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Abstract

Drug development is a long, expensive, and iterative process with a high failure rate, while
patients wait impatiently for treatment. Kinases are one of the main drug targets studied
for the last decades to combat cancer, the second leading cause of death worldwide. These
efforts resulted in a plethora of structural, chemical, and pharmacological kinase data, which are
collected in the KLIFS database. In this thesis, we apply ideas from structural cheminformatics
to the rich KLIFS dataset, aiming to provide computational tools that speed up the complex
drug discovery process. We focus on methods for target prediction and fragment-based drug
design that study characteristics of kinase binding sites (also called pockets).

First, we introduce the concept of computational target prediction, which is vital in the
early stages of drug discovery. This approach identifies biological entities such as proteins that
may (i) modulate a disease of interest (targets or on-targets) or (ii) cause unwanted side effects
due to their similarity to on-targets (off-targets). We focus on the research field of binding site
comparison, which lacked a freely available and efficient tool to determine similarities between
the highly conserved kinase pockets. We fill this gap with the novel method KiSSim, which
encodes and compares spatial and physicochemical pocket properties for all kinases (kinome)
that are structurally resolved. We study kinase similarities in the form of kinome-wide phylo-
genetic trees and detect expected and unexpected off-targets. To allow multiple perspectives
on kinase similarity, we propose an automated and production-ready pipeline; user-defined ki-
nases can be inspected complementarily based on their pocket sequence and structure (KiSSim),
pocket-ligand interactions, and ligand profiles.

Second, we introduce the concept of fragment-based drug design, which is useful to iden-
tify and optimize active and promising molecules (hits and leads). This approach identifies
low-molecular-weight molecules (fragments) that bind weakly to a target and are then grown
into larger high-affinity drug-like molecules. With the novel method KinFragLib, we provide
a fragment dataset for kinases (fragment library) by viewing kinase inhibitors as combinations
of fragments. Kinases have a highly conserved pocket with well-defined regions (subpockets);
based on the subpockets that they occupy, we fragment kinase inhibitors in experimentally re-
solved protein-ligand complexes. The resulting dataset is used to generate novel kinase-focused
molecules that are recombinations of the previously fragmented kinase inhibitors while consid-
ering their subpockets. The KinFragLib and KiSSim methods are published as freely available
Python tools.

Third, we advocate for open and reproducible research that applies FAIR principles —
data and software shall be findable, accessible, interoperable, and reusable— and software best
practices. In this context, we present the TeachOpenCADD platform that contains pipelines for
computer-aided drug design. We use open source software and data to demonstrate ligand-based
applications from cheminformatics and structure-based applications from structural bioinfor-
matics. To emphasize the importance of FAIR data, we dedicate several topics to accessing life
science databases such as ChEMBL, PubChem, PDB, and KLIFS. These pipelines are not only
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2 ABSTRACT

useful to novices in the field to gain domain-specific skills but can also serve as a starting point
to study research questions. Furthermore, we show an example of how to build a stand-alone
tool that formalizes reoccurring project-overarching tasks: OpenCADD-KLIFS offers a clean
and user-friendly Python API to interact with the KLIFS database and fetch different kinase
data types. This tool has been used in this thesis and beyond to support kinase-focused projects.

We believe that the FAIR-based methods, tools, and pipelines presented in this thesis (i) are
valuable additions to the toolbox for kinase research, (ii) provide relevant material for scientists
who seek to learn, teach, or answer questions in the realm of computer-aided drug design, and
(iii) contribute to making drug discovery more efficient, reproducible, and reusable.



Zusammenfassung

Die Entwicklung von Arzneimitteln ist ein langwieriger, teurer und iterativer Prozess mit
einer hohen Misserfolgsquote, während Patienten auf eine Behandlung warten. Kinasen sind
eines der wichtigsten Angriffsziele für Arzneimittel (Targets), die in den letzten Jahrzehnten
untersucht wurden zur Bekämpfung von Krebs, der zweithäufigsten Todesursache weltweit.
Diese Bemühungen haben zu einer Fülle von strukturellen, chemischen und pharmakologis-
chen Kinase-Daten geführt, die in der KLIFS-Datenbank zusammengetragen sind. In dieser
Arbeit wenden wir Ideen aus der Strukturellen Chemieinformatik auf den reichhaltigen KLIFS-
Datensatz an, mit dem Ziel, computergestützte Werkzeuge anzubieten, die den komplexen
Prozess der Wirkstoffentdeckung beschleunigen können. Unser Fokus liegt dabei auf Meth-
oden für Target-Vorhersagen und fragmentbasiertem Wirkstoffdesign, die Eigenschaften von
Kinase-Bindetaschen erforschen.

Zunächst stellen wir das Konzept der computergestützten Target-Vorhersage vor, welche in
den frühen Phasen der Wirkstoffentdeckung unerlässlich ist. Dieser Ansatz identifiziert biologis-
che Entitäten wie z. B. Proteine, die (i) die Zielkrankheit modulieren (Targets oder On-Targets)
oder (ii) die unerwünschte Nebenwirkungen verursachen aufgrund ihrer On-Target-Ähnlichkeit
(Off-Targets). Wir konzentrieren uns auf den Forschungsbereich der Bindetaschenvergleiche,
dem ein frei verfügbares und effizientes Werkzeug fehlte, um die Ähnlichkeit zwischen den
hochkonservierten Kinase-Bindetaschen festzustellen. Wir schließen diese Lücke mit der neuen
Methode KiSSim, die räumliche und physikochemische Eigenschaften der Bindetaschen aller
Kinasen (Kinome), die strukturell aufgelöst sind, kodiert und vergleicht. Wir untersuchen
Kinase-Ähnlichkeiten in Form von kinomweiten phylogenetischen Bäumen und erkennen zu
erwartende und unerwartete Off-Targets. Um Kinase-Ähnlichkeiten aus verschiedenen Blick-
winkeln zu betrachten, schlagen wir eine automatisierte und produktionsreife Pipeline vor;
benutzerdefinierte Kinasen können komplementär untersucht werden auf der Grundlage ihrer
Bindetaschen-Sequenzen und -Strukturen (KiSSim), ihrer Interaktionen zwischen Bindetasche
und Ligand sowie ihrer Ligandenprofile.

Zweitens stellen wir das Konzept des fragmentbasierten Wirkstoffdesigns vor, welches nüt-
zlich ist, um aktive und vielversprechende Moleküle (Hits und Leads) zu identifizieren und
optimieren. Dieser Ansatz identifiziert Moleküle mit niedrigem Molekulargewicht (Fragmente),
die schwach an ein Target binden und dann erweitert werden zu größeren und stärker binden-
den Molekülen. Mit der neuen Methode KinFragLib stellen wir einen Fragment-Datensatz
für Kinasen (Fragment Library) zur Verfügung, indem wir Kinase-Inhibitoren als Kombina-
tionen von Fragmenten betrachten. Kinasen haben eine hochkonservierte Bindetasche mit gut
definierten Regionen (Subpockets); basierend auf den Subpockets, die sie besetzen, fragmen-
tieren wir Kinase-Inhibitoren in experimentell aufgelösten Kinase-Liganden Komplexen. Der
sich daraus ergebende Datensatz wird genutzt, um neue Kinase-fokussierte Moleküle zu erstellen,
die aus den zuvor fragmentierten Kinase-Inhibitoren rekombiniert werden unter Berücksichti-
gung ihrer Subpockets. Die KiSSim und KinFragLib Methoden sind als frei verfügbare Python
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4 ZUSAMMENFASSUNG

Tools veröffentlicht.
Drittens setzen wir uns für offene und reproduzierbare Forschung ein, die FAIR-Prinzipien

—Daten und Software sollen auffindbar (findable), zugänglich (accessible), interoperativ (inter-
operable) und wiederverwendbar (reusable) sein— und Best Practices in der Softwareentwick-
lung anwendet. In diesem Kontext stellen wir die TeachOpenCADD-Plattform vor, die Pipelines
für computergestütztes Wirkstoffdesign enthält. Wir verwenden frei zugängliche Software und
Datensätze, um ligandenbasierte Anwendungen aus der Chemieinformatik und strukturbasierte
Anwendungen aus der strukturellen Bioinformatik zu demonstrieren. Um die Bedeutung von
FAIR-Daten zu betonen, widmen wir mehrere Themen dem Zugang zu biowissenschaftlichen
Datenbanken wie ChEMBL, PubChem, PDB und KLIFS. Diese Pipelines sind nicht nur nützlich
für AnfängerInnen auf dem Gebiet, um domänenspezifische Kenntnisse zu erwerben, sondern
können auch als Ausgangspunkt dienen, um Forschungsfragen zu untersuchen. Darüber hinaus
zeigen wir ein Beispiel für die Entwicklung eines eigenständigen Tools, das wiederkehrende pro-
jektübergreifende Aufgaben formalisiert: OpenCADD-KLIFS bietet eine klare und benutzerfre-
undliche Python-API, um mit der KLIFS-Datenbank zu interagieren und verschiedene Kinase-
Datentypen abzurufen. Dieses Tool wurde in dieser Arbeit und über diese Arbeit hinaus ver-
wendet, um Projekte mit Kinase-Fokus zu unterstützen.

Wir denken, dass die in dieser Arbeit vorgestellten FAIR-basierten Methoden, Pipelines
und Tools (i) wertvolle Ergänzungen des Werkzeugkastens für die Kinase-Forschung sind, (ii)
relevantes Material für WissenschaftlerInnen bieten, die auf dem Gebiet des computergestützten
Wirkstoffdesigns lernen, lehren oder Fragen beantworten wollen, und (iii) dazu beitragen, die
Wirkstoffforschung effizienter, reproduzierbar und wiederverwendbar zu machen.



Chapter 1

Introduction

Protein binding sites are at the heart of every structure-enabled drug design campaign;
understanding the physicochemical and steric characteristics of a target’s binding site guides
the rational design of drug candidates. In drug discovery, the term target refers to a biological
entity such as a protein whose modulation by a drug might inhibit or reverse the progression of
a disease of interest [1].

This introduction will set the scene for the concepts discussed in this thesis:

• Section 1.1 outlines the nature of protein binding sites and defines the terms "pocketome",
"kinome", and "structural cheminformatics".

• Section 1.2 covers the importance of binding sites in the context of drug discovery, espe-
cially regarding target prediction and fragment-based drug design (FBDD).

• Section 1.3 introduces kinases as the main protein class covered in this thesis with a special
focus on their binding sites.

• Section 1.4 describes the spirit of open science, which was applied to all projects described
in this thesis.

1.1 Protein Binding Sites

Proteins are —from a structural point of view— a three-dimensional (3D) arrangement of an
amino acid sequence, a so-called polypeptide chain (primary structure). This chain is folded into
α-helices and β-sheets, which are connected via loops (secondary structure). The organization
of these motifs to each other determines the protein’s structure (tertiary structure). Multiple
folded polypeptide chains can form a complex (quaternary structure) [2]. These complex and
dense 3D structures have a surface with irregular hollows, forming so-called clefts, cavities, or
pockets, which range from being shallow to deep, solvent-exposed to buried, and small to large.

Most biological processes are mediated by the binding of molecules such as small molecules
and peptides (ligands) to these pockets (binding sites) or by protein-protein interactions. Molec-
ular recognition is enabled by shape and driven by physicochemical complementarity. Protein
binding sites and ligands interact through a set of weak non-covalent bonds, i.e., directed (polar)
hydrogen bonds and undirected hydrophobic, electrostatic, and van der Waals interactions [2].
Proteins are of flexible nature [3, 4]; interacting ligands can induce conformational change at
the binding site (induced fit model [5]) or bind selectively to the most suitable conformational
state of the protein’s conformational ensemble (conformational selection model [6]).
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6 CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.1: Detected binding site of kinase CDK2 overlaps correctly with co-crystallized ligand
ATP: Depicted are the protein chain as a blue cartoon (a) and a surface in grey (b), and the
co-crystallized ligand ATP as well in (a) and (b). The binding site volume is shown as a yellow
mesh, which was predicted with DogSiteScorer on the ProteinsPlus webserver [9–11]. Example
kinase is CDK2 (PDB/KLIFS IDs: 1FIN/4367 [21]).

How binding sites are defined computationally depends on whether structures contain a
bound ligand or not. With a bound ligand, a common approach is to define binding sites based
on distances to the ligand. Protein atoms (or residues) that are within a defined distance from
any ligand atom constitute the binding site, e.g., a distance of 6.5 Å in the case of the binding
site database sc-PDB [7]. Without a ligand bound to the structure, computational binding site
detection methods can be invoked to compute the binding site as discussed in Volkamer et al.
[8]. For example, DogSiteScorer is a grid-based geometric method that uses a Difference of
Gaussian (DoG) filter from image processing to determine cavities on the protein surface [9–
11]; Figure 1.1 shows the DoGSiteScorer-detected binding site of kinase CDK2, which overlaps
correctly with the co-crystallized endogenous ligand adenosine triphosphate (ATP).

The ensemble of structurally resolved pockets is referred to as the pocketome. The pocketome
can be either defined as the ensemble of protein pockets in the PDB [12–14] or as the ensemble
of pockets within certain protein classes such as kinases [15] (called kinome), G-protein coupled
receptors (GPCRs) [16], or E3 ligases [17]. Combining data on the structure of binding sites
with other sources such as ligand profiling, sequences, and mutations can shed light on molecular
and structural determinants for affinity to and selectivity of a ligand to a protein in different
key binding regions. This integrative analysis is referred to as structural chemogenomics and
can extrapolate information from known to unknown protein-ligand complexes [18, 19]. The
methods that incorporate structural, chemical, and pharmacological information from ligands
and proteins are assigned to the field of structural cheminformatics [20].
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1.2 Protein Binding Sites in Drug Discovery

Discovering small drug-like molecules complementing the binding site of a protein of interest,
a target, is a central endeavor in drug discovery campaigns in many different settings, including
the following examples:

• Target prediction helps (i) to detect disease-driving targets, (ii) to identify the targets for
a specific ligand known to act on a disease of interest, and (iii) to determine potential
off-targets, i.e., unintended targets that a ligand binds to besides the intended so-called
on-targets (Section 1.2.1). This step is usually performed during early drug discovery, also
called pre-discovery. [22]

• Binding site identification involves the determination of electronic, steric, and solvation
properties of a target’s pocket. This helps to determine (i) the target’s druggability, i.e., a
target’s ability to be modulated by low-molecular-weight compounds, and (ii) the ligand
characteristics to aim for. [8]

• Interaction profiling helps to identify and characterize key amino acids of the protein that
are necessary for ligand binding, e.g., based on known or similar protein-ligand structures,
or mutation data. Such knowledge drives the rational design during lead identification
and optimization. [23–25]

• Fragment-based drug design: The screening of fragment libraries —a set of small chemical
molecules typically with a molecular weight less than 300 Da— determines which chemical
key characteristics are essential to the binding of molecules to specific regions of the target’s
binding site. This strategy plays an important role in industry and academia for the
discovery of novel compounds and the optimization of lead compounds (Section 1.2.2). [26]

In the following, target prediction and fragment-based drug design will be discussed in more
detail from a computational point of view, in preparation for the methods that I will present
later in this thesis.
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1.2.1 Advances and Challenges in Computational Target Prediction
Publication A

Computational target prediction plays an important role in early drug discovery phases
when a project aims to identify targets of interest and potential off-targets. Especially in these
early stages of a project where the target profile is unclear and the progression of the project
uncertain, experiments are often not yet established and therefore time- and cost-sensitive.
Computational methods can help to study the target of interest from ligand-based, structure-
based, and hybrid angles. In this review, in collaboration with Prof. Gerard van Westen’s group
in Leiden, Netherlands, the method landscape is outlined with a focus on method availability
and challenges in the field.

Target 
prediction 
method (Off-)

Targets

Contribution:

Co-first author
Conceptualization (45%)
Visualization (45%)
Writing — Original Draft (45%)
Writing — Review & Editing (45%)

Reprinted with permission from Sydow D*, Burggraaff L*, Szengel A, van Vlijmen HWT, IJz-
erman AP, van Westen GJP, Volkamer A. Advances and Challenges in Computational Target
Prediction. Journal of Chemical Information and Modeling. 2019; 59(5):1728-1742. 10.1021/
acs.jcim.8b00832 (*contributed equally)
Copyright © 2019 American Chemical Society.

https://doi.org/10.1021/acs.jcim.8b00832
https://doi.org/10.1021/acs.jcim.8b00832
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Summary of Publication A with a focus on binding site comparison

In the fight against diseases, scientists try to identify drugs that act on one or more disease-
specific targets (on-targets), while avoiding side effects that are caused by acting on so-called
off-targets (or anti-targets). Target prediction is therefore a crucial step in the early stages
of drug development and its outcome may decide whether a target is tractable enough to be
pursued. Experiments such as activity-based proteome profiling (ABPP) and standard affinity
pulldowns can shed light on on- and off-targets but they can be expensive in terms of time and
cost [27]. Computational methods are a fast and cheap alternative to predicting targets and
have become a default approach in early drug discovery campaigns.

The applications of computational target prediction are manifold in early drug design projects
with the following aims:

• Elucidate the mode of action of a compound by identifying its potential target.

• Explore desired polypharmacological effects of ligands to cover disease pathways [28]; the
traditional magic bullet paradigm, wherein a ligand has a high potency and selectivity
towards a single target, has shifted to the understanding that a ligand affects multiple
targets simultaneously [29, 30].

• Spot selectivity or toxicity problems during compound optimization, which can potentially
lead to unwanted adverse or side effects [31].

• Repurpose approved drugs for different indications. Here it is investigated whether they
can interact with a protein target that is part of another disease mechanism [32–34]. This
process is called drug repositioning or drug repurposing.

• Select ligands that have the highest potential to be relevant chemical probes to characterize
the biological function of a poorly understood target [35–37].

Computational target prediction methods can be roughly divided into ligand-based, structure-
based, and hybrid methods [38]. The key concept to most of these approaches is the chemical
similarity principle which postulates that "similar molecules have a similar biological effect" and
that "similar proteins bind similar ligands" [39], respectively. The input to these methods is a
ligand (query ligand), a protein (query target), or a combination of both.

Ligand-based methods follow the principle that similar ligands bind similar targets.
Methods range from similarity searches identifying targets for a single known compound (e.g.,
SwissTargetPrediction [40]) to similarity ensembles identifying targets for a group of known com-
pounds (e.g., SEA [41]) but can also involve activity prediction with classification and regression
models.

Hybrid methods combine ligand and protein information. Proteochemometrics (PCM)
uses ligand information alongside protein sequence or structure information, while network-
based methods use graphs with proteins and ligands as nodes and interactions, similarities, or
phenotypic effects as edges to predict drug-target interaction networks (e.g., DINIES [42]).

Structure-based methods, which are the focus of this thesis, follow the principle that
similar targets bind similar ligands. Methods can be split into four categories: (i) binding site
comparison across different proteins, where a query pocket is compared to a pocket database
(e.g., ProBis [43]), (ii) interaction fingerprint comparison, where a query interaction profile
is compared to an interaction profile database (e.g., TIFP [44]), (iii) reverse pharmacophore
screening, where a query ligand pharmacophore is screened against a pharmacophore-based
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interaction database (e.g., PharmMapper [45]), or (iv) inverse screening, where a query ligand
is screened against a pocket database via docking (e.g., iRAISE [46]). These methods follow a
three-step process:

1. Binding site encoding : Binding sites or ligand-target interactions are encoded using dif-
ferent descriptor techniques and stored in a target database.

2. Target screening or comparison: Either a query ligand is screened against the target
database, or a query binding site is compared with the target database.

3. Target ranking : Targets are ranked based on a suitable scoring approach.

This thesis focuses on binding site comparison methods. Publication A [22] reviews de-
velopments in the field until 2019; since then, new methods have been published, such as the
alignment-based PocketShape [47] and the point cloud registration method ProCare [48] (a con-
cept borrowed from computer vision). Furthermore, advances in machine learning and deep
learning have led to the development of novel binding site comparison tools such as Deeply-
Tough [49] and DeepDrug3D [50].

In the following, I include a more detailed review of computational target prediction (Publi-
cation A [22]), which also outlines remaining challenges. These were addressed in the framework
of this thesis with a focus on kinase research as discussed in Sections 4.1 and 4.2
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ABSTRACT: Target deconvolution is a vital initial step in
preclinical drug development to determine research focus and
strategy. In this respect, computational target prediction is
used to identify the most probable targets of an orphan ligand
or the most similar targets to a protein under investigation.
Applications range from the fundamental analysis of the
mode-of-action over polypharmacology or adverse effect
predictions to drug repositioning. Here, we provide a review
on published ligand- and target-based as well as hybrid
approaches for computational target prediction, together with current limitations and future directions.

■ INTRODUCTION

Target prediction is a key aspect in early preclinical drug
development, pivotal to determine the clinical application and
to initiate drug development campaigns. For instance, orphan
compounds may be known from phenotypic screening,
showing changes in cell or organism phenotypes upon
compound exposure, without the underlying molecular
mechanism being known.1 Targets for orphan compounds
can be experimentally identified with techniques based on
chemical proteomics such as affinity chromatography and
activity-based protein profiling (ABPP), enabling compound
testing against the proteome of cell lysates or even intact cells
and organisms.2−4

Since these experiments are time and cost extensive,
computational alternatives to rapidly predict the primary
targets have gained momentum and are commonly known as in
silico target prediction, target identification, or target fishing.5

Herein, a general distinction can be made between ligand-based
methods, centered around small molecules, and structure-based
methods, implementing information from protein structures.6

Pivotal to most of these approaches is the chemical similarity
principle stating that “similar molecules have a similar
biological effect” and conversely that “similar proteins bind
similar ligands”.7

One of the main applications of computational target
prediction is to elucidate the mode-of-action of a compound by
identifying its potential target. However, the traditional magic
bullet paradigm, wherein a ligand has a high potency and
selectivity toward a single target, has shifted to the under-
standing that a ligand affects multiple targets simultaneously.8,9

In this context, target prediction methods can be used to
explore desired polypharmacological ef fects of ligands to cover
disease pathways.10 Similarly, it can help to spot selectivity or

toxicity problems during compound optimization which can
potentially lead to unwanted adverse or side ef fects.11 Moreover,
approved drugs, and hence clinically tested ligands, can be
repurposed for different indications if they are also found to
interact with a protein target that is part of another disease
mechanism.12−14 This process is called drug repositioning or
drug repurposing. Whereas the aforementioned applications
focus on predicting targets, computational target prediction
methods can also be applied to select ligands that have the
highest potential to be relevant chemical probes used for ABPP
to characterize the biological function of a poorly understood
target.15−17

Designed for computational biologists, medicinal chemists,
and neighboring disciplines, this review aims to outline the
general principle and potential of computational target
prediction together with the underlying methods and their
application. The article starts with ligand-based modeling,
followed by hybrid approaches (using both ligand and protein
data), as well as structure- and interaction-based methods
(Figure 1). Finally, potential pitfalls of the different approaches
are covered, and a future perspective is given.

■ LIGAND-BASED TARGET PREDICTION
Central to ligand-based methods is that they rely on the
chemical structure of ligands and associated bioactivity of
similar ligands. Ligand-based methods are often used to predict
the bioactivity of novel compounds for a specific target (Figure
2). However, ligand-based methods can also be applied to
predict activities for a range of targets. Generally, this can be
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Figure 1. Overview of ligand- and structure-based as well as hybrid methods for target prediction (blue) with optional data enrichment strategies
(light blue), using database (DB) or training data input (green), separated by applicability depending on available query data (orange). Necessary
and potential connections are displayed with solid and dotted arrows, respectively.

Figure 2. Ligand-based methods for target prediction. Descriptors in ligand-based methods are shown in the dashed-lined boxes on the left.
Methods increase in complexity from left to right.
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accomplished by ranking targets based on predicted compound
activity: the target for which the highest activity is predicted is
expected to be the most likely target of that query compound.
Typically, the ChEMBL database18 occasionally in combi-

nation with PubChem,19 e.g., in the case of the ExCape
database,20 is used as a public source for chemical structures.
These databases hold experimentally validated bioactivity data
for many compounds tested on a wide range of proteins.
In the following, some general compound descriptors for

ligand-based methods are outlined; for specific details, the
reader is referred to the review by Rognan.21 Subsequently, a
description of ligand-based methods ordered by increasing
complexity coupled to prediction confidence is given (Table
1). The latter is expected to be higher for the more complex
methods.
Compound Descriptors. Compounds in ligand-based

models are typically described using their 2D chemical
structures. Depending on the data source, an intermediate
step can be the conversion from a 1D sequential textual format
(e.g., SMILES22) to a 2D structure, from which more complex
binary vectors such as molecular fingerprints are usually
obtained.23 Different fingerprints are available to describe
chemical structures, e.g., atom-pair fingerprints, topological-
torsion fingerprints, or circular fingerprints, where atom
environments are included (e.g., ECFP).24 Optionally, the
3D shape of compounds is taken into account and translated
into similar molecular fingerprints. However, this requires
additional information on the 3D conformation of the
compounds.25,26 The use of different chemical fingerprints
can impact model performance and was explored by Bender et
al.27 Additionally, physicochemical properties, topological
information, and pharmacophore features of compounds can
be added as descriptors in a similar way. As a result, each
compound is described by an array of numbers forming the
compound descriptors. Resemblance between arrays is higher
when compounds are more similar to each other.
A more complex representation of compounds, compared to

chemical descriptors, are bioactivity spectra descriptors. A
spectrum in its simplest form is a binary bitstring
representation where each bit represents a protein. Proteins
for which a given compound shows activity are marked with a
“1” as opposed to those for which this is not the case (marked

with “0”). Bioactivity spectra rely on compounds being tested
on a range of proteins, instead of compounds being tested on
only one or a few targets. Considering compound promiscuity,
it is expected that compounds display activity on a number of
proteins.28 Based on the bioactivity spectra, compounds that
are not chemically similar but do exert a similar phenotype/
bioactivity might be recognized (so-called activity cliffs29).
Likewise, this bioactivity profile can form an array of numbers
that can be implemented as descriptors for similarity searching
or machine learning, where activities can be treated as a
bioactivity fingerprint. Recently, the biological annotation of
compounds has been extended to include gene expression
profiles30,31 and high content cellular images,32 providing
additional, high-dimensional descriptors that can be added to a
bioactivity fingerprint in a straightforward way.

Similarity Searching. The simplest and fastest method for
target prediction is based on molecular similarity and is often
referred to as similarity search or nearest neighbor search.33

Using a similarity coefficient of choice (e.g., Tanimoto) and
any type of compound descriptors (e.g., ECFP), the similarity
between a pair of molecules can be quickly generated. For
example, finding the most similar 100 compounds for a given
query compound in a PubChem-sized library (∼96 million
compounds) takes a few seconds using chemfp tools developed
by Dalke.34

The simplest implementation for target prediction based on
similarity is to rank the data set compounds based on their
similarity toward the query compound and assume that the
biologically tested target of the most similar compounds is also
the most likely target of the query compound. Webserver tools
that enable the use of this method are, e.g., SwissTargetPre-
diction35 and SuperPred.36 These tools suggest protein targets
based on molecular similarity of the query compound to
compounds with known bioactivity toward these targets. It
should be noted however that these approaches cannot provide
a direct quantification of the biological activity of the query
compound on the top-ranked targets.
While similarity search is classically performed by comparing

chemical descriptors, activity spectra descriptors can also be
used (if enough bioactivity data is available). Early work by
Kauvar et al.37 characterized molecular similarity by an affinity
fingerprint based on experimental screenings of molecules

Table 1. Ligand-Based and Hybrid Methods in Target Predictiona

Data in model training

Name Compound Interaction Training set requirements Target ranking Target prediction tools

Ligand-based models

Similarity searching Chemical struc-
ture

− − Targets classified based on sim-
ilarity threshold of compounds

SwissTarget-Prediction,35

SuperPred,36 SEA,40 OCEAN,45

ROCS,72 FTrees73

Similarity searching Bioactivities − − Targets classified based on sim-
ilarity threshold of bioactivity
spectra

BASS,38 BioSEA46

Machine learning:
Classification

Chemical struc-
ture

Activity class Balanced (in)active classes Targets classified based on activ-
ity class

PIDGIN74

Machine learning:
Regression

Chemical struc-
ture

Bioactivity Normally/equally distributed bio-
activities

Targets ranked based on bioac-
tivity

−

Hybrid models (ligand- and structure-based)

Proteochemometrics Chemical struc-
ture

Activity class
or bioactiv-
ity

Balanced (in)active classes or
normally/equally distributed bi-
oactivities

Targets classified or ranked based
on bioactivity

ChEMBL models58,65

Network-based
models

Chemical struc-
ture and sim-
ilarity

Activity class
or bioactiv-
ity

Sufficient number of connections/
bioactivities

Targets classified or ranked based
on bioactivity

DINIES,68 drugCIPHER69

aThe table gives information on what data is used and how targets are inferred from the model output.
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against a reference panel of selected proteins. Also in BASS38

(bioactivity profile similarity search), the similarity search is
performed based on bioactivity spectra of chemical structures.
Here, when the query has experimentally validated activities on
a number of targets, additional targets can be predicted based
on its bioactivity spectrum. Alternatively, gene expression
profiles can be used to predict bioactivities of compounds for
targets.30,39 Both bioactivity spectra and gene expression
profiles do not compare the molecular structure of compounds.
Therefore, these methods are suited to identify different
chemical structures for similar targets.
In contrast to a classical similarity search, similarity

ensemble methods are applied to identify targets based on a
group of known compounds for that target rather than a single
compound. The compounds are first grouped based on
interactions (e.g., bioactivity) with the same target(s). The
similarity between different compound groups is subsequently
calculated, and when defined as being similar, the targets that
are known to interact with one compound group are identified
as targets for the other compound group(s). The added benefit
is that this allows the calculation of statistical measures that can
score the relevance of a given retrieved target. When ensemble
approaches are applied to identify targets for a query
compound, the similarity is measured between this compound
and the different compound groups. The targets belonging to
the most similar groups are then identified as targets for the
query compound. The SEA40 method utilizes the similarity
ensemble concept to group proteins based on ligand topology.
Within SEA, the retrieved value is then compared to an
expected random value (similar to the way this is implemented
in BLAST41,42), and subsequently, an “E-value” is returned.43

This E-value represents the extreme value and indicates the
quality of the result. The (similarity) score of the selected
samples is compared to what is expected when two random
samples are taken into account. E-values closer to zero indicate
that it is more unlikely that random samples would have equal
similarity as the selected samples. The SEA method has been
applied by Lounkine et al.44 in a target prediction challenge.
Here, side effects of 656 compounds were predicted based on
compound interactions with 73 off-targets. The results were
partially validated by data from hold-out databases or
experimentally validated in vitro. Remarkably, off-targets were
identified that had very low sequence similarity with the on-
target (e.g., off-target serotonin transporter 5-HTT and on-
target histamine H1 receptor for antihistamine diphenhydr-
amine), indicating that such a ligand-based approach can
predict targets without the need of molecular biology
information on protein targets. OCEAN45 is a similar
technique, though using different thresholds to determine
compound similarities. Finally, BioSEA46 also applies the same
methodology; however, instead of comparing compound
similarities based on chemical structure, bioactivity profiles
are compared to create ensembles of compounds.
Machine Learning. Similarity search methods consider all

features in the compound descriptors as equal. However,
statistical methods can weigh the relevance of individual
descriptors by connecting them to biological activity of the
compounds and are often better suited to extrapolate to new
compounds. Machine learning methods require a training
phase, which is performed on known active and inactive
compounds. Herein, a statistical model is fitted to the data to
quantify how chemical descriptors relate to activity. Contrary
to the similarity searching example above, this approach

returns predicted compound−protein activities rather than a
number of compound structures that are similar for a query
compound. When applied to a single protein target for a
congeneric chemical series, these methods are named
quantitative structure−activity relationship (QSAR) models.47

Given a query compound, QSARs can predict its expected
activity based on the compound descriptors. In target
prediction, however, more than one protein is considered.
Machine learning can both be used for classification (e.g., is

the expected affinity higher than a threshold that was defined a
priori as active?) or for regression (e.g., what is the predicted Ki
value for a compound−protein interaction?). Typically,
algorithms such as Random Forest,48 Support Vector
Machines,49 and Naıv̈e Bayes50 are applied. However, with
more data becoming available and to become more
independent of the chosen descriptor, recent work is moving
toward deep learning, a method able to directly derive features
from molecular structures.51,52

An example where machine learning was applied in target
prediction is the identification of novel inhibitors for the
enzyme mycobacterial dihydrofolate reductase.53 Here, targets
were predicted for a set of query compounds using Naıv̈e
Bayesian models. The predicted compound−target interac-
tions were validated in vitro, which indicates the value of such
target prediction methods.

Classification. The most frequently used method in ligand-
based target prediction is arguably classification.1,54 Classi-
fication requires the setting of an activity threshold for
measured interactions to separate the classes. This interaction
can be measured binding affinity (e.g., pKi) but can also be
efficacy or other experimental measurements (e.g., pEC50) or
even a combination of multiple measurement types (e.g.,
pChEMBL value).55 For classification models, a difference can
be made between several approaches:

Single Model Multi-Class (SMMC). In this approach, one
model is used that predicts the most probable target for a given
compound, and target classes are mutually exclusive, in other
words a compound cannot be active on more than one
target.56 Given known ligand promiscuity, the SMMC method
provides an inaccurate representation of the behavior of
ligands and could even be considered to be at odds with the
similarity principle.

Ensemble Model Multi-Label (EMML). With EMML, also
referred to as ensemble model multi-class, one model is used
per protein, and compounds receive a prediction from each
model.1,57 Thus, the sum of protein models where the
compound was predicted active on represents the set of
potential target proteins. To build the model per protein, all
compounds with an activity for the respective protein above a
certain threshold are deemed the active class, and all other
compounds are typically pooled in the inactive class. For the
EMML approach, pooling constitutes a source of error. It
might very well be that although a given compound has not
been tested on the protein under consideration, it is indeed
active yet pooling defines it to be inactive. Thus, potential
targets for the query compound may be missed.

Single Model Multi-Label (SMML). Here, one model is used
to predict all potential targets for a given molecule, and
compounds can belong to multiple target classes (or labels).56

The active class for a given protein is defined equally as is
described for EMML, but all other compounds are not
explicitly pooled in an inactive class, merely the ones that were
tested to be inactive are considered. A caveat can be that there
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are none or too few known inactive compounds for good
model fitting.
When a query compound is run through a classification

model, the output gives the activity class per target (e.g.,
active/inactive, depending on the previously described
approaches and on the predetermined activity threshold).
However, regression can directly predict the affinity of a
compound.
Pitfalls Defining an “Active” Class. Typically, the activity

threshold in classification models is set at 10 μM (i.e., an
affinity better than 10 μM defines active interactions,
corresponding to a pKi of 5). This parameter carries a
significant influence on effectiveness and applicability of target
prediction methods. In principle, for classification, a balanced
set of active and inactive compounds is desired. When the
activity threshold is set at 10 μM, this gives a skewed
distribution of actives and inactives. Recently, target prediction
was performed using an affinity value of ∼316 nM
(corresponding to 6.5 on a logarithmic scale) as the threshold;
this leads to a better distribution of active and inactive classes
when using ChEMBL data.58 An added benefit is that this
threshold also provides a more relevant prediction of biological
activity. Given that the biological error of assays is on average
around ∼0.5 log units for mixed pKi values, a model using a
cutoff of pKi = 6.5 could at worst correspond to an
experimental activity of a pKi = 6.0. When a cutoff of pKi =
5.0 (10 μM) is used, this error would be at worst pKi = 4.5 for
predicted actives.57,58 However, the optimal activity threshold
for balanced classification sets is dependent on the databases
from which compounds and bioactivities are extracted (e.g.,
ExCape20 contains more compounds with lower bioactivities
than ChEMBL). Furthermore, the targets that are considered
can be biased toward reported (in)actives (often in relation to
the amount of studies focused on the target, see the Discussion
and Future Directions section).
When a reasonable number of inactive compounds is

available, but significantly less than the number of active
compounds, some workarounds can be applied to train
representative models. For instance, active compounds can
be divided into smaller subsets in order to train separate
models for each subset of actives with the same set of inactives
(e.g., random undersampling) and, finally, recombined by
ensembling. Ensembling is a technique to combine predictions
from multiple models into one prediction that has shown to
increase performance.58,59 The downside of any ensembling
method is the unavoidable increase in computational time
required as predictions for multiple methods are needed.
Another workaround (which also requires increased

computational time) is to construct multiple ligand-based
target prediction models at different thresholds (e.g., 10 μM, 1
μM, 100 nM, 10 nM, and 1 nM). However, doing so decreases
the available data points for the higher activity thresholds as
fewer compounds are known that meet the threshold, and
hence, this has a negative effect on the chemical applicability
domain. In these cases, regression might allow the use of more
data.
Regression. Contrary to classification, regression methods

are able to directly train on the strength of a given ligand−
protein interaction avoiding the need for a preset threshold.
Trained on experimental data, regression models can make
quantitative predictions (e.g., Ki values) for compounds based
on the chemical structure. These predictions can be directly
translated to the interaction (e.g., affinity as a Ki value). Thus,

when regression is applied to multiple proteins (using an
ensemble of models), the targets can quantitatively be ranked
based on predicted compound−protein activity. In addition to
predicting activity, the differences in interaction strength for
different proteins can be evaluated. Using regression models,
the output of a query ligand can constitute a list with ranked
targets based on quantitative bioactivity predictions. The
output, therefore, does not only define “active” or “inactive”
targets but also the activity strength that is reflected by the
predicted bioactivity values.

■ HYBRID METHODS FOR TARGET PREDICTION
Similarity searching and machine learning methodswhich
are classically built on ligand informationcan also be applied
in more complex systems where protein information is added.
Although the underlying mechanism of the methods is the
same (e.g., machine learning), the implementation can be
different, in turn leading to other application possibilities. This
results in alternate methods to model and analyze the data.

Proteochemometrics. With proteochemometrics (PCM),
both compound and protein information are combined by
addition of an explicit protein descriptor.60 The most common
approach is to add protein information based on knowledge
derived from the protein sequence. Sequences are translated
into descriptive scores (e.g., Z-scales61), reflecting the
properties of the amino acid residues of the proteins.62

Additionally, when structural protein information is available,
this may be used to increase descriptor quality as information
on binding site location can be included, making the model
more accurate compared to using full sequences.63 PCM can
be applied to expand single target models to multiple targets:
based on sequence similarity between proteins, data from one
protein can be extrapolated to a related one.64 Another
application is increasing the amount of available data
(compared to single target models) in order to increase
model performance.63 Several PCM models for target
prediction based on ChEMBL data have been reported.58,65

Such models predict the activities of a query compound for
each of the incorporated targets. When these models are based
on regression, the most likely target for a query compound can
be derived based on the highest predicted activity for that
target compared to other targets. Additionally, a quantitative
activity score is given per target; therefore, it can be assessed if
activity of the query compound for the highest ranked target(s)
is sufficient. Noteworthy, as the combination of compound and
protein descriptors defines each compound protein pair as a
unique pair, even binary class PCM models behave as SMML
models. A compound tested to be inactive on protein A can be
distinguished from the same compound tested on protein B by
the algorithm based on the protein descriptor.

Network-Based Methods. Protein−protein or protein−
ligand interactions can be described as a large network similar
to a social network. Here, nodes can be proteins, compounds,
or both, with the edges being interactions, similarities, or
phenotypic effects. These connections can also be weighted
based on the strength of interaction (e.g., pKi). Using chemical
structures and similarities between connections, targets can be
identified for query compounds.51 This has led to the
publication of several works that use network analysis tools
to predict protein pharmacology.66,67 Additionally, network-
based target prediction tools such as DINIES68 and
drugCIPHER69 are made available as open source tools to
detect ligand−target interactions for query molecules. The
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concept of network-based models is often based on similarities
between chemical structures but can also include similarities
between proteins. More simplistic models implement only one
similarity (e.g., protein similarity), whereas more complex
models can encompass similarities between protein, chemical
structures, and interactions, simultaneously. Such a heterolo-
gous network was constituted using three different networks by
Chen et al.70 Here, a protein similarity network (based on
sequence similarity) was connected to a compound similarity
network by using a ligand−protein interaction network.71

Therefore, in this network, protein and compound similarities
can simultaneously be addressed, which is not possible with
only similarity searching as described in the section regarding
this topic. Targets for a given query compound can be inferred
from the network based on activities (or connections) of
similar ligands and their corresponding targets.

■ STRUCTURE-BASED TARGET PREDICTION
Methods for structure-based target prediction identify the most
likely targets for a query ligand or the most similar targets for a
query target, using 3D structural, i.e., steric and physicochem-
ical, information (Figure 3). The former group of approaches

focuses on docking a query ligand either to a set of targets
(inverse screening) or to a set of pharmacophores inferred from
ligand−target complexes (reverse pharmacophore screening), see
Table 2. The latter group of methods compares a query target,
either to a set of targets (binding site comparison) or to a set of
interactions inferred from ligand−target complexes (interaction
f ingerprint comparison),5 see Table 3.
Typically, the Protein Data Bank (PDB)75 is used as a public

source for protein structures, currently holding more than
140,000 protein structures (accessed in November 2018).
Since the binding site is the key to protein function, most
methods are proceeded by a binding site annotation step: with

a ligand present, binding sites are extracted by a defined
ligand−target residue distance cutoff, and without a co-
crystallized ligand, binding site detection methods can be
invoked.76 A widely used resource for such annotated binding
sites is the scPDB77 database, containing more than 16,000
ligand-bound binding sites from the PDB and covering about
4700 proteins with 6300 ligands.
Methods for structure-based target prediction are all

composed of three main steps, which are described in detail
in the individual method paragraphs: (i) binding site encoding,
(ii) target screening or comparison, and (iii) target ranking.
First, binding sites or ligand−target interactions are encoded
using different descriptor techniques and stored in a target
database. Second, depending on the method, either a query
ligand is screened against the target database, using different
docking engines, or a query binding site is compared with the
target database, using different similarity measures. Finally,
targets are ranked based on a suitable scoring approach.

Inverse Screening. Classically, molecular docking is used
to predict both the binding mode and the approximate binding
free energy of a set of ligands against one target of interest. In
inverse docking, also known as inverse screening or panel
docking, this strategy is reversed, and one query ligand is
docked to a set of target proteins in order to predict its most
likely targets. Most docking tools are theoretically applicable
for inverse screening, yet need adaption with respect to inter-
target instead of conventional inter-ligand ranking (Table
2).78,79

(i) Binding Site Encoding. Since the query compound is
screened against each target in the data set, the targets need to
be preprocessed accordingly. Target databases for methods
using conventional docking engines simply contain structure
files for binding sites (e.g., TarFisDock80 and idTarget81) or
for whole proteins (INVDOCK82), preprocessed as required
for the respective docking tool. In contrast, iRAISE83 prepares
for an efficient comparison by encoding binding sites with
triangle descriptors, which contain pharmacophoric and shape
information and are stored as bitmap database, a specialized
index for high-dimensional features.

(ii) Target screening. Most inverse screening methods use
conventional docking engines, such as DOCK (TarFisDock),
MEDock (idTarget), Glide (VTS84), or AutoDock Vina
(VinaMPI85 and IFPTarget86), in order to estimated the fit
of the query compound against each protein in the target
database. High computational costs are addressed by either
parallel screening (VinaMPI and IFPTarget) or by search
space reduction. The latter can be realized by aborting the
search at the first pose reaching a threshold score based on
interaction energies from reference ligand−protein complexes
(INVDOCK) or by testing one target representative per
precalculated target cluster (based on sequence identity)
before screening the entire cluster (idTarget). Usually, energy-
based functions, such as interaction or binding free energy
functions, are used to score the resulting docking poses. In
iRAISE, the query ligand is described with triangles, in the
same manner as the binding sites before, and is efficiently
matched based on bitmap indices, followed by respective
superimposition of the ligand and binding site triangles.
Finally, iRAISE docking poses are scored using a more
extensive approach in the form of a scoring cascade, including
a clash test, an interaction energy score, a reference score cutoff
(based on the co-crystallized reference ligand), and a ligand
and pocket coverage score.

Figure 3. Structure-based target prediction: conceptual representation
of the four main approaches, i.e. binding site comparison, inverse
screening, reverse pharmacophore screening, and interaction finger-
print comparison.
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(iii) Target Ranking. Targets are ranked either directly
based on the interaction energies of the best docking pose(s)
per target (INVDOCK, TarFisDock, and VinaMPI) or based
on separate functions tailor-made for inter-target ranking. In
the latter approach, each target in the database is profiled
beforehand either with a set of ligands using docking (iRAISE
and VTS) or with one co-crystallized ligand (idTarget and
IFPTarget). These reference profiles are then used to
normalize the scores of docking poses of a query ligand and
potential targets.
Inverse screening methods have been widely used for target

prediction.78,79 For example, Scafuri et al.87 applied idTarget to
predict potential targets of apple polyphenols, known for their
chemo-preventive effect against colorectal cancer. In a
bioinformatics-driven function analysis, the gene expression
levels for the predicted targets were shown to be significantly
altered in colorectal cancer cells, indirectly linking the
investigated apple polyphenols to the predicted targets.
Reverse Pharmacophore Screening. Similar to inverse

screening, reverse pharmacophore screening consecutively fits
a query ligand in the form of a ligand-based pharmacophore
into a precalculated panel of pharmacophore models, derived
from protein−ligand complexes. A pharmacophore is defined
as an ensemble of physicochemical and steric features that are
necessary for the recognition of a ligand by a target, triggering
or blocking a biological response.88 Structure-based ap-
proaches derive such pharmacophores from a target complex,
whereas ligand-based pharmacophores consider solely ligand
properties. Several studies have conducted reverse pharmaco-
phore screening for polypharmacology, using available stand-
ard software packages that allow for rapid pharmacophore
model building and evaluation.89 However, to the knowledge
of the authors, the only available automated workflow for
pharmacophore-based target prediction is PharmMapper.90

In PharmMapper, the interactions of selected ligand−target
complexes are encoded as pharmacophore feature triplets,
stored in a hash table, and deposited in a target database (i).
For target screening (ii), ligand-based pharmacophores are
generated for multiple conformations of the query ligand. Each
conformer pharmacophore is described in form of triplets and
aligned onto each pharmacophore triplet in the target database,
using triangle hashing. Subsequently, targets are scored based
on the overlap of feature types and positions between the

ligand and target pharmacophores. Finally, each target score is
normalized by a reference score for target ranking (iii). The
reference score per target reflects the score distribution of
matching all ligand pharmacophores extracted from the
original protein−ligand complex structures in the database
against the target pharmacophore.
Reverse pharmacophore screening was often applied to

search for targets of compounds in Chinese traditional
medicine (CTM).79 For example, Liu et al.91 used
PharmMapper to predict the glucocorticoid receptor, p38
mitogen-activated protein kinase, and dihydroorotate dehy-
drogenase as potential targets of berberine, a compound used
in CTM to treat cancers including melanoma. Experimental
tests confirmed the predicted targets to be potentially involved
in the anti-melanoma effect of berberine.

Binding Site Comparison. Target comparison is based on
the assumption that similar proteinsor more precisely
binding sitesbind similar ligands. Various binding site
comparison methods have been developed, pursuing different
strategies to encode binding sites, as well as to measure and
score their similarities92,93 (Table 3).

(i) Binding Site Encoding. The structural complexity of
binding sites is reduced to labeled representatives, whose
spatial arrangement is encoded and stored in a database, to be
compared with a query binding site encoded accordingly.
Binding site representatives can be per-residue points (e.g.,
CavBase94 or (Med-)SuMo95,96), binding site surfaces (e.g.,
ProBis97), or binding site volumes (e.g., Volsite/Shaper98),
with labels mostly containing pharmacophoric information.
The spatial arrangement of these representatives is often
encoded as graphs (e.g., CavBase) and triangles/quadruplets.
The latter are binned by their edge lengths and vertex labels
and stored as fingerprints (e.g., FuzCav99 and FLAP100), hash
tables (SiteEngine101), or bitmaps (TrixP102), whereas (Med-)
SuMo95,96 uses a graph of adjacent triangles. Alternate
methods describe binding sites as distance distributions
between aforementioned per-residue points (e.g., RAP-
MAD103), or with volume functions (Volsite/Shaper).

(ii) Binding Site Similarity Measure. Common strategies for
measuring binding site similarities can be divided into
alignment-based (often slower) and alignment-free methods
(mostly faster), as well as accelerated alignment-based
methods. The latter combine the speed of alignment-free

Table 2. Structure-Based Target Prediction: Selected Methods for Inverse Screening and Reverse Pharmacophore Screening

Target screening

Name Encoding Docking engine Scoring function Target ranking Av.a

Inverse screening

INVDOCK82 Sphere-coated surface DOCK deriva-
tive

Interaction energy − 2

TarFisDock80 Sphere-coated surface DOCK 4.0 Interaction energy − 2

idTarget81 Energetic grid map MEDock Binding free energy (AutoDock4 score) Z-score based on binding free
energies of reference complexes

1

VTS84 Energetic grid map Glide Binding free energy (Glide Gscore) Gscore comparison to Boltzmann-
weighted average of reference
Gscores

2

VinaMPI85 Energetic grid map AutoDock Vina Binding free energy (Vina score) − 1

iRAISE83 Bitmap of binned triangles (3
pharmacophore features and cavity
shape)

Index-based bit-
map compari-
son

Scoring cascade: clash test, interaction energy
and reference cutoff, ligand and pocket
coverage

Gaussian-weighted score based on
scores for reference complexes

1

Reverse pharmacophore screening

PharmMapper90 Hash table of binned triangles (5
pharmacophore features)

Geometric hash-
ing

Fit score (based on matching feature types and
positions)

Z-score based on fit score distribu-
tion of reference complexes

1

aAv. = availability: web server, software, or code is (1) free for academic use and/or available upon request or (2) not (yet) available or unclear.
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methods with the visual interpretability of alignment-based
methods. Alignment-based methods calculate and perform the
best possible structural superimposition of two binding sites
based on their encoded features, using geometric matching and
hashing of two triangle sets (e.g., SiteBase104 and SiteEngine,
respectively) or most commonly clique detection between two
graphs (e.g., CavBase). The latter approach searches the
maximum complete subgraph (clique) in a product graph,
which is built from a target and query graph with matching
vertices and edges. Many alignment-f ree methods operate on the
comparison of fingerprints (e.g., FuzCav) or of distance
histograms (e.g., RAPMAD). Accelerated alignment-based
methods use efficient data structures for rapid comparison,
with subsequent binding site alignments for scoring and visual
interpretation. Those methods include strategies to reduce
graph complexity before clique detection (BSAlign105), to
compare binding site volumes using smooth Gaussian
functions (Volsite/Shaper), and to store binned 3-point
pharmacophores in bitmap indices (TrixP). Moreover, proper-
ties of a binding site can be projected to a triangulated sphere
positioned at its center, stored as fingerprint to be iteratively
compared, and aligned to another binding site fingerprint
(SiteAlign106).
(iii) Binding Site Similarity Ranking. Alignment-based

methods score the similarity of binding sites based on the
mutual overlap and/or root-mean square deviation (RMSD) of
their associated encoded features. In contrast, alignment-free
methods mainly calculate fingerprint similarity based on the
number of matching fingerprints, if multiple fingerprints exist
per binding site (e.g., FLAP), or based on the Tanimoto
coefficient, if only one fingerprint per binding site (e.g.,
FuzCav) is calculated.
An exemplary application of binding site comparison is a

study on cross-reactivity using SiteAlign by De Franchi et al.107

Virtual screening of Pim-1 kinase against ATP-binding sites
showed high similarity to synapsin I, a protein regulating
neurotransmitter release in the synapse, suggesting a cross-
reaction of protein kinase inhibitors with synapsin I.
Biochemical validation revealed nanomolar affinities for pan-
kinase inhibitor staurosporine and selective Pim-1 kinase
inhibitor quercetagetin for synapsin I. These findings were
proposed as possible explanations for the observed down-
regulation of neutrotransmitter release by some protein kinase
inhibitors.
Interaction Fingerprint Comparison. Interaction finger-

prints (IFPs), or protein−ligand fingerprints, are vectors that
encode information on interacting ligand and target moieties,
such as hydrogen bond, hydrophobic, charge, aromatic, and
metal-binding interactions. IFPs are often used in combination
with screening methods in order to rescore docking poses.108

Only a few IFP-based pipelines have been published for target
prediction so far. Note that they require a ligand placement
step for IFP calculation. Thus, for IFP encoding (i), the query
ligand has to be docked against the target structure(s).
Generally, IFP methods either map detected interactions to
ligand atoms (e.g., LIFt109), to target binding site residues
(e.g., SIFt110 and IFPTarget86), or define a ligand- and target-
independent fixed length fingerprint (e.g., TIFP111 and
SPLIF112). Similar to the alignment-free fingerprint-based
binding site comparison, the comparison of two IFPs is usually
based on the Tanimoto coefficient (ii), and targets are rank-
ordered accordingly (iii). In the following, two tools are
introduced: In the first approach, interactions are mapped on

the ligand; thus, ligand IFPs are compared. In the second,
information is mapped on the target residues, and
subsequently, target IFPs are compared.
Cao and Wang109 propose a pipeline for off-target prediction

exemplified on a tubulin agent with kinase-cross activity. The
tubulin agent complex structure is the starting point to
generate the ligand-based interaction fingerprint (LIFt) for the
query compound. Next, the query ligand is docked to a panel
of kinase structures. The best-scoring pose per ligand−kinase
complex is encoded as LIFt, documenting interactions per
ligand atom. Finally, these predicted panel LIFts are compared
(Tanimoto coefficient) to the known reference LIFt and
ranked accordingly.
In contrast, IFPTarget by Li et al.86 first sets up a target

database, where the co-crystallized ligand is used to define the
reference target IFP, documenting per-residue interactions.
Next, the query ligand is docked to the same panel of targets,
and the top-scoring pose for each target is used to generate the
docked target IFP. Subsequently, reference and docked target
IFPs are compared and ranked by a final score that integrates
aforementioned energy-based docking and IFP-based scores.
The presented methods are strongly intertwined with a

docking (inverse screening) procedure: Two IFPs can only be
compared if they have one constant component (LIFT: same
ligand in two different structures, or IFPTarget: same structure
with two different ligands) because otherwise the IFP lengths
and order differ. Here, the third category of ligand and protein
invariant fingerprints, such as TIFP by Desaphy et al.,111 could
find a remedy, but has, to the knowledge of the authors, not yet
been used for target prediction.

Consideration of Target Flexibility in Structure-Based
Methods. Proteins are flexible, existing in transient conforma-
tional states, whereby only a subset may be receptive to ligand
binding. Such flexibility is to some extent implicitly considered
by the coarse-grained representation of binding sites in the
encoding step, such as binned distances (e.g., RAPMAD and
FuzCav) and fuzzified graphs (PoLiMorph114), as well as by
including tolerances during the matching step. Small side-chain
flexibility can be explicitly included by, e.g., representing
rotatable hydrophilic interactions (TrixP) or “on-the-fly”
conformational sampling of side chains (FLAP and
BioGPS118). Instead of conformational sampling, different
parts of the binding site can be investigated separately from
each other in order to spot local similarities. Some methods
therefore allow for partial shape matching (TrixP) or local
examination of binding site segments (ProBis). Inverse
screening methods usually treat the target structure as rigid
body, while considering ligand flexibility by conformational
sampling of the ligand (e.g., iRAISE and INVDOCK).
However, information on protein flexibility can be enriched

by including protein ensembles in screening databases, either
derived from a set of experimentally determined structures or
from molecular dynamics (MD) simulations. The former
approach is to some extent integrated whenever methods are
built upon a database containing multiple structures per
protein (e.g., scPDB-based target databases); however, so far,
those structures have not been statistically evaluated as one
protein ensemble. Furthermore, such PDB-derived protein
ensembles can only cover protein classes with high coverage.
Methods describing binding site changes based on MD
simulations, as described in TRAPP119 for transient pockets,
are already available but have not been integrated yet into a
workflow for target prediction.
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■ DISCUSSION AND FUTURE DIRECTIONS

Since without sufficient data computational target prediction
would not be possible at all, we first discuss the beauty and
peril of current data sources. We then cover challenges in
target ranking and method validation as well as directions on
how to overcome them.
Data. Usage of in silico techniques for target prediction has

been enabled in the first place by the rapidly increasing amount
of available structural, chemical, and biological data. In this
respect, the increasing availability of open access databases for
drug discovery should be appreciated, with the PDB,75

ChEMBL,18 PubChem,19 and DrugBank120 databases being
arguably the most well known. While the speed of computation
has increased at a phenomenal rate with transistor counts
roughly doubling every two years121 (slowing down in recent
years122), data availability and quality still form the bottle-
neck.20,123 Given more data, more intricate methods can be
applied, which should result in higher quality predictions.21

This does not only concern bioactivity data but also structural
information on proteins.75

In ligand-based methods, the large amount of available
bioactivity data is used for model training. Lack of data here
typically means that there are not enough experimentally
derived activities of compounds for a given target. One way to
overcome this is using computational target prediction to fill in
the expected bioactivities for proteins that were not
experimentally tested.54,124 However, even if sufficient data is
available, this does not directly mean the data quality is
adequate. It has been shown that the experimental error in
bioactivity databases can be substantial.33,125 In public data,
experimental activities are not derived following the same
standard operating procedure or are even from the same lab or
assay. This leads to a relatively large experimental error in the
data (on average 0.47 log units for mixed pKi data),

33 which is
reflected in the prediction accuracy of the models. Data quality
and bias each determine the applicability domain of a model
and should therefore be addressed early on by comparing the
similarity between training and screening compounds. For
instance, models trained on smaller or more hydrophobic
molecules may not be able to make reliable predictions for
larger or more hydrophilic compounds. Furthermore, high
chemical similarity within the training set leads to a bias toward
a similar group of compounds. Therefore, a wide diversity in
chemical space is more favorable than a large compound set
encompassing a congeneric series of ligands. Models trained
only on close analogues cannot predict activities of very
dissimilar compounds reliably. In summary, in order to build
reliable models, important factors to check are the amount of
data and heterogeneity (as discussed here), as well as the bias
toward (in)actives (see Pitfalls Defining an “Active” Class
section) and toward certain targets (see Target Ranking
section).
Structure-based methods build on the structural arrangement

of binding site atoms, experimentally derived from currently
mostly X-ray crystallography. Such structural arrangements are
(i) less reliable with decreasing resolution and (ii) represent
only a static (and maybe even artificial) conformational state.
The former is usually addressed with resolution thresholds
(e.g., <3 Å in case of the scPDB), whereas the latter is
sometimes considered with conformational sampling (see
Consideration of Target Flexibility in Structure-Based
Methods section). Furthermore, using structure-based meth-

ods, only targets with available structures can be queried,
introducing a bias toward structurally known targets. Currently,
most methods rely only on the available structures in the PDB.
While there are over 140,000 protein structures deposited in
the PDB (accessed in November 2018), they only cover at
most 30% of the human proteome and 50% of known human
drug targets,126 with protein classes being differently well
represented. Homology modeling is a possibility to infer
lacking information from determined structures of homologous
proteins. Somody et al.126 have shown that given a sequence
identity of ≥30% (as generally accepted lower limit for
homology modeling) the structural coverage of the modeled
human proteome could approach 70% (that of known human
drug targets 95%). While large scale homology models have
been used, e.g., for kinome-wide druggability predictions,127

they have not been widely used yet for target prediction. It
should be noted that the higher the sequence identity is, the
more reliable the homology models are for structural modeling
purposes. Furthermore, target-focused methods such as inverse
screening and binding site comparison only require 3D target
structures and binding site locations, whereas interaction-
focused methods require ligand−target complex information,
limiting their applicability. To overcome this, such interactions
can be predicted: For instance, interaction fingerprint
comparison can be coupled with inverse docking, and reverse
pharmacophore screening can be based on target-focused
pharmacophore methods such as T2F-Pharm128 that generate
pharmacophores from apo-structures. However, it is important
to note that such ligand- as well as structure-based models-
based-on-models approaches may introduce noise to the
predictions.

Target Ranking. Results from computational target
prediction are highly dependent on the scoring function(s)
used for target ranking. If two objects of the same typefor
example, two small molecules or two protein binding sites
are compared, similarity of the query to the database can
directly be inferred from the commonalities or mutual overlap
between the objects and ranked accordingly. In contrast, if the
objects to be compared are of different types, target ranking
becomes more complex. For example, this is the case when the
most likely targets are predicted for a small molecule based on
individual machine learning models per target (ligand-based
methods) or based on inverse screening against a target
database (structure-based methods). While it is already
challenging to predict the correct activity or binding energy
of a ligand against one target, in panel predictions, the ligand is
scored individually against multiple targets, requiring inter-
target ranking. This is especially ambitious since the
predictions are influenced by different forms of bias present
in the data. Typically, some protein classes (e.g., kinases or G
protein-coupled receptors) have been very well explored,
whereas others have been explored less thoroughly (e.g.,
transporters). This means that more ligands are known for
these proteins (ligand-based methods) or more structures have
been elucidated (structure-based methods). Thus, the chemical
or structural space is better covered, and they might score
better compared to less explored chemical or structural spaces.
Another form of bias influencing target ranking can be the
average molecular weight of ligands for certain protein classes.
For example, the molecular weight of class B GPCRs is much
higher than that of other proteins such as kinases. The higher
molecular weight leads to the presence of more chemical
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substructures in the fingerprint vector and can increase the
amount of predicted targets for these ligands.58

In an effort to reduce the effect of these biases on ligand-
based prediction probability, raw probabilities can be
converted to a z-score.53 In this method, for all molecules in
the training set, a prediction score is obtained for all proteins in
the training set. Subsequently, for each protein, a mean
probability and standard deviation of this probability can be
derived and converted into a z-score. By applying the same z-
scoring for novel compounds rather than the raw probability,
the predictions are converted to a number of standard
deviations over or under the mean for that particular protein.
This method has been shown to be more robust than using the
raw probability.58 Similarly, in structure-based inverse screen-
ing, the interaction score of the ligand with each target is
compared with the interaction score distribution from a set of
reference ligands of the respective target complex structures,
taken from X-ray structures or determined by docking.81,83,84

Validation Strategies. The performance of ligand-based
models should always be estimated using external test sets to
minimize overfitting (besides cross-validation). If test sets are
composed randomly, this may lead to overoptimistic perform-
ance values as similar ligands may be present in both training
and test sets, resulting in “easy” predictions. In order to
overcome this effect, cluster splits, where the whole cluster of
similar molecules is either contained in the test or training set,
or temporal splits, where data from the most recent years is
used for testing, can be applied.129 Predictive performances of
ligand-based models can be estimated by metrics such as R2

and Q2 as well as error-based metrics such as the root-mean-
square error (RMSE) and mean absolute error (MAE). It is
debatable what the best metric is to indicate model
performance as this is dependent on the data and validation
method. Generally, performance can be better estimated when
multiple metrics are considered.130

Evaluating the performance of structure-based methods is
based on diverse strategies. Binding site comparison methods,
for instance, often screen a query target against a set of true
(well-studied protein class with subclass classification) and
decoy targets, whereas inverse screening methods often test
only one or few query ligands in a set of true (known targets of
the ligand) and decoy targets. Evaluation metrics are, for
instance, the percentage of true targets in the top x% of the
ranked hit list, the so-called enrichment factor (EF), and the
area under the curve (AUC). While different sizes and
compositions of benchmark data sets and the diverse use of
performance metrics hamper a direct comparison between
methods, efforts to unify benchmarking have been made. Since
binding site comparison is a long-established approach with
many published methods, proposed data sets have often been
reused. Such an example is the data set compilation by Weill
and Rognan,99 encompassing a set of similar and dissimilar
structure pairs as well as sets focused on kinases and serine
endopeptidases (all scPDB-based). Also concentrating on
similar and dissimilar pairs, Ehrt et al.131 have recently
proposed a collection of new and reused data sets
(ProSPECCTs) to test different performance aspects, which
the authors applied to multiple binding site methods to
establish guidelines for their application scope. For inverse
screening methods, Schomburg et al.83 proposed two data sets
together with evaluation strategies: a small data set consisting
of three target classes for detailed proof-of-concept and
selectivity studies and a large data set with about 8000 protein

structures and over 70 drug-like ligands. In addition to the
widely used EF and AUC, the authors propose performance
metrics capable of measuring the early enrichments, i.e.,
BEDROC (Boltzman-enhanced discrimination of ROC) and
NSLR (normalized sum of logarithmic ranks).

■ CONCLUSION
Drug target identification is one of the most important, but
also most complex, aspects of preclinical drug development. In
this respect, computational target prediction is a highly
valuable tool to identify the most probable targets for a
compound under investigation. Such tools can guide wet lab
experiments by suggesting potential targets for orphan
compounds, supply tool compounds for functional analyses
of poorly understood proteins, and thus help to decipher the
mode-of-action of a protein under investigation. Furthermore,
desired as well as undesired multitarget drug effects can be
rationalized by computational (off-)target predictions, and
known drugs can potentially be repositioned based on these
forecasts.
Computational target prediction methods rely on the

general assumption that similar molecules/structures will
have similar interactions or interaction patterns. Exceptions
are so-called activity cliffs, describing that small changes can
cause large differences in activity.29 Depending on the research
question and the data available, ligand- or structure-based
target prediction methods can be applied. In ligand-based
methods, potential targets can either be inferred from the most
similar known ligands or through elaborated machine learning
models. The latter require sufficient and well annotated data in
order to train proper models. Structure-based approaches
compare a query protein based on their binding sites or
interaction fingerprints to a panel of protein structures or
screen a query compound against these panels using a docking
or pharmacophore screening engine. It should be noted that
usually ligand-centric methods are faster than structure-centric
methods, especially when structural alignment or pose
prediction is evoked. The former provides more quantitative
information such as predicted bioactivities that can directly be
associated with experimental values, whereas the latter can give
additional information about the binding pose of ligands to
potential targets. It should be noted that most methods do not
consider alternate binding pockets on a single protein or the
effect of protein complex formation. Although protein function
or (de)activation through allosteric modulation can occur,
most target prediction methods are based on the assumption
that all ligands are orthosteric binders.
In our opinion, future progress needs to promote data

coverage from both the ligand and protein point of view, e.g.,
annotation of non-biased bioactivities (reporting inactives) and
deposition of novel structures or the same protein structures,
but with different ligands to provide a better view on the
dynamics of the ligand binding site (high-throughput
crystallization). Furthermore, protein flexibility modeling and
inter-target ranking are equally important matters to address.
Moreover, new methods should be evaluated on standardized
benchmarking data sets and performance metrics, as well as
made accessible to the community in order to improve
predictability, reliability, and reproducibility. Finally, holistic
approaches should and will gain momentum, integrating
multiple types of data, e.g., coupling chemical and structural
space with information on the proteome level and pathways,
linking cellular and molecular scales.
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(97) Konc, J.; Janezǐc,̌ D. ProBiS Algorithm for Detection of
Structurally Similar Protein Binding Sites by Local Structural
Alignment. Bioinformatics 2010, 26, 1160−1168.
(98) Desaphy, J.; Azdimousa, K.; Kellenberger, E.; Rognan, D.
Comparison and Druggability Prediction of Protein-Ligand Binding
Sites from Pharmacophore-Annotated Cavity Shapes. J. Chem. Inf.
Model. 2012, 52, 2287−2299.
(99) Weill, N.; Rognan, D. Alignment-Free Ultra-High-Throughput
Comparison of Druggable Protein-Ligand Binding Sites. J. Chem. Inf.
Model. 2010, 50, 123−135.
(100) Sciabola, S.; Stanton, R. V.; Mills, J. E.; Flocco, M. M.; Baroni,
M.; Cruciani, G.; Perruccio, F.; Mason, J. S. High-Throughput Virtual
Screening of Proteins Using GRID Molecular Interaction Fields. J.
Chem. Inf. Model. 2010, 50, 155−169.
(101) Shulman-Peleg, A.; Nussinov, R.; Wolfson, H. J. Recognition
of Functional Sites in Protein Structures. J. Mol. Biol. 2004, 339, 607−
633.
(102) von Behren, M. M.; Volkamer, A.; Henzler, A. M.;
Schomburg, K. T.; Urbaczek, S.; Rarey, M. Fast Protein Binding
Site Comparison Via an Index-Based Screening Technology. J. Chem.
Inf. Model. 2013, 53, 411−422.
(103) Krotzky, T.; Grunwald, C.; Egerland, U.; Klebe, G. Large-
Scale Mining for Similar Protein Binding Pockets: With RAPMAD
Retrieval on the Fly Becomes Real. J. Chem. Inf. Model. 2015, 55,
165−179.
(104) Brakoulias, A.; Jackson, R. M. Towards a Structural
Classification of Phosphate Binding Sites in Protein-Nucleotide
Complexes: An Automated All-Against-All Structural Comparison
Using Geometric Matching. Proteins: Struct., Funct., Genet. 2004, 56,
250−260.
(105) Aung, Z.; Tong, J. C. BSAlign: A Rapid Graph-Based
Algorithm for Detecting Ligand-Binding Sites in Protein Structures.
Genome Inform 2008, 21, 65−76.
(106) Schalon, C.; Surgand, J.-S.; Kellenberger, E.; Rognan, D. A
Simple and Fuzzy Method to Align and Compare Druggable Ligand-
Binding Sites. Proteins: Struct., Funct., Genet. 2008, 71, 1755−1778.
(107) De Franchi, E.; Schalon, C.; Messa, M.; Onofri, F.; Benfenati,
F.; Rognan, D. Binding of Protein Kinase Inhibitors to Synapsin I
Inferred from Pair-Wise Binding Site Similarity Measurements. PLoS
One 2010, 5, No. e12214.
(108) Salentin, S.; Haupt, V. J.; Daminelli, S.; Schroeder, M.
Polypharmacology Rescored: Protein-Ligand Interaction Profiles for
Remote Binding Site Similarity Assessment. Prog. Biophys. Mol. Biol.
2014, 116, 174−186.
(109) Cao, R.; Wang, Y. Predicting Molecular Targets for Small-
Molecule Drugs with a Ligand-Based Interaction Fingerprint
Approach. ChemMedChem 2016, 11, 1352−1361.
(110) Deng, Z.; Chuaqui, C.; Singh, J. Structural Interaction
Fingerprint (SIFt): A Novel Method for Analyzing Three-Dimen-
sional Protein-Ligand Binding Interactions. J. Med. Chem. 2004, 47,
337−344.
(111) Desaphy, J.; Raimbaud, E.; Ducrot, P.; Rognan, D. Encoding
Protein-Ligand Interaction Patterns in Fingerprints and Graphs. J.
Chem. Inf. Model. 2013, 53, 623−637.
(112) Da, C.; Kireev, D. Structural Protein-Ligand Interaction
Fingerprints (SPLIF) for Structure-Based Virtual Screening: Method
and Benchmark Study. J. Chem. Inf. Model. 2014, 54, 2555−2561.
(113) Kinoshita, K.; Nakamura, H. Identification of Protein
Biochemical Functions by Similarity Search Using the Molecular
Surface Database EF-Site. Protein Sci. 2003, 12, 1589−1595.
(114) Reisen, F.; Weisel, M.; Kriegl, J. M.; Schneider, G. Self-
Organizing Fuzzy Graphs for Structure-Based Comparison of Protein
Pockets. J. Proteome Res. 2010, 9, 6498−6510.
(115) Yeturu, K.; Chandra, N. PocketMatch: A New Algorithm to
Compare Binding Sites in Protein Structures. BMC Bioinf. 2008, 9,
543.

Journal of Chemical Information and Modeling Review

DOI: 10.1021/acs.jcim.8b00832
J. Chem. Inf. Model. 2019, 59, 1728−1742

1741

24 CHAPTER 1. INTRODUCTION



(116) Wood, D. J.; de Vlieg, J.; Wagener, M.; Ritschel, T.
Pharmacophore Fingerprint-Based Approach to Binding Site Sub-
pocket Similarity and Its Application to Bioisostere Replacement. J.
Chem. Inf. Model. 2012, 52, 2031−2043.
(117) Liu, T.; Altman, R. B. Using Multiple Microenvironments to
Find Similar Ligand-Binding Sites: Application to Kinase Inhibitor
Binding. PLoS Comput. Biol. 2011, 7, No. e1002326.
(118) Siragusa, L.; Cross, S.; Baroni, M.; Goracci, L.; Cruciani, G.
BioGPS: Navigating Biological Space to Predict Polypharmacology,
Off-Targeting, and Selectivity. Proteins: Struct., Funct., Genet. 2015, 83,
517−532.
(119) Kokh, D. B.; Richter, S.; Henrich, S.; Czodrowski, P.;
Rippmann, F.; Wade, R. C. TRAPP: A Tool for Analysis of Transient
Binding Pockets in Proteins. J. Chem. Inf. Model. 2013, 53, 1235−
1252.
(120) Wishart, D. S.; Knox, C.; Guo, A. C.; Shrivastava, S.;
Hassanali, M.; Stothard, P.; Chang, Z.; Woolsey, J. DrugBank: A
Comprehensive Resource for in Silico Drug Discovery and
Exploration. Nucleic Acids Res. 2006, 34, D668−D672.
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1.2.2 Advances and Challenges in Computational Fragment-Based Drug De-
sign

Fragment-based drug design (FBDD) has been successful in developing novel and selective
compounds and is usually applied in early-stage drug discovery to identify and optimize active
and promising molecules (hits and leads). Vemurafenib is an example of an FBDD-derived
kinase inhibitor that is used in the clinic, which was approved by the FDA in 2011 to treat
melanoma in patients who have the BRAF V600E kinase mutation [51].

Small molecules can be described as combinations of fragments, which are low-molecular-
weight molecules of less than 300 Da. The small size of a fragment —typically a third of
the size of a drug-like molecule— can explore the chemical space more efficiently and retrieves
more protein binding information than traditional high-throughput screens (HTS) with small
molecules. In more detail, FBDD has the following advantages [26]:

• Fragment libraries can be smaller in size than traditional compound libraries, which re-
duces the number of experiments per screen. Libraries of 1000 fragments with around 12
heavy atoms are estimated to have more complete coverage of the chemical space than a
library of 106 − 107 lead- or drug-sized compounds.

• Progression into and through clinical trials is often at risk due to the drug candidate’s
molecular weight and lipophilicity properties. By definition, fragments have lower values
for both properties, which offers opportunities for improved physicochemical properties
during optimization.

• Fragments are weaker binders than small molecules; the dissociation constant Kd for
molecules is 1 − 10 µM while for fragments it is 100 µM − 10 mM. Thus, fragments are
more likely to bind to arbitrary targets, yielding higher hit rates, and to sample more
binding patterns than traditional HTS campaigns.

• Fragments allow room for chemical novelty and their optimization can steer away from
the congested intellectual property (IP) space.

Naturally, some of these advantages are accompanied by challenges, which can be met with
additional experimental assessments and theoretical considerations as outlined in the follow-
ing [26]:

• Fragments are weaker binders than molecules and therefore more elaborated methods are
needed for their detection. False positives need to be identified early with orthogonal
screening methods such as X-ray structure validation.

• Often fragment screens are run in parallel with traditional HTS campaigns, complicating
a direct comparison of small fragment hits with less potency and larger hits with more
potency. Solutions to this problem are measures that scale a compound’s potency to its
size, e.g., the ligand efficiency (LE) or the lipophilic ligand efficiency (LLE) [52].

LE = pIC50(or pKi) ÷ number of heavy atoms
LLE = pIC50(or pKi) − cLogP (or LogD)

• Initial weak fragment hits must be optimized by multiple orders of magnitude to reach a
potency of Kd < 100 nM. Planning such an optimization route is challenging and often
requires integrating information about structural biology.
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FBDD campaigns typically start with the screening of a fragment library to identify binders
to specific regions in the target binding site. The design of such fragment libraries requires (i)
the definition of the desired region of chemical space and (ii) the sampling of that region [53].
They are usually composed of chemical structures that adhere to the "Rule of Three" (Ro3),
i.e., they have a molecular weight of < 300 Da, fewer than three hydrogen bond donors and
acceptors, fewer than three rotatable bonds, and a partition coefficient (cLogP) of <= 3, while
heavy atom counts tend to be restricted to < 20 [54].

Hits from fragment library screens are optimized into larger compounds by fragment growing,
merging, or linking [55]. Fragment growing is the most common approach in FBDD and describes
the process of building sensible chemistry around (typically) a single fragment hit. The molecule
is optimized in the context of structural binding site information to explore possible interaction
profiles that show desired selectivity and drug-like properties. Fragment merging describes the
merging of initially two overlapping reference molecules by substituting chemical moieties of one
molecule with the core of the other. Fragment linking joins two molecules, that bind to different
regions in the binding site, with a chemical spacer or linker.

Fragments can be generated computationally by decomposing larger compounds. The RE-
CAP algorithm [56] automates fragmentation based on 11 distinct rules extracted from common
chemical reactions, while the BRICS algorithm [57] extends the method to 19 rules including
additions that incorporate more elaborate medicinal chemistry. The eMolFrag tool [58] works
on top of BRICS to generate a set of (larger) "bricks" and (smaller) connecting linkers. Alter-
natively, the BREED algorithm [59] immediately produces recombined molecules for proteins
with similar pockets such as kinases; two structures (and their co-crystallized ligands) are su-
perimposed, and if two bonds of each ligand are close, the two ligands’ overlaying fragments
that are adjacent to these bonds are swapped. This produces two pocket-informed recombined
molecules. In this thesis, we use the BRICS algorithm for kinase-focused fragment-based drug
design and discuss the relevance of other computational fragmentation techniques in Section 3.2.

1.3 Protein Kinases

Most aspects of cellular life are regulated by activating and deactivating enzymes or re-
ceptors as a way of signal transduction. The most prominent mechanism involves protein
phosphorylation via the enzyme classes kinases and phosphatases. Protein kinases transfer
the terminal phosphate group of an ATP molecule to the hydroxyl group of a serine, threo-
nine, or tyrosine, while protein phosphatases reverse the reaction by phosphate removal [2].
Dysregulated phosphorylation is associated with a variety of disorders including cancer, inflam-
mation, and neurodegeneration, which makes protein kinases a frequent target of drug discovery
campaigns [60, 61].

1.3.1 Protein Kinases as Drug Targets and Challenges

Roughly a third of all FDA-approved drugs target kinases combating a variety of serious dis-
eases such as cancer by acting as antineoplastic agents or immunosuppressants [61]. Remarkable
advances have been made over the last decades from the first approved drug imatinib in 2001
to over 70 FDA-approved kinase drugs to date. Despite the extensive research on this target
family, many open challenges remain [26, 62]:

• Bias: Most FDA-approved drugs historically target tyrosine kinases (TK), see more de-
tails in Section 1.3.2. This leads to a large fraction of under- and unexplored kinases.
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For example, as of August 2022, 6047 X-ray structures of 314 human kinases have been
resolved [63] with a strong emphasis on TK and CMGC kinases such as EGFR and CDK2
(Figure 1.2a).

• Drug resistance: Kinases often undergo specific mutations that impair drug binding; drugs
are then no longer curative but only delay tumor progression. To circumvent drug resis-
tance, research has expanded into the development of mutation-resistant inhibitors and
the identification of synergistic drug combination treatments [64].

• IP restriction: Due to the long-standing interest in kinases as drug targets, the chemical
space of kinase inhibitors is vastly patented, making it challenging to navigate through
the crowded intellectual property (IP) space [26].

• Selectivity : Many kinase inhibitors are promiscuous binders due to the highly conserved
binding sites across the entire set of known kinases, also referred to as the kinome. Such
promiscuity can cause side effects due to off-target binding or can be explored for the
design of multi-target drugs (polypharmacology) [64, 65].

1.3.2 Classification of Human Protein Kinome

The human protein kinome consists of roughly 500 kinases∗, which are generally divided
into eukaryotic and atypical protein kinases as well as pseudokinases: eukaryotic protein ki-
nases share a similar sequence and structure, whereas atypical protein kinases have biochemical
kinase activity but lack sequence similarity to the typical kinase domain. In contrast, so-called
pseudokinases have a kinase-like domain without conserved catalytic residues and are therefore
predicted to be inactive [62].

Eukaryotic protein kinases —the focus of this thesis— can be classified based on their se-
quence identity into eight main kinase groups: AGC, CAMK, CK1, CMGC, STE, TK, TKL,
and "Other" (Table 1.1) [67, 68]. Tyrosine-specific protein kinases (TPK) belong to the TK ki-
nases and are subdivided into receptor and non-receptor kinases. In contrast, serine-/threonine-
specific protein kinases (STPK) are more heterogeneous and are divided into the six kinase
groups AGC, CAMK, CK1, CMGC STE, and TKL. The "Other" group contains additional
diverse protein kinases, that do not fit into the previous groups. The classification of the human
kinome alongside its phylogenetic tree representation was published in 2002 by Manning et al.
[67] and is the basis of the web-based tool KinMap that allows users to visualize human kinome
data such as profiling or structural data [69] interactively (see examples in Figure 1.2).

1.3.3 Kinase Structure

Protein kinase structures consist of two domains, the N-terminal β-sheet-rich and the C-
terminal α-helix-rich lobes; the N- and C-lobes are connected via the hinge region (Figure 1.4a).
The majority of kinase inhibitors target the catalytic cleft between these lobes, which contains
a highly conserved ATP binding site.

Based on over 1200 kinase-ligand crystal structures, van Linden et al. [74] have defined the
binding site to comprise 85 residues and 19 well-defined regions and motifs, covering a front
cleft and a back cleft connected by a so-called gate area. This nomenclature, including a pocket
residue numbering from 1− 85, is applied to all available kinase structures and published in the
KLIFS database [63]; see more details on KLIFS in the section "KLIFS pocket definition and

∗This number varies depending on the data resource, see an overview in [66].
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Short name Description Specificity
AGC PKA, PKG, and PKC containing families STPK
CAMK Calcium/calmodulin-dependent protein kinase STPK
CK1 Casein kinase 1 STPK
CMGC CDK, MAPK, GSK3, and CLK containing families STPK
STE Homologues of yeast sterile 7, sterile 11, sterile 20 kinases STPK
TK Receptor and non-receptor tyrosine kinases TPK
TKL Tyrosine kinase-like STPK
"Other" Protein kinases that do not fit any of the major groups -

Table 1.1: Overview of eukaryotic kinase groups and their specificity towards either tyrosine-
(TPK) or serine/threonine-specific kinases (STPK).

(a)

Illustration reproduced courtesy of Cell Signaling Technology, Inc. (www.cellsignal.com)

(b)

Figure 1.2: Exploration of kinase data coverage across the kinome: (a) structural landscape
in the PDB [70] with a minimum of 1 and maximum of 432 structures as of 2022-09-09, and
(b) bioactivity landscape in ChEMBL29 [71, 72] with a minimum of 1 and maximum of 5637
bioactivities. The KinMap-based [69] tree figures can be reproduced with [73]; atypical kinases
were excluded.
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Figure 1.3: Kinase binding site residues and regions as defined by KLIFS. Shown are the residues
1 − 85, categorized into different subregions along the amino acid sequence: β-sheets I-VIII
(yellow), α-helices αC/D/E (red), G-rich loop g.l and αC-to-IV-connecting loop b.l (green),
linker and hinge region (cyan and magenta), gate keeper (GK), catalytic loop c.l (orange), as
well as xDFG motif and activation loop a.l (blue). This plot shows, in the form of a sequence
logo [75], the conservation of the 85 kinase pocket residues across over 1200 kinase structures
as defined in the initial KLIFS publication by van Linden et al. [74], from where this figure is
taken.

alignment". In the following, key regions and residues are highlighted including their respective
KLIFS residue numbering in brackets (1D and 3D views in Figures 1.3 and 1.4, respectively).

The front cleft accommodates the full ATP and contains the hinge region (46−48, magenta),
linker (49 − 52, cyan), glycine-rich loop (4 − 9, green), and catalytic loop (68 − 75, orange).
The hinge region forms key hydrogen bonds with ATP’s adenine group as well as most kinase
inhibitors (Figure 1.4b). The glycine-rich loop stabilizes ligand binding and the catalytic loop
contains the aspartate D70, which functions as a base acceptor for the proton transfer during
phosphorylation.

The gate area contains the DFG motif (81 − 83, blue), the conserved lysine K17 (17), and
the gatekeeper residue (45), which is often used to address inhibitor selectivity and precedes
the hinge region. The DFG motif can undergo a significant conformational change induced by
flips between aspartate D81 and phenylalanine F82. These DFG-in and DFG-out conformations
drive the active and inactive states of the kinase. In the DFG-in state, D81 binds Mg2+ ions
that coordinate the phosphates of ATP to position them for phosphate transfer. In the DFG-out
state, the flip opens a hydrophobic region in the back cleft targeted by inhibitors stabilizing the
inactive state [74, 76]. Examples of DFG-in and DFG-out structures are shown for ATP and
imatinib, respectively, in Figures 1.4b and 1.4d.

The back cleft contains amongst others the αC-helix (20 − 30, red) with the conserved
glutamine E24 (24), which forms a conserved K17-E24 salt bridge in the αC-in conformation as
opposed to no salt bridge in the αC-out conformation. K17 and E24 in the αC-in state interact
with the phosphates of ATP to anchor and orient the ATP. Examples of αC-in and αC-out
structures are shown for ATP and gefitinib, respectively, in Figures 1.4b and 1.4c.

1.3.4 Kinase Inhibitors

According to the PKIDB [83] database, over 300 kinase inhibitors are currently in clinical
trials with the following percentages of inhibitors in the different phases [84, 85]: 1.3% in phase
0 to explore if and how the new drugs may work, 14.1% in phase I to check if the treatment is
safe, 37.2% in phase II to check if the treatment works, 21.4% in phase III to determine if the
new drug is better than already available drugs, and 26.0% in phase IV to follow up the drugs’
effect after it has been approved (Figure 1.5a).

The first drug imatinib (Gleevec) was approved in 2001 to act on BCR-Abl and treat
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N-lobe

C-lobe

linker hinge

catalytic
loop

DFG
motif

G-rich
loop

ɑC-
helix

GK

(a) Important structural regions and motifs in ki-
nases; GK - gate keeper residue. Example kinase
is CDK2 (PDB/KLIFS IDs: 1FIN/4367 [21]).

E24
K17

F82
D81ATP

ɑC-in
Salt bridge

DFG-in
D flipped in

(b) CDK2 bound to ATP constitutes a DFG-in
and αC-in conformation with the K17-E24 salt
bridge (PDB/KLIFS IDs: 1FIN/4367 [21]).

E24
K17

F82
D81IRE

ɑC-out
No salt bridge

DFG-in
D flipped in

(c) EGFR bound to gefitinib (IRE) constitutes a
DFG-in and αC-out conformation (PDB/KLIFS
IDs: 4I22/823 [77]).

E24

K17

F82

D81

STI

ɑC-in
Salt bridge

DFG-out
D flipped out

(d) ABL1 bound to imatinib (STI) constitutes a
DFG-out and αC-in conformation (PDB/KLIFS
IDs: 2HYY/1092 [78]).

Figure 1.4: Structural kinase regions, motifs, and conformations: (a) full structure view, (b) en-
degenous ligand ATP in DFG-in/αC-in, (c) gefitinib-bound DFG-in/αC-out, and (d) imatinib-
bound DFG-out/αC-in conformations. Figures were generated with this Jupyter Notebook [79]
using the NGLviewer [80, 81] and OpenCADD [82]. The coloring scheme for the kinase regions
corresponds to Figure 1.3. The interaction patterns are shown in 2D in Figure 1.6.
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Figure 1.5: Number of kinase inhibitors that are (a) in clinical phases and (b) FDA-approved
every year since the first approval of imatinib in 2001; based on data from the PKIDB [83] as
of 2022-07-18. Note that the y-axes have different scales.

leukemia, followed by gefinitib (Iressa) and erlotinib (Tarceva) in 2003 and 2004 to act on
EGFR and treat non-small cell lung cancer. Underlining the popularity of kinases as drug tar-
gets, the number of kinase inhibitors has doubled since 2016/17. To date, 71 kinase inhibitors
are FDA-approved including the latest approvals in 2022, i.e., abrocitinib and pacritinib (Fig-
ure 1.5b). The majority of FDA-approved kinase inhibitors are active against more than one
type of cancer, while only a few of them have non-oncological indications [86].

Most of the FDA-approved drugs bind in the ATP-binding pocket and intermediate sur-
roundings and are classified by their binding modes with respect to properties such as or-
thosteric/allosteric binding, DFG-in/out kinase conformations, and reversible/irreversible bind-
ing [87]:

• Type I and II inhibitors accommodate the ATP-binding front pocket and form hydrogen
bonds with the hinge region.

– Type I and I1/2 inhibitors bind to the active and inactive DFG-in conformation, e.g.,
gefitinib (Figure 1.6b) and erlotinib, respectively.

– Type II inhibitors stabilize the inactive DFG-out conformation, e.g., imatinib (Fig-
ure 1.6c).

• Type III and IV inhibitors are allosteric inhibitors that bind next to the ATP binding site
and outside of the catalytic cleft, e.g., trametinib and everolimus, respectively.

• Type V inhibitors are bivalent binders, i.e., they bind two different kinase regions simul-
taneously. To date, no FDA-approved inhibitor has this binding mode.

• Type VI inhibitors are covalent binders, e.g., afatinib, whereas type I-V inhibitors bind
reversibly.
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hingeATP

(a) CDK2 and ATP

hinge

IRE

(b) EGFR and gefitinib (IRE)

hinge

STI

(c) ABL1 and imatinib (STI)

Figure 1.6: Binding modes of ATP, gefitinib (IRE), and imatinib (STI) in complex with CDK2,
EGFR, and ABL1, generated with PoseView on the ProteinsPlus webserver [10, 11]. Struc-
tural complexes (PDB/KLIFS IDs) used to illustrate the binding modes are (a) CDK2-ATP
(1FIN/4367) [21], (b) EGFR-IRE (4I22/823) [77], and (c) ABL1-STI (2HYY/1092) [78].
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1.3.5 KLIFS — a Structure-Focused Kinase Data Resource

The focus on the protein kinase family in drug discovery has resulted in a plethora of
freely available databases, resources, and tools to explore bioactivity/profiling data, structures,
sequences, and disease associations, which are thoroughly reviewed in [18, 62]. In the following,
we will concentrate on the structure-focused KLIFS database [63].

KLIFS is a kinase database that extracts protein kinase-focused information on structures
from the PDB [70]. To date (2022-08-06), KLIFS collects annotations and provides analyses for
6047 kinase PDB structures, which cover 314 kinases, 12898 monomeric structures, and 3788
unique ligands. KLIFS contains the following kinase, structure, and ligand annotations:

• Kinases in KLIFS are named according to the gene symbols defined by the HUGO Gene
Nomenclature Committee (HGNC) [88]. The kinases are annotated with their kinase
family, kinase group, species (to date, human and mouse), and cross-references to the
UniProt [89] and IUPHAR/BPS Guide to PHARMACOLOGY (GtoPdb) [90] databases.

• Ligands bound to kinase structures are analyzed regarding the interactions they form
with the 85 pocket residues, see more details in the section "KLIFS interaction fingerprint
(IFP)". Furthermore, KLIFS defines three main pockets (front cleft, gate area, and back
cleft) and twelve subpockets, as well as records which of those are occupied by structure-
bound ligands. Structure-bound ligands are annotated with bioactivities from ChEMBL
[71] and information about clinical trials from the PKIDB [83] if available.

• Structures representing ligand-bound or -unbound kinases are fetched from the PDB and
processed as follows: (i) All multi-chain structures are split into monomers and aligned
to each other with a special focus on a pre-defined binding site of 85 residues, see more
details in the section "KLIFS pocket definition and alignment". (ii) This alignment en-
ables the lookup of binding site residues such as the hinge region residues in any of the
monomeric kinases in KLIFS. (iii) The monomeric structures in KLIFS are annotated with
their originating PDB ID, chain, and alternate model (if multiple coordinates exist of PDB
structure’s atoms). (iv) Their quality is documented with the structure’s resolution and
KLIFS quality score, which ranges from 0 (bad) to 10 (flawless) accounting for the struc-
tural alignment, resolution, as well as missing residues and atoms. (v) The structures’
conformations are described by the state of the DFG motif, the αC-helix, the salt bridge
between K17 and E24, the activation loop, and the G-rich loop. (vi) Each structure entry
is assigned to a KLIFS ID, as are kinases and ligands.

The KLIFS data can be accessed in many ways; how to best interact with the KLIFS
database depends on the amount of data to be accessed and on the user’s coding experience:

• Manually using the website’s interface at https://klifs.net [63], which is to be preferred
when exploring a smaller set of structures.

• Automated with KLIFS KNIME nodes [20, 91], which is useful to process large datasets
without the need to code.

• Programmatically using KLIFS’ REST API and OpenAPI specifications [63] to perform
larger scale queries or to integrate different queries into programmatic workflows.

• Programmatically using OpenCADD-KLIFS [92], a Python wrapper around KLIFS’ REST
API, to facilitate sending KLIFS requests and streamline the responses into a table format,
so-called Pandas DataFrames [93], see Section 3.3.3 of this thesis.

https://klifs.net
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KLIFS pocket definition and alignment

The core of the KLIFS database consists of the kinase pocket definition and alignment
procedure introduced by van Linden et al. [74] in 2012. A master alignment was created of
all the kinase domains and subsequently optimized with a focus on known conserved patterns
("kinase domain sequence alignment"). The KLIFS pocket was determined based on 1252
unique ligand-kinase monomers extracted from the at the time 1734 kinase PDB structures. In
this dataset, the defined 85 pocket residues interact with any bound kinase inhibitor within the
catalytic front cleft, gate area, and/or back cleft (Figure 1.3) and cover the binding modes of
type I, I1/2, II, and III inhibitors.

To allow for a structural alignment, the KLIFS authors defined a specifically constructed ki-
nase template set. This set contains 24 structures of kinases representing all eight eukaryotic pro-
tein kinase groups with three structures per group (Table S2 in [74]). These template structures
were sequence-aligned using the "kinase domain sequence alignment" and then structure-aligned
by the superimposition of selected residues based on the sequence-alignment (the "superpose"
selection). All kinase structures in KLIFS are aligned (based on sequence and structure) to the
three template structures of their respective kinase groups as described before.

This procedure makes it possible to easily and instantly look up any pocket residue of interest
across the full structurally covered kinome and opens the door for many applications in the field
of structural cheminformatics, such as exploring interaction patterns across the kinome based
on interaction fingerprints.

KLIFS interaction fingerprint (IFP)

Interaction fingerprints (IFPs) convert the binding mode of a ligand in a binding site, i.e., the
protein-ligand interactions that are present in a structurally resolved complex into a machine-
readable bit string. This can, for example, be used to identify important (e.g., frequent or rare)
interactions or interaction patterns for ligand design, off-target prediction, or selectivity studies.

KLIFS annotated kinase-ligand interactions are based on the FingerPrintLib developed by
Marcou and Rognan [94], which encodes the presence (1) or absence (0) of seven different
interaction types between each of the 85 pocket residues and the ligand: Hydrophobic, face-
to-face and face-to-edge aromatic, hydrogen bond donor and acceptor, as well as positive and
negative ionic interactions. This results in an 85 · 7 = 595-bit-long IFP per pocket-ligand pair,
where each bit i represents the same residue and interaction type in every IFP across the kinome
(Figure 1.7).

1.3.6 Kinase Bioactivity and Profiling Resources

The longstanding research focus on protein kinases in academia and the pharmaceutical
industry resulted in a wealth of not only structural —as discussed in detail in the previous
section— but also bioactivity data that is either deposited in databases or published alongside
research articles.

ChEMBL is one of the primary resources for bioactivity data and holds roughly 20 mil-
lion bioactivity values on over two million compounds and 15000 targets; the latest version
ChEMBL31 was released in July 2022. Kinase-focused subsets of the ChEMBL dataset are
provided, for example, (i) on the KLIFS database fetching bioactivity values for all deposited
structurally resolved kinase-ligand complexes and (ii) on the KinoData platform fetching all
bioactivity values associated with kinases (latest release covers ChEMBL30 [96]). As with other
data types, the coverage of bioactivity data is highly unbalanced among the human kinases,
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Figure 1.7: Schematic depiction of a KLIFS interaction fingerprint (IFP): Seven interaction types
are detected between each of a kinase structure’s 85 pocket residues and a co-crystallized ligand.
Interaction types include hydrophobic contacts (HYD), face-to-face aromatic interactions (F-
F), face-to-edge aromatic interactions (F-E), protein hydrogen bond donors (DON), protein
hydrogen bond acceptors (ACC), protein cationic interactions (ION+), and protein anionic
interactions (ION-). The bits 0 and 1 stand for the absence and presence of a specific interaction
at a specific amino acid residue of the 85 pocket sequence. Figure is taken from [95] (CC-BY
4.0 license), which was adapted from [74].

depending on how much research has been spent on certain kinases (Figure 1.2b).
However, a major challenge for using ChEMBL and other public databases is the inherent

data heterogeneity rooted in bioactivity measurements originating from various experimental
setups. Hence, kinase-specific chemogenomics datasets —profiling multiple kinases with a set
of compounds— are used to assess polypharmacology effects of compounds: Kinase profiles by
Karaman et al. [97] and Davis et al. [98] cover 38 and 72 kinase inhibitors across a panel of 317
and 442 kinases, respectively, and are build-in datasets on the KinMap webserver [69]. Efforts
to generate a comprehensive kinase chemogenomics set (KCGS) by Drewry et al. [99] resulted
in the PKIS2 dataset assaying 645 compounds on 392 kinases. Alternatively, studies have
combined multiple smaller profiling datasets. The KIBA dataset by Tang et al. [100] combines
three selectivity profiles, including the Davis et al. [98] dataset, and covers 52498 compounds on
467 targets, while the Moret et al. [101] dataset combines six kinase inhibitor libraries to allow
the user to generate selectivity profiles.

1.4 Open Science

Open science aims to increase the reuse of research and ensures that scientific data are
accessible to all. The key to achieving this goal is adhering to FAIR principles, which were
designed in a workshop held in 2014 in Leiden, Netherlands, by stakeholders from academia,
industry, funding agencies, and scholarly publishers [102]. The FAIR principles are summarized
on the GO FAIR website [103] as follows:

F. Findable: The first step in (re)using data is to find it. Metadata and data need to be easy
to find for both humans and computers.

A. Accessible: Once the user finds the required data, one needs to know how it can be accessed,
possibly including authentication and authorization.

I. Interoperable: The data usually needs to be integrated with other data. In addition, the data
needs to interoperate with applications or workflows for analysis, storage, and processing.
This requires standardized vocabulary, unique identifiers, and good data models.
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R. Reusable: The ultimate goal of FAIR is to optimize the reuse of data. To achieve this, meta-
data and data should be well-described so that they can be replicated and/or combined
in different settings.

FAIRness is illustrated by Wilkinson et al. [102] with the example of the UniProt [89] re-
source, which archives protein sequences and annotations: UniProt has a stable URL linking
to data and metadata (F) that is human- (HTML) and machine-readable (text and RDF) (A).
The RDF-formatted response uses a shared vocabulary and ontology (I) and UniProt entries
are interlinked with more than 150 different databases in the RDF representation (R).

These principles are not only applicable to data but also to algorithms, tools, and workflows
that lead to that data. To improve the sharing and reuse of research software, the FAIR for
Research Software (FAIR4RS) initiative has applied the FAIR principles from data to research
software. Many of the principles can be directly applied by treating software and data as similar
digital research objects. However, specific characteristics of software —such as its executability,
composite nature, and continuous evolution and versioning— make it necessary to revise and
extend the principles as summarized in [104]:

F. Findable: Software and its associated metadata are easy for both humans and machines to
find.

F1. Software is assigned a globally unique and persistent identifier.

F2. Software is described with rich metadata.

F3. Metadata clearly and explicitly includes the identifier of the software they describe.

F4. Metadata is FAIR, searchable, and indexable.

A. Accessible: Software and its metadata are retrievable via standardized protocols.

A1. Software is retrievable by its identifier using a standardized communications protocol.

A2. Metadata is accessible, even when the software is no longer available.

I. Interoperable: Software interoperates with other software by exchanging data and/or meta-
data, and/or through interaction via application programming interfaces (APIs), described
through domain-relevant standards.

I1. Software reads, writes, and exchanges data in a way that meets domain-relevant com-
munity standards.

I2. Software includes qualified references to other objects.

R. Reusable: Software is both usable (can be executed) and reusable (can be understood,
modified, built upon, or incorporated into other software).

R1. Software is described with a plurality of accurate and relevant attributes.

R2. Software includes qualified references to other software.

R3. Software meets domain-relevant community standards.

Lamprecht et al. [105] outlined how software can adhere to these principles: Software can
be findable (F) when registered with an identifier such as issued by Zenodo [106] and following
metadata standards such as PEP566 for Python [107]. It can be accessible (A) via HTTP/S on
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code repositories such as GitHub [108], GitLab [109], and BitBucket [110]. It can be interoper-
able (I) by including versioning, dependencies, and interfaces such as OpenAPI [111], as well as
by packaging or using software containers such as Docker [112] for portability across operating
systems. Finally, it can be reusable (R) when assigned a license, provenance, and requirements,
while following code standards such as PEP8 for Python [113].

Chemistry has a long history of developing software and algorithms to tackle chemical prob-
lems. While in the beginning, most cheminformatics software was freely available, only little
effort was spent to make it usable [114]. In 2005, several open chemistry and cheminformatics
projects such as Open Babel [115] and The Chemistry Development Kit (CDK) [116–119] joined
forces to enhance interoperability. This movement was named "Blue Obelisk" and covers the
areas Open Data, Open Standards, and Open Source (ODOSOS) with the aim that knowledge
can be freely used, modified, and redistributed: [114, 120]

• Open Data in Chemistry : One can obtain all scientific data in the public domain and reuse
it for whatever purpose.

• Open Standards in Chemistry : One can find visible community mechanisms for protocols
and communicating information.

• Open Source in Chemistry : One can use other people’s code without further permission,
including changing it for one’s own use and distributing it again.

The Blue Obelisk movement discussed in 2011 that open source software is valuable to not
only academia but also industry because it allows for independent validation of source code
data and computational procedures. O’Boyle et al. [120] stated at the same time that most
Blue Obelisk projects are not renumerated and contributors do much of the work in their spare
time.

Since then, many organizations and initiatives have been established to finance open source
software projects, such as the Open Molecular Software Foundation (OMSF) [121], Google Sum-
mer of Code (GSoC) [122], Chan Zuckerberg Initiative (CZI) [123], and Quansight Labs [124].
The Chemistry Consortium in the National Research Data Infrastructure (NFDI4Chem) [125]
builds an open and FAIR infrastructure for research data management in chemistry in Germany.
The Molecular Sciences Software Institute (MolSSI) has been founded to promote open science
and software best practices and is a great example of providing software expertise, infrastruc-
ture, education, and training. Workshops such as the CICAG "Open Source Tools for Chemistry
Workshops" give a stage for developers to show their open source tools to potential users at the
interface of chemistry, biology, and informatics.

The software projects shown in this thesis are built on top of a rich and amazing landscape
of (i) open source toolkits for data science such as NumPy [126], Pandas [93], Scikit-learn [127],
MatPlotLib [128], Seaborn [129], JupyterLab [130], and for life sciences such as the RDKit [131],
Biotite [132], PyPDB [133], ChEMBL webresource client [134], and more, as well as (ii) open
datasets such as the PDB [70], KLIFS [63], ChEMBL [71], PubChem [135] databases and Pro-
teinPlus [136] webservices. Our thanks go to all the contributors and maintainers of these open
resources.
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Aim and Objectives

Drug discovery is a complex process that takes approximately 13.5 years and costs around
US$ 1.8 billion to bring a new molecular entity (NME) on the market as a new drug, while only
8% of NMEs transition successfully from the pre-clinical stage to approval [137]. Phrased in
more drastic terms, drug development is expensive, lengthy, and highly prone to failure, while
patients wait for treatment. Computer-aided drug design (CADD) is today a standard discipline
in pharmaceutical research and development from target identification to lead optimization to
help shorten the timelines, reduce costs, and improve the success rates of new drugs [138, 139].
This thesis aims to contribute to this endeavor with a focus on kinases.

Kinases belong to the most studied target classes due to their role in cancer, which is the
world’s second-largest health problem [140]. Decades of research have yielded large amounts
of structural, chemical, and pharmacological data. In this thesis, these rich datasets build
the basis for the development of structural cheminformatics tools with an emphasis on kinase-
focused computational target prediction and fragment-based drug design while applying FAIR
principles to support open science.

Computational target prediction plays a major role in the target identification phase of
drug discovery campaigns. Such prediction methods are applied to explore potential targets,
polypharmacology, off-target effects, drug repurposing, and potential chemical probes. To
achieve this, they encode and compare information based on ligands, protein sequences, protein-
ligand interactions, or protein structures. Within the latter structure-based category, binding
site comparison is a target prediction approach that assumes that similar binding sites bind sim-
ilar ligands. While many binding site comparison methods have been published since the early
2000s as reviewed in Publication A [22] (Section 1.2.1), the toolbox for kinase research was
still missing a kinase-focused and open-sourced tool (i) that can detect and rationalize pocket
similarities across the structurally covered kinome and (ii) that is embedded in an automated
pipeline with alternative similarity measures.

Section 3.1 presents three publications that help to close this gap in the field of kinome-wide
(off-)target prediction. In Publication B [141] (Section 3.1.1), we introduced the novel KiSSim
method, which encodes and compares the structural kinome provided in the public KLIFS
database [63]. KiSSim captures the spatial and physicochemical characteristics of the conserved
kinase binding sites based on KLIFS’ residue-by-residue pocket alignment. We show that this
method can detect unexpected kinase inhibitor off-targets and explain structural differences in
kinase profiles. In Publication C [142] (Section 3.1.2), we present a study in collaboration
with the Kolb Lab in Marburg, Germany. Our collaborators were trying to design multi-target
kinase inhibitors with specific on- and off-target profiles based on docking screens but observed
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that their target profiles deemed more difficult than anticipated. We investigate if the observed
difficulties result from unexpected high kinase similarities between on- and off-targets by apply-
ing different similarity measures based on the pocket sequences and structures, pocket-ligand
interaction profiles, and ligand promiscuity. In Publication D [95] (Section 3.1.3), we propose
a pipeline based on our findings in Publications B and C. We streamline similarity measures
as discussed in Publication C while replacing the therein used kinase-unspecific structure-based
method with our novel kinase-specific method KiSSim. This automated similarity analysis al-
lows analyzing user-defined sets of kinases of interest from multiple views.

Section 3.2 treats kinase pockets from another perspective to advance kinase-focused com-
putational fragment-based drug design (FBDD). FBDD searches for the right combinations of
relevant fragments to build novel and potent molecules. In Publication E [143] (Section 3.2.1),
we introduce the KinFragLib project to guide this search by extracting the known chemical space
of relevant kinase subpockets. We utilize the public data on the kinase pocketome focusing on
the binding poses that kinase inhibitors occupy in experimentally resolved kinase-ligand com-
plexes. We treat kinase inhibitors as combinations of fragments that occupy kinase-typical
subpockets. These subpocket-specific fragment libraries are subsequently used to (i) explore
the chemical subpocket space of kinases and (ii) recombine kinase fragments guided by their
subpocket connections to generate novel kinase-focused molecules.

Section 3.3 stresses the importance of FAIR pipelines and toolkits for computer-aided drug
design to allow for an efficient and reproducible drug hunting process. With the example of
kinases, we provide Python-based solutions for common tasks in ligand- and structure-based
drug design published as part of the TeachOpenCADD platform in Publications F and G [144,
145] (Sections 3.3.1 and 3.3.2). Furthermore, we present the Python tool OpenCADD-KLIFS in
Publication H [92] (Section 3.3.3), which builds the backbone for acquiring structural kinase
data from the KLIFS database, which we use throughout all kinase-focused projects discussed
in this thesis.

We seek to make all presented methods, tools, pipelines, and datasets publicly available and
to follow FAIR principles and software best practices. In summary, the central questions that
this thesis aims to answer are:

• Predicting kinome-wide (sub)pocket-based off-targets: How can we build an open-
sourced and kinase-specific pocket fingerprint that can explain and predict unexpected
kinase inhibitor off-targets? How can we incorporate this measure with other similarity
measures for production-ready usage in drug discovery projects?

• Exploring kinome-wide subpocket fragment spaces: How can we build and explore
subpocket-focused fragment libraries based on public kinase-ligand structures? Can we
generate novel kinase-focused molecules by recombining these fragments guided by their
original subpocket connections?

• FAIR pipelines and tools in kinase-centric drug design: How can we contribute to
the scientific community not only with novel scientific insights but also with open-sourced
scientific infrastructure?

We will answer these questions in Chapter 3 and discuss our findings in Chapter 4. Finally,
we will conclude with the impact of this thesis on the scientific community in Chapter 5.



Chapter 3

Methods and Results

This doctoral thesis consists of ten publications (Figure 3.1): One review on computational
target prediction was presented in the Introduction (Publication A, Section 1.2.1) and seven
articles are summarized in this chapter (Publications B–H, Section 3). One article and one
book chapter are part of the appendix (Publications I–J, Appendix 5.1). This chapter contains
the following sections:

• Section 3.1: Predicting kinome-wide (sub)pocket-based off-targets (Publications B–D)

• Section 3.2: Exploring kinome-wide subpocket fragment spaces (Publication E)

• Section 3.3: FAIR pipelines and tools in kinase-centric drug design (Publications F–H)

Each section is preceded by an illustration by Ferdinand Krupp in Figures 3.2–3.4.

Binding sites

Target prediction

Kinase off-target prediction 
from pocket similarity 
(KiSSim)
Publications B and D

Kinase off-target prediction 
from multiple perspectives
Publications C and D

Kinase inhibitor 
fragmentation and 
recombination guided by 
subpockets (KinFragLib)
Publication EK

in
as

es

Target prediction review
Publication A

Open Science

CADD pipelines/tools

Ligand-focused pipelines
Paper F and I*

Structure-focused pipelines
Paper G

Teaching CADD
Paper J*

Querying the KLIFS database
Publication H

Fragment-based
drug design (Teach)OpenCADD

Ligand-focused pipelines
Publications F and I*

Structure-focused pipelines
Publication G

Teaching CADD
Publication J*

Figure 3.1: Schematic overview of the ten publications that are included in this doctoral thesis
based on the following criteria: Publications related to the study of binding sites and kinases as
well as dedicated to open science and pipelines or tools for computer-aided drug design (CADD).
Refer to the List of Publications to find the full references to Publications A–J (the symbol *
indicates publications listed in this thesis’ appendix).
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3.1 Predicting Kinome-Wide (Sub)Pocket-Based Off-Targets

Figure 3.2: Predicting kinome-wide (sub)pocket-based off-targets as illustrated by Ferdinand
Krupp, adapted from Sydow et al. [141].
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3.1.1 KiSSim: Predicting Off-Targets from Structural Similarities in the
Kinome
Publication B

In this study, we present the novel kinase-focused and subpocket-based fingerprint KiSSim
that encodes physicochemical and spatial properties of kinase binding sites as defined by the
KLIFS database [63]. The pre-aligned KLIFS pockets enable a direct and computationally
inexpensive bit-by-bit comparison. We show how the kinome-wide KiSSim comparison can be
used to (i) build phylogenetic trees to study kinase relationships, (ii) explain kinase inhibitor
off-targets that are reported in kinase profiling datasets, (iii) evaluate KiSSim’s performance to
other similarity measures, and (iv) rationalize (dis)similarities in 3D.

§ https://github.com/volkamerlab/kissim
§ https://github.com/volkamerlab/kissim_app
= https://kissim.readthedocs.io/en/latest

1 1 0 0 1 …

KiSSim 
fingerprints

Kinase 
pockets

KiSSim 
kinome tree

1 0 1 1 0 …

1 0 1 0 0 …

Contribution:

First author
Conceptualization (50%)
Data Curation (95%)
Formal Analysis (90%)
Investigation (90%)
Methodology (50%)
Software (100%)
Validation (90%)
Visualization (90%)
Writing — Original Draft (90%)
Writing — Review & Editing (85%)

Reprinted with permission from Sydow D, Aßmann E, Kooistra AJ, Rippmann F, Volkamer A.
KiSSim: Predicting Off-Targets from Structural Similarities in the Kinome. Journal of Chemical
Information and Modeling. 2022; 62(10):2600-2616. 10.1021/acs.jcim.2c00050.
Copyright © 2022 American Chemical Society.

https://github.com/volkamerlab/kissim
https://github.com/volkamerlab/kissim_app
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ABSTRACT: Protein kinases are among the most important drug targets
because their dysregulation can cause cancer, inflammatory and degenerative
diseases, and many more. Developing selective inhibitors is challenging due
to the highly conserved binding sites across the roughly 500 human kinases.
Thus, detecting subtle similarities on a structural level can help explain and
predict off-targets among the kinase family. Here, we present the kinase-
focused, subpocket-enhanced KiSSim fingerprint (Kinase Structural Sim-
ilarity). The fingerprint builds on the KLIFS pocket definition, composed of
85 residues aligned across all available protein kinase structures, which
enables residue-by-residue comparison without a computationally expensive
alignment. The residues’ physicochemical and spatial properties are encoded within their structural context including key subpockets
at the hinge region, the DFG motif, and the front pocket. Since structure was found to contain information complementary to
sequence, we used the fingerprint to calculate all-against-all similarities within the structurally covered kinome. We could identify off-
targets that are unexpected if solely considering the sequence-based kinome tree grouping; for example, Erlobinib’s known kinase off-
targets SLK and LOK show high similarities to the key target EGFR (TK group), although belonging to the STE group. KiSSim
reflects profiling data better or at least as well as other approaches such as KLIFS pocket sequence identity, KLIFS interaction
fingerprints (IFPs), or SiteAlign. To rationalize observed (dis)similarities, the fingerprint values can be visualized in 3D by coloring
structures with residue and feature resolution. We believe that the KiSSim fingerprint is a valuable addition to the kinase research
toolbox to guide off-target and polypharmacology prediction. The method is distributed as an open-source Python package on
GitHub and as a conda package: https://github.com/volkamerlab/kissim.

■ INTRODUCTION
Protein kinases are involved in most aspects of cell life due to
their role in signal transduction. Their dysregulation can cause
severe diseases such as cancer, inflammation, and neuro-
degeneration,1 which makes them a frequent target of drug
discovery campaigns. In 2015, 30% of FDA-approved small
molecules targeted kinases.2 The roughly 500 kinases in the
human genome share a highly conserved binding site, causing
serious challenges for selective drug design for a single kinase
or a well-defined set of kinases (polypharmacology) and
avoiding binding to undesired off-targets.3,4

Protein kinases bind adenosine triphosphate (ATP) to
catalyze the transfer of its phosphate group to serine,
threonine, or tyrosine residues of themselves or other proteins.
ATP and most other ligands bind to the front cleft of the
kinase pocket that is situated between the two kinase domains,
the C- and N-terminal lobes. These domains are connected via
a hinge region, which is forming important hydrogen bonds to
ATP as well as most studied ligands. The gate area contains the
conserved DFG (aspartate-phenylalanine-glycine) motif,
whose phenylalanine flips in and out of the front pocket,
opening and closing a hydrophobic region in the back cleft, i.e.,
constituting the DFG-in and DFG-out conformation, respec-
tively. The back cleft also comprises the αC-helix with a

conserved glutamine residue, which forms a salt bridge with a
conserved lysine residue in the gate area. Such a conformation
is called αC-in as opposed to αC-out.5

Researchers have studied kinase similarity between the
fullor parts of thekinome from many different angles.
Manning et al.6 used a multiple sequence alignment (MSA) to
cluster the kinome into eight main groups of eukaryotic
protein kinases (ACG, CAMK, CK1, CMGC, STE, TK, TKL,
and Other) and the atypical protein kinase families. Recently,
Modi and Dunbrack7 assigned some kinases, which were left
unassigned in the Other category, based on a structurally
validated MSA.
While sequence comparisonand thus, evolutionary sim-

ilaritycan explain many observations from kinase profiling
experiments, other more distantly related off-targets remain
undetected. For example, profiling Erlotinib against 48 kinases
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revealed high affinity against the on-target EGFR (TK group)
but also the non-TK off-targets SLK, LOK, and GAK,8 or the
chemical probe SGC-STK17B-1 binds both DRAK2 and
CaMMK,9 although they are dissimilar when judged solely by
their sequence.6 Focusing on the kinase pocket instead of the
whole sequence already helps: The 50 most similar kinases to
EGFR are only TK kinases when ranked by full-length
sequence while listing non-TK kinases when considering the
pocket sequence only.10 The KinCore phylogenetic tree
produced by a kinome-wide structure-guided MSA7,11 overall
confirms the assignment from Manning et al.6 but provides
higher precision, e.g., regarding previously unassigned kinases.
Schmidt et al.12 have recently investigated the similarities
between a panel of nine kinasesEGFR, ErbB2, PIK3CA,
KDR, BRAF, CDK2, LCK, MET, and p38abased on
different pocket encodings, including the pocket sequence
identity, pocket structure similarity, interaction fingerprint
similarity, and ligand promiscuity. Individual kinase relation-
ships differed according to these different perspectives, while
some trends could be observed such as the atypical kinase
PIK3CA being an outlier among the otherwise typical kinases
in this panel.
In an attempt to facilitate computer-aided kinase similarity

studies, we here aim to add another perspective. Binding site
comparison methods employed so far can be applied to any
binding site regardless of the protein class. Kuhn et al.13 have
applied such a method, Cavbase, to the structurally resolved
kinome and could detect expected and unexpected kinase
relationships. Since kinases are highly conserved and have been
aligned and annotated across the full structurally covered
kinome, a binding site comparison method tailored to kinases
may provide an extended perspective on kinase similarities. We

make use of data in the KLIFS14 database, a rich resource for
kinase research that extracts protein kinase-focused informa-
tion on structures from the PDB,15 on inhibitors in clinical
trials from the PKIDB,16 on bioactivities from ChEMBL,17 and
much more. All kinase structures from the PDB are split into
single chains and models and aligned with respect to the
sequence and structure across the fully structurally covered
kinome. The KLIFS authors defined the kinase pocket as a set
of 85 residues that interact with cocrystallized ligands in the
initial KLIFS dataset of more than 1200 structures.5 Thanks to
this structural alignment, it is possible to look up all 85
residues in any kinase structure, given that the residue is
structurally resolved and not in a gap position. This pocket
alignment is the basis for the here introduced KiSSim
fingerprint.
The kinase-focused and subpocket-enhanced KiSSim (Kin-

ase Structural Similarity) fingerprint builds on the KLIFS14

pocket, whose alignment allows a computationally inexpensive
residue-by-residue comparison. The residues’ physicochemical
and spatial properties are encoded within their structural
context including important kinase subpocketsthe hinge
region, DFG region, and front pocketbuilding on features
from previously published methods such as SiteAlign,18

KinFragLib,19 and Ultrafast Shape Recognition (USR).20 We
used the fingerprint to calculate all-against-all similarities
within the structurally covered kinome and to generate a
KiSSim-based kinome tree. Detected similarities can be used to
predict off-targets or guide polypharmacology studies and to
rationalize profiling observations on a structural level. We
distribute the method as an open-source Python package at
https://github.com/volkamerlab/kissim and as a conda pack-
age, alongside the data and analysis notebooks at https://

Figure 1. The KiSSim fingerprint encodes physicochemical and spatial properties of kinase pockets. The fingerprint builds on the KLIFS14 pocket
definition, i.e., 85 residues aligned across all available protein kinase structures, which enables residue-by-residue comparison without a
computationally expensive alignment. Each residue is encoded physicochemically and spatially. Physicochemical properties include the following
features per residue (example: phenylalanine/PHE): (a) Pharmacophoric features and size categories are taken from the SiteAlign18 binding site
comparison methodology. (b) Side chain orientation (SCO) is adapted from SiteAlign and defined as inward-facing, intermediate, or outward-
facing depending on the vertex angle between the pocket centroid, the residue’s side chain representative (Table S3), and the CA atom. (c) Solvent
exposure is defined as high, intermediate, or low depending on the ratio of CA atoms in the upper half of a sphere cut in half by a normal plane
spanned by the residue’s CA-CB vector. The implementation is based on BioPython’s HSExposure.22,23 Spatial properties are defined as follows:
(d) Each residue’s distance to the pocket center and important kinase subpockets, i.e., the hinge region, DFG region, and the front pocket. On the
right, example locations are shown in the 3D representation of kinase EGFR (PDB ID: 2ITO; KLIFS structure ID: 783). (e) The distance
distributions per pocket center and subpocket are furthermore described by their first three moments, i.e., the mean, standard deviation, and
skewness. The figure is adapted from https://github.com/volkamerlab/kissim/.
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github.com/volkamerlab/kissim_app to support FAIR21 sci-
ence.

■ METHODS AND DATA
In the following, we outline the KiSSim methodology and
implementation, the datasets used, and the method’s
evaluation. All data, fingerprints, and analyses are available at
https://github.com/volkamerlab/kissim_app.
KiSSim Methodology. The KiSSim methodology consists

of three steps: the encoding of a set of kinase binding sites as
KiSSim fingerprints (Figure 1), the all-against-all comparison
of these structures using their fingerprints, andsince one
kinase can be represented by multiple structuresthe mapping
of multiple structure/fingerprint pairs to one kinase pair.
Encoding: From a Structure to a Fingerprint. The KiSSim

fingerprint encodes the 85 KLIFS pocket residues in the form
of physicochemical and spatial properties as illustrated in
Figure 1. We summarize the encoding procedure in the
following; for a detailed description, please refer to the
Supplementary Methods section.
Physicochemical Properties. Physicochemical properties

are encoded by eight features in the form of categorical values.
Pharmacophoric and size features are taken from the SiteAlign
categories for standard amino acids.18 They encode the size
based on the number of heavy atoms, the number of hydrogen
bond donors (HBD) and hydrogen bond acceptors (HBA),
the charge (negative, neutral, or positive), and aromatic and
aliphatic properties (present or not present) of a residue
(Table S1). The side chain orientation (inward-facing,
intermediate, or outward-facing) is based on the vertex angle
from the residue’s CA atom (vertex) to the pocket center and
to the residue’s outermost side chain atom, the side chain
representative (Table S3). The solvent exposure of a residue
(high, intermediate, or low) is based on the ratio of CA atoms
in the upper half of a sphere that is placed around the residue’s
CA atom (radius, 12 Å) and cut in half by a normal plane
spanned by the residue’s CA-CB vector, as implemented in
BioPython’s HSExposure module.22,23

Spatial Properties. Spatial properties are described by
discrete values, i.e., distances and moments. Spatial distances
are calculated from each residue’s CA atom to the pocket’s
geometric center and to prominent subpocket centers. The
pocket center is the centroid of all pocket CA atoms. The
selected subpocket centers include functionally well-charac-
terized kinase regions such as the hinge region, DFG region,
and front pocket. Each subpocket center is calculated based on
the centroid of three anchor residues’ CA atoms (Table S4),
following the idea described in the KinFragLib methodology.19

We added the code to calculate the subpocket centers to the
structural cheminformatics library OpenCADD (module
opencadd.structure.pocket)24 to allow for easy access in
other projects. Spatial moments describe each of the four
distributions of distances to the pocket center, hinge region,
DFG region, and front pocket. In KiSSim, the first three
moments are used: the mean, the standard deviation, and the
cube root of the skewness. This procedure is inspired and
adapted from the ligand-based Ultrafast Shape Recognition
(USR)20 method. The comparison of distance distributions via
moments is possible given the conserved nature of kinase
binding sites; note that it is untested yet if such a procedure
would suffice for less similar binding sites.
Fingerprint Length. The final full-length fingerprint

encompasses eight discrete physicochemical features (8

features × 85 residues), four continuous spatial distance
features (4 features × 85 residues), and three continuous
spatial moment features (3 moments × 4 distributions),
resulting in a 1032-bit vector. Optionally, a subset of residues
can be selected to generate a subset fingerprint emphasizing
certain residues. We offer a subset of residues that is based on
frequently interacting cocrystallized ligands25 and key residues
identified by Martin and Mukherjee26 (see Table S5), but users
can also inject their own list of residues.

Normalization. Fingerprints are normalized to values
between 0 and 1 by applying a min-max normalization. For
discrete features, the minimum and maximum categorical
values are used. For continuous features, the minimum and
maximum values for each spatial feature are set to the
minimum and maximum values observed across all structures;
distance extrema are defined for each residue position
individually, while moment extrema are defined for the first,
second, and third moments individually.27

Pairwise Structure Comparison. Two kinase pocket
structuresencoded as two fingerprintscan be compared
in two steps (Figure 2). First, we calculate for each feature the

distance between the corresponding two feature vectors across
the 85 residue entries, producing a feature distance vector of
length 15 (i.e., aggregating over the columns in Figure 2a). For
example, the two fingerprints’ 85-bit size feature vectors
representing the size of each of the 85 pocket residueswill be
reduced to a single-size feature distance. The distance between
discrete features is defined as the scaled L1 norm

Figure 2. Structuresencoded as KiSSim fingerprintsare com-
pared pairwise and mapped to kinase pairs. (a) The discrete
physicochemical features (blue) are compared using the scaled L1
norm, while the continuous spatial features (yellow/orange) are
compared using the scaled L2 norm, resulting in a feature distance
vector composed of one distance per feature. Custom weighting of
these features results in the final fingerprint distance. By default, the
features are weighted equally. (b) Two kinases of interest may have
multiple structures each. Thus, multiple structure/fingerprint pairs
can represent the same kinase pair. By default, we select the minimum
(fingerprint) distance value among all structure/fingerprint pairs to
represent the (kinase) distance between a kinase pair.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.2c00050
J. Chem. Inf. Model. 2022, 62, 2600−2616

2602

Kinase Off-Targets (Publication B) 47



∥ ∥ = ∑ | |= xx
n i

n
i1

1
1 (scaled Manhattan distance), whereas the

distance between continuous features is defined as the scaled

L2 norm ∥ ∥ = ∑ = xx
n i

n
i2

1
1

2 (scaled Euclidean distance),

where x is a vector of length n.28 Second, we calculate the
weighted sum of the 15-bit feature distance vector with feature-
level weights α1...15 to produce the final fingerprint distance. By
default, the 15 features are equally weighted with a weight of 1

15
each.
Summarizing both steps, the fingerprint distance d(fi, fj)

between two fingerprints fi and fj is defined in eq 1. The
different KiSSim features are denoted as m: 1 = size; 2 = HBD;
3 = HBA; 4 = charge; 5 = aromatic; 6 = aliphatic; 7 = side
chain orientation; 8 = solvent exposure; 9 = distance to pocket
center; 10 = distance to hinge region; 11 = distance to DFG
region; 12 = distance to front pocket; 13 = first moment; 14 =
second moment; 15 = third moment.
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Kinome-Wide Comparison. The kinome-wide comparison
is based on an all-against-all comparison of all available
structures. Note that a kinase can be represented by multiple
structures (see the KLIFS Data section); thus, a kinase pair can
be represented by multiple structure pairs with multiple
distance values. Our final goal is to assign one distance value to
each kinase pair as a measure of the similarity between these
two kinases (Figure 2b). The structural coverage of kinases is
highly imbalanced: Some kinases are represented by one
structure only, and others like EGFR or CDK2 are represented
by more than 100 structures. We select the structure pair with
the lowest distance as a representative for the kinase pair,
hence always picking the two closest structures in the dataset.
For example, if a dataset consists of 10 structures representing
three kinases, the 10 × 10 all-against-all structure distance
matrix will be reduced to a 3 × 3 all-against-all kinase distance
matrix, consisting of the lowest distance values only after
mapping structure pairs to kinase pairs.
Fingerprint and Similarity Visualization in 3D. Fingerprint

features can be visualized in 3D using the NGLviewer29,30 and

IPyWidgets31 for the following applications: (a) Fingerprint
features of a structure can be visualized in 3D by coloring the
residues by different feature values. (b) The difference between
two structures can be highlighted to spot positions of high or
low similarity between two structures. The differences are
shown for each feature type individually. (c) The standard
deviation of spatial features between all structures available for
one kinase can be mapped onto an example structure in 3D to
show regions of high or low variability between different kinase
conformations.

KiSSim Tree. The kinase distance matrix produced as
described in the Kinome-Wide Comparison section is
submitted to a hierarchical clustering as implemented in
SciPy32 using as a metric the Euclidean distance and as a
linkage Ward’s criterion. We generate a phylogenetic tree in
the Newick format based on this KiSSim kinase clustering. The
tree branches are labeled with the mean of all distances
belonging to that branch; the tree leaves are annotated with the
kinase names and their assigned Manning kinase groups. We
visualize the tree in an automatized way using BioPython’s
Phylo22,33 module to be used in Jupyter Notebooks and in a
manual way using the freely available FigTree34 software to
produce publication-ready circular trees.

KiSSim Implementation. The kissim library is imple-
mented as an open-source Python package, which is available
on GitHub at https://github.com/volkamerlab/kissim and as a
conda package at conda-forge.35,36 Structures are retrieved via
the OpenCADD-KLIFS module24 and are encoded as
fingerprints using the FingerprintGenerator class; fingerprints
can be compared using the FingerprintDistanceGenerator
class. We also offer quick access encode and compare
functionalities as Python API and as a command-line interface
(CLI) (see Figure 3). Last, the kissim.encoding.tree module
offers an automatized all-against-all clustering and phylogenetic
tree generation, while the 3D visualization of fingerprints and
pairwise comparisons is implemented in the kissim.viewer
module.
Structural data is read and processed with BioPython22 and

BioPandas;37 computation is performed with NumPy,38

Pandas,39 SciPy,32 and Scikit-learn.40 The code for operations
that are of use outside of the KiSSim project has been added to
the OpenCADD library:24 KLIFS queries are implemented in
the OpenCADD-KLIFS module and subpocket centers can be
defined and visualized with the OpenCADD-pocket module.

Figure 3. The kissim library’s Python API and CLI. Structures from the KLIFS database can be encoded as fingerprints using the
FingerprintGenerator class (details in Figure 1) and compared using the FeatureDistancesGenerator and FingerprintDistanceGenerator classes
(details in Figure 2). The package offers the wrappers encode and compare for quick and easy access from within a Python script (Python API) or
from the command line (CLI). Please also refer to the kissim library’s documentation at https://kissim.readthedocs.io.
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All code is written in Python 341 following the PEP8 style
guide. We document the code following NumPy docstrings42

as well as format and lint the code and notebooks with black,43

black-nb,44 flake8,45 and flake8-nb.46 A detailed documentation
is hosted on ReadTheDocs47 at https://kissim.readthedocs.io
using sphinx.48 We test the kissim code using pytest49 with a
code coverage of over 90%, measured with CodeCov.50

Notebooks are checked with nbval51 and continuous
integration is deployed with GitHub Actions52 on a weekly
basis.
Data. We are using the following sources of external data:

KLIFS kinase structures14 and the profiling datasets by
Karaman et al.8 and Davis et al.53 filtered and processed as
described in the following. All prepared datasets described here
are accessible via the src.data module at https://github.com/
volkamerlab/kissim_app.
KLIFS Data. We downloaded the human structural kinase

dataset from the KLIFS database version 3.214 on 2021-09-02.
This dataset contained 11,806 human monomeric structures,
i.e., PDB entries split into monomeric structures if consisting
of multiple chains and alternate models. We filtered the dataset
for human kinases with a resolution ≤3 Å and a KLIFS quality
score ≥6. The KLIFS quality score ranges from 0 (bad) to 10
(flawless) and describes the quality of the structural alignment
and resolution regarding missing residues and atoms. In
addition, we excluded structures with more than three pocket
mutations or with more than eight missing pocket residues. To
reduce computational costs, we selected the best structure per
kinase in each PDB entry (kinase−PDB pair); the best
structure per kinase−PDB pair is defined as the structure with
the least missing pocket residues, the least missing pocket
atoms, the lowest alternate model identifier, and the lowest
chain identifier (in that order). Structures were excluded if
they are flagged as problematic structures in KLIFS and if they
could not be encoded as KiSSim fingerprints. We produced
three final datasets of structures for KiSSim fingerprint
generation and all-against-all comparison: structures in any
DFG conformation, DFG-in conformation only, and DFG-out
conformation only. Table S6 lists the number of structures
remaining after each filtering step.
Bioactivity Profiling Data. To compare predicted and

measured on- and off-targets, we use two kinase bioactivity
datasets available through KinMap:56 The Karaman et al.8 and
Davis et al.53 datasets on KinMap contain inhibition profiles
(Kd values) for 38 and 72 kinase inhibitors across 317 and 442
kinases, respectively. The lower the Kd value, the higher the
binding affinity, which is used as a proxy for activity. We
pooled data from both datasets by taking the union of all
kinase−ligand pairs. If kinase−ligand pairs have bioactivity
values in both datasets, we proceeded as follows: If both
measurements Kd,1 and Kd,2 are (a) below or equal to or (b)
above or equal to the chosen activity cutoff of Kd

cutoff = 100 nM,
we kept the lower Kd, i.e., the more active measurement. If one
of the measurements is above and the other is below that
cutoff, we kept the lower Kd if the difference is |Kd,1 − Kd,2 | ≤
100 nM; otherwise, the measurements were discarded. That
way, we keep the measurement with the lowest Kd if both
measurements agree on the ligand’s activity, including a
tolerance zone around our defined activity cutoff, and we
remove measurements if they disagree considerably. This
approach results in a 353 × 80 kinase−ligand matrix with 7619
measurements, named the Karaman−Davis dataset from here
on.

Evaluation. We evaluate our KiSSim results by comparison
to profiling data as well as alternative similarity measures based
on KLIFS pocket sequences, KLIFS pocket interaction
fingerprints (IFPs), and SiteAlign.18 All prepared datasets
and evaluation strategies described here are accessible via the
src.data and src.evaluation modules at https://github.com/
volkamerlab/kissim_app.

KiSSim Evaluation Using Profiling Data. To evaluate how
well KiSSim detects kinase similarities, we need to define an
experimental reference point for kinase similarities. We use
profiling data as a surrogate for this, since we assume that
kinases that are targeted by the same ligand share similar
binding sites. To this end, we use the profiling Karaman−Davis
dataset, which describes the activity of ligands against a panel
of kinases. We assign each ligand li in the profiling dataset to
their reported key target(s) kj(li) in the PKIDB,

16 ranging from
one target to multiple targets, e.g., Erlotinib is assigned to
EGFR only, while Imatinib binds to ABL1, KIT, RET, TRKA,
FMS, and PDGFRa. These examples result in the following
kinase−ligand pairs: EGFR−Erlotinib, ABL1−Imatinib, KIT−
Imatinib, RET−Imatinib, TRKA−Imatinib, FMS−Imatinib,
and PDGFRa−Imatinib. Note that we only included (a)
kinases whose name could be mapped to the KinMap kinase
names and (b) ligands that are listed in the PKIDB.
Furthermore, only kinase−ligand pairs (a) whose kinase was
tested active against the ligand (Kd ≤ 100 nM) and (b) that
share at least 10 kinases between the Karaman−Davis and
KiSSim datasets, of which at least three have measured ligand
activities of Kd ≤ 100 nM, were included. For example, the
EGFR−Erlotinib pair shares Erlotinib profiling measurements
and EGFR KiSSim distances for 50 kinases, of which four are
defined as active using the aforementioned Kd cutoff. Each
remaining kinase−ligand pair is evaluated as demonstrated
here for the EGFR−Erlotinib pair (l1 = Erlotinib and k1 =
EGFR):

1. We define the kinases in both lists as active or inactive
based on the chosen activity threshold of Kd = 100 nM.

2. We rank all kinases by their KiSSim distance to EGFR.
These are our KiSSim-based kinase similarities.

3. We calculate ROC curves to demonstrate how well the
profiling data is predicted by our KiSSim-based kinase
similarities.

Some kinase activities measured in the profiling dataset are
rather unexpected from a sequence-based similarity point of
view. For the EGFR−Erlotinib example, we use the KinMap
server to plot the profiling-based and KiSSim-based ranked
kinases onto the kinome tree by Manning et al.6 For example,
we highlight kinases with measured activities against Erlotinib
as well as the 50 most similar kinases to EGFR as detected by
KiSSim. All kinases that are part of the KiSSim dataset are
shown as well to define which data points are available for
similarity predictions.

KiSSim Comparison to Other Methods. We outline here
the preparation of all-against-all kinase distance matrices based
on different similarity measures to be compared to the KiSSim
kinase distance matrix (see the KiSSim Dataset section):
KLIFS pocket sequence, KLIFS pocket−ligand interaction
fingerprint (IFP), and SiteAlign’s pocket structure. All distance
matrices underwent a min-max normalization57 and can be
loaded via src.data.distances at https://github.com/
volkamerlab/kissim_app.
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KLIFS Pocket Sequence. We performed an all-against-all
comparison of the sequence identity within the KLIFS pocket
of 85 residues. The sequence identity is defined as the number
of identical pocket residues divided by all 85 pocket residues;
gap positions are treated as identical if both structures show a
gap. If two sequences are identical, the sequence identity is 1; if
two sequences do not have a single residue in common, the
sequence identity is 0. To make these values comparable with
the kinase distance matrices, we define distance = 1 − identity.
KLIFS Pocket IFP. We performed an all-against-all

comparison of the KLIFS IFP describing interactions between
cocrystallized ligands and the KLIFS pocket. For each pocket
residue, seven potential protein−ligand interaction types were
defined as described by Marcou and Rognan.58 The presence
or absence of a certain type of interaction is noted as 1 or 0 in
the bit-string. This results in an 85 · 7 = 595-bit-long IFP per
pocket−ligand pair. The Jaccard distance is used to compare
the IFPs. If multiple IFP pairs describe the same kinase pair,
we selected the minimum distance as the representative
measure for the kinase pair, following the same procedure as
described for the KiSSim methodology.
SiteAlign. We performed an all-against-all comparison using

the pocket comparison method SiteAlign18 (version 4.0). In
this approach, properties of a binding site are projected to a
triangulated sphere positioned at the pocket center, stored as a
fingerprint to be compared and aligned to another binding site
fingerprint iteratively. Since we used the existing KLIFS
alignment, a few SiteAlign parameters were adapted to reduce
runtime: we decreased the number of alignment steps in
SiteAlign from 3 to 1 and the translational steps from 5 to 3
and reduced the rotational and translational intensity from 2π
to π1

4
and from 4 to 1, respectively. Comparison of the

SiteAlign performance for > 4000 structure pairs with the
default and adjusted settings showed that the adjusted settings
resulted in lower distances (average decrease of 6%) while
matching a higher number of triangles (average increase of
15%). Pocket residues with modifications (e.g., phosphorylated
threonines) were excluded to avoid segmentation faults.

■ RESULTS AND DISCUSSION

We present here the generated KiSSim dataset and the
resulting KiSSim-based kinome tree. Furthermore, we evaluate
the KiSSim results in comparison to profiling data (KiSSim
evaluation using the Bioactivity Profiling Data section) and
other pocket encoding methods (see the KiSSim Comparison
to Other Methods section).
KiSSim Dataset. KLIFS structures are filtered as described

in detail in the KLIFS Data section (Table S6), then encoded
and compared as described in the KiSSim Methodology
section. When considering structures in DFG-in conformations
only, 4112 fingerprints representing 257 kinases result in a
4112 × 4112 structure distance matrix andafter mapping
structure-to-kinase pairs as described in the Kinome-Wide
Comparison sectionin a 257 × 257 kinase distance matrix
(Table 1).
Fingerprint Feature Value Distribution. The KiSSim

fingerprint encodes the 85 KLIFS pocket residues in the
form of physicochemical and spatial properties. Physicochem-
ical properties include pharmacophoric and size features, side
chain orientation, and solvent exposure; spatial properties
include each residue’s distance to the pocket center as well as
to three subpockets and the first three moments of the

resulting distance distributions (Figure 1). We investigate here
the fingerprint feature value distribution across all KiSSim
fingerprints.
The value distributions for pharmacophoric and size features

differ depending on the feature type (Figure 4a) and the
residue position (Figures S2 and S3). For example, the amino
acid size is more evenly distributed than the aromatic or charge
feature, since most amino acids are neither aromatic nor
charged (Figure 4a, left). Since the five pharmacophoric and
residue size features encodein an abstracted mannerthe
pocket sequence, features are more robust at more conserved
pocket positions than at other positions; examples are the
conserved salt bridge between residues 17 and 24 or the DFG
residues 81−83 (Figure S2).
Spatial distances range between 2 and 33 Å (Figure 4a,

middle); however, depending on the residue position, the
values cover only a subset of this range. For example, the hinge
region residues 46−48 are close to the hinge region center
while further away from the DFG region center (Figure S3).
Distances from subpocket centers to regions such as the G-rich
loop (residues 4−9), the αC-helix (residues 20−30), and the
DFG motif vary more than, for example, to the hinge region,
which agrees with knowledge on more flexible vs more stable
regions in the kinase pocket. The spatial moment features
describe the distance distributions between the pocket residues
to the subpocket centers. They show lower variability for the
mean and standard deviation but high variability for the
skewness (Figure 4a, right).
The spatial features are based on the KiSSim subpockets as

described in the Encoding: From a Structure to a Fingerprint
section. These subpockets are calculated for each structure
individually; however, they show robustness over the structural
kinome. The subpocket centers occupy the same space across
the aligned KLIFS structures, while the front pocket and DFG
region center show higher variability than the hinge region and
pocket center (Figure 4b), as to be expected. Therefore, the
subpocket definition procedure seems to be robust enough to
span comparable subpocket centers while fine-grained enough
to encode structural differences.
In conclusion, the feature space encoded in the KiSSim

fingerprint, on the one hand, reflects sequence-related
similarities between kinases on a generalized level through
the defined physicochemical properties and, on the other hand,
incorporates information on flexible and stable regions through
the defined spatial properties.

Fingerprint Distances to Compare Structures. Moving on
from the structure encoding (fingerprints) to the structure
comparison (fingerprint distances), we aimed to explore if the
KiSSim fingerprint can be used to discriminate between
kinases and between DFG-in and DFG-out conformations.

Table 1. KiSSim Dataseta

all DFG-in DFG-out

number of structures 4,681 4,112 406
number of kinases 279 257 71
number of structure pairs 10,953,540 8,452,216 82,215
number of kinase pairs 38,781 32,896 2485

aNumber of structures and kinases as well as number of structure and
kinase pairs encoded and compared with the KiSSim methodology.
The number of structure/kinase pairs does not contain self-
comparisons. See notebooks for more details.54,55
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Figure 4. Fingerprint feature and subpocket distributions. (a) Distribution of all over 400,000 feature values aggregated from all structures and all
pocket residues. Categorical physicochemical features (in blue) include size, hydrogen bond donor count (HBD), hydrogen bond acceptor count
(HBA), charge, aromatic, aliphatic, side chain orientation (SCO), and solvent exposure. Distance features (in yellow) include distances to the
subpocket centers for the hinge region, DFG region, and front pocket as well as the pocket centroid. Moment features (in orange) include the first
three moments, i.e., mean, standard deviation, and scaled skewness, for each structure’s distance distribution. (b) The subpocket centers are shown
in 3D for example structures (left), highlighted by DFG conformations (middle) and αC-helix conformations for example DFG-in structures
(right). See notebooks for more details.59−61 Note that we show here unnormalized fingerprints; for the downstream fingerprint comparison, the
fingerprints are normalized to values between 0 and 1 first.

Figure 5. KiSSim fingerprint can distinguish between kinases and DFG conformations. (a) We compare fingerprint distances (based on all
fingerprint bits) for structure pairs representing any kinase (all), the same kinase (intra-kinase), or different kinases (inter-kinase); here, we use only
DFG-in conformations. The dataset includes about 8.4 million pairwise structure distances, of which about 200,000 and 8.2 million are intra-kinase
and inter-kinase pairs, respectively. (b) We compare fingerprint distances (based on spatial distance fingerprint bits only) for structure pairs
representing the BRAF kinase in different DFG conformations. The dataset includes 28 DFG-in and 21 DFG-out structures, resulting in 378 DFG-
in/in, 210 DFG-out/out, and 588 DFG-in/out pairwise structure distances. The box-and-whisker plot extends from the Q1 to Q3 quartile values of
the data; the whiskers extend no more than 1.5 · IQR with IQR = Q3 − Q1. See notebooks for more details.62,63
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First, we measured the discriminating power between
kinases by comparing KiSSim fingerprint distances between
DFG-in structures of the same kinase and of different kinases,
i.e., intra-kinase and inter-kinase distances, respectively. With a
median of 0.02 compared to 0.11, the intra-kinase distances
(about 200,000) are significantly lower than the inter-kinase
distances (about 8.2 million) as shown in Figure 5a, indicating
that the fingerprint can discriminate between kinases. Note
that the distances between structure pairs describing the same
kinase pair can vary a lot (Figure S4); for the all-against-all
comparison, we consider only the most similar structure pair
per kinase pair.
Second, we measured KiSSim’s discriminating power

between DFG conformations by comparing fingerprint
distances between structure pairs in DFG-in/in, DFG-out/
out, and DFG-in/out conformations. For this analysis, we used
the distances based on only the spatial fingerprint features to
exclude the eight physicochemical features and therefore to

focus on conformational information. While the distributions
for the three categories are similar when considering all
kinases, they differ when split by kinase as shown exemplarily
for the BRAF kinase in Figure 5b, indicating that the
fingerprint can discriminate between DFG conformations.
We conducted this analysis for other kinases with sufficient
structural coverage for DFG-in and DFG-out conformations
and observed the same for CDK8, EphA2, MET, and p38a (see
details in the notebook62).
Before we use the KiSSim fingerprints for an all-against-all

comparison, we confirmed two important properties: First, the
KiSSim fingerprint distances for structures describing the same
kinase are significantly lower than for structures describing
different kinases (here based on DFG-in structures only).
Second, the fingerprint distances for structures in the same
DFG conformation are lower than for DFG-in/out structure
pairs (here based on spatial features only).

Figure 6. KiSSim-based kinome tree based on 257 structurally resolved kinases in the DFG-in conformation. Tree nodes are colored from red to
blue, showing small to large distances (0.01−0.20), describing high to low similarities; tree leaves represent kinases colored by the kinase group.
The tree is based on a clustering of the kinase distance matrix using the Euclidean distance as a metric and Ward’s criterion as linkage. The clusters
are converted to the Newick format and visualized using FigTree.34 See the notebook for more details.65
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KiSSim-Based Kinome Tree. A structure is known to be
more conserved than a sequence,64 and previous studies have
shown that including structural information adds orthogonal
information to shed light on unexpected similarities between
kinases and off-target effects.7,12 To help detect such
relationships between more distantly related kinases, we
generated KiSSim kinome trees based on the DFG-in
conformations, as described in detail in the KiSSim Tree
section, to investigate all-against-all relationships between
kinases compared to the sequence-based kinome tree by
Manning et al.6 (Figure 6). Note that we can base the
comparison on structurally resolved kinases only, i.e., 257 out
of the roughly 500 human kinases.
The KiSSim-based kinome tree (structure-based) shows a

large overlap with most kinase groups as annotated by
Manning et al.6 (sequence-based). We will summarize the
KiSSim clusters and highlight differences in comparison to
Manning et al.’s kinase groups AGC, CAMK, CK1, CMGC,
STE, TKL, TK, the atypical group, and the unassigned kinases
(Other).
Kinases from the TK group build a single large cluster with

two outliers, i.e., the pseudokinases TYK2-b and JAK1-b.
Known highly similar kinases, which form (sub)families in the
Manning tree, are grouped together, e.g., the families Erb
(EGFR, Erb2, Erb3, and Erb4), Eph (EphB[1,4] and
EphA[1,2,3,5,7,8]), JakA (JAK1, JAK2, JAK2, and TYK2),
and JakB (JAK1-b and TYK2-b).
Kinases from the CAMK group mainly cluster together. In

addition, the following kinases from other kinase groups are
included in our CAMK-like cluster: (a) CaMKK2 (Other), (b)
MSK1 (AGC), (c) CK2a2 (CMGC), and (d) AurA, AurC,
PLK4, TTK, and MPSK1 (Other). This is partly in agreement
with the findings by Modi and Dunbrack7 who have reassigned
10 kinases from Manning’s Other group to the CAMK group,
of which seven are part of the KiSSim dataset (AurA, AurC,
CaMKK2, PLK1, PLK2, PLK3, and PLK4) and three are not
(AurB, CaMKK1, and PLK5). The KiSSim-based similarity of
CaMKK2 to CAMK kinases is further supported by profiling
data for the chemical probe SGC-STK17B-1, which targets
both CaMKK2 and DRAK2 (part of the CAMK group).9 Note
that the following kinases belong to the CAMK group but are
found outside of our CAMK-like cluster: (a) Trb1, (b) LKB1,
and (c) PASK, PIM1, and PIM2.
Kinases from the STE group are assigned mostly to a single

cluster that is, however, shared with kinases from many other
kinase groups. The STE kinases MAP2K[1,4,6,7] and OSR1
are separated from the other STE kinases.
Kinases from the CMGC group are clustered in two

subgroups: kinases from the CDK, CDKL, and MAPK families
build one cluster, while kinases from the DYRK, SRPK, and
CLK families build another. The CK2a2 kinase (CK2 family)
is an outlier.
Kinases from the TKL group are mainly clustered together

with kinases from the Other group, but some are separated
from the rest (DLK, BRAK, IRAK2, and LIMK1). Kinases
from the CK1 group build one group except for TTBK1 and
TTBK2. Kinases from the AGC group cluster together as well;
MSK1 is the only outlier that is found closer to the CAMK
kinases. Last, only three atypical kinases are included in the
KiSSim dataset (ADCK3, RIOK1, and RIOK2) and build their
own cluster, neighboring to the CK1 kinases.
Overall, the KiSSim dataset retrieves the sequence-based

kinome tree by Manning et al.6 including sub-branches as

discussed for the kinases assigned to the TK and CMGC
groups. This is not surprising because we do encode the
sequence in an abstracted manner in the physicochemical
KiSSim fingerprint bits. However, some kinases show deviating
relationships, of which some can be rationalized such as the
CaMKK2 and DRAK2 relationship shown also in profiling
data. Thus, the addition of structural information in the
KiSSim fingerprint allows us to cluster more distantly related
kinases. This aspect of the KiSSim tree is of interest because it
predicts novel information on kinase similarities.

KiSSim Evaluation Using Profiling Data. As discussed,
the KiSSim tree shows expected and unexpected kinase
(dis)similarities. To evaluate the specificity and sensitivity of
our method, we use profiling data as a surrogate for (real)
expected kinase (dis)similarities: if a ligand targets a set of
kinases with high activity, these kinases have similar binding
sites and are therefore treated as similar kinases.
To this end, we pooled the Karaman et al.8 and Davis et al.53

datasets and filtered for inhibitors and their targets as listed in
the PKIDB.16 The dataset preparation is described in detail in
the Bioactivity Profiling Data section. We show the KiSSim
method’s performance in the form of ROC curves for each
inhibitor’s listed targets.
For example, Imatinib has three reported on-targets

(assigned in PKIDB) and two off-targets (based on activity
data in the Karaman−Davis dataset); KiSSim’s performance is
evaluated by looking up these five Imatinib targets in KiSSim’s
most similar kinases with respect to the on-targets (1) ABL1,
(2) KIT, and (3) FMS, producing three ROC curves (Figure 7,
first row, second plot). Details are described in the KiSSim
Evaluation Using Profiling Data section. In total, we analyzed
KiSSim’s performance across 48 kinase−ligand pairs involving
21 ligands; the AUCs range from 0.49 to 1.0 with a mean of
0.75 ± 0.12. In the following, we discuss a few examples in
Figure 7 (first row); please refer to the full set of ligands in
Figure S8.
The Erlotinib profiling and KiSSim datasets share 50 kinases,

of which 4 show high activity (Kd ≤ 100 nM), i.e., the on-
target EGFR (TK, Kd = 19.0 nM) and the off-targets SLK
(STE, Kd = 3.10 nM), LOK (STE, Kd = 0.67 nM), and GAK
(Other, Kd = 0.67 nM). The top 20 KiSSim ranks for EGFR
are dominated by TK kinases but include the STE kinases
LOK and SLK on ranks 11 and 20 out of the 50 shared kinases,
respectively; the GAK kinase is not detected by KiSSim, being
found on rank 44 only (AUC = 0.641). The EGFR−GAK
fingerprint pair shows many differences in their physicochem-
ical bits, which stem from their relatively high pocket sequence
dissimilarity (Figure 8). The fingerprint differences for the
EGFR−GAK pair are visualized in 3D in Figure 9 for selected
fingerprint features with high differences such as the HBA,
aliphatic, and hinge region features. Such a comparison of
fingerprint values in 3D can provide insights into the rational
design of selective inhibitors.
The Imatinib profiling and KiSSim datasets share 18 kinases,

of which 5 TK kinases show high activity, i.e., the key target
ABL1 as well as ABL2, LCK, KIT, and FMS. Compared to
ABL1, all active kinases are ranked within KiSSim’s top 7 most
similar kinases (AUC = 0.908).
The Bosutinib profiling and KiSSim datasets share 108

kinases, of which 33 show high activity, mainly from the TK
and STE groups. Compared to ABL1, which is one of the key
targets, the TK kinases are found first in the top 35, followed
by the STE kinases in the top 61 (AUC = 0.796).
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The Doramapimod profiling and KiSSim datasets share 43
kinases, of which 8 show high activity, including the on-target
p38a and four additional CMGC kinases (p38b, p38d, p38g,
and JNK2), two STE kinases (HGK and LOK), and the TK
kinase TIE2. Compared to p38a, the CMGC kinases cover the
top 7 KiSSim ranks, followed by the STE kinases and TIE2 in
the top 25 (AUC = 0.845).
Using profiling data as an estimate for binding site similarity

comes with three challenges: First, some ligands are more
promiscuous than others because of their chemical structures.

Profiling data for a selective ligand is not easily comparable to
data from a less selective ligand and therefore does not
necessarily reflect the degree of binding site similarity. In this
complex problem, KiSSim can only answer part of the
question: KiSSim highlights potential off-targets based on
(target-focused) pocket similarities but does not imply that any
inhibitor binding to a target will also bind to the closely related
target. On the contrary, it helps to identify those targets that
one should take into account to possibly prevent off-target

Figure 7. Performance of KiSSim and other similarity measures against profiling data. ROC curves comparing predicted and profiling-based kinase
similarities (FPR = false positive rate; TPR = true positive rate). Predicted similarities against a selected kinase k are based on the KiSSim
similarities (KiSSim), the KLIFS pocket IFP similarity (KLIFS IFP), the KLIFS pocket sequence identity (KLIFS seq), and the SiteAlign pocket
structure similarity (SiteAlign). Profiling-based kinase similarities define kinases as similar if they are targeted by the same ligand with Kd ≤ 100 nM,
including the ligand’s on-target(s) as reported in the PKIDB. The kinases, for which the ligand shows lower activities with Kd > 100 nM, are treated
as dissimilar to the ligand’s on-target(s). Find more details in the Bioactivity Profiling Data section. The first rank is always occupied by the kinase
k. We show here only a selection of kinase−ligand pairs; please refer to Figures S8−S11 to inspect the full datasets. See notebooks for more
details.66−70
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effects during the design process and to drive selectivity
optimization.

Second, the prediction tasks evaluated with the ROC curves
may vary in difficulty based on data availability: (a) Generally,

Figure 8. KiSSim similarities between EGFR and Erlotinib’s off-targets SLK, LOK, and GAK. (Left) The KinMap56 tree shows the Karaman
profiling data for Erlotinib (cyan), the top 50 most similar kinases to Erlobtinib’s on-target EGFR (blue), and all kinases that are covered by the
KiSSim dataset (gray). (Right) KiSSim fingerprint pair differences between EGFR and selected kinases: ErB2 (as an example for highly similar
kinases) as well as SLK, LOK, and GAK (unexpected off-targets for Erlotinib). Similarities between EGFR and SLK/LOK are detected by KiSSim
(top 50 of all 279 kinases covered in KiSSim), while GAK stays undetected due to higher differences in the overall KiSSim fingerprints. See the
notebook for more details.75

Figure 9. 3D visualization of KiSSim fingerprint differences between EGFR and GAK (EGFR and GAK structure KLIFS IDs: 1215976 and
10329,77 respectively). (a) Highlighted residues with at least one large difference in their physicochemical bits (Δdnormalized = 0.6, blue), spatial bits
(Δdnormalized = 0.2, yellow), or both (green). Colored residues by their differences in their (b) HBA, (c) aliphatic, and (d) hinge region features,
ranging from no difference (white) to the highest difference (blue). See the notebook for more details.75 The 3D visualization is part of the kissim
Python library using the NGLviewer (usable in e.g. Jupyter notebooks).
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only a few data points are available for this analysis. (b)
Erlotinib-based vs Imatinib-based evaluations stem from
predictions across different kinase groups vs within the TK
group only. (c) Erlotinib-based vs Bosutinib-based evaluations
are based on a dataset with a share of active kinases of 1 out of
10 and 1 out of 3, respectively.
Third, the evaluation results will vary based on the

experimental dataset used. Besides the pooled Karaman−
Davis dataset discussed here, we also evaluated KiSSim based
on the Moret et al. dataset (Figure S12),71 resulting in similar
mean AUC values, i.e., 0.75 ± 0.12 (Karaman−Davis) and 0.74
± 0.14 (Moret et al.), while predictions for some ligands
perform better, e.g., 0.641 and 0.836 (Erlotinib−EGFR; ratios
of tested/active kinases are 50/4 and 16/5), or worse, e.g.,
0.908 and 0.4 (Imatinib−ABL1; ratios of tested/active kinases
are 18/5 and 6/5). See the notebook72 for more details.
Applying KiSSim to Residue Subsets. We applied the

KiSSim methodology to different residue subsets: (a) residues
involved in binding individual ligands, (b) residues that show
frequent interactions in kinase−ligand complexes, and (c)
residues that have been identified by Martin and Mukherjee26

as “privileged” kinase pocket residues.
(a) We performed the same profiling-based evaluations for

subset KiSSim fingerprints, solely including residues that
interact with the respective ligand were included. Ligand-
interacting residues were selected from X-ray kinase structures
based on the KLIFS IFP, i.e., 12, 57, 26, and 13 structures have
cumulatively 21, 31, 27, and 35 interacting residues with
Erlotinib, Imatinib, Bosutinib, and Doramapimod, respectively.
In the case of Erlotinib and Bosutinib, the performance
improves when including only the ligand-interacting resi-
duesLOK, SLK, and the previously KiSSim-undetected GAK
are all in the top 20 most kinase similarities compared to
EGFRwhile the performance decreases slightly in the case of
Imatinib and Doramapimod (see the notebook73 for more
details). Thus, depending on the user’s research question such
as predicting off-target for one or multiple ligands of interest,
known interaction profiles can be used to guide the selection of
residues for the KiSSim fingerprint.
(b) We provide subsets of the 85 KLIFS residues based on

≥1% interaction frequency across the unique kinase−ligand
combinations in our KiSSim (calculated based on the available
KLIFS interaction fingerprints), i.e., 51, 56, or 65 residues if
taking into account only DFG-in, only DFG-in, or all
structures as listed in Figure S5. The resulting KiSSim kinome
tree in Figure S5 is overall similar to the clustering in Figure 6.
(c) We apply the KiSSim methodology to the residue subset

published by Martin and Mukherjee26 comprising 16 residues,
which could all be mapped to the KLIFS residue numbering
(see the notebook for more details74). The resulting KiSSim
kinome tree in Figure S6 overall clusters kinase groups
together. Using the residue subset seems to be more suitable
than the full residue set (Figure 6) to find the high proximity
between EGFR and SLK/LOK, while the full residue set seems
to be more suited than the subset to find the relationship
between CaMKK2 and the CAMK kinases as discussed before.
Comparison of KiSSim to Other Methods. In the next

step, we investigated all-against-all comparisons based on the
KiSSim fingerprints, the KLIFS pocket sequence, KLIFS
ligand−pocket interaction fingerprints (IFP), and the SiteAlign
scores. The data preparation steps are described in detail in the
KiSSim Comparison to Other Methods section.

The KiSSim fingerprint contains physicochemical bits, which
generalize the pocket sequence, and spatial bits, which consider
the individual atom/residue positions in the underlying kinase
conformations. First, we use the KLIFS pocket sequence
(KLIFS seq) to probe if the KiSSim fingerprint’s generalized
sequence and spatial information improve predictions
compared to sequence information only. Second, we use the
KLIFS pocket IFP (KLIFS IFP) to probe if the KiSSim
fingerprint, which does not contain any information about
interactions, improves kinase similarity predictions compared
to interaction-based fingerprints. The advantage of IFPs is that
they emphasize important residues and interactions as seen
based on one or more ligands; the disadvantage is that not all
possibly relevant interactions have been seen yet. Note that
combining the IFP information with KiSSimusing only
interacting residues in the KiSSim fingerprintcan improve
the KiSSim performance as discussed in the KiSSim Evaluation
Using Profiling Data section. Third, we use kinase similarities
calculated with the SiteAlign methodology (SiteAlign), from
which we adapted some of the physicochemical KiSSim
features, to confirm that the KiSSim fingerprint adds relevant
kinase-focused information.

Correlation. We compared the pairwise kinase distances
between the four different method setups (Figure S13). We
observed a rather strong correlation between the KiSSim
distances and (a) the KLIFS pocket sequence distances (r =
0.77), reflecting the sequence-generalizing physicochemical
features in the KiSSim fingerprint, and (b) the SiteAlign
distances (r = 0.73), reflecting the partly shared physicochem-
ical features in KiSSim and SiteAlign (pharmacophoric and size
features). In contrast, the correlation between KiSSim and
KLIFS IFP distances is low (r = 0.39), possibly reflecting the
lack of information on ligand−kinase interaction patterns.

Performance. We performed the same profiling analysis,
which we discussed for KiSSim (mean AUC, 0.75 ± 0.12) in
the KiSSim Evaluation Using Profiling Data section, for the
KLIFS seq (mean AUC, 0.78 ± 0.15), KLIFS IFP (mean AUC,
0.63 ± 0.12), and SiteAlign (mean AUC, 0.71 ± 0.12) datasets
(see Figure 7).
The KiSSim approach performs slightly worse compared to

the KLIFS pocket sequence comparison in the case of ligands
like Imatinib, whose reported on-targets all belong to the TK
group, but shows better performance for Erlotinib, Bosutinib,
and Doramapimod, which have known kinase targets
belonging to different kinase groups. Hence, while the
sequence-based approach picks up kinase group assignments
as to be expected, KiSSim picks up more distant and less
obvious off-targets.
The KLIFS pocket IFP comparison performs similarly to the

KiSSim comparison in the case of Erlotinib; however, it
performs worse for the other three ligands. In contrast to the
KiSSim approach, pocket similarities can only be detected by
the IFP approach if the respective kinases have been
cocrystallized with ligands that form similar interaction
patterns. Such an IFP-based comparison probably can be
more successful for a defined kinase set with a high coverage of
cocrystallized ligands in contrast to a kinome-wide comparison
as performed here.
The SiteAlign methodology projects topological and

chemical properties onto a sphere that sits in the center of a
protein pocket. The spheres are aligned based on these
projections, and a similarity score is calculated between the
aligned fingerprints. Finding the right alignment is a time-
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consuming step; hence, we offered SiteAlign already the
KLIFS-aligned structures as a starting point and reduced the
iterations as described in the KiSSim Comparison to Other
Methods section. KiSSim outperforms the SiteAlign results in
most cases, however, often not considerably much.
Runtime. The runtime for the methods discussed here

differs considerably: Generating the KLIFS seq dataset takes
about a second (based on about 500 kinases), while the KLIFS
IFP dataset is ready within half a minute (based on about 8800
IFPs); both procedures build on the processed and curated
KLIFS datasets, i.e., both the pocket sequences and the pocket
interaction fingerprints are ready for use. Generating the
KiSSim kinase matrix takes about 24 h, while the all-against-all
comparison with SiteAlign is ready after >20000 h using the
optimized SiteAlign settings (both based on over 4000
structures and a single-core/thread execution). Parallelization
is built in for the KiSSim approach to speed up the calculation.
Taking all these findings together, the KiSSim methodology

compares well with established methods while often improving
predictions between kinase pairs without an obvious relation-
ship based on the sequence. The pocket sequence and IFP-
based methods are much faster than the structure-based
methods KiSSim and SiteAlign; however, the overall kinase
similarity assessment benefits from the added structural pocket
information. KiSSim’s setup and runtime are more convenient
than those of the SiteAlign method; however, KiSSim does rely
on the KLIFS 85-residue pocket alignment.

■ CONCLUSIONS
We presented here the KiSSim (Kinase Structural Similarity)
fingerprint as a novel structure-enabled pocket encoding
tailored to kinase pockets. The fingerprint encodes phys-
icochemical and spatial properties of the 85 KLIFS residues,
which are aligned across the structurally covered kinome. On
the one hand, the majority of physicochemical bitssize,
HBD, HBA, charge, aromatic, and aliphatic, which are adapted
from the SiteAlign methodencode the pocket sequence in a
generalized, pharmacophoric way. On the other hand, the side
chain orientation, solvent exposure, and the spatial bitsthe
distances to the pocket center and key subpocket centers and
the distance distributions’ momentsaccount for the struc-
tural conformation. Across all fingerprints, we saw that the
fingerprint captures the physicochemical property variability
(e.g., most residues are uncharged, whereas HBD/HBA
features vary) and the conserved residue positions (e.g.,
distances to the DFG region are more widely spread than to
the hinge region).
We used the fingerprint to calculate all-against-all

distancessmall distances refer to high similarity, and large
distances refer to low similaritywithin the structurally
covered kinome: the DFG-in and DFG-out datasets consist
of 4112 and 406 structures, representing 257 and 71 kinases,
respectively. We found that the fingerprint can distinguish
between intra- and inter-kinase similarities and between DFG-
in and DFG-out structures.
Some kinases are represented by multiple structures; hence,

some kinase pairs are represented by multiple structure pairs.
The distribution of structure distances for one kinase pair can
be broad; we selected per kinase pair the closest structure pair
that is experimentally observed. We clustered the resulting
kinase distance matrix to produce a KiSSim-based kinome tree.
While the tree reproduced large parts of the sequence-based
Manning tree, some relationships could be observed that are

unexpected from a sequence perspective only. For example, we
found similarities between CaMKK2 (STE) and DRAK2
(CAMK), which are targeted by the same chemical probe
SGC-STK17B-1;9 we also could confirm the reassignment of
AurA, AurC, PLK4, and CaMMK2 from the Other group to
the CAMK group as proposed by Modi and Dunbrack.7

Besides the averaged tree view, we also investigated the top-
ranked kinases given a query kinase to show that KiSSim can
partially explain profiling data. While some ligand profiles are
reflected completely in the KiSSim dataset (e.g., Imatinib),
other ligand profiles are covered partially (e.g., Erlotinib’s off-
targets LOK and SLK are detected, while GAK is not).
In comparison with other similarity measuresfocusing on

the pocket sequence (KLIFS seq), interaction profiles (KLIFS
IFP), or topological and chemical pocket properties
(SiteAlign)KiSSim performs equally or slightly better in
most cases. The sequence- and IFP-based measures are easy
and fast to compute thanks to the preprocessed kinase pockets
available at KLIFS; we recommend including these datasets in
any case when investigating kinase similarities. SiteAlign is a
powerful tool to compare pockets across all protein classes; if
interested only in kinases, KiSSim is a kinase-focused and faster
alternative with slightly better results in most of the
investigated cases.
As for all structure-based methods, the imbalanced dataset of

kinase structures is a challenge. Some kinases are structurally
well represented (e.g., EGFR or CDK2), while others have
only few structures available. Also, unfortunately, still roughly
half of the human kinome has no structural information
available at all. The recent breakthrough of AlphaFold278 could
help here; predicted structures for almost all human kinases are
available now on the AlphaFold DB.79 Modi and Dunbrack80

have already classified the structures’ conformations and found
most structures in the DFG-in conformation. An AlphaFold-
enhanced KiSSim tree may further increase the usefulness of
the KiSSim methodology for kinome-wide similarity studies.
Furthermore, the KiSSim fingerprint can be applied in machine
learning, e.g., to extract the most important features in the
kinase pocket.
KiSSim is a target-focused methodology and is applied

primarily in the context of off-target prediction. The method
can flag targets with similar binding sites beyond the traditional
sequence identity and similarity measures, which are usually
applied during the target traceability phases of drug design
campaigns. Beyond this purpose, KiSSim can help highlight
target-based structural differences between a set of targets.
During hit optimizationonce the ligand binding pose is
assessed, e.g., via docking studiesthe target’s binding site is
usually inspected intensively for potential ligand modifications
based on unoccupied subpockets or promising interactions. At
this stage, KiSSim can be used to explore such opportunities in
comparison to other off- or on-targets. KiSSim will not be able
to accurately predict kinase inhibitor selectivity, but it can
serve as an idea generator. For a set of two or more kinases, for
which selectivity shall be achieved, differences in KiSSim
fingerprints can be visualized in 3D (see example in Figure 9)
to explore opportunities to modify or extend compounds in
kinase drug discovery projects. Such an analysis would
probably be jointly performed between medicinal chemists
and computational chemists; the 3D visualization for KiSSim is
executable as of now from Jupyter notebooks using the
NGLviewer; thus, technical support might be needed from a
computational chemist.
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We believe that the KiSSim fingerprint is a valuable tool for
kinase research to explain and predict off-targets and
polypharmacology. Since the code is open-sourced and
available as a Python package, the KiSSim fingerprint can
easily be integrated in other larger-scale workflows.
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Tartre, M.; Pak, M.; Smith, N. J.; Nowaczyk, N.; Shebanov, N.;
Pavlyk, O.; Brodtkorb, P. A.; Lee, P.; McGibbon, R. T.; Feldbauer, R.;
Lewis, S.; Tygier, S.; Sievert, S.; Vigna, S.; Peterson, S.; More, S.;
Pudlik, T.; Oshima, T.; Pingel, T. J.; Robitaille, T. P.; Spura, T.; Jones,
T. R.; Cera, T.; Leslie, T.; Zito, T.; Krauss, T.; Upadhyay, U.;
Halchenko, Y. O.; Vázquez-Baeza, Y. SciPy 1.0 Contributors, SciPy
1.0: Fundamental Algorithms for Scientific Computing in Python.
Nat. Methods 2020, 17, 261−272.
(33) BioPython, Bio.Phylo package. https://biopython.org/docs/
latest/api/Bio.Phylo.html, [accessed 2021-08-16].
(34) FigTree, FigTree. http://tree.bio.ed.ac.uk/software/figtree/,
[accessed 2021-08-16].
(35) Anaconda Software Distribution, Anaconda Documentation.
https://docs.anaconda.com/, [accessed 2021-07-30].
(36) Conda-Forge Community, The Conda-Forge Project: Commun-
ity-Based Software Distribution Built on the Conda Package Format and
Ecosystem. 2015.
(37) Raschka, S. BioPandas: Working with Molecular Structures in
Pandas DataFrames. J. Open Source Software 2017, 2, 279.
(38) Harris, C. R.; Millman, K. J.; van der Walt, S. J.; Gommers, R.;
Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith,
N. J.; Kern, R.; Picus, M.; Hoyer, S.; van Kerkwijk, M. H.; Brett, M.;
Haldane, A.; del Río, J. F.; Wiebe, M.; Peterson, P.; Gérard-Marchant,
P.; Sheppard, K.; Reddy, T.; Weckesser, W.; Abbasi, H.; Gohlke, C.;

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.2c00050
J. Chem. Inf. Model. 2022, 62, 2600−2616

2614

Kinase Off-Targets (Publication B) 59



Oliphant, T. E. Array Programming with NumPy. Nature 2020, 585,
357−362.
(39) The Pandas Development Team, pandas-dev/pandas: Pandas.
2020.
(40) Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, P.; Prettenhofer, M. a.; Weiss, R.;
Dubourg, V.; Vanderplas, A.; Passos, J. a.; Cournapeau, D.; Brucher,
M.; Perrot, E. M. a Duchesnay Scikit-learn: Machine Learning in
Python. J Mach. Learn. Res. 2011, 12, 2825−2830.
(41) Van Rossum, G.; Drake, F. L. Python 3 Reference Manual;
CreateSpace: Scotts Valley, CA, 2009.
(42) numpydoc, numpydoc. https://numpydoc.readthedocs.io/en/
latest/format.html, [accessed 2021−11-27].
(43) Python Software Foundation, Black: The Uncompromising
Python Code Formatter. https://github.com/psf/black, [accessed
2021−10-06].
(44) Black-nb, Black-nb: The Uncompromising Code Formatter, for
Jupyter Notebooks. https://github.com/tomcatling/black-nb, [ac-
cessed 2021−10-06].
(45) flake8, flake8. https://flake8.pycqa.org/, [accessed 2021−10-
06].
(46) flake8-nb, flake8-nb. https://flake8-nb.readthedocs.io/, [ac-
cessed 2021−10-06].
(47) Read the Docs, Read the Docs. https://readthedocs.org/,
[accessed 2021-07-31].
(48) sphinx, sphinx - Python Documentation Generator. https://www.
sphinx-doc.org/, [accessed 2021−10-06].
(49) pytest, pytest. https://docs.pytest.org/, [accessed 2021−10-
06].
(50) CodeCov, CodeCov. https://docs.codecov.com/docs, [ac-
cessed 2021−11-27].
(51) nbval, nbval. https://nbval.readthedocs.io/en/latest/, [accessed
2021−10-06].
(52) GitHub, GitHub Actions. https://docs.github.com/en/actions,
[accessed 2021−10-06].
(53) Davis, M. I.; Hunt, J. P.; Herrgard, S.; Ciceri, P.; Wodicka, L.
M.; Pallares, G.; Hocker, M.; Treiber, D. K.; Zarrinkar, P. P.
Comprehensive Analysis of Kinase Inhibitor Selectivity. Nat.
Biotechnol. 2011, 29, 1046−1051.
(54) Volkamer Lab, KiSSim notebook: KLIFS Data Preparation and
Exploration. https://github.com/volkamerlab/kissim_app/blob/v1.1.
0/notebooks/002_structures/001_prepare_dataset.ipynb, Version
1.1.0 [accessed 2022-04-24].
(55) Volkamer Lab, KiSSim Notebook: Loading KiSSim Results.
https://github.com/volkamerlab/kissim_app/blob/v1.1.0/
notebooks/001_quick_start/001_quick_start_kissim.ipynb, Version
1.1.0 [accessed 2022-04-24].
(56) Eid, S.; Turk, S.; Volkamer, A.; Rippmann, F.; Fulle, S. KinMap:
A Web-Based Tool for Interactive Navigation Through Human
Kinome Data. BMC Bioinformatics 2017, 18, 16.
(57) Sebastian Raschka, About Min-Max Scaling. https://
sebastianraschka.com/Articles/2014_about_feature_scaling.
htmlabout-min-max-scaling, [accessed 2021−11-27].
(58) Marcou, G.; Rognan, D. Optimizing Fragment and Scaffold
Docking by Use of Molecular Interaction Fingerprints. J. Chem. Inf.
Model. 2007, 47, 195−207.
(59) Volkamer Lab, KiSSim Notebook: Feature Distributions. https://
github.com/volkamerlab/kissim_app/blob/v1.1.0/notebooks/004_
fingerprints/003_feature_distributions.ipynb, Version 1.1.0 [accessed
2022-04-24].
(60) Volkamer Lab, KiSSim Notebook: Subpocket Center Robustness.
https://github.com/volkamerlab/kissim_app/blob/v1.1.0/
notebooks/003_subpockets/002_subpocket_robustness.ipynb, Ver-
sion 1.1.0 [accessed 2022-04-24].
(61) Volkamer Lab, KiSSim Notebook: Influence of Conformations on
Subpockets. https://github.com/volkamerlab/kissim_app/blob/v1.1.
0/notebooks/003_subpockets/003_subpocket_vs_conformations.
ipynb, Version 1.1.0 [accessed 2022-04-24].

(62) Volkamer Lab, KiSSim Notebook: Can Fingerprint Distances
Discriminate DFG Conformations? https://github.com/volkamerlab/
kissim_app/blob/v1.1.0/notebooks/005_comparison/004_
fingerprint_distances_vs_dfg.ipynb, Version 1.1.0 [accessed 2022-04-
24].
(63) Volkamer Lab, KiSSim Notebook: Fingerprint Distances Between
Structures for the Same Kinase. https://github.com/volkamerlab/
kissim_app/blob/v1.1.0/notebooks/005_comparison/005_
structure_kinase_mapping.ipynb, Version 1.1.0 [accessed 2022-04-
24].
(64) Illergar̊d, K.; Ardell, D. H.; Elofsson, A. Structure is Three to
Ten Times More Conserved Than Sequence - A Study of Structural
Response in Protein Cores. Proteins Struct., Funct., Bioinf. 2009, 77,
499−508.
(65) Volkamer Lab, KiSSim Notebook: KiSSim-Based Kinome Tree.
https://github.com/volkamerlab/kissim_app/blob/v1.1.0/
notebooks/005_comparison/006_kissim_kinome_tree.ipynb, Ver-
sion 1.1.0 [accessed 2022-04-24].
(66) Volkamer Lab, KiSSim Notebook: Predict Ligand Profiling Using
KiSSim (Pooled Karaman and Davis Dataset). https://github.com/
volkamerlab/kissim_app/blob/v1.1.0/notebooks/006_evaluation/
004_profiling_karaman_davis.ipynb, Version 1.1.0 [accessed 2022-
04-24].
(67) Volkamer Lab, KiSSim Notebook: Predict Ligand Profiling Using
IFPs (Pooled Karaman and Davis Dataset). https://github.com/
volkamerlab/kissim_app/blob/v1.1.0/notebooks/006_evaluation/
011_profiling_karaman_davis__ifp.ipynb, Version 1.1.0 [accessed
2022-04-24].
(68) Volkamer Lab, KiSSim Notebook: Predict Ligand Profiling Using
Sequence (Pooled Karaman and Davis Dataset). https://github.com/
volkamerlab/kissim_app/blob/v1.1.0/notebooks/006_evaluation/
012_profiling_karaman_davis__seq.ipynb, Version 1.1.0 [accessed
2022-04-24].
(69) Volkamer Lab, KiSSim Notebook: Predict Ligand Profiling Using
SiteAlign (Pooled Karaman and Davis Dataset). https://github.com/
volkamerlab/kissim_app/blob/v1.1.0/notebooks/006_evaluation/
013_profiling_karaman_davis__sitealign.ipynb, Version 1.1.0 [ac-
cessed 2022-04-24].
(70) Volkamer Lab, KiSSim Notebook: Compare AUC Values Between
KiSSim and Other Methods. https://github.com/volkamerlab/kissim_
app/blob/v1.1.0/notebooks/006_evaluation/014_comparative_
analyses_auc.ipynb, Version 1.1.0 [accessed 2022-04-24].
(71) Moret, N.; Clark, N. A.; Hafner, M.; Wang, Y.; Lounkine, E.;
Medvedovic, M.; Wang, J.; Gray, N.; Jenkins, J.; Sorger, P. K.
Cheminformatics Tools for Analyzing and Designing Optimized
Small-Molecule Collections and Libraries. Cell Chem. Biol. 2019, 26,
765−777.e3.
(72) Volkamer Lab, KiSSim Notebook: Predict Ligand Profiling Using
KiSSim (Moret Dataset. https://github.com/volkamerlab/kissim_
app/blob/v1.1.0/notebooks/006_evaluation/016_profiling_moret.
ipynb, Version 1.1.0 [accessed 2022-04-24].
(73) Volkamer Lab, KiSSim Notebook: KiSSim Matrix Only Based on
Ligand-Interacting Residues. https://github.com/volkamerlab/kissim_
app/blob/v1.1.0/notebooks/006_evaluation/015_subset_kissim_
fingerprints.ipynb, Version 1.1.0 [accessed 2022-04-24].
(74) Volkamer Lab, KiSSim Notebook: Pocket subsets from literature.
https://github.com/volkamerlab/kissim_app/blob/v1.1.0/
notebooks/004_fingerprints/006_literature_pocket_subsets.ipynb,
Version 1.1.0 [accessed 2022-04-24].
(75) Volkamer Lab, KiSSim Notebook: Fingerprint Bit Differences.
https://github.com/volkamerlab/kissim_app/blob/v1.1.0/
notebooks/005_comparison/007_fingerprint_diffs_3d.ipynb, Ver-
sion 1.1.0 [accessed 2022-04-24].
(76) KLIFS, 6JRK - Chain A | Epidermal Growth Factor Receptor.
https://klifs.net/details.php?structure_id=12159, [accessed 2022-04-
09].
(77) KLIFS, 5Y80 - Chain A (Model A) | Cyclin G Associated Kinase.
https://klifs.net/details.php?structure_id=10329, [accessed 2022-04-
09].

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.2c00050
J. Chem. Inf. Model. 2022, 62, 2600−2616

2615

60 CHAPTER 3. METHODS AND RESULTS



(78) Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.;
Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.;
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Supplementary methods

KiSSim fingerprint

The KiSSim fingerprint encodes the 85 KLIFS pocket residues in the form of physicochem-

ical and spatial properties (Figure 1). Physicochemical properties include pharmacophoric

and size features, side chain orientation, and solvent exposure. Spatial properties include

each residue’s distance to the pocket center as well as three prominent kinase subpockets

and the first three moments of the resulting distance distributions.

Pharmacophoric and size features (Figure 1 a) are taken from the SiteAlign categories for

standard amino acids:1 The size of residues with less than 4, 4–6, or more than 6 heavy

atoms is defined as 1, 2, or 3, respectively. The number of hydrogen bond donors (HBD)

and hydrogen bond acceptors (HBA) range from 0–3 and 0–2, respectively. The charge is set

to −1, 0, or 1 in the case of negative, neutral, or positive residues, respectively. Aromatic

and aliphatic properties are set to 1 if present or 0 if not present. The feature values for

standard amino acids are listed in Table S1. Non-standard residues are mapped to their

parent residues listed in the kinase sequence if possible (Table S2), otherwise the feature is

set to NaN.

Side chain orientation (Figure 1 b) is adapted from the SiteAlign definitions. In KiSSim,

this feature is based on the vertex angle α from the residue’s CA atom (vertex) to the pocket

centroid (based on all 85 pocket CA atoms) and to the residue’s side chain representative.

The latter is defined for each standard amino acid individually and refers to the out-most

atom in the side chain (Table S3). Non-standard amino acids are handled as described before.

Side chain orientation is defined as inward-facing (1), intermediate (2), and outward-facing

(3) if 0 ≤ α ≤ 45◦, 45 < α ≤ 90◦, and 90 < α ≤ 180◦, respectively.

Solvent exposure (Figure 1 c) is based on the HSExposure2 functionality in BioPython.?

The CA-CB vector of a residue spans a normal plane, which cuts a sphere in half that sits

around the residue’s CA atom with a radius of 12Å. The ratio ρ is calculated between the

2
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number of CA atoms in the upper half and all CA atoms in the sphere. Solvent exposure

is defined as high (1), intermediate (2), and low (3) if 0.0 ≤ ρ ≤ 0.45, 0.45 < ρ ≤ 0.55, and

0.55 < ρ ≤ 1.0, respectively. If the residue’s CA atom is missing, the feature is set to NaN.

If a residue’s CB atom is missing, HSExposure calculates a pseudo-CB atom infered from

neighboring atoms as described in.2 If this approach fails, the feature is set to NaN.

Spatial distances (Figure 1 d) are calculated from each residue’s CA atom to the pocket

center and to prominent subpocket centers. The pocket center is the centroid of all —

structurally resolved — pocket CA atoms. Prominent subpocket centers include the hinge

region, DFG region, and front pocket. Each subpocket center is calculated based on the

centroid of three anchor residues’ CA atoms, following the idea described in the KinFragLib

methodology.3 We selected anchor residues manually by fine-tuning the resulting subpocket

center to be situated in front of the hinge region, the DFG region or below the front loop

(Table S4). Pocket residue positions with high gap rates in sequence or structures were not

considered (Figure S1). If an anchor residue’s CA atom is missing in one of the structures,

the centroid of both neighboring CA atoms is used instead. If only one neighboring CA atom

is present, this atom is used instead. If no neighboring CA atom is available, the feature is set

to NaN. The subpocket center calculation is implemented in the structural cheminformatics

library OpenCADD (module opencadd.structure.pocket).4

Spatial moments (Figure 1 e) describe each of the four distributions of distances to the

pocket center, and three subpocket centers of the hinge region, DFG region, and front pocket.

In KiSSim, the first three moments are used: the mean, the standard deviation, and the

cube root of the skewness. This procedure is adapted from the Ultrafast Shape Recognition

(USR)5 method.

3
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Supplementary tables

Table S1: SiteAlign features. SiteAlign1 categories for standard amino acids (one-letter
code) including size, hydrogen bond donor (HBD), hydrogen bond acceptor (HBA), charge,
aromatic, and aliphatic features.

Feature name Feature value Amino acids

Size
1 A C G P S T V
2 D E H I K L M N Q
3 F R W Y

HBD
0 A D E F G I L M P V
1 C H K N Q S T W Y
3 R

HBA
0 A C F G I K L M P R V W
1 H N Q S T Y
2 D E

Charge
−1 D E
0 A C F G H I L M N P Q S T V W Y
1 K R

Aromatic
0 A C D E G I K L M N P Q R S T V
1 F H W Y

Aliphatic
0 D E F G H K N Q R S W Y
1 A C I L M P T V

4
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Table S2: Non-standard amino acid conversion. List of non-standard amino acids and
their parent standard amino acids used in KiSSim.

Non-standard amino acid Parent standard amino acid

CAF CYS
CME CYS
CSS CYS
OCY CYS
KCX LYS
MSE MET
PHD ASP
PTR TYR

Table S3: Side chain representative atoms. List of standard amino acids and their side
chain representatives as defined for the KiSSim side chain orientation feature calculation.
*pCB = pseudo-CB calculated with BioPython2

Amino acid (three-letter code) Amino acid (one-letter code) Atom PDB name

ALA A CB
ARG R CG
ASN N CG
ASP D CG
CYS C SG
GLN Q CD
GLU E CD
GLY G pCB*
HIS H CE1
ILE I CD1
LEU L CG
LYS K NZ
MET M CE
PHE F CZ
PRO P CB
SER S OG
THR T CB
TRP W CE2
TYR Y OH
VAL V CB

5
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Table S4: KiSSim subpocket anchor residues. KLIFS residue IDs used to calculate the
CA atoms’ centroid defining the KiSSim pocket center and subpocket centers.

Center name Anchor residue KLIFS IDs

Pocket center 1–85
Hinge region 16, 47, 80
DFG region 19, 24, 81
Front pocket 10, 48, 72

Table S5: Subsets of KLIFS pocket residues based on (a) ≥ 1% interaction frequency
across the unique kinase-ligand combinations in KLIFS version 3.2 with the build update
from 2021-09-02 and (b) based on pocket residues identified by Martin and Mukherjee 6 .

Subset criterion KLIFS pocket residues

DFG-in 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 19, 20,
21, 23, 24, 25, 27, 28, 31, 35, 36, 37, 38, 41, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 59, 60, 61, 64,
66, 67, 68, 69, 70, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83,
84, 85

DFG-out 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 23,
24, 25, 27, 28, 31, 35, 36, 37, 38, 43, 44, 45, 46, 47, 48,
49, 50, 51, 52, 54, 55, 60, 61, 64, 66, 67, 68, 69, 70, 74,
75, 77, 79, 80, 81, 82, 83, 84, 85

DFG-all 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 19, 20,
21, 23, 24, 25, 27, 28, 31, 35, 36, 37, 38, 41, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 59, 60, 61, 64,
66, 67, 68, 69, 70, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83,
84, 85

Martin and Mukherjee 6 5, 8, 28, 35, 38, 44, 45, 46, 48, 51, 52, 66, 67, 77, 80, 84

6
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Table S6: KiSSim dataset. Upper half: Filtering steps performed on the human dataset
from KLIFS version 3.27 downloaded on 2021-09-02 to generate the KiSSim dataset. Lower
half: Number of structures and kinases as well as number of structure and kinase pairs
encoded and compared with the KiSSim methodology; number of structure/kinase pairs
does not contain self-comparisons. See notebooks for more details.8,9

Number of structures
all DFG-in DFG-out

Select species: human 11806
Select KLIFS structures without flag 11650
Select resolution: ≤ 3 10690
Select quality score: ≥ 6 10236
Select mutated pocket residues: ≤ 3 10155
Select missing pocket residues: ≤ 8 10150
Select conformation 10150 8982 786
Select best structure per PDB and kinase pair 4690 4120 407
Encode structures as fingerprints 4681 4112 406

Number of structures 4681 4112 406
Number of kinases 279 257 71
Number of structure pairs 10953540 8452216 82215
Number of kinase pairs 38781 32896 2485

7
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Supplementary figures
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Figure S1: Number of structures with missing residues. Missing residues are shown for
the KLIFS pocket (residues 1-85) and colored by KLIFS region (loops in green and orange,
linker region in cyan, hinge region in magenta, α-helices in red, β-sheets in yellow, and DFG
region in blue). Residues selected as anchor residues to calculate the KiSSim subpockets are
marked with *. See notebook for more details.10
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Figure S2: Physicochemical feature distribution per residue position across all fin-
gerprint pairs: Across all fingerprint distances, feature value per residue position for the
size, number of hydrogen bond donors (HBD), number of hydrogen bond acceptors (HBA),
charge, aromatic, aliphatic, side chain orientation (SCO), and solvent exposure. See note-
book for more details.11
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Figure S3: Spatial distances feature distribution per residue position across all
fingerprint pairs: Distances per residue position to the hinge region, DFG region, front
pocket, and pocket center. See notebook for more details.11
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Figure S4: Structure pair distances for the most frequent kinases.. A kinase pair
can be described by varying structure pair distances; the number of distances per structure
pair ranges from 83845 (CDK2-CDK2) to 19435 (CHK1-PIM1). Sanity check: Structure
pairs describing the same kinase pairs (e.g. CDK2-CDK2) show lower structure distances
than structure pairs describing different kinase pairs. See notebook for more details.12
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Figure S5: KiSSim-based kinome tree focused on a subset of residues, i.e. residues
frequently interacting with ligands as seen in DFG-in structures (see Table S5). The tree
is based on 257 structurally resolved kinases in the DFG-in conformation. Tree nodes are
colored from red to blue showing small to large distances (0.008–0.102), describing high to
low similarities; tree leaves represent kinases colored by kinase group (see S7). The tree is
based on a clustering of the kinase distance matrix using as metric the Euclidean distance and
as linkage Ward’s criterion. The clusters are converted to the Newick format and visualized
using FigTree.13

12
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Figure S6: KiSSim-based kinome tree focused on a subset of residues, i.e. pocket residues
as identified by Martin and Mukherjee 6). The tree is based on 257 structurally resolved
kinases in the DFG-in conformation. See Figure S5’s caption for more details on the tree
parameters; tree nodes are colored from red to blue showing small to large distances (0.003–
0.118), describing high to low similarities.
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Figure S7: Coloring scheme for kinase groups as used in the KiSSim kinome trees.
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Figure S8: (Continued on the following page.)
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Figure S8: KiSSim performance against Karaman-Davis profiling data. ROC curves
comparing predicted and profiling-based kinase similarities (FPR = False positive rate; TPR
= True positive rate). Predicted similarities against a selected kinase k are based on the
KiSSim methodology. Profiling-based kinase similarities define kinases as similar if they
are targeted by the same ligand with Kd ≤ 100 nM, including the ligand’s on-target(s)
as reported in the PKIDB. The kinases, for which the ligand shows lower activities with
Kd > 100 nM, are treated as dissimilar to the ligand’s on-target(s). Find more details in the
Bioactivity profiling data section; we pooled profiling data from Karaman et al. 14 and Davis
et al. 15 for this analysis. The first rank is always occupied by the kinase k. See notebook
for more details.16
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Figure S9: (Continued on the following page.)
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Figure S9: KLIFS IFP performance against Karaman-Davis profiling data. ROC
curves comparing predicted and profiling-based kinase similarities (FPR = False positive
rate; TPR = True positive rate). Predicted similarities against a selected kinase k are based
on the KLIFS IFP. Profiling-based kinase similarities are defined as described in Figure S8’s
caption. The first rank is always occupied by the kinase k. See notebook for more details.17
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Figure S10: (Continued on the following page.)
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Figure S10: KLIFS sequence performance against Karaman-Davis profiling data.
ROC curves comparing predicted and profiling-based kinase similarities (FPR = False pos-
itive rate; TPR = True positive rate). Predicted similarities against a selected kinase k
are based on the KLIFS sequence identity. Profiling-based kinase similarities are defined
as described in Figure S8’s caption. The first rank is always occupied by the kinase k. See
notebook for more details.18
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Figure S11: (Continued on the following page.)
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Figure S11: SiteAlign performance against Karaman-Davis profiling data. ROC
curves comparing predicted and profiling-based kinase similarities (FPR = False positive
rate; TPR = True positive rate). Predicted similarities against a selected kinase k are based
on the SiteAlign methodology. Profiling-based kinase similarities are defined as described
in Figure S8’s caption. The first rank is always occupied by the kinase k. See notebook for
more details.19
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Figure S12: (Continued on the following page.)
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Figure S12: KiSSim performance against Moret profiling data. ROC curves compar-
ing predicted and profiling-based kinase similarities (FPR = False positive rate; TPR = True
positive rate). Predicted similarities against a selected kinase k are based on the KiSSim
methodology. Profiling-based kinase similarities are defined as described in Figure S8’s cap-
tion but using the profiling data by Moret et al. 20 . The first rank is always occupied by the
kinase k. See notebook for more details.21
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Figure S13: Comparison of different distance values for pairwise kinase structure compar-
isons, including all conformations. Diagonal: Distributions of pairwise kinase distances
calculated based on the KiSSim method, KLIFS pocket sequence identity, KLIFS pocket
IFP similarity, and SiteAlign pocket structure similarity. Lower triangular matrix: Bivariate
distributions of pairwise kinase distances, shown as isocontours with dark blue indicating
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sequences, interaction fingerprints, pocket structure, and ligand profiles.
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Abstract: While selective inhibition is one of the key assets for a small molecule drug, many diseases
can only be tackled by simultaneous inhibition of several proteins. An example where achieving
selectivity is especially challenging are ligands targeting human kinases. This difficulty arises from
the high structural conservation of the kinase ATP binding sites, the area targeted by most inhibitors.
We investigated the possibility to identify novel small molecule ligands with pre-defined binding
profiles for a series of kinase targets and anti-targets by in silico docking. The candidate ligands
originating from these calculations were assayed to determine their experimental binding profiles.
Compared to previous studies, the acquired hit rates were low in this specific setup, which aimed
at not only selecting multi-target kinase ligands, but also designing out binding to anti-targets.
Specifically, only a single profiled substance could be verified as a sub-micromolar, dual-specific
EGFR/ErbB2 ligand that indeed avoided its selected anti-target BRAF. We subsequently re-analyzed
our target choice and in silico strategy based on these findings, with a particular emphasis on the
hit rates that can be expected from a given target combination. To that end, we supplemented the
structure-based docking calculations with bioinformatic considerations of binding pocket sequence
and structure similarity as well as ligand-centric comparisons of kinases. Taken together, our results
provide a multi-faceted picture of how pocket space can determine the success of docking in multi-
target drug discovery efforts.

Keywords: multi-target ligands; docking; chemoinformatics; bioinformatics; kinases; binding site
comparison; anti-target

1. Introduction

Small-molecule modulators of protein function are the most frequent type of molecules
in use for the treatment of diseases due to their favorable pharmacokinetic properties [1].
Such ligands bind to cavities on protein surfaces—the binding sites—and compete with
substrates or native ligands, or they alter the protein conformation. For such a molecule
to become an efficacious drug, it has to possess adequate affinity for its protein target,
solubility, membrane permeability and stability. Furthermore, its overall binding profile has
to be compatible with its intended mode of action. On the one hand, unintended binding
to proteins other than the primary target can cause side effects. On the other hand, several
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diseases require the simultaneous modulation of multiple proteins in order to be treated
successfully [2–4]. While the binding profile of a ligand can certainly be engineered through
medicinal chemistry, starting out from a scaffold or a molecule that already displays the
desired affinities towards several target proteins can only be advantageous. Successful
approaches to identify dual-selective compounds by means of docking have been published
before [5–7]. In this work, we were interested to see whether this docking-based approach
can be broadened beyond what has previously been done by applying it to more than two
proteins and by also including anti-targets.

Our target family of choice for this study were kinases, which are established drug
targets to combat cancer and inflammatory diseases [8]. They play a major role in signal
transduction by phosphorylating other proteins and are frequently mutated in tumors [9,10].
The human kinome consists of over 540 protein kinases that were clustered by Manning
et al. [11] into eight major groups, e.g., tyrosine kinases (TKs), based on overall sequence
similarity. The interest in this protein family has resulted in the generation of a wealth of
freely available compound, bioactivity and structural data, which can be used for computer-
aided analysis and guidance in drug design [12]. Such data have also successfully been
applied to develop predictive models [13]. As of July 2020, there are 4864 X-ray structures
of human kinases available in the PDB [14] (number obtained from KLIFS, an open-source
database for kinase–ligand interaction fingerprints and structures, [15–17]) and 53 small
molecule kinase drugs (only counting ‘-nibs’) have made it to FDA approval [18]. Most
of the approved drugs bind to the ATP-binding pocket and its immediate surroundings,
which include important regions like the hinge region (forming key hydrogen bonds), the
DFG motif, the αC-helix and the glycine-rich (G-rich) loop. They either block the active
state of the kinase or lock the protein in an inactive state. In the active state, the DFG
motif’s phenylalanine (F) is pointing into the hydrophobic pocket, while the aspartate
(D) coordinates a magnesium ion for ATP binding (DFG-in conformation). Additionally,
conserved residues in the αC-helix and β3-sheet form a salt bridge (αC-in conformation)
and the G-rich loop stabilizes ATP. Different descriptors have been defined to classify
activity states based on these structural properties [15,16,19,20]. Since kinases share a
similar fold—especially in the active site—most kinase inhibitors suffer from promiscuous
binding. Sunitinib, for example, was found to bind to more than 50% of a panel of
290 kinases [21]. Similarly, dasatinib binds to a broad spectrum of TKs with high affinity [21].
Such promiscuous binding has been related to several of the side effects of current kinase
inhibitors. Taken together, these facts clearly demonstrate the need for methods which
are able to filter out compounds binding to kinases considered as anti-targets in order to
facilitate the design of more selective kinase inhibitors.

In this study, we investigated the possibility to design and identify ligands with a
defined polypharmacology through structure-based approaches. To that end, we docked
identical molecule sets against multiple kinase targets to identify novel kinase inhibitors
with defined rationally-selected profiles. Importantly, the resulting hits were not only se-
lected for their ability to simultaneously bind to multiple kinase targets but also specifically
filtered to avoid an established kinase anti-target. We also used available kinase-focused
data to analyze different facets of kinase similarity in an attempt to evaluate the likelihood
with which certain kinase combinations can be targeted simultaneously or individually.
We evaluated the similarity of the binding sites based on the correlation of the docking
ranks of the individual molecules, i.e., we considered binding sites to be similar when they
were predicted to bind the same compounds in a similar docking rank order. Moreover,
we assessed the congruence of this ranking with other ligand-centric as well as protein
sequence- and structure-based measures. We evaluated our docking calculations by pre-
dicting selective as well as multi-target ligands (with defined targets and anti-targets) for
three triplets of kinases and tested these predicted ligands experimentally. In this way,
we identified and validated a sub-micromolar dual inhibitor of EGFR and ErbB2, with no
activity against BRAF as the anti-target.
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The results of our study allow us to reflect on the similarity boundaries determining
the suitability of structure-based drug design (SBDD) to successfully address a specific
multi-target combination. In particular, they show the necessity for ever-larger libraries that
hold diverse molecules, in order to increase the likelihood of identifying ligands tailored
towards predefined selectivity profiles.

2. Results and Discussion

Herein, the selected kinase profiles are rationalized first and the virtual screening
results against these panels are discussed. Then, the experimental results for the selected
compounds are presented. Finally, the similarity between the kinases of the studied profiles
is analyzed with respect to different ligand- and protein-centric measures.

2.1. Kinase Profiles

We focused our analysis on a target panel comprising kinases with medical relevance
as well as a typical anti-target, known to be associated with frequent side effects of kinase
inhibitors. All kinases in this set have been thoroughly characterized in the literature and
are summarized in Table 1.

Table 1. List of kinases used in this study.

Kinase a Synonyms UniProt ID Group Family

EGFR ErbB1 P00533 TK EGFR
ErbB2 Her2 P04626 TK EGFR
PI3K PI3KCA, p110α P42336 Atypical PIK

VEGFR2 KDR P35968 TK VEGFR
BRAF - P15056 TKL RAF
CDK2 - P24941 CMGC CDK
LCK - P06239 TK Src
MET - P08581 TK MET
p38α MAPK14 Q16539 CMGC MAPK

a EGFR, epidermal growth factor receptor; ErbB2, Erythroblastic leukemia viral oncogene homolog 2; PI3K,
phosphatidylinositol-3-kinase; VEGFR2, vascular endothelial growth factor receptor 2; BRAF, rapidly accelerated
fibrosarcoma isoform B; CDK2, cyclic-dependent kinase 2; LCK, lymphocyte-specific protein tyrosine kinase;
MET, mesenchymal-epithelial transition factor; p38α, p38 mitogen activated protein kinase α.

The Erythroblastic leukemia viral oncogene homolog (ErbB) subclass of Receptor
Tyrosine Kinases (RTKs) consists of four members named from ErbB1 (better known as
epidermal growth factor receptor [EGFR]) to ErbB4 and they bind the EGF family of pep-
tides with their extracellular region [22]. The ErbB family is involved in the regulation of a
multitude of signaling pathways associated with cell development. It is thus not surprising
that aberrant ErbB signaling occurs in many cancers. Of note, patients with altered EGFR
and ErbB2 expression suffer from a more aggressive disease. Especially breast cancer over-
expressing ErbB2 is associated with poor patient prognosis [23]. Unfortunately, therapy
is often effective only for a short time and tumors will escape inhibition by activating
pathways downstream of ErbB receptors via other kinases. This has been demonstrated for
the phosphatidylinositol-3-kinase (PI3K) pathway, which is directly or indirectly activated
by most ErbBs [24]. After initial downregulation of PI3K activity upon inhibition of ErbBs,
this pathway often recovers. Combination therapies are used to circumvent this problem,
albeit with limited success. There is also evidence that tumor cells escape the negative ef-
fects of EGFR inhibition by upregulating tumor angiogenesis-promoting growth factors. A
study used two antibodies against EGFR and VEGFR2 (vascular endothelial growth factor
receptor 2), respectively, to treat gastric cancer grown in nude mice [25]. The combination
resulted in significantly greater inhibition of tumor growth.

Based on these experimental observations, we aggregated the investigated kinases
in “profiles” (Table 2). Profile 1 combined EGFR and ErbB2 as targets (indicated by a ‘+’)
and BRAF (from rapidly accelerated fibrosarcoma isoform B) as a (general) anti-target
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(designated by a ‘−’). Out of similar considerations, Profile 2 consisted of EGFR and PI3K
as targets and BRAF as anti-target. This profile is expected to be more challenging as PI3K
is an atypical kinase and thus less similar to EGFR than for example ErbB2 used in Profile
1. Profile 3, comprised of EGFR and VEGFR2 as targets and BRAF as anti-target, was
contrasted with the hit rate that we found with a standard docking against the single target
VEGFR2 (Profile 4).

Table 2. Definitions of kinase profiles and the numbers of screening compounds selected for
each profile.

ID Kinase Profile a No. of Tested Compounds

1 +EGFR+ErbB2−BRAF 18 b,c

2 +EGFR+PI3K−BRAF 9 b

3 +EGFR+VEGFR2−BRAF 8 c

4 +VEGFR2 4
a + and −indicate targets and anti-targets, respectively. b Three compounds are identical between Profiles 1 and 2
but were independently selected from the docking calculations against both profiles. c One compound is identical
between Profiles 1 and 3 but was independently selected from the docking calculations against both profiles.

To broaden the comparison and obtain an estimate for the promiscuity of each com-
pound, the kinases CDK2 (cyclic-dependent kinase 2), LCK (lymphocyte-specific protein
tyrosine kinase), MET (mesenchymal-epithelial transition factor) and p38α (p38 mitogen
activated protein kinase α) were included in the experimental assay panel and the structure-
based bioinformatics comparison as commonly used anti-targets.

2.2. Virtual Screening against Kinase Profiles

Following our previous approach to identify ligands with tailored selectivity profiles
by virtual screening [6], the aim of this study was to evaluate the possibility to add anti-
targets to a kinase profile. We hence modified our previous approach to incorporate profiles
with more than two kinases, multiple structures per kinase and the selection of targets and
anti-targets (Equation (1) in Section “Data and Methods”).

Starting from the EGFR/ErbB2 pair, we included BRAF as a promiscuous anti-target,
resulting in Profile 1 (see Section 2.4.1 for a discussion of promiscuity values). We therefore
prioritized molecules with high rank (i.e., favorable docking scores) in EGFR and ErbB2
as well as low rank (i.e., unfavorable docking interactions) in BRAF. The ZINC lead-like
and ZINC drug-like subsets, containing 4.6 and 10.6 million molecules, respectively, were
docked into each of the selected structures of these kinases (cf. “Data and Methods”). After
docking the smaller lead-like subset to EGFR, ErbB2 and BRAF, the kinases comprising
Profile 1, we identified a high mutual overlap in terms of well-ranked compounds between
these three kinases (6982 common compounds in the top-ranked 25,000 compounds for
EGFR and ErbB2, 4732 for ErbB2/BRAF and 4675 for EGFR/BRAF, respectively, each
number representing the maximum over all pairwise comparisons of all docking runs
of the lead-like ZINC subset into the different structures of these kinases). Thus, many
promising poses in EGFR/ErbB2 were invalidated by a high-rank in the anti-target BRAF.
Therefore, we deemed the docking of the larger drug-like subset necessary to obtain a
sufficient number of poses with reasonable binding modes to select from after re-ranking.
The re-ranking procedure was devised to prioritize molecules matching the requested
profile, i.e., molecules with favorable docking rank in all targets but unfavorable docking
ranks in all anti-target structures (see “Data and Methods” for details). Finally, we selected
18 molecules (see Table 2 and Table S1) based on visual inspection for this profile (see “Data
and Methods” for more detail) from the re-ranked lists of both molecule sets and evaluated
these experimentally.

Similarly, for Profile 2, using EGFR and PI3K as targets and again BRAF as an anti-
target (Table 2), we docked both the ZINC lead-like as well as the drug-like subsets. Again,
we deemed the drug-like subset to be necessary due to the large overlap of the top-scoring
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lead-like molecules of the targets with the ones ranked favorably in the anti-target (4683,
4675 and 6591 for EGFR/PI3K, EGFR/BRAF, and PI3K/BRAF, respectively). For this
profile, we selected nine molecules (Table 2 and Table S1).

The parallel docking calculations for Profiles 3 and 4 (Table 2) yielded eight and four
candidate ligands, respectively (Table 2 and Table S1). For Profile 3, the number of common
molecules in the top 25,000 was 4610 and 5544 for VEGFR2/EGFR and VEGFR2/BRAF,
respectively. As above, the overlap between EGFR and BRAF was 4675.

2.3. Experimental Validation

In total, 24 compounds selected from Profiles 1 and 2 (Table 2 and Table S1) were
tested in the DiscoverX assay against kinases EGFR, ErbB2, BRAF, VEGFR2, LCK, CDK2,
MET, p38α and PI3K (Table S2), as well as in an additional confirmatory assay by Eurofins
against EGFR, ErbB2, BRAF and PI3K (Table S3). Only one of the 24 compounds, DS39984,
showed measurable binding to the desired kinases (Profile 1, Table 3 and Tables S1–S3),
while binding to neither Profile 1’s anti-target BRAF nor any of the other tested kinases
(VEGFR2, CDK2, LCK, MET, p38α and PI3K). This compound DS39984 emerged from the
screening campaign against Profile 1 (+EGFR+ErbB2−BRAF) and was picked from the
drug-like subset of the ZINC database. We further validated the binding of this ligand and
determined binding curves in an independent assay with IC50 values of 324 and 220 nM
(note that both enantiomers were docked—with the R-enantiomer more favorably ranked,
but the racemate was tested) against EGFR and ErbB2insYVMA (a variant of ErbB2 with an
insertion of four residues distant from the binding pocket), respectively (Table 3, Rauh Lab).

Table 3. Assay results for identified hit molecules.

Compound P a Research Lab Unit EGFR ErbB2 ErbB2insYVMA BRAF

DS39984 1 DiscoverX % ctrl. activity at 10 µM 17 21 n.d. c – d

DS39984 1 Eurofins % inhib. at 20 µM ± s.d. 59± 3.2 – b n.d. c – b

DS39984 1 Rauh Lab IC50 ± s.d. 324± 50 nM n.d. c 220± 3 nM n.d. c

K001MM011 4 DiscoverX % ctrl. activity at 10 µM 1.4 53 n.d. c – d

a Profile as per Table 2; b Below 50% cutoff for hit as recommended by Eurofins; c not determined; d percent control activity ≥ 99%, i.e., no measurable
inhibition.

As shown in the predicted binding modes in EGFR and ErbB2 (Figure 1), DS39984
adopts a similar binding orientation in both proteins, with the pyrimidine portion forming
a hydrogen bond to the hinge region. The methylester moiety is oriented more towards the
back of the binding pocket, where both kinases feature rather voluminous cavities. This
predicted binding mode to the hinge region is consistent with the sensitivity of DS39984
towards the T790M mutation: Affinity for the EGFRL858R/T790M double mutant is
abolished (IC50 > 10 µM), whereas the affinity for the EGFRL858R mutant is 2351± 397 nM.
In contrast, in both BRAF structures used herein, the predicted poses are flipped and have
their methylester moiety pointing towards the solvent (Figure S1). A similar hinge binding
interaction as in EGFR and ErbB2 is only present in one of the two poses (in the docking to
BRAF structure 1UWH). This occurs despite the fact that in the 1UWH crystal structure
the deep back pocket is open due to the crystallized ligand. Thus, in principle, a binding
mode of DS39984 similar to the ones predicted in EGFR and ErbB2 is not per se excluded
in BRAF due to steric reasons.

Note that DS39984 is not present in ChEMBL and has low similarity to known kinase
ligands in ChEMBL (no ligand with Tanimoto similarity >0.7 as implemented in the
ChEMBL web interface as of 18 October 2020). Furthermore, none of the additionally tested
kinases (LCK, CDK2, MET and p38α) were inhibited by the molecule, which underlines,
together with absence of BRAF inhibition, the potential of DS39984 as a novel, selective
nanomolar EGFR and ErbB2 inhibitor.
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Figure 1. Docking poses of the R-enantiomer of compound DS39984 bound to (A) EGFR (PDB 3POZ, DFG-in) and (B) ErbB2
(PDB 3PP0, DFG-in); and (C) 2D representation of DS39984. The protein structure is shown as cartoon, colored in grey,
the compound as sticks. Interacting binding site residues are represented as sticks and labeled. Hydrogen bonds between
protein and ligand are indicated by dark gray dashed lines.

Eight compounds were selected for Profile 3 (+EGFR+VEGFR2−BRAF, Table 2 and
Table S1) and tested in the DiscoverX assay against EGFR, VEGFR2, BRAF and ErbB2.
However, none of the compounds exhibited a relevant effect against any of these kinases.
To crudely estimate the ligandability of VEGFR2, we docked against this target individually
(Profile 4). However, we did not observe many poses that passed our visual inspection
(see “Data and Methods” for details) and were able to select only four compounds from the
docking to VEGFR2. These were tested in the same assay. Again, none of these compounds
showed an effect on VEGFR2 activity. While the number of tested compounds is certainly
too small to draw clear conclusions, the fact that only few compounds could be considered
in the first place and that those few were inactive might indicate that VEGFR2 is more
challenging with respect to the identification of ligands by docking than for example
EGFR and ErbB2. One explanation for this could be associated with the fact that the vast
majority of VEGFR2 structures show DFG-out(like) conformations (ratio DFG-in/out(like)
structures in the PDB: 5/34 for VEGFR2 compared to 168/22 for EGFR, as of KLIFS 25
November 2020). Note that several FDA-approved kinase inhibitors bind to DFG-out(like)
VEGFR2 conformations, e.g., axitinib, sunitinib and sorafenib [26]. In contrast, we used
DFG-in conformations of VEGFR2 for docking in order to maximize comparability with
the other kinase structures used.

Unexpectedly, however, we found that one of these four compounds selected for
VEGFR2 inhibition, K001MM011, actually inhibited EGFR and, to a lesser extent, ErbB2
(Tables 3 and Table S2). While K001MM011 was picked from the docking to VEGFR2 only,
we retrospectively inspected the ranking of this compound in the docking to EGFR and
ErbB2. In EGFR, K001MM011 was found to be ranked within the best 10,000 compounds
(rank 9527) of the lead-like subset in PDB 3POZ, while, in ErbB2, K001MM011 was ranked
not as highly (best rank: 123,665 in PDB 3PP0).

In light of these experimental results and the comparative scarcity of ligands with
the intended profiles, we decided to better investigate the kinases involved, with a view
towards the possibility to predict the sensibility of a particular target combination.

2.4. Kinase Similarities

Designing kinase inhibitors with intended dual target activity that avoid binding to
one or several specific anti-targets is a non-trivial task, as evidenced by the docking part of
our study. To better understand how difficult it may be to design such inhibitors rationally,
five different measures of inter-kinase similarity—each contributing a different level of
granularity and a different viewpoint—were investigated (Figure 2). Such an analysis
potentially enables a priori estimations of the success of these endeavors for a given
target/anti-target profile.
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Figure 2. Heat maps of pairwise kinase similarities for the different measures used in this work: (A) ligand profile similarity
(LigProfSim); (B) pocket sequence similarity (PocSeqSim); (C) interaction fingerprint similarity (IFPSim); (D) pocket
structure similarity (PocStrucSim); and (E) docking rank similarity (DockRankSim) based on the lead-like subset of ZINC.
Note that docking was only performed for the five kinases of Profiles 1–4, thus the remaining entries remain empty (white)
in the matrix.

2.4.1. Ligand Profile Similarity (LigProfSim)

A first glance at the ChEMBL kinase ligand subsets revealed that none of the investi-
gated kinases seems to be overly selective in terms of the ligands it recognizes, which is in
accordance with previous kinome-wide profiling studies [21,27]. Given that the promiscu-
ity values (Table 4, diagonal of Figure 2A and Table S4) range from 0.55 for CDK2 to 0.82
for BRAF, all nine kinases bind more than half of the compounds tested against them at an
affinity cut-off of 500 nM. Accordingly, BRAF is the most promiscuous kinase in the set,
justifying its use as a general kinase anti-target in this study.

Second, considering LigProfSim, it becomes evident that EGFR, ErbB2 and BRAF are
more similar to each other than the remaining kinases (top-left quarter of Figure 2A), which
renders finding a compound for Profile 1 (Table 2) a difficult task. With LigProfSim values
of 0.53 and 0.55, EGFR is more similar to ErbB2 and BRAF, respectively, than to any other
kinase in the set (Table S4). The same holds true for ErbB2, while BRAF has also higher
similarities to other kinases in the set. In contrast, with a mean similarity value of 0.18,
PI3K has the lowest mean LigProfSim similarity to all nine kinases. This is not unexpected,
given that PI3K is the only atypical kinase in the set, but it underlines how challenging the
definition of Profile 2 is. Note that, while 4150 compounds were tested against PI3K (with
2706 being active), PI3K has fewer than five common actives with most kinases, except for
EGFR (13 common actives of 180 compounds tested against both targets) and VEGFR2 (32
of 175) (see Tables 5 and Tables S5 and S6). While all kinases were assayed against at least
1500 compounds, a few other kinase pairs—not including PI3K—exist that have only a
low number of tested compounds in common, e.g., CDK2/BRAF (14), CDK2/p38α (8) or
ErbB2/p38α (9, see Table S5), which makes thorough comparison difficult. Finally, with
a value of 0.35, EGFR and VEGFR2 do not show high similarity from this ligand-centric

Kinase Off-Targets (Publication C) 97



Molecules 2021, 26, 629 8 of 19

perspective, while, as mentioned above, VEGFR2 and BRAF show considerably higher
similarity (0.77). These numbers indicate that Profile 3 is very difficult.

Table 4. Kinase promiscuity measures calculated as the ratio of ligands active on a specific kinase
(column 2). In Columns 3–6, mean values and standard deviations (s.d.) of ligand profile similarity
(LigProfSim), pocket sequence similarity (PocSeqSim), interaction fingerprint similarity (IFPSim) and
pocket structure similarity (PocStrucSim) per kinase are given. Note: Two kinases having a similar
mean value for a particular similarity measurement does not imply that they are similar to each other
(especially when large s.d. values are associated with the measure; see Figure 2 for pairwise kinase
comparisons).

Kinase Promiscuity a Mean (±s.d.) b

LigProfSim PocSeqSim IFPSim PocStrucSim

EGFR 0.59 0.37 (±0.18) 0.50 (±0.28) 0.81 (±0.10) 0.50 (±0.21)
ErbB2 0.62 0.37 (±0.19) 0.50 (±0.28) 0.64 (±0.09) 0.38 (±0.24)
PI3K 0.65 0.18 (±0.23) 0.23 (±0.29) 0.61 (±0.13) 0.33 (±0.26)
BRAF 0.82 0.56 (±0.18) 0.42 (±0.23) 0.82 (±0.16) 0.52 (±0.21)
CDK2 0.55 0.33 (±0.17) 0.40 (±0.24) 0.80 (±0.12) 0.49 (±0.21)
LCK 0.63 0.34 (±0.22) 0.45 (±0.23) 0.82 (±0.13) 0.50 (±0.21)
MET 0.79 0.31 (±0.24) 0.45 (±0.23) 0.79 (±0.14) 0.46 (±0.22)
p38α 0.77 0.43 (±0.27) 0.44 (±0.23) 0.82 (±0.15) 0.47 (±0.21)

VEGFR2 0.70 0.51 (±0.18) 0.46 (±0.23) 0.83 (±0.16) 0.50 (±0.23)
a Kinase promiscuity based on ligand affinity data from ChEMBL, measured as ratio of active compounds over
tested compounds (activity threshold IC50 = 500 nM, cf. Table 5); b mean ± standard deviation (s.d.) values for
LigProfSim, PocSeqSim, IFPSim and PocStrucSim of the respective kinase to all nine kinases (including itself) in
the set.

Table 5. Dataset composition for the similarity analysis. Listed are the numbers of compounds
active and tested against each kinase used for the ligand profile similarity (LigProfSim), as well as
number of structures used for the interaction fingerprint similarity (IFPSim) and the pocket structure
similarity (PocStrucSim) calculations.

Kinase (Family/Group) # Compounds # Structures
Actives Tested IFPSim PocStrucSim

EGFR (TK/EGFR) 3382 5702 150 15
ErbB2 (TK/EGFR) 1048 1690 2 2

PI3K (Atypical/PIK) 2706 4150 26 2
VEGFR2 (TK/VEGFR) 5197 7426 41 13

BRAF (TKL/RAF) 2968 3625 69 25
CDK2 (CMGC/CDK) 837 1520 377 43

LCK (TK/Src) 976 1552 34 29
MET (TK(MET)) 2248 2851 70 11

p38α(CMGC/MAPK) 2753 3581 196 36

Total 22,115 32,097 965 176

2.4.2. Pocket Sequence Similarity (PocSeqSim)

Classically, kinases are clustered based on their full sequence similarity, such as in
the well-known phylogenetic human kinome tree by Manning et al. [11]. The kinome tree
is often considered when checking for relationships among kinases, cross-reactivity and
anti-targets. Arguably, EGFR and ErbB2 are the most closely related kinases in the set, both
belonging to the TK branch and the EGFR family, followed by similarity to VEGFR2 (TK
branch, VEGFR family). BRAF is less closely related (tyrosine-kinase-like [TKL] branch,
RAF family). Finally, PI3K belongs to the atypical kinases and is only distantly related. Full
kinase details are listed in Table 1.
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Here, we refined this sequence-based view of similarity to only consider the 85 residues
forming the binding site in each kinase (PocSeqSim). Also in this “pocket sequence” space,
the two EGFR family members EGFR and ErbB2 show the highest similarity of 0.89
(Figure 2B, numbers in Table S7). All other kinase pairs have similarity values below
0.48, thus less than 50% identical pocket residues. VEGFR2, MET and LCK, three other
kinases from the TK class, have PocSeqSim between 0.42 and 0.47 to EGFR and Erb2; BRAF
(TKL), p38α and CDK2 (both from the CMGC family) have values in the range of 0.32 to
0.40. Again, PI3K shows the lowest similarity to all other eight kinases. This indicates
that, first, the pocket sequence similarities follow a similar trend as the whole-sequence
similarities and, second, that—due to the close relationship of EGFR and ErbB2—other less
similar kinases of the TK branch such as VEGFR2, MET and LCK, but also BRAF (TKL),
p38α and CDK2 (both from the CMGC family), could be easier-to-satisfy anti-targets of
+EGFR+ErbB2 ligands (Figure 2B).

2.4.3. Interaction Fingerprint Similarity (IFPSim)

To take the interplay between the ligand and the protein into account, interaction
fingerprint similarities (IFPSim) were investigated. Note that, for each kinase pair, all
available X-ray structures were compared and that only the similarity between the highest-
scoring pair is reported (Figure 2C, numbers in Table S8). In the IFPSim matrix, the diagonal
describes the best match among all pairwise IFP comparisons between different structures
from the same kinase. Interestingly, ErbB2 has a self-similarity of only 0.71. This could be a
consequence of the relatively low structural coverage of this kinase. In fact, ErbB2 is only
represented by two structures, whereas, for EGFR, 150 structures are available (Table 5).

With mean similarity values between 0.61 (lowest for PI3K) and 0.83 (highest for
VEGFR2), the IFPSim values are generally higher than the LigProfSim and PocSeqSim
values described above (Table 4). EGFR has a high mean similarity to all kinases of
0.81, whereas ErbB2 has a lower mean value of 0.64; note again the low structural cov-
erage of ErbB2. While ErbB2 is most similar to EGFR (0.78) with respect to IFPSim
(Figure 2C), it is less similar to BRAF (0.65), which would favor the development of a
Profile 1 (+EGFR+ErbB2−BRAF) inhibitor. Interestingly, PI3K shows one of the highest
similarities to EGFR (0.65), while it is less similar to BRAF (0.52), which, in contrast to
other similarity measures, would support the feasibility of designing +EGFR+PI3K−BRAF
compounds (Profile 2). In the case of VEGFR2, although similarity to EGFR is high (0.83),
we observe an even higher similarity to BRAF (0.93), giving another indication of how
difficult it may be to design-out this anti-target. On the other hand, the comparatively high
similarity of VEGFR2 to EGFR might give an indication of why our Profile 4 compound
actually inhibited EGFR.

2.4.4. Pocket Structure Similarity (PocStrucSim)

Similarities with respect to structural and physicochemical properties of the binding
sites were analyzed using the CavBase fast cavity graph comparison algorithm [28,29]
(Figure 2D, numbers in Table S9). Note that binding sites were automatically detected
using LigSite and thus may vary in precision throughout the different structures, even
within the same kinase. Pairwise kinase similarities range from 0.16 (PI3K/ErbB2) to 0.61
(BRAF/VEGFR2 and LCK/VEGFR2) and are—with a mean value of 0.46 over all kinase
pairs—generally lower than the IFPSim values described above (Table 4). Interestingly,
EGFR and ErbB2 share only moderate similarity in this measure (0.40), while EGFR is more
similar to all other kinases (including BRAF; 0.52), except PI3K (0.24). However, it should
be noted that the structural coverage for ErbB2 and PI3K is much lower than for the other
kinases, with only two structures each (Table 5). Note that EGFR is most similar to the
anti-target BRAF (0.52). Thus, according to PocStrucSim, it appears difficult to develop
ligands against all multi-target profiles (1–3, Table 2).
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2.4.5. Docking Rank Similarity (DockRankSim)

Finally, we leveraged the results of our docking experiments to derive a complemen-
tary similarity measure based on the rank correlation of the docked lead-like compounds
(Figure 2E). DockRankSim values were calculated using only the top-scoring 25,000 lead-
like molecules for each structure (about 0.5% of the ZINC lead-like subset at that time),
since control calculations taking into account the entirety of docked molecule sets showed
poor discrimination between different kinases. This lack of discrimination is likely due
to the fact that the majority of molecules in the lead-like set are not kinase inhibitor-like.
Therefore, the docking rank order of molecules past a certain threshold is noisy, i.e., all of
them are more or less equally unlikely to bind. However, they will still receive different
ranks based on small scoring differences, and these different ranks will lead to rather
different—yet meaningless—correlations between the rankings. Only the five kinases that
were included in the four docking profiles (Table 2) were considered, i.e., no values for
CDK2, LCK, MET and p38αwere determined.

EGFR and ErbB2 have by far the highest mutual similarity of 0.3 within this set of
kinases and a DockRankSim below 0.12 to all other kinases. While their higher mutual
DockRankSim is not surprising given the close relationship between EGFR and ErbB2, it is
encouraging that the docking results capture this.

Interestingly, the second highest DockRankSim observed is between PI3K and BRAF
(0.15), followed by BRAF and VEGFR2 (0.13) as well as PI3K and VEGFR2 (0.13). This
is surprising as PI3K, as atypical kinase, shares a rather low similarity to the remaining
kinases using most other measures employed in this study (Figure 2A–D). The remaining
DockRankSim values are around 0.1, which seems to be the center of the distribution. The
smallest DockRankSim was observed between EGFR and PI3K (0.04), an indication that Pro-
file 2 (+EGFR+PI3K−BRAF) inhibitor design might be a challenge, at least computationally.

2.4.6. Comparison of Similarity Analyses

To shed light on the ease of identifying inhibitors for the respective profiles and the
possibility to predict the likelihood that multi-target design endeavors will be successful,
five different protein similarity measures were calculated (Figure 2A–E). While the individ-
ual relationships between the nine kinases studied differ according to the five measures
(which might also be due to missing data or noise in the data, as discussed above), several
trends can be observed.

The similarity scores of the PocStrucSim and the IFPSim comparisons are distributed
more evenly and clearly correlate with each other (R = 0.78, p < 0.001, Figure S2). In
addition, the pocket structure- and sequence-based comparisons follow a similar trend
(PocStrucSim vs. PocSeqSim R = 0.73, p < 0.001). All other pairwise comparisons are less
correlated, showing values in the range of R = [0.55, 0.59] with p < 0.001 (Figure S2). While
several measurements appeared to be correlated, differences between them are not sur-
prising since the measures capture diverse views and thus complementary information of
similarity. Nonetheless, it should be noted that the calculated values highly depend on the
amount of available data. The conformational space of a kinase might be underrepresented
if few kinase structures are available, which affects the structure-related measurements.
Furthermore, since ChEMBL only provides a very sparse kinase-compound matrix of
experimental measurements, the basis of compounds considered per kinase pair may differ
strongly, affecting the LigProfSim values (as well as the promiscuity as defined here).

Besides PocStrucSim, all other measures imply a high similarity between EGFR and
ErbB2, which is in favor of +EGFR+ErbB2 inhibitor design. Furthermore, LigProfSim,
PocStrucSim and PocSeqSim suggest BRAF as a relevant and frequent anti-target, while
this is less clear-cut for the IFPSim and DockRankSim measures. This fact renders design
for all three profiles a challenging task. Furthermore, while PI3K is very dissimilar to
EGFR from a sequence point of view (cf. Manning tree annotation), it showed higher
similarity based on other measures such as IFPSim, which is encouraging for Profile 2
(+EGFR+PI3K−BRAF) design. In this sense, the fact that our docking results did not yield
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compounds with such a profile would suggest that similarity to the anti-target (in this case,
BRAF) larger than to the intended target could be a key factor complicating the detection
of the desired compounds.

Overall, our analyses suggest that ligand-, sequence- and structure-based approaches
complement each other and can thus yield consistent insights into kinase similarities. It
therefore seems advisable to carry out all of these analyses before a (virtual) screening
campaign in order to take appropriate steps, e.g., adaptation of the molecule library to be
screened, early on. Our ranking comparisons also suggest that similarity between one of
the targets and the anti-target that is higher than the similarity between the two intended
targets can be used as a prognostic indicator for difficult multi-target profiles.

3. Data and Methods
3.1. Docking-Based Virtual Screening

Kinase crystal structures that were suitable for docking in general, as well as for
the herein discussed purpose in particular, were carefully selected from the Protein Data
Bank [14]. Structures were prioritized based on their resolution and the number of missing
heavy atoms, with a focus on residues in and around the binding site. Furthermore,
structures for target pairs were selected such that the structures for the two kinases involved
were as similar as possible. The rationale behind this aim was to maximize the possibility
to identify inhibitors binding to both structures. This structural similarity included the
overall state of the kinase structure, as determined by the conformation of the DFG and
αC motifs, as well as visual comparisons of the binding site residues. Structures with
similar side-chain conformations of equivalent amino acids were preferred, as far as such
structures existed and the equivalence of amino acids could be rationally established,
i.e., for homologous amino acids in EGFR/ErbB2 structure pairs, whereas this was not
applicable to, e.g., EGFR/PI3K structure pairs due to their higher dissimilarity. Finally,
the crystal structures (PDB IDs given in parentheses) for EGFR (1XKK [30], 3POZ [31]),
ErbB2 (3PP0 [31], 3RCD [32]), BRAF (1UWH [33], 3PPK [34]), PI3K (4JPS [35]) and VEGFR2
(2P2H, 3WZD [36]) were downloaded from the PDB (a summary of structural details is
presented in Table 6).

Table 6. Kinase structures used in docking experiments.

Kinase PDB DFG a αC b

EGFR 1XKK in out
EGFR 3POZ in out
ErbB2 3PP0 in in
ErbB2 3RCD in out-like
BRAF 1UWH out out
BRAF 3PPK in in
PI3K 4JPS in in

VEGFR2 2P2H in out
VEGFR2 3WZD in out

a Orientation of the conserved DFG motif (in/out), annotation from KLIFS [12]; b conformation of the αC-helix
(in/out), annotation from KLIFS [12].

The structures were prepared following the protocol in Kolb et al. [37]. Briefly, the
first protein chain was used in case several were crystallized. Hydrogens were placed
and minimized using the CHARMM (version 31b2) HBUILD command. The ZINC12 [38]
lead-like and drug-like subsets (as of July 2015), containing 4.6 and 10.6 M molecules,
respectively, were docked into the prepared receptor structures using DOCK 3.6 [39–43] as
described in Schmidt et al. [6]. For EGFR, for which a ligand/decoy set is available from
DUD-E [44], the prepared structures were additionally validated by their ability to enrich
ligands over decoys. AUC values were found to be 0.87 (1XKK) and 0.85 (3POZ), which
compares favorably to the value of 0.84 as published by DUD-E [44].
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Based on these docking results, compounds were re-scored according to the different
selectivity profiles of interest. In our previous work, we introduced a selectivity score for
protein pairs, i.e., two docking runs, both being considered as target. Compounds were
penalized for unfavorable (i.e., high) ranks in each docking run as well as a high rank
difference between these two docking calculations (i.e., good/bad performance in docking
A/B; Equation (1) in Schmidt et al. [6]).

Here, this procedure was extended to be applicable to more than two proteins, multiple
structures per protein and the proper incorporation of anti-targets. Specifically, the docking
calculations for multiple structures of the same kinase (e.g., 1XKK and 3POZ for EGFR)
were aggregated by using only the best (i.e., numerically smallest) rank in any of the
structures. Second, anti-targets were incorporated by inverting the docking rank order,
based on the idea that a good docking performance is disfavored in anti-targets. Third, the
equation was extended to multiple proteins by using the average rank (note that ranks for
anti-targets were inverted beforehand) in all protein docking calculations of the respective
profile (e.g., EGFR, ErbB2 and BRAF) and the rank difference between the highest and
lowest docking rank in all proteins. Finally, in contrast to our previous procedure [6],
logarithmic ranks were used to focus on the top-scoring molecules, based on the notion
that the docking scores (and hence docking ranks) become less discriminating beyond the
first few percent of the docked database for very large (and diverse) ligand sets, such as the
ones used herein. Altogether, the score S of a molecule for the profile comprising kinases 1
to N was defined as follows:

S1,...,N =
1
N ∑N

k=1 Pk + (max{P1, . . . , Pk, . . . , PN} −min{P1, . . . , Pk, . . . , PN})
2

(1)

with

Pk = log
(

min
s

Rk,s

)

Rk,s =
rk,s

mk,s

if kinase k was defined as target or

Pk = log
(

max
s

Rk,s

)

Rk,s = 1− rk,s

mk,s

if kinase k was defined as anti-target. Here, Pk denotes the rank of a compound in kinase k
aggregated over all structures s of this kinase. Rk,s denotes the scaled docking rank of the
compound, calculated from the nominal docking rank rk,s of this compound and the total
number of molecules mk,s that were docked into the sth structure of the kth kinase.

The poses of molecules receiving top ranks after applying this rescoring were visually
inspected in their respective protein structure. This inspection is necessary in order to
remove compounds which are ranked favorably for the wrong reasons, i.e., because of
deficiencies in present-day force fields. Examples are unsatisfied hydrogen bond donors;
burial of polar protein residues through apolar ligand moieties; charge mismatches; and
ligand conformations with high strain.

3.2. Experimental Testing
3.2.1. DiscoverX KINOMEscan

Ligand binding experiments for the molecules selected from Profiles 1 and 2 towards
nine kinases (EGFR, ErbB2, LCK, CDK2, BRAF, MET, p38α, PI3K and VEGFR2) and for
molecules selected from Profiles 3 and 4 towards four kinases (EGFR, ErbB2, BRAF and
VEGFR2) were carried out by DiscoverX using the supplied protocol as described in the
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Supplementary Materials. Briefly, ligand affinity was measured by competition with a resin-
bound standard ligand and washed-off kinase concentration was determined via qPCR.

Summarizing, binding of a compound to a kinase was tested in comparison to a
control compound (see Table S2). Lower values generally indicate a higher affinity of the
compound to the protein with values below 35% being considered as significant binding
according to the information of DiscoverX.

3.2.2. Eurofins In Vitro Assay

Kinase inhibition assays for EGFR, ErbB2, PI3K and BRAF were carried out by Eurofins
Cerep following the protocols of Weber et al. [45] (EGFR), Quian et al. [46] (ErbB2), Sinna-
mon et al. [47] (PI3K) and Kupcho et al. [48] (BRAF). Briefly, except for PI3K, compounds
were incubated with the respective kinase, ATP, and a substrate analog, and the effect of
each compound on phosphorylation was measured. In the case of PI3K, the displacement
of biotinylated PIP3 from a PIP3-binding complex by unlabelled PIP3 (produced from PIP2
by PI3K) was measured by Homogeneous Time Resolved Fluorescence (HTRF).

Finally, inhibition of the respective kinases is calculated as the percentage inhibition
of control activity. According to Eurofins, values above 50% inhibition represent significant
inhibition and values between 25% and 50% weak inhibitory effects (Table S3).

3.2.3. IC50 Determination

IC50 determinations for EGFR, its mutants and ErbB2-insYVMA (Carna Biosciences,
lot13CBS-0005K for EGFR-wt; Carna, lot13CBS-0537B for EGFR-L858R; Carna, lot12CBS-
0765B for EGFR-L858R/T790M; and ProQinase, lot1525-0000-1/003 for ErbB2-insYVMA)
were performed with the HTRF KinEASE-TK assay from Cisbio according to the manufac-
turer’s instructions. Briefly, the amount of kinase in each reaction well was set to 0.60 ng
EGFR-wt (0.67 nM), 0.10 ng EGFR-L858R (0.11 nM), 0.07 ng EGFR-T790M/L858R (0.08 nM),
or 0.01 ng ErbB2-insYVMA (0.01 nM). An artificial substrate peptide (TK-substrate from
Cisbio) was phosphorylated by EGFR or ErbB2. After completion of the reaction (reaction
times: 25 min for EGFR-wt, 15 min for L858R, 20 min for L858R/T790M, and 40 min for
ErbB2-insYVMA), the reaction was stopped by addition of buffer containing EDTA as well
as an anti-phosphotyrosine antibody labeled with europium cryptate and streptavidin
labeled with the fluorophore XL665. FRET between europium cryptate and XL665 was
measured after an additional hour of incubation to quantify the phosphorylation of the
substrate peptide. ATP concentrations were set at their respective Km-values (9.5 µM for
EGFR-wt, 9 µM for L858R, 4 µM for L858R/T790M and 6 µM for ErbB2-insYVMA) while a
substrate concentration of 1 µM, 225 nM, 200 nM and 1 µM was used. Kinase and inhibitor
were preincubated for 30 min before the reaction was started by addition of ATP and sub-
strate peptide. An EnVision multimode plate reader (Perkin Elmer) was used to measure
the fluorescence of the samples at 620 nm (Eu3+-labeled antibody) and 665 nm (XL665-
labeled streptavidin) 50 µs after excitation at 320 nm. The quotient of both intensities for
reactions made with eight different inhibitor concentrations was then analyzed using the
Quattro Software Suite for IC50-determination. Each reaction was performed in duplicate,
and at least three independent determinations of each IC50 were made.

3.3. Kinase Similarity Measures

The nine protein kinases investigated in this study were compared with five mea-
sures: their ligand binding profiles (LigProfSim), pocket sequence (PocSeqSim), interaction
fingerprint (IFPSim) and structural information (PocStrucSim), as well as docking ranks
(DockRankSim).

3.3.1. Ligand Profile Similarity (LigProfSim)

To compare kinases from a ligand point of view, their similarity with respect to binding
the same ligands was investigated. The kinase subset of ChEMBL v.27 [49] was used as the
profiling dataset, assembled from https://github.com/openkinome/kinodata/releases/
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tag/_pub_ligprofsim (accessed September 2020). Only compounds measured in binding
assays yielding a standard activity value as IC50 were taken into account. If the same
compound was measured several times in the same assay (against the same kinase), only
the lowest IC50 value was kept (most active). Compounds were considered active against
a kinase if their IC50 value was below 500 nM, otherwise inactive. For each of the nine
kinases studied here, the total number of measured compounds and the number of active
compounds was determined (Table 5).

The pairwise ligand profile similarity (LigProfSim) between two kinases was calcu-
lated as the ratio of compounds active on both kinases divided by the total number of
compounds tested on both kinases (Figure 2A, absolute values in Tables S4–S6). Note that,
for the individual kinases, this “self-similarity” yields the fraction of active compounds
with respect to all compounds tested, which can also be interpreted as a simple measure
for promiscuity (Table 4).

3.3.2. Pocket Sequence Similarity (PocSeqSim)

Pocket sequences and binding site definitions were taken from the KLIFS database [15–17].
Based on the analysis of known kinase–ligand crystal structures, van Linden et al. [15]
defined the ATP-binding pocket of kinases by 85 residues which cover most interactions
with known inhibitors (front and back-cleft binders). These residues include known motifs
such as the DFG motif, the hinge region and the αC-helix.

To compare kinase binding sites based on sequences, the master multiple sequence
alignment (MSA) of the 85 binding pocket residues for all human kinases available from
KLIFS was used and the nine kinases investigated in this work were extracted. Pocket
sequence similarity (PocSeqSim)—in this case residue identity—between two kinases was
computed by comparing the residues at each of the 85 positions. Thus, the PocSeqSim for
two binding site sequences equals the ratio of identical residues within the fixed length
MSA of 85 positions. The score ranges from 0 to 1, where 0 indicates no identical residues
and 1 indicates complete identity (Table S7).

3.3.3. Interaction Fingerprint Similarity (IFPSim)

All DFG-in and DFG-out structures for the nine human kinases under investigation,
namely EGFR, ErbB2, PI3K, MET, CDK2, BRAF, p38α, LCK and VEGFR2, were fetched
from the KLIFS database with https://github.com/volkamerlab/opencadd, which uses
the KLIFS Swagger API [17]. This query yielded 2091 structures (as of 27 July 2020).
Only structures with orthosteric ligands were kept (1817 structures). For many kinases,
several PDB structures are available and many structures contain more than one chain
(and occasionally also alternative models), which are provided as separate entries in KLIFS.
Whenever one structure was represented by more than one chain/alternative model entry,
only the entry with the highest KLIFS quality score [16] was selected (if two had the same
quality, the first one was kept arbitrarily). The quality score describes the alignment and
structure quality ranging from 0 (bad) to 10 (flawless). This yielded a filtered set of 965
kinase structures (numbers per kinase in Table 5). For every structure, KLIFS provides
information on the kinase–ligand interaction stored in an Interaction FingerPrint (IFP). The
IFP encodes seven different interaction types (hydrophobic contact, aromatic face-to-face,
aromatic edge-to-face, H-bond donor–acceptor, H-bond acceptor–donor, ionic positive–
negative and ionic negative–positive) that can potentially be formed between each of the
85 pocket residues and the respective ligand in a bit string as either present (1) or absent
(0) [15,16]. The Tanimoto similarity between every IFP pair of the 965 structures was
calculated, resulting in multiple structure-pair comparisons for each kinase pair. Finally, a
reduced matrix of size 9× 9 was produced in which for each kinase pair only the highest
IFP similarity (IFPSim) score among all structure-pair scores was stored (Table S8).
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3.3.4. Pocket Structure Similarity (PocStrucSim)

For the particular set of kinases investigated here, a set of 183 different PDB structures
was compiled manually using the KLIFS dataset and a set of structures that has initially
been considered for the docking screens. The manual selection was focused on choos-
ing those kinase structures that featured similar binding sites to EGFR/ErbB2 and high
structural quality (such as high resolution and few missing residues), also considering the
correlation coefficient of the docking ranks. Furthermore, DFG-in and DFG-out structures
were included to allow for diversity. After downloading the structures from the PDB, the
files were processed with the API-RP package in the CSD Enterprise suite 2018 by CCDC,
detecting all cavities using LigSite [50,51]. The predicted set of 909 cavities for 181 struc-
tures was further reduced by filtering for cavities containing at least one orthosteric ligand,
resulting in 248 cavities from 176 different structures. It should be noted that some of these
cavities emerged from different chains of the same structure and, therefore, contained the
same ligand. Although the number of structures was decreased during this process, we
made sure that at least two different structures for each kinase were still present in the
final cavity set (Table 5). Furthermore, the set contained cavities for each of the structures
used during the docking calculations, except for the structure with PDB ID 4JPS (PI3K), for
which LigSite was not able to detect the correct cavity.

Each of the remaining cavities was then compared to all other cavities using the fast
graph comparison method by CCDC [29]. In brief, the binding pocket is described by a
graph model based on a set of pseudocenters with assigned surface patches containing
information about the properties of the surrounding amino acids. In addition to the
original CavBase implementation, the new method includes convexity and concavity
measures in the pseudocenters as shape representation. Finally, two binding pockets
were compared using a clique detection algorithm which was improved from the original
CavBase algorithm [28,29]. Last, as for the IFPSim measure, the maximum similarity over
all structure comparisons per kinase pair is reported.

3.3.5. Docking Rank Similarity (DockRankSim)

The docking rank similarity was calculated based on the notion that similar structures
enrich similar ligands in the docking process. The similarity between two docking runs,
each targeting a certain structure, was quantified by calculating the Spearman rank corre-
lation of the common molecule set of the top-scoring molecules of both dockings. More
precisely, to calculate the DockRankSim between two dockings, the top-ranked 25,000
molecules in both dockings were taken and the molecules common to both sets identified.
For the calculation of the DockRankSim, only the dockings of the ZINC lead-like subset
were considered. For this intersection, the ranks of the molecules were renumbered and
the Spearman rank correlation was calculated. We restricted the calculation of the rank
correlation to the top-scoring molecules, as we found this to lead to more discriminating
DockRankSim values (data for full set not shown). A cutoff of 25,000 was identified to
yield relevant results. However, it must be noted that this cutoff was not systematically
optimized to yield the largest possible spread in DockRankSim values. The values cal-
culated in this way describe how similar the compound ranking between two docking
runs, i.e., two protein structures, is. To compare kinases instead of structures, we used
the maximum observed DockRankSim of all pairwise structure comparisons between the
respective two kinases.

4. Conclusions

In this study, we investigated parallel docking to disease-relevant kinase profiles,
combining two targets and one anti-target. The choice of the initial profile was guided by
biology: dual inhibitors of EGFR and ErbB2 are regarded as an advantageous treatment
option for several carcinomas, whereas BRAF is a common undesired anti-target.

While being biologically meaningful, this profile is also a challenging test case of the
precision of docking calculations, given the mutual similarity of the ATP binding site of the
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three kinases. Nonetheless, we were able to identify one ligand with the desired profile,
namely compound DS39984 against Profile 1, with IC50 values on the targets below 324 nM.
This is very close to the expectation value assuming a hit rate of approximately 10–25%
(0.25× 0.25× 0.90 = 0.056) and a selection of 18 molecules from the docking calculations.

We then compared this with another profile combination, +EGFR+PI3K−BRAF (Pro-
file 2), and at the same time investigated whether the likelihood for success (i.e., finding
a ligand that fulfils the profile) can be predicted based on data derived from the protein
structures. The profile +EGFR+PI3K−BRAF turned out to be hard to find a ligand for, and
this was also reflected in the kinase similarity metrics (Figure 2). Finally, we tested a profile
including EGFR and VEGFR2 as targets, due to the interest in them for cancer treatment,
and tried again to design out binding to BRAF. As in the case of +EGFR+PI3K−BRAF,
the higher similarity of VEGFR2 to BRAF (compared to EGFR) in most measures can be
a hint why this docking did not yield the desired results. An alternative option, which
would agree with the lack of positive results in the single docking performed for the
target VEGFR2, is to select alternative starting structures, if available, or a different ligand
database to further explore this profile.

Based on our findings and the further investigations into different similarity measures
of kinases, several conclusions about the factors that determine the likelihood of successful
predictions in multi-target settings can be drawn. First, for the present set of kinases, the
various measures we calculated in this work largely agree with respect to which kinases
are more similar to each other. This is important, because it means that, for a first estimate,
one can go with a measure that can be computed in a fast and computationally inexpensive
way and already get a largely correct view of the relationship of the targets involved. It
also means that the ligand-centric and protein-centric views of ligand–protein interactions
match to quite some degree.

Second, we only managed to pick few compounds from the docking runs, because
few potential hits with plausible binding modes were identified in the top ranks of the
combined scoring. Naturally, this means that the results for several of the profiles need
to be interpreted with caution, as the numbers of data points are small. However, even if
we had picked more compounds from lower ranks, the vast majority of them would likely
have been inactive, as docking in general is able to prioritize ligands over nonbinders [52].

Third, the docking rank correlation of the top-ranked poses is very low (Figure 2E),
which indicates that there exists only a limited number of substances in chemical databases
for a given kinase profile. This lends additional support to docking strategies using
(ultra-)large libraries of virtual compounds, as having access to larger and more diverse
fractions of chemical space is certainly beneficial [52,53]. It has to be noted, however, that
a certain amount of the rank correlation difference might also stem from the use of rigid
protein structures in docking.

In conclusion, while docking to identify ligands gets progressively harder with more
and more elaborate profiles composed of targets and anti-targets, one can try to estimate
the chances of success already from protein-structure-, protein-sequence- and ligand-space-
based methods. This is encouraging in the sense that protein and ligand space show a
certain amount of congruence, i.e., that kinases that are close in structure or sequence space
also recognize similar ligands, and supports the ongoing efforts to computationally expand
chemical space to search for kinase inhibitors with tailored binding profiles.

Supplementary Materials: The following are available online. Figure S1: Docking poses of ligand
DS39984 bound to BRAF structures, Figure S2: Comparison of different similarity measures for
pairwise kinase structure comparisons, Table S1: IDs and 2D depictions of all compounds tested
in the different kinase assays as well as the docking profile they were selected from, Table S2:
Experimental % control values from the DiscoverX kinase assay, Table S3: Experimental results from
the Eurofins assay, Table S4: LigProfSim: Pairwise similarity matrix, Table S5: LigProfSim counts:
Number of ChEMBL compounds commonly tested in each kinase pair, Table S6: LigProfSim common
actives: Number of ChEMBL compounds commonly active in each kinase pair, Table S7: PocSeqSim:
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Pairwise similarity matrix, Table S8: IFPSim: Pairwise similarity matrix, Table S9: PocStrucSim:
Pairwise similarity matrix.
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1. Supplementary Methods

1.1. DiscoverX kinase assay

For most assays, kinase-tagged T7 phage strains were grown in parallel in 24-well blocks in an
E.coli host derived from the BL21 strain. E.coli were grown to log-phase and infected with T7 phage
from a frozen stock (multiplicity of infection = 0.4) and incubated with shaking at 32°C until lysis
(90-150 minutes). The lysates were centrifuged (6,000 x g) and filtered (0.2µm) to remove cell debris.
The remaining kinases were produced in HEK-293 cells and subsequently tagged with DNA for qPCR
detection. Streptavidin-coated magnetic beads were treated with biotinylated small molecule ligands
for 30 minutes at room temperature to generate affinity resins for the kinases. The liganded beads
were blocked with excess biotin and washed with blocking buffer (SeaBlock [Pierce], 1% BSA, 0.05%
Tween 20, 1 mM DTT) to remove unbound ligands and to reduce non-specific phage binding. Binding
reactions were assembled by combining kinases, liganded affinity beads, and test compounds in 1x
binding buffer (20% SeaBlock, 0.17x PBS, 0.05% Tween 20, 6 mM DTT). Test compounds were prepared
as 40x stocks in 100% DMSO and directly diluted into the assay. All reactions were performed in
polypropylene 384-well plates in a final volume of 0.02 ml. The assay plates were incubated at room
temperature with shaking for 1 hour and the affinity beads were washed with wash buffer (1x PBS,
0.05% Tween 20). The beads were then re-suspended in elution buffer (1x PBS, 0.05% Tween 20, 0.5 µM
non-biotinylated affinity ligand) and incubated at room temperature with shaking for 30 minutes. The
kinase concentration in the eluates was measured by qPCR.

2. Supplementary Figures

Figure S1. Structure of ligand DS39984 bound to the BRAF structures PDB 1UWH, DFG-out (A) and
PDB 3PPK, DFG-in (B). The protein structure is shown as cartoon, colored in grey. The compound and
interacting binding site residues are represented as sticks.
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Figure S2. Comparison of different similarity measures for pairwise kinase structure comparisons.
Diagonal: Distributions of structure similarities for the herein described similarity measures. Lower
triangular matrix: Bivariate distributions of similarities per pairs of similarity measures, shown as
isocontours with light blue indicating high densities and dark blue indicating low densities. Upper
triangular matrix: Scatter plots of similarities per pairs of similarity measures with fitted regression
lines (dark lines) and 95% CI intervals of regression (light blue shades)
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3. Supplementary Tables

3.1. Compound lists and experimental results

Table S1. IDs and 2D depictions of all compounds tested in the different kinase assays as well as the
docking profile they were selected from. Three compounds were selected independently from two
different profiles and are marked accordingly.

Mol ID ZINC ID 2D structure Profile

Actives

DS39984 C03283998
O

O

O

N

N
S

+EGFR+ErbB2-BRAF

K001MM011 C32808493

O

HN

N

N

O
N
H O

+VEGFR2

Inactives

DS04644 C84640464
O

F
F

FN
H

O

N
HN

O

+EGFR+ErbB2-BRAF

DS05168 C04940516 O

N

N

N

N

OH

O

N
H

+EGFR+ErbB2-BRAF

DS18339 C71281833
O

N
N O

O

+EGFR+ErbB2-BRAF

DS34376 C95373437 O

O

N

N

N

+EGFR+ErbB2-BRAF

DS44245 C47934424 N
N

N N
H
N

O

H
N +EGFR+ErbB2-BRAF

DS44738b C48954473 N
N

N N
H
N

O

H
N +EGFR+ErbB2-BRAF
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DS57124 C17055712

O

N

O

O

+EGFR+ErbB2-BRAF

DS59212 C09205921

NN

N
H

O

N
N

O

S +EGFR+ErbB2-BRAF

DS72975 C06807297

O

NN

N

O

N
H

S

S

N +EGFR+ErbB2-BRAF

DS74417 C95387441

O

OH

N

N
N
H

N

N

N
NHN

+EGFR+ErbB2-BRAF

DS75739 C48697573
O

H
N

H
N

N

O

O

+EGFR+ErbB2-BRAF

DS76514 C00137651
O

O OO
Cl +EGFR+ErbB2-BRAF

DS84326 C20858432
O

O

N
O

S

+EGFR+ErbB2-BRAF

DS99367 C71899936
N

O

N

S

N

F

O

+EGFR+ErbB2-BRAF

DS23815 C71422381
N

N

N
N

N

N
+EGFR+PI3K-BRAF

DS31939 C02343193 ON
H

O

N

S

N

N N

+EGFR+PI3K-BRAF
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DS52225 C44425222

ONO

H
N O

N N +EGFR+PI3K-BRAF

DS62156 C08706215 NH

N

O

N

O N

N

+EGFR+PI3K-BRAF

DS74631 C07397463 N
S

O

O

N

F

O

O

+EGFR+PI3K-BRAF

DS82066 C02228206 ON
H

O

N

S

N

N N

+EGFR+PI3K-BRAF

DS11689a C02341168 ON
H

O

N

S

N

N N

O

+EGFR+PI3K-BRAF/
+EGFR+ErbB2-BRAF

DS66846a C02226684 ON
H

O

N

S

N

N N

+EGFR+PI3K-BRAF/
+EGFR+ErbB2-BRAF

DS74871a C07397487 N
S

O

O
N

O

O

S

+EGFR+PI3K-BRAF/
+EGFR+ErbB2-BRAF

K001MM002 C97100024
O

OH

N

N

O

Cl

+EGFR+VEGFR2-BRAF

K001MM003 C04266692
N

N

N
N

N

O

+EGFR+VEGFR2-BRAF

K001MM004 C48922370 O

H
N

O

H
N

HO

+EGFR+VEGFR2-BRAF
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K001MM005 C76064467
NN

N

N
N

N
N

O

+EGFR+VEGFR2-BRAF
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N
H
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K001MM009b C48954473 N
N

N N
H
N

O

H
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K001MM010 C96160364

NH2

N

N

N

NH

N

H
N N

+VEGFR2

K001MM012 C03453350
N
H

O

O

O

O

HN +VEGFR2

K001MM013 C23551796
O

O

N

N

N
ON +VEGFR2

a Compounds were selected independently from docking campaigns against two profiles.
b Compound was selected independently from two docking profiles and tested twice in separate
test rounds during experimental validation.
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Table S2. Experimental % control values from the DiscoverX kinase assay. Compounds were tested
against the nine kinases EGFR, ErbB2, LCK, CDK2, BRAF, MET, p38α, PI3K and VEGFR2, unless
otherwise stated. Binding of kinase and compound were tested at a compound concentration of 10 µM
and in comparison to a control compound. Lower values indicate a higher affinity of the compound to
the protein and values below 35% indicate significant binding according to information of the CRO.

Mol ID ZINC ID BRAF EGFR ErbB2 VEGFR2 CDK2 LCK MET p38α PI3K
Actives

DS39984 C03283998 99 17 21 99 100 89 100 100 100
K001MM011a C32808493 100 1.4 53 99 n.t. n.t. n.t. n.t. n.t.

Inactives
DS04644 C84640464 97 100 100 100 99 96 100 100 100
DS05168 C04940516 98 100 100 100 99 95 94 100 100
DS18339 C71281833 100 97 100 97 100 89 100 99 100
DS34376 C95373437 92 90 100 100 99 100 100 100 100
DS44245 C47934424 99 100 100 98 100 100 90 100 100

DS44738b C48954473 100 100 91 100 100 100 84 100 94
DS57124 C17055712 100 100 91 100 100 100 94 100 100
DS59212 C09205921 100 100 100 100 100 100 97 99 87
DS72975 C06807297 100 96 87 99 100 100 78 100 100
DS74417 C95387441 86 89 100 100 100 100 100 100 97
DS75739 C48697573 100 100 94 100 100 100 85 87 100
DS76514 C00137651 89 87 96 100 100 100 90 97 100
DS84326 C20858432 100 100 97 100 100 100 95 90 100
DS99367 C71899936 100 93 100 100 100 100 87 91 100
DS23815 C71422381 99 100 100 100 99 100 99 100 97
DS31939 C02343193 100 100 100 100 100 99 100 100 73
DS52225 C44425222 100 100 94 98 100 100 91 100 100
DS62156 C08706215 95 90 96 100 100 100 87 97 66
DS74631 C07397463 100 97 95 100 100 87 100 83 100
DS82066 C02228206 83 92 90 100 100 100 100 93 89
DS11689 C02341168 88 100 99 100 100 100 99 100 99
DS66846 C02226684 100 100 96 100 100 100 92 100 100
DS74871 C07397487 100 100 100 100 100 90 95 81 100

K001MM002a C97100024 89 97 92 100 n.t. n.t. n.t. n.t. n.t.
K001MM003a C04266692 95 99 99 100 n.t. n.t. n.t. n.t. n.t.
K001MM004a C48922370 100 100 100 100 n.t. n.t. n.t. n.t. n.t.
K001MM005a C76064467 99 100 100 100 n.t. n.t. n.t. n.t. n.t.
K001MM006a C96153842 100 96 100 100 n.t. n.t. n.t. n.t. n.t.
K001MM007a C97142813 87 90 94 100 n.t. n.t. n.t. n.t. n.t.
K001MM008a C40067740 100 100 100 100 n.t. n.t. n.t. n.t. n.t.

K001MM009a,b C48954473 96 100 98 98 n.t. n.t. n.t. n.t. n.t.
K001MM010a C96160364 100 95 90 97 n.t. n.t. n.t. n.t. n.t.
K001MM012a C03453350 100 90 100 91 n.t. n.t. n.t. n.t. n.t.
K001MM013a C23551796 100 100 94 90 n.t. n.t. n.t. n.t. n.t.

a Compounds were only tested against four kinases (EGFR, ErbB2, BRAF and VEGFR2).
b Compound was selected independently from two docking profiles and tested separately during
experimental validation.
n.t.: not tested.
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Table S3. Experimental results from the Eurofins assay. Inhibition of four kinases (EGFR, PI3K, ErbB2,
BRAF) was measured at compound concentrations of 20 µM. Inhibition was calculated as % inhibition
of control activity. According to CRO, values above 50% inhibition represent significant inhibition,
values above 25% weak inhibition effect and values below 25% as well as negative values are usually
not significant. Results are reported in mean (SD) format.

Mol ID ZINC ID EGFR PI3K ErbB2 BRAF
Actives
DS39984 C03283998 58.9 (3.2) -6.7 (2.3) -1.3 (1.8) -0.1 (0.1)

Inactives
DS04644 C84640464 3.4 (1.8) -2.8 (0.6) -7.4 (1.0) -14.7 (7.4)
DS05168 C04940516 11.1 (1.8) -1 (1.6) 2.8 (1.6) -12.4 (10.9)
DS18339 C71281833 15.3 (7.7) -3.7 (0.3) 0.7 (1.1) -21.8 (9.5)
DS34376 C95373437 16.1 (7.5) -2 (0.8) -1.6 (1.9) -11.3 (4.2)
DS44245 C47934424 2.4 (14.7) 1.8 (4.4) -3.4 (1.0) -13.7 (10.5)
DS44738 C48954473 4.4 (14.0) 0.4 (1.7) 10.5 (23.6) -20.8 (0.4)
DS57124 C17055712 23.9 (7.5) 7.8 (5.0) -3 (1.8) -20.2 (19.8)
DS59212 C09205921 7.8 (3.3) 0.2 (3.6) 5.8 (0.2) -22.9 (4.9)
DS72975 C06807297 19.8 (5.0) -1.1 (2.1) 9.8 (21.9) -12.4 (1.8)
DS74417 C95387441 18 (3.2) 2.1 (0.4) -2.8 (0.7) -0.3 (1.6)
DS75739 C48697573 4.3 (6.9) 1.7 (0.8) -0.6 (1.1) -11.1 (4.9)
DS76514 C00137651 3.2 (10.7) 17.4 (0.4) -0.6 (1.0) -33.6 (18.1)
DS84326 C20858432 23.4 (0.6) 0.7 (0.8) 0.2 (2.8) -8.2 (13.6)
DS99367 C71899936 17.3 (0.1) 1.4 (0.1) -3.3 (0.5) -19.6 (11.8)
DS23815 C71422381 10.7 (0.4) -4,7 (3.1)a -7.2 (5.7) -19.7 (2.4)
DS31939 C02343193 9.6 (0.2) -9,8 (7.8)a -1.7 (0.8) -27.8 (10.8)
DS52225 C44425222 22.7 (15.5) 0.9 (3.6) 4.5 (4.9) -17.7 (15.6)
DS62156 C08706215 16.6 (0.4) 1.5 (5.8) 3.1 (3.3) -6.3 (1.6)
DS74631 C07397463 11.3 (4.5) 20 (5.2) -4.6 (2.9) -22.8 (15.9)
DS82066 C02228206 12.6 (1.9) 3.6 (2.3) -1.4 (0.8) -18.5 (1.8)
DS11689 C02341168 18.1 (7.9) -0.2 (0.4) 0.1 (2.1) -8.3 (20.8)
DS66846 C02226684 14.5 (8.6) 4.6 (7.7) -2.5 (1.6) -18.7 (11.9)
DS74871 C07397487 23.3 (4.2) 22.1 (2.3) -8.3 (1.2) -44.9 (24.1)
a Compound interfered with assay readout.
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3.2. Raw data for LigProfSim, PocSeqSim, IFPSim, and PocStructSim

3.2.1. LigProfSim

Table S4. LigProfSim matrix: Similarity values per kinase pair

kinase EGFR ErbB2 BRAF CDK2 LCK MET p38a KDR p110a
EGFR 0.59 0.55 0.53 0.19 0.29 0.23 0.48 0.35 0.07
ErbB2 0.55 0.62 0.50 0.31 0.21 0.24 0.44 0.41 0.00
BRAF 0.53 0.50 0.82 0.36 0.58 0.39 0.74 0.77 0.33
CDK2 0.19 0.31 0.36 0.55 0.14 0.21 0.25 0.63 0.33
LCK 0.29 0.21 0.58 0.14 0.63 0.27 0.54 0.44 0.00
MET 0.23 0.24 0.39 0.21 0.27 0.79 0.11 0.55 0.00
p38a 0.48 0.44 0.74 0.25 0.54 0.11 0.77 0.53 0.00
KDR 0.35 0.41 0.77 0.63 0.44 0.55 0.53 0.70 0.18
p110a 0.07 0.00 0.33 0.33 0.00 0.00 0.00 0.18 0.65

Table S5. LigProfSim counts: Number of ChEMBL compounds commonly tested in each kinase pair

kinase EGFR ErbB2 BRAF CDK2 LCK MET p38a KDR p110a
EGFR 5702 1199 70 47 129 82 46 875 180
ErbB2 1199 1690 22 29 28 29 9 189 1
BRAF 70 22 3625 14 38 31 42 268 3
CDK2 47 29 14 1520 22 24 8 122 12
LCK 129 28 38 22 1552 66 136 419 5
MET 82 29 31 24 66 2851 18 348 2
p38a 46 9 42 8 136 18 3581 125 5
KDR 875 189 268 122 419 348 125 7426 175
p110a 180 1 3 12 5 2 5 175 4150

Table S6. LigProfSim common actives: Number of ChEMBL compounds commonly active in each
kinase pair

kinase EGFR ErbB2 BRAF CDK2 LCK MET p38a KDR p110a
EGFR 3382 658 37 9 38 19 22 303 13
ErbB2 658 1048 11 9 6 7 4 77 0
BRAF 37 11 2968 5 22 12 31 207 1
CDK2 9 9 5 837 3 5 2 77 4
LCK 38 6 22 3 976 18 73 183 0
MET 19 7 12 5 18 2248 2 193 0
p38a 22 4 31 2 73 2 2753 66 0
KDR 303 77 207 77 183 193 66 5197 32
p110a 13 0 1 4 0 0 0 32 2706
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3.2.2. PocSeqSim

Table S7. Kinase sequence identity of binding site residues (MSA of 85 binding site residues from
KLIFS)

kinase EGFR ErbB2 BRAF CDK2 LCK MET p38 PI3K VEGFR2
EGFR 1 0.89 0.38 0.32 0.45 0.46 0.39 0.12 0.47
ErbB2 0.89 1 0.4 0.33 0.42 0.47 0.4 0.12 0.44
BRAF 0.38 0.4 1 0.33 0.39 0.38 0.38 0.16 0.4
CDK2 0.32 0.33 0.33 1 0.38 0.36 0.47 0.11 0.34
LCK 0.45 0.42 0.39 0.38 1 0.4 0.39 0.15 0.44
MET 0.46 0.47 0.38 0.36 0.4 1 0.36 0.12 0.47
p38 0.39 0.4 0.38 0.47 0.39 0.36 1 0.14 0.39
PI3K 0.12 0.12 0.16 0.11 0.15 0.12 0.14 1 0.15
VEGFR2 0.47 0.44 0.4 0.34 0.44 0.47 0.39 0.15 1

3.2.3. IFPSim

Table S8. IFPSim matrix: Similarity values per kinase pair

kinase1 EGFR ErbB2 BRAF CDK2 LCK MET p38a PI3K VEGFR2
EGFR 1.0 0.78 0.76 0.89 0.83 0.77 0.8 0.65 0.83
ErbB2 0.78 0.71 0.65 0.61 0.59 0.56 0.74 0.5 0.61
BRAF 0.76 0.65 0.96 0.79 0.97 0.87 0.96 0.52 0.93
CDK2 0.89 0.61 0.79 1.0 0.81 0.85 0.8 0.65 0.79
LCK 0.83 0.59 0.97 0.81 0.91 0.82 0.87 0.62 0.94
MET 0.77 0.56 0.87 0.85 0.82 1.0 0.76 0.57 0.87
p38a 0.8 0.74 0.96 0.8 0.87 0.76 1.0 0.53 0.96
PI3K 0.65 0.5 0.52 0.65 0.62 0.57 0.53 0.91 0.52
VEGFR2 0.83 0.61 0.93 0.79 0.94 0.87 0.96 0.52 1.0

3.2.4. PocStructSim

Table S9. PocStructSim matrix: Similarity values per kinase pair

EGFR ErbB2 VEGFR2 PI3K BRAF CDK2 LCK MET p38a
EGFR 1.000 0.400 0.478 0.241 0.518 0.500 0.534 0.451 0.466
ErbB2 0.400 1.000 0.291 0.164 0.318 0.300 0.373 0.279 0.259
VEGFR2 0.478 0.291 1.000 0.290 0.607 0.427 0.615 0.435 0.565
PI3K 0.241 0.164 0.290 1.000 0.259 0.282 0.225 0.242 0.322
BRAF 0.518 0.318 0.607 0.259 1.000 0.589 0.491 0.409 0.522
CDK2 0.500 0.300 0.427 0.282 0.589 1.000 0.456 0.460 0.433
LCK 0.534 0.373 0.615 0.225 0.491 0.456 1.000 0.433 0.419
MET 0.451 0.279 0.435 0.242 0.409 0.460 0.433 1.000 0.409
p38a 0.466 0.259 0.565 0.322 0.522 0.433 0.419 0.409 1.000
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3.1.3 Kinase Similarity Assessment Pipeline for Off-Target Prediction
Publication D

Computational target prediction methods are limited, amongst others, by the availability
of data. Hence, the parallel assessment of kinase similarity is best conducted from different
perspectives that are based on different data resources. In this study, we present a production-
ready pipeline that allows users to define a kinase set of interest and to compare the kinases
based on their pocket sequences, pocket structures (KiSSim [141]), interaction fingerprints, and
ligand profiles. Finally, all perspectives are visually summarized to enable a quick and easy
assessment of the results.

§ https://github.com/volkamerlab/teachopencadd
� https://projects.volkamerlab.org/teachopencadd/talktorials.html#kinase-similarity
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Abstract Kinases are established drug targets to combat cancer and inflammatory diseases.
Despite decades of kinase research, challenges still remain, such as the under-exploration of a
large fraction of the kinome and the promiscuous binding of many kinase inhibitors. Due to the
highly conserved orthosteric ATP binding site in kinases, ligands may bind not only to their des-
ignated kinase (on-target) but also to other kinases (off-targets). Such promiscuous binding can
causemild to severe side effects, and the prediction of these off-targets is highly non-trivial. There-
fore, we propose a pipeline that allows the study of kinase similarities from four different angles
in an automated and modular fashion. The first method considers the binding site sequence. The
second method uses structural information via KiSSim, a newly developed fingerprint that consid-
ers both physico-chemical and spatial properties of the binding site. The third method involves
kinase-ligand interaction fingerprints as provided by KLIFS, and the last method utilizes the mea-
sured activity of ligands on kinases based on ChEMBL data. Finally, results for a given set of kinases
are collected and analyzed to gain insight into potential off-targets from the different aforemen-
tioned perspectives. Since the pipeline is set up as a series of Jupyter notebooks covering both
theoretical and practical aspects, the target audience ranges from beginners to advanced users
working in the field of natural and computer sciences. The pipeline is part of the TeachOpenCADD
project and extends it with this special kinase edition. All code is free, open-source, and made
available at https://github.com/volkamerlab/teachopencadd.
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1 Introduction
Kinases are involved in most cellular processes by phos-
phorylating—and thereby activating—themselves or other
proteins. This family is among the most frequently mutated
proteins in tumors and kinases have been successfully
studied as drug targets for many decades [1]. Thanks to
the longstanding research, a plethora of kinase data is
freely available, i.e., as part of databases such as UniProt [2],
PDB [3] or ChEMBL [4], and has been made easily accessible
via kinase resources such as the KLIFS—Kinase-Ligand
Interaction Fingerprints and Structures—database [5]. As
of February 2022, 5, 911 X-ray structures of human kinases
have been resolved (see the KLIFS database [6]) and 70
FDA-approved small molecule protein kinase inhibitors
are on the market [7]. Most of the approved drugs bind
in the ATP binding pocket and intermediate surroundings
(orthosteric binding site).

Although structural data provides rich information,
kinases have been widely classified based on sequence.
Manning et al. [8] clustered the human protein kinases
based on their sequence similarity into eight major groups
(AGC, CAMK, CK1, CMGC, STE, TK, TKL, and "Other") as well as
atypical kinases. The resulting Manning kinome tree depicts
kinase clustering (see Figure 1).

Despite decades of kinase research, challenges still
remain [9]. For example:

1. A large fraction of the kinome is un-/underexplored.
Figure 1a shows the number of PDB structures per
kinase, unveiling a vast imbalance between structurally
resolved kinases and unexplored ones. For example,
CDK2 has been resolved in 426 PDB structures, while
only 313 kinases [6] out of approximately 540 in the
kinome [9] have been structurally resolved.

2. Many kinase inhibitors are promiscuous binders, caus-
ing off-target effects or enabling polypharmacology [1,
10]. For example, the Epidermal Growth Factor Recep-
tor (EGFR) inhibitor erlotinib shows affinities to other ki-
nases in the highly sequentially-similar TK kinase group,
but also strongly affects off-targets in more remote ki-
nase groups (see Figure1b).

Therefore, assessing kinase similarity from different an-
gles may be a crucial step in understanding and predicting
off-targets to help to design more selective drugs and to
avoid side effects.
1.1 Scope
In this study, similarities between a set of kinases are inves-
tigated based on methods offering different perspectives
on this challenging topic with a focus on orthosteric binding
sites (here referred to as binding sites), as summarized

in Table 1. The first method considers the binding site
sequence as deposited in the KLIFS database. The second
method uses KiSSim [11], a recently developed fingerprint
that considers physico-chemical as well as spatial properties
of the binding site. The third method involves protein-ligand
interaction fingerprints as provided in the KLIFS database,
and the last method utilizes the measured activity of ligands
against kinases based on ChEMBL data [4]. The different
methods are preceded by a general introduction to kinases
and the challenges faced in kinase-centric drug design, and
succeeded by a comparison between the different kinase
similarity methods.

Note that this study focuses on the similarities between
ATP binding sites. Therefore, kinase polypharmacology and
off-targets can only be assessed within the scope of orthos-
teric binding sites, even though the promiscuity of some lig-
ands may be explained by binding to allosteric binding sites.
Potential allosteric binding sites are summarized in the Ki-
nase Atlas [12].

This study has been assembled into a modular pipeline
that enables the research of kinase similarities in an auto-
mated fashion, allowing users to simply use it out of the box,
or adapt it to their needs.

This workflow is integrated in the context of Tea-
chOpenCADD [15, 16], a teaching platform for computer-
aided drug design (CADD) using open-source packages
and data. Specific tasks in cheminformatics and struc-
tural bioinformatic are described and solved using
Python-based Jupyter notebooks [17] as interactive plat-
form. All code has been deposited on GitHub, see
h t t p s : / / g i t h u b . c om/v o l kame r l a b / t e a c h op e n c a dd.
The project website can be found at this link, h t t p s :
//projects.volkamerlab.org/teachopencadd.

2 Prerequisites
2.1 Target audience
The notebooks were developed to support researchers inter-
ested in kinase-centric computational drug design, with a fo-
cus on understanding and predicting kinase off-targets. As
this collection is part of the TeachOpenCADD training mate-
rial [15, 16], we also recommend the notebooks to teachers
as pedagogical interactive material in structural bioinformat-
ics and cheminformatics.
2.2 Background knowledge
Thenotebooks are constructed in away that no in depth prior
knowledge besides an affinity for the natural or computer
sciences is required. Each notebook eases into the topic of
kinase drug development and kinase similarity with a lot of
theoretical background and comments on all content as well
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Topic Description Hyperlink
What is a kinase? Introduction to kinases and challenges in drug discovery. T023
Pocket sequence Pairwise similarities/identities between 85 residue long KLIFS pocket

sequences.
T024

Pocket structure Pairwise similarities between 1, 032–bit long KiSSim fingerprints,
which encode spatial and physico-chemical pocket properties.

T025
Pocket-ligand interactions Pairwise similarities between 595–bit long KLIFS kinase-ligand inter-

action fingerprints (IFP).
T026

Ligand profile Pairwise similarity based on the ratio of compounds tested active
against kinase pairs.

T027
Kinase similarity Comparison between predicted off-targets based on calculated ki-

nase similarities using aforementioned methods.
T028

Table 1. TeachOpenCADD kinase edition overview: Notebook topics, description, and index with a hyperlink to the associated notebook.

(a)Number of PDB structures per kinase. The figure shows the imbalance
between highly explored kinases, for example, the groups TK and CMGC.
The CDK2 kinase in the CMGC group has the most structures, with 426.
The red circle is proportional to the number of PDB structures for each
kinase, such that the greater is the circle, the higher is the number of
structures.

(b) Developing selective kinase inhibitors is non-trivial since kinases are
highly conserved in the ATP binding site. EGFR inhibitor erlotinib binds
not only to its intended target EGFR, but also to kinases in remote groups,
such as SLK/LOK in the STE group and GAK in the "Other" group. The blue
circle is proportional to the Kd value in nM taken from the Karaman et al.
[13] dataset.

Figure 1. Visual representation using the Manning tree of existing challenges in kinase research: un-/underexplored kinase groups (left) and the promiscuous behavior of kinases (right). The figure is taken fromhttps://projects.volkamerlab.org/teachopencadd/talktorials/T023_what_is_a_kinase.html and is generated using KinMap [14].
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as programming-related steps in great detail. Nevertheless,
users will benefit from a basic understanding of the Python
programming language and the usage of Jupyter notebooks.
If such basic introduction is needed, please refer to training
material as listed on the TeachOpenCADD website [18].
2.3 Software requirements
The notebooks are written in Python and rely on open-
source packages such as pandas [19], numpy [20], scipy [21],
matplotlib [22], seaborn [23], scikit-learn [24], rdkit [25],
biotite [26], opencadd [27], kissim [28], and requests [29].

The user only needs to install the teachopencadd conda-
forge package [30] (see installation [31]), which will install all
relevant packages and save a copy of all TeachOpenCADD
notebooks—including the kinase edition discussed in this
paper—on the user’s local machine. A read-only mode of the
notebooks is accessible via the TeachOpenCADD website at
https://projects.volkamerlab.org/teachopencadd/. Online
execution can be done via Binder [32], using the following
link https://mybinder.org/v2/gh/volkamerlab/TeachOpenCADD
/master.

3 Method
In this section, the four methods that are introduced to
measure kinase similarity are described, namely the pocket
sequence, the KiSSim fingerprint, the interaction fingerprint,
and the ligand profile. Note that the theoretical and practical
aspects of each method are also covered in great detail in
the individual notebooks of this kinase collection (Table 1).
As discussed in the "Scope" section of this manuscript, we
focus on kinase similarity based on orthosteric binding sites.
3.1 Pocket sequence
The full amino acid sequence is often used to assess similar-
ities between kinases (see the phylogenetic tree developed
byManning et al. [8]). Since binding sites are oftenmore con-
served than the whole protein, van Linden et al. [33] defined
as part of KLIFS a 85-long pocket sequence that is aligned
across the kinome. Using a sequence that focuses on the
binding site seems appropriate in the case of kinases, since
this is where the ligand is likely to bind. Moreover, work-
ing with a fixed length sequence is practical from a compu-
tational point of view.

In this study, two methods are used to compute relation-
ships based on sequence, namely the sequence identity and
the sequence similarity, which are described below.
3.1.1 Sequence identity
The pairwise sequence identity, or simply sequence identity,
is a similarity based on character-wise discrepancy, in other

terms, the number of residues that match in two aligned se-
quences [34]. More formally, given two kinase sequences S
and S’ of same lengths L, the sequence identity can be de-
fined as

sequence identity(S, S’) = 1L
L∑

n=1
I(S[n], S′[n]), (1a)

where I is the identity matrix of the amino acids, and S[n]
the amino acid at position n of the kinase sequence S. Note
that not all kinases have residues present at each of the 85
alignment positions. Such gaps are represented by "-" and
count as mismatch to any amino acid.
3.1.2 Sequence similarity
Unlike sequence identity which treats all residues uniformly,
pairwise sequence similarity, or sequence similarity, takes
into account the change of the amino acids over evolution-
ary time, thus, reflecting relationships between amino acids.
It is based on a substitutionmatrixM, where each entry gives
a score between two amino acids. In this study, the BLO-
SUM substitution matrix [35], as implemented in biotite [36],
is used. Formally, the following is defined:

sequence similarity(S, S’) = 1L
L∑

n=1
M′(S[n], S′[n]), (1b)

whereM′ is the translated and rescaled version of the sub-
stitution matrix M.

For both the sequence identity and similarity, the closer
the value is to 1, the more similar are the kinases.

Figure 2 shows the sequence similarity between the KLIFS
pocket sequence of EGFR and MET kinases. Sequence simi-
larity is used by default in the pipeline for further analysis.

Figure 2. Sequence similarity between EGFR and MET. The 85-residue pocket sequence is retrieved from KLIFS. The pairwise se-quence similarity takes into account the change of the amino acidsover evolutionary time.

3.2 The KiSSim fingerprint
In order to assess the pairwise similarity of kinases from a
structural point of view, the newly developed KiSSim (Kinase
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Structure Similarity) fingerprint [11, 28] is used. This finger-
print describes the physico-chemical and spatial properties
of structurally resolved kinases, while focusing on the KLIFS
pocket residues. Each structure is mapped to a fingerprint
composed of 1, 032 bits, the first 680 (= 85 × 8) bits describ-
ing physico-chemical features and the remaining 352 (= 85×
4 + 12) bits spatial information (see Figure 3).

Figure 3. The 1, 032-long KiSSim fingerprint encodes physico-chemical and spatial properties of the kinase’s pocket, adding a struc-tural perspective on kinases. The figure is adapted from [28].

3.2.1 From several structures to one kinase
A kinase can be represented by one or even a hundred re-
solved crystal structures in the PDB (see Figure 1a). In this
study, we aim at comparing different kinases and not individ-
ual structures. Since KiSSim generates a fingerprint for each
structure, the following mapping from structures to kinase is
applied:

Given two kinases K and K’, all available structures in
KLIFS for these kinases are fetched using opencadd [27],
namely s1, . . . , sm for kinase K, and s′1, . . . , s′n for kinase K’,
noting that the number of structures might be different
for each kinase. Each structure si, s′i is then mapped to its
corresponding KiSSim fingerprint fpi, fp′i , see Figure 4. The
fingerprints fp, fp’ corresponding to kinases K, K’ respectively,
are the ones for which the Euclidean distance is minimized
(Figure 4). Note that these minimal distance fingerprints vary
for each kinase depending on the compared K, K’ pair.

Finally, two kinases K, K’ are compared based on their re-
spective minimal distance between KiSSim fingerprint fp, fp’
using the Euclidean norm:

KiSSim dissimilarity (fp, fp’) = ∥fp – fp’∥2 . (2)
In this case, the closer the value to 0, the more similar the
kinases.
3.3 The interaction fingerprint
Interaction fingerprints (IFPs) encode the binding mode of a
ligand in a binding site, i.e., the protein-ligand interactions

Figure 4. Associating one structural fingerprint per kinase. All avail-able structures are retrieved for two given kinases and all finger-prints are computed. The fingerprints selected to be associated withthe kinase in the present kinase pair are the ones for which the com-puted distance is minimized.

that are present in a structurally resolved complex. If a lig-
and can form similar interaction patterns in proteins other
than its designated protein (off- vs. on-target), it is possible
that this ligand will cause unintended side effects. Knowl-
edge about binding mode similarities can therefore help to
avoid such off-target effects.

The KLIFS interaction fingerprint describes seven possible
interactions for each of the 85 residues in the binding pocket.
Interactions include 1. hydrophobic contacts, 2. aromatic in-
teractions, face to face, 3. aromatic interactions, edge to face,
4. H-bond donors, 5. H-bond acceptors, 6. cationic interac-
tions, and 7. anionic interactions. The 595-bit long vector de-
scribes the presence or absence of such interactions for all
85 residues (see Figure 5).

Figure 5. TheKLIFS interaction fingerprint encodes seven interactiontypes for each of the 85 residues in the binding site. Interaction typesinclude: hydrophobic contacts (HYD), face to face aromatic interac-tions (F-F), face to edge aromatic interactions (F-E), protein H-bonddonors (DON), protein H-bond acceptors (ACC), protein cationic in-teractions (ION+), and protein anionic interactions (ION-). The figureis taken from [37].
Similarly to the KiSSim comparison, given two kinases K

and K’, all available structures in KLIFS for these kinases are
fetched using opencadd [27]. Each structure is mapped to its
corresponding IFP. The interaction fingerprints fp, fp’ corre-
sponding to kinases K, K’ respectively are the ones for which
the Jaccard distance [38] is minimized (Figure 4). Note that
the Euclidean distance is used in case of the KiSSim finger-
print, which contains continuous and discrete values, while
the Jaccard distance is employed in case of the binary IFPs.
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Finally, two kinases K, K’ are compared using their respec-
tive minimal distance between interaction fingerprint fp, fp’
and calculating the Jaccard distance:

IFP dissimilarity (fp, fp’) = dJ(fp, fp’), (3)
where dJ is the Jaccard distance.In this case, the closer the value to 0, the more similar the
kinases.
3.4 Ligand profile
In the context of drug design, the following assumption is
often made: if a compound was tested active on two differ-
ent kinases, it is suspected that these two kinases may have
some degree of similarity [39]. This is the rationale behind
the ligand profile similarity. Given bioactivity data for a set of
compounds measured against a set of targets—in this case
kinases—and two kinases K, K’, ligand profile similarity is de-
fined as

lig. profile similarity(K, K’) = # actives on both K and K’# tested on both K and K’ . (4)
The closer the value is to 1, the more similar are the

kinases. If no compounds were commonly tested on two
kinases, then the similarity is set to 0. Computing the
similarity between a kinase and itself may be interpreted
as kinase promiscuity, where the similarity described above
would therefore represent the fraction of active compounds
over all tested compounds for this kinase.
3.4.1 Bioactivity data
The bioactivity data used for this method comes from Kino-
data [40], from the Openkinome organization [41]. It is a pre-
processed kinase subset of the ChEMBL data [4], version 29.
Further processing includes keeping only IC50 values given innM, and converting them to pIC50 values. If there are severalmeasurements for a kinase-compound pair, then the most
active value, i.e., the entry with the highest pIC50 value, is
kept. Finally, the pIC50 values are binarized using a 6.3 cut-
off to discriminate between an active or inactive compound
as described in [42].

In the pipeline, one can additionally compute the non-
reduced ratio of number of active compounds against the
total number of compounds to gain insight into the actual
number of measurements for each kinase pair.
3.5 Kinase comparison and clustering
To assess kinase similarities based on the calculated
(dis)similarity matrices, two visualization methods are used,
namely heatmaps and dendrograms.

3.5.1 Heatmaps
The heatmaps are generated using matplotlib [22] to depict
the similarity between a set of kinases. The maximum value
is 1, indicating exact similarity, as is the case for diagonal en-
tries. The value 0 indicates total dissimilarity. Plotting such
figures allows to see and extract patterns thanks to the gra-
dient of colors, see top row in Figure 6.
3.5.2 Dendrograms
Clustering algorithms are used to identify groups such that
the similarities within clusters are higher than compared
to other clusters [43]. In this study, hierarchical clustering
is used, and, unlike heatmaps, it is based on distance (or
dissimilarity). Hierarchical clustering can be graphically
displayed using a dendrogram (see bottom row in Figure 6),
where the height of each node is proportional to the dissimi-
larity between its two daughter clusters. The clustering and
plotting is done using scikit-learn [24] and matplotlib [22],
respectively.

For fair comparison, the distance matrices for all four
methods are normalized so that each entry lives between 0
and 1. Similarity matrices—as used for the heatmaps—are
then computed using 1–distance matrix. Contrary to the
dendrograms, that use the distance matrix.
4 Pipeline
Measuring kinase similarity is a non-trivial task; distinct
measures can provide different insights, which can be com-
plementary, confirmatory, or contradictory, and therefore
expand our knowledge on the target(s) at hand. However,
implementing multiple methods can be time-consuming
and comparing results across many output types can be
laborious. Turning such processes into a functional pipeline
helps to avoid the scattering of scripts and to speed up
iterations of the design-make-test-analyze cycle [44] of drug
design campaigns. Moreover, following the findable, accessi-
ble, interoperable, and reusable (FAIR) principles [45] makes
such pipelines long-lasting and available to the community.

In the pipeline presented herein, we implemented the dif-
ferent methods once and streamlined each method’s results
into a standardized output with a pre-defined set of visual-
ization tools for easy comparison. Moreover, the pipeline is
flexible enough so that adding new methods or new visual-
ization tools is effortless, making the whole process easy to
understand, maintain, and expand.
4.1 Means of the pipeline
The proposed pipeline is a collection of six Jupyter note-
books [17] that allows the study of kinase similarity from
four different angles in an automated and modular fashion
(Figure 7).
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Figure 6. Visualization of kinase similarity from four different angles: sequence, KiSSim, interaction fingerprint (ifp) as well as ligand-profile.The top, bottom row shows four heatmaps, dendrograms respectively for a set of nine study kinases.

4.2 Structure of the notebooks
The structure of all notebooks is as follows: the first section
covers the theory written in Markdown and summarizes the
necessary concepts to understand the task. Relevant refer-
ences are also mentioned. The second part of a notebook
deals with the actual implementation of the task in a peda-
gogical manner, including motivation for practical steps and
detailed comments on coding decisions. Finally, a discussion
and a quiz section wrap up the notebook. This structure is
very well suited from a teaching perspective, since it contains
both theory and hands on programming. The notebook can
easily be used as a medium for a presentation, and it allows
for self-study as well as usage in own research projects.
4.3 About the code
The programming section is done in Python exclusively and
the code follows the latest software best practices. It is writ-
ten pythonically and contains lots of code comments. Thanks
to the continuous integration (CI), all outputs and results are
fully reproducible and the maintenance of the pipeline is fa-
cilitated.
4.4 Content of the pipeline
As mentioned previously, the proposed pipeline contains six
notebooks, described below:

The first notebook sets the stage with a kinase introduc-
tion and references/tools on where to find kinase-related

information. It is also in this first notebook that a set of
kinases of interest is defined. In this study, nine kinases
are selected, the same nine as in the paper by Schmidt
et al. [46], where the authors discussed the challenges
and advantages of tackling kinase similarity from multiple
perspectives. Table 2 summarizes the information used for
these kinases. The pipeline can be executed out of the box
with the defined set of kinases, but it can equally be run with
a different user defined set of kinases. The only condition
is that the uploaded CSV file with the kinases of interest
contains two mandatory columns, namely kinase_klifs,
which is the KLIFS name of the kinase, and uniprot_id, the
Uniprot identifier (ID) [2] of the kinase (Figure 7).

The four following notebooks describe one similarity
method at a time as discussed in Section 3: the pocket
sequence, the KiSSim fingerprint, the interaction fingerprint,
and the ligand profile.

The final notebook collects the information from the
previous ones and compares the different perspectives with
easy-to-understand visualization such as heatmaps and den-
drograms (see Section 3.5). Additionally, an equally weighted
average to combine distance and similarity matrices from
all four perspectives can be computed, yielding a single
heatmap, and a single dendrogram. The user can easily
extend this to a knowledge-informed weighting scheme
based on their own research focus.
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Figure 7. The proposed pipeline consists of six Jupyter note-books [17]. Given a set of kinases in a CSV format, four similaritymea-sures are implemented, and kinases are compared using heatmapsand dendrograms. The project is part of TeachOpenCADD [15, 16]and uses open-source tools and databases such as KLIFS [5] andChEMBL [4].

4.5 Features of the pipeline
The developed pipeline contains many useful features.
Firstly, it is part of the TeachOpenCADD project [15, 16] and
extends it with this special kinase edition. Being part of
TeachOpenCADD has the following advantages:

1. TeachOpenCADD is open-source and freely available
at https://github.com/volkamerlab/teachopencadd,
under the Attribution 4.0 International (CC BY 4.0)
license.

2. A dedicated conda package [47] facilitates installation.
3. Online execution is possible via the Binder project [32].
4. The teaching approach makes the notebooks easy to

follow.
Moreover, the pipeline is easily adaptable to new sets of ki-
nases as well as new similarity methods, defined by a user.
5 Conclusion
In this study, a full pipeline for the assessment of kinase sim-
ilarity is presented, using four methods of comparison. The
pipeline is composed of six Jupyter notebooks:

1. An introduction to kinases and their central role in drug
discovery, as well as the collection of the kinase set for
the downstream notebooks.

2. The similarity from a pocket sequence point of view.
3. The similarity based on the KiSSim fingerprint, which

encodes physico-chemical and spatial properties of the
kinase pocket.

4. The similarity based on KLIFS interaction finger-
prints between the kinase pocket residues and a
co-crystallized ligand.

5. The similarity based on ligand profiling data collected
from ChEMBL, measuring a compound’s activity on a
kinase.

6. An analysis notebook which collects the proximity ma-
trices calculated for the four methods, visualizes the
similarities with heatmaps and the clusters with den-
drograms, and finally discusses the results.

We encourage users to develop their own similarity meth-
ods and to contribute to the existing pipeline.

This paper could be of interest to
1. researchers who want to gain insights into off-target

prediction and kinase similarity, and integrate their
new comparison methods to a working workflow,

2. beginners in software development who need inspira-
tion to set up a fully functional pipeline,

3. teachers who want a starting point for lecture material,
4. students with a background in bioinformatics, chemin-

formatics, and the life sciences in general,
5. anyone who is curious.
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kinase kinase_klifs uniprot_id group full kinase name
EGFR EGFR P00533 TK Epidermal growth factor receptor
ErbB2 ErbB2 P04626 TK Erythroblastic leukemia viral oncogene homolog 2
PI3K p110a P42336 Atypical Phosphatidylinositol-3-kinase
VEGFR2 KDR P35968 TK Vascular endothelial growth factor receptor 2
BRAF BRAF P15056 TKL Rapidly accelerated fibrosarcoma isoform B
CDK2 CDK2 P24941 CMGC Cyclic-dependent kinase 2
LCK LCK P06239 TK Lymphocyte-specific protein tyrosine kinase
MET MET P08581 TK Mesenchymal-epithelial transition factor
p38a p38a Q16539 CMGC p38 mitogen activated protein kinase alpha

Table 2. Set of defined kinases. The table lists the kinases used in the pipeline, the same nine as in the study by Schmidt et al. [46]. It isnoteworthy that the pipeline is applicable to an arbitrary set of kinases, the only condition being that the input CSV file should contain twocolumns, kinase_klifs and uniprot_id, displayed in bold.

KLIFS Kinase-Ligand Interaction Fingerprints and Structures
EGFR Epidermal Growth Factor Receptor
KiSSim Kinase Structure Similarity
IFP Interaction Fingerprint
ID Identifier
CI Continuous Integration
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3.2 Exploring Kinome-Wide Subpocket Fragment Spaces

Figure 3.3: Exploring kinome-wide subpocket fragment spaces as illustrated by Ferdinand
Krupp, adapted from Sydow et al. [143].
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3.2.1 KinFragLib: Exploring the Kinase Inhibitor Space Using Subpocket-
Focused Fragmentation and Recombination
Publication E

The KinFragLib project as published in this article reports a subpocket-based fragmenta-
tion and recombination strategy for kinase-ligand complexes in the KLIFS database [63]. The
structurally available kinase inhibitor space is decomposed based on the subpockets that they
occupy, yielding a fragment space for each relevant kinase subpocket. The resulting fragment
libraries are explored regarding their chemical space and are used to guide subpocket-informed
recombination to generate novel kinase-focused molecules.
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ABSTRACT: Protein kinases play a crucial role in many cell signaling
processes, making them one of the most important families of drug targets. In
this context, fragment-based drug design strategies have been successfully
applied to develop novel kinase inhibitors. These strategies usually follow a
knowledge-driven approach to optimize a focused set of fragments to a potent
kinase inhibitor. Alternatively, KinFragLib explores and extends the chemical
space of kinase inhibitors using data-driven fragmentation and recombination.
The method builds on available structural kinome data from the KLIFS
database for over 2500 kinase DFG-in structures cocrystallized with noncovalent kinase ligands. The computational fragmentation
method splits the ligands into fragments with respect to their 3D proximity to six predefined functionally relevant subpocket centers.
The resulting fragment library consists of six subpocket pools with over 7000 fragments, available at https://github.com/
volkamerlab/KinFragLib. KinFragLib offers two main applications: on the one hand, in-depth analyses of the chemical space of
known kinase inhibitors, subpocket characteristics, and connections, and on the other hand, subpocket-informed recombination of
fragments to generate potential novel inhibitors. The latter showed that recombining only a subset of 624 representative fragments
generated 6.7 million molecules. This combinatorial library contains, besides some known kinase inhibitors, more than 99% novel
chemical matter compared to ChEMBL and 63% molecules compliant with Lipinski’s rule of five.

1. INTRODUCTION
1.1. Protein Kinases and Kinase Inhibitors. Protein

kinases constitute one of the largest protein families, with
roughly 518 kinases encoded in the human genome.1 Kinases
share a catalytic domain for adenosine triphosphate (ATP)
binding and are responsible for protein phosphorylation, a
mechanism fundamental to most aspects of cell life. A variety
of diseases, including cancer, inflammation, and autoimmune
disorders, are associated with aberrant regulation of protein
kinases. Thus, over the past 20 years, they have become one of
the most important classes of drug targets, especially in the
field of oncology.2−5

Protein kinases are generally divided into eukaryotic and
atypical protein kinases. Eukaryotic kinases share a similar
sequence and structure, whereas atypical kinases have
biochemical kinase activity but lack sequence similarity to
the typical kinase domain. Eukaryotic protein kinases can be
further classified based on their sequence identity into eight
main kinase groups: AGC, CAMK, CK1, CMGC, STE, TK,
TKL, and Other.1,6

Protein kinase structures consist of two domains, the N- and
C-lobes, connected via a hinge region. The majority of kinase
inhibitors target the catalytic cleft between these lobes, which
contains a highly conserved ATP-binding site. Based on over
1200 kinase-ligand crystal structures, van Linden et al.7 have
defined that the binding site comprises 85 residues and 19
well-defined regions and motifs, covering the front cleft, gate
area, and back cleft (see Figure 1B). This information is listed

in the KLIFS7,8 database and we provide the KLIFS numbering
in brackets where applicable. The front cleft accommodates
ATP and contains the hinge region (46−48), linker (49−52),
glycine-rich loop (4−9), and catalytic loop (68−75). ATP’s
adenine group as well as most kinase inhibitors form hydrogen
bonds to the hinge region. The gate area contains the
conserved DFG motif (81−83), the conserved lysine residue
K17 (17), and the gatekeeper residue (45), which is often used
for inhibitor selectivity and precedes the hinge region. The
back cleft contains among others the αC-helix (20−30),
including the conserved glutamine residue E24 (24), which
forms the conserved K17-E24 salt bridge in the αC-in (as
opposed to the αC-out) conformations. Furthermore, the DFG
motif can undergo a significant conformational change, which
results in an inactive state of the kinase (DFG-out instead of
DFG-in conformation). This DFG-flip opens a hydrophobic
region in the back cleft targeted by inhibitors stabilizing the
inactive state.7,9 The KLIFS database7,8 has made this and
further information about kinase structures, their bound
ligands, and the interactions between them freely available.
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Kinase inhibitors are classified by their binding modes.10

Type I and II inhibitors occupy mainly the front cleft and form
hydrogen bonds with the hinge region. Type I inhibitors bind
to the active DFG-in conformation, type II inhibitors stabilize
the inactive DFG-out conformation, and type I1/2 inhibitors
extend into the back pockets in the DFG-in conformation.
Allosteric inhibitors bind only next to the ATP-binding site
(type III) or outside of the catalytic cleft (type IV). Type V
inhibitors are bivalent, that is, binding different regions
simultaneously. Type I−V inhibitors bind reversibly, whereas
covalent inhibitors are classified as type VI.
1.2. Fragmentation and Recombination of Kinase

Inhibitors. Fragment-based drug discovery (FBDD) has been
successfully applied to develop novel and selective compounds,
including kinase inhibitors.11,12 Fragments are low-molecular-
weight compounds targeting a specific subpocket within the
active site of a protein. They usually bind to their target with
weaker activity than traditional drug-like molecules but with a
good binding efficiency, that is, a higher proportion of the
atoms are interacting with the protein.13,14

In drug design, molecules can be viewed as combinations of
multiple fragments. Growing, linking, and merging fragments is
the essence of FBDD.15 Fragments can be generated
computationally by decomposing larger compounds. Clearly,
the choice of the fragmentation technique will have an impact
on the resulting fragment library. RECAP (REtrosynthetic
Combinatorial Analysis Procedure)16 and BRICS (Breaking of
Retrosynthetically Interesting Chemical Substructures)17 aim
to cut only synthetically meaningful chemical bonds.
eMolFrag18 builds on top of BRICS to generate a set of

(larger) “bricks” and (smaller) connecting linkers. Alterna-
tively, the BREED19 algorithm immediately produces recom-
bined molecules for proteins with similar pockets such as
kinases. First, two structures, and thereby also their cocrystal-
lized ligands, are superimposed. If bonds in each of the two
ligands are in close proximity, the adjacent fragments are
swapped, producing two recombined molecules.
Typically, FBDD starts with the screening of a fragment

library to identify binders to specific targets, and only these hits
are optimized into larger compounds by fragment linking or
fragment growing. The screening step can be performed
experimentally or in silico.20 In the context of kinase inhibition,
Urich et al.21 extracted ∼6000 fragments with hinge-binding
motifs from a kinase-unfocused library of 2.3 million
compounds and docked them against 46 kinase structures to
identify potential hinge binders. Fragment expansion of
promising hits yielded a number of potent kinase inhibitors.
Rachman et al.22 reported a potent hinge-binding fragment,
selected from a kinase-unfocused fragment library (624
fragments). The fragments were docked against the JAK2
ATP-binding site and filtered based on (i) pharmacophoric
restraints (restrained docking) at the hinge region and (ii)
interaction strength measured by the work necessary to break a
defined hinge hydrogen bond (dynamic undocking). However,
it is also possible to start off directly with a kinase-focused
library of fragments that provide optimal interaction patterns
with the ATP-binding site. Based on kinase-ligand crystal
structures, Mukherjee et al.23 extracted the smallest possible
fragment with hydrogen bonds to the hinge region, yielding
about 1000 fragments from 2250 ligands (Kinase Crystal
Miner). Substructure searches for these fragments in large
molecule databases supplied molecules with kinase binding
potential. Vidovic ́ et al.24 have used the aforementioned
BREED strategy to reshuffle ligand functionalities between
ligand pairs from 936 cocrystallized kinase ligands. This
produced a total of ∼150,000 recombined molecules, including
∼26,000 lead-/drug-like molecules and ∼300 known kinase
inhibitors. Note that all the aforementioned approaches make
use of 3D structural information and (except the last study)
focus on hinge-binding fragments to be used for fragment
expansion or substructure searches in compound libraries.
An alternative approach is to decompose a compound library

based on kinase-focused criteria and to recombine the resulting
fragments into a kinase-focused molecule library. Recently,
Yang et al.25 reported a ligand-based fragmentation and
recombination strategy, which was applied on both a kinase-
focused (194 kinase inhibitors from PKIDB26) and a kinase-
unfocused library of ∼4.6 million compounds. The fragments
were assigned to three different fragment pools (core,
connecting, and modifying fragments) representing three
designated parts of a kinase inhibitor. Without using 3D
structural information, fragments were assigned to the core
fragment pool if a donor−acceptor hinge recognition pattern
could be found. Enumerating different combinations of core-
connector-modifying fragments yielded two virtual kinase-
focused recombined molecule libraries (∼500,000 and ∼40
million recombined molecules), based on the aforementioned
kinase-focused and kinase-unfocused input data.

1.3. KinFragLib Methodology. KinFragLib, which is
introduced here, takes advantage of the large amount of
structural data on kinase ligands from KLIFS7,8 for subpocket-
based fragmentation and recombination (Figure 1). Organizing
kinase ligand fragments by subpockets enables not only a

Figure 1. (A) Simplified schematic depiction of the KinFragLib
approach. Based on their location in the binding site, known kinase
ligands are fragmented and placed into subpocket pools, which can
then be used to generate a combinatorial library. (B) As an example,
the kinase-binding site of EGFR (PDB:3W2S) is shown with
important regions and the six defined subpocket centers as spheres.
(C) Schematic depiction of the six subpockets and the predefined
allowed connections between these subpockets. Colors of the
subpockets are matching in (B) and (C).
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detailed subpocket-specific analysis of their fragment space but
also a better understanding of the composition and spatial
arrangement of ligands in reported kinase complexes. More-
over, this kinase-focused fragment library allows a subpocket-
controlled recombination of fragments, revealing unexplored
territory in the chemical space of kinase inhibitors.

2. DATA AND METHODS

The following sections describe the procedure for (2.1)
collecting and preprocessing the dataset of kinase complex
structures, (2.2) defining subpockets, (2.3) fragmenting each
of the cocrystallized ligands in the dataset, (2.4) analyzing the
fragment library, (2.5) recombining fragments, and (2.6)
studying the combinatorial library.
2.1. Data Collection and Preprocessing. Structures of

kinase-inhibitor complexes were collected from the KLIFS
database7,8 (downloaded on 2019-11-06), which offers super-
imposed kinase structures from the PDB27 with 85 residues
defined as kinase-binding sites. In KLIFS, several entries can
exist for one PDB code because crystal structures were split
into all existing alternate location models and all kinase
domain-containing chains of heteromeric protein complexes.
Each KLIFS entry comes with structural details, including a
quality score (the higher the better), see Details S1 in the
Supporting Information.
The structural data were preprocessed as described in the

following steps (A.1−A.7) (see also Table 1): (A.1) Only
human kinases in the DFG-in conformation and with a ligand
lying within the main pocket (type I and I1/2) were selected
for download from the KLIFS website,28 yielding a starting set
of 7370 complex structures. (A.2) Atypical kinases were
discarded because of the large difference in the binding site
compared to eukaryotic kinases. (A.3) For each PDB code, the
KLIFS entry (specified by PDB code, chain identifier, and
alternative location) with the best quality score, or the first
entry if there were multiple structures with an equal score, was
extracted. (A.4) Mol2 files containing the binding site and the
ligand of each chosen structure were loaded into RDKit.29

Because of inconsistencies in the supported mol2 formats,
some files were not readable and thus discarded. (A.5) Kinase
structures in complex with adenine or any molecule containing
a phosphate group or a ribose substructure were discarded
(covering among others the PDB ligand IDs AMP, ADP, ATP,
ACP, ANP, ADN, and ADE). These are kinase substrates or
substrate analogues and were therefore not in the focus for the
design of novel kinase inhibitors. (A.6) Some kinase structures

in the database were in complex with multiple disconnected
molecules in the ATP-binding site. If one of these ligands was a
substrate or substrate analogue, the complete structure was
discarded because the ligand binding is not substrate-
competitive. If multiple ligands consisting of more than 14
heavy atoms existed, the structure was also discarded.
Otherwise, only the largest ligand was extracted. (A.7) Finally,
as the current approach focuses on the discovery of reversible
inhibitors, covalent ligands were also excluded, see Details S2
in the Supporting Information.
The dataset after preprocessing consists of 2801 kinase-

ligand structures. Further filtering steps during the fragmenta-
tion procedure, as described in “2.3 Molecule Fragmentation”,
result in a final dataset of 2553 complex structures (see B1-B4
in Table 1).

2.2. Subpocket Definition and Allowed Connections.
In this work, the kinase-binding site was divided into six
subpockets, which were selected based on their location and
function in known kinase-inhibitor structures. Each subpocket
is described by the geometric center of the Cα atoms within
the newly identified anchor residues chosen from the 85
binding site residues defined by KLIFS.7 The respective
subpocket-spanning anchor residues (Table 2) were selected

manually after visual inspection of several structures. The aim
was to define a location that overlays with important parts of
known kinase ligands and to provide a good distribution of
centers within the pocket (see Figure 1B). Later, fragments are
assigned to the closest subpocket, by measuring their distance
to the subpocket centers, and stored in subpocket-specific

Table 1. Dataset Filtering Steps during Preprocessing and Fragmentation

Discarded structures Remaining structures

Preprocessing Steps
(A.1) KLIFS download (human, DFG-in, ligand within main pocket) - 7370
(A.2) Discard atypical kinases 216 7154
(A.3) Choose best quality entry for each PDB 3775 3379
(A.4) Discard mol2 files not readable with RDKit 22 3357
(A.5) Discard substrates and substrate derivatives 429 2928
(A.6) Discard complexes with multiple ligands 17 2911
(A.7) Discard covalent inhibitors 110 2801
Additional Filtering Steps
(B.1) Discard structures with important atoms missing 7 2794
(B.2) Discard ligands with large BRICS fragments 134 2660
(B.3) Discard ligands not occupying AP 100 2560
(B.4) Discard ligands with unwanted subpocket connections 7 2553

Table 2. Subpockets of the Kinase-Binding Site as Defined
in This Worka

Subpocket Abbreviation
Anchor
residues

KLIFS
correspondence

Adenine pocket AP 15, 46, 51, 75 AP
Solvent-exposed
pocket

SE 51 none

Front pocket FP 10, 51, 72, 81 FP-I &; FP-II
Gate area GA 17, 45, 81 BP-I-A &; BP-I-B
Back pocket I B1 28, 38, 43, 81 BP-II-A, BP-II-in &;

BP-II-BBack pocket II B2 18, 24, 70, 83
aEach subpocket is described by the geometric center of its anchor
residues’ Cα atoms (KLIFS residue numbering). For comparison, the
corresponding KLIFS subpockets7 are annotated (approximate
manual assignment).
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library pools (subpocket pools). In the following, the residue
numbering refers to the numbering used in KLIFS.
2.2.1. Subpocket Locations. The adenine pocket (AP),

located at the geometric center of the spanning residues 15, 46,
51, and 75, lies next to the hinge region. It is usually occupied
by adenine in the ATP-bound state of the kinase and anchors
substrates or other compounds by forming up to three
hydrogen bonds. The solvent-exposed pocket (SE), defined here
by the single residue 51 at the entrance of the binding site
adjacent to AP, was also called the selectivity entrance by Zhao
et al.,30 as it shows diverse characteristics in different kinases
and can therefore be used to achieve improved selectivity. The
f ront pocket (FP), here represented by the geometric center of
residues 10, 51, 72, and 81, is occupied by the ribose and
phosphate groups of ATP and is partially solvent-exposed.9

The gate area (GA) acts as a gate between the front cleft
(containing AP, FP, and SE) and the back cleft. The GA
pocket is defined by the region between the gatekeeper
(residue 45), the conserved lysine (residue 17), and the
aspartic acid (residue 81) in the DFG motif. The back cleft is
split into two subpockets, back pocket I and II (B1 and B2),
both lying next to the αC-helix, spanned by residues 28, 38, 43,
and 81, as well as 18, 24, 70, and 83, respectively. In addition
to the six subpocket pools, a seventh pool X was created to
hold fragments that cannot be assigned clearly to a subpocket
because the distance to their closest subpocket center exceeds
8 Å. Selecting anchor residues and handling structures with
missing anchor residues is described in Details S3 in the
Supporting Information.
2.2.2. Allowed Subpocket Connections. In order to set up

the fragment library, first, the connections between the above
defined subpockets were investigated. After manual inspection
of the typical structure of known kinase inhibitors (type I and
I1/2 only), eight allowed subpocket connections were
identified as schematically depicted in Figure 1C. A first
investigation of the generated fragments revealed that 95.2% of
the molecules comply with this scheme. The remaining 4.8%
ligands were handled as described in “2.3 Molecule
Fragmentation”.
2.3. Molecule Fragmentation. A fragmentation algorithm

was implemented to generate fragments from a given ligand in
complex with a kinase structure, assign them to subpockets,
and thereby populate the fragment library’s subpocket pools
(see Figure 1). Each kinase-ligand complex is processed
successively in the following way (see Figure 2).
2.3.1. Subpocket Center Calculation. The aforementioned

six subpocket centers are calculated for the binding site of the
respective kinase structure (see “2.2 Subpocket Definition and
Allowed Connections”).
2.3.2. Initial BRICS Fragmentation. The BRICS algorithm17

was chosen for fragmentation. BRICS employs 16 rules to
cleave bond types by taking the chemical environment and
neighboring substructures into account. This ensures that
structural features of organic compounds stay intact, increasing
the chance of synthetic accessibility of the recombined
fragments.
To determine the potential cleaving positions, the cocrystal-

lized ligand of the structure in hand is submitted to an initial
fragmentation step, using the RDKit implementation of the
BRICS algorithm. Next, each of the resulting fragments needs
to be assigned to a subpocket. Therefore, the geometric center
of all atoms (including hydrogens) in the fragment, and its
distance to all subpocket centers, is calculated. Then, the

fragment is assigned to the subpocket with the closest
subpocket center. However, if the closest subpocket to a
fragment is more than 8 Å away, this fragment is considered as
lying outside of the binding site and assigned to the outlier
pool X. Note that the information on the BRICS environment
type of each fragment is kept for later recombination.
Subsequently, the cleavage assignments are revised in order

to avoid fragments that are too small in the final fragment
library. For each fragment with less than three atoms, the
neighboring fragments are checked. If all neighboring frag-
ments are assigned to the same subpocket, nothing needs to be
done because by default they will be merged in the next step. If
the subpockets of the neighboring fragments differ, the current
small fragment is assigned to the subpocket of the largest
neighboring fragment. This procedure is repeated until all
fragments with less than three atoms are reassigned.
Finally, for each bond between two BRICS fragments, the

subpockets of the two fragments are compared. If the two
subpockets differ, this bond is stored as a cleaving position for
the final fragmentation.

2.3.3. Final Subpocket-Based Fragmentation. The original
ligand is now fragmented only at bonds crossing two
subpockets, while storing for each fragment the subpocket
that it occupies. The subpockets of neighboring fragments are
compared in order to detect unwanted subpocket connections
(see section “2.2 Subpocket Definition and Allowed Con-
nections”). (i) If a connection between subpockets FP and B1
or FP and B2 is detected, the distance of the FP fragment to
the GA subpocket center is calculated. If this distance is
smaller than 5 Å, this fragment is reassigned to GA instead
(applied to only 15 cases). Else, the fragment in B1 or B2,
respectively, is assigned to pool X. (ii) If any unwanted
subpocket connection is still present after this procedure, the
complete ligand is excluded from the fragment library.

2.3.4. Fragment Information Storage. Fragments are
stored in one structure-data file (sdf) per subpocket. Together
with the structural data, information about each (dummy)
atom’s subpocket annotation, BRICS details, original kinase
affiliation, and more is stored to enable detailed analyses and

Figure 2. Implemented fragmentation algorithm splits a given kinase
ligand based on the subpockets that it occupies. (1) Subpocket
centers within the kinase-binding site are calculated. (2) The BRICS
algorithm is used for an initial fragmentation. The resulting BRICS
fragments are then assigned to the closest subpocket. (3) Finally, the
molecule is fragmented only at those bonds that separate fragments
assigned to two different subpockets. (4) At the fragmented bonds,
the information on the originally adjacent subpocket is stored.
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later recombination of the fragments (see Details S4 in the
Supporting Information).
2.3.5. Summary of Removed Ligands during Fragmenta-

tion. During the fragmentation procedure, some complexes
were discarded because of the following reasons (Table 1):
(B.1) A few kinase structures were missing required atom
positions and thus their subpocket centers could not be
calculated. (B.2) Some ligands, such as staurosporine, are not
suitable for fragmentation, as they contain large, unfragment-
able portions. Thus, structures with BRICS fragment(s) with
more than 22 heavy atoms were discarded. (B.3) Ligands not
occupying AP were excluded from the fragment library, as this
work focuses on ligands targeting the ATP-binding site and
most kinase inhibitors developed so far bind in the AP
subpocket.7 (B.4) Ligands displaying unwanted subpocket
connections were discarded. Consequently, 2553 ligands
remained and their fragments were included in the fragment
library (available at https://github.com/volkamerlab/
KinFragLib).
2.4. Fragment Analysis. The following paragraphs

describe the different analyses that were performed on the
fragment level.
2.4.1. Deduplicated Fragments. Several fragments were

found more than once in a subpocket. Hence, a unified set was
created for further analysis. First, fragments were simplified by
replacing dummy atoms with hydrogens and removing all non-
explicit hydrogens (simplif ied f ragments). Second, fragments
within one subpocket pool were deduplicated based on their
canonical SMILES representation, that is, in the case of
identical fragments, only one was kept (deduplicated f rag-
ments).
Fragment similarity was calculated to allow analyses of the

fragment diversity within subpockets as well as within and
across kinase groups. For subpocket-based analyses, fragments
were deduplicated per subpocket and similarities between all
pairwise fragment combinations per subpocket were calculated.
To this end, the topological RDKit molecular fingerprint31 was
generated for each fragment and the Tanimoto similarity
metric was applied. Self-comparisons of fragments were
omitted.
To analyze similarities within and across kinase groups,

fragments were categorized by subpocket and kinase group

(according to the structure they were bound to) and
deduplicated per category. For each subpocket (excluding
pool X), similarities between all pairwise fragment combina-
tions, within and across all kinase groups, were calculated as
described in the previous paragraph.

2.4.2. Common Fragment Motifs per Subpocket. In order
to identify the most common fragments in each subpocket
(excluding pool X), the number of occurrences of each
fragment was calculated before deduplication based on the
simplif ied f ragments. The 50 most common fragments in each
subpocket were then clustered based on the Butina algorithm32

using topological RDKit molecular fingerprints31 and a
distance threshold of 0.6. Note that subpockets B1 and B2
contain less than 50 deduplicated fragments, and thus, all
fragments were chosen for clustering. Furthermore, represen-
tative fragments were extracted manually for each subpocket in
order to provide a visual overview on chemical differences and
overlaps between subpockets. Each selected fragment
represents a variety of common fragments with similar
scaffolds and R-groups.

2.5. Fragment Recombination. Novel molecules can be
created by recombining fragments from the fragment library.
For a proof-of-concept study, only a subset of the fragment
library was used. The individual steps for data reduction and
fragment recombination are explained in this section.

2.5.1. Data Reduction. The full fragment library contains
7486 fragments. In order to reduce the combinatorial library
size and run time, a diverse subset of fragments was chosen.
Fragments unsuitable for recombination, for example, un-
fragmented ligands, duplicates, or fragments in pool X, were
discarded. Only fragments complying with the rule of three33

(fragment-like) and fragments with hinge-like properties in
case of the AP pool were kept. The Butina algorithm32 was
applied to cluster each subpocket’s filtered fragments and the
most common fragments were selected. The final reduced
fragment library consists of 624 fragments (AP: 145, FP: 192,
SE: 140, GA: 93, B1: 24, and B2: 30). A detailed description is
given in Details S2 in the Supporting Information.

2.5.2. Recombination Procedure. All possible fragment
combinations of the above described reduced set were
enumerated, while preserving the original subpocket con-
nections when connecting the fragmented bonds using the

Figure 3. (A) Distribution of the number of subpockets (excluding pool X) occupied by the ligands. (B) Number of fragments and deduplicated
fragments (fragments remaining after removal of duplicates) in each subpocket pool, with the percentage of duplicate fragments on top of each
subpocket’s bar.
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subpocket-labeled dummy atoms. Recombination started from
AP fragments only, while adding fragments from other
subpockets consecutively and thereby excluding any recom-
bined molecules not occupying AP. Fragments were combined
by adding a bond between two atoms adjacent to dummy
atoms, while removing the dummy atoms. Thereby, two
fragments were connected via a new bond between two atoms
if the following conditions were fulfilled. (i) The first
fragment’s dummy atom was associated with the same
subpocket as the second fragment and vice versa. (ii) The
BRICS environment types of the atoms to be connected were
matching according to the BRICS rules,17 in order to preserve
synthetic accessibility. In addition, the bond type (single or
double bond) between dummy atoms was preserved when
connecting the fragments. (iii) While connecting the frag-

ments, it was ensured that the resulting molecule did not
contain two fragments from the same subpocket, so that no
subpocket is occupied twice.
Recombination was deemed complete if either the molecule

had no dummy atoms left to another subpocket (excluding
pool X), the molecule’s remaining dummy atoms could not be
replaced by any matching fragment, or the molecule consisted
of four fragments. This upper limit of occupied subpockets was
introduced because the majority of kinase ligands occupies
only up to four subpockets (see Figure 3A) and molecules
occupying more subpockets will most likely not fulfill the
requirements of a drug-like molecule because of their size (e.g.,
Lipinski’s rule of five34). Finally, if the resulting recombined
molecule contained any remaining dummy atoms, they were

Figure 4. Subpocket connectivity for example ligands in KLIFS ([PDB code].[chain].[alternate model]): (left) Subpockets and allowed
connections with solid/dotted lines if present/not present in the example ligand, including the frequency of ligands showing the highlighted
connection. (Middle) Ligand conformation in the example kinase structure, including subpocket centers (spheres). (Right) Ligand fragmentation
with assigned subpockets and dummy atoms (gray).

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.0c00839
J. Chem. Inf. Model. 2020, 60, 6081−6094

6086

140 CHAPTER 3. METHODS AND RESULTS



replaced with hydrogen atoms. This recombination strategy
produced over 6.7 million ligands based on 624 fragments.
2.6. Recombined Molecule Analysis. All molecules

discussed in the following were standardized35 and neutral-
ized36 using RDKit’s rdMolStandardize module.37

The recombined molecules were compared against two sets
of ligands: (i) the 542 ligands, from which the reduced set of
624 fragments originated (reduced original ligands), were
searched for exact and substructure matches, and (ii) the
ChEMBL database38 was screened for exact matches and the
most similar molecules. From the latter, all 1,870,461
molecules from the ChEMBL 2539 dataset were downloaded.
If an entry contained a mixture, the largest molecule was
extracted. Duplicates were dropped (based on canonical
SMILES) and only molecules with more than four heavy
atoms were kept. Standardization resulted in 1,782,229
molecules, which were stored as InChI40 strings to be used
for the exact match search between the combinatorial library
and ChEMBL. Furthermore, for each recombined ligand, a
Tanimoto comparison based on topological RDKit finger-
prints31 yielded the most similar ChEMBL molecule.
2.7. Used Software and Libraries. The project was

implemented in Python 3.6.8. RDKit29 (2020.03.3) was used
to perform most molecule-related calculations, matplotlib41

(3.2.2) and seaborn42 (0.10.1) to generate plots, and PyMol43

(1.9.0.0) to visualize structures and subpocket centers.

3. RESULTS AND DISCUSSION
The main objective of this work has been to decompose kinase
ligands with respect to 3D information and to assign each
resulting fragment to the kinase subpocket it interacts with.
Only kinase-ligand complex structures with molecules targeting
the ATP-binding site in the DFG-in conformation were
selected, such as type I and I1/2 inhibitors, to reduce the
conformational space of the kinase structures. After filtering
the 7370 starting structures assembled from the KLIFS
database, 2553 protein kinase-ligand structures were chosen
for this study.
In a first step, inspired by the functional subpocket

annotation in KLIFS, six functionally relevant subpockets
were defined covering the ATP-binding site. Note that KLIFS
specifies eight subpockets, some of which describe relatively
small subpockets that were combined into one subpocket in
KinFragLib. Subpockets, which are too small, are algorithmi-
cally less desired in this case because either very small
fragments would be generated or large fragments would span
over several of these small subpockets. Additionally, a solvent-
exposed pocket (SE) was introduced in KinFragLib, a region of
the binding site occupied by many kinase inhibitors (see
subpocket definitions in Table 2).
In a second step, the cocrystallized kinase ligands were

fragmented with respect to the subpockets that they occupy.
This resulted in a kinase-focused f ragment library with six
subpocket pools (plus the pool X) and 7486 fragments, which
is analyzed in depth in the following paragraphs.
In the last step, a subset of this kinase-focused fragment

library was used to create a combinatorial library by
enumerating all feasible fragment combinations. The potential
of the combinatorial library is shown in comparison with the
KLIFS ligands, from which the fragment subset originates, and
with the ChEMBL database.
The generated fragment and combinatorial libraries along-

side Jupyter44 notebooks illustrating library usage as well as the

analyses of both libraries, as discussed in the following, are
available on GitHub: https://github.com/volkamerlab/
KinFragLib.

3.1. Subpockets and Fragment Library. The generated
kinase-focused fragment library allows analyses of kinase-ligand
interactions and exploration of the chemical space of kinase
ligands. In total, 7486 fragments (7201 fragments without pool
X) originating from 2553 cocrystallized ligands were generated
by the fragmentation procedure. After subpocket-based
deduplication, 2977 fragments remained (without pool X).
The following analyses aim to provide a better understanding
of kinase-inhibitor binding and may serve as a valuable starting
point for the design of novel kinase inhibitors.

3.1.1. Ligand Occupancy across Subpockets. The
compiled fragment library enables an in-depth analysis of the
number of subpockets occupied by the original ligands (Figure
3A).
Ligands occupying 2−4 subpockets. The majority of ligands

occupy two (28%) or three (53%) of the six subpockets. In
another 13% of the cases, the ligand spans over four
subpockets (examples of such can be seen in Figure 4A,B,E).
This illustrates that kinase ligands usually do not fully exploit
the available space in the kinase-binding site but target only
specific subpockets.
Ligands occupying 5−6 subpockets. Very few ligands (1%)

occupy five subpockets, and only one visits all six subpockets.
For instance, in the ALK kinase structure PDB:4FNZ,45 the
cocrystallized ligand (NZF, CHEMBL202355646) covers all six
subpockets (see Figure S1A) and was indeed measured to be
active on ALK (pIC50 = 7.2) as well as IGF1R (pIC50 = 6.9).
An example of a ligand covering five subpockets is the
cocrystallized active compound (W2R, CHEMBL232233047)
in the EGFR structure PDB:3W2S48 (pIC50 = 8.2), as shown in
Figure 4D.
Ligands occupying 1 subpocket. Additionally, 127 ligands (5%)

target only one subpocket and were left unfragmented during
the fragmentation procedure. Because this study focuses on
ligands covering the AP subpocket, all these unfragmented
ligands are located in AP. They have an average number of 15
heavy atoms, which is higher than the average over all AP
fragments (11 heavy atoms). As shown in Figure S1B−D, these
molecules represent either (i) small fragment-like molecules or
(ii) large rigid molecules that contain a large fraction of rings,
which are difficult to split for most fragmentation algorithms.
An example for the former group (i) is the series of
halogenated pyrazoles that stem from a fragment-based
approach for druggability assessment and hit generation,49

see Figure S1B(1−8). The latter group (ii) contains complete
drug-like molecules that could not be divided because BRICS
fragmentation rules, see Figure S1D(1), or KinFragLib
cleavage bond annotation s did not apply. Or the molecules
were simply too rigid to be fragmented, containing mainly
fused ring systems with small decorations, such as quinalizarin
(see Figure S1C(1,2) and Details S6 in the Supporting
Information).
Note that the unfragmented ligands cannot be used in the

recombination algorithm, because no attachment point
resulting from the fragmentation could be assigned. This
could be seen as a restriction in available chemical space of the
current approach because each fragment-like molecule can be
viewed as a potential starting point for fragment growing.
Nevertheless, roughly 28% of the unfragmented ligands were
found to be substructures of other original ligands. More than
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half of these unfragmented ligands are fragment-like (i.e., fulfill
the rule of three33). Thus, they are implicitly used in the
introduced recombination approach. The remaining 72% of
the unfragmented ligands are however not considered, a
limitation which could be addressed by manually adding
attachment points on relevant positions.
3.1.2. Ligand Connectivity across Subpockets. The

fragmentation of existing kinase inhibitors yields an overview
of how the fragments are arranged within the binding site and
throughout the individual subpockets, revealing which
subpockets are connected most frequently by kinase ligands.
Disallowed subpocket connections. As described in “Data and

Methods”, a few design choices were made to only allow the
subpocket connections as depicted in Figure 1C that were
defined based on prior investigation of known kinase
inhibitors. The majority (95.2%) of the analyzed molecules
follow this scheme. Another 4.5% of molecules initially
contained disallowed FP-B1 or FP-B2 connections, which
could be rescued with additional fragmentation rules. The
remaining molecules (0.3%) contained non-adjacent subpocket
connections and were discarded in this analysis (see Details S7
in the Supporting Information).
Subpocket connections and f ragment arrangements. The

fragment connectivity of the cocrystallized ligands was
analyzed to identify the typical layout of kinase inhibitors.
Examples of ligands representing different subpocket con-

nections are illustrated in Figure 4. The central connections
starting from AP are observed most often. The AP-FP
connection is present most frequently in 61.5% of the analyzed
ligands, closely followed by the AP-SE and the AP-GA
connections with 58.8% and 36.0%, respectively (see Figure
4A). This agrees with the finding that subpocket pools AP, FP,
SE, and GA contain the most fragments in descending order
(Figure 3B). FP-GA and FP-SE connections also occur in more
than 7% of the ligands each (see Figure 4B,C). Generally, the
back pockets B1 and B2 are covered less often in the fragment
set and they can only be reached through GA. Thus, the GA-
B1 or GA-B2 connections appear only in 3.7% and 3.3% of the
cases, respectively (see Figure 4D,E). B1-B2 connections are
present in only 10 ligands (0.4%, see Figure 4D).
These findings seem to be in good agreement with the

inhibitor binding modes reported in KLIFS (Table 5 in the
original publication,7 see also Table 2). The majority of ligands
are described to be front cleft binders in both approaches,
occupying mostly AP-GA and AP-FP subpockets (because SE
is not defined in KLIFS, AP-SE and FP-SE connections are
part of the KLIFS equivalent of the AP and FP subpockets). In
contrast, back cleft binders describing ligands that occupy the
back pockets (AP-GA-B1/2 combinations) occur by far less
often. While the KLIFS binding mode annotation is based on
kinase-ligand interaction fingerprints, the analysis reported

Figure 5. (A) Chemical descriptor statistics for each subpocket pool. Calculated descriptors are the number of hydrogen-bond donors and
acceptors (HBDs and HBAs), logP, and the number of heavy atoms, while excluding duplicate fragments. (B) Distribution of Tanimoto similarities
between all pairwise fragment combinations per subpocket, while excluding duplicate fragments per subpocket. (C) Distribution of Tanimoto
similarities between pairwise fragment combinations in each kinase group and across all kinase groups (total), while excluding duplicate fragments
within each kinase group and subpocket as well as comparing only fragments within the same subpocket.
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here shows that KinFragLib’s automated subpocket-based
procedure generates reasonable fragments.
3.1.3. Fragment Occurrence per Subpocket. The number

of fragments per subpocket is reported in Figure 3B and Table
S1. Containing 35.6% of the 7201 fragments (excluding pool
X), AP is the most frequently occupied subpocket. Remember
that by design, this study focuses on ligands covering the AP
subpocket, and all ligands not occupying AP were discarded
beforehand. Also note that AP contains 8 fragments more than
the actual number of fragmented ligands, that is, 2553. This is
possible because the fragmentation algorithm allows two not
neighboring fragments of a ligand to occupy the same
subpocket because not all ligands fit perfectly to the defined
subpockets (this happens only rarely). The second most
occupied subpocket is FP (25.9% of fragments), followed by
SE (21.7%) and GA (14.2%). The back pockets B1 and B2 are
occupied by only 2.6% of the fragments in total. According to
this, known type I and I1/2 kinase ligands mostly target the
same subpockets as the kinase substrate ATP (AP and FP) to
gain potency, followed by the neighboring subpockets such as
GA, targeted to increase selectivity. In this dataset, the remote
back pocket is targeted less frequently because of two reasons.
First, 69% of the underlying kinase structures show the αC-in
conformation, limiting the available space for ligands in B1 and
B2. Second, 73% of the front cleft binders target the αC-in
conformation, compared to only 25% in the case of the back
cleft binders. Finally, pool X contains 285 additional fragments.
These fragments were classified as lying outside of the main
binding site or showing disallowed subpocket connections.
3.1.4. Fragment Properties per Subpocket. In the

following, the fragment pools are analyzed with respect to
duplicate fragments and physicochemical properties per
subpocket.
Duplicates. On average, 59% of the fragments in each

subpocket were present in more than one structure (referred to
as duplicates). This can be explained by the traditional
medicinal chemistry approach, studying a wide range of
decorating groups around a shared molecular scaffold and
thereby exploring structure-activity relationships. Such ap-
proaches can result in the crystallization of multiple analogs
from the same series. However, this finding also highlights the
limited chemical diversity of the known kinase inhibitor space
(considering molecules with available crystal structures only).
The highest relative number of duplicates was identified in GA
(70%); for the other subpockets the values do not differ largely
from the average of 59% (Figure 3B). The higher share of
duplicates in GA could be explained by the generally smaller
fragment size in this subpocket (compared to AP, FP, and SE,
see Figure 5A).
Physicochemical properties. In order to identify particularities

in the chemical space of the different subpocket pools,
standard chemical descriptors were calculated. These include
(i) hydrogen-bond donors and acceptors (HBDs and HBAs),
(ii) logP values, and (iii) molecule size as in the number of
heavy atoms. The distributions of these descriptors for each
subpocket pool are displayed as box plots in Figure 5A, while
excluding duplicates.
AP fragments generally have a higher number of HBDs and

HBAs, as this part of the inhibitor usually forms hydrogen
bonds to the hinge region and acts as an anchor to position the
ligand.9 The logP values vary widely in all subpocket pools. X,
FP, and SE fragments have the lowest median logP, meaning
they tend to be more hydrophilic. For SE, this can be explained

by the solvent exposure of this part of the kinase binding site.
The same holds for FP, which is also partially solvent-
exposed.9 While the AP fragments usually do provide hydrogen
bonds as anchors, they are often surrounded by a hydrophobic
pocket, which could explain the need for lipophilic moieties in
the fragment and thus a higher logP. Furthermore, AP, FP, and
SE fragments tend to be larger in terms of the number of heavy
atoms, with AP having the highest median value. Note that
most of the outliers in AP refer to unfragmented ligands, as
shown in Figure S1C,D, while outliers in FP mostly refer to
large fragments that extend widely into the solvent.
This analysis reflects the general knowledge medicinal

chemists have about kinase inhibitors: an HBD-HBA
recognition motif is required for binding to the hinge region,
the SE subpocket is used to attach functional groups that
increase compound solubility, and the GA region accom-
modates small and hydrophobic moieties. This highlights the
KinFragLib method’s ability to automatically capture the
chemical properties of kinase inhibitors.

3.1.5. Fragment Similarity per Subpocket. In the following,
the fragment similarity was analyzed within each subpocket to
assess if certain subpockets are occupied by more similar
fragments than others. Overall, the intra-subpocket fragment
similarity does not differ largely between the subpockets and is
generally rather low (Figure 5B, Table S1). The highest
average intra-subpocket similarity was observed in AP with a
mean of 0.14, the lowest similarities in B1 (0.07), B2 (0.09),
and FP (0.09). A higher similarity in AP can be explained by
the lower flexibility of this kinase region and the targeted
design of chemical moieties interacting specifically with the
hinge region. The low average similarity within FP might be
observed because of the larger space around the FP center
compared to the other subpockets, allowing a higher diversity
in FP fragments. The low similarity in B1 and B2 is probably
the result of the small amount of data available for these
subpockets.
In general, this analysis indicates that the fragments in the

subpocket pools have a high structural diversity (after
deduplication), which underlines the potential of KinFragLib
to generate novel chemical matter.

3.1.6. Fragment Promiscuity. Fragment promiscuity was
addressed from two angles. Are fragments more similar within
kinase groups than across kinase groups? If fragments are
observed multiple times in the same subpocket pool, are the
respective ligands cocrystallized with different kinases (or
kinases from the same group)?
To address the first question, all fragments were grouped by

subpockets (excluding pool X) and kinase groups. Within each
of these subsets, fragments were deduplicated and similarities
for all pairwise fragment combinations were calculated and
pooled by kinase groups. This results in fragment similarities
per kinase group, while in each kinase group, only fragments
were compared that occupy the same subpocket. If fragments
were indeed selective for specific kinase groups, a higher
fragment similarity would be observed within kinase groups
compared to across all kinase groups (i.e., pooling all
similarities from all subpockets). Nevertheless, no significant
difference was observed (Figure 5C). This result indicates that
the collected fragments are potentially useful for the design of
an inhibitor of any target kinase.
To address the second question, all fragments were grouped

by and deduplicated within subpockets (excluding pool X),
while the number of duplicates was kept per deduplicated
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fragment: 67% of the fragments represent singletons (appear
only once per subpocket) and 12% originate from different
molecules that were bound to the exact same kinase and
subpocket. One interpretation of this result can be that 79% of
the collected fragments have the potential to be part of a
molecule that specifically inhibits one kinase. This is in line
with the arguments by Xing et al.50 and Hu and Bajorath51

after exploring kinase hinge-binding scaffolds. Another
interpretation can be that 4 out of 5 fragments have never
been explored on kinase targets from a different family. Using
this information to create kinase-focused chemical matter
could therefore be extremely useful. The remaining 21% of the
fragments were bound to more than one kinase. More than
three-quarters of this fragment set were also cocrystallized with
kinases from more than one kinase group. This result supports
the conclusion that fragments can be promiscuous, that is,
identical fragments can interact with multiple different kinase
targets. Instead, the combination of different fragments could
be the key for kinase selectivity.
3.1.7. Common Fragments and Motifs per Subpocket. In

order to illustrate the chemical nature of the fragments within
each subpocket pool and highlight differences and similarities
across them, representative fragments are shown in Figure 6.
The AP subpocket binds mainly heteroaromatic systems

based on single or fused five- or six-membered rings, mostly
showing the prominent donor-acceptor patterns for hinge
binding. The SE subpocket is predominantly occupied by
single aromatic rings, while the FP subpocket shows both
single aromatic and non-aromatic rings with different
substitutions. Both subpockets show residual groups rich in
nitrogen, oxygen, and halogen. The GA subpocket binds
mostly benzene rings with oxygen- and halogen-rich residual
groups. Both GA and FP also accommodate smaller linear
fragments, which are mostly terminal fragments, because a

large fraction of molecules are front pocket binders and thus
do not extend further into the back pockets. For B1 and B2,
much less data are available (about 90 vs 1000−2500
molecules per subpocket), and thus, the fragments are less
representative for the chemical matter that could be
accommodated by these pockets. The B1 subpocket pool
contains many sulfonyl groups and is rich in halogen
substitutions (e.g., trifluoromethyl groups), whereas the B2
subpocket shows a quite diverse set of ligands. An overview of
the 50 most common fragments per subpocket is shown in
Figures S2−S7. The identified common fragments are in good
agreement with the representative scaffolds reported for the
different KLIFS subpockets by van Linden et al.7 (Table 6 in
the original publication).
In order to assess overlaps and differences in results from

different approaches, hinge-binding fragments from the
literature are compared to fragments from the hinge-equivalent
subpocket in this study, that is, the AP subpocket. Xing et al.50

and Mukherjee et al.23 both report their 10 most common
hinge scaffolds/fragments (Figures 1 and 7 in the original
publications, respectively). Excluding adenine and staurospor-
ine from the comparison, which were removed from this
library, see Table 1 (A.5) and (B.2), all 8 fragments reported
by Xing et al.50 and 5 (out of 7) fragments reported by
Mukherjee et al.23 have exact matches in the AP subpocket
pool reported in this work. When also considering highly
similar (difference in one atom) AP fragments, all fragments
from both studies are in the top 15 of the most common AP
fragments in this study (Table S3). While both reported
methods check for hydrogen bonding between the fragment
and the hinge region in crystal structures, KinFragLib is able to
retrieve hinge-contacting fragments without specifically search-
ing for hinge contacts but by checking the position within the
binding site. As a further comparison, Yang et al.25 report 15

Figure 6. Representative kinase ligand composition: the representative fragments (manual selection) of the most common fragments are shown per
subpocket. The subpockets’ circle size illustrates the number of fragments (number of deduplicated fragments in brackets) per subpocket. Fragment
connections between subpockets are shown as lines, including the percentage of ligands showing each connection. The full list of the top 50 most
common fragments per subpocket is shown in Figures S2−S7. Note that dummy atoms were replaced by hydrogen atoms.
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examples of hinge-binding fragments extracted using hinge-like
donor−acceptor patterns from kinase inhibitors (Figure 5 in
the original publication). More than half of these fragments are
similar to fragments in KinFragLib’s top 21 AP fragments
(only few exact matches), the remaining fragments were not
substructures of KinFragLib’s original ligands and thus are not
part of the fragment library.
3.2. Recombined Molecules. To exemplify the power of

the combinatorial library, molecules were enumerated based
on a reduced and diverse subset of the fragment library
consisting of 624 fragments (see subsection “2.5 Fragment
Recombination”). The recombination algorithm generated
6,752,232 molecules, of which only 31,595 molecules were
duplicates, yielding 6,720,637 distinct molecules. This means
that only 0.005% of the library contains duplicates, that is,
equal molecules that were generated coincidentally from
different fragment combinations.
3.2.1. Recombined Original Ligands from KLIFS. An

important way to control the relevance of the generated
chemical matter is to demonstrate this workflow’s ability to
reconstruct the ligands from which the reduced set of 624
fragments originate (542 “reduced original ligands”): 35
recombined molecules have exact matches and 324 recom-
bined molecules are substructures. Note that only a subset of
fragments (624 out of 2977) was used for recombination, and
thus, only a fraction of original ligands can be retrieved.
3.2.2. Recombined ChEMBL Molecules. The search for

exact matches in ChEMBL38 (1,782,229 molecules) revealed
that only 298 of the over 6.7 million recombined molecules
have already been described in ChEMBL. Only 218 matching
molecules remain after removing the exact and substructure
matches in the “reduced original ligands” used for the
fragmentation. Consulting bioactivity data available in
ChEMBL, 47 out of these 218 molecules have been shown
to be active against at least one human target (activity is here

defined as IC50 ≤ 500 nM): 44 are active against kinases, two
against cytochrome P450, and one against a voltage-gated ion
channel. In total, 10 molecules show a high activity against
kinases with an IC50 ≤ 5 nM (see Figure 7). More details on
the ChEMBL IDs and molecular structures are shown in Table
S4 and Figure S8. This shows strong evidence that the
KinFragLib library contains molecules with a high chance of
exhibiting kinase activity.

3.2.3. Chemical Novelty (with Respect to the KLIFS Subset
and ChEMBL). Excluding the 359 original ligands (35 exact
and 324 substructure matches in KLIFS) and the 218 exact
matches in ChEMBL (without KLIFS matches), the
recombination generated 6,720,058 novel molecules out of
6,720,637 deduplicated recombined molecules, that is, 99.99%
of chemical matter with no precedent in ChEMBL nor the
KLIFS subset. Furthermore, comparison of the recombined
ligands with their most similar ChEMBL molecules revealed
that the combinatorial library is not highly similar to the
ChEMBL chemical space (mean similarity of 0.54 with a
standard deviation of 0.07, see Figure S9).
At the same time, as discussed before, 35 original kinase

inhibitors from KLIFS and 44 additional potent kinase
inhibitors in ChEMBL could be recombined, while using
only a subset of the fragment library. This indicates that
KinFragLib can be used to generate large libraries of novel
chemical matter, while being tailored for the design of kinase
inhibitors.

3.2.4. Properties of Recombined Molecules. The majority
of the 6.7 million recombined molecules include fragments
able to occupy four subpockets (90%), whereas the majority of
original ligands are smaller and occupy three (53%) or two
(28%) subpockets only. This is the consequence of a choice
made in order to illustrate the power of exhaustive in silico
library enumeration, that is, allowing fragments only to be
linked until they occupy up to four subpockets. However, most
importantly, the presented workflow allows for tailored library
design that can easily be adapted to fulfill the requirements of a
particular project.
While 86% of all kinase inhibitors in clinical trials (dataset

from 2020-07-15 downloaded from PKIDB26) fulfill Lipinski’s
rule of five, 63% of the combinatorial library (4.2 million
molecules) complies with Lipinsik’s rule of five (Figure 8),
representing a large kinase-focused library to be used for virtual
screening studies.
Note that only a subset of fragments was used to generate

the recombined library. Thus, even larger libraries could be
generated by taking into account all fragments identified in this
study.

4. CONCLUSIONS
Kinases are one of the most studied protein families in
medicinal chemistry, resulting in an amount of available data
too large to be handled by a human brain. By computationally
combining a precise cartography of the ATP-binding site and a
tailored fragmentation method, KinFragLib allows inhibitors
cocrystallized with a kinase in the DFG-in conformation to be
read, fragmented, and organized by subpockets. The
subsequent analysis of the chemical matter of the compiled
fragments is in agreement with the general knowledge of
medicinal chemists, identifying small and lipophilic fragments
in the gatekeeper area, solubilizing fragments in the front
pocket, and typical hinge binders for the adenine pocket. While
this analysis is also in line with previous work conducted for

Figure 7. Number of exact matches (based on standardized InChI
comparison) of recombined molecules in the ChEMBL 25 dataset,
including the number of active molecules (activity is here defined as
IC50 ≤ 500 nM). The histogram shows the IC50 values for those
molecules that are active against kinases.
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the hinge-binding fragments, this study provides for the first
time a fragment library that is organized by subpocket and thus
unveiling subpocket occupation and connection frequencies. It
was found that chemically diverse fragments can bind the same
subpocket. Furthermore, 79% of the identified fragments were
only observed in one kinase structure, while the other 21%
could bind the same subpocket of different kinase groups. This
result indicates that a fragment binding one kinase subpocket is
likely to bind the same region of other kinases. Therefore, the
high chemical diversity of the generated fragment library is a
rich source of inspiration for building novel kinase inhibitors.
To investigate this possibility, a library of recombined
fragments was enumerated in silico (using a diverse subset of
the fragments only). The resulting virtual library, containing
over 6.7 million molecules, was compared to the ChEMBL
database (exact matches), indicating 99.99% of novel chemical
matter. The rare exceptions of compounds with precedence in
the literature include predominately known kinase inhibitors.
These results clearly highlight the enormous potential of this
fragment library for the design of novel kinase inhibitors.
The reported method focuses on two types of kinase

inhibitors (type I and I1/2); however, other libraries could be
generated by fragmenting other kinase inhibitor types.
Similarly, the same protocol could be applied to a more
specific set of ligands, for example, to design a library of
fragments specific of a kinase group, or a different dataset of
ligand-kinase 3D structures. Finally, this workflow is also
perfectly suited to support a fragment-growing approach after
one novel fragment has been validated in a kinase subpocket.
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Universitaẗsmedizin Berlin, 10117 Berlin, Germany;
orcid.org/0000-0002-9671-837X
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Bussonnier, M.; Frederic, J.; Kelley, K.; Hamrick, J.; Grout, J.;
Corlay, S.; Ivanov, P.; Avila, D.; Abdalla, S.; Willing, C.; Jupyter
Development Team. Positioning and Power in Academic Publishing:
Players, Agents and Agendas; Loizides, F., Schmidt, B., Eds.; IOS Press:
Amsterdam, The Netherlands, 2016; pp 87−90.
(45) Epstein, L. F.; Chen, H.; Emkey, R.; Whittington, D. A. The
R1275Q Neuroblastoma Mutant and Certain ATP-competitive
Inhibitors Stabilize Alternative Activation Loop Conformations of
Anaplastic Lymphoma Kinase. J. Biol. Chem. 2012, 287, 37447−
37457.
(46) ChEMBL. Compound ID CHEMBL2023556. https://www.
ebi.ac.uk/chembl/compound_report_card/CHEMBL2023556/ (ac-
cessed March 20, 2020).
(47) ChEMBL. Compound ID CHEMBL2322330. https://www.
ebi.ac.uk/chembl/compound_report_card/CHEMBL2322330/ (ac-
cessed March 20, 2020).
(48) Sogabe, S.; Kawakita, Y.; Igaki, S.; Iwata, H.; Miki, H.; Cary, D.
R.; Takagi, T.; Takagi, S.; Ohta, Y.; Ishikawa, T. Structure-Based
Approach for the Discovery of Pyrrolo[3,2-d]pyrimidine-Based EGFR
T790M/L858R Mutant Inhibitors. ACS Med. Chem. Lett. 2013, 4,
201−205.
(49) Wood, D. J.; Lopez-Fernandez, J. D.; Knight, L. E.; Al-
Khawaldeh, I.; Gai, C.; Lin, S.; Martin, M. P.; Miller, D. C.; Cano, C.;
Endicott, J. A.; Hardcastle, I. R.; Noble, M. E. M.; Waring, M. J.
FragLites-Minimal, Halogenated Fragments Displaying Pharmaco-
phore Doublets. An Efficient Approach to Druggability Assessment
and Hit Generation. J. Med. Chem. 2019, 62, 3741−3752.
(50) Xing, L.; Klug-Mcleod, J.; Rai, B.; Lunney, E. A. Kinase Hinge
Binding Scaffolds and Their Hydrogen Bond Patterns. Bioorg. Med.
Chem. 2015, 23, 6520−6527.
(51) Hu, Y.; Bajorath, J. Exploring the Scaffold Universe of Kinase
Inhibitors. J. Med. Chem. 2014, 58, 315−332.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.0c00839
J. Chem. Inf. Model. 2020, 60, 6081−6094

6094

148 CHAPTER 3. METHODS AND RESULTS



Supporting Information:

KinFragLib: Exploring the Kinase Inhibitor

Space Using Subpocket-Focused

Fragmentation and Recombination

Dominique Sydow,†,¶ Paula Schmiel,†,¶ Jérémie Mortier,‡ and Andrea Volkamer∗,†

†In Silico Toxicology and Structural Bioinformatics, Institute of Physiology, Charité -

Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany

‡Bayer AG, Digital Technologies, Computational Molecular Design, 13342 Berlin, Germany

¶Authors contributed equally to this paper.

E-mail: andrea.volkamer@charite.de

1

Kinase Fragment Space (Publication E) 149



Data and Methods

Details S1: KLIFS data

Each KLIFS entry comes with the following details: species, kinase name, kinase group, PDB

code of the complex and the ligand, sequence alignment of the 85 binding site residues, DFG

conformation (in, out, or out-like), ligand position (within or outside the main pocket), and

KLIFS quality score. The latter ranges from 0 (bad) to 10 (flawless) and describes the quality

of the alignment as well as structure based on each structure’s alignment to a reference as

well as its number of missing residues and atoms, respectively.

Details S2: Structures with covalent ligands

The KLIFS dataset was downloaded on 2019-11-06 from the KLIFS website’s search page

with the following restrictions: "Organism" = "Human", "DFG conformation" = "IN", and

"Ligand-bound" = "Within main pocket".

Covalent ligands were identified by downloading the PDB file corresponding to the KLIFS

structure and checking the CONECT records for any connection between the kinase and the

ligand. Note that after personal communication with A. Kooistra,1 two PDB entries were

excluded manually (2clx, 4cfn), since the ligand was found to be not covalently bound; and

three PDB entries (4d9t, 4hct, 4kio) were added, because the ligands bind covalently but

the CONECT entries were missing.

The following structures (<complex PDB>.<ligand PDB>.<chain>) were excluded from

the KLIFS dataset because they contain covalent ligands (110 in total):

4yhf.4C9.B, 5j87.N42.D, 5p9j.8E8.A, 5p9k.7G8.A, 5p9l.7G9.A, 5p9m.7GB.A, 6di1.GJD.A,

6di5.GJ7.A, 6di9.GJJ.A, 6j6m.BA0.A, 6n9p.KHD.A, 6o8i.LTJ.A, 5cyi.55S.A, 5oo1.9Z2.A,

5oo3.9ZB.A, 5osm.AEQ.A, 5acb.5I1.C, 2j5f.DJK.A, 2jiv.HKI.A, 3ika.0UN.A, 3w2p.W2P.A,

3w2q.HKI.A, 4g5j.0WN.A, 4g5p.0WN.A, 4i24.1C9.A, 4li5.1WY.A, 4ll0.YUN.A, 4lqm.DJK.A,

4lrm.YUN.D, 4r5s.FI3.A, 4wd5.3LH.A, 5fed.5X4.A, 5fee.5X4.A, 5feq.5XH.A, 5gmp.F62.A,

2
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5gnk.80U.A, 5gty.816.A, 5gtz.81C.A, 5j9y.6HL.A, 5j9z.6HJ.A, 5xdk.8JC.A, 5xdl.8JC.A,

5y25.8LU.A, 5y9t.8RC.A, 5yu9.1E8.C, 6d8e.FZP.A, 5mjb.7O3.B, 5l6o.6P6.A, 5l6p.6P8.A,

2r4b.GW7.B, 6ges.6H3.A, 4zzm.CQ6.A, 4zzo.CQ3.A, 5lcj.6TS.A, 5lck.6TT.A, 6g54.6H3.A,

5vnd.9ES.B, 6mzw.TZ0.A, 6nvl.XL6.A, 6p68.O1Y.C, 6p69.O21.A, 4qqc.37O.A, 4xcu.40M.A,

5nud.99K.A, 5nwz.9CT.B, 6iuo.AWX.A, 6jpj.FGF.A, 6nvg.XL8.A, 6nvh.XL6.A, 6nvi.XL7.A,

6nvj.XL5.A, 6nvk.XL9.A, 6h0u.FKB.A, 3t9t.IAQ.A, 4hct.18R.A, 4hcu.13L.A, 4hcv.13J.A,

4kio.G5K.C, 4qps.37Q.C, 4v0g.G9B.A, 4z16.4LH.D, 5lwn.79S.A, 5toz.7H4.A, 5tts.7KU.A,

5ttu.7KV.A, 5ttv.7KX.A, 5wfj.9Z4.A, 6da4.G4V.A, 6db4.G4Y.A, 6dud.HB4.A, 3v6r.CQQ.B,

3v6s.0F0.B, 4x21.3WH.B, 5z1d.95U.A, 6ib0.H8Z.A, 6ib2.862.A, 6qft.J0B.A, 6qg4.J0E.A,

6qg7.6HL.A, 6qho.J3H.A, 6qhr.J3N.A, 3pwy.SYP.A, 4d9t.0JG.A, 4d9u.0JH.A, 4jg6.1LB.A,

4jg7.1LC.A, 4jg8.1LE.A, 6ate.6H3.A, 6e6e.HVY.B, 4gs6.1FM.A

Details S3: Exceptions for anchor residue definitions

The definition of the 85 binding site residues in the KLIFS database is based on a multiple

sequence alignment, which can have gaps. It was therefore avoided to set residues with a high

gap rate among the structures as anchor residue. Furthermore, some coordinates of an amino

acid or a single atom may be missing because they could not be resolved by crystallography.

If the coordinates of an anchor residue’s Cα atom was missing, the following procedure was

applied: If possible, the coordinates were replaced with the geometric center of the two

neighboring residues’ Cα atoms. If one of those was absent as well, the coordinates of the

other neighboring residue were used instead. If both adjacent Cα atoms were missing, the

structure was discarded.

Details S4: Fragment information storage

Fragment atoms are labeled with the name of the subpockets that they occupy. Each original

attachment point of each fragment is stored as dummy atom and the subpocket of the former

adjacent fragment is stored as a property. This enables retracing of the subpocket that the

3
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adjacent fragment was targeting in the original ligand (needed for the later recombination).

Fragments are stored in structure-data files (sdf), using one file for each subpocket pool as

well as pool X. In addition to the structural information (3D coordinates, elements, and

bonds), the following data are stored for each fragment: (i) the PDB code of the original

kinase-ligand complex and the name of the ligand itself, (ii) the chain and alternate model of

this complex in KLIFS, (iii) the kinase, kinase family, and kinase group, (iv) the subpocket

of each atom, including dummy atoms, and (v) the BRICS environment type for each atom.

Details S5: Data reduction

The full fragment library contains 7,486 fragments. In order to reduce the combinatorial

library size and run time, a diverse subset of fragments was chosen. (i) All fragments

that are not suitable for recombination were removed, i.e. duplicates, fragments in pool X,

fragments without dummy atoms (unfragmented ligands), and fragments with dummy atoms

only connecting to pool X. Furthermore, only fragments complying with the rule of three,2

a filter for fragment-likeness, and hinge-like AP fragments were kept. The latter filter checks

for at least one hydrogen bond donor or acceptor in the AP fragment, together with at least

one aliphatic or aromatic ring. The filtering steps in (i) result in 2,029 fragments. (ii) Per

subpocket, a diverse set of fragments was selected for recombination to avoid enumerating

highly similar fragments. The Butina algorithm3 was applied to cluster each subpocket’s

filtered fragments using topological RDKit molecular fingerprints4 and a distance threshold

of 0.6. Per cluster, the most common fragments were selected. The larger the cluster the

more fragments were chosen (one fragment per 10 cluster members, whereby clusters with

less than 10 fragments are represented with one fragment). The final reduced fragment

library consists of 624 fragments (AP: 145, FP: 192, SE: 140, GA: 93, B1: 24, and B2: 30).

4
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Fragment library analysis

Find here supporting information regarding the fragmentation library analysis.

Table S1: Number of fragments, deduplicated fragments, and singletons (fragments occur-
ring only once) per subpocket pool in the fragment library, and average pairwise Tanimoto
similarity between fragments in each subpocket.

Subpocket All fragments
Deduplicated

fragments Singletons
Average

similarity

AP 2,561 1 115 762 0.139

FP 1,866 864 607 0.089

SE 1,560 607 397 0.103

GA 1,024 306 181 0.105

B1 98 42 29 0.074

B2 92 43 27 0.089

Total 7,201 3,011 2,003

5
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Details S6: Ligand occupancy across subpockets: Ligands occupying 1 subpocket

As shown in Figure S1.B-D, molecules that occupy only the AP subpocket represent either

(i) small fragment-like molecules or (ii) large rigid molecules that contain a large fraction of

rings, which are difficult to split for most fragmentation algorithms.

An example for the former group (i) is the series of halogenated pyrazoles that stem

from a fragment-based approach for druggability assessment and hit generation,5 see Fig-

ure S1.B1-B8. The latter group (ii) contains complete drug-like molecules that either could

not be divided because none of the BRICS rules applied or they had a potential BRICS cleav-

age bond in the initial fragmentation step, which was not broken because the two potential

fragments were located in the same subpocket. Furthermore, there are rigid molecules that

only contain fused rings with small decorations and, thus do not apply to any fragmentation

approach (such as quinalizarin, a CK2 inhibitor, and derivatives, see Figure S1.C1-C2). An

example of a molecule that could not be fragmented by BRICS is the co-crystallized lig-

and HK4 (CHEMBL248396,6 pIC50 = 8.3) bound to the CHK1 structure (PDB:4FST,7 see

Figure S1.D1). The two ring moieties clearly cover distinct subpockets (AP and GA), but

could not be assigned to them since no rule exists that allows splitting next to a triple bond

between two carbon atoms.

6
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Fragmentation

A B1 B2 B3

B4 B5 B6

B7 B8

C1 C2 C3

D1 D2 D3

Figure S1: Ligands and fragments which represent special cases in subpocket occupancy,
discussed in the main manuscript: (A) Ligand occupying all six subpockets, shown in com-
plete and fragmented state. (B-D) Ligands that were not fragmented either because they are
small fragment-like molecules (B) or because they are large rigid molecules which cannot be
fragmented: (C) Very rigid molecules containing mostly fused rings with small decorations,
and (D) further molecules where no BRICS rule applied.

7
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Details S7: Ligand connectivity across subpockets: Disallowed subpocket con-

nections/special cases

Not all ligands showed the allowed subpocket connections as described in Figure 1.C in the

main manuscript. Some of those could be rescued by adding additional rules, others had to

be discarded (see an overview of disallowed subpocket connections in Table S2). The cases

are discussed in the following.

In 113 cases, FP–B2 connections were detected initially. Manual inspection revealed two

different methodological drawbacks that could be resolved by the introduced rules: First, in

some cases a fragment was assigned to FP because its centroid was slightly closer to FP than

GA, although visual inspection showed that the fragment acts as a gate from the front to

the back cleft, and should therefore belong to GA (14 cases). Thus, the molecules containing

these fragments could be included by reassigning them to GA (see "Molecule fragmentation"

in the "Data and Methods" part of the manuscript). Second, the FP–B2 connection was

observed when the FP fragment was relatively large. Although some FP-connected fragments

pointed mostly into the solvent, they were still close enough and thus falsely assigned to B2.

Furthermore, very rare cases were manually observed where the fragment actually covered

B2. Since the latter two cases could not be distinguished algorithmically, and the FP–B2

connection is rather unexpected, these B2 fragments were reassigned to pool X (99 cases).

The same applies for FP–B1 connections, where each of the two cases described above

occurred once.

Connections between non-adjacent subpockets (e.g. SE-GA, AP-B1) usually occur when

one of the two subpockets contains a large BRICS fragment (that cannot be further frag-

mented), which also spans the respective subpocket in between. This happened only rarely,

i.e. for AP-B1 and AP–B2 connections in 4 and 3 cases, respectively. Note that potential

SE–GA connections were not counted as these ligands do not contain an AP fragment and

were excluded from the study beforehand.

8
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Table S2: Disallowed subpocket connections/special cases.

Initial connection Reassigned fragment Final connection # Cases
FP–B1 FP > GA GA–B1 1
FP–B2 FP > GA GA–B2 14
FP–B1 B1 > X FP–X 1
FP–B2 B2 > X FP–X 99
AP–B1 - - 4
AP–B2 - - 3

9
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Figure S2: 50 most common fragments in the adenine pocket (AP). Fragments are sorted
by and labeled with the cluster number (clusters were sorted by size in descending order)
and the number of occurrences. Dummy atoms are replaced with hydrogens. Notebooks to
perform this analysis are available at https://github.com/volkamerlab/kinfraglib.

10
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Figure S3: 50 most common fragments in the front pocket (FP). Fragments are sorted by and
labeled with the cluster number (clusters were sorted by size in descending order) and the
number of occurrences. Dummy atoms are replaced with hydrogens. Notebooks to perform
this analysis are available at https://github.com/volkamerlab/kinfraglib.

11
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Figure S4: 50 most common fragments in the solvent-exposed pocket (SE). Fragments are
sorted by and labeled with the cluster number (clusters were sorted by size in descending or-
der) and the number of occurrences. Dummy atoms are replaced with hydrogens. Notebooks
to perform this analysis are available at https://github.com/volkamerlab/kinfraglib.

12
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Figure S5: 50 most common fragments in the gate area (GA). Fragments are sorted by and
labeled with the cluster number (clusters were sorted by size in descending order) and the
number of occurrences. Dummy atoms are replaced with hydrogens. Notebooks to perform
this analysis are available at https://github.com/volkamerlab/kinfraglib.

13
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Figure S6: Fragments in the back pocket I (B1). Fragments are sorted by and labeled
with the cluster number (clusters were sorted by size in descending order) and the number
of occurrences. Dummy atoms are replaced with hydrogens. Notebooks to perform this
analysis are available at https://github.com/volkamerlab/kinfraglib.

14
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Figure S7: Fragments in the back pocket II (B2). Fragments are sorted by and labeled
with the cluster number (clusters were sorted by size in descending order) and the number
of occurrences. Dummy atoms are replaced with hydrogens. Notebooks to perform this
analysis are available at https://github.com/volkamerlab/kinfraglib.

15
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Table S3: Comparison of our AP fragments to the top 10 hinge fragments from literature
(residual groups replaced with hydrogen). Multiple AP fragments can have the same ranks,
if they appear equally often, e.g. counts 10-10-8-8-5-4-1 translate to ranks 1-1-3-3-5-6-7.
If no or only low ranked exact matches were found in the AP pool, similar AP fragments
were selected; rank/count shown in brackets and structure shown in "AP fragment similar
structure". Ligands with staurosporine (2. row) and most of adenine (1. row) were removed
from KinFragLib and thus do not appear or only with a low AP fragment rank.

Fragment
structure

Xing et al.8
rank

Mukherjee et al.9
rank

AP fragment
rank

AP fragment
count

AP fragment
similar structure

1 1, 7 205 2

2 4 – 0

3 – 15 16

4 2, 6 1 103

5 9 7 25

6 – 8 24

7 – 5 30

8 – 80 (4) 5 (31)

9 3, 5 2 50

10 – 11 18

– 8 – (11) 0 (18)

– 10 – (5) 0 (30)

16
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Combinatorial library analysis

Find here supporting information regarding the combinatorial library analysis.

Table S4: Recombined molecules with reported activity in ChEMBL against at least one
kinase (activity is here defined as IC50 ≤ 5 nM). If a compound was measured against the
same kinase more then once, all values and respective assay IDs are reported here. Note
that the structures of these compounds are shown in Figure S8. The notebook performing
this analysis is available at https://github.com/volkamerlab/kinfraglib.

Molecule
ChEMBL ID

Kinase
name

Kinase
group

Assay
ChEMBL ID

IC50
[nM]

CHEMBL1287863 Serine/threonine-protein
kinase Chk1

CAMK CHEMBL1291622 2.0

CHEMBL1288009 Serine/threonine-protein
kinase Chk1

CAMK CHEMBL1291622 3.0

CHEMBL1288278 Serine/threonine-protein
kinase Chk1

CAMK CHEMBL1291622 1.0

CHEMBL1652706 Casein kinase II Other CHEMBL1663323 4.0
CHEMBL1652706 Casein kinase II alpha Other CHEMBL3706356 4.0
CHEMBL2030386 Serine/threonine-protein

kinase PIM3
CAMK CHEMBL2038010 4.0

CHEMBL2030386 Serine/threonine-protein
kinase PIM1

CAMK CHEMBL2038008 5.0

CHEMBL2385579 TGF-beta receptor type
II

TKL CHEMBL2390518 1.37

CHEMBL2385579 Vascular endothelial
growth factor receptor 2

TK CHEMBL2390517 1.68

CHEMBL3403541 Tyrosine-protein kinase
JAK2

TK CHEMBL3404501 1.0

CHEMBL3409588 MAP kinase ERK2 CMGC CHEMBL3705207 3.9
CHEMBL4080944 MAP kinase ERK2 CMGC CHEMBL4051356 1.2
CHEMBL4114404 MAP kinase ERK2 CMGC CHEMBL3887970 3.1
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Figure S8: Recombined molecules with reported activity in ChEMBL against at least one
kinase (activity is here defined as IC50 ≤ 500nM). Legend: molecule ChEMBL ID | minimum
IC50 value for kinase (target ChEMBL ID). Add the prefix "CHEMBL" to all ChEMBL IDs.
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Figure S9: Distribution of Tanimoto similarities for recombined ligands each to their most
similar molecule in ChEMBL (ChEMBL 25 dataset), using the RDKit fingerprint.4 The
mean similarity is 0.54 with a standard deviation of 0.07.
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3.3 FAIR Pipelines and Tools in Kinase-Centric Drug Design

Figure 3.4: FAIR pipelines and tools in kinase-centric drug design as illustrated by Ferdinand
Krupp, adapted from Sydow et al. [145].
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3.3.1 TeachOpenCADD: A Teaching Platform for Computer-Aided Drug
Design Using Open Source Packages and Data
Publication F

This article is the first publication reporting our TeachOpenCADD platform that initially
contained ten Jupyter Notebooks [130] covering common tasks in cheminformatics and struc-
tural bioinformatics, including how to programmatically access the ChEMBL [71] and PDB [70]
databases. Each Jupyter Notebook covers the topic’s aim, theoretical background, practical
implementation of the task at hand, a short discussion, and a final quiz. We discuss how this
material can be used for novices in the field but also as a starting point for researchers’ scientific
questions.

§ https://github.com/volkamerlab/teachopencadd
� https://projects.volkamerlab.org/teachopencadd/talktorials.html#edition-2019-jcim
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Open access article licensed under a CC BY 4.0 license.
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TeachOpenCADD: a teaching platform 
for computer‑aided drug design using open 
source packages and data
Dominique Sydow  , Andrea Morger  , Maximilian Driller   and Andrea Volkamer* 

Abstract 

Owing to the increase in freely available software and data for cheminformatics and structural bioinformatics, research 
for computer-aided drug design (CADD) is more and more built on modular, reproducible, and easy-to-share pipe-
lines. While documentation for such tools is available, there are only a few freely accessible examples that teach the 
underlying concepts focused on CADD, especially addressing users new to the field. Here, we present TeachOpen-
CADD, a teaching platform developed by students for students, using open source compound and protein data as 
well as basic and CADD-related Python packages. We provide interactive Jupyter notebooks for central CADD topics, 
integrating theoretical background and practical code. TeachOpenCADD is freely available on GitHub: https​://githu​
b.com/volka​merla​b/Teach​OpenC​ADD.

Keywords:  Computer-aided drug design, Python, RDKit, Open source, Teaching, Learning, Cheminformatics, 
Structural bioinformatics

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
Open access resources for cheminformatics and struc-
tural bioinformatics as well as public platforms for code 
deposition such as GitHub are increasingly used in 
research. This combination facilitates and promotes the 
generation of modular, reproducible, and easy-to-share 
pipelines for computer-aided drug design (CADD). 
Comprehensive lists of open resources are reviewed by 
Pirhadi et  al. [1], or presented in the form of the web-
based search tool Click2Drug [2], aiming to cover the full 
CADD pipeline.

While documentation for open access resources is 
available, freely accessible teaching platforms for con-
cepts and applications in CADD are rare. Available 
examples include the following: On the one hand, graphi-
cal user interface (GUI) based tutorials teach CADD 
basics, such as the web-based educational Drug Design 
Workshop [3, 4]. On the other hand, examples for edu-
cational coding tutorials are the Java-based Chemistry 

Development Kit (CDK) [5–9] and the Teach–Discover–
Treat (TDT) initiative [10], which launched challenges to 
develop tutorials, such as a Python-based virtual screen-
ing (VS) workflow to identify malaria drugs [11, 12].

Complementing these resources, we developed the 
TeachOpenCADD platform to provide students and 
researchers new to CADD and/or programming with 
step-by-step tutorials suitable for self-study training 
as well as classroom lessons, covering both ligand- and 
structure-based approaches. TeachOpenCADD is a 
novel teaching platform developed by students for stu-
dents, using open source data and Python packages to 
tackle various common tasks in cheminformatics and 
structural bioinformatics. Interactive Jupyter notebooks 
[13] are presented for central topics, integrating detailed 
theoretical background and well-documented practi-
cal code. Topics build upon one another in the form of a 
pipeline, which is illustrated at the example of the epider-
mal growth factor receptor (EGFR) kinase, but can eas-
ily be adapted to other query proteins. TeachOpenCADD 
is publicly available on GitHub and open to contribu-
tions from the community: https​://githu​b.com/volka​
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merla​b/Teach​OpenC​ADD (current release: https​://doi.
org/10.5281/zenod​o.26009​09).

Methods
TeachOpenCADD currently consists of ten talktorials 
covering central topics in CADD, see Fig.  1. Talktorials 
are offered as interactive Jupyter notebooks that can be 
used as tutorials but also for oral presentations, e.g. in 
student CADD seminars (talk + tutorial = talktorial). 
They start with a topic motivation and learning goals, 
continue with the main part composed of theoretical 
background and practical code, and end with a short dis-
cussion and quiz, see Fig. 2.

Open data resources employed are the ChEMBL [14] 
and PDB [15] databases for compound and protein struc-
ture data acquisition, respectively. Open source libraries 
utilized are RDKit [16] (cheminformatics), the ChEMBL 
webresource client [17] and PyPDB [18] (ChEMBL and 
PDB application programming interface access), Bio-
Pandas [19] (loading and manipulating molecular struc-
tures), and PyMOL [20] (structural data visualization). 
Additionally, basic Python computing libraries employed 
include numpy [21, 22] and pandas [23, 24] (high-per-
formance data structures and analysis), scikit-learn [25] 
(machine learning), as well as matplotlib [26] and seaborn 
[27] (plotting). Furthermore, the user is instructed how 

Fig. 1  TeachOpenCADD talktorial pipeline. TeachOpenCADD is a teaching platform for open source data and packages, currently offering ten 
talktorials in the form of Jupyter notebooks on central topics in CADD, ranging from cheminformatics (T1–7) to structural bioinformatics (T8–10). 
The talktorials are illustrated at the example of EGFR (based on data sets from ChEMBL and PDB queries in November 2018)
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to work with conda [28], a widely used package, depend-
ency and environment management tool. A conda yml 
file is provided to ensure an easy and quick setup of an 
environment containing all required packages.

The talktorial topics include how to acquire data from 
ChEMBL (T1), filter compounds for drug-likeness (T2), 
and identify unwanted substructures (T3). Furthermore, 
measures for compound similarity are introduced and 
applied for VS of kinase inhibitor gefitinib (T4) as well 
as for compound clustering (T5), including the use of 
maximum common substructures (T6). Machine learn-
ing approaches are employed to build models for pre-
dicting active compounds (T7). Lastly, protein-ligand 
complexes are fetched from the PDB (T8), used to 

generate ligand-based ensemble pharmacophores (T9). 
Geometry-based binding site comparison of kinase 
inhibitor imatinib binding proteins is performed to ana-
lyse potential  off-targets (T10). In summary, the pre-
sented talktorials build a pipeline with starting points 
being (i) a query protein to study associated compound 
data (T1 and T8) and (ii) a query ligand to investigate 
associated on- and off-targets (T10), see Fig.  1. These 
talktorials can be studied independently from each other 
or as a pipeline.

As an example, the talktorial pipeline is used to iden-
tify novel EGFR kinase inhibitors. EGFR kinase is a 
transmembrane protein, which activates several signal-
ing cascades to convert extracellular signals into cellular 

Fig. 2  Screenshot of TeachOpenCADD talktorial composition. TeachOpenCADD talktorials are Jupyter notebooks that cover one CADD topic 
each, composed of (i) a topic motivation, (ii) learning goals, (iii) references to literature, (iv) theoretical background, (v) practical code, (vi) a short 
discussion, and (vii) a quiz—all in one place. Shown here is a screenshot of parts of talktorial T9 to generate pharmacophores
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responses. Dysfunctional signaling of EGFR is associated 
with diseases such as cancer, making it a frequent tar-
get in drug development projects (the reader is referred 
to a review by Chen et al. [29] for more information on 
EGFR). Furthermore, the pipeline can easily be adapted 
to other examples by simply exchanging the query pro-
tein (T1 and T8: protein UniProt ID) and query ligand 
(T10: ligand names in the PDB).

Results
In the following, the content of each talktorial is briefly 
discussed and summarized in Fig. 1. If not noted other-
wise, tasks are conducted with RDKit or basic Python 
libraries as stated in the Methods section. Note that 
reported numbers and results are based on data sets from 
ChEMBL and PDB queries conducted in November 2018.

T1. Data acquisition from ChEMBL. Compound infor-
mation on structure, bioactivity and associated targets is 
organized in databases such as ChEMBL, PubChem [30], 
or DrugBank [31]. For the query target EGFR (UniProt ID 
P00533), compound data including molecular structure 
(SMILES) and bioactivity data is automatically fetched 
from the ChEMBL database, using the ChEMBL webre-
source client, and is filtered for e.g. binding assays and 
IC50 measurements (6,641 compounds). The data set is 
formatted and further filtered: e.g. duplicates and entries 
with missing values are dropped and only bioactivity val-
ues in molar units are kept and converted to pIC50 values 
(4,771 compounds retained, referred to as data set T1), 
see Fig. 1.T1.

T2. Molecular filtering: ADME criteria. Not all com-
pounds are suitable starting points for drug development 
due to undesirable pharmacokinetic properties, which 
for instance negatively affect a drug’s absorption, distri-
bution, metabolism, and excretion (ADME). Therefore, 
such compounds are usually not included in data sets for 
VS. Data set T1 is filtered by lead-likeness criteria, i.e. 
Lipinski’s rule of five [32], in order to remove less drug-
like molecules from the EGFR data set (4009 compounds 
retained, referred to as data set T2). This data set is vis-
ualized using radar plots demonstrating their ADME 
properties, see Fig. 1.T2, and serves as starting point for 
several talktorials discussed in the following.

T3. Molecular filtering: unwanted substructures. Com-
pounds can contain unwanted substructures that may 
cause mutagenic, reactive, or other unfavorable phar-
macokinetic effects [33] or that may lead to non-specific 
interactions with assays (PAINS) [34]. Such unwanted 
substructures are detected and highlighted in data set 
T2. This knowledge can be integrated into cheminfor-
matics pipelines to either perform an additional filter-
ing step before screening (1,951 compounds retained) 
or – more often – to set alert flags to compounds being 

potentially problematic. They can be manually evaluated 
by medicinal chemists if reported as hits after screening, 
see Fig. 1.T3.

T4. Ligand-based screening: compound similarity. 
In VS, compounds similar to known ligands of a target 
under investigation often constitute the starting point 
for drug development. This approach follows the simi-
lar property principle stating that structurally similar 
compounds are more likely to exhibit similar biological 
activities [35, 36] (exceptions are so-called activity cliffs 
[37]). For computational representation and processing, 
compound properties can be encoded in the form of bit 
arrays, so-called molecular fingerprints, e.g. MACCS [38] 
and Morgan fingerprints [39, 40]. Compound similar-
ity can be assessed by comparison measures, such as the 
Tanimoto and Dice similarity [41]. Using these encod-
ing and comparison methods, VS is conducted based on 
a similarity search: the EGFR inhibitor gefitinib is used 
to find its most similar compounds in data set T2. With 
the data being split into active and inactive compounds 
based on the chosen pIC50 cutoff of 6.3, screening results 
are evaluated with enrichment plots, see Fig. 1.T4. In the 
top 5% of the compounds ranked by similarity, called the 
enrichment factor at 5% (EF5% ), 8.3% of actives can be 
retrieved, while the random and optimal EF5% of this data 
set are 5.0% and 9.2%, respectively.

T5. Compound clustering. The similar property prin-
ciple can also be used to identify groups of similar com-
pounds via clustering, in order to pick a set of diverse 
compounds from these clusters for e.g. non-redundant 
experimental testing. In this talktorial, Butina cluster-
ing [42] based on the RDKFingerprint [43] is applied to 
cluster data set T2 at a Tanimoto distance cutoff of 0.2, 
resulting in 988 clusters with the largest cluster consist-
ing of 143 compounds, see Fig. 1.T5. Following the exam-
ple in the TDT pipeline by Riniker et al. [11], a maximum 
of 1000 compounds is subsequently picked by selecting 
the ten most similar compounds per cluster (or 50% for 
clusters with fewer compounds), starting with the larg-
est cluster. Thereby, compound diversity is ensured (rep-
resentatives of each cluster), while structure-activity 
relationship (SAR) information is retained (most similar 
compounds selected from clusters).

T6. Maximum common substructures. In order to visu-
alize shared scaffolds and thereby emphasize the extent 
and type of chemical similarities or differences of a com-
pound cluster, the maximum common substructure 
(MCS) [44] can be calculated and highlighted. The MCS 
for the largest cluster from T5 is calculated using the 
FMCS algorithm [45], see Fig. 1.T6. Different parameters 
can be applied, e.g. a threshold to set the percentage of 
compounds in the set that need to share the same MCS, 

174 CHAPTER 3. METHODS AND RESULTS



Page 5 of 7Sydow et al. J Cheminform           (2019) 11:29 

or a restriction to match ring bonds only with other ring 
bonds.

T7. Ligand-based screening: machine learning. With 
the continuously increasing amount of available data, 
machine learning (ML) gained momentum in drug dis-
covery and especially in ligand-based VS to predict the 
activity of novel compounds against a target of interest. 
The EGFR compound data set is split into active and 
inactive compounds as described in T4, and used to train 
ML classifiers based on random forests (RF) [46], sup-
port vector machines (SVM) [47], and artificial neural 
networks (ANN) [48], applying 10-fold cross validation. 
Models are evaluated using receiver operating charac-
teristic (ROC) curves and mean area under the curve 
(AUC) values (mean AUC results for RF, SVM, and ANN 
are 90%, 87%, and 87%, respectively), see Fig.  1.T7. The 
trained models can be used to perform a classification of 
an unknown screening data set to predict novel potential 
EGFR inhibitors.

T8. Data acquisition from PDB. The PDB database 
holds 3D structural data and meta information on experi-
mentally resolved proteins. Using PyPDB, all EGFR struc-
tures are automatically fetched from the PDB (by UniProt 
ID) and filtered by ligand-bound structures resolved with 
X-ray crystallography, retaining four EGFR-ligand struc-
tures with good structural resolution. Using the Python 
integration of the molecular visualization tool PyMOL, 
those structures are subsequently aligned to each other in 
3D. Ligands are extracted, see Fig. 1.T8, and saved to be 
used in T9 for the generation of a ligand-based ensemble 
pharmacophore.

T9. Ligand-based ensemble pharmacophores. Another 
approach for ligand-based VS – besides a similarity 
search (T4) or machine learning classifiers (T7) – are 
ligand-based (ensemble) pharmacophore models. They 
describe important steric and physicochemical proper-
ties of a ligand (or a set of ligands) to bind a target under 
investigation. Examples for physicochemical properties 
are so-called donor, acceptor, and hydrophobic pharma-
cophoric features present in a molecule [49, 50]. For the 
EGFR ligands selected and aligned in T8, pharmacoph-
oric features are identified for each ligand and subse-
quently clustered with k-means clustering [51] in order to 
define an ensemble pharmacophore, see Fig.  1.T9. Such 
a pharmacophore represents the properties of the set of 
known EGFR ligands and can be used to search for novel 
EGFR ligands via VS, as described in an RDKit pharma-
cophore tutorial by Stiefl et al. [52].

T10. Off-target prediction and binding site comparison. 
Off-targets are proteins that interact with a drug or (one 
of ) its metabolite(s) without being the designated target, 
potentially causing unwanted side effects. Off-targets 
mainly occur because they share similar structural motifs 

in their binding site with on-targets, and are therefore 
able to bind similar ligands. Computational off-target 
prediction using binding site comparison is an estab-
lished approach in early stages of drug development [53, 
54]. In T10, structural similarity is exemplarily accessed 
using a basic measure, i.e. the geometrical variation 
between structures by calculating the root mean square 
deviation (RMSD) between pairs of aligned structures 
using PyMOL, including either the whole proteins or 
focusing on their binding sites. Pairwise RMSD compari-
son of seven protein structures binding imatinib, a small 
molecule tyrosine kinase inhibitor for cancer treatment, 
is able to separate tyrosine kinases (on-targets) from qui-
none reductase (reported off-target [55]), see Fig. 1.T10. 

Conclusion
The presented teaching platform TeachOpenCADD aims 
at introducing interested students and researchers to the 
ease and benefit of using open access resources for chem-
informatics and structural bioinformatics. Jupyter note-
books (talktorials) offer detailed theoretical background 
and Python code examples, forming an automated pipe-
line that saves and reloads results from one topic to 
another. The pipeline is illustrated using the example of 
EGFR, but can easily be adapted to other examples by 
exchanging the input protein and ligand. Beyond their 
teaching purpose for self-study training and classroom 
lessons, the talktorials can serve as starting point for 
users’ project-directed modifications and extensions. 
TeachOpenCADD intends to expand existing and add 
new topics continuously, and is open for contributions 
and ideas from the community.
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3.3.2 TeachOpenCADD 2022: Open Source and FAIR Python Pipelines to
Assist in Structural Bioinformatics and Cheminformatics Research
Publication G

This article is the follow-up publication three years after TeachOpenCADD’s initial publica-
tion in 2019 [144]. Here, we outline the next batch of CADD topics composed of 12 new Jupyter
Notebooks [130] with a focus on structure-based methods and database queries. This new release
included also the restructuring of the GitHub repository and code to follow Python software best
practices and launched a new website for easy online browsing through the TeachOpenCADD
content.
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ABSTRACT

Computational pipelines have become a crucial part
of modern drug discovery campaigns. Setting up and
maintaining such pipelines, however, can be chal-
lenging and time-consuming––especially for novice
scientists in this domain. TeachOpenCADD is a plat-
form that aims to teach domain-specific skills and
to provide pipeline templates as starting points for
research projects. We offer Python-based solutions
for common tasks in cheminformatics and struc-
tural bioinformatics in the form of Jupyter note-
books, based on open source resources only. In-
cluding the 12 newly released additions, TeachOpen-
CADD now contains 22 notebooks that cover both
theoretical background as well as hands-on pro-
gramming. To promote reproducible and reusable re-
search, we apply software best practices to our note-
books such as testing with automated continuous in-
tegration and adhering to the idiomatic Python style.
The new TeachOpenCADD website is available at
https://projects.volkamerlab.org/teachopencadd and
all code is deposited on GitHub.

GRAPHICAL ABSTRACT

INTRODUCTION

Computational methods play an integral role in the design-
make-test-analyze (DMTA) cycle that drives real-world
drug design projects (1). To address questions raised dur-
ing this cycle, a single method does not suffice to deliver
an answer; instead, a pipeline combining different methods
can produce complementary and useful insights. Setting up
such complex pipelines, however, can be difficult and time-
consuming for many reasons: the scientist may not have
had the training necessary to tackle these tasks (2), tools
and their usage are constantly evolving (or becoming depre-
cated), and feeding the output from one tool into another is
often not straightforward. On top of these considerations,
sustainable pipelines need to be findable, accessible, inter-
operable, and reusable (FAIR principles (3))––not only to-
day but in many years from now––to drive reproducible re-
search.

In 2019, we launched the teaching platform TeachOpen-
CADD (4) on GitHub to help face these challenges.

*To whom correspondence should be addressed. Email: andrea.volkamer@charite.de
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.
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TeachOpenCADD teaches by example how to build Python
pipelines with open source resources used in the fields of
cheminformatics and structural bioinformatics to answer
central questions in computer-aided drug design (CADD).
With these ready-to-use pipelines, we target students and
teachers who need training material for CADD-related top-
ics, as well as researchers who need a template or an in-
spiration to tackle their research questions. The theoreti-
cal and practical aspects of each topic are covered in an
interactive Jupyter notebook (5). This setup makes it easy
for users from different fields to understand the computa-
tional concepts and to get started with hands-on Python
programming. We call these Jupyter notebooks talktori-
als (talk + tutorial) because their format is suited for pre-
sentations as well. The initial stack of talktorials T001–
T010 covers common CADD tasks involving webserver
queries, cheminformatics, and structural bioinformatics (4).
We show how to fetch chemical and structural data from
the ChEMBL (6) and PDB (7,8) databases and how to en-
code, filter, cluster, and screen such datasets to find novel
drug candidates and off-targets (4). The talktorials are in-
spired by several online resources recommended for further
reading such as Teach-Discover-Treat and CDK (9,10) and
the blogs Practical Cheminformatics, RDKit blog, and Is
live worth living?. Over the last two years, the TeachOpen-
CADD GitHub repository underwent many additions and
changes: we now have more than doubled our content and
extended the application of software best practices rigor-
ously. The full collection of talktorials is easily accessible on
the new TeachOpenCADD website. We comply with soft-
ware best practices regarding the code style as well as main-
tenance and facilitate installation with a dedicated conda
package.

NEW TALKTORIALS

The new stack of talktorials showcases data acquisition
from additional CADD-relevant databases, adds many ex-
amples for structure-based tasks, and extends the chemin-
formatics side with straightforward deep learning (DL) ap-
plications. Our example use case is the EGFR kinase (19)
but the talktorials are easily adaptable to other targets as
long as sufficient data is available. Besides the domain-
specific resources described below, we rely in all talktorials
on established Python packages for data science and visual-
ization such as NumPy (20), pandas (21), scikit-learn (22),
matplotlib (23), and seaborn (24).

Webservices queries

Over the last decades, the scientific community has pro-
duced an incredible amount of data and analysis software,
and adapted modern technologies to make these resources
easily available via online webservices (25). However, it
might not always be obvious to the beginner how to use
a web application programming interface (API) to access
such data and how to integrate them into larger pipelines.
TeachOpenCADD dedicates several talktorials to the usage
of different webservers relevant for the life sciences.

In the first TeachOpenCADD release from 2019, we al-
ready showed how to query the ChEMBL (6) and PDB (7,8)

databases. From the ChEMBL webservice, compounds and
bioactivities are fetched for the EGFR kinase using the
ChEMBL webresource client (26) (T001). This dataset is
used in many downstream talktorials for common chemin-
formatics tasks (T002-T007). From the PDB webservice, we
fetch a set of EGFR kinase structures based on criteria such
as ‘ligand-bound structures from X-ray experiments with a
resolution <3.0 Å’ using the biotite (27) and PyPDB (28)
(T008) packages.

In the latest release, we now have added three more note-
books covering the usage of additional online API webser-
vices (Figure 1, T011–T013).

T011: Querying online API webservices. We added a broad
introduction on how to programmatically use online web-
services from Python with a focus on REST services and
web scraping. The usage of several libraries is demon-
strated; e.g. we use requests to retrieve content from
UniProt (29), bravado to generate a Python client for
OpenAPI-compatible services –– exemplified for the KLIFS
database (11)––, and Beautiful Soup to scrape (parse)
HTML content from the web.

T012: Data acquisition from KLIFS. KLIFS (11) is a ki-
nase database gathering information on experimental ki-
nase structures and interacting inhibitors. The talktorial
shows how to quickly fetch data from KLIFS given a query
kinase or ligand. For example, we spot frequent key ligand-
interactions in EGFR based on KLIFS interaction finger-
prints and we assess kinome-wide bioactivity values for the
inhibitor gefitinib. These queries are demonstrated by using
the KLIFS OpenAPI directly with bravado, or by using the
KLIFS-dedicated wrapper OpenCADD-KLIFS (30), im-
plemented in the Python package OpenCADD.

T013: Data acquisition from PubChem. PubChem (12)
is a database holding chemical information on over 100
million compounds. We demonstrate how to fetch data
from PubChem’s PUG-REST API (31), given the name or
SMILES (32) of a query ligand. For example, we show how
to fetch molecular properties for a ligand of interest by
name (aspirin) and how to query PubChem for the most
similar compounds given a query SMILES (gefitinib).

Data acquisition case study. A summary of the informa-
tion that can be acquired automatically for a target of in-
terest using these webservices is exemplified in Figure 2. Us-
ing the Uniprot ID of EGFR kinase as input query only,
(i) 227 available EGFR structures from the PDB can be ob-
tained and further filtered (T008); (ii) 446 available complex
structures and their interaction fingerprints can be fetched
from KLIFS (T012), or (iii) a total of 8463 IC50 values of
molecules measured against EGFR can be acquired from
ChEMBL (T001). Finally, (iv) a PubChem query with the
molecule name ‘gefitinib’ showcases how to gather ligand
properties or to perform a similarity search (T013).

Pocket detection, ligand–protein docking and interactions

During a drug discovery campaign, frequent questions are:
What should I test next? Can you suggest a diverse set of
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Figure 1. Overview of 12 new talktorials. (i) Querying webservices (blue): T011 gives a broad introduction to programmatic access to webservices from
Python, T012 and T013 demonstrate how to query the KLIFS (11) and PubChem (12) databases for kinase and compound data, respectively. (ii) Struc-
tural bioinformatics (orange): T014 detects the binding site in an EGFR kinase structure and compares the prediction to the binding site defined by
KLIFS (11). T015 performs a re-docking for an EGFR–ligand complex with Smina (13). T016 detects protein–ligand interactions in an EGFR–ligand
complex structure with PLIP (14). T017 introduces basic and advanced usages of the molecular visualization tool NGLView (15), used throughout most of
TeachOpenCADD’s talktorials. T018 outlines a fully automated lead optimization pipeline: Based on an input structure, the pocket is detected and a set of
compounds similar to a selected ligand are fetched from PubChem (12). These compounds are docked into the selected binding site. The most promising
compounds w.r.t. docking scores and interaction profiles are proposed as optimized compounds. T019 demonstrates how to set up and run a molecular
dynamics (MD) simulation on Google Colab with OpenMM (16). T020 analyzes the resulting MD trajectory with a focus on the root-mean-square devi-
ation (RMSD) between trajectory frames and the dynamics of protein-ligand interactions using MDAnalysis (17,18). (iii) Cheminformatics (green): T021
exhibits the steps to numerically encode a small molecule from its SMILES representation. T022 lays the groundwork for deep learning and focuses on a
simple feed-forward neural network for activity prediction using molecular fingerprints.
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Figure 2. Data and information that can be automatically gathered for the EGFR kinase using the different web query talktorials as of September 2021,
created based on ChEMBL v.27 (6) (T001), PDB (8) (T008), PubChem (12) (T013), and KLIFS (11) (T012). Input: yellow boxes, output: gray boxes,
plots and molecule visualizations (using NGLView (15) and RDKit).

small molecules likely to bind to this protein? How should
I modify the lead compound to increase the binding affin-
ity? Answering these questions involves multiple scientific
observations, and thus, multiple computational steps as ad-
dressed in talktorials T014–T017. Finally, an automated
pipeline is compiled (T018) to process a protein structure
and a lead compound, and propose several similar ligands
with optimized estimated affinities and interactions based
on the docked protein-ligand structures.

T014: Binding site detection. First, we need to know where
ligands may bind to a protein of interest. Sometimes the
binding site is known from experimental protein-ligand
structures. If only experimental apo structures are available,
putative binding sites can be predicted with computational
methods. We demonstrate how to use the REST API of the
ProteinsPlus webserver (33) to detect the main pocket of
an EGFR structure using the DoGSiteScorer (34) pocket
detection algorithm. To validate our results, the predicted
pocket is compared with the KLIFS-defined kinase pocket,
which encompasses 85 residues shown to be in contact with
ligands based on X-ray complex structures (35).

T015: Protein–ligand docking. Next, we introduce molec-
ular docking to predict the binding mode of a ligand to
its protein target by explaining several sampling algorithms
and scoring functions, as well as commenting on limitations
and interpretation of docking results. The theoretical back-
ground is then applied in a re-docking experiment aiming
to reproduce the binding mode observed in a published X-
ray structure of EGFR. Protein and ligand are prepared
using Pybel (36), the ligand is docked into the protein us-
ing Smina (13), and finally, the docking poses are visually
inspected using NGLView (15). We refer to JupyterDock
for further reading on different docking protocols run from
Jupyter notebooks.

T016: Protein–ligand interactions. Understanding which
forces and interactions drive molecular recognition is im-
portant for drug design (37). In this talktorial, we give an in-
troduction to relevant protein-ligand interactions and their
programmatic detection using the protein-ligand interac-
tion profiler PLIP (14). To this end, all interactions in an
EGFR–ligand complex fetched from the PDB are detected
and visualized in 3D using NGLView.
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Figure 3. Case study for talktorial T018 depicting (A) 2D structure of the
input ligand for the pipeline that was used with an EGFR crystal struc-
ture (PDB: 3W32, IC50 = 75nM); (B) 2D structure of gefitinib (IC50 =
0.17nM), an EGFR ligand found during similarity searches; (C) crystal
structure of gefitinib co-crystallized with EGFR (PDB: 2ITY, black CPK
representation); (D) docked pose of gefitinib (yellow CPK representation).
Some segments of the protein structure have been removed for clarity. The
ligand RMSD between (C) and (D) and the discovery of a higher-affinity
ligand demonstrate the utility of the fully automated pipeline for early
stage drug discovery.

T017: Advanced NGLView usage. Since the molecular vi-
sualization package NGLView is invoked in many talkto-
rials, we give a dedicated overview of its usage and show
some advanced cases on how to customize residue coloring,
and how to create interactive interfaces with IPyWidgets.
In addition, access to the JavaScript layer NGL (38,39) is
showcased to perform operations that are not exposed to
the Python wrapper NGLView.

T018: Automated pipeline for lead optimization. All pre-
vious talktorials are composed of stand-alone tasks that
can be completed independently. Proposing ligand modi-
fications that will improve interaction patterns with target
proteins in a complete end-to-end process, however, neces-
sitates orchestration of code and concepts implemented in
the previously discussed talktorials T014–T017. A docking
pipeline is constructed in T018 that is comprised of both
a step-by-step demonstration and a fully automated proce-
dure. Given a query protein and a lead compound, similar
ligands fetched from PubChem are suggested, which show
optimized affinity estimates and interaction profiles based
on generated docking poses.

Lead optimization case study. As a case study, an EGFR
crystal structure (PDB: 3W32) and its co-crystallized ligand
were used as inputs for the pipeline. A similarity search led
to the generation of a small library of compounds from Pub-
Chem for docking and further analysis to find compounds
ideally more affine than the co-crystallized ligand. Using
the pipeline, an approved breast cancer drug, gefitinib, was
found in the top 50 of docked poses (Figure 3). Gefitinib
(IC50 = 0.17 nM (40)) is at least an order of magnitude
more affine for EGFR than the measured affinity of the in-
put ligand (IC50 = 75 nM (41)). Gefitinib’s predicted geom-
etry was <2 Å RMSD from a crystal structure of wild-type

EGFR (PDB: 2ITY). This retrospective example demon-
strates the utility of a fully automated pipeline and potential
application as prospective tool.

Molecular dynamics

Experimentally resolved structures offer immense insights
for drug design but can only provide a static snapshot of
the full conformational space that represents the flexible na-
ture of biological systems. Molecular dynamics (MD) sim-
ulations approximate such flexibility in silico with a trajec-
tory of atom positions over a series of time steps (frames).
These trajectories thereby reveal a more detailed––albeit
still incomplete––picture of drug-target recognition and
binding by providing access to protein-ligand interaction
patterns over time (42–44). These insights can for example
help in lead discovery to examine the stability and validity
of a predicted ligand docking pose, and in lead optimization
phases to estimate the effect of a chemical modification on
binding affinity.

T019: MD simulations. We explain the key concepts be-
hind MD simulations and provide the code to run a short
MD simulation of EGFR in complex with a ligand on a lo-
cal machine or on Google Colab with condacolab, which
allows for GPU-accelerated simulations. The protein and
ligand are thereby separately prepared with pdbfixer and
RDKit, and subsequently combined using MDTraj (45)
and openff-toolkit. The simulation is performed with
OpenMM (16), a high-performance toolkit for molecular
simulation. The talktorial produces a 100 ps trajectory if
run on Google Colab. On a local machine, only 20 fs are
generated by default to keep computational efforts reason-
able. We refer to the work by Arantes et al. (46) for further
reading on different MD protocols run with OpenMM us-
ing Jupyter notebooks on Google Colab.

T020: Analyzing MD simulations. We analyze and visu-
alize the trajectory using the Python packages MDAnaly-
sis (17,18) and NGLView. First, the protein is structurally
aligned across all trajectory frames, followed by calculating
the root-mean-square deviation (RMSD) for different sys-
tem components, i.e. protein, backbone, and ligand. Then,
we take a closer look at a selected interaction between lig-
and and protein atoms, showcasing the contribution of dis-
tance and angle to the hydrogen bond strengths.

Deep learning

Machine learning and more specifically deep learning have
gained in popularity over the last few decades thanks
to powerful computational resources (GPUs), novel algo-
rithms, and the growing amount of available data (47). Ap-
plications to CADD are diverse, ranging from molecular
property prediction (48) to de novo molecular design (49).
Here, the focus is the featurization of molecular entities
(T021) and ligand-based screening (T022).

T021: One-hot encoding. In CADD, machine learning al-
gorithms require as input a numerical representation of
small molecules. Besides molecular fingerprints (see T004),
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a popular featurization is the SMILES notation (32). How-
ever, these representations are composed of strings and
therefore cannot simply be input to an algorithm. One-hot
encoding provides a solution for SMILES usage, explained
in T021.

T022: Ligand-based screening: neural networks. We intro-
duce the basics of neural networks and build a simple two-
layer neural network. A model is trained on a subset of
ChEMBL data to predict the pIC50 values of compounds
against EGFR using MACCS keys as input. This talkto-
rial is meant as groundwork for the understanding of neu-
ral networks. More complex architectures such as convolu-
tional and recurrent neural networks will be explored in fu-
ture notebooks. Such models may use the one-hot encoding
of SMILES as input (50).

BEST PRACTICES

We provide reliable and reproducible TeachOpenCADD
pipelines, periodically checked via automated testing mech-
anisms, and a streamlined and easy-to-understand code
style across all talktorials.

Testing. Reproducibility is ensured by testing if the note-
books can run without errors and whether the output of
specific operations can be reproduced. For this purpose, we
use the tools pytest and nbval.

Continuous integration. We are testing the talktorials reg-
ularly for Linux, OSX, and Windows and different Python
versions on GitHub Actions. This ensures identical behav-
ior across different operating systems and Python versions
and also spots issues like conflicting dependency updates or
changing outputs.

Repository structure. The repository structure is based on
the cookiecutter-cms template, which provides a Python-
focused project scaffold with pre-configured settings for
packaging, continuous integration, Sphinx-based docu-
mentation, and much more. We have adapted the template
to our notebook-focused needs.

Code style. We aim to adhere to the PEP8 style guide for
Python code, which defines how to write idiomatic Python
(Pythonic) code. Such rules are important so that new
developers––or in our case talktorial users––can quickly
read and understand the code. Furthermore, we use black-
nb to format the Python notebooks compliant with PEP8.

TEACHOPENCADD USAGE

There are many ways to use the talktorials. If users sim-
ply want to go through the material, they can use the read-
only website version. If users would rather like to execute
and modify the Jupyter notebooks, this can be done online
thanks to the Binder integrations or locally using the new
conda package.

New website. Firing up Jupyter notebooks can entail un-
expected complications if one wants to simply read through
a talktorial. To make the access easy and fast, we launched
a new TeachOpenCADD website. The website statically
renders the talktorials for immediate online reading using
sphinx-nb and provides detailed documentation for local
usage, contributions and external resources.

New Binder support. The Binder project offers a place to
share computing environments via a single link. The envi-
ronment setup of TeachOpenCADD can take a couple of
minutes but does not require any kind of action on the user’s
end. This access option is recommended if the user plans on
executing the material but does not need to save the changes.

New conda package. To make the local installation of Tea-
chOpenCADD as easy as possible, we offer a conda pack-
age that ships all Jupyter notebooks with all necessary de-
pendencies. The installation instructions are lined out in
the TeachOpenCADD documentation. This access option
is recommended if the user plans on adapting the material
for individual use cases.

CONCLUSION

The increasing amount of data and the focus on data-
driven methods call for reproducible and reliable pipelines
for computer-aided drug design (CADD). Knowing how to
access and use these resources programmatically, however,
requires domain-specific training and inspiration. The Tea-
chOpenCADD platform showcases webserver-based data
acquisition and common tasks in the fields of cheminfor-
matics and structural bioinformatics. The theoretical and
programmatic aspects of each topic are outlined side-by-
side in Jupyter notebooks (talktorials) using open source
resources only. To foster FAIR research, we apply soft-
ware best practices such as testing, continuous integra-
tion, and idiomatic coding throughout the whole project.
The talktorials are accessible via our website, Binder, and
conda package to accommodate different use cases such
as reading, executing, and modifying, respectively. We be-
lieve that TeachOpenCADD is not only a rich resource for
CADD pipelines and teaching material on computational
concepts and programming but as well a good example of
how to set up websites, automated testing, and packaging
for notebook-centric repositories. TeachOpenCADD is a
living resource; problems can be voiced via GitHub issues
and contributions can be made in the form of pull requests
on GitHub. TeachOpenCADD is meant to grow; everyone
is welcome to add new topics. Whenever you explore a new
topic for your work, we invite you to fill our talktorial tem-
plate with what one learns along the way and to submit it
to TeachOpenCADD.

DATA AVAILABILITY

• TeachOpenCADD website: https://projects.volkamerlab.
org/teachopencadd/.

• TeachOpenCADD GitHub repository: https://github.
com/volkamerlab/teachopencadd.
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Fund of Charité - Universitätsmedizin Berlin and the Ger-
man Research Foundation (DFG).
Conflict of interest statement. None declared.

REFERENCES
1. Schneider,P., Walters,W.P., Plowright,A.T., Sieroka,N., Listgarten,J.,

Goodnow,R.A., Fisher,J., Jansen,J.M., Duca,J.S., Rush,T.S. et al.
(2020) Rethinking drug design in the artificial intelligence era. Nat.
Rev. Drug Disc., 19, 353–364.

2. Ringer McDonald,A. (2021) In: Teaching Programming across the
Chemistry Curriculum. Teaching Programming across the Chemistry
Curriculum: A Revolution or a Revival? American Chemical Society
pp. 1–11.

3. Wilkinson,M.D., Dumontier,M., Aalbersberg,I.J., Appleton,G.,
Axton,M., Baak,A., Blomberg,N., Boiten,J.-W., da Silva Santos,L.B.,
Bourne,P.E. et al. (2016) The FAIR guiding principles for scientific
data management and stewardship. Scientific Data, 3, 160018.

4. Sydow,D., Morger,A., Driller,M. and Volkamer,A. (2019)
TeachOpenCADD: A Teaching Platform For Computer-Aided Drug
Design Using Open Source Packages And Data. J. Cheminform., 11,
29.

5. Kluyver,T., Ragan-Kelley,B., Pérez,F., Granger,B., Bussonnier,M.,
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3.3.3 OpenCADD-KLIFS: A Python Package to Fetch Kinase Data from the
KLIFS Database
Publication H

This software paper covers OpenCADD-KLIFS, a Python module that allows easy access
to data from the KLIFS database [63]. KLIFS data types such as kinases, structures, ligands,
bioactivities, interactions, pockets, and more can be fetched with a clean and user-friendly
Python API in the form of Pandas DataFrames (tables) [93]. This setup was extensively used
in several of the kinase-focused projects of this thesis by providing a faster, more reproducible,
and easier-to-maintain code base, circumventing the need for code duplications.
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Summary

Protein kinases are involved in most aspects of cell life due to their role in signal transduction.
Dysregulated kinases can cause severe diseases such as cancer, inflammation, and neurode-
generation, which has made them a frequent target in drug discovery for the last decades
(Cohen et al., 2021). The immense research on kinases has led to an increasing amount of
kinase resources (Kooistra & Volkamer, 2017). Among them is the KLIFS database, which
focuses on storing and analyzing structural data on kinases and interacting ligands (Kanev
et al., 2020). The OpenCADD-KLIFS Python module offers a convenient integration of the
KLIFS data into workflows to facilitate computational kinase research.
OpenCADD-KLIFS (opencadd.databases.klifs) is part of the OpenCADD package, a
collection of Python modules for structural cheminformatics.

Statement of need

The KLIFS resource (Kanev et al., 2020) contains information about kinases, structures,
ligands, interaction fingerprints, and bioactivities. KLIFS thereby focuses especially on the
ATP binding site, defined as a set of 85 residues and aligned across all structures using a
multiple sequence alignment (van Linden et al., 2014). Fetching, filtering, and integrating the
KLIFS content on a larger scale into Python-based pipelines is currently not straight-forward,
especially for users without a background in online queries. Furthermore, switching between
data queries from a local KLIFS download and the remote KLIFS database is not readily
possible.
OpenCADD-KLIFS is aimed at current and future users of the KLIFS database who seek
to integrate kinase resources into Python-based research projects. With OpenCADD-KLIFS,
KLIFS data can be queried either locally from a KLIFS download or remotely from the KLIFS
webserver. The presented module provides identical APIs for the remote and local queries and
streamlines all output into standardized Pandas DataFrames (The pandas development team,
2020) to allow for easy and quick downstream data analyses (Figure 1). This Pandas-focused
setup is ideal if you work with Jupyter notebooks (Kluyver et al., 2016).
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Figure 1: OpenCADD-KLIFS fetches KLIFS data (Kanev et al., 2020) offline from a local KLIFS
download or online from the KLIFS database and formats the output as user-friendly Pandas
DataFrames (The pandas development team, 2020).

State of the field

The KLIFS database is unique in the structure-based kinase field in terms of integrating
and annotating different data resources in a kinase- and pocket-focused manner. Kinases,
structures, and ligands have unique identifiers in KLIFS, which makes it possible to fetch and
filter cross-referenced information for a query kinase, structure, or ligand.

• Kinase structures are fetched from the PDB, split by chains and alternate models,
annotated with the KLIFS pocket of 85 residues, and aligned across the fully structurally
covered kinome.

• Kinase-ligand interactions seen in experimental structures are annotated for the 85
pocket residues in the form of the KLIFS interaction fingerprint (KLIFS IFP).

• Bioactivity data measured against kinases are fetched from ChEMBL (Mendez et al.,
2018) and linked to kinases, structures, and ligands available in KLIFS.

• Kinase inhibitor metadata are fetched from the PKIDB (Carles et al., 2018) and linked
to co-crystallized ligands available in KLIFS.

The KLIFS data integrations and annotations can be accessed in different ways, which are all
open source:

• Manually via the KLIFS website interface: This mode is preferable when searching for
information on a specific structure or smaller set of structures.

• Automated via the KLIFS KNIME nodes (Kooistra et al., 2018; McGuire et al., 2017):
This mode is extremely useful if the users’ projects are embedded in KNIME workflows;
programming is not needed.

• Programmatically using the REST API and KLIFS OpenAPI specifications: This mode
is needed for users who seek to perform larger scale queries or to integrate different
queries into programmatic workflows. In the following, we will discuss this mode in
context of Python-based projects and explain how OpenCADD-KLIFS improves the
user experience.

The KLIFS database offers standardized URL schemes (REST API), which allows users to
query data by defined URLs, using e.g., the Python package requests (requests, 2021). Instead
of writing customized scripts to generate such KLIFS URLs, the KLIFS OpenAPI specifications,
a document that defines the KLIFS REST API scheme, can be used to generate a Python
client, using e.g., the Python package bravado (bravado, 2021). This client offers a Python
API to send requests and receive responses. This setup is already extremely useful, however,
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it has a few drawbacks: the setup is technical; the output is not easily readable for humans
and not ready for immediate downstream integrations, requiring similar but not identical
reformatting functions for different query results; and switching from remote requests to local
KLIFS download queries is not possible. Facilitating and streamlining these tasks is the
purpose of OpenCADD-KLIFS as discussed in more detail in the next section.

Key Features

The KLIFS database offers a REST API compliant with the OpenAPI specification (KLIFS,
2021). Our module OpenCADD-KLIFS uses bravado to dynamically generate a Python client
based on the OpenAPI definitions and adds wrappers to enable the following functionalities:

• A session is set up automatically, which allows access to various KLIFS data sources
by different identifiers with the API session.data_source.by_identifier. Data
sources currently include kinases, structures and annotated conformations, modified
residues, pockets, ligands, drugs, and bioactivities; identifiers refer to kinase names,
PDB IDs, KLIFS IDs, and more. For example, session.structures.by_kinase_name
fetches information on all structures for a query kinase.

• The same API is used for local and remote sessions, i.e., interacting with data from a
KLIFS download folder and from the KLIFS website, respectively.

• The returned data follows the same schema regardless of the session type (local/remote);
all results obtained with bravado are formatted as Pandas DataFrames with standardized
column names, data types, and handling of missing data.

• Files with the structural 3D coordinates deposited on KLIFS include full complexes or
selections such as proteins, pockets, ligands, and more. These files can be downloaded
to disc or loaded via biopandas (Raschka, 2017) or RDKit (RDKit, 2021).

OpenCADD-KLIFS is especially convenient whenever users are interested in multiple or more
complex queries such as “fetching all structures for the kinase EGFR in the DFG-in conforma-
tion” or “fetching the measured bioactivity profiles for all ligands that are structurally resolved
in complex with EGFR.” Formatting the output as DataFrames facilitates subsequent filtering
steps and DataFrame merges in case multiple KLIFS datasets need to be combined.
OpenCADD-KLIFS is currently used in several projects from the Volkamer Lab (Volkamer Lab,
2021) including TeachOpenCADD (TeachOpenCADD, 2021), OpenCADD-pocket (Open-
CADD, 2021), KiSSim (KiSSim, 2021), KinoML (OpenKinome, 2021), and PLIPify (PLIPify,
2021). For example, OpenCADD-KLIFS is applied in a TeachOpenCADD tutorial to demon-
strate how to fetch all kinase-ligand interaction profiles for all available EGFR kinase structures
to visualize the per-residue interaction types and frequencies with only a few lines of code.

Acknowledgements

We thank the whole KLIFS team for providing such a great kinase resource with an easy-
to-use API and especially Albert Kooistra for his help with questions and wishes regarding
the KLIFS database. We thank David Schaller for his feedback on the OpenCADD-KLIFS
module. We acknowledge the contributors involved in software programs and packages used
by OpenCADD-KLIFS, such as bravado, RDKit, Pandas, Jupyter, and Pytest, and Sphinx.

References

bravado. (2021). bravado. In GitHub repository. GitHub. https://github.com/Yelp/bravado

Sydow et al., (2022). OpenCADD-KLIFS: A Python package to fetch kinase data from the KLIFS database. Journal of Open Source Software,
7(70), 3951. https://doi.org/10.21105/joss.03951

3

Open Kinase Research (Publication H) 191



Carles, F., Bourg, S., Meyer, C., & Bonnet, P. (2018). PKIDB: A Curated, Annotated and
Updated Database of Protein Kinase Inhibitors in Clinical Trials. Molecules, 23(4), 908.
https://doi.org/10.3390/molecules23040908

Cohen, P., Cross, D., & Jänne, P. A. (2021). Kinase drug discovery 20 years after imatinib:
Progress and future directions. Nature Reviews Drug Discovery, 20(7), 551–569. https:
//doi.org/10.1038/s41573-021-00195-4

Kanev, G. K., de Graaf, C., Westerman, B. A., de Esch, I. J. P., & Kooistra, A. J. (2020).
KLIFS: an overhaul after the first 5 years of supporting kinase research. Nucleic Acids
Research, 49(D1), D562–D569. https://doi.org/10.1093/nar/gkaa895

KiSSim. (2021). KiSSim: Subpocket-based fingerprint for kinase pocket comparison. In
GitHub repository. GitHub. https://github.com/volkamerlab/kissim

KLIFS. (2021). KLIFS OpenAPI. https://dev.klifs.net. https://dev.klifs.net/swagger_v2/
Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley,

K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S., Willing, C., &
team, J. development. (2016). Jupyter notebooks - a publishing format for reproducible
computational workflows. In F. Loizides & B. Scmidt (Eds.), Positioning and power in
academic publishing: Players, agents and agendas (pp. 87–90). IOS Press. https://
eprints.soton.ac.uk/403913/

Kooistra, A. J., Vass, M., McGuire, R., Leurs, R., Esch, I. J. P. de, Vriend, G., Verhoeven,
S., & Graaf, C. de. (2018). 3D-e-Chem: Structural Cheminformatics Workflows for
Computer-Aided Drug Discovery. ChemMedChem, 13(6), 614–626. https://doi.org/10.
1002/cmdc.201700754

Kooistra, A. J., & Volkamer, A. (2017). Chapter six - kinase-centric computational drug devel-
opment. In R. A. Goodnow (Ed.), Platform technologies in drug discovery and validation
(Vol. 50, pp. 197–236). Academic Press. https://doi.org/10.1016/bs.armc.2017.08.001

McGuire, R., Verhoeven, S., Vass, M., Vriend, G., Esch, I. J. P. de, Lusher, S. J., Leurs,
R., Ridder, L., Kooistra, A. J., Ritschel, T., & Graaf, C. de. (2017). 3D-e-chem-VM:
Structural cheminformatics research infrastructure in a freely available virtual machine.
Journal of Chemical Information and Modeling, 57(2), 115–121. https://doi.org/10.1021/
acs.jcim.6b00686

Mendez, D., Gaulton, A., Bento, A. P., Chambers, J., De Veij, M., Félix, E., Magariños, M.
P., Mosquera, J. F., Mutowo, P., Nowotka, M., Gordillo-Marañón, M., Hunter, F., Junco,
L., Mugumbate, G., Rodriguez-Lopez, M., Atkinson, F., Bosc, N., Radoux, C. J., Segura-
Cabrera, A., … Leach, A. R. (2018). ChEMBL: towards direct deposition of bioassay data.
Nucleic Acids Research, 47(D1), D930–D940. https://doi.org/10.1093/nar/gky1075

OpenCADD. (2021). OpenCADD-Pocket: Identification and analysis of protein (sub)pockets.
In GitHub repository. GitHub. https://github.com/volkamerlab/opencadd

OpenKinome. (2021). KinoML: Structure-informed machine learning for kinase modeling. In
GitHub repository. GitHub. https://github.com/openkinome/kinoml

PLIPify. (2021). PLIPify: Protein-ligand interaction frequencies across multiple structures.
In GitHub repository. GitHub. https://github.com/volkamerlab/plipify

Raschka, S. (2017). BioPandas: Working with molecular structures in pandas DataFrames.
The Journal of Open Source Software, 2(14). https://doi.org/10.21105/joss.00279

RDKit. (2021). RDKit: Open-Source Cheminformatics. In RDKit website. RDKit. http:
//www.rdkit.org

requests. (2021). requests. In GitHub repository. GitHub. https://github.com/psf/requests

Sydow et al., (2022). OpenCADD-KLIFS: A Python package to fetch kinase data from the KLIFS database. Journal of Open Source Software,
7(70), 3951. https://doi.org/10.21105/joss.03951

4

192 CHAPTER 3. METHODS AND RESULTS



TeachOpenCADD. (2021). TeachOpenCADD: a teaching platform for computer-aided drug
design (CADD) using open source packages and data. In GitHub repository. GitHub.
https://github.com/volkamerlab/teachopencadd

The pandas development team. (2020). Pandas-dev/pandas: pandas. In Zenodo repository.
Zenodo. https://doi.org/10.5281/zenodo.3509134

van Linden, O. P. J., Kooistra, A. J., Leurs, R., Esch, I. J. P. de, & Graaf, C. de. (2014).
KLIFS: A knowledge-based structural database to navigate kinase–ligand interaction space.
Journal of Medicinal Chemistry, 57(2), 249–277. https://doi.org/10.1021/jm400378w

Volkamer Lab. (2021). Volkamer Lab website. In Volkamer Lab website. Volkamer Lab.
https://volkamerlab.org/

Sydow et al., (2022). OpenCADD-KLIFS: A Python package to fetch kinase data from the KLIFS database. Journal of Open Source Software,
7(70), 3951. https://doi.org/10.21105/joss.03951

5

Open Kinase Research (Publication H) 193



194 CHAPTER 3. METHODS AND RESULTS



Chapter 4

Discussion

4.1 Computational Target Prediction

Target identification is the initial step in early drug discovery campaigns and aims to define
disease-relevant targets as well as to determine the most similar targets to a target of inter-
est. Identifying similar targets is useful for (i) finding similar structurally resolved targets for
homology modeling, if no structural information is available for the target of interest, and (ii)
detecting potential off-targets to inform selective drug design. Other applications involve under-
standing the target’s mode of action, polypharmacology, and possibilities for drug repurposing.
Computational approaches have the potential to save time and costs during target identification.

In the following, I discuss the remaining challenges in the field (Publication A [22]), while
outlining how we addressed these challenges in the context of kinase-focused research (Publica-
tions B–D [95, 141, 142]) and in the context of unpublished work on the proteome-wide binding
site comparison method Ratar (Appendix 5.2.1).

4.1.1 Remaining Challenges of State-of-the-Art Approaches

Targets can be predicted in many different ways, i.e., from a ligand, structure, or hybrid
point of view, which we reviewed in detail in Publication A [22] (Section 1.2.1). While the
field of computational target prediction has made great progress and reported a plethora of
methods, five main challenges remain that are of technical nature and include method and data
availability. We discuss how this thesis has addressed these challenges in the following (and in
more detail in the next Section 4.2).

Challenge 1: FAIR methods. Although we have many published methods at our dis-
posal, only a limited number is practically available to us for incorporation into a pipeline.
Many methods are not available at all or need a license or manual request, while others are only
accessible via a webserver or are technically difficult to set up. All methods reported in this
thesis are developed based on FAIR principles, i.e., they are findable, accessible, interoperable,
and reusable. For example, the kinase-focused off-target prediction tools as discussed in Pub-
lications B and D [95, 141] are freely available on GitHub [108], distributed as conda packages
on conda-forge [146], and operate on Linux, macOS, and Windows.

Challenge 2: Explainable hits. Method results are often not easily interpretable; sim-
ilarity scores determine the ranking of targets but rationalizing the ranking can be difficult.
For example, the scores from alignment-free binding site comparison methods do not explain
which encoded features are responsible for high or low similarity scores. Hence, the structurally
informed comparison between binding sites is not possible although it is important to translate
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the results into rational design decisions. For this reason, the KiSSim method presented in
Publication B [141] offers a 3D visualization of (dis)similarities between kinases on a residue
level.

Challenge 3: Target data availability. Computational target prediction is limited by
data availability; structure-based binding site comparison will only detect similarities between
structurally resolved binding sites (e.g., roughly 300 out of 500 kinases are structurally resolved).
The structural gaps within the proteome are addressed by research and industry groups as well
as organizations such as the Structural Genomics Consortium [147] but this takes time. In
the meantime, it is worth considering multiple perspectives during target identification as we
suggest in Publications C and D [95, 142]; kinase similarities are here viewed not only based on
pocket structures but also based on pocket sequences, protein-ligand interactions, and ligand
profiles. Furthermore, predicted structures from AlphaFold2 [148] could be considered as well
to fill the structural gaps. However, studies have shown that the predicted binding sites are
overall not accurate enough and hence the predicted structures should at this stage probably
only be used after pocket-specific refinement and manual curation [149, 150].

Challenge 4: Activity cliffs. Underlying principles such as "similar ligands bind similar
targets" and "similar pockets bind similar ligands" are often useful estimates but are not always
true as known for so-called activity cliffs, where two ligands with only slight chemical differences
show massive changes in their activity towards the desired target [151]. Alternatively, two highly
similar targets can show different ligand profiles. In this thesis, we propose to help detect such
activity cliffs by not relying upon a single similarity measure but on a set of orthogonal similarity
measures as outlined in Publications C and D [95, 142], as previously argued in the context of
challenge 3.

Challenge 5: Target flexibility. Proteins are flexible; they exist in an ensemble of con-
formational states. However, only a subset of these states is receptive to ligand binding. Ideally,
target prediction methods capture targets in those relevant conformational states. Some meth-
ods consider flexibility implicitly by a coarse-grained pocket encoding step or by a tolerant
or partial matching (comparison) step as outlined in Publication A [22]. Furthermore, flexi-
bility can be represented by protein ensembles based on experimentally determined structures
or molecular dynamics simulations. In the case of the KiSSim method presented in Publi-
cation C [142], flexibility is considered in terms of experimentally resolved kinase ensembles.
This is advantageous for kinases with a high and representative structural coverage, while the
flexibility of kinases with only one or a few structures remains un- oder underexplored.

In the next section, we discuss the KiSSim methodology and kinase similarity pipeline pre-
sented in this thesis in more detail (Publications B–D), including considerations of these five
challenges.

4.2 Predicting Kinome-Wide (Sub)Pocket-Based Off-Targets

Kinome-wide (off-)target prediction is a key step in early-stage kinase drug design campaigns
to define desired kinase profiles and their tractability as well as to identify undesired off-targets.
Although a plethora of methods has been published for computational target prediction, many
of them are not publicly available and none are tailored to kinases, a protein class with high
structural coverage and a highly conserved binding site. The KLIFS database processes kinase
structures to provide residue-by-residue alignments of kinase pockets. Instead of applying kinase-
unspecific binding site comparison methods, we aimed to use this pocket knowledge to enable
kinase-specific and fast binding site representation and comparison.
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The resulting KiSSim procedure and analyses are fully open-sourced within the kissim pack-
age [152] and the kissim_app repository [153], respectively, which makes it possible to include
the KiSSim method in other applications and to reproduce all data (addressing challenge 1 in
Section 4.1).

4.2.1 KiSSim: Enabling Kinase-Specific Encoding and Comparison

We developed the kinase- and subpocket-focused tool KiSSim in Publication B [141] (Sec-
tion 3.1.1) with the aim to (i) encode their binding site more accurately, and (ii) enable a simple
setup, maintenance, and incorporation into a larger pipeline.

The KiSSim fingerprint is composed of physicochemical and spatial bits encoding each of
the 85 KLIFS pocket residues, which are aligned across the full structurally covered kinome and
can therefore easily be compared bit by bit. Physicochemical features include each residue’s
size, hydrogen bond donors/acceptors, charge, aromatic and aliphatic properties as well as the
side chain orientation and solvent exposure. Spatial bits include the distance of each residue’s
Cα atom to important subpocket centers, i.e., the pocket centroid, the hinge region, the DFG
region, and the front pocket. Each subpocket’s distance distribution is furthermore described
by its first three moments (following the USR approach [154] as described in Appendix 5.2.1).
The resulting 1032-bit fingerprint can be directly used for pairwise kinase pocket comparisons.

In Publication B, we showed that the fingerprints’ feature space (i) reflects sequence-related
similarities between kinases on a generalized level through the defined physicochemical prop-
erties, and (ii) catches information on reported flexible and stable regions through the defined
spatial properties, which reflects the differences in 3D space of crystallized structures.

To map kinase-kinase relationships, we performed an all-against-all comparison for 4112
structures covering 257 kinases. The resulting 4112×4112 structure distance matrix was reduced
to a 257 × 257 kinase distance matrix by representing each kinase pair with the most similar
structure pair amongst these kinases’ structural ensemble (addressing challenge 5 in Section 4.1).
The resulting kinase distance matrix is visualized in the form of a circular phylogenetic tree.

This KiSSim dataset covers all structurally resolved kinases (of satisfying quality as defined in
[141]) in the DFG-in conformation; restricting the kinase conformation to the predominant DFG-
in conformation reflects the research focus on type I and I1/2 inhibitors and covers the majority
(∼ 85%) of PDB kinase structures. Alternatively, we also provided KiSSim datasets including
all conformations or DFG-out conformations only, while users can produce KiSSim datasets with
any other structure subset of interest using the open-sourced kissim Python package [152]. To
include also kinases without any resolved structure, predicted kinase structures such as those
proposed by AlphaFold2 [148] could be included in the future. We recommend flagging such
structures for the user to indicate that the kinase similarity predictions are based on one or more
predicted structures. The following considerations are based on the KiSSim dataset composed
of DFG-in structures.

4.2.2 KiSSim: Detecting Expected and Unexpected Kinase Relationships

Based on the phylogenetic tree of the structurally covered kinome, we showed that the
KiSSim dataset retrieves the sequence-based kinome tree by Manning et al. [67] including TK
and CMGC subbranches, which is probably attributed to the physicochemical KiSSim fingerprint
bits that generalize the pocket sequence. In contrast, some kinases show inter-group proximities,
of which some can be rationalized such as the CaMKK2 and DRAK2 off-target relationship [155].
Thus, the addition of structural information in the KiSSim fingerprint allows us to group more
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distantly related kinases together.
To explain KiSSim results, we implemented a 3D visualization that colors the kinase pocket

residue by residue with the following values (addressing challenge 2 in Section 4.1): (i) the
KiSSim fingerprint bits, allowing us to investigate physicochemical and spatial properties within
a pocket, (ii) the difference between two KiSSim fingerprint bits, allowing us to understand the
kinase similarity on a residue level, and (iii) the standard deviation of KiSSim fingerprints
from kinase structure ensembles, allowing us to detect spatial variations within experimentally
resolved structures of a single kinase. These visual aids can guide the design of selective ligands
during lead optimization phases.

We evaluated KiSSim’s specificity and sensitivity with profiling data [97, 98, 101] as a surro-
gate for expected kinase (dis)similarities. Profiling-based evaluation has its shortcomings such
as unbalanced data availability per kinase-ligand pair and different experimental setups across
profiling datasets (see discussion in [141]). Nonetheless, this profiling-based perspective reflects
in a retrospective way how the KiSSim approach is applied to real-world questions, i.e., how
well can the KiSSim fingerprint reflect a ligand’s kinase profile. Across 48 kinase-ligand pairs
involving 21 ligands, the AUCs range from 0.49 to 1.0 with a mean of 0.75± 0.12. For example,
KiSSim was able to explain Erlotinib/EGFR’s unexpected off-targets LOK and SLK (both STE
kinase group) but not the off-target GAK ("Other" group). Furthermore, the method was able
to retrieve all of Imatinib/ABL1’s off-targets LCK, KIT, and FMS (TK group).

We compared KiSSim to other kinase similarity measures, i.e., the KLIFS pocket sequence
and interaction fingerprints (IFPs) as defined in detail in the next section, as well as the protein-
wide binding site comparison tool SiteAlign, whose size and pharmacological residue features
have been implemented in the KiSSim fingerprint. We observed the following: (i) KiSSim
compares well with these established methods while often improving predictions between kinase
pairs without an obvious relationship based on the sequence. (ii) The pocket sequence- and
IFP-based methods are much faster than the structure-based methods KiSSim and SiteAlign,
however, the overall kinase similarity assessment benefits from the added structural pocket
information. (iii) KiSSim’s setup and runtime are more convenient and faster than the SiteAlign
method while yielding slightly better results. In contrast to SiteAlign, KiSSim relies on KLIFS’
85-residue pocket alignment. On the one hand, this is advantageous because the method builds
on curated residue-by-residue alignments in the KLIFS database and therefore allows fast and
kinase-tailored comparisons. On the other hand, this restricts comparisons to the residue-by-
residue KLIFS alignment and (at this point) excludes the comparison of structures without the
KLIFS assignment. The latter disadvantage could be solved by providing the KLIFS alignment
as functionality within the KiSSim methodology or —preferably— as functionality within the
KLIFS database itself to allow its usage in other applications as well.

In the next two sections, we motivate why and outline how the KiSSim methodology should
and can be integrated with other similarity measures to mitigate individual method shortcomings
and data scarcity by using complementary data resources covering structural, chemical, and
pharmacological datasets.

4.2.3 Assessing Kinase Similarity from Different Perspectives

In a study, which was conducted before the development of the KiSSim method, we saw that
different perspectives on kinase similarity can yield complementary insights on kinase relation-
ships. The study was conducted in collaboration with the Kolb Lab in Marburg, Germany, and
is described in Publication C [142] (Section 3.1.2).

The initial goal of this study was to find selective kinase inhibitors with a specific profile of
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on- and off-targets. Candidate ligands were determined based on docking screens and assayed
to determine their experimental binding affinities. Compared to previous studies the resulting
hit rates were low, which prompted a re-analysis of the selected kinase profiles concerning
kinase similarities. We assessed the similarities between EGFR, ErbB2, p110a (PI3K), KDR
(VEGFR2), BRAF, CDK2, LCK, MET, and p38a based on different measures:

(i) "Pocket sequence" similarity was defined as the identity between the 85 KLIFS pocket
residues of two kinases.

(ii) "Pocket structure" similarity was defined as the similarity between two kinase pock-
ets as detected with LigSite [156] and calculated using an extension of the graph-based
CavBase method [157, 158].

(iii) "Interaction fingerprint" (IFP) similarity was defined as the Tanimoto similarity
between two KLIFS interaction fingerprints, which describe interactions between the 85
pocket residues and associated co-crystallized ligands.

(iv) "Ligand profile" similarity was defined as the ratio of the number of compounds that
are active on both kinases divided by the total number of compounds that are tested on
both kinases.

While the overall trend of calculated similarities is conserved across the different perspectives,
individual conclusions regarding selected kinase profiles differ. For example, the high similarity
between the TK kinases EGFR and ErbB2 and their low similarity is overall conserved to the
atypical kinase p110a (PI3K), while it is less pronounced based on the "pocket structure". In
fact, the pocket structure perspective showed comparably low similarity between EGFR and
ErbB2 (which are known to be highly similar), while showing comparably high similarities to
BRAF. Furthermore, while the "ligand profile" and "pocket sequence" would favor a profile
with on-targets EGFR and KDR (VEGFR2) and off-target BRAF, the other two perspectives
would not.

Based on these findings and the observations from our KiSSim evaluation compared to
other methods, we argue that it is advantageous to consider kinase similarity from multiple
perspectives that —ideally— cover multiple data sources. Therefore, we decided to build an
automated pipeline that calculates kinase similarities based on the measures presented in Pub-
lication C, while exchanging the kinase-unspecific CavBase method with the open-sourced and
kinase-specific KiSSim method.

4.2.4 Integrating Kinase Similarity Measures as an Automated Pipeline

The findings from Publications B and C led to the idea of an integrated pipeline that
calculates similarity measures from different perspectives including the KiSSim encoding as
outlined in Publication D [95] (Section 3.1.3)

We developed a pipeline composed of Jupyter Notebooks that allows users to define their
kinase set of interest based on UniProt IDs. Their similarities are thereafter measured with
the following similarity methods as outlined in Publication C if not otherwise specified: (i)
KLIFS pocket sequence similarity, (ii) KLIFS pocket structure similarity using the novel kinase-
specific KiSSim method, (iii) KLIFS IFP similarity, and (iv) ligand profile similarity. These
different approaches are based on different data sources, addressing two challenges: This multi-
perspective can compensate for missing data points, e.g., sequence data is available even if
a kinase is unexplored in structural and profiling data; it might also flag activity cliffs, e.g.,
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pockets might be highly similar but still not bind the same ligand, which could be indicated by
the ligand profile or IFPs similarity if such data is available (challenges 3 and 4 in Section 4.1).

As the final step, similarity matrices from the previous perspectives are collected and com-
pared in a final Jupyter Notebook with easy-to-understand visualizations such as heatmaps and
dendrograms. Additionally, an equally weighted average can be computed to combine distance
and similarity matrices from all four perspectives, yielding a single heatmap and dendrogram.
This pipeline has been published within the TeachOpenCADD platform, which is described in
more detail in Section 4.4.

The setup of this kinase similarity pipeline and its integration into the TeachOpenCADD
platform has several advantages: (i) The chosen similarity measures are commonly used; for
kinase research, this pipeline can be used out-of-the-box in the context of KLIFS structures
and summarizes the protocol for these tasks in one place. (ii) Thanks to its integration into
the TeachOpenCADD platform, which is discussed in more detail in Section 4.4, this kinase
similarity pipeline is maintained within a larger software project and offers greater visibility for
potential users. (iii) Thanks to its modular setup, additional similarity measures of interest can
be added to this pipeline, following the same logic as for the existing measures. Such additional
measures can remain with the user or can be integrated into the TeachOpenCADD platform.

4.2.5 Generalizing Pocket Comparison Concepts from the Kinome to Pro-
teome

KiSSim’s advantage —the residue-by-residue comparison based on the KLIFS alignment—
also has a downside: This approach is restricted to kinases and therefore cannot detect simi-
larities of kinases to non-kinases, which are also relevant to off-target considerations. Existing
kinase-unrestricted tools and their challenges have been discussed in Publication A and Sec-
tion 4.1: a FAIR, fast, and pipeline-integrable comparison method with interpretable results is
still missing.

In the following, we present the first implementation of a novel binding site comparison
tool, Ratar, that encodes binding sites based on distance distributions to defined reference
points within the pocket similarly to the KiSSim approach; since we cannot define subpockets
proteome-wide as we did for kinases with KiSSim, we follow the definition of reference points
as described for the Ultrafast Shape Recognition (USR) method [154].

The Ratar project transfers the principles of the fast and transformation-invariant encoding
USR method from ligands to binding sites. USR encodes the distances between ligand atoms to
defined ligand reference points, while its extension ElectroShape includes the atoms’ charge as
a 4th dimension. In the context of Ratar, different USR derivatives for binding sites (instead of
ligands) have been implemented, as well as an extension that incorporates more physicochemical
information in the form of Z-scales [159]. The performance of these baseline methods yields an
average AUC of about 0.61 on FuzCav’s dataset of similar and dissimilar binding sites [160].
This is a good first step but requires further work to improve the method’s discriminative power.

In the next step of this project, the encoding procedure is intended to be applied —instead
of to the full binding site as currently implemented— to overlapping binding site patches. Dur-
ing the binding site comparison step, such a procedure could detect more fine-grained regional
similarities; this could improve the performance as well as the explainability of results because
similarities could be traced back to specific binding site regions (addressing challenge 2 in Sec-
tion 4.1). The baseline Ratar methods have been implemented as part of the open-sourced
ratar Python package [161], which follows FAIR principles and allows for fast encoding with
less than half a second per structure (addressing challenge 1 in Section 4.1).
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4.3 Exploring Kinome-Wide Subpocket Fragment Spaces

Drug design for kinases is challenging: New drugs need to (i) compete against mM levels
of ATP, (ii) be highly selective, (iii) be flat and hydrophobic, two challenging properties for
later stages in drug development, and (iv) be novel because the IP space is restrictive due to 20
years of pharmaceutical research. Fragment-based drug design has been shown to help with at
least the latter two challenges due to its sampling character and has contributed to producing
two FDA-approved kinase inhibitors [26]. Since kinases are so well-studied, a vast amount of
structural data is available, which can be exploited for a data-driven in silico fragmentation and
recombination strategy.

In the previous Section 4.2, we used the characteristics of KLIFS kinase pockets for off-
target prediction. In this section, we assess the pockets in the context of structurally resolved
bound ligands for fragment-based drug design. The KinFragLib method described in Publica-
tion E [143] (Section 3.2.1) (i) fragments co-crystallized kinase ligands in silico with respect
to the subpockets that they occupy, (ii) explores the chemical space of the resulting fragment
subpocket pools, and (iii) uses these fragment pools for subpocket-guided recombination. We
applied this procedure to about 2500 human, DFG-in, and non-covalent kinase-ligand complexes
from the KLIFS database, whose 85 pocket residues are aligned and therefore easily comparable
across the structurally resolved kinome.

4.3.1 KinFragLib: Fragmenting Kinase Inhibitors to Explore Subpockets

For KinFragLib’s subpocket-based fragmentation of structure-bound kinase inhibitors, we
defined the following kinase-specific subpockets (Figure 1 in [143]): The adenine pocket (AP)
lays next to the hinge region where ligands form crucial hydrogen bonds. Next to AP is the
solvent-exposed (SE) subpocket and the partially solvent-exposed front pocket (FP). In the
back cleft, next to the αC-helix are the back pockets 1 and 2 (B1 and B2), which are connected
to the front cleft via the narrow gate area (GA). Furthermore, we define certain subpocket
connectivities based on observations in the KLIFS dataset.

The fragmentation algorithm is mostly based on the RDKit [131] toolkit (Figure 2 in [143]):
We calculate the subpockets for a ligand at hand, which undergoes an initial (test) fragmentation
based on the BRICS [57] algorithm. Each fragment is assigned to its closest subpocket center
before the ligand undergoes a second (final) fragmentation where only those bonds are cut that
connect two fragments from different subpockets. This results in fragments with subpocket
labels and dummy atoms that link back to the subpocket that they were connected to, which is
relevant for recombination.

We ran this fragmentation procedure for about 2500 complexes. This populated the sub-
pocket pools with over 7000 fragments, of which about 60% are duplicates, since many PDB
entries belong to structure-activity relationship (SAR) studies, resulting in about 3000 frag-
ments after deduplication. All ligands occupy AP, followed by FP, SE, and GA, while only a
few of them bind to the back cleft since most ligands are front cleft binders. Half of the ligands
bind to three subpockets, followed by two and four. The KinFragLib fragment library is freely
available on GitHub alongside all performed analyses in the form of Jupyter Notebooks [162];
this framework can be used to zoom from these statistics into the fragmentation of individual
ligands (Figure 4 in [143]). More generally, an analysis of the most common fragments per
subpocket showed typical hinge binders in the AP subpocket, small and lipophilic fragments in
the narrow GA subpocket, while more soluble fragments dominate in the FP and SE subpockets
(Figure 6 in [143]).
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4.3.2 KinFragLib: Recombining Fragments for Novel Kinase Inhibitors

After having analyzed the subpocket fragment space, all matching fragment combinations
were enumerated based on a structurally diverse set of "Rule of Three" (Ro3)-compliant [54]
(and hinge-like AP) fragments. Recombination always started at AP, since all ligands bind here,
and was only allowed if following the BRICS rules. The procedure was terminated if no open
bonds were left or if four fragments were already combined to avoid large compounds.

To reduce computational cost, we selected 600 diverse fragments (cluster representatives
from a subset of deduplicated, Ro3-compliant, and "hinge-like" fragments). Their recombination
resulted in over 6 million molecules. (i) Over 60% of the recombined molecules comply with
Lipinski’s "Rule of Five" (Ro5). (ii) We were able to reconstruct 35 exact and 324 substructure
matches in our original KLIFS ligands, confirming that we can correctly re-assemble our input
ligands. (iii) We showed that we generated mostly novel molecules; a standardized InChI string
comparison to ChEMBL25 [163, 164], with about 1.8 million molecules, found about 200 exact
matches (excluding the matches in (ii)). (iv) Amongst the hits from (iii), we found 47 molecules
with reported human targets (based on ChEMBL bioactivities ≤ 500 nM), including 3 non-
kinase and 44 kinase targets, of which 10 kinase targets show bioactivities in the low nM range.
In summary, we demonstrated KinFragLib’s recombination power by generating over 4 million
novel and Ro5-compliant molecules, re-assembling input ligands, and designing molecules with
reported kinase inhibitors that were not part of the original ligand set (Figure 7 in [143]).

4.3.3 Addressing Limitations of the KinFragLib Approach

The KinFragLib fragment and recombined molecule datasets have been used and adapted
since their publication in 2019 to address two open challenges that are highly relevant for real-
world drug design campaigns:

• Which compounds are relevant in terms of synthesizability?

• Which compound subset should we extract to sample a specific chemical space or to sample
a diverse set of molecules from the whole chemical space?

Assessing molecule synthesizability. In her master thesis, Sonja Leo refined and extended
the fragment library filtering, which was supervised by Andrea Volkamer, Jérémie Mortier,
and myself [165]. The developed Custom-KinFragLib pipeline allows for customizable filtering
steps: (i) remove unwanted substructures that can cause mutagenic, reactive, or other unfa-
vorable effects [166] or non-specific interactions with assays (PAINS) [167], (ii) keep only drug-
and fragment-like molecules based on the Ro3 and the Quantitative Estimate of Druglikeness
(QED) [168], (iii) check for synthesizability, on the one hand, by keeping only commercially
available building blocks from the Enamine REAL Space [169] using the DataWarrior soft-
ware [170] and, on the other hand, by avoiding hard-to-synthesize molecules with the Synthetic
Baysian Accessibility (SYBA) tool [171], and (iv) check for retrosynthetic pathways with the
ASKCOS [172] model.

Applying all filters reduced the over 7000 fragments to about 400; however, thanks to the
modular setup of the filtering pipeline, the user can decide which filtering steps to include.
In the future, further feasibility scores could be included such as the Synthetic Accessibility
score (SAscore) [173] to rate fragments by how often they are in PubChem, the Synthetic
Complexity score (SCscore) [174] to compare molecules with reactants from Reaxys [175], and
the Retrosynthetic Accessibility score (RAscore) [176] to indicate if a retrosynthetic route can
be found or not.
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Visualizing and navigating chemical spaces. The KinFragLib datasets come with Jupyter-
Notebook-based visualization functionalities, however navigating interactively through the whole
fragment and recombined ligand space was not included. The ChemInformatics Model Explorer
(CIME) can serve as a solution to this problem. This tool was published by Humer et al. [177]
in 2022 and is a freely available and interactive web-based system that allows users to inspect
chemical data sets and more. The authors used the KinFragLib datasets to demonstrate how
CIME can explore KinFragLib’s chemical space by creating a UMAP [178] projection of one
property, while coloring and highlighting molecules by other properties.

In their first example, they showed that CIME can visualize that a latent space representa-
tion of the KinFragLib fragments can better predict the solubility of FP fragments than their
ECFP [179] representation. In their second example, they showed how to detect recombined
ligand space regions that are densely populated with compounds highly similar to existing com-
pounds. In summary, CIME is an interesting visualization tool that can help to select fragments
or recombined molecules with user-defined constraints.

4.3.4 Addressing Future Applications of the KinFragLib Approach

The KinFragLib datasets could be used for the following future applications: (i) Some sub-
pocket fragment pools have defined characteristics and could therefore be used as focused screen-
ing libraries not only for kinases but also for other target groups. For example, the AP subpocket
pool could be used for bioisosteric replacements of hydrogen bond donor/acceptor patterns dur-
ing hit optimization for any target. (ii) Instead of recombining all fragments, one or more
fragments of interest could be defined as a starting point. For example, the user could start
with one or more interesting fragments in the AP pocket and enumerate all connecting sub-
pocket fragments. Such a setup is currently already possible using the method’s command-line
interface (CLI). (iii) At this point, KinFragLib does not check explicitly for 3D compatibility of
recombined fragments but implies that fragments from the neighboring subpockets should cover
a similar space. To be more rigorous, the distance between to-be-combined dummy atoms could
be checked and their combination only be allowed within a certain threshold. Furthermore,
the recombined molecule could be transferred or docked to the target binding site to check for
clashes and binding pose. This idea is similar to the BREED [59] algorithm, which might be
adaptable to KinFragLib’s needs.

4.4 FAIR Pipelines and Tools in Kinase-Centric Drug Design

Computational pipelines and toolkits play a crucial role in modern drug discovery projects.
The design-make-test-analyze (DMTA) cycle [180] is a dynamic and time-sensitive endeavor
to progress with target campaigns and demands an interplay between many disciplines and
approaches. Computational drug design supports this process ideally with a customized pipeline
that often combines different methods from different toolkits and datasets from diverse resources.

The setup of such a complex pipeline can be difficult and time-consuming; feeding output
data from one tool as input to another is often not straightforward, data curation and standard-
ization is not trivial, tool documentation is not always user-friendly, and even finding a suitable
tool is sometimes hampered by simply not knowing the correct terminology. Once a pipeline
is set up, development shifts to maintenance: toolkits and databases change or sometimes dep-
recate causing broken pipelines, while users will always find another bug, requiring consistent
pipeline support. Last but not least, the (very welcome) advent of FAIR principles and software
best practices adds another layer of necessary skills.
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4.4.1 TeachOpenCADD: Distributing a FAIR Platform for CADD Pipelines

In 2019, we launched the teaching platform TeachOpenCADD on GitHub to (i) provide
Python code examples of common tasks in computer-aided drug design (CADD), which (ii)
are set up as pipelines to answer frequent research questions and (iii) use exclusively open
source resources to make the material accessible to everyone (with a computer and internet).
Such a platform can help with many of the aforementioned challenges by providing domain-
specific pipeline templates and teaching software best practices by example. The topics cover
cheminformatics and structural bioinformatics tasks, as well as life-science-focused database
queries. Each topic covers both theoretical background and practical programming in a single
Jupyter Notebook called talktorials (talk + tutorial) because they can be used as a tutorial but
also for presentations (denoted as T001 for the first talktorial). The material can be accessed via
the read-only TeachOpenCADD website [181], executed online via the Binder integration [182,
183], or excecuted locally via the TeachOpenCADD conda package [146].

We published Publication F [144] (Section 3.3.1) in 2019 with an initial stack of 10 talktori-
als mainly focused on topics from cheminformatics. In 2022, we published Publication G [145]
(Section 3.3.2) with another 12 talktorials extending on topics from structural bioinformatics
and database queries. Also in 2022, we released a kinase similarity edition of 6 talktorials with
Publication D [95] (Section 3.1.3) as already discussed in Section 4.2. The talktorials use
the kinase EGFR as an example but they are adaptable to other kinases and protein groups
(except for kinase-specific topics). As of September 2022, TeachOpenCADD covers 28 topics
(Figure 4.1):

In terms of database queries, we show how to communicate with the ChEMBL [71] (T001),
PDB [70] (T010), KLIFS [63] (T012), and PubChem [135, 184] (T013) databases and offer
a general talktorial on online API webservices (T011). In a case study, we demonstrate the
collection of EGFR kinase data from all these databases (Figure 2 in [145]).

In terms of cheminformatics, we show how to filter a compound dataset (retrieved from
ChEMBL in T001) using Lipinski’s Ro5 (T002) and flag unwanted substructures that can cause
mutagenic, reactive, or other unfavorable effects [166] or non-specific interactions with assays
(PAINS) [167] (T003). We show how to perform a similarity search for ligand-based screening
(T004), cluster compounds based on their similarity (T005), find the maximum common sub-
structure within the largest set of molecules as clustered in T004 (T006), and build machine
learning models to predict if ligands are active or not for a specific kinase (T007). We also intro-
duce one-hot encoding to represent ligands (T021) and utilize neural networks for ligand-based
screening (T022).

In terms of structural bioinformatics, we offer the following topics: binding site comparison
(T010), binding site detection (T014), protein-ligand docking (T015), protein-ligand interaction
detection (T016), molecular dynamics simulations and their analysis (T019 and T020), and
ligand-based ensemble pharmacophore modeling (T009). Throughout most of our structure-
based topics, we utilize the NGLview [80, 81] tool, whose features are introduced in a stand-
alone talktorial (T017). Finally, we propose an end-to-end pipeline that optimizes an input lead
molecule based on the best interaction profile from automated docking of similar molecules in
PubChem (T018).

The latest edition to TeachOpenCADD comprises a set of talktorials covering different sim-
ilarity measures as already discussed in Section 4.2. For a set of kinases (T023), we show how
to calculate similarities based on the KLIFS pocket sequences (T024), the KiSSim pocket struc-
ture fingerprints (T025), the KLIFS interaction fingerprints (T026), and kinase ligand profiles
(T027). We summarize the results in a final talktorial for in-depth comparison of these different
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perspectives (T028). Such a pipeline is applicable to any set of kinases and could be a default
task in the early stages of kinase projects. Note that the structure-based perspectives T025 and
T026 are currently only applicable to structures deposited in the KLIFS database.

Topics T001–T008, i.e., the ChEMBL and PDB queries as well as the early cheminformatics
topics, were also translated into KNIME workflows as described in Publication I [185] (Ap-
pendix 5.1.1). This format is optimal for users without coding experience, who seek to solve
these tasks in a drag-and-drop mode. Workflows can be assembled by stringing together small
pre-implemented code units (nodes) with predefined functionalities.

The TeachOpenCADD talktorials aim to reach novices to the field from all scientific disci-
plines; users with a computer science background might spend more time in the CADD theory
section, while users with a life science background might spend more time in the programming
section. The material can be used as teaching or learning material in different settings such
as the general classroom, individual student projects, or self-study; we have outlined potential
teaching setups in Publication J [186] (Section 5.1.2), a book chapter as part of the "Teaching
Programming across the Chemistry Curriculum" series. Furthermore, the talktorials provide
also a good starting point to support research questions, either by making use of parts of the
pipeline as a whole or by reusing only selected code bits for smaller operations. This versatility
of the platform makes it interesting to a wide audience within the community, as exemplified by
frequently posted GitHub issues, about 18000 article views [187], over 380 GitHub repository
stars (as of 2022-09-27) [188], and teaching feedback [186].

T018 Automated 
pipeline for lead 
optimization

Query target (EGFR)

T003 Molecular filtering: 
Unwanted substruct.

T008 Query PDB T009 Ligand-based 
ensemble 
pharmacophores

T010 Binding site 
comparison

Query ligand (Imatinib)

T002 Molecular 
filtering: ADME criteria

T001 Query ChEMBL

T005 Ligand clustering

T006 Maximum 
common substructures

T004 Ligand-based 
screening: Compound 
similarity

T007 Ligand-based 
screening: Machine 
learning

T011 Query online API 
webservices

T012 Query KLIFS

T022 Ligand-based 
screening: 
Neural 
Networks

T013 Query PubChem

T017 NGLViewT014 Binding site 
detection

T015 Protein-ligand 
docking

T016 Protein-ligand 
inter-
actionsT021 One-hot encoding

T019 Molecular 
dynamics simulations

T020 Molecular 
dynamics analysis

T023 What is a kinase?

Database queries
Cheminformatics
Structural bioinformatics
Kinase similarity

T024 Kinase similarity: 
Sequence

T025 Kinase similarity: 
Kinase pocket/KiSSim

T026 Kinase similarity: 
Interaction fingerprint

T027 Kinase similarity: 
Ligand 
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T028 Kinase similarity: 
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Figure 4.1: TeachOpenCADD topics T001–T028 as of September 2022 covering database queries
(blue), cheminformatics (green), structural bioinformatics (orange), and the special edition on
kinase similarities (yellow) [95, 144, 145].
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4.4.2 OpenCADD: Building a FAIR Toolkit for Structural Cheminformatics

Several projects discussed in this thesis (including KiSSim [141], KinFragLib [143], and
TeachOpenCADD [144, 145]) share some common building blocks. In such cases, moving these
building blocks to an external toolkit avoids rewriting the same code and allows maintenance in
one place. We achieved this as part of the open source OpenCADD project [189] that offers a
framework for stand-alone tools for structural cheminformatics. For example, the KiSSim and
KinFragLib projects both rely on the definition of subpockets within the KLIFS binding site
(Figures 1 in [141] and [143], respectively). Since both methods are independent of each other
—solving different research questions— we moved the code for the subpocket generation as a
stand-alone functionality to the OpenCADD toolkit, OpenCADD-pocket. This functionality
can be used now independently from the KiSSim and KinFragLib methods as well as kinases in
general.

KLIFS data queries are another example, which reaches far beyond the two aforementioned
projects. Instead of writing similar code bases that query the KLIFS database across different
projects, a more sustainable and efficient solution is to implement a stand-alone tool within
the OpenCADD toolkit, which has a well-designed application programming interface (API),
is properly maintained, and can be deployed to users working on kinase-focused projects that
build upon the KLIFS database. The OpenCADD toolkit holds to this date, the following main
modules:

• structure.pocket (OpenCADD-pocket) defines and visualizes protein (sub)pockets with
special functionalities for KLIFS structures.

• structure.superposition superimposes macromolecules using sequence and structural
information (work by Jaime Rodríguez-Guerra, Julian Pipart, Corey Taylor, Dennis Köser,
Annie Pham, and Enes Kurnaz) [190]; not discussed or used in this thesis.

• databases.klifs (OpenCADD-KLIFS) provides utilities to query the KLIFS database
locally and remotely.

The latter module, OpenCADD-KLIFS, has been published in Publication H [92] (Sec-
tion 3.3.3). OpenCADD-KLIFS offers a clean Python API to fetch kinase-focused data for
different data types such as kinases, ligands, structures, bioactivities, interactions, and drugs
by a variety of identifiers such as a kinase name, PDB ID, ligand expo ID [191] (or the equiva-
lent KLIFS kinase, structure, and ligand IDs). The returned dataset is formatted as a Pandas
DataFrame, a table-like data structure, that contains all the data type-associated annotations in
a standardized manner. This allows out-of-the-box downstream manipulation such as filtering
steps.

The Python API is identical between an online database query or an offline query within
a KLIFS download folder; this feature has been often used to switch from smaller online
queries during the development of a method to larger offline queries on a downloaded, time-
stamped KLIFS dataset. This tool has made accessing KLIFS data extremely convenient within
Python pipelines and has been used across multiple projects, including TeachOpenCADD [192],
OpenCADD-pocket [193], KiSSim [152], KinoML (structure-informed machine learning for ki-
nase modeling) [194], and PLIPify (protein-ligand interaction frequencies across structure en-
sembles) [195] .
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4.4.3 Advocating for Software Best Practices and FAIR Research

To maintain software projects and allow standards across multiple (old and new) contrib-
utors, we adhere to the following principles in the TeachOpenCADD project but also in the
other projects discussed in this thesis. The following list of guidelines is taken from Publica-
tion G [145]:

• Testing. Reproducibility is ensured by testing, in the case of software, if unit tests pass,
or in the case of Jupyter Notebooks, if they can run without errors and whether the output
of specific operations can be reproduced. For this purpose, we use the tools pytest [196]
and nbval [197].

• Continuous integration. We are testing the packages and TeachOpenCADD talktorials
regularly for Linux, OSX, and Windows and different Python versions on GitHub Ac-
tions [198]. This ensures identical behavior across different operating systems and Python
versions and also spots issues like conflicting dependency updates or changing outputs.

• Repository structure. The repository structure is based on the cookiecutter-cms tem-
plate [199], which provides a Python-focused project scaffold with pre-configured settings
for packaging, continuous integration, Sphinx-based documentation [200], and much more.
We have adapted the template for our Jupyter-Notebook-focused projects.

• Code style. We aim to adhere to the PEP8 [201] style guide for Python code, which
defines how to write idiomatic Python (Pythonic) code. Such rules are important so
that new developers or —in TeachOpenCADD’s case— talktorial users can quickly read
and understand the code. Furthermore, we use black/black-nb [202, 203] and linting
tools such as pylint [204] or flake8 [205] to format Python code and Jupyter Notebooks
compliant with PEP8.

Pipelines such as those offered within the TeachOpenCADD platform and toolkits such as
OpenCADD may in themselves not solve a real-world research question, however, they empower
users to implement their use cases faster and more robustly and make the interaction with
databases and toolkits smoother — thereby leaving more time and energy for the scientific
questions to solve.
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Chapter 5

Conclusion

Drug discovery is a complex, lengthy, and costly process with high failure rates. Computa-
tional methods try to mitigate these challenges in the early stages of drug discovery projects
to make predictions on (i) missing data, (ii) what data to generate next, and (iii) how to gen-
erate such data. In this thesis, I presented two novel data-driven methods for kinase research,
an important field to combat cancer, the world’s second leading disease. Both methods use
kinase pocket information from the KLIFS database to read across the structural kinome, i.e.,
KiSSim [141] for computational target prediction (reviewed in Publication A [22]) and Kin-
FragLib [143] for computational fragment-based drug design.

Section 3.1 addressed the lack of a kinase-tailored method that can encode and compare
the binding site accurately and facilitate its setup, maintenance, and incorporation into a larger
pipeline consisting of multiple perspectives on kinase similarity. In Publication B [141], we dis-
cussed the KiSSim method that can explain and predict kinome-wide off-targets and polyphar-
macology. The method can flag targets with similar binding sites beyond the traditional sequence
identity/similarity measures, which are usually applied during the target identification phase of
drug design campaigns. In Publication D [95], the structure-based KiSSim similarity mea-
sure is embedded into a pipeline with other measures, such as the sequence-, interaction-, and
ligand-based similarities; this automated process allows a production-ready off-target analysis
for a user-defined set of kinases. These two studies provide a refined and automated procedure
of the presented case study on kinase similarities in Publication C [142]. Beyond detecting
off-targets, KiSSim can help to highlight structural differences between a set of targets to inform
potential selectivity-driven ligand modifications during hit optimization. Given the availability
of structural ensembles of well-studied kinases, KiSSim can also be used as an analysis and
visualization tool for protein flexibility.

Using complementary information to tackle off-target prediction helps with KiSSim’s biggest
limitation: only about 300 out of the 500 kinases are structurally resolved, hence off-target
prediction covering the full kinome is not possible with KiSSim alone but can be complemented
with the methods as discussed in Publications C and D. We applied KiSSim primarily to kinase
structures in the DFG-in conformation because the majority (∼ 85%) of structures show this
state, allowing us to cover a wide range of kinases. However, KiSSim can also be applied to
DFG-out structures, which would be advisable, especially for projects that aim to target this
state.

Section 3.2 and Publication E [143] outlined how we contributed to kinase-focused
fragment-based drug design with the KinFragLib method. Ligands in complex with kinase
structures in the KLIFS database were decomposed with respect to the subpockets that they
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occupy to generate fragment pools for each kinase subpocket. This dataset is useful to ex-
plore the chemical space of subpockets and guide subpocket-informed recombination. In our use
case, we generated about 4 million novel and "Rule of Five" (Ro5)-compliant molecules based
on about 600 fragments, which included known kinase inhibitors that were not in the original
ligand set, underlining KinFragLib’s potential to generate novel kinase-focused molecules.

Selecting a diverse set of fragments is the heart of the project; the use case was based on clus-
ter representatives from a subset of deduplicated, Ro3-compliant, and "hinge-like" fragments.
However, more elaborate filtering steps can be applied as shown in Sonja Leo’s master thesis:
molecular complexity can be reduced while supporting druglikeness and synthesizability using
filters and tools such as unwanted substructures [166, 167], QED [168], SYBA [171], Enamine
REAL Space [169] searches, and ASKCOS [172]. Although users can already choose a fragment
or subpocket as a starting point for recombination, future development could facilitate this
process with a user-friendly interface besides the current command-line interface (CLI) option.
Another filtering step could include the consideration of spatial comparability of two fragments
within a binding site. Furthermore, Humer et al. [177] showed how their CIME web interface
helps to explore the KinFragLib fragments and recombined molecules interactively, which is a
useful tool next to our Jupyter-Notebook-based KinFragLib platform. Last but not least, Kin-
FragLib cannot only be useful in the context of kinase-focused fragment recombination but can
also serve as a focused fragment library for bioisosteric replacement. For example, the typical
hydrogen bond donor/acceptor patterns in AP fragments can be useful during hit optimization
phases in target projects beyond kinases.

The resulting datasets from the KiSSim and KinFragLib studies are publicly available in
[153] and [162], accompanied by Jupyter Notebooks showing how to read the datasets and doc-
umenting all the published analysis. Two considerations regarding the datasets are noteworthy
for future development: (i) Access to the results would be even easier if they were available via
a web application, optimally reachable via the KLIFS database itself, and (ii) integrating new
structural kinase data is possible but, as of now, no automated procedure is in place to provide
regular updates.

The subpocket-based exploration of the KLIFS dataset concerning pocket similarity (KiSSim)
and fragment space (KinFragLib) could be transferred to other target classes, which have con-
served binding sites and a decent amount of structural coverage, e.g., GPCRs or proteases. Such
transfer would require (i) the definition and alignment of binding sites across the target class,
and (ii) the definition of relevant subpockets.

Section 3.3 emphasized computer-aided drug design (CADD) as an integral part of the
iterative drug discovery process that has more and more data and data-driven methods at its
disposal. Reproducible and reliable pipelines can help to make the design-make-test-analyze
(DMTA) cycle faster and more efficient. To enable reproducible and reliable research, the
software projects in this thesis have been developed following the principles of FAIR research,
i.e., they are findable, accessible, interoperable, and reusable. Furthermore, the software adheres
to modern Python software best practices and is modular, tested, and packaged to facilitate
maintenance, contributions, and usage. This setup enables us the share CADD-relevant pipelines
and tools with the scientific community.

In Publications F and G [144, 145], we presented TeachOpenCADD as a FAIR plat-
form for the CADD community. TeachOpenCADD covers many common research questions
in CADD, ranging from pipelines for cheminformatics, structural bioinformatics, and database
queries that can be applied to a target of interest. Such pipelines can either be used to learn and
teach domain-specific concepts or to start solving real-world research questions. We outlined
how TeachOpenCADD can be used in a teaching setting in Publication J [186], as part of the
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"Teaching Programming across the Chemistry Curriculum" series. Furthermore, TeachOpen-
CADD is not only a rich resource for CADD pipelines and teaching material but it is also a good
example of how to set up websites, automated testing, and packaging for Jupyter-Notebook-
centric repositories. To provide also non-coding solutions, we showed in Publication I [185]
how some of the cheminformatics-based TeachOpenCADD topics were translated into KNIME
workflows, which allow stringing together code units (nodes) with defined functionality to an
easy-to-understand workflow.

The kinase-centric projects in this thesis were all based on structural data from the KLIFS
database. To avoid similar code scripts across all these projects that allow fetching data from
the KLIFS database, we introduced the tool OpenCADD-KLIFS in Publication H [92]. This
tool offers a user-friendly and concise Python API to query kinase data online (KLIFS database)
or offline (KLIFS download folder). Switching between these two modes is hassle-free thanks to
identical APIs.

Tools like this offer less scientific insights in themselves, however, help to make projects more
efficient, reliable, reproducible, and maintainable — this is what I enjoyed most throughout my
doctoral studies.
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Appendix

This thesis appendix consists of the following published and unpublished projects:

• Appendix 5.1.1: Published article [185] in the context of the TeachOpenCADD platform
describing the implementation of cheminformatics tasks as KNIME workflows.

• Appendix 5.1.2: Published book chapter [186] in the context of the TeachOpenCADD
platform outlining how TeachOpenCADD can be used in teaching.

• Appendix 5.2: Unpublished project called Ratar, a novel binding site comparison method.

• Appendix 5.3: Illustrations by Ferdinand Krupp on this thesis’ projects.
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5.1 Further Publications

5.1.1 TeachOpenCADD-KNIME: A Teaching Platform for Computer-Aided
Drug Design Using KNIME Workflows
Publication I

The TeachOpenCADD platform offers a variety of solutions to common questions in computer-
aided drug design in the form of Jupyter Notebooks. While the platform is intended also for users
new to programming, we publish with this article cheminformatics-related topics in the form of
KNIME workflows, which require no programming. Such workflows are built up by connecting
small pre-implemented code units (nodes) that have a defined and standardized functionality.
This drag-and-drop mode makes workflows easy and intuitive to set up.

� https://hub.knime.com/volkamerlab/spaces/Public/latest/TeachOpenCADD
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Drug Design Using KNIME Workflows. Journal of Chemical Information and Modeling. 2019;
59(10):4083-4089. 10.1021/acs.jcim.9b00662 (*contributed equally)
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license; further permissions related to the material excerpted should be directed to the ACS.
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ABSTRACT: Open-source workflows have become more
and more an integral part of computer-aided drug design
(CADD) projects since they allow reproducible and shareable
research that can be easily transferred to other projects.
Setting up, understanding, and applying such workflows
involves either coding or using workflow managers that offer a
graphical user interface. We previously reported the
TeachOpenCADD teaching platform that provides interactive
Jupyter Notebooks (talktorials) on central CADD topics using
open-source data and Python packages. Here we present the conversion of these talktorials to KNIME workflows that allow
users to explore our teaching material without any line of code. TeachOpenCADD KNIME workflows are freely available on the
KNIME Hub: https://hub.knime.com/volkamerlab/space/TeachOpenCADD.

■ INTRODUCTION

In computer-aided drug design (CADD), computational tools
are used to process and rationalize large and heterogeneous
data sets involving small molecules and macromolecules. For
this endeavor, open-access resources have gained momentum,
especially for setting up complex workflows, since they enable
modular, reproducible, and reusable research.
We recently reported the TeachOpenCADD1 teaching

platform (https://github.com/volkamerlab/teachopencadd)
that provides learning material for CADD using open-source
data and Python libraries. Central topics in CADD are covered
in the form of interactive Jupyter Notebooks that contain both
theory and code for each topic.
An alternative to code-based pipelines are workflow

managers that allow the design of protocols via an intuitive
drag-and-drop style graphical interface without the need for
coding. KNIME2,3 is a popular workflow manager for data
science with several open-source modules for CADD,4 while its
usage ranges from small in-house applications such as
compound library preparation to more complex workflow
applications integrating chemical, pharmacological, and struc-
tural information. An example of the latter is 3D-e-Chem,5,6

which allows, e.g., structure-based bioactivity data mapping of
kinase inhibitors or structure-based GPCR−kinase cross-
reactivity prediction.
Here we address users who aim to learn how to use KNIME

for CADD applications as well as users who desire to study
central CADD topics without necessarily learning how to code.
We report the conversion of the TeachOpenCADD Python
pipeline (talktorials T1−T8) to a KNIME workflow pipeline
(workflows W1−W8). The KNIME pipeline is publicly

available on the KNIME Hub: https://hub.knime.com/
volkamerlab/space/TeachOpenCADD (current release:
https://doi.org/10.5281/zenodo.3475086).

■ METHODS

KNIME (the Konstanz Information Miner) provides an open-
source data analysis, reporting, and integration platform.
KNIME enables users to create data workflows, execute
selected analysis steps, and check intermediate and final results,
models, and interactive views via a graphical user interface.
Coding is not required, since the workflows are built up by
stringing together small preimplemented code units (nodes)
with defined, tested, and thus standardized functionalities,
which can be configured with individual settings. In addition,
KNIME offers functionalities to design complex workflows in a
well-structured way via metanodes that encapsulate parts of a
workflow.
This work was developed using KNIME version 4.0.0 and

uses nodes from the KNIME Analytics Platform, KNIME
Extensions, and Community Extensions by RDKit3,7 and
Vernalis8 (RSCB PDB Tools).

■ RESULTS

The TeachOpenCADD KNIME pipeline consists of eight
interconnected workflows (W1−W8) in the form of
metanodes, each containing one CADD topic. The pipeline
is illustrated using the epidermal growth factor receptor

Received: August 8, 2019
Published: October 15, 2019

Application Note

pubs.acs.org/jcimCite This: J. Chem. Inf. Model. 2019, 59, 4083−4086

© 2019 American Chemical Society 4083 DOI: 10.1021/acs.jcim.9b00662
J. Chem. Inf. Model. 2019, 59, 4083−4086

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

D
ow

nl
oa

de
d 

vi
a 

D
om

in
iq

ue
 S

yd
ow

 o
n 

O
ct

ob
er

 2
5,

 2
02

1 
at

 0
9:

27
:0

3 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

Further Publications (Publication I) 217



(EGFR)9,10 but can easily be applied to other targets of
interest. Topics include how to fetch, filter, and analyze
compound data associated with a query target and are briefly
described in the following (Figure 1). For a detailed

description, we refer the reader to the initial TeachOpen-
CADD publication.1

First, compound data for the query target EGFR are
acquired from the ChEMBL web services11 (W1)12 and

Figure 1. The TeachOpenCADD KNIME pipeline offers eight KNIME workflows covering central topics in CADD while using open-source data
and KNIME nodes. This figure shows the graphical interface of KNIME, demonstrating the software’s visual potential.

Figure 2.Workflow composition shown for workflow W7 (ligand-based screening: machine learning). (a) Each workflow metanode is labeled with
a brief topic description and the main workflow steps. (b) The interior of each workflow metanode consists of an introduction, nodes organized in
boxes per step, node documentation, and output reports.
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subsequently filtered for drug-likeness using Lipinski’s rule of
five (W2). This filtered data set forms the basis for the
remaining workflows. Unwanted substructures that potentially
cause toxicity or nonspecific assay interactions are detected
(W3), and a similarity search for a ligand-based screen with the
EGFR inhibitor gefitinib as the query13 is conducted (W4).
Compounds are grouped using a hierarchical clustering
algorithm (W5),14 whereupon the maximum common
substructure is detected and visualized for the largest cluster
(W6).15 Additionally, machine learning approaches are
employed to build models for active compound prediction
(W7).16 Lastly, ligand−EGFR complexes are fetched from the
PDB web services17 and filtered by criteria such as structure
resolution (W8).18 The last two previously reported talktorials,
T9 and T10, were not translated to workflows because of their
extensive use of PyMOL, which is currently not supported in
KNIME.
The workflows can be examined and executed independently

from each other or as a pipeline. As shown in Figure 2 for W7,
each workflow is introduced with a brief topic motivation and
grouped into multiple steps using gray boxes that contain a
step description and all step-associated nodes labeled with task
descriptions. Results from intermediate steps (e.g., filtered
compound tables) or from final plotting nodes can be viewed
interactively and configured easily using the nodes’ graphical
interface.

■ CONCLUSION

The TeachOpenCADD platform offers learning material on
central topics of cheminformatics and structural bioinfor-
matics. In the present work, teaching material was translated
from code-based Jupyter Notebooks to KNIME workflows,
which have several advantages. KNIME workflows (i) are
knitted together from preimplemented nodes with stand-
ardized functionalities, (ii) are easy to understand because of
the visual representation of their architecture, and (iii) permit a
low-threshold entry for nonprogrammers to build customized
pipelines.
The TeachOpenCADD KNIME pipeline is suitable for self-

study training and classroom teaching but can also serve as a
starting point for workflows in research projects.
TeachOpenCADD is open for contributions and ideas from
the community with regard to both Jupyter Notebooks and
KNIME workflows.
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5.1.2 Teaching Computer-Aided Drug Design Using TeachOpenCADD
Publication J

The TeachOpenCADD platform offers solutions to common tasks in computer-aided drug
design, which are useful to novices in the field with all kinds of training backgrounds as well
as to advanced users who need templates for their research questions. In this book chapter, we
outline how the TeachOpenCADD material can be used in teaching settings such as classrooms,
individual student projects, but also self-training.
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Abstract

TeachOpenCADD is a teaching platform developed with students for students and
researchers. The material teaches how to leverage open source cheminformatics
and structural bioinformatics rsources to explore key questions in computer-aided
drug design (CADD). Both the theoretical and practical aspects of CADD
concepts are covered in interactive Jupyter Notebooks using Python. This setup
makes it easy for students from various fields of science to understand
computational drug design techniques with hands-on programming examples. In
this book chapter, we explain the motivation for putting the TeachOpenCADD
material together, how this teaching material can be and has been used in different
teaching formats, and what lessons we have learned so far.

Introduction

Data has never been produced at such speed and in such amounts, while new technologies
allow to digest this information and to put it to practical use. Thus, it is not surprising that data and
computational sciences, along with a new wave of AI solutions, protruded different research areas
including life sciences to analyze and maintain such large amounts of data (1–4). Needless to say
that this requires a change in teaching the next generation of scientists. Processing this information
demands knowledge of computational concepts and programming skills (see communications
regarding medicinal chemists competencies (3, 5–7)).

In this chapter, we focus on teaching material that introduces basic ideas of computer-aided
drug design (CADD). This research area uses techniques from cheminformatics and structural
bioinformatics to support rational and data-driven design of novel drugs (1, 8, 9). Note that different
but overlapping terms are used in this field when referring to exercises that involve computational
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approaches. When the emphasis is directed to areas more invested in the programmatic aspects,
terms such as cheminformatics and (structural) bioinformatics are commonly used. When the focus is
shifted towards the atomistic details, terms in use are computational chemistry, molecular modeling or
structural biology, depending on the molecular entities involved.

Drug discovery and development is a time and cost intensive process. Cost estimates range up to
2 8 billion US dollars spent and a duration of over 13 years before a new drug is approved (10–12).
This is associated to the fact that a high number of drugs fail in late stages due to problems with
safety and efficacy (13). Over the last decades, computers have become an integral part of the drug
development pipeline with the aim of rationally driving the design of more effective and less toxic
drugs. Computational methods have been shown to positively impact the drug design process (2, 8,
9, 14–16) . In silico techniques support especially the early phases, e.g., target and hit identification,
hit-to-lead optimization, as well as off-target and ADMETox predictions. This is often referred to as
the "fail early, fail cheap" principle, signaling the impact of using computational tools to prioritize
promising compounds early in the process.

CADD combines expertise at the intersection of chemistry, biology and pharmacology as well
as mathematics, data and computer sciences. In fact, techniques from the latter fields are applied to
data from the former areas to address questions in drug design and development. Training chemists
in computational skills that enable them to understand and comfortably handle such information is
becoming increasingly important in industrial as well as academic settings (17–19). Thus, especially
for audiences coming from a less technical background, it might be hard to enter the field partly
because focused and simple application examples are rare.

Our motivation for TeachOpenCADD (20, 21) has been to provide a starting point for students,
teachers and researchers from different fields and at different entry levels to become aware of the
CADD tools available. The material should enable them to study or teach the concepts of different
CADD tasks, with small and easy to follow collections of theory combined with code examples. We
use only open source software and data resources to remove any entry barrier. Thereby, we promote
open science and embrace the FAIR principles, i.e., findability, accessibility, interoperability, and
reuse of digital assets (22). Other prominent examples for such CADD or cheminformatics teaching
collections include the Chemistry Development Kit (CDK) (23, 24) or the Teach-Discover-Treat
(TDT) (25) initiative.

Throughout the chapter, more details about the TeachOpenCADD platform and the available
training material are given, including computational concepts and resources and an excerpt on
Python programming. Finally, different training settings and lessons learned from our own and other
courses are covered.

TeachOpenCADD Platform

The key idea behind the TeachOpenCADD platform is that the students work in an interactive
environment where they can learn about a topic’s theoretical background and perform practical
programming tasks in the same place. Integrating these different objectives is possible with interactive
Jupyter Notebooks (26). These are open source web applications to create and share documents that
can contain narrative text alongside live code, visualizations and equations. This setup is widely used
for exploring and communicating data science projects (27), and reflects what teaching is about:
exploring a new topic, at best including a small sample project, and communicating ideas, questions
and findings amongst students and teachers. This makes the application perfectly suited for
TeachOpenCADD and teaching in general (Figure 1).
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Figure 1. Structure of each lesson in TeachOpen CADD, exemplified by talktorial T002 that explores
ADME and lead-likeness criteria for filtering molecule data sets. (1) Aim of the talktorial, including content

and references, (2) Theory, (3) Practical with code examples, (4) Discussion, and (5) Quiz. Figure is
adapted from [(20), Fig. 2] (published under a CC-BY-4.0 license) and contains screenshots of

TeachOpenCADD talktorial T002 (published under a CC-BY-4.0 license) taken directly from the Jupyter
Notebook (published under a 3-clause BSD license).

The lessons within TeachOpenCADD are called talktorials, a combination of talk and tutorial
(inspired by a format at the RDKit User Group Meeting (28)). A talktorial is well suited both as
reading and presentation material (talk) together with simple code examples (tutorial). Each
talktorial follows the same structure, like a book chapter, covering the following sections: (1) Aim
of the talktorial, including content and references, (2) Theory, (3) Practical with code examples, (4)
Discussion, and (5) Quiz. An extract of an example talktorial is shown in Figure 1.

The TeachOpenCADD material is provided in different modes and is hosted on GitHub
(https://github.com/volkamerlab/teachopencadd). The easiest access to the material is the read-
only TeachOpenCADD website (https://projects.volkamerlab.org/teachopencadd/), which
renders the content of the notebooks in a static version. Additionally, the website groups the lessons
into collections, which allows the reader to focus on specific research questions. Furthermore, it
holds the instructions on how to install and access the Jupyter Notebooks for the interactive mode.
The latter allows to work with the material locally as well as collaboratively via GitHub (29). The
structure of the lessons and the different availability modes allow (i) to target a large audience from
beginners to advanced users in either programming and/or drug design, and (ii) to conduct different
study settings such as self-studies or classroom teaching.
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For cases where the lessons should not focus too much on programming, but on the drug design
operations, the first 10 lessons of the TeachOpenCADD material (20) have also been made available
as KNIME workflows (21) (not covered in this chapter). KNIME (30) is a workflow manager for data
science, with several open source modules for life science applications (31–33). We also encourage
people who have no or only little programming experiences to begin with introductory Python
lessons. Starting points could be the AI in Medicine material (34), extracted from a course provided
in the medical students curriculum at Charité, or other sources (35–37). For people interested
in more cheminformatics-related training material, we refer to other collections, blogs, and books
(38–40).

Training Material

We pursue two main goals with the TeachOpenCADD platform. First, we introduce
computational concepts and resources for common tasks in cheminformatics and structural
bioinformatics. This enures that the students understand CADD concepts and how these are
implemented and applied. This lso enables the students to interpret the results of a program with
respect to its scope and potential pitfalls. Second, students are taught how to actively use, adapt and
extend such concepts and resources in the context of Python programming. The TeachOpenCADD
platform is designed to empower students to read, understand and eventually write code. Note that it
is not a programming course, but it teaches programming by example while the students go through
the material, inspect and execute the code.

If students have no prior programming experience, we refer to the AI in Medicine repository
(34). Here, an entry level Python introduction paves the way to leverage the power of key Python
libraries for data science such as NumPy (41), Pandas (42), Matplotlib (43), and Scikit-Learn (44).
On the TeachOpenCADD platform, these libraries are used and combined with domain-specific
libraries to address tasks in chem- and structural bioinformatics. Examples include RDKit (45), a
cheminformatics library, or the ChEMBL and PDB web resource clients (46, 47) for data acquisition.
In the following section, we show examples on how the TeachOpenCADD and AI in Medicine
materials cover training in computational concepts and resources in CADD by using Python
programming.
Computational Concepts and Resources

TeachOpenCADD is organized in small lessons called talktorials. As shown in Figure 2, each
talktorial covers one topic from the following three areas: data acquisition (blue tiles),
cheminformatics (green tiles), and structural bioinformatics (orange tiles). Since this book focuses
on the chemistry curriculum, we discuss in this chapter talktorials on cheminformatics topics in
more detail together with a few examples from structural bioinformatics (see also the first
TeachOpenCADD publication (20)). However, please note that over time more talktorials covering
a broader range of applications have been added to the platform and the content is continuously
growing (dotted boxes in Figure 2 indicate the status as of May 2021).

The first set of TeachOpenCADD talktorials (T001-T007) can be knitted together to form a
typical CADD pipeline with the goal of finding active compounds against a query target. The pipeline
is showcased for the epidermal growth factor receptor (EGFR) kinase (48). The talktorials introduce
how to access compound and bioactivity data from ChEMBL (49) (T001), how to filter compounds
based on physicochemical properties (T002), and how to highlight unwanted substructures (T003).
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Molecular descriptors and measures for molecular similarity are explained and applied for a simple
similarity-based virtual screening (T004) as well as for compound clustering (T005). Next, found
clusters are inspected and rationalized using maximum common substructures (T006). Finally,
different machine learning (ML) models are built for a more elaborated screening pipeline to predict
active compounds against the chosen EGFR target (T007). On the structural bioinformatics side,
protein-ligand complexes are fetched from the PDB (50) (T008) and used to create ligand-based
ensemble pharmacophores (T009). Finally, geometry-based binding site comparison allows the
exploration of potential off-targets (T010).

Figure 2. Overview of TeachOpenCADD talktorials, covering data acquisition (blue), cheminformatics
(green) and structural bioinformatics (orange) topics. The first 10 talktorials have been published in 2019

(20), while another 10 talktorials are work in progress and will be released in 2021 (dotted boxes). Figure is
adapted and extended from [(20), Fig. 1] (published under a CC-BY-4.0 license).

Table 1. TeachOpenCADD Talktorial Indices with Short Description of the Topics from the
First TeachOpenCADD Publication (20)

Index Content

T001 Fetch compound and bioactivity data from the ChEMBL database

T002 Filter compounds based on ADME criteria using Lipinski’s Rule of Five

T003 Detect unwanted substructures related to toxicity, reactivity and PAINS by SMARTS patterns

T004 Encode molecules as MACCS and Morgan fingerprints and perform similarity search based on
Tanimoto and Dice metrics

T005 Cluster compounds using the Butina algorithm and select a diverse compound subset

T006 Find maximum common substructures in a compound set using the FMCS algorithm

T007 Predict active compounds for a target of interest using ML models (RF, SVM, NN)
T008 Fetch structural data from the PDB database

T009 Identify common pharmacophoric features for a set of ligands

T010 Detect off-targets based on geometry-based binding site comparison
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Thanks to the talktorials’ modularity, it is possible to not only use them as a pipeline but also to
work with them independently. In the following, the cheminformatics-centric talktorials are shortly
discussed. They cover compound databases, descriptors, similarity, activity prediction and
substructures. Talktorials on structural bioinformatics are commented on afterwards. A talktorial
summary is given in Table 1.
Compound Databases

Getting started with a CADD project requires to know where to find compound and bioactivity
data and how to access it. Students are introduced to different compound resources with a focus on
the ChEMBL database (49). ChEMBL is a curated open source chemical database containing over
two million compounds and over 17 million bioactivities (version ChEMBL 28). In this context,
computer-readable compound notations like SMILES (51) and measured bioactivity values like
the IC50 (half maximum inhibitory concentration) are discussed. After becoming familiar with
ChEMBL, the students learn how to access the database programmatically and how to filter the
obtained chemical and bioactivity data using RDKit functionalities (T001). An overview of the
talktorial goal and the programmatic tasks covered in T001 is given in Figure 3 with a few code
examples, all taken directly from the respective Jupyter Notebook.

TeachOpenCADD introduces also other databases such as the PDB (50) (T010), a database
for biological macromolecular structures. Furthermore, new talktorials are currently being included
covering PubChem (52), the largest collection of freely accessible compounds, and KLIFS (53),
which integrates structural data of kinases and their interactions with co-crystallized inhibitors.

Figure 3. Overview of the goal and practical programming tasks of TeachOpenCADD talktorial T001
(published under a CC-BY-4.0 license) is displayed alongside coding examples taken directly from the

Jupyter Notebook (published under a 3-clause BSD license).
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Compound Descriptors

When receiving a data set, usually basic questions arise such as: How many compounds are
in the data set? What kind of physicochemical properties do they have (e.g., molecular weight,
number of hydrogen bond donors/acceptors or logP)? Which compounds are potentially orally
bioavailable, following Lipinski’s Rule of Five (54)? These questions are addressed in talktorial
T002. The composition of a data set, i.e., the chemical similarity or diversity of the compounds, is
often investigated next. For many computations, molecules need to be transformed into computer-
readable formats. Prominent examples for such encodings are molecular fingerprints (T004). Those
fingerprints are often bit vectors that encode the presence or absence of pre-defined rule-based
substructures as in MACCS fingerprints (55) or of circular atom environments as in Morgan
fingerprints (56, 57).
Compound Similarity

Many tasks in cheminformatics revolve around the assumption that similar compounds may
bind to similar targets, and thereby exert similar biological effects. Thus, it is of interest to find similar
compounds with respect to a query compounds as shown in talktorial T004 (virtual screening using
similarity search). Similarity measures taught are the popular Tanimoto and Dice metrics (58), e.g.,
calculated based on the molecular fingerprints of the molecules. Furthermore, the composition of a
data set can be analyzed by clustering the compounds based on distances between their molecular
fingerprints. Representative compounds can then be extracted to build a more diverse subset. This is
shown in talktorial T005 using the Butina clustering algorithm (59).
Compound Activity Prediction

Relationships between the structure and physicochemical properties of a compound and its
bioactivities are not necessarily linear, as assumed in the simplified similarity search. Thus, machine
learning (ML) methods are applied to learn the non-linear patterns distinguishing active from
inactive compounds in a labelled training data set. In talktorial T007, students are taught how to
build standard ML classification models to predict if a new compound is active or inactive against a
query target. Discussed supervised classification models are random forest (RF) (60), support vector
(SVM) (61), and neural network (NN) classifiers (62).
Compound Substructures

Medicinal chemists are well trained in finding and understanding important or critical
substructures in a molecule by eye. Encoding such knowledge computationally can help to screen
large data sets and to highlight important substructures for quick visual inspection. On the one hand,
pre-defined substructures, e.g., encoded via SMARTS patterns (63), can be used to flag or filter
molecules (T003). Such substructures can include knowledge from medicinal chemistry on toxicity
and reactivity (64) or on pan-assay interference (PAINS) (65) of tested compounds. On the other
hand, mutual substructures in a set of compounds can be used to assess chemical diversity or to
define a common core fragment for structure-activity-relationship (SAR) studies. Thus, in talktorial
T006, students are introduced to a maximum common substructure (MCS) search algorithm (66) to
rationalize the commonalities within the clustered compounds.
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Structural Bioinformatics – A Glimpse

In the first set of talktorials (20), we cover three topics from structural bioinformatics, including
data acquisition from the PDB (T008), ligand-based pharmacophores (T009), and off-target
prediction (T010). Similarly to the ChEMBL query (T001), we introduce the Protein Data Bank
(PDB) (50) and how to programmatically access structural data from it (T008). Exemplified by the
EGFR target, ligand-bound structures are fetched from the PDB. Furthermore, structural alignments
are performed to access and save a superposed set of ligands for further analysis. In T009, the
concept of ligand-based pharmacophores (67) is introduced and the superposed ligands are reused.
Pharmacophoric features, which describe potential interactions such as hydrogen bond donors,
acceptors, and hydrophobic contacts, are detected for each of the ligands. Furthermore, ligand-based
ensemble pharmacophores are generated by clustering the individual pharmacophores in 3D space.
Such a pharmacophore model could be used for virtual screening against a compound database to
find compounds that match the predefined pharamcophore features. The third talktorial (T010)
covers simple geometry-based binding site comparison to predict off-targets (68). Off-targets are
proteins that interact with a drug or (one of) its metabolite(s) without being the designated target,
potentially causing unwanted side effects.

Further talktorials from the upcoming 2021 release include topics such as binding site detection
(69), protein-ligand docking (70), protein-ligand interaction detection (71), and structure
visualization in Jupyter Notebooks using NGLview (72).
Python Programming

Introducing novices to programming, i.e., being able to read, understand and produce code,
involves multiple layers. Depending on the students’ background, some content may already be
familiar but a refresher on the basics is usually beneficial. These layers of increasing complexity
include the following ideas.

1. Introduce basic programming concepts and define corresponding terms: What is meant by
variable, data structures, flow control, function, or module?

2. Exemplify the respective programming language syntax: How do we actually write all this
as Python code?

3. Explore the scope of available libraries: How can we import external code? Which libraries
are widely used in the community? What functionality do they provide?

4. Introduce best practices: With a bit of coding experience in mind, how do we write code
that will be easier to understand and reusable by ourselves and others in the future?

The TeachOpenCADD platform itself is not meant as a Python programming course but
demonstrates how to solve concrete tasks programmatically. Instead, our AI in Medicine repository
(34) offers introductory talktorials on Python basics and important data science libraries, covering
the previously described layers. This knowledge is then extended by domain-specific applications
and libraries in eachOpenCADD. Furthermore, we lead by example and introduce Python best
practices. We enforce them in all published talktorials and encourage them in all the students’ hands-
on exercises. In the following, we discuss a few of the Python programming talktorials from the AI
in Medicine repository (34), as summarized in Table 2. Note that there are other excellent Python
programming resources such as the "Python for Chemists" course set up by the GDCh/CIC team
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(35), the "MolSSI Education Resources" assembled by the The Molecular Sciences Software Institute
(MolSSI) (36), or the "Core Lessons" offered by the Software Carpentry (37).
Python Introduction

In the talktorial "Python Programming: Introduction to the Language" (73), we demonstrate
how to use Jupyter Notebooks and we introduce Python data structures. This introduction covers
how to assign variables and perform operations on them, to index and slice lists, and to create and
alter dictionaries. We talk about flow controls, by taking decision with if-else conditions and by
repeating actions with for-loops. Last but not least, we show how to reuse code by defining and
calling functions. We end the lesson with a short teaser on the power of importing external libraries,
which is discussed in detail in the material discussed below.
Data Science Introduction

NumPy (41), Pandas (42), Matplotlib (43), and Scikit-learn (44) are widely used versatile
libraries for data science. They deserve an introduction regardless of whether they will be used in
context of cheminformatics or not. After a short introduction to the scientific computing package
NumPy, we dive right into Pandas for data manipulation and analysis with easy-to-navigate tabular
rendering in Jupyter Notebook ("Python Programming: NumPy/Pandas" (74)). Data slicing is
introduced, i.e., selecting data by columns and rows and grouping data by a category of interest.
This is complemented by showcasing easy and quick plotting options in Pandas. For more advanced
plotting scenarios, students can take a look at the detailed talktorial "Python Programming: Data
Visualisation using Matplotlib" (75). Additionally, "Python Programming: Machine learning using
Scikit-learn" (76) gives a brief overview on building predictive machine learning models.
Best Practices Introduction

In many cases, learning to write code that solves a task comes first and only after a considerable
amount of time the somewhat advanced programmer gets in touch with coding best practices. These
include idiomatic conventions for Python code (Pythonic code) (77), version control with Git (78),
and collaborative work processes on platforms like GitHub (29). In order to make our students aware
of such best practices, we provide some guideline materials (79), focusing on idiomatic Python style,
version control with Git and collaboration on GitHub.

Table 2. Selected Programming Resources and Keywords
Topic Keywords

Python introduction (73) Variables, flow controls, functions, libraries

Data science introduction

NumPy/Pandas introduction (74) Data analysis and manipulation

Matplotlib introduction (75) Data visualization

Scikit-learn introduction (76) Machine learning

Best practices introduction (79) Jupyter, Python, Git
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Training Settings

The TeachOpenCADD material has been developed with the intention to enable many different
training settings with different levels of complexity and required skills. The material can be used for
student courses at the university in an online or offline general classroom setting. Thereby, the material
can easily be adapted to the course duration and number of participants. Likewise, the setting can
be transferred to a student internship or rotation in research groups (individual student project setting).
Furthermore, students and researchers can use the material in self-study settings to find their way
into the field of CADD or to advance their knowledge in a certain area. Finally, the material can
serve as a starting point for adaptions to the users’ own research questions. Since the material covers
introductions as well as advanced tasks, it can be used by both beginners and more advanced users.
In the following, some of these settings are outlined with concrete examples for varying levels of
complexity.
General Classroom Setting

Proposed frameworks for using TeachOpenCADD in a classroom setting are summarized in
Figure 4. In the following, we will discuss the individual training phases, levels of complexity
depending on the students’ background, and explain our own course setup while teaching
bioinformatics master students. Please refer to the section Lessons learned when using the
TeachOpenCADD material for suggestions on how to set up the work space based on the scope of
the course.

Figure 4. Proposed training settings for classrooms with different levels of complexity based on the students’
background (low, intermediate and high complexity indicated by the light green/blue boxes): In the
orientation phase, the teacher introduces the students to programming, assigns TeachOpenCADD

talktorials and defines tasks (a-c). The students work on their tasks during the hands-on phase (d) and
present their results in the presentation phase (e).
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Orientation, Hands-On, and Presentation Phases

We propose to use TeachOpenCADD in a classroom setting divided into orientation, hands-on,
and presentation phases.
Orientation Phase

The teacher gives a basic introduction into programming concepts, enabling the students to at
least read and understand code. Then, the available talktorial(s) are assigned to the individuals or
groups, alongside pre-defined exercises that the students are supposed to work on (Figure 4 a-c).
Potential levels of complexity are discussed later in detail. This phase involves a fair amount of input
by the teacher and can take a day or longer depending on the level of input detail.
Hands-On Phase

After the introduction and orientation, the students get the chance to dive into their topics.
This starts with understanding and executing their assigned talktorials, followed by working on the
given exercises (Figure 4 d). The teacher is available for questions and discussions, e.g., during Q&A
sessions with the whole group, subgroups or individuals. The duration of this phase can be adapted
to the level of the tasks’ complexity and the students’ background.
Presentation Phase

The course finishes with the student presentations, in which they exchange their newly gained
knowledge. Every student has the opportunity to walk the group through their talktorial(s),
explaining the topic’s theoretical background and the aim of the exercise as well as demonstrating
the code, if applicable (Figure 4 e). In order to facilitate a lively discussion during and after the
presentations, it can be beneficial to promote a few students to be the respective session’s chairs
(rotating per presentation). This ensures that there will be questions to discuss.

Note that the teacher could also choose to walk the students through the available talktorials in a
lecture style and to let the students work on small exercises in between. In this case, the orientation,
hands-on, and presentation phases would be more intermingled.
Levels of Complexity

The complexity of the training settings, including the given exercises, can easily be adapted to the
students’ background.
Low Complexity

The teacher introduces basic Python programming concepts and assigns one or more talktorials
to each student. The teacher hands out small coding exercises or questions of understanding, closely
related to the practical part covered in the talktorial. Examples could be as follows:

• T001: Starting point is the retrieval of bioactivity data from ChEMBL for the kinase EGFR.
The students’ task could be to apply the notebook to another target such as the SARS-
CoV-2 spike protein. This involves finding the respective accession ID in the UniProt
database (80), rerunning the notebook, and analyzing the results.
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• T003: Based on the substructure searches discussed in this talktorial, students could
discuss how these substructures are encoded as SMARTS patterns. These patterns could
then be interactively explored using the SMARTS Plus webserver (81).

• T004: This talktorial teaches different compound encodings and similarity search.
Students could rerun the talktorial with a novel set of compounds to find the most similar
compounds to a new SMILES query.

This complexity level with the proposed exercises would fit also nicely in cases where the teacher
chooses to go through the talktorials together with the students.
Intermediate Complexity

Each student is assigned one talktorial to explore a topic and asked to extend the existing content
with a related but independent task. In this intermediate state, students should produce their content,
i.e., their first lines of code, more independently. If such an extension should be shared amongst the
students or with the teacher for review on GitHub, programming best practices and version control
tools should be added to the Python introduction (79). Note that this is optional depending on the
students’ and teacher’s background and can be seen as a transition to the higher complexity setup.
Examples for such related but independent tasks could be:

• T004: Starting point is the encoding of compounds as MACCS and Morgan fingerprints,
with the aim of finding similar compounds to a query using the Tanimoto and Dice
metrics. Students could research and apply alternative fingerprint encodings or similarity
measures; and discuss their pros and cons.

• T007: Starting points are the introduced machine learning methods to prioritize
potentially active compounds. Students could try to optimize the random forest (RF)
models, for example fine-tuning the hyper-parameters, or investigate which features (i.e.,
fingerprint bits) were most important for the RF classification.

High Complexity

In this scenario, the setup is similar as in the level before, including the Git/GitHub and Python
best practices introduction. However, the students do not extend an existing talktorial but create a
new one from scratch. This includes composing the theory and programming part adhering to the
TeachOpenCADD talktorial template (82). Examples could be as follows:

• Perform a principle component analysis (PCA) to visualize the chemical space of a given
compound data set.

• Build a regression model that predicts compound bioactivities trained on a given
compound data set with known bioactivity values. Discuss applications for classification
(T007) vs. regression models.

Bioinformatics Seminar Setup

Once a year, we offer a CADD seminar for Bioinformatics Master students. Since they come
from diverse Bachelor study programs, they exhibit mixed scientific backgrounds. Some training
programs are more on the biology/chemistry side, while others are more on the computational side.
Thus, the level of practical experience in Python programming can also differ largely. The course
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stretches over one semester with (bi-)weekly sessions of 2-3 hours with roughly 10-12 students.
Normally, all sessions are offered in person. Students are presenting or working on their notebooks
with the option to ask questions when needed. During the SARS-CoV-19 pandemic, our sessions
took place via video calls.

(i) Introduction: On the first day, we start with an introduction to CADD, Python
programming, best practices and Git/GitHub (79). Then, topics are assigned to the
students. Note that we started from scratch in the first year, so naturally we offered a list of
new topics. Beginning with the second round, the topics are often related to existing
talktorials, however some can cover new terrain. Students pick their topics of interest.
Next, they take a look at related TeachOpenCADD talktorials (if available) and study
literature (distributed by us) to get familiar with the theoretical background of their topic.

(ii) Short topic presentations: In the second seminar, everyone shortly pitches their topic to the
class in a 15 minutes presentation using a medium of their choice.

(iii) Working on talktorials: During the following three weeks, students work on their talktorials,
which follow the same setup as the existing talktorials. They cover the aim of the talktorial
including a table of contents and references, the theoretical background, the practical
coding part, discussion and quiz (adhering to the TeachOpenCADD talktorial template
(82)).

(iv) Q&A sessions: We are available during the Q&A sessions (once a week for 2 to 3 hours) to
discuss problems, questions and ideas. Students are asked to submit their talktorial
progress to GitHub regularly using pull requests (see (79)). This way, we can review the
content and code and they gain practical experience with version control and code reviews.

(v) Presentation of established talktorials: The last three sessions are reserved for the student
presentations where each student has 30 minutes to present the talktorial and take
questions. Per presentation, three students are assigned as session chairs to ensure that
there are questions to discuss. Note that the names of the students and other contributors,
who worked on the published talktorials, are mentioned in the respective talktorials.

Individual Student Projects

The setting described for classrooms is also applicable to individual student projects such as
internships in a research group. Note we used this setup mostly as a follow-up of the seminar
described above. If students were interested in continuing working on talktorials, they joined for a
two month research internship. Nevertheless, the setup is equally suitable for interested students
who are preferably familiar with installing software. These students begin with studying the available
TeachOpenCADD material on their own. Depending on their background they might also start
with an introduction to Python programming (see Table 2). After assigning a topic, similar as in the
classroom setting, the students start getting familiar with the selected topic, studying the respective
literature and composing the outline of their talktorial. In regular meetings, the supervisor is available
for questions and checks if the students understand the material. Once the foundation is laid, the
students can start working on their topics, while following the TeachOpenCADD talktorial template
(82). The students share their work and progress continuously via GitHub allowing for code reviews
by the supervisor. At the end of the internship, the students present their work to the group in the
context of a regular group seminar to discuss their results and challenges.
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Self-Study Setting

Judging from individual feedback we received, the probably most frequent setting is using
TeachOpenCADD for self-study. As mentioned before, the TeachOpenCADD material is available
in three interaction modes. First, users can inspect the TeachOpenCADD material in a read-only
mode via our website, which contains rendered versions of the talktorials. This allows everyone who
is interested in learning more about the CADD concepts to have starting material, covering theory
and practical examples in one place. Second, users can run the talktorials remotely in an executable
environment called Binder (83) or in Google Colab (84), if they want to get first-hand experiences
without any installation hurdles. Third, users can download the TeachOpenCADD material locally
to execute and modify the Jupyter Notebooks. Besides the teaching character, each talktorial solves
an important research question on its own, and/or can be stacked together to a drug design pipeline.
Thus, it can be used as a starting point for individual research projects. In that regard, the talkorials
also inspire the work of people in our group. This is true especially for those who just started because
there is a central place, TeachOpenCADD, to look up common tasks in cheminformatics and
structural bioinformatics.

Lessons Learned When Using the TeachOpenCADD Material

In the previous sections, we have laid out the pedagogical foundations of our CADD courses,
which ultimately led to the creation of TeachOpenCADD. Alongside the didactic challenges, we
also found technical hurdles that might hinder the teaching and learning experience. This section
will hopefully clarify some of these details. Furthermore, experiences from colleagues that used the
material are summarized.
Installation and Setup: Reduce Entry Barriers

The first barrier the students face when trying to learn CADD is often simply getting started.
Setting up the work space in their own computers, which includes installing and configuring certain
pieces of unfamiliar software. This can be a daunting task that involves many new concepts, such as
Python distributions, dependencies, versions or package managers. For some students, this might be
their first exposure to programming or even a command-line interface. As a result, teachers need to
be mindful and tailor the learning environment to their students’ background.

Throughout the years, we taught CADD courses and seminars for bioinformatics students, the
AI in Medicine (34) course for medical students and workshops in the BB3R graduate program (85)
for pharmaceutical and other students. Thus, we have gained experience with different approaches
suitable for different contexts: beginners, intermediate and advanced.

For the complete beginners, we recommend avoiding any kind of local installation altogether.
To this end, we refer our users to our website, which includes all the content needed to understand
the CADD techniques in theory, and peek at the code involved. However, it does not provide an
interactive environment, which means that no code will be written or executed.

For the intermediate stage, interactivity can be provided installation-free through services like
Binder (83) and Google Colab (84). Both tools allow to import the notebooks directly from the
public repository via GitHub URLs. It is a good compromise for casual access to the lessons, but it
might create some friction for the students. In Binder, the start-up time can be lengthy, while for
Google Colab signing up for an account is required. If resources allow, it would be advisable to engage
the IT team. They could set up a local installation on computers available in the facilities or configure
a Jupyter Hub (86) instance on the university premises for remote access.
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For more advanced users, we have decided on using conda packages to easily install
TeachOpenCADD in local instances. These are available for Linux, Windows and MacOS, but
require a pre-existing Miniconda or Anaconda (87) installation. That said, once that requirement is
satisfied, the whole installation takes two commands (88).
Establish Conventions

While developing the TeachOpenCADD content together with the students, we encountered
that individuals have different narrative styles, which makes it hard(er) to follow a set of lessons.
Besides, more work from us is needed to make them publication-ready and maintain them. Thus,
over time, we enforced more and more that all of our content strictly follows the same structure. This
is done deliberately to maintain homogeneity across lessons. Every new lesson added is created from
our own template (82) to ensure the resulting table of contents is consistent with the existing content.

We also strive for consistency in the Python code we provide (79). We adhere to the established
idiomatic conventions of the community (77, 89) and emphasize their importance early on the
coursework. While we believe that discussing the full style guide for the chosen language might be
excessive for introductory materials, we do think some key aspects are necessary. In particular, why
style is important, and how to name variables, document functions and use whitespace adequately.
Review Student Work in a Programmatic Way

One of the aspects we cover in our courses is how to collaborate (79) on programming projects
through the GitHub (29) platform. This handles version control for the project, i.e., an annotated
history of changes made in the lessons along time. The review mechanisms implemented on the
site (named pull requests) are useful to provide both general and granular feedback on the student
submissions. This can be done once (like a final graded evaluation) or –ideally– incrementally to
guide the students through the different phases of the submission (define scope, cover theoretical
background, implement code needed to solve exercises). Since we work with Jupyter Notebooks, we
recommend using the ReviewNB add-on (90) for a better review experience. This can arguably be
one more thing to learn in the coursework, but in our opinion the expertise obtained by following
industry-standard processes can help in transitioning to other career paths and is worth the
investment.
Experiences from Courses with Different Backgrounds

Introducing CADD in different curricula involves dealing with very diverse backgrounds. Some
of the students might have had exposure to more technical computing before, but others might
be facing a command-line interface for the first time. Some students might be able to execute
instructions in the terminal so they can install the dependencies needed for the coursework. Others
might struggle with how to copy and paste commands in a text-based interface.

We include here feedback from colleagues who used the material in the context of a course
for chemistry/chemical biology as well as pharmacology/pharmacy students. Both courses ran for
one semester and had between 15 and 45 students enrolled. In both setups, the TeachOpenCADD
material was used in parts, i.e., ideas that fit to the respective curriculum were extracted and adapted,
if needed. The former course considered parts of the Jupyter Notebooks, which were provided via
a central JupyterHub instance, running on a virtual server hosted by the respective IT center. The
latter course covered parts of the KNIME workflows, which were installed locally by the students
themselves. The teachers introduced the topics first, while the students followed on their own Jupyter
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Notebooks or KNIME workflows, respectively. Then, the students were given individual exercises
inspired by or identical to the given material (i.e., even running the whole KNIME workflow on their
own target). While the overall feedback was positive, some reported challenges included the need for
a basic Python introduction. We covered the latter already in more detail in this book chapter through
the AI in Medicine material. Depending on the students’ background, this could be considered an
extra preceding course in the future. Other feedback was related to slow response times from web
services that are queried, which unfortunately is not in our hands. Given no prior experience with
KNIME, workflows with a lot of nodes can be overwhelming at first. Students benefited from getting
a short demo and then building a small workflow themselves with only a few nodes. Subsequently,
they worked on the more complex TeachOpenCADD KNIME workflows.

Given the feedback we also conclude that for the typical chemistry/pharmacy students’
background, it could be advantageous to simplify the questions. We suggest that this can be
smoothed by digesting the individual assignments into layered questions of increasing complexity.
For example, instead of asking to write code to "search ChEMBL for compounds highly similar to a
given query compound", one could create the following subtasks:

• What is the SMILES representation of a chemical compound?
• How can you encode it in a machine readable version (molecular fingerprints)?
• How would you compare two compounds that might be similar? Do you know of any

metric to calculate this quantitatively?
• Are there any databases that allow you to search for similar compounds?
• What methods can you use to query databases programmatically?
• Define a function that, given a SMILES string, will query a database of your choice for

chemical compounds with a similarity above a chosen threshold (e.g., 90%).
Conclusion

The TeachOpenCADD platform is a rich resource for training material on common tasks in
cheminformatics and structural biology. Jupyter Notebooks cover both computational concepts
and resources as well as Python code in one place (talktorials). In case an entry level introduction
to Python programming is needed, the TeachOpenCADD material can be supplemented by
introductory talktorials from the AI in Medicine material. Due to the narrative and coding character
of the talktorials, the material can be used in many different ways depending on the given training
setting and the students’ background. In this book chapter, we have outlined different possible
training scenarios from low to high complexity and reported our own and our colleagues’
experiences with the material. We are happy to help you if you consider using TeachOpenCADD
in your teaching curriculum. TeachOpenCADD is a living resource. In case used packages or web
services (91) change or get deprecated, we are noti fied thanks to automated notebook checks
(continuous integration (92)) that run nightly or thanks to our users via GitHub issues. Both
notification systems are public to everyone. We ourselves or external contributors have been and
will continue working on fixing such issues to provide fully-functional teaching material.
TeachOpenCADD is not only maintained but is also continuously updated, as part of our teaching as
well as project related work. Contributions from the community are always very welcome.
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5.2 Further Projects

5.2.1 Ratar: Read-Across the Targetome

The unpublished work on "Read-Across the Targetome" (Ratar) was conducted as part of the
DFG project 391684253 [206] alongside the aforementioned published work, i.e., the review on
computational target prediction (Section 1.2.1) and projects such as KiSSim (Sections 3.1.1 and
3.1.3), KinFragLib (Section 3.2.1), TeachOpenCADD (Sections 3.3.1, 3.3.2, 5.1.1, and 5.1.2),
and OpenCADD (Section 3.3.3).

The preliminary results from this early stage development of Ratar will be presented in this
section. The associated software described here is open-sourced on GitHub in the context of the
ratar Python package [161].

Introduction

How to probe and validate a potential pathway or target remains one of the key questions in
basic research in life sciences. Often these investigations lack suitable chemical tool compounds
for the elucidation of the function of a specific protein. Platforms such as Guide to Pharma-
cology [90, 207] and Chemical Probes Portal [208] summarize known tool compounds, while
consortia such as the Structural Genomics Consortium [147] and Target 2035 [149, 209–211]
have formed to generate novel tool compounds for the validation of biological targets.

While these efforts will continue to summarize and generate experimental results, compu-
tational solutions can offer a fast and cheap alternative for the generation of a comprehensive
set of tool compounds for novel targets. Tools for computational target prediction have been
discussed in Section 1.2.1 and reviewed in detail in Sydow and Burggraaff et al. [22] (Publica-
tion A). While ligand-based target prediction methods focus only on the similarity between small
molecules, structure-based methods take into account information from protein binding sites.
Shortcomings of the latter methods include either long runtime or non-compliance with FAIR
principles; i.e., the tools are not available at all or for free usage, the tools are only available via
a webserver but not as a stand-alone tool to be incorporated into pipelines, or the setup and
maintenance is difficult. As part of the "Read-Across the Targetome" (Ratar) project, we aim
to overcome these challenges and deliver a fast and FAIR target prediction tool. The project’s
hypothesis is based on the similarity principle, i.e., similar pockets bind similar compounds. The
goal of using protein pocket similarity is to extrapolate compound information from one target
to another.

The query target’s binding site is encoded and compared to a dataset of proteins with pre-
calculated binding sites. The most similar proteins are proposed as potential off-targets; tool
compounds that act upon these top-ranked proteins can be suggested as tool compounds for
the query target (Figure 5.1). Hence, this approach performs two steps, i.e., (i) using the query
binding site to screen all structurally known binding sites for similarities (protein-to-protein
relationship), and (ii) extracting all tool compounds reported to bind to the top-ranked binding
sites (protein-to-ligand relationship).

Such an approach can be used to assist in central life science questions such as:

1. Which proteins are most similar to my target of interest? Such investigations can give
insights into undesired off-targets, open opportunities for polypharmacology, or provide
ideas on the function of understudied targets.

2. Are there chemical probes/tool compounds available for my query target? Any drug
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Figure 5.1: Schematic depiction of the "Read-Across the Targetome" (Ratar) objectives: Read-
ing across the pocketome of structurally resolved proteins provides a list of potential off-targets,
i.e., the targets that are most similar to a query target with respect to their binding site. Known
binders to these top-ranked targets can build a focused compound screening library to study
the query target.

discovery project needs suitable tool compounds to establish affinity assays and to provide
a starting point for the drug candidate’s desired chemistry.

3. How can I set up a focused screening library for my target of interest that has no known
ligands? High-throughput screens can be expensive regarding time and money; both can
be saved if the screening library effectively covers the chemical space of related targets.

As part of this thesis, the methodology to read across the proteome — to help answer
question 1— is outlined and discussed in the context of some preliminary results.

Methods

To enable fast and efficient pocket comparison, a new vector-based approach for protein
structure comparison was implemented, which is inspired by the Ultra-Fast Shape Recognition
(USR) method [154] for fast and transformation-invariant small molecule shape comparison.
The USR method is moment-based and uses relative atom positions. Four reference points are
calculated with respect to all ligand atoms, which are called here representatives: the centroid
(c1), the atoms closest to and farthest from the centroid (c2 and c3) as well as the atom farthest
from the farthest atom (c4). Next, the first three moments —the mean distance, the standard
deviation, and (the cube root of) the skewness— of the distances from all atoms towards the
four reference points are calculated, resulting in a 12-bit fingerprint. The USR-based molecule
encoding procedure is outlined in Figure 5.2a. Finally, the similarity between two molecules Sqi

is described by an inverse Manhattan distance between the three moments of inertia of the four
reference points M q

l and M i
l :

Sqi =
1

1 + 1
12Σ

12
l=1|M

q
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Figure 5.2: Translation of the (a) ligand-encoding method USR [154] to the (b) pocket-encoding
method Ratar: The molecule (ligand or binding site) has representatives (ligand atoms or pocket
Cα atoms or pseudocenters), which are the basis for defining reference points: centroid (c1),
closest and farthest atoms from c1 (c2 and c3), and farthest atom from c3 (c4). Distances from
each reference point to all representatives are calculated and each reference point’s distance
distribution is reduced to the first three moments, resulting in a 12-bit fingerprint. The molecule
representations in (a) are adapted from Figure 1 in Ballester and Richards [154].

The USR method has two modifications: (i) The Chiral Shape Recognition (CSR) [212]
method replaces the USR’s reference point c2 by the cross product of the two vectors c3 −
c1 and c4 − c1 to distinguish enantiomers. (ii) The ElectroShape [213] method incorporates
electrostatic properties of the molecule using charge information as a forth dimension. Reference
points are defined as in the CSR method carrying three spatial and one charge dimension. The
CSR reference point resulting from the cross product does not represent an atom and therefore
carries no inherent charge; ElectroShape defines this reference point twice with the same spatial
coordinates and its forth dimension a positive and negative charge each. This procedure results
in five four-dimensional (4D) reference points in total.

The concepts of the USR, CSR, and ElectroShape methods —collectively termed USR meth-
ods from hereon— are translated from molecules to binding sites and extended with the Ratar
method as depicted in Figure 5.2b. In the following, the Ratar method refers to the novel bind-
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ing site comparison tool that is inspired by the USR methods, and the Ratar framework refers
to the collection of (re-)implementations of the USR methods and the novel Ratar method.

Molecule. While the USR method and its derivatives use all ligand atoms, the Ratar
framework uses all binding site atoms. In this study, binding sites (pockets) are defined as
in the scPDB, i.e., by all residues with at least one atom within 6.5 Å of any atom of the
co-crystallized ligand [214]. Ratar’s evaluation is based on a benchmark set of similar and
dissimilar binding sites, containing 769 pairs of nonredundant similar binding sites and 769
pairs of nonredundant dissimilar binding sites as defined by Weill and Rognan [160] to evaluate
the binding site comparison tool FuzCav.

Representatives. The Ratar framework offers different options to define the binding site
representatives: (i) the pocket’s Cα atoms (ca), (ii) the residues so-called pseudocenter atoms
(pca), which carry physicochemical importance for binding, or (iii) aggregated pseudocenters,
i.e., aggregate multiple atoms belonging to one pseudocenter (pc), e.g., aromatic ring center
for pc instead of six aromatic ring atoms for pca. The concept of pseudocenters was intro-
duced by Schmitt et al. [215] to condense the physicochemical properties of residues to five
essential features, i.e., hydrogen bond donor and acceptor, mixed donors/acceptors, as well as
hydrophobic aliphatic and aromatic contacts. The assigned features per amino acid including
all feature-related atoms are summarized in Table 1 in [215].

The representatives’ dimensions range from 3D (3 spatial coordinates) as used in the USR
and CSR methods, 4D (3 spatial coordinates and 1 charge coordinate) as used in the Elec-
troShape method, and 6D (3 spatial coordinates and 3 physicochemical coordinates) as defined
for the Ratar method. The physicochemical properties are represented in the Ratar method by
Z-scales [159, 216], which are the first principal components of a multivariate characterization of
the amino acids and showed good performance in a descriptor benchmark study by van Westen
et al. [217].

Reference points. To find the exact position of a point in Rn, distances to n + 1 fixed
reference points are needed [213]. The Ratar framework offers different options to define refer-
ence points: Reimplementations of the reference points used in the (i) USR, (ii) CSR, and (iii)
ElectroShape methods as discussed earlier, which serve as baseline methods. In addition, (iv)
the Ratar method with its six-dimensional atoms uses seven reference points, i.e., the represen-
tatives’ centroid (c1), closest point to c1 (c2), furthest point to c1 (c3), furthest point to c3
(c4) and the normalized cross products between vectors between atoms c1− c4 as described in
Figure 5.3.

Distances. For each reference point, distances are calculated for all representatives as de-
scribed for the USR methods. This results in one distance distribution per reference point with
as many values as representatives. For example, a binding site with 30 Cα atoms (representa-
tives) and seven reference points is described with seven distance distributions; each distance
distribution consists of 30 distances between one reference point to all representatives.

Moments. Each distance distribution is condensed to the first three moments, i.e., the
mean distance, the standard deviation, and (the cube root of) the skewness. The moments are
concatenated to a single fingerprint: The USR, CSR, ElectroShape, and Ratar methods result
in a binding site fingerprint of 12, 12, 15, and 21 bits, see examples in Figure 5.3.

All binding sites of the FuzCav data set were encoded with these different encoding schemes:
the USR (3D), CSR (3D), ElectroShape (4D), and Ratar (6D) methods using different represen-
tatives as a starting point, i.e., Cα atoms, pseudocenter atoms, and pseudocenters, resulting in
12 different fingerprint setups. Fingerprints are compared pairwise using the inverse Manhattan
distance as reported for the original USR method.



Further Projects (Ratar) 251

Centroid 
(c1)

Atom closest 
to c1 (c2)

Atom furthest 
to c1 (c3)

Atom furthest 
to c3 (c4)

m1 m2 m33D
USR

6D
Ratar

Centroid 
(c1)

Atom closest 
to c1 (c2)

Atom furthest 
to c1 (c3)

Atom furthest 
to c3 (c4)

m1 m2 m3 ...

...

c5 = a x b
(normalized)

c6 = b x c
(normalized)

c7 = a x c
(normalized)

m1 First moment (mean)
m2 Second moment (variance1/2)
m3 Third moment (skewness1/3)

12 
bits

21
bits

a

b

c

Figure 5.3: Fingerprint composition used for the USR method [154] (originally developed for
ligand encoding and here applied to binding sites) and the Ratar method (here proposed for
binding site comparison).

Results

The pairwise comparisons between pairs of similar and dissimilar binding sites as published
by Weill and Rognan [160] (called here FuzCav dataset) show the following performance: As
shown in Figure 5.4a, the Ratar method performs with an area under the curve (AUC) of about
0.61. It performs as well as the pocket-adapted methods USR, CSR, and ElectroShape based
on receiver operating characteristic (ROC) curves showing the rank performance of similar
pairs. At this point, the binding site representation method —Cα atoms, pseudocenters, or
pseudocenter atoms— had no significant influence on performance. Figure 5.4b shows selected
setups as distance histograms, i.e., the pocket-adapted USR and Ratar method for Cα atoms
and pseudocenters: (i) The dissimilar pairs show a distribution shifted to lower similarity scores
compared to the similar pairs, which is the desired behavior. (ii) The binding site representations
show no significant impact on the distance distributions. (iii) The similar pair distribution is
broader using the USR than the Ratar method (less pronounced also observed for the dissimilar
pair distribution), which shows that some similar pairs are more difficult to detect than dissimilar
pairs. (iv) The Ratar distributions are narrower than their USR counterparts (with a stronger
effect for similar than dissimilar pairs).

Discussion and Conclusion

The current status of the Ratar framework contains the following baseline methods: re-
implementations of the USR, CSR, and ElectroShape methods, which were adapted to encode
pockets instead of ligands, and the novel Ratar method, which extends the pocket-adapted USR
methods with Z-scales. We used the FuzCav dataset to assess the performance of these different
setups; even though we can see that dissimilar pairs overall are assigned to lower similarity
scores than similar pairs, the dataset cannot be separated properly, yet, as reflected in an AUC
of about 0.61.
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(a) ROC curves showing the performance to distinguish similar from dissimilar structure pairs based on
different comparison methods: Binding sites represented as Cα atoms (ca), pseudocenters (pc) Schmitt
et al. [215], or pseudocenter atoms (pca) and encoded by applying the ligand-based USR, CSR, Elec-
troShape methods to pockets as well as the USR-extension Ratar.
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(b) Histograms for selected comparison setups showing similarty scores between pairs of similar (blue)
and dissimilar (blue) pairs: Binding sites represented as Cα atoms and pseudocenters and encoded with
the USR and Ratar methods.

Figure 5.4: (a) Performance of pocket-adapted USR [154], CSR [212], ElectroShape [213] meth-
ods as well as (b) the novel Ratar [161] method, evaluated using the similar and dissimilar
structure pairs as published by Weill and Rognan [160].
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Encoding full binding sites with only one fingerprint might be too coarse-grained. The next
step in this project should be to perform the encoding on overlapping binding site patches. This
would potentially help to (i) represent the binding sites more accurately, and (ii) allow rational-
izing which regions within a binding site pair showed the highest similarities (if any). Further-
more, using the FuzCav dataset should only be the beginning. To ensure proper benchmarking
against existing binding site comparison tools, Ratar should be tested on the ProSPECCTS [218]
benchmark study, which provides comprehensive benchmark datasets and reports performances
of published tools.
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5.3 Project Illustrations

In the following, we append Ferdinand Krupp’s illustrations that were not included in the
main part of this thesis (Figures 5.5–5.10).

Figure 5.5: Computational target prediction as illustrated by Ferdinand Krupp, adapted from
TOC figure in Sydow et al. [22].
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Figure 5.6: Multi-target screening as illustrated by Ferdinand Krupp, adapted from TOC figure
in Schmidt et al. [142].
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Figure 5.7: Kinase similarity pipeline as illustrated by Ferdinand Krupp, adapted from TOC
figure in Kimber et al. [95].
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Figure 5.8: TeachOpenCADD as illustrated by Ferdinand Krupp, adapted from TOC figure in
Sydow et al. [144].
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Figure 5.9: TeachOpenCADD-KNIME as illustrated by Ferdinand Krupp, adapted from TOC
figure in Sydow et al. [185].
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Figure 5.10: OpenCADD-KLIFS as illustrated by Ferdinand Krupp, adapted from Figure 1 in
Sydow et al. [92].
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