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FU Berlin, these include Dorothé Auth and Christian Wendt of the Biocomputing Group;
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Chapter 1

Introduction

Random dynamical systems with continuous paths are ubiquitous in science and engin-
eering. Such systems are often referred to as ‘diffusive systems’, or simply ‘diffusions’.
Diffusions are particularly important whenever a large collection of interacting particles is
involved, since one can often infer the statistical properties of the entire collection from
the behaviour of individual particles. For this reason, diffusions are used to model many
statistical-physical phenomena. Indeed, much of the current research in computational bio-
physics involves studying the motion of a large molecule immersed in a noisy environment
consisting of many smaller molecules. Diffusions are attractive systems for computational
study because remarkable increases in computing power and methods have made it pos-
sible to perform quantitative studies of complex systems with unprecedented accuracy.
In this context, mathematics plays an important role in the analysis and development of
algorithms that efficiently use both computing power and data.

This aim of this thesis is to analyse and develop some aspects of a Monte Carlo-based
gradient descent algorithm for computing statistical properties of metastable diffusions.
Roughly speaking, metastability refers to the tendency for the diffusion to spend long
periods of time in certain areas. If the walk of a drunkard provides a reasonable analogy
for the path of a diffusion, then the tendency for the drunkard to spend long times in
certain locations - such as bars - provides a reasonable analogy for the property of meta-
stability. Metastability is important in biophysics, not only because many biologically
relevant molecules appear to be metastable, but because their metastability appears to be
essential to their function. From an algorithmic point of view, metastability is important
because it renders the standard Monte Carlo method for estimating statistical properties
too time-consuming to be efficient.

The optimal control problem that we study in this thesis attempts to circumvent the
problem of inefficiency of the standard Monte Carlo method by finding another statist-
ical estimation problem in which the standard Monte Carlo method is more efficient. To
each (admissible) control function, one associates a random variable and measure. One
can therefore also associate to the admissible control function the mean of the alternative
random variable with respect to the alternative measure. This procedure defines a con-
tinuous function from the set of admissible control functions to the real numbers. We shall
refer to this function as the control functional of the optimal control problem. The desired
unknown value that we wish to estimate is equal to the global minimum of the control
functional. The gradient descent algorithm seeks the nearest local minimum to the point
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2 Chapter 1 Introduction

on the graph of the control functional at which the algorithm is initialised, by following
the gradient ‘downwards’ on the graph of the control functional.

A desirable feature of any algorithm is that the algorithm provides the correct answer
to a given question. For the optimal control problem described earlier, one can derive
a closed-form solution for the correct answer, i.e. the unique optimal control, and the
corresponding value, i.e. the global minimum of the control functional. Since the gradient
descent algorithm identifies only the ‘nearest’ attracting local minimum, it is possible
that the algorithm yields a estimate that is systematically incorrect, in the sense that the
difference between the estimate and the true value of the desired statistical property cannot
be explained by random fluctuations alone. This outcome is possible if the graph of the
control functional has multiple local minima with different corresponding values.

The main result of this thesis is the identification of conditions which suffice to guar-
antee, given a certain finite-dimensional approximating subset of the infinite-dimensional
set of admissible control functions, that the restriction of the control functional to the
approximating subset is strongly convex. Strong convexity is important because it guaran-
tees that the restricted control functional has one local (and hence global) minimum. The
result of strong convexity holds independently of both the dimension of the state space
of the diffusion and the dimension of the approximating subset. An important immediate
consequence of strong convexity is the proof that the gradient descent algorithm produces
iterates that converge at an exponential rate to the global minimum. To the best of our
knowledge, the uniqueness result and the characterisation of the convergence to the global
minimum are new. Given the specific nonlinear dependence of the control functional on the
admissible control function, the strong convexity result may be considered to be somewhat
surprising.

The second main result of this thesis is the correspondence between the global minimum
described earlier and the best approximation of the solution to a nonlinear elliptic boundary
value problem. Since the existence of the unique global minimum holds independently of
the dimension of the state space, this result suggests a method for solving elliptic boundary
value problems that does not suffer from the curse of dimensionality. Moreover, if one can
construct a gradient descent algorithm which has smaller lower computational cost than
methods for solving partial differential equations, then the theoretical result thus described
may potentially be used to construct efficient solvers for boundary value problems defined
over high-dimensional domains.

The third result we obtain is to show that a certain random variable - namely, a
martingale - that is associated in a natural way to the alternative random variable, can be
used to reduce the variance of the alternative random variable, even when the corresponding
control is not optimal. This result is relevant in the context of Monte Carlo methods, where
smaller variances generally lead to better Monte Carlo algorithms in the sense that the
algorithm produces estimates of the value of the control functional that converge more
rapidly.

Thus, two of the main results of this thesis - the strong convexity of the restricted control
functional, and the correspondence between the global minimum and best approximation -
are analytical in nature. These results provide the theoretical justification for the gradient
descent algorithm. The third result concerns the development of the variance-reduction
component of the gradient descent algorithm.

Since the statistical estimation of properties of rare events is a common problem in



3

computational physics, it is not surprising that many methods for rare event estimation
have been proposed, especially in the case of free energy computations. Well-known meth-
ods include constraint-based techniques, in which one applies so-called holonomic (i.e.
coordinate-dependent but momentum-independent) constraints; one example of such a
constraint method is the Blue Moon Ensemble method [13, 14]. Other methods consist of
driving a system by the application of a force, e.g. the adaptive biasing force method [16]
or hyperdynamics [64,65], or by changing the energy landscape on which the system lives,
e.g. metadynamics [11, 42], and action-based methods such as the Passerone-Parrinello
method [50], in which one applies a least action principle to obtain a variational problem.
Other methods for simulating rare events involve studying transition paths, such as the
transition path sampling method [19], or sampling only those paths which dominate the
calculation of rare event quantities, such as the forward flux sampling method [1,2]. Some
reviews which may help one navigate the zoo of methods are [18,20,27].

The approach described earlier, of formulating an importance sampling problem as a
stochastic optimal control problem, appears in the work [22] of Dupuis, Sezer, and Wang,
who sought to estimate probabilities of rare events taking place on telecommunications
networks. Dupuis and Wang also observed in [24] that the formulation of importance
sampling (equivalently, of variance reduction) problems in terms of stochastic optimal
control could be viewed as two-player stochastic differential games. Fleming further studied
the connection between stochastic control and differential games in [29] by introducing the
feature of risk-sensitivity into the problem. The connection between stochastic control
and dynamic games was already known to Dai Pra, Meneghini and Runggaldier, who also
considered the duality relationship between free-energy like quantities and relative entropy
in [15]. The idea of optimising over a set of measures - a central idea in this thesis - was
applied to Markov decision processes in Borkar’s work [8]. Some recent work on importance
sampling and rare event simulation for multiscale diffusions includes the work of Dupuis,
Spiliopoulos and Wang [23], and Vanden-Eijnden and Weare [61]. The method of cross-
entropy minimisation introduced by Kullback [39] was also applied to importance sampling
for rare event estimation by Rubenstein in the work [57], and recently by Asmussen, Kroese,
and Rubenstein in [4]. These ideas have also been applied to rare event simulation in
the context of molecular dynamics; see, e.g. the articles by Hartmann and Schütte [35],
Hartmann et. al. [34], and Zhang et. al. [66].

We now outline the content of the thesis. In Chapter 2, we review the theory and
the results from the literature which underpin the problem considered here. We will take
most of the theory for granted, in the sense that we will mostly state results without
proving them. We do however point the reader to the texts of Durrett [25], Karatzas
and Shreve [37], Øksendal [47], and Revuz and Yor [55] for diffusions, and Gilbarg and
Trudinger [33] for elliptic partial differential equations. Given that the dynamical systems
of interest are diffusions, we deal first with the theory of stochastic processes that are
continuous in both space and time in Section §2.1. The Cameron-Martin-Girsanov the-
orem on change of measure for diffusions in Euclidean space (Theorem 2.1.17) is essential
to the reformulation of the importance sampling problem as a stochastic optimal control
problem, because it provides a correspondence between a change of drift (i.e. a control
function) with an alternative measure. In particular, we can view the stochastic optimal
control problem as a problem of optimising over a set of measures, precisely because of
the Cameron-Martin-Girsanov theorem. We shall use Itô’s formula (Theorem 2.1.4), and
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weaker versions (Lemma 2.1.6) of the Burkholder-Davis-Gundy martingale inequalities in
the derivation of our main result concerning strong convexity of the restricted control func-
tional. The Feynman-Kac theorem (Theorem 2.1.20) establishes an important connection
between solutions of certain parabolic partial differential equations and functionals of dif-
fusions, and is central to our third main result concerning the link between the global
minimum of the restricted control functional and the best approximation of the solution
to an elliptic boundary value problem. In Section §2.2, we define the stochastic optimal
control problem and show the existence and uniqueness of the optimal control (Theorem
2.2.8), following the treatment given in [35].

Chapter 3 concerns the main result of strong convexity of the restricted control func-
tional. In Section §3.1, we compute the first- and second-order variations of the control
functional using the Cameron-Martin-Girsanov change of measure theorem. The first- and
second-order variations will be useful in order to show that the restricted control functional,
when viewed as a function over a finite-dimensional parameter space, is twice continuously
differentiable, and therefore has a Hessian. In Section §3.2, we apply Itô’s formula to ob-
tain relations concerning continuous local martingale terms that appear in the first- and
second-order variations. We state sufficient conditions for these local martingales to be
pairwise independent. Independence is a powerful tool that we shall use to simplify the
expressions for the first- and second-order variations. The simplified expressions will be
central to our proof that the Hessian of a certain function is uniformly positive definite.
In Section §3.3, we apply the results from Sections §3.1 and §3.2 in order to construct a
function over a finite-dimensional parameter space. The function corresponds to the re-
striction of the control functional to a subset of the set of admissible controls, the subset
consists of linear combinations of finitely many basis functions, and the parameter space
corresponds to the space of expansion coefficients for the linear combinations. In the main
result of this thesis, Theorem 3.3.9, we show how two important conditions - a non-overlap
condition on the supports of the basis functions, and a uniform lower bound on the path
functional corresponding to the statistical property of interest - may be used to show that
the Hessian of the function is uniformly positive definite. This implies that the function is
strongly convex.

In Chapter 4, we apply the result of strong convexity to study the gradient descent
algorithm proposed by Hartmann and Schütte for solving the finite-dimensional approx-
imation of the optimal control problem. In Section §4.1.1, we use the strong convexity
result to show that the gradient descent iterates converge at an exponential rate to a
unique global minimum. In Section §4.1.2 we show that, under the assumption that the
basis functions and the value function of the optimal control problem belong to the same
Hilbert space, the unique global minimum corresponds to the best approximation of the
value function of the optimal control problem in the finite-dimensional subset of the set
of admissible controls. In Section §4.2, we return to the central concern of Monte Carlo
methods, namely variance reduction. We show that a martingale term that arises from
the Cameron-Martin-Girsanov change of measure theorem is a suitable control variate and
state a method for scaling the control variate at every point along a solution of the gradi-
ent descent algorithm. We show that this method yields the maximum variance reduction
attainable for the martingale control variate.

In Chapter 5, we conclude with a review of the results and the methods by which we
obtained them. We critique the methods employed and discuss ideas for future work.



Chapter 2

Optimal control of diffusions

In this section, we examine the optimal control problem and show how it arises from im-
portance sampling for metastable diffusions, following the approach of [35]. We first recall
the requisite theory of diffusions in Section §2.1. Section §2.1.1 covers most of the theory
of continuous stochastic processes that we will need, with the fundamental results being
the preservation of the continuous local martingale property under the Itô integral (The-
orem 2.1.1), Itô’s formula (Theorem 2.1.4), and the Cameron-Martin-Girsanov theorem
for change of measure via change of drift (Theorem 2.1.17). The key objects are continu-
ous local martingales, their quadratic variation processes, and the Doleans exponential
martingale. In Section §2.1.2, we recall some fundamental results relating diffusions and
elliptic boundary value problems, with the main result being the Feynman-Kac represent-
ation (Theorem 2.1.20) of solutions to linear elliptic boundary value problems as expected
values of suitably defined path functionals. In Section §2.2, we use the theory presented
in Section §2.1 in order to formulate the problem (given a path functional) of finding an
optimal importance sampling measure in terms of an optimal control problem. We provide
some examples of statistical properties of interest in Section §2.2.1 and then formulate
the optimal control problem in Section §2.2.2. Theorem 2.2.8 proves the existence and
uniqueness of the optimal control to the problem, while Theorem 2.2.6 provides sufficient
conditions for the value function of the optimal control problem to be a classical solution
to a nonlinear elliptic boundary value problem involving the Hamilton-Jacobi-Bellman
equation.

Canonical filtered probability space: Let d ∈ N be fixed, and let the sample space
be the set of continuous paths in Rd, defined on the nonnegative half-line:

Ω :=
{
ω : [0,∞)→ Rd | ω is continuous

}
= C([0,∞);Rd).

Let P be the Wiener measure, so that B = ω denotes the standard d-dimensional standard
Brownian motion with respect to P , and (Ft)t≥0 denote the Brownian filtration.

2.1 Requisite theory of continuous-time stochastic processes

The presentation of the theory of continuous-time stochastic processes in this section was
adapted mainly from [25, Chapters 2,5].

5



6 Chapter 2 Optimal control of diffusions

For arbitrary x ∈ Rd, let P x denote the probability measure concentrated on the set of
all paths satisfying ω0 = x,

P x(A) = P (ω ∈ A | ω0 = x), ∀A ∈ F .

Recall that a continuous martingale M = (Mt)t on the canonical filtered probability space
is a L1, adapted process that satisfies the martingale property. That is, for all t ≥ 0,
Mt ∈ L1(P x), is Ft-measurable, and

EPx [Mt|Fs] = Ms, ∀s ∈ [0, t]. (2.1)

The martingale property is preserved under affine transformations.
A stopping time with respect to a given filtration (Ft)t is a random variable T : Ω →

[0,∞) such that
{T ≤ t} ∈ Ft.

A continuous stochastic process M is said to be a continuous local martingale if there exists
a sequence of stopping times (Tn)n∈N such that Tn → ∞ and such that for every n ∈ N,
(MTn

t )n∈N is a martingale with respect to the filtration (Ft∧Tn)t≥0, where

MTn
t :=

{
MTn∧t {0 < Tn}
0 {0 = Tn}

(2.2)

and where we use the notation
s ∧ t := min {s, t} .

We shall define the class M2 to be the set of all continuous local martingales M such
that Mt ∈ L2(P x) for all t ≥ 0, in a sense made precise below in (2.4). For an arbitrary
continuous local martingale M ∈ M2, one can define, by the Doob-Meyer decomposition,
the quadratic variation 〈M〉 to be the P x-almost surely unique, increasing process such
that 〈M〉0 = 0 and (M2

t − 〈M〉t)t≥0 defines a continuous local martingale. In particular, if
M0 = 0, then the quadratic variation process satisfies

EPx [M2
t ] = EPx [〈M〉t].

The quadratic variation process is a continuous-time stochastic process that is locally of
bounded variation. The quadratic variation of any process that is locally of bounded
variation is zero for all time. Finally, given two continuous local martingales M and N ,
one can define their covariance process by the polarisation identity

〈M,N〉t = 1
4 (〈M +N〉t − 〈M −N〉t) .

The covariance process is the P -almost surely unique, continuous process that is locally of
bounded variation; it satisfies 〈M,N〉0 = 0 and makes (MtNt−〈M,N〉t)t a continuous local
martingale, but it is not necessarily increasing. An important property of the quadratic
variation (and hence of the covariance process) is that, for any stopping time T and any
two continuous local martingales M and N ,

〈MT , NT 〉 = 〈M,N〉T . (2.3)
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Given the filtration (Ft)t≥0, a stochastic process H is said to be previsible if Ht is
measurable with respect to Ft− := lims↑tFs. Previsible processes are important, because
the Itô integral of a previsible process with respect to a continuous local martingale over
[0, t] is defined as the limit (taken over increasingly finer subdivisions of [0, t]) of the
Lebesgue-Stieltjes integral in which the integrand is evaluated at the left endpoints of
subintervals. For a continuous local martingale M , we define the norm

‖M‖2 :=
(

sup
t≥0

EPx [M2
t ]
)1/2

and
M2 := { martingales adapted to (Ft)t≥0 | ‖M‖2 <∞} . (2.4)

The space M2 is complete and isomorphic to the Hilbert space L2(Ω,F∞, P x). We define

Π3(M) :=
{
H previsible

∣∣∣∣ ∫ t

0
H2
sd〈M〉s <∞ P x − a.s. ∀t ≥ 0

}
, (2.5)

where the integral
∫ t

0 H
2
sd〈M〉s should be understood as a Lebesgue-Stieltjes integral. The

class Π3(M) denotes the largest set of integrand processes H such that the Itô integral of
H with respect to the continuous local martingale M , denoted by

(H ·X)· =
∫ ·

0
HsdXs,

exists [25, Section 2.6]. In particular, we have the following result [25, Chapter 2, Theorem
6.3]:

Theorem 2.1.1. If X is a continuous local martingale and H ∈ Π3(X) (not necessarily
continuous), then the process defined by the Itô integral∫ t

0
HsdXs

is a continuous local martingale.

A continuous semimartingale is any process that admits a decomposition into the sum of
a continuous local martingale and a continuous stochastic process that is locally of bounded
variation. In particular, if X = M + A and Y = M ′ + A′ are two semimartingales, where
M and M ′ are continuous local martingales and A and A′ are locally of bounded variation,
then

〈X,Y 〉 = 〈M,M ′〉,

since the covariance process is uniformly zero whenever one of the processes is locally of
bounded variation, i.e. since

〈X,A〉 ≡ 0

almost surely for any continuous processes X and A, if A is locally of bounded variation.
The Kunita-Watanabe inequality, which we shall use later, bounds the absolute value of
the covariance of two continuous local martingales in terms of their quadratic variations,

|〈X,Y 〉∞| ≤ (〈X〉∞〈Y 〉∞)1/2 . (2.6)
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We shall use the Kunita-Watanabe inequality later in the variational analysis of a certain
control functional.

We define the set of locally bounded, previsible processes

`bΠ := {∃(Tn)n∈N | Tn →∞, s ≤ Tn ⇒ |H(s, ω)| ≤ n } . (2.7)

Analogously to Theorem 2.1.1, we have the following result [25, Chapter 2, Theorem 8.3]

Theorem 2.1.2. If X is a continuous semimartingale and H ∈ `bΠ (not necessarily
continuous), then the Itô integral (H ·X) is again a continuous semimartingale.

An important property of continuous semimartingales that we shall use is expressed in
the following formula for the covariance of Itô integrals [25, Chapter 2, Theorem 8.7]:

Proposition 2.1.3. Let (X(i))1≤i≤n and (Y (i))1≤i≤n be finite collections of continuous
semimartingales, (H(i))1≤i≤n and (K(i))1≤i≤n be subsets of `bΠ, and let X :=

∑
iH

(i) ·X(i)

and Y :=
∑
iK

(i) · Y (i) denote finite sums of Itô integrals. Then the covariance of X and
Y satisfies

〈X,Y 〉t =
∑
i,j

∫ t

0
H(i)
s K(j)

s d〈X(i), Y (j)〉s. (2.8)

Given two continuous semimartingales X and Y , we have the integration by parts
formula

XtYt = X0Y0 +
∫ t

0
XsdYs +

∫ t

0
YsdXs + 〈X,Y 〉t. (2.9)

The integration by parts formula is a special case of Itô’s formula, which we state below
(see [25, Section 2.10, Theorem 10.2]):

Theorem 2.1.4 (Itô’s formula). Let (X(i))1≤i≤d be a finite collection of R-valued semi-
martingales, and f ∈ C2(Rd;R). Then

f(Xt)− f(X0) =
d∑
i=1

∫ t

0

∂

∂xi
f(Xs)dX(i)

s + 1
2

d∑
i,j=1

∫ t

0

∂2

∂xi∂xj
f(Xs)d〈X(i), X(j)〉s. (2.10)

In some cases it will be useful to bound expected values of powers of martingales by
expected values of their quadratic variation. Recall the following inequalities [25, Section
3.5]:

Theorem 2.1.5 (Burkholder-Davis-Gundy inequalities). Let X be a continuous local mar-
tingale with X0 = 0. For any p ∈ (0,∞), and for any stopping time τ , there exist constants
c, C ∈ (0,∞) so that

cE
[
〈X〉p/2τ

]
≤ E

[(
sup
s≤τ
|Xs|

)p]
≤ CE[〈X〉p/2τ ]. (2.11)

In the next chapter, we will need to use a weaker version of the Burkholder-Davis-
Gundy inequalities [17, Equations (1.1) and (1.2)]:
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Lemma 2.1.6. For p ∈ (0,∞), there exists a constant Ap such that

E[|Mτ |p] ≤ ApE[〈M〉p/2τ ], (2.12)

and for p ∈ (1,∞), there exists a constant ap such that

apE[〈M〉p/2τ ] ≤ E[|Mτ |p]. (2.13)

In particular, we shall need to use a result [46] due to Novikov for the case that p = 4,
in which the best possible values for a4 and A4 are the smallest and largest positive roots
of the Hermite polynomial H4. Given that

H4(x) = 16x4 − 48x2 + 12,

the two positive roots of H4 are given by

a4 := ρ(1) =

√
3
2 −

√
3
2 ≈ 0.5246 (2.14)

A4 := ρ(2) =

√
3
2 +

√
3
2 ≈ 1.6507. (2.15)

Remark 1. Novikov’s remarkable result on the identification of sharp constants for the
martingale inequalities (2.13) and (2.12) inspired much research, especially concerning the
best values of the constants for other values of p. The recurring theme of the research in
this direction is that the extremal roots of corresponding Hermite polynomials provide the
sharp constants, see, e.g. [17, 53].

2.1.1 Girsanov’s formula and change of measure

An important result that we will use later is the change of measure theorem for dif-
fusions, which builds upon Girsanov’s formula. Recall that two measures Q and P on
(Ω,F , (Ft)t≥0) are said to be locally equivalent if, for each t ≥ 0, the probability measures
Q|Ft and P |Ft are mutually absolutely continuous, i.e.

∀A ∈ Ft, Q(A) = 0⇔ P (A) = 0.

If Q|Ft and P |Ft are mutually absolutely continuous, we may define the Radon-Nikodym
derivative

αt = dQ|Ft
dP |Ft

,

and vice versa. Note that αt > 0, by mutual absolute continuity. Given two locally
equivalent measures on (Ω,F , (Ft)t≥0), we obtain a stochastic process (αt)t≥0. The process
α is important because a process X is a (local) martingale with respect to Q if and only if
αX is a (local) martingale with respect to P [25, Section 2.12, Lemma 12.1]. In particular,
since constants are martingales, it follows that the process α is itself a martingale with
respect to P [25, Section 2.12, Corollary 12.2].
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Lemma 2.1.7. Given a strictly positive process α that is a martingale with respect to P ,
there is a unique, locally equivalent probability measure Q so that

dQ

dP
= α.

The next result is important because it provides a way to construct a process A from
the process α and a P -local martingale X, such that A contains that part of X which
is not a local martingale with respect to Q. The result is useful because, in many cases
(for example, the case of optimal control), one wishes to change a stochastic process by
adding another process, instead of by multiplying with another process. In particular, one
wishes to know what to add to a process that is a continuous local martingale with respect
to some measure P such that the modified process is a continuous local martingale with
respect to another measure Q.

Theorem 2.1.8 (Girsanov’s formula). Suppose X is a continuous local martingale with
respect to P , and define a process A by

At =
∫ t

0
α−1
s d〈α,X〉s.

Then X −A is a local martingale with respect to Q.

Theorem 2.1.8 is important because it implies that, if an arbitrary process is a se-
mimartingale with respect to P , then it is a semimartingale with respect to Q. This
implication follows from the observation that A is a process that is locally of bounded
variation. We will need the following result [25, Section 2.12, Theorem 12.6] in the proof
of the change of measure theorem:

Theorem 2.1.9. The quadratic variation is given by the same random variable under
locally equivalent changes of measure.

Now recall that B is a d-dimensional Brownian motion on (Ω,F , (Ft)t, P ). Given
functions b : Rd → R and σ : Rd → Rd×d, a solution to the stochastic differential equation

dXt = b(Xt)dt+ σ(Xt)dBt (2.16)

is a triple ((Xt)t, (Bt)t, (Ft)t), where B is a Brownian motion adapted to the filtration
(Ft)t, and the random variable X : Ω→ Ω satisfies the integral equation

Xt = X0 +
∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dBs. (2.17)

The function b is sometimes referred to as the ‘infinitesimal drift’ (or more commonly the
‘drift’) and the function σ as the ‘infinitesimal standard deviation’ term, while the function
a : Rd → Rd×d, defined by a := σσ>, is often called the ‘diffusion matrix’ or ‘infinitesimal
covariance’. This is because, at t = 0, the rate of change of the expected value E[Xi

t ] of
the i-th coordinate process equals bi(X0), and similarly the rate of change of cov[Xi

t , X
j
t ]

equals aij(x).
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Given the data (b, σ) of the stochastic differential equation (2.16), the corresponding
martingale problem MP (b, a), where a = σσ>, is defined as follows: find X : Ω→ Ω such
that, for 1 ≤ i, j ≤ n,

M i
t := Xi

t −
∫ t

0
bi(Xs)ds

M ij
t := M i

tM
j
t −

∫ t

0
aij(Xs)ds

are continuous local martingales (see [55, Chapter VII, Definition (2.3) and Proposition
(2.4)]). The random variable X is said to solve MP (b, a). Now suppose that (X,B, (Ft)t)
solves the stochastic differential equation (2.16). Note that, by (2.17), we have

M i
t = X0 +

∫ t

0

∑
`

σi`(Xs)dB`
s.

If X0 ∈ Rd is constant, then the random component of M consists entirely of an Itô integral
term, which by Theorem 2.1.1 is a continuous local martingale, as required. We also have
from Proposition 2.1.3 that

〈M i,M j〉t =
∑
k,`

∫ t

0
σi`(Xs)σkj(Xs)d〈B`, Bk〉s

=
∑
k,`

∫ t

0
σi`(Xs)σkj(Xs)δk`ds

=
∫ t

0
aij(Xs)ds.

Since the covariance process 〈M i,M j〉 makes M iM j − 〈M i,M j〉 a continuous local mar-
tingale, it follows that M ij is a continuous local martingale, as desired.

Since X : Ω → Ω, it follows that the law of X with respect to P , i.e. P ◦ X−1, is
again a probability distribution on (Ω,F). Therefore, one may consider a solution to the
martingale problem MP (b, a) to be either a random variable X : Ω→ Ω, or a distribution
on the canonical filtered probability space. This is important, because it implies the
following connection between solutions of (2.16) and solutions of the martingale problem
(see [25, Section 5.4, Theorem 4.5]):

Theorem 2.1.10. The martingale problem MP (b, a) has a unique solution if and only if
the stochastic differential equation defined by the data b and σ has a solution that is unique
in distribution.

Another link between solutions of the stochastic differential equation (2.16) and solu-
tions of the martingale problem may given by the following theorem that we obtain
from [25, Theorem 4.5]:

Theorem 2.1.11. If X is a solution of MP (b, a) and σ is a measurable square root of a,
then there exists a Brownian motion B, so that (X,B,FX) solves (2.16).
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In particular, for the special case that a is uniformly elliptic in the sense that

z · a(x)z ≥ κ|z|2

for some constant κ > 0 not depending on x, then there exists a measurable square root of
a, and one obtains a bijection between the solutions of the stochastic differential equation
(2.16) and the martingale problem MP (b, a).

Formulating questions about solutions of stochastic differential equations in terms of
martingale problems yields some advantages. One advantage is that we can use the theory
of continuous local martingales to study solutions of stochastic differential equations. In
particular, we will use Girsanov’s formula (Theorem 2.1.8), which is stated in terms of
local martingales, in order to prove the change of measure theorem (Theorem 2.1.17).
Another advantage is that the martingale problem provides an easy way to check whether
the solution to a stochastic differential equation has the Markov property (see [25, Section
5.4, Theorem 4.6]):

Theorem 2.1.12. If a and b are locally bounded, and MP (b, a) has a unique solution,
then the strong Markov property holds for X.

We shall use the strong Markov property in Section §3.2.2 to show that a certain
collection of continuous local martingales is pairwise independent. The following definition
is drawn from [25, Section 1.3, Definition 3.7]:

Definition 2.1.1. Let Y : [0,∞)× Ω → R be bounded, and for any stopping time S, let
θS : Ω → Ω be the shift operator defined by θS((ωt)t≥0) = (ωS+t)t≥0. Then the random
variable X satisfies the strong Markov property if

EPx [Y (S, θS(X))|FXS ] = EPXS [Y (S,X)] on {S <∞} . (2.18)

In other words, given the history of the process X up to and including the stopping time
S, the expected value of the functional Y on the path of X from S onwards depends only on
the value of the stopping time S and the state XS of the process. The rough interpretation
of (2.18) is that, at any random time, the only relevant information for predictions of
future states of strongly Markovian processes is contained entirely in the current state of
the process. Note that both sides of the equation (2.18) are random variables.

We now proceed towards the denoument of this section on the stochastic analysis
of continuous diffusion processes. Suppose that, for a measure P and some given data
(b, σ) of the stochastic differential equation (2.16), one perturbs the drift term by some
suitable function β. The next main result of this section (Theorem 2.1.17), which is
known as the Cameron-Martin formula [55, Chapter IX, §1, Theorem 1.10] or the change
of measure theorem [25, Section 5.5], specifies conditions on the perturbing function β such
that the random variable X is a solution of the martingale problem MP (b, a) under P and
a solution of the martingale problem MP (b + β, a) under Q. The idea of the change of
measure theorem is to use the definition of the solution to a martingale problem, and to
use Girsanov’s formula for finding locally equivalent changes of measure that preserve the
(local) martingale property. By the hypotheses,

M i
t := Xi

t −
∫ t

0
bi(Xs)ds
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is a continuous local martingale with respect to P . We shall first show that

N i
t := Xi

t −
∫ t

0
bi(Xs)ds−

∫ t

0
βi(Xs)ds

is a continuous local martingale with respect to Q, and then proceed to show that

N ij
t := N i

tN
j
t −

∫ t

0
aij(Xs)ds

is a continuous local martingale with respect to Q. Before we do this, we first consider the
following results [25, Section 2.2, Theorem 2.5 and Corollary 2.6]:

Theorem 2.1.13. If X is a continuous local submartingale, and

E

[
sup
s≤t
|Xs|

]
<∞ (2.19)

for each t ≥ 0, then X is a submartingale.

Corollary 2.1.14. If X is a continuous local martingale and (2.19) holds, then X is a
martingale.

We use Corollary 2.1.14 in the next Theorem [25, Section 3.3, Theorem 3.7]:

Theorem 2.1.15. Let X be a continuous local martingale such that X0 = 0 and

〈X〉t ≤Mt (2.20)

for all t ≥ 0. Then the process E(X) defined by

E(X)t = exp
(
Xt −

1
2〈X〉t

)
(2.21)

is a continuous martingale that satisfies Ex [E(X)t] = 1 for all t ≥ 0. Furthermore,
E(X)t ∈ L2(P x) for all t ≥ 0.

We reproduce the proof given in [25].

Proof. By Itô’s formula, E(X) is a continuous local martingale, since if we define

f(Xt, 〈X〉t) := exp
(
Xt −

1
2〈X〉t

)
then applying Itô’s formula yields

f(Xt, 〈X〉t) =
∫ t

0
f(Xs, 〈X〉s)dXs −

1
2

∫ t

0
f(Xs, 〈X〉s)d〈X〉s + 1

2

∫ t

0
f(Xs, 〈X〉s)d〈X〉s

and the local martingale property is preserved under the Itô integral, by Theorem 2.1.1.
By the definition of E(X) for any continuous local martingale X, we have

(E(X)t)2 = exp (2Xt − 〈X〉t) = E(2X)t exp (〈X〉t) . (2.22)
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Let (Tn)n be a sequence of stopping times that reduces E(2X). By Doob’s maximal L2

inequality to E(X)t∧Tn , (2.22), the sublinear growth condition (2.20) on the quadratic
variation of X, and the martingale property, we obtain

Ex
[
sup
s≤t
E(X)2

s∧Tn

]
≤ 4E

[
E(X)2

t∧Tn

]
= 4Ex [E(2X)t∧Tn exp (〈X〉t∧Tn)]
≤ 4Ex [E(2X)t∧Tn ] exp (Mt) (2.23)
= 4 exp (Mt) .

By Jensen’s inequality, it therefore holds that(
E

[
sup
s≤t
E(X)s∧Tn

])2

≤ E
[
sup
s≤t
E(X)2

s∧Tn

]
.

Since Tn →∞ as n→∞, applying the monotone convergence theorem yields(
E

[
sup
s≤t
|E(X)s|

])2

≤ 4 exp (Mt) .

The inequalities above imply that E(X) is a martingale, by Corollary 2.1.14.

Corollary 2.1.16. If the stopping time τ is P x-almost surely bounded, then E(X)τ ∈
L2(P x).

The significance of Corollary 2.1.16 will become apparent later in Section §3.1.1, when
we need the square integrability of an exponential martingale at a stopping time in order
to prove the existence of the first variation of a certain control functional. We note that
the assumption of τ being P x-almost surely bounded may be restrictive in some contexts.
For example, in the context of the exit of a diffusion from a bounded Lipschitz domain,
sufficient conditions are known for which the first exit time of the diffusion from the domain
is almost surely finite (see Lemma 2.1.19 in Section §2.1.2), but conditions for which the
first exit time are bounded do not appear to be as well known. Therefore it would be
useful to specify conditions for which the conclusion of Corollary 2.1.16 holds under less
restrictive conditions on the stopping time. By examining the proof of Theorem 2.1.15,
one way to relax the boundedness condition on the stopping time τ would be to impose a
stronger growth condition on the quadratic variation, e.g. by replacing (2.20) with

〈M〉t ≤ γ(t) (2.24)

where γ : [0,∞)→ [0,∞) is any increasing function that is asymptotically bounded in the
sense that

lim
t→∞

γ(t) ≤ C < +∞

P x-almost surely, for some constant C. Then in (2.23), the deterministic exponential term
exp(Mt) can be replaced by exp(γ(t)), and by taking the limit, one establishes that the
exponential martingale E(X) is in fact L2-bounded. Unfortunately, it is not clear how one
could guarantee that a bound of the form (2.24) holds.

We now use Theorem 2.1.15 to prove the next
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Theorem 2.1.17 (Change of measure). Let X be a solution of the martingale problem
MP (β, a), defined on the canonical filtered probability space (Ω,F , (Ft)t, P ) of continuous
paths in Rd. Suppose a(x) is invertible for all x ∈ Rd, that b : [0,∞) × Rd → Rd is
measurable, and that

|b(s, x) · a−1(x)b(s, x)| ≤M (2.25)
for some constant M . Then there exists a probability measure Q on (Ω,F , (Ft)t) that is
locally equivalent to P , such that X solves MP (b+ β, a) with respect to Q.

Remark 2. In the proof of Theorem 2.1.15, we used condition (2.20) to show that the
continuous local martingale E(X) was in fact a martingale. We shall use condition (2.25)
to show a related exponential continuous local martingale is in fact a martingale, and
obtain a change of measure by Girsanov’s theorem. Requiring that the change of drift be
bounded with respect to some norm is a strong sufficient condition for the existence of a
change of measure. Another well-known sufficient condition for the change of drift to give
rise to a change of measure is Novikov’s condition

Ex
[
exp

(1
2

∫ ∞
0
|b(Xs)|2ds

)]
<∞,

which is a stronger requirement than Kazamaki’s condition

sup
{
Ex
[
exp

(1
2

∫ τ

0
b(Xs)dBs

)] ∣∣∣∣ Ex [exp
(1

2

∫ τ

0
b(Xs)dBs

)]
<∞, τ bounded

}
<∞

in the sense that Novikov’s condition implies Kazamaki’s condition. Note that Kaza-
maki’s condition on the change of drift can also be expressed as the requirement that
exp

(
1
2
∫ τ
0 b(Xs)dBs

)
be a uniformly integrable submartingale, see [55, Chapter VIII, §1,

Proposition 1.14]. Both Kazamaki’s and Novikov’s conditions imply that the exponen-
tial martingale is in fact a uniformly integrable martingale, and hence are stronger than
the boundedness condition (2.25) we specified above. In the context of numerical meth-
ods, condition (2.25) has the advantage of being easier to verify than Novikov’s condition.
From a conceptual point of view, it is also natural to approximate functions by bounded
functions.

We now prove Theorem 2.1.17. The key idea of the proof is to establish that the
associated exponential local martingale E(Y ) is in fact a true martingale, which implies
that Ex[E(Y (X))t] = 1 for all t ≥ 0. Once this has been established, the existence of a
locally equivalent measure is guaranteed by Lemma 2.1.7.

Proof. We follow the proof given in [25, Section 5.5, Theorem 5.1]. Define

Xt := Xt −
∫ t

0
β(Xs)ds (2.26)

Yt :=
∑
i,j

∫ t

0
(a−1)ij(Xs)bj(s,Xs)dX

i
s. (2.27)

Note that X is a d-dimensional continuous local martingale, and Y is a 1-dimensional
continuous local martingale. By (2.8), and by the condition (2.25), it holds that

〈Y 〉t =
∫ t

0
b(s,Xs) · a−1(Xs)b(s,Xs)ds ≤Mt
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so that the quadratic variation of Y satisfies the growth condition (2.20). By Theorem
2.1.15, E(Y ) is a strictly positive martingale. By Lemma 2.1.7, E(Y ) defines a locally
equivalent measure Q. By Itô’s formula and the associative law,

E(Y )t − 1 =
∫ t

0
E(Y )sdYs =

∑
i,j

∫ t

0
E(Y )s(a−1)ij(Xs)bj(s,Xs)dX

i
s.

By the formula (2.8) for the covariance of Itô integrals with respect to semimartingales,
we have

〈E(Y ), Xk〉t =
∑
i,j

∫ t

0
E(Y )s(a−1)ij(Xs)bj(s,Xs)d〈X

i
, X

k〉s.

=
∫ t

0
E(Y )sbk(s,Xs)ds,

where we have used that
〈Xi

, X
k〉t =

∫ t

0
aik(Xs)ds

by definition of X being a solution to MP (β, a). We define a d-dimensional process A by

Ait =
∫ t

0
E(Y )−1

s d〈E(Y ), Xi〉s =
∫ t

0
bi(s,Xs)ds.

By Girsanov’s formula (Theorem 2.1.8), it holds that

X
i
t −

∫ t

0
bi(s,Xs)ds = Xi

t −
∫ t

0
βi(Xs) + bi(s,Xs)ds

is a continuous local martingale with respect to Q. This satisfies the first requirement that
a solution of MP (β + b, a) must fulfill. The second and last requirement is satisfied, since〈

Xi
· −

∫ ·
0
βi(Xs) + bi(s,Xs)ds,Xj

· −
∫ ·

0
βj(Xs) + bj(s,Xs)ds

〉
t

=
∫ t

0
aij(Xs)ds,

and since Theorem 2.1.9 implies that the covariance process is given by the same random
variable under locally equivalent changes of measure.

One consequence of Theorem 2.1.17 that we shall exploit hereafter is the following
property. Let X denote the solution of the stochastic differential equation

dXt = β(Xt)dt+ σ(Xt)dBt, (2.28)

and let Xb denote the solution of

dXb
t = [b(Xt) + β(Xt)]dt+ σ(Xt)dBt, (2.29)

where B is a P -Brownian motion. Let a = σσ>. By Theorem 2.1.11, it follows that P ◦X−1

solves MP (β, a) and P ◦ (Xb)−1 solves MP (b+ β, a). Theorem 2.1.17 states that Q ◦X−1

also solves MP (b+β, a). If we assume that pathwise uniqueness holds for X and Xb, then
by Theorem 2.1.10, the solution of MP (b+ β, a) is unique, and therefore

P ◦ (Xb)−1 = Q ◦X−1. (2.30)



2.1 Requisite theory of continuous-time stochastic processes 17

In particular, since
dQ ◦X−1

dP ◦X−1 = E(Y ), (2.31)

it holds that for any random variable Z ∈ L1(P ◦X−1),

EP◦X−1 [Z] = EP◦(Xb)−1

[
Z

dP ◦X−1

dP ◦ (Xb)−1

]
= EQ◦X−1

[
Z
dP ◦X−1

dQ ◦X−1

]
,

which we rewrite as
EP [Z(X)] = EP

[
Z(Xb)E(Y (Xb))

]
. (2.32)

The relevance of (2.32) to Monte Carlo algorithms may be described as follows. In Monte
Carlo algorithms, it is often desirable to be able to sample from alternative probability
distributions which have the same mean but different variance; indeed, this is essentially
the principal idea behind importance sampling. In the case of random variables expressed
in terms of diffusions, (2.32) means that one can estimate the mean of the probability
distribution P ◦ (Z(X))−1 by searching in the collection of probability distributions P ◦
(Z(Xb)E(Y (Xb)))−1, since all probability distributions in the collection have the same
mean. The goal is then to find the probability distribution in the collection that has the
smallest variance.

2.1.2 The Dirichlet problem

In this section, we recall the connection between stochastic differential equations and solu-
tions to elliptic Dirichlet boundary value problems. The material in this section con-
cerning the connection between diffusions and elliptic boundary value problems is drawn
from [37, 47]. Perhaps one of the best-known references on the theory of elliptic partial
differential equations is the treatise [33] by Gilbarg and Trudinger, from which we also
draw some material.

LetD ⊂ Rd be a bounded domain (i.e. a bounded, open, connected set) with sufficiently
smooth boundary, and denote by ωx ∈ Ω any continuous function ω : [0,∞) → Rd that
satisfies ω0 := ω(0) = x. Then we denote the first exit time for ωx from D by

τD(ωx) := inf {t > 0 | ωxt /∈ D} . (2.33)

For the stochastic differential equation

dXt = b(Xt)dt+ σ(Xt)dBt, (2.34)

where b ∈ C(Rd;Rd) and σij ∈ C(Rd → R) satisfy the linear growth condition

|b(x)|2 + |σ(x)|2 ≤ K2(1 + |x|2), (2.35)

and B is a d-dimensional Brownian motion, the infinitesimal generator is a second-order
partial differential operator defined by

Lψ = 1
2

d∑
i,j=1

aij
∂

∂xi

∂

∂xj
ψ +

d∑
i=1

bi
∂

∂xi
ψ (2.36)
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on a subset of C2(Rd;R), where a = σσ> is the diffusion matrix. The operator L is said
to be elliptic (uniformly elliptic) in D if a(x) is (uniformly) positive definite for every
x ∈ D. The Dirichlet problem is to find, given functions q ∈ C(D;R), f ∈ C(D; [0,∞))
and k ∈ C(∂D;R), a solution ψ ∈ C2(D) ∩ C(D) such that

Lψ(x)− f(x)ψ(x) = −q(x) x ∈ D (2.37)
ψ(y) = k(y) y ∈ ∂D. (2.38)

The next result (see [37, Section 5.7, Proposition 7.2]) establishes a key probabilistic rep-
resentation of the Dirichlet problem:

Proposition 2.1.18. Suppose that (2.35) holds, and that the solution to the martingale
problem corresponding to (2.34) exists and is unique. If ψ solves (2.37)–(2.38) in the
bounded domain D, and if

Ex [τD(X)] <∞ ∀x ∈ D, (2.39)

then it holds that the solution admits a representation of the form

ψ(x) = Ex
[
k(XτD(X)) exp

(
−
∫ τD(X)

0
f(Xs)ds

)
+
∫ τD(X)

0
q(Xt) exp

(
−
∫ t

0
f(Xs)ds

)
dt

]
(2.40)

for every x ∈ D.

The representation (2.40) is sometimes known as the ‘Feynman-Kac representation’.
The next result (see [37, Section 5.7, Lemma 7.4]) provides a sufficient condition for (2.39)
to hold, i.e. for the first exit time of X from D to have finite first moment:

Lemma 2.1.19. Suppose that for some i ∈ {1, . . . , d}, it holds that

min
x∈D

aii(x) > 0. (2.41)

Then (2.39) holds.

The next result (see, e.g. [37, Section 5.7, Remark 7.5]) of this short section will be
relevant to the situations in which we are interested.

Theorem 2.1.20. Assume the following:

(i) the infinitesimal generator L is uniformly elliptic in D,

(ii) the functions (aij)i,j, (bi)i, f , q, and k are Hölder continuous on their respective
domains, and

(iii) the exterior sphere property holds for every point y ∈ ∂D, i.e. there exists a ball B
such that

B ∩D = ∅ and B ∩ ∂D = {y} . (2.42)

Then there exists a function ψ ∈ C2,α(D)∩C(D) that uniquely solves (2.37)–(2.38). Fur-
thermore, ψ admits the representation (2.40).
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The exterior sphere property (2.42) is interpreted as requiring that, at every point y
on the boundary ∂D, one can place a closed ball B that touches the closure D of the
domain precisely at y. The exterior sphere property ensures that the domain does not
have a cusp singularity anywhere on its boundary. The theorem above is based on Itô’s
formula, and the application of a result concerning linear elliptic boundary value problems
(see [33, Chapter 6, Theorem 6.13]). Recall that the class C2,α(D) refers to the set of
functions whose second partial derivatives are uniformly Hölder continuous of exponent
α ∈ (0, 1) in D, and that C2,α(D) is a subset of the set C2(D).

The Feynman-Kac representation is a result of fundamental importance in stochastic
analysis, because it provides another connection between diffusions and partial differential
equations, in addition to the forward and backward Kolmogorov equations. For the sake
of comparison, we provide another statement, adapted from [47, Chapter 9, Exercise 9.12],
that specifies slightly different conditions under which the Feynman-Kac representation
(2.40) holds:

Theorem 2.1.21. Let X be a solution of the stochastic differential equation (2.34), with
the infinitesimal generator (2.36), and let D be a domain (not necessarily bounded). As-
sume the following:

(i) k ∈ C(∂D;R) is bounded,

(ii) Ex [
∫ τD

0 |q(Xt)|dt] <∞,

(iii) the first exit time τD(X) is P x-almost surely finite for all x ∈ D.

If ψ ∈ C2(D;R) ∩ Cb(D;R) solves the boundary value problem

Lψ(x)− f(x)ψ(x) = −q(x) x ∈ D (2.43)
lim
x→y

ψ(x) = k(y) y ∈ ∂D, (2.44)

then the solution ψ admits the Feynman-Kac representation (2.40).

The key difference between Proposition 2.1.18 and Theorem 2.1.21 regards whether the
domain D is bounded or not. In particular, if D is not bounded, then the Feynman-Kac
representation holds under the condition that the solution ψ to (2.43)–(2.44) is bounded.
To determine when the ψ is bounded, we need the next result, which we have adapted
from [33, Theorem 3.5, Section 3.2]:

Theorem 2.1.22 (Hopf’s strong maximum principle). Let L be a uniformly elliptic partial
differential operator of the form (2.36), with Lψ ≥ 0 (≤ 0) in a domain D where D is not
necessarily bounded. If ψ achieves its maximum (minimum) in the interior of D, then ψ
is constant. If the function f in the Dirichlet problem (2.37) is such that f/λ is bounded,
where λ is the smallest eigenvalue of a, then ψ cannot achieve a non-negative maximum
(non-positive minimum) in the interior of D unless ψ is constant. The conclusion remains
valid if L is locally uniformly elliptic and the functions f and q are locally bounded.

We conclude this section on the Dirichlet problem by considering what additional con-
ditions are needed in order to extend the regularity of ψ to the closure of the bounded
domain D. The motivation for doing so is that, in the next section, we will formulate a
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stochastic optimal control problem that is related to the Dirichlet problem. We then study
an approximation of the control functional in Chapter 3 in terms of a strongly convex
function. This approximation is given in terms of an approximating subset of the set of
feedback control functions. If the approximating subspace is spanned by bounded controls,
it is of interest to determine when the optimal control is bounded.

Recall the following definition (see [33, Section 6.2]):

Definition 2.1.2. Let D be a bounded open subset of Rd. Then D is said to be a bounded
domain of class Ck,α for 0 ≤ α ≤ 1 and k ∈ N ∪ {0} if, for all x0 ∈ ∂D, there exists a ball
B centred at x0 and a bijective mapping ψ of B onto D such that

(i) ψ(B ∩D) ⊂ Rd+ = {x ∈ Rn | xn > 0},

(ii) ψ(B ∩ ∂D) ⊂ ∂Rd+, and

(iii) ψ ∈ Ck,α(B), ψ−1 ∈ Ck,α(D).

Roughly speaking, a domain D is of class Ck,α if its boundary is locally the graph
of a Ck,α function of all but one of the coordinates (x1, . . . , xn). One can show that a
bounded domain of class C2,α satisfies the exterior sphere property; this fact is used in
the proof [33, Section 6.3, Theorem 6.14], for example. Now recall that Ck(D) is the
subset of Ck(D) functions whose partial derivatives of order less than or equal to k may
be continuously extended to D. The space Ck,α(D) is then a subset of Ck(D) consisting
of functions whose k-th order partial derivatives are uniformly Hölder continuous with
exponent α, where 0 < α ≤ 1. The next result, which is a slightly modified version
of [33, Section 6.3, Theorem 6.14], concerns sufficient conditions for which ψ ∈ C2,α(D).

Theorem 2.1.23. Assume the following:

(i) the infinitesimal generator L is uniformly elliptic in D,

(ii) the functions (aij)i,j, (bi)i, f , and q are uniformly Hölder continuous of exponent α
on D (i.e. they are elements of Cα(D)),

(iii) k ∈ C2,α(D), and

(iv) D is a bounded domain of class C2,α.

Then the Dirichlet problem (2.37)–(2.38) has a unique solution ψ ∈ C2,α(D).

Thus, if the hypotheses of Theorem 2.1.23 hold, then the gradient ∇xψ(σ, x) admits
a continuous extension to D, and hence is bounded on D. We shall use this fact to show
that, if it exists, then the optimal control for a given stochastic optimal control problem
may be continuously extended to a bounded function on the bounded domain D.

2.2 Stochastic optimal control of diffusions

In this section, we formulate and study a stochastic optimal control problem. We assume
that conditions (i)–(iv) of Theorem 2.1.20 hold for a bounded, open, connected set D ⊂ Rd,
for the drift vector b, and for the diffusion matrix a. We first consider three examples of path
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functionals corresponding to statistical properties of diffusions that appear in the physics
literature in Section §2.2.1. Section §2.2.2 concerns the connection between importance
sampling and stochastic optimal control of diffusions, as well as sufficient conditions for
the existence and uniqueness of a solution to the stochastic optimal control problem.

2.2.1 Path functionals

Let f ∈ C(D; [0,∞)) and g ∈ C(∂D;R) for a bounded domain D. Define the path
functional

W (ω) :=
∫ τD(ω)

0
f(ωt)dt+ g(ωτD(ω)). (2.45)

We shall refer to W as the ‘work path functional’, or simply as the ‘work’; we will relate
this choice to free energy-like quantities later. An immediate consequence of the conditions
imposed so far is

Lemma 2.2.1. There exists a constant −∞ < C < +∞ such that

C ≤W, (2.46)

i.e. W is bounded from below.

Proof. Since g is continuous on a closed and bounded set in Rd, it is bounded. Combined
with the nonnegativity of f , it holds that

W ≥ −‖g‖∂D,∞.

In the literature on controlled Markov processes, the functions f and g are sometimes
referred to as the ‘running cost’ and the ‘terminal cost’ respectively. We shall be interested
in computing statistical properties of W with respect to the measure

µ0,x := P x ◦X−1, (2.47)

where µ0,x solves the martingale problem MP (b, a). We have the following

Lemma 2.2.2. If the diffusion matrix a is uniformly elliptic on the domain D, then
W ∈ L1(µ0,x).

Proof. By the conditions imposed on D, f and g, it holds that

E0,x[|W |] ≤ ‖f‖D,∞E
0,x[τD] + ‖g‖∂D,∞. (2.48)

Since a is uniformly elliptic, the right-hand side is finite, by Lemma 2.1.19.

The functional W and its moments are of interest in the analysis of metastable diffu-
sions. For example, by setting

g ≡ 0, f ≡ 1 (2.49)

we can obtain that W = τD, and in this case Ex[W (X)] = Ex[τD(X)] is known as the
‘mean first passage time’ or the ‘mean first exit time’ of the diffusion X from the bounded
domain D. The mean first passage time is important because it may be used to obtain a
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meaningful definition of metastability: A metastable diffusion is precisely a diffusion whose
state space contains two or more bounded domains (Di)i, such that the mean first passage
time Ex[τDi(X)] is large for x ∈ Di relative to the mean first passage time Ex[τD{(X)],
where D{ = (∪iDi){. In other words, the metastable diffusion spends long (short) times
inside (outside) the metastable sets, on average. The metastable sets of the diffusion
are then defined to be the domains (Di)i. In computational biophysics, conformations of
molecules are modeled as metastable sets, and chemical reactions are modeled as transitions
between them.

A second example is as follows. Suppose that the bounded domain D is such that ∂D
admits a decomposition into the disjoint union of two or more sets:

∂D = ∪ni=1Bi, i 6= j ⇒ Bi ∩Bj = ∅.

For example, in the one-dimensional setting, if D = (a, b) for a < b, then ∂D = {a} ∪ {b}.
For an arbitrary i, let

g ≡ 1Bi , f ≡ 0, (2.50)

and let τD denote the first exit time from the domain D as before. Then the expected value
of the resulting work function W with respect to µ0,x gives the probability that, when the
system X exits the domain D, it does so along the boundary set Bi:

Eµ0,x [W ] = P x(XτD(X) ∈ Bi).

This choice of running and terminal cost functions appears in [34]. In computational chem-
istry and biophysics, the function qBi(x) := P x(XτD(X) ∈ Bi) is known as the ‘committor
function’, and has special relevance in the identification of transition states in chemical
reactions (see, e.g. [21, 32]); Onsager’s study [48] into the dissociation of electron pairs is
often cited as being the first to define and use such commitment probabilities. The states x
for which the probability that the system X commits to exit via Bi equals the probability
that the system does not exit via Bi are sometimes referred as ‘transition states’.

The third and final example that we wish to consider here makes use of Itô’s formula
and yields a quantity that is similar to the thermodynamic free energy difference between
two states of a statistical mechanical system. Recall that, since many systems of interest
are complicated and high-dimensional, a common approach is to find a small number of
collective variables that can describe most of the effective behaviour of the system. The
idea is that, given a good choice of collective variables, one can group together states of
the system in the full state space, according to their corresponding collective variables
values. Given a probability density p on the collective variable space, one notion of the
thermodynamic free energy may be obtained by taking the logarithm of the probability
density, i.e.

G(x) = − log p(x). (2.51)

The motivation of this definition is that there is a relatively high (low) probability to find
the statistical-mechanical system in regions in the collective variable space with low (high)
free energy. Indeed, the overdamped Langevin equation

dXt = −∇V (Xt)dt+
√

2εdBt (2.52)
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in collective variable space may be understood as describing the path taken by a statistical-
mechanical system in equilibrium with a heat bath that seeks to minimise the value of some
energy function V . The distribution of the system X in the collective variable space X
that corresponds to the dynamics above has the density

p(x) = exp(−V (x))/Z, Z =
∫
X

exp(−V (x))dx. (2.53)

In the ideal case, the collective variable space is such that the probability distribution p(x)
defined in (2.53) is multi-modal, or equivalently, that there exist multiple local minima
on the free energy landscape (i.e. the graph of G over X ). To each local minima there
corresponds a metastable set Di. The metastable sets are separated from one other by free
energy barriers that the system X must cross in order to transition from one metastable
set to another. To quantitatively determine which metastable sets are more stable than
other, the differences between pairs of local minima - which may be thought of as free
energy differences in this path setting - may be useful. Suppose that we wish to compute
the free energy difference of one local minimum x with respect to another local minimum
y. Fix 0 < δ � 1, and suppose that we can define a bounded domain D = D(δ) so that

τD(X) := inf {t > 0 | |Xt − y| < δ} .

Then, for some energy function V ∈ C2(X ;R) that is bounded from below,

V (XτD(X))− V (x) =
∫ τD(X)

0
∇V (Xs)dXs + 1

2

∫ τD(X)

0

∑
i,j

∂

∂xi

∂

∂xj
V (Xs)d〈Xi, Xj〉s

= −
∫ τD(X)

0
|∇V (Xs)|2 + ε∆V (Xs)ds+

√
2ε
∫ τD(X)

0
∇V (Xs)dBs

by Itô’s formula, (2.52), the formula (2.8) for the covariance of stochastic integrals, and
the associative law. Taking expectations with respect to the conditioned measure P x, we
obtain

Ex
[
V (XτD(X))

]
− V (x) = Ex

[∫ τD(X)

0
−|∇V (Xs)|2 + ε∆V (Xs)ds

]
.

If one can interchange limits with expectations, then letting δ decrease to zero above would
yield the difference in the ‘energy’ of the system at the minima at x and y. Thus, by setting

f(x) = −|∇V (x)|2 + ε∆V (x), g ≡ 0

in the work path functional W , we could compute the free energy difference between the
minima at x and y. The difficulty in applying this idea to computing thermodynamic free
energy differences is that one does not in general have precise knowledge of the free energy
function or its derivatives. Furthermore, since it is not clear if the function f defined
above is nonnegative, we cannot apply either Proposition 2.1.18 or Theorem 2.1.21. A
mathematically-oriented survey of the problem of free energy computations may be found
in [43].
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2.2.2 Optimal control and importance sampling

In this section, we study the stochastic optimal control problem that was presented in [35]
for performing importance sampling on metastable diffusions. Throughout this section, we
shall consider σ > 0 to be a fixed, strictly positive real number.

Consider the stochastic differential equation

dXc
t = [c−∇V ](Xc

t )dt+
√

2εdBt, (2.54)

where we assume the growth condition

|c(x)|2 + |∇V (x)|2 ≤ C(1 + |x|2)

for some constant C, analogous to (2.35), as well as the continuity and local Lipschitz
conditions required for the existence and uniqueness of a strong solution Xc to (2.54).
Since Xc is a random variable taking values in Ω, it induces a probability measure

µc,x := P x ◦ (Xc)−1 (2.55)

on (Ω,F). We shall write
Ec,x[φ] = E[φ(Xc)|Xc

0 = x] (2.56)

to denote the expectation of a random variable φ : Ω→ R with respect to µc,x.
By varying the control function c, we obtain a family (Xc)c∈A of random variables,

parametrised by controls c belonging to an admissible class A of control functions. Since
each Xc is a Ω-valued random variable, we therefore obtain a family (µc,x)c∈A of probability
measures on (Ω,F). The reference measure in which we are interested is µ0,x, the law of
the random variable X. We shall refer to µ0,x as the ‘equilibrium measure’ and X as
the ‘equilibrium system’ respectively. Accordingly, any measure µc,x for c 6= 0 shall be a
‘nonequilibrium measure’, and likewise Xc shall be a ‘nonequilibrium system’ for c 6= 0. In
Section §2.2.1, a path functional W of the form

W (X) =
∫ τ

0
f(Xt)dt+ g(Xτ )

was defined for a suitably defined stopping time τ and cost functions f ∈ C(D; [0,∞)) and
g ∈ C(∂D;R), where D was a bounded domain satisfying an exterior sphere condition.
The significance of the expected value

E0,x[W ] = E[W (X0)|X0
0 = x]

was explained by way of some examples, such as the mean first passage time and committor
probabilities. The optimal control problem in which we are interested involves the real-
valued functions ψ and F defined on (0,∞)× Rd, defined by

ψ(σ, x) := E0,x [exp(−σW )] (2.57)
F (σ, x) := −σ−1 logE0,x [exp (−σW )] . (2.58)
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Remark 3. One of the most important results in statistical mechanics is the equation known
as Jarzynski’s equality [36], which establishes the following identity for the thermodynamic
free energy difference ∆FAB between two states A and B of a system in equilibrium with
a heat bath:

∆FAB = −ε log
∫

Ω
exp(−W/ε)(ω)dω.

In the equation above, the integral is interpreted as being the limit over infinitely many
repetitions of a ‘switching process’, in which the system is driven out of equilibrium by the
application of an external forcing or ‘control protocol’ that brings the system from state
A to B. The remarkable nature of Jarzynski’s equality is that it relates an equilibrium
quantity (the thermodynamic free energy difference between two states of the system when
it is in equilibrium) to nonequilibrium measurements. Prior to Jarzynski’s result, one un-
derstood thermodynamic free energy differences in terms of ideal, ‘infinitely slow’ switching
processes, in which the system was brought from state A to B in such a way as to keep
the system in equilibrium with the heat bath at every point during the switching process.
Since the ideal of an infinitely slow switching process was not experimentally realisable,
measurements of thermodynamic free energy differences exhibited bias, due to the dissip-
ation accumulated over the course of the switching processes. Jarzynski’s equality showed
that equilibrium free energy differences could in principle be attained by experimentally
realisable switching processes. Note however that Jarzynski’s equality does not remove the
problem of bias, due to the nonlinearity of the logarithm function.

We now establish some useful estimates on the functions ψ and F .

Lemma 2.2.3. It holds that ψ is strictly positive on its domain, and

ψ(σ, x) ≤ exp (σ‖g‖∂D,∞) , ∀(σ, x) ∈ (0,∞)× Rd. (2.59)

Proof. The second statement (2.59) follows immediately from the definition (2.57) of ψ
and Lemma 2.2.1, since

−σW ≤ −σ(−‖g‖∂D,∞).

To show that ψ is strictly positive, it suffices to show that W is finite µ0,x-almost surely,
since Jensen’s inequality yields that ψ(σ, x) is bounded from below according to

exp(E0,x[−σW ]) ≤ E0,x [exp(−σW )] = ψ(σ, x).

Since W was shown to be integrable with respect to µ0,x in Lemma 2.2.2, almost sure
finiteness follows, and hence so does the strict positivity of ψ.

Corollary 2.2.4. The function F is finite and bounded from below according to

− ‖g‖∂D,∞ ≤ F (σ, x), ∀(σ, x) ∈ (0,∞)× Rd. (2.60)

The significance of the function F is that, for fixed x and m ∈ N, the m-th moment of
W with respect to µ0,x may be obtained by differentiation:

lim
σ↓0

dm

dσm
F (σ, x) = E0,x[Wm].
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In other words, one can potentially obtain more information about W than just the ex-
pected value of W .

Recall that we are interested in computing statistical properties of metastable diffusions.
The metastability of the diffusions implies that, in order to estimate statistical properties
of path functionals (e.g. those defined in Section §2.2.1), one must wait a long time on
average; this is because the first mean passage time E0,x[τD] from a metastable set D
is large, relative to a smaller time scale that needs to be preserved. In the context of
molecular dynamics and biophysics, one must preserve motions that take place on very
short time-scale (such as bond vibrations, that occur on the femtosecond time scale) in
order to simulate events, such as protein folding events, that take place on longer time
scales. Many events of interest involve transition events between metastable sets for which
the mean first passage times are on the order of milliseconds or even larger time scales.
Thus, the time scale of interest is many orders of magnitude larger than the shortest time
scale that must be preserved in simulations, and it is reasonable to say that the events in
which one is interested are rare with respect to the shortest time scale of the simulation.

The rareness of the events of interest implies that the probability distributions of ob-
servables (i.e. of path functionals) have tails that do not decay rapidly at more extreme
values. For such probability distributions, standard Monte Carlo methods are inefficient,
because more sample values are needed to bring the relative error (the standard deviation
of the estimator divided by its mean) to within a preset tolerance level as the event be-
comes rarer. This problem is often circumvented by importance sampling, which consists
of finding an alternative distribution such that the alternative distribution agrees with
the original distribution for a given statistical property (e.g. the mean) but has smaller
variance. In our case, the original distribution is the equilibrium distribution µ0,x, and
the alternative distribution may be chosen from the family of nonequilibrium distributions
(µc,x)c∈A for the (as yet undefined) admissible class A of control functions c.

As mentioned earlier, the quantity of interest is the value of

F (σ, x) = −σ−1 logE0,x[exp(−σW )],

for fixed x and σ. By the reweighting formula (2.32) seen earlier, we may rewrite the
mean of exp(−σW ) with respect to µ0,x as the mean (with respect to µc,x) of exp(−σW ),
reweighted by the appropriate Radon-Nikodym derivative:

E0,x [exp(−σW )] = Ec,x
[
exp(−σW )dµ

0,x

dµc,x

]
, (2.61)

provided that the Radon-Nikodym derivative exists. For example, we could require that
the control function c satisfies the condition (2.25) needed for the existence of the Radon-
Nikodym derivative of µ0,x with respect to µc,x, i.e. we could require that

|c(x)|2 ≤M ∀x ∈ D (2.62)

for some constant M .

Proposition 2.2.5. Let c : D → Rd be bounded and measurable. Then the Radon-Nikodym
derivative of µ0,x with respect to µc,x admits the following closed-form expression in terms
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of the control function c:

dµ0,x

dµc,x

∣∣∣∣∣
Ft

= exp
(
− 1√

2ε

∫ t

0
c(Xc

s)dBs −
1
4ε

∫ t

0
|c(Xc

s)|2ds
)
. (2.63)

Proof. The statement follows from Theorem 2.1.17. By the boundedness condition (2.62),
the hypothesis (2.25) of Theorem 2.1.17 holds. Hence, there exists a probability measure
Q that is locally equivalent to P such that Q ◦ (Xc)−1 solves MP (−∇V, 2εId), where Id
denotes the d× d identity matrix, and the Radon-Nikodym derivative of Q ◦ (Xc)−1 with
respect to P ◦ (Xc)−1 is given by

dQ ◦ (Xc)−1

dP ◦ (Xc)−1

∣∣∣∣∣
Ft

= E(Y )t.

By (2.54) and (2.55), it holds that for c 6= 0, µc,x solvesMP (c−∇, 2εId). Setting β = c−∇V
and b + β = −∇V in Theorem 2.1.17 yields that b = −c. Thus, the processes X and Y
defined in (2.26)–(2.27) are equal to

Xt =
√

2εBt

Yt = − 1√
2ε

∫ t

0
c(Xs)dBs,

and hence
E(Y )t = exp

(
− 1√

2ε

∫ t

0
c(Xc

s)dBs −
1
4ε

∫ t

0
|c(Xc

s)|2ds
)
.

By the uniqueness of solutions to the martingale problem MP (−∇V, 2εId), it holds that

Q ◦ (Xc)−1 = P ◦ (X0)−1 = µ0,x.

Therefore,

E(Y ) = dQ ◦ (Xc)−1

dP ◦ (Xc)−1 = dµ0,x

dµc,x
,

as desired.

Notation. Recall that, for a martingale M in the classM2 of square-integrable martin-
gales, the set Π3(M) defined in (2.5) denotes the largest class of previsible (not necessarily
continuous) integrand processes H such that the Itô integral of H with respect to the
square integrable martingale M is well-defined. By Theorem 2.1.1, the Itô integral of any
process in Π3(M) with respect to M is again a continuous local martingale. For arbitrary
h,h
′ ∈ Π3(B), for arbitrary ω ∈ Ω, and for arbitrary t ≥ 0, we shall write

Mh
t := 1√

2ε

∫ t

0
h(ωs)dBs, (2.64)

〈Mh〉t(ω) := 1
2ε

∫ t

0
|h(ωs)|2ds. (2.65)

〈Mh,Mh′〉t(ω) := 1
2ε

∫ t

0
h · h′(ωs)ds. (2.66)
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Then we may rewrite the Radon-Nikodym derivative of µ0,x with respect to µc,x by

dµ0,x

dµc,x
= exp

(
M−c − 1

2〈M
−c〉
)

= E(M−c).

Rewriting (2.63), substituting the resulting expression into (2.61), taking the logarithm
and dividing by −σ yields

F (σ, x) = −σ−1 logEc,x
[
exp

(
−σ

(
W + M c

τ

σ
+ 〈M

c〉τ
2σ

))]
(2.67)

where we have stoppedM c and 〈M c〉 at τ(Xc) since the smallest sigma-algebra with respect
to which the path functional W is measurable is Fτ(Xc). By Jensen’s inequality, we obtain
the key inequality

F (σ, x) ≤ Ec,x
[
W + M c

τ

σ
+ 〈M

c〉τ
2σ

]
, (2.68)

which holds for all c ∈ A. The inequality (2.68) is important because it defines the
eponymous stochastic optimal control problem in which we are interested. Define for a
Boolean variable α the functional

Kσ,c,α := W + (2σ)−1〈M c〉τ + ασ−1M c
τ . (2.69)

We define a control functional φ̄σ,x : A → [F (σ, x),∞) by

φ̄σ,x(c) := Ec,x
[
Kσ,c,0

]
, (2.70)

where we justify the choice of α = 0 in (2.70) by the observation that the value of the
parameter α does not change the value of φ̄σ,x, since M c is a continuous local martingale
with M c

0 = 0.
The stochastic optimal control problem is:

min
c

φ̄σ,x(c) (2.71)

s.t. dXc
t = [c(Xc

t )−∇V (Xc
t )]dt+

√
2εdBt, (2.72)

where the optimisation problem (2.71) is performed over the set of feedback control func-
tions. In the theory of stochastic optimal control, one often performs the optimisation
problem over the set of all previsible control processes. Since a control process need not be
generated by a feedback control, one can modify the problem (2.71)–(2.72) to be defined
in terms of a control process u = (ut)t≥0. However, in Theorem 2.2.8, we shall show that
the control functional that we defined attains its global minimum on the set of feedback
control functions, so nothing is lost by defining the optimal control problem as we have
done. Recall that for x ∈ D,

µ0,x := P x ◦X−1

is the law of the random variable X, where X is the pathwise unique strong solution to

dXt = −∇V (Xt)dt+
√

2εdBt.
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The associated infinitesimal generator of the above stochastic differential equation is defined
by

Lψ(x) := ε∆ψ(x)−∇V (x) · ∇ψ(x).

The infinitesimal generator above is uniformly elliptic, since the diffusion matrix a is a
strictly positive multiple of the identity matrix. Recall that D was assumed to be a
bounded domain that satisfies the exterior sphere condition (2.42). Suppose that the
functions f and g in (2.37)–(2.38) are Hölder continuous on their respective domains. By
Theorem 2.1.20, it follows that there exists a unique classical solution ψ, i.e. some function
ψ ∈ C2(D;R) ∩ C(D;R), that solves

Lψ(x)− σf(x)ψ(x) = 0 x ∈ D (2.73)
ψ(y) = exp(−σg(y)) y ∈ ∂D, (2.74)

and that ψ is given by (2.40) for k(y) := exp(−σg(y)) and q ≡ 0. In particular, it holds
that

ψ(x) = E0,x [exp(−σW )] ,

which equals the function ψ(σ, x) defined in (2.57). By Lemma 2.2.3, ψ(σ, x) is strictly
positive on D. In order to show the existence and uniqueness of the control that solves
the optimal control problem (2.71)–(2.72), we need to establish that the value function
associated to the optimal control problem is a classical solution to a nonlinear elliptic
problem. The inequality (2.68) suggests that we would like the value function to be given
by the function F (σ, x). By substituting ψ(σ, x) = exp(−σF (σ, x)) into the linear elliptic
boundary value problem above and by applying the chain rule, we obtain the desired
nonlinear boundary value problem

f(x) + LF (σ, x)− εσ|∇xF (σ, x)|2 = 0 x ∈ D, (2.75)
F (σ, y) = g(y) y ∈ ∂D. (2.76)

Note that the nonlinearity in the boundary value problem (2.75)–(2.76) is entirely due to
the quadratic term in (2.75). In the optimal control literature, (2.75) would be referred
to as the ‘Hamilton-Jacobi-Bellman’ or ‘dynamic programming’ equation of the optimal
control problem (2.71)–(2.72), and the solution F (σ, x) (for fixed σ > 0) is known as the
value function. In general, the Hamilton-Jacobi-Bellman equation is a parabolic partial
differential equation in time t and x, and the value function v(t, x) describes the optimal
cost of solving the optimal control problem, given that the controlled diffusion is at x at
time t. For the stochastic optimal control problem considered here, t = 0 is held fixed, and
hence the boundary value problem (2.75)–(2.76) exhibits no time dependence.

For a general stochastic optimal control problem, there are no classical solutions to
(2.75)–(2.76), due to the difficulties inherent to working in the nonlinear case, and one
must search for a viscosity solution. Although viscosity solutions are interesting objects
in their own right, we shall restrict ourselves to classical solutions. In [30, IV.5], the
exstence of a classical solution to (2.75)–(2.76) for the infinite-time horizon case is proven
by appealing to a result [33, Theorem 17.17] concerning the existence of a classical solution
to nonlinear elliptic boundary value problems. A detailed proof would lead too far into
the theory of nonlinear elliptic partial differential equations, so we shall only sketch the
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main idea of the result here. Let Γ := D × R × Rd × Rd×d, γ = (x, z, p, r) ∈ Γ denote an
arbitrary element of Γ, and H : Γ→ R be defined by

H(x, z, p, r) = f(x)−∇V (x) · p− εσ|p|2 + ε

(∑
i

rii

)
. (2.77)

From (2.77), it follows that H is constant with respect to z, concave with respect to p, and
linear with respect to r. Note that we can rewrite (2.75) as

H(x, F (σ, x),∇xF (σ, x),∇2
xF (σ, x)) = 0 x ∈ D.

We write
Hij(x, z, p, r) := ∂H

∂rij
(x, z, p, r).

Given (2.77), it holds that
Hij(x, z, p, r) = δijε (2.78)

where δij is the Kronecker delta. Define the so-called ‘structural conditions’

0 < λ|ξ|2 ≤
∑
i,j

Hijξiξj ≤ Λ|ξ|2 (2.79a)

|Hp|, |Hz|, |Hrx|, |Hpx|, |Hzx| ≤ µλ, (2.79b)
|Hx|, |Hxx| ≤ µλ(1 + |p|+ |r|), (2.79c)

where ξ ∈ Rd is nonzero, (x, z, p, r) ∈ Γ is arbitrary, λ is a nonincreasing function of |z|,
and Λ and µ are nondecreasing functions of |z|. These structural conditions are used to
obtain so-called interior estimates on the norm of the function F (σ, ·) and its derivatives.

With these preparations in mind, we adapt [33, Theorem 17.17] below:

Theorem 2.2.6. Let D be a bounded domain in Rd satisfying an exterior sphere condition
at each boundary point and suppose the function H ∈ C2(Γ;R) is concave (or convex) with
respect to z, p, r, is nonincreasing with respect to z, and satisfies the structural conditions
(2.79). Then the classical Dirichlet problem,

H(x, F (σ, x),∇xF (σ, x),∇2
xF (σ, x)) = 0 x ∈ D
F (σ, y) = g(y) y ∈ ∂D

is uniquely solvable in C2(D;R) ∩ C(D;R) for any g ∈ C(∂D;R).

The exterior sphere condition corresponds to condition (iv) in Theorem 2.1.20. For
H ∈ C2(Γ;R), we must make the following

Assumption 2.2.7. The drift term and running cost function are twice continuously dif-
ferentiable functions of the spatial variable x.

Given that H is constant with respect to z, concave with respect to p, and linear with
respect to r, it remains to verify that the structural conditions hold. From (2.78), we can
set λ and Λ to be constant functions equal to ε. Thus we can verify that λ and Λ are
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nonincreasing and nondecreasing functions of |z| respectively, and (2.79a) holds. For the
remaining conditions, observe that by (2.77), we have

|Hz| = |Hrz| = |Hzx| = 0.

Since

∂H
∂pi

= −∂V
∂xi
− 2εσpi (2.80a)

∂2H
∂pi∂x

= −∂
2V

∂x2
i

(2.80b)

∂H
∂xi

= − ∂

∂xi
(f(x)−∇V (x) · p) (2.80c)

∂2H
∂xi∂xj

= − ∂

∂xi

∂

∂xj
(f(x)−∇V (x) · p) , (2.80d)

and since the right-hand sides of (2.80) are constant with respect to |z|, the remaining
structural conditions (2.79b)–(2.79c) are satisfied. Thus, we have shown that the sufficient
conditions for the function ψ(σ, ·) to be a classical solution of the linear elliptic boundary
value problem (2.37)–(2.38) do not suffice for F σ(·) := −σ−1 logψ(σ, ·) to be a classical
solution of the nonlinear elliptic boundary value problem (2.75)–(2.76). In particular, the
first-order coefficient vector ∇V of the operator L must be twice differentiable with respect
to x in order for nonlinear Dirichlet problem to have a classical solution, whereas uniform
Hölder continuity suffices for the linear Dirichlet problem. This observation exemplifies
the general principle that nonlinear equations are generally more complicated than their
linear counterparts.

We now adapt the main result in [35], namely, the existence and uniqueness of the
optimal control that solves (2.71)–(2.72):

Theorem 2.2.8. Let D be a bounded domain satisfying the exterior sphere condition
(2.42), f and g be Hölder continuous on their respective domains, τ be the first time
of exit from D, φ̄σ,x be given as in (2.70), and assume that Assumption 2.2.7 holds. Then
the optimal control cσopt that satisfies

φ̄σ,x(cσopt) = min
c
φ̄σ,x(c), (2.81)

where the optimisation problem on the right-hand side is done over the set of feedback
control functions, is a feedback control of the form

cσopt(x) := −2εσ∇xF (σ, x), (2.82)

where F (σ, ·) ∈ C2(D;R) ∩ C(D;R). Furthermore, the optimal control has the property
that

F (σ, x) = φ̄σ,x(cσopt). (2.83)

Proof. The proof follows a common strategy in infinite time-horizon optimal control prob-
lems where the control is linear in the dynamics and quadratic in the objective. The
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nonlinearity in the Hamilton-Jacobi-Bellman equation (2.75) that arises due to the quad-
ratic cost of control is particularly useful, because it holds that

− εσ|∇xF (σ, x)|2 = min
v∈Rd

{
v · ∇xF (σ, x) + 1

4εσ |v|
2
}
. (2.84)

Therefore, the Hamilton-Jacobi-Bellman equation is equivalent to

f(x) + LF (σ, x) + min
v∈Rd

{
v · ∇xF (σ, x) + 1

4εσ |v|
2
}

= 0, x ∈ D. (2.85)

The unique optimal control which solves this problem is the argument that minimises the
quantity in the curly braces in (2.84). By substituting cσopt(x) defined by (2.82) for v in
(2.84), the conclusion follows.

In the next chapter, we will construct an approximation scheme using bounded basis
functions. Although one often approximates objects that are not a priori bounded by their
bounded counterparts in mathematics (e.g. nonnegative Lebesgue integrable functions
by simple functions), it is nevertheless of interest to consider conditions under which the
optimal control cσopt is bounded on the domain D. Observe that, by the formula (2.82)
for the optimal control and by the fact that F (σ, x) = −σ−1 logψ(σ, x), it holds that the
optimal control cσopt may be rewritten as

cσopt(x) = −2εσ∇xF (σ, x) = 2ε∇xψ(σ, x)
ψ(σ, x) .

Since D is bounded, it follows from the Heine-Borel theorem that D is compact. By
Theorem 2.1.20, ψ(σ, ·) ∈ C(D;R), and hence ψ(σ, ·) attains its minimum on D. By
the strong maximum principle (Theorem 2.1.22), ψ(σ, ·) attains its minimum in D. In
Lemma 2.2.3, we showed that ψ(σ, x) is strictly positive for all x ∈ D. Hence ψ(σ, ·)
attains a strictly positive minimum in D. Thus, to show that the optimal control cσopt is
bounded on the domain D, it suffices to show that ∇xψ(σ, x) can be continuously extended
to a bounded, continuous function on D. This can be done by imposing more stringent
regularity conditions on the data f and g of the linear elliptic boundary value problem
(2.37)–(2.38), and on the domain D. In particular, we must assume that the functions
f and g admit uniformly Hölder continuous extensions to the closure of D, and that the
bounded domain is of class C2,α for 0 ≤ α ≤ 1; see Theorem 2.1.23.

Recall the formula (2.69) for the path functional Kσ,c,α.

Corollary 2.2.9. The estimator Kσ,c,1 is µc,x-almost surely constant if and only if the
control c is optimal.

Proof. Recall that µc,x = P x ◦ (Xc)−1, where Xc is the controlled diffusion that solves
(2.72). The inequality (2.68)

F (σ, x) ≤ Ec,x
[
Kσ,c,1

]
(2.86)

that defines the stochastic optimal control problem is a consequence of the reweighting
formula (2.67), which we rewrite in terms of Kσ,c,1 as

E0,x [exp(−σW )] = Ec,x
[
exp

(
−σKσ,c,1

)]
,
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and Jensen’s inequality. Since the logarithm is a nonlinear, strictly concave function,
equality holds in Jensen’s inequality if and only if the random variable Kσ,c,1 is µc,x-
almost surely constant (see, e.g. [44, Theorem 5]). By equation (2.83) in Theorem 2.2.8,
cσopt is the unique control for which equality holds in the inequality above, and hence the
conclusion follows.

Remark 4. It does not follow from Corollary 2.2.9 that Kσ,c,0 is µc,x-almost surely constant
when c = cσopt. In fact, since the variance of Kσ,c,0 is given by

varc,x
[
Kσ,c,0

]
= varc,x

[
Kσ,c,1

]
+ varc,x

[
−M

c
τ

σ

]
− 2covc,x

[
Kσ,c,1,

M c
τ

σ

]
,

it follows that, if c = cσopt, then the variance of Kσ,c,0 is proportional to the variance of
M c
τ , which is strictly positive provided that c is nonzero and is supported in the domain

D.
We end this section by putting into context the results that we have presented thus far.

Recall that the relative entropy or Kullback-Leibler divergence [40] of µ0,x with respect
to µc,x on the probability space (Ω,FT , µc,x) for a stopping time T ≤ ∞ is defined by
(compare with [15, Equation (2)])

KL(µc,x|µ0,x)|FT :=

E
c,x

[
log dµc,x

dµ0,x

∣∣∣
FT

]
µc,x � µ0,x, dµc,x

dµ0,x ∈ L1(µc,x)

∞ otherwise.
(2.87)

The inequality (2.68) provides an example of Legendre-type duality relationships between
free energy and relative entropy

F (σ;x) = inf
{
Ec,x[W ] + σ−1KL(µc,x|µ0,x)|Fτ

∣∣ µc,x � µ0,x on Fτ
}
, (2.88)

(see, e.g. [9, 15, 34]). The optimal control cσopt given in (2.82) that solves the stochastic
optimal control problem (2.71) corresponds to an optimal measure µc

σ
opt,x that solves the

problem (2.88). By Corollary 2.2.9, it holds that

µc
σ
opt,x

(
σW − σF (σ, x) = −M cσopt

τ − 2−1〈M cσopt〉τ
)

= 1. (2.89)

By Proposition 2.2.5, the importance sampling measure µc,x corresponding to an arbitrary
suitable control is defined by dµ0,x

dµc,x = exp
(
−M c − 1

2〈M
c〉
)
. Hence, it follows from (2.89)

that
dµ0,x

dµc
σ
opt,x

∣∣∣∣∣
Fτ

= exp (σW − σF (σ, x)) , (2.90)

and since F (σ, x) = −σ−1 logE0,x[exp(−σW )], we have

dµc
σ
opt,x

dµ0,x

∣∣∣∣∣
Fτ

= exp (−σW )
E0,x[exp(−σW )] . (2.91)

Substituting the above into the optimisation problem (2.88) yields equality, as desired.
The formula (2.91) for the optimal importance sampling measure is characteristic of all
optimal importance sampling measures, in that the optimal importance sampling measure
is defined in terms of the quantity that one wishes to estimate (see, e.g. [49]).



Chapter 3

Strongly convex approximations

In this chapter, we present the first of the three main results of this thesis, namely the
construction of a strongly convex approximation to the control functional defined in Section
§2.2.2. In Section §3.1, we state conditions that suffice to guarantee the existence of the
first and second variation of φ̄σ,x in the direction of some suitable perturbing function.
An important observation in Section §3.1 is that the expressions for the first and second
variations involve stopped martingales. In Section §3.2, we build upon this observation, and
apply fundamental results from stochastic analysis concerning continuous local martingales,
in order to derive representations of the first and second variation that shall prove useful
in Section §3.3. We show in Section §3.2.2 that imposing a non-overlap condition on the
supports of a finite collection of perturbing functions gives rise to an associated collection of
independent martingales. We then apply Itô’s formula and certain martingale inequalities
to these independent martingales in Section §3.3.2 in order to construct the strongly convex
approximation of the control functional.

Recall that (Ω,F , (Ft)t>0) denotes the canonical filtered probability space, where Ω is
the set of continuous functions ω : [0,∞) → Rd. Recall also that P denotes the Wiener
measure, that P x indicates conditioning on the set of all paths satisfying ω0 = x, and
that B = ω denotes the standard Brownian motion or Wiener process. Let Xc denote the
pathwise unique strong solution to

dXc
t = [c(Xc

t )−∇V (Xc
t )]dt+

√
2εdBt. (3.1)

In the previous chapter, we considered the following problem: given a bounded domain
D ⊂ Rd whose boundary satisfies certain regularity conditions (e.g. an exterior sphere
condition), f ∈ C(D; [0,∞)), g ∈ Cb(∂D;R), and τ(ω) being the first exit time of ω from
D for ω0 = x ∈ D, we wish to estimate statistical properties of the functional

W (ω) :=
∫ τ

0
f(ωs)ds+ g(ωτ ) (3.2)

with respect to the measure µ0,x = P x ◦ (X0)−1 (i.e. µ0,x ≡ µc,x for c ≡ 0), so that
Eµ0,x [W ] = EPx [W (X)]. We shall write E0,x[W ] = Eµ0,x [W ]. Our goal is to estimate the
value of F (σ, x) = −σ−1 logE0,x[exp(−σW )] for σ > 0 and x ∈ D. The value of F (σ, x) is
the value of the optimal control problem

min
c

φ̄σ,x(c) (3.3)

34
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where
φ̄σ,x(c) := Ec,x

[
Kσ,c,0

]
(3.4)

denotes the expectation with respect to µc,x = P x ◦ (Xc)−1 of the path functional Kσ,c,0,
where

Kσ,c,α := W + (2σ)−1〈M c〉τ + ασ−1M c
τ , α ∈ {0, 1} , (3.5)

and where the optimisation problem (3.3) is defined over the set of feedback control func-
tions.

Since the diffusion matrix corresponding to (3.1) is a positive scalar multiple of the
identity matrix, it follows that if the feedback control c is bounded (i.e. c ∈ L∞(D)), then
the assumptions of the change of measure theorem (Theorem 2.1.17) are satisfied. Hence
µ0 and µc are locally equivalent, as are their conditioned versions µ0,x and µc,x, and the
associated Radon-Nikodym derivatives exist and are exponential martingales. Note that
Proposition 2.2.5 does not require continuity of c.

Notation: For ϕ, ζ ∈ L∞(D), recall that we write

Mϕ
t (ω) = 1√

2ε

∫ t

0
ϕ(ωs)dBs(ω)

〈Mϕ,M ζ〉t(ω) = 1
2ε

∫ t

0
ϕ(ωs) · ζ(ωs)ds. (3.6)

Remark 5. Recall that, given a continuous local martingale M , the set Π3(M) defined in
(2.5) is the largest class of integrand processes H for which the Itô integral with respect
to M , denoted by H ·M , is a well-defined, continuous local martingale whose quadratic
variation process is almost-surely finite at all deterministic times t ≥ 0. This implies that,
for any ϕ ∈ L∞(D), the integrand process H defined by Ht := ϕ(Xc

t ) is an element of
Π3(B), since

〈H ·B〉t =
∫ t

0
H2
sd〈B〉s =

∫ t

0
|ϕ(Xc

s)|2ds ≤ ‖ϕ‖2∞t <∞ ∀t ≥ 0.

For a, b ∈ R, we have

Maϕ+bζ
t = aMϕ + bM ζ

〈Maϕ+ζ〉 = a2〈Mϕ〉+ 〈M ζ〉+ 2a〈Mϕ,M ζ〉 (3.7)

The covariance process 〈Mϕ,M ζ〉 has the property that

Ex[Mϕ
t M

ζ
t ] = Ex[〈Mϕ,M ζ〉t]. (3.8)

Recall that the Radon-Nikodym derivative of µc := P ◦ (Xc)−1 with respect to µc+ϕ is
given by a Doleans exponential martingale, where comparing (2.21) and (2.63) yield

dµc

dµc+ϕ

∣∣∣∣
Ft

= exp
[
M−ϕt − 2−1〈M−ϕ〉t

]
= E(M−ϕ)t ∀t ≥ 0. (3.9)

Observe also that the relation above may be used to show that

dµc+ϕ

dµc

∣∣∣∣∣
Ft

= exp
[
Mϕ
t − 2−1〈Mϕ〉t

]
= E(Mϕ)t ∀t ≥ 0.
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We shall write
Dϕ
t := dµc+ϕ

dµc

∣∣∣∣∣
Ft

= E(Mϕ)t (3.10)

to denote the value of the Radon-Nikodym derivative of µc+ϕ with respect to µc at time
t. We shall also use the fact that, for a functional F ∈ L1(µc+ϕ,x) that is measurable with
respect to the sigma-algebra FT (i.e. the sigma algebra corresponding to the filtration up
to some stopping time T > 0), then

Ec+ϕ,x[F ] = Ec,x [FDϕ
T ] , (3.11)

provided that the Radon-Nikodym derivative exists.

3.1 Variational analysis of the control functional

In this section, we obtain expressions for the first- and second-order variations of the control
functional φ̄σ,x that was defined in (3.4), in the direction of suitable perturbing functions.
Using the change of measure theorem and the formula for the Doleans exponential martin-
gale E(M), we compute the first variation by taking limits and showing L1 convergence of
the approximating functional to the desired expression. In what follows, we shall use the
inequality of the arithmetic and geometric means,

|ab| ≤ 2−1(a2 + b2) (3.12)

for a, b ∈ R, where equality holds if and only if a = b.

3.1.1 The first variation and its first variation

Recall that, given a functional F defined on some domain X, the first variation of F in an
admissible direction y evaluated at some point x ∈ X is defined by the limit

lim
n→∞

F (x+ δny)− F (x)
δn

for any sequence (δn)n satisfying δn → 0, provided that the limit exists and is finite. By
the definition (3.10), and by the property (3.7), it holds that

Dδϕ
τ = exp

[
M δϕ
τ −

1
2〈M

δϕ〉τ
]

= exp
[
δ

(
Mϕ
τ −

δ

2〈M
ϕ〉τ
)]

for a scalar δ ∈ R, a Borel-measurable function ϕ : Rd → Rd, and a stopping time τ . The
series expansion of the exponential thus yields

Dδϕ
τ = 1 +

∞∑
m=1

δm
(
Mϕ
τ − δ2−1〈Mϕ〉τ

)m
m! (3.13)

and hence

Dδϕ
τ − 1
δ

−Mϕ
τ = −δ2〈M

ϕ〉τ +
∞∑
m=2

δm−1 (Mϕ
τ − δ2−1〈Mϕ〉τ

)m
m! . (3.14)
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The definition of the first variation, combined with the identities (3.14) and (3.11), suggest
that the martingale Mϕ will appear in the first variation of a functional on Ω. For a
FT -measurable functional F ∈ L1(µc,x) that does not depend on the function c, for any
ϕ ∈ L∞(D), and for any nonzero sequence (δn)n decreasing to zero,

lim
n→∞

Ec+δnϕ,x[F ]− Ec,x[F ]
δn

= lim
n→∞

Ec,x
[
F
Dδnϕ
T − 1
δn

]
= Ex[F (Xc)Mϕ

T (Xc)],

In order to justify the second equation using the dominated convergence theorem, we shall
need the following result.

Lemma 3.1.1. For any µc,x-almost surely bounded stopping time τ , for ϕ ∈ L∞(D), and
for any nonzero sequence (δn)n ⊂ (−1, 1) satisfying δn → 0 as n→∞, it holds that

lim
n→∞

Ec,x
[(
Dδnϕ
τ − 1

)2
]

= 0 = lim
n→∞

Ec,x

(Dδnϕ
τ − 1
δn

−Mϕ
τ

)2
 .

Proof. Let T be such that τ ≤ T µc,x-almost surely. To prove the first limit, observe that

Ec,x
[(
Dδnϕ
τ − 1

)2
]
≤ 2Ec,x

[(
Dδnϕ
τ

)2
+ 1

]
≤ 2Ec,x

[
sup
s≤T

(
Dδnϕ
s

)2
+ 1

]
≤ 8 exp

(
δ2
n‖ϕ‖2∞T

)
+ 2,

where the first inequality follows from (3.12), the second follows from the fact that τ ≤ T
µc,x-almost surely, and the third follows from the inequality (2.23). Since (δn)n ⊂ (−1, 1),
it follows that the sequence ((Dδnϕ

τ − 1)2)n is bounded in L1(µc,x) by 8 exp
(
‖ϕ‖2∞T

)
+ 2.

Therefore,
lim
n→∞

Ec,x
[(
Dδnϕ
τ − 1

)2
]

= Ec,x
[

lim
n→∞

(
Dδnϕ
τ − 1

)2
]

= 0,

by Lebesgue’s dominated convergence theorem and by the identity (3.13).
To prove the second limit, it follows from applying (3.13) with δ = δn that, for any n,(

Dδnϕ
τ − 1

)2
= (Dδnϕ

τ )2 − 2Dδnϕ
τ + 1 =

(
M δnϕ
τ

)2
+Rn, (3.15)

where we have omitted the dependence on ω, and Rn = O(δ3
n). Then

Ec,x

(Dδnϕ
τ − 1
δn

)2
 = Ec,x

[
〈Mϕ〉τ + δ−2

n Rn
]
≤ ‖ϕ‖2∞T + Ec,x

[
δ−2
n Rn

]
,

using the Itô isometry for the equation, and using the fact that ϕ is bounded and that τ ≤ T
µc,x-almost surely for the inequality. Since (δn)n ⊂ (−1, 1) and since Ec,x[δ−2

n Rn] = O(δn),
we may define the constant

C = sup
n
Ec,x[δ−2

n Rn]
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that depends on the sequence (δn)n but not on n. Thus, the sequence (δ−2
n (Dδnϕ − 1)2)n

is bounded in L1(µc,x) by ‖ϕ‖2∞T + C. Since (3.12) implies that

Ec,x

(Dδnϕ
τ − 1
δn

−Mϕ
τ

)2
 ≤ 2Ec,x

(Dδnϕ
τ − 1
δn

)2

+ (Mϕ
τ )2

 ,
it follows that the sequence ((δ−2

n (Dδnϕ − 1)−Mϕ
τ )2)n is bounded in L1(µc,x). Therefore,

lim
n→∞

Ec,x

(Dδnϕ
τ − 1
δn

−Mϕ
τ

)2
 = Ec,x

 lim
n→∞

(
Dδnϕ
τ − 1
δn

−Mϕ
τ

)2
 = 0,

by Lebesgue’s dominated convergence theorem and by the identity (3.14).

We now proceed to obtaining expressions for the first variation and mixed second
variation (i.e. the first variation of the first variation) of φ̄σ,x.

Lemma 3.1.2. Let δ ∈ R and ϕ ∈ L∞(D) be such that

φ̄σ,x(c+ δϕ) = Ec+δϕ,x
[(
W + (2σ)−1〈M c+δϕ〉τ

)]
(3.16)

exists and is finite. Then

φ̄σ,x(c+ δϕ)− φ̄σ,x(c)

= Ec,x
[
Kσ,c,0

(
Dδϕ
τ − 1

)
+ δ

σ

(
δ

2〈M
ϕ〉τ + 〈M c,Mϕ〉τ

)
Dδϕ
τ

]
. (3.17)

Proof. Since ϕ ∈ L∞(D), it follows that µc+δϕ and µc are locally equivalent, by the change
of measure theorem, and hence the relevant Radon-Nikodym derivatives exist and are
exponential martingales. We rewrite (3.16) as an expectation with respect to µc,x. By
(3.7),

〈M c+δϕ〉τ = 〈M c〉τ + δ2〈Mϕ〉τ + 2δ〈M c,Mϕ〉τ . (3.18)
Substituting (3.18) in (3.16), and applying (3.11), we obtain

φ̄σ,x(c+ δϕ) = Ec,x
[(
W + 〈M

c〉τ
2σ + δ2

2σ 〈M
ϕ〉τ + δ

σ
〈M c,Mϕ〉τ

)
Dδϕ
τ

]
.

Taking differences yields (3.17).

As before, let (δn)n ⊂ (−1, 1) be an arbitrary, nonzero sequence such that δn → 0.
Define

hn := δ−1
n Kσ,c,0(Dδnϕ

τ − 1) + σ−1
(
〈M c,Mϕ〉τ + δn2−1〈Mϕ〉τ

)
Dδnϕ
τ (3.19)

h := Kσ,c,0Mϕ
τ + σ−1〈M c,Mϕ〉τ , (3.20)

Note that hn is defined so that

Ec,x[hn] = φ̄c,x(c+ δnϕ)− φ̄σ,x(c)
δn

.

We shall see that Ec,x[h] coincides with the first variation of φ̄σ,x(c) in the direction ϕ.
First, we need to establish convergence of hn to h in L1(µc,x), using Lemma 3.1.1.
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Proposition 3.1.3. Let c, ϕ ∈ L∞(D), T > 0 be a fixed number such that τ ≤ T µc,x-
almost surely, and W ∈ L2(µc,x). Then the sequence hn converges to h in L1(µc,x).

Proof. The assumptions on c, ϕ and τ imply that 〈M c〉τ and 〈Mϕ〉τ are bounded µc,x-
almost surely. Furthermore, the almost-sure boundedness of τ guarantees that Dδϕ

τ ∈
L2(µc,x) for any δ ∈ R, by Corollary 2.1.16. The proof proceeds in two steps: showing that
{h} ∪ {hn;n ∈ N} ⊂ L1(µc,x), and then showing convergence of hn to h.

Integrability of hn and h. By the triangle inequality,

Ec,x[|hn|] ≤|δn|−1Ec,x
[∣∣∣Kσ,c,0Dδnϕ

τ

∣∣∣+ ∣∣∣Kσ,c,0
∣∣∣]

+ σ−1Ec,x
[
|〈M c,Mϕ〉τ |Dδnϕ

τ

]
+ |δn|(2σ)−1Ec,x

[
〈Mϕ〉τDδnϕ

τ

]
Ec,x [|h|] ≤ Ec,x

[
|Kσ,c,0Mϕ

τ |
]

+ σ−1Ec,x [|〈M c,Mϕ〉τ |] .

By the inequality (3.12) of arithmetic and geometric means and the Kunita-Watanabe
inequality (2.6) for the covariance process,

Ec,x
[
|Kσ,c,0|2

]
≤ 2Ec,x

[
W 2 + (2σ)−2〈M c〉2τ

]
Ec,x

[
|〈M c,Mϕ〉τ |2

]
≤ Ec,x

[
〈M c〉2τ + 〈Mϕ〉2τ

]
(3.21)

Ec,x
[
|Kσ,c,0Dδnϕ

τ |
]
≤ Ec,x

[
(Kσ,c,0)2 + (Dδnϕ

τ )2
]

Ec,x
[∣∣∣〈M c,Mϕ〉τDδnϕ

τ

∣∣∣] ≤ Ec,x [〈M c,Mϕ〉2τ + (Dδnϕ
τ )2

]
Ec,x

[
〈Mϕ〉τDδnϕ

τ

]
≤ Ec,x

[
〈Mϕ〉2τ + (Dδnϕ

τ )2
]

(3.22)

Ec,x
[
|Kσ,c,0Mϕ

τ |
]
≤ Ec,x

[
(Kσ,c,0)2 + 〈Mϕ〉τ

]
.

By the hypotheses of the proposition, the right-hand sides of the inequalities above are
finite. Hence, we have established that {h} ∪ {hn;n ∈ N} ⊂ L1(µc,x). Since L1(µc,x) is a
Banach space with the norm ‖X‖ := Ec,x[|X|], it follows that hn − h ∈ L1(µc,x) for all
n ∈ N, and the limit of any convergent sequence in L1(µc,x) lies in L1(µc,x).

Convergence of hn to h. To show convergence, we apply the triangle inequality to
obtain

Ec,x[|hn − h|] ≤Ec,x
[∣∣∣∣∣Kσ,c,0

(
Dδnϕ
τ − 1
δn

−Mϕ
τ

)∣∣∣∣∣
]

(3.23)

+ 1
σ
Ec,x

[∣∣∣〈M c,Mϕ〉τ
(
Dδnϕ
τ − 1

)∣∣∣]+ |δn|2σ E
c,x
[
〈Mϕ〉τDδnϕ

τ

]
.

By (3.22), the third term in the inequality (3.23) converges to zero. By the Cauchy-Schwarz
inequality,

Ec,x
[∣∣∣∣∣Kσ,c,0D

δnϕ
τ − 1
δn

−Mϕ
τ

∣∣∣∣∣
]2

≤ Ec,x
[
(Kσ,c,0)2

]
Ec,x

(Dδnϕ
τ − 1
δn

−Mϕ
τ

)2


Ec,x
[∣∣∣〈M c,Mϕ〉τ

(
Dδnϕ
τ − 1

)∣∣∣]2 ≤ Ec,x [〈M c,Mϕ〉2τ
]
Ec,x

[(
Dδnϕ
τ − 1

)2
]
.

By Lemma 3.1.1, the first and second terms in the inequality (3.23) converge to zero. This
completes the proof.
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Theorem 3.1.4. Suppose that the hypotheses of Proposition 3.1.3 hold. Then the first
variation of φ̄σ,x(c) in the direction of ϕ is given by the functional

Φσ,x(c;ϕ) = Ec,x
[
Kσ,c,0Mϕ

τ + σ−1〈M c,Mϕ〉τ
]
. (3.24)

Proof. The random variables hn and h defined in (3.19) and (3.20) satisfy

Ec,x[hn] = φ̄σ,x(c+ δnϕ)− φ̄σ,x(c)
δn

and Ec,x[h] = Φσ,x(c, ϕ). Thus, if we can show

lim
n→∞

Ec,x[hn − h] = 0,

then we will have proved the theorem. Since

|Ec,x [h− hn]| ≤ Ec,x [|h− hn|] , (3.25)

the conclusion follows from Proposition 3.1.3.

Remark 6. On the left-hand side of (3.24), the term Φσ,x(c;ϕ) is the directional derivative
of the first variation of φσ,x(c) in the direction ϕ, and one can show (see Proposition 3.2.1
below) that the right-hand side can be recast as the expectation of Kσ,c,1 with Mϕ

τ . Thus
the formula (3.24) is reminiscent of the duality relationship or integration-by-parts formula
in the Malliavin calculus (see, e.g. [31, Proposition 3.1])

E[〈DX,h〉] = E[XW (h)],

where 〈DX,h〉 denotes the inner product in a Hilbert space of the Malliavin derivative
of a random variable X satisfying certain conditions, h is an arbitrary element of a real,
separable Hilbert spaceH of L2 processes defined on some parameter set, andW (h) denotes
the Wiener integral of h,

W (h) =
∫ ∞

0
hsdBs.

Note that W (h) may also be written in terms of the divergence operator or Skorokhod
integral δ associated to the Malliavin derivative operator D, as W (h) = δ(h) (Property P3
and P4 on [31, pp. 395-396]). In particular, both the left-hand sides of (3.24) and the integ-
ration by parts formula above involve directional derivatives. However, some observations
show that the relation (3.24) does not have the duality relationship interpretation, at least
not in the Mallivin calculus setting. One observation is that the left-hand side of (3.24)
involves the derivative with respect to an infinitesimal change in the drift, while in general
the Malliavin derivative is taken with respect to the random path ω. Another observation
is that, in the Malliavin calculus setting, the random variable X must be smooth in the
sense that there exists a n ∈ N, a collection (hi)1≤i≤n ⊂ H and a function f ∈ C∞p (Rn)
such that

X = f(W (h1), . . . ,W (hn)).
In (3.24), the random variable Kσ,c,0 is not smooth: since neither the running cost function
f nor the terminal cost function g are assumed to be smooth, the work path functional
W is not smooth. The final observation follows from Proposition 3.2.1 below, since the
right-hand side is equal to the expectation of Kσ,c,1 with Mϕ

τ , and since Kσ,c,0 = Kσ,c,0

almost surely if and only if c ≡ 0.
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We shall now consider the first variation Φσ,x(c;ϕ) defined in Theorem 3.1.4 as a func-
tional that is parametrised by a function ϕ and has the control function c as its argument.
We shall compute the first variation of Φ(c;ϕ) in the direction of a perturbing function ζ.

Lemma 3.1.5. Let δ ∈ R and ζ ∈ L∞(D) be such that

Φσ,x(c+ δζ;ϕ) = Ec+δζ,x
[
Kσ,c+δζ,0Mϕ

τ + σ−1〈M c+δζ ,Mϕ〉τ
]

(3.26)

exists and is finite. Then

Φσ,x(c+ δζ;ϕ)− Φσ,x(c;ϕ) =Ec,x
[(
Kσ,c,0Mϕ

τ + 1
σ
〈M c,Mϕ〉τ

)
(Dδζ − 1)

]
(3.27)

+ Ec,x
[
δ

σ

(
〈M c,M ζ〉τMϕ

τ + 〈Mϕ,M ζ〉τ + δ

2〈M
ζ〉τ
)
Dδζ
τ

]
.

The proof of the statement proceeds exactly as the proof of Lemma 3.1.2, relying on
the reweighting formula (3.11) and the expansion (3.18) of the quadratic variation of the
perturbed, controlled process.

Proof. By (3.18), we obtain an expression analogous to (3.17):

Ec+δζ,x
[
Kσ,c+δζ,0Mϕ

τ

]
= Ec+δζ,x

[(
Kσ,c,0 + δ

σ

(
δ

2〈M
ζ〉τ + 〈M c,M ζ〉τ

))
Mϕ
τ

]
.

Since ζ ∈ L∞(D), it follows that µc+δζ and µc are locally equivalent, by the change of
measure theorem for δ ∈ R, and hence the relevant Radon-Nikodym derivatives exist and
are exponential martingales. Using the reweighting formula (3.11), the bilinearity (3.7)
of the quadratic variation, and the expression (3.24) for the first variation, we obtain
(3.27).

Let (δn)n ⊂ (−1, 1) be an arbitrary nonzero sequence such that δn → 0.

hn :=
(
Kσ,c,0Mϕ

τ + 1
σ
〈M c,Mϕ〉τ

)
Dδnζ
τ − 1
δn

(3.28)

+ 1
σ

(
〈M c,M ζ〉τMϕ

τ + 〈Mϕ,M ζ〉τ + δn
2 〈M

ζ〉τ
)
Dδnζ
τ

h :=Kσ,c,0Mϕ
τ M

ζ
τ + 1

σ

(
〈Mϕ,M ζ〉τ +M ζ

τ 〈M c,Mϕ〉τ +Mϕ
τ 〈M c,M ζ〉τ

)
. (3.29)

As before, hn has been defined so that its expectation with respect to µc,x coincides with the
difference δ−1

n (Φσ,x(c+ δζ;ϕ)−Φσ,x(c;ϕ)), and h has been defined so that its expectation
with respect to µc,x coincides with the desired first variation of Φσ,x(c;ϕ) in the direction
of ζ. We now prove convergence in L1(µc,x) of hn to h.

Proposition 3.1.6. Let c, ϕ, ζ ∈ L∞(D), T > 0 be a fixed number such that τ ≤ T µc,x-
almost surely, and W 2 ∈ Lp(µc,x) for some p > 1. Then, the sequence of random variables
hn defined in (3.28) converges to the random variable h defined in (3.29) in L1(µc,x).

Note that in the assumptions of Proposition 3.1.6, which we shall use to obtain the
mixed second-order variation, we require that W is more than square-integrable, whereas
in Proposition 3.1.3, which we used to obtain the first variation, we only required that W
be square integrable.



42 Chapter 3 Strongly convex approximations

Proof. The assumptions on c, ϕ, ζ, and τ imply that 〈M c〉τ , 〈Mϕ〉τ , and 〈M ζ〉τ are
bounded µc,x-almost surely. Furthermore, the almost-sure boundedness of τ guarantees
that Dδζ

τ ∈ L2(µc,x), by Corollary 2.1.16. By Lemma 2.1.6, we have

Ec,x
[
(Mϕ

τ )4
]
≤

√
3
2 +

√
3
2E

c,x
[
〈Mϕ〉2τ

]
,

and so Mϕ
τ ∈ L4(µc,x). Similarly, M ζ

τ ∈ L4(µc,x).
The proof follows the same ideas as the proof of Proposition 3.1.3: we first show

that {h} ∪ {hn;n ∈ N} ⊂ L1(µc,x), using the triangle inequality, the inequality (3.12) of
arithmetic and geometric means, and the Kunita-Watanabe inequality (2.6), and then show
that Ec,x[|hn − h|] is bounded by a quantity that decreases to zero as n→∞.

Integrability of hn and h. We begin first with hn. Observe that

Ec,x
[(
Kσ,c,0Mϕ

τ + 1
σ
〈M c,Mϕ〉τ

)
Dδnζ
τ − 1
δn

]

≤Ec,x
[∣∣∣∣∣Kc,0Mϕ

τ

Dδnζ
τ − 1
δn

∣∣∣∣∣+ σ−1〈M c,Mϕ〉τ

∣∣∣∣∣Dδnζ
τ − 1
δn

∣∣∣∣∣
]

≤Ec,x
|Kσ,c,0Mϕ

τ |2 + 2
∣∣∣∣∣Dδnζ

τ − 1
δn

∣∣∣∣∣
2

+ σ−2〈M c,Mϕ〉2τ

 .
We showed that |δ−1

n (Dδnζ
τ − 1)|2 ∈ L1(µc,x) in Lemma 3.1.1. We need to show that

the other terms on the right-hand side of the last inequality above are integrable. The
integrability of 〈M c,Mϕ〉2τ follows from (3.21). To show that Kσ,c,0Mϕ

τ ∈ L2(µc,x), observe
that by Holder’s inequality (with q := (1− p−1)−1), we have

Ec,x
[
|Kσ,c,0Mϕ

τ |2
]
≤Ec,x

[(
|WMϕ

τ |+ (2σ)−1|〈M c〉τMϕ
τ |
)2
]

≤2Ec,x
[
(WMϕ

τ )2 + (2σ)−2〈M c〉2τ (Mϕ
τ )2

]
≤2
(
Ec,x[W 2p]1/pEc,x

[
(Mϕ

τ )2q
]1/q

+ (2σ)−2Ec,x
[
〈M c〉4τ + (Mϕ

τ )4
])
.

Since we assumed that W 2 ∈ Lp(µc,x) for some p > 1, and since Mϕ
τ ∈ L2q(µc,x) fol-

lows from the application of the martingale inequality (2.12) in Lemma 2.1.6, it follows
that Kσ,c,0Mϕ

τ ∈ L2(µc,x). Proceeding with the other terms in hn, we observe that the
arithmetic-geometric inequality (3.12) yields

Ec,x
[∣∣∣〈M c,M ζ〉τMϕ

τ

∣∣∣Dδnζ
τ +

∣∣∣〈Mϕ,M ζ〉τ
∣∣∣Dδnζ

τ + |δn|2 〈M
ζ〉τDδnζ

τ

]
≤Ec,x

[
〈M c,M ζ〉2τ (Mϕ

τ )2 + 〈Mϕ,M ζ〉2τ + δ2
n

4 〈M
ζ〉2τ + 3(Dδnζ

τ )2
]

(3.30)

Since we assumed that 〈M ζ〉τ is µc,x-almost surely bounded, and since 〈Mϕ,M ζ〉2τ is in-
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tegrable by (3.21), we need to show that 〈M c,M ζ〉2τ (Mϕ
τ )2 is integrable. This follows from

Ec,x
[
〈M c,M ζ〉2τ (Mϕ

τ )2
]
≤ Ec,x

[
〈M c,M ζ〉4τ + (Mϕ

τ )4
]

≤ Ec,x
[
〈M c〉2τ 〈M ζ〉2τ + (Mϕ

τ )4
]

≤ Ec,x
[
〈M c〉4τ + 〈M ζ〉4τ + (Mϕ

τ )4
]
, (3.31)

where the first inequality follows from the arithmetic-geometric inequality (3.12), the
second inequality follows from the Kunita-Watanabe inequality (2.6), and the third fol-
lows from the arithmetic-geometric inequality (3.12). This proves that hn ∈ L1(µc,x).

The proof that h ∈ L1(µc,x) consists of two parts. The first consists of showing that
the terms inside the parentheses in (3.29) are integrable with respect to µc,x, and this
can be shown using the inequality (3.21) with the fact that M ζ

τ ,M
ϕ
τ ∈ L2(µc,x). The

second part consists of showing that Kσ,c,0Mϕ
τ M

ζ
τ ∈ L1(µc,x), but this follows from the

arithmetic-geometric inequality and the fact that Kσ,c,0Mϕ
τ ∈ L2(µc,x) shown earlier.

Convergence of hn to h. By grouping together similar terms and applying the triangle
inequality, we obtain

Ec,x[|hn − h|] ≤Ec,x
[(
|Kσ,c,0Mϕ

τ |+ σ−1|〈M c,Mϕ〉τ |
) ∣∣∣∣∣Dδnζ

τ − 1
δn

−M ζ
τ

∣∣∣∣∣
]

(3.32)

+ 1
σ
Ec,x

[(∣∣∣〈Mϕ,M ζ〉τ
∣∣∣+ ∣∣∣〈M c,M ζ〉τMϕ

τ

∣∣∣) ∣∣∣Dδnζ
τ − 1

∣∣∣]
+ |δn|2σ E

c,x
[
〈M ζ〉τDδnζ

τ

]
.

In order to use the convergence results of Lemma 3.1.1, we need to verify that the terms on
the right-hand side of (3.32) converge to zero, after using the Cauchy-Schwarz inequality,
and after checking the relevant terms are sufficiently integrable. For example, for the first
row, we obtain the inequality

Ec,x
[(
|Kσ,c,0Mϕ

τ |+ σ−1|〈M c,Mϕ〉τ |
) ∣∣∣∣∣Dδnζ

τ − 1
δn

−M ζ
τ

∣∣∣∣∣
]

≤ Ec,x
[(
|Kσ,c,0Mϕ

τ |+ σ−1|〈M c,Mϕ〉τ |
)2
]1/2

Ec,x

∣∣∣∣∣Dδnζ
τ − 1
δn

−M ζ
τ

∣∣∣∣∣
2
 .

We showed that Kσ,c,0Mϕ
τ ∈ L2(µc,x) above. The other terms on the right-hand side of

the inequality above have been shown to exhibit the required degree of integrability in the
proof of Lemma 3.1.1 and in (3.21). The integrability and convergence of the remaining
terms on the right-hand side of (3.32) follow from the integrability statements derived
earlier and Lemma 3.1.1 respectively.

Theorem 3.1.7. Suppose that the hypotheses of Proposition 3.1.6 hold. Then the first
variation of φ̄σ,x(c) in the direction of ϕ exists and is equal to Φσ,x(c;ϕ) as defined in
(3.24), and the first variation of Φσ,x(c;ϕ) in the direction of ζ is given by the functional

Φσ,x(c;ϕ, ζ) :=Ec,x
[
Kσ,c,0Mϕ

τ M
ζ
τ

]
(3.33)

+ Ec,x
[
σ−1

(
〈M c,Mϕ〉τM ζ

τ + 〈M c,M ζ〉τMϕ
τ + 〈Mϕ,M ζ〉τ

)]
.
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Note that the functional Φσ,x(c; ·, ·) is symmetric in the parameters, i.e. Φσ,x(c;ϕ, ζ) =
Φσ,x(c; ζ, ϕ).

Proof. The random variables hn and h defined in (3.28) and (3.29) satisfy

Ec,x[hn] = Φσ,x(c+ δnζ;ϕ)− Φσ,x(c;ϕ)
δn

and Ec,x[h] = Φσ,x(c;ϕ, ζ). By (3.25) and by Proposition 3.1.6, it holds that Ec,x[hn−h]→
0, and hence the theorem is proved.

By setting ζ = ϕ in Theorem 3.1.7, we obtain the following expression for the second
variation of φ̄σ,x(c) in the direction of ϕ:

Φσ,x(c;ϕ,ϕ) = Ec,x
[
Kσ,c,0(Mϕ

τ )2 + σ−1 (〈Mϕ〉τ + 2〈M c,Mϕ〉τMϕ
τ )
]
. (3.34)

Recall that the second variation of a functional at some point in its domain possesses the
strong positive definiteness property over some set A if there exists some m > 0 such that

Φσ,x(c;ϕ,ϕ) ≥ m‖ϕ‖2, ∀ϕ ∈ A, (3.35)

where m does not depend on ϕ. Note that the property of being strongly positive definite
must be specified with respect to some norm on the set of admissible perturbations. A
suitable norm might be

‖ϕ‖2µc,x,2 := Ex
[∫ τ

0
|ϕ(Xc

s)|2ds
]

= Ec,x[〈Mϕ〉τ ].

However, without specifying additional conditions on Kσ,c,0, c and ϕ, it is not immediately
obvious whether the second variation of φ̄σ,x is a strongly positive definite operator on a
given set of admissible perturbations. In the next section, we state some conditions for
which strong positive definiteness holds for the second variation.

To conclude this section, we briefly discuss the integrability assumptions of Propositions
3.1.3 and 3.1.6. In order for the mixed second variation to be well-defined, we assumed that
the control c, the perturbing functions ϕ and ζ, and the stopping time τ are bounded. These
strong assumptions simplified matters greatly, since we could then use Corollary 2.1.16 to
assert that the stopped Radon-Nikodym derivative terms Dδnϕ

τ were square-integrable.
We could also use that the stopped quadratic variation terms were also bounded, which
implied integrability statements on powers of stopped martingale terms via the martingale
inequalities in Lemma 2.1.6. If one were to weaken the almost sure boundedness assumption
on τ , the first task would be to ensure that the stopped Radon-Nikodym derivative terms
Dδnϕ
τ are sufficiently integrable in order to obtain convergence statements of the kind

described in Lemma 3.1.1.

3.2 Relations deriving from Itô’s formula

In this section, we use Itô’s formula (2.10) in order to derive useful expressions involving
the martingale terms that appeared in the first variation functionals defined in (3.24) and
(3.24). The most important results of this section are contained in §3.2.2, in which we use
pairwise independence to obtain expressions with which to simplify the mixed second-order
variations of the control functional φ̄σ,x.
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3.2.1 Martingales constructed from bounded basis functions

In this section, we derive some expressions involving products of the values of continuous
local martingales at some stopping time τ , where the local martingales are Itô integrals
of arbitrary bounded integrand processes with respect to the Brownian motion B. We
use these expressions to reformulate the expression for the mixed second variation of the
control functional φ̄σ,x.

Proposition 3.2.1. The first variation Φσ,x(c;ϕ) defined in (3.24) satisfies

Φσ,x(c;ϕ) = Ec,x
[
Kc,1Mϕ

τ

]
. (3.36)

Proof. By the definition (3.5) of the random variable Kc,α, and by the property (3.8) of
the covariance process,

Ec,x[Kσ,c,0Mϕ
τ + σ−1〈M c,Mϕ〉τ ] = Ec,x[Kσ,c,0Mϕ

τ + σ−1M c
τM

ϕ
τ ] = Ec,x[Kc,1Mϕ

τ ]

Recall that the optimal control c∗ has the property that Kc∗,1 is µc∗,x-almost surely
constant. By Lemma 3.2.1, and the mean-zero property of Mϕ

τ , this implies that c∗ is a
critical point of the functional φ̄σ,x, as expected.

Lemma 3.2.2. Suppose that ϕi ∈ L∞(D) for i = 1, 2, 3. Then

Ec,x [Mϕ1
τ Mϕ2

τ Mϕ3
τ ] = Ec,x[Mϕ1

τ 〈Mϕ2 ,Mϕ3〉τ +Mϕ2
τ 〈Mϕ3 ,Mϕ1〉τ +Mϕ3

τ 〈Mϕ1 ,Mϕ2〉τ ].
(3.37)

Proof. As was observed in Remark 5, the assumption that ϕi ∈ L∞(D) implies that Mϕi

is a well-defined continuous local martingale with almost-surely finite quadratic variation
for all t ≥ 0. By Itô’s formula, it holds that

Ec,x [Mϕ1
τ Mϕ2

τ Mϕ3
τ ] = Ec,x

[ ∫ τ

0
Mϕ1
s d〈Mϕ2 ,Mϕ3〉s

+
∫ τ

0
Mϕ2
s d〈Mϕ3 ,Mϕ1〉s +

∫ τ

0
Mϕ3
s d〈Mϕ1 ,Mϕ2〉s

]
.

On the other hand, using the integration by parts formula (2.9), it holds that

Ec,x [Mϕi
τ 〈Mϕj ,Mϕk〉τ ] = Ec,x

[∫ τ

0
Mϕi
s d〈Mϕj ,Mϕk〉s

]
.

Corollary 3.2.3. For ϕ ∈ L∞(D),

Ec,x
[
(Mϕ

τ )3
]

= 3Ec,x [Mϕ
τ 〈Mϕ〉τ ] .

Recall that the covariance process of two continuous local martingales on a filtered
probability space is defined precisely so that

M
ϕ1,ϕ2
t := Mϕ1

t Mϕ2
t − 〈Mϕ1 ,Mϕ2〉t, (3.38)

defines a continuous local martingale on the same filtered probability space. Rearranging
(3.37) and applying the definition (3.38) yields
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Corollary 3.2.4. It holds that

Ec,x
[
〈Mϕ1,ϕ2 ,Mϕ3〉τ

]
= Ec,x [Mϕ1

τ 〈Mϕ3 ,Mϕ2〉τ +Mϕ2
τ 〈Mϕ3 ,Mϕ1〉τ ] . (3.39)

The significance of Corollary 3.2.4 is that (3.39) provides an alternative characterisation
of the martingale Mϕ1,ϕ2 in addition to the definition (3.38). Furthermore, since one in
general has better control over processes that are locally of bounded variation, it is useful
to know that the stochastic process inside the expectation on the right-hand side of (3.39) -
which is a sum of products of continuous local martingales with processes of locally bounded
variation - can be treated as a process that is locally of bounded variation. Corollary 3.2.4
also yields the following

Proposition 3.2.5. The mixed second variation Φσ,x(c;ϕ, ζ) described in (3.24) satisfies

Φσ,x(c;ϕ, ζ) = Ec,x
[
Kσ,c,1Mϕ

τ M
ζ
τ + σ−1 (1−M c

τ ) 〈Mϕ,M ζ〉τ
]
. (3.40)

Proof. Setting ϕ1 = ϕ, ϕ2 = ζ, and ϕ3 = c in (3.39), and using (3.38), we obtain

Ec,x
[
〈M c,Mϕ〉τM ζ

τ + 〈M c,M ζ〉τMϕ
τ + 〈Mϕ,M ζ〉τ

]
=Ec,x

[
〈M c,M

ϕ,ζ〉τ + 〈Mϕ,M ζ〉τ
]

=Ec,x
[
M c
τM

ϕ,ζ
τ + 〈Mϕ,M ζ〉τ

]
=Ec,x

[
M c
τ (Mϕ

τ M
ζ
τ − 〈Mϕ,M ζ〉τ ) + 〈Mϕ,M ζ〉τ

]
=Ec,x

[
M c
τM

ϕ
τ M

ζ
τ + (1−M c

τ )〈Mϕ,M ζ〉τ
]

(3.41)

The conclusion (3.40) follows by substituting (3.41) into the definition (3.33) of Φσ,x(c;ϕ, ζ).

Corollary 3.2.6. It holds that the second variation of φ̄σ,x in the direction of ϕ is given
by

Φσ,x(c;ϕ,ϕ) = Ec,x
[
Kσ,c,1(Mϕ

τ )2 + σ−1(1−M c
τ )〈Mϕ〉τ

]
.

Because Φσ,x(c;ϕ,ϕ) depends on c through the path measure µc,x, the quadratic vari-
ation term 〈M c〉τ in Kσ,c,0, and the martingale M c

τ , it is not clear whether the second
variation of φ̄σ,x is positive definite. This suggests that additional conditions must be
imposed on c and ϕ in order to guarantee that Φσ,x(c; ·, ·) is a positive definite operator.

The final result in this subsection concerns products of four martingale terms. The
need for this result is due to the presence of such products in the second variation (e.g. if
ϕ = c).

Lemma 3.2.7. Let ϕi ∈ L∞(D) for 1 ≤ i ≤ 4. Then

Ec,x [Mϕ1
τ Mϕ2

τ Mϕ3
τ Mϕ4

τ ] =
3∑
i=1

∑
i<j

Ec,x

∫ τ

0

∏
k 6=i,j

Mϕk
s d〈Mϕi ,Mϕj 〉s

 . (3.42)
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and

Ec,x[Mϕ1
τ Mϕ2

τ 〈Mϕ3 ,Mϕ4〉τ ] =Ec,x
[∫ τ

0
Mϕ1
s Mϕ2

s d〈Mϕ3 ,Mϕ4〉s
]

(3.43)

+ Ec,x
[∫ τ

0
〈Mϕ3 ,Mϕ4〉sd〈Mϕ1 ,Mϕ2〉s

]
.

Proof. By Itô’s formula,

4∏
i=1

Mϕi
τ =

4∑
i=1

∫ τ

0

∏
j 6=i

M
ϕj
s dMϕi

s +
∑
j 6=i

1
2

∫ τ

0
Mϕk
s Mϕ`

s d〈Mϕi ,Mϕj 〉s


where {k, `} and {i, j} constitute a disjoint partition of {1, 2, 3, 4}. Taking expectations of
the equation above, using that Itô integrals with respect to continuous local martingales
are again continuous local martingales, and taking into account that certain summands
appear twice, we obtain (3.42). By the same reasoning, we obtain (3.43).

Although one could use Itô’s formula to derive equations for expected values of five or
more random variables, we shall only consider expected values of products of at most four
random variables. This is because the expression (3.33) contains products of at most four
martingale terms, if one associates quadratic variation terms with squares of martingale
terms.

3.2.2 Pairwise independence via non-overlap condition on supports

In the previous section, we derived some identities, e.g. Corollary 3.2.3 and Lemma 3.2.7,
involving the martingale terms that appear in the expressions (3.36) and (3.40) for the
first variation Φσ,x(c;ϕ) and the mixed second variation Φσ,x(c;ϕ, ζ). In this section, we
construct finite collections of these martingale terms, and use an important assumption
(Assumption 3.2.8) to establish certain independence relationships between the martin-
gales. These independence relationships will prove crucial in the final section §3.3.1 of this
chapter, in which we specify an approximating subset A of feedback control functions such
that the control functional φ̄σ,x is strictly convex over A.

Recall that {ϕi}1≤i≤n ⊂ L∞(D). Denote the support of ϕi by

Si := supp(ϕi) = {x | ϕi(x) 6= 0} ⊂ Rd. (3.44)

Let Si denote the closure of Si. The results we shall show next derive from the following

Assumption 3.2.8. The supports (Si)i≤n are connected, open subsets of the domain D
with strictly positive Lebesgue measure, whose closures form a partition of the closure of
D, i.e. D = ∪iSi, and that satisfy the non-overlap condition

Si ∩ Sj ⊂ ∂Si ∩ ∂Sj , i 6= j. (3.45)

Since the closures of the supports intersect at most in the intersection of the boundaries
of the supports, and since the supports are open, we have

i 6= j =⇒ λ
{
x ∈ Rd | ϕi(x) · ϕj(x) 6= 0

}
= 0, (3.46)

where λ denotes Lebesgue measure. The first result of this section is
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Lemma 3.2.9. If i 6= j, then µc,x-almost surely, 〈Mϕi ,Mϕj 〉t = 0 for all t ≥ 0.

Proof. The result follows from the definition (3.6) of the covariance process, and the fact
expressed in (3.46) that the integrand in the covariance process is nonzero only on a set of
Lebesgue measure zero.

By (3.8), Lemma 3.2.9 yields

Corollary 3.2.10. For i 6= j, the expectation Ec,x[Mϕi
τ M

ϕj
τ ] equals zero.

A stronger result than Corollary 3.2.10 is that Mϕi
τ and Mϕj

τ are independent. This is
the content of Theorem 3.2.16, which we shall state later. To prove the independence of
Mϕi
τ and Mϕj

τ , we must show that the increments of Mϕi are independent of the increments
of Mϕj . We will accomplish this by using the strong Markov property, in conjunction with
Assumption 3.2.8, which is essential here. The idea is that, since Mϕi remains constant
whenever Xc is not in the support of ϕi, and since the intersections of the supports are of
Lebesgue measure zero, the process Mϕi is nonconstant over a given random time interval
(σ, ρ) if and only if Mϕj is constant over the same time interval, for all j 6= i. Since
a nonconstant stochastic process and a constant stochastic process are independent, the
independence of the increments of Mϕi and Mϕj follows. For a rigorous proof, we need
to construct a family of random time intervals and then show that the increments of the
martingales (Mϕi)i and the increments of quadratic variation processes (〈Mϕi〉)i form two
collections of mutually and pairwise independent random variables.

Fix i ∈ {1, . . . , n}. Let σi,0 := 0, and for m ∈ N, define the time ρi,m of the m-th entry
into Si and the time σi,m of the m-th exit from Si respectively by

ρi,m(ω) := inf {t > σi,m−1 | ωt ∈ Si} (3.47)
σi,m(ω) := inf {t > ρi,m | ωt /∈ Si} . (3.48)

The definitions (3.47) and (3.48) imply that

0 = σi,0 ≤ ρi,1 ≤ σi,1 ≤ ρi,2 ≤ σi,2 ≤ · · · (3.49)

defines a sequence (Ti,m)m∈N of stopping times increasing to infinity, via

Ti,m :=
{
ρi,(m+1)/2 m odd
σi,m/2 m even.

(3.50)

The definition yields the correspondence

ρi,1 ≤ σi,1 ≤ρi,2 ≤ σi,2 ≤ · · ·
l

Ti,1 ≤ Ti,2 ≤Ti,3 ≤ Ti,4 ≤ · · · .

Lemma 3.2.11. If Assumption 3.2.8 holds, then the countable collection

{Ti,m | 1 ≤ i ≤ n, m ∈ N}

of stopping times may be ordered such that for any i, j ∈ {1, . . . , n} and for any m ∈ N,
there exists a ` ∈ N such that

Tj,2`+1 ≤ Tj,2`+2 ≤ Ti,2m+1 ≤ Ti,2m+2 ≤ Tj,2(`+1)+1 ≤ Tj,2(`+1)+2. (3.51)
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Proof. Assumption 3.2.8 is equivalent to the condition that, almost surely, a random path
ω cannot be in more than one support at any given time, except on a set of Lebesgue
measure zero. Therefore, almost surely, if a path enters some support Si, it must leave Si
before entering any other support Sj for j 6= i; this is the content of (3.51).

Since ϕi ∈ L∞(D), it follows that, for the stopping time τ in (3.2), (Mϕi
t∧τ )t≥0 is a

continuous local martingale. Hence, it follows that (Mϕi
τ∧Ti,n)n∈N is a martingale, and the

increments (ξi,m)m∈N defined by

ξi,m := Mϕi
τ∧Ti,m −M

ϕi
τ∧Ti,m−1

(3.52)

are independent. For the quadratic variation of Mϕi , we define the increments by

θi,m := 〈Mϕi〉τ∧Ti,m − 〈Mϕi〉τ∧Ti,m−1 . (3.53)

By the integral form (3.6) of the quadratic variation and covariance processes, the incre-
ments (θi,m)m∈N are also independent.

Lemma 3.2.12. For given i and m, the random variables ξi,m and θi,m are measurable
with respect to Fτ∧Ti,m and independent of the sigma-algebra Fτ∧Ti,m−1.

Proof. The measurability follows from the fact that ξi,m depends on the history of the
process Xc up to, and including, the time τ ∧ Ti,m. The independence follows from the
strong Markov property of Xc, which is guaranteed by Theorem 2.1.12.

By (3.49) and (3.50), we have

Lemma 3.2.13. Let ϕi ∈ L∞(D), and let (Ti,m)m∈N be defined as in (3.50). Then the
sequence of increments (ξi,m)m∈N defined by (3.52) satisfies

ξi,m =
{

0 m odd
Mϕi
τ∧σi,m/2 −M

ϕi
τ∧ρi,m/2 m even

(3.54)

and the sequence of increments (θi,m)m∈N defined by (3.53) satisfies

θi,m =
{

0 m odd
〈Mϕi〉τ∧σi,m/2 − 〈Mϕi〉τ∧ρi,m/2 m even.

(3.55)

Proof. The assertions follow from the definition (3.50) of Ti,m. In particular, when m is
odd, then the increments are computed by taking the difference of the respective processes
at the endpoints of the interval (τ ∧ σi,(m−1)/2, τ ∧ ρi,(m+1)/2). At every point s in the
interval (τ ∧ σi,(m−1)/2, τ ∧ ρi,(m+1)/2), it holds that Xc

s /∈ Si, by the definitions of the
stopping times ρi,· and σi,· and by the assumption that Si is open. Thus Mϕi and 〈Mϕi〉
are constant over this interval, and the corresponding increments are zero.

In the following proposition, ∆i,m and ∆i,m should be considered as placeholders for
the increments ξi,m and θi,m.
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Proposition 3.2.14. Let ϕi, ϕj ∈ L∞(D) be distinct functions satisfying Assumption
3.2.8, let (Ti,m)m∈N and (Tj,`)`∈N be the corresponding sequences of stopping times defined
by (3.50), and let (∆i,m)m∈N and (∆j,`)`∈N be two sequences of random variables, such
that ∆i,m is measurable with respect to Fτ∧Ti,m and independent of Fτ∧Ti,m−1, and ∆j,`

(not necessarily equal to ∆j,`) is measurable with respect to Fτ∧Tj,` and independent of
Fτ∧Tj,`−1. Then for any m, ` ∈ N, the increments ∆i,m and ∆j,` are independent, and in
particular

Ec,x[∆i,m∆j,`] = Ec,x[∆i,m]Ec,x[∆j,`]. (3.56)

Proof. We may assume that m, ` ∈ 2N, since otherwise the conclusion (3.56) holds trivially,
by Lemma 3.2.13. Then, since Assumption 3.2.8 holds, then so does Lemma 3.2.11, and
we may assume (after switching indices, if necessary) that

Tj,` ≤ Ti,m−1 ≤ Ti,m. (3.57)

Consequently,
Fτ∧Tj,` ⊆ Fτ∧Ti,m−1 ⊆ Fτ∧Ti,m , (3.58)

which means that the diffusion Xc exited Sj before entering Si. This yields the inde-
pendence of ∆i,m and ∆j,`, by the strong Markov property. To prove (3.56), we observe
that

Ec,x
[
∆i,m∆j,`

]
= Ec,x

[
Ec,x

[
∆i,m∆j,`|Fτ∧Tj,`

]]
(3.59)

= Ec,x
[
∆j,`E

c,x
[
∆i,m|Fτ∧Tj,`

]]
(3.60)

= Ec,x
[
∆j,`E

c,x [∆i,m]
]
. (3.61)

The first equation follows from the towering property of conditional expectation. The
second equation follows from the assumption that ∆j,` is measurable with respect to Fτ∧Tj,` .
The third equation follows from the assumption that ∆i,m is independent of Fτ∧Ti,m−1 by
Lemma 3.2.12, and hence independent of Fτ∧Tj,` , by (3.58).

Corollary 3.2.15. Suppose that the sums
∑
m ∆i,m and

∑
` ∆j,` have finite expectations,

and that the product of the sums has finite expectation. Then

Ec,x
[(∑

m

∆i,m

)(∑
`

∆i,m

)]
= Ec,x

[∑
m

∆i,m

]
Ec,x

[∑
`

∆j,`

]
. (3.62)

The preceding two results yield the following result, in which we show that the mar-
tingales and the associated quadratic variation processes are mutually and pairwise inde-
pendent:

Theorem 3.2.16. Let ϕi, ϕj ∈ L∞(D) be distinct functions satisfying Assumption 3.2.8.
Then for i 6= j, Mϕi

τ and 〈Mϕi〉τ are independent of Mϕj
τ and 〈Mϕj 〉τ , and in particular

Ec,x[Mϕi
τ M

ϕj
τ ] = Ec,x[Mϕi

τ ]Ec,x[Mϕj
τ ] (3.63)

Ec,x[Mϕi
τ 〈Mϕj 〉τ ] = Ec,x[Mϕi

τ ]Ec,x[〈Mϕj 〉τ ] (3.64)
Ec,x[〈Mϕi〉τ 〈Mϕj 〉τ ] = Ec,x[〈Mϕi〉τ ]Ec,x[〈Mϕj 〉τ ]. (3.65)
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Proof. For every 1 ≤ i ≤ n, we have the decompositions

Mϕi
τ =

∑
m=1

ξi,m

〈Mϕi〉τ =
∑
m=1

θi,m,

for ξi,m and θi,m as given in (3.52) and (3.53) respectively. By Lemma 3.2.12, both ξi,m
and θi,m satisfy the hypotheses placed on the random variables ∆i,m and ∆j,` in Propos-
ition 3.2.14. Therefore, the equations (3.63)–(3.65) are proved by choosing ∆i,m and ∆j,`

appropriately in Corollary 3.2.15 from {ξi,m, θi,m} and {ξj.`, θj,`} respectively.

To conclude this section, we revisit the relations presented in §3.2.1 in light of the
independence result given in Theorem 3.2.16 above. We shall apply these relations in §3.3,
where we show that the control functional φ̄σ,x exhibits the property of strong convexity
when restricted to classes of control functions spanned by finitely many basis functions
with non-overlapping supports.

Lemma 3.2.17. Let ϕ1, ϕ2, ϕ3 ∈ L∞(D) satisfy Assumption 3.2.8. Then

Ec,x [Mϕ1
τ Mϕ2

τ Mϕ3
τ ] =

{
3Ec,x [Mϕ1

τ 〈Mϕ1〉τ ] ϕ1 = ϕ2 = ϕ3

0 otherwise.
(3.66)

Proof. By Corollary 3.2.3, it suffices to prove that if ϕ1 = ϕ2 = ϕ3 does not hold, then
the expression on the right-hand side of (3.37) in Lemma 3.2.2 vanishes. Without loss of
generality, suppose that ϕ1 6= ϕ2 = ϕ3. Then by Lemma 3.2.2 and Theorem 3.2.16,

Ec,x [Mϕ1
τ Mϕ2

τ Mϕ3
τ ] =Ec,x[Mϕ1

τ ]Ec,x[〈Mϕ2 ,Mϕ3〉τ ]
+ Ec,x[Mϕ2

τ 〈Mϕ3 ,Mϕ1〉τ +Mϕ3
τ 〈Mϕ1 ,Mϕ2〉τ ].

By Lemma 3.2.9, the terms 〈Mϕ3 ,Mϕ1〉τ and 〈Mϕ1 ,Mϕ2〉τ equal zero, and by the mar-
tingale property of Mϕ, Ec,x[Mϕ1

τ ] = 0.

Lemma 3.2.18. Let ϕ1, ϕ2, ϕ3 ∈ L∞(D) satisfy Assumption 3.2.8. Then

Ec,x [Mϕ1
τ Mϕ2

τ 〈Mϕ3〉τ ] =


Ec,x

[
6−1(Mϕ1

τ )4 + 2−1〈Mϕ1
τ 〉2

]
ϕ1 = ϕ2 = ϕ3

Ec,x
[
(Mϕ1

τ )2(Mϕ3
τ )2] ϕ1 = ϕ2 6= ϕ3

0 otherwise.
(3.67)

Proof. If ϕ1 6= ϕ2 and ϕ2 6= ϕ3, then by Theorem 3.2.16,

Ec,x [Mϕ1
τ Mϕ2

τ 〈Mϕ3〉τ ] =


Ec,x[Mϕ2

τ ]Ec,x[Mϕ1
τ 〈Mϕ1〉τ ] ϕ1 = ϕ3 6= ϕ2

Ec,x[Mϕ1
τ ]Ec,x[Mϕ2

τ ]Ec,x[〈Mϕ3〉τ ] ϕ1 6= ϕ3 6= ϕ2

Ec,x[Mϕ1
τ ]Ec,x[Mϕ3

τ 〈Mϕ3〉τ ] ϕ1 6= ϕ3 = ϕ2,

and in all cases the right-hand sides vanish, by the martingale property. If ϕ1 = ϕ2 6= ϕ3,
we have by Theorem 3.2.16 and by (3.8) that

Ec,x
[
(Mϕ1

τ )2〈Mϕ3〉τ
]

= Ec,x[(Mϕ1
τ )2]Ec,x[〈Mϕ3〉τ ]

= Ec,x[(Mϕ1
τ )2]Ec,x[(Mϕ3

τ )2] = Ec,x[(Mϕ1
τ )2(Mϕ3

τ )2].
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Setting ϕ1 = ϕ2 = ϕ3 = ϕ4 in (3.43) yields, by the integration by parts formula (2.9) and
the martingale property, that

Ec,x
[
(Mϕ1

τ )2〈Mϕ1〉τ
]

= Ec,x
[∫ τ

0
(Mϕ1

s )2d〈Mϕ1〉s +
∫ τ

0
〈Mϕ1〉sd〈Mϕ1〉s

]
. (3.68)

On the other hand, since the sum on the right-hand side of (3.42) consists of six terms, it
follows that setting ϕ1 = ϕ2 = ϕ3 = ϕ4 in (3.42) yields

Ec,x
[
(Mϕ1

τ )4
]

= 6Ec,x
[∫ τ

0
(Mϕ1

s )2d〈Mϕ1〉s
]
. (3.69)

The integration by parts formula (2.9) yields

Ec,x[〈Mϕ1〉2τ ] = 2Ec,x
[∫ τ

0
〈Mϕ1〉sd〈Mϕ1〉s

]
. (3.70)

Rearranging (3.69) and (3.70), and substituting the resulting expressions into (3.68), yields
the remaining case on the right-hand side of (3.67).

We shall use Lemma 3.2.17 and Lemma 3.2.18 in order to determine conditions that
imply the existence and uniqueness of solutions of the restriction of the optimal control
problem (2.71) to a finite-dimensional subset of the set U of admissible controls.

3.3 Strong convexity

In this section, we construct an approximating subset A of controls such that the control
functional φ̄σ,x is strongly convex over A. The strong convexity result is the main result
of this chapter, and one of the main results of this thesis. The strong convexity result
is important because it guarantees that, under certain conditions, the gradient descent
algorithm that we describe in Chapter 4 produces a unique solution in an approximating
subset to the optimal control problem described in §2.2.

3.3.1 Admissible classes spanned by linearly independent basis functions

Let {ϕi}1≤i≤n ⊂ L∞(D) be linearly independent. Define the associated approximating
subset

A :=
{
c ∈ L∞(D)

∣∣∣∣ ∃a ∈ Rn s.t. c(x) =
n∑
i=1

aiϕi(x) ∀x ∈ Rd
}
. (3.71)

Every element of the approximating subset A is in one-to-one correspondence with an
element a ∈ Rn, by linear independence of the ϕi. Therefore, we shall denote every control
function c ∈ A by

ca(x) :=
n∑
i=1

aiϕi. (3.72)

We shall approximate the original optimisation problem (3.3), that was defined over the
set of all feedback controls, by restricting the optimisation problem to the set A. We shall
refer to the set A as the ‘approximating subset’ of the set of feedback controls.
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Notation: In this section, we shall reserve the symbols a and z (and variants thereof)
for vectors in Rn. If either a or z appears as a superscript, then that indicates the depend-
ence upon a parametrised control of the form (3.72) belonging to A. For example, we shall
denote by Xa the solution of the stochastic differential equation

dXa
t = [ca −∇V ] (Xa

t )dt+
√

2εdBt, (3.73)

and we shall denote by µa,x = P x ◦ (Xa)−1 the distribution of Xa with respect to P x, i.e.

∀A ∈ F , Ea,x [1A] = µa,x(A) = P x(Xa ∈ A). (3.74)

We also denote the parametrised functionals

Ma
t (ω) := 1√

2ε

∫ t

0
ca(ωs)dBs (3.75)

〈Ma〉t(ω) := 1
2ε

∫ t

0
|ca(ωs)|2ds (3.76)

Kσ,a,α(ω) := W (ω) + (2σ)−1〈Ma〉τ (ω) + ασ−1Ma
τ (ω), α ∈ {0, 1} . (3.77)

Unless otherwise stated, any other superscripts shall refer to functions, so that

Mϕi
t (ω) = 1√

2ε

∫ t

0
ϕi(ωs)dBs,

〈Mϕi〉t(ω) = 1
2ε

∫ t

0
|ϕi(ωs)|2ds.

In particular, we have the following simple, but useful relations:

Ma
t =

∑
i

aiM
ϕi
t (3.78)

〈Ma〉t =
∑
i,j

aiaj〈Mϕi ,Mϕj 〉t. (3.79)

To conclude this digression into notation, we define the objective function φσ,x by

φσ,x : Rn →R
a 7→φ̄σ,x(ca). (3.80)

Thus, φσ,x is the restriction of φ̄σ,x to the approximating subset A defined in (3.71). We
shall refer to φσ,x as the ‘approximating function’ or simply the ‘approximation’ of φ̄σ,x
given the approximating subset A.

We now express some key results from §3.1 and §3.2 using the new notation introduced
above. Let (ei)ni=1 denote the canonical orthonormal basis of Rn.

Lemma 3.3.1. Let ca ∈ A and ϕi be one of the basis elements of the approximating subset
A. If W ∈ L2(µa,x) and T > 0 is such that τ ≤ T µa,x-almost surely, then the i-th partial
derivative of the function φσ,x defined in (3.80) exists, and is given by

∂

∂ai
φσ,x(a) = Ea,x

[
Kσ,a,1Mϕi

τ

]
. (3.81)
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Proof. The existence of the first variation of φ̄σ,x follows from Theorem 3.1.4. Thus

∂

∂ai
φσ,x(a) = lim

δ→0

φσ,x(a+ δei)− φσ,x(a)
δ

= lim
δ→0

φ̄σ,x(ca + δϕi)− φ̄σ,x(ca)
δ

= Φσ,x(ca;ϕi).

By Proposition 3.2.1, the conclusion follows.

Lemma 3.3.2. Let ca ∈ A and ϕi, ϕj be any two basis elements of the approximating
subset A. If W 2 ∈ Lp(µa,x) for some p > 1 and T > 0 is such that τ ≤ T µa,x-almost
surely, then the second partial derivative of φσ,x with respect to ai and aj exists, and is
given by

∂

∂aj

∂

∂ai
φσ,x(a) = Ea,x

[
Kσ,a,1Mϕi

τ M
ϕj
τ + σ−1(1−Ma

τ )〈Mϕi ,Mϕj 〉τ
]
. (3.82)

Proof. The existence of the mixed second variation of φ̄σ,x follows from Theorem 3.1.7. We
have by (3.81) that

∂

∂aj

∂

∂ai
φσ,x(a) = ∂

∂aj
Φσ,x(ca;ϕi)

= lim
δ→0

Φσ,x(ca + δϕj ;ϕi)− Φσ,x(ca;ϕi)
δ

= Φσ,x(ca;ϕi, ϕj).

By Proposition 3.2.5, the conclusion follows.

Remark 7. Since the measure µa,x and the random variables Kσ,a,1 and Ma
τ depend con-

tinuously on a, the mixed second partial derivative in (3.82) is a continuous function of a.
Therefore, over the subset of Rn such that the right-hand side of (3.82) exists and is finite,
it holds by Clairaut’s theorem that the matrix of second-order partial derivatives (i.e. the
Hessian) of φσ,x,

∇2φσ,x(a) :=
(
∂

∂ai

∂

∂aj
φσ,x

)
1≤i,j≤n

(a), (3.83)

is a symmetric matrix.

Lemma 3.3.3. Let z ∈ Rn be arbitrary. Then for M z :=
∑
i ziM

ϕi,

z>∇2φσ,x(a)z = Ea,x
[
Kσ,a,1 (M z

τ )2 + σ−1(1−Ma
τ ) 〈M z〉τ

]
. (3.84)

Proof. The assertion follows directly from (3.82) and the constancy of z.

The expression (3.84) suggests that proving convexity of φσ,x may be difficult, primarily
because Ma

τ assumes negative values with positive probability. In particular the right-hand
side of (3.84) will be nonnegative for a in some convex set and arbitrary z if and only if

Ea,x
[
Kσ,a,0(M z

τ )2 + σ−1〈M z〉τ
]
≥ Ea,x

[
σ−1Ma

τ

(
〈M z〉τ − (M z

τ )2
)]
.

Even if we assume thatKσ,a,0 is nonnegative, it is not clear that the relation above will hold,
especially if z is arbitrary. In order to guarantee that the Hessian is positive semidefinite,
we shall impose additional structure on the vector space A defined in (3.71), by imposing
the non-overlap condition on the supports stated in Assumption 3.2.8.
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3.3.2 Basis functions with non-overlapping supports

In this section, we apply the identities from the previous section, in conjunction with
the martingale inequality (2.12), in order to derive a useful lower bound on the quantity
(3.84). We then use the lower bound to show that the function φσ,x is strongly convex
on Rn, provided that the basis elements {ϕi}1≤i≤n satisfy Assumption 3.2.8. Define the
nonnegative functions (Ck)k≤n, where for each k, Ck : Rn → R is defined by

Ck(a) :=
∑
i 6=k

a2
iE

a,x[〈Mϕi〉τ ]. (3.85)

We have the following

Lemma 3.3.4. Suppose the collection {ϕi}1≤i≤n of basis functions of the approximating
subset A satisfies Assumption 3.2.8. Then the following identities hold for a, z ∈ Rn:

Ea,x
[
Ma
τ

(
(M z

τ )2 − 〈M z〉τ
)]

= 2
3
∑
k

akz
2
kE

a,x
[
(Mϕk

τ )3
]

(3.86)

Ea,x
[
〈Ma〉τ (M z

τ )2
]

=
n∑
k=1

z2
kE

a,x

[
a2
k

(
(Mϕk

τ )4

6 + 〈M
ϕk〉2τ
2

)
+ (Mϕk

τ )2Ck(a)
]
. (3.87)

Proof. Since Assumption 3.2.8 holds, we may apply the independence relation (3.63) to
obtain

Ea,x
[
Ma
τ (M z

τ )2
]

=
∑
i,k,`

akziz`E
a,x [Mϕk

τ Mϕi
τ Mϕ`

τ ] =
∑
k

akz
2
kE

a,x
[
(Mϕk

τ )3
]
. (3.88)

Expanding Ma and M z, applying Lemma 3.2.9, the independence relation (3.64), and
applying Lemma 3.2.17, we obtain

Ea,x [Ma
τ 〈M z〉τ ] =

∑
i,k,`

akziz`E
a,x [Mϕk

τ 〈Mϕi ,Mϕ`〉τ ]

=
∑
k,`

akz
2
`E

a,x [Mϕk
τ 〈Mϕ`〉τ ]

=
∑
k

akz
2
kE

a,x [Mϕk
τ 〈Mϕk〉τ ]

=3−1∑
k

akz
2
kE

a,x
[
(Mϕk

τ )3
]
. (3.89)

Taking the difference of (3.88) and (3.89) yields (3.86).
Expanding Ma and M z, and applying Lemma 3.2.9, and Lemma 3.2.18, we obtain

Ea,x
[
〈Ma〉τ (M z

τ )2
]

=
∑
i,j,k,`

ajakziz`E
a,x [〈Mϕj ,Mϕk〉τMϕi

τ Mϕ`
τ ]

=
∑
i,k,`

a2
kziz`E

a,x [〈Mϕk〉τMϕi
τ Mϕ`

τ ]

=
∑
k

a2
kz

2
kE

a,x[6−1(Mϕk
τ )4 + 2−1〈Mϕk〉2τ ]

+
∑
k

∑
i 6=k

a2
i z

2
kE

a,x[(Mϕi
τ )2(Mϕk

τ )2].
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By Theorem 3.2.16, Mϕi
τ and Mϕk

τ are independent. Hence, by the definition (3.85),∑
i 6=k

a2
iE

a,x[(Mϕi
τ )2(Mϕk

τ )2] =
∑
i 6=k

a2
iE

a,x[(Mϕi
τ )2]Ea,x[(Mϕk

τ )2] = Ck(a)Ea,x[(Mϕk
τ )2],

where we have used the Itô isometry and the definition (3.85) of Ck(a) in the last equation.

We now state another assumption for proving strong convexity of the function φσ,x.

Assumption 3.3.5. The supports (Si)i≤n are such that

P x(∀1 ≤ i ≤ n, ∃ui < vi s.t. r ∈ (ui, vi)⇒ X0
r ∈ Si) > 0. (3.90)

Assumption 3.2.8 means that the diffusion X0 that solves (3.1) when c ≡ 0 spends a
strictly positive amount of time in each support Si with positive P x-probability.

Lemma 3.3.6. Suppose that Assumption 3.3.5 holds, and that ca ∈ A. Then

µa,x(∀1 ≤ i ≤ n, Mϕi
τ 6= 0) > 0. (3.91)

Proof. Since ca ∈ A, the change of measure theorem (Theorem 2.1.17) holds, and hence
µa,x and µ0,x are locally equivalent. Since (3.90) holds, it follows that

µ0,x(∀1 ≤ i ≤ n, Mϕi
τ 6= 0) > 0 (3.92)

holds, and (3.91) follows by local equivalence of µa,x and µ0,x.

In preparation for the proof of strong convexity, recall that ρ(2) =
√

3/2 +
√

3/2 is the
largest root of the fourth-order Hermite polynomial (see Lemma 2.1.6 in §2.1). Define the
constant

C := 4
9

(1
3 + 1

ρ(2)

)−1
≈ 0.4732. (3.93)

We also define a finite collection (pk)k≤n of functions pk : R × R × Rn → R, where for all
a ∈ Rn, each function pk(·, ·; a) is a fourth-degree polynomial in the first argument and a
second-degree polynomial in the second argument:

pk(x, y; a) :=
( 1

12 + 1
4ρ(2)

)
x4y2 + 2

3x
3y +

(
C + 1

2Ck(a)
)
x2. (3.94)

Using the relations obtained in Section §3.2.2, we shall reformulate the number z>∇2φσ,xz(a)
as the sum of expected values of the polynomials pk, evaluated at the pair (Mϕk

τ , ak).
Therefore it is of interest to characterise these polynomials. A crucial characterisation is
provided in the next

Lemma 3.3.7. For all k ∈ {1, . . . , n} and for all a ∈ Rn, pk(·, ·; a) is nonnegative.
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Proof. Since pk(x, y; a) factorises according to

pk(x, y; a) = x2qk(x, y; a) (3.95)

for
qk(x, y; a) :=

( 1
12 + 1

4ρ(2)

)
x2y2 + 2

3xy +
(
C + 1

2Ck(a)
)
, (3.96)

it follows that pk(·, ·; a) is nonnegative if and only if qk(·, ·; a) is nonnegative on R×R. Let
k ∈ {1, . . . , n} be arbitrary, and fix y. If y = 0, then

qk(x, 0; a) = C + 1
2Ck(a).

By (3.93) and (3.85), both C and Ck(a) are nonnegative. Thus, it follows that qk(x, 0; a) is
a nonnegative constant. If y 6= 0, then by the discriminant test for quadratic polynomials,
qk(x, y; a) is a nonnegative function of x if and only if(2

3y
)2
− 4y2

( 1
12 + 1

4ρ(2)

)(
C + 1

2Ck(a)
)
≤ 0. (3.97)

Since y 6= 0, we may divide both sides of (3.97) by y2, with the result that (3.97) holds if
and only if

4
9

(1
3 + 1

ρ(2)

)−1
≤
(
C + 1

2Ck(a)
)
. (3.98)

By (3.93), it follows that (3.98) is satisfied, regardless of the value of Ck(a), and from the
latter it follows that (3.97) is satisfied. Hence qk is a nonnegative function, and so is pk.

Corollary 3.3.8. For all k ∈ {1, . . . , n}, y ∈ R, and a ∈ Rn, there is at most one real,
nonzero root of pk(·, y; a) = 0 in R.

Recall that φσ,x ∈ C2(Rn;R) is said to be strongly convex if there exists a number
m > 0 such that

∀z 6= 0, z>∇2φσ,x(a)z ≥ m|z|2, (3.99)

where m does not depend of a. Note that (3.99) implies that the spectrum of the Hessian
is contained in the set [m,∞).

Let U ⊂ Rn be an open, convex set, and denote its closure by U . Define

mx(U) := min
a∈U

min
k
Ea,x [pk(Mϕk

τ , ak; a)] . (3.100)

The following theorem is the main result of this chapter and one of the main results of the
thesis.

Theorem 3.3.9. Assume that the following hold:

(i) the basis functions {ϕi}1≤i≤n of the approximating subset A belong to L∞(D),

(ii) the supports of (Si)1≤i≤n satisfy Assumptions 3.2.8 and 3.3.5,

(iii) the stopping time τ is µ0,x-almost surely bounded for all x ∈ D, and
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(iv) the terminal cost function g ∈ C(∂D;R) satisfies the uniform lower bound

− σ‖g‖∞ ≥ (C − 1) (3.101)

for the constant C defined in (3.93).

Then for any open, convex set U ⊆ Rn, the restriction of φσ,x to U is strongly convex, and
(3.99) holds with m = mx(U) as given in (3.100).

Proof. Since we stipulated at the beginning of this chapter that the running cost function
f is an element of C(D; [0,∞)), it follows that f is bounded on D; since the terminal cost
function g is an element of C(∂D;R), and since D is a bounded domain, condition (iii)
implies that the random variable W is µ0,x-almost surely bounded. On the other hand,
condition (i) implies that for all ca ∈ A, the corresponding path measure µa,x is locally
equivalent to µ0,x, by the change of measure theorem, so W is µa,x-almost surely bounded
for any a ∈ U . Therefore W 2 ∈ Lp(µa,x) for some p > 1, and thus the assumptions of
Lemma 3.3.2 are satisfied, which guarantees that the Hessian of φσ,x is well-defined on U .
We will use conditions (ii) and (iv) to show that the Hessian ∇2φσ,x(a) is positive definite
for all a ∈ Rn, and then strengthen this result to show uniform positive definiteness in
the sense of (3.99). By the theory of convex functions, uniform positive definiteness of the
Hessian of φσ,x implies strong convexity of φσ,x.

Substituting the expression (3.77) for Kσ,a,1 into the expression (3.84) and pulling the
factor σ−1 out of the expectation yields

z>∇2φσ,x(a)z = σ−1Ea,x
[(
σW + 2−1〈Ma〉τ +Ma

τ

)
(M z

τ )2 + (1−Ma
τ )〈M z〉τ

]
.

By the Itô isometry (3.8),

z>∇2φσ,x(a)z = σ−1Ea,x
[(
σW + 1 + 2−1〈Ma〉τ +Ma

τ

)
(M z

τ )2 −Ma
τ 〈M z〉τ

]
.

Since f ≥ 0, it follows that σW ≥ −σ‖g‖∞, and (3.101) in condition (iv) implies that
σW ≥ C − 1. Applying this uniform lower bound on W to the equation above and
rearranging terms yields

z>∇2φσ,x(a)z ≥ σ−1Ea,x
[(
C + 2−1〈Ma〉τ +Ma

τ

)
(M z

τ )2 −Ma
τ 〈M z〉τ

]
= σ−1Ea,x

[
2−1〈Ma〉τ (M z

τ )2 +Ma
τ

(
(M z

τ )2 − 〈M z〉τ
)

+ C(M z
τ )2
]
.

By using the expression (3.87) for the expectation of 〈Ma〉τ (M z
τ )2, the expression (3.86)

for the expectation of Ma
τ ((M z

τ )2 − 〈M z〉τ ), and the independence relation (3.63) (which
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holds, by condition (ii)), we have

z>∇2φσ,x(a)z

≥(2σ)−1∑
k

z2
kE

a,x
[
a2
k

(
6−1(Mϕk

τ )4 + 2−1〈Mϕk〉2τ
)

+ Ck(a)(Mϕk
τ )2

]
+ σ−1Ea,x

[
Ma
τ

(
(M z

τ )2 − 〈M z〉τ
)

+ C(M z
τ )2
]

=(2σ)−1∑
k

z2
kE

a,x
[
a2
k

(
6−1(Mϕk

τ )4 + 2−1〈Mϕk〉2τ
)

+ Ck(a)(Mϕk
τ )2

]
+ 2(3σ)−1∑

k

akz
2
kE

a,x
[
(Mϕk

τ )3
]

+ Cσ−1Ea,x
[
(M z

τ )2
]

=(2σ)−1∑
k

z2
kE

a,x
[
a2
k

(
6−1(Mϕk

τ )4 + 2−1〈Mϕk〉2τ
)

+ Ck(a)(Mϕk
τ )2

]
(3.102)

+ 2(3σ)−1∑
k

akz
2
kE

a,x
[
(Mϕk

τ )3
]

+ Cσ−1∑
k

z2
kE

a,x
[
(Mϕk

τ )2
]
.

The inequality (2.12) in Lemma 2.1.6, i.e. the inequality

Ea,x
[
(Mϕ

τ )4
]
≤ ρ(2)Ea,x

[
〈Mϕ〉2τ

]
,

provides a lower bound on Ea,x[〈Mϕk〉2τ ], which by substitution into (3.102) yields

σz>∇2φσ,x(a)z

≥
∑
k

z2
kE

a,x
[( 1

12 + 1
4ρ(2)

)
(Mϕk

τ )4a2
k + 2

3(Mϕk
τ )3ak +

(1
2Ck(a) + C

)
(Mϕk)2

]
.

We apply the definition (3.94) of the polynomial pk in order to rewrite the inequality above
as

σz>∇2φσ,x(a)z ≥
∑
k

z2
kE

a,x[pk(Mϕk
τ , ak; a)]. (3.103)

By Lemma 3.3.7, each pk is nonnegative. Condition (ii) implies that Assumption 3.3.5
holds, which in turn implies that Lemma 3.3.6 holds. In particular, Mϕk

τ assumes nonzero
values with strictly positive µa,x-probability. Since Mϕk

τ is a continuous random variable,
it follows that each expectation in the sum on the right-hand side of (3.103) is strictly
positive. Since at least one zk is nonzero, one of the summands in (3.103) is strictly
positive. Thus the Hessian of φσ,x is positive definite on U . As we have not imposed any
conditions on U other than it be open and convex, this implies that the Hessian is positive
definite on Rn.

We now show that the Hessian of φσ,x is in fact uniformly positive definite. For k ∈
{1, . . . , n}, the function

hk : Rn → R
a 7→ Ea,x [pk(Mϕk

τ , ak; a)]

is strictly positive (recall that each expectation in the sum on the right-hand side of (3.103)
is strictly positive). Furthermore, hk is continuous, since the pk(·, ·; a) depend smoothly on
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a, and since the law µa,x depends continuously on a. Recall that the minimum of a finite
collection of continuous functions is again a continuous function. Hence, the function

h := min
1≤k≤n

hk

is both continuous and strictly positive. In particular, for an arbitrary closed, convex
subset U ⊆ Rn, the minimum value of h on U equals mx(U), by the definition (3.100). We
now show that the value of mx(U) must be strictly positive. If the minimum value mx(U)
were zero, then there would exist some a′ ∈ U and k ∈ {1, . . . , n} such that

µa
′,x (Mϕk

τ ∈
{
y ∈ R | pk(y, a′k; a) = 0

})
= 1. (3.104)

Since Corollary 3.3.8 guarantees that there is at most one real, nonzero root of pk(·, y; a)
for every y ∈ R, it follows that (3.104) is consistent with the property that Mϕk

τ has mean
zero with respect to µa

′,x if and only if the distribution of Mϕk
τ with respect to µa,x is

concentrated on the trivial root x = 0. This produces a contradiction with the conclusion
(3.91) of Lemma 3.3.6. Therefore, the minimum value mx(U) is strictly positive. By
(3.103) we have, for all a ∈ U ,

σz>∇2φσ,x(a)z ≥
∑
k

z2
kE

x
µ(a) [pk(Mϕk

τ , ak)] ≥
∑
k

z2
km

x(U) = mx(U)|z|2.

Thus the Hessian ∇2φσ,x(a) is uniformly positive definite, by (3.99). By the theory of
convex functions, this implies that φσ,x is strongly convex.

Remark 8. In the proof of Theorem 3.3.9, strong convexity of φσ,x holds under the stated
hypotheses, regardless of the dimension n of the approximating subset A or the dimension
d of the state space of the diffusions Xa. The proof does not require that the number of
basis functions be bounded. However, since the domain D is assumed to be bounded, and
given that increasing n has the effect of reducing the Lebesgue measure of the intersections
Si ∩ D, then the proof of Theorem 3.3.9 indicates that the value of the parameter mx

will decrease to zero as n increases, because the mean occupation times of the controlled
diffusion Xa in each of the supports will decrease, and hence the value of Mϕk

τ for any
k will be increasingly concentrated around the initial value of zero. This observation will
be relevant when we consider the rate of convergence of a gradient flow in Section §4.1.
Note however that if Mϕk

τ is nonconstant (i.e. nonzero), then it is not bounded, so the
distribution of Mϕk

τ is supported on all of R, and hence mx(U) will be strictly positive.
The essential observation is that neither the dimension n of the approximating subset A
nor the dimension d of the state space of the diffusion affect the strong convexity of φσ,x,
provided that conditions (i)-(iv) hold.

In Theorem 3.3.9, we have not imposed the requirement that the basis functions be
locally Lipschitz continuous. Therefore, the drift coefficient of the controlled diffusion
Xa need not be Lipschitz continuous, and therefore the standard theory on existence
and uniqueness of strong solutions to stochastic differential equations cannot guarantee
whether a strong solution exists. Zvonkin [67, Theorem 4, Case 2)] proved the existence and
uniqueness of solutions in the one-dimensional case, provided that the diffusion coefficient
is bounded, α-Hölder continuous for α ≥ 1/2, and uniformly elliptic, and provided that
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the drift is bounded. Veretennikov [62, Theorem 1] generalised Zvonkin’s result to the
d-dimensional case, with the consequence that when the covariance matrix is the identity
matrix, then there exists a unique strong solution to the stochastic differential equation.
Since the covariance matrix in (3.1) is proportional to the identity matrix, and since the
control ca is bounded if the basis functions of the approximating set A are bounded, it
holds that existence and uniqueness of solutions is guaranteed, provided that ∇V is also
bounded.

The boundedness condition on the basis functions is reasonable even if the optimal con-
trol is not bounded, since one often approximates objects in some space by their bounded
counterparts (e.g. Lebesgue integrable functions by simple functions). On the other hand,
there exist conditions which guarantee that the optimal control is bounded; see Theorem
2.1.23 in Section §2.1.2.

In this chapter, we described a method for constructing strongly convex approxima-
tions of the control functional φ̄σ,x defined in (3.4). The approximation is the same as
that described in Hartmann and Schütte’s paper [35]: restrict the control functional to an
approximating subset of feedback controls, spanned by finitely many linearly independ-
ent basis functions, and find the coefficients for the linear combination of basis functions
that yield the best approximation of the optimal control in the approximating subset. In
order to obtain the strong convexity result above, we imposed additional conditions (e.g.
boundedness and non-overlapping support conditions), so that the approximating function
φσ,x, obtained by restricting the control functional φ̄σ,x to the approximating subset A,
is strongly convex. The non-overlapping supports guarantee that certain continuous local
martingales associated to the basis functions are independent. Applying one of the mar-
tingale inequalities presented in Lemma 2.1.6 leads to a lower bound on the eigenvalues of
the Hessian of the function. The lower bound on g provides some control over the lower
bound on the eigenvalues, in the sense that if the work is greater or equal to some value
(which depends on the best constants of the martingale inequality), then the eigenvalues
are bounded away from zero, provided that the continuous local martingales associated
with the basis functions are nonconstant.

The approach we have taken for showing that the approximating function φσ,x is
strongly convex, i.e. the Hessian-based approach, is motivated by the observation that
the control functional depends nonlinearly on the feedback control c via the measure µc,x,
where the nonlinear dependence of µc,x on c is more complicated than a quadratic non-
linearity. The Hessian-based approach allows us to circumvent the difficulty posed by the
nonlinear dependence of µc,x on c, since we can bound the Hessian-induced quadratic form
from below by expectations of quartic polynomials, each of which factors into the product
of two quadratic polynomials. By imposing a lower bound on g (and thus on the path
functional W ), we can ensure that both quadratic polynomials are nonnegative, and thus
ensure that the expectations of the quartic polynomials are strictly positive, provided that
the measures (µc,x ◦ (Mϕi

τ )−1)i are supported on all of R.



Chapter 4

Solution via a gradient flow

In Chapter 3, we analysed the control functional φ̄σ,x of an optimal control problem. The
main result of the chapter, Theorem 3.3.9, was that the control functional is strongly convex
over an approximating subset A spanned by finitely many bounded, Borel-measurable
functions {ϕi}1≤i≤n whose supports Si are subsets of D with strictly positive Lebesgue
measure, such that the closures form a partition of the closure of D, and such that the
non-overlap condition

Si ∩ Sj ⊂ ∂Si ∩ ∂Sj , i 6= j (4.1)

holds. The strong convexity result followed from analysing the function φσ,x that corres-
ponded to the restriction of the functional φ̄σ,x to the approximating subset A.

In this chapter, we apply the results of Chapter 3 in order to characterise the gradient
descent algorithm for solving the optimal control problem suggested by Hartmann and
Schütte. Since the gradient descent algorithm is an iterative method, it may be viewed as
a discrete-time dynamical system. We analyse the algorithm by studying the continuous-
time limit.

4.1 The flow associated to a gradient descent algorithm

4.1.1 Exponential convergence to a unique equilibrium

By (2.68) and Theorem 3.3.9, the function φσ,x : Rn → [F (σ, x),∞) is bounded from below
and strongly convex, respectively. Solving the optimal control problem on the approxim-
ating subset A defined in (3.71) corresponds to solving the convex optimisation problem

min
a
φσ,x(a). (4.2)

Remark 9. Note that an inequality constraint of the form∑
i

a2
i ‖ϕi‖2∞ ≤ C (4.3)

for some C > 0 may be specified for the convex minimisation problem (4.2), although such
an inequality is not strictly necessary, in view of the fact that strong convexity of φσ,x
holds over all of Rn. Strong duality for the resulting convex minimisation problem may
be shown by proving that constraint qualifications, such as Slater’s condition, hold (see,

62
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e.g. [10]). However, since neither the primal problem (4.2)–(4.3) nor its dual are easily
solved by analytical methods in general, we must resort to a numerical method for solving
(4.2).

By Proposition 3.2.1, φσ,x : Rn → [F (σ, x),∞) is continuously differentiable, and there-
fore we may use the constant step-size gradient descent algorithm for solving (4.2). Given
a step size ta > 0, a number Ntraj of trajectories to be sampled at each iteration of gradi-
ent descent, a number Niter of iterations of gradient descent to perform, and a number
n of basis functions (ϕi)1≤i≤n, the constant step-size gradient descent algorithm is given
according to:

for ` = 1 to Niter do
Sample Ntraj trajectories according to the distribution µa

(`−1),x;
Compute the sample means of the estimators Kσ,a(`−1),1Mϕi

τ for 1 ≤ i ≤ n;
Estimate φσ,x(a(`)) by the sample mean of Kσ,a(`),0

Obtain the new gradient descent iterate a(`), by using

a(`) = a(`−1) − ta∇φσ,x(a(`−1)), (4.4)

the sample means of Kσ,a(`−1),1Mϕi
τ , and Lemma 3.3.1;

end
Algorithm 1: Gradient descent algorithm

As we may only estimate the values of the gradient ∇aφσ,x via noise-corrupted meas-
urements, the gradient descent algorithm (4.4) may be implemented as a stochastic approx-
imation algorithm. In the machine learning and stochastic approximation literature, the
parameter ta is also referred to as the ‘learning rate’ or ‘gain’. In many of the early studies
on stochastic approximation algorithms, it was desirable that one work with a decreasing
sequence (t(`)a )` of gains that decreases at each iteration. For example, in Robbins and
Monro’s seminal article [56], the convergence of the Robbins-Monro method for stochastic
approximation of a root of a function was shown to hold, under the condition that the time
discretisation parameter t(n)

a at each iteration was proportional to n−1. The justification
for this particular rate of decrease is that the partial sums of gain steps

sN :=
N∑
`=1

t(`)a

should form a divergent sequence, in order for the iterates (a(`))`∈N to explore the entire
parameter space. On the other hand, the gain should also decrease to zero quickly enough,
in order to account for the fact that, in all stochastic approximation problems, the function
of interest can only be estimated via noise-corrupted measurements; the presence of noise
is mitigated by a decreasing gain sequence. We shall not discuss parameter choices further
in what follows.

The flow associated to the gradient descent algorithm (4.4) is obtained by taking the
continuous-time limit of ta → 0:

da

dt
= −∇aφσ,x(a). (4.5)

Theorem 3.3.9 yields the next
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Theorem 4.1.1. Under the assumptions of Theorem 3.3.9, there exists a unique, asymp-
totically stable equilibrium a∞ that satisfies the equation

0 = −∇aφσ,x(a∞), (4.6)

and for any initial condition a0 in a closed, convex subset U ⊂ Rn, it holds that

|a∞ − at|2 ≤ |a0 − a∞|2 exp(−tmx(U)), (4.7)

for the strong convexity parameter mx(U) defined in (3.100).

Proof. Since the function φσ,x is strictly convex, there exists a unique global minimum a∞
at which the gradient φσ,x vanishes. This proves (4.6). We first show that the equilibrium
a∞ is asymptotically stable using the so-called second method of Lyapunov. Define the
Lyapunov function candidate

h(a) := 1
2 |a|

2. (4.8)

The candidate function is nonnegative, satisfies h(a′) = 0 if and only if a′ = 0, and is
radially unbounded. In order to show that the equilibrium is asymptotically stable, we
shall show that the time derivative of h(at − a∞) is negative definite. We shall adapt
the proof of convergence of solutions to the overdamped Langevin equation in C. Villani’s
book [63, Chapter 2]. By (4.5) and (4.6), it follows that

d

dt
(a∞ − as) = −∇φσ,x(a∞) +∇φσ,x(as) = ∇φσ,x(as).

Thus, by the chain rule,

d

dt
h(as − a∞) = (a∞ − as) · ∇aφσ,x(as). (4.9)

Taylor’s theorem guarantees that there exists some t ∈ [0, 1] such that z = tas + (1− t)a∞
satisfies

φσ,x(a∞) = φσ,x(as) + (a∞ − as) · ∇φσ,x(as) + 1
2(a∞ − as)>∇2φσ,x(z)(a∞ − as). (4.10)

Rearranging (4.10), using the fact that a∞ is the global minimum of φσ,x, and using the
strong convexity (3.99) of φσ,x, we obtain

(a∞ − as) · ∇φσ,x(as) = φσ,x(a∞)− φσ,x(as)−
1
2(a∞ − as)>∇2φσ,x(z)(a∞ − as)

≤ 0− 1
2(a∞ − as)>∇2φσ,x(z)(a∞ − as)

≤ −m
x(U)
2 |a∞ − as|2, (4.11)

for any closed, convex set U ⊂ Rn containing as and a∞. This proves that, for as 6= a∞,

d

dt
h(as − a∞) ≤ −mx(U)h(as − a∞) < 0. (4.12)
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Thus, the time derivative of the Lyapunov function is negative definite, and the unique
equilibrium a∞ is asymptotically stable. Finally, to show (4.7), we integrate (4.12) with
respect to the time variable t in order to obtain

h(at − a∞)− h(a0 − a∞) ≤ −mx(U)
∫ t

0
h(as − a∞)ds.

By Gronwall’s Lemma, the conclusion follows.

Since statements of the form (4.7) define the property of global exponential stability,
we have

Corollary 4.1.2. The unique equilibrium a∞ is globally exponentially stable.

Corollary 4.1.3. For every initial condition a0, the solution a = (at)t≥0 exists for all
t > 0.

Proof. Let a0 be arbitrary, and let v := φσ,x(a0). Since φσ,x is convex, the convex hull
conv(Lv) of the level set Lv of v,

Lv := {a ∈ Rn | φσ,x(a) = v} ,

contains the unique equilibrium a∞. In particular, for any a ∈ conv(Lv), φσ,x(a) ≤ v.
Since φσ,x decreases along every solution of (4.5), it follows that any trajectory initialised
in conv(Lv) does not leave conv(Lv). This implies that solutions of the flow do not blow
up in finite time.

Note that (4.7) emphasises the importance of the strong convexity parameter mx(U)
in determining the rate of convergence to the equilibrium a∞. In Remark 8, we observed
that, as the dimension n of the approximating subset A increases, the value of mx(U)
decreases to zero, although the value of mx(U) is strictly positive whenever the supports
of the basis functions satisfy Assumption 3.3.5 in Section §3.3.2.
Remark 10. The main reason why we have chosen to study the flow arising from the
continuous-time limit of the gradient descent algorithm is that a detailed study of the
gradient descent algorithm would require some analysis of stochastic approximation al-
gorithms, which would be beyond the scope of this thesis. Since the pioneering works
of Robbins and Monro [56] and Kiefer and Wolfowitz [38], the field has grown steadily,
with fundamental contributions regarding convergence and asymptotic distributions by
Blum [7], Chung [12], Dvoretzky [26], and Fabian [28], to name just a few. With regards to
practical implementations, a shortcoming of the theoretical results concerning stochastic
approximation algorithms is the condition that the step sizes, i.e. the ta in (4.4), be pro-
portional to the inverse of the iteration number, since the step sizes often decrease too
rapidly to allow the descent iterates to converge. The innovations due to Spall [59] con-
cerning simultaneous perturbation stochastic approximation, and the method of averaging
iterates due to Ruppert, Polyak, and Juditsky [54, 58], provided some solutions around
this constraint. Stochastic approximation remains an active field, with many results from
stochastic analysis being applied to convergence analysis [60], asymptotic efficiency [52],
and stability [3], as well as results from the theory of dynamical systems [5] being applied
to the case of constant step sizes. One of the more recent application areas of stochastic
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approximation algorithms is machine learning [45], in which one seeks to minimise a ‘loss
function’ associated with learning a probability distribution from observed data. Some re-
views which may ease one’s foray into what is an increasingly technical field of study include
those by Bharath and Borkar [6] and Lai [41], with the section on stochastic approximation
in the review [51] being quite accessible.

4.1.2 The unique equilibrium and optimal projection

In this section, we study the unique equilibrium a∞ defined in Theorem 4.1.1, from the
perspective of partial differential equations. In particular, we investigate whether the
unique equilibrium yields any useful information about the solution to the Hamilton-Jacobi-
Bellman equation (2.85) associated with the optimal control problem. We shall derive
results that are meaningful when the unique equilibrium a∞ is nonzero. In addition to the
assumptions introduced so far, we therefore specify the following assumptions. The first
assumption, Assumption 4.1.4, is intended to exclude badly chosen approximating subsets
A from further consideration.

Assumption 4.1.4. Given the approximating subset A spanned by the basis functions
{ϕi}i, there exists a parametrised control ca ∈ A such that φ̄σ,x(ca) < φ̄σ,x(0).

The next assumption is essential to the characterisation of the unique equilibrium in
terms of an inner product. Recall that D is bounded and that ϕi ∈ L∞(D) for all i, so
that ϕi ∈ L2(D) for all i as well.

Assumption 4.1.5. The function ∇xF (σ, ·) : D → Rd is an element of the Hilbert space
L2(D;Rd).

We have the following

Lemma 4.1.6. Suppose that the random variable W is not µ0,x-almost surely constant,
and suppose that Assumption 4.1.4 holds. Then the unique equilibrium a∞ is nonzero.

Proof. The assumption on W guarantees the existence of an admissible feedback control
function c such that φ̄σ,x(c) < φ̄σ,x(0). In conjunction with Assumption 4.1.4, it follows
that one can always achieve a smaller value of φ̄σ,x by ‘doing something’, i.e. when the
parametrised control is nonzero. By continuity of φσ,x, the unique equilibrium must be
nonzero.

Denote the inner product on L2(D;Rd) by 〈·, ·〉 and the associated norm by ‖·‖. Hence,
the non-overlap condition on the basis functions implies that

〈ϕi, ϕj〉 = δij‖ϕi‖2. (4.13)

For an arbitrary vector a ∈ Rn, recall that the corresponding parametrised control ca ∈ A
is defined by

ca =
∑
i

aiϕi. (4.14)

Given the optimal control
cσopt = −2εσ∇xF (σ, ·), (4.15)
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we define the squared L2 error function of the parametrised control ca with respect to cσopt
by

ε(a) :=
∥∥∥cσopt − ca

∥∥∥2
=
∫
D
|2εσ∇xF (σ, x) + ca(x)|2 dx.

Given (4.13), we may express the L2 error ε as a quadratic polynomial in a:

ε(a) = ‖2εσ∇xF (σ, ·)‖2 + 4εσ
∑
i

ai〈∇xF (σ, ·), ϕi〉+
∑
i

a2
i ‖ϕi‖2.

Define a∗ ∈ Rn by the property that

ε(a∗) = min
a∈Rn

ε(a).

The vector a∗ gives the coordinates of the projection of the optimal control cσopt to the
approximating subset A. By taking derivatives of the squared L2 error, it follows that the
i-th component of a∗ satisfies

a∗i = −2εσ 〈∇xF (σ, ·), ϕi〉
‖ϕi‖2

. (4.16)

In order to determine whether the unique equilibrium a∞ of the flow (4.5) equals the
optimal projection coordinate vector a∗, recall that the value function F (σ, x) of the optimal
control problem

min
c

Ec,x
[
Kσ,c,0

]
(4.17)

subject to

dXc
t = [c−∇V ](Xc

t )dt+
√

2εdBt (4.18)

where τ = τ(Xc) = inf {t > 0 | Xc
t /∈ D} is the random first exit time from D, uniquely

solves the boundary value problem

f(x) + LF (σ, x)− εσ|∇xF (σ, x)|2 =0 x ∈ D (4.19)
F (σ, x) =g(x) x ∈ ∂D, (4.20)

where the second-order partial differential operator

L := ε∆−∇V · ∇

is the infinitesimal generator associated to the stochastic differential equation (4.18) for
c ≡ 0. The optimal control cσopt is defined by (4.15) precisely because (4.19) may be
rewritten as (see (2.85) in Section §2.2.2)

min
c(x)∈Rd

{
f(x) + LF (σ, x) + c(x) · ∇xF (σ, x) + 1

4εσ |c(x)|2
}

= 0 x ∈ D. (4.21)

Given the relation (4.15) between the optimal control and the function F (σ, ·), we define
the projection of the gradient ∇xF (σ, ·) to the approximating subset A by

∇xF σ,a
∗ := −

∑
i

a∗i
2εσϕi. (4.22)
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Observe that this definition ensures that the relation (4.15) holds in the approximating
subset, i.e. that

−2εσ∇xF σ,a
∗ =

∑
i

a∗iϕi = ca
∗
,

and hence may be considered a reasonable definition. Furthermore, we have

Proposition 4.1.7. The unique equilibrium minimises the L2 error, i.e. a∞ = a∗.

Proof. By substituting ∇xF σ,a
∗ for ∇xF (σ, ·) and ca for c in (4.21), and by using (4.14)

and (4.22), we obtain the projection of the Hamilton-Jacobi-Bellman partial differential
equation to the approximating subset A:

min
ca(x)∈Rd

{
f(x) + LF σ,a

∗(x) + ca(x) · ∇xF σ,a
∗(x) + 1

4εσ |c
a(x)|2

}
≥ 0 x ∈ D. (4.23)

Note that the equality in (4.21) has been replaced with an inequality in (4.23), because the
set of vectors over which the minimisation problem is defined in (4.21) is a subset of the
corresponding set in (4.23). For a given x ∈ D, the vector ca(x) is uniquely determined
by the projection coordinate a ∈ Rn, and hence we may rewrite (4.23) in terms of a
minimisation over projection coordinates:

min
a∈Rn

{
f(x) + LF σ,a

∗(x) + ca(x) · ∇xF σ,a
∗(x) + 1

4εσ |c
a(x)|2

}
≥ 0 x ∈ D. (4.24)

Given the correspondence between the statement (4.21) and the optimal control problem
(4.17)–(4.18), it is natural to associate the statement (4.24) to the restricted optimal control
problem, i.e. the optimisation problem (4.17) in which the argument c is constrained to
the approximating subset A. This association implies that the unique equilibrium a∞ of
the flow (4.5) solves the minimisation problem (4.24).

For an arbitrary fixed x ∈ D, f(x) + LF σ,a
∗(x) is constant with respect to a. Hence,

the left-hand side of the inequality in (4.24) reduces to the minimisation problem (compare
with (2.84))

min
a∈Rn

{
ca(x) · ∇xF σ,a

∗(x) + 1
4εσ |c

a(x)|2
}
.

On the other hand, by the non-overlap condition on the basis functions, by the form (4.14)
of the parametrised control, and by the definition (4.22) of the projection of the gradient
∇xF (σ, ·) to the approximating subset, we have

ca(x) ·
(
∇xF σ,a

∗(x) + 1
4εσ c

a(x)
)

=
(∑

i

aiϕi(x)
)
·

∑
j

aj − 2a∗j
4εσ ϕj(x)


= 1

4εσ
∑
i

ai(ai − 2a∗i )|ϕi(x)|2, (4.25)

where we have used that ϕi(x)·ϕj(x) = δij |ϕi(x)|2 except on sets of Lebesgue measure zero,
by the non-overlap condition. The right-hand side of (4.25) is quadratic in the variables
(ai)1≤i≤n, and attains its minimum when ai = a∗i for all i, thus proving the claim.
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Proposition 4.1.7 establishes a useful correspondence between the solution of the pro-
jected optimal control problem and the solution of the projected Hamilton-Jacobi-Bellman
partial differential equation. In particular, if one can iteratively refine the approximating
subset so that the error ‖cσopt− ca

∗‖ goes to zero in the limit, then solving the optimal con-
trol problem corresponds to solving a partial differential equation in the weak sense. Given
the non-overlap and the square integrability conditions on the basis functions, the scheme
thus described is suggestive of the finite element method. Since neither the dimension d
of the state space nor the dimension n of the approximating subset played a role in the
existence of the unique equilibrium a∞ or in the strict convexity of the restricted control
functional φ̄σ,x|A, the preceding results indicate that the scheme thus described may be
applied to solving boundary value problems defined over high-dimensional state spaces.
Note that if the basis functions can be expressed as spatial gradients, i.e. if ϕi = ∇xbi for
functions bi : D → R of sufficient regularity, then the function F (σ, ·) can be approximated
without resorting to quadrature, by directly exploiting the relation (4.22) to obtain

F σ,a
∗ = −

∑
i

a∗i
2εσ bi.

For high-dimensional state spaces, a key constraint will be how efficiently expected values
can be computed. As is the case for many Monte Carlo methods, the efficiency with which
expected values can be computed depends on the variance of the associated estimators.
We shall take up the issue of variance reduction in Section §4.2.

4.2 Variance reduction

Recall that, since a∞ is the global minimum of φσ,x, it holds that ∇φσ,x(a∞) = 0, and
hence

∀z ∈ Rn, z · ∇aφσ,x(a∞) = cova∞,x(Kσ,a∞,1,M z
τ ) = 0, (4.26)

where cova∞,x denotes the covariance with respect to the measure µa∞,x, and similarly
vara∞,x denotes the variance with respect to µa∞,x. Setting z = a∞ in the above equation
and rearranging yields

cova∞,x(Kσ,a∞,0,Ma∞
τ ) = −σ−1vara∞,x(Ma∞

τ ). (4.27)

Lemma 4.2.1. At the unique equilibrium a∞, the following holds:

vara∞,x(Kσ,a∞,0) = vara∞,x(Kσ,a∞,1) + vara∞,x(σ−1Ma∞
τ ). (4.28)

Proof. Substituting (4.26) into

varz,x(Kσ,z,0) = varz,x(Kσ,z,1)− 2covz,x(Kσ,z,1, σ−1M z
τ ) + varz,x(σ−1M z

τ ) (4.29)

yields the desired conclusion.

The conclusion (4.28) of Lemma 4.2.1 implies that, at the unique equilibrium a∞, the
variance of the estimator Kσ,a∞,0 that does not include the martingale is strictly larger
than the variance of the estimator Kσ,a∞,1 that does include the martingale, with the
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difference in the variance being proportional to the variance of the martingale at time τ .
This motivates the question of whether the variance of Kσ,as,1 is always smaller than the
variance of Kσ,as,0, where as ∈ Rn is any point along a solution (as)s≥0 of the differential
equation (4.5).

Variance reduction for solutions initialised at the origin Define the variance gap
function γ : Rn → R by

γ(as) := varas,x(Kσ,as,0)− varas,x(Kσ,as,1).

Lemma 4.2.2. Given the hypotheses of Lemma 4.2.1 and Lemma 4.1.6, the variance gap
is strictly positive at the unique equilibrium a∞.

Proof. The assertion follows from the conclusions of Lemma 4.2.1 and Lemma 4.1.6. Since
a∞ is nonzero, and since Assumption 3.3.5 guarantees that Mϕi

τ assumes nonzero values
with strictly positive µa∞,x-probability, the term consisting of the variance of the martingale
on the right-hand side of (4.28) is strictly positive.

We now consider criteria for which the variance gap is positive along a solution to the
flow. For an arbitrary as ∈ Rn, it holds that

d

dt

|as|2

2 = as ·
das
dt

= as · (−∇φσ,x(as)) = −
∑
i

(as)iEas,x[Kσ,as,1Mϕi
τ ].

Thus
d

dt

|as|2

2 = −covas,x(Kσ,as,1,Mas
τ ). (4.30)

It follows from (4.29) and (4.30) that we can rewrite the variance gap at some point as
along a solution by

γ(as) = 2
σ

d

dt

|as|2

2 + varas,x(σ−1Mas
τ ). (4.31)

The equation (4.31) proves the next

Proposition 4.2.3. The norm |as| of a solution a = (as)s≥0 is increasing at time s ≥ 0
if and only if the variance gap γ is larger than the variance of σ−1Mas

τ , i.e.

0 < d

dt
|as|2 ⇐⇒ 0 < γ(as)− varas,x(σ−1Mas

τ ).

Since the unique equilibrium a∞ is not known a priori, the most straightforward way
to apply Proposition 4.2.3 in order to obtain variance reduction along a solution (as)s is
to specify an initial condition near or at the origin, since Lemma 4.1.6 guarantees that
the solution will move away from the origin. However, this implies that the controlled
trajectories will not differ very much from the uncontrolled trajectories, at least for the
initial iterations of the gradient descent algorithm. Since sampling uncontrolled trajectories
is computationally inefficient, it is of interest to find another approach to variance reduction
that applies for all trajectories, not just those initialised near the origin. We consider such
an approach next.
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Martingale-based control variate Recall that, for the unconstrained control func-
tional φ̄σ,x, the optimal control cσopt has the property that the martingale-based estimator
Kσ,cσopt,1 is µc

σ
opt,x-almost surely equal to the value of F (σ, ·) at x,

µc
σ
opt,x(Kσ,cσopt,1 = F (σ, x)) = 1. (4.32)

It follows that (see Corollary 2.2.9)

varc
σ
opt,x(Kσ,cσopt,1) = 0.

Hence, we may calculate the variance of the non-martingale based estimator Kσ,cσopt,0:

varc
σ
opt,x(Kσ,cσopt,0)

= varc
σ
opt,x(Kσ,cσopt,1 − σ−1M

cσopt
τ )

= varc
σ
opt,x(Kσ,cσopt,1)− 2covc

σ
opt,x(Kσ,cσopt,1, σ−1M

cσopt
τ ) + varc

σ
opt,x(σ−1M

cσopt
τ )

= varc
σ
opt,x(σ−1M

cσopt
τ ),

where the final equality above follows from (4.32). Thus, even at the optimal control, the
variance of the non-martingale based estimator Kσ,cσopt,0 with respect to µc

σ
opt,x is strictly

positive. These observations suggest that, at the optimal control cσopt, the corresponding
martingale is a suitable control variate. To fix ideas, we cover the essential ideas behind
control variates in the the following paragraph.

Control variates Given a random variable for which one wishes to estimate the mean,
a control variate is another random variable whose mean is known and that has nonzero
correlation with the desired random variable. The nonzero correlation allows one to reduce
the variance in the estimate of the sum of the desired random variable with the control
variate. Since one knows the mean of the control variate, this allows one to improve the
estimate of the mean of the desired random variables. More precisely, given an E-valued
random variable X on a probability space, and given a Borel-measurable function f : E →
R, a control variate is a random variable g(X) where g : E → R is Borel measurable, such
that the mean E[g(X)] is known. If g(X) and f(X) have nonzero covariance, then by
defining the function

hβ(X) = f(X)− β (g(X)− E[g(X)]) , (4.33)

it follows that E[hβ(X)] = E[f(X)] for all values of β, and

var(hβ(X)) = var(f(X)) + β2var(g(X)) + 2cov(f(X),−β(g(X)− E[g(X)]))
= var(f(X)) + β2var(g(X))− 2cov(f(X), βg(X)),

which describes a quadratic polynomial in β. The optimal value of β at which var(hβ(X))
is minimised is

β∗ = cov(f(X), g(X))
var(g(X)) , (4.34)

and the corresponding optimal value of the variance of hβ(X) is

var(hβ∗(X)) = var(f(X))
(
1− (corr(f(X), g(X)))2

)
, (4.35)
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where the correlation coefficient is defined by

corr(f(X), g(X)) = cov(f(X), g(X))
(var(f(X))var(g(X)))1/2 .

In particular, when the correlation coefficient of f(X) and g(X) equals ±1, then the
variance of hβ∗(X) equals zero.

Optimal scaling of martingale control variate Now we apply the ideas of control
variates to the optimal control problem. We wish to estimate the expected value of Kσ,c,0

with respect to µc,x. Since Ec,x[M c
τ ] = 0 for any admissible feedback control function c, it

holds that M c
τ is a valid control variate. We now find the optimal value of β (4.34) for the

optimal control cσopt. Letting E = Ω, f := Kσ,cσopt,0, and g = M
cσopt
τ , the analogue of (4.33)

becomes
hβ(ω) = Kσ,cσopt,0(ω)− βM cσopt

τ (ω).

We observed in Theorem 2.2.8 that the control c is optimal if and only if Kσ,c,1 is µc,x-
almost surely constant and equal to F (σ, x). The latter statement implies, by the definition
of Kσ,c,α, that

−σ−1M
cσopt
τ (ω) = Kσ,cσopt,0(ω)− F (σ, x)

µc
σ
opt,x-almost surely, and hence

covc
σ
opt,x(Kσ,cσopt,0,M

cσopt
τ ) = −σ−1varc

σ
opt,x(M cσopt

τ ).

Using the above relation in (4.34) yields the optimal value

β∗ = −σ−1.

The variance of hβ∗(Xcσopt) equals zero, which is consistent with the conclusions of Theorem
2.2.8.

Now suppose we consider the same questions as above, but for the restricted control
functional φ̄σ,x|A. In the preceding discussion, the control was optimal. Since in most
practical cases the approximating subset A will not include the optimal control cσopt, we
cannot assume that the optimal value of β equals σ−1. Indeed, the preceding discussion
made use of a specific property of the optimal control. Hence, for an arbitrary parametrised
control cz ∈ A, it must be that the optimal value of β depends on z ∈ Rn. For 0 6= z ∈ Rn
and β ∈ R, define

hz,β(ω) := Kσ,z,0(ω)− βM z
τ (ω). (4.36)

Note that hz,0 = Kσ,z,0, hz,−σ−1 = Kσ,z,1.

Proposition 4.2.4. The optimal value β∗(z) at which the variance of hz,β with respect to
µz,x attains its minimum is defined by the map

β∗ : Rn \ {0} → R

z 7→ covz,x(Kσ,z,0,M z
τ )

varz,x(M z
τ ) . (4.37)
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and the corresponding variance of hz,β∗(z) equals

varz,x(hz,β∗(z)) = varz,x(Kσ,z,0)
(

1− (covz,x(Kσ,z,0,M z
τ ))2

varz,x(Kσ,z,0)varz,x(M z
τ )

)
.

Proof. The proposition follows from (4.34) and (4.35).

The bound |β∗(z)| ≤
(
varz,x(Kσ,z,0)/varz,x(M z

τ )
)1/2 holds, by the Cauchy-Schwarz in-

equality. By Proposition 4.2.4, we have the following algorithm for state-dependent vari-
ance reduction in the estimate of the function φσ,x(a(`)) at each iterate a(`):

for ` = 1 to Niter do
Sample Ntraj trajectories according to the distribution µa

(`−1),x;
Compute the sample means of (Kσ,a(`−1),0M

ϕj
τ )1≤i≤n and (Mϕi

τ M
ϕj
τ )1≤i,j≤n;

If a(`−1) 6= 0, estimate φσ,x(a(`−1)) by the sample mean of ha(`−1),β∗(a(`−1)), using
(4.36) and (4.37). Otherwise, estimate φσ,x(0) by the sample mean of Kσ,0,0;
Obtain the new gradient descent iterate a(`), by using (4.4), the sample means of
Kσ,a(`−1),1Mϕi

τ , and Lemma 3.3.1;
end

Algorithm 2: Gradient descent algorithm with martingale-based variance reduction
The next results concern relationships between the growth of |as| and covariances of

random variables with the martingale Mas
τ . Note that, by (4.30), we have

d

dt

|as|2

2 = −
(
β∗(as) + σ−1

)
varas,x(Mas

τ ). (4.38)

Lemma 4.2.5. The norm of the solution at time s ≥ 0 is increasing if and only if β∗(as)+
σ−1 is negative and as 6= 0:

0 ≤ d

dt

|as|2

2 ⇐⇒ β∗(as) + σ−1 ≤ 0.

Proof. Since as 6= 0, the variance of Mas
τ is strictly positive, and hence the statement

follows directly from (4.38).

Corollary 4.2.6. If a∞ 6= 0, then β∗(a∞) = −σ−1.

Corollary shows that there exists a point in Rn \ {0} at which the optimal scaling
function β∗ equals −σ−1. Lemma 4.2.5 states that the states as at which |as|2 is stationary
are precisely those states for which the optimal scaling function equals −σ−1. The next
result characterises the set of states as for which the rate of change of |as|2 is stationary:

Proposition 4.2.7. Let a = (as)s≥0 be an arbitrary solution of the flow (4.5). For an
arbitrary time s ≥ 0, if

0 = d2

dt2
|as|2

2 = − d

dt
covas,x(Kσ,as,1,Mas

τ ) (4.39)

holds, then either

(i) the state as is the unique equilibrium, in which case d
dt |as|

2 = 0, or
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(ii) the norm of the solution is strictly increasing at time s, i.e. d
dt |as|

2 > 0.
Proof. Taking the time derivative in (4.30) and applying the chain rule yields

d2

dt2
|as|2

2 = d

dt
(as · ∇φσ,x(as))

= das
dt
· ∇φσ,x(as) + as · ∇2φσ,x(as)(−∇φσ,x(as))

= −∇aφσ,x(as) ·
(
∇φσ,x(as) +∇2φσ,x(as)as

)
.

Therefore, by uniqueness of the gradient, (4.39) holds if and only if either ∇φσ,x(as) = 0
or ∇φσ,x(as) + ∇2φσ,x(as)as = 0. Note that it is not possible for both ∇φσ,x(as) and
∇φσ,x(as) + ∇2φσ,x(as)as to equal zero, since the strict convexity of φσ,x implies that
∇φσ,x(as) = 0 if and only if as = a∞, and since the invertibility of ∇2φσ,x(as) implies that
∇2φσ,x(as)as = 0 if and only if as = 0. Thus we have proven conclusion (i). The condition
∇φσ,x(as) +∇2φσ,x(as)as = 0 holds if and only if

−∇φσ,x(as) = ∇2φσ,x(as)as. (4.40)

Taking the inner product of both sides of (4.40) with as yields

as · (−∇φσ,x(as)) = as∇2φσ,x(as)as ≥ m|as|2 > 0.

Since
d

dt

|as|2

2 = −as · ∇φσ,x(as),

conclusion (ii) follows.

In order to understand the significance of Proposition 4.2.7, recall that we observed
earlier that we could obtain variance reduction along solutions, provided that the corres-
ponding initial conditions had sufficiently small norm. Proposition 4.2.7 suggests that the
restriction to solutions with growing norm was due to the fact that the prefactor σ−1 of the
random variable Mas

τ in the estimator Kσ,as,1 was held constant at a value that is optimal
for the unique equilibrium a∞, but suboptimal for other states as along the trajctory. By
letting the prefactor vary as a function of the current state of the trajectory, i.e. by setting
β(as) = β∗(as), where the function β∗ is defined in Proposition 4.2.4, we obtain variance
reduction along any trajectory, not just those with increasing norm.

In this chapter, we studied the continuous-time limit of the gradient descent algorithm,
and used the strong convexity result (Theorem 3.3.9) of Chapter 3 to show that the
continuous-time limit of the gradient descent algorithm converges at an exponential rate
to the global minimum of the approximating function φσ,x. We exploited the vector space
structure of the approximating subset A and the linearity of the inner product to show
that, if both the optimal control and the basis functions of the approximating subset are
subsets of the Hilbert space L2(D), then the non-overlap condition establishes a corres-
pondence between the global minimum and the coordinates of the best approximation of
the optimal control in the approximating subset. If each basis function ϕi is the (weak)
gradient of a scalar field, then by linearity of the derivative, the coordinates of the best
approximation are related to the coordinates of the value function or free energy function
F (σ, ·). We then characterised the variance reduction for estimates of the approximating
function that one could attain by state-dependent scaling of a martingale control variate.
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Conclusion

Metastable diffusions constitute an important class of models of statistical-mechanical
phenomena involving complex systems, e.g. conformational changes of large molecules
in the noisy environment inside a cell. Metastability makes the statistical description of
these complex systems challenging: as one must wait on average a long time in order to
sample the rare events that are of interest, standard simulations of complex systems will be
inefficient. Furthermore, if one wishes to estimate an exponential average that is dominated
by values that occur rarely, then the standard Monte Carlo method will converge slowly.
These observations motivate the need for importance sampling.

The main purpose of this thesis is the theoretical study of a gradient descent algorithm
for importance sampling, proposed by Hartmann and Schütte in 2012. The idea is to first
convert the importance sampling problem into a stochastic optimal control problem, in
which the solution of the optimal control problem corresponds to the optimal importance
sampling measure. Then, by restricting the infinite-dimensional stochastic optimal control
problem to an approximating subset spanned by finitely many basis functions, one obtains
a finite-dimensional optimisation problem. Given an initial condition, the gradient descent
algorithm terminates at the nearest local minimum of the objective function. Two import-
ant issues that remained open concerning the gradient descent algorithm were the number
of local minima of the objective function, i.e. the number of local minima of the restriction
of the control functional to the approximating subset, and the convergence of the gradient
descent iterates to the nearest local minimum.

The main result of this thesis is the identification of sufficient conditions for which the
objective function is strongly convex. Strong convexity is important because it guarantees
exponential convergence of the gradient descent iterates to a unique global minimum of
the objective function, thus answering the two open issues mentioned earlier. An import-
ant theoretical result that follows from uniqueness is that the global minimum provides
the best approximation of the solution to the Hamilton-Jacobi-Bellman equation of the
optimal control problem, given the approximating subset. The third result, which is im-
portant in the context of importance sampling, is the proof that a certain martingale term,
arising from Girsanov’s theorem for change of measure, is a suitable control variate. The
relevance of this observation to the gradient descent algorithm is that one can identify
the optimal scaling for achieving the maximum variance reduction attainable with the
martingale control variate.

The strong convexity result was proven using three main ideas. The first idea is to use
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Girsanov’s theorem in order to obtain expressions for the mixed second partial derivatives
of the objective function. The second idea is to construct a collection of pairwise inde-
pendent continuous local martingales, where independence follows from the non-overlap
condition on the supports of the basis functions. The third idea is to bound the spectrum
of the Hessian of the objective function away from zero, using Itô’s formula, pairwise in-
dependence, expressions for the mixed second partial derivatives in terms of fourth-order
polynomials of the values of the martingales, and a specific uniform lower bound on the
path functional of interest. Results from convex analysis then guarantee that the objective
function is strongly convex.

In the proof of strong convexity, we assumed that the basis functions did not change
over the iterations of gradient descent. One way to further develop the results above
would be to determine a method for iteratively updating the basis functions, in order to
improve the approximation quality of the approximating subset. Consider the simple case
in which the basis functions are the product of a unit vector with the indicator function
of the support, and that after each iteration, we only update the vector. The problem
of finding the best basis functions then becomes the problem of finding the best vectors
on the unit sphere in Rd. Intuitively, each best unit vector is proportional to the spatial
average over the corresponding support of the optimal control vector field. However, it is
not immediately clear how one may efficiently update the basis functions.

Aside from the non-overlap condition, one of the strongest assumptions that we have
made in obtaining the result of strong convexity is the almost-sure boundedness of the first
passage time of the uncontrolled diffusion. We made this assumption in order to ensure
that the value at the first passage time of the Radon-Nikodym derivative of two measures
on the space of continuous paths in Rd is a square integrable random variable. Square
integrability of the Radon-Nikodym derivative was key to proving the existence of the first-
and second-order variations in the direction of bounded perturbing functions. It would
be of interest to remove the almost-sure boundedness assumption, because results from
stochastic analysis only guarantee L1-boundedness for first passage times for the diffusions
we have considered here. Given that well-known conditions from stochastic analysis such
as Novikov’s and Kazamaki’s condition only guarantee that the Radon-Nikodym derivative
is uniformly integrable, it appears that establishing the square integrability of the Radon-
Nikodym derivative at an integrable stopping time might be nontrivial.

The correspondence between the best approximation of the value function of the op-
timal control problem and the unique global minimum of the restricted control functional
was proven using the assumption that both the optimal control and the basis functions
belonged to the Hilbert space L2(D), and relies on the fact that the approximating subset
is in fact a vector space. By considering only those feedback controls which were linear
combinations of the basis functions, we could exploit the linearity of the inner product to
obtain a quadratic form for which the minimiser could be solved using the calculus.

One appealing feature of the proof is that the dimension of the state space of the
controlled diffusion plays no role in establishing the correspondence. Thus, in the context
of numerical methods for partial differential equations, one can in principle apply the
gradient descent algorithm to solve elliptic boundary value problems defined over high-
dimensional spaces. This feature of robustness with respect to dimension is characteristic
of Monte Carlo methods. The proof also shows that uniqueness of the global minimum and
its relation to best approximation hold, even in the limit of infinitely many basis functions.
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An attractive problem suggested by the proof of the second result concerns the unique-
ness of the global minimiser when one removes the non-overlap condition on the supports
of the basis functions. This problem is motivated by the fact that, since the basis functions
have non-overlapping supports and since the domain is bounded, an increase in the num-
ber of basis functions leads to a decrease in the convergence rate of the gradient descent
iterates to the unique global minimum. Note, however, that the objective function remains
strictly convex in the limit of infinitely many basis functions.

The third main result of this thesis concerned a method for variance reduction by
state-dependent scaling of a martingale control variate. This result was motivated by
the observation that scaling the martingale control variate by the parameter σ−1 did not
always result in variance reduction in the estimate of the objective function. That the
martingale is a suitable control variate at all is due to the fact that the objective function
contains the expectation of the quadratic variation of the martingale. This fact follows from
the approach we have adopted of using the Cameron-Martin-Girsanov change of measure
theorem in order to parametrise the set of importance sampling measures for estimating
an exponential average. Given that the partial derivatives of the objective function are
expressed as expectations involving martingales, the same or similar control variates could
potentially be used to perform variance reduction in the estimates of the partial derivatives.

To close, we consider two directions for future work, more general than the ones sug-
gested so far. In this thesis, we considered the relevance of the optimal control formulation
to statistical properties of diffusions that are important in computational biophysics, such
as first mean passage times and committor probabilities. We observed that one of the most
important statistical properties, namely the free energy difference between two metastable
sets on the free energy landscape, cannot be estimated by the stochastic optimal control
approach described here. This is because the running cost function that corresponds to
the free energy difference does not satisfy the nonnegativity condition required for exist-
ence and uniqueness results for linear elliptic boundary value problems, and because the
Feynman-Kac representation is used. On the other hand, the Bellman equation allows
for real-valued running cost functions. One could improve the applicability of the the
stochastic optimal control approach in the field of computational biophysics by exploring
the consequences of allowing for negative running cost functions.

The final direction for future work that we consider concerns the convex analysis of the
unrestricted control functional. If one could show that the unrestricted control functional
were convex, then this convexity would be inherited by any discretisation of the control
functional. The difficulty in obtaining such a result derives from the nonlinear dependence
of the distribution µc,x of the paths of the controlled diffusion. This difficulty is what ne-
cessitated our use of the Hessian in proving strong convexity: since the first-order partial
derivatives contain expectations with respect to µc,x of cubic polynomials of the stopped
martingales, and since cubic polynomials are not bounded from below, proving the convex-
ity of a C1 objective function would require fine control on the measure µc,x. On the other
hand, the second-order partial derivatives involve fourth-order polynomials that factorise
into two quadratic polynomials; one can bound the work functional so that both quadratic
polynomials are nonnegative. This removes the difficulty posed by the measure µc,x.



Chapter 6

Zusammenfassung

Die Berechnung statistischer Eigenschaften von hochdimensionalen Diffusionsprozessen,
zum Beispiel Differenzen der freien Energie zwischen den Konformationen von komplexen
Molekülen, kann numerisch sehr aufwändig sein, insbesondere dann, wenn die zu unter-
suchenden Ereignisse statistisch selten auftreten. Monte-Carlo-Verfahren sind hier prin-
zipiell geeignet, weil ihre numerische Komplexität nicht (bzw. nur schwach) von der Di-
mension abhängt, allerdings ist die Konvergenz gewöhnlicher Monte-Carlo-Schätzungen im
Falle seltener Ereignisse oft sehr langsam, was die Verfahren ineefizient macht. Importance
Sampling ist eine Varianzreduktionsmethode, um Monte-Carlo-Abschätzungen für seltene
Ereignisse praktikabel zu machen. Die Idee dabei ist es, Stichproben nach einer veränderten
Wahrscheinlichkeitsverteilung zu erzeugen, unter der die seltene Werten nicht mehr selten
sind, und den Schätzer der statistischen Eigenschaften mit dem Likelihood-Quotienten
zwischen der ursprünglichen und der veränderten Verteilung entsprechend umzugewichten
(gemäß dem Satz von Radon-Nikodym). Hartmann und Schütte haben 2012 gezeigt, dass
die Identifikation der optimalen Importance-Sampling-Verteilung auf ein Problem der op-
timalen Steuerung führt [35]. Eine mögliche Strategie, um das Optimalsteuerungsproblem
in hohen Dimensionen zu lösen, ist die Diskretisierung der Steuerung in einem endlich-
dimensionalen Vektorraum, wodurch sich ein endlichdimensionales Optimierungsproblem
ergibt, das z.B. durch das Verfahren des steilsten Abstiegs gelöst werden kann.

Der Schwerpunkt dieser Dissertation ist die Identifizierung von hinreichenden Bedin-
gungen für die gleichmäßige Konvexität des endlichdimensionalen Optimimierungsprob-
lems. Aus der gleichmäßigen Konvexität werden dann die Existenz- und Eindeutigkeit
von Lösungen des endlichdimensionalen Problems gefolgert und die exponentielle Konver-
genz des Abstiegsverfahrens beweisen. Um den Kreis in Bezug auf das zugrundeliegende
Optimalsteuerungsproblems zu schließen, wird gezeigt, dass die eindeutige Lösung des Op-
timierungsproblems eine Bestapproximation der optimalen Steuerung ist, die sich aus der
Lösung der Hamilton-Jacobi-Bellman-Gleichung für die zugehörige Wertefunktion ergibt.
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