all tiles. First I extracted the UMIs encoded
in the second strand library generation primers (Table S1) using umi_tools with the following regu-
lar expression pattern: "(?P<umi_1>.9) (?P<umi_2>(CA|AGC|TCGC |GGCTC | CCAGCACCA) ?)
(?P<discard_1>GCCATAA)s<=1". After using the PiGx pipeline to obtain quality trimmed reads and
building a salmon index of all tile sequences including the cloning adapters, I mapped reads to the tiles
using salmon with the options --validateMappings -z --recoverOrphans --skipQuant
(salmon version 1.1). I further processed the obtained bam files using bash scripts relying on samtools
and awk to pad the UMI sequences for each read, so that all UMIs had the same length needed for
umi_tools processing, and to assign a new attribute flag to the primary mapped location of each read.
Next, I used umi_tools group to add error corrected UMIs and their group identifiers to the bam
file entries, before I finally used an awk | sort |uniq -c based bash pipe to count the occurrence of
all unique read mapping states separated by error corrected UMI groups, relative tile position and read
length. Finally, I summarised count tables for all samples using custom R scripts to obtain the complete
UMI counts for each tile. Reads not mapping to the tile start were almost non existent and I did not
remove reads not spanning a full tile (or without a mapped read mate) to retain comparability of my

pipeline with that from our collaborators.

After initial tests to rule out negative influence of different tile mapping states, as well as assertion
that modelling of size factors worked similarly as on transcriptomic data, I proceeded with differential
expression analysis using DEseq2 (Love et al., 2014). For this I calculated enrichment of tiles between

neurite compartment and either soma or cytoplasm, from all three replicate samples. Only in the case
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of the initial experiment with depolarized PCN I removed one sample due to bad comparability with
replicates.

From each experiment I defined peaks of overlapping neurite enriched tiles by selecting all groups of
consecutive tiles that showed a neurite enrichment with log2 fold change >0.5 and had at least one tile

with significant adj. p-value (p<0.05) and one with log2 fold change >0.75.

3.2.5 Design of Nzip mutation library

Using preliminary analysis of the initial Nzip experiments provided by collaborators (Igor Ulitsky,
Maya Ron) I determined neurite enriched tile groups with candidate zipcodes. For this I relied on the
neurite/cytoplasm log2 ratios as well as nucleus/cytoplasm ratios or on p-values I obtained from running
DEseq on the raw counts of neurite and cytoplasm samples. I considered a group of tiles as a peak if
(1) at least 2 consecutive tiles had a median neurite/cytoplasm ratio >0.5 and nucleus/cytoplasm ratio
between -3 and 0.5, while at least one tile in a given group had a neurite/cytoplasm ratio >0.75 or if (2)
at least 3 consecutive tiles had either a mean neurite/cytoplasm ratio >0.5 or a mean neurite/cytoplasm
ratio >0 with a significant adj. p-value (<0.05), while at least two tiles in a given group had a significant
adj. p-value and a neurite/cytoplasm ratio >0.75. Based on these peaks from either or preferentially both
of the initial Nzip experiments, the following 16 tiles were chosen to be further studied by mutational
analysis: Bdnf tile 56, Cald1 tile 58, Camk2n1 tile 12, Cox5b tiles 6&7, Golim4 tile 56, Kif1c tile 80, Mcf2l
tile 7, Msn tile 48, Ndufa2 tiles 11&12, Rassf3 tile 91, Rps23 tiles 11&12, and Utrn tile 61. (see also Table
S4).

For each of these tiles I generated: (1) every possible single point mutation, (2) transversion mutations in
non-overlapping 2, 5 and 10nt windows each, so that every position was covered by one window of each
size, and (3) three scrambled (randomised) control tiles. All of these tiles together with non-mutated
WT tiles were combined into the second Nzip mutation library and also ordered with added 3’ and 5
cloning adapters.

The mutation reporter library and viral vectors were generated in the same manner as before and se-
quencing libraries were obtained following the same protocol as the confirmation experiment. Processing

and generation of tile counts for these libraries was performed by collaborators.

3.2.6 miRNAs quantification from small RNA-Seq

Small RNA-Seq sequencing was performed by extracting short RNAs from 500ng of total RNA from
PCN compartments separated as described before and then using 100ng of the shorter RNAs as input for
TruSeq Stranded Total RNA library kit (Illumina, RS-122-2201) according to manufacturers instructions.

Triplicate libraries were sequenced on Illumina NextSeq 500 machine with 151nt single end reads.
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Identification and counting of miRNA sequences and sequence families was performed by collaborators.
Due to no known normalisation markers with similar relative expression in the small RNA-Seq reads,
no differential expression analysis between miRNAs and no relative expression strength of mRNA and

miRNAs could be performed.

3.2.7 RNA affinity pulldown and mass spectrometry

For affinity pulldown of proteins binding the (AU)g element, DNA constructs with carrying (AU)s-boxB
or mutated-(AU)s-boxB were generated from synthetic oligos corresponding to Rassf3 tile 91 or a mu-
tated version, where (AT)s was replaced with GTACATACATGTACAT, by annealing and cloning into a
vector containing boxB sites. RNA probes for the pulldown essay were generated using T3 Megascript
in vitro transcription kit (Thermo AM1338) according to the manufacturer’s recommendations. RNA
affinity pulldown was performed following a modified gRNA chromatography protocol (Chekulaeva
et al., 2006; Czaplinski et al., 2005): first GST-lambdaN fusion peptide was immobilized on Glutathione-
Sepharose 4B (Amersham, 17075601); then beads were incubated with first 25pmol of either (AU)g-boxB
or mutated-(AU)s-boxB RNA and second with 3mg of protein lysate prepared from P0 mouse brain, with
in-between washing steps; and after final washing proteins were eluted from the beads with 0.15ug

RNAse A and recovered by centrifugation after precipitation from the eluate.

To obtain total protein lysate from neurite and soma compartment of PCN the cells were grown and
separated as before, but instead of using Trizol for lysis and sample collection buffer (8M UREA, 0.1M
Tris-HCI pH?7.5) was used instead.

Both eluate from RNA affinity pulldown and total protein lysate from PCN compartments were
further processed using in solution digest with trypsin and desalted peptides were then analysed
with liquid chromatography-tandem mass spectrometry (LC-MS/MS) using a Q Exactive HF-X mass
spectrometer coupled to an Easy nLC 1200 system (Thermo Scientific). All samples were measured in

triplicates.

3.2.8 Mass spectrometry data analysis

Raw mass spectrometry data was processed using MaxQuant software (1.6.3.4) (Tyanova et al., 2016)
with false discovery rate (FDR) for peptide identification set at 1%. Identified proteins were filtered to
exclude reverse database hits, potential contaminants, and proteins only identified by site.

Analysis of protein enrichment in the eluates of RNA affinity pulldown from intact and mutated (AU)g

element was performed by Marieluise Kirchner: first LFQ intensity values were used to remove proteins
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not present in at least one eluate group with a minimum value of 3, before performing imputation for
missing values using a random noise distribution to simulate the detection limit of the mass spectrometer.
Proteins with significantly different presence between the two eluates were determined using Student’s
Two sample t-test with equal variance and permutation based FDR, which was corrected fo multiple

testing by the Benjamini-Hochberg (BH) approach.

For analysis of mass spectrometry data from neurite and soma compartments of PCN, I used the
iBAQ values from the preprocessed MaxQuant output and the DEP R package (X. Zhang et al., 2018).
First, I removed all proteins, which were detected in fewer than half of all samples irregardless of
compartments, and the performed imputation using random draws from a Gaussian distribution centred
on a minimal expression values (DEP MinProb algorithm). For normalisation I used the housekeeping
gene GAPDH as a reference and for each compartment divided all iBAQ values by the median GAPDH
expression. Finally, I performed differential expression analysis between compartments based on a
generalised linear model by using the DEP implementation of limma and added p-value correction with

the BH approach.

3.3 Characterisation of iMN and analysis of iMN with FUS mutantions

Experiments for generation of iMN derived data (3.3.1-3) were performed by Katarzyna Ludwik (wild type
iMN) and Samantha Mendonsa (FUS mutant iMN) with help of Tommaso Mari for mass spectrometry

processing and anaylsis (3.3.5).

3.3.1 Generation of hiPSC NIL lines

Human iPSC lines were derived from patient fibroblasts by the MDC stem cell score (Dr. Diecke) or
Applied StemCell, Inc. (USA, California). Fibroblasts originated from patients with either no known
ALS background (wild type (WT)); a FUS P525L mutation, but no diagnosed ALS; or a FUS R244RR
mutation and ALS disease. For each of the hiPSC lines carrying FUS mutations an isogenic control
line with a corrected FUS gene was generated using the CRISPR/Cas9 system by Axol Bioscience Ltd
(UK). An expression cassette for doxycycline induction of NIL (NGN2, ISL1, LHX3) factors, designed by
Fernandopulle et al. (2018) (Addgene plasmid #105841), was stably inserted into the CLYBL locus using
TALEN mediated insertion (TALEN’s from Addgene plasmids #62197 and #62196).

3.3.2 Cell culture and differentiation of hiPSC

For general cell culture hiPSC lines were maintained in E8 media. Before the start of differentiation of

hiPSC into iMN, at day 0, the cells were passaged with Accutase and plated on Geltrex coated dishes
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in E8 media with Rock inhibitor. At the start of differentiation, day 1, cells were changed to induction
media (IM), which includes doxycycline. At day 3, cells were replated into IM supplemented with FuDR
onto Geltrex coated 6-well dishes for total cell material or filter membrane inserts for separation of
compartments. From day 4 on differentiating cells were maintained in motor neuron media (MM) with
supplements. Following that media was partially exchanged every 2-3 days, after day 9 MM without

B27 and N2 supplements was used.

E8 media:
DMEM Nutirent Mix F12 (500ml, Thermo Fischer)
Sodium Bicarbonate Sol (3.6ml, Thermo Fischer)

Stem cell supplements (provided by MDC stem cell core facility)

Induction media (IM): Motor neuron media (MM):
DMEM/F12 w/ HEPES (Thermo Fischer) Neurobasal medium (Thermo Fischer)
N2 supplement (1:100, Thermo Fischer) B27 supplement (1:50, Thermo Fischer)
Non-Essential Amino Acids (1:100, Sigma) N2 supplement (1:100, Thermo Fischer)
Glutamax (1:100, Thermo Fischer) Non-Essential Amino Acids (1:100, Sigma)
ROCK:i (10 uM) (1:1000, Selleck Chem) Glutamax (1:100, Thermo Fischer)
Doxycycline (2 pg/ml) 1:1500 Laminin (1 pg/ml) (1:1000, Sigma Aldrich)
Compound E (0.1 uM) 1:10000 10ng/ml each BDNF, CNTF, GDNF

3.3.3 Generation of iMN sequencing libraries and proteomics samples

Throughout the differentiation of WT iMN samples from total cells were collected on days 1, 2, 4, 7, 14, and
21. RNA samples were collected in Trizol and processed according to manufacturers recommendations
and protein samples were collected in 8M UREA, 0.1M Tris-HCI (pH?7.5) buffer. For total cell samples
of FUS mutant iMN and compartment separation of all lines samples were collected at day 21 of the
differentiation. Separation of neurite and soma compartments was performed in the same manner as
described above for PCN, only that two membrane filters were combined for a single neurite sample.
For generation of RNA sequencing libraries 100ng of total RNA from total cells, neurite or soma
compartment with added ERCC RNA spike-in mix (Ambion) were used as input for Truseq stranded
mRNA library prep kit (Illumina 20020594). All libraries were prepared in triplicate and sequenced on
an [llumina NextSeq 500 machine with single-end 151 single end read cycles.

For mass spectrometry triplicate samples were processed for in-solution protein digestion (Mertins
et al.,, 2018). Then digests were acidified and centrifuged to remove the precipitated urea, before the
resulting peptides were de-salted via stop-and-go extraction (Rappsilber et al., 2007). Finally, samples

were loaded on acetonitrile and formic acid activated C18 material (3M Empore) and washed twice
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with trifluoroacetic acid and formic acid before elution. For mass spectrometry approximately 1pg of
peptides per sample was online-separated on an EASY-nLC 1200 (Thermo Fisher Scientific) and acquired

on a Q-Exactive HFx (Thermo Fisher Scientific).

3.3.4 RNA-Seq analysis for iMN

I processed the RNA-Seq data from all iMN samples with PiGx as described above (3.1.3), except that
I included the codon optimised LHX3 sequence of the NIL cassette in the transcriptome annotation
for analysis of total cell samples from the differentiation time course. Also, I used the transcriptome
quantification output of salmon (Patro et al., 2017) for all downstream analysis.

For data from the WT differentiation I removed one of three replicates each from the days 2, 4 and 21 due
to low quality and similarity to the remaining replicates. Furthermore, I only retained genes detected
with a TPM value of at least 1 in 2 or more replicates for analysis and visualisation. I calculated the
compartment enrichment between neurites and soma using the DESeq2 (Love et al., 2014) implementation
within the PiGx environment and again filtered genes with the same criteria.

For analysis of the iMN with mutated or corrected FUS genes I used tximport (Soneson et al., 2015) and
DEseq2 (Love et al., 2014) to perform differential expression analysis between individual compartments
of FUS mutant lines and their respective isogenic controls for all comparisons in parallel to benefit from
normalisation across a multitude of samples. This analysis also included mutant and control samples
from a third patient, which was excluded from the final results because chromosomal aberrations were

detected in one of these hiPSC lines.

3.3.5 Mass spectrometry analysis for iMN

All raw mass spectrometry data was processed with MaxQuant (Tyanova et al., 2016) version 1.6.3.4
using the MaxLFQ quantification method (Cox et al., 2014). Proteins were identified from the human
uniprot databases (Jan 2020) with a 5% FDR cutoff and hits from the reverse database, only identified by
modified site or with less than two peptides were removed. The protein data was the filtered so that only
proteins detected either in all replicates of one time point for the WT differentiation data or in at least
two out of three replicates for other experiments were retained. Missing values were the imputed by
randomly selecting replacement values from a normal distribution with 30% the standard deviation of
known values and shifted downwards by 1.8 standard deviation units (Hein et al., 2015). Imputation and
normalisation of LFQ values was performed across timepoints for WT differentiation data and within
compartments (neurite, soma and total) for all other experiments.

For analysis of neurite/soma protein enrichment in the WT line a t-test was used to evaluate whether

differences between (log scale) LFQ values were significant. For differential expression between FUS
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mutant lines and isogenic controls I used the limma R package (Ritchie et al., 2015) to fit a linear model
and obtain log2 fold change and p-values for each pair of patient line with control and compartment.
Finally, I mapped uniprot identifiers to Ensembl gene ids and resolved many-to-one mapping conflicts
by only taking values from the protein detected in the most samples using highest overall detection as a

tie breaker.

3.4 Celltype deconvolution for iMN

Raw fastq files from sequencing libraries of individual neurons with accompanying action potential
(AP) type classification based on electrophysiology measurements were provided by Cedric Bardy et al.
(2016). I processed these files using PiGx and imported raw counts from salmon using tximport. Then I
used the Seurat R package (Stuart et al., 2019) to process (CreateSeuratObject, parameters: min.cells=3)
and normalise counts. For this I only used cells with AP type 1-5 and grouped the types 1-3 together.
Finally I determined differentially expressed marker genes between AP type groups (1-2-3, 4 and 5)
using the FindAllIMarkers function (parameters: logfc.threshold=0.25 and min.pct=0.25).

I used all genes identified this way as signature markers for celltype deconvolution of total cell time
points day 4 to day 21 with CIBERSORTx (Non-default signature matrix settings: 25-300 barcode genes;
single cell min. expression 1, replicates 0 and sampling 0; 500 permutations used for statistical analysis

in cell fraction imputation) (Newman et al., 2019).

3.4.1 Functional enrichment analysis

I performed gene ontology (GO) term enrichment analysis of functional terms among genes with
significant enrichment in specific compartments or differential expression between FUS mutant iMN
lines and controls using the gprofiler2 R package (Kolberg et al., 2020) with default settings except for
setting a custom background of all detected genes.
For analysis of the WT line iMN I used proteins and transcripts enriched in either neurite or soma
compartment (adj. p-value <0.05 and log2fc >1 or <-1) for GO term analysis (using the gene ontology
release from 2020-06). I filtered the terms enriched in the groups of localised genes for overlap between
the analysis of both localised proteins and transcripts, a maximum of 1000 annotated genes and at least
25 genes overlapping with the localised groups before applying an additional filter based on graph of
GO term relationships to focus remove enriched but functionally related terms (see below).

In case of the FUS mutant lines I performed GO analysis for all proteins differentially expressed
in any compartment of either FUS mutation separately for up and down regulated proteins (using the
gene ontology release from 2022-01). Then I filtered for enriched GO terms with at least 2 differentially

expressed proteins and further with the graph based approach (see below), before taking the 5 most
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significant terms from each GO domain, direction (up/down), compartment and FUS mutation line.
For filtering based on the graph structure of the GO terms I relied on the parent and daughter
relationships of only the enriched terms from a given analysis (including direction, compartment and
mutation line): within one analysis from all enriched terms I selected only those terms that had either
no direct daughter terms enriched or no direct parental terms enriched. This approach removes terms

which are neither start nor end nodes in a connected subtree of functionally enriched terms.

3.4.2 Analysis of genes disrupted by FUS mutations

Based on the differential expression analysis between FUS mutant iMN lines and their isogenic controls
for both RNA and protein data (see above), I assigned a differential expression score for each gene.
This score represents the sum of instances in which there is significant (adj. p-value <0.05) differential
expression with a log2fc >1.5 counted as one (1) score point and log2fc >1 (but =<1.5) counted one half
(%) score points. Points from differential expression in all compartments, data modalities (RNA and

protein) and FUS mutations (P525L and R244RR) were combined together.

To compare the log2 fold change values of transcripts with different features, I first assigned
different sequence based and functional annotation to genes: for direct binding by either wild type
or mutant (cytoplasmic localised R521G or R521H) FUS I relied on CLIP hits as determined by Hoell
et al. (2011). The presence of a G-quadruplex motif I determined by searching for the presence of
sequence motif GGGNy_¢GGGN(_¢GGGN(_¢GGG (Subramanian et al., 2011) in the most expressed
transcript (based on salmon quantification) of each gene. I obtained information about the presence
of a signal peptide in a given gene from the signalp database (Armenteros et al., 2019) accessible by
biomaRt (Durinck et al., 2009). For annotation of final localisation of gene products I relied on GO
annotation (GO 2022/01 release mapped to ensembl gene ids by uniprot identifiers): plasma membrane
(PM) components (combined from the GO terms: integral component of plasma membrane, GO:0005887;
intrinsic component of plasma membrane, GO:0031226; anchored component of plasma membrane,
G0:0046658; extrinsic component of plasma membrane, GO:0019897; and spanning component of plasma
membrane, GO:0044214), extracellular (GO:0005576), and extracellular matrix (ECM, GO:0031012). To
test for an effect of these gene features on differential expression between FUS mutant iMN and controls
within one compartment, I used t-tests to compare the log2fc values of genes with a certain feature to
those without the feature. For an overlap of the G-quadruplex motif with GO annotation features or for
the ECM sub-group of extracellular proteins I compared against all genes that had both features (all
ECM annotated genes were also annotated as extracellular) and compared them against the broader

group of GO annotated genes. Finally, I adjusted all calculated p-values using the BH approach.
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4 Results

The work I am presenting in my thesis is grouped into three parts: first, the comparison of different RNA-
Seq datasets to describe the composition of a core transcriptome present in neurites and to determine
transcripts commonly localised to neurites across different model systems. Second, the analysis of
the Nzip MPRA to uncover novel zipcode element candidates and identify their sequence identity and
potential modes of action. And finally, the characterisation of human motor neurons induced from
expression of transcription factors NGN2, ISL1 and LHX3 as well as the analysis of transcriptome
and proteome of such iMN carrying ALS associated FUS mutations to identify genes involved in the

molecular disease etiology.

4.1 Commonly neurite localized mRNAs
4.1.1 The core neurite transcriptome

The study of subcellular localization of mRNA in neurons is a wide research field with many different
contributors spanning both diverging motivations and approaches. While several previous works have
stated similarities among studies, no encompassing overview or comparison of the available data had been
performed until I addressed this issue in one of my previous works and provided a first comprehensive
resource including most published datasets available at that time (von Kiigelgen & Chekulaeva, 2020).
Observable trends, which individually have also been mentioned by previous studies, but generally apply
across all datasets include the common neurite localisation of mRNAs encoding ribosomal proteins,
cytoskeleton associated proteins and proteins with functions in mitochondria (Turner-Bridger et al.,
2020). Here I am presenting an analysis building on this work, which excludes microarray data, but
does include additional RNA-Seq datasets, especially one from mouse primary cortical neurons (PCN),
which was generated by colleagues and analysed by me (von Kiigelgen et al., 2021). This strand specific
RNA-Seq dataset had several genes with comparatively few but strand unspecific reads, indicating
weak background contamination with genomic DNA. Therefore, I filtered genes based on the ratios of
exon/intron and sense/antisense reads to remove those not distinguishable from contaminating noise

before further analysis (Figure S1).

Figure 1: Core neurite transcriptome of published RNA-Seq datasets.
(A) Table listing the datasets and studies included in analysis of a core neurite transcriptome. Different neuronal models,
compartments and species represented by each dataset are also listed. (B) Barplot showing the number of genes detected
(with TPM >1) in neurites in each dataset. Detected genes are grouped by the total number of datasets in which they were
detected as indicated by the hue of the bars. A dashed line separates datasets with high coverage from those that were
excluded from comparative analysis. A similar version of this analysis has been published in von Kiigelgen and Chekulaeva,
2020. (C,D) Principle component analysis of normalised and batch corrected (RUV-seq) expression values in neurite (C) and
soma (D) compartments from high coverage datasets. The neuronal cell type used in each dataset is indicated by color and
source of neuronal cells by shapes of the dots representing each dataset. The PCN data from von Kiigelgen et al., 2021 was
obtained by Sayaka Dantsuji and all other data is publicly available.
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The collection of RNA-Seq datasets from separated neuronal compartments, that I am comparing to
determine a core transcriptome generally present in the neurite compartment, encompasses 18 dataset
in total and includes: 6 from primary murine neurons (Briese et al., 2016; Middleton et al., 2019; Minis
et al.,, 2014; Rotem et al., 2017; Taliaferro et al., 2016; von Kiigelgen et al., 2021), 3 from hippocampal
tissue slices (rat or mouse) (Cajigas et al., 2012; Farris et al., 2019; Tushev et al., 2018), 1 from sorted
growth cones from mouse brain (Poulopoulos et al., 2019), 6 from in vitro murine or human stem cell
derived neurons (Ciolli Mattioli et al., 2019; Maciel et al., 2018; Nijssen et al., 2018; T6th et al., 2018;
Zappulo et al., 2017) and 2 from murine neuroblastoma lines (Taliaferro et al., 2016) (Figure 1A). The
number of transcripts detected in neuronal outgrowths (classified as either neurites, axons or neuropil
by the respective studies) ranges from around 1,000 in only a few datasets with comparatively low
detection limits to well over 10,000 or even 15,000 in most datasets. Furthermore, a large number of
transcripts (approximately 7500) is detected in at least three quarters of the datasets (12/18). This set of
transcripts outlines the size and complexity of the core neurite transcriptome generally present across
most datasets and also identifies the subset of RNA-Seq datasets with high enough coverage capture the
majority of this core neurite transcriptome to allow comparative and quantitative analysis (Figure 1A,

above dotted line).

As in my previous work (von Kiigelgen & Chekulaeva, 2020), I compared the expression signatures of
high coverage datasets using principle component analysis (PCA). However, the comparison presented
here utilises an integrative analysis with a combined differential expression model as well as a batch
correction approach to reduce the effects of noise within individual datasets. For batch correction I
identified and removed unwanted variation not associated with compartments using the RUVs approach
(Risso et al., 2014), so that differential expression analysis with DESeq2 can directly apply corrections
to values from all datasets. While no clear clustering of datasets by the neuronal cell types can be
observed in the PCA, there is preferential separation between datasets derived from pr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>