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Zusammenfassung

Zusammenfassung

Im Rahmen dieser Arbeit wurden neue mikroskopische Analysemethoden mit Einzelobjektaufldsung
und hohem Durchsatz entwickelt, welche von der zelluldren bis zur molekularen Ebene die Untersu-
chung von Biomembran-assoziierten Interaktionen erlauben. Derzeit gibt es eine Vielzahl von Methoden
zur Gewinnung quantitativer Informationen Gber zellulare und molekulare Reaktionen auf duRere Reize,
aber vielen von ihnen mangelt es entweder an hoher Empfindlichkeit oder an hohem Durchsatz. Die
Kombination dieser beiden Aspekte ist entscheidend fiir die Untersuchung der schwachen, aber oft
komplexen und multivalenten Wechselwirkungen, die an der Grenzflache biologischer Membranen auf-
treten. Dazu gehdren die Bindung von Krankheitserregern wie einigen Viren (z. B. Influenza- und Her-
pesviren, sowie SARS-CoV-2), die Transmembransignalwege wie ligandenbasierte Oligomerisierungs-
prozesse oder auch die Ubertragung auf Zellen wirkender mechanischer Kréfte in biochemische Sig-

nale.

Ziel dieser Arbeit war es, die Limitierungen der derzeitigen Methoden zu Uberwinden, indem in vier
verschiedenen Projekten neue Methoden mit einem noch nie dagewesenen Grad an Automatisierung,
Sensitivitat und Parallelisierung entwickelt und etabliert wurden. Alle Methoden basieren auf der Kom-
bination von optischer (Video-)Mikroskopie, gefolgt von einer hoch verfeinerten Datenanalyse zur Un-
tersuchung einzelner zellularer und molekularer Objekte. Dies erlaubt die Erkennung seltener Ereig-
nisse und die ldentifizierung und Quantifizierung zellularer und molekularer Populationen, die bei An-
satzen mit Ensemble-Mittelung verborgen bleiben wirden.

Auf zellularer Ebene wurden zwei Methoden fir die Segmentierung von Einzelzellen und die zellweise
Auslesung von Fluoreszenzreportersystemen entwickelt, hauptsachlich zur Untersuchung der Bindung
und Hemmung der Bindung von Viren an Wirtszellen. Die Methode des ersten Projekts zeichnet sich
durch einen hohen Automatisierungsgrad aus und bietet die Moglichkeit, automatisch geschatzte Ana-
lyseparameter (Hintergrundkorrektur, Segmentierungsempfindlichkeit und Fluoreszenz-Cutoff) zu ver-
wenden, um den manuellen Aufwand fiir die Analyse von zellbasierten Infektionsassays zu verringern.
Diese Methode wurde fiir das Screening der Hemmkraft auf der Grundlage des ICso-Wertes verschie-
dener Virusbindungsinhibitoren verwendet. Durch die im zweiten Projekt verwendete Methode wurde
die Empfindlichkeit der ersten Methode um eine Schatzung der Anzahl der an die Zellen gebundenen
fluoreszierenden Nanopartikel, erweitert. Die Bildauflosung wurde so gewahlt, dass viele Zellen parallel
abgebildet werden kénnen, was einerseits die Identifizierung der Heterogenitat der Partikelbindung von
Zelle zu Zelle ermbglicht, andererseits aber auch die fluoreszierenden Nanopartikel als unscharfe In-
tensitatsflecken sichtbar werden lasst. Wahrend es dann nicht mdéglich ist, die einzelnen Nanopartikel
bei solchen Auflésungen aufzulésen, wurde ein neuer Ansatz entwickelt und durch Simulationen vali-
diert, um die Anzahl der fluoreszierenden Nanopartikel unterhalb der Auflésungsgrenze mit einer Ge-
nauigkeit von etwa 80 bis 100 % zu schatzen. Im dritten Projekt wurde ein Ansatz fir die Analyse und
Verfeinerung von zweidimensionalen Einzelpartikelverfolgungsexperimenten vorgestellt, der sich auf
die Qualitdtsbewertung der Trajektorien konzentriert, indem er einen Leitfaden fur die Auswahl eines
geeigneten maximalen Verkniupfungsabstands liefert. Dieser Tracking-Ansatz wurde im vierten Projekt

verwendet, um die mechanischen Reaktionen kleiner Molekiile auf hydrodynamische Scherkrafte mit
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einer Auflésung im sub-nm-Bereich zu quantifizieren. Hier ermdglichte die Kombination von TIRF-Mik-
roskopie, Mikrofluidik und Einzelpartikelverfolgung die Entwicklung einer neuen Einzelmolekul-Kraft-
spektroskopiemethode mit hoher Auflésung und Parallelisierungsmoglichkeiten. Diese Methode wurde
durch die Quantifizierung der mechanischen Reaktion wohldefinierter PEG-Linker validiert und anschlie-
Rend zur Untersuchung der Energiebarrieren der Dissoziation multivalenter Biotin-NeutrAvidin-Kom-

plexe unter niedrigen (~ 1,5 bis 12 pN) statischen Kraften verwendet.

Zusammenfassend Iasst sich sagen, dass diese Arbeit das Repertoire an geeigneten Methoden fir die
Hochdurchsatzuntersuchung der Eigenschaften und Wechselwirkungen von Zellen, Nanopartikeln und
Molekulen mit Einzelobjektaufldsung erweitert. In Zukunft werden die hier entwickelten Methoden zum
Screening nach weiteren Virusbindungsinhibitoren, zur Untersuchung der Oligomerisierung von Memb-
ranrezeptoren auf Zellen und Modellmembranen und zur Quantifizierung der mechanischen Reaktion
von krafttragenden Proteinen und Liganden-Rezeptor-Komplexen unter niedrigen Kraftbedingungen

verwendet werden.



Abstract

Abstract

This work is focused on the development of new microscopy-based analysis methods with single-entity
resolution and high-throughput capabilities from the cellular to the molecular level to study biomem-
brane-associated interactions. Currently, there is a variety of methods available for obtaining quantita-
tive information on cellular and molecular responses to external stimuli, but many of them lack either
high sensitivity or high throughput. Yet, the combination of both aspects is critical for studying the weak
but often complex and multivalent interactions at the interface of biological membranes. These interac-
tions include binding of pathogens such as some viruses (e.g., influenza A virus, herpes simplex virus,
and SARS-CoV-2), transmembrane signaling such as ligand-based oligomerization processes, and

transduction of mechanical forces acting on cells.

The goal of this work was to overcome the shortcomings of current methods by developing and estab-
lishing new methods with unprecedented levels of automation, sensitivity, and parallelization. All meth-
ods are based on the combination of optical (video) microscopy followed by highly refined data analysis
to study single cellular and molecular events, allowing the detection of rare events and the identification
and quantification of cellular and molecular populations that would remain hidden in ensemble-averag-

ing approaches.

This work comprises four different projects. At the cellular level, two methods have been developed for
single-cell segmentation and cell-by-cell readout of fluorescence reporter systems, mainly to study bind-
ing and inhibition of binding of viruses to host cells. The method developed in the first project features a
high degree of automation and automatic estimation of sufficient analysis parameters (background
threshold, segmentation sensitivity, and fluorescence cutoff) to reduce the manual effort required for the
analysis of cell-based infection assays. This method has been used for inhibition potency screening
based on the ICso value of various virus binding inhibitors. With the method used in the second project,
the sensitivity of the first method is extended by providing an estimate of the number of fluorescent
nanoparticles bound to the cells. The image resolution was chosen to allow many cells to be imaged in
parallel. This allowed for the quantification of cell-to-cell heterogeneity of particle binding, at the expense
of resolution of the individual fluorescent nanoparticles. To account for this, a new approach was devel-
oped and validated by simulations to estimate the number of fluorescent nanoparticles below the dif-
fraction limit with an accuracy of about 80 to 100 %. In the third project, an approach for the analysis
and refinement of two-dimensional single-particle tracking experiments was presented. It focused on
the quality assessment of the derived tracks by providing a guide for the selection of an appropriate
maximal linking distance. This tracking approach was used in the fourth project to quantify small mole-
cule responses to hydrodynamic shear forces with sub-nm resolution. Here, the combination of TIRF
microscopy, microfluidics, and single particle tracking enabled the development of a new single mole-
cule force spectroscopy method with high resolution and parallelization capabilities. This method was
validated by quantifying the mechanical response of well-defined PEG linkers and subsequently used
to study the energy barriers of dissociation of multivalent biotin-NeutrAvidin complexes under low (~ 1.5

to 12 pN) static forces.
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In summary, with this work, the repertoire of appropriate methods for high-throughput investigation of
the properties and interactions of cells, nanoparticles, and molecules at single resolution is expanded.
In the future, the methods developed here will be used to screen for additional virus binding inhibitors,
to study the oligomerization of membrane receptors on cells and model membranes, and to quantify the
mechanical response of force-bearing proteins and ligand-receptor complexes under low force condi-

tions.
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1. Introduction

Many biological processes and interactions involve the cell membrane, as it is the barrier between the
interior of a cell (a living system) and its environment . These systems are constantly interacting with
each other, for example, in the approach and binding to the membrane of pathogens attempting to enter

the cell 2B or in the sensing of external forces by the cell 51171 during migration and proliferation.

Optical microscopy is a very versatile and widely used method for obtaining data and studying such
processes. It allows imaging of e.g., tissue, single cells, and even nanoparticles or single labeled mole-
cules. Using super-resolution microscopy methods 1, resolutions below the diffraction limit are
achieved. However, systematic quantification of these image datasets can be quite challenging, as the
size of the imaged targets can span many orders of magnitude . Depending on the target, the data
analysis steps to extract reliable information from the images can vary dramatically. For example, when
quantifying a dense two-dimensional cellular monolayer, segmenting cells from the background and
from each other is the most important analysis step to determine a cellular response to external stimuli
with sufficient accuracy. Dense fluorescent nanoparticles (~ 1-100 nm in size ['%), on the other hand,
cannot be segmented because the point-scattering function of their emitted light (~ 200 - 400 nm ['!])
most likely represents them as diffraction-limited intensity spots when imaged with optical microscopy.
An estimation of the number of such particles may therefore differ drastically from the actual number of
particles present "2, When analyzing single molecules that are even smaller than most nanoparticles
(e.g., barrel-shaped green fluorescent protein (GFP) has a size of about 4x2 nm ['3]), they cannot be
structurally resolved by diffraction-limited optical microscopy, but only through interactions with their
environment or attached probes (e.g., changes in intensity or motion). Subsequent data analysis must
therefore be performed very carefully to obtain useful information. Molecular responses such as the
stretching or unfolding of polymers and proteins due to applied forces are even smaller and may extend
to the sub-nm range with extremely low signal-to-noise ratios. This requires an analysis of such systems
in a high-throughput manner to obtain statistically meaningful data, making systematic analysis of such
image-based experiments quite complicated and time-consuming. As a consequence, the development
of new, fast, and accurate high-throughput analysis methods from the cellular to the molecular scale is

essential.

Currently, there is a variety of methods available for segmentation of cells ['4l, quantification of fluores-
cent nanoparticles [, and application of forces and readout of molecular responses by single-molecule
force spectroscopy ['¢l. However, each of these approaches is currently limited, e.g., by the complexity
of selecting appropriate analysis parameters (such as for cell segmentation), sensitivity, which is mainly
constrained by physical limitations such as resolution limits (e.g., for fluorescent nanoparticles) or ther-
mal fluctuations ['"! (e.g., for single-molecule measurements), validation of the accuracy of the results

obtained, and a lack of high-throughput capabilities in general.

In this work, the aforementioned problems are addressed by establishing new multiscale single-analysis
methods combining optical (video) microscopy, refined image data analysis, result validation by simula-

tions, and (in the case of single-molecule force spectroscopy) microfluidics. The methods established
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here are tested on well-studied model systems to demonstrate their precision and potential for high-
throughput screening. Through this validation it was shown that they are excellent tools for further

biomembrane-associated interaction studies.

2. Theoretical background

In the following chapter the basics and details necessary to understand the scope of this work and

assess its relevance in comparison to the current state of the art are described.

First, the biological processes are highlighted, for which new sensitive and high-throughput methods
must be developed (2.1 Biomembrane associated interactions). It is then explained in which systems
(2.2 Native, hybrid, and artificial systems) and how the data of this work was generated (2.3 Optical
microscopy methods), analyzed (2.4 Multiscale image quantification), and why a single-entity resolution
was necessary for its interpretation (2.5 Ensemble versus single-entity analysis). Afterwards, the current
state of the art of single-molecule force measurement methods and their limitations will be presented
(2.6 Single-molecule force measurements) and how these limitations can be overcome by the estab-

lishment of a new microfluidics-based approach (2.7 Microfluidic shear force applications).

2.1 Biomembrane associated interactions

The biological membrane of cells consists of a complex mixture of different lipids, proteins, and carbo-
hydrates ['8 191201 Al components interact with each other 211221 and allow both a separation ['! from,
and communication with the cellular environment 23, Relevant interactions at these biological interfaces
include host-agent interactions, such as infections with viruses 1314 and bacteria ¥ as well as signaling
across the cell membrane such as seen in mechanosensing 161”1 and BMP-signaling 2°1[261[271128] \hich

will be investigated using the methods developed in this work.

2.1.1 Pathogen and host cell interactions

For a pathogen like a virus to infect a host cell, a binding to its target needs to be established (Figure
1). For many viruses, this first step in the infection process is often mediated by a transient binding to
heparan sulfate protruding from the cell membrane 21 3% This brings the virus in spatial vicinity to its
specific cellular receptor e.g., the angiotensin converting enzyme 2 (ACE2) in case of SARS-CoV-2 Bl
This is a multivalent process which needs many parallel binding events 2 for successful internalization.
However, this infection process can be prevented by the usage of virus infection inhibitors like heparin
B3I 341138] which have a higher binding affinity to the virus surface proteins than those proteins have to
their respective cellular receptors 6. The development of such virus inhibitors is of great interest, which
is highlighted by the current SARS-CoV-2 pandemic 7], and thus developments and improvements in
methods to screen the potency of virus inhibitors like in 8 are always in need and therefore a major
objective of this work (see 4.1 A fast open-source Fiji-macro to quantify virus infection and transfection
on single-cell level by fluorescence microscopy and 4.2 Bridging cellular- and nanoscale: Accurate quan-

tification of clustered nanoparticles on monolayered confocal imaged cells).



2.1 Biomembrane associated interactions
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Figure 1: Schematic overview of virus, host cell, and inhibitor interactions. The free viruses (1) first bind to heparan
sulfate (2) near the cell membrane. They then bind their specific cellular receptors (3, e.g., ACE2 B, SA R HVEM
Bl). This induces the cell entry (4) which will then lead to replication inside the cell (not shown). Specific virus
inhibitors (5) have higher affinity to the virus proteins than the virus proteins have to their cellular receptors and thus
inhibit binding and entry of the virus. Interactions are visualized in glowing red.

A similar pathogen-related biomembrane interaction process is the multivalent monosialotetrahexosyl-
ganglioside (GM1) binding of the exotoxin (cholera toxin) secreted by the bacterium Vibrio cholerae.
Cholera toxin consists of two subunits (A and B), where the pentameric subunit B is responsible for
binding to the cell membrane by acquisition of GM1 (Figure 2) on intestinal cells .. Subunit A mediates
a toxic effect due to the formation of membrane pores by conformational changes %, resulting in watery

diarrhea and, if untreated, likely death of patients infected with V. cholerae.
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Figure 2: Interactions of cholera toxin with the cell membrane. The free cholera toxin (1) can multivalently bind GM1
(2) at the cell surface. As the cholera toxins subunit B is a pentamer, it can acquire more GM1 (3), to enhance the
binding to the cell surface. The acquisition of several GM1 induces a lipid raft formation (4) which induces a mem-
brane curvature (5).

However, the GM1 acquisition of the nontoxic subunit B also leads to a phase separation in lipid mem-
branes, stabilizing ordered membrane domains (lipid raft formation). This induces a membrane curva-
ture 1, which makes cholera toxin subunit B (CTxB) an interesting biophysical tool for the investigation
of membrane structure and dynamics, as well as the assembly of nanodomains 2 and was therefore

used as a model system in this work (see 7.1.1 Multivalent GM1 binding of choleratoxin subunit B).



2.1 Biomembrane associated interactions

2.1.2 Transmembrane signaling

In addition to the study of pathogen-host interactions (as described above), the diverse spectrum of
biomembrane-associated interactions related to transmembrane signaling is also of great scientific im-
portance. This is true for basic research, e.g., in the field of mechanobiology [“3 441431 as well as for
investigation (and possible treatment) of diseases caused by erroneous cellular signaling, such as fibro-

dysplasia ossificans progressive (FOP) 181,

The bone morphogenetic protein (BMP) signaling pathway (Figure 3) is such a well-studied and biolog-
ically highly relevant transmembrane signaling cascade. Extracellular release of BMPs leads to an oli-
gomerization of transmembrane type | and type Il BMP-receptors, resulting in the regulation of gene
expression as the signal is led down to the nucleus #71. The vast amount BMP-signaling related protein-
families (i.e., receptors, ligands, coreceptors, and corepressors) leads to complex regulation patterns
regarding embryonic development and tissue differentiation 8], as well as cardiovascular “°, gastroin-
testinal ®%, and neurological ®"! diseases, just to name a few. As BMP signaling depends on receptor-
ligand interactions (leading to oligomerization), quantification of these membrane-associated mobility
properties (such as in®2, e.g., by single-particle tracking (SPT)53) allows for detailed investigation and
thus understanding of this complex molecular interaction network (see 4.3 Analysis and refinement of

2D single-particle tracking experiments and 7.1.2 Hybrid lipid bilayer formation).
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Figure 3: Overview of the BMP signaling pathway. For cell signaling, BMPs can be released (1) which bind their
corresponding type Il and type | receptors (2). This leads to an oligomerization of the BMPRs (3) which allows for
a phosphorylation of the type | receptor (4). This then leads to a phosphorylation of R-SMADs (5), starting an
intracellular signaling cascade.

Another interesting example of transmembrane signaling is the talin-vinculin mediated mechanotrans-
duction of cellular force sensing at the extracellular matrix interface (Figure 4). Here, cells are attached
to the extracellular matrix by focal adhesion, containing different proteins (like fibronectin) which are
attached via the cell membrane by integrins to talin and the cytoskeleton (i.e., actin filaments) 4. A
tensile force acting on the actin filaments (e.g., by cell migration) is transmitted to talin, whose unfolding

reveals vinculin binding sites 581, The binding of vinculin then stabilizes the unfolded conformation of
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talin 71, leading to a signaling cascade that enables the cell to sense mechanical forces by converting
them into biochemical signals 58 59160 The force-dependent unfolding of talin has been intensively
studied in the past 615611571 1611[621163] However, it is known that the R3-domain of talin unfolds at forces
below 5 pN and intermediate unfolding states %4 are expected to occur at even lower forces. Methods
that allow for the application of forces in such low to sub-pN range in high-throughput manner have yet
to be developed and thus are one of the main scopes of this work (see 4.4 Microfluidics-based force
spectroscopy enables to perform high-throughput force measurements with sub-nm resolution and sub-

pN sensitivity).
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Figure 4: Talin-related interactions for cellular force sensing. The cell is connected to a solid surface by fibronectin,
integrin, folded talin, and actin filaments (1). A tensile force acting on the actin filaments (2, e.g., by cell locomotion)
can then lead to a force-dependent unfolding of talin (3) revealing vinculin binding sites. The vinculin can then bind
to these sites (4) starting an intracellular signaling cascade.

2.2 Native, hybrid, and artificial systems

To study the biomembrane associated interactions mentioned above, different possible systems with
varying complexity can be used and are described in this chapter (Figure 5). Performing cell-based
assays (like virus infection assays %) ensures that the generated data reflects the real in vivo or ap-
proximated in vitro processes, as the interactions take place in their native cellular environment (Figure
5a). However, probing the intrinsic molecular characteristics of specific targets (like transmembrane
receptors P2)) in the native cell membrane can be challenging, due to the vast amount of native cell
membrane components interacting with each other, sometimes interfering with the target 611671, To re-
duce the complexity of the system (yet keeping some native environmental conditions), it is possible to
transfer molecular targets (like lipids or receptors) into a hybrid system, as demonstrated in 8! and also
as part of this thesis (see 7.1.2 Hybrid lipid bilayer formation). Here, native cell membrane vesicles were
prepared and fused with synthetic lipid vesicles on a glass surface, building a simplified hybrid model
membrane (Figure 5b) containing native membrane material *¥117%, Synthetic vesicles can also be used
without any native material, instead incorporating purified proteins, lipids, or other receptors, providing
a synthetic membrane model (Figure 5c, top) to study interactions like by virus binding assays[”"! or the
multivalent binding of CTxB to GM1 "2 (see 7.1.1 Multivalent GM1 binding of choleratoxin subunit B).
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a native: b hybrid: C artificial:
cell membrane mixed lipid membrane glass functionalization
Il native membrane synthetic receptor
carbohydrate WC/,..@:}_.D vesicle ‘¥§§icle : : '@ = : @
S, o4z || Popcsie [ i
PEG ) )
glass

Figure 5: Comparison of native, hybrid, and artificial systems for probing membrane associated interactions. Mo-
lecular targets like transmembrane receptors can be labeled and investigated in their native environments, i.e. the
cell membrane (a). Here they show their natural interactions but the complexity of diverse membrane components
(e.g., other proteins, lipid mixture, carbohydrates, cytoskeleton, etc.) can complicate the analysis of the target. To
simplify the analysis of the target, it can be integrated into a hybrid system (b; by fusing native membrane vesicles
(NMVs) with synthetic lipid vesicles on glass slides). This reduces the amount of other membrane components
interacting with the target. The simplest system to study membrane interactions is an artificial glass functionalization
(c). This can be for example a supported lipid bilayer containing synthetic lipids like phosphatidylcholine (POPC),
polyethylene glycol (PEG), and a specific receptor like GM1 (top) or a glass coating of poly-L-lysine (PLL) with
attached receptors allowing for binding studies of their ligands (bottom).

The simplest artificial system to study protein interactions and properties is glass functionalization with-
out any lipid material (Figure 5c, bottom). Here the target receptors are immobilized on an interface
(e.g., by PLL["3), allowing for binding studies with their ligands "4 or as a setup for force-spectroscopy
methods like AFM 81 or the surface linking in microfluidic channels (see 4.4 Microfluidics-based force
spectroscopy enables to perform high-throughput force measurements with sub-nm resolution and sub-

pN sensitivity).

2.3 Optical microscopy methods

For the methods developed in this work, optical (video) microscopy was chosen for data generation
because it is a widely used and versatile method for investigation and data collection in various fields of
life sciences [, It allows for studying various qualitative and quantitative biological processes in vitro,
and is also the basis for many laboratory assays, from cellular to molecular scale "®l. The three fluores-
cence-based optical microscopy techniques and their properties used in this work are thus described in

the following.

2.3.1 Widefield fluorescence microscopy

Fluorescence is a process in which a fluorophore absorbs light of a specific wavelength and then emits
light of a longer wavelength "], In widefield fluorescence microscopy (WFM), the entire sample volume
is illuminated by a light source (often a light emitting diode (LED)), resulting in fluorescence emission
from the target (Figure 6a). The emitted light of longer wavelength is then captured by a digital camera
(sometimes also a charge-coupled device (CCD)), allowing for rapid imaging of a relatively large field of
view (Figure 6b). Sine WFM allows for fast imaging of relatively large samples, it has high-throughput
imaging capabilities needed for rapid screening of various samples, such as image-based screening for
viral infection inhibitors 38! (see 4.1 A fast open-source Fiji-macro to quantify virus infection and trans-

fection on single-cell level by fluorescence microscopy).
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Figure 6: In widefield fluorescence microscopy a relatively large field of view (e.g., several hundred micrometers)
can be imaged by a digital camera (a), which allows for a fast imaging of many fluorescent targets in parallel (b,
i.e., monolayered green fluorescent protein (GFP)-expressing cells). While this is a microscopy method with high-
throughput potential, it gives no information about the z-position of fluorescent targets.

Compared to confocal laser scanning microscopy (CLSM), WFM does not provide information about z-
position of the fluorescence probe "8 7 and the actual resolution is reduced by background fluores-
cence. Since the entire sample is illuminated, areas above and below the focal plane will also be de-
tected by the camera. Therefore, the emission wavelengths of a fluorophore may be obscured by this

background fluorescence, resulting in a decreased signal-to-noise ratio and achievable resolution 78179,

2.3.2 Confocal laser scanning microscopy

In a confocal laser scanning microscope, the sample is illuminated by a laser beam, and the emitted
fluorescence light is focused through a pinhole and sensed by a photon detector such as photoelectron
multiplier tubes (PMTs), avalanche photodetectors (APDs), or the so-called hybrid detectors 1791, This
allows for a user-selected, precise illumination and imaging of specific sample regions, without illumi-
nating the whole sample volume (Figure 7a). CLSM offers many advantages over conventional wide-
field microscopy for cell imaging, providing depth-of-field control and the ability to create serial optical
sections of thick samples. This eliminates much of the out-of-focus or background fluorescence, result-
ing in higher resolution %7 which makes CLSM the method of choice in many life science fields. The
higher image quality comes with the drawback that the imaging process also needs notably more time,
limiting its high-throughput capabilities. However, as CLMS can resolve the position of a fluorescent
target in the sample (Figure 7b), it allows the study of position-dependent processes, such as the differ-
entiation of binding or uptake of nanoparticles (e.g., viruses) on cells ! (see 4.2 Bridging cellular- and

nanoscale: Accurate quantification of clustered nanoparticles on monolayered confocal imaged cells).
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Figure 7: Compared to widefield microscopy, confocal laser scanning microscopy requires significantly more time
for imaging because the image is generated by a photon detector through a pinhole (a). However, this enables
precise scanning of the sample also in the z-direction, e.g., to determine whether fluorescent probes accumulate
intracellularly or on the cell surface (b).

2.3.3 Total internal reflection fluorescence microscopy

Total internal reflection fluorescence (TIRF) microscopy is a highly specialized method of optical micros-
copy as it combines the advantages of WFM and CLSM. In most cases the sample is illuminated with a
laser (sometimes also a lamp or a LED) and the images are captured by a digital camera, which enables
rapid image acquisition. However, since the light beam is directed at the sample surface at a specific
angle, resulting in total internal reflection and the development of an evanescent wave, only targets up
to about 150 nm above the interface are illuminated (Figure 8a) 82183184 The resulting captured image
will thus only show fluorescent targets near the interface (Figure 8b). This ability to resolve the distance
to the interface on nanometer scale, while keeping fast imaging capabilities, makes TIRF microscopy a
valuable tool for the investigation of fast and delicate molecular interactions at interfaces, like tracking
of mobile membrane components %, transient virus binding events [, and to track force-dependent
molecular responses (see 4.4 Microfluidics-based force spectroscopy enables to perform high-through-
put force measurements with sub-nm resolution and sub-pN sensitivity). This versatile imaging method
has already been used in microfluidic setups to study the flow dependent forces acting on nanoparticles
881 in order to characterize DNA-bearing polymer particles 7], and to study in situ precipitation 8. It is

thus one of the main imaging methods used in this work.

12



2.4 Multiscale image quantification

evanescent

~ 150 nm Wave

cover glass

cropped beam paths

Figure 8: In TIRF microscopy, the illumination beam is led to the sample in a specific angle, which leads to a total
reflection and the formation of an evanescent wave, exciting only probes up to 150 nanometers near the interface
(a). As the image is mostly created with a digital camera, it has a high-throughput potential to analyZe target
interactions near the sample interface (b).

2.4 Multiscale image quantification

After the generation of image data by optical (video) microscopy as described above, the next important
step is to derive quantitative information from this raw data 9. This is done by image analysis (or image
quantification), in which various mathematical algorithms are systematically applied to the image data
(often in high throughput), with respect to the target to be analyzed. Since there are different types of
raw image data (e.g., in terms of spatial and temporal resolution), these algorithms (or analysis steps)
must be carefully chosen. The following describes the multiscale image quantification approaches used
in this work, to extract image-based quantitative information with single-cell, single-nanoparticle, and

single-molecule resolution.

2.4.1 Single-cell analysis

To extract information about individual cells from a microscopy image showing a two-dimensional cellu-
lar monolayer, in principle three basic steps ! are necessary (Figure 9a). If the cells are not fully con-
fluent, the first step is to separate the cells from the background of the image (Figure 9b). This is usually
done by selecting an intensity threshold " for the pixel values of the image, where the background
intensity (empty space) is below the selected threshold and the cell bodies or nuclei (depending on the
coloring) are above the threshold. If the cells are also touching, they must then be segmented. A very

effective method for this is the seeded watershed algorithm 21, This requires identifying the cell centers
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(Figure 9c, second step) by extracting the local intensity maxima of the image (which is usually done
based on nuclear staining). Then, the watershed algorithm segments the cell centers (Figure 9d) based
on the distance between the maxima and the intensity profile above the threshold (third step). In most

cases, this leads to a decent estimation of the outline of the nuclei or cell bodies.
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Figure 9: Overview of basic steps for image-based single-cell analysis. Firstly, the cells on the microscopy images
(a) must be separated from the background (b) which is mostly done by intensity thresholding. The cell centers
must then be detected (c, in most of the cases by nuclei staining) and then different algorithms (e.g., watershed)
can be used to segment the cell bodies (d). Then, single-cell values like size, position, shape, and intensity can be
quantified and plotted (e) to identify distinct cellular populations.

The segmented cells can be analyzed using specialized software tools (such as Fiji's Particle Analyzer
93]), which provide information such as size, fluorescence intensity, shape, orientation, and position for
each individual cell, allowing identification of cell populations (Figure 9e) and quantification of condition-

dependent effects 18],

2.4.2 Single-nanoparticle quantification

The overall fluorescence signal of a cell can be based on different reporter systems, resulting in an
uniformly distributed fluorescence signal within the cell (e.g., due to GFP expression), but also in an
inhomogeneous fluorescence distribution with local intensity maxima (e.g., due to clustered fluorescent
nanoparticles such as labeled viruses). The quantification of the binding of such nanoparticles to cells
is a very important method to study the interactions of biological relevant nanoparticles and cells, e.g.,
to study the uptake of medical nanoparticles [*4 1931 %61 or the binding of viruses on cells P711981 %9 |n
contrast to cells which are several tens of micrometer in size and can be easily imaged by current optical
microscopy methods, nanoparticles (NPs) are between 1 to 100 nanometers in size ['%, and thus below
the diffraction limit of optical microscopy methods. Since the size of fluorescent nanoparticles and the
point spread function (PSF) of their emitted light are close to the pixel size (about 60 - 300 nm %) of
classical optical microscopy methods, alternative analysis steps have to be performed to obtain quanti-
tative image-based information from them. The main challenge is that images of fluorescent nanoparti-
cles associated with cells are very pixelated (Figure 10a) when pixel sizes of about 300 nm are used
and therefore it is not possible to easily distinguish whether a fluorescent event (local intensity maxi-
mum) is a single nanoparticle or an agglomeration (or cluster) with an unknown number of particles [%,
To obtain an estimate of the total number of fluorescent NPs contained in an image (or region of interest

(ROI) such as a cell), it is recommended to consider the intensity distribution of the image.
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Figure 10: Nanoparticle quantification near the diffraction limit. Images of nanoparticles on cells (a) can be very
pixelated (at pixel sizes at about 300 nm). If more than one particle can be accumulated within one pixel, an intensity
histogram may reveal distinct intensity peaks (b). These peaks can then be attributed to the number of particles
clustered together, allowing for a correlation of particle cluster size and intensity (c), which can be used to convert
the fluorescence signal into a nanoparticle number.

If the fluorescent nanoparticles are not too densely packed and their intensity is relatively homogeneous,
the intensity distribution of the ROI can reveal distinctive peaks (Figure 10b) that may represent the
underlying number of fluorescent NPs in vicinity ['° that cannot be resolved individually ['°%, This allows
for a correlation (Figure 10c) of the intensity and particle cluster size, allowing to estimate the total
number of NPs, even below the resolution limit of the microscopy method. However, these estimations
are not always accurate, as previous studies showed that the number of NP events derived from optical
microscopy is underestimated by a factor of ten when compared with the total NP number received by
transmission electron microscopy (TEM) "2, A precise validation of the intensity-based estimation is
thus crucial to derive reliable results. Also, methods of analyzing fluorescent nanoparticles and cells in
parallel with optical microscopy are mostly focused on single-cells, lacking the high-throughput capability

of analyzing many cells in parallel to assess cell-to-cell heterogeneity in particle binding.

2.4.3 Single-particle tracking

In addition to image-based quantification of static nanoparticles, it is also possible to obtain quantitative
information about dynamic systems by SPT 5% of image series obtained by video microscopy (Figure
11). Similar to single-cell analysis, it is important here to first separate the targets from the image back-
ground by intensity thresholding and then to localize the target center with localization accuracy below
the diffraction limit, which can be achieved by applying two-dimensional fits (e.g., Gaussian maximum-
likelihood estimator) to the intensity profile ['°111921 After identifying the target centers for all images in
the time series, these positions must be linked on an image-by-image basis. To accomplish this, most
linking algorithms link nanoparticles across adjacent frames by calculating the distances between the
"current" position of one nanoparticle and that of all nanoparticles in the subsequent frame, often taking
into account a maximum linking distance ', This is done frame-by-frame for all nanoparticles. In this
way, the time-dependent motion of the particles is represented by a single-particle trajectory (or track)
that contains important information such as the diffusion coefficient as well as the diffusion mode
(Brownian or anomalous diffusion ['%4111%%1) The diffusion mode provides information on whether the par-
ticles moved undisturbed by external factors (Brownian motion), or whether they were hindered by dif-
fusion barriers ['%! (subdiffusion) or under the influence of an external force "1 (superdiffusion). The

diffusion coefficient D also contains information about the viscosity n of the surrounding medium and
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the hydrodynamic radius r (approximately the size) of the tracked particle, as indicated by the Stokes-

Einstein equation, which is valid for simple fluids:

kgT
D=-2
é6nnr

Equation 1

The relationship between the hydrodynamic radius of a particle in a lipid bilayer with solid support and
its diffusion coefficient is described by the Evans-Sackmann model "%, Basically, the model states that
the larger the hydrodynamic radius of a particle in a two-dimensional fluid system, the lower its diffusion
coefficient. Thus, if the size of a tracked object has changed during the time series (for example due to
oligomerization of individual particles or decay of an oligomer) this can be detected via changes in the

diffusion coefficient [0,
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Figure 11: Overview of the basic steps of single particle tracking. A microscope-derived image series (a) is pro-
cessed by detecting and localizing (b) the different PSFs of the target particles. The particle centers are linked
image-wise (c), resulting in a time-resolved particle track (d). The diffusion coefficient derived from the particle track
correlates with the hydrodynamic radius of the particles and is described by the Evans-Sackmann model (e) for 2D
solid-support fluid systems.

However, these diffusion transition processes may be very rare events in an ensemble of many mole-
cules and therefore difficult to detect or completely obscured if only the average response of all particles
analyzed in parallel is investigated. It is therefore recommended that single entity methods be used for

analysis.

2.5 Ensemble versus single-entity analysis

As described earlier, dynamic biological processes such as cellular or molecular responses to external
stimuli can be analyzed using optical microscopy image series, e.g., by quantifying fluorescence inten-
sities or diffusion coefficients. Although it is possible to do this using ensemble measurements, in which
the average response of all detected targets is recorded (e.g., fluorescence or diffusion shift for the
entire image), performing these analyses on a single-entity basis provides more information [1101 [11111112]
and often describes the effect under investigation more realistically. For example, an ensemble meas-
urement at the cellular level would be the fluorescence quantification of GFP-transfected cells under
different transfection conditions using a plate reader. Here, it would be possible to identify more efficient
transfection conditions based on the fluorescence signal, but a potential cytopathic effect of the trans-
fection agents used would not be detected. Also, if subpopulations of the targets are present, they will
likely not be accurately described by ensemble analysis. The mean intensity of a dark and a bright

cellular population will deliver an average value, that is not representative for the real effect, as indicated
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by the position of the mean line of the black boxplot in Figure 12a, which is located at an intensity value,
not shown by one cell. Only the mean and standard deviation of the separated single-cell populations
(green box plots) accurately describes the real behavior of the cells. At the molecular level, FRAP meas-
urements of labeled membrane proteins before and after inducing oligomerization might show a general
shift in diffusion coefficient!"'® but do not allow identification of specific oligomerization states [''4l. The
black box plot of Figure 12b shows that the same mean and standard deviation of the diffusion coefficient

of two different oligomerization histograms (top: valency of 2; bottom: valency of 3) would be derived.
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Figure 12: Importance of single-entity analysis compared to ensemble analysis. Microscopy images showing
fluorescent cells are best described using a single cell analysis approach (a). In this example, an intensity histogram
shows two different cell populations characterized by low (p1) and high (p2) intensity. The means and standard
deviation (indicated by the green boxplots above the histogram peaks) of the two populations describe reality better
than an ensemble analysis (indicated by the black boxplot below the x-axis), which analyses only the mean and
standard deviations of the entire image fluorescence. An ensemble approach would also not be able to quantify the
position of the cells, whereas a single-cell approach would be able to clarify whether the fluorescent cells appear
disperesed or clustered on the images. Similarly, an ensemble approach would not be able to quantify different
molecular oligomerisation states based on diffusion coefficient (b). Here, two diffusion coefficient histograms show
two (top; ns and n2) and three (bottom; n+, nz, and ns) oligomerization states. However, an ensemble analysis
(indicated by the black boxplot between the graphs) would yield the same mean and standard deviation in both
cases, so that the different oligomerization states could not be resolved.

Using a single-entity analysis approach thus allows precise quantification of different target populations,
identification of rare events, and provides more data points for the statistical analysis required to test
small-scale effects. In addition to identifying these distinct populations, the single-entity approach also
allows us to localize them and distinguish whether these populations are influenced by local microenvi-
ronmental conditions. For example, at the cellular level, this could reveal the presence of infectious
plaques ['"®! if virus-infected cells show a fluorescent signal and cluster in certain areas of the image. At
the molecular level, localization of labeled and tracked lipids with different diffusion coefficients may
reveal the presence of nanodomains in the lipid membrane if these lipid populations cluster in certain

regions on the image ['"611117],

However, to reliably identify those populations by single-entity analysis, the sample size and readout
signal must be high enough, as otherwise those populations cannot be resolved and are obscured by
data variance and measuring noise. In principle, to reliably identify local maxima in histograms as real
peaks (populations) a specific minimal peak to valley ratio is needed "' (Figure 13a). Otherwise

measuring noise, random effects, or binning artifacts ['?%1 can be misinterpreted as populations (Figure
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13b). In case of low-throughput analysis, it is therefore recommended to describe the readout as mean

and standard deviation to avoid misinterpretation of pseudo peaks.
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Figure 13: High-throughput analysis is required to reliably quantify different target populations. Only if high
throughput data (a) is generated and plotted, the presence of distinct target populations can be assessed. The
readout signal histogram of an experiment that only provides low throughput data (b) is not able to quantify or show
the presence of different target populations.

It is therefore crucial to use high-throughput analysis methods ['2'1 '] to gain necessary readout and
sample sizes for single-entity based identification of cellular and molecular populations. Such high-
throughput approaches for the cellular scale were already described above (see 2.4.1 Single-cell ana-
lysis) however other techniques are needed to identify single-entity based populations on a molecular

scale.

2.6 Single-molecule force measurements

The ability to study single molecules is a very powerful biophysical tool for many fields in life sciences,
as it allows for the determination of the very soft intrinsic molecular target properties whose interactions
ultimately lead to the formation of very complex systems such as cells. Many of these properties are
related to forces, and thus various methods have been developed to measure single-molecule forces
that allow for the study of the energy landscape ['?2, e.g., in protein (un)folding, receptor-ligand com-
plexes, or the general mechanical properties of biopolymers. In the following, the three most prominent
methods of single-molecule force spectroscopy ['®! as well as their advantages and limitations are intro-

duced.

2.6.1 Atomic force microscopy

Atomic force microscopy (AFM) is a single-molecule spectroscopy method, where an atomically sharp
tip is mounted on a soft cantilever spring which is brought in vicinity to the sample. It allows for imaging
of any flat solid surface, without the need for surface preparation, in vacuum, air, and liquids. To do this,
a laser beam is sensing the cantilever's deflection (as it has a lower spring constant than the effective
spring between two atoms) while a piezoelectric system moves the sample beneath the cantilever tip
(1231 24111251 1126 AFM was often used in material science and physics to image the atomic structure of
different materials like graphene or metal oxides. However, in recent years, is has also become a tool
in biology, as it is possible to image the morphology, stiffness, and viscosity of cells (Figure 14a) 12710128,
This allows for the atomic imaging of the cell surface topography, revealing e.g., nanodomains [1291 1130
(13111901901 which could not be resolved by optical microscopy techniques. Besides the imaging of a sur-
face with atomic resolution, it is also possible to functionalize the cantilever tip, allowing for a direct

binding of the tip to a molecular target (Figure 14b). With the cantilever bound to the target, a force
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(10 - 10* pN ")) can be applied to it and the stretching and rupture of the target can be monitored by
yielding force-extension curves. As the target molecules are too small to be observed, it is very important
to avoid and identify force-extension-curves (FECs) of unspecific binding events. To do so, proteins with
known unfolding patterns can be integrated into a multi-protein construct as references (prs and pr2 in
Figure 14b). The construct also contains the target protein (p:) whose unfolding will be investigated. The
FECs will show a characteristic saw tooth shaped pattern (Figure 14c), where the patterns of the refer-
ence proteins can be used as an indicator for a specific binding event, allowing for the exclusion of all

unspecific binding events from further analysis.
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Figure 14: Overview of atomic force microscopy applications. The cantilever can screen the surface topography of
biological membranes to investigate mechanical properties like the position-dependent surface stiffness of a cell
membrane (a). By direct contact and pulling the target (b), the mechanical response of a target (e.g., a folded
protein-construct) can be assessed. Therefore a reference protein (pr1) is attached to a surface and a second
reference protein (pr2) is attached to a cantilever. Located between the two reference proteins is the target protein
(pt), which will be investigated. As the cantilever applies a force (F) on the proteins, the whole construct is stretched
(1). First, the two reference proteins will unfold (2, 3) and afterwards the target protein will unfold (4) before the
whole construct rips from the cantilever (5). This leads to a specific saw-tooth pattern in the force-extension curve

().

AFM thus provides a direct way for measuring the binding and unbinding forces between various bio-
molecules like receptor-ligand complexes 321331 This probing of the energy landscape of folded pro-
teins is especially interesting for proteins which are cellular mechanosensors, like talin. Here, AFM was
used to unfold the rod domains of talin and proved that each of the thirteen domains unfolds hierarchi-
cally at specific forces in the range of 10 to 40 pN 3, allowing the cell to sense subtle forces e.g., at
locomotion. As this example shows how useful AFM as a single-molecule force spectroscopy method
is, it has some limitations which must be overcome to expand the variety of biomolecular targets. That
is that AFM lacks the capability of parallelization at low loading rates, as only one molecule at a time
can be investigated['*4. This lack of parallelization limits the derived sample size especially in the regime
of low loading rates making it difficult to yield statistically strong results for very weak effects at the low
to sub pN and nm range. Also, the detection is ultimately limited by thermal fluctuations of the cantilever
(134 Therefore, the force exerted on the tip by spontaneous thermal fluctuations at room temperature
(ksT =4.1 pN nmU'"]) determines the minimal measurable force (which is also a problem with optical and

magnetic tweezers, as discussed below).

2.6.2 Optical tweezers
Another single-molecule force spectroscopy method, able to apply lower forces (0.1 — 100 pN ['8]) than
AFM on molecular targets is called optical tweezers (OT). In this setup, a dielectric bead is hold in an

optical trap, as light carries momentum, and thus any illuminated object experiences a force (Figure
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2.6 Single-molecule force measurements

15a). A bead placed in a weakly-focused laser beam will experience a net force towards the beam
center, as the gradient of light intensity will exert different forces on the bead sides. This allows for the
trapping of nano- and microbeads in Gaussian-profile lasers ['321['36] QT is very versatile as it can apply
forces in a wide pN range with sub-nm resolved three-dimensional measurement of the bead displace-
ment'8l. If a trapped bead is linked to an immobilized target molecule and the laser then displaced, it is
possible to translate the forces acting on the bead to the target to perform force measurements (Figure
15b). Again, the measurement of the displacement of the beam in the optical trap, and the force needed
to induce this displacement, yield force-extension curves (Figure 15c) providing information about the

mechanical properties of the target.

@ 0T principle b target stretching C  force-extension curve
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Figure 15: Overview of optical tweezers-based force measurements. Light passing through a transparent bead is
refracted and bent, exerting force onto it. Near a weakly-focused laser beam (a), the bead is drawn from the edge
(Fe) of the beam toward the beam center (Fc). A bead trapped in OT and attached to an immobilized target (b) will
exert a force (Ft) on the target if the light source is moved. Monitoring of the position of the light source and the
force applied to move it results in a force-extension curve (c) of the target.

This method was used to probe the mechanical properties of DNA 371 receptor-ligand complexes ['*8]
11391 and even for tracking the movement of motor proteins ['*%l. OT measurements can be performed in
artificial systems, where the target was immobilized on a functionalized glass surface, as well as on cells
1391 Interestingly it is also possible to hold whole cells ['4'], organelles within cells ['42], and lipid vesicles
['431in the optical trap. Despite this versatility, OT also has some limitations and drawbacks mainly based
on the used light trap. A disadvantage is the low parallelizability of the OTs. In most setups, only one or
two optical traps can be used to capture particles and manipulate molecules. Holographic optical twee-
zers '#4 are able to parallelize several optical traps by splitting a laser beam into several single beams.
While this allows a certain degree of parallelization, the application remains limited to tens rather than
hundreds of particles. The light beam will also trap all small dielectric particles (sometimes many in
parallel) reducing the specificity and single-molecule aspect of this technique. Furthermore, the light of
the optical trap can lead to photodamage of the sample, and will also heat up the local environment of
the target, which will lead, e.g., to increasing enzyme activity or lower viscosity of the medium around

the target.

2.6.3 Magnetic tweezers

Magnet tweezers (MT) is very similar to optical tweezers, since it also applies an external force is to a
micrometer sized (magnetic) bead, but the source of the force is a magnetic field gradient ['#? (Figure
16a), thus preventing drawbacks like sample heating or photodamage and making it very selective for

the magnetic probe. MT also has a very broad force range (10 - 100 pN ["8]) and can not only stretch
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2.7 Microfluidic shear force applications

but also rotate the sample, making it very interesting for the study of rotary proteins ['461[471 - As the
magnetic force is applied in a noninvasive way, MT can be used in complex and sensible environments
like with magnetic beads inside cells ['48l and biopolymer networks ['#l. Recently, the MT setup was also
used to apply lateral forces on fluorescent magnetic nanoparticles linked to the membrane of living cells
(Figure 16b), allowing for the manipulation of surface proteins ' and the probing for diffusion barriers

(cytoskeleton) beneath the cell membrane ['5'],
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Figure 16: Magnetic tweezers applications for force investigations. A magnet above a sample of magnetic
nanoparticles attached to a surface by linkers can apply vertical forces on many targets in parallel (a). This setup
can also be used to apply lateral forces on magnetic nanoparticles (e.g. on cell membranes) to probe for diffusion
barriers (b).

The drawbacks of MT are that using a permanent magnet configuration lacks the manipulation ability of
other techniques and that the generated force falls off rapidly with displacement away from the magnet.
Although there are experimental setups for parallelized magnetic tweezers ['52 (allowing for parallel in-
vestigation of 400+ targets), the force gradient of the magnetic field will always lead to a target position
dependent bias of the applied force. An alternative approach to apply forces on micro- and nanoparticles
is the usage of hydrodynamics-based flow profiles instead of a magnetic field, which allow for a high

degree of parallelization and flexibility in the applied force range.

2.7 Microfluidic shear force applications

In the last two decades, a new approach of single-molecular force applications emerged, namely the
use of microfluidics-based hydrodynamic shear forces. Here, one end of a target molecule is immobi-
lized at a solid (e.g., glass) or fluid (e.g., lipid bilayer) surface in a microfluidic channel and the other end
is linked to a small bead. A bulk flow in the channel then exerts a force to the bead due to Stokes drift
(531 and this force is then translated to the target. Tracking the position of the bead with optical micros-
copy allows then for a precise determination of the force-response of the target. As the flow will be
ubiquitous in the system, many targets can be analyzed in parallel, while the sample size is only limited
by the target density and the size of the imaged FoV. The following section gives an overview of the
current state of the art of microfluidics based force applications and how this principle will be used to
develop a new shear force based single-molecule force spectroscopy method with high-throughput ca-

pabilities, overcoming limitations of current methods.
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2.7 Microfluidic shear force applications

2.7.1 Hydrodynamic force measurements

The basic setup for hydrodynamic-based single-molecule force measurements, is a microfluidic chip
mounted on an optical microscope (Figure 17a). A bulk flow of the liquid in the microfluidic channel has
a parabolic velocity profile, as friction with the channel walls will decrease the flow velocity, leading to
the highest velocity being present in the channel center (Figure 17b). Suspended nanoparticles (or
beads) inside the flow channel will experience shear gradient lift force (Frs) and a wall-induced lift force
(FLw), based on their position in the channel ', When immobilizing the nanoparticle to the surface by
a single molecular linker (Figure 17c¢), the force applied to the nanoparticle (Fne) will be translated to the
target (Ft). Knowing the architecture of the microfluidic channel and the parabolic flow velocity profile, it
is possible to calculate the forces acting on the nanoparticle, based on the applied flow ['%911'%6], Here it
must be noted that a geometrical model regarding the angle () of the NP and the target must be taken

into account, to calculate the exact force that will be translated from the NP to the target:
F, = Fypcos@ Equation 2
The flow-based forces acting on the target can range from sub-pN to several hundred pN force [156: 861,

Precise tracking of the nanoparticle displacement and calculating the flow based acting force, allows

then for the extraction of the mechanical properties of the target through force-extension curves.
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Figure 17: Overview of the usage of microfluidics to apply forces on nanoparticles. A PDMS microfluidic chip with
a flow channel is attached to a glass surface and mounted on a microscope (a). The parabolic shaped flow velocity
profile applies a shear gradient lift force (FLs) and a wall-induced lift force (FLw) on suspended nanoparticles (b).
The nanoparticles can also be immobilized at the glass surface (c) to apply flow dependent forces (Fnp) on the
target (F), allowing for the assessment of the mechanical response of the linker.

This technique was already used in the past, for example to quantify the streptavidin-biotin bond rupture
force ['%%, determine the sequence dependence of the rate of DNA digestion by A exonuclease ['*"], to
characterize the effect of primase activity on DNA fork progression ['58 59 to monitor the kinetics of
loop growth and leading-strand synthesis by replisomes ['6%, and to collect force-dependent motility pa-
rameters of cytoskeletal motors ['6]. Despite the high versatility of this method, one of the limitations is
that the forces acting on the target are derived by theoretical assumptions about the velocity profile of
the flow and thus are only estimates of the real acting force. In addition, probes in the size range of
approximately 1 - 10 ym have generally been used up to now. This reduces the parallelizability and

leads to the preferred investigation of relatively long systems such as DNA.
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2.7.2 Two-dimensional flow nanometry

While in the previous cases the flow-dependent force acting on the target was mostly estimated from
the parabolic shaped flow profile, the following technique (2D flow nanometry £]) allowed for a precise
quantification of the acting forces and thus a force calibration (similar to Liang et al. ['%) of the used
microfluidic channel architecture (Figure 18). Here it was experimentally proven that the torque near the
microfluidic walls is neglectable, as the parabolic flow profile collapses here, since no turbulent flow can
occur at the bead and the Reynolds number is therefore 0. In this setup, gold nanoparticles were linked
to a SLB in a microfluidic channel on a TIRF microscope to study their movement by SPT. The bulk flow
in the channel acted a shear force on the particles (Figure 18a) resulting in a movement in flow direction.
When tracked (Figure 18b) the movement of the particles showed a directed motion in flow direction
and a random motion perpendicular to the flow (Figure 18c). These two movement patterns were split,
allowing for the determination of the velocity in flow direction (Figure 18d, vx) and the diffusion coefficient
of the linker (Figure 18e, Dy). As Dy is dominated by the friction of the linker in the SLB, and vx scales
with the applied flow and the particle radius (r), it is possible to calculate the shear force (Fs) acting on
the particle, based on the Einstein-Smoluchowski relation [1621;

D, = kgT Equation 3

vx
N

F;

This is based on the fluctuation-dissipation theorem, which states that the shear force that generates

directional NP motion also generates dissipation/friction in the SLB ['63],
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Figure 18: Two-dimensional flow nanometry allows for precise force-calibration of a microfluidic channel
architecture. Nanoparticles linked to a SLP in a microfluidic channel experience a specific shear force (Fs)
dependent on their hydrodynamic radius (r) and the applied bulk flow (a). The movement of the particles in flow
direction (b) results in particle tracks (c) which movement can be split in the velocity in flow direction (vx; d) and the
diffusion coefficient of the linker (Dy; €). The Einstein—-Smoluchowski relation then allows for the calcultion of the
shear force acting on a nanoparticle with a specific hydrodynamic radius (r; f). Plotting the shear force acting on the
particles (Fs) against their hydrodynamic radius (r) allows for quantification of the relation of the flow dependent
shear force acting on nanoparticles of specific sizes (g).
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In short, the greater the shear force Fs is due to flow rate or particle size, the faster the particle’s move-
ment in flow direction vx, while the diffusion coefficient D, remains constant, unless the shear force influ-
ences the interactions with the membrane. The values of vx and Dy can both be quantified by tracking
the particle movement. With this relation, the shear force acting on particles of different sizes was cal-
culated (Figure 18f) and with this information the specific microfluidic channel system could be cali-

brated, by determining the relation of the shear force acting on a particle depending on its size (Figure
189).

The force calibration based on 2D flow nanometry allows to precisely calculate the force Fs acting on a
NP of the size rin a given microfluidic channel architecture at a specific flow rate f. For the microfluidic
channel system used by Block et al. 8! (width: 150 um; height: 100 um) this would be, a shear force of
11.5 fN/plI*min! for a 200 nm sized nanoparticle. A molecular target linked to the channel surface and
to such a 200 nm sized bead would experience a shear force of roughly 0.1 pN at a flow of 10 pl/min or
17.3 pN at 1500 pl/min. In a system with a stable surface linking, a geometrical model regarding the
angle of the NP and displacement of the target (Equation 2) must be taken into account to calculate the
precise acting forces translated to the target. However, the aforementioned force range shows that a
microfluidic-based force spectroscopy method would be able to probe molecular targets in the low to
sub pN range, while still retain a high-throughput character, due to the homogeneously distributed flow-

induced shear force.

3. Scientific goals

The problem with current image-based quantification methods is that they often lack either high through-
put or sensitivity, as it is very difficult to address both aspects simultaneously. This is true, for example,
for the analysis of cellular images, which are often only qualitatively examined or for which special train-
ing is required to find appropriate analysis parameters (such as intensity thresholds or size cutoffs), but
also for the precise quantification of nanoparticles, whether they are static (e.g., bound to cells) or used
as probes in a dynamic setup (e.g., tracking of membrane receptors or microprobes in force spectros-
copy techniques). Therefore, the aim of this work is the development of new high-throughput yet very
sensitive methods able to quantify cellular and molecular populations and responses, with single-entity
resolution. These methods are based on the high versatility and resolution, which optical microscopy
with subsequent refined data analysis can achieve. While imaging of cells is already established for
many biochemical assays ['841'] the systematic quantification of these images with single-cell resolu-
tion is not. Optical microscopy also allows for the quantification of fluorescent nanoparticles (like vesi-
cles, viruses, or medical nanocarriers) on the cellular level ['%, but doing so in high throughput with
sufficient precision is not a laboratory routine yet. Furthermore, optical video microscopy bears an even
higher potential (compared to the analysis of static images) as the analysis of image-based time series
(e.g., the tracking of proteins or lipids on cells) can give information about otherwise invisible domains
[16611167] on cell membranes or the oligomerization state of transmembrane receptors 2. Block et al. 8]
showed that optical video microscopy in combination with a microfluidic setup and single-particle track-
ing, is even able to analyze the shear-force dependent movement of nanobeads with a precise spatial

resolution in the nanometer range while still analyzing many targets in parallel.
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One aim of this thesis is to develop a single-cell analysis method to quantify the number of virus-infected
and -uninfected cells under treatment with virus-binding inhibitors in different concentrations. To be ef-
ficient, the method must not only be precise (yielding single-cell information, qualitatively comparable to
manual analysis), but also fast (1-2 seconds per image), and fully automated, to make it easy to use
even for untrained personnel. Furthermore, this approach should be expanded to even be able to quan-
tify single fluorescent viruses (nanoparticles) on single cells to allow for a deeper understanding of the
binding and binding inhibition processes of viruses and host cells. Here, it is crucial to image several
tens of cells in parallel, to probe for cell-to-cell heterogeneity in virus binding, which will lead to a sub-
diffractive clustering of the targets and thus the need for precise reconstruction of the number of bound
particles, which must be carefully validated. Beside the quantification of static nanoparticles, dynamic
processes on the nanoscale should additionally be investigated by optical video microscopy with sub-
sequent single-particle tracking. For this, the quality of established SPT setups must first be assessed
and refined, so that molecular responses can be quantified, which are below the diffraction limit of optical
microscopy. If successful, this should be combined with a microfluidic setup to allow for the application
of low forces in the pN range to single immobilized molecular targets like polymers and proteins. Due to
the high resolution and parallelization capability of such a system, it is expected to enable the probing
of force responses and energy landscapes of single-molecules and molecule complexes with unprece-

dented sensitivity.

To conclude, the following scientific goals and hypothesis will be addressed in this thesis: (1) It is possible
to perform a fully automated high-throughput segmentation of 2D cellular monolayers with subsequent
identification of cellular populations based on fluorescence. (Il) Cells and fluorescent NPs can precisely
be quantified in parallel even at resolutions where clustered NPs cannot be resolved individually. (l11)
SPT can resolve molecular responses (such as oligomerization processes) on cells as well as in artificial
systems. (VI) Microfluidics can apply low to sub-pN forces on single-molecule targets and the combina-
tion of optical video microscopy and SPT is able to precisely resolve the mechanical molecular response

in high-throughput manner.

These hypotheses were addressed in four projects. In the first project, a fully automatic Fiji-macro for
the segmentation of 2D cellular monolayers was developed, which was able to determine the fluorescent
and non-fluorescent cellular populations under inhibitor treatment with different concentrations, allowing
for the quantification of the ICso value of virus-inhibitors. The second project regarded the establishment
of an imaging and analysis workflow, enabling the segmentation of confocal imaged cells and quantifi-
cation of the number of bound sub-diffractive fluorescent virus-like particles (VLPs) in high precision
(validated by simulations), which revealed cell-to-cell heterogeneity in particle binding. In the third pro-
ject, an approach for the refinement of SPT experiments was introduced, which was used to quantify
the oligomerization grade of membrane associated proteins and the displacement of fluorescent beads
used in project four. Here, a new highly sensitive microfluidics based single-molecule force spectroscopy
method was established, used for analyzing the mechanical response of PEG-linkers and the third rod

domain of the protein talin, as well as for probing the energy barriers of the biotin-NeutrAvidin complex.
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Figure 19: Overview of the subprojects included in this thesis. First, a single-cell analysis method (project 1) was
developed to quantify the fraction of virus infected cells under inhibitor treatment to determine the inhibitor potency
based on its ICso value. Next, the single-cell segmentation method was extended with the quantification of sub-
diffractive nanoparticles (project 2), allowing to perform binding studies of virus-like particles with single-cell
resolution. Refined single-particle tracking (project 3) was then used to analyze dynamic membrane-associated
interactions like BMPR oligomerization and multivalent GM1 binding of CTxB. The single-particle tracking was then
combined with microfluidics (project 4) to perform high-troughput single-molecule force measurements to probe the
mechanical response of polymers, proteins, and receptor-ligand complexes.
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4.1 A fast open-source Fiji-macro to quantify virus infection and transfection on

single-cell level by fluorescence microscopy

Yannic Kerkhoff, Stefanie Wedepohl, Chuanxiong Nie, Vahid Ahmadi, Rainer Haag, and Stephan
Block

MethodsX 9, 101834 (2022)

DOI: https://doi.org/10.1016/j.mex.2022.101834

Short summary

In this work an automatic single-cell segmentation method was implemented to quantify the fluorescent
fraction of widefield and confocal imaged cellular monolayers (Figure 20). It was used to screen the

infection inhibition potency of heparin mimicking polymers against HSV-1 infection, showing virustatic
and virucidal effects [1681,

segmentation of cellular single-cell intensity histogram dose-response &
monolayers & population identification IC50 quantification
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Figure 20: Widefield imaged cellular monolayers were automatically segmented (a) and the single-cell intensity was
plotted in a logarithmic scale to determine the infected fraction (b). Plotting the infected fraction against the applied
inhibitor concentration allowed for the determination of the inhibitos I1Cso value.
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A fast open-source Fiji-macro to quantify virus )
infection and transfection on single-cell level by | s
fluorescence microscopy

Yannic Kerkhoff*, Stefanie Wedepohl, Chuanxiong Nie, Vahid Ahmadi,
Rainer Haag, Stephan Block*

Institute of Chemistry and Biochemistry, Freie Universitdt Berlin, Berlin, Germany

ABSTRACT

The ability to automatically analyze large quantities of image data is a valuable tool for many biochemical assays,
as it rapidly provides reliable data. Here, we describe a fast and robust Fiji macro for the analysis of cellular
fluorescence microscopy images with single-cell resolution. The macro presented here was validated by successful
reconstruction of fluorescent and non-fluorescent cell mixing ratios (for fluorescence fractions ranging between 0
and 100%) and applied to quantify the efficiency of transfection and virus infection inhibition. It performed well
compared with manually obtained image quantification data. Its use is not limited to the cases shown here but
is applicable for most monolayered cellular assays with nuclei staining. We provide a detailed description of how
the macro works and how it is applied to image data. It can be downloaded free of charge and may be used by
and modified according to the needs of the user.
e Rapid, simple, and reproducible segmentation of eukaryotic cells in confluent cellular assays
e Open-source software for use without technical or computational expertise
e Single-cell analysis allows identification and quantification of virus infected cell populations and infection
inhibition
© 2022 The Author(s). Published by Elsevier B.V.
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Specifications table

Subject area;

More specific subject area; Automatic single-cell segmentation

Name of your method; Single-cell fluorescence quantification (SCFQ) macro

Name and reference of original NA

method;

Resource availability; Fiji is freely available (https://imagej.net/software/fiji/downloads).

The macro (S7), a tutorial video (S8) and widefield images from the cell
mixing experiment (S9) are provided as free separate supplementary materials

Introduction

Cellular infection assays are a widely used laboratory method to probe the infectivity of viruses as
well as to test potential virus infection inhibitors [1], and proved to be highly valuable especially in
times like the current SARS-CoV-2 pandemic [2]|. Many infection assays can be analyzed by imaging
an infected cell culture using optical microscopy, by staining of the cell nuclei (e.g., using Hoechst
33342) and by using a fluorescent marker (e.g., GFP expression [3]) or immunostaining of viral
proteins [4]. To show a general effect of infection or infection inhibition, the acquired images are
often examined only qualitatively. However, an image series of different experimental conditions (e.g.,
treatment with different inhibitor concentrations) can also provide quantitative information [5] (e.g.,
the inhibitor potency based on the ICsy value) if one is able to extract this information from the
image series. In recent years, several open-source software solutions have been developed that allow
to extract image-based fluorescence information with single-cell resolution [6-12]. Each of these
software solutions have different analysis strategies and aim for different fluorescence readouts. For
example, QuantIF [9] and FNMM [11] aim for the colocalization of the nucleus staining with another
fluorescence signal. FluoQ [6] and PiQSARS [12] are tailored for time-lapse-based experiments, while
Cytokit [8] is specialized in correlating single-cell parameters with spatial information (for details see
Supplemental Materials Section S6: Image analysis software overview). However, as most software
is highly specialized for specific tasks, the software solutions mentioned above may not necessarily
meet the needs of all users. This is due to the high variability of experimental setups (e.g., the
microscopy method, magnification, cell type, and cell density used) and read-outs (e.g., fluorescence
source, intensity, and fraction) used by the community. To address this, we developed and validated a
versatile, easy-to-use and open-source Fiji macro [13] that is capable of quantifying transfection, viral
infection, or inhibition of viral infection by evaluating intensity distributions at the level of individual
cells in monolayered cellular assays. The macro was optimized to perform on a wide range of cell
densities and fluorescent cell fractions for different cell lines as well as experimental and microscopy
setups. It requires only three input parameters (addressing background signal, cell density, and marker
intensity) and allows for fast batch analysis with detailed single-cell information. Besides fluorescence,
the position, size, and circularity of each detected cell is saved in a data table, which allows, e.g., for
the localization of fluorescent and non-fluorescent cells within the sample. It contains an automatic
correction of background fluorescence and provides a segmentation overlay and visualization of cell
populations for easy manual inspection of the analysis output.

Fig. 1 shows an overview of our approach for quantifying fluorescent cell populations. First,
images of a cell monolayer with stained nuclei and another fluorescent marker (dependent on the
experimental setup) are acquired (Fig. 1A, D, G, ]). The cells are automatically segmented (Fig. 1B, E, H,
K) and the fluorescent marker intensity is quantified for each cell individually, enabling to discriminate
between different populations (recognizable as two peaks or one peak with a tail in Fig. 1C, F, I, L)
across the cell ensemble.
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Fig. 1. Concept overview (scale bars = 50 pm) of the single-cell fluorescence quantification procedure. The raw images (A,
D, G, ]) consist of two-dimensional cell monolayers, in which the nuclei of all cells have been stained (blue), while only a
fraction of the cells shows a fluorescent signal of a fluorescent marker (green). Individual cells are identified based on their
nucleus (centers), segmented by a watershed algorithm (red lines, B, E, H, K), and separated from empty (cell-free) areas by
their intrinsic autofluorescence signal. Calculating logyo intensity histograms (C, F, I, L) of the observed single-cell fluorescence
values typically reveals two populations, which correspond to fluorescent (red) and non-fluorescent cells (gray) observed in the
image.

Method details
Cell transfection and mixing

10* human embryonic kidney cells (HEK293, #ACC 305, Leibnitz Institute DSMZ - German
Collection of Microorganisms and Cell Cultures GmbH) per well were seeded in full medium (DMEM
supplemented with 10% FBS (#P04-04500 and #P30-3031, PAN Biotech Germany), 0.1 g/L streptomycin
sulfate and 0.065 g/L penicillin G potassium (#1852,0100 and #A1837,0100, BioChemica Germany))
into 96 well plates and incubated over night at 37 °C and 5% CO,. On the next day, transfection
complexes were formed and added to the cells as follows: 0.1 pg plasmid DNA (pEGFP-N3, Clontech)
was diluted in 10 pL 150 mM NaCl solution (saline) and 0.1 to 0.6 pug of PEI (25 kDa branched,
#408727, Sigma-Aldrich) was diluted in 10 pL of saline separately. The PEI dilutions were added to
the DNA dilutions under vigorous mixing for 5-10 s and incubated for 15 min at room temperature
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afterwards. The cell culture supernatant was replaced with 100 pL/well fresh medium and 20 pL/well
of transfection complexes were added. After incubation for 48 h at 37 °C and 5% CO,, cell nuclei
were stained with Hoechst 33342 (1 pg/mL in medium, #H1399, Thermo Fisher Scientific) for 10 min
at 37 °C. The cell culture supernatant was replaced with fresh medium and cells in the plates were
imaged with a 10x objective (A-plan 10x/0.25 Ph1, #441031-9910, Zeiss; FOV: 895.26 pm x 670.80 pum)
on a Zeiss Axio Observer Z1 widefield fluorescence microscope equipped with an Illuminator HXP
120C, Colibri LED light sources 400, 530 and 625 nm, and an AxioCam MRm monochrome CCD
camera. The ZEN software was used for image acquisition with the default GFP, DAPI or phase contrast
settings using filter sets 38 (GFP: excitation 450-490 nm, emission 500-550 nm) and 49 (DAPI:
excitation 335-383 nm, emission 420-470 nm). The confocal images of Fig. 3B were taken with a
20x objective (20x/0.75 HC PL APO CS2 Imm Corr (oil, water, glycerol) WD 0.68 mm, #11506343,
Leica Microsystems; FOV: 581.82 pm x 581.82 pm) with oil immersion on a Leica SP8 system based
on a DMI6000CSB microscope, which is equipped with diode (405 and 561 nm), argon (458, 488,
and 514 nm) and a HeNe (633 nm) laser as well as two PMTs and two HyDs (high sensitivity
Hybrid Detectors). The LAS X software was used for image acquisition with the Leica presets for DAPI
(excitation 405 nm, emission 430-550 nm, HyD) and GFP (excitation 488 nm, emission 503-603 nm,
PMT).

For the validation experiment (Fig. 3), a HEK293 cell line (stably transfected with pEGFP-N3 and
showing 100% eGFP expression after clonal selection under 0.4 mg/mL geneticin) was mixed with
non-transfected (non-fluorescent) HEK293 cells at different ratios and seeded into a p-slide 8-well
(#80826, ibidi; 300 pL/well at 4 x 10° cells/mL). After overnight incubation, cell nuclei were stained
with Hoechst 33342 and images were acquired as described above.

Virus infection assay

African green monkey kidney epithelial cells (Vero) were seeded in 12 well plates (#83.3921.005,
SARSTEDT AG & Co. KG, Germany) at a density of 2 x 10° cells per well. At 90% confluency, the
cells were first incubated with unfractionated heparin (#375095, Calbiochem, Germany) at different
concentrations for 1 h. Then herpes simplex virus type 1 having the gene for green fluorescent
protein (GFP) integrated into its genome (HSV-1_GFP) was added at a multiplicity of infection (MOI)
of 0.1 for 48 h. Cell nuclei were labelled by Hoechst 33342 (1 pg/mL in medium, #H1399, Thermo
Fisher Scientific) for 10 min at room temperature and the cells were fixed by 1% formaldehyde
(#1039992055, Sigma-Aldrich) for 30 min. After being washed with PBS, the cells were imaged using
widefield epifluorescence microscopy as mentioned above (2.1), in which infected cells showed green
fluorescence due to GFP expression.

Analysis macro

Fig. 2 shows the basic steps for using the single-cell analysis macro presented in this work. All
images to be analyzed must be collected in one input folder, which may contain several subfolders
(e.g., different inhibitor concentrations etc.). One output folder should be prepared, which will store all
results generated by the macro. The macro is opened in Fiji [13] (which is an open-source distribution
of Image] [14]) and started by pressing Run. The user then selects the input and output folder as well
as the data format (without a “.”) of the input images (e.g, lif, czi, tif) and defines, which channels
contain the nucleus staining and the fluorescent marker signal, respectively (additional channels will
be ignored). Afterwards, the user choses analysis parameters that are connected to the background
threshold (denoted by g in the following), the segmentation sensitivity w, and the intensity cutoff
value « (for details see Supplemental Materials Section S4: Parameter optimization). These parameters
can be optimized iteratively by repeating the analysis using revised parameters. For the initial analysis
iteration, default parameters are implemented in the macro, which can be used in most cases.
Alternatively, automatically estimated analysis parameters can also be used on demand (for details see
Supplemental Materials Section S5: Automatic parameter estimation). The macro then automatically
analyzes all selected images (taking approximately 1-2 s per image for a personal computer equipped
with a CPU having a clock speed of 2.5 GHz, 2 cores, and 8 GB of RAM) and saves for each analyzed
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Fig. 2. Usage flowchart of the analysis macro. All images in a user-selected input folder (and all subfolders) are automatically
analyzed using default or automatically estimated analysis parameters (for details see Supplemental Materials Section S5:
Automatic parameter estimation). The segmentation overlays and infection histograms are saved in a user-selected output
folder. The analysis parameters can be adjusted after manual inspection of the analysis results in order to refine the analysis
process until the segmentation overlay and intensity histograms show reasonable results.

image the obtained segmentation overlay, the log;o histogram of the extracted cell intensity, a data
table collecting various single-cell parameters (e.g., area, mean intensity, X- and y-position, circularity,
...) and a summary table to the output folder. The analysis workflow is also shown and explained
further detail in a tutorial video (see Supplemental Materials Section S8).

To get a first impression on the validity of the parameters chosen for analysis, it is recommended to
analyze either one image with two equally represented populations (non-fluorescent and fluorescent)
or two images, in which most cells either exhibit fluorescence or not, which serve as positive and
negative controls. A manual inspection of the segmentation overlay and the log;y intensity histogram
of these images allows to check if analysis parameters need to be adjusted (see Supplemental
Materials Section S4 for a guide for parameter optimization). The analysis can then be revised
several times until the outcome of the segmentation and intensity analysis is acceptable for the user.
Afterwards, the summary table (which contains the image titles, total cell number, and fluorescent
cell number) can be used to quantify the property of interest, e.g., transfection efficiencies or infection
inhibition effects (for details see Supplemental Materials Section S1: Image processing steps).

Method validation

The method implemented in the macro was validated by mixing an eGFP expressing HEK293 cell
line with non-transfected HEK293 cells at different mixing ratios. Fig. 3A and B show representative
images for three mixing ratios (0, 40 or 50, and 100% eGFP expressing cells; obtained using either
widefield or confocal microscopy) as well as the results of the segmentation and the corresponding
logyo intensity histograms obtained using the macro. For both imaging modalities, we observed a
linear correlation between the determined and the input fluorescent fraction (Fig. 3C; widefield:
R? = 0.95, slope = 0.94 + 0.06; confocal: R2 = 0.98, slope = 0.94 + 0.05), indicating that the
macro reliably determines the correct ratio of fluorescent and non-fluorescent cells. Only the widefield
measurements having an input fraction of 30% and 70% of eGFP expressing cells showed a statistically
significant deviation from the expected trend. However, these deviations were also present in the
images and are therefore not due to a failure of the analysis macro. These deviations are attributed
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Fig. 3. Validation by cell mixing. Two HEK293 cell populations, either expressing eGFP or not, were mixed at different ratios
and three to five images per ratio were quantified using the analysis macro. Panels A and B show three representative
microscopic images (scale bars = 150 pm), which were obtained using either widefield (A) or confocal microscopy (B), as
well as the result of the segmentation process (red contours in the images) and the corresponding single-cell logyy intensity
histograms. The fraction of fluorescent cells is indicated in the microscopy images (input values, defined by the mixing process)
and histograms (extracted by single-cell analysis), respectively. For both imaging modalities a high correlation between input
and determined fluorescent fraction is observed (panel C; widefield: R? = 0.95, slope = 0.94 + 0.06; confocal: R? = 0.98,
slope = 0.94 + 0.05). The images of the widefield mixing series are provided in the Supplemental Materials Section (S9) so
that the macro (with possible modifications) can be tested by the user. Sufficient analysis parameters are 8 = 15; w = 5;
o =04.

to minor manual errors in the initial cell mixing and random fluctuations in the number of cells that
can be imaged in one field of view, as well as cells which have low expression levels [15].

Use cases

Quantification of transfection efficiencies

After successful validation, we applied the analysis macro to quantify the transfection efficiency
of HEK293 cells, which were transiently transfected with eGFP for different transfection conditions
(ie., for DNA:PEI ratios ranging from 1:1 to 1:6 and for a total amount of DNA:PEI complexes
ranging from 0.1 to 0.7 pg). Fig. 4A shows three representative images corresponding to DNA:PEI
ratios of 1:5, 1:3 and 1:1 (0.4 pg DNA:PEI complexes) as well as the obtained segmentation and
corresponding logy intensity histogram. For this series, the highest fluorescent fraction was observed
for a DNA:PEI ratio of 1:3 (51%), so that an optimal transfection efficiency could be seen at this
condition. The total number of observed cells decreased with decreasing DNA:PEI ratio, which is
attributed to the well-known cytotoxic effect exhibited by PEI at higher concentrations (see Fig. S3
in the Supplemental Materials Section S3 - Plate reader validation) [16]. Hence, optimal transfection
requires to find a balance between the DNA:PEI ratio (transfection efficiency) and the total PEI
concentration (cytotoxicity).

To this end, we made use of the high-throughput capability of the macro and visualized the
determined transfected cells (Fig. 4B) and transfected fraction for all tested conditions (Fig. 4C) as
heat maps. A considerable amount of transfection (> 35%) was observed for DNA:PEI ratios ranging
between 1:2 and 1:4 at a total amount of DNA:PEI complexes ranging between 0.2 and 0.5 pg. At
lower ratios and amounts, less transfection was found, which indicates that the amounts of plasmid
DNA or transfection reagent were too low. At higher ratios and amounts, the transfection efficiency
was also reduced, which is again attributed to the cytotoxic effect of PEI at higher concentrations
[16]. The highest fraction of transfected cells (75.4%) was found at a DNA:PEI ratio of 1:2 and a total
amount of DNA:PEI complexes of 0.5 pg, which marks the optimal transfection condition in this setup
if the transfected fraction is considered the key marker for transfection efficiency. Considering also
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Fig. 4. Quantification of transfection efficiencies of DNA:PEI complexes. HEK293 cells were transiently transfected with eGFP
by PEI using different amounts of plasmid DNA (0.1-0.7 pg) and mixing ratios of DNA and PEI (1:1 - 1:6). Panel A shows
three representative microscopic images of cells treated with 0.4 pg of DNA:PEI complexes (using DNA:PEI ratios of 1:5, 1:3,
and 1:1 as indicated in the images) as well as the segmentation and corresponding single-cell log intensity histograms (scale
bars = 150 pm). Panels B and C show heat maps that visualize the total number of transfected cells (B) or fraction of transfected
cells in% (C), respectively. The three conditions shown in Panel A are marked with white squares in the heat maps. One image
per condition was analyzed.

cytotoxicity, the best balance between transfection efficiency and cytotoxic effects is observed at a
DNA:PEI ratio of 1:2 and a total amount of DNA:PEI complexes of 0.4 ng.

Quantification of viral infection

In another use case, the analysis macro was used to automatically determine the fraction of
Vero cells that had been infected with a variant of the herpes simplex virus 1 (HSV-1_GFP), which
causes infected cells to exhibit green fluorescence due to GFP expression. Six images of infected
cells that vary in their cell densities (approximately 650 to 1050 cells per image) and values of the
infected fraction (approximately 2 to 90%) were chosen and analyzed manually (Fig. 5A) as well as
with the analysis macro (Fig. 5B), which allowed to correlate automatically and manually obtained
results (Fig. 5C). Cells were manually identified and counted based on their nucleus staining and their
perinuclear space was inspected for green fluorescence to identify infected cells.
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Fig. 5. Comparison of manual and automatic quantification of the fraction of Vero cells that had been infected with a GFP-
equipped herpes simplex virus 1 (HSV-1_GFP). Panel A and B show the fractions of uninfected (gray) and infected (red) cells as
determined from six microscopic images. The values were derived by manual cell counting (A) or the single-cell logyo intensity
histograms of the automatic analysis (B), respectively. The manually and automatically determined infected fractions show a
very high correlation (R? = 0.97, slope = 1.03).
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Similar to the validation using transfected HEK cells, we found a linear correlation (R? = 0.97,
slope = 1.03, Fig. 5C) between the manually and automatically determined fraction of infected cells.
This indicates that both approaches give essentially identical results, with manual inspection being far
more time-consuming than using the macro and providing no further information about fluorescence
intensity distributions.

Quantification of virus infection inhibition

In addition to mere quantification of viral infection, our analysis macro can also be applied
to quantify the efficiency of virus binding inhibitors [17]. This is demonstrated in Fig. 6, which
summarizes the results of inhibition experiments, in which Vero cells were treated with heparin as
inhibitor at different concentrations (0.01-1000 pg/mL) and infected with HSV-1_GFP. Fig. 6A shows
six representative images and the corresponding logqo intensity histograms, in which the fluorescent
(infected) cell fraction is indicated in red. The inhibitory effect of heparin can clearly be seen in the
images, as well as in the logyy intensity histograms.

Fig. 6B shows the impact of the heparin concentration on mean value and standard deviation of
the fluorescent (infected) cell fraction, which were calculated from four image replicates done for each
concentration. This data allowed to determine the ICsy value (8.6 + 1.3 pg/mL ~ 573.3 £+ 86.7 nM
(Mw ~ 15.000 + 2.000 Da) of heparin inhibition, which was quantified by fitting the observed
inhibition curve using the Langmuir-type inhibition model:

1
Cinh
T+

finf = (1)

In this equation, fi,r denotes the fraction of infected cells, which is observed at an inhibitor
concentration c;,,, while ICsq give the half maximal inhibitory concentration (i.e., the inhibitor
concentration, at which 50% of infection inhibition is observed). The determined ICsy value is in the
range of previously reported ICsy values obtained by plaque reduction assays performed with Vero
cells and similar HSV-1 variants (6-10 ng/mL [18], 240-380 nM [19]).
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Fig. 6. Quantification of the efficiency of heparin in inhibiting HSV-1_GFP infection of Vero cells. Panel A shows six
representative images (corresponding to applied heparin concentrations of 0.01-1000 pg/mL as indicated; scale bars = 150 pm)
together with the result of the segmentation and the corresponding single-cell logyo intensity histograms. The population of
infected cells is shown in red in the histograms. The fraction of infected cells decreases with increasing heparin concentration
(B), which is well described by a Langmuir-type inhibition model (solid line; red area indicates 95% confidence interval).

Discussion

In this work, we described the development, validation, and application of a fast and robust
Fiji macro offering an automated fluorescence quantification with single-cell resolution. To ensure
the versatility of the macro, it employs a watershed-based segmentation [20], which allows for
thresholding of empty spaces without cells and avoids splitting of nuclei in cell-dense areas. This
makes the macro applicable over a wide range of cell coverage (ie., for samples with low as well
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as high cell coverage). As not only the area of the nucleus is analyzed but the entire cell body
(based on its autofluorescence signal), the macro can quantify fluorescence signals of the nucleus
and the cytoplasmic area. We validated the macro for a wide range of fractions of fluorescent
cells (between 0 and 99%), which makes it applicable to a broad spectrum of fluorescence images.
We observed excellent agreement with manual image analysis when quantifying the fraction of
transfected or virus-infected cells. Hence, the macro can be used to screen transfection efficiencies
under different conditions as well as to quantify inhibition of virus infection of cells treated with virus
inhibitors (providing the ICsq value of the inhibition process based on a quantification with single-cell
resolution).

So far, the macro has been applied successfully on data derived using different cell lines
(Vero, HEK293, Hela), imaging techniques (widefield and confocal fluorescence microscopy) and
labeling strategies (GFP transfection, virus protein surface staining), which demonstrates its feasibility.
However, the user should be aware of the limitations of the method: The data quality is highly
dependent on a sufficient segmentation based on staining of cell nuclei. If not all cell nuclei are
sufficiently stained, the macro will not be able to correctly recognize them as cells and the resulting
fraction of fluorescent cells will be incorrect. If cells are not in a monolayer and therefore overlap,
the segmentation quality is reduced and nuclei in lower positions are excluded from the analysis,
which causes a bias in the quantified populations. Also, shifts of the background intensity can
cause a shift of the non-fluorescent cellular population in the logo intensity histograms, which can
lead to misclassification if the intensity cutoff is not carefully adjusted. Manual verification of the
segmentation overlay and the log;, intensity histogram for each new experiment and condition is
therefore recommended.

Conclusion

Quantitative analysis of image data is a valuable complement to qualitative visual inspection for
obtaining information about biological processes. The segmentation and analysis macro developed
in this work provides a suitable tool for rapid quantification of fluorescence at the single-cell level,
e.g., for a quantification of cellular transfection, infection, or infection inhibition. It is based entirely
on open-source components (contained in the Fiji package [13]) and allows to obtain accurate
information with high throughput. The macro provided here (see Supplemental Material Section S7)
performed well when validated by comparison with manually obtained image quantification data as
well as in experiments, in which fluorescent and non-fluorescent cells were mixed in known ratios.
The application of the macro presented is not limited to the use cases shown here; it is intended to
be applicable for most monolayered cellular assays using nuclei staining and fluorescence as readout.
As a Fiji macro, it is freely available and can be used and modified according to the users needs.
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Supplementary material

S1 Image processing steps

The main part of the macro consists of image processing steps (Fig. S1), which make the images
accessible for a single-cell analysis based on Fiji's Particle Analyzer. Fig. S1A shows a representative
fluorescence image of HSV-1_GFP infected Vero cells (green), while cell nuclei are stained with Hoechst
33342 (blue). Non-infected cells barely show green fluorescence, but can be detected based on the
nucleus staining. The blue and the green channels were color balanced (saturation of 0.35 % of pixels) to
make the effect clearly visible to the naked eye. Infected cells can be identified by their bright green
fluorescence. Also, a strong, inhomogeneous green background signal is present. To obtain quantitative
information, the images are processed as follows:

A raw jmades composite B raw images C background corrected E' 8-bitcolor adjusted’.
adjusted color nucleij '

"M background corrected, e _ oy |- D 8-bit fluorescence F_add + 3 pixel median &

. color adjusted o oemm i 0m 1 2m om0 gauss|an filter
segmentation overlay et BBl I Sl . A g

)

" G. threshold background
& find maxima

Fig. S1. Overview of the image processing steps (all scale bars = 150 um). Panel A shows a representative color
balanced composite fluorescence image of HSV-1_GFP infected (green) Vero cells with stained nuclei (blue). Panel B
shows the raw images (left: GFP; right: nuclei) represented in gray values. Both channels are background corrected,
using the rolling ball function with a 100-pixel radius (Panel C), converted to 8-bit format and split (Panel D and E).
The nuclei channel is additionally color balanced. The fluorescence and nuclei channels are combined and a median
and a Gaussian filter (both with a 3-pixel radius) are applied (Panel F). The background of the resulting image is
thresholded (blue) and local intensity maxima (yellow) are detected (Panel G). Afterwards, the cells are segmented by
a watershed-based segmentation and the resulting image is binarized (Panel H). The binarized image with the
segmented cells is used as a mask on the 8-bit image of the green channel (Panel I) and the single-cell data is
derived by the Particle Analyzer of Fiji (Panel J). Panel K shows the logio intensity histogram indicating the population
of dark (gray) and fluorescent cells (red) as determined from the single-cell data. The red outlines of analyzed cells,
which are also delivered by the Particle Analyzer (Panel L), are overlaid with the background corrected and color
balanced green and blue channels (Panel M).

First, the background of the green and blue channel is corrected by applying a rolling ball subtraction with a
100-pixel radius to remove illumination artifacts and inhomogeneities, which, especially in the green
channel, would cause problems in the analysis. Afterwards, both image channels are converted to 8-bit
resolution and split. The intensity of the nuclei channel is color balanced (saturation of 2 % of pixels) to
make them more accessible for the identification of intensity maxima. The green channel is duplicated and
added to the blue channel. A median and a Gaussian filter (3-pixel radius) are applied on the resulting
image to remove noise pixels and minor inhomogeneities. The background is then thresholded with the
beforehand chosen background threshold parameter  and nuclei are identified with the Find Maxima
function with the prominence of the beforehand chosen segmentation sensitivity w, which uses a

1
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watershed-based (Ref. 1) segmentation. The resulting binary image with the segmented particles is then

inverted and used as a mask overlaid to the 8-bit fluorescence channel. The Particle Analyzer function is
then called to generate the single-cell data from the segmented cells and the resulting data table is stored
as a csv-file in the output folder. The mean intensity of the cells is then plotted as a logio intensity
histogram, in which the population above the intensity cutoff a is indicated in red. The name of the image
file, the total cell number, the number of fluorescent cells, and the resulting fluorescent fraction (in %) is
then added to the summary table, which is saved as a csv-file in the output folder. The outline of the
analyzed patrticles is overlaid as red contours on the background corrected, color balanced green and blue
channel. The histogram is stitched to the segmentation overlay and saved as a single png-file in the output
folder.

S2 Validation by cell mixing studies
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Fig. S2. Summary of all measurements of the mixing validation experiment (see Fig. 3 in the main manuscript).
Shown are representative widefield images (scale bars = 150 um) as well as the result of the segmentation process
(red contours in the images) and the corresponding single-cell logio intensity histograms. The fraction of fluorescent
cells is indicated in the microscopy images (input values, defined by the mixing process) and histograms (extracted by
single-cell analysis), respectively.

S3 Validation using plate reader measurements

To validate the results obtained from the Fiji macro using an established system, the transfection series
was also analyzed based on fluorescence data measured with a plate reader. Fig. S3 shows the results of
the image analysis (Panels A to C) compared to the results obtained by a plate reader (Panels D to F). The
number of detected cells (Fig. S3A) and fluorescence signal of the Hoechst staining (Fig. S3D) show a very
similar pattern across the wells. In general, the number of cells decrease with increasing PEI concentration,
which is attributed to toxicity. However, the cell number is slightly increased when 0.2 ug DNA was
complexed with PEI at a ratio of 1:2 and 0.3 pg DNA was complexed with PEI at a ratio of 1:3, which is
attributed to the cell attachment promoting feature of PEI (Ref. 2). In this experiment, an unusually high
intensity of the Hoechst signal was found in the plate reader experiment at the condition of 0.2 pg
complexes with a DNA:PEI ratio of 1:1, but not in the corresponding single-cell measurement. This could be
due to a local cell aggregation or contamination that causes a misrepresentation of the total cell number by
mere average fluorescence in a well plate and demonstrates the advantage of single-cell image analysis, in
which aggregates or artifacts in the field of view can be identified easily. The number of fluorescent cells
(Fig. S3B) determined by the macro as well as the GFP fluorescence signal (Fig. S3E) determined by the
plate reader showed a very similar pattern as well. Both indicated optimal transfection efficiencies at
DNA:PEI ratios ranging between 1:2 to 1:3 and at a total amount of DNA:PEI complexes of about 0.4 to 0.5
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Mg. The highest transfection efficiency is found at a DNA:PEI ratio of 1:2 and a total amount of DNA:PEI
complexes of 0.4 ug if the total number of fluorescent cells (n = 811) is considered as a key marker. When
the fluorescent fraction (Fig. S3C) is chosen as a key marker, optimal transfection efficiency is reached at a
DNA:PEI ratio of 1:2 and a total amount of DNA:PEI complexes of 0.5 ug (74.4 %).
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Fig. S3. Comparison of the results of the single-cell image analysis with plate reader measurements. Shown are heat
maps of HEK293 transfection series derived by the single-cell image analysis (top row) and a plate reader
measurement (bottom row), respectively. The heat maps visualize the total number of cells (Panels A and D), the total
number of fluorescent cells (B, E) and the fraction of fluorescent cells (C, F), which were either derived directly by
single-cell counting (A - C) or estimated by the intensity of the corresponding dye (D: Hoechst, E: GFP, F:
GFP/Hoechst fluorescence ratio).

S4 Guide to optimize the analysis parameters

Fig. S4 shows a guideline to optimize the analysis parameters B (background intensity threshold), w
(cellular segmentation sensitivity) and a (fluorescence intensity cutoff) by manual inspection of the
segmentation overlay (for B and w) and of the logo intensity histogram (for a).
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Fig. S4. Guidelines for the analysis parameter optimization. Panels A to C show the influence of three different values
of the background threshold parameter (8) on the segmentation of eGFP-transfected HEK293 cells (scale bars = 100
pum). A B of 5 is too low and the background is not correctly thresholded. Cells in confluence are well segmented, while
cells on the edges are mis-segmented, causing big parts of empty areas to be regarded as cell bodies. A B of 15
thresholds the background correctly and the cells are well segmented. A 3 of 100 is far too large, as only the brightest
nuclei centers are identified and all others are thresholded with the background. Panels D to F show a comparison of
manual and automatic cell counting and classification at different segmentation sensitivities (w) using HSV-1 infected
Vero cells. Panel D shows a crop of an infection assay image with cell segmentation using low (w = 10), medium (w =
5), and high (w = 1) sensitivity (scale bars = 50 um). Panel E shows the impact of the segmentation sensitivity on the
automatically determined cell number. At a low sensitivity (black), the R? is 0.98 and the difference from the manual
counted cells is -6.2 + 2.3 %. At a medium sensitivity (red), the R? is 0.99 and the difference from the manual counted
cells is -1.5 £ 1.4 %. At a high sensitivity (blue), the R? is 0.93 and the difference from the manual counted cells is 6.2
+ 5.0 %. Panel F shows the influence of different segmentation sensitivities (w) at constant intensity cutoff (a) on the
determined infected fraction. All sensitivities show a high correlation of R?2 ~ 0.97 and a minor deviation from the
manual determined infected fraction (difference = -3.6 + 5.4 %). Panels G to | show a comparison of the influence of
different intensity cutoffs (a) used to determine the infected fraction in HSV-1_GFP infected Vero cells treated with an
inhibitor (17). Panel G shows a logio intensity histogram of an image, in which approximately half of the cells were
infected, and highlights the impact of three different intensity cutoff values (a = 0.1, 0.265, and 0.4) on the assignment
into infected (red) and non-infected cells (gray). The inset in the middle gives two additional histograms, which indicate
the intensity distributions of non-infected and highly infected cells and enabled to determine the appropriate cutoff of
0.265. Panel H shows the impact of the intensity cutoff a on the determined fraction of infected cells. A cutoff value of
0.1 (blue) is too low and leads to overestimation of the infected fraction by 11.3 + 8.3 %. A cutoff value of 0.265 (red)
generates only a minor overestimation of 3.5 + 5.3 % and is therefore appropriate. A cutoff value of 0.4 (black) is too
high as the infected fraction is now underestimated by about -4.5 + 5.3 %. All cutoffs show a high correlation of R? >

0.94. Panel | shows the influence of the cutoff based determined infected fractions (mean of four images) of an

inhibition experiment. All cutoff values show an inhibition effect with increasing inhibitor concentration. A cutoff value

of 0.4 (black) underestimates the fraction of infected cells, while a value of 0.1 (red) causes the infected fraction to be

overestimated and misclassifies some uninfected cells as infected as the intensity histogram is slightly shifted to

higher intensities (small histograms), which distorts the mean infected fraction for the non-infected control.

The background threshold parameter B is the intensity below which empty spaces of the image should be
excluded from the analysis, while areas above this intensity should contain nuclei as well as
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(auto)fluorescence signal from cells. It plays a minor role if the whole image is densely covered with cells,

but becomes important when cells are on the edge of cell clusters. Fig. S4A-C shows how different
background threshold parameters influence the cell segmentation of eGFP-expressing HEK293 cells. In the
representative image shown in Fig. S4A, a 3 of 5 was too low, and thus the empty area of the image was
not thresholded and cells on the edge of the cluster were not correctly segmented. Such giant edge cells
had a highly reduced mean intensity, as the low background intensity is present in a major area of the mis-
segmented cell and thus cells with a bright fluorescence signal were not recognized as such. A 3 value of
15 was appropriate, as the background is successfully thresholded from the cells and the cells at the center
and the edge of the cluster were sufficiently segmented. Larger B values (e.g., 100) were too high and
many cells with dim nuclei were excluded from the analysis, which generated a bias in the quantification of
the fraction of transfected cells. While the determination of a suitable threshold parameter 3 is very
important for the analysis quality, the segmentation overlay makes it easy to identify inappropriate values
and allows for a straightforward adjustment.

To determine the reliability of the automatic analysis with respect to a manual evaluation, six images with
different cell densities (approximately 650 to 1050 cells per image) and degree of infection (approximately 2
to 90 %) were chosen and manually analyzed (Fig. S4D-F). For this, cells were counted by hand using the
nucleus staining and infected cells were identified by visual inspection of the green infection signal in their
cytoplasm. The manually derived data was regarded as a reference and plotted against the result of the
macro using three different segmentation sensitivities w to check for correlation (R?). For all chosen w, the
segmentation was in general successful, but at w value of 10 some cells remained unsegmented in
clusters, while at w of 1 some cells became fragmented. However, these differences were hard to see by
the naked eye even with the segmentation overlay. Fig. S4E shows the influence of w more clearly. A w
value of 5 (red) showed the best correlation and agreement with the manually determined cell number with
just a slight underestimation by about -1.5 %. A high w value (black) and thus low sensitivity
underestimated the number of cells ( -6.5 % for w = 10). A low w value (blue) and thus high sensitivity
overestimated the number of cells due to fragmentation (6.2 % for w = 1). However, Fig. S4F shows that
the accurate segmentation of cells, at least with the three tested w values, was not that important to gain
reliable results. All tested segmentation sensitivities showed very similar correlations (R? ~ 0.97) and only
minor difference (underestimation of ~ -3.6 %) to the manually determined fraction of infected cells. As long
as the majority of cells are correctly segmented, some fragmented or clustered cells seemed not to bias the
resulting fraction of infected cells.

However, Fig. S4G-I shows that the determination of a suitable value of the intensity cutoff a is crucial to
get reliable infection and inhibition data. Fig. S4G shows three logio intensity histograms of an image, in
which approximately half of the cells were infected (resulting in a bimodal infection histogram), and three
different values of the intensity cutoff a (0.1, 0.265, 0.4) applied. The intensity cutoff value of a = 0.265 was
determined by a positive and negative control experiment, where either no or a high virus titer was applied
to the cells. This led to images, in which either none or nearly all cells were infected. The infection
histograms of those images showed distinguishable histograms were with a < 0.265 nearly no cells were
identified as infected (~ 3 %) and with a > 0.265 nearly all cells were identified as infected (~ 98 %). An a
value of 0.265 is thus the correct parameter value of this measurement. The other cutoff values of 0.1 and
0.4 led to an overestimation and underestimation of fraction of infected cells, respectively. Fig. S4H shows
the effect of the three different intensity cutoff values on the automatic determination of the infected
fraction, which is plotted against the manually determined infected fraction. All cutoff values showed a high
correlation (R? > 0.94) but also the expected overestimation of infection (11.3 %) in case of a = 0.1 and the
underestimation (-4.5 %) for a = 0.4. The intensity cutoff a should therefore be chosen very carefully and
evaluated throughout the analysis process in order to avoid a bias of the automatically determined fraction
of infected cells. However, Fig. S41 shows that the inhibitory effect can still be resolved (if present), even if
slightly inappropriate intensity cutoff values are used. When the intensity cutoff a was too low (0.1, blue)
some uninfected cells were misclassified as infected, as seen in the mean infected fraction of cells without
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virus infection. We attribute this to low, but in this case important, changes in autofluorescence and

background, shifting the logio intensity histogram slightly but above the intensity cutoff of 0.1. However, this
artifact was obvious and if recognized either the intensity cutoff should be increased generally or the
images which lead to this artifact should be analyzed separately with an increased intensity cutoff or be
excluded from further analysis.

S5 Automatic parameter estimation

In addition to the manual selection and optimization of the analysis parameters, there is also the option to
use automatically estimated analysis parameters. Fig. S5A shows the analysis parameters dialog box with
the checked option “use automatic parameters”. If this option is chosen, the three analysis parameters are
estimated by the equations (2) — (4). These estimations are based on standard values which were found
matching for many widefield and confocal images and are additionally scaled with the intensity distribution
of the current image to be analyzed. While this automatic option performed well in most of the cases
presented here, the general performance of the automatically estimated parameters cannot be guaranteed
and depends on the particulars of the experiment.

The automatic background intensity threshold Bauwo iS estimated by the equation:

Bauto = 5+ mean(lntnucﬂ‘luo < 10) (2)

so that there is at least a background intensity threshold of five, with the mean intensity of the pixels with an
intensity of ten or less (of the image with the saturated nuclei and the added fluorescence, Fig. S1F) added
to it. The range of this estimation for the cases tested was between ~ 5 and ~ 15.
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The automatic segmentation sensitivity wauw is estimated by

w auto — 05 + >0 (3)

mean (Intnur:+fluo) .

This equation follows the idea that the presence of more, and presumably, dense nuclei in the image leads
to a higher mean intensity and hence requires a more sensitive segmentation. The range of this estimation
was between ~ 0.5 and ~ 5.5 for the cases tested.

The automatic intensity cutoff parameter dauo is estimated by

Qauto = 10810(1 + mean(Intsy, < 5)). (4)

In this case, the intensity cutoff parameter scales directly with the background fluorescence from the
fluorescence reporter channel (without nuclei signal), estimated by the mean intensity of all pixels with an
intensity of 5 or lower. The range of this estimated parameter was between 0.2 and 1.1 for most images
tested. Figure S5B and C show an example of the scaling of the automatic intensity cutoff parameter Qauto.
Two images from the same experiment performed under the same imaging conditions, showed different
grades of background intensity (Fig. S5B: Logio intensity of the non-fluorescent population at ~ 0.15. Fig.
S5C: non-fluorescent population at ~ 0.3.) The automatically estimated intensity cutoff (aau) Scales
accordingly and is shifted from ~ 0.4 in Fig. S5B to ~ 0.55 in Figure S5C.

As validation of the estimation quality, the widefield cell mixing image series (Supplemental Materials
Section S9) was analyzed with automatically and manually chosen parameters and the analysis results
showed a high correlation (R? = 0.99 for validation images obtained using widefield microscopy, see Fig.
S5D; R? = 0.98 for validation images obtained using confocal microscopy). This shows, that the
automatically estimated analysis parameters can be used for both widefield and confocal images.
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Figure S5: Overview of the option for automatically estimated analysis parameters. Panel A shows the analysis
parameter dialog box with the selected checkbox “use automatic parameters”. Panel B and C show the logio intensity
histograms of two images. One having a non-fluorescent population around 0.15 (B), leading to an automatically
estimated intensity cutoff (aauto) of ~ 0.4. The other histogram (C) has its non-fluorescent population shifted to ~ 0.3,
which is accounted by an automatic shift of the intensity cutoff (aauto) to ~ 0.55. If this shift would not have been
regarded in C, a significant fraction of the non-fluorescent population would have been misclassified as fluorescent.
Panel D shows that the fractions of fluorescent cells, which were determined using manually and automatically chosen
analysis parameters, show an excellent correlation (R? = 0.99, slope = 0.96).
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S6 Image analysis software overview
Table S1: Overview of the cited image analysis software (6-12). In columns 1 to 4, the short name of the software as
well as the first author, the journal and the year of publication are given, respectively. Column 5 (Source(s)) lists the
additional programs/software packages needed to run the analysis software. Column 6 (Scope and properties) gives a
brief description of the software specialties. Columns 7 to 10 indicate whether the software is suitable for 2D, 3D, time-
lapse and batch processing.

Method
short Author Journal Year Source(s) Scope and properties 2D 3D time batch
name
SCFQ Kerkhoff et MethodsX, this 2022 Fiji High-throughput single-cell fluorescence quantification (SCFQ) of X X
al. work 2D images of cell monolayers applicable for varying cell density (up
to confluence) and fluorescence distribution. Watershed-based
nuclei segmentation. Three analysis parameters must be chosen
with the option for an automatic parameter estimation.
PiQSARS Lévy et al. MethodsX 2020 Fiji, Time-lapse focused fluorescence microscopy analysis. Performs X X X
RStudio, best at relatively low cell densities of 300 — 500 cells per cm?.
MATLAB
FNMM Peterson et Software 2020 Fiji Quantification of nuclei area with and without colocalization with X
al. Impacts fluorescence signal. Two analysis parameters (2x threshold) are
needed. Performs best at relatively low cell densities.
HASCIA Chumakova Cytometry 2019 Imagel, Quantitative assessment of protein expression with single-cell X X
etal. Part A Fiji, R, resolution. Processing in Imagel, data analysis in web application.
Shiny Fluorescence assessment is based on nuclei mask. Shading images
needed for every microscope/camera setup. Six analysis
parameters must be chosen (2x threshold, 2x size, 2x circularity).
QuantlF Handala et al. Viruses 2019 Imagel Counting nuclei with and without colocalization with fluorescence X X
signal. No quantification of fluorescence intensity. Three threshold
parameters must be chosen.
Cytokit Czech et al. BMC 2019 Python Collection of open-source tools for quantifying and analyzing X X
Bioinformatics properties of individual cells in large fluorescent microscopy
datasets with spatial information.
Infection Culley et al. Viruses 2016 Image) Voronoi based nuclei segmentation and fluorescence X
Counter measurement to quantify infection status. Validated in infection
fraction range up to 10 % infected cells.
FluoQ Steinet al. ACS Chemical 2013 Imagel, R Multiparameter fluorescence image analysis applied to oscillatory X X X

Biology events with subsequent statistical analysis of measured
parameters in R. Only few input parameters needed. Cell
segmentation not based on nuclei staining but on fluorescence

reporter.
S7 Macro-script
S8 Video tutorial
S9 Widefield cell mixing image series
References
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4.2 Bridging cellular- and nanoscale: Accurate quantification of clustered nano-

particles on monolayered confocal imaged cells

Yannic Kerkhoff, Chuanxiong Nie, Stefanie Wedepohl, and Katharina Hugentobler
In manuscript.
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Short summary

In this work a method was developed for single-cell segmentation of confocal imaged monolayered cells,
with subsequent quantification of single-nanoparticles bound to the cell surface (Figure 21). An early
version of this method was used to quantify the binding of SARS-CoV-2 on Vero E6 cells, showing that
negatively charged polysulfates can inhibit binding and uptake of the virus particles [169],
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Figure 21: Confocal imaged monolayered cells (a) were segmented (b) and the intensity of surface bound sub-
diffractive fluorescent nanoparticles (c + d) was quantified. Distinct intensity peaks (e) could be correlated with the
number of clustered nanoparticles (f) allowing for quantification of nanoparticle binding with single-cell resolution
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Bridging cellular- and nanoscale: Accurate
quantification of clustered nanoparticles on

monolayered confocal imaged cells

Yannic Kerkhoff,*2 Chuanxiong Nie,? Stefanie Wedepohl?, and Katharina Hugentobler2

aFreie Universitét Berlin, Institute of Chemistry and Biochemistry, Berlin, Germany

Abstract

Interactions between biological nanoparticles and cells are fundamental natural processes, ranging
from intracellular vesicle transport and infection of cells by viruses to treatment of diseases by medical
nanocarriers. Studying the binding and internalization of fluorescent nanoparticles by cells is
challenging due to the size differences between the nanometer-sized particles and cells. While
nanometer-sized particles range below the ~ 200 nm resolution limit of optical microscopy, cells are
typically several micrometers in size. Although it is possible to resolve individual nanoparticles using
high-resolution microscopy, these methods are limited by the small field of view and long acquisition
times compared to conventional optical microscopy techniques such as confocal laser scanning
microscopy. This makes it very difficult to detect and quantify cellular heterogeneity in terms of
nanoparticle interactions, as this requires a sample size of at least hundreds of cells. In this work, we
present an imaging and analysis approach based on confocal laser scanning microscopy with
subsequent intensity correlation, with the aim to bridge the gap between the cellular- and nanoscale.
We show that at a pixel size of about 400 nm, dozens of cells can be imaged, segmented, and
analyzed in parallel, and that the number of bound fluorescent nanoparticles per cell can be accurately
estimated using low-pass filtered local intensity maxima followed by intensity-agglomeration
correlation. Using simulated images of fluorescent nanoparticles with different densities and
resolutions, we demonstrate that the estimation accuracy is in the range of about 80 to 100 %, for
nanoparticle densities up to 3.4 particles per um2. We used this to quantify the total number of virus-
like particles with or without the SARS-CoV-2 spike protein bound to Vero E6 and A549 cells, showing
heterogeneities in binding between individual cells. We are confident that the workflow presented
here represents a valuable contribution to the quantification of nanoparticles based on optical

microscopy and will enable the systematic detection of cellular binding heterogeneities.

Keywords: Single-cell segmentation, fluorescent nanoparticle quantification, confocal image analysis,

intensity-agglomeration correlation, particle density simulations
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Introduction

Understanding the interactions of biological nanoparticles (NPs) and cells is very important [1], as they
occur in many native and artificial forms like cellular lipid vesicles for intracellular transport [2] [3],
medical nanocarriers for drug delivery [4] [5] [6] [7], or viruses [8] [9] [10]. Due to the small size of
nanoparticles (1 - 100 nm [11]) and their size difference to cells (i.e., a 60 uym sized cell is 600 times
larger than a 100 nm sized nanoparticle), imaging, quantifying, and localizing NPs with optical
microscopy is very challenging [12]. As the size of fluorescent nanoparticles is below the diffraction limit
of conventional optical microscopy methods (~ 200 nm in the lateral dimensions and 500 — 900 nm in
the axial dimensions [13] [14] [15], depending on the wavelength of the light and the numerical aperture
of the lens), NPs in vicinity cannot be resolved individually and prevent discrimination between single
particles and small agglomerates, which are likely to form in biological medium [16]. Several techniques
of high-resolution optical microscopy, like stimulated emission depletion microscopy (STED) [17],
photoactivated localization microscopy (PALM) [18], or stochastic optical reconstruction microscopy
(STORM) [19], and digital image restoration after confocal laser scanning microscopy (CLSM) [20] were
developed to tackle this challenge. However, it is known that cells in a cell population, be it tissue (in
vivo) or cells in a culture dish (in vitro), do not always behave in the same way. This cell-to-cell
heterogeneity [21] [22] is strongly influenced by the cell-cycle [23] but also based on epigenetics [24],
natural variation due to mutation [25], or the microenvironment of the cells [26]. To identify and probe
these cellular heterogeneities and identify rare events, it is important to yield data from many cells
(hundreds to thousands) in high throughput. The cellular heterogeneity also influences the binding and
internalization of nanoparticles [27] [28] [29], e.g., due to differences in membrane composition [30] [31]
[32] [33]. The use of high-resolution imaging to quantify NPs, however, strongly counteracts any high
throughput approach to identify and quantify the heterogenous cellular populations, as higher
resolutions means a smaller field of view and thus a smaller sample size of imaged cells. To circumvent
this, it is possible to image the cells with the nanoparticles at lower resolution and try to estimate the
number of fluorescent nanoparticles by their intensity signal [34] or using flow cytometry [35]. However,
this estimation is not always accurate [36] [37] and difficult to validate (manually or automatically) as the
nanoparticles are not resolved in the raw images. While there are already analysis methods available to
quantify the absolute number of fluorescent nanoparticles in cells [38] [39] [40], they often lack the high-

throughput or single-cell capabilities needed to resolve cellular heterogeneity.

To solve this problem, we present a CLSM-based imaging and analysis workflow where many cells are
imaged and segmented in parallel, and the number of fluorescent nanoparticles can precisely be
estimated by the fluorescence profile for each cell individually by the identification of local intensity
maxima and the subsequent use of a low-pass filter. The intensity-based estimated number of
fluorescent nanoparticles was validated by simulated synthetic images of nanoparticles, showing high
accuracies of 90 to 100 % for the tested conditions. This is of high relevance, as previous studies showed
that the number of NP events derived from optical microscopy is underestimated by a factor of ten when
compared with the total NP number received by transmission electron microscopy (TEM) [41]. We used
this method to quantify the cell-to-cell heterogeneity of virus-like particle (VLPs) binding to different cell

lines, which could in the future be used as a platform for virus-host interaction studies. All analysis steps
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are combined in a single Fiji [42] macro, allowing for the high-throughput identification and quantification
of cellular heterogeneity in nanoparticle binding with high precision. The VLPs and polystyrene beads
with a size of approximately 200 nm used in this work are intended to serve as a comparison to viruses,

which are generally considered as viral nanoparticles (VNPs) [43].
Experimental section

Sample preparation and imaging

Lipids soy phosphatidylcholine (PC), soy phosphatidylethanolamine (PE) and soy phosphatidylinositol
(PI; all lipids Avanti Polar Lipids, Alabaster, AL, USA) were stored as stock solutions in CHCIs. Lipids
were mixed in a PC:PE:Pl = 45:45:10 wt % ratio and 0.1 wt % Atto-565-dope (ATTO-Tec, Siegen,
Germany) was added. Lipids were then dried extensively (nitrogen flow and subsequent removal of
residual CHCIs on a membrane pump for > 1.5 h). The dried lipids were resuspended in HEPES buffer
(20 mM, pH 7.5, supplemented with 150 mM NaCl) to yield a final lipid concentration of 1.6 mg/ mL and
subjected to 4 cycles of vortexing, snap-freezing in liquid N2, and thawing in water at room temperature.

The preparation was stored at —20 °C until further use.

For the preparation of virus like particles (VLPs) the lipid preparation (45 uL) was thawed and loaded in
a mini extruder (Avanti Polar Lipids, Alabaster, AL, USA), and extruded 31x (200 nm Whatman PC filter).
The extruded lipids were mixed in an Eppendorf tube with 20 wt % cholate solution (0.54 pL), Spike-
protein solution (CUBE Biotech, Monheim, Germany, ¢ = 0.84 mg/mL; 4.19 pL), and HEPES buffer
(0.28 pL) to yield a protein-liposome mixture with a nominal concentration ratio of 20 Spike-proteins per
liposome. As a control, “empty” liposomes were generated by adding the corresponding amount of buffer
instead of protein. After overnight dialysis (14 kDa dialysis membrane) in 100 mL HEPES buffer,

liposomes were flash frozen and stored at -80°C until further use.

HEK293 cells (Leibnitz Institute DSMZ — German Collection of Microorganisms and Cell Cultures GmbH)
per well were seeded in full medium (DMEM (#9007.1, Roth) supplemented with 10 % FBS (#10270-
106, Thermo Fisher Scientific) and 1 % penicillin/streptomycin (P4333-100ML, Sigma Aldrich/Merck)
into a p-slide 8-well (ibidi; 300 uL/well at 4 x 105 cells/mL) slide and incubated over night at 37 °C and
5 % COs2. The next day, cell nuclei were stained with Hoechst 33342 (1 pg/mL in medium, Thermo Fisher
Scientific) for 10 min at 37 °C. The cell culture supernatant was replaced with fresh medium and cells
were imaged with a 63x objective (HC PL APO CS2 63x/1.40 OIL, FOV 184.52 ym x 184.52 ym) with
oil immersion on a Leica SP8 system based on a DMI6000CSB microscope equipped with diode (405
and 561 nm), argon (458, 488, and 514 nm) and a HeNe (633 nm) laser as well as two PMTs and two
HyDs (high sensitivity hybrid detectors). The LAS X software was used for image acquisition (channel
1: excitation 405 nm, emission 421-483 nm, HyD, channel 3: excitation 488, emission 500-550 nm,

PMT) of z-stacks of 41 images in 0.5 ym intervals.

For the binding of VLPs on different cells, Vero E6 and A549 cells were seeded into a p-slide 8-well
plate (ibidi; 200 uL/well, approx. 105 cells per well) and cultured for 2 days to form a confluent cell layer.
Afterwards, cells were washed with PBS and the cell nuclei were stained as described above. The cells
were fixed with 3.7 % formaldehyde for 10 min and blocked with 5 % BSA for 30 min. The VLPs were

diluted in 2.5 % BSA and incubated with the cells at RT for 45 min. Finally, the cells were washed with
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PBS 3 times and z-stacks of 5 to 14 images in 1 uym intervals images were taken with the image

acquisition presets for mCherry (excitation 552 nm, emission 559—789 nm, PMT).

For validation experiments, 200 nm sized fluorescent polystyrene beads (Thermo Fisher Scientific) were
imaged on glass with a Nikon fluorescence microscope with 100x objective (NA 1.45) with a pixel size
of 65 nm, using a dichroic filter set consisting of a 482 nm excitation filter (18 nm bandwidth), 495 nm

dichroic filter, and a 520 nm emission filter (28 nm bandwidth).

Results and discussion

Image processing steps

The basic image processing steps needed for parallel single-cell segmentation and single-nanoparticle
quantification are shown in Figure 1. First, the z-stack of the channel containing the nuclei staining
(Figure 1a) is converted to a 2D image, by accumulating the intensity of all images (Figure 1b). The 2D
image is duplicated and the nuclei are prepared for analysis by applying a Gaussian filter with a radius
of 5 pixels (both images) to smooth the intensity profile. For one of the duplicated images, 35 % of all
pixels are saturated, revealing the autofluorescence of the cells which allows for an estimation of the
outline of the cell bodies (Figure 1c). Both images are merged, the background intensity is thresholded,
and the local maxima are identified (Figure 1d). The local maxima (corresponding to the nuclei) are used
as seeds in a watershed-segmentation [44] [45] and thus represent the centers of the cells to be
segmented. The thresholded background is excluded from segmentation. The resulting segmented
objects (Figure 1e) are a good approximation for the cells and are used to generate the region of

interests (ROIs) for the analysis of the nanoparticles.

image stack: b flatten: 2x intensity saturation: d mask: merge + threshold

nuclei fluorescence accumulated intensity nuclei and autofluorescence ™" background + find maxima ewatershed segmentation

n =26 cells

f image stack: flatten: accumulated spot identification: i intensity integration: H intensity peaks:
nanoparticle fluorescence or maximal intensit find local maxima mean filter r = 1 pixel particle clustering

spot intensity

Figure 1: Image processing steps for parallel single-cell segmentation (a-e) and single-nanoparticle quantification (f-j). The
intensity of all images of the nuclei channel (a) is accumulated and converted to one 2D image (b). The 2D image is duplicated
allowing for intensity saturation for the nuclei and the autofluorescence of the cell body (c). The images of the nuclei and the cell
bodies are merged, the background is thresholded and the local maxima are identified (d) allowing for a seeded watershed-
based segmentation (e). The intensity of all images of the fluorescent nanoparticles (f) is transformed into a 2D image (g). The
local maxima are identified (h) and a mean filter with a radius of 1 pixel is applied (i). The intensity histogram of the filtered
maxima reveals distinct peaks if particle clustering is occurrent (j).
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Analogous to the nuclei channel, also the channel containing the fluorescent nanoparticles (Figure 1f)
is flattened (Figure 1g). Here, it is recommended to use the maximal intensity for each pixel position of
the stack. If the intensity of the nanoparticles on the stacks is saturated, the intensity of each pixel
position is summarized in a 32-bit format and then reconverted to a 16-bit format to remove the
saturation. The ROlIs of the cell bodies derived from the single-cell segmentation are overlayed with the
flattened nanoparticle image which allows for the identification of the local intensity maxima (Figure 1h)
for each cell individually. Subsequently, a mean filter with a radius of 1 pixel is applied (Figure 1i) acting
as a low-pass filter [46]. This is done to account for the intensity of the pixels surrounding the original
local maxima, which reduces pixelation artifacts in the intensity profile. The intensity of each local
maximum after mean filtering is assessed and plotted as a histogram (Figure 1j). If clustered
nanoparticles (more than one NP per pixel) are present, distinct peaks are revealed in this step. The
first peak of the resulting histogram represents the population with the lowest intensity. This may be
either the background intensity (if present), or the intensity of local maxima containing a single
fluorescent nanoparticle, or alternatively the smallest cluster (e.g., agglomeration of 2 NPs) present in
the images. The distance (intensity-wise) of the peaks should be consistent and in the range of the of
intensity of the center of the first peak. While the nanoparticle aggregates cannot be resolved in the
images, a precise estimation of the number of nanoparticles present in the sample is obtained after low
pass filtering. All analysis steps are automated and wrapped up in a Fiji macro, allowing for high-
throughput analysis.

Validation of intensity peaks

The assumption that the peaks in the intensity histogram represent the cluster sizes of multiple sub-
diffractive nanoparticles within a single pixel was validated in the following. Imaging of 200 nm sized
fluorescent polystyrene beads with a pixel size of 65 nm allows for a manual identification and counting
of nanoparticles. The beads which are mostly individually present, sometimes form small aggregates
with sizes of two to six beads. To use this for validation of the intensity peaks, the images were binned
to an effective pixel size of 390 nm (Figure 2a), which is close to the used confocal image pixel size of
180 to 360 nm. This leads to images with a resolution in the typical range for CLSM. The local maxima
of the binned images were identified and the image was mean filtered (Figure 2b) as previously
described. The intensity histogram (Figure 2c) showed distinct peaks, where the first peak has its center
at an intensity of 10 a.u., with subsequent peaks approximately every 10 a.u. of intensity. This shows
that the local intensity maximum of a single bead after mean filtering is about 10 arbitrary units. The
number of beads per spot (local intensity maxima) was estimated and plotted against the intensity of the
peak centers (Figure 2d), showing a linear correlation with a slope of 8.4+0.2 a.u. and an R? of 0.99.
This prediction of the number of beads per spot by intensity analysis, was tested by extracting the
intensity of local maxima from a crop of the binned bead image (390 nm pixel size, Figure 2e) and
manual inspection and comparison with the same region of the original image (65 nm pixel size, Figure
2f). The binned and filtered image crop showed six intensity spots with intensites of 11 to 12, implying
the presence of single fluorescent beads, one spot with a local intensity maximum of 21, implying two
clustered beads, and one spot with a local maximum of 50 a.u., implying five to six clustered beads.
Manual inspection of the unbinned image, confirmed that the intensity-based prediction of the number

of clustered beads was correct.
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a  pixel size =390 nm

spot intensity (a.u.)
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Figure 2: Validation of the intensity correlation by 200 nm sized fluorescent polystyrene beads on glass, imaged with a pixel size
of 65 nm. Images of fluorescent beads with a pixel size of 65 nm were binned to an effective pixel size of 390 nm (a), making
them comparable to the resolution of confocal images. The application of the mean filter with a radius of 1 pixel (b) reduces the
intensity variance of the point-spread function (PSF) of the beads. The histogram (c) of the intensity of the mean filtered beads of
panel b shows overlapping peaks (Gaussian fits for four peaks and arrows with intensity). The first peak with an intensity of 10
a.u. is estimated to represent single beads in one pixel. For each peak, the number of underlaying clustered nanoparticles is
estimated and plotted against the intensity of the peak centers (d), showing a linear correlation (slope = 8.4+0.2 a.u., R2 = 0.99).
The intensity of the local maxima of mean filtered beads is represented in panel e. Six local maxima with an intensity of 11 to 12
a.u. are present, as well as one maximum with 21 a.u. and one with 50 a.u. respectively. The same region of e is shown in panel
f with the original pixel size of 65 nm, allowing for manual identification and counting of the beads number n, showing the presence
of six single beads, one cluster of two beads and one cluster of five to six beads, as implied by the intensity analysis of panels d
and e.

Intensity correlation for nanobead- and VLP-clusters on cells

200 nm sized fluorescent polystyrene beads were incubated on HEK293 cells and imaged using CLSM
(Figure 3a) to test whether the observed intensity peaks and the linear correlation of intensity and
estimated cluster-size of the validation experiments are still valid for z-stacks in a cellular environment.
Manual inspection revealed the presence of many aggregates and an x,z-projection showed that the
beads covered the cell bodies (Figure 3a, arrow 2). The prominent bead aggregates of the image are
also represented in the intensity histogram by nine distinct peaks (Figure 3b). The first peak center is
located at an intensity of about 22 a.u., with subsequent peaks in approximately 11 a.u. steps, which
indicates that the first peak already represents clusters of two beads. This is also supported by the linear
correlation of the estimated number of beads per spot and the peak center intensity (Figure 3c) as the
fit has a slope of 10.4 £ 0.1. The images of the VLPs incubated on Vero E6 cells (Figure 3d) are similar
to the ones of beads on HEK cells, however due to blocking of unspecific binding, the VLPs are only
covering the cell membrane, but not the glass surface. A line was placed on the x,y-projection of the
image, crossing four cells, where three cells (1, 3, 4) showed many bound VLPs, but one cell (2) showed
nearly none, which can also be seen in the x,z-projection. The intensity histogram of the spots (Figure

3e) shows four peaks, each separated by about 22 a.u. of intensity, which is also supported by a linear
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correlation (slope = 17.4+0.8) of the estimated number of VLPs per spot and the peak center intensity
(Figure 3f). The slope of the linear fit was later used to calculate the number of underlaying fluorescent

nanoparticles based on the intensity of the detected spots.

d 200 nm sized amine-functionalized d 200 nm sized ATTO 565-DOPE labelled spike-
fluor: protein bearing liposomes (VLPs) on Vero E6 cells

escent

polystyrene beads on HEK cells

X

spot intensity (a.u.) O

spot intensity (a.u.)™=iy

spot intensity

spot intensity

H H H 1 H B 1 ; 7 p
number of beads per spot number of VLPs per spot

Figure 3: The correlation of intensity with nanoparticle cluster size was performed for polystyrene beads on HEK cells (180 nm
pixel size) and VLPs on Vero E6 cells (360 nm pixel size). The amine-functionalized beads showed an unspecific adherence on
the cover glass (a, arrow 1) and on the cell membrane (a, arrow 2), as well as a high degree of aggregation. The intensity histogram
of the beads (b) showed many distinct peaks, confirming the presence of many bead clusters of different sizes. Plotting of the
estimated number of beads per spot and the intensity of their corresponding peak centers, showed a linear correlation (slope =
10.4 £ 0.1, R2=0.99). The ATTO-labelled VLPs showed binding to the cell membrane (d, cells 1, 3, 4) but no binding to the glass
surface. Interestingly, the cells showed a high degree of heterogeneity regarding the amount of bound VLPs, where some cells
had only very few VLPs bound to them (d, cell 2). Similar to panels b and c, the intensity histogram showed distinct peaks (e) and
a linear correlation (f) of the estimated number of VLPs per spot and spot intensity (slope = 17.4 + 0.8, R = 0.99).

Resolution and density dependent particle quantification accuracy

To test the accuracy of intensity correlation-based particle estimation, synthetic images containing
different densities of fluorescent nanoparticles (0.2, 1.1, 3.4, and 5.6 NPs/um?2) were simulated (Figure
4a) and analyzed with the method presented in this work. The synthetic images were 1028x1028 pixels
in size with a pixel size of 65 nm. The images contained 1000, 5000, 15000, and 25000 simulated NPs
(half-maximum PSF width of 320 nm) respectively and were binned 10 times in 65 nm intervals to assess
the NP estimation accuracy for four densities and eleven resolutions. The estimated number of NPs for
each density and resolution was divided by the known input number of simulated NPs (Figure 4b). For
a density of 0.2 NPs/um? the mean ratio is about 108 +4 %, with a slight tendency towards
overestimation with increasing pixel size. At 65 nm pixel size the estimation accuracy is 100 % while at
a pixel size of 650 nm it is increased to 113 %.
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Figure 4: Simulation and analysis of fluorescent nanoparticles at different densities and resolutions (scale bars = 5 pm). Images
with different densities of nanoparticles (0.2 to 5.6 particles per ym?) were simulated and binned to pixel sizes of 65 to 650 nm in
65 nm intervals (a). The images were analyzed, and the ratio of estimated particles compared to the simulated ground truth was
plotted for each pixel size (b). The ratio for the two lower densities is around 100 % with a light tendency for overestimation. The
estimated ratio of the higher densities is 60 and 90 % until pixel sizes of 455 nm are exceeded.
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For a density of 1.1 NPs/um?2 the overall estimation ratio for all pixel sizes is 99 + 4 %. In this case
however, there is a local maximum of 106 % at a pixel size of 325 nm, while at 65 and 650 nm there are
underestimations with 94 and 98 % respectively. Despite these minor deviations from the known number
of simulated particles, the simulation shows that for all pixel sizes the estimated number of particles is
valid for densities up to 1.1 NPs/um?2. For higher densities (3.4 to 5.6 NPs/um?) the estimation accuracy
drops dramatically and shows a more complex dependency on the resolution. For a density of 3.4
NPs/um? with pixel sizes up to 455 nm, the estimation ratio is about 80 + 6 %, showing that there is a
general underestimation due to the high particle density. For lower resolution, the ratio decreases further
until 46 % at a pixel size of 650 nm. This trend is also present for a density of 5.6 NPs/um?2. For pixel
sizes up to 455 nm the particle number is underestimated with a ratio of 60 + 4 %, with further reduction
down to 31 % at a pixel size of 650 nm.

The simulation experiment of Figure 4 gives a good impression of the accuracy and the limits of the sub-
diffractive nanoparticle estimation method presented here. The simulation implicates that at low particle
densities (up to 1.1 NPs/um?) the pixel size can be extended beyond 650 nm to enlarge the confocal
imaged field of view and get a higher number of imaged cells (and thus stronger statistics), while
maintaining the capability of a highly accurate estimation of the nanoparticles bound to the cells. At
relatively high densities (3.4 NPs/um?2 and beyond) the pixel size should not exceed 455 nm, and that
the number of estimated particles is likely underestimated by 20 to 40 %. This calls for careful

interpretation of data gained/obtained under these conditions / with these parameter settings.

Heterogenous binding of VLPs on Vero E6 and A549 cells

As a proof of concept, the method of parallel single-cell and single-nanoparticle quantification presented

in this work was eventually used to quantify the heterogenous binding of VLPs on Vero E6 and A549

cells (Figure 5). Fluorescent VLPs with and without the reconstituted SARS-CoV-2 spike-protein were

incubated on Vero E6 and A549 cells in different concentrations (1, 0.1, 0.01 nM lipid content). Vero E6
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cells are very accessible for viral infection [47] [48] [49] as they abundantly express the angiotensin-
converting enzyme 2 (ACE2) receptor [50] which also mediates the cell entry of SARS-CoV-2 [51]. This
leads to a specific binding of the spike-protein bearing VLPs (Figure 5a). At a lipid content of 1 nM of
the spike-protein bearing VLPs, the median of bound particles per cells is 260. When the amount of
incubated VLPs was reduced to 0.1 nM, the median of bound particles was also reduced approximately
by a factor of about ten to 21 VLPs/cell which shows that the binding is concentration dependent. This
trend continues to the lowest concentration of 0.01 nM, where the median was further reduced to 4. This
is close to the number of detected particles in the control (median at 2 particles/cell) where no VLPs
were incubated and thus only unspecific autofluorescence and noise events are identified. There is no
concentration dependent trend in bound VLPs per cell visible when the VLPs were not bearing the
SARS-CoV-2 spike-protein, which shows that the binding events at concentrations of 1 and 0.1 nM are
specific and mediated by the spike-protein. While the concentration dependent binding of the VLPs is
also present for A549 cells, there is no difference in the amount of bound VLPs with or without spike
protein. This means that the binding events detected here are not specifically mediated by the spike-

protein but other effects like lipid-lipid interactions of the cell membrane and the VLPs [52].
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Figure 5: Quantification of VLPs with or without the SARS-CoV-2 spike protein to Vero E6 and A549 cells (scale bars = 30 ym)..
The number of bound VLPs per cell are represented as violin plots (black) with the median is shown in red with the 25,75 percentile
and 10,90 whiskers as box plots (white). Cellular populations are indicated by black arrows in the violin plots. The total number of
analyzed cells per condition is shown in blue near the top of the violin plots The number of VLPs bearing the spike-protein show
a concentration dependent binding to the Vero E6 cells (a, top) while this effect is not present for VLPs without the protein. The
distribution of bound VLPs per cell is relatively broad, which is also seen by the cell-to-cell heterogeneity of VLP binding in the
microscopy images (a, bottom). For the A549 cells, the concentration dependent number of bound VLPs (b, top) is much less
prominent compared to Vero E6 cells, and there seems to be no difference between VLPs with and without the spike protein.
However, cell-to-cell heterogeneity in the number of bound VLPs is still present and represented in the plots as well as in the
images (b, bottom).

The accuracy of these analyses can be assessed by the results of the simulation described earlier
(Figure 4b). The pixel size of the cell images is 360 nm, which is close to the simulated images with a
binning of 6 (390 nm). The area of the analyzed cells varies between approximately 625 um? for small

cells (e.g., shortly after division) and 2500 um? for big cells (e.g., shortly before division). The maximal
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detected number of VLPs per cell was 1866, for the sample of the spike-protein bearing VLPs at a
concentration of 1 nM on Vero E6 cells. This leads to a maximal particle density between 3.0 and 0.7
particles per cell. The simulation results for these densities at a pixel size of about 390 nm imply that
the ratio of the number of estimated and real particles is in the range of 90 to 105 %. At the particle
densities tested in Figure 5, no strong biases due to resolution or density are expected. The light
overestimation at low densities additionally helps to explain the presence of the few particles in the

control measurements which were detected additionally to events based on noise and autofluorescence.

The comparison of the median of bound VLPs per cell for all samples confirms that the binding of VLPs
is specific for Vero E6 cells and mediated by the presence SARS-CoV-2 spike-protein, consistent with
literature [51]. However, the true strength of the method proposed in the present work is the ability to
generate single-cell information on particle binding, which allows for the assessment of cell-to-cell
heterogeneity, as shown by the presence of local maxima in the violin plots (Figure 5a) and the confocal
images (Figure 5b). As the heterogeneity of VLP binding is present in both cell lines and for VLPs with
and without the spike-protein, this effect does not seem to be a specific property of the spike-protein but
of the cells. The reason for this is yet unknown, as the effect seems to be independent of cell
morphology. The Vero E6 images of Figure 5a (bottom) for example show heterogeneity (e.g., cell 21
vs cell 17) in bound spike-protein bearing VLPs for confluent healthy cells, while the VLPs without spike
protein also show an extreme degree of heterogeneity for cell of inconspicuous morphology (cell 4, 5,
and 8) and cells that seem to be apoptotic or shortly before division (cell 7). For the A549 cells Figure
5a, bottom, for example, the spike-protein bearing VLPs show a high degree of binding heterogeneity

even for freshly divided cells (cell 24 and 26).

Conclusion

In summary, we presented an imaging and analysis approach to bridge the multicellular- and nanoscale,
using the correlation of intensities peaks and clustered nanoparticles of CLSM imaged cells. We showed
that the number sub-diffractive fluorescent nanoparticles can be precisely estimated from local intensity
profiles, even beyond pixel sizes of 400 nm, which allows for imaging of relatively large fields of view. It
is therefore possible to get single-cell results of bound nanoparticles for dozens of cells in parallel. This
allows for the probing of cell-to-cell heterogeneities. While super-resolution microscopy may yield more
accurate results (especially for extremely dense particles) than the method presented here, simulations
imply that accuracies of 90 to 100 % can be attained with our approach. The intensity-based particle
estimation of confocal imaged cells thus allows for high-throughput yet precise screening of cells, which
would not be possible with super-resolution microscopy. All analysis steps are implemented in a single
open-source Fiji-macro, making the screening of single-nanoparticle binding on single-cell level freely

available to the scientific community.
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Short summary

This work gives an overview of the analysis steps needed for two-dimensional single-particle tracking
experiments and offers refinement solutions for the assessment of the maximum linking distance to
ensure optimal tracking quality (Figure 22). This refined SPT was used to track CTxB on synthetic GM1-
containing POPC SLBs showing its pentameric GM1 binding valency (see Appendix 7.1.1 Multivalent
GM1 binding of choleratoxin subunit B) and to quantify the BMP2 induced immobilization of BMPR2 on
endothelia tip-cells [, It was also used to track IAVs binding on hybrid lipid bilayers ['"" containing red
blood cell membrane material (see Appendix 7.1.2 Hybrid lipid bilayer formation) and to track fluorescent
beads in a microfluidic setup allowing for single molecule force measurements (see Publications 4.4 A
new microfluidics-based force spectroscopy method applying lateral piconewton forces on single mole-

cules with sub-nanometer resolution in high-throughput).

a b detection e
image series & localization linking partlcletrajectory quality assessment

]

Figure 22: A recorded image series containing the PSFs of nanoparticles (a) can be analyzed by detection and
localization of the PSFs centers (b) and linking them frame-wise (c) yielding single-particle trajectories (d). The
quality of these single-particle tracks can then be assessed by evaluating the probability linking errors depending
on the square displacement distribution (e).
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ABSTRACT

In recent decades, single particle tracking (SPT) has been developed into a sophisticated analytical approach involving complex instruments
and data analysis schemes to extract information from time-resolved particle trajectories. Very often, mobility-related properties are extracted
from these particle trajectories, as they often contain information about local interactions experienced by the particles while moving through
the sample. This tutorial aims to provide a comprehensive overview about the accuracies that can be achieved when extracting mobility-related
properties from 2D particle trajectories and how these accuracies depend on experimental parameters. Proper interpretation of SPT data
requires an assessment of whether the obtained accuracies are sufficient to resolve the effect under investigation. This is demonstrated by
calculating mean square displacement curves that show an apparent super- or subdiffusive behavior due to poor measurement statistics instead
of the presence of true anomalous diffusion. Furthermore, the refinement of parameters involved in the design or analysis of SPT experiments
is discussed and an approach is proposed in which square displacement distributions are inspected to evaluate the quality of SPT data and to

extract information about the maximum distance over which particles should be tracked during the linking process.

Published under license by AVS. https://doi.org/10.1116/1.5140087

I. INTRODUCTION

In 1827, Robert Brown used optical microscopy to follow the
motion of single particles suspended in water, which exhibited
a random motion that was less pronounced for larger particles.’
Although current technologies offer far more sophisticated
approaches to perform and analyze such experiments, the basic
concept of using single particle tracking (SPT) is mainly unchanged
and relies on the use of microscopic approaches to track the motion
of single particles, allowing particle information to be extracted from
time-resolved trajectories. Nevertheless, technological developments
in recent decades allowed us to expand the scope of SPT enormously,
which is (in the context of life science) currently covering the range
between single molecules (nanometer scale) up to eukaryotic cells
(submillimeter scale) that move within tissue.”” Current instrumenta-
tion is sensitive enough to resolve single molecules, regardless of
whether the molecule is labeled with dyes or whether label-free detec-
tion schemes are used.”” The application of high-speed cameras cur-
rently enables tracking with microsecond temporal resolution.’
Advanced microscopy setups allow for imaging beyond the diffraction

limit or to obtain three-dimensional (3D) maps of cellular distribu-
tions within tissue and how these distributions change over time.””

In parallel to these instrumental developments, the analysis of
SPT experiments also experienced strong improvements. While
early experiments had to be tracked manually, a variety of different
software packages is now available, all of which allow for analyzing
SPT experiments in an automatic or semiautomatic fashion.’
Furthermore, sophisticated data analysis schemes were developed,
involving, for example, statistical inference, Markov modeling, or
Monte Carlo methods, in order to increase the accuracy and/or
reliability of extracting properties from particle trajectories.

Due to the high relevance in life sciences, a large number of
review articles are currently available,”'* each of which typically
focusses on a particular aspect of SPT. Nevertheless, recent modeling
of the SPT measurement process allowed for deriving limits for the
accuracy, with which mobility-related properties can be extracted
from SPT experiments. These works form a basis for refining the
parameters used when measuring, analyzing, and assessing the
quality of SPT experiments, yet a comprehensive overview of their
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main results is still lacking. It is, therefore, the aim of this tutorial to
briefly introduce the technical aspects of SPT, followed by a compre-
hensive overview of accuracies, with which particles can be localized
and their motion be quantified. Afterward, this tutorial will discuss
how distributions derived from SPT experiments can be used to
evaluate the quality of SPT data and provide guidance, and how
SPT experiments and their analysis can be refined. All these consid-
erations will be restricted, as detailed in Sec. II, to tracking the
motion of nanometer-size particles that move within or close to two-
dimensional (2D) interfaces.

Il. TECHNICAL CONSIDERATIONS

A. Typical examples of systems of interest
(of this tutorial)

Particle tracking has been successfully applied to a variety of dif-
ferent systems, ranging from tracking the 2D motion of single lipids
in well-defined, synthetic lipid bilayers up to the motion of cells
within entire 3D organoids and embryos.”'*>~'¥ Depending on the
complexity of the system of interest, different methodological
approaches are needed to perform the tracking experiment and to
analyze the obtained data.''>'"*' In order to provide a coherent
framework, this tutorial will focus on tracking experiments of single,
nanometer-sized molecules (such as lipids, proteins, etc.) and particles
[such as viruses, (proteo-)liposomes, exosomes, etc.] that move in or

A

single-molecule labelling:

fusion protein (GFP), chemical dye (quantum dot)
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at lipid membranes (such as supported or free standing lipid bilayers,
cell membranes, or membrane-coated nanochannels; Fig. 1).
Although this may appear as a strong limitation, this class of
SPT experiments allows us to investigate a large variety of biologi-
cally relevant questions, such as probing interactions arising between
membranes and (i) proteins (e.g., during signaling), (ii) viruses
(e.g., virus entry and egress), or (iii) particles (e.g., endocytosis, drug
delivery), to name a few examples.w’zz'28 This class includes, for
example, tracking the motion of single lipids and membrane proteins
(and complexes) [Fig. 1(a)], which have been incorporated into fully
synthetic (supported or freestanding) bilayers or expressed in the
plasma membrane of a living cell (Figs. 1(c) and 1(d)]. But it also
includes, for example, the tracking of viruses [Fig. 1(b)] that bind to
receptors or attachment factors incorporated in synthetic or native
lipid bilayers or that have been confined in nanometer-sized chan-
nels for certain analytical purposes [Fig. 1(e)]. Although these
(exemplary) systems differ notably in their properties on a molecular
scale, it will turn out that their motion can be assessed by conceptu-
ally similar measurement settings and analysis methods. Therefore,
in the following, we refer to tracking of nanoparticles in general,
regardless of whether the tracked object is a lipid, protein, or virus.

B. Instrumentation

Tracking the motion of nanoparticles with sufficient spatial
resolution typically relies on the application of high-magnification

B nanoparticle labelling:
vesicle (virus)
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FIG. 1. Schematic overview of typical systems investigated in 2D tracking of single nanoparticles, which can be either categorized based on the type of tracked nanoparti-
cle [(a) and (b)] or the experimental setting, in which its motion is recorded [(c)—(e)]: (a) membrane proteins, being labeled by fusion proteins (e.g., green fluorescent
protein (GFP) and red fluorescent protein (RFP)), organic dyes, or quantum dots; (b) fluorescently labeled supramolecular complexes, such as (proteo-)liposomes or
viruses interacting with (ligand- or receptor-containing) lipid bilayers. (c)-(e) The motion of such nanoparticles may be tracked at synthetic lipid bilayers (providing a well-
defined environment), at cell membranes (providing a native environment), or within nanochannels (confining the nanoparticle motion for analytical purposes).
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microscopes in order to image the nanoparticle positions in the
sample over time, leading to the recording of “particle tracking
movies” that allow for further data analysis.'*'>*’ In most cases,
fluorescence microscopes are used (Fig. 2), in which the nanoparti-
cles are labeled by a single or multiple dyes [cf. Figs. 1(a) and 1(b)]
and the microscope is operated so that only the (Stokes-shifted)
emission of the dye is recorded, yielding high contrasts between the
signal (dye) and the background (e.g., elastically scattered light). In
general, two different implementations are widely used, wide-field
[WEM; Fig. 2(a)] and confocal (laser scanning) microscopes
[CLSM; Fig. 2(b)], which mainly differ in the image generation.”

In wide-field microscopy, the objective is used to project the
image of the sample onto a camera, which in principle allows a
complete snapshot of the imaged sample to be obtained at once (in
contrast the CLSM in which the image is generated by a scanning
process). Typically, EMCCD (electron-multiplying charge-coupled
device) or sCMOS (scientific complementary metal oxide semicon-
ductor) cameras are used to digitalize the image. These camera
types differ in their photon conversion and readout electronics and
generate, therefore, different noise characteristics in the recorded
images.””’' EMCCD cameras are often superior for very dim (low
quantum efficiency) dyes that require very long exposure times
(>>100 ms), while sSCMOS cameras are often the better choice for
brighter dyes (moderate to large quantum efficiency) that can be
imaged with shorter exposure times. Both types of cameras can
track single (dye) molecules.”””

In contrast to WEM, the optical path of CLSMs is comple-
mented by a pinhole, which ensures that the sample is probed only

A wide-field fluorescence microscopy setup
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within a (diffraction-limited) spot.'"'* As the sample is imaged
point-wise, CLSMs are typically equipped with photon detectors
such as photoelectron multiplier tubes, avalanche photodetectors,
or the so-called hybrid detectors. To record (2D or 3D) spatially
resolved images, the spot is scanned over the sample, typically low-
ering the temporal resolution of CLSM in comparison to WFM.
The presence of the pinhole ensures that only light emitted within
a diffraction-limited spot contributes to the measured signal,
which effectively rejects photons being emitted outside of the focal
plane (lowering, for example, the background signal in extended
samples).'"'* Furthermore, the distance at which two nanoparticles
can still be unambiguously distinguished is decreased, thereby
increasing the lateral resolution in the recorded images. Therefore,
the use of WEM or CLSM may be advantageous, depending on the
scope of the measurement. Recording particle tracking movies
requiring large field of views and high temporal resolution typically
benefit from using WFM, while suppression of off-focus fluores-
cence (e.g., originating from dyes being out of the focal plane) or
the capability to probe the sample at different depths requires to
use a CLSM.

These optical setups can be complemented by additional com-
ponents yielding more complex settings that are able to improve
the measurement quality in certain measurement scenarios. For
motions or interactions that occur only at a certain plane in space
(e.g., viruses that interact with a supported lipid bilayer), the usage
of total internal reflection fluorescence microscopy (TIRFM) can
offer advantages.”” TIRFM can be applied if the refractive index of
the sample is lower than that of the mounting substrate, which is

B confocal fluorescence microscopy setup
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FIG. 2. Scheme of microscope setups commonly employed for 2D SPT: (a) WFM and (b) CLSM.
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fulfilled for most biological samples on glass substrates. In this
case, the excitation light path is changed in such a way that the
light hits the sample at the critical angle of total internal reflection
(TIR) and the excitation light will, therefore, show total internal
reflection at the substrate-sample interface. Although most of the
irradiated light will be reflected under TIR conditions, this process
also creates an evanescent wave at the interface, the intensity of
which decays exponentially with increasing distance from the inter-
face, limiting the excitation light to remain within close proximity to
the interface (typically ~100-200 nm).”* Hence, only dyes being close
to the interface will be excited, which improves the signal-to-noise
ratio (SNR) when probing processes occurring at interfaces.
Furthermore, recent developments rely on scattering instead
of fluorescence in order to track the motion of nanoparticles
without introducing dye-based labels.””*” In most of such imple-
mentations, the molecules of interest are labeled by optically dense
nanoparticles (e.g., gold nanoparticles) that strongly scatter the
incident light and can be either detected in a dark field configura-
tion (i.e., the labeling nanoparticles are illuminated perpendicular
to the readout light path) or by probing the backscattered light
(e.g., in the iSCAT configuration). As the labeling nanoparticle is
not bleached by the imaging process, it is possible to apply high
illumination intensities, offering very high temporal and spatial res-
olution in the tracking process.”" Nevertheless, as any label may
disturb the motion/interactions of the nanoparticle of interest,
current research increasingly focusses on label-free methods.™"”
Regardless of which optical setting and readout method are
used in such experiments, each microscope has its resolution limit,
below which two isolated nanoparticles cannot be unambiguously
resolved anymore. This means that it is a priori impossible to dis-
tinguish if a spot in the image is created by a single nanoparticle or
by multiple nanoparticles having separations below the resolution
limit.” For CLSMs, the lateral resolution limit can be estimated by

Ores ~= A/(2 - NA), (1)

with A denoting the wavelength of the light used and NA the
numerical aperture of the objective.” This typically yields resolu-
tions on the order of 200-250 nm for CLSMs, while slightly larger
values are observed for WEMs. The intensity distribution of single
nanoparticles on the detector can be approximated by’

ﬁ@(_u_%F+u—mP) .

Io
I(x, y) = ——
() 2no% 2 ok

PSF

Here, I, denotes the intensity of the nanoparticle, x, and y, its
center position in the image, opgr the spot size of the nanoparticle
(in the image), and I(x, y) the intensity at the position (x, y) that is
caused by the nanoparticle. For nanoparticles being much smaller
than oy, the nanoparticle spot size opgr is given by oy and is in
this case representative for the resolution limit of the microscope,
but not the true nanoparticle size anymore. This function is, there-
fore, often denoted as a point spread function (PSF), as it shows
how the intensity of a point emitter will be distributed in the
microscopic image. The optical resolution can be improved by
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more advanced measurement schemes (super-resolution micros-
copy) and values ranging between 50 and 100 nm are frequently
reported,” though much higher resolutions have been demonstrated
for dedicated systems."'

However, it should be emphasized that Eq. (1) indicates the
minimum distance, at which two nanoparticles can still be unam-
biguously distinguished in the image. This is not to be confused
with the question, how precise a single, isolated nanoparticle can
be localized within an image. We will show in Sec. IT C 2 that these
are two completely different questions and that localization accura-
cies on the nanometer scale are possible even for nanoparticle spot
sizes being on the order of multiple 100 nm.

C. General aspects of single particle tracking

After the motion of the nanoparticles has been captured, the
resulting image series must be further processed to obtain informa-
tion about the actual nanoparticle motion. Figure 3 shows on a
very conceptual level the three main steps involved in all single par-
ticle tracking analyses: Detection of the nanoparticles, localization
of the nanoparticle center positions, and linking the nanoparticles
across the frames of the recorded tracking movie. In the past, a
variety of different algorithms were proposed and implemented to
solve these tasks. Detailed information on the underlying concepts
and the performance of the different implementations are given in
a couple of recent reviews.”'“*>"* These studies have shown that
certain implementations offer advantages in certain experimental
settings and that there is no single implementation that performs
best in all possible settings. Therefore, these references can be used
as guidelines to decide which SPT implementation may be the best
choice for the system investigated, and we will give only a general
overview in Subsections IT C 1-IT C 3.

1. Detection

The analysis always starts with the detection of the nanoparti-
cles, which must be distinguished from the background signal. The
background is mainly generated by the detector’s readout noise and
by background fluorescence (e.g., off-focus dyes or autofluorescence
of the materials used) and can, therefore, contain random and sys-
tematic components. Different strategies have been proposed in the
past, including the usage of centroid algorithms (after threshold-
ing), difference of Gaussian filter segmenters, spatiotemporal filters,
or a search for local intensity maxima.”'* In order to differentiate
between noise and a true detection event, all these approaches typi-
cally require to define an intensity cutoff value, which has to be
exceeded by the event to be counted as a true event. Additionally,
most implementations also require an estimated value of the nano-
particle (spot) size, in order to differentiate if two closely separated
events belong to one and the same or to two independent nanopar-
ticles. Both parameters are commonly determined by visual inspec-
tion of the SPT movies. Certain algorithms may require additional
parameters, such as the time period (i.e., the number of frames)
used when applying temporal filters. Different detection strategies
can differ in their performance (e.g., positive/negative detection
rates, etc.) as comprehensively evaluated in Refs. 9 and 14. Such
differences are typically negligible for bright nanoparticles but can
become pronounced for dim ones.
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FIG. 3. Fundamental data analysis steps of 2D SPT: (a) Recording an image series at specific time intervals, containing the intensity distributions of the imaged nanoparti-
cles; (b) detecting the nanoparticles in each frame of the image series; (c) localizing nanoparticle center positions based on localizing the center of the respective intensity
distribution (typically yielding localization accuracies below the diffraction limit); (d) linking of nanoparticle center positions across consecutive time frames, yielding time-

dependent nanoparticle trajectories.

Choosing an appropriate intensity threshold value is often
challenging for nanoparticles with only few and/or dim dyes (low
quantum yield), having intensities that are often close to the back-
ground noise. For such dim nanoparticles, it is necessary to choose
a detection threshold being close to the background signal, which
may create a notable false detection rate. Even if this false detection
rate is as low as 0.003% (e.g., when choosing a threshold value
being 4 standard deviations above the average background signal),
this apparently small percentage can still end up in 50-500 falsely
detected events in each frame, as current sCMOS and CCD camera
sensors provide between 1 and 16 x 10° pixels. Hence, tracking very
dim nanoparticles often requires the introduction of additional
measures allowing to distinguish noise from true events, which can
be, for example, the quality when fitting the PSF function to the
detected spot.

This shows that the ratio of nanoparticle intensity to the
magnitude of intensity fluctuations (due to noise) is an important
property in the SPT analysis. This ratio is often denoted as SNR,

i
SNR = —>—, ©)

O noise

in which o is the standard deviation of all noise processes (i.e.,
Croise = Otack T Trhoton + - - - typically including the standard devi-
ation of the background noise of,, and the one of the photon
noise of the fluorescence emission crlzjhmon).4

2. Localization

The next step after detecting the particles of interest is the
determination of their center position in the image, a process that

is sometimes denoted as subpixel localization as it often provides
localization accuracies being below the size of a single pixel (and
therefore often even below the diffraction limit). This process is
sometimes included in the detection process, for example, in many
centroid algorithms, while other implementations provide a dedi-
cated subpixel localization step in order to improve the accuracy.
Over the past few decades, many approaches have been introduced,
including unweighted and weighted centroid algorithms, Gaussian
maximum-likelihood estimator (MLE) or least mean squares (LMS)
fitting applied to the nanoparticle intensity profiles and approaches
employing the radial symmetry or Fourier transformations,”
most of which have been evaluated in recent works.”' " These eval-
uations generally show that the localization error Ar, which is the
deviation between the true, (xo, yp), and the extracted position,
(x, ), according to Ar* = (x — x0)? + (y— yo)z, strongly depends
on the SNR. Thomson et al,"’ for example, calculated the average
localization error of Gaussian LMS fits to be

2 2 4 2
) _ Opsp T a°/12 n 870 psrOack @)
. = >
pos,LMS IO az Ig

with a denoting the size of a pixel in the image. A related, but
more general, equation is given by the Cramér-Rao lower bound
(CRLB), which reads for Gaussian intensity profiles,

o2q + a?/12 2.7
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EMCCD cameras).*”**

The CRLB is often regarded to indicate the lowest localization
error achievable for the particular experiment.”"® Evaluation of
localization approaches by analyzing synthetic SPT data (simulating
a random 2D motion of multiple nanoparticles in the presence of
well-defined noise sources) confirmed that most implementations
are able to reach the limit given by Eq. (5), except for centroid algo-
rithms that often yield a notably lower localization accuracy and
may provide a quick, first estimate of the nanoparticle center."”"”
Although Gaussian MLE, Gaussian LMS, and approaches employ-
ing radial symmetry or Fourier transformations are often compara-
ble in terms of localization accuracy, they differ significantly in
their processing speed, with Gaussian MLE and especially Gaussian
LMS being computationally more expensive than radial symmetry-
or Fourier-based approaches.”**”

In general, good fluorophores may yield on average as many
as 10° photons before they break down due to photobleaching.
Therefore, a single fluorophore can theoretically be tracked to a
precision of 65nm over 100 frames, or 20 nm over 10 frames, in
the absence of background noise. To optimize measurements for
single fluorophore localization and tracking, it is crucial to maxi-
mize the detected fluorescence and minimize the measurement
noise, i.e., to maximize the achieved SNR.*’ Higher accuracies can
be reached when tracking brighter nanoparticles, which are, for
example, labeled by multiple dyes. This allows us to yield localiza-
tion accuracies on the order of 10 nm over hundreds of frames.”’
The highest accuracies have been reported when using dye-labeled
beads or scattering approaches that are able to operate at very high
illumination intensities and yield localization accuracies on the
order of 1 nm.””"'

3. Linking

In order to extract the motion of single nanoparticles in the
form of trajectories, their center positions have to be linked
between adjacent frames of the tracking movie. This is a very criti-
cal step in the analysis, as errors done in the linking process can
have a high impact on the information that will be extracted after-
ward. Blinking of the dye, a drifting focal plane, and merging or
splitting of trajectories make a robust connection of particles in
successive frames challenging and thus numerous tracking algo-
rithms have been developed to tackle these challenges.” In general,
most linking algorithms connect nanoparticles across adjacent
frames by calculating for each nanoparticle the distances between
the “current” nanoparticle position and the one of all nanoparticles
of the subsequent frame.”” In the conceptually simplest implementa-
tion, nanoparticles would be linked across adjacent frames, which
show the lowest displacement between the frames, i.e., the algorithm
would identify a nanoparticle in the subsequent frame by identifying
the nanoparticle that has the smallest distance from the initial nano-
particle position. This straightforward (“nearest-neighbor linking”)
approach exhibits a good performance, if the nanoparticle movement
between adjacent frames is small in comparison to the average nano-
particle distance, ie., if the nanoparticle density is fairly low, but
creates a notable proportion of linking errors for high nanoparticle
densities (cf. Sec. IV ).
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Since it is not always possible to operate at low to moderate
nanoparticle densities, e.g., when tracking membrane proteins in
live cells, more complex linking algorithms have been developed
that optimize the linking process based on the application of
certain statistical measures or filters to the linking data. Examples
include nearest-neighbor linking in combination with local or global
optimization of the extracted nanoparticle displacement distribu-
tions, multiple hypothesis tracking, combinatorial optimization, or
the application of Kalman filtering.””>** Of particular interest for
tracking of dense nanoparticle distributions are approaches in which
nanoparticle detection and linking are iteratively coupled, such as
the implementation introduced by Sergé et al.”” In this work, a
detection and linking method suitable for high particle densities was
implemented, which involved the iterative deflation of detected
peaks in order to detect smaller (and otherwise hidden) peaks.
Successive linking, which includes local and past statistical informa-
tion of the trajectories, resolves possible conflicts due to very close
particles or blinking and allows us to study the diffusion of single
nanoparticles at very high densities. Such approaches can also
provide a more robust linking in comparison to nearest-neighbor
linking for nanoparticles that show pronounced directionality in
their motion, e.g., for viruses that are actively transported along the
plasma membrane or for biological nanoparticles moving on top of
bilayers or within nanochannels under the action of a shear flow.””*

Irrespective of the complexity of the linking algorithm used,
the user typically has to define at least a distance threshold, above
which a linking step is considered “unphysical” as the distance
between the nanoparticle positions (in adjacent frames) is consid-
ered to be too large to be achievable within the available time
period. This threshold is often chosen by visual inspection of the
extracted nanoparticle trajectories or estimated based on assump-
tions of the investigated system. If the nanoparticles perform a pre-
dominantly random motion, we will show in Sec. IV C how this
threshold can be extracted from experimental data.

I1l. ANALYSIS OF 2D SPT DATA

The overarching aim when tracking the motion of single nano-
particles is always to obtain information about certain nanoparticle
properties. Analysis of the nanoparticle trajectory typically allows us
to gain information about the type of the nanoparticle motion
(random versus directed, normal versus anomalous diffusion, mobility
within certain compartments), which will be the topic of Sec. IIT A
and 11 B. Additional information, such as the hydrodynamic size of
the nanoparticle, its loading with a certain compound, or its interac-
tion strength with the underlying bilayer membrane, can also be
extracted as illustrated in Secs. III B and I1I C.

As SPT provides information on single trajectories, all these
analysis schemes can, in principle, be performed on the level of
single nanoparticles, allowing us to extract the distribution of the
property of interest within the nanoparticle ensemble probed. It
should be stressed, however, that the value of a particular property
can only be extracted with a certain accuracy and that the achievable
accuracy can be very low for short trajectories. Hence, in SPT experi-
ments that yield rather short nanoparticle trajectories, an analysis of
the trajectories on the single nanoparticle level may be counterpro-
ductive, suggesting analysis schemes on the ensemble-averaged level.
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It is the scope of this section to introduce different single nanoparti-
cle and ensemble-averaged analysis schemes, to give the limits in the
achievable accuracies (if known), and to provide guidance when
choosing between analysis schemes.

A. Random motion of nanoparticles

The most obvious property to extract from a single trajectory
is the type of motion as nanoparticles can show different moving
behaviors at biointerphases. In the absence of a net force, their
motion is purely random, following either Brownian or anomalous
diffusion,'®>° while in the presence of a net force, a directed
motion can superimpose on this diffusion, leading to complex
motions combining deterministic and stochastic contributions.”

4. Publications
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1. General aspects of diffusion measurements

In the absence of net forces, the nanoparticles are expected
to perform a random motion [Fig. 4(a)], which can be quantified
in terms of the distance between the start and end point and
the average or maximum distance traveled from the start point.”®
For a random motion, in which the individual “steps”
(frame-to-frame displacements) are not correlated but random
events (Brownian motion), a mathematical treatment shows that
the calculation of the mean square displacement (MSD) allows us
to extract the diffusion coefficient D of this motion."””” By defini-
tion, the MSD of a particular track [x(t), y(t)] at a given lag time
At is calculated by first calculating the square displacements of
trajectory positions that are separated in time by Atf, eg,

A trajector B  different A displacements C MSD function
At=1AT Ar=3 AT %
\ .
Ar=2 AT = %
%
8
X X X
At
D types of MSD functions E MSD function (BD simulation) F
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superdiffusive —» rel. track length [%] 63 N=1000
Brownian 600 02
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£ =
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FIG. 4. MSD analysis of 2D SPT trajectories. Panel (a) shows a typical SPT trajectory (trace), for which the nanoparticle center positions have been marked for the first
seven frames (white crosses). Panel (b) shows the extraction of displacements for four different lag times (Af) ranging between At= AT and At=4AT for the first seven
frames (t=0 to t=6AT). (c) For each lag time, several displacements can be extracted, allowing to calculate a MSD in dependence of the lag time At, yielding for this
exemplary curve to a linear MSD(A?) function. (d) Such linear MSD functions (black) are indicative for a random (Brownian) motion. In practice, deviations from this linear
relationship can be observed. The corresponding nanoparticles are then denoted to be superdiffusive, subdiffusive, or confined nanoparticles (as indicated by the arrows).
It should be noted, however, that resolving these different types of MSD functions requires sufficient measurement statistics. This is demonstrated in panel (), which
shows MSD functions that have been extracted from simulated SPT trajectories, i.e., for trajectories that have been generated by a Brownian dynamics simulation, treating
the nanoparticles as perfect random walkers (D =1 ymzls, N=1500 frames, AT =0.2's). When analyzing MSD functions on the level of single trajectories (black lines), the
mean square displacements can only be extracted within a certain accuracy [given by Egs. (8) and (10) in the main text], which typically decreases with increasing lag
time [see also panel (f)]. This is reflected by deviations from the linear increase, yielding apparent sub- or superdiffusive behavior for lag times exceeding 10% of the total
trajectory length, although all simulated nanoparticles are perfect random walkers. Lag times exceeding this threshold can be extracted by switching the analysis from the
single trajectory level (black traces) to the ensemble level [gray trace with errorbars indicating average value and standard deviation of the MSD(A{) values of all simulated
trajectories], restoring the linear increase in MSD(A!). () Accuracy in the extraction of diffusion coefficients D for trajectories covering N=1000 frames and using lag times
up 0 Atax = Np - AT. Shown are the results of Eq. (8) (dashed line) and Eq. (10) (solid lines) for different values of the normalized localization accuracy &.
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SD = (x(t + At) — x(1))* + (y(t + At) — y(t))z, followed by calcu-
lating the average value of all obtained square displacements (SD).
For an ideal 2D Brownian motion, the MSD function increases
linearly with At according to

MSD(At) =< SD(At) >=4-D- At (6)

allowing to extract the diffusion coefficient D from the slope of
the MSD(At) function [Figs. 4(b) and 4(c)].””"" In practice, devia-
tions from this linear behavior have been observed and a motion
is denoted to follow anomalous diffusion if the MSD function
shows a nonlinear dependence of At."” For example, motion con-
fined within a certain area and subdiffusive motion create MSD
functions that scale weaker than linear with At, while the presence
of directed components in the motion create a scaling that is
stronger than linear [Fig. 4(d)]. Hence, the inspection of the MSD
function enables us to characterize the mode of motion of the cor-
responding object by inspection of the resulting MSD(Af) curve."’
The observation of anomalous diffusion of nanoparticles is
intriguing and connected with the hope to learn more about the
interactions experienced by the nanoparticle. It can be explained
by obstruction and binding regarding the effect of initial condi-
tions, energy barriers, and escape probabilities on lateral diffu-
sion. Also, the diffusion can be dependent on the molecules
position in the cell due to heterogeneities on the local cell diffu-
sivities. This leads to effects like population splitting into fast and
slow diffusers as well as trapping based on the initial position of
the particles.”

We will now discuss how MSD functions can be extracted
from single trajectories and which accuracy can be achieved when
extracting diffusion coefficients from such MSD functions. In
practice, MSD functions are often extracted by calculating the
displacements of all data pairs that are separated by At,

LR S -
MSD(A!) = D (aeli) = x(i = Np))* + (i) — y(i — Np))%,
~ P i=14N,
@)
a procedure that is often denoted as internal averaging.”””® In

Eq. (7), the trajectory (covering N frames) has been parameterized
via the frame number i and the lag time At is evaluated at multi-
ples of time interval AT between two subsequent frames,
At = N, - AT. Hence, the parameter N, corresponds to a lag
“time” in terms of a frame displacement, with the lowest possible
lag time, At = AT, being achieved for N, = 1 (and the largest one
for N, = N). This procedure allows for obtaining good estimates
for the MSD function for short lag times (N, < N), but suffers
from the fact that for large lag times, the calculated displacements
become statistically increasingly correlated, causing apparent devi-
ations from Eq. (6) even for Brownian motion.”® The accuracy in
the determination of D in the absence of localization noise (i.e.,
for ultimate accuracy in the determination of the nanoparticle’s
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center position, o2, — 0) is given by” "

std(D)
—— =

NP
N-N,

2
= ®)
In this equation, which is valid only for N, < N, measure-
ment error is expressed as the standard deviation of the extracted D
values, std(D), i.e., 68% of the extracted D values will be located in
the interval D + std(D). It gives the measurement error that is
caused by the random nature of the motion and is, therefore, a
lower limit for the accuracy in the extraction of D values, as addi-
tional errors, e.g., due to a finite localization accuracy, will always
increase the measurement error. Furthermore, it shows the counter-
intuitive behavior that std(D) increases with N, ie., that a linear fit
to the MSD function has the highest accuracy for the shortest lag
time possible (N, = 1 — At = AT), which is a consequence of the
fact that the square displacements observed for a Brownian motion
exhibit a broad distribution according to probability distribution:*’

5Dy = ! D\ 1 D
PRI =31sp P\ "Msp) "1 D ar TP\ T DAl

&)

This is illustrated in Fig. 4(e) showing representative MSD
functions of several trajectories that have been calculated using a
Brownian dynamics simulation (i.e., for an ideal Brownian motion
in the absence of localization error). Even though all trajectories
have been calculated using the same diffusion coefficient of 1 um?*/
s, there is notable spread at lag times exceeding 30s. This spread
increases with increasing lag time, as indicated by the error bars in
Fig. 4(e) and as expected by Eq. (8), showing that the highest accu-
racy is indeed obtained when using the smallest possible tag time.
This figure also illustrates the fact that MSD functions extracted
from single trajectories can deviate from the linear relationship
given by Eq. (6) even for ideal Brownian motion, if too large lag
times are used in the extraction of the MSD function.”® Hence,
some of the MSD functions in Fig. 4(e) apparently show sub- and
superdiffusive behavior, despite the fact that the ideal Brownian
motion was simulated. It is important to keep in mind that due to
the (commonly used) internal averaging procedure, the extracted
square displacements become statistically increasingly correlated at
larger lag times, as noted by Saxton ef al.,”* so that the MSD values
of a single trajectory do not randomly fluctuate around the true
MSD value but rather form a smooth curve below or above the the-
oretically expected MSD curve. This is in fact a feature of the single
trajectory resolution, as the linear dependence of At is regained if a
sufficient number of these MSD functions is averaged [gray trace in
Fig. 4(e)]. This example shows that it is not meaningful to use too
large lag times in the calculation of MSD functions from single tra-
jectories. In order to remain in the “linear” part of such MSD func-
tions, the largest lag time, Afn,, used in the analysis should not
exceed 10% of the total trajectory time, Aty =0.1-N-AT
— N, < N/10, which is of particular importance when probing
nanoparticles showing truly anomalous diffusion. If lag times being
larger than 10% of the total trajectory time have to be evaluated, it
is necessary to analyze the data on the ensemble-averaged level in
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order to achieve sufficient measurement statistic at these large
lag times.

Nevertheless, with respect to the measurement accuracy of D,
Eq. (8) shows that in the absence of localization noise, there is no
benefit in calculating the MSD at lag times exceeding AT, as this
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does not improve the accuracy in the determination of the square
displacements but reduces the number of data pairs entering into
the averaging process. This situation changes for finite localization
accuracy, i.e., in the presence of a localization error o, the accu-
racy in D extraction reads for N, < K = N — N,

std(D) 1
D  \|6:N,-K?

in which ¢ denotes the ratio & = o2, /(D - AT).”"** This equation
contains Eq. (8) in the limit { — 0 (ie., negligible localization
noise with respect to the mean square displacement observed
between adjacent frames: D - AT >> 0']2)05) but also contains an addi-
tional contribution that increases with decreasing N,, so that
std(D) exhibits a minimum value at a certain lag time if the motion
of the nanoparticle between subsequent frames is comparable or
below the localization accuracy. In this case, the MSD function
should be calculated at least up to this lag time [Fig. 4(f)] and the
fit to the MSD function should be extended by an offset parameter
in order to correctly account for the errors done in the MSD calcu-
lation due to finite localization accuracy,(’3

MSD(Af) =4-D- At +4 - o>

bos- (11)

These considerations show that the accuracy in the extraction
of D is mainly limited by a finite length of trajectories and by the
localization error. It has been shown that MLEs and (optimized)
least squares fits are able to approach the theoretical limits given in
Egs. (8) and (10),°” and hence that the achievable accuracy can, in
principle, be estimated based on the knowledge of the diffusion
coefficient D and experimental parameters like frame rate 1/AT
and localization noise o7, allowing to optimize the experimental
settings and the analysis parameters. In general, high accuracies
can be achieved if the nanoparticle can be tracked over a long
period of time (N >> N,), while short tracks (e.g., due to bleaching
or transient interactions with the interface) generally lead to lower
accuracies.

If it is not possible to obtain sufficiently long trajectories to
achieve the desired accuracy in D (e.g., due to experimental restric-
tions such as bleaching), it is often necessary to switch the analysis
from the single trajectory to the ensemble level. In this way, the
accuracy as predicted by Eqs. (8) and (10) is improved as the aver-
aging process includes a larger amount of displacement data, but
the capability of analyzing the motion of a particular nanoparticle
of interest is lost. This is always of advantage if the tracked nano-
particles are very similar in their D values, i.e., if only a single or
very few subpopulations are present in the D distribution, while
unambiguous analysis of very heterogeneous distributions is typi-
cally very challenging on the ensemble level. Such ensemble
approaches include the extraction of SD or jump distance distribu-
tions from all tracks,'>"* which allow us to extract the underlying

1 1
2 3
(4N} - K +2K = N} +Np) + - (2-§+ <1+5<1

N &
%)) V) a0

diffusion coefficient by fitting the theoretically expected distribu-
tions to the measured ones, leading to information about the D
distribution of the ensemble. More sophisticated approaches use
statistical measures on the derived distributions, such as the appli-
cation of Bayesian approaches or hidden Markov models or combi-
nations of both.””~" These approaches have been shown to be very
powerful tools, in particular, for very short trajectories, for which a
conventional MSD analysis has a very low accuracy. It has been
demonstrated that such sophisticated modeling approaches allow,
for example, to combine the information from thousands of short
single-molecule trajectories to identify and quantify diffusive states
and the state transition rates. Statistical criteria can be used to
determine the underlying model parameters and the number of dif-
fusive states from the observed data, i.e., to identify the minimum
number of subpopulations needed to explain the extracted displace-
ment distributions.®”

Irrespective of D value distributions being extracted on the
single nanoparticle or ensemble level, it has been shown that
motion blurring of the nanoparticle spot in the image creates a bias
in the analysis of diffusion coefficients.”” This motion blurring
effect is caused by the finite camera integration time ATey,, during
which the nanoparticles are still able to move, leading to a spatial
average of their intensity profiles during camera exposure. This bias
has been comprehensively analyzed by MSD-based D value extrac-
tions and can be characterized by a motion blur coefficient R,
which considers the temporal illumination profile of the camera
during the imaging process.”” For homogeneous illumination
during an exposure period AT, < AT, R is given by

R = ATy /(6 - AT), (12)

and is therefore 1/6 for full exposure (AT, = AT). The bias in the
D extraction can then be expressed by

0';03. (13)

MSD(At = N, -AT) =4-D-AT- (N, —2-R) +4-
Hence, when using full exposure (AT, = AT) and the lowest
possible lag time (N, = 1), which are typical parameters when
tracking dim and fast moving nanoparticles (e.g., single lipids or
membrane proteins), the slope of the MSD function becomes, due
to motional blur, underestimated by a factor of 2/3.
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2. Time-resolved diffusion coefficients

In processes in which the diffusion coefficient D can vary over
time, a time-resolved extraction of D is often very desirable, yield-
ing D as a function of the measurement time t. This can be
achieved, in principle, by an MSD subtrajectory analysis, in which
only a fraction of the entire trajectory is used for the MSD analysis,
yielding a D value for the part of the trajectory analyzed, and the
time-resolved D value is obtained by shifting this fraction along the
entire trajectory. This can be achieved, for example, using a rolling
window approach, which regards only Ny, successional positions of
the nanoparticle trajectory that start at the frame N, and yield a
D value at the time (N, + Nw/2)-AT.”>® D(t) can then be
extracted by applying this procedure to N, values ranging between
1 and N — Ny. Knowing the experimental parameters, Eqs. (8)
and (10) can be used to estimate the achievable accuracy in extract-
ing D and hence to identify transitions between different mobility
states (i.e., distinct D values) if the observed change in D(t) is sig-
nificantly larger than the expected fluctuation in D.”” Furthermore,
if the difference in D values (of certain mobility states) are known,
Egs. (8) and (10) can also be used to determine the lower limit in
Nyy, i.e., the minimum size of the window that is needed to resolve
transitions between mobility states in a single trajectory.

It is apparent that this type of analysis is only reasonable for
N > Ny so that the extraction of time-resolved diffusion coeffi-
cients D(t) typically requires long trajectories. This has been
successfully demonstrated for nanoparticles that are permanently
(yet mobile) linked to bionanointerfaces’”*” or when using micros-
copy approaches, such as iSCAT, that offer acquisition rates on the
order of multiple 100 kHz.”%" These studies have demonstrated
that monitoring temporal changes in the motion of the nanoparti-
cle allows us to extract information about the local interaction of
the nanoparticle with its environment.”

In general, the diffusion coefficient of a nanoparticle depends
on the size of its interaction area with the membrane and the fluid-
ity of the membrane.”’”’* If the interaction area is kept constant,
for example, by probing the motion of single lipids or membrane
proteins within the bilayer, the nanoparticle acts as a probe that
reports local changes in the fluidity of the surrounding bilayer.
This has been used, for example, to map the spatial distribution of
lipid domains in bilayers exhibiting coexistence of different lipid
phases." On the other hand, when using homogenous, fluid-phase
bilayers, changes in the nanoparticle’s diffusion coefficient are
indicative of changes in its interaction with the membrane.”” This
has been demonstrated using nanoparticles that are able to form
multiple interactions in parallel (so-called multivalent interaction) to
lipids within a supported lipid bilayer, for which the diffusion coeffi-
cient of the nanoparticle-lipid complex decreases with increasing
number of bound lipids.69 It should be noted, however, that for sus-
pended bilayers, a much weaker dependence of the number of
bound lipids on the diffusion coefficient is expected according to the
Saffman-Delbriick model, so that mobility-based quantifications of
binding stoichiometries become more challenging.”"""

Furthermore, the presence of localized interactions can mani-
fest itself by transient sticking or spatial confinement of nanoparti-
cles, allowing to probe such interactions by monitoring changes in
the nanoparticle diffusion profile.”” Examples for such localized
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interactions include interleaflet interactions occurring between
lipids of the upper and lower leaflet of the bilayer (e.g., pinning) or
confinement of membrane proteins in small membrane patches
according to the picket fences model of the plasma membrane.'>"”
Different statistical means have been introduced in the past in
order to determine whether certain parts of a trajectory display a
statically significant change in the diffusion and in the type of
motion (normal, anomalous, and conﬁned).74 Even more sophisti-
cated approaches compare the experimental data to simulations
(e.g., Monte Carlo-based) of the expected diffusive behavior, in
order to arrive at a model that is as complex as needed to properly
describe the experimental data. Such approaches have been used to
analyze particle movement in plasma membranes regarding
Brownian or anomalous diffusion and transient binding to slowly
diffusing structures even if no analytical theory is predefined.””

B. Directional motions

The presence of a net force acting on nanoparticles will typi-
cally manifest itself by the generation of a drift component in the
nanoparticle motion, leading to a directed nanoparticle motion.”’
In general, this directed motion will superimpose with the random
nanoparticle motion (due to diffusion) leading to complex motions
containing stochastic (diffusion) and deterministic (drift) contribu-
tions. Although directional motions are often observed, for
example, in nanoparticle transport into and within cells, an analy-
sis of this type of motion has typically been limited to rather arti-
ficial systems, which had, in comparison to experiments on live
cells, the advantage that the origin of the acting force is unambig-
uously known. In these measurements, nanoparticles have been
linked to fluid-phase lipid bilayers using self-assembly of DNA
constructs, receptor-ligand interactions, or electrostatic forces,
and a directed component in the motion of the bilayer-linked
nanoparticles has been induced by the application of a shear flow
(generating a hydrodynamic shear force), electrophoretic effects
(using charged nanoparticles), or magnetic forces (using magnetic
nanoparticles).””’*~"*

For nanoparticles that show Brownian diffusion while being
bilayer-linked, the resulting motion is the sum of the random
(diffusion-induced) and deterministic (force-induced) components,
and this complex motion can be unambiguously decomposed into
its random and deterministic components again.’’ Interestingly, a
theoretical treatment of the problem reveals that both components
are linked by the Einstein-Smoluchowski equation, stating that
drift velocity v, achieved by the nanoparticle upon action of the
force F, and nanoparticle’s diffusion coefficient D are different mea-
sures of the nanoparticle mobility 4, which can be calculated either
using v,

u =v/F, (14)
or using D
u = Dl(kg - T), (15)

in which kp denotes Boltzmann’s constant and T is the absolute
temperature.”” As both properties, D and v, can be independently
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extracted from a single nanoparticle trajectory, application of the
ratio of Eqs. (14) and (15) yields

F=kg-T-vID, (16)

and therefore allows us to unambiguously extract the force acting
on any tracked nanoparticle.”” This is a very fundamental equation
and shows that in principle the trajectory is already sufficient to
determine the acting force, i.e., further knowledge about the micro-
scopic details of the nanoparticle is not necessary to extract this
force. In order to relate the measured force to a particular nanopar-
ticle property, knowledge of the force generating process is neces-
sary. For example, if a shear flow generates the directed motion of
the nanoparticles, the hydrodynamic size of the nanoparticles can
be extracted from the measured force, provided that the flow condi-
tions are known. This has been achieved, e.g., by hydrodynamic
modeling or calibration measurements (with nanoparticles of well-
defined sizes), allowing us to determine the hydrodynamic size of a
tracked nanoparticle with accuracies down to a few nanometers.””””
Nevertheless, as the underlying equations are very fundamental,
this type of analysis is not restricted to hydrodynamic shear forces,
but can be applied to any type of force acting on nanoparticles,
provided that the linkage strategy used ensures nanoparticle
mobility.

C. Interaction rates: Equilibrium fluctuation analysis

Besides measuring mobility-related properties, SPT trajectories
also allows for extracting information about how long a particular
nanoparticle remains bound to the interface (its residence time)
and how many nanoparticles bind to the interface within a certain
period of time. This capability is exploited in the so-called equilib-
rium fluctuation analysis, in which the transient interaction of
nanoparticles with an interface is monitored.””*' Using interface-
sensitive microscopy approaches, such as TIRF microscopy, it is
possible to image only those nanoparticles that are in very close
vicinity to the interface (typically <100-200 nm), while unbound
nanoparticles (dissolved in the bulk phase) are not recorded in the
images.” This allows for probing the fraction of nanoparticles that
are bound to the interface under equilibrium conditions, i.e., under
conditions at which the detachment of interface-bound nanoparti-
cles is in equilibrium with the attachment of unbound nanoparti-
cles to the interface.”"*’

Both processes, i.e., the detachment of interface-bound nanopar-
ticles and the attachment of unbound nanoparticles, can be indepen-
dently quantified from SPT trajectories, yielding information about
the nanoparticle attachment rate and the distribution of nanoparti-
cles’ residence times (see Ref. 25 for details of the analysis). For
monovalent interactions, the attachment rate is proportional to the
on-rate of the interaction and, in principle, the on-rate can be deter-
mined from such measurement, provided that the receptor density at
the interface is known.>” Furthermore, if the dissociation of a mono-
valent interaction is a random process, it can be shown that the resi-
dence time distribution follows an exponential decay, the decay rate
of which is the off-rate of the interaction.”” This shows that for
monovalent interactions, the off-rate is directly extractable from the
SPT data, while determination of the on-rate requires additional
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knowledge such as the bulk nanoparticle concentration and receptor
density at the interface. This approach has been successfully applied
to various interactions, for example, the hybridization-dehybridization
equilibrium of DNA or the interaction of G protein-coupled receptors
(GPCRs) with their ligands.***

For multivalent interactions, however, also the extraction of off-
rates becomes complex, as the off-rate typically shows a complex
dependence of the number of single interactions (=valency) acting in
parallel to form the multivalent interaction.”*~*° Hence, the nanopar-
ticle residence time strongly depends on the valency of the particular
interaction, typically generating broad distributions of the measured
residence times, which cannot be directly translated into an off-rate.
Recently, it has been shown for nanoparticles interacting with lipid-
bound receptors/attachment factor embedded in fluid-phase sup-
ported lipid bilayers that restricting the extraction of residence time
distributions to nanoparticles of similar average diffusion coefficient
yielded residence time distribution showing an exponential decay,
allowing to extract nanoparticle off-rates in dependence of the nano-
particle diffusion coefficient.”® As the nanoparticle mobility decreases
with increasing linking valency (i.e., number of bound lipids), this
D-dependent off-rate can, in principle, be translated into a valency-
dependent off-rate, provided that the relationship connecting diffu-
sion coefficient and valency is known."”

These examples demonstrate that probing the equilibrium
between interface-bound and unbound nanoparticles with single
nanoparticle resolution is very beneficial when investigating very
weak interactions (dissociation constants Kp > 1uM), such as
carbohydrate-carbohydrate interactions or carbohydrate-protein
interactions (e.g., virus-receptor interaction), as these interactions
are often only transiently formed and challenging to quantify
using ensemble-averaging or bulk approaches.”>"

D. Further examples

SPT has, in addition to the above mentioned examples, been
used to extract a multitude of different information about the
tracked nanoparticles. Often, the (fluorescence/scattering) intensity
of the nanoparticles is used as additional readout, yielding informa-
tion of certain nanoparticle properties (depending on the particular
measurement setting used). If the intensity is created by a scattering
process, it contains information about the refractive index contrast
(arising between nanoparticle and its surrounding) but also about
nanoparticle size or distance to the interface.”””" A similar situa-
tion is observed when measuring nanoparticle fluorescence intensi-
ties, which can contain information about the nanoparticle size or
the amount of a particular component within the nanoparticle,”
depending on if the entire particle or only a particular component
has been labeled by the dye. Using different dyes for different
nanoparticle species allows us to probe interactions between these
species based on a colocalization analysis, which has proved to be
a very powerful tool to probe interactions between membrane
proteins in live cells.**

IV. REFINEMENT AND OPTIMIZATION OF 2D SPT
EXPERIMENTS

After introducing into the instrumentation needed for con-
ducting 2D SPT experiments and discussing which quantities can
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be extracted (with which accuracy), we will now discuss how
parameters related to the measurement or analysis of SPT experi-
ments can be refined in order to improve the data quality and how
the quality of SPT data can be quantitatively assessed.

A. General considerations

In general, the properties of the sample of interest will typi-
cally determine which parameter values (“settings”) have to be
chosen for the measurement and the analysis of the SPT data, in
order to achieve the desired accuracies. In this context, it is reason-
able to classify nanoparticles according to their brightness (e.g.,
bright nanoparticles yielding large SNRs versus dim ones yielding
low SNRs), their mobility (e.g., fast moving/diffusing nanoparti-
cles versus immobile ones), and their mode of binding (e.g.,
firmly attached nanoparticles versus transiently binding ones).
Furthermore, it is important to specify which nanoparticle prop-
erty is to be extracted. Some nanoparticle properties can, in prin-
ciple, be extracted from a single data point (e.g., the nanoparticle
intensity), though the accuracy of this process will generally
increase with longer trajectories. However, most parameters will
require that the length of the trajectory exceeds a certain thresh-
old value in order to achieve a specified accuracy in the extraction
of this parameter.

This holds true in particular for the extraction of diffusion-
related properties, such as the diffusion coefficient, the type of dif-
fusion, etc., as the randomness of the motion creates broad distri-
butions requiring a significant amount of data points in order to
achieve reasonable accuracies. For diffusion coefficients, Eqs. (8)
and (10) can be used to estimate this minimum length of the tra-
jectories in dependence of the required accuracy. If time-resolved
diffusion coefficients are to be extracted, this minimum length cor-
responds to the size of the window used to extract the D value, so
that the desired length of the trajectory needs to be much larger.

For extraction of the type of diffusion (Brownian versus anoma-
lous) on the level of single trajectories, it was shown in Sec. III A 1
that the lag time used in the calculation of the MSD function
(via the internal averaging procedure) should not exceed 10% of
the total duration of the trajectory, as otherwise notable deviations
from the linear increase can be observed even for Brownian
diffusion. As the extracted MSD function needs to provide at least
~5 data points to allow for a meaningful fit of normal or anoma-
lous diffusion models, it is apparent that the analyzed trajectories
should cover at least ~50 frames for such type of analysis.

If the nanoparticle shows transient binding to the interface or if
the property of interest changes within a certain period of time Afjy,
this minimum length of the trajectory, Npypn, has to be achieved
within Afjiy,, which formulates a constraint on the minimum acquisi-
tion rate of the measurement: 1/AT > Nyin/Abjim,.

B. Imaging settings

If this acquisition rate Npyin/Afim can be achieved depends
strongly on the brightness of the nanoparticles. This rate also intro-
duces a constraint on the exposure/dwell time of the detector,
which cannot exceed ATey, < Atjjm/Npin in order to allow for the
desired acquisition rate. The measurement can be performed at this
rate, if the nanoparticle intensity, emitted during the time span
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Atiim/Nmin, is sufficiently large to achieve reasonable SNRs. Large
nanoparticles, such as liposomes and certain viruses, can carry
large amount of dyes and can often be made as bright as necessary,
so that the acquisition rate Npyin/Afim becomes rather limited by
the speed of the camera/detector than the nanoparticle brightness.

Smaller structures, such as single proteins, typically carry only
a few or even a single dye and are much dimmer than large nano-
particles. In this case, a balance between the desired acquisition
rate Npin/Atiim and the achieved SNR has to be found, as increasing
the acquisition rate decreases the achieved SNR (due to the
involved decrease in exposure/dwell time). The SNR has, however,
a strong impact on the localization accuracy [cf. Eqgs. (4) and (5)]
and the reliability of the linking process. Using a high acquisition
rate may, in principle, provide the desired temporal resolution but
will likely result in poor SNRs for dim nanoparticles and thus a
poor quality of the SPT data.

As the recorded nanoparticle intensity depends on several,
user-accessible parameters (such as the magnification and numeri-
cal aperture of the used objective, the excitation intensity applied to
the sample, and the exposure time of the camera/the dwell time of
the detector), there are several options to balance the acquisition
rate and SNR. An obvious option is to increase the excitation inten-
sity applied to the sample. This will also increase the bleaching rate
of the dye, thus reducing the time span in which the nanoparticles
can be tracked. It is common practice to choose, if possible, an
excitation intensity at which the bleaching is weak on the time
scales needed to perform the experiment.

For camera-based systems, the SNR can be improved by a
hardware-based reduction of the pixel resolution (binning). In this
process, the physical size of the pixels is increased by pooling the
readout values of neighboring pixels. In a 2x2 binning, for
example, four pixels (two horizontal and two vertical ones) are
grouped together, so that the pixel size is increased by a factor of 2
and total number of pixels of the sensor is reduced by a factor of 4.
This procedure has the advantage that the binned pixel now con-
tains the sum of the intensity of four pixels, while the intensity
noise shows a much weaker increase, so that the SNR typically
increases. EMCCD-based cameras may achieve a better improve-
ment than sCMOS-based cameras due to differences in the imple-
mentation of the binning process. This procedure may allow us to
approach the desired acquisition rate, as it increases the SNR
without increasing the exposure time. Nevertheless, the effective
pixel size increases with binning, which, according to Eqs. (4)
and (5), decreases the localization accuracy. This is compensated by
the increase in SNR to a certain extent, but its impact on the data
can only be assessed by evaluating the SPT data.

C. Choosing appropriate distance cutoff values and
particle densities

Nearest-neighbor linking schemes typically require to define a
distance cutoff value R, in order to decide, above which distance
a linking step is considered to be too large. This cutoff value, there-
fore, prevents that independent trajectories become connected by
the linking algorithm, which is otherwise very likely to occur in
samples in which the nanoparticle density changes over time, and
is thus an important parameter of the analysis. Choosing a too
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small cutoff value will segment the trajectories, causing an underes-
timation of the diffusion coefficient, while a too large value will
merge independent trajectories, introducing an overestimation of
the diffusion coefficient.

This distance cutoff value R,y is often determined by visual
inspection of the tracking result, ie., linking is performed by an
estimated cutoff value, followed by visual comparison of the
extracted trajectories with the measured tracking movie and, if nec-
essary, a refinement of the cutoff value until good agreement is
reached. It should be noted that the obtained trajectories should
always be compared with the tracking movie, as it is often challeng-
ing to judge on the quality of the analysis by inspecting only the
extracted trajectories. Nevertheless, this procedure depends on a
visual judgment of the user and choosing the distance cutoff based
on a statistical measure would be desirable. Wieser and Schiitz’*
introduced, for example, a method, in which this cutoff value is
varied within a certain range and the nanoparticle diffusion coefti-
cients are determined in dependence of the cutoff value. They
observed for relatively low cutoft values that D increases with
increasing cutoff value, until a saturation of D is observed after
exceeding a threshold value for the distance cutoff. Wieser and
Schiitz,”” therefore, suggest to use a cutoff value in the analysis, at
which D saturates.

Motivated by these considerations, we would like to suggest a
refined approach to determine suitable values for the distance
cutoff Ryax. The behavior observed by Wieser and Schiitz*” can be
well understood, if the distribution of the square displacements is
taken into account, which decays exponentially according to
Eq. (9). Hence, choosing a too small distance cutoff will reject all
linking steps having large square displacements and therefore
distort this distribution, leading to an underestimation of the
associated D value,

Dmeas [1 7exp(71)(1 +Z)] . R2
- h y—_—max
W =D AT

D 1 —exp(—7) (a7)

in which we defined the parameter y as the ratio of the square of
the distance cutoff value Ry« and the nanoparticle MSD observed
between subsequent frames. As pointed out by Wieser and
Schiitz, in order to have a negligible bias (underestimation) of D,
Rinax should exceed v/4 - D - AT by a factor of ~2.5, i.e., ¥ should
be larger than ~6.

If such large cutoff value can be achieved depends on the SPT
data and, hence, reasonable values for R, should be extracted
from the experiment. Interestingly, due to the exponential decay,
large square displacements are much less often observed than small
ones so that a good approximation of the square displacement dis-
tribution can be directly extracted from the SPT data even when
using unphysically large Ry values. This is demonstrated in
Fig. 5, in which SPT movies have been generated by Brownian
dynamics simulations using well-defined values for the nanoparti-
cle diffusion coefficients and densities (as indicated in the figures),
followed by an SPT analysis using a very high distance cutoff
(Rimax ~ 200 pixels). Afterward, the distributions of the square dis-
placements of all linking steps have been generated, showing in
general an exponential decay as expected from Eq. (9). However,
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such distributions often show a tail at large square displacements,
which indicates observation frequencies of square displacements
that are much larger than expected based on Eq. (9). A comparison
of the true (BD simulated) trajectories with the one extracted from
the linking [Figs. 5(a)-5(c), bottom] allows for extracting the frac-
tion of wrongly linked steps and indicates that these events are
mainly created by linking errors, being introduced by using a too
large distance cutoff.

Hence, an extracted square displacements distribution can typ-
ically be divided into a region, which decays exponentially and a
tail distribution that shows only a weak dependence of the square
displacement. We observed this feature not only for synthetic SPT
data but, in general, when extracting square displacement distribu-
tions from SPT experiments. As the tail distribution is mainly
created by linking errors [which is mathematically indicated by the
deviation from Eq. (9) and demonstrated in Fig. 5 based on a com-
parison of known and extracted trajectories], there is no point in
using a distance cutoff value being located within the tail distribu-
tion. Hence, the square displacement at which the transition from
the exponential decay into the tail distribution occurs gives the
largest reasonable value for the distance cutoff Ry, (=square root
of the square displacement) that can be used in the linking process,
providing a statistical mean to extract the distance cutoff value
from SPT data. This procedure works very well for nanoparticle
ensembles having narrow D value distributions, while broad D
distributions create complex square displacement distributions, in
which it can be challenging to resolve the transition from the expo-
nential decay into the tail distribution. In such a case, it is neces-
sary to validate the choice of the distance cutoff value by visual
comparison as described above.

In addition to this, an inspection of the square displacement
distribution also allows us to evaluate the quality of the linking
process. In Fig. 5(a), the frequency of the tail distribution is very
low in comparison to the exponential decay, so that the number
of linking steps lost when applying the refined distance cutoff
value is negligible (i.e., segmentation of the trajectories is practi-
cally absent). The situation is different in Fig. 5(b), in which the fre-
quency of the tail distribution is comparable to that of the
exponential decay (squares and triangles). Such pronounced tail dis-
tributions are observed in SPT experiments, for example, if the nano-
particle density is too large (the threshold value of which depends
on the nanoparticle mobility) or if there is a notable number of
falsely detected nanoparticles, i.e., of background pixels having inten-
sities above the detection threshold due to noise. In this case, a
notable fraction of linking steps will be lost when applying the
refined distance cutoff value, leading to a notable segmentation of
the trajectories.

Interestingly, the impact of this segmentation can be directly
extracted from the square displacement distribution. In Fig. 5(b),
the green trace (triangles) starts to deviate from the exponential
decay at a relative frequency of 2% [log,,(2%) = —1.7], which cor-
responds to a y value of y = —log,(2%) = 3.9. Inserting this value
into Eq. (17) indicates that the extracted D value will be underesti-
mated by a factor of 0.92. This is a low bias but indicates that the
exponentially decay in the square displacement distribution should
cover at least ~2 orders of magnitude, as elsewise a notable bias in
the extraction of D will be experienced. In comparison, the red
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FIG. 5. Top row shows probability distributions p(SD), indicating the probability to observe a step having a certain SD between subsequent frames. These square displace-
ment distributions were extracted from simulated nanoparticles trajectories exhibiting a well-defined Brownian motion (BD simulation; AT=0.2's) and were normalized to
the probability at zero square displacement, p(0). Comparing the simulated trajectories with the ones extracted using SPT allows us to calculate the fraction of errors done
during the linking process and hence the probability that two nanoparticles are wrongly linked during the SPT analysis. These probabilities are shown in the bottom row in
terms of the percentage pri(SD) of wrong links in dependence of the square displacement. The distributions have been calculated (a) for three different D values [as indi-
cated in panel (a); nanoparticle density = 0.02 um~2], (b) for different nanoparticle densities [as indicated in panel (b); D=1 um?s], and () using two different linking algo-
rithms, either relying only on the nearest-neighbor distance [full circles in (c)] or using additional statistical means during the linking process [minimization of a cost matrix
according to Ref. 85; implemented in the trackmate (Ref. 86) plugin of maces (Ref. 85); diamonds in panel (c)]. The p(SD) distributions typically show an exponential decay
(dashed line), the decay length of which is, according to Eq. (9), the mean square displacement observed between subsequent frames. Nevertheless, all p(SD) distribu-
tions exhibit a tail distribution at larger SD values, which deviates from the exponential decay and is associated with linking errors (as evidenced by the increase in the per-
centage of wrong links, p). The parameter y (defined in Sec. |V C) can be directly extracted from these semilogarithmic plots by taking the distance indicated by the
brackets in panel (b) and (c) multiplied by the factor 2.3 [= log,(10)] in order to account for the base 10 used in the semilogarithmic plots.

trace (full circles) in Fig. 5(b) shows the result of the same simula-
tion, but using a lower nanoparticle density, and starts to deviate
from the exponential decay at a relative frequency of 10, This cor-
responds to y = —log,(107*) = 9.2, so that the bias in D due to seg-
mentation (<1%) can be completely neglected.

This example shows that inspecting the square displacement
distribution allows us to directly evaluate, to which extent the
linking process will be able to reconstruct the Brownian motion
and if processes are present that disturb this reconstruction. If the
tail distribution is caused by intensity noise, its contribution can be
reduced by choosing a larger intensity threshold (if this does not
exclude the dim nanoparticles from the analysis), by application of
spatial filters prior to the detection process, or by software-based
binning. If the tail distribution is caused by a too large nanoparticle
density, linking algorithms should be used that employ additional
statistical means (see Sec. IIT C 3), which tend to perform better at
higher densities than algorithms that rely only on the nanoparticle
distance between subsequent frames [Fig. 5(c)]. Nevertheless, the
same SPT experiment would yield a higher linking quality, if it
could be repeated at a reduced nanoparticle density. This option is,
however, not always possible.

If the nanoparticle density can be modified, it should be noted
that its optimal value depends on the nanoparticle mobility.
Jagaman and Danuser suggested, for example, that in order for the

nearest-neighbor linking scheme to perform well, the ratio of the
average frame-to-frame displacement to the average nearest-neighbor
distance within the frame should be much lower than 0.5. A similar
value of ~0.3 is indicated by Wieser et al,”>*” which suggests to
have only a single nanoparticle within the area ~40 - D - AT. Hence,
when tracking nanoparticles with D =1um?/s at an acquisition rate
of 1/AT = 10fps, this results in a surface coverage of having one
nanoparticle each of 4um? If it is necessary to extract very long
trajectories, this area should be even larger, as long trajectories
always have a certain number of very large steps [cf. Eq. (8)], the
linking of which can become challenging if their value approaches
the average nearest-neighbor distance.

V. CONCLUSION

Over the past few decades, developments in instrumentation
and data analysis schemes have allowed us to extend the range of
applicability of SPT and to increase the number of properties that
can be extracted from SPT-derived trajectories. Nevertheless, a
central aspect in most SPT experiments is the extraction of
mobility-related properties, such as the type of motion or diffusion
coefficient for random particle motion, as these properties often
contain information about local interactions experienced by the
tracked particle. Such information can be extracted from SPT
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trajectories only within a certain accuracy, the lower limit of which
has been theoretically derived for several properties such as the
accuracy in localizing the center position of a particle and the accu-
racy in extracting diffusion coefficients or drift velocities from SPT
trajectories. The aim of this tutorial is to provide a comprehensive
overview of such limits, forming a basis for the refinement of
parameters used in measurement and analysis of SPT experiments,
and to show some of the intrinsic limitations when extracting
mobility-related issues which, if unaccounted for, lead to misinter-
pretation of SPT data. It is also shown that inspection of the square
displacement distribution yields information about the maximum
distance that should be used in the linking process (connecting par-
ticles across subsequent frames), which is a crucial parameter in an
SPT analysis. All this information can be used to evaluate the
quality of the SPT data and to decide if parameters of the measure-
ment or analysis should be refined.
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Short summary

Within this work, a new highly parallelized microfluidics-based single-molecule force spectroscopy
method with sub-nm resolution and sub-pN sensitivity was developed['72. It is based on the combination
of microfluidics, TIRF microscopy, and single-particle tracking and its performance was tested on well-
studied model systems (stretching of PEG-linkers and biotin-NeutrAvidin complex dissociation). It was
used to quantify the energy barriers in biotin-NeutrAvidin complexes and the unfolding force of the third

rod domain R3 of the force-bearing protein talin.
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Figure 23: Scheme of the technical setup of the new hydrodynamic single-molecule force measurement method
(a). Scheme of the relation of flow (blue arrows), shear force (Fx), and displacement (Ax) of fluorescent beads (b).
Crop of the microscopy field of view shows the parallelization of the method by the abundance of surface-linked
beads (c). Sample of representative tracks show a displacement in flow direction (d). The force-dependent dis-
placement in flow direction shows a broad distribution (e) which can be explained by the number of linkers engaged
in bead immobilization, shown by distinct populations with different spring-constants (f). Sequential unbinding of
biotin-NeutrAvidin complexes allows for the probing of residence time of specific bond valency’s (g).
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Several techniques have been established to quantify the mechanicals of single molecules.
However, most of them show only limited capabilities of parallelizing the measurement by
performing many individual measurements simultaneously. Herein, we present a microfluidics-
based single-molecule force spectroscopy method, which achieves sub-nm spatial resolution
and sub-pN sensitivity and is capable of simultaneously quantifying hundreds of single-
molecule targets in parallel. It relies on a combination of TIRF microscopy and microfluidics,
in which monodisperse fluorescent beads are immobilized on the bottom of a microfluidic
channel by macromolecular linkers. Application of a flow generates a well-defined shear force
acting on the beads, whereas the nanomechanical linker response is quantified based on the
force-induced displacement of individual beads. To handle the high amount of data generated
by this method, we implemented a cluster analysis which is capable of a semi-automatic
identification of measurement artifacts and molecular populations. We validated our method by

probing the mechanical response PEG-linkers and binding strength of biotin-NeutrAvidin
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complexes. With this new technique, we resolve 2 energy barriers (at 3 A and 5.7 A,
respectively) in the biotin-NeutrAvidin interaction and probe the unfolding behavior of talin’s

rod domain R3 in the force range between 1 pN to ~ 10 pN.

1. Introduction
Over the past decades, several techniques have been established, which allow to apply forces

on nanometer-sized biological objects, such as macromolecules, proteins or DNA, and to study
biologically important processes, such as macromolecular interactions or force-induced
changes in the conformation/structure of macromolecules, with single-molecule resolution.!!
The most prominent of these techniques are atomic force microscopy (AFM), optical tweezers
(OT), and magnetic tweezers (MT), which use different approaches for force generation but
have in common that they are capable of providing mechanical data originating from individual
molecules.?) In this way, they allow to learn how mechanical force modulated structure and
function of molecule, for example by opening cryptic binding sites within proteins.”®! Single-
molecule methods also enable to probe for heterogeneities, such as rare events or transient states,
in the mechanical response of an ensemble, which can be important features for biological
systems, but are averaged out and therefore lost when applying ensemble-averaging approaches.
Hence, the introduction of single-molecule force techniques like AFM, OT, and MT enabled
for completely new biophysical measurement schemes and allowed to study the force-related
biological processes in unprecedented detail.''! Nevertheless, as they probe response of
individual macromolecules, which is typically subject to notable, thermally driven fluctuations,
it is necessary to probe this response multiple times in order to gain sufficiently measurement
statistics to make meaningful statements.!*! For AFM and OT, which are very limited in their
capability to probe multiple individual interactions in parallel (low degree of parallelization),
this is solved by repeating the measurement process, which may result in long measurement
times. In contrast, the force generation in MT is compatible with a significant parallelization of
the measurement process and implementations, in which hundreds of interactions have been
simultaneously probed using MT have been described.!®! This concept has the advantage that
significant amount of data is generated already in a single experimental run and also offers
additional strategies to cope with heterogeneous samples, in which certain properties (such as
the composition of interaction partners) show a notable distribution across the ensemble.

Such features are very interesting for investigations on complex biological systems, such as
studies on how cells are able to transduce mechanical forces into biochemical signals.[®! It is
known that mechanical forces have great effect on cellular behavior like adhesion, growth,

2
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maturation and migration VBIBIOIONIOpe  of the many mechanosensors and
mechanotransducers in cells is the force-bearing protein talin.[!23U4IS] Talin is a force-
sensitive protein consisting of 13 rod domains, which unfold at different forces (ranging
between 5 and ~40 pN) and therefore lead to complex unfolding patterns of the full-length
proteins. Application of the before mentioned force spectroscopy methods (OT, !¢ MT, 7S]
and AFM Bl allowed to investigate this process in great detail, whereas an assessment of the
unfolding of rod domain R3 remains challenging, which sets in at forces being comparable to
the force resolution of OT and MT (~ 1 pN) and out of the measurable range of AFM.

Inspired by these works, we aimed for designing a single-molecule force spectroscopy method,
which combines the ability to apply very low to sub pN forces (like in OT), while extending
the high throughput capability of parallel MT, to meet the before mentioned criteria of
sensitivity and statistical power. In principle, this is fulfilled by setups, in which microfluidics
is used to generate hydrodynamic shear forces on interface-linked nanoparticles. One recent
example was introduced by Block et al.,*” in which fluorescent nanoparticles with defined
sizes were linked to a fluid phase supported lipid bilayer (SLB) in a microfluidic channel.
Application of total internal reflection fluorescence (TIRF) microscopy allowed to track the
force-induced motion of SLB-linked nanoparticles with single-nanoparticle resolution.
Analyzing this motion provided a new means to determine the shear force acting on a
nanoparticle directly from its trajectory and hence to determine the impact of nanoparticle size
and channel flow rate on the generated shear force. In this way, the authors demonstrated that
this setup enables to generate very small forces (ranging between fN to pN) and allows to
sensitively probe the action of such small forces on hundreds of individual nanoparticles in
parallel, providing a high parallelization of the force sensing process.

In this work, we aim to translate this setup to nanoparticles that have been stably linked to the
bottom of the microfluidic channel, as this should allow for highly parallelized force
measurements (addressing up to thousands of interactions in parallel) with an outstanding sub-
pN force sensitivity. As in our previous study, we use a combination of TIRF-based optical
video microscopy and a PDMS-based microfluidic channel (width: 150 pm; height: 100 pm),
which was bonded to a thin glass slide (forming the bottom of the microfluidic channel; Figure
1a). To test our hypothesis, we attached fluorescent beads of known size to the glass surface by
a linker and studied bead displacement and bead detachment as a function of the applied shear
forces. This data provided information on the nanomechanical properties of the linker (bead

displacement) or the binding strength between bead and interface (bead detachment), which

3
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will be discussed in detail in the following paragraphs. We applied these two measurement
modalities to two well-established model systems (nanomechanics of polyethylene glycol, PEG,
and binding strength of the ligand-receptor interactions biotin-NeutrAvidin), which formed the
basis for an assessment on the performance of this flow-based force spectroscopy approach.
Finally, we applied this new tool to investigate the unfolding of talin’s rod domain R3, further
demonstrating the benefits offered by combining high force resolution (< pN) with high

parallelization of the measurement process.

2. Results & Discussion

2.1. Stretching of PEG-Polymer

In a first set of experiments, we studied the nanomechanics of PEG-based linkers (Figure 1c),
which allowed to evaluate our approach using a well-studied system. To this end, we
functionalized the bottom of the microfluidic channel using block-copolymers consisting of a
20 kDa poly-L-lysine chain (PLL) coupled to a 3.4 kDa PEG chain, which bind via electrostatic
interactions of the positively charged PLL to the negatively charged glass surface. As a very
small fraction of the PEG chains were equipped with a biotin moiety (see Materials and
Methods for details), it was possible to stably link monodisperse, NeutrAvidin-coated
fluorescent polystyrene beads (diameter: 200 nm) to the interface using the highly specific
biotin-NeutrAvidin interaction. In this way, thousands of fluorescent beads were immobilized
in the field of view (FoV) of our microscope (135 x 135 um?) and subjected to flow-induced
shear forces, which allowed for a high parallelization of the measurement process.

This is demonstrated in Figure 1d, which represents ~ 7% of the microscope’s FOV and shows
80 beads out of a sample carrying approximately 1100 beads per FoV. The high brightness of
the beads enables to achieve single shot localization accuracies below 1 nm (see Supporting
Information S1. Drift Compensation) and hence to detect sub-nm bead displacements as
function of the applied flow rate (Figure 1e), provided that drifts of the sample surface (e.g.,
caused by changes in the flow conditions) are correctly compensated (see Supporting

Information S1. Drift Compensation for more details on the drift compensation procedure).

82



QO Joy 0w

Ao O OO U U U U OO OTU B BRBSDSSDSSDDDDDWWWWWWWWWWNDNDDNDNDNDNDNDNNMDNNNNRERRRRRRRRRE
O wWNhPFRrROoOWOJdJoUuld WP OOWOJIOUDd WNRPFPOWOJOHOUPd WNEFP OWOOLOJOUdWNE OWOoJoYU b whEFH O v

4. Publications

WILEY-VCH

a PDMS channel b I I 1]
inlet outlet — —
N — —
= F, —— F
1 — . 2
= — T —
% e ’/f :
Axy Ax,
C f force [pN] 'g colors = zoom (x25)
i3 black = original scale
- "'\ € i
biotin —I L ) . “ Py
PLL-g-PEG 008 1 "l
e time [s] & ™ o
T 0 20 so0| ¢ ) N S
4 - e
R N
ey te®™
' %
20 nm SZea -, 5 pum%

Figure 1: Scheme of the microfluidics-based force spectroscopy method. A 150 uym wide
microfluidic channel with in- and outlet is embedded in a PDMS stamp, bonded on a glass slide,
and mounted on a TIRF microscope (a). In general, fluorescent beads (green) are attached to a
linker (black) which is bound to the glass (b), hovering in neutral position over the surface if
no flow is applied (b, I). Low flow rates generate a low force (F7), and the bead is pushed in
flow direction (Axi1) and towards the surface (b, IT). High flow rates apply a high force (£2),
and push the bead further (Ax2), resulting in a stretching of the linker (b, III), which can be
quantified based on the bead displacement. To probe the nanomechanics of PEG (¢), the glass
surface is coated with block copolymers of poly-L-lysine (purple) and PEG (brown), a small
fraction of which presents biotin moieties at the PEG chain (red) and can be used to link
NeutrAvidin-coated 200 nm fluorescent bead (green). A zoom in the field of view (FoV) of the
TIRF microscope of a sample having about 1100 linked beads in total per FoV (d). An overlay
of the intensity distribution of one representative bead with its displacement trajectory
(generated by application of a block-shaped force profile: 0.06—17—0.06 pN, see also f)
indicates that the high localization accuracy of our approach allows to follow even very small
bead displacements (e). In this representative displacement trajectory (f), the blue color shows
the initial position of the bead center at the low force of 0.06 pN, followed by a displacement
of the bead of about 40 nm upon application of 17 pN shear force (color shift from cyan to
green and orange). Afterwards, the bead returns near its initial position due to the reduction of
the shear force to 0.06 pN (yellow). As thousands of beads can be tracked per FoV, such
measurements lead to thousands of force-induced displacement trajectories, a small fraction of
which is shown in (g). For visualization reasons, these trajectories were sized up by the factor
of 25, whereas their central position was preserved.

The application of a block-shaped force profile, for example, also leads as expected to a block-
shaped displacement response of the beads (Figure 1f). In this example, the measurement

started with the application of a very low shear force (0.06 pN) to the bead, which is so small
5
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that the bead’s center position (x- and y-coordinates in the image) fluctuates around the
attachment point of the linker. After 50 seconds, the force was increased to 17 pN, leading to a
40 nm displacement of the bead in flow direction (cyan to orange). After application of this
force for 400 seconds, the shear force was reduced again to 0.06 pN for 50 seconds, allowing
the bead to return near its initial position (yellow, deviation ~ 13 nm). This almost fully
reversible response indicates that the bead is indeed linked to glass surface via an elastic linker,
which is a finding that is representative for nearly all of the 1100 analyzed beads (a fraction of
50 tracks from a randomly chosen part of the FoV is shown in Figure 1g).

Obviously, all beads given in Figure 1g showed a force-induced displacement in flow direction,
whereas the extent of the displacement varies between the beads. This means that some of the
beads showed a larger displacement, while others seemed to be nearly immobile. To quantify
this effect, we calculated a density map of observed bead displacements from block-wise
stretched linkers (Figure 1c-g). As a notable number of displacements curves terminated before
the end of the experimental run (indicative for force-induced detachment of the corresponding
bead), we restricted this analysis to all displacements curves, which covered the entire
experimental run and which followed the block-wise force response (i.e., showed return to the
initial position). Calculating the density map of these displacements curves (Figure 2b) shows
that the displacement values are not evenly distributed, but exhibited only specific values (~ 22,
55, and 80 nm). These distinct populations are also clearly visible in the histogram of bead
displacement values (Figure 2c) and indicate that the different bead displacement populations
are caused by differences in the nanomechanical response of the linker (i.e., by differences in
the number of linkers engaged by the beads, as will be shown below).

In order to accurately quantify the nanomechanical response, one has to take into account that
while all beads experience the same shear flow-based force (Fx, Figure 2a), the actual force
acting in direction of the linker(s), F, depends on the angle between the linker(s) and the
horizontal (i.e., the surface). This means that only a fraction of the full shear force (that acts on
the bead) will be applied to the linker(s) and that this fraction increases with increasing bead
displacement (Ax), as this process will reduce the angle between the linker(s) and the surface.
As shown in Supporting Information S2. Extension and Force Calculation, the force acting in
direction of the linker, F, as well as the extension of the linker due to this force can be calculated

from the bead displacement, Ax, under the assumption that the bead always touches the surface.
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Figure 2: Stretching of PEG-linkers revealed linker valency indicated by distinct
populations in displacement, molecular weight, and spring-constant. The bulk flow applies
a shear force on the bead in flow direction, Fx, which loads the linker with the loading force F
and results in a bead displacement Ax (a). A density map of 113 bead displacement curves (b)
shows accumulations of curves (red) in distinct regions (approximately at displacements of 22,
55, and 80 nm, respectively). The histogram of these displacements at saturation (c) as well as
of the corresponding values for linker spring constant and apparent linker molecular weight (d,
see main text for details) shows three distinct populations. The solid lines in (c) and (d) give
Gaussian fits that originate from the data analysis summarized in (e-h). In this data analysis, the
beads have been automatically assigned to distinct populations based on a cluster analysis
applied to the observed bead displacement curves. This procedure (described in detail in
Supporting Information 3) yields a symmetric 2D similarity map (e), which provides the
similarity of two displacement curves (given by their ID values on the x- and y-axis,
respectively) based on the calculation of the standard deviation of their displacement difference.
This similarity measure is color coded in (e), in which high to low similarity is indicated by
colors ranging from blue to yellow. Applied to all 260 displacement curves from a
representative experiment, the cluster analysis identified six distinct cluster groups (red, green,
yellow, purple, black squares in e), whereas the assigned displacement curves indeed behave
very similar within the corresponding cluster as shown in (f), which provides an overlay of all
assigned displacement curves and their ensemble average as thick solid curve. (Enlarged
version of (e) and (f) are given in the Supporting Information.) This analysis provides three
populations showing the displacement behavior already observed in (b) and (c), but also three
additional populations, the curves of which either contain obvious measurement artefacts (such
as lack of return to the initial position at very low flow rates, yellow population) or indicate
immobile beads (showing no notable displacement upon application of a force, black
population). Histogram of the median displacement value (g, taken at the saturation regime of
the displacement curves from the red, green and purple populations) as well as the
corresponding values of linker spring constant and apparent linker molecular weight (h) are
well described by Gaussian fits and yield distributions consistent with (c) and (d). Hence, the
cluster analysis enables to decompose the full data set into individual bead populations based
on their nanomechanical behavior and to efficiently identify artefact-bearing displacement
curves within the data.
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This assumption is plausible, as a shear force acting on “hovering” beads (not touching the
surface) will generate a torque that pushes the beads towards the interface until contact has been
achieved. We will revisit this assumption at the end of this section. Applying the model
discussed in Supporting Information 2 allows to calculate for each bead the force acting in
direction of the linker(s), F, and the force-induced extension of the linker(s), L, from the
measured bead displacement. The ratio of both quantities gives the stiffness of the linker(s) in
terms of the spring constant, £k = F/L. Assuming that the PEG linkers are well described by the
freely jointed chain model,*!) an assumption that has been validated for PEG chains in aqueous

22123

solutions in a variety of studies,'??1?¥] it is possible to relate the observed spring constant & to

the molecular weight of the linker, M., via the relationship*!!

M, = 3kpT k- MEG (1)

KK Lgg

in which ks denotes Boltzmann’s constant, 7 the temperature (in Kelvin), and ki the Kuhn
length of PEG (=0.7 nm)**?3], while MtG and Lec denote the molecular weight and physical
length of a PEG monomer (44 Da and 0.3 nm, respectively). A histogram of observed
(theoretical) molecular weights of the linker (Figure 2d) also exhibits distinct populations with
average weights of 1.5, 3.1, and 6.1 kDa. The calculated molecular weight of the softest (red)
population (approximately 6.1 kDa) is higher than the molecular weight of the PEG target (3.4
kDa) and indicates that application of a shear force does not only stretch the 3.4 kDa PEG chain
but also part of 20 kDa PLL chain. The green and the purple population show apparent
molecular weights of ~ 3.5 and ~ 1.5 kDa respectively. This observation suggests that these
populations correspond to beads linked with 2 and 3 linkers, as this will increase the (overall)
linker spring constant by a factor of 2 and 3, respectively, and lead to apparent molecular
weights being only one half and one third of the true molecular weight of a single linker (see
Eq. 1). We therefore conclude that the distinct molecular populations observed in the
histograms of bead displacement and spring constant/apparent molecular weights can be
explained by differences in the number of linkers engaged by the respective beads.

Although this analysis workflow allowed to address the nanomechanics of PEG chains, the
analysis of the obtained data turned out to be challenging (despite the simplicity of this system),
as the difference in the binding stoichiometry of the beads caused broad distributions and
complex morphology of the derived displacement curves. Furthermore, visual inspection of the
displacement curves showed that a notable fraction of these curves contained obvious
measurement artefacts and had to be (manually) removed from the data analysis. Owing to the

high data throughput of the method, which allows to quickly perform many experimental runs
8
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providing hundreds to thousands of displacement curves per run, this manual inspection turned
out to be the bottle neck of the analysis. To address this limitation, we developed an automated
cluster analysis, which enabled to automatically define and classify the distinct molecular
populations as well as artifacts-bearing or non-responsive curves (Figure 2e, for details see
Supporting Information S3. Cluster Analysis). In short, this analysis picks all possible pairs of
2 displacement curves from the data and calculates for each pair the standard deviation sd of
the difference of their displacement curves. This information is stored in a two-dimensional
matrix (in which the x- and y-dimension correspond to the IDs of the two displacement curves
of a particular pair) and afterwards, displacement curves with high similarity (indicated by low
sd values) are grouped together.

The grouping result can be visualized in a 2D color map (Figure 2e), indicating similar
displacement curves in blue and distinct ones in yellow. This cluster map visualizes the distinct
populations (indicated by red, green, yellow, purple, and black squares in Figure 2¢) and
therefore provides an assignment of displacement curves into populations of similar behavior
that can be quickly validated by manual inspection. This tool turned out to be very valuable, as
it allowed an almost automatic identification of artefact-bearing displacement curves and as it
correctly decomposed the complex displacement distributions of Figure 2c¢ into individual
populations differing in the nanomechanical behavior (red, green, and purple populations in
Figure 2f and Figure 2g). This showed that the cluster analysis allows for an automated reliable
classification of molecular populations in such complex data sets, which was further validated
by correct reconstruction of simulated FEC populations (for details see Supporting Information

3.2. Cluster Analysis Validation).

2.2. Binding strength of biotin-NeutrAvidin interaction
Beside the displacement curves covered above, which showed a constant displacement during

force application and return afterwards, we also observed displacement curves that terminated
before the end of an experimental run (caused by bead detachment) and/or showed sudden
increases in the displacement value without any change in the applied shear force (Figure 3a,b).
These features can be explained by a decrease in the number of linkers engaged by the
corresponding bead, as some of the biotin-NeutrAvidin interactions, which are used to connect
the beads to the linkers, can unbind due to the applied force.[24123126] If the bead is linked to mi
linkers, the generated loading force (£ in Figure 2a) is distributed over several linkers. Each
linker will be loaded (on average) by the reduced force F/mi, which results in a bead
displacement that increases with decreasing number of engaged linkers (n1). Hence, if one linker

9
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detaches, the bead will not completely rip from the surface but will show a step towards larger
values in the displacement curve, as long as the bead is linked to at least one linker. If the last
linker detaches, the bead will detach from the surface, causing the displacement curve to
terminate before the end of the experimental run. This results in displacement curves, which
show transitions between distinct displacement plateaus (Figure 3a) that can be assigned to the
number of remaining linkers (n1) based on the defined populations of Figure 2g. The length of
these plateaus represents the residence time of each of the linking state and thus contains

information on the force-dependent stability of the biotin-NeutrAvidin interaction.
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Figure 3: Detachment kinetics of multivalent biotin-NeutrAvidin complexes. A represen-
tative bead displacement curve showing three distinct displacement plateaus (a), which caused
by a sequential detachment of three PEG-linkers. This detachment requires rupture of individual
biotin-NeutrAvidin interactions, as schematically indicated in the inset. Measuring the duration
of individual rupture processes (black bars in a) allows to determine the residence time
associated for transitions from n1 = 3 to 2 (3->2), from 2 to 1 (2> 1) as well as for release of
the final interaction (1->0). The sequential detachment of linkers was observed in many
displacement curves, as indicated by a sample of 7 representative curves shown in (b).
Extracting the residence times (as shown in a) from all such curves allowed to determine the
residence time distributions for the different transitions (32>2,2->1, and 1->0), which typically
showed two distinct exponential decays and therefore indicates that each these processes decays
with 2 transition rates (c). These transition rates increase with increasing loading force per
linker (d), which can be well-described by the Bell model (solid line). Application of this model
revealed two energy barriers for the energy landscape of the biotin-NeutrAvidin interaction,
having potential widths of 5.7 A and 3.0 A and zero-force off-rates of 2.3x107 s and
14.3x1073 s7!, respectively.

Applying this analysis to all displacement curves showing transition allowed to extract the
residence time distribution for each of the 3 transitions: n1 =3 to 2, 2 to 1, and 1 to 0 (bead
detachment). For random detachment processes (i.e., for transition that are statistically

uncorrelated), the residence time distributions are expected to show an exponential decay, the

decay rate of which would correspond to the transition rate. Plotting the 3 residence time

10
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distributions with a semi logarithmic scale (Figure 3c) indeed revealed exponential decays
(indicated by straight lines in this representation), but in fact two distinct decay rates for each
of the 3 transitions. Hence, the biotin-NeutrAvidin interaction decays in our experiments with
2 transition rates, which can be determined by linear fits of the residence time distributions (red
lines in Figure 3c).

In order to determine the impact of the loading force on the failure rate of unbinding of the
biotin-NeutrAvidin interaction, one has to account for the difference in the number of acting
interactions of the 3 transition processes. If the transition starts with #1 linkers, one has to take
into account that only the fraction F/m of the total loading force acts on a single linker (i.e., on
a single biotin-NeutrAvidin interaction). Furthermore, since ni interactions are present, the
observed transition rate is n1 times larger than the rate of rupture (off-rate) of a single biotin-
NeutrAvidin interaction. Accounting for these effects enabled to determine the impact of
loading force on the off-rate of a single biotin-NeutrAvidin interaction (Figure 3d). As two
transition rates were observed in the residence time distribution, this plot contained two force-
dependent off-rates, each of which is well described by Bell’s theory.[?”] This analysis suggests
an energy landscape that consists of at least two energy barriers, having potential widths of
5.7 A and 3.0 A and zero-force (equilibrium) off-rates of 2.3x10 s' and 14.3x107 57!,
respectively. The energy barrier at 3.0 A is consistent with AFM-based force spectroscopy

(26]128] whereas the outer barrier at 5.7 A was to our knowledge not observed in

experiments,
experiments before. The existence of such an outer barrier was, however, suggested by steered
molecular dynamics simulations as well as by discrepancies observed in the off-rates obtained

from non-equilibrium and equilibrium measurements.2°130131]

2.3. Nanomechanics of talin’s rod domain R3
After evaluating the performance of our microfluidics-based force spectroscopy approach, we

set out to apply it to study the nanomechanics of proteins, which start to unfold already if subject
to pN forces. In particular, we aimed for probing the unfolding behavior of talin’s rod domain
R3, the characterization of which proved to be very challenging even for highly sensitive force
sensing techniques such as OT and MT. To this end, we integrated into our assay a recently
described fragment containing talin’s rod domains R1 to R3,[!”) which has been intensively
characterized using MT and AFM in the past and showed unfolding of R3 for forces being on
the order of 5 pN.!""I!7] In our measurements, we employed the construct introduced by Haining
et al. (termed R1-3 in the following),'”! in which the rod domains R1 to R3 are integrated
between two repeats of titin’s 127 domain (which generated a nanomechanical signature in their

11
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AFM measurements), whereas the N- and C-termini of the whole construct were functionalized
with a HaloTag and cysteine residue, respectively. Hence, the R1-3 construct can be understood
as the following polyprotein: HaloTag-(127)2-R1-R2-R3-(127)2-His-Cys. Furthermore, a
variant of this construct was available for our measurements (termed 127 in the following),
which consists only of the 127 domain repeats: HaloTag-(127)s-His-Cys. As unfolding of 127
requires forces exceeding 50 pN 2! the construct 127 cannot be unfolded with the forces
achievable in our setup (~ 20 pN) and therefore serves as negative control in our unfolding
measurements. Furthermore, R1 and R2 unfolding has been reported to occur for loading forces
well beyond 10 pN, ['”) making unfolding of these two rod domains in our experiments a
possible yet unlikely process.

Both constructs were integrated into our assay by coupling the constructs to monodisperse,
fluorescent beads (diameter: 200 nm) via the HaloTag moiety, whereas the cysteine residue was
used to link functionalized beads to maleimide groups attached to the bottom of a microfluidic
channel (as described in the Materials and Methods section). The displacement of these beads
was recorded using a flow profile that generated the following sequence of loading forces: 0.3
pN, 0.7 pN, 1.3 pN, 2.8 pN, 6.0 pN, 0.3 pN (Figure 4a). As in our stretching experiments
involving PEG chains, we again observed a broad distribution of bead displacement responses,
which required the application of the above-mentioned cluster analysis to identify populations
of similar nanomechanical behavior as well as artifact-containing displacement curves. We
typically observed 4 populations, which reproduced well between independent measurement
runs and which were attributed to beads being linked to the surface by one, two, three or more
constructs (Figure 4a showing the ensemble-averaged displacement curves of the individual
populations). This interpretation is supported by the observed spring constants being consistent
with a recent investigation.!'”! To simplify the analysis, we will restrict the following
assessment to the population corresponding to a single construct linking the bead to the surface.
Comparing the individual displacement curves of this population with the ensemble-averaged
response yields several candidate curves, which exhibit significantly larger displacements (i.e.,
potential unfolding events) in comparison to the enable answer. We therefore continued to
extract for each displacement curve the linker extensions (using the model described in
Supporting Information 2) as a function of the applied shear force and compared these

distributions for the R1-3 and the 127 construct (Figure 4b and Supporting Figure S6).

12

90



QO Joy 0w

Ao O OO U U U U OO OTU B BRBSDSSDSSDDDDDWWWWWWWWWWNDNDDNDNDNDNDNDNNMDNNNNRERRRRRRRRRE
O wWNhPFRrROoOWOJdJoUuld WP OOWOJIOUDd WNRPFPOWOJOHOUPd WNEFP OWOOLOJOUdWNE OWOoJoYU b whEFH O v

4. Publications

WILEY-VCH

1.3 pN . 07pN
1
4

100

events
events

50

127
displacement [nm]

0 0
100 150 60 80 100 120 60 80 20 40 60 80
extension [nm] extension [nm] extension [nm] extension [nm]

frame

o
=]

events
events

R1-3
displacement [nm]
g 8

£ 0 0 0
0 500 1000 1500 2000 50 109 150 60 80 ) 100 120 40 60 80 20 40 ) 60 80
extension [nm] extension [nm] extension [nm] extension [nm]

frame

Figure 4: Unfolding of talin’s rod domain R3. Linking the beads using protein constructs
containing (talin rod domains R1 to R3; R1-3) or lacking (127) talin’s rod domain inserts yielded
shear force-induced displacement curves that showed a broad distribution of displacement
values. As in the case of PEG-linker stretching (Figure 2), application of the cluster analysis
yielded distinct populations (a, showing the ensemble-averaged displacement curve), which
correspond to beads that are linked by one (red), two (green), three (purple) or more (black)
constructs to the surface. Analyzing all displacement curves of beads being linked by a single
construct (red in a), yielded information on the extension of the constructs (b) as a function of
applied loading force (as indicated in b). While the extension distributions of 127 typically
showed only one major peak (black arrow), which is consistent with a construct that cannot be
unfolded below loading forces of 50 pN, an additional peak is observed for the R3-containing
construct (R1-3, red arrows), which is attributed to unfolded R3 (as discussed in the main text).

The extension distributions obtained from the 127 construct are mainly given by a single peak,
which indicates the extension value of a fully folded construct (black arrows in Figure 4b). In
addition, the 127 distributions also show few minor peaks, which contribute less than 10% of
the observed events and are attributed to minor errors in the determination of the displacement.
The extension distributions obtained from the R1-3 construct show, however, a much more
complex structure. While for loading forces of 0.7 pN and 6 pN only one peak is observed, at
least one additional population is observed for loading forces of 1.3 pN and 2.8 pN (red arrows
in Figure 4b), which is missing for the 127 construct. The change in extension between the two
populations is 27.8 and 31.8 nm (at 1.3 and 2.8 pN, respectively), which matches very well with
the expected increase in construct extension upon unfolding of the rod domain R3 (as
determined in steered molecular dynamics simulations) and is close to experimentally observed

values (~ 25 nm).['”] Hence, this population is attributed to fully unfolded R3.
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This analysis reveals that 21% and 64% of the R1-3 constructs started to unfold at 1.3 and 2.8
pN, respectively, indicating that notable R3 unfolding can already be observed for loading
forces at the 1 pN scale. At 6 pN, we observe, as for the 127 construct, only a single population,
which we attribute to fully unfolded R1-3 construct. This interpretation is supported by the
trend in the unfolding at 1.3 and 2.8 pN as well as by a notable shift in the peak position between
the 127 and the R1-3 construct (~ 20 nm).

3. Conclusion
In our study, we introduced a microfluidics-based force spectroscopy technique, which allowed

to quantify the nanomechanical behavior of polymers and protein constructs as well as the
binding strength of a ligand-receptor interaction. The performance of this technique was
evaluated by quantifying the molecular spring constant of PEG-containing linkers, which
allowed to validate the measurement and data analysis procedure using a well-studied system.
This assessment indicated that the technique combines high parallelization of the measurement
process (following the response of up to thousand beads in parallel) with outstanding spatial
resolution (sub-nm localization accuracy) and sub-pN force sensitivity. Nevertheless, it also
revealed that the close vicinity of the beads to the surface of the microfluidic channel causes a
notable fraction of displacement curves to contain artifacts, which have to be identified and
excluded from further data analysis. To address this problem, we integrated a cluster analysis,
which assigned the recorded displacement curves into populations according to similarities in
their displacement behavior. This procedure did not only enable to semi automatically identify
artifact-containing displacement curves but also to identify populations that differ in their
nanomechanical response (due to difference in the number of engaged linkers), which was key
to analyze the complex data sets obtained by this technique. As an application of this new
technique, we probed the dynamics of force-induced bond failure of the ligand-receptor
interaction biotin-NeutrAvidin, which revealed one already known and one yet unobserved
energy barrier, therefore highlighting the additional information obtainable by our constant
force spectroscopy setup. Furthermore, we used this technique to study the unfolding behavior
of a talin’s rod domain R3, which indicated notable unfolding to occur at smaller forces (1 pN
scale) than previously believed. These experiments clearly demonstrate the potential of this
microfluidics-based force spectroscopy technique, especially for the characterization of even
more complex systems than covered in this study.

Evaluation of this technique showed, however, that the non-covalent immobilization strategy
currently used in the experiments is, contrary to our initial expectations, not strong enough even

14
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for force in the 5 pN range. Although this allowed us to study the bond failure of a ligand-
receptor interaction, this immobilization strategy causes a notable fraction of tracked beads to
detach before the end of an experimental run, thereby significantly lowering the data throughput
and making the data analysis more complex. In future experiments, we will therefore switch to

covalent immobilization strategies in order to avoid this problem.

4. Experimental Section/Methods
Chemicals: PDMS (Polydimethylsiloxane), Biotin-maleimide, TCEP (Tris(2-carboxyethyl)

phosphin-hydrochlorid), and DMSO (Dimethylsulfoxid) were obtained from Sigma Aldrich
(Steinheim, Germany). Poly-L-lysine(20)-g[3.5]-PEG(2) and PLL(20)-g[3.5]-PEG(3.4)-biotin
were obtained from SuSoS (Diibendorf, Switzerland). NeutrAvidin, 200 nm NeutrAvidin-
labelled, and amine-modified polystyrene beads were obtained from Thermo Fisher Scientific
(Massachusetts, USA). Sodium acetate (>98.5 %), acetic acid (100 %), and phosphate-buftered
saline (PBS, pH = 7.4) were obtained from Carl Roth (Karlsruhe, Germany). HaloTag NHS
ligand was obtained from Promega (Wisconsin, USA). The constructs denotes as 127
(containing 4 titin 127 domains) and R1-3 (containing talin’s rod domains R1 to R3) were
expressed and purified as previously described (see next paragraph).l'”l PBS buffer was created
by diluting 10x PBS concentrate according to the manufacturer’s instructions. Sodium acetate
buffer (pH = 5) was created by mixing 67 ml of sodium acetate stock (10 mM) with 33 ml acetic
acid stock (10 mM). PBS|TCEP buffer was created by adding 1 mM TCEP to the PBS buffer.
Sodium acetate| TCEP buffer was created by adding 1 mM TCEP to the sodium acetate buffer.
PLL-g-PEG|Biotin solution was created by mixing 2.6x10™" g/L PLL-g-PEG and 3.4x10° g/L
PLL-g-PEG-biotin in PBS|TCEP buffer. NeutraAvidin solution was created by preparing
102 g/L NeutrAvidin in PBS|TCEP buffer. The construct solution was created by preparing
4.2x10% g/L 127 or R1-3 and 8.5x10* g/L biotin-maleimide in sodium acetate| TCEP buffer.
The NeutrAvidin-bead solution was prepared by diluting the NeutrAvidin-bead stock solution
1:200 in 1x PBS. The amine-bead solution was prepared by diluting the amine-bead stock
solution 1:100 in PBS|TCEP buffer and adding 5x10° g/L. HaloTag NHS ligand.

Protein expression and purification: Halo-(127)x2-R1-R2-R3-(127)x2-His-Cys construct was
expressed using target protein encoding DNA subcloned into a customized pET-based plasmid,
(1 which included a C-terminal hexahistidine tag following by a Cys. The plasmids were
introduced into E. coli BL21-Star cells (ThermoFisher Scientific). Bacterial were pre-cultured
in LB-medium containing 100 pg/mL ampicillin at 37°C overnight in a shaker. The larger
production (1 L) was done in LB-medium containing 100 pg/mL ampicillin. To induce protein
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expression at optical density (OD~600) of 0.4, 1 mM IPTG was used. Cells were incubated for
12h at 18°C after which they were harvested by centrifugation. The Emulsiflex C3 was used
for homogenization in 20 mM NaPOas, 500 mM NaCl, 20 mM imidazole pH 7.4 buffer. The
homogenized E. coli suspension was centrifuged to get clarified lysate, which then applied to
HisTrap FF (5 mL) affinity column (GE healthcare) using chromatography Akta prime P100.
The Halo-(127)x2-R1-R3-(127)x2-His-Cys was eluted from column using 20 mM NaPOa, 500
mM NaCl PH 7.4 buffer with gradually increasing imidazole concentration (20 — 500 mM).
Fractions were directly eluted into Eppendorf tubes containing 1mM EDTA, 1mM DTT.
Eluted fractions were analysed by SDS-PAGE and Coomassie staining. Furthermore, Halo-
(I127)x2-R1-R3-(I127)x2-His-Cys construct was purified and buffer exchanged into 1x PBS
(containing 1 mM EDTA, 1 mM TCEP) using P-10 column. The homogeneity of the purified
protein was evaluated by SDS-PAGE and Western blot (using a-His HRP 1:4000 antibody) up
to 90%. In addition, the purity of protein also confirmed by dynamic light scattering (DLS),
Malvern ZetaSizer ZS, which indicated that protein was pure and homogenize. For long-term
storage, sample was aliquoted and performed flash freezing for -80°C storage.

Microfluidic channel preparation and functionalization: Microfluidic channels have been
formed using PDMS-based soft lithography and plasma-based bonding of the PDMS-channel
on silica cover glasses (#1.5 coverslips, 15 mm; Menzel, Germany) as previously
reported.?Y[>3] Directly before bonding, the cover glasses were cleaned using the RCA-1
procedure.

For the stetching experiments involving PLL-g-PEG linkers, the microfluidic channel was
equilibrated by washing with 1x PBS buffer at 25 pL/min for 10 minutes. Afterwards, the PLL-
g-PEG|Biotin solution was incubated at 17 pL/min for 30 minutes and then washed with 1x
PBS buffer at 25 uL/min for 10 minutes. Subsequently, NeutrAvidin-beads were incubated at
17 pL/min for several minutes until sufficient coverage (approximately 1000 - 2000 beads per
FoV) was reached and then washed with 1x PBS buffer at 25 pL/min for 12 minutes.

For the stetching experiments involving the 127 and R1-3 protein constructs, the microfluidic
channel was equilibrated by washing with PBS|TCEP buffer at 25 pL/min for 10 minutes.
Afterwards, PLL-g-PEG|Biotin solution was incubated at 17 pL/min for 30 minutes and then
washed with PBS|TCEP buffer at 25 uL/min for 10 minutes. Subsequently, NeutrAvidin was
incubated at 17 pL/min for 15 minutes and again washed as mentioned previously. Then the
respective construct (127 or R1-3) was incubated at 17 pL/min for 30 minutes and then washed

as mentioned previously. Finally, the amine-beads were incubated at 10 pL/min for several
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minutes until sufficient coverage (approximately 1000 beads per FoV) was reached and then
washed with PBS|TCEP buffer at 10 pl/min for 5 minutes.

Microfluidics-based force experiments: All measurements were performed on a Nikon Eclipse
Ti-E microscope (Nikon, Diisseldorf, Germany) equipped with a 100x Plan-Apo oil immersion
objective (NA 1.45), a Lumen 200 (Prior Scientific, Cambridge, UK) white light source and an
Andor Zyla 4.2 sCMOS camera (2048 x 2048 pixels; Oxford Instruments, Oxford, UK). The
measurements were done using a ND4 neutral density intensity filter, 1 X 1 binning of the
sCMOS camera and using a dichroic filter set optimized for green fluorescent protein (GFP;
excitation: 482 nm £ 9 nm, dichroic filter: 495 nm, emission: 520 nm =+ 14 nm). For the stetching
experiments involving PLL-g-PEG linkers, an additional 1.5x relay lens was used, resulting in
a pixel size of 43.3 nm with a field of view (FoV) of ~ 90 x 90 um?, and images were recorded
with an acquisition rate of 10 Hz (i.e., 100 ms time lag between two frames) and an exposure
time of 50 ms. Measurements involving the 127 and R1-3 constructs were done without adding
the relay lens (i.e., at a pixel size of 65 nm and a FoV of ~ 135 x 135 um?) and at an acquisition
rate of 4 Hz (i.e., 250 ms time lag between two frames; 20 ms exposure time). Flow rates
between 5 and 300 pl/min or 50 and 1500 pul/min (as indicated in the main manuscript), applied
in a block- or stepwise profile, were generated by syringe pumps (WPI, #AL1000-2202) using
1 ml syringe (HSV, #4200.000V0) for functionalization reagent injection and 20 ml syringe
(HSV, #4200.000V0) filled with buffer (1x PBS or PBS|TCEP) for washing and flow-based
force generation. Bead displacement curves were extracted from these measurements using a

previously described, custom-made single-particle tracking library.!

This library was
extended by additional procedures, which corrected the measurement for the drift of the sample
(see Supporting Information section S1), extracted force and extension information with single-
bead resolution (using the model described in Supporting Information section S2), and enabled
for a semi automatic analysis of the obtained data sets using a cluster analysis (Supporting
Information section S3).

Steered molecular dynamics simulations: R1-R3 construct was prepared using 1SJ8 and 2L7A
PDB structures. The simulations were performed with Gromacs software [4

supercomputing facilities provided by CSC, Finland. The CHARMM36m force field [ and

using

TIP3P water model in 0.15 M NaCl solution were used. The system was energy minimized and
then equilibrated using harmonic position restraints on all heavy atoms of the protein. The
temperature and pressure of the system was maintained at 310 K and 1 bar using Berendsen

algorithm.[*¢! Integration time step of 2 fs was used in all the simulations.
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The protein construct was first equilibrated for 100 ns, and then subject to unfolding in steered
molecular dynamics by the end-to-end distance extension using constant velocity pulling at 2
nm/ns. Three independent replicas were performed for the unfolding using steered molecular

dynamics.

Supporting Information
Supporting Information is available from the Wiley Online Library or from the author.
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Supporting Information

Microfluidics-based force spectroscopy enables high-throughput force experiments with

sub-nm resolution and sub-pN sensitivity

Yannic Kerkhoff, Latifeh Azizi, Vasyl V. Mykuliak, Vesa P. Hytonen, Stephan Block*

S1. Drift Compensation
Single-particle tracking was performed using previously described, home-made MATLAB

scripts.l!] This analysis provided for each bead a two-dimensional trajectory, indicating the
position of the bead on the surface of the microfluidic channel over the course of the
measurement. Inspection of these tracks (Figure S1) showed the expected shear force-induced
displacement of the bead (in direction of the flow) but also the presence of notable drifts and
vibrations of the sample, which have to be compensated before a meaningful assessment of the
bead displacement is possible. We compensated for such vibrations and drifting effects (Figure
S1a) by a two-step drift compensation procedure.

In a first correction step, the procedure calculated for all tracks, which covered the entire
measurement run and showed sufficient localization quality (estimated by the quality of
Gaussian fit to the bead’s intensity distribution), the frame-by-frame displacement in x- and y-
direction, followed by calculating for each frame an initial estimator of the median displacement
(in x- and y-direction, respectively) from the corresponding frame-by-frame displacements. In
order to reject outliers (caused, for example, by transient bead detachment or errors in the
tracking procedure), this initial estimator was refined by also calculating the standard deviation
of the corresponding frame-by-frame displacement distribution, by rejecting all values that were
outside the range given by the initial estimator + 2x the corresponding standard deviation, and
by calculating again the median value of the remaining frame-by-frame displacement values.
In a first correction step, these frame-dependent median displacement values (in x- and y-
direction) were subtracted from all tracks.

The so-obtained tracks showed the expected block-wise displacement profile, but also tracks
with negative displacement values (Figure S1b), which formally correspond to beads being

displaced against the flow. Control experiments using flow-profiles, in which only half of the
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beads were exposed to the flow (and hence subject to a shear force) indicated that this
population is generated by immobile beads, which apparently move against the flow as the
median displacement of the first compensation step was calculated using all tracks (i.e.,
immobile as well as displaced beads). We therefore assigned the beads, which showed the
strongest negative displacement (Figure S1b, green FEC) after the first correction step, to be
immobile beads and repeated the procedure of the first compensation step (described above)
using these tracks as input for the determination of the final frame-dependent median
displacement values. These median displacement values were then subtracted from all tracks to

correct for sample drift (Figure S1c), which formed the basis for all further calculations.
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Figure S1: Overview of the two-step drift compensation. The raw x-displacement (in flow
direction) of four displacement curves, generated by applying a block-shaped force profile to
the PLL-g-PEG-linked beads, shows notable distortion by stage vibrations (high frequency
oscillations) and drift of the sample (a). The vibrations typically show amplitudes on the nm-
scale and are indicative for sub-nm single shot localization accuracy, reflecting the high spatial
accuracy achievable when using bright fluorescent beads. To compensate for such distortions a
two-step compensation procedure is used (see text for more details), with (b) and (c) showing
the results after the first (b) and second compensation step (c), respectively.

S2. Extension and Force Calculation

In our microfluidics-based force spectroscopy method, we monitor the x-displacement of beads,
Ax, as function of the applied shear force, Fx. Hence, to quantify the nanomechanical properties
of the linker, which connects the bead with the surface of the microfluidic channel, it is
necessary to model the process of bead displacement (Figure S2). Input values of this model
are parameters, which are either set by the user (applied flow rate f) or extracted from the
measurement (bead displacement in flow direction, Ax, and bead intensity /). Output values are
(as will be detailed below), the shear force applied to bead Fx and the part of Fx, which acts in
direction of the linker (F), the linker length AL, and the bead’s distance to the surface, Az, of

the microfluidic channel.
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Figure S2: Overview of the relationship between the experimentally determined values
(applied flow rate f, bead displacement in flow direction, Ax, and bead intensity) and the
properties extracted from these values (force applied to bead Fy and linker F, linker
length AL, and distance to the surface, z, of the microfluidic channel). (a) In absence of a
flow, the bead is only subject to random forces and its time-averaged center position (projected
on the surface) will coincide with the anchoring point of the linker to the surface. The bead
distance to the surface will, however, not average out but depends on the type of linker (see text
for details). As a consequence, application of a shear force to the bead will generate a torque
that tilts the bead towards the surface. The bead will be in contact with the surface, if the shear
force exceeds a threshold value, which depends on the nanomechanical properties of the linker.
After touching the surface, the linker length L as well as the part of Fx, which acts in direction
of the linker (F), that can be directly calculated knowing bead radius r and displacement Ax (a,
bottom). (b, ¢) The tilting process can be captured using TIRF illumination, in which the
fluorescence intensity of the bead decays exponentially with distance to the surface (b).
Application of a block-wise shear force profile (0.06—17—0.06 pN) also generates a block-
wise shape of bead displacement and intensity. Estimating the bead’s surface separation based
on the change of its intensity allows to extract the 3-dimensional bead displacement, the x- and
z-component of which is shown in (c). The initial position and force-dependent displacement
is indicated in blue, whereas the return after force-release is indicated in red. (d) The bead tilt
can be neglected in the data analysis, if the shear rate is large enough to ensure that the bead is
always in contact with the surface. This is demonstrated in (e), which gives bead displacement
Ax (top) and linker length L (bottom) for application of a step-wise shear force profile:
0.06—0.58—1.15—2.88—5.75—8.63—11.50—17—0.06 pN. The linker’s spring constant k
derived using this data (f) saturates for shear force exceeding 2.88 pN. At this shear force, the
bead starts to touch the surface and reproducible k-values are extracted.
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The shear force acting on the bead Fx directly follows by multiplying the applied flow rate f
with the channel- and bead-specific shear force coefficient, T= 0.0115 pN/(uL/min), which
was derived by recently performed calibration experiments:[?!

E=f-t (SD)

In absence of a flow, the bead is only subject to random forces and its center position (projected
on the surface) will fluctuate around the point, at which the linker contacts the surface. As the
temporal resolution is far below the timescale of these fluctuations, our experiments will record
a time-averaged center position, which provides information on the contact point of the linker.
As such confines conformational fluctuations can take place only above the surface, the bead
distance to the surface will, however, not vanish in the time average but adopt a non-zero value,
which depends on the type of linker. For a polymer in a good solvent (such as PEG chains in
PBS), the length scale of his distance will be given by the polymer’s radius of gyration (~ 8 nm
for a PEG chain of ~ 80 monomers)."*! For proteins, the length scale of his distance is given by
the distance of the N- and C-termini (~ 12 nm for the protein constructs 127 and R1-3).

As a consequence, application of a shear force will generate a torque, which pushes the bead
towards the glass surface (Figure S2a,top). Owing to the TIRF illumination used in our
experiments, which generates an evanescent excitation wave at the surface and causes the
bead’s fluorescence intensity / to be a function of the bead’s surface separation z, this motion
along the z-axis can be followed based on recording changes to the bead’s intensity (Figure
S2b). Based on the penetration depth of the evanescent wave zgr (~ 150 nm) in TIRF

microscopy, the the bead’s surface separation z is estimated from the intensity / according to

z = —log(l/Iy) - zgy, (52)

in which /o denotes the intensity of the bead if it touches the surface (z = 0). A representative
example for this analysis is given in Figure S2b and c, which shows the stretching of a PLL-g-
PEG chain by application of a block-wise shear force profile (0.06—17—0.06 pN). As expected,
this leads to block-wise profiles of the bead’s displacement and intensity, which enables to plot
the bead’s displacement in the xz-plane using Eq. S2 (Figure S2c). Initially, the bead hovers ~
35 nm above the surface at a force of 0.06 pN. This value is much larger than the one expected
based on the radius of gyration of a 3.4 kDa PEG chain (~ 8 nm), which is attributed to an

overestimation of the penetration depth of the evanescent wave. When the shear force is
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increased to 17 pN, the bead is displaced in x-direction by 50 nm and then pushed to the surface
(blue course), while relaxation to 0.06 pN causes the bead to return almost completely to its
initial position (red course).

The tilting motion of the bead makes it challenging to quantify linker length L and force F'
acting on the linker solely from the observed bead displacement. These relationships, however,
become simple, if the bead touches the surface. In this case, it is possible to calculate the linker

length L by simple geometric considerations, which lead to

L=+vVAx?>+1%2—r. (S3)

(with r denoting the radius of the bead, which is 100 nm in our experiments). Furthermore, the
force acting on the linker F can be calculated by multiplying the shear force Fx with the angle
of the linker:

F = F, - cos(atan(r/Ax)). (S4)

Using these equations, it is possible to extract linker length L and force F' acting on the linker
from the observed shear force-dependent bead displacement (Figure S2d) and hence to translate
displacement curves into force-extension curves (Figure S2d,e). Knowing the force-dependent
linker extension allows to calculate the linker’s spring constant k based on:

k=F/L (S5)

A representative example for this analysis is given in Figure S2d and e, which shows the
stretching of a PLL-g-PEG chain by application of a step-wise shear force profile
(0.06—0.58—1.15—2.88—5.75—8.63—11.50—17—0.06 pN). Inspection of the linker’s
spring constant k (Figure S2¢) indicates that this quantity increases for small shear forces and
saturates for shear force exceeding 2.88 pN. This behavior is attributed to bead tilting, which
leads to an underestimation of the spring constant. For shear forces exceeding 2.88 pN, the bead
is in contact with the surface and reproducible k-values can be extracted. Note that in our
experiments on PEG chain stretching, rupture of biotin-NeutrAvidin interactions or the
unfolding of talin’s rod domain, all characterizations have been done in the limit of a surface-

touching bead.
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S3. Cluster Analysis
S3.1. Cluster Analysis Procedure
In the first step of the cluster analysis, all possible pairs of 2 displacement curves (Axi, Axj) from
one experimental run are taken. The indices i and j ranging between 1 and the number of
recorded displacement curves, N. Furthermore, the curve IDs have been sorted such that the
median value of the bead displacement at highest shear force increases with increasing index
(i.e., the curves with the smallest displacements have small values of i and j, respectively, and
vice versa). For each of these pairs, the standard deviation of the difference of the displacement
curves is calculated:

sd(i,j) = std(Ax; — Ax; ). (S6)

This information is stored in a two-dimensional matrix (in which the x- and y-dimension
correspond to the IDs of the two displacement curves of a particular pair). Inspecting this matrix
as heat map of log(sd) (Figure S2a,top) showed the occurrence of patterns in the sd-values of
displacement curves, indicating that curves, which are similar to each other, are also similar in
their similarity to other curves. In order to group displacement curves according to these
similarity patterns, the cluster algorithm calculates a second similarity map by calculating the

variance of the log(sd)-values:

si(i,j) = 1/N- Xy_,(log(sd(i,n)) — log(sd(j, n)))?. (S7)

A small value of si(i,j) therefore indicates that the displacement curves i and j have similar
displacement behavior with respect to all other curves. The cluster analysis automatically
groups displacement curves into populations of similar si-values, by applying a permutation &t
to the displacement curve IDs, which maximizes the areas of low si-values along the diagonal
of the si matrix. The result of this procedure is shown in Figure S2a,bottom, which displays the
heat map of si(n(i),n(j)) (i.e., of the si-map after application of the permutation m to the
displacement curve IDs). In this representation, displacement curves of similar displacement
behavior form blue “blocks” along the diagonal, which strongly simplifies the identification of
the corresponding populations (Figure S2b). Blue areas (small si-values) in off-diagonal entries
indicate a certain overlap in the similarity between curves of the different populations and can
be used to refine the automatic assignment done by the cluster analysis. In any case, the
populations identified by the cluster analysis were always manually confirmed before being

included in follow up analyses.
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before
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Figure S3: Pre-assignment of displacement curves by a cluster analysis. (a) The cluster
analysis first calculates for each recorded force curve the mean squared difference to all other
force curves, yielding a heat map (blue = high similarity, yellow = low similarity). These heat
maps exhibit patterns, which can be used to automatically pre-assign the force curves into
subpopulations. (b) The top-most plot gives an overlay of all force curves of an 127 stretching
experiment (at loading forces as indicated). It exhibits a broad distribution of different behaviors,
caused here by differences in the molecular configuration of the particular beads. Application
of the cluster analysis (left) pre-assigns these curves into 3 populations I —III (for this particular
measurement), in which the force curves show high similarity in their force-dependent
extension behavior.

3.2. Cluster Analysis Validation
The cluster analysis was validated by simulation of 500 displacement curves (Figure Sa) with

five defined input populations (Figure Sb) and comparison to the automatically defined output
populations (Figure S4d-h) extracted from the cluster analysis-based color map (Figure Sc).
The simulated displacement curves (Figure Sa) show a hysteresis-bearing block-wise profile
with a displacement scattering around 0 for the first 500 values (furthermore denoted as frames)
and then a steep linear increase for 100 frames, a flat increase for 400 frames. The displacement
curves then show a stable displacement according to their population (0, 0.5, 1.0, 1.5 pixel)
with a random scattering around this value for 2300 frames. Afterwards the values show a steep
decrease for 100 frames and a lower decrease for 400 frames and then stabilize at 0 with a small

random offset for the last 200 frames.
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Figure S4: Overview of the cluster analysis validation by classification of defined input
populations of simulated FECs. A set of 500 displacement curves was simulated, consisting
of five defined populations (0, 0.5, 1.0, 1.5 pixel displacement and artifact-bearing displacement
curves, showing a high displacement and no sufficient return) with 100 displacement curves
each (a). The median displacement histogram of the 500 simulated displacement curves with
Gaussian fits gained from classified populations after cluster analysis shows the distinct
simulated populations (b). The color map after cluster analysis (c) also shows five defined
cluster groups (green, purple, red, 2x black). The purple cluster group contains 67 displacement
curves (d) with a peak at 0.6. The green cluster group contains 107 displacement curves (e) with
a peak at 1.0, and the he purple cluster group contains 154 displacement curves (f) with a peak
at 1.5. The two black cluster groups contain 103 immobile (g) and 69 artifact-bearing (h)
displacement curves.

The artifact-bearing displacement curves show a high random offset, resulting in a high
displacement and no sufficient return in the last 200 frames. The median displacement
histogram of the 500 simulated displacement curves shows four distinct peaks representing the
simulated populations (Figure Sb). The four peaks of the defined populations (0, 0.5, 1.0, and
1.5) as well as some artifacts (at more than 2 pixel displacement) are clearly visible and

highlighted by Gaussian fits which were generated based on the defined populations of the
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cluster analysis (Figure Sc-g). The color map of the cluster analysis (Figure Sc) shows distinct
cluster groups, which are highlighted with rectangles in green, purple, red, and two times black.
The extracted displacement curves and median displacement histogram of the purple cluster
group (Figure Sd) is revealed to be the simulated population with a 0.5 displacement. While
the input population was correctly defined, only 67 of 100 input displacement curves are
classified in this group. As the immobile populations (Figure Sg) was correctly defined with
103 displacement curves, we attribute the difference in input and output displacement curves
of the 0.5 population to a loss of displacement curves to the green population (Figure Se). The
green population contains 107 displacement curves with a displacement around 1.0 and is
therefore correctly defined. The red population (Figure Sf) contains 154 displacement curves
with a displacement around 1.5. This shows that also this input population is correctly defined
despite having 54 more displacement curves than the simulated 100 ones.

We attribute this to the fact, that by chance the simulated artifact-bearing curves can have a
very small offset and thus being quite similar to the displacement curves of the defined input
populations. This is supported by Figure Sh, as only 69 of 100 simulated artifact-bearing
displacement curves are classified as artifacts. However, the displacement curves with are
strong offset are reliably grouped together and could in real experiments therefore be excluded
from the further analysis. Conclusively, the validation simulation shows, that while the input
ratios of simulated displacement curves are not necessarily correct conserved, at least the
displacement profile of the three input populations as well as immobile and intense artifact-
bearing displacement curves are correctly identified, demonstrating the utility and reliability of

the automated cluster analysis.
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Figure S5: Enlarged versions of Figure 2e and 2f of the main manuscript.
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Figure S6: Six representative displacement curves of the R13 construct (black) show a

force dependent R3 unfolding. The median

displacement of all displacement curves of beads

being linked by a single construct are shown in red and the forces acting on the protein
constructs (0.7, 1.3, 2.8, and 6.0 pN) are shown on top of the curves. Unfolding events are

indicated by red arrows.
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5. Discussion & conclusion

The focus of this work was the development of new high-throughput single-entity analysis methods to
allow for the investigation of biomembrane-associated interactions from the cellular to the molecular
scale. These interactions, which include e.g., the binding of pathogens to host cells, the binding of pol-
ymer-based inhibitors to viruses, and the response of biopolymers (such as proteins) to mechanical
forces, are often very delicate and complex due to weak multivalent interactions. Getting new insights
into those processes is thus very interesting for the screening of new antiviral agents ['731 174111751 the
understanding of transmembrane signaling based diseases *], as well as basic research e.g., in the
field of mechanobiology ['"®. New methods to study these biochemical events must be easy to use to
enable a wide application in the scientific field, very sensitive to detect distinct cellular or molecular
populations, and generate a large amount of data to assure statistical power. While to this date, there is
a variety of methods already available to address these requirements, only few methods combine them
all. This is especially true for the most common single-molecule force spectroscopy methods, namely
atomic force microscopy, optical tweezers, and magnetic tweezers, as these methods are usually de-
signed for high sensitivity or high throughput applications. However, to study weak multivalent mem-
brane-associated interactions, such as protein unfolding or the dissociation of receptor-ligand com-
plexes, it is essential to address both aspects. To tackle the shortcomings of current methods, it was
thus necessary to establish new approaches in order to monitor the response of delicate biological sys-

tems to external stimuli, with single-cell and single-molecule resolution.

In the first project, a fast, yet sensitive, and easy to use Fiji-macro was developed ¥ to segment densely
packed cells in a two-dimensional monolayer, and quantify the intensity of a fluorescent reporter with
single-cell resolution. Plotting the single-cell intensity in a logarithmic scale allowed for a clear visuali-
zation of cellular populations, representing cells with or without a fluorescence signal, higher than the
background intensity. This allowed for an automatic determination of fluorescent and non-fluorescent
fraction of the cells, which (depending on the reporter system) provided information about the transfec-
tion efficiency using different amounts and ratios of DNA and PEI, or the amount of virus infected cells.
This method was used to screen the inhibition potency of hyperbranched polymer-based virus binding
inhibitors against HSV-1['88 based on the ICso value. A main goal of this project was to establish a
method which is as easy to use as possible, which was achieved by implementing an option for the
automatic estimation of analysis parameters (i.e., background thresholding, segmentation sensitivity,
and intensity cutoff of cellular populations), leading to a reduction in manual work and need for expertise
in handling single-cell segmentation methods. A correlation of the analysis results with manually and
automatically chosen analysis parameters showed an excellent correlation of (R? >= 0.98) for widefield

and confocal imaged fluorescent cells.

This single-cell segmentation approach was then extended in the second project, where a method was
developed to estimate the number of clustered fluorescent nanoparticles below the diffraction limit, on
confocal imaged cells, with single-cell resolution B'l. The aim of this project was to establish a new

method, which is able to quantify the number of virus-like particles bound to cells, but at a resolution
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5. Discussion & conclusion

where tens of cells can be imaged in parallel to assess the cell-to-cell heterogeneity in particle binding.
This is especially challenging as the nanoparticles (~200 nm) and the PSF of their emitted light
(~300 — 400 nm) are near the pixel-size (180 — 360 nm) of the confocal imaged cells, which leads them
being displayed as blurred spots with increased intensity, without the possibility to resolve them individ-
ually. To overcome this resolution-based limitation, an approach of parallel single-cell and single-nano-
particle analysis was developed, where the cells were segmented and the local intensity maxima per
cell were identified and a subsequent application of a low-pass filter and intensity correlation allowed for
an estimation of the number of clustered fluorescent nanoparticles within each local intensity maximum.
The accuracy of the estimation was validated by the simulation of fluorescent nanoparticles of different
densities and at different resolutions and was found to be in the range of ~ 80 — 100 %, compared to
the number of simulated nanoparticles. An early version of this method was used to quantify the amount

of SARS-CoV-2 particles bound to Vero E6 cells under treatment with negatively charged polysulfates
[169]

Within the third project, the quantification of nanoparticles was extended from static images to dynamic
image series, using single-particle tracking. For this, a tutorial for the analysis and refinement of single-
particle tracking experiments was developed 53, which focuses on the quality assessment of such anal-
ysis approaches, and especially gives advice for choosing a suitable maximal linking distance, to ensure
the quality of derived single-particle tracks. It was initially intended to probe for the ligand dependent
change in diffusion due to different oligomerization states of GM1 in SLBs (see 7.1.1 Multivalent GM1
binding of choleratoxin subunit B) and BMPRs in hybrid supported lipid bilayer systems, but instead
revealed some mobility-based limitations in setting up this system (see 7.1.2 Hybrid lipid bilayer for-
mation). However, the SPT method was then used to quantify the BMP2 induced immobilization of
BMPR2 on endothelia tip-cells ', to track IAVs binding on hybrid lipid bilayers containing red blood
cell membrane material '], and also to track the displacement of 200 nm sized fluorescent beads in a

microfluidic setup, which was used in project four.

Within the fourth project, a new sensitive high-throughput single-molecule force spectroscopy method
based on hydrodynamic forces ['"? was developed. To this end, TIRF microscopy was combined with
microfluidics and SPT to exert low to sub-pN forces on single molecular targets, bound to fluorescent
beads and immobilized on the glass surface of a microfluidic channel and to observe their mechanical
response (i.e., stretching, unfolding, and dissociation) with sub-nm resolution. This combination of sev-
eral techniques allowed for a massive parallelization of measurements, due to the high surface coverage
of fluorescent beads in the microscopy FoV (1000+ beads each). The flow-based force calibration of the
microfluidic architecture based on the 2D flow nanometry approach from Block et al. 18], also allowed for
the calculation of acting forces, without the need for assumptions based on the parabolic flow profile in
the channel. Also, the beads used to apply forces on molecular targets were 200 nm in size, while other
approaches used micrometer sized beads, which allowed to apply especially low forces (down to rang
of approximately 0.01 pN) as the flow-based shear force is scaling with the size of the used beads. This
method was validated by successfully reconstructing the mechanical properties and the valency of PEG-

linkers and was then used to probe for the energy barriers of the dissociation of multivalent biotin-
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NeutrAvidin complexes which were found to be at 3 A and 5.7 A and to study the unfolding of the third

rod domain (R3) of talin at such low forces, previously not achieved by any other method.

To conclude, this work expands the repertoire of suitable biochemical and biophysical methods for the
high-throughput investigation of the properties and interactions of cells, nanoparticles, and molecules

with single-entity resolution, and is therefore a valuable contribution to the scientific community.

6. Outlook

This work demonstrated the establishment of several high-throughput single-entity analysis methods
from the cellular to the molecular scale. While these methods were mainly applied to well-studied model
systems, such as quantifying GFP expression in cellular monolayers or investigating the mechanical
response of PEG linkers, to assess their sensitivity and high-throughput capabilities, they are intended

to be used in further applications.

The automated single cell segmentation and parallel nanoparticle quantification methods could be com-
bined and established as a platform to characterize virus binding and inhibition, as they allow precise
quantification of virus infection and attachment to cells under different conditions. Since the nanoparticle
quantification method has only been used with polystyrene beads and virus-like particles, further testing
with real viruses such as IAV, HSV-1, or SARS-CoV-2, in combination with binding inhibitors, would be
a suitable next step. The refined single particle tracking could be used on a larger scale to quantify the
oligomerization processes of transmembrane receptors such as BMPRs and their responses to ligands
and co-receptors on living cells or in hybrid lipid bilayers. This will first require overcoming the current
limitations of incorporating membrane material into synthetic lipid bilayers (such as uniform fusion and
distribution of native lipids and proteins), but if successful, this hybrid system would be a valuable addi-
tion to measurements performed on cells. The newly established method of single-molecule hydrody-
namic force measurement could be used to further study the mechanical response of talin under sub-
pN forces, e.g., to determine the transient folding and refolding of intermediate states or the influence
of vinculin binding after talin unfolding. It could also be used to study the energy barriers of receptor-
ligand of the viruses mentioned above, allowing for a multi-scale investigation of these membrane-as-

sociated interactions.
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7. Appendix

This chapter contains additional data and information which do not belong to the main body of the thesis.
This is namely unpublished data (7.1 Supplementary data) and the abbreviations (7.2 List of abbrevia-
tions) used in the main text.

7.1 Supplementary data

The unpublished data presented and discussed in this section regards the successful reconstruction of
the multivalent GM1 binding of choleratoxin subunit B by refined single-particle tracking ¥ and the chal-

lenges in the preparation of hybrid lipid bilayers 68 e.g., used for virus binding studies ['""].

7.1.1 Multivalent GM1 binding of choleratoxin subunit B

To test whether the SPT approach of % is sensitive enough to detect different oligomerization states
based on the diffusion coefficient (which according to the Evans-Sackmann model should depend on
the hydrodynamic radius of the diffusing object ['°8 embedded in the SLB) Alexa Fluor 488 (AF488)-
labeled CTxB was incubated in SLBs containing GM1 at different concentrations (Supplemental figure
1a) and tracked (Supplemental figure 1b) to quantify the GM1-dependent diffusion coefficient profile
(Supplemental figure 1c) of CTxB.
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Supplemental figure 1: Quantification of multivalent GM1 binding of CTxB by refined SPT. AF488 labelled CTxB
was incubated on POPC SLBs containing GM1 in different concentrations and imaged via TIRF microscopy (a).
The derived images series were tracked (b) and the extraction of the diffusion coefficients of the tracks revealed
distinctive histogram peaks (c). The tracks were attributed to the diffusion peaks and their counts for the different
GM1 concentrations in the SLB (0.01, 0.1, and 0.3 mol %) plotted and linear fits were applied (d). With increasing
GM1 concentration the slope of the fits also increases (3.5 + 1.1, 11.5 + 2.4, and 18.3 £ 3.0).

As expected, the histogram of the diffusion coefficients of the tracked CTxB-AF488 incubated on SLBs
containing 0.3 mol% GM1, shows distinct peaks, which are interpreted as CTxBs multivalently bound to
different numbers of GM1, where slower peaks indicate higher valency. The five most prominent peaks
were determined, where the peak with the lowest D at about 0.1 um?/s was attributed to CTxB with the
lowest binding valency, and the peak with the highest D at about 1.5 um?/s was attributed to CTxB with
the highest valency. The number of tracks within the five peaks was then plotted for the different con-
centrations of GM1 contained in the SLBs and linear fits were applied (Supplemental figure 1d). As
expected, the higher the amount of GM1 in the SLB was, the higher was the total number of derived
tracks, as more GM1 allows for more binding of CTxB. However, the ratio of the peaks seems to be
constant for all concentrations, indicating that a higher GM1 concentration does not lead to a shift to

higher binding valencies.
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7.1.2 Hybrid lipid bilayer formation

The SPT-based oligomerization quantification approach was initially intended to be used on BMPRs
imbedded into hybrid supported lipid bilayers, but the tracking revealed some mobility-based limitations
in setting up this system. Firstly, it was intended to use red labelled receptors (e.g., mCherry fusion
proteins and atto-565 dyes) but the pure POPC SLBs already contained a significant amount of mobile
red particles (Supplemental figure 2a) which are mainly attributed to dye residues form other experi-
ments. Tracking of these mobile events in the red channel (Supplemental figure 2b) revealed that also
here distinct diffusion based populations are present (Supplemental figure 2c¢), and thus there is a high
risk of confusing the labeled receptors with the dye residues, which would presumably corrupt the re-
sults.
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Supplemental figure 2: Presence of red dye residues in hSLBs. When preparing and imaging hSLBs at high
intensites, an unspecific mobile population of red dye resiudes was found (a). When tracked (b) these dye residues
showed three unexplained distict diffusion coefficient histogram peaks (c).

To avoid this problem, it was decided to change the color of the receptor labels to the green channel
(e.g., GFP fusion proteins and Atto-488 dyes) as there were no prominent mobile dye residues in the
POPC lipids detected here. The labelling specificity of Atto-488 labelled benzylguanine to SNAP-tagged
receptors was tested by confocal imaging of HEK cells, transfected with 3-galactosidase (control, no
labelling expected) and transfected with SNAP-tagged BR2-TC1 (target receptor, specific labelling ex-
pected) (Supplemental figure 2a, top). The confocal images of the R-galactosidase transfected cells,
showed no specific fluorescence signal while the cells transfected with SNAP-tagged BR2-TC1 showed
a high fluorescence signal, indicating a high specificity of the SNAP-labelling system. When preparing
native membrane vesicles from both labelled cells and fusing them with synthetic vesicles to build
hSLBs, TIRF imaging on the other hand revealed the presence of many immobile fluorescent particles
in both samples (Supplemental figure 2a, bottom). While the confocal images indicate a high level of
labelling specificity, the single-molecule resolution by TIRF imaging shows that there are still dye resi-
dues left in the sample, even after intense washing. This carries the risk of confusing these dye residues
with immobile receptors. However, the sample with SNAP-tagged BR2-TC1 transfected cells, also con-
tains large fluorescent vesicles, which are suspected to be unruptured NMVs, contain the specific la-
belled BR2-TC1 receptors. Transfection, cultivation, labelling, and imaging of HEK cells as well as prep-
aration of native membrane vesicles was performed by Christian Hiepen, Jerome Jatzlau, and Michael
Trumpp according to the protocol found in [62],
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a insufficient incorporation of native HEK cell successful incorporation of rhodamine
membrane vesicles in POPC bilayer labelled red blood cell membrane vesicles in
POPC bilayer 200m
Rgal + SNAP-488 BR2-TC1 + SNAP-488 Yy 0 sec

confocal, cells
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Supplemental figure 3: Preparation of hSLBs with native cell membrane material derived from HEK and red blood
cells. Native cell membrane vesicles derived from HEK cells transfected with Rgal or labelled BR2-TC1 receptors
showed no homogenious incorporation of native material into the synthetic SLB (a). Also immobile dye residues
remained in the sample, which can be resolved by TIRF but not by confocal microscopy. Rhodamine labelled red
blood cell membrane (RBCm) vesicles successfully fused into a synthetic POPC SLB (b) building a hybdrid lipid
bilayer.

In a similar approach used in """l a hSLB was formed by fusing rhodamine labelled RBCm vesicles into
a POPC SLB (Supplemental figure 2b) to allow for transient virus binding studies. Red blood cell mem-
brane vesicles were prepared by Chuanxiong Nie according to the protocol found in """ and tracking of

IAVs on the RBCm containing hSLB was performed by Matthias Wallert and Stephan Block.

Similar to hSLBs made with NMVs from HEK cells, large, non-fused vesicles with labeled material were
observed. However, many of these vesicles showed clear fusion and distribution into the surrounding
POPC-SLB (three zoomed inlets of Supplemental figure 2b). This fusion could not be observed in NMVs
from HEK cells, leading to the assumption that the effectiveness of the fusion process is dependent on
the source of membrane vesicles. Thus, for the continuation of this project, it would first be necessary
to systematically study the fusion of native and synthetic vesicles to obtain a uniform hybrid lipid layer.
If the membrane receptors incorporated into such a homogenous hSLB then show mobility, it would be
possible to apply a SPT-based approach (like with the CTxB and GM1 system of 7.1.1) to study the
ligand dependent oligomerization of BMPRs.
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7.2 List of abbreviations

pl

2D
ACE2
AF488
AFM
APD
BMP
BMPR
CCD
CLSM
CTxB

fN
FOP
FOV
FRAP
Fs
GFP
GM1

HEK
HSPG
HSV-1
HVEM
IAV
ICs0

ks
LED
min
MT
nm
NP
oT
PDMS
PEG
PLL
PMT

micro liter

two dimensional

angiotensin converting enzyme 2
Alexa Fluor 488 dye

atomic force microscopy

avalanche photodiode

bone morphogenetic protein

bone morphogenetic protein receptor
charge-coupled device

confocal laser scanning microscopy
cholera toxin subunit B

diffusion coefficient

force

femto newton

fibrodysplasia ossificans progressiva
field of view

fluorescence recovery after photobleaching
shear force

green fluorescent protein
monosialotetrahexosylganglioside
hour

human embryonic kidney
hyperbranched polyglycerol sulfate
herpes simplex virus

herpes virus entry mediator
influenza A virus

average 50 % inhibitory-concentration
Boltzmann constant

light emitting diode

minute

magnetic tweezers

nanometer

nanoparticle

optical tweezers
polydimethylsiloxane

polyethylene glycol

poly-L-lysine

photoelectron multiplier tube
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pN

POPC
PSF

r

RBCm
ROI

SA
SARS-CoV-2
sd

SLB
SMAD
SNAP-tag
SPT

T

TIRFM

v

WFM

pico newton

phosphatidylcholine

point spread function

radius

red blood cell membrane

region of interest

sialic acid

severe acute respiratory syndrome coronavirus 2
standard deviation

supported lipid bilayer

suppressor of mothers against decapentaplegic
a self-labeling protein tag

single-particle tracking

temperature

total internal fluorescence reflection microscopy
velocity

widefield fluorescence microscopy
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