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Abstract

Cancer is one of the major public health issues, causing several million losses
every year. Although anti-cancer drugs have been developed and are glob-
ally administered, mild to severe side effects are known to occur during
treatment. Computer-aided drug discovery has become a cornerstone for
unveiling treatments of existing as well as emerging diseases. Computa-
tional methods aim to not only speed up the drug design process, but to
also reduce time-consuming, costly experiments, as well as in vivo animal
testing. In this context, over the last decade especially, deep learning began
to play a prominent role in the prediction of molecular activity, property and
toxicity.

However, there are still major challenges when applying deep learning
models in drug discovery. Those challenges include data scarcity for physic-
ochemical tasks, the difficulty of interpreting the prediction made by deep
neural networks, and the necessity of open-source and robust workflows to
ensure reproducibility and reusability.

In this thesis, after reviewing the state-of-the-art in deep learning ap-
plied to virtual screening, we address the previously mentioned challenges as
follows: Regarding data scarcity in the context of deep learning applied to
small molecules, we developed data augmentation techniques based on the
SMILES encoding. This linear string notation enumerates the atoms present
in a compound by following a path along the molecule graph. Multiplicity
of SMILES for a single compound can be reached by traversing the graph
using different paths. We applied the developed augmentation techniques to
three different deep learning models, including convolutional and recurrent
neural networks, and to four property and activity data sets. The results
show that augmentation improves the model accuracy independently of the
deep learning model, as well as of the data set size. Moreover, we computed
the uncertainty of a model by using augmentation at inference time. In this
regard, we have shown that the more confident the model is in its predic-
tion, the smaller is the error, implying that a given prediction can be trusted
and is close to the target value. The software and associated documentation
allows making predictions for novel compounds and have been made freely
available.

Trusting predictions blindly from algorithms may have serious conse-
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quences in areas of healthcare. In this context, better understanding how a
neural network classifies a compound based on its input features is highly
beneficial by helping to de-risk and optimize compounds. In this research
project, we decomposed the inner layers of a deep neural network to identify
the toxic substructures, the toxicophores, of a compound that led to the tox-
icity classification. Using molecular fingerprints —vectors that indicate the
presence or absence of a particular atomic environment —we were able to
map a toxicity score to each of these substructures. Moreover, we developed
a method to visualize in 2D the toxicophores within a compound, the so-
called cytotoxicity maps, which could be of great use to medicinal chemists
in identifying ways to modify molecules to eliminate toxicity. Not only does
the deep learning model reach state-of-the-art results, but the identified toxi-
cophores confirm known toxic substructures, as well as expand new potential
candidates.

In order to speed up the drug discovery process, the accessibility to robust
and modular workflows is extremely advantageous. In this context, the fully
open-source TeachOpenCADD project was developed. Significant tasks in
both cheminformatics and bioinformatics are implemented in a pedagogical
fashion, allowing the material to be used for teaching as well as the starting
point for novel research. In this framework, a special pipeline is dedicated to
kinases, a family of proteins which are known to be involved in diseases such
as cancer. The aim is to gain insights into off-targets, i.e. proteins that are
unintentionally affected by a compound, and that can cause adverse effects
in treatments. Four measures of kinase similarity are implemented, taking
into account sequence, and structural information, as well as protein-ligand
interaction, and ligand profiling data. The workflow provides clustering of a
set of kinases, which can be further analyzed to understand off-target effects
of inhibitors. Results show that analyzing kinases using several perspec-
tives is crucial for the insight into off-target prediction, and gaining a global
perspective of the kinome.

These novel methods can be exploited in the discovery of new drugs, and
more specifically diseases involved in the dysregulation of kinases, such as
cancer.
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Chapter 1

Introduction

1.1 Deep learning today

Machine learning, and more specifically deep learning, has penetrated every
aspect of our society, from art to science and technology. Colossal businesses,
such as Amazon [6] or Netflix [7], use deep learning algorithms extensively
and thrive on it. For example, they are able to suggest to clients new movies
or TV shows in the case of Netflix, or new purchases in the case of Amazon,
that fit nearly perfectly the client’s taste. But how about science, and more
specifically healthcare and drug design?

Artificial Intelligence (AI) builds algorithms that enable them to solve
human tasks [8], and it is believed that AI is revolutionizing science [9]. To
some extent, it is. A notable example is AlphaFold, the AI system developed
by Jumper et al. [10] to tackle the protein structure prediction problem.
Proteins, macromolecules made of chains of amino acids, are involved in
several aspects of living organisms, such as catalysis and cell signaling. The
structure —the three dimensional atomic coordinates —plays a crucial role in
the function of a protein. The structure prediction problem, which emerged
in the 1960s, was classified as one of the greatest challenges to be solved in
the computational sciences [11] and aims at determining the structure of a
protein based on its amino acid sequence. In 2021, Jumper et al. [10] won the
14th Critical Assessment of protein Structure Prediction (CASP14) [12] by
training extensively a deep neural network and therefore accurately solving
the protein structure prediction problem.

In this chapter, we introduce the concepts of machine learning and deep
learning, discuss the main reasons why deep learning has become such a great
success, and explore how it is being applied to drug design. More specifically,
we see how in silico methods —methods relying on computer simulations
—can be used to improve drug design. We also discuss the challenges and
shortcomings that are inherent to deep learning models. Finally, we present
the goals and objectives of this thesis.

1



2 CHAPTER 1. INTRODUCTION

1.1.1 Deep learning in the landscape of machine learning

Machine learning (ML) aims at computationally learning a task from data by
optimizing a performance measure. In this sense, ML is an approach to AI
[13]. Within ML, there exist three main categories [14]: (1) Unsupervised
learning, in which the goal is to find patterns of the underlying structure
and gain interpretability of the data. (2) Reinforcement learning, in
which an agent evolves in an environment and uses the data learned from
experience. (3) Supervised learning, in which an algorithm is trained on
inputs to predict some labeled output. The latter is the focus of this section.

Traditional supervised ML methods follow the idea that given some data,
a predictive model is constructed by optimizing the difference between a
given labeled output and the output predicted by the model. Some of these
methods date back to the last century. For example, neural networks were
first developed in the 60s by Rosenblatt [15]. Later, in the 80s, Breiman et al.
[16] published the book Classification and regression trees. In the 90s, Cortes
and Vapnik [17] introduced support vector machines (SVMs) and more re-
cently, in the early 2000s, Breiman [18] proposed random forests (RFs).

Deep learning (DL) [13] is a subset of ML in which the input features are
combined using hidden layers that constitute a network. Each hidden layer
is made up of a linear and a non-linear part, the non-linear part called the
activation function. The information then propagates through the network.
Figure 1.1 displays a high level abstraction of a neural network with three
hidden layers. The resulting predictive model is highly flexible and is able
to extract complex patterns thanks to the non-linearities. More details on
the types of neural networks are discussed in Section 2.2.2.

1.1.2 The success of deep learning

Over the last decade, words such as "machine learning", "deep learning",
and "AI", have been used in many situations, from scientific articles to con-
ferences, newspapers, blog posts, podcasts, and social media in general. The
attraction to deep learning, which led to its popularity, may be explained by
several factors:

1. Computing power: Over the last few years, computing technologies
have evolved rapidly. Since the first GPU (Graphics Processing Unit)
in 1999, Nvidia [19] and other companies have created more powerful
GPUs. Commercially available and similarly priced models underwent
a twenty-fold increase in processing power, such as Nvidia’s GTX 480
in 2010 vs. RTX 3070 in 2020. In 2015, Google developed TPUs
(Tensor Processing Units), a technology adapted for their deep learn-
ing framework TensorFlow [20]. This hardware evolution accelerated
the training of deep neural networks extensively. For example, in the
case of the well-known neural network AlexNet [21], training takes 1.5



1.1. DEEP LEARNING TODAY 3

Figure 1.1: Abstraction of a deep neural network. The inputs are lin-
early combined, activation functions applied iteratively to produce an out-
put. In this figure, the input vector contains six units, there are three hidden
layers of four, three, and two units respectively, to produce a single value
output.

seconds per mini-batch with a CPU (Central Processing Unit) with
8 threads, while only 0.042 seconds with a single GPU [22, Table 7].
Although the hardware necessary for large scale experiments, such as
the one from AlphaFold, is extremely expensive, multiple options now
exist to access GPUs or TPUs for free, for instance Google Colab [23].
This makes developing and testing deep learning models available to
the whole world.

2. Data: Over the last decades, data has become abundant. Firstly be-
cause of digitalization; what may have been stored on paper in the last
century has now been digitized, making data available for processing
and analysis. Secondly, data collection has been automatized, increas-
ing the amount of data gathered every day. Lastly, data storage is also
increasing; current hardware, such as external hard drives, can store
dozens of TB (terabyte) [24]. Cloud storage has also become popular,
allowing easy remote access to files and data [25].

3. Research: The basic machine learning framework is very generic and
allows input of very varied forms. This motivated numerous fields to re-
search how to integrate machine learning methods into their workflow.
In both academia and in industry, labs around the world have devel-
oped data and models that fit their needs. Moreover, the algorithms
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themselves have improved. As described by Chollet [26], first the acti-
vation functions, the weight initialization schemes, and the optimiza-
tion schemes and then batch normalization and residual connections
improved back-propagation. More details on deep neural networks are
given in Chapter 2.

4. Software development: Multiple algorithms necessary for model
training and testing have been developed since the 60s [15–17] and
are now fully integrated in easy-to-use libraries such as Scikit-learn
[27], Keras [28], PyTorch [29], and TensorFlow [20]. In-built function-
alities allow the building and training of deep neural networks in just
a few lines of code, such as depicted in Keras’ documentation [28].
Not only are these libraries well-documented and functional, but also
open-source and free. Additionally, GPU-centric languages such as
CUDA [30] are well-documented for frameworks like TensorFlow and
PyTorch. This simplifies greatly the training of models on GPUs. Al-
though Google’s platform TensorFlow was the leading framework for
deep learning in 2015, PyTorch has recently experienced a tremendous
boost and has been used over TensorFlow in research since 2019, as
shown in Figure 1.2 taken from He [31]. The shift probably comes from
the simplicity of PyTorch, which fits the Python ecosystem, resembling
Numpy [32], as well as a stable, well-designed API (application pro-
gramming interface).

5. Growing community: The communities built around data science
and AI in general have blossomed around the world. Just to name a
few, Kaggle [33] is one of the leading platforms for all levels of machine
learning challenges. Hugging Face [34] is an AI community which offers
a wide variety of data sets and models. And the WiMLDS (Women
in Machine Learning and Data Science) organization promotes world-
wide women and gender minorities in machine learning, setting up
hackathons, networking events and workshops.

Considering all the above-mentioned points, there is no surprise that
deep learning, and more generally machine learning, have gained so much
popularity over the last few years.

1.2 Machine learning in drug design

Machine learning has been integrated into several areas of healthcare, among
which drug design campaigns are no exception.
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Figure 1.2: PyTorch getting more popular than TensorFlow. The two
well-known deep learning frameworks have diverging trends. While Tensor-
Flow was widely popular in 2018, PyTorch has risen since. The figure is
taken from He [31].
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1.2.1 Drug design

Rational drug design, as opposed to serendipitous discovery based on trial
and error, is the process of designing a drug for a disease, and it commonly
consists of two main stages: drug discovery and drug development [35], which
themselves can be divided into different steps, described below:

Firstly, a biological target, referring to a protein under investigation,
which is often dysregulated in a disease, is identified. This step is usually
referred to as target identification and validation [36]. Secondly, a set of
molecules that could alter the behavior of the target are selected. These
molecules, considered active against the target, may come from an existing
database of synthesized substances or a number of other "hit finding" strate-
gies. Among these molecules, a subset of the most promising ones is selected
for further investigation, the lead molecules. These are altered to fit even
better the target at hand, commonly known as optimized lead compounds.
A bioactive compound refers to a molecule with a biological effect, and can
be experimentally identified using, for example, target-based assays [37]. Fi-
nally, the selected molecules are tested for their behavior in an organism
disease model and for the following properties relevant to human pharma-
cology: absorption, distribution, metabolism, excretion, and toxicity, also
known as ADMET [38]. This cycle completes the drug discovery stage. The
end goal is to produce drug candidates that bind well to the target, that are
efficient, non-toxic, and with the least potential for side effects (selective).

The second part of drug campaigns deals with the development of the
drug, involving further animal preclinical testing, regulatory filings, clinical
trials, market authorization, and finally reaching manufacture and market
access.

The whole process is time-consuming as well as costly: on average, it
takes 15 years for a drug to reach the market, and close to $5 billion is spent
by pharmaceutical companies on the design and development of drugs when
the cost of failures is factored in [39]. Moreover, toxicity checks require in
vivo animal testing, for which in silico alternatives should be sought, allowing
to reduce the number of animal tests.

1.2.2 Computer-aided drug design

In this context, computer-aided drug design can be extremely advantageous.
In silico methods assist the drug design process by modeling certain stages,
reducing time, costs, and the required amount of animal testing [40]. In the
following, we describe how computational methods can be applied to drug
design.

The structure of a protein corresponds to the 3D atomic coordinates and
determines its biological function. The Protein Data Bank (PDB) database
[41, 42] stores protein structures determined using technologies such as X-
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Figure 1.3: Virtual screening workflow. Starting from large databases of
molecules, compounds and proteins are numerically encoded, permitting the
application of deep learning models for activity prediction. Virtual screening
allows the rapid selection of promising molecules. The figure is adapted from
Kimber et al. [1].

ray crystallography, nuclear magnetic resonance (NMR) [43], or cryo-electron
microscopy (cryo-EM) [44]. When selecting a protein structure for further
investigation, the structure should be 1. as high resolution as possible in the
case of an X-ray structure, 2. it should be as complete as possible, i.e. no
missing residues, 3. and, presuming the target of interest is not a mutant,
the structure should also be a wildtype protein, i.e. a protein with no mu-
tated residues. However, if no structure exists for a given target, homology
modeling [45] is a computational method that produces a structure based
on the amino acid sequence of the target and another protein template for
which a structure does exist. This provides a first example of the necessity
of computational models in drug design.

In the second stage of drug discovery, in the case of the selection of
promising molecules, high-throughput screening [46] is a lab experiment that
tests properties of compounds, such as activity against a given target. Al-
though it can be efficient (millions of compounds can be screened using
robotics), these large scale experiments are expensive and not all targets
may be suitable for high-throughput screening. Alternatively, virtual screen-
ing can be applied. This method aims at computationally screening large
databases of molecules, and using machine learning models, predicts the ones
that are potentially active against a given target. Such a method allows to
rapidly select, for further investigation and testing, compounds at minimal
cost. Figure 1.3, adapted from [1], displays a simplified virtual screening
workflow. Virtual screening is commonly split into two categories: 1. lig-
and-based methods that focus on the ligand, i.e. a small molecule that binds
to a macromolecule forming a complex. These methods, also commonly
referred to as quantitative structure-activity relationship (QSAR) model-
ing [47, 48], have become a cornerstone in computer-aided drug discovery.
2. structure-based methods, for which a target structure is needed. In struc-
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ture-based drug design, it is believed that structure, the three dimensional
geometry, holds more information than sequence, the linear enumeration of
the amino acids. Moreover, within structure-based methods, molecular dock-
ing [49] is a modeling technique that predicts the position and orientation of
a small molecule, when it is bound to a protein, and ranks the compounds
that are likely to bind the target. As discussed in greater detail in Section
2.1.1, this split can be further refined and take into account not only the
ligand-based and the structure-based methods, but also pair-based meth-
ods, which lie at the intersection, treating the ligand and the target as two
independent entities.

Finally, in silico methods can also be applied to toxicity predictions [50].
As shown in Chapter 4, machine learning models have been trained to iden-
tify the toxicity of certain substructures of molecules. Being able to assess
the toxic behavior of compounds early in the drug discovery process could
help to reduce additional in vivo experiments.

Although research has shown the efficacy of these methods, there are still
challenges that remain, which are discussed in the next section.

1.2.3 Machine learning-based challenges in drug design

Computer-aided drug design is often used in drug campaigns to guide the de-
sign process and help to prioritize and optimize the most promising molecules.
However, no model is perfect, and in this section we discuss challenges that
are faced when applying machine learning models to drug design.

1. Data scarcity: While we are living in the era of "big data", and pub-
lic data sets containing several million data points are freely available
(see Section 1.1.2), the contrast with drug design is evident. While the
Open Images V4 data set [51] used for image classification contains over
9 million images, the size of the data sets that contain a molecule, label
pair are much smaller. For example, the ESOL data [52, 53], which
consists of measured water solubility and is important in drug design
for the distribution of a compound in an organism, contains solely
1, 128 data points. One reason that could explain the data deficit such
as ESOL is that obtaining values from experimental data requires so-
phisticated machinery in labs, expertise, and manpower, which in turn
is expensive and time-consuming. Approaches to overcome this chal-
lenge have been developed through, for example, data augmentation
techniques. More details on this topic are given in Chapter 3. How-
ever, not every data set exploited in drug design is so limited and there
are databases that store large amounts of bio-measurements data. For
example, the latest version to date of ChEMBL [54] (version 30) con-
tains 14, 855 targets, 2, 157, 379 distinct compounds, and 19, 286, 751
activities [55], and is commonly used for activity prediction [56]. Al-
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though containing large amounts of data, the coverage per target varies
greatly, ranging from single to hundreds of data points.

2. Data heterogeneity: If data is available, then it could be very het-
erogeneous. Such is the case with the ChEMBL database [54]. The
activity measurements are reported using different metrics, different
units, different assay parameters, which requires thorough data pre-
processing. The provenance of the data can play an important role
in the non-uniformity of the labels. Indeed, experimentally measured
values can differ greatly, since they are intrinsically sensitive to assay
conditions [57]. Results may very well vary from one experiment to an-
other, not only when conducted in the same lab (inter-day), but also
if the same experiment was conducted in separate labs (intra-lab).

3. Molecular encoding: As discussed in greater details in Section 2.2.1
(Chapter 2), molecules, regardless of their size, are complex objects
obeying chemical, biological, and physical rules. One great challenge
is the encoding of such objects in a computer readable format. While
small molecules might be somewhat easier to encode, for example
SMILES—simplified molecular-input line-entry system[58] —is a popu-
lar encoding, it becomes challenging when dealing with macromolecules,
or proteins. Not only do they contain ten of thousands of atoms, re-
quiring more storage, but they are also dynamic by essence.

4. Model interpretability: Deep learning models are highly flexible and
provide predictions for a given task. However, they are often considered
as a black box, and the prediction that is given for an input might seem
like magic. This phenomenon increases with the depth of the neural
network: the more layers, the more complex the system, the more the
mechanism in the inner layers might be opaque. Trusting the outcome
of a black box-like model can have serious consequences in areas such
as healthcare [59], such as the (mis)diagnosis of a disease that has a
direct impact on human lives [60]. In order to overcome such issues,
methods have been developed to better understand the prediction of a
model. Chapter 4 is dedicated to this topic and introduces an approach
based on the decomposition of the inner layers of a deep neural network
to explain the toxicity classification.

5. Closed/proprietary source code & data: As mentioned in Sec-
tion 1.1.2, machine learning has grown remarkably popular, and conse-
quently, many data sets and models have been made purposely avail-
able, but free and open-source science is not the norm in drug de-
sign: from proprietary data which hinders reproducibility and bench-
marking, to licensed and priced software, therefore not accessible to
everyone, and finally closed-source models, and model implementa-
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tion, which again greatly affect reproducibility and transparency. For
the reusability of workflows and the reproducibility of results, widely
applying the FAIR —Findability, Accessibility, Interoperability, and
Reusability —principles [61] is a first step towards the promotion of
open-source science. Pipelines following these principles are described
in detail in Chapter 5.

1.3 Kinases as drug targets

Cancer remains one of the main causes of death in the world. As shown in
Figure 1.4 taken from Roser and Ritchie [62], over 10 million people globally
died in 2019 because of cancer, behind cardiovascular diseases that caused
over 18 million losses. More optimistically, cancer treatments do exist. For
example, erlotinib is administered for the treatment of lung and pancreatic
cancer [63]. Moreover, between 2015 and 2020, 29% of FDA-approved (Food
and Drug Administration) drugs were anticancer [64]. However, mild to se-
vere side effects are experienced with most treatments and drug resistance
is yet a substantial challenge [65, 66]. In order to prevent such undesired
consequences of cancer treatment, developing drugs that are selective to-
wards the target of interest is of utmost importance. Research has shown
that kinases are protein targets that are frequently dysregulated in cancer
[67]. Kinase inhibitors —small molecules that block catalytic effect —are
therefore a therapeutic route for combating diseases such as cancer [68].

Kinases are a family of proteins and the human kinome, the superfam-
ily of all kinases expressed in the human body, consists of approximately
540 kinases [69] (see Figure 1.5). These kinases contain one or more kinase
domains, which are the catalytic domains responsible for transferring a phos-
phate from ATP —adenosine triphosphate, the source of inorganic phosphate
in cells —to serine, threonine, or tyrosine residues of substrate proteins. This
phosphorylation activity, in turn, allows downstream cell signaling that reg-
ulates processes such as cell division, cell migration, or cell death. The
significant consequences of these downstream signaling events means that
the kinase domain activity is often tightly regulated by other domains, bind-
ing partners, or upstream signaling proteins that must phosphorylate and
activate the kinase domain. If kinases instead become dysregulated, such as
becoming hyper activated to transmit phosphorylation signals inappropri-
ately, such behavior could lead to diseases such as cancer. Figure 1.5a shows
the 3D crystal structure of the erlotinib inhibitor in complex with the EGFR
(Epidermal Growth Factor Receptor) kinase (PDB identifier 1M17 [70, 71]).
Erlotinib acts as an EGFR inhibitor and is administered for the treatment
of lung cancer. Figure 1.5c displays, in yellow, the amino acid binding site
sequence of EGFR, and, in blue, the SMILES encoding of erlotinib.
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Figure 1.4: Cancer killed 10.08 million people globally in 2019. As
shown in the figure taken from [62], cancer was the number two cause of
death worldwide in 2019. Kinase drug design aims at developing kinase
inhibitors as therapeutic route for combating cancer.
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(a) 3D depiction of the EGFR kinase
bound to erlotinib inhibitor. The er-
lotinib drug, in gray, acts as an EGFR
inhibitor and is commonly administered
for the treatment of lung and pancreatic
cancer. The structure corresponds to the
1M17 PDB identifier [70, 71].

(b) Imbalanced kinase cov-
erage depicted on the ki-
nome tree. The red circle is
proportional to the number of
PDB structure per kinase, show-
ing great discrepancy between
the data available among kinases.
The figure is taken from [5].

(c) The table shows the amino acid sequence of the binding site of EGFR (in yellow)
and the SMILES of erlotinib (in blue).

Figure 1.5: Protein kinases as drug targets. When dysregulated, kinases
cause severe diseases such as cancer. There are over 500 kinases in the human
body, constituting the human kinome.
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Challenges for kinase inhibitor discovery

The inhibition of kinases by small molecules has proven to be a success-
ful therapeutic route for combating cancer. However, designing drugs that
are selective and that minimize the potential for side effects severe enough
to cause discontinuation of therapy is highly non-trivial. Two of the main
challenges to kinase inhibitor drug discovery are discussed below.

1. Imbalanced exploration of the human kinome: As mentioned
previously, over 500 kinases are identified in humans, out of which
approximately 40% have not been structurally resolved [72], meaning
that the 3D atomic coordinate of the kinase has not been determined.
In contrast, there are some kinases for which large amounts of data
exist. For example, the Cyclin-dependent kinase 2, or CDK2, which
plays a role in the proliferation of cancer cells [73], has over 400 avail-
able PDB structures, see Figure 1.5b. The imbalance of knowledge
and data availability in the human kinome makes it difficult to use
structure-based computational methods to, for example, predict the
selectivity of inhibitors towards kinases, a task for which 3D structures
of all kinases is required.

2. Conservation of the ATP binding site: The active site, or ATP
binding site, of a kinase plays a very important role, since it is where
ATP-competitive inhibitors (which constitute the vast majority of ap-
proved kinase inhibitor drugs) bind. In the case of kinases, this cat-
alytic clef is highly conserved across the kinome, meaning that there
has been only very little change in the amino acids over evolutionary
time. From a drug design point of view, this makes the discovery of
selective kinase inhibitors [74] and, consequently, the prevention of side
effects very challenging. Indeed, if the binding site of kinases is where
the ligand binds and these sites are very similar across different kinases,
then it would be likely that a ligand will bind not only to its intended
target (on-target), but also to other similar targets (off-targets), prob-
ably inducing adverse effects.

In order to find selective kinase inhibitors to be able to reduce, or even
better, prevent, side effects in cancer treatments, having good knowledge
of kinases, their mechanism, their role, their similarities, would be highly
beneficial.

1.4 The goal of this thesis

Diseases such as cancer are a leading cause of death globally, and the treat-
ments that currently exist are not without consequences. Side effects occur
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and can range from mild to severe. In this context, computer-aided drug dis-
covery has become an integral part of Research and Development in phar-
maceutical companies, and participates in finding new, efficient, selective,
non-toxic drugs with minimal side effects.

While computational methods, and more specifically machine and deep
learning applications, have matured in the field of drug design, major chal-
lenges still remain: training deep learning models on scarce data sets de-
scribing physicochemical properties; quantifying the uncertainty of a prop-
erty prediction for a novel compound; understanding the decision-making
process that leads deep neural networks from an input to a prediction; and
improving availability and usability of free, open-source, and modular work-
flows.

In the upcoming chapters of this thesis, we present research on all these
different challenges and discuss solutions to the underlying issues.

More specifically, Chapter 2 reviews the state-of-the art in virtual screen-
ing, a method commonly used in computer-aided drug design to rapidly select
promising molecules from a large database that are likely to bind to a given
target. We explore how novel encodings for small molecules, proteins, or a
complex, are improving the accuracy of the models. We also explore which
deep learning models are reaching outstanding results. Firstly, we distinguish
the approaches used in virtual screening: ligand-/pair-/ and complex-based
and explain their particularities. Secondly, we cover encodings for three
molecular entities: 1. For ligands, popular encodings such as fingerprints,
SMILES, and graphs are described. 2. For proteins, sequence and structural
encodings are examined, and 3. Encodings such as 3D grid, graph, interac-
tion fingerprints are included for the protein-ligand complex. Thirdly, neural
networks are described in detail, covering specificities such as convolutional
and recurrent layers, as well as graph neural networks. Furthermore, com-
mon benchmark and bioactivity data sets in virtual screening are discussed.
Finally, the state-of-the-art results from the last decade are summarized in
a table showing the remarkable progress of virtual screening over the years.

Chapter 3 deals with data scarcity in the context of deep learning mod-
els applied to small molecules. As discussed in Section 1.2.3, data scarcity
remains one of the major challenges when applying deep learning models to
drug design-related tasks. Indeed, the size of relevant data sets are multiple
orders of magnitude smaller than the ones used in other areas where deep
learning is applied, such as speech recognition [75] and image classification
[51]. In light of data augmentation techniques that have successfully been
applied to image recognition, we develop data augmentation techniques to
improve molecular property prediction, a task considerably useful in lead
optimization. We also deliver guidelines on how to best use augmentation
in QSAR modeling. We train and test our models on properties important
in drug design: 1. Lipophilicity, which plays an important role in absorption
[76] (see ADMET), 2. Water solubility, which participates in the distribution
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of a compound in an organism [52], 3. Hydration free energy [77], and 4. The
activity towards the EGFR kinase, which, when overly expressed, is found
in cancer prognosis [78]. Further, we show that using augmentation at infer-
ence time allows to formalize the confidence of a model in its prediction. All
developed software is made available and can be used to make predictions
on all the aforementioned properties for novel compounds.

In Chapter 4, we aim to reveal the decision-making process of a neural
network in the context of cytotoxicity prediction. The goal being to identify
potential toxic substructures, or toxicophores, in a compound. As previously
mentioned in Section 1.2.3, neural networks are often considered as a black
box and better understanding the prediction of a model from the input fea-
tures is highly beneficial, especially in the context of toxicity. Cytotoxicity,
leading to cell death, plays an important role in drug design. The assessment
of the toxicity of a compound at an early stage of the drug design process
would allow to not only reduce in vivo animal testing, and save costs, but
could also help to optimize compounds. We expand on the Deep Taylor
Decomposition [79], a technique introduced in the context of image classifi-
cation, to improve our understanding of toxic substructures. We develop a
visualization of the identified toxicophores providing a simple image to be
analyzed by medicinal chemists for validation.

Chapter 5 focuses on the importance of pipelines and on the role of ki-
nases in drug design. As mentioned previously, the drug design process can
be time-consuming and requires several iterations. Being able to automate
each step in a modular and robust way would speed up the design of new com-
pounds, saving time and use of costly experiments. As discussed in Section
1.3, kinases are known drug targets, and developing strategies to compare
kinases could help to understand off-targets. We therefore introduce two
main pipelines as part of the TeachOpenCADD project [4, 80]. The first one
is an automated structure-based virtual screening pipeline that involves the
binding site detection, docking calculations and protein ligand interaction
visualization. The second one focuses on the role of kinases as drug targets,
and we create a pipeline that allows the comparison of kinases, providing in-
sight into off-targets. We implement four measures of comparison which take
into account knowledge on sequence, structure, protein-ligand interactions,
and bioactivity data, spanning a wide range of kinase information.

Finally, in Chapter 6, the conclusion, we summarize our findings, and
discuss potential extensions.
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Chapter 2

Deep Learning in Virtual
Screening: Recent Applications
and Developments

The contents of this chapter were published as Kimber, T.B.∗, Chen, Y.∗,
& Volkamer, A. (2021). Deep Learning in Virtual Screening: Recent Ap-
plications and Developments. International Journal of Molecular Sciences,
22(9), 4435 [1], under the Creative Commons Attribution (CC BY) license,
https://creativecommons.org/licenses/by/4.0/. The content from this
publication is presented here with the permission of MDPI publishing.

The contributions of the authors are as follows: All authors contributed to
examining the literature and describing the methods. TBK led the deep
learning section, molecular encodings, as well as the pair-based state-of-the-
art methods. The text and figures were written and produced by all authors.

Chapter summary

Drug discovery is a cost and time-intensive process that is often assisted by
computational methods, such as virtual screening, to speed up and guide the
design of new compounds. For many years, machine learning methods have
been successfully applied in the context of computer-aided drug discovery.
Recently, thanks to the rise of novel technologies as well as the increasing
amount of available chemical and bioactivity data, deep learning has gained
a tremendous impact in rational active compound discovery. Herein, recent
applications and developments of machine learning, with a focus on deep
learning, in virtual screening for active compound design are reviewed. This

∗These authors have shared first authorship.
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includes introducing different compound and protein encodings, deep learn-
ing techniques as well as frequently used bioactivity and benchmark data
sets for model training and testing. Finally, the present state-of-the-art,
including the current challenges and emerging problems, are examined and
discussed.

2.1 Introduction

2.1.1 Virtual screening

Drug discovery remains a key challenge in the field of bio-medicine. Tra-
ditionally, the discovery of drugs begins with the identification of targets
for a disease of interest. It is followed by high-throughput screening (HTS)
experiments to determine hits within the synthesized compound library, i.e.
compounds showing promising bioactivity. Then, the hit compounds are
optimized to lead compounds to increase potency and other desired proper-
ties, such as solubility, or vanishing toxic and off-target effects. After these
pre-clinical studies, potential drug candidates have to pass a series of clinical
trials to become approved drugs. On average, more than 2 billion US dollars
and about 10-15 years are spent for developing a single drug [81]. While
HTS experiments are very powerful, they remain time and cost-intensive,
since they require several thousands of synthesized compounds, a large num-
ber of protein supplies, and mature methods for bioactivity testing in the
laboratory [82].

To rationalize and speed up drug development, computational methods
have been widely incorporated in the design process in the past three decades.
One prominent method is virtual screening (VS), which is used to prioritize
compounds from (ultra) large compound libraries which have a high potential
to bind to a target of interest [83]. VS methods can efficiently scan millions of
(commercially) available compounds, such as ZINC [84] or MolPORT [85], at
low cost and prioritize those to be tested, synthesized in-house, or purchased
from external suppliers. Besides, VS can be carried out in virtual compound
libraries, which expands the chemical space, such as Enamine REAL [86]
with over 17 billion make-on-demand molecules and a database containing
close to two billion drug-like compounds. Although VS methods are not
always able to find the most active compound, they can narrow the search
space down to few hundreds of compounds with desired properties to be
further investigated [87].

Nowadays, VS has become an integral part of drug discovery. It is usu-
ally implemented in the form of a hierarchical workflow, combining different
methods (sequentially or in parallel) as filters to prioritize potentially ac-
tive compounds [87, 88]. VS methods are often divided into two major
categories: (1) structure-based methods, which focus on the complementar-
ity of the target binding pocket and the ligand; as well as (2) ligand-based
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methods, which rely on the similarity of novel compounds to known active
molecules.

Structure-based methods (1) require 3D structural information of both
ligand and protein as a complex or at least of the protein with some knowl-
edge about the binding site. The most commonly used technique is molecular
docking, which predicts one or several binding pose(s) of a query ligand in the
receptor structure and estimates their binding affinity [89]. While protein-
ligand docking shows great ability in enriching likely active compounds over
inactive ones, there are still complications in placing or scoring the individual
poses, some of which can be unmasked by visual inspection [90–93]. During
the molecular docking process, thousands of possible ligand poses are gener-
ated based on the target structure and ranked by a scoring function (SF) [94].
There are three classical types of scoring functions: physics-, empirical-, and
knowledge-based [95, 96]. Physics-based methods rely on molecular mechan-
ics force fields. In short, non-bonded interaction terms such as Van der
Waals interactions, electrostatics, and hydrogen bonds are summed. Sim-
ilarly, empirical SFs sum weighted energy terms. Items describing for ex-
ample rotatable bonds or solvent-accessible-surface area are also added and
all terms are parameterized against experimental binding affinities. In con-
trast, knowledge-based methods rely on statistical analyses of observed atom
pair potentials from protein-ligand complexes. More recently, new groups of
scoring functions were introduced, namely machine/deep learning-based SFs.
One group of models is based on classical SFs which try to learn the relation-
ship between the interaction terms to predict binding affinity (see the review
by Shen et al. [96]). Others models encode the complex via protein-ligand
interaction fingerprints, grid- or graph-based methods [97]. Such models will
be referred to as complex-based methods throughout this review and dis-
cussed in greater details, see Figure 2.1. Note that pharmacophore-based
VS has also incorporated machine learning, and is suitable to screen very
large databases, see for example Pharmit [98]. However, these methods are
not the focus of this review and recent developments in the pharmacophore
field are described by Schaller et al. [99].

Ligand-based methods (2), including QSAR (quantitative structure - ac-
tivity relationship) modeling, molecular similarity search and ligand-based
pharmacophores, are relatively mature technologies [47]. Unlike structure-
based methods, ligand-based methods only require ligand information. Note
that they are not the focus of this review and the reader is kindly referred
to the respective literature, e.g. [47, 100]. Nevertheless, the latter category
can also be enriched by simple protein—mostly sequence-based—information
and is often referred to as proteochemometric (PCM) modeling, which will
be further addressed in this review. PCM combines both ligand and tar-
get information within a single model in order to predict an output variable
of interest, such as the activity of a molecule in a particular biological as-
say [101, 102]. Thus, PCM methods do not only rely on ligand similarities,
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Figure 2.1: Workflows in virtual screening. The first split separates
the schemes that contain (1) protein and ligand information and (2) ligand
information only, which are typically used in models for QSAR predictions.
For details on solely ligand-based methods, see e.g. MoleculeNet [104]. For
(1), a second split makes the differences between complex-based and pair-
based models. Complex-based models describe the protein and ligand in a
complex, whereas pair-based models (also PCM in the broader sense) treat
the protein and ligand as two independent entities. The latter typically
use protein sequence and molecular SMILES information as input, while
the complex-based models use, for example, a 3D grid of the protein-ligand
binding site or interaction fingerprints.

but incorporate information from the target they bind to, and have been
found to outperform truly ligand-based methods [103]. Note that in some
PCM applications an additional cross-term is introduced that can describe
the interaction between the two objects [101]. To distinguish the herein de-
scribed methods, which handle the two objects individually, we refer to them
as pair-based methods, see Figure 2.1.

2.1.2 Machine learning and deep learning

Machine learning (ML) aims at learning a task from data by optimizing a
performance measure. There exist three main approaches [14]: (1) Unsuper-
vised learning in which the goal is to find patterns of the underlying structure
and gain interpretability of the data. (2) Reinforcement learning in which an
agent evolves in an environment and uses the data learned from experience.
(3) Supervised learning in which an algorithm is trained on inputs to predict
some labeled output. The latter technique will be the focus of this review.

Traditional supervised ML methods follow the idea that given some data,
a predictive model is constructed by optimizing the difference between a
given labeled output and the output predicted by the model. Some of these
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methods date back to the last century. For example, neural networks were
first developed in the 60s by Rosenblatt [15]. Later, in the 80s, Breiman et al.
[16] published the book Classification and regression trees. In the 90s, Cortes
and Vapnik [17] introduced support vector machines (SVMs) and more re-
cently, in the early 2000s, Breiman [18] proposed random forests (RFs).

Nevertheless, over the last few years, ML methods have gained a lot
of popularity. This may be explained by three major aspects: (1) Data
availability: thanks to automation and digitalization, as well as memory
capacities, the amount of stored data has never been greater. (2) Com-
puting power, such as graphics processing units (GPUs) and parallelization,
has significantly allowed expensive model training. Cloud computing, for
instance, Google Colaboratory [105], allows any user to train resource inten-
sive machine learning models using powerful tensor processing units (TPUs).
(3) The theoretical research on the learning algorithms has enabled the de-
velopment of sophisticated models and training schemes.

Deep learning (DL) [13] is a subset of ML in which the input features are
combined using hidden layers that constitute a network. Each hidden layer
is made up of a linear and a non-linear part, the non-linear part called the
activation function. The information then flows through the network. The
resulting predictive model is highly flexible and is able to extract complex
patterns thanks to the non-linearities. Since describing (and understanding)
the interactions between molecular structures in a biological context is highly
complex, it is not surprising that applying deep learning to such objects could
yield excellent performance.

2.1.3 Data availability and big data

As mentioned above, automation and storage have had a major impact on
the amount of data existing nowadays. Recently, Google has published an
image data set of over 9 million data points called "Open Images Dataset
V4" [51] as well as "YouTube-8M", a video data set of 8 million URLs.
These large open-source data sets have enabled researchers to build highly
efficient models in fields such as image classification. Benchmark data sets
are also widely used in the machine learning community to train, test, and
compare new models and architectures. One of the popular benchmark data
sets in image classification is the MNIST database of handwritten digits [106]
which has a training set of 60, 000 examples and a test set of 10, 000 exam-
ples. Kaggle [33] is a community that hosts competitions in very diverse
fields, including e.g. drug activity prediction, where the data are made pub-
lic. These competitions allow to prospectively evaluate all kinds of different
schemes and rank them using hold out data sets.
In the biomedical field, the size of the data sets is starting to reach similar
scales. The amount of publicly available bioactivity data keeps increasing
every year. To date, the well-known ChEMBL database [107] has 17, 276, 334
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registered activity entries [108] and has become a valuable resource in many
types of life science research. Furthermore, a considerable amount of struc-
tural data has also been published over the last decades. The freely available
Protein Data Bank (PDB) [41, 42] logged 14, 047 new entries in 2020. In
March 2021, the total number of available entries has surpassed 175, 000 [109]
and will most probably keep increasing. The structural data come from ex-
perimental methods, such as X-ray crystallography, nuclear magnetic reso-
nance spectroscopy and electron microscopy, technologies that have improved
in precision and throughput over the last years [110, 111]. Publicly avail-
able screening libraries also have big data potential. For example, the ZINC
database [84] contains over 230 million of commercially available compounds.
More details on specific data sets will be given in the Methods & Data sec-
tion.

2.1.4 Deep learning in virtual screening

Given the increasing amount of available structural and bioactivity data as
well as the recent progress in machine—especially deep—learning, it is no
wonder that virtual screening strategies could benefit from this synergy.

While ML methods have been applied in the field for over two decades
already [112–114], DL has begun to rise in the drug discovery area, especially
in VS [115]. Given the new developments, various reviews about ML and DL
in VS have recently been published [96, 116–121]. For example, Shen et al.
[96] and Li et al. [119] review differences between more traditional ML—and
DL—based scoring functions (SFs). Rifaioglu et al. [121] present an overview
of recent applications of DL and ML on in silico drug discovery. In contrast,
this review focuses on the one hand on advances regarding DL-based VS in
recent years, and on the other hand covers two main groups of models, both
including information from the protein and the ligand: (1) Complex-based
models, which are trained on information/encodings from complexes or dock-
ing poses of protein and ligand for predicting the binding affinity of a given
molecule; and (2) pair-based models or PCM, which are primary ligand-based
but include simple information from the protein they bind to.

2.2 Methods & Data

In this section, the main encodings of ligand, protein and complex, the dif-
ferent deep learning models as well as the most used (benchmark) data sets
are introduced.

2.2.1 Encodings in virtual screening

The interactions between protein and ligands are complex, and encoding
the most informative bits in a computer-readable format is one of the main
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challenges in both cheminformatics and bioinformatics. In the following sec-
tions, the encodings for ligands in virtual screening are described, followed
by protein and complex encodings. The details are reported for those used
in the studies discussed in the Recent developments section. A more exhaus-
tive list of ligand encodings is carefully outlined in the review by Lo et al.
[122]. For protein descriptors, the work by Xu et al. [123] describes common
sequence- as well as structure-based descriptors, embedding representations
and possible mutations.

Ligand encodings

The starting point of several ligand encodings is the molecular graph, where
nodes and edges represent the molecular atoms and bonds, respectively (see
Figure 2.2).

Graph The molecular graph can be encoded using two matrices: the first
one, called the feature matrix X, gives a per atom description, where the
type of information stored in each node is decided a priori. Common per
atom examples are atomic type and degree [126]. The dimension of X is
N ×D, where N is the number of nodes, i.e. atoms, in the graph and D the
number of pre-defined features. The second matrix, called connectivity ma-
trix, describes the structure of the molecule. Its purpose is to illustrate how
the nodes are connected in the graph, i.e. via bonds. Two frequent formats
store this information: (1) the adjacency matrix A of dimension N × N ,
where Aij = 1 if node i is connected to node j and 0 otherwise. (2) The co-
ordinate (COO) format of dimension 2×E, where E represents the number
of edges in the graph. Thus, the first and second rows represent the index
of the source and target nodes, respectively. Using both the feature matrix
and the connectivity matrix, the molecular graph encoding can further be
used to apply machine learning algorithms.

SMILES An efficient way of storing information from the molecular graph
using string characters is the simplified molecular input line entry system
(SMILES) developed by Weininger [58]. The main idea behind SMILES is
the linearization of the molecular graph by enumerating the nodes and edges
following a certain path. Due to the randomness in the choice of the starting
atom and the path followed along the 2D graph, there exist several valid
SMILES for one molecule [127]. However, it may be desirable to have one
unique SMILES for a given compound, called the canonical SMILES, and
most software have their own canonization algorithm. In order to apply
mathematical operations in the context of machine learning, SMILES still
need to be transformed into numerical values, where both label and one-hot
encoding are often used [128, 129]. Please find more information on these
encodings below.
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Figure 2.2: Ligand encoding. Having a computer-readable format is
one of the starting points for machine—and deep—learning. The exam-
ple molecule is the FDA-approved drug fasudil [124] taken from the PKIDB
database [125]. Recent studies focused on virtual screening (detailed in the
Recent developments section, see Table 2.4) commonly use SMILES, circular
fingerprints or graphs to encode the ligand.
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Label and one-hot encoding In this section, the concepts of label and
one-hot encoding are explained in the context of SMILES, but the idea can
be translated to broader applications, such as natural language processing
(NLP) [13]. Mathematical operations such as matrix computations cannot
be applied directly to string characters and therefore these strings have to be
transformed into numerical entities. The first step towards this transforma-
tion is the specification of a dictionary of considered characters, which can
be done in two ways: either by inserting all the characters existing in the
data set, or by exhaustively enumerating a list of all necessary characters.
Once the dictionary is defined, label or one-hot encoding can be used.

In label encoding, the characters in the dictionary are enumerated. This
enumeration using integer numbers is also sometimes referred to as integer
encoding. Using the integer labels, a SMILES can be transformed into an
integer vector by associating each character with its integer label (see Fig-
ure B.1(a)). The advantage of such a representation is its compact form,
leading to a simple integer vector. A disadvantage however is the natural
hierarchy in the numbering, giving higher values to some characters in the
dictionary.

The one-hot encoding resolves this issue by assigning a binary vector
to each character in the dictionary. A SMILES can then be constructed
by concatenating the binary vectors as they appear in the SMILES (see
Figure B.1(b)). The main disadvantage of using the one-hot transformation
is that the resulting matrix may be large and sparse. In both label and
one-hot encoding, having all elements in a data set with the same dimension
is often required in a machine learning setting. A way to account for the
different dimensions is to use padding, which adds zeros to the vector (in the
label encoding case) or to the matrix (in the one-hot encoding case) up to a
maximum length, usually determined by the longest element in the data set.

Circular fingerprint Circular fingerprints are, once folded, fixed-length
binary vectors that determine the presence (encoded by 1) of a substruc-
ture or the absence of it (encoded by 0). The recursive algorithm behind
extended-connectivity fingerprints (ECFP) [130] starts with an atom initial-
izer for each node and updates the atom identifiers using a hash function by
accumulating information from neighboring nodes. The substructures which
are identified using the local atom environments correspond to the bits in
the fingerprints. A free version of the algorithm is available in the open-
source cheminformatics software RDKit [131] (under the name of Morgan
fingerprints), which will not produce the same results as the original imple-
mentation in Pipeline Pilot [132] due to the difference in the hash functions,
but will yield similar results.
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Other encodings Ligands are evidently not restricted to these encod-
ings [122]. For example, different types of fingerprints may be used, such
as a physicochemical-based vector, describing the global properties of the
molecule, as in the study by Kundu et al. [133]. Also, the 166-bit long
MACCS keys [134] are a common way to encode molecular compounds as
a fingerprint. Recently, learned fingerprints have also shown to be effective
in QSAR predictions [129, 135]. Another way of employing the molecular
structure as input to machine learning is the 2D image itself. Rifaioglu et al.
[136] use the 200-by-200 pixel 2D image generated directly from the SMILES
using the canonical orientation/depiction as implemented in RDKit [131].

Protein encodings

Proteins are macromolecules that are involved in many biochemical reactions.
They are composed of distinct amino acid sequences, which result in folding
in specific 3D protein structures [137].

Protein identifier A simple way to discriminate models from ligand infor-
mation only is to include the identifier (ID) of the protein. Such a descriptor
adds no information whatsoever about the physicochemical properties of the
protein, the amino acid composition, nor the 3D conformation. It is merely a
way for a machine learning model to be able to differentiate several proteins.
For example, the one-hot encoding of the protein ID can be used, as in the
study by Sorgenfrei et al. [138].

Protein sequence The (full) sequence of a protein, often referred to as
the primary structure, is the enumeration of the amino acids as they appear
from the beginning (N-terminus) to end (C-terminus) of the protein, in which
each of the 20 standard amino acids can be encoded as a single letter. The
length of a protein can vary greatly, some of them containing thousands of
amino acid residues. Although the sequence is a compact way of storing
information about the primary structure, it does not give any information
about the 3D structure of the protein. In opposition to the full sequence,
it is possible to only consider the sequence from the binding site, reducing
greatly the number of residues.

Z-scales The z-scale descriptors published in the late 80s by Hellberg et al.
[139] are constructed by considering, for each of the 20 amino acids, 29
physicochemical properties such as the molecular weight, the logP and the
logD (see [139, Table 1]). A principal component analysis (PCA) on the
20× 29 matrix is performed and the three principal components z1, z2 and
z3 for each of the amino acids are retained. The authors suggest interpreting
z1, z2 and z3 as hydrophilicity, bulk and electronic properties, respectively.
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Domains and motifs A domain is a structural unit within a protein
that is conserved and the overall role of a protein is often governed by its
domain function. PROSITE [140] and Pfam [141] are two popular databases
that store a large variety of protein domains. Therefore, a possible way of
encoding proteins is through a binary vector which indicates the presence or
absence of a particular domain.

Structural property sequence In the study by Karimi et al. [142], the
proteins are encoded using structural property sequences, which describe the
structural elements of the protein but do not require the 3D structures. The
secondary structure is predicted from the sequence using SSpro, developed by
Magnan and Baldi [143]. Neighboring residues are thereby grouped together
to form secondary structure elements. Then, four letters are assigned to each
of these elements. The first letter represents the secondary structure: alpha
helix (A), beta sheet (B) or coil (C). The second letter determines the solvent
exposure: N as "not exposed" or E as "exposed". The third letter describes
thy physicochemical properties, i.e. non-polar (G), polar (T), acidic (D) or
basic (K). The last letter represents the length: small (S), medium (M) or
large (L).

Complex encodings

Describing the protein-ligand complex involves descriptions that capture the
interactions between the two binding partners. Herein, we group them into
interaction fingerprints, 3D grids, graphs and other.

Interaction fingerprint Interaction fingerprints (IFPs) describe—as the
name implies—the interactions between a protein and a ligand based on a
defined set of rules [100, 144]. Typically, the IFP is represented as a bit
string, which encodes the presence (1) or absence (0) of interactions between
the ligand and the surrounding protein residues. In most implementations,
each binding site residue is described by the same number of features, which
usually include interaction types such as hydrophobic, hydrogen bond donor
and acceptor.

IFPs encoding interaction types: The structural interaction fingerprint
(SIFt) [145] describes the interactions between the ligand and n binding
site residues as an n × 7 long bit string. Here, the seven interaction types
include whether the residue (i), and more precisely their main (ii) or side
(iii) chain atoms, are in contact with the ligand; whether a polar (iv) or
apolar (v) interaction is involved; and whether the residue provides hydrogen
bond acceptors (vi) or donors (vii). Similarly, the protein-ligand interaction
fingerprint (PyPLIF) [146] and the IChem’s IFP [147] encode each residue
also by seven though slightly different types, while PADIF [148] uses the
Gold [149] scoring function contributions as interactions types.
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Figure 2.3: Complex encoding. Visual representation of encodings for
protein-ligand complexes used in structure-based virtual screening, exempli-
fied with the drug fasudil co-crystallized with the ROCK1 kinase (PDB ID:
2esm). 3D grids, graphs and interaction fingerprints are among popular en-
codings for complexes, as discussed in the Recent developments section (see
Table 2.3).

The aforementioned IFPs vary in size and are sensitive to the order of
the residues, which limits their application for ML purposes. Thus, SIL-
RID [150], a binding site independent and fixed-length IFP was introduced.
SILRID generates a 168 long integer vector per binding site, obtained by
summing the bits corresponding to a specific amino acid or cofactor (20+1),
while each amino acid is described by eight interaction types.

IFPs including distance bits: To describe the interactions more explic-
itly, distances with respect to interaction pairs or triples were introduced.
APIF [151], an atom-pair based IFP, encodes three interaction types for the
protein and ligand atoms: hydrophobic contact, hydrogen bond donor and
acceptor. Combinations of these three types lead to six pairings, including
for example a protein acceptor-hydrophobic pair complemented with a ligand
donor-hydrophobic atom-pair. Moreover, for each pairwise interaction in the
active site, the respective receptor and ligand atom distances are measured
and binned into seven ranges. In this way, the total APIF is composed of 6
types × 7 protein distances × 7 ligand distances = 294 bits. Pharm-IF [152],
while using slightly different interaction type definitions, calculates distances
between the pharmacophore features of their ligand atoms. Finally, triplets
between interaction pseudoatoms are introduced in TIFP [153]. The finger-
print registers the count of unique interaction pseudoatom triplets encoded
by seven properties (e.g. hydrophobic, aromatic or hydrogen-bond) and the
related distances between them, discretized into six intervals. Redundant
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and geometrically invalid triplets are removed, and the fingerprint is pruned
to 210 integers representing the most frequently occurring triplets in the
appointed data set.

IFPs including circular fingerprint idea: To become more independent
of pre-defined interaction types, circular fingerprint inspired IFPs were in-
troduced by encoding all possible interaction types (e.g. π − π, CH − π)
implicitly via the atom environment. The structural protein-ligand interac-
tion fingerprint (SPLIF) [154] is constructed using the extended connectivity
fingerprint (ECFP, see the Ligand encodings section for more information).
For each contacting protein-ligand atom pair (i.e. distance less than 4.5 Å),
the respective protein and ligand atoms are each expanded to circular frag-
ments using ECFP2 and hashed together into the fingerprint. Similarly,
ECFP is integrated in the protein-ligand extended connectivity (PLEC) fin-
gerprint [155], where n different bond diameters (called "depth") for atoms
from protein and ligand are used.

3D grid Another type of encoding are 3D grids, in which the protein is
embedded into a three-dimensional Cartesian grid centered on the binding
site. Similar to pixel representation in images, each grid point holds one (or
several) values that describe the physicochemical properties of the complex
at this specific position in 3D space. Such grids can, for example, be unfolded
to a 1D floating point array [156] or transformed into a 4D tensor [157] as
input for a DL model. Depending on the implementation, the cubic grids
vary in size between 16 Å and 32 Å, as well as grid spacing (resolution)
usually being either 0.5 Å or 1 Å [156–159]. Per grid point attributes can
be (1) simple annotations of atom types or IFPs, such as in AtomNet [156]
and DeepAtom [160], (2) physicochemical or pharmacophoric features, e.g.
Pafnucy [157] and BindScope [161], or (3) energies based using one or several
probe atoms as in AutoGrid/smina [158, 162].

Graph Although the description of a small molecule as a graph seems nat-
ural, the idea can be adapted to a molecular complex. As in the ligand case
(see the Ligand encodings section), two main components have to be consid-
ered in the graph description of such protein-ligand structures: the nodes,
with an associated feature vector, and the relationship between them, usu-
ally encoded in matrix form. When considering a complex, the atoms from
both the protein and the ligand can simply be viewed as the nodes of the
graph and the atomic properties can vary depending on the task at hand.
Some might consider, among other characteristics, the one-hot encoded atom
type/degree and a binary value to describe aromaticity, as in [163]. As simple
as the node description is for complexes, the intricacy arises when describ-
ing the interactions between the atoms, which should account for covalent
and non-covalent bonds. The focus here will be on two different ways of
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describing such structures. The first one, developed by Lim et al. [163], con-
siders two adjacency matrices A1 and A2. A1 is constructed in such a way
that it only takes into account covalent bonds, more precisely A1

ij = 1 if i, j
are covalently connected, and 0 otherwise. A2, on the other hand, not only
captures bonded intramolecular and non-bonded intermolecular interactions,
but also their strength through distances. Mathematically, this can be trans-
lated as follows: if atom i belongs to the ligand, atom j to the protein, and
they live in a neighborhood of 5 Å, then

A2
ij = e−

(dij − µ)2

σ
,

where dij is the distance between atoms i and j, and µ and σ are learned
parameters. The smaller the distance between the atoms to µ is, the stronger
the bond is. If atoms i and j both belong to either the ligand or the protein,
then A2

ij = A1
ij .

The other graph form of protein-ligand developed by Feinberg et al. [164]
consists of an enlarged adjacency matrix A ∈ RN×N×Net , where N is the
number of atoms and Net the number of edge types. Aijk = 1 if atom j is in
the neighborhood of atom i and if k is the bond type between them. If not,
that same entry is 0. This scheme numerically encodes the spatial graph as
well as the bonds through edge type.

Other encodings Moreover, there are also other encoding methods to de-
scribe a complex, which will only be shortly introduced here. Topology-based
methods, as reported by Cang and Wei [165], describe biomolecular data in
a simplified manner. The topology thereby deals with the connectivity of
individual parts and characterizes independent entities, rings and higher di-
mensional faces. In this way, element-specific topological fingerprints can
retain the 3D biological information and the complex can be represented by
an image-like topological representation (resembling barcodes).

Also, simply the protein-ligand atom pairs together with their distances
can be used as input. In the work by Zhu et al. [166], all atom pair energy
contributions are summed, where the contributions themselves are learned
through a neural network considering the properties of the two atoms and
their distances. Similarly, Pereira et al. [167] introduced the atom context
method to represent the environment of the interacting atoms, i.e. atom and
amino acid embeddings.

2.2.2 Deep learning models in virtual screening

As mentioned in the introduction, machine learning can be split into super-
vised, unsupervised and reinforcement learning. In this section, we focus on
supervised learning which is a framework that is used when the data is con-
stituted of some input and an associated label and the aim is to predict the
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outcome corresponding to a given input. Subsequently, typical evaluation
strategies of machine learning models will shortly be introduced.

Supervised deep learning models

In the supervised framework, two subclasses are usually considered: the first
one, called classification, deals with discrete outputs. In the binary case,
this reduces to outputs that can take either 0 or 1 values. In the context
of virtual screening, a simple example would be the activity determination
of a compound against a protein: active (1) or inactive (0). The second
subclass is regression, where the target value takes a real value instead. An
analogous example in VS would be to predict the half maximal inhibitory
concentration IC50

∗ of a compound.
Common machine learning algorithms include tree-based methods such

as random forests (RFs), tree boosting, and support vector machines (SVMs).
However, over the last decades, deep learning has gained a lot of momen-
tum and the rest of this section will be dedicated to the idea behind the
deep learning models described in the Recent developments section (see Fig-
ure 2.4). For more rigorous definitions and mathematical notations, the
reader is kindly referred to the book by Goodfellow et al. [13].

Neural networks Neural networks (NNs) [13], also sometimes called arti-
ficial neural networks (ANNs), are models that take as input a set of features
on which mathematical computations are performed that depend on a set of
parameters. The sequential computations between the input and the output
are called hidden layers and the final one, the last layer, should account for
the targeted prediction: classification or regression. The information flows
through the network and is monitored by non-linearities called activation
functions that determine if or how much of the information can be passed
on to the next layer. The parameters in the network are optimized using
back-propagation [13, Chapter 6].

A simple example of a neural network connects the input to the output
with one single hidden layer and is sometimes called a "vanilla network" or
a "single layer perceptron" [168], in opposition to a multilayer perceptron
(MLP) that has more than one hidden layer. In a single layer perceptron,
the hidden layer is composed of a set of nodes where each input element
is connected to every hidden node and every node in the hidden layer is
connected to the output. When all nodes from one layer are connected
to the next, the layer is called fully-connected, or dense. If the network
contains only such layers, then it is usually referred to as a fully-connected
neural network, a dense neural network, or a multilayer perceptron. Note
that throughout this review, the term MLP is used, while in the original

∗The half maximal inhibitory concentration, noted IC50, describes the amount of a
substance that is needed to inhibit a target protein/assay by 50%.
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Figure 2.4: Deep learning models. Schematic illustration of the neural
networks described in the Recent developments section. (A) Vanilla neu-
ral network. (B) Multilayer perceptron with three hidden layers (MLP).
(C) Convolutional neural network (CNN). (D) Recurrent neural network
(RNN). (E) Graph neural network (GNN). CNNs and GNNs particularly
have become very popular in recent virtual screening studies (see Table 2.3
and 2.4).
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publications other terms might be preferred. Such models can be easily
applied to a set of vectors with a corresponding target value, as exemplified
in Chapter 4 for chemical compound fingerprints and associated cytotoxicity
values.

Convolutional neural networks Convolutional neural networks (CNNs)
[13, Chapter 9] are a special kind of network where computations in the
hidden layer make use of convolutions. They are most commonly applied in
image classification, where their forte is extracting features in a picture, such
as edge detection [21, 169, 170]. 1D, 2D, and 3D convolutions can be used
depending on the input data. In the one-dimensional case, the data might be
akin to time series. 2D convolutions are used on planar grid-like structures,
such as images. 3D convolution can be applied to three-dimensional tensors,
such as 3D images. Although convolutional neural networks exhibit excellent
performance, they have the disadvantage of having a fast-growing number of
parameters as the network becomes deeper, especially in the 3D case, making
the training slow. In the area of binding affinity, successful predictions have
been made using as input the 3D representation of the protein-ligand binding
site [159].

Recurrent neural networks Recurrent neural networks, or RNNs [13,
Chapter 10], are dissimilar from MLPs and CNNs in their ability to reuse
internal information, that can be thought of as loops in the network (see
Figure 2.4 (D)). RNNs are well suited for sequential data, such as sentences.
The input at a certain time makes use, employing a series of computations, of
the input at the previous time, leading to its name "recurrent". In molecular
prediction, SMILES encoding of molecules can be interpreted as sequential
data and RNNs were successfully applied in the QSAR context [127].

Graph neural networks Graph neural networks (GNNs) [171] are models
that require graph-structured data. Loosely put, the input should represent a
set of vertices (or nodes) and some structure that determines the relationship
between them. The graph neural network will act on the nodes while taking
into account the neighbors of each node, i.e. the set of vertices that are
connected to that particular node. Each node is updated to a latent feature
vector that contains information about its neighborhood, hence resembling a
convolution operation and leading to the denomination of graph convolution
neural network (GCNN). This latent node representation, often called an
embedding, can be of any chosen length. These embeddings can further be
used for node prediction, if some properties of vertices are of interest, or
they can be aggregated to obtain predictions at the graph level, i.e. some
information on the graph as a whole.

A subtlety that can be added to GNNs is a gated recurrent unit (GRU),
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which is a way to moderate the flow of information coming from other nodes
and from previous computation steps [172]. These particular units are often
applied at an intermediary stage, once the embeddings from previous steps
are set. GRUs consists of two gates: the update gate is responsible for
updating the weights and biases and the reset gate for controlling the amount
of information that can be forgotten. Graph networks using GRUs are called
gated graph neural networks (GGNNs) [172].

Graph attention neural networks (GANNs) [173] are graph neural net-
works with an added attention mechanism. In a graph setting, this can be
viewed as ranking the nodes in a neighborhood of a given vertex and giving
more or less importance to each of them. Certain atoms, and therefore inter-
actions, may have more significance for a given task. This can be represented
by including distances between atoms in the adjacency matrix, as in [163].
A feature node is then obtained using a linear combination of its neighbors
taking the attention coefficient into account.

More details on graph neural networks can be found in the review by
Zhou et al. [174]. In the context of molecular prediction, dozens of examples
use GNNs, as summarized in the review by Wieder et al. [175].

Model evaluation strategies and metrics

To assess the performance of any machine learning method, the data is com-
monly split into training and test sets. The model is trained on the training
set and evaluated by comparing the predicted labels to the given labels on
the hold out (test) set. Here, the metrics used in the Recent developments
section are simply listed, for a detailed description please refer to the Eval-
uation strategies and metrics.

For regression tasks, the metrics reported are the mean squared er-
ror (MSE) and the root mean squared error (RMSE). For classification tasks,
the area under the ROC—receiver operating characteristic—curve (AUC),
the accuracy or the enrichment factor (EF) are used. For both regression
and classification, the Pearson correlation coefficient R, the Spearman’s cor-
relation coefficient ρ or the coefficient of determination R2 may be reported.

Cross-validation (CV) is very often used to estimate the prediction error
and usually performed using five or ten folds, and the results are reported
as mean performance (± standard deviation). Additionally, CV can be used
for hyper-parameter tuning. Please refer to the work by Hastie et al. [168]
for a full description of this method.

2.2.3 Data sets and benchmarks in virtual screening

The quality and quantity of data sets in the biomedical field have increased
largely over the last years, boosting the usage of ML and DL models in drug
discovery. The main source of freely available 3D structural information of
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proteins as well as protein-ligand complexes is the well-known Protein Data
Bank (PDB) [41], holding, as of March 2021, 175, 282 biological macromolec-
ular structures [109], a number which includes proteins that have been solved
numerous times. Furthermore, labeled bioactivity data, i.e. the measured
activity of a specific compound against a target of interest, are necessary for
training, validating, and testing DL models. The two most well-known exam-
ples of bioactivity databases are PubChem [176] and ChEMBL [107]. Note
that while for the pair-based methods, the information in the latter databases
is sufficient, for complex-based methods the bioactivity and structural infor-
mation has to be linked. Below, the most widely used labeled bioactivity
data sets and their composition will be introduced (see Table 2.1).

Structure-based data sets

PDBbind The PDBbind [177] database collects experimentally measured
binding affinity data from scientific literature for a large number of biomolec-
ular complexes deposited in the PDB database. In the current release, PDB-
bind v.2019 provides binding data of a total of 21, 382 biomolecular com-
plexes as the general set, including 17, 679 protein-ligand complexes. Fur-
thermore, a refined and a core set with higher quality data are extracted from
the general set. In the refined set, the 4, 852 protein-ligand complexes meet
certain quality criteria (e.g. resolution, R-factor, protein-ligand covalent
bonds, ternary complexes or steric clashes, and type of affinity value). The
core set, resulting after further filtering, provides 285 high-quality protein-
ligand complexes for validating docking or scoring methods.

BindingDB BindingDB [178] is a publicly accessible database, which col-
lects experimental protein-ligand binding data from scientific literature,
patents, and other. The data extracted by BindingDB includes not only the
affinity, but also the respective experimental conditions (i.e. assay descrip-
tion). BindingDB contains 2, 229, 892 data points, i.e. measured binding
affinity for 8, 499 protein targets and 967, 208 compounds, including 2, 823
protein-ligand crystal structures with mapped affinity measurements (requir-
ing 100% sequence identity), as of March 1, 2021 [179].

BindingMOAD BindingMOAD (Mother of All Databases) [180, 181] is
another database focused on providing combined high-quality structural and
affinity data, similar to PDBbind. BindingMOAD (release 2019) contains
38, 702 well-resolved protein-ligand crystal structures, with ligand annota-
tion and protein classifications, of which 15, 964 are linked to experimental
binding affinity data with biologically-relevant ligands.
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Bioactivity data sets

Table 2.1: Bioactivity data sets. The table lists common labeled data
sets used in virtual screening studies. Freely available data is increasing
each year and is an essential element for affinity prediction using machine
and deep learning models. The table summarizes the name, the size and the
content covered as well as links to the respective website.

Name Size and content a Availability

PDBbind
v.2019

structures
and
activities:
general: 21, 382
refined: 4, 852
core: 285

http://www.pdbbind.org.cn/

BindingDB 2, 823
structures
and
activities ;
2, 229, 892
activities

https://www.bindingdb.org

Binding-
MOAD
2019

38, 702 structures
15, 964 structures
and
activities

https://bindingmoad.org/

PubChem
BioAssay
2020

> 280 million
activities

https://pubchem.ncbi.nlm.nih.gov/

ChEMBL
v.28

17, 276, 334
activities

https://www.ebi.ac.uk/chembl/

aStructures refers to protein-ligand X-ray structures. Activities refer to measured
compound-target bioactivity data points as reported in the respective data source.

PubChem BioAssay PubChem [176] is the world’s largest freely available
database of chemical information, e.g. chemical structures, physicochemical
properties, biological activities, patents, health, safety and toxicity data, col-
lected from more than 770 data sources (as of March 2021 [182]). PubChem
BioAssay contains bioactivity data, more precisely biological assay descrip-
tions and test results, for compounds and RNAi reagents assembled from
high-throughput screens and medical chemistry studies. As of March 2021,

http://www.pdbbind.org.cn/
https://www.bindingdb.org
https://bindingmoad.org/
https://pubchem.ncbi.nlm.nih.gov/
https://www.ebi.ac.uk/chembl/
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PubChem deposited more than 109 million unique chemical structures as
well as over 280 million bioactivity data points collected from more than 1.2
million biological assays experiments.

ChEMBL ChEMBL [107, 183] is a widely used open-access bioactivity
database with information about compounds and their bioassay results ex-
tracted from full-text articles, approved drugs and clinical development re-
ports. The last release, ChEMBL v.28, contains 14, 347 targets and over 17
million activities, which are collected from more than 80, 000 publications
and patents [108], alongside deposited data and data exchanged with other
databases such as BindingDB and PubChem BioAssay.

Target-family specific data sets (such as kinases) Since some protein
families sparked a special interest in pharmaceutical sciences due to their
central therapeutic role, target-family specific data sets have been composed.
Kinases, for example, play a major role in many diseases and have been
extensively studied, also computationally [184], for drug design. Data sets
comprise profiling studies, such as the one reported by Davis et al. [185],
which provides information about a full matrix of 72 inhibitors tested against
a set of 442 kinases in competition binding assays (measured dissociation
constant Kd). To be able to combine data from different sources, reported
as different bioactivity measurements (e.g. IC50, Kd and inhibition constant
Ki), Tang et al. [186] derived a kinase inhibitor bioactivity (KIBA) score, an
adjusted Cheng-Prusoff model, which allows to integrate data from the above
mentioned measurement types and to assemble a freely available drug-target
bioactivity matrix of 52, 498 chemical compounds and 467 kinase targets,
including 246, 088 KIBA scores.

Benchmarking data sets

The above introduces data sets commonly used for training ML models in the
context of VS. Nevertheless, defined benchmarking data sets are needed for
a standardized comparison among different methods and studies [187]. Here,
frequently used benchmarking data sets for structure- and ligand-based VS
are introduced (see Table 2.2).

CASF The comparative assessment of scoring functions (CASF) bench-
mark [188] is developed to monitor the performance of structure-based scor-
ing functions. In the latest version, CASF-2016, the PDBbind v.2016 core
set was incorporated with 285 high-quality protein-ligand complexes assigned
to 57 clusters. Scoring functions can be evaluated by four metrics: (1) The
scoring power, indicating the binding affinity prediction capacity using the
Pearson correlation coefficient R [189]. (2) The ranking power, showing affin-
ity-ranking capacity using the Spearman correlation coefficient ρ [190, 191].



38 CHAPTER 2. DEEP LEARNING IN VIRTUAL SCREENING

Table 2.2: Benchmark data sets. Evaluating novel models on labeled
benchmark data is crucial for any machine learning task, including deep
learning-based virtual screening. The table depicts some commonly used
databases with their respective size, the origin of the data, provided infor-
mation (affinity or activity) as well as their availability through websites.

Name Size Data
source

Label Availability

CASF-
2016

57 targets
285 complexes

PDBbind affinity a

DUD-E 102 targets
22, 886 actives
50 decoys
per active

PubChem,
ZINC

active/
decoy

b

MUV 17 targets
∼ 90, 000
compounds

PubChem,
ZINC

active/
decoy

MUV@TU
Braunschweigc

ahttp://www.pdbbind.org.cn/casf.php
bhttp://dude.docking.org/
chttps://www.tu-braunschweig.de/pharmchem/forschung/baumann/muv

(3) The docking power, using the root mean square deviation (RMSD) [192]
to analyze how well the method has placed the ligand (pose prediction).
(4) The screening power measures the enrichment factor (EF) [193], show-
ing the ability of the function to prioritize active over inactive compounds.
Note that the CASF team has evaluated scoring functions from well-known
docking programs, such as AutoDock vina [194], Gold [149], and Glide [195],
and published the results on their website [188].

DUD(-E) The directory of useful decoys (DUD) [196] is a virtual screen-
ing benchmarking set providing 2, 950 ligands for 40 different targets, and
36 decoy molecules per ligand drawn from ZINC [84]. Decoys, i.e. neg-
ative samples, are chosen to have similar physicochemical properties, but
dissimilar 2D topology to the respective active molecules. DUD-E [197] is
an enhanced and rebuilt version of DUD, with 22, 886 active compounds and
affinity values against 102 diverse targets. On average, 50 decoys for each
active compound are selected. DUD-E is usually used in classification tasks
to benchmark molecular docking programs with regard to their ability to
rank active compounds over inactive ones (decoys).

MUV The maximum unbiased validation (MUV) data set [198] is based
on the PubChem BioAssay database mostly for ligand-based studies, using

http://www.pdbbind.org.cn/casf.php
http://dude.docking.org/
https://www.tu-braunschweig.de/pharmchem/forschung/baumann/muv
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refined nearest neighbor analysis to select actives and inactives, to avoid
analogue bias and artificial enrichment. It contains 17 different target data
sets, each containing 30 actives and 15, 000 inactives. Note that in contrast
to DUD(-E) decoys, the inactives have experimental validated activities.

Benchmarking set collections Note that several collections of data sets
for the purpose of benchmarking molecular ML models, with focus on model
architectures and/or encodings, have recently been made freely available.
These include, but are not limited to, (1) MoleculeNet [104] to benchmark
molecular machine learning, currently providing a total of 700, 000 com-
pounds tested on diverse properties from not only quantum mechanics, but
physical chemistry, biophysics (including MUV and PDBBind) and physiol-
ogy; (2) Therapeutics Data Commons (TDC) data sets [199], including 22
machine learning tasks and 66 associated data sets covering various ther-
apeutic domains; or (3) the work by Riniker and Landrum [200], covering
compounds for 118 targets from MUV, DUD and ChEMBL with focus on
benchmarking fingerprints in ligand-based virtual screening.

2.3 Recent developments

In this section, recent developments in virtual screening (VS) are described
and specifically how deep learning (DL) helps to improve drug-target bind-
ing, i.e. activity/potency prediction. Our review focuses on methods using
protein and ligand information (see Figure 2.1), either in form of a protein-
ligand complex (complex-based) or considering protein and ligand as two
independent entities (pair-based/PCM). It is imperative to state that the
aim of this section is not to directly compare different studies or models, but
to describe them and put them into context. The list of abbreviations can
be found at the end of this review.

2.3.1 Complex-based models

In this section, recent methods that require complex structure information,
usually explicitly or implicitly described by the interactions between the pro-
tein and the ligand, will be discussed (see Table 2.3). The various methods
are grouped by the type of encodings used for the complex structure: IFPs,
3D grids, graphs and other (see Methods & Data section).

Interaction fingerprint-based studies Interaction fingerprints, which
are often used for binding site comparison [100, 208], have also been success-
fully applied to VS. Due to the difference in length of some IFP implemen-
tations, binding site independent IFPs are more commonly used for machine
learning applications.
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Table 2.3: Complex-based models. Summary of recent work using a
protein-ligand complex for active molecule or binding affinity prediction.
The year of publication, the name of the authors or the model, the complex
encoding and the machine/deep learning model(s) are shown in the respec-
tive columns. Classification (class.) implies predicting e.g. hit or non-hit,
whereas regression (reg.) evaluates an affinity measure, e.g. pIC50 values.
CNNs, coupled with 3D grids, have become frequent in state-of-the-art stud-
ies.

Year Name Complex
encoding ML/DL model Frame-

work

2010 Sato et al. [152] IFPa SVM, RF, MLP class.
2016 Wang et al. [201] IFP Adaboost-SVM class.
2019 Li et al. [202] IFP MLP class.
2018 gnina [158] 3D grid CNN class.
2018 KDEEP [159] 3D grid CNN reg.
2018 Pafnucy [157] 3D grid CNN reg.
2018 DenseFS [203] 3D grid CNN class.
2019 DeepAtom [160] 3D grid CNN reg.
2019 Sato et al. [204] 3D grid CNN class.
2019 Erdas-Cicek et al. [162] 3D grid CNN reg.
2019 BindScope [161] 3D grid CNN class.
2018 PotentialNet [164] graph GGNN reg.
2019 Lim et al. [163] graph GANN class.
2017 TopologyNet [165] topol.b CNN reg.
2019 Math-DL [205] topol. GAN, CNN reg.
2018 Cang et al. [206] topol. CNN reg.
2016 DeepVS [167] atom contexts CNN class.
2019 OnionNet [207] atom pairs CNN reg.
2020 Zhu et al. [166] atom pairs MLP reg.

ainteraction fingerprints
balgebraic topology
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In 2009, Sato et al. [152] combined machine learning (among others
SVM, RF, and MLP) and the pharmacophore-based interaction fingerprint
(Pharm-IF) are incorporated for screening five selected protein data sets in
silico. For training a model per protein, the respective co-crystallized ligands
served as active samples (between 9 and 197) and the Glide docking poses of
2, 000 randomly selected decoys from PubChem as negative samples. For the
test set, 100 active samples (after clustering) were drawn from the StARlite
database (data now contained in ChEMBL) together with 2, 000 negatives
samples (as above) and all compounds were docked using Glide. The com-
bination of SVM and Pharm-IF performed best with a high mean EF10% of
5.7 (over the five protein sets) compared to Glide scores (4.2) and a residue-
based IF (PLIF) model (4.3), as well as a high mean AUC value of 0.82
compared to Glide (AUC 0.72) and PLIF model (AUC 0.78). Interestingly,
in this study, the Pharm-IF SVM model outperformed the respective MLP
model (average EF10% 4.42, AUC 0.74). In 2016, Wang et al. [201] used
ensemble learning to improve the SVM performance (using Adaboost-SVM)
with the Pharm-IF encoding for two proteins from the same data set and
gained even higher EF10% values.

In 2019, Li et al. [202] introduced an application of a target-specific
scoring model to identify potential inhibitors for 12 targets from the (S)-
adenosyl-L-methionine-dependent methyltransferase (SAM MTase) family.
In total, 1, 740 molecules were collected from experimental data and from
the DUD-E website (446 actives and 1, 294 decoys), and docked using Glide.
An MLP was chosen and the complexes encoded by the TIFP. The data set
was randomly split into training and test sets with a 10 : 1 ratio. In a binary
classification experiment, the MLP showed e.g. a AUC of 0.86 and a EF5%

of 3.46 on the test set, and thus, outperformed the traditional docking tools
Glide (0.75 and 2.97), and AutoDock vina (0.61 and 0.99).

3D grid-based studies Many methods using a 3D grid representation of
a protein-ligand complex—comparable to pixels in 3D images—for affinity
prediction, have evolved over the last years [156, 157, 160, 161], especially
due to the increased popularity of deep CNNs.

One of the first published models, AtomNet [156] uses a CNN, composed
of an input layer, i.e. the vectorized 3D grids, several 3D convolutional
and fully-connected layers, as well as an output layer, which assigns the
probability of the two classes: active and inactive. Among other data sets,
the DUD-E benchmark, consisting of 102 targets, over 20, 000 actives and 50
property matched decoys per active compound, was used for evaluation. 72
targets were randomly assigned as training set, the remaining 30 targets as
test set (DUDE-30). For each target, a holo structure from the scPDB [209]
is used to place the grid around the binding site and multiple poses per
molecule are sampled. Finally, the grid is fixed to a side length of 20 Å and
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a 1 Å grid spacing, in which each grid point holds some structural feature
such as atom-type or IFP. On the DUDE-30 test set, AtomNet achieves a
mean AUC of 0.855 over the 30 targets, thus outperforming the classical
docking tool smina [210] (mean AUC of 0.7). Furthermore, AUC values
greater than 0.9 were reported for 46% of the targets in the DUDE-30 test
set.

Similarly, BindScope [161] voxelizes the binding pocket by a 16 Å grid of
1 Å resolution, molecules are placed using smina, and each voxel is assigned a
distance-dependent input based on eight pharmacophoric feature types [159].
The 3D-CNN model architecture was adapted from DenseNet [211] and yields
a mean AUC of 0.885 on the DUD-E benchmark in a five-fold cross-validation
(folds were assigned based on protein sequence similarity-based clusters).
Comparable AUC values on the DUD-E set were reported by Ragoza et al.
[212] (mean AUC of 0.867), a similar grid-based CNN method, which out-
performed AutoDock vina on 90% of the targets.

DeepAtom [160] uses a 32 Å box with 1 Å resolution and assigns a total
of 24 features to each voxel (11 Arpeggio atom types [213] and an exclusion
volume for ligand and protein respectively) in individual channels to encode
the protein-ligand complex. The PDBbind v.2016 served as baseline bench-
mark data, split into 290 complexes for testing and 3, 767 non-overlapping
complexes between the refined and core sets for training and validation.
In particular, each original example gets randomly translated and rotated
for data argumentation, which aims to improve the learning capacity. The
performance of the built 3D-CNN model, trained on the PDBbind refined
set, in predicting the affinity for the core set in a regression setting was re-
ported with a low mean RMSE of 1.318 (R of 0.807) over five runs. In this
case, DeepAtom outperformed RF-Score [214], a classical ML method (mean
RMSE of 1.403), as well as Pafnucy [157] (mean RMSE of 1.553), a similar
3D-CNN method, trained and applied to the same data using their open-
source code. Note that in the original publication, Pafnucy [157] achieved
prediction results with an RMSE of 1.42 on the PDBbind core set v.2016.
In a further study, the training set for DeepAtom was extended by com-
bining BindingMOAD and PDBbind subsets, resulting in 10, 383 complexes.
While the mean RMSE of DeepAtom slightly decreased to 1.232, the R value
increased to 0.831 for the PDBbind core set.

The presented examples show the effectiveness of 3D grid-based encod-
ings and CNN models for affinity prediction, which seem to be well suited to
implicitly capture the variety of information important for ligand-binding.
However, disadvantages are the high memory demand of 3D grids and CNNs,
as well as the implicit grid boundary definition to capture the protein-ligand
interactions.
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Graph-based studies Graph neural networks have proven to be some
of the most effective deep learning models, easily reaching state-of-the-art
performance. In this context, two recent applications of such models in
virtual screening are described.

Lim et al. [163] construct a graph representation of the protein predicted
binding pose complex, obtained using smina [210] and train a graph neural
network to successfully predict activity. The node feature vector concate-
nates atomic information from the ligand and from the protein. The features
considered for both are the one-hot encoding of the following atomic proper-
ties: type (10 symbols), degree (6 possibilities for 0 to 5 neighbors), number
of hydrogens (5 entries for 0 to 4 possible attached Hs), implicit valence of
electrons (6 entries) and a binary entry for aromaticity. This leads to 28
entries for the ligand, another 28 for the protein, generating a feature vec-
tor of size 56. The 3D information is encoded in the two matrices A1 and
A2 described in Section 2.2.1, for covalent and non-covalent interactions,
respectively. The model applies four layers of GAT (gate augmented graph
attention) to both A1 and A2, before aggregating the node information using
summation. A 128-unit fully-connected layer is then applied to this vector,
which leads to binary activity prediction. DUD-E is used for training and
testing the VS performance, where the training set contains 72 proteins with
15, 864 actives and 973, 260 inactives and the test set another 25 proteins
with 5, 841 actives and 364, 149 inactives. The AUC value on the test data
set reaches 0.968, which is high compared to the value of 0.689 obtained with
the smina docking tool. The model also obtains better scores than other deep
learning (DL) models such as the CNN-based models AtomNet [156] and the
one developed by Ragoza et al. [212]. The same trend holds for the reported
PDBBind data set study. However, when testing their model and docking
results on external data sets such as ChEMBL and MUV, the performance
drops, hinting to the fact that the DL model might not be able to generalize
to the whole chemical space.

The graph convolution family PotentialNet developed by Feinberg et al.
[164] predicts protein-ligand binding at state-of-the-art scales. The atomic
features are atom type, formal charge, hybridization, aromaticity, and the
total numbers of bonds, hydrogens (total and implicit), and radical elec-
trons. The structure between the atoms is described using A ∈ RN×N×Net ,
the extended representation of an adjacency matrix, as described in Sec-
tion 2.2.1. The PotentialNet model uses a Gated Graph Neural Network
(GGNN), which means that unlike GNNs, the update function is a GRU,
leading to the new node vector, depending on its previous state and the mes-
sage from its neighbors, in a learned manner. PotentialNet also considers
different stages, where stage 1 makes use of only the bonded part of the ad-
jacency matrix, leading to node updates for connectivity information, stage
2 considers spatial information, and stage 3 sums all node vectors from lig-
ands before applying a fully-connected layer for binding affinity prediction.
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The model is trained on complexes of the PDBBind v.2007 using a subset
of size 1, 095 of the initial refined set for training, and then tested on the
core set of 195 data points. The model reaches a test R2 value of 0.668 and
a test R value of 0.822, outperforming RF-Score (R of 0.783) and X-Score
(R of 0.643) [164, Table 1]. However, similar results were reported by the
CNN-based model TopologyNet [165], introduced below.

Other studies In MathDL [205] and TopologyNet [165], the complexes—
and thus the interactions between protein and ligand—are encoded using
methods from algebraic topology. In MathDL, advanced mathematical tech-
niques (including geometry, topology and/or graph theory) are used to en-
code the physicochemical interactions into lower-dimensional rotational and
translational invariant representations. Several CNNs and GANs (Genera-
tive Adversarial Networks) are trained on the PDBbind v.2018 data set and
applied on the data of the D3R Grand Challenge 4 (GC4), a community-wide
blind challenge for compound pose and binding affinity prediction [215]. The
models are among the top performing methods in pose prediction on the beta
secretase 1 (BACE) data set with an RMSD † of 0.55 Å and a high ρ of 0.73
in affinity ranking of 460 Cathepsin S (CatS) compounds (additionally good
performance was reported on the free energy set of 39 CatS compounds).
TopologyNet [165], a family of multi-channel topological CNNs, represent
the protein-ligand complex geometry by a 1D topological invariant (using
element-specific persistent homology) for affinity prediction and protein mu-
tation. In the affinity study, a TopologyNet model (TNet-BP) is trained on
the PDBbind v.2007 refined set (excluding the core set) and achieves an R
of 0.826 and an RMSE of 1.37 in pKd/pKi units ‡. Thus, TNet-BP seems to
outperform other well-known tools such as AutoDock vina and GlideScore-
XP on this data set (note that the results are adopted from the original
study by Li et al. [216]).

DeepBindRG [217] and DeepVS [167] focus on the interacting atom en-
vironments in the complex using atom pair and atom context encodings,
respectively. DeepBindRG, a CNN model trained on PDBbind v.2018 (ex-
cluding targets that appear in the respective test set), achieves good perfor-
mance on independent data sets such as the CASF-2013 and DUD-E subsets,
with an RMSE varying between 1.6 and 1.8 for a given protein and an R
between 0.5 and 0.6. With these values, DeepBindGP performs slightly
better than AutoDock vina, while being in a similar range as Pafnucy [157].
DeepVS, another CNN model, trained and tested on the DUD data set using
leave-one-out cross-validation outperforms, with an AUC of 0.81, AutoDock
vina 1.2 which has an AUC value of 0.62.

†The RMSD [192] measures the average distance of atomic positions, e.g. between a
co-crystallized ligand and the docked poses.

‡The pKd and pKi values describe the negative decimal logarithm of Kd and Ki values,
respectively.
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2.3.2 Pair-based models

In this section, pair-based/PCM models from the literature are presented (see
Table 2.4). As discussed above, pair-based methods do not require the crystal
structure of a protein, nor the docked pose of a ligand. Indeed, the ligand
is modeled independently from the protein and vice versa. This framework
resembles proteochemometric (PCM) models [101, 102], whereas the cross-
term, including some interactions between the ligand and the protein, which
can be used in PCM, is not present in the herein reported pair-based setting.
The discussed studies are grouped by the type of ligand encoding they use:
SMILES, fingerprint and graph.

Ligand as SMILES In 2018, Öztürk et al. [128] proposed the Deep-
DTA (Deep Drug-Target Binding Affinity Prediction) regression model which
takes the SMILES and a fixed length truncation of the full protein sequence
as features for the ligand and protein, respectively. In the study, two kinase-
focused data sets are used: the Davis data [185] and the KIBA data [186]
with roughly 30, 000 and 250, 000 data points, respectively. The first reports
Kd values, which represents the dissociation constant, while the second re-
ports Kinase Inhibitor BioActivity (KIBA) scores, which combines informa-
tion from IC50, Ki and Kd measurements. As input for the CNN, both
the SMILES and the protein sequence are label encoded independently. The
authors apply convolutions to the embeddings of each object, before concate-
nating them and predicting the pKd value or KIBA score, depending on the
data set used. The data are randomly split into six equal parts where one of
them is used as a test set to evaluate the model and the five remaining com-
pose the folds for cross-validation and parameter tuning. On the Davis and
KIBA test sets, the model exhibits an MSE of 0.261 and 0.194, respectively
(see [128, Table 3-4]), which outperforms baselines such as KronRLS [223],
a variation of least squares regression and SimBoost [224], a tree-based gra-
dient boosting method. The success of the deep learning model could be
explained by the use of convolution layers which are able to extract informa-
tion from the protein-ligand pair.

The same authors extended DeepDTA to WideDTA [218]. This time,
instead of only considering the SMILES label encoding for the ligand, sub-
structure information is also included where a list of the 100, 000 most fre-
quent maximum common substructures defined by Woźniak et al. [225] are
used. For the protein description, approximately 500 motifs and domains are
extracted from the PROSITE database [226] and label encoded. The deep
learning architecture is similar to DeepDTA, but WideDTA does achieve
slightly better results, e.g. an MSE of 0.179 on the KIBA data [218, Table
5].

In another study, Karimi et al. [142] use SMILES as ligand and structural
property sequences as protein descriptors to predict protein-ligand affinities.
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Table 2.4: Pair-based models. The listed models consider information
from the protein and the ligand, but the encodings are built independently
of each other. The year of publication, the name of the authors or the
model, the ligand and the protein encodings and the machine/deep learning
model(s) are shown in the respective columns. Classification (class.) implies
hit or non-hit, whereas regression (reg.) evaluates an affinity measure, e.g.
pIC50 values. Graphs and associated GCNNs have become prominent in
recent years.

Year Name Ligand
encoding

Protein
encoding

ML/DL
model

Frame-
work

2018 DeepDTA
[128]

SMILES full seq.a CNN reg.

2019 WideDTA
[218]

SMILES &
MCSb

full seq. &
domains/motifs

CNN reg.

2019 DeepAffinity
[142]

SMILES struct. property
seq.

RNN+
CNN

reg.

2016 DL-CPI [219] substructure
FPc

domains MLP class.

2018 Kundu et al.
[133]

div. feat. FP div. feat.d FP RF &
SVM &
MLP

reg.

2018 Sorgenfrei
et al. [138]

Morgan FP z-scales RF class.

2019 DeepConv-
DTI [220]

Morgan FP full seq. CNN class.

2019 Torng and
Altman [126]

graph graph GCNN class.

2020 DGraphDTA
[221]

graph graph GCNN reg.

2018 PADME
[222]

graph (or
Morgan FP)

seq. comp.e GCNN
(or MLP)

reg.

asequence
bmaximum common substructure
cfingerprint
ddiverse feature count, physicochemical and structural properties
ecomposition
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The first learning task is an auto-encoder which aims at giving a latent
representation of a compound-target pair. Once the neural network is trained
in an unsupervised setting, the resulting fingerprint is then fed to recurrent
plus convolution layers with an attention mechanism to predict pIC50 values.
The BindingDB data set [227], containing close to 500, 000 labeled protein-
compound pairs after curation, is used for their study. After removing four
protein classes as generalization sets, the remaining ∼ 370, 000 pairs are split
into train (70%) and test (30%) sets. On the test set, while RF yields an
RMSE of 0.91 and a Pearson’s R of 0.78, the DeepAffinity model reaches
an R of 0.86 and a lower RMSE of 0.73 [142, Table 2], thus outperforming
conventional methods such as RF. A GCNN is also tested on the graph
encoding of the compounds, but this alternative did not show improvements
with respect to the SMILES notation.

Ligand as fingerprint The DL-CPI model suggested by Tian et al. [219]
stands for Deep Learning for Compound-Protein Interactions and applies
four fully-connected hidden layers to a 6, 404 long input binary vector which
is the concatenation of compound and protein features; 881 entries for sub-
structure identification in the ligand and another 5, 523 for Pfam [141] iden-
tified protein domains. Using five-fold cross-validation, the AUC varies be-
tween 0.893 and 0.919 depending on the ratio of negative samples in the data
set for DL-CPI and between 0.687 and 0.724 for an RF model [219, Table
2]. The high accuracy performance is explained by the abstraction coming
from the hidden layers of the network.

The study by Kundu et al. [133] compares various types of models trained
and tested on a subset of 2, 864 instances of the PDBBind v.2015 data set.
The 127 long input feature vector combines features of the protein, such as
the percentage of amino acids, the accessible surface area of the protein, the
number of chains, etc., as well as physicochemical (e.g. molecular weight,
topological surface area, etc.) and structural properties (e.g. ring count) of
the ligand. RF is shown to outperform models such as MLP and SVM in the
task of predicting inhibition constant (Ki) and dissociation constant (Kd)
values. One possible reason for these results might originate from the size
of the data set: RF models can be very successful when the available data
is small.

The study undertaken by Sorgenfrei et al. [138] focuses on the RF al-
gorithm. They encode the ligand with Morgan fingerprints and note that
using z-scales descriptors from the binding site of the protein highly im-
proves the performance of the model compared to the baseline which only
considers the one-hot encoded ID of the target. The data set used contains
over 1, 300, 000 compound-kinase activities and comes from combined sources
such as ChEMBL and the KIBA data provided by Tang et al. [186]. The
activity threshold for pIC50 values (pIC50 = −log10(IC50)) is set at 6.3. On
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a test set in which both target and compound are left out during training,
the AUC reaches a value of 0.75 [138, Table 1], justifying the usefulness of
pair-based/PCM methods in hit identification.

Morgan fingerprints are also used in the study by Lee et al. [220] to
represent the ligand, while the full raw protein sequence is used as protein
input. The deep learning model, DeepConv-DTI, consists of convolutions
applied to the embeddings of the full protein sequence (padded to reach the
length of 2, 500), which are then combined with the ligand descriptors in
fully-connected layers to predict whether the drug is a hit or not. The model
is built on combined data from various open sources, such as DrugBank [228],
KEGG [229] and IUPHAR [230]. After curation and generating negative
samples, the training set contains close to 100, 000 data points. The model
is externally tested on PubChem where both protein and compound had
not been seen during training. DeepConv-DTI reaches an accuracy close
to 0.8 [220, Figure 3D] and seems to outperform the DeepDTA model by
Öztürk et al. [128], see [220, Figure 4].

Ligand as graph In the study by Torng and Altman [126], GCNNs are
used on both target and ligand. The residues in the binding pocket of the
protein correspond to the nodes and the 480 long feature vector, computed
with the program developed by Bagley and Altman [231], represents their
physicochemical properties. The small molecule is also treated as a graph
and properties such as the one-hot encoded atomic element, degree, attached
hydrogen(s), valence(s), and aromaticity, are included in the 62 long fea-
ture vector. Graph convolutional layers are applied to both graphs inde-
pendently and the resulting vectors from both entities are concatenated. A
fully-connected layer is applied to the concatenated vector to learn the inter-
action between the molecule and the target, leading to an interaction vector
which is then used to predict binding or non-binding. The model is trained
on the DUD-E data set and externally tested on MUV, and reaches an AUC
value of 0.621, which is better than results from 3D CNNs, AutoDock vina
and RF-Score [126, Table 2].

The research undertaken by the authors Jiang et al. [221] uses a similar
workflow, where GNNs are applied to both the ligand graph and the pro-
tein graph based on the contact map. More precisely, the atomic properties
of the ligand nodes are the one-hot encoding of the element (44 entries),
the degree (11 entries), the total (implicit and explicit) number of attached
hydrogens (11 entries), the number of implicit attached hydrogens only (11
entries), and aromaticity (binary value), leading to a vector of length 78.
The atomic properties of the protein include the one-hot encoding of the
residue (21 entries), the position-specific scoring matrix for amino acid sub-
stitutions (21 entries), and the binary values of the 12 following properties:
being aliphatic, aromatic, polar, acidic, or basic, the weight, three differ-
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ent dissociation constants, the pH value and hydrophobicity at two different
pH values. The contact map, which can be computed using the PconsC4
tool [232] directly from the protein sequence, can be used as a proxy for
the adjacency matrix. Given the graph representation for the ligand as well
as the protein, three graph convolutional, pooling layer, and fully-connected
layers are subsequently applied to both ligand and protein independently,
then concatenated, and finally the binding affinity is predicted after another
two fully-connected layers. The deep learning model is called DGraphDTA,
which stands for "Double Graph Drug-Target Affinity predictor". The MSE
on the Davis and KIBA data sets are as low as 0.202 and 0.126, respectively
and DGraphDTA seems to give better results than both DeepDTA and Wid-
eDTA, see [221, Table 7, 8]. This hints to the fact that graph representations
are well suited for drug-target interaction prediction.

The PADME model, an acronym for "Protein And Drug Molecule inter-
action prEdiction" [222], suggests two variants for ligand encoding in the re-
gression context of drug-target interaction prediction. The ECFP fingerprint
(implemented as the Morgan fingerprint in the code) as well as the graph
encoding are used along side a 8, 421 long protein feature vector describing
the sequence composition (8, 420 entries for the amino acid, dipeptide, and
tripeptide composition computed using the propy tool [233]) and one entry
for phosphorylation. The deep learning model is adapted depending on the
encoding of the ligand. In the case of circular fingerprint, the protein and
ligand vectors are concatenated to form a "combined input vector", on which
fully-connected layers are then applied. In the graph setting, a graph layer is
applied to the ligand, resulting in a vector, which is then again concatenated
to the protein vector as in the previous case. The regression models (either
graph or circular fingerprint) consistently outperform baseline models such
as KronRLS and SimBoost. The simulations are run on several kinase data
sets such as Davis [185] and KIBA [186]. Using cross-validation schemes
that involve testing the model on the fold for which no protein was trained
on, the RMSE on the KIBA data with the PADME graph setting is 0.6225
and on the Davis data with the circular fingerprint setting is 0.5639 [222,
Table 2]. This study provides further evidence that deep learning models
could indeed improve drug-target prediction compared to standard machine
learning algorithms.

2.4 Conclusion and discussion

Over the last decade(s), a wave of deep learning methods and applications
to boost virtual screening, i.e. affinity—but also other properties, such as
ADMETox—prediction, has emerged. This development is coupled to the
availability of more and more compounds, structures and mapped bioactivity
data, together with novel encoding techniques and deep learning technolo-
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gies. These include not only model architectures, that seem to fit well the
nature of biological objects such as ligands and proteins, but also open-source
software and computer hardware evolution.

Around thirty papers related to deep learning-based virtual screening
are described in details in this review (see Table 2.3 and Table 2.4). Most
of these studies were published between 2018 and 2020, giving an overview
of the current state-of-the-art and the advancements of deep learning in the
field. The encodings for protein and ligand (Section 2.2.1), the machine
learning models (Section 2.2.2), the data sets (Section 2.2.3) as well as the
model performances (Section 2.3) are reported and put in context. These
studies show overall very promising results on typical benchmarks and often
outperform the respective classical approach chosen for comparison, such as
docking or more standard machine learning models. This is also exempli-
fied on the Merck Molecular Activity Kaggle competition data, where deep
neural networks have shown to routinely perform better than random for-
est models [234]. Similarly, in other blind challenges for pose and affinity
prediction such as the D3R grand challenges, deep learning-based methods
increasingly make it to the top ranges [215, Table 1]. One possible reason
for such outstanding achievements may be explained by the way biological
entities are encoded: for example, rather than using human-engineered de-
scriptors, features are learned by the models. Also, novel encodings, such
as voxels (where physicochemical atomic properties are pinned to locations
in 3D space) and graphs (that describe the connectivity, bonded and non-
bonded, between the atoms), seem to capture well the variety of information
important for ligand-binding. For example, DeepAtom [160], a 3D grid-based
method where each grid cell is assigned a different physicochemical property
seems well suited to model the complexity of protein-ligand binding using
3D information. Encoding chemical and biological objects in graph form also
seems to be very fitting, as shown in the study by Lim et al. [163] and the
DGraphDTA model by Jiang et al. [221].

Nevertheless, several challenges still remain open and new ones have also
emerged, including (1) precision of chemical encoding, (2) generalization of
chemical space, (3) lack of (big and high-quality) data, (4) comparability of
models, and (5) interpretability, which will be discussed in the following.

(1) Precision of chemical encoding: The better performance of structure-
based methods using ML-based vs. classical SFs is often attributed to the
avoidance of a pre-determined functional form of the protein-ligand com-
plexes, meaning that the precision of the chemical description does not nec-
essarily lead to more accurate binding affinity prediction [235]. Contribut-
ing factors might be associated with a) modeling assumptions, where more
precise descriptions may introduce errors. b) The dependence of encoding
and regression technique: more precise description might produce longer
and sparser features which could be problematic in cases such as RF mod-
els. c) Restrictions to data in the bound state, neglecting contribution from
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both partners in solvation and induced fit phenomena. Or missing consider-
ation of conformational heterogeneity, where multiple conformations might
co-exist with different probabilities.

(2) Generalization of chemical space: As mentioned in the work by Lim
et al. [163], although some deep learning models perform outstandingly well,
there seems to still exist some issues exploring the whole chemical space, a
challenge also occurring in classical machine learning methods. Some less
successful results have been detected when evaluating some models on ex-
ternal data sets, showing that since the data used for training is not repre-
sentative of the immense chemical space, the model, instead of learning and
exploring it, is rather memorizing patterns from it [236].

(3) Lack of (big and high-quality) data: Deep learning is very data greedy
and usually, the bigger the training set is, the better the results. Goodfellow
et al. [13] suggest that a model trained on a data set of size of the order of 10
million may surpass human performance. However, as previously discussed,
biochemical data are still considerably smaller than, for example, image or
video data sets. Therefore, depending on the data at hand, choosing more
standard machine learning approaches, or more shallow neural networks,
that require less parameter training, may perform just as well. Examples
are shown in the studies by Kundu et al. [133], which employs random for-
est for activity prediction, or by Göller et al. [237], which summarizes DL
and ML models for ADMETox predictions. Another alternative is to find
a way to acquire more data, through, for example, data augmentation. In
image classification, this can be done using image rotating, cropping, recol-
oring, etc., which can be adapted to virtual screening tasks. The Pharm-IF
method [152] performs better with more crystal structures or by employ-
ing additional docking poses. DeepAtom [160] translates and rotates the
protein-ligand complex to gain more training data. In QSAR predictions,
using SMILES augmentation has also become popular as means to enlarge
the training set [127, 129]. Note that not only the quantity of data, but also
its quality is often unsatisfactory, such as low resolution of crystal structures
or relying on docked poses, as well as activity data taken from various ex-
periments (and conditions) providing different measurements, e.g. Kd, Ki,
IC50 or EC50 (which is the measured half maximal effective concentration
of a drug).

(4) Comparability of models, benchmark data, open-source: Reviewing a
multitude of studies and wanting to compare and rank them is understand-
able, but also unreasonable for several reasons, starting with the data and
the splits. Models that have been trained on different data or even different
tasks should hardly be compared; a regression task or a classification task,
even when using similar performance metrics, are not analogous. Assuming
that the models do use the same data, if the splits are different, then the
evaluation can no longer be directly compared. Assuming now that the splits
are identical, then if the metrics used are different, again no fair compari-
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son can be made, as pointed out by Feinberg et al. [164]. This means that
there are a chain of elements that have be considered before comparing and
ranking methods blindly. To this end, two major elements become crucial:
(1) open-source data and (2) open-source code. Having benchmark data
sets freely available—together with a code basis—such as MoleculeNet [104],
TDC [199] or work by Riniker and Landrum [200], and updated regularly,
such as ChEMBL, is highly beneficial for academic research and method
publication. Moreover, having access to the source code of newly developed
methods and being able to reproduce results is also becoming more and
more essential in the field especially as the number of models developed is
becoming larger (as embraced by the FAIR principles [61]).

Moreover, while several data sets are available to benchmark the perfor-
mance of different approaches in VS, Sieg et al. [187] recently elaborated on
the need of bias control for ML-based virtual screening studies. Several types
of biases exist. For example, domain bias, which maybe be due to insuffi-
cient generalization as discussed above, but still acceptable, if the models are
applied in a narrow chemical space. Nevertheless, non-causal bias is danger-
ous, when there is correlation but no causation. While mainly focusing on
structure-based ML models for VS on DUD, DUD-E and MUV, Sieg et al.
[187] found that small molecule features dominated the predictions across
dissimilar proteins even when structure-based methods/descriptors are used.
Thus, special care needs to be taken when methods and descriptors are eval-
uated on benchmark sets, if the compilation protocol of the benchmark is
suited for the context of the methodology. In another study, Chen et al.
[238] also claim hidden analogue and decoy bias in the DUD-E database
that may lead to superior performance of CNN models during VS. Thus,
there is urgent need for bias control in benchmarking data sets, especially
for structure-enabled ML-based VS.

(5) Interpretability: With the rise of deep learning, the complexity of the
architectures and the depth of the models comes the issue of interpretabil-
ity. Such models are often considered as black boxes and understanding the
mechanism in the hidden layers is a challenge. However, research under-
taken in this direction aims at deciphering what the algorithm has learned,
see Chapter 4 and [239]. This may also be important in detecting bias in
the data [187].

For further considerations on the type, quality and quantity of the data as
well as the challenges of DL models built thereof to impact different areas of
drug discovery, the reader is kindly referred to two recent reviews by Bender
and Cortés-Ciriano [240, 241].

In this work, the recent progress in DL-based VS methods has been
reviewed, exemplifying the boost in development and application over the
last few years. While some challenges due to, for example data coverage and
unbiased evaluation sets, molecular encoding and modeling the respective
biological protein-ligand binding event still remain, the reported results show
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the unprecedented advances in the field.

Data availability

The Python code to generate most components of the figures in the review
is available on GitHub at https://github.com/volkamerlab/DL_in_VS_re
view, using packages such as RDKit [131], NGLview [242], the Open Drug
Discovery Toolkit (ODDT) [243] and PyMOL [244].

https://github.com/volkamerlab/DL_in_VS_review
https://github.com/volkamerlab/DL_in_VS_review
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Chapter 3

Improving molecular property
prediction using data
augmentation

The contents of this chapter were published as Kimber, T. B., Gagnebin, M.,
& Volkamer, A. (2021). Maxsmi: Maximizing Molecular Property Prediction
Performance with Confidence Estimation Using SMILES Augmentation and
Deep Learning. Artificial Intelligence in the Life Sciences, 1, 100014 [2],
under a Creative Commons license (CC-BY-NC-ND), https://creativeco
mmons.org/licenses/by-nc-nd/4.0/. The content from this publication
is presented here with the permission of Elsevier publishing.

Contributions:
TBK conceived the project, laid out the theory with MG, implemented the
algorithms, performed the computational experiments. TBK and MG ana-
lyzed and visualized the results. TBK wrote the paper. AV supervised the
work.

Chapter summary

Accurate molecular property or activity prediction is one of the main goals
in computer-aided drug design. Quantitative structure-activity relation-
ship (QSAR) modeling and machine learning, more recently deep learning,
have become an integral part of this process. Such algorithms require lots
of data for training which, in the case of physico-chemical and bioactivity
data sets, remains scarce. To address the lack of data, augmentation tech-
niques are increasingly applied in deep learning. Here, we exploit that one
compound can be represented by various SMILES strings as means of data
augmentation and we explore several augmentation techniques. Convolu-
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tional and recurrent neural networks are trained on four data sets, including
experimental solubility, lipophilicity, and bioactivity measurements. More-
over, the uncertainty of the models is assessed by applying augmentation on
the test set. Our results show that data augmentation improves the accu-
racy independently of the deep learning model and of the size of the data.
The best strategies lead to the Maxsmi models, the models that maximize
the performance in SMILES augmentation. Our findings show that the
standard deviation of the per SMILES prediction correlates with the accu-
racy of the associated compound prediction. In addition, our systematic
testing of different augmentation strategies provides an extensive guideline
to SMILES augmentation. A prediction tool using the Maxsmi models for
novel compounds on the aforementioned physico-chemical and bioactivity
tasks is made available at https://github.com/volkamerlab/maxsmi.

3.1 Introduction

Drug design is a time-consuming and costly process [245, 246] with high at-
trition rates [247]. It can be supported with in silico methods by guiding the
design process, optimizing compounds, and discarding those with undesired
properties at an early stage of development. In this context, computer-aided
drug design (CADD) has become central in the drug discovery pipeline and
is widely adopted in research and development in both academia and phar-
maceutical companies.

Over the last few decades, there has been a keen interest in machine
learning (ML) and more specifically deep learning (DL), which have been
applied to a variety of areas, covering computer vision [248], speech recogni-
tion [249], as well as the life sciences. Only to name a few, AlphaFold 2 from
DeepMind which predicts protein folding [10], PotentialNet which focuses
on protein-ligand binding affinity [250], de novo molecular design suitable
for compound optimization [251], and cytotoxicity prediction as in Chapter
4. Such excitement in DL may be explained by the main three following
factors [13].

1. The gain of computational power through graphics processing units
(GPUs) and tensor processing units (TPUs). Platforms such as Google
Colaboratory [105] allow any user to exploit high performance com-
puting resources without any cost and such free and easy access is
unprecedented.

2. The ever growing amount of available data. More data are created and
stored in databases every day in various fields. Many processes are
automatized making data more accessible and usable either internally,
as in pharmaceutical companies, or publicly. For example in academic
research, in competitions, such as Kaggle [33], or in challenges, such as

https://github.com/volkamerlab/maxsmi
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D3R – the Drug Design Data Resource challenge [215] or the Tox21
challenge [252].

3. The advances in algorithms, making models perform better than ever
before. Deep learning algorithms may surpass human performance
if trained on a data set containing over 10 million data points, as
suggested by Goodfellow et al. [13].

With the rise of ML/DL research, many applications have been extended to
the field of molecular property and affinity prediction, even though insuffi-
cient data remains a challenge in the field.

Encoding molecular compounds in both human- and computer-readable
formats is a necessary step in CADD. A convenient encoding is SMILES,
or simplified molecular-input line-entry system [58]. As the name suggests,
SMILES is a linear notation of a molecule based on atom and bond enumera-
tion, as well as branch, ring closure, and disconnection specification. Several
advantages arise from this compact representation.

1. The printable characters make SMILES easily readable by computers
and decipherable by humans.

2. Being a single line, SMILES resemble words and are therefore cheap
to store.

3. Such a notation is very popular and many open-source databases store
compounds in SMILES.

However, there is a trade-off between readability and specification: having a
compact encoding means losing detailed information about the molecule such
as 2D or 3D features. Moreover, subtle chemistry rules such as aromaticity
do not have a standard way of being handled [253].

The implementation of a SMILES given a compound can be described
as follows: from any starting atom in the molecule, enumerate the atoms
and bonds following a path in the molecular graph. Two aspects of this
construction lead to the non-uniqueness of SMILES: 1. the atom to start the
enumeration from, and 2. the path to follow along the graph. Therefore,
one molecule can have many different valid SMILES, simply by starting the
enumeration from a different atom or by choosing a different path. Nev-
ertheless, in some settings, having a bijection between a molecule and its
SMILES notation may be sought. For example, when determining the over-
lapping molecules from two data sets. In this context, most cheminformatics
tools have their own algorithm implemented allowing them to always re-
trieve the same SMILES given a molecular graph, such a SMILES is called
canonical [254].

As mentioned previously, deep learning being data greedy and both
physico-chemical and bioactivity databases being meager, elaborate tech-
niques have to be integrated to unleash the full potential of deep neural
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networks. In this context, data augmentation in general [255, 256], and
more specifically SMILES augmentation [127, 129, 257, 258], is a powerful
assistance in molecular prediction. From a machine learning perspective,
data augmentation allows the model to see the same object through differ-
ent angles and has been successfully applied in image classification [248, 259],
where images undergo transformations such as flipping, coloring, cropping,
rotating, and translating. From a computational perspective, SMILES aug-
mentation is advantageous because generating random SMILES is fast and
memory efficient, and even though training a model may be more computa-
tionally expensive, it remains cheap to evaluate.

The first occurrence of SMILES augmentation in QSAR modeling was
developed by Bjerrum [127], where affinity against dihydrofolate reductase
(DHFR) is predicted on a small data set of 756 compounds. The model con-
sists of long short-term memory (LSTM) layers and a fully connected layer
for the normalized log IC50 value. Each molecule in the data set is augmented
on average 130 times. The model with SMILES augmentation reaches a test
correlation coefficient of 0.68, a 0.12 increase with respect to the canonical
model. From then on, several studies have built on the same idea, applying
SMILES augmentation in QSAR modeling [257]. Moreover, convolutional
neural networks have successfully been applied in the context of SMILES
augmentation, outperforming models using traditional molecular descrip-
tors [129, 258]. Such augmentation techniques have also emerged in related
fields, such as retrosynthesis [260, 261] and generative modeling [262, 263].
While all these studies show the benefit of augmenting the data, none of
them focus, to the best of our knowledge, on a systematic analysis on how
to augment the data set best, and most decide a priori on an augmentation
number. This study aims at filling this gap by offering a systematic augmen-
tation approach, both in the augmentation strategies and by how much the
data should be augmented. Moreover, a command-line interface is available
for users interested in the prediction of physico-chemical properties for novel
molecules and assessing the uncertainty of the prediction. To this end, all
code is made freely available at https://github.com/volkamerlab/maxsmi.

3.2 Methods

In this section, we first describe different augmentation strategies which can
be used for data augmentation when dealing with SMILES. Second, we il-
lustrate how SMILES augmentation can be viewed as an ensemble learning
technique when it comes to prediction. We then examine the deep learning
models that are trained in this study.

https://github.com/volkamerlab/maxsmi
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3.2.1 Augmentation strategies

As discussed in the Introduction, one compound can have several valid
SMILES, since both the starting atom and the path along the molecular
graph used to generate the SMILES can differ. Here, the way a user can ex-
plore such random SMILES is detailed and five strategies to augment a single
SMILES to multiple SMILES are described: no augmentation, augmentation
with duplication, augmentation without duplication, augmentation with re-
duced duplication, and augmentation with estimated maximum. For the
following sections, we assume that we are given a data set D, containing N
pairs of {compound, label}. Label refers to the measured property, such as
lipophilicity or solubility. The implementation of these strategies is based
on the open-source cheminformatics software RDKit [131].

No augmentation

The level zero to augmentation is having no augmentation or, in other terms,
augmentation of zero. This means that given a data set D with N com-
pounds, the "no augmentation" version of D also contains N SMILES. More
specifically, in this setting, the SMILES associated with each compound is
the canonical SMILES.

Augmentation with duplication

Generating random SMILES implies picking at random an initial atom and
following a random path along the molecular graph. Augmenting the data
set D by m means that for each of the N compounds in D, m instances of
random SMILES are drawn and the associated labels are matched for each
compound. In this case, augmenting D by m would result in the augmented
data set containing N×m data points. In this scenario, all molecules in D are
multiplied by the same factor m. Consequently, smaller molecules, with fewer
SMILES variations, will contain more duplicates whereas larger molecules are
more likely to cover a diverse set of random SMILES. A disadvantage of such
an augmentation strategy is that SMILES corresponding to small molecules
will be over-represented in the data set and could create a bias in model
training.

Augmentation without duplication

Removing duplicated entries is common in data wrangling [264]. In the con-
text of SMILES augmentation, this translates to discarding duplicates after
having generated a number of random SMILES. For data set D, the final
number of data points after augmentation varies according to the augmen-
tation number, i.e. the number of times a sample is drawn from the valid
SMILES space, and the size of the molecules in the data set. A disadvantage



60 CHAPTER 3. DATA AUGMENTATION

of such an augmentation strategy is that small molecules, which presumably
possess fewer unique SMILES representatives, will be under-represented in
the data set and could create a bias in model training.

Augmentation with reduced duplication

In order to find a compromise between keeping or removing all duplicates,
the notion of augmentation with reduced duplication is introduced. In this
setting, only a fraction of the number of duplicates is kept. Mathemati-
cally speaking, if the data set D is augmented by m, then a function f(m)
which grows slower than linear is used to control the number of replicas kept
for each SMILES. Sensible functions would be the squared root function
f(m) =

√
m or the natural logarithm f(m) = ln (m), the former being used

for the experiments in this study.

A corner case of the former three augmentation strategies by augmenta-
tion number m is when m = 1. In this instance, a random SMILES will
be generated and the number of data points would still be N , as in the "no
augmentation" case, with the difference that "no augmentation" contains
canonical SMILES only.

Augmentation with estimated maximum

The final strategy described is augmentation with estimated maximum, which
aims to cover a wide range of the valid SMILES space for a given com-
pound, or in other words, to generate a number of unique SMILES that
depends on the compound. In our study, the implementation of this aug-
mentation strategy randomly samples SMILES corresponding to a com-
pound, and the sampling process is stopped once the same SMILES string
has been generated a pre-defined number of times. The experiments of
this study set 10 generations of the same SMILES as a stopping crite-
rion. It is noteworthy that the number of SMILES this method generates
is highly dependent on the size of the compound, unlike the previous meth-
ods which always generate a number of SMILES bounded by m. For ex-
ample, our implementation of this augmentation strategy generated 50, 659
unique SMILES variations for the compound given by the canonical SMILES
CC(=O)C1(C)CCC2C3C=C(C)C4=CC(=O)CCC4(C)C3CCC21C, whereas
only three were generated for the canonical SMILES C=CC=C, namely
C(=C)C=C, C(C=C)=C, and C=CC=C.

3.2.2 SMILES augmentation as ensemble learning for com-
pound prediction and confidence measure

The application of data augmentation strategies during training has proven
to be successful, as shown in previous works [248, 259]. In QSAR modeling
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particularly, SMILES augmentation is not only beneficial on the training
set [129], but there are also advantages of augmenting the test set, or more
generally, an unlabeled data set, as explained in this section.

Let us assume that a model M with a set of parameters Θ was trained for
a certain number of epochs. Let us consider an unlabeled data set containing
N compounds for which we want to make predictions. Each compound C
can be augmented using random SMILES: S1(C), S2(C), . . . , Sk(C), where
k depends on the strategy. The model MΘ produces a prediction for each of
those SMILES, i.e. for i ∈ {1, . . . , k}

ŷi(C) = MΘ(Si(C)), (3.1)

leading to a per SMILES prediction rather than a per compound prediction.
Using an aggregation function A : Rk → R, such as the mean, a prediction
for compound C can be computed as

ŷ(C) = A
(
ŷ1(C), . . . , ŷk(C)

)
. (3.2)

Such aggregation can be viewed as a consensus among the SMILES prediction
and interpreted as ensemble learning for a given compound.

Additionally, if the standard deviations of the predictions are computed,
they can be interpreted as a confidence in the molecular property or activity
prediction. If the standard deviation is large, then there is a high variation
in the per SMILES prediction, and the model is uncertain in its per com-
pound prediction. An illustration of such a molecular prediction is shown in
Figure 3.1. Following the rationale by Tagasovska and Lopez-Paz [265], the
aleatoric and epistemic uncertainties are often intertwined; the uncertainty
computed in our work rather falls into the aleatoric category, a type of un-
certainty linked to the model predictions and the randomness in the input
data [265–267].

3.2.3 Deep learning models

Neural networks are powerful algorithms that allow accurate predictions on
various tasks. In the case of QSAR/ML/DL modeling and more specifically
the use of SMILES representation, two types of models can be applied, con-
volutional [13, Chapter 9] and recurrent [13, Chapter 10] neural networks.

In this study, comparing deep learning models and how they perform
with respect to data augmentation is one of the key focuses. To this end,
three types of models are architectured and trained, namely 1D and 2D
convolutional neural networks (CONV1D, CONV2D) as well as a recurrent
neural network (RNN). The architecture of the recurrent network consists of
an LSTM layer, followed by two fully connected layers of 128 and 64 units,
respectively. It was inspired by Bjerrum [127], in which an LSTM layer is
followed by a single 64 unit fully connected layer. Using a similar approach,



62 CHAPTER 3. DATA AUGMENTATION

Figure 3.1: Compound prediction and confidence measure thanks to
SMILES augmentation. Given a compound represented by its canonical
SMILES, a set of random SMILES are generated. The trained machine
learning model produces a prediction for each of the SMILES variations.
Aggregating these values leads to a per compound prediction and computing
the standard deviation is interpreted as an uncertainty in the prediction.

a single 1D convolutional layer of kernel size 10 and stride 1 is applied in
the CONV1D model. Two fully connected layers follow the convolution. The
CONV2D adheres to the same pattern but instead of using a 1D convolution,
a 2D convolution operation is performed using one single channel. Finally,
all three architectured models stay consistent in the depth of the network
and remain shallow.

In this study, all deep learning models are trained for 250 epochs, using
mini-batches of size 16, where the mean squared error is the considered loss.
Optimization is done with stochastic gradient descent and a learning rate of
0.001. Note that a fixed number of epochs is used in this study, but for sake
of completeness, three sample models with early stopping were also run. The
results with and without early stopping did not change significantly (data
not shown). Moreover, some models were trained by adapting the number
of epochs with respect to the augmentation number, but this only proved
to overfit the training set and yielded the same results on the test set as
training with 250 epochs (data not shown).

3.3 Data and experimental setup

This section introduces the data sets used in this study, namely their prove-
nance as well as the required preprocessing. Furthermore, a step by step
instruction for efficient SMILES augmentation is described. Finally, the
evaluation design and experimental setup are covered.
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3.3.1 Provenance

The data in this research come from two sources: MoleculeNet [104], and
the ChEMBL database [54], chosen for two main reasons. 1. They are freely
available and easily downloadable or retrievable. 2. They are often used as
benchmarks for study comparison [129, 268, 269]. For tasks in MoleculeNet,
we focus on physico-chemical prediction tasks and retrieve the data from the
three following sets of varying sizes, all available as part of DeepChem [53]
at https://deepchem.readthedocs.io/en/latest.

1. Measured water solubility is referred to as the ESOL data set [52].
The raw data contains 1, 128 data points. This data set is further
processed to only include molecules with at most 25 heavy atoms for
experimental setup and is referred to as ESOL_small.

2. The FreeSolv [77] data set consists of 642 pairs of SMILES and exper-
imental hydration free energy of small molecules in water (kcal/mol).

3. The lipophilicity data set originates from ChEMBL [54] and contains
4, 200 pairs of SMILES and experimental values of octanol/water dis-
tribution coefficient.

Bioactivity data can be found in large quantities in ChEMBL. To date,
over 18 million activities are stored in the database, covering more than
14, 000 targets and two million compounds [270]. Among targets, kinases
are a well studied protein family due to their involvement, among others, in
cancer and inflammatory diseases [271]. Kinodata, from the Openkinome or-
ganization [272], provides an already curated data set of human kinase bioac-
tivities, retrieved from one of the latest versions to date of ChEMBL (ver-
sion 28) and is freely available at https://github.com/openkinome/kinodata.
Moreover, for this study, Kinodata is further filtered for the epidermal growth
factor receptor (EGFR) kinase [273], since it is known to be an important
drug target. Its UniProt identifier is given by P00533 [274]. Affinity towards
the EGFR kinase is quantified using pIC50 values, the negative base 10 log-
arithm of IC50 [275]. Information about the data set provenance and size
are detailed in Table 3.1.

3.3.2 Data preprocessing and input featurization

In order to train a deep learning neural network on data containing molecular
compounds, the data set undergoes preprocessing and compounds encoding.

Once the data sets are retrieved from their original source, invalid SMILES,
detected by RDKit [131], not available (NA) values and disconnected com-
pounds, marked by a dot in a SMILES, are removed. Molecules are trans-
formed to the canonical SMILES representation, using RDKit functionalities.

https://deepchem.readthedocs.io/en/latest
https://github.com/openkinome/kinodata
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Table 3.1: Data sets for this study. Size of the data sets before and after
preprocessing, as well as the size of the training and test sets before applying
an augmentation strategy, and the provenance of the data.

Data set Size before
pre-

processing

Size after
pre-

processing

Train set
80%,
before

augmention

Test set
20%,
before

augmention

Provenance

ESOL 1, 128 1, 128 902 226 MoleculeNeta

ESOL_small 1, 128 1, 068 854 214 MoleculeNet
FreeSolv 642 642 513 129 MoleculeNet
Lipophilicity 4, 200 4, 199 3, 359 840 MoleculeNet
Affinity (EGFR) 6, 026 5, 849 4, 679 1, 170 Kinodatab

ahttps://deepchem.readthedocs.io/en/latest
bhttps://github.com/openkinome/kinodata

For model training, the SMILES are one-hot encoded, based on a dictio-
nary of unique symbols constructed from the SMILES in the data. Atoms
represented by two letters, such as Br for bromine or Cl for chlorine, as well
as @@ for chirality specification, are treated as if single symbols. Finally,
all inputs are padded up to the length of the longest SMILES. The reader
is kindly referred to Chapter 2 for further details on one-hot encoding and
padding.

3.3.3 Important steps in SMILES augmentation

When processing SMILES for augmentation, some technical aspects are es-
sential. This section assumes a training and test split, but the rationale is
the same in the presence of a validation set.

Firstly, it is important that the data are first split and then augmented,
rather than augmented and split. In the latter case, one compound could
have SMILES appearing in both training and testing leading to most prob-
ably excellent performance, but yet statistically incorrect.

Secondly, storing values such as the length of the longest SMILES or
the dictionary of characters should be done not before but after augmenting
the data. Indeed, augmentation may lead to the extension of the dictionary
as well as the lengthening of SMILES. For example, the canonical SMILES
CCCC consists of the letter C solely and contains four characters. However,
one of its possible random variations is C(C)CC, which not only introduces
new characters, such as the opening "(" and closing ")" of branches but is
composed of six characters. Therefore, critical values such as length and
dictionary should be retained after augmentation.

Finally, these same values should be computed on the union of the train-
ing and the test set for the smooth training and evaluation of the model. In-

https://deepchem.readthedocs.io/en/latest
https://github.com/openkinome/kinodata
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deed, if the dictionary of characters is only built on the basis of the SMILES
in the training data, there might be additional atoms, or characters in the
test set that the model will not recognize and will not be able to one-hot
encode. Moreover, if the length of the longest SMILES is taken from the
training set and not the union of the training and test sets, augmentation
on the test set could produce a longer SMILES than the longest one in the
training set, leading to dimensionality errors.

For all the above reasons, it is important for machine learning engineers
to abide by the steps as described in this section for statistically correct
results, as well as programmatic error-free model training and evaluation.

3.3.4 Experimental setup and model evaluation

In order to draw a conclusion on the efficiency of data augmentation, three
data sets of varying sizes are considered, namely ESOL, FreeSolv, and
lipophilicity (see the Provenance section). For each of these sets, the data
are split once into 80% training and 20% test set, with a fixed random
seed for testing to be consistent with the augmentation schemes. Given all
possible combinations between the five augmentation strategies and differ-
ent augmentation numbers, the three deep learning models, and the various
data sets, including cross-validation would have added considerable compu-
tational costs and has therefore not been implemented in this study.

For model evaluation, the root mean squared error (RMSE) [276] on the
test set is reported, so that the lower the RMSE value, the better the model.
However additional information such as the measure of goodness of fit, also
known as the R2 value [277], on both training and test sets, as well as the
time required for model training and evaluation are also stored.

Five augmentations strategies are studied: No augmentation, which con-
siders the canonical SMILES representation. The augmentations with, with-
out, and with reduced duplication, for numerous augmentation numbers: a
finer grid from 1 to 20 with a step size of 1, and a coarser grid from 20 to
100 with a step size of 10. Finally, the estimated maximum strategy where a
SMILES representation has to be generated 10 times for the process to stop.
For this last strategy, the ESOL_small data set (see Table 3.1) is used to
keep the augmentation to a reasonable time-scale. For the same reason, the
same augmentation strategy is not run on the lipophilicity data set.

The augmentation strategies are applied to both the training set and the
test set, so that for example, if the FreeSolv training data set is augmented
20 times without duplication, then so would the FreeSolv test set.

Ensemble learning is applied on each test set and the mean is used as
aggregation. However, a user could easily adapt it to another function, such
as the median. The standard deviation is stored for each compound in the
test set.

Moreover, a Random Forest (RF) model [278] is used as a baseline, with
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all default parameters from Scikit-learn [27]. The inputs to the model are the
Morgan fingerprints of radius 2 and length 1, 024. Augmentation strategies
as discussed above are not applicable in the context of fingerprints.

Simulations are run on a GeForce GTX 1080 Ti, provided by the central
HPC cluster of the Freie Universität Berlin [279].

3.3.5 Code and documentation

All code is written in Python 3 [280] following PEP8 style guide [281] and
is freely available at https://github.com/volkamerlab/maxsmi. Results of
this study can be found at the same link. Examples and documentation,
generated via Read the Docs [282], can be found at
https://maxsmi.readthedocs.io/en/latest/.

Package management is done with Anaconda [283]. RDKit [131] is used
for cheminformatics, PyTorch [29] for deep learning, and other popular pack-
ages such as Scikit-learn [27], Numpy [32], and Pandas [284] for general pur-
poses. Continuous integration is deployed with Github actions [285] ensuring
runs on Linux, Mac, and Windows operating systems. Unit tests are done
with Pytest [286], and code coverage is measured via Codecov [287].

3.4 Results and discussion

This section gives a thorough analysis of the results that are obtained using
the experimental setup described in the previous section and provides the
reader with guidelines on data augmentation applicable to new data and
exemplified with affinity measurements towards the EGFR kinase. An ex-
ample of the user prediction for compounds through a simple command-line
interface is described.

3.4.1 SMILES augmentation improves model performance

As mentioned previously, deep learning models are data greedy and the
findings of our study reinforce this statement by a systematic analysis of
performance differences when augmenting the input data. Feeding a neu-
ral network with different SMILES representations of the same compound
leads to better performing models, as shown in Figures 3.2, B.2, and B.3.
Improvements are also visible with respect to the baseline model. These ob-
servations are made on all three physico-chemical data sets, namely ESOL,
FreeSolv, and lipophilicity, independently of the data set size that ranges
between approximately 600 and 4, 000 compounds (see Table 3.1). For ex-
ample, the ESOL performance with no augmentation has an RMSE value of
0.839 for the CONV1D model, whereas the performance of the same model
with reduced augmentation and m = 70 achieves an RMSE as low as 0.569,
see Figure 3.2. As the number of augmentation increases, the RMSE values

https://github.com/volkamerlab/maxsmi
https://maxsmi.readthedocs.io/en/latest/
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become smaller, indicated by lighter shades of purple in Figures 3.2, B.2,
and B.3. Note that at first, as the augmentation number increases in the
single digits, there is a clear increase in the performance of the models. For
example, for the lipophilicity data set augmented with duplication and the
CONV2D model, the single random SMILES model has an RMSE value of
1.309 and reaches values below 1 as of an augmentation number of 4 (see
Figure B.3). On the ESOL data set, the RNN model without duplication
starts at an RMSE of 1.016 and reaches values below 0.8 after only an aug-
mentation of 5 (see Figure 3.2). However, the performance steadily reaches
a plateau. For example, the RMSE of the CONV1D model trained on Free-
Solv is slightly above 1 as of 20 number of augmentation and fluctuates
around this value thereafter, as shown in Figure 3.3. Similar observations
can be made for ESOL and lipophilicity. Using the same model, the RMSE
on ESOL reaches a plateau around 0.60 at 40 augmentation steps (see Fig-
ure B.5) and lipophilicity around 0.60 at 60 (see Figure B.6). This result
suggests the following:

1. There does not seem to be one optimal value that particularly stands
out.

2. A trade-off between performance and computation time must be found.
As expected, the computation time increases as the number of data
points increases, as shown in Figure B.7.

Deep learning model performance by architecture

Not only does augmenting the data set overall help the learning for all three
considered tasks, but so is the case for all three deep learning architectures.
This leads to the observation that augmentation improves performance inde-
pendently of the deep learning model, suggesting that for any future QSAR
study for molecular property prediction using SMILES and deep learning,
SMILES augmentation should be the method of choice. However, in this par-
ticular study and these particular deep learning architectures, results point
to the fact that the CONV1D model tends to outperform the RNN model,
which itself seems to outperform CONV2D. As shown in Figure 3.4, on the
ESOL data using augmentation with reduced duplication, as of an augmen-
tation number of 40, the RMSE value of the CONV2D model fluctuates
around 0.7, the RNN model around 0.65 and the CONV1D around 0.6, pro-
moting the latter model to best performing model. This exhibits the power
of convolutions and their ability to extract relevant features in compounds
based on one-hot encoded SMILES input. This also implies that although
applying 2D convolutions to SMILES is programmatically feasible, 1D con-
volutions are better suited than 2D convolutions, the latter having shown
great success in image classification. Indeed, when considering the one-hot
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Figure 3.2: Test RMSE using data augmentation on the ESOL data
set. The table shows the root mean squared error (RMSE) on the test set
for three deep learning models and five SMILES augmentation strategies,
using various augmentation numbers, as well as a baseline consisting of a
Random Forest (RF) model with Morgan fingerprint as input. The lighter
the purple color, the better the model. The overall best setting is highlighted
in yellow, which for the ESOL data set is augmenting the data set 70 times
using a reduced number of duplicates and training a 1D convolutional neural
network (CONV1D). For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.
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Figure 3.3: Performance reaches a plateau independently of the aug-
mentation strategy. The performance of the CONV1D model trained and
evaluated on the FreeSolv data set reaches a test RMSE value slightly above
1 as of 20 augmentation steps and fluctuates around this value thereafter,
for all augmentation strategies: with, without, and with reduced duplication.
For the ESOL and lipophilicity data, see Figures B.5 and B.6.
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Figure 3.4: The 1D convolutional (CONV1D) model outperforms
the recurrent (RNN) and 2D convolution (CONV2D) models. The
figure shows the evolution of the root mean squared error (RMSE) on the test
set with respect to the number of augmentation using reduced duplication on
the ESOL data. CONV1D outperforms RNN, which outperforms CONV2D.

encoded matrix, SMILES are more similar to words, in which the position
of the atoms is important, rather than to images.

There is no best augmentation strategy applying to all data sets

From an augmentation strategy point of view, conclusions are not straight-
forward. The three augmentation strategies, namely with, without, and
with reduced duplication, all perform similarly well, without one standing
out. For example, the test RMSE on the FreeSolv data set trained using
the CONV1D model reaches values just above 1 for all three strategies, as
shown in Figure 3.3.

Moreover, generating a large portion of the SMILES space using the
strategy with estimated maximum surprisingly does not lead to the best
results. On the ESOL data set, this strategy reaches a test RMSE of 0.683
using RNN, whereas the same model but using strategies with, without, and
with reduced duplication already outperforms the estimated maximum as of
an augmentation number of 19 and onward, as shown in Figure 3.5. Although
less obvious than in the ESOL case, a similar conclusion can be made on
the FreeSolv data set and for example the CONV1D model, as shown in
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Figure 3.5: Generating a large portion of the SMILES space does
not necessarily lead to the best performance. Even though the RNN
model is presented with SMILES variations that cover a large portion of the
SMILES space using the augmentations strategy with estimated maximum,
on the ESOL data set, this strategy does not achieve the best results.

Figure B.4. This suggests that there might be a point of saturation, where
the neural network stops learning, even though being fed more data.

Maxsmi models: best performing model per data set

From the results of the experiments, as mentioned previously, there does not
seem to be one augmentation strategy that fully stands out, neither does
a particular model. However, from a purely numerical standpoint, there
is an optimal performance value and this value is highlighted in yellow in
Figures 3.2, B.2, and B.3. For the ESOL data set, the tuple of (model, aug-
mentation number, augmentation strategy) that yields best performance is
the CONV1D model, an augmentation number of 70 and keeping a reduced
number of duplicates. For the FreeSolv data set, the same model but generat-
ing 70 random SMILES keeping all duplicates is the best setting. Finally, for
lipophilicity, generating 80 random SMILES and removing duplicates leads
to the best performance. Given these three best models, we select them for
further analysis, henceforth calling them Maxsmi models and summarized in
Table 3.2.
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Table 3.2: The best augmentation strategies define the Maxsmi
models. After training three data sets (ESOL, FreeSolv, and lipophilicity)
on various deep learning models (CONV1D, CONV2D, and RNN), using
different augmentation numbers and strategies, the setting that yields the
best performance, or lowest root mean squared error (RMSE) on the test set
is selected and named the Maxsmi model.

Data Model Augmentation
number

Augmentation strategy Test RMSE

ESOL CONV1D 70 With reduced duplication 0.569
FreeSolv CONV1D 70 With duplication 1.032
Lipophilicity CONV1D 80 Without duplication 0.593

Performance comparison between canonical and random SMILES

One interesting observation from this study is the performance comparison
between training a model with canonical SMILES versus training a model
using one random SMILES representation, in other terms, augmentation of
1. The canonical model systemically outperforms the model that uses a ran-
dom SMILES. More specifically, for the ESOL data set, the canonical model
reaches an RMSE value of 0.839 using CONV1D, whereas the random ver-
sion 0.964 with the same model. In the FreeSolv and lipophilicity cases, the
canonical model yields an RMSE value of 1.963 and 0.994, versus 2.577 and
1.268 for random SMILES. A possible explanation for such an outcome is
the simplicity in the canonical SMILES representation. The algorithm in
RDKit produces the more readable SMILES representation, one that avoids
branches, as well as nested branches. Table 3.3 shows some of these dif-
ferences. For example, a random version might add brackets, where the
canonical version has none (see the first row in Table 3.3), it might add sets
of brackets, where the canonical version keeps them to a minimum (see the
second row in Table 3.3) and the random version even allows nested brackets
where the canonical version avoids them (see the last row in Table 3.3).

To conclude with this observation, if SMILES augmentation cannot be
applied for future studies for any reason, practitioners are highly recom-
mended to consider the canonical SMILES representation rather than a ran-
dom one.

3.4.2 Ensemble learning for compound prediction and confi-
dence measure

Using the Maxsmi models established above, we look into more details at
the information gained from ensemble learning for molecular prediction, and
more specifically at the average and standard deviation computed from the
per SMILES prediction. Feeding different SMILES representations to the
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Table 3.3: Models based on the canonical SMILES outperform the
ones based on a single random SMILES. The test prediction for a
model trained and evaluated on the RDKit canonical SMILES systemati-
cally performs better than the same model trained and evaluated on a single
random SMILES. ESOL is the prediction task leading to the values in the
table.

Canonical SMILES Random SMILES True value Canonical SMILES
prediction (&error)

Random SMILES
prediction (&error)

CCCCCC C(C)CCCC −3.84 −2.87 (0.97) −2.77 (1.07)
CCCC(––O)CC C(––O)(CCC)CC −0.83 −1.37 (0.54) −1.65 (0.82)
CCCC(––O)OCC C(OC(CCC)––O)C −1.36 −1.14 (0.22) −0.55 (0.81)

model and aggregating the prediction for each SMILES variation to obtain a
single prediction per compound is valuable not only from a practical point of
view where molecular prediction is more informative than a SMILES predic-
tion, but it also allows the model to merge information coming from different
perspectives of the same compound. Moreover, the standard deviation as-
sociated with the SMILES predictions allows to quantify the uncertainty of
the prediction of the model toward a given compound. The higher the stan-
dard deviation for a molecule, the less concurrent are the predictions by the
model, and thus, less confident.

Difference between canonical vs. averaged prediction

Considering the Maxsmi models trained with their respective augmentations,
we analyze the difference in prediction on the test set when using the canon-
ical or the averaged prediction. More specifically, we compare the prediction
error of the Maxsmi models when evaluated on the test set twice: once using
the canonical SMILES for compound prediction and a second time averaging
the per SMILES prediction using the same augmentation number and strat-
egy which was used for training. For both evaluations, the error between the
prediction and the true value is computed. Figure 3.6 shows the histogram
of these errors on the ESOL data. As shown in the figure, more compounds
have an error close to zero using the ensemble learning evaluation rather than
the canonical, which incentives the use of ensemble learning for future stud-
ies. However, this gain is marginal and the canonical prediction performs
similarly well compared to the averaged prediction. In light of the overall
gain in the accuracy of the models, this indicates that augmentation during
training is the more crucial step. As discussed in the following paragraph, an
advantage of using augmentation on the test set is to estimate the confidence
of the model in its prediction.
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Figure 3.6: Lower errors when evaluating the Maxsmi model using
ensemble learning. There are fewer errors in the evaluation of the trained
Maxsmi models when using ensemble learning (i.e. the averaged per SMILES
prediction) vs. the canonical prediction.
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More confident model implies smaller prediction error

As mentioned in the SMILES augmentation as ensemble learning for com-
pound prediction and confidence measure section, computing the standard
deviation of the per SMILES prediction provides a confidence measure in the
compound prediction. In this section, we analyze the relationship between
high confidence and small prediction error on the test set for the Maxsmi
models. A way of visually evaluating uncertainty is to plot the confidence
curve [266], which displays how the error varies with the sequential removal
of compounds from lowest to highest confidence. Figure 3.7 shows the con-
fidence curve of the Maxsmi model used on the FreeSolv data. As shown
in the figure, as molecules with low confidence are sequentially removed,
the mean prediction error decreases. In other words, the error vanishes as
only compounds with the highest certainty predictions are kept, demonstrat-
ing a relationship between high confidence and small prediction error. Fig-
ure B.8 shows the confidence curves of the Maxsmi models for the ESOL and
lipophilicity data. The general trend of the curve is decreasing in the ESOL
case. Once the 10% of compounds with the highest confidence are kept, the
error is below 0.25. However, in the lipophilicity case, although the general
trend is also decreasing, even when keeping the 10% of compounds with the
highest confidence, the error is still above 0.3.

3.4.3 Comparison to other studies

Given the results of the Maxsmi models, their performance is compared to
other studies, namely MoleculeNet [104], CNF [129], and MolPMoFiT [257],
that are trained and evaluated on the same data sets as Maxsmi, see Ta-
ble 3.4.

The first considered study is MoleculeNet, where several molecular en-
codings and models are trained and evaluated, but where no augmentation
is used. In MoleculeNet, the data is randomly split into training, validation,
and test set, using an 80 : 10 : 10 ratio and run three times on different seeds.
The best performing model on the test set for both ESOL and FreeSolv is
a message passing neural network with an RMSE and standard deviation of
0.58±0.03 and 1.15±0.12, respectively [104, Table S5]. On the lipophilicity
data set, a slightly different graph model performs best with 0.655± 0.036.
On all three tasks, the Maxsmi results perform better than MoleculeNet
(see Table 3.4), suggesting that SMILES augmentation with shallow neural
networks could perform at least as well as, if not better, than graph neural
networks (GNNs).

The second study we consider is the Convolutional Neural Fingerprint
(CNF) model [129, 258], in which SMILES augmentation is applied, generat-
ing unique representations for each compound, i.e. augmentation without du-
plication. The CNF model is evaluated using five-fold cross-validation (CV),
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Figure 3.7: More confident Maxsmi model on FreeSolv implies
smaller prediction error. The general trend of the confidence curve is
decreasing, showing that as compounds with high uncertainty are removed,
the error becomes smaller.
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Table 3.4: The Maxsmi models reach state-of-the-art results. Com-
parison of four studies on the same data sets (ESOL, FreeSolv, and lipophilic-
ity). The Maxsmi model outperforms most of the other models with a lower
RMSE on a randomly split test set.
Abbreviations: RMSE = root mean squared error, std = standard devia-
tion, CNN = Convolutional Neural Network, GNN = Graph Neural Net-
work, RNN = Recurrent Neural Network, NA = not available, CV = cross-
validation.

Study Test RMSE (± std if available) Split (Random) Model

ESOL FreeSolv Lipophilicity Fold Ratio %
train:valid:test

Maxsmi 0.569 1.032 0.593 Single 80 : 0 : 20 CNN
MoleculeNet[104] 0.58± 0.03 1.15± 0.12 0.655± 0.036 3 80 : 10 : 10 GNN
CNF[129] 0.62 1.11 0.67 5-fold CV NA CNN
MolPMoFiT[257] NA 1.197± 0.127 0.565 ± 0.037 10 80 : 10 : 10 RNN

however standard deviations are not reported. Test RMSE values are 0.62,
1.11 and 0.66 on the ESOL, FreeSolv, and lipophilicity data set, respectively,
see [129, Table S1]. Similar to MoleculeNet, the Maxsmi model slightly out-
performs these results on all three tasks. This suggests that augmenting the
data set by greater factors, e.g. closer to 70 as in Maxsmi, yields better
results than 10 times augmentation as in CNF.

Finally, the Molecular Prediction Model Fine-Tuning (MolPMoFiT) [257]
study builds an RNN model based on LSTM layers using SMILES augmenta-
tion with duplication. The lipophilicity data is augmented 25 times whereas
the FreeSolv data 50 times. MolPMoFiT is trained and evaluated using 10
splits of ratio 80 : 10 : 10 for the training, validation, and test sets. The
model reaches an RMSE value (and standard deviation) of 1.197± 0.127 on
the FreeSolv data and 0.565±0.037 on the lipophilicity data, see [257, Figure
3, 4]. While Maxsmi leads on the FreeSolv prediction problem, MolPMoFiT
slightly outperforms Maxsmi on the lipophilicity data (Table 3.4).

Lastly, study comparison should be treated with utmost attention, since
results can not be compared blindly. For instance, if the data preprocessing
is done differently in each study, or the splits are not identical, or the pa-
rameters of the experiments are not set to be the same, then the results are
not fairly comparable.

3.4.4 Test case: EGFR affinity data following the guideline

Given the results of the Maxsmi models on the physico-chemical data sets,
we now discuss guidelines to apply SMILES augmentation on a new data set.
The EGFR affinity data, discussed in the Provenance section and henceforth
simply referred to as affinity data, is used as a test case, but the idea can be
applied to different data sets and broader use cases.
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Table 3.5: The Maxsmi models strike again! The Maxsmi model devel-
oped for the affinity against the EGFR kinase and the Random Forest (RF)
baseline model outperform the canonical model.

Name Model Augmentation
number

Augmentation
strategy

Test RMSE Test R2

Maxsmi CONV1D 70 Augmentation
with reduced duplication

0.777 0.712

Canonical CONV1D 0 No augmentation 1.031 0.494
Baseline RF 0 No augmentation 0.758 0.726

Since the affinity data set contains 5, 849 data points after preprocessing
(see Table 3.1), the lipophilicity and affinity data are of a similar order of
magnitude, although the latter is somewhat larger. Therefore, a compromise
between the size of the data set and the tuple that gives the best results for
the FreeSolv, ESOL, and lipophilicity data (see Table 3.2) is found: for the
affinity data, the CONV1D model is chosen (similarly to lipophilicity, ESOL,
and FreeSolv), the number of augmentation is set to 70, as for ESOL and
FreeSolv, and the augmentation strategy is set to augmentation with reduced
duplication for a less computational intensive training than augmentation
with duplication. As comparison, the Maxsmi, the canonical, and the base-
line models on affinity are trained and evaluated. The same experimental
setup for splitting and evaluation as mentioned in the Data and experimen-
tal setup section is applied. On the test set, the canonical model reaches
an RMSE value and coefficient of correlation R2 value of 1.031 and 0.494,
respectively. In comparison, the Maxsmi model shows great improvement
with test RMSE, R2 values of 0.777 and 0.712, respectively (see Table 3.5).
Surprisingly, the RF baseline model performs similarly to the Maxsmi model,
with an RMSE of 0.758 and an R2 of 0.726.

3.4.5 Maxsmi models available for user predictions

Given the good performance of the Maxsmi models for all three physico-
chemical tasks and for EGFR affinity, we retrained them on all points in
the data set as a final product. The aim is to offer a single command-line
interface for prediction. A user can provide a SMILES as input, choose a
given task and they will receive an output file in the form of a CSV table with
relevant information, such as 1. the user input SMILES itself, 2. whether
the compound was in the training set, 3. the canonical SMILES, and its
associated variations 4. the per SMILES predictions, 5. the per compound
prediction, 6. and the standard deviation. A PNG file of the 2D molecular
graph associated with the input SMILES is also generated. For example,
for the semaxanib drug, taken from the PKIDB database [125], and given
by the SMILES O=C2C(\1ccccc1N2)=C/c3c(cc([nH]3)C)C, lipophilicity is
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predicted using the command-line
$ python maxsmi/prediction_unlabeled_data.py
- -task="lipophilicity"
- -smiles_prediction="O=C2C(\1ccccc1N2)=C/c3c(cc([nH]3)C)C"

The command above was used to generate the values in Figure 3.1.

3.5 Conclusion

In this study, SMILES augmentation applied to deep learning molecular
property and activity prediction is investigated. Five augmentation strate-
gies that can be applied as SMILES augmentation are explored, together
with three neural network architectures, and the performance thoroughly
assessed on three molecular data sets: ESOL, FreeSolv, and lipophilicity.

Our findings show that augmentation improves the performance of deep
learning models not only independently of the model, but also with respect
to the size of the data set. This suggests that the choice of augmentation
strategy can be viewed as hyper-parameter tuning.

The tuple consisting of (model, augmentation number, augmentation
strategy) that maximizes the performance on the test set leads to the defi-
nition of the Maxsmi models. Our findings also show that the model using
canonical SMILES outperforms the one using single random SMILES, thanks
to the simplicity of the canonical notation.

Additionally, the Maxsmi models outperform, or perform at least as well
as state-of-the-art models such as MoleculeNet, CNF, and MolPMoFiT, on
the three physico-chemical data sets. This suggests that applying simple
SMILES augmentation techniques can reach similar or even better perfor-
mance as sophisticated models such as graph-based neural networks, as in
the case of MoleculeNet. Moreover, we use our findings to guide the applica-
tion of SMILES augmentation on a new data set and provide a test case with
data on affinity against the EGFR kinase. Finally, we provide an easy to
use framework for out-of-sample prediction on four tasks: ESOL, FreeSolv,
lipophilicity, and affinity against EGFR, which should be helpful to assess
properties of novel compounds. The open-source code allows to perform
similar studies on different data sets with minor programmatic adjustments.

As an outlook, we observe that strategies that keep all, or a fraction of
duplicates, may help the model to learn inherent symmetry in a compound.
Indeed the same random SMILES representation will certainly be generated
multiple times for a symmetric molecule even though the initial atom and
the path along the graph are different. In this sense, SMILES duplication
is not an artificial construction, and keeping replicas could retain important
information about the underlying symmetry of a compound.
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Chapter summary

In drug development, late stage toxicity issues of a compound are the main
cause of failure in clinical trials. In silico methods are therefore of high
importance to guide the early design process to reduce time, costs and animal
testing. Technical advances and the ever growing amount of available toxicity
data enabled machine learning, especially neural networks, to impact the field
of predictive toxicology.

In this chapter, cytotoxicity prediction, one of the earliest handles in drug
discovery, is investigated using a deep learning approach trained on a highly
consistent in-house data set of over 34, 000 compounds with a share of less
than 5% of cytotoxic molecules. The model reached a balanced accuracy of

∗These authors have shared first authorship.
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over 70%, similar to previously reported studies using Random Forest. Al-
beit yielding good results, neural networks are often described as a black box
lacking deeper mechanistic understanding of the underlying model. To over-
come this absence of interpretability, a Deep Taylor Decomposition method
is investigated to identify substructures that may be responsible for the cyto-
toxic effects, the so-called toxicophores. Furthermore, this study introduces
cytotoxicity maps which provide a visual structural interpretation of the
relevance of these substructures.

Using this approach could be helpful in drug development to predict the
potential toxicity of a compound as well as to generate new insights into
the toxic mechanism. Moreover, it could also help to de-risk and optimize
compounds.

4.1 Introduction

Over the past two decades, an increasing number of new chemicals have been
synthesized every year [288] and fast prior analysis of their potentially toxic
effects on humans and animals has become crucial [289]. In drug develop-
ment, late stage safety and toxicity issues are still the main causes of failure
in clinical trials [290, 291]. Moreover many animals (ca. 2.8 Mio, BMEL
[292]) are deployed for testing in research and development. Therefore, in
silico methods are highly valuable during early drug development to reduce
costs, human discomfort and animal testing [293] and might contribute to the
early identification of harmful substances according to the REACH regula-
tion [294]. Machine learning (ML) algorithms, more specifically deep learn-
ing methods, have proven to perform well in different fields, such as speech
recognition [295] or image classification [296], and are now also broadly used
in drug design [297–301]. A recent review of deep learning in chemistry can
be found in [302]. ML-based endpoint prediction in computational chemistry
follows the principle that compounds with similar substructures or features
may cause similar effects. Given a labeled data set with known outcome,
the ML algorithm learns to identify the often highly non-linear combination
of physico-chemical and structural features in the compound, commonly en-
coded by circular fingerprints (e.g. Morgan/ECFP), that may be responsible
for their (toxic) effect [303–306]. Such models can be built for target-specific
endpoints (binding assays) as well as for more complex biological endpoints
(cell-based assays), such as cytotoxicity. While more data might be avail-
able for the former group, the models might be less relevant for in vivo
situations [307].

Cellular cytotoxicity is a high-level property of molecules as it can be
caused by different mechanisms. It refers to cell-death by cell membrane
damage and necrotic lysis or cell processes such as apoptosis, autophagy or
regulated necrosis [308]. Cytotoxicity is experimentally assessed by counting
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survival rates after treating a cell line with a given substance [309]. In
pharmaceutical drug discovery, cytotoxicity is one of the earliest handles for
assessing toxicity of a drug. Discarding compounds with undesired features
early in the development stage is of high practical value, following the "fail
early - fail cheap" derisking principle.

Some computational cytotoxicity models have already been published,
most of them applying random forest algorithms [308, 310, 311], others using
Bayesian methods with physico-chemical properties and/or circular finger-
prints as descriptors [312]. Additionally, a naive Bayes approach in combi-
nation with activity spectra has been introduced for cytotoxicity prediction
[313]. Furthermore, previous studies have shown the success of Feedforward
Neural Networks (FNN) [314, Chapter 6] especially in predicting different
toxic endpoints [56, 315]. The ability of such networks to model and learn
non-linear, complex relationships have gained more and more attention in
the context of chemistry [316]. While showing promising results, two major
challenges remain for such methods in drug design.

The first challenge is the availability of sufficient and reliable data [317].
Many models are trained on scattered publicly available - and thus, hetero-
geneous data - due to assay diversity, as well as highly variable conditions
and setups used throughout different laboratories. Therefore, thorough data
curation is crucial [318]. Second, ML algorithms and especially Deep Neural
Networks (DNN) may act as a black box and one is often unable to un-
derstand the intricacies in the hidden layers. The deeper the network the
more complicated the interpretation becomes. Over the last years, several
techniques to interpret such models have been introduced in the broader
context of drug discovery [319–322], including but not limited to atom-level
coloration [320], integrated gradients [321], attention-vector based relevant
latent features exploration [322], masking and gradient techniques applied to
3D convolutional neural networks [323] and partial derivative-based methods
[324].

To overcome these hurdles, a DNN model is trained in this study using a
highly consistent data set from the Leibniz Associations Research Institute
for Molecular Pharmacology (FMP: Leibniz-Forschungsinstitut für Moleku-
lare Pharmakologie), with approximately 34, 000 compounds (remaining stan-
dardized compounds after data preprocessing) measured for their cytotoxic
potential. The effect on cell viability, including sublethal effects on cell
proliferation, was measured using a high-content screening assay. This as-
say enables to visualize and quantify phenotypic changes due to compound
treatment. Furthermore, a new technique is used here to unleash the black
box effect by identifying relevant features for toxicity prediction. One recent
approach, known as the layer-wise relevance propagation (LRP), decomposes
the output scores layer by layer back to the original inputs of the network,
yielding information on which features are important for the prediction. One
special case of the LRP method, called Deep Taylor Decomposition (DTD)
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developed by Montavon et al. [79], uses the Taylor decomposition to redis-
tribute the output score. This study is the first, to the best of our knowledge,
that uses the DTD in the molecular context. In order to obtain a visual
representation of the atom environments potentially relevant for cytotoxic-
ity determined by the DTD method, a technique developed by Riniker and
Landrum [325], called similarity maps, is employed to depict the 2D plots of
the molecules where the relevances of the potentially cytotoxic substructures
are highlighted. The application of similarity maps in the context of cyto-
toxicity prediction will further be referred to as cytotoxicity maps. With this
approach, potential cytotoxic compounds could be identified and prioritized
for experimental testing and verification.

4.2 Data & Methods

This section describes the data set and the preprocessing steps, as well as
the machine learning models that are used for this study. Furthermore,
the Deep Taylor Decomposition to identify potential toxicophores and the
visualization using cytotoxicity maps are introduced.

4.2.1 Data

Data Collection and Cytotoxicity Definition The compound library
available at the FMP comprises a collection of 74, 000 chemically distinct
substances that were assembled at the FMP [326]. Among them, more
than 34, 000 compounds were purchased from commercial vendors. These
commercial compounds were selected after an analysis of the World Drug
Index (database of 70, 000 approved drugs and natural products annotated
for bioactivity) for privileged substructures frequently occurring in different
drugs. According to the approximately 561 identified main chemotypes,
which represent a major part of the currently known chemical space of
drug-like molecules, compounds presenting these privileged motifs in dif-
ferent combinations and variations were selected. Prior incorporation into
the library, a filtering against known reactive groups (similar to filtering
against pan-assay interference compounds [327]) was performed as described
in Lisurek et al. [326].

The initial data set from the FMP available for this study contained
34, 848 compounds that were tested for their cytotoxic effects on two cell
lines, HepG2 and HEK293, as well as another 1, 408 compounds that were
tested only on the HepG2 cell line. Cells were seeded onto 384-well plates,
compounds added to a concentration of 10 µM, and cells incubated for ad-
ditional 72 hours. Resulting cell numbers were then determined by staining
of the nuclei using Hoechst 33, 342 technique∗ [328] and counting the nuclei

∗Hoechst 33, 342 is a cell-permeable minor groove-binding DNA stain, which starts to
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with fluorescence microscopy. In order to increase reliability, three technical
replicates (replicating the steps of cell seeding, compound addition and cell
counting) were generated. The high concentration justifies two assumptions:
first, the permeability of molecules does not need to be taken into account
as the high concentration likely leads to cell membrane penetration and rele-
vant intracellular concentrations. Second, the high concentration should also
reliably reveal existing toxicity of the compounds.

Cytotoxicity of a molecule is defined using the relative growth inhibition
measurement comparing two samples of a cell line, untreated and treated,
respectively. A molecule is labeled cytotoxic if it inhibits growth by at least
50% compared to the untreated samples and the cell count should be three
standard deviations lower than the median of the cell lines on a specific
plate. This effect had to be observed in at least two of the three technical
replicates.

In case a compound is toxic at the same concentration range as applied
for the measurements (10µM), small differences in sensitivity between the
different cell lines may lead to a compound being determined toxic in one
cell line but not in the other. Thus for this study, a compound is considered
cytotoxic if it is measured cytotoxic on at least one of the two cell lines
(HEK293 or HepG2).

Compound Data Preprocessing All molecules are processed with RD-
Kit [131], of which 157 are discarded due to sanitization issues. After saniti-
zation, the remaining molecules are preprocessed by applying certain struc-
ture standardization rules, e.g. removing salts, normalizing charges and
handling tautomers, using the tool developed in the scope of IMI eTox [329].
Subsequently, duplicates produced by the standardization process are re-
moved. This results in 34, 366 compounds that are considered in this study.
Only 4.65% of the molecules in the preprocessed data set are labeled cyto-
toxic, leading to highly imbalanced data (see Figure 4.1).

Compound Encoding All molecules in the preprocessed data set are
transformed into Morgan fingerprints using RDKit [131]. Atom environ-
ments are only considered at an exact radius of two bonds and the length
of the fingerprint is set to 2, 048. Environments are only included if they
appear at least five times in the data set, yielding 14, 245 unique hash keys.
This selection omits 40, 507 substructures as they were present less than five
times in the data set. This feature selection is equivalent to the first step of
Gütlein and Kramer [330, Tab. 6]. Note that due to the hashing of the fea-
tures to a 2, 048 bit fingerprint, different atom environments may be mapped
to the same bit, known as bit collision.

fluoresce bright-blue upon DNA binding. Stained nuclei are then easily distinguishable
from background using fluorescence excitation in the UV range.
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Figure 4.1: The logarithmic scale plot shows the number of toxic and non-
toxic molecules for the two cell lines HEK293 and HepG2. There are ap-
proximately 20 times more molecules that are labeled non-toxic than toxic,
making the data set highly imbalanced.

4.2.2 Machine Learning Model Generation

FNN Model Setup In this study, a feedforward fully-connected neural
network (FNN) is used to predict cytotoxicity of compounds, a model simi-
lar to Mayr et al. [319] in the Tox21 challenge. The inputs are given by the
2, 048 long fingerprints and the outputs are binary variables indicating if a
molecule is cytotoxic or not. The architecture of the model considers three
dense hidden layers with respectively 512, 192 and 128 units. The activa-
tion function used in the hidden layers of the network is the ReLU function,
defined as ReLU(x) = max{x, 0} [314, p.170]. For the final classification, a
sigmoid function, defined as σ(x) = 1

1+e−x , is applied to obtain prediction
values that range between 0 and 1. These values correspond to the probabil-
ity of belonging to either the cytotoxic or the non-cytotoxic class. To avoid
overfitting, the output layer is regularized using dropout [331], where 40%
of hidden units in the last hidden layer are set to zero at random during
each mini-batch gradient updating step. Additionally, toxic molecules are
weighted five times more in the loss function than non-toxic ones in order
to statistically increase their prevalence. The Adam method [332] is chosen
as the network optimizer with an initial learning rate of 0.0001. The model
has been established by running a random hyperparameter search (data not
shown).
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RF Baseline Model Setup To compare the results of the deep learning
model, a baseline is computed using a Random Forest (RF) model. This
tree-based method has shown to perform particularly well in cheminformatics
[333]. The default settings in Scikit-learn [27] are used; more specifically 50
trees are fitted, each of them selecting randomly 45 out of the 2, 048 bits of
the fingerprint as features. The same strategy as for FNN is used to account
for the imbalanced data.

Model Validation As a model setup, a 10-fold nested cross-validation
with validation and test set is used. The preprocessed data is randomly
split into 10 parts. First, one of these parts is randomly selected as test set
(10% of the data set), another as validation set (10% of the data) and the
remaining as training set (80% of the data). Finally, all possible combination
of these three sets are considered leading to 90 model evaluations (see Ta-
ble 4.1). For each combination, also called run, the FNN and the RF models
as previously described are trained on the training set, using the validation
set for hyperparameter tuning, and evaluated on the test set. Note that for
the FNN production run and the toxicophore evaluation, a separate model
with a random split into the same proportions has been setup. For model
evaluation, the balanced accuracy (AccB) [334], the true positive rate (TPR)
and the true negative rate (TNR) [335, Table 1] are used as comparison met-
rics. The formulas for these three metrics are shown in Equations 4.1, 4.2
and 4.3, where TP represents the true positive counts, TN the true nega-
tive counts, FP the false positive counts and FN the false negative counts.
Note that AUC values are not included since this metric may be misleading
when evaluating model performance on imbalanced data sets, as suggested
by Saito and Rehmsmeier [335].

AccB =
1

2

( TP
TP+FN

+
TN

TN + FP

)
, (4.1)

TPR =
TP

TP + FN
, (4.2)

TNR =
TN

TN + FP
. (4.3)

4.2.3 Deep Taylor Decomposition

When training a model, besides model performance, the relevance of certain
features that lead to the predictions may be of high interest. For this purpose,
Bach et al. [336] proposed a method to decompose layer-wise a given model
score and redistribute the decomposed scores to the inputs. For a specific
input x, node i and layer l = 0, . . . , L, we note Rl

i(x) the associated relevance
score. The layer-wise relevance propagation has the desired property to
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Table 4.1: Number of toxic and non-toxic compounds in each of the split
sets: training, validation and test.

training
80%

validation
10%

test
10%

total
100%

non-toxic compounds 26, 212 3, 277 3, 277 32, 766
toxic compounds 1, 280 160 160 1, 600

total compounds 27, 492 3, 437 3, 437 34, 366

redistribute the overall relevance between two layers, meaning that the sum
over the relevances assigned to the inputs equals the probability of the model
score. The initial relevance, RL(x), is given by the model score.

The relevance is back-propagated to previous layers following only posi-
tive weights. This is known as the z+ rule. Let wij = wl,l+1

ij be the weight
that connects non-zero hidden node xi in layer l with hidden node xj in layer
l+1. Only positive weights are considered, namely w+

ij = max(0, wij). Then
the z+ rule is defined as follows

Rl
i =

∑
j

xliw
+
ij∑

k x
l
kw

+
kj

Rl+1
j =

∑
j

z+ij∑
k z

+
kj

Rl+1
j . (4.4)

The name z+ rule is derived from the definition z+ij = xliw
+
ij . Redistributing

positive scores to the input using this rule allows to assign a positive rel-
evance to each bit, which in this study encodes an atom environment (see
Figure 4.2).

Note that this method is not applied directly to the sigmoid model score,
but to its logarithm of odds, log

( σ(x)
1−σ(x)

)
, the so-called logit. Model scores

with positive logits, i.e. probabilities greater than 0.5, are further referred
to as decomposable. Moreover, the method is restricting biases in ReLU
activations to be negative in order to ensure the applicability of the Taylor
decomposition. For further details, please refer to the paper by Montavon
et al. [79].

4.2.4 Identification of Toxicophores and Visualization as Cy-
totoxicity Maps

To reveal the features having a high impact on the cytotoxicity classification
of a molecule, the Deep Taylor Decomposition (DTD) method, as described
in the previous section, is applied. Furthermore, for better interpretability,
the features are mapped back to the molecular structure and are visualized
using similarity maps, introducing the concept of cytotoxicity maps.
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Figure 4.2: The Deep Taylor Decomposition method applied to a three hid-
den layer feedforward neural network. The inputs to the network are 2, 048
fingerprint bits. The left diagram represents the network with ReLU acti-
vation function and the right diagram the assigned relevances using the z+

rule. xli, R
l
i represent the ith node, relevance at layer l, respectively.

Detection of Potential Toxicophores Toxicophores, in this study, are
substructures in a molecule that highly contribute to the toxicity prediction.
In order to identify the toxicophores in the data set, the bit-wise relevance
scores, encoded by the fingerprint bits, are investigated and averaged over
the complete set of molecules with decomposable scores. Such molecules will
further be referred to as decomposable molecules.

For each decomposable molecule m ∈ {1, . . . ,M} and for each fingerprint
bit j ∈ {1, . . . , N}, a relevance score Rm,j is retrieved using the DTD method,
see Figure 4.2. The relevance scores for each bit are aggregated by taking the
mean over all atom environments setting a bit in decomposable molecules,
denoted as Nj . Therefore, each atom environment j will be assigned a score
Rj which was averaged on the selected data defined as the global mean
relevance score

Rj =
1

Nj

∑
m

Rm,j . (4.5)

With this approach, the k ∈ N most likely cytotoxic substructures, or toxi-
cophores, can be identified by selecting the k highest global mean relevance
scores R(1), . . . , R(k), noting R(i) ≥ R(j), ∀i ≥ j the ordered relevance scores.
The associated workflow is illustrated in Figure 4.3. For each decomposable
molecule, the subset of the identified k-most relevant toxicophores is indi-
cated on the structure by highlighting in red all atoms that are part of the
identified relevant substructure using pre-implemented plotting functions in
RDKit. If a molecule contains more than one of the most likely substruc-
tures, where these cases can include disconnected, nested or overlapping
substructures, the union of these substructures is displayed (i.e. each atom
that is part of at least one of these environments is highlighted once).
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Figure 4.3: Workflow for identifying potential toxicophores. The first
arrow describes the transformation from the molecules in the training and
validation sets into 2, 048 long binary vector describing the Morgan finger-
prints of radius 2, using RDKit. Each bit represents one (or more) atom
environment(s). The black box indicates if the corresponding atom environ-
ment is present in the molecule. The second arrow shows that relevances
scores can be obtained for each compound using the Deep Taylor Decompo-
sition method described in Section 4.2.3 and illustrated in Figure 4.2. Once
all relevance scores are computed for each molecule, they are averaged using
Equation 4.5. The bits corresponding to the k highest global mean relevance
scores are stored and used for further analysis as potential toxicophores.
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Cytotoxicity Maps To visualize the contribution of all atom environ-
ments contained in a molecule to the cytotoxicity prediction, similarity maps
developed by Riniker and Landrum [325] are used. This technique allows to
identify and visualize atom contribution from a prediction computed by a ML
algorithm. In the original study, this is done as follows: Given a fingerprint
of a molecule, a pre-trained ML model and a prediction value for the finger-
print, a set of weights for each atom in the molecule have to be calculated.
These weights, which will define the atom contribution of the prediction,
are computed in the following way: Recursively each atom is removed from
the molecule and a new fingerprint is generated. The prediction of the new
fingerprint is evaluated with the pre-trained ML model. Finally, the weight
associated to that atom is the difference between the prediction of the fin-
gerprint generated with and without the presence of that same atom. For
visualization, bivariate Gaussian distributions centered at the atom position
using these weights are generated and the plots show the superimposition of
the atom positions and the contour lines of the distributions.

In this study, the weights are computed slightly differently. Indeed the
weights considered are the relevance scores which are directly generated from
the DTD method. Note that in contrast to the original work, the weights here
can only be positive. However, as discussed in Section 4.2.3, theses scores
are associated to each bit in a decomposable molecule and not to each atom.
Therefore, the global mean relevance score is attributed to each atom in the
atom environment. Consequently each atom in the decomposable molecule
is mapped to a weight and the similarity map and plots can be generated
in this context. Some of the substructures might overlap and have atoms in
common. In this case, the weight of an atom part of several substructures
will be given the maximum value of the global relevance scores associated to
the atom environments. In the cytotoxicity maps, substructures with high
relevance scores will stand out and could hint to toxicophores.

4.2.5 Used Software and Libraries

RDKit [131] is used for molecular encoding, fingerprint generation and plot-
ting of molecules. Scikit-learn [27] is employed for the Random Forest model.
The deep learning model is implemented using Keras with Tensorflow back-
end [28]. For the score decomposition, DTD implementations as provided
by iNNvestigate [337] are used. The similarity maps visualization is used as
in the original paper [325].

4.3 Results and Discussion

In the following, the results of the deep learning model as well as the baseline
model are discussed and then compared to other studies on in silico cyto-
toxicity predictions. Additionally the toxicophores identified using the DTD



92 CHAPTER 4. MODEL INTERPRETABILITY

method and the cytotoxicity maps are presented.

4.3.1 Model Evaluation and Comparison

In this study, an FNN model for cytotoxicity prediction is established based
on the final set of 34, 366 preprocessed compounds provided by the FMP,
which were tested for their cytotoxic effect on two cell lines. Out of these
compounds, 32, 353 are commercial compounds selected using the strategy
described by Lisurek et al. [326], another 2, 013 are commercial compounds
with known biological activity ("LOPAC®1280" library from Sigma-Aldrich
[338]) and FDA-approved drugs ("FDA Approved Drug Library L1300" from
Selleckchem [339]). The data can be considered as highly consistent and
curated, since it has been produced in the same laboratory using the same
cell line and experimental setup with several reference compounds as control
for each assay campaign. Note that the data set is highly imbalanced with
a share of only 4.65% of toxic molecules.

FNN vs. RF Cross-Validation Results First, the results of the nested
cross-validation (CV) of the FNN model are compared to the baseline RF
model. Overall both the FNN and the RF models perform similarly well
regarding balanced accuracy on the given data set. On the training set,
RF seems to highly overfit the data (see Train row in Table 4.2), meaning
that the model would tend to memorize patterns instead of learning them.
On the test set, the FNN and RF models yield similar results with a mean
balanced accuracy of approximately 68%, with a slightly higher mean and
narrower standard deviation for the FNN setup (see Table 4.2). This is a fair
increase in performance when comparing these results to the 50% AccB of a
naive classifier, which would always predict all compounds to the majority
class (non-toxic in this study). Furthermore, the FNN tends to produce
more balanced TPR and TNR results compared to RF: a mean of 61.57%
TPR and 76.22% TNR for the FNN opposed to 51.48% TPR and 85.02%
TNR for RF. This observation is especially important when the task requires
identifying potentially cytotoxic molecules in a highly imbalanced data set.
Note that AccB, TPR and TNR are based on an automatically set cutoff
yielding the maximum balanced accuracy on the respective validation split
(0.17 for FNN and 0.06 for RF). The cutoff adaption is necessary because
of the highly imbalanced nature of the underlying data set. This strategy is
preferred over under-sampling in order to use as many data points as possible
(see [340]).

Comparison to Other Studies Next, the CV results of the FNN and RF
models trained on the FMP data are discussed in the context of three other
recently presented models for cytotoxicity prediction [308, 310, 311], mainly
using random forest models on freely available data (see Table 4.3). Note
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Table 4.2: 10-fold nested cross-validation results (mean and standard devia-
tion) for the FNN and RF baseline models. Reported performance measures
in % are balanced accuracy (AccB), true positive rate (TPR) and true neg-
ative rate (TNR). The best results on the test set are displayed in bold.

FNN Random Forest
% AccB TPR TNR AccB TPR TNR

Train mean 84.28 90.66 77.90 97.85 100.00 95.69
std 2.22 4.03 6.64 1.26 0.00 2.52

Val mean 70.13 63.94 76.32 68.72 52.35 85.09
std 1.30 6.92 6.82 1.71 6.96 5.70

Test mean 68.89 61.57 76.22 68.25 51.48 85.02
std 1.46 7.39 6.62 1.96 1.82 5.94

that results are only partly comparable between different studies since both
data sets and methods may vary. Even in the case of same data, different
splits can make comparison of methods difficult, as mentioned by Wu et al.
[316].

Mervin et al. [308] trained a random forest model on publicly available
NCBI BioAssay data, standardized using an in-house script. Molecules are
considered cytotoxic if they have a pIC50 above 5.0 in the tested assay. Un-
dersampling from millions of non-toxic molecules, the final public training
data set contains a total of 14, 880 molecules of which 3, 720 are labeled cy-
totoxic. With 25%, the share of toxic molecules is higher than in this study,
but a similar weighting approach is used to balance the training data sta-
tistically. The external test data set consists of 988 molecules with an even
higher share of 45% cytotoxic molecules [308, Table 8] and the model exhibits
a balanced accuracy of 76.69%. Svensson et al. [311] trained a random forest
model on extracted and standardized [329] molecules from PubChem, which
were tested on a variety of cell lines and the cytotoxicity definition varied
from one data set to the other. Their external data set consisted of 3, 295
molecules of which only 48 were labeled cytotoxic. Having a share of less than
1.5% is below the share of this study. Furthermore, they use conformal pre-
diction models based on RF classifiers. The conformal prediction balanced
accuracy of their model is 69.15%. However conformal prediction metrics
do not necessarily translate to performance measured by metrics on pure
model predictions. Banerjee et al. [310] report the highest balanced accu-
racy of 83.60% on their test data split. They extracted data from ChEMBL
[54] and used cytotoxicity based on IC50 values at a concentration cutoff of
10µM. The random forest classifier is trained on 5, 487 samples and eval-
uated on a test set of 610 samples, each containing one third of cytotoxic
molecules [310, Table S1]. In the presented study, approximately seven times
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Table 4.3: Comparison of FNN and RF performance of this study with other
existing models for cytotoxicity prediction (reported are mean CV results,
noting that CV setup differ between methods). Balanced accuracy (AccB.),
true positive rate (TPR) and true negative rate (TNR) are presented in %.
The last column describes the size of the test data, as well as the number
and share of cytotoxic compounds. The best results are displayed in bold.

Models AccB. TPR TNR Test Set
toxic

tot
al

co
un

t

pe
rce

nt

FNN
(this work) 68.89 61.57 76.22

3, 437 160 4.6
RF
(this work) 68.25 51.48 85.02

RF, Mervin
[308, Tab. 8, public] 76.69 56.90 96.50 988 445 45.0

CP/RF, Svensson
[311, Tab. 5] (69.15) (73.80) (64.50) 3, 295 48 1.5

RF, Banerjee
[310, Tab. 2] 83.60 93.00 74.00 610 205 33.6

less toxic molecules were in the data set.

To conclude, Table 4.3 seems to suggest that models with more balanced
data sets lead to better performance, as is illustrated with a 83.60% balanced
accuracy from Banerjee et al. [310] and 76.69% from Mervin et al. [308].
However, as stated above, first, comparisons between the models should be
made with care. Second, while having more balanced data sets may facilitate
the modeling task, the question remains which resembles better the real live
scenario. The results of the models trained on highly imbalanced data sets lie
in the same range as shown with the FMP data and FNN as well as RF with
a balanced accuracy of approximately 69% from this study and the RF-based
CP model from Svensson et al. [311]. While Mervin et al. [308] obtain a TNR
of 96.50%, the TPR is only 56.90%. In the FNN model used in this study,
the TPR and TNR are more balanced, with a TNR of 76.22% and a TPR as
high as 61.57%. This result may be more valuable in this context, since the
main goal is to identify cytotoxic molecules. From an application point of
view, correctly predicting cytotoxicity for novel molecules that would indeed
later show toxic behavior (in in vitro or in vivo studies) may be more crucial,
because these compounds could be excluded from further development.
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FNN Production Run Results After successful CV evaluation of the
FNN model and comparison to a baseline RF as well as other published
studies, a FNN was built for production run, showing a balanced accuracy
of 70.73% on the test set. This model is used for the DTD in order to identify
and highlight toxicophores in molecular structures.

Table 4.4: Model metrics in % at 0.17 cutoff yielding maximum balanced
accuracy on the validation set (in bold) as well as another cutoff at 0.20
yielding higher TNR rates on the validation set (in bold).

cutoff=0.17 cutoff=0.20

AccB TPR TNR AccB TPR TNR

Train 85.76 92.50 79.02 86.43 89.53 83.32
Val 69.46 62.50 76.41 67.19 53.75 80.62
Test 70.73 63.12 78.33 69.53 56.88 82.18

The cutoff value which yields the maximum balanced accuracy (69.46%)
on the validation data is 0.17 (see Figure 4.4a for the distribution of model
scores corresponding to that specific cutoff). The TPR and TNR associ-
ated to that cutoff on the validation set are 62.50% and 76.41% respectively.
Note that since the TPR and the TNR are directly related to a chosen cut-
off, varying this cutoff value would immediately result in the change of these
rates. Aiming towards a higher TPR or a higher TNR may depend on the
research question at hand and the cutoff should be chosen accordingly. A
cutoff of 0.20 would for example yield on the validation set a lower TPR of
53.75% but a higher TNR of 80.62% (see Table 4.4), and the same trend can
be observed on the test set. Since the aim of this study is to reveal poten-
tial cytotoxic compounds which could then undergo further (experimental)
testing, reaching a higher TPR is of more importance.

4.3.2 Potential Toxicophores

The current study aims to provide a visual structural interpretation of the
model outcomes with the aim of identifying novel toxicophores. From the
30, 929 molecules that are present in the training and validation set, a to-
tal of 1, 210 molecules are decomposable (∼4%), which is in line with the
share of cytotoxic molecules in the complete data set. As discussed in Sec-
tion 4.2.4, relevance scores are obtained for each of the 2, 048 atom envi-
ronments from these decomposable molecules. The workflow in Figure 4.3
describes the process of going from decomposable molecules to global mean
relevance scores per bit. Atom environments referring to high scoring bits
generally contribute greatly to the predicted toxic value of the compound
and thus represent potential toxicophores.
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(a) Histogram of validation set scores. (b) Histogram of global mean relevances.

Figure 4.4: (a) Distribution of predicted scores for molecules from the val-
idation set, which was used to calibrate the cutoff 0.17 (indicated by the
vertical line) of the model to classify compounds as cytotoxic. (b) Distri-
bution of global mean relevances of set bits in decomposable compounds in
the training and validation set, which were used to determine the five most
important bits (indicated by the vertical line).

Identification of Potential Toxicophores Based on Most Important
Bits Note that for the analysis of the most important bits, global mean
relevance scores were calculated per bit. These scores range from 0.0 to
0.2, and the distribution shows a drastic drop in values indicating that only
few bits have a high impact (see Figure 4.4b). In the following, the k = 5
bits with the highest scores are selected for further analysis. Note that with
increasing values of k, more often several of these bits appear together in one
molecule and overlap. Thus, the portion of the molecule that is covered by
these bits, which likely contribute to cytotoxicity, becomes larger and closer
to a full scaffold. In this case study, selecting the five highest relevance scores
seems appropriate to reveal meaningful substructures. Table 4.5 displays
these bits in decreasing order with respect to the global mean relevances as
well as the predictions (TP and TN counts) given by the FNN model. On
the training and validation set, the molecules that contain at least one of
these bits are correctly predicted cytototoxic by the model 85% of the time.
If the counts from bit 85 are removed, this number increases to over 90%.
Similar findings can be assessed on the test set: the model yields 69% and
75% correctly predicted values, including and excluding bit 85 respectively.
This observation indicates two facts: First, the results of the DTD method
are meaningful and useful in assessing the cytotoxicity of compounds; novel
molecules containing these bits should be treated with special attention in
future laboratory experiments. Second, bit 85 seems to be an outlier which
will be discussed later in greater details.

In the test set, 17 molecules contain at least one of these top five atom
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Table 4.5: Bits with the five highest global mean relevance scores (rel. score)
are shown in decreasing order, as well as the predictions (TP and TN counts)
given by the FNN model on both the training and validation sets (Train+Val)
and on the test set for molecules that contain these bits. The last column
shows the 2D image of atom environments associated to the Morgan finger-
print bit in the test set (two images to exemplify bit collisions), where the
blue, yellow and gray circles represent central, aromatic and aliphatic ring
atoms, respectively.

Bit Mean TP - FP TP - FP Atom environment(s)
rel. score Train+Val Test associated to bit

904 0.20 50 - 2 4 - 1

812 0.16 54 - 7 4 - 2

1, 316 0.15 57 - 6 5 - 2

85 0.12 39 - 24 5 - 4

713 0.11 52 - 5 5 - 1
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environments (see Figure B.9, bits highlighted in red). For example, test
molecule 1, an indenophtalazinone derivative, was correctly labeled cyto-
toxic by the FNN model and contains bit 713 (see Figure 4.5a). To verify
this prediction, the eMolTox tool developed by Ji et al. [341], an in silico
drug safety analysis system, was queried. The authors constructed Mon-
drian conformal prediction models for 174 toxicology-related in vitro and
in vivo experimental data sets. eMolTox predicts the compound with high
confidence as potentially being genotoxic, interacting with the CNS, and/or
with the liver. Most interesting are two similar compounds that exist in the
underlying database which were tested active in the context of genotoxic-
ity (i.e. the drug flurazepam, CHEMBL968 in the ChEMBL database [54])
and liver damage (amonafide, Phase III, CHEMBL428676). While the an-
nelated scaffold systems of these active molecules, such as the benzodiazepine
scaffold from flurazepam differ from the compound in this study, they also
contain the tertiary substituted ethylendiamine corresponding to bit 713 in
molecule 1. Moreover, eMolTox offers the detection and highlighting of toxic
substructures in each query molecule, based on a list of structural alerts col-
lected from literature (see Table S2 in Ji et al. [341]). For the query molecule,
several structural alerts are identified. Among them, the tertiary amine is
highlighted being potentially involved in covalent DNA binding. The tox-
icophore identified here seems to contain but extend the known structural
alert to a larger moiety that is potentially involved in cytotoxicity. Fig-
ure 4.5b illustrates the cytotoxicity map for the considered molecule. The
atom environment associated to bit 713 stands out compared to the other
substructures in the molecule and therefore may be designated as a toxi-
cophore. Furthermore, the right part of the fused ring system also shows
some intensity (relevance) and actually describes a part of the molecule that
was also highlighted by eMolTox’s structural alerts and annotated as poten-
tially kidney toxic or hepatoxic.

Additionally, in five molecules of the test set (2A-2E in Figure 4.6, see
also Figure B.9) four of the five most relevant bits (namely bits 713, 812,
904, 1, 316) appear together and form a potential toxicophore which cov-
ers a larger 6,7-dihydrobenzo[a]heptalen-9(5H)-one core structure including
methoxy and amino substituents. This combined substructure is present in
five compounds from the test set of which four are indeed experimentally
labeled cytotoxic (molecules 2A to 2E in Figure 4.6, left) and the FNN pre-
dicts them as toxic with a high mean probability of 0.89 (see Table C.1).
This assumption is supported by the cytotoxicity map exemplified for test
molecule 2B (see Figure 4.5c).

Using the eMolTox tool, a toxicity prediction for the visually determined
maximum common substructure of these five compounds was performed (see
Figure 4.6). The most similar active compound in the eMolTox data set to
the queried common core is the known drug demecolcine (CHEMBL312862),
a colchicine derivative, which is used in chemotherapy and shows cytotoxic
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(a) Molecule 1 with bit 713 high-
lighted. (b) Cytotoxicity map: molecule 1.

(c) Cytotoxicity map: molecule 2B. (d) Cytotoxicity map: molecule 3A.

Figure 4.5: The figure shows three compounds from the test set, namely
molecule 1, molecule 2B and molecule 3A, that were correctly labeled cyto-
toxic by the FNN model. Figure 4.5a highlights bit 713 in red in molecule 1.
Figures 4.5b, 4.5c & 4.5d illustrate the cytotoxicity maps for these molecules.
The atomic weights are computed using the approach discussed in Sec-
tion 4.2.4. The higher the value of the respective global mean relevance,
the darker the green coloring.
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activity. In accordance with being predicted cytotoxic in this study, the
queried common substructure is predicted by eMolTox to further cause DNA
damage, genotoxicity, as well as interacting with the liver and endocrine
system (see Figure 4.6, right). Furthermore, eMolTox identified the fol-
lowing toxic alerts: covalent binding to proteins or DNA (because of po-
tential electrophilic reactivity), as well as skin sensitization and/or hepa-
toxicity (the latter two caused by catechol or catecholdimethyl ethers or
p-alkoxy aromatic ethers). The identified 4-bit substructure in this study
extends the alerts and suggests a larger substructural entity, namely the
6,7-dihydrobenzo[a]heptalen-9(5H)-one core structure bearing methoxy and
amino substituents, being involved in cytotoxicity (see Figure 4.6).

Figure 4.6: Schematic description of analysis: On the left, molecules 2A-
2E from the test set are shown together with the relevant bits highlighted
in red. The common core of these five molecules is used as query for the
eMolTox server and the results of eMolTox are summarized on the right,
with predicted toxic endpoints in blue.

As described above, bit 85 was identified as one of the five bits with the
highest global mean relevance for cytotoxicity and thus, a potential toxi-
cophore. Surprisingly, in the training and validation set, only 39 out of the
63 decomposable molecules containing this bit were experimentally tested
as cytotoxic (61.9%). In contrast, high precision (TP/(TP+FP)) ranging
between 88.5% and 96.2% were achieved for the decomposable molecules
containing one of the other four bits (see Table 4.5). Also, 4 out of 9 decom-
posable molecules in the test set containing bit 85 are falsely predicted as
toxic. Therefore, bit 85 was further analysed uncovering two interesting as-
pects: First, five different atom environments are mapped to bit 85, of which
the two most common ones (72% and 10%, named bit 85_t1 and 85_t2 in
the following) are depicted in Table 4.5 and are present in molecules 3A to
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3G and in molecule 4 of the test set, respectively (Figure B.9). This behavior
is known as bit collision when working with folded molecular fingerprints, as
mentioned in Section 4.2.1. Folding is a compromise between accuracy and
performance since unfolded fingerprints can become enormously long. In this
study, the unfolded fingerprints could already be reduced to a size of 14, 245
bits by introducing a filtering step, but are afterwards folded to 2, 048 bits,
as described in Section 4.2.1. Considering the 63 decomposable molecules
containing an atom environment that is mapped to bit 85, 52 cases represent
type 85_t1, the remaining 11 type 85_t2 (see Table 4.5). All molecules from
the latter group were indeed experimentally tested toxic (similar to molecule
4). In contrast, almost half of the 52 molecules of the former group (similar
to molecules 3A to 3G) were experimentally tested non-toxic (FPs). This in-
dicates that the model could be improved by reducing such bit overlap. Note
that these collisions seem to be less problematic in the case of bit 713. Most
of the decomposable molecules in the training set which contain bit 713, with
different associated atom environments (as shown in Table 4.5), do indeed
belong to the toxic class. Second, the low precision for compounds contain-
ing bit 85 points to the fact that this class of molecules might be challenging
for the algorithm. While having a common 1,5,6,7-Tetrahydro-4H-indol-4-
one core, the toxicity of the compounds seems to depend on the peripheral
substitution and the functionalization. This points to the concept of activity
cliffs, which are a challenge for many predictive modeling approaches [342].
While the FNN generates many FPs for the decomposable molecules of this
compound class, the algorithm nevertheless predicts the TPs (3A in Fig-
ure 4.5d, 3C, 3D and 3G) with higher mean probability than the FPs (3B,
3E, 3F and 3H), 0.77 vs. 0.64, respectively (see Table C.1).

Note that molecule 5 (which contains bit 1, 316) and molecule 6 (which
contains bit 812) are wrongly predicted as cytotoxic by the FNN. The most
relevant bits they contain refer to bit collision and are different from the
major bit types shown in Table 4.5. Furthermore, the predicted scores are
slightly lower than for the TPs mentioned above, i.e. 0.59 for molecule 5 and
0.69 for molecule 6 (see Table C.1).

These observations highlight the value of the DTD method during model
setup and evaluation. Using the features learned by the algorithm and map-
ping the scores back to the structure, shortcoming of the model can be pin-
pointed and actions could be taken such as enlarging the fingerprint length
to minimize bit collision, or to investigate in more detail specific difficult
compound classes in the data set.

Cytotoxicity Maps and Comparison to Other Methods Besides the
identification of such novel toxicophores, the DTD relevance scores of all
atom environments in a molecule can be depicted to produce a cytotoxicity
map of the molecule (adapted from the similarity maps [325] as also used by
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Preuer et al. [321, Fig. 4]). Thus, the decomposition of a single molecule is
presented entirely which allows easy interpretation of the results, as shown in
Figures 4.5b, 4.5c & 4.5d. In this study, the DTD approach is used to select
relevant bits to be able to interpret what the model learned. Furthermore,
this provides a data-driven approach to identify novel toxicophores.

Other approaches exist that try to unleash the black box in ML, for ex-
ample, Mayr et al. [319] compare the neurons in the network to predefined
toxicophores. Sheridan [320] use a leave-one-feature-out approach on many
different modeling settings in order to identify feature importance. Rele-
vances are assigned based on the difference between model scores with a
particular feature being present and absent. Recently, Manica et al. [322]
published an attention-based neural network architecture to predict IC50

values for known drugs using RNA and SMILES data. The attention vec-
tor is calculated from the latent representations and is used to identify the
most relevant latent features [343] in the SMILES encoding. Closest to the
study presented here is the work by Preuer et al. [321]. In spite of technical
details such as model architecture, data set, input featurization, both stud-
ies try to understand the toxic mechanism using deep learning. However,
not only are the endpoints that are considered different, but the problem is
tackled from different angles. The study by Preuer et al. [321] investigates,
among other, the role of units in hidden layers as pharmacophore detec-
tors and the issue of bit collision is not addressed. Moreover the method
used to investigate the interpretability of neural networks, the so-called In-
tegrated Gradients Method, is different from the Deep Taylor Decomposition
as presented in this study. The Integrated Gradients Method, as the name
suggests, integrates all the gradients that lie on the path between an input
x and a predefined baseline x′ to obtain a score for each dimension of the
input. The integration is numerically approximated by a sum, where the
number of steps is predetermined. Obtaining an accurate approximation of
this integral requires many time steps (1,000 in the study by Preuer et al.
[321]). When comparing the DTD method to Integrated Gradients, DTD is
computationally more efficient as only one backpropagation is needed to as-
sign relevances in comparison to 1, 000 time steps for a single decomposition
in [321]. Both Integrated Gradients and leave-one-feature-out are model ag-
nostic and straightforward to apply, but in contrast the DTD is very intuitive
and consistent.

4.4 Conclusion

In this study, a deep learning approach to predict the cytotoxicity of com-
pounds is presented using a highly consistent data set of over 34, 000 com-
pounds provided by the FMP. Note that the data was composed as screening
data set, thus not focusing on cytotoxicity, which led to a low share of cyto-
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toxic molecules. Most importantly, a procedure is introduced to make deep
learning models more interpretable. In this way, the Deep Taylor Decompo-
sition is used to identify toxicophores in a molecule from a fully-connected
feedforward neural network by mapping relevance scores back to atom envi-
ronments.

The results of the experiments show that the model is competitive with
the current literature given data sets with similar share of toxic and non-
toxic molecules. The best balanced accuracy on the test set which the FNN
model reached is as high as 70.73% which is significantly better than ran-
dom classification at 50% and the FNN model yielded more balanced results
than the baseline RF model. Moreover, using the DTD method, atom en-
vironments could be identified which are likely to be involved in cytotoxic
behavior of the compounds. As example, the five atom environments with
the highest global mean relevance scores were identified and discussed in this
study. Molecules in the test set containing these bits were mostly correctly
predicted cytotoxic by the FNN model. These findings are coherent with
the current literature and especially some of the identified substructures ex-
tend the known list of structural alerts. Furthermore, cytotoxicity maps are
generated that highlight the contribution of each individual bit, which al-
low chemists to identify, from these plots, their own relevant toxicophores in
newly synthesized compounds.

One aspect that should be considered carefully when applying the ap-
proach developed in this study to new molecules is to verify that the com-
pounds are in the scope of the model. For more details on the concept of
defining the applicability domain, please refer to Hanser et al. [344]. Gen-
eralization to the entire chemical space may be difficult when training any
ML model on a static data set. Furthermore, regarding the input features of
the model, a noticeable limitation of fingerprints is bit collision which may
be ambiguous when trying to identify substructures likely to produce toxic
compounds. Using longer fingerprint vectors may help prevent bit collision.
An alternative would be to choose a different molecular encoding, such as the
SMILES representation as in [345], or a learned representation as developed
by Winter et al. [346].

Concluding, the study presents a novel way of interpreting the outcome
of the FNN model to help understand what the model learned in the con-
text of molecular toxicity. While most toxicophores are selected by humans,
the relevance scores together with the cytotoxicity maps are a technique
that identifies these substructures in a data-driven fashion. Spotting such
substructures at an early stage of drug design can be highly beneficial for
pharmaceutical research to reduce costly and time-intensive laboratory ex-
periments.
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Chapter 5

Kinase-centric drug design: the
importance of pipelines in drug
campaigns

The contents of this chapter were published as:

• Sydow, D., Rodríguez-Guerra, J., Kimber, T. B., Schaller, D., Tay-
lor, C. J., Chen, Y., Leja, M. Misra, S., Wichmann, M., Ariamajd,
A. & Volkamer, A. (2022). TeachOpenCADD 2022: Open Source
and FAIR Python Pipelines to Assist in Structural Bioinformatics and
Cheminformatics Research. Nucleic Acids Research, 50 (W1), W753-
W760 [4], under the Creative Commons Attribution (CC BY) license,
https://creativecommons.org/licenses/by/4.0/.
Contributions:
TBK conceived the theory for some of the notebooks, and was in-
volved in their formal analysis, methodology, validation and visualiza-
tion. TBK developed parts of the software, and was involved in the
maintenance. The text was written by all authors.

• Kimber, T. B.∗, Sydow, D.∗, & Volkamer, A. (2022). Kinase simi-
larity assessment pipeline for off-target prediction [Article v1.0], Liv-
ing Journal of Computational Molecular Science, 3 (1), 1599-1599 [5],
under the Creative Commons Attribution (CC BY) license, https:
//creativecommons.org/licenses/by/4.0/.
Contributions:
TBK, DS, AV conceived the project. TBK and DS did the formal anal-
ysis, developed the methodology, as well as the software, visualized and
analyzed the results. TBK led the writing of the text.

∗These authors have shared first authorship.
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The content from these publications are presented here with the permis-
sion Oxford University Press on behalf of Nucleic Acids Research, and the
University of Colorado Boulder.
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Chapter summary

Computational pipelines have become a crucial part of modern drug dis-
covery campaigns. Setting up and maintaining such pipelines, however,
can be challenging and time-consuming — especially for novice scientists
in this domain. TeachOpenCADD is a platform that aims to teach domain-
specific skills and to provide pipeline templates as starting points for research
projects. We offer Python-based solutions for common tasks in cheminfor-
matics and structural bioinformatics in the form of Jupyter notebooks, based
on open-source resources only. Including the 12 newly released additions,
TeachOpenCADD now contains 22 notebooks that cover both theoretical
background as well as hands-on programming. To promote reproducible
and reusable research, we apply software best practices to our notebooks
such as testing with automated continuous integration and adhering to id-
iomatic Python style. The new TeachOpenCADD website is available at
https://projects.volkamerlab.org/teachopencadd and all code is
deposited on GitHub.

Kinases are established drug targets to combat cancer and inflammatory
diseases. Despite decades of kinase research, challenges still remain, such as
the under-exploration of a large fraction of the kinome and the promiscuous
binding of many kinase inhibitors. Due to the highly conserved orthosteric
ATP binding site in kinases, ligands may bind not only to their designated
kinase (on-target) but also to other kinases (off-targets). Such promiscuous
binding can cause mild to severe side effects, and the prediction of these off-
targets is highly non-trivial. Therefore, we propose a pipeline that allows the
study of kinase similarities from four different angles in an automated and
modular fashion. The first method considers the binding site sequence. The
second method uses structural information via KiSSim, a newly developed
fingerprint that considers both physico-chemical and spatial properties of the
binding site. The third method involves kinase-ligand interaction fingerprints
as provided by KLIFS, and the last method utilizes the measured activity
of ligands on kinases based on ChEMBL data. Finally, results for a given
set of kinases are collected and analyzed to gain insight into potential off-
targets from the different aforementioned perspectives. Since the pipeline
is set up as a series of Jupyter notebooks covering both theoretical and
practical aspects, the target audience ranges from beginners to advanced
users working in the field of natural and computer sciences. The pipeline
is part of the TeachOpenCADD project and extends it with this special
kinase edition. All code is free, open-source, and made available at https:
//projects.volkamerlab.org/teachopencadd.

https://projects.volkamerlab.org/teachopencadd
https://projects.volkamerlab.org/teachopencadd
https://projects.volkamerlab.org/teachopencadd
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5.1 TeachOpenCADD 2022: Open-Source and FAIR
Python Pipelines to Assist in Structural Bioin-
formatics and Cheminformatics Research

5.1.1 Introduction

Computational methods play an integral role in the design-make-test-analyze
(DMTA) cycle that drives real-world drug design projects [347]. To address
questions raised during this cycle, a single method does not suffice to deliver
an answer; instead, a pipeline combining different methods can produce com-
plementary and useful insights. Setting up such complex pipelines, however,
can be difficult and time-consuming for many reasons: the scientist may
not have had the training necessary to tackle these tasks [348], tools and
their usage are constantly evolving (or becoming deprecated), and feeding
the output from one tool into another is often not straightforward. On top
of these considerations, sustainable pipelines need to be findable, accessible,
interoperable, and reusable (FAIR principles [61]) — not only today but in
many years from now — to drive reproducible research.

In 2019, we launched the teaching platform TeachOpenCADD [80] on
GitHub to help face these challenges. TeachOpenCADD teaches by example
how to build Python pipelines with open-source resources used in the fields
of cheminformatics and structural bioinformatics to answer central questions
in computer-aided drug design (CADD). With these ready-to-use pipelines,
we target students and teachers who need training material to CADD-related
topics, as well as researchers who need a template or an inspiration to tackle
their research questions. The theoretical and practical aspects of each topic
are covered in an interactive Jupyter notebook [349]. This setup makes it
easy for users from different fields to understand the computational con-
cepts and to get started with hands-on Python programming. We call these
Jupyter notebooks talktorials (talk + tutorial) because their format is suited
for presentations as well. The initial stack of talktorials T001–T010 cov-
ers common CADD tasks involving webserver queries, cheminformatics, and
structural bioinformatics [80]. We show how to fetch chemical and structural
data from the ChEMBL [350] and PDB [41, 42] databases and how to en-
code, filter, cluster, and screen such data sets to find novel drug candidates
and off-targets [80]. The talktorials are inspired by several online resources,
recommended for further reading [351, 352] and (Practical Cheminformatics,
RDKit blog, Is life worth living?). Over the last two years, the TeachOpen-
CADD GitHub repository underwent many additions and changes: we now
have more than doubled our content and extended the application of soft-
ware best practices rigorously. The full collection of talktorials is easily
accessible on the new TeachOpenCADD website. We comply with software
best practices regarding the code style as well as maintenance and facilitate
installation with a dedicated conda package.

https://github.com/volkamerlab/teachopencadd
https://patwalters.github.io/practicalcheminformatics/
https://greglandrum.github.io/rdkit-blog/
https://iwatobipen.wordpress.com/
https://projects.volkamerlab.org/teachopencadd
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Figure 5.1: Overview of 12 new talktorials. (i) Querying webservices (blue): T011
gives a broad introduction on programmatic access to webservices from Python,
T012 and T013 demonstrate how to query the KLIFS [353] and PubChem [354]
databases for kinase and compound data, respectively. (ii) Structural bioinfor-
matics (orange): T014 detects the binding site in an EGFR kinase structure and
compares the prediction to the binding site defined by KLIFS [353]. T015 per-
forms a re-docking for an EGFR-ligand complex with Smina [355]. T016 detects
protein-ligand interactions in an EGFR-ligand complex structure with PLIP [356].
T017 introduces basic and advanced usages of the molecular visualization tool
NGLView [357], used throughout most of TeachOpenCADD’s talktorials. T018
outlines a fully automated lead optimization pipeline: Based on an input struc-
ture, the pocket is detected and a set of compounds similar to a selected ligand
are fetched from PubChem [354]. These compounds are docked into the selected
binding site. The most promising compounds with respect to docking scores and
interaction profiles are proposed as optimized compounds. T019 demonstrates how
to set up and run a molecular dynamics (MD) simulation on Google Colab with
OpenMM [358]. T020 analyzes the resulting MD trajectory with a focus on the
root-mean-square deviation (RMSD) between trajectory frames and the dynamics
of protein-ligand interactions using MDAnalysis [359, 360]. (iii) Cheminformatics
(green): T021 exhibits the steps to numerically encode a small molecule from its
SMILES representation. T022 lays the groundwork for deep learning and focuses
on a simple feed-forward neural network for activity prediction using molecular fin-
gerprints.
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5.1.2 New talktorials

The new stack of talktorials showcases data acquisition from additional
CADD-relevant databases, adds many examples for structure-based tasks,
and extends the cheminformatics side with straightforward DL applications.
Our example use case is the EGFR kinase [273] but the talktorials are easily
adaptable to other targets as long as sufficient data is available. Besides the
domain-specific resources described below, we rely in all talktorials on es-
tablished Python packages for data science and visualization such as Numpy
[32], Pandas [361], Scikit-learn [27], Matplotlib [362], and Seaborn [363].

Webservices queries

Over the last decades, the scientific community has produced an incredible
amount of data and analysis software, and adapted modern technologies to
make these resources easily available via online webservices [364]. However,
it might not always be obvious to the beginner how to use a web application
programming interface (API) to access such data and how to integrate them
into larger pipelines. TeachOpenCADD dedicates several talktorials to the
usage of different webservers relevant for the life sciences.

In the first TeachOpenCADD release from 2019, we already showed how
to query the ChEMBL [350] and PDB [41, 42] databases. From the ChEMBL
webservice, compounds and bioactivities are fetched for the EGFR kinase
using the ChEMBL webresource client [183] (T001). This data set is used
in many downstream talktorials for common cheminformatics tasks.

From the PDB webservice, we demonstrate how to fetch a set of EGFR
kinase structures based on criteria such as "ligand-bound structures from
X-ray experiments with a resolution below 3.0 Å" using the biotite [365] and
PyPDB [366] (T008) packages.

In the 2021 release, we now have added three more notebooks covering
the usage of additional online API webservices (Figure 5.1 T011-T013).

T011: Querying online API webservices. We added a broad in-
troduction on how to programmatically use online webservices from Python
with a focus on REST services and web scraping. The usage of several
libraries is demonstrated; e.g. we use requests to retrieve content from
UniProt [367], bravado to generate a Python client for OpenAPI-compatible
services — exemplified for the KLIFS database [353] —, and Beautiful Soup
to scrape (parse) HTML content from the web.

T012: Data acquisition from KLIFS. KLIFS [353] is a kinase data-
base gathering information about experimental kinase structures and inter-
acting inhibitors. The talktorial shows how to quickly fetch data from KLIFS
given a query kinase or ligand. For example, we spot frequent key ligand-
interactions in EGFR based on KLIFS interaction fingerprints and we assess
kinome-wide bioactivity values for the inhibitor gefitinib. These queries are

https://github.com/psf/requests
https://github.com/Yelp/bravado
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
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demonstrated by using the KLIFS OpenAPI directly with bravado, or by
using the KLIFS-dedicated wrapper OpenCADD-KLIFS [368] implemented
in the Python package OpenCADD.

T013: Data acquisition from PubChem. PubChem [354] is a
database holding chemical information for over 100 million compounds. We
demonstrate how to fetch data from PubChem’s PUG-REST API [369], given
the name or SMILES [58] of a query ligand. For example, we show how to
fetch molecular properties for a ligand of interest by name (aspirin) and how
to query PubChem for the most similar compounds given a query SMILES
(gefitinib).

Data acquisition case study. A summary of the information that can
be acquired automatically for a target of interest using these web services is
exemplified in Figure 5.2. Using the Uniprot ID of EGFR kinase as query
input only, (i) 227 available EGFR structures from the PDB can be retained
and further filtered (T008); (ii) 446 available complex structures and their
interaction fingerprints can be retained from KLIFS (T012); or (iii) a total
of 8, 463 IC50 values of molecules measured against EGFR can be obtained
from ChEMBL (T001). Finally, (iv) a PubChem query with the molecule
name "gefitinib" showcases how to gather ligand properties or to perform a
similarity search (T013).

Pocket detection, ligand-protein docking and interactions

During a drug discovery campaign, frequent questions are: What should I
test next? Can you suggest a diverse set of small molecules likely to bind to
this protein? How should I modify the lead compound to increase the binding
affinity? Answering these questions involves multiple scientific observations,
and thus, multiple computational steps as addressed in talktorials T014–
T017. Finally, an automated pipeline is compiled (T018) to process a protein
structure and a lead compound, and propose several similar ligands with
optimized estimated affinities and interactions based on the docked protein-
ligand structures.

T014: Binding site detection. First, we need to know where ligands
may bind to a protein of interest. Sometimes the binding site is known from
experimental protein-ligand structures. If only experimental apo structures
are available, putative binding sites can be predicted with computational
methods. We demonstrate how to use the REST API of the ProteinsPlus
webserver [370] to detect the main pocket of an EGFR structure using the
DoGSiteScorer [371] pocket detection algorithm. To validate our results, the
predicted pocket is compared with the KLIFS-defined kinase pocket, which
encompasses 85 residues in contact with ligands in over 2000 kinase-ligand
structures [372].

T015: Protein-ligand docking. Next, we introduce molecular docking
to predict the binding mode of a ligand to its protein target by explaining

https://klifs.net/swagger/
https://github.com/Yelp/bravado
https://github.com/volkamerlab/opencadd
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Figure 5.2: Data and information that can be automatically gathered for
the EGFR kinase using the different web query talktorials as of September
2021, created based on ChEMBL v.27 [350] (T001), PDB [42] (T008), Pub-
Chem [354] (T013), and KLIFS [353] (T012). Input: yellow box, output:
grey boxes, plots, and molecule visualizations (using NGLView [357] and
RDKit).

https://github.com/rdkit/rdkit
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several sampling algorithms and scoring functions, as well as commenting
on limitations and interpretation of docking results. The theoretical back-
ground is then applied in a re-docking experiment aiming to reproduce the
binding mode observed in a published X-ray structure of EGFR. Protein and
ligand are prepared using Pybel [373], the ligand is docked into the protein
using Smina [355], and finally, the docking poses are visually inspected using
NGLView [357]. We refer to JupyterDock for further reading on different
docking protocols run from Jupyter notebooks.

T016: Protein-ligand interactions. Understanding which forces and
interactions drive molecular recognition is important for drug design [374].
In this talktorial, we give an introduction to relevant protein-ligand interac-
tions and their programmatic detection using the protein-ligand interaction
profiler PLIP [356]. To this end, all interactions in an EGFR-ligand complex
fetched from the PDB are detected and visualized in 3D using NGLView.

T017: Advanced NGLView usage. Since the molecular visualiza-
tion package NGLView is invoked in many talktorials, we give a dedicated
overview of its usage and show some advanced cases on how to customize
residue coloring, and how to create interactive interfaces with IPyWidgets.
In addition, access to the JavaScript layer NGL [375, 376] is showcased to
perform operations that are not exposed to the Python wrapper NGLView.

T018: Automated pipeline for lead optimization. All previous
talktorials are composed of stand-alone tasks that can be completed indepen-
dently. Proposing ligand modifications that will improve interaction patterns
with target proteins in a complete end-to-end process, however, necessitates
orchestration of code and concepts implemented in the previously discussed
talktorials T014–T017. A docking pipeline is constructed in T018 that is
comprised of both a step-by-step demonstration and a fully automated pro-
cedure. Given a query protein and a lead compound, similar ligands fetched
from PubChem are suggested, which show optimized affinity estimates and
interaction profiles based on generated docking poses.

Lead optimization case study As a case study, an EGFR crystal
structure (PDB: 3W32) and its co-crystallized ligand were used as inputs
for the pipeline. A similarity search led to the generation of a small li-
brary of compounds from PubChem for docking and further analysis to find
compounds ideally more affine than the co-crystallized ligand. Using the
pipeline, an approved breast cancer drug, gefitinib, was found in the top-50
of docked poses (Figure 5.3). Gefitinib (IC50 = 0.17nM [377]) is at least an
order of magnitude more affine for EGFR than the measured affinity of the
input ligand (IC50 = 75nM [378]). Its predicted geometry was < 2 Å RMSD
from a crystal structure of wild-type EGFR (PDB: 2ITY). This retrospective
example demonstrates the utility of a fully automated pipeline and potential
application as prospective tool.

https://github.com/AngelRuizMoreno/Jupyter_Dock
https://github.com/jupyter-widgets/ipywidgets
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Figure 5.3: Case study for talktorial T018 depicting (A) 2D structure of the
input ligand for the pipeline that was used with an EGFR crystal structure
(PDB: 3W32, IC50 = 75nM); (B) 2D structure of gefitinib (IC50 = 0.17nM),
an EGFR ligand found during similarity searches; (C) crystal structure of
gefitinib co-crystallized with EGFR (PDB: 2ITY, black CPK representa-
tion); (D) docked pose (yellow CPK representation). Some segments of the
protein structure have been removed for clarity. With an RMSD between the
docked pose and crystallized ligand of < 2 Å and discovery of a higher-affinity
ligand.
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Molecular dynamics

Experimentally resolved structures offer immense insights for drug design but
can only provide a static snapshot of the full conformational space that rep-
resents the flexible nature of biological systems. Molecular dynamics (MD)
simulations approximate such flexibility in silico with a trajectory of atom
positions over a series of time steps (frames). These trajectories thereby
reveal a more detailed — albeit still incomplete — picture of drug-target
recognition and binding by providing access to protein-ligand interaction
patterns over time [379–381]. These insights can for example help in lead
discovery to examine the stability and validity of a predicted ligand docking
pose, and in lead optimization phases to estimate the effect of a chemical
modification on binding affinity.

T019: MD simulations. We explain the key concepts behind MD
simulations and provide the code to run a short MD simulation of EGFR in
complex with a ligand on a local machine or on Google Colab with condaco-
lab, which allows for GPU-accelerated simulations. The protein and ligand
are thereby separately prepared with pdbfixer and RDKit, and subsequently
combined using MDTraj [382] and openff-toolkit. The simulation is run with
OpenMM [358], a high-performance toolkit for molecular simulation. The
talktorial produces a 100 ps trajectory if run on Google Colab. On a local
machine, only 20 fs are generated by default to keep computational efforts
reasonable. We refer to the work by Arantes et al. [383] for further reading
on different MD protocols run with OpenMM using Jupyter notebooks on
Google Colab.

T020: Analyzing MD simulations. We analyze and visualize the
results of the trajectory using the Python packages MDAnalysis [359, 360]
and NGLView. First, the protein is structurally aligned across all trajectory
frames, followed by calculating the root-mean-square deviation (RMSD) for
different system components; i.e. protein, backbone, and ligand. Then,
we take a closer look at a selected interaction between ligand and protein
atoms, showcasing the contribution of distance and angle to the hydrogen
bond strengths.

Deep learning

Machine learning and more specifically deep learning have gained in popu-
larity over the last few decades thanks to powerful computational resources
(GPUs), novel algorithms, and the growing amount of available data [13].
Applications to CADD are diverse, ranging from molecular property predic-
tion [104] to de novo molecular design [384]. Here, the focus is the featur-
ization of molecular entities (T021) and ligand-based screening (T022).

T021: One-hot encoding. In CADD, machine learning algorithms
require as input a numerical representation of small molecules. Besides

https://colab.research.google.com/
https://github.com/conda-incubator/condacolab
https://github.com/conda-incubator/condacolab
https://github.com/openmm/pdbfixer
https://github.com/rdkit/rdkit
https://github.com/openforcefield/openff-toolkit
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molecular fingerprints (see T004), a popular featurization is the SMILES
notation [58]. However, these representations are composed of strings and
therefore cannot simply be input to an algorithm. One-hot encoding provides
a solution for SMILES usage, explained in T021.

T022: Ligand-based screening: neural networks. We introduce
the basics of neural networks and build a simple two-layer neural network.
A model is trained on a subset of ChEMBL data to predict the pIC50 values
of compounds against EGFR using MACCS keys as input. This talktorial
is meant as groundwork for the understanding of neural networks. More
complex architectures such as convolutional and recurrent neural networks
will be explored in future notebooks. Such models may use the one-hot
encoding of SMILES as input [129].

5.1.3 Best practices

We provide reliable and reproducible TeachOpenCADD pipelines, period-
ically checked via automated testing mechanisms, and a streamlined and
easy-to-understand code style across all talktorials.

Testing. Reproducibility is ensured by testing if the notebooks can
run without errors and whether the output of specific operations can be
reproduced. For this purpose, we use the tools pytest and nbval.

Continuous integration. We are testing the talktorials regularly for
Linux, OSX, and Windows and different Python versions on GitHub Ac-
tions. This ensures identical behavior across different operating systems and
Python versions and also spots issues like conflicting dependency updates or
changing outputs.

Repository structure. The repository structure is based on the CMS
cookiecutter template, which provides a Python-focused project scaffold with
pre-configured settings for packaging, continuous integration, Sphinx-based
documentation, and much more. We have adapted the template to our
notebook-focused needs.

Code style. We aim to adhere to the PEP8 style guide for Python code,
which defines how to write idiomatic Python (Pythonic) code. Such rules
are important so that new developers — or in our case talktorial users —
can quickly read and understand the code. Furthermore, we use black-nb to
format the Python notebooks compliant with PEP8.

5.1.4 TeachOpenCADD usage

There are many ways to use the talktorials. If users simply want to go
through the material, they can use the read-only website version. If users
would rather like to execute and modify the Jupyter notebooks, this can be
done online thanks to the Binder integrations or locally using the new conda
package.

https://docs.pytest.org/
https://github.com/computationalmodelling/nbval
https://docs.github.com/en/actions
https://docs.github.com/en/actions
https://github.com/MolSSI/cookiecutter-cms
https://www.sphinx-doc.org/
https://www.python.org/dev/peps/pep-0008/
https://github.com/tomcatling/black-nb
https://mybinder.org/v2/gh/volkamerlab/TeachOpenCADD/master
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New website. Firing up Jupyter notebooks can entail unexpected com-
plications if one wants to simply read through a talktorial. To make the
access easy and fast, we launched a new TeachOpenCADD website. The
website statically renders the talktorials for immediate online reading using
sphinx-nb and provides detailed documentation for local usage, contribu-
tions, and external resources.

New Binder support. The Binder project offers a place to share com-
puting environments via a single link. The environment setup of TeachOpen-
CADD can take a couple of minutes but does not require any kind of action
on the user’s end. This access option is recommended if the user plans on
executing the material but does not need to save the changes.

New conda package. To make the local installation of TeachOpen-
CADD as easy as possible, we offer a conda package that ships all Jupyter
notebooks with all necessary dependencies. The installation instructions are
lined out in the TeachOpenCADD documentation. This access option is
recommended if the user plans on adapting the material for individual use
cases.

5.1.5 Conclusion

The increasing amount of data and the focus on data-driven methods call for
reproducible and reliable pipelines for computer-aided drug design (CADD).
Knowing how to access and use these resources programmatically, however,
requires domain-specific training and inspiration. The TeachOpenCADD
platform showcases webserver-based data acquisition and common tasks in
the fields of cheminformatics and structural bioinformatics. The theoretical
and programmatic aspects of each topic are outlined side-by-side in Jupyter
notebooks (talktorials) using open-source resources only. To foster FAIR
research, we apply software best practices such as testing, continuous inte-
gration, and idiomatic coding throughout the whole project. The talktorials
are accessible via our website, Binder, and conda package to accommodate
different use cases such as reading, executing, and modifying, respectively.
We believe that TeachOpenCADD is not only a rich resource for CADD
pipelines and teaching material on computational concepts and program-
ming but as well a good example of how to set up websites, automated
testing, and packaging for notebook-centric repositories. TeachOpenCADD
is a living resource; problems can be voiced via GitHub issues and contribu-
tions can be made in the form of pull requests on GitHub. TeachOpenCADD
is meant to grow; everyone is welcome to add new topics. Whenever you ex-
plore a new topic for your work, we invite you to fill our talktorial template
with what one learns along the way and to submit it to TeachOpenCADD.

https://projects.volkamerlab.org/teachopencadd
https://github.com/spatialaudio/nbsphinx/
https://mybinder.org/
https://projects.volkamerlab.org/teachopencadd/installing.html
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5.1.6 Code and data availability

• TeachOpenCADD website: https://projects.volkamerlab.org/t
eachopencadd/

• TeachOpenCADD GitHub repository: https://github.com/volkame
rlab/teachopencadd

https://projects.volkamerlab.org/teachopencadd/
https://projects.volkamerlab.org/teachopencadd/
https://github.com/volkamerlab/teachopencadd
https://github.com/volkamerlab/teachopencadd
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5.2 Kinase similarity assessment pipeline for off-
target prediction

5.2.1 Introduction

Kinases are involved in most cellular processes by phosphorylating—and
thereby activating—themselves or other proteins. This family is among the
most frequently mutated proteins in tumors and kinases have been success-
fully studied as drug targets for many decades [385]. Thanks to the long-
standing research, a plethora of kinase data is freely available, i.e., as part
of databases such as UniProt [386], PDB [41] or ChEMBL [54], and has
been made easily accessible via kinase resources such as the KLIFS—Kinase-
Ligand Interaction Fingerprints and Structures—database [353]. As of Febru-
ary 2022, 5, 911 X-ray structures of human kinases have been resolved (see
the KLIFS database [72]) and 70 FDA-approved small molecule protein ki-
nase inhibitors are on the market [387]. Most of the approved drugs bind in
the ATP binding pocket and intermediate surroundings (orthosteric binding
site).

Although structural data provides rich information, kinases have been
widely classified based on sequence. Manning et al. [388] clustered the human
protein kinases based on their sequence similarity into eight major groups
(AGC, CAMK, CK1, CMGC, STE, TK, TKL, and "Other") as well as atyp-
ical kinases. The resulting Manning kinome tree depicts kinase clustering
(see Figure 5.4).

Despite decades of kinase research, challenges still remain [69]. For ex-
ample:

1. A large fraction of the kinome is un-/underexplored. Figure 5.4a shows
the number of PDB structures per kinase, unveiling a vast imbalance
between structurally resolved kinases and unexplored ones. For exam-
ple, CDK2 has been resolved in 426 PDB structures, while only 313
kinases [72] out of approximately 540 in the kinome [69] have been
structurally resolved.

2. Many kinase inhibitors are promiscuous binders, causing off-target
effects or enabling polypharmacology [385, 389]. For example, the
Epidermal Growth Factor Receptor (EGFR) inhibitor erlotinib shows
affinities to other kinases in the highly sequentially-similar TK kinase
group, but also strongly affects off-targets in more remote kinase groups
(see Figure 5.4b).

Therefore, assessing kinase similarity from different angles may be a cru-
cial step in understanding and predicting off-targets to help to design more
selective drugs and to avoid side effects.
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Scope

In this study, similarities between a set of kinases are investigated based on
methods offering different perspectives on this challenging topic with a focus
on orthosteric binding sites (here referred to as binding sites), as summa-
rized in Table 5.1. The first method considers the binding site sequence as
deposited in the KLIFS database. The second method uses KiSSim [390],
a recently developed fingerprint that considers physico-chemical as well as
spatial properties of the binding site. The third method involves protein-
ligand interaction fingerprints as provided in the KLIFS database, and the
last method utilizes the measured activity of ligands against kinases based
on ChEMBL data [54]. The different methods are preceded by a general
introduction to kinases and the challenges faced in kinase-centric drug de-
sign, and succeeded by a comparison between the different kinase similarity
methods.

Note that this study focuses on the similarities between ATP binding
sites. Therefore, kinase polypharmacology and off-targets can only be as-
sessed within the scope of orthosteric binding sites, even though the promis-
cuity of some ligands may be explained by binding to allosteric binding sites.
Potential allosteric binding sites are summarized in the Kinase Atlas [391].

This study has been assembled into a modular pipeline that enables the
research of kinase similarities in an automated fashion, allowing users to
simply use it out of the box, or adapt it to their needs.

This workflow is integrated in the context of TeachOpenCADD [4, 80],
a teaching platform for computer-aided drug design (CADD) using open-
source packages and data. Specific tasks in cheminformatics and structural
bioinformatic are described and solved using Python-based Jupyter note-
books [394] as interactive platform. All code has been deposited on GitHub,
see https://github.com/volkamerlab/teachopencadd. The project web-
site can be found at this link, https://projects.volkamerlab.org/teach
opencadd.

5.3 Prerequisites

Target audience

The notebooks were developed to support researchers interested in kinase-
centric computational drug design, with a focus on understanding and pre-
dicting kinase off-targets. As this collection is part of the TeachOpenCADD
training material [4, 80], we also recommend the notebooks to teachers as
pedagogical interactive material in structural bioinformatics and cheminfor-
matics.

https://github.com/volkamerlab/teachopencadd
https://projects.volkamerlab.org/teachopencadd
https://projects.volkamerlab.org/teachopencadd
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Table 5.1: TeachOpenCADD kinase edition overview: Notebook topics, de-
scription, and index with a hyperlink to the associated notebook.

Topic Description Hyperlink
What is a kinase? Introduction to kinases and challenges

in drug discovery.
T023

Pocket sequence Pairwise similarities/identities be-
tween 85 residue long KLIFS pocket
sequences.

T024

Pocket structure Pairwise similarities between
1, 032−bit long KiSSim finger-
prints, which encode spatial and
physico-chemical pocket properties.

T025

Pocket-ligand in-
teractions

Pairwise similarities between 595−bit
long KLIFS kinase-ligand interaction
fingerprints (IFP).

T026

Ligand profile Pairwise similarity based on the ratio
of compounds tested active against ki-
nase pairs.

T027

Kinase similarity Comparison between predicted off-
targets based on calculated kinase
similarities using aforementioned
methods.

T028

https://projects.volkamerlab.org/teachopencadd/talktorials/T023_what_is_a_kinase.html
https://projects.volkamerlab.org/teachopencadd/talktorials/T024_kinase_similarity_sequence.html
https://projects.volkamerlab.org/teachopencadd/talktorials/T025_kinase_similarity_kissim.html
https://projects.volkamerlab.org/teachopencadd/talktorials/T026_kinase_similarity_ifp.html
https://projects.volkamerlab.org/teachopencadd/talktorials/T027_kinase_similarity_ligand_profile.html
https://projects.volkamerlab.org/teachopencadd/talktorials/T028_kinase_similarity_compare_perspectives.html
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(a) Number of PDB structures per ki-
nase. The figure shows the imbalance
between highly explored kinases, for
example, the groups TK and CMGC.
The CDK2 kinase in the CMGC group
has the most structures, with 426. The
red circle is proportional to the number
of PDB structures for each kinase, such
that the greater is the circle, the higher
is the number of structures.

(b) Developing selective kinase in-
hibitors is non-trivial since kinases are
highly conserved in the ATP binding
site. EGFR inhibitor erlotinib binds
not only to its intended target EGFR,
but also to kinases in remote groups,
such as SLK/LOK in the STE group
and GAK in the "Other" group. The
blue circle is proportional to the Kd

value in nM taken from the Karaman
et al. [392] dataset.

Figure 5.4: Visual representation using the Manning tree of existing chal-
lenges in kinase research: un-/underexplored kinase groups (left) and the
promiscuous behavior of kinases (right). The figure is taken from https:
//projects.volkamerlab.org/teachopencadd/talktorials/T023_what
_is_a_kinase.html and is generated using KinMap [393].

https://projects.volkamerlab.org/teachopencadd/talktorials/T023_what_is_a_kinase.html
https://projects.volkamerlab.org/teachopencadd/talktorials/T023_what_is_a_kinase.html
https://projects.volkamerlab.org/teachopencadd/talktorials/T023_what_is_a_kinase.html
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Background knowledge

The notebooks are constructed in a way that no in depth prior knowledge
besides an affinity for the natural or computer sciences is required. Each
notebook eases into the topic of kinase drug development and kinase simi-
larity with a lot of theoretical background and comments on all content as
well as programming-related steps in great detail. Nevertheless, users will
benefit from a basic understanding of the Python programming language and
the usage of Jupyter notebooks. If such basic introduction is needed, please
refer to training material as listed on the TeachOpenCADD website [395].

Software requirements

The notebooks are written in Python and rely on open-source packages such
as pandas [284], numpy [396], scipy [397], matplotlib [398], seaborn [363],
scikit-learn [27], rdkit [399], biotite [365], opencadd [368], kissim [400], and
requests [401].

The user only needs to install the teachopencadd conda-forge package [402]
(see installation [403]), which will install all relevant packages and save a
copy of all TeachOpenCADD notebooks—including the kinase edition dis-
cussed in this paper—on the user’s local machine. A read-only mode of
the notebooks is accessible via the TeachOpenCADD website at https:
//projects.volkamerlab.org/teachopencadd/. Online execution can be
done via Binder [404], using the following link https://mybinder.org/v2/
gh/volkamerlab/TeachOpenCADD/master.

5.4 Method

In this section, the four methods that are introduced to measure kinase
similarity are described, namely the pocket sequence, the KiSSim fingerprint,
the interaction fingerprint, and the ligand profile. Note that the theoretical
and practical aspects of each method are also covered in great detail in the
individual notebooks of this kinase collection (Table 5.1). As discussed in
the "Scope" section of this manuscript, we focus on kinase similarity based
on orthosteric binding sites.

Pocket sequence

The full amino acid sequence is often used to assess similarities between
kinases (see the phylogenetic tree developed by Manning et al. [388]). Since
binding sites are often more conserved than the whole protein, van Linden
et al. [405] defined as part of KLIFS a 85-long pocket sequence that is aligned
across the kinome. Using a sequence that focuses on the binding site seems
appropriate in the case of kinases, since this is where the ligand is likely to

https://projects.volkamerlab.org/teachopencadd/
https://projects.volkamerlab.org/teachopencadd/
https://mybinder.org/v2/gh/volkamerlab/TeachOpenCADD/master
https://mybinder.org/v2/gh/volkamerlab/TeachOpenCADD/master
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bind. Moreover, working with a fixed length sequence is practical from a
computational point of view.

In this study, two methods are used to compute relationships based on
sequence, namely the sequence identity and the sequence similarity, which
are described below.

Sequence identity The pairwise sequence identity, or simply sequence
identity, is a similarity based on character-wise discrepancy, in other terms,
the number of residues that match in two aligned sequences [406]. More
formally, given two kinase sequences S and S’ of same lengths L, the sequence
identity can be defined as

sequence identity(S, S’) =
1

L

L∑
n=1

I
(
S[n], S′[n]

)
, (5.1a)

where I is the identity matrix of the amino acids, and S[n] the amino acid
at position n of the kinase sequence S. Note that not all kinases have residues
present at each of the 85 alignment positions. Such gaps are represented by
"-" and count as mismatch to any amino acid.

Sequence similarity Unlike sequence identity which treats all residues
uniformly, pairwise sequence similarity, or sequence similarity, takes into
account the change of the amino acids over evolutionary time, thus, reflecting
relationships between amino acids. It is based on a substitution matrix M ,
where each entry gives a score between two amino acids. In this study, the
BLOSUM substitution matrix [407], as implemented in biotite [408], is used.
Formally, the following is defined:

sequence similarity(S, S’) =
1

L

L∑
n=1

M ′(S[n], S′[n]
)
, (5.1b)

where M ′ is the translated and rescaled version of the substitution matrix
M .

For both the sequence identity and similarity, the closer the value is to
1, the more similar are the kinases.

Figure 5.5 shows the sequence similarity between the KLIFS pocket se-
quence of EGFR and MET kinases. Sequence similarity is used by default
in the pipeline for further analysis.

The KiSSim fingerprint

In order to assess the pairwise similarity of kinases from a structural point
of view, the newly developed KiSSim (Kinase Structure Similarity) fin-
gerprint [390, 400] is used. This fingerprint describes the physico-chemical



5.4. METHOD 125

Figure 5.5: Sequence similarity between EGFR and MET. The 85-residue
pocket sequence is retrieved from KLIFS. The pairwise sequence similarity
takes into account the change of the amino acids over evolutionary time.

and spatial properties of structurally resolved kinases, while focusing on the
KLIFS pocket residues. Each structure is mapped to a fingerprint composed
of 1, 032 bits, the first 680 (= 85 × 8) bits describing physico-chemical fea-
tures and the remaining 352 (= 85 × 4 + 12) bits spatial information (see
Figure 5.6).

From several structures to one kinase A kinase can be represented
by one or even a hundred resolved crystal structures in the PDB (see Fig-
ure 5.4a). In this study, we aim at comparing different kinases and not
individual structures. Since KiSSim generates a fingerprint for each struc-
ture, the following mapping from structures to kinase is applied:

Given two kinases K and K’, all available structures in KLIFS for these
kinases are fetched using opencadd [368], namely s1, . . . , sm for kinase K,
and s′1, . . . , s

′
n for kinase K’, noting that the number of structures might

be different for each kinase. Each structure si, s
′
i is then mapped to its

corresponding KiSSim fingerprint fpi, fp
′
i, see Figure 5.7. The fingerprints

fp, fp’ corresponding to kinases K, K’ respectively, are the ones for which
the Euclidean distance is minimized (Figure 5.7). Note that these minimal
distance fingerprints vary for each kinase depending on the compared K, K’
pair.

Finally, two kinases K, K’ are compared based on their respective minimal
distance between KiSSim fingerprint fp, fp’ using the Euclidean norm:

KiSSim dissimilarity (fp, fp’) = ∥fp − fp’∥2 . (5.2)

In this case, the closer the value to 0, the more similar the kinases.
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Figure 5.6: The 1, 032-long KiSSim fingerprint encodes physico-chemical and
spatial properties of the kinase’s pocket, adding a structural perspective on
kinases. The figure is adapted from [400].

Figure 5.7: Associating one structural fingerprint per kinase. All available
structures are retrieved for two given kinases and all fingerprints are com-
puted. The fingerprints selected to be associated with the kinase in the
present kinase pair are the ones for which the computed distance is mini-
mized.
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Figure 5.8: The KLIFS interaction fingerprint encodes seven interaction
types for each of the 85 residues in the binding site. Interaction types include:
hydrophobic contacts (HYD), face to face aromatic interactions (F-F), face
to edge aromatic interactions (F-E), protein H-bond donors (DON), protein
H-bond acceptors (ACC), protein cationic interactions (ION+), and protein
anionic interactions (ION-). The figure is taken from [409].

The interaction fingerprint

Interaction fingerprints (IFPs) encode the binding mode of a ligand in a
binding site, i.e., the protein-ligand interactions that are present in a struc-
turally resolved complex. If a ligand can form similar interaction patterns in
proteins other than its designated protein (off- vs. on-target), it is possible
that this ligand will cause unintended side effects. Knowledge about binding
mode similarities can therefore help to avoid such off-target effects.

The KLIFS interaction fingerprint describes seven possible interactions
for each of the 85 residues in the binding pocket. Interactions include 1. hy-
drophobic contacts, 2. aromatic interactions, face to face, 3. aromatic inter-
actions, edge to face, 4. H-bond donors, 5. H-bond acceptors, 6. cationic in-
teractions, and 7. anionic interactions. The 595-bit long vector describes the
presence or absence of such interactions for all 85 residues (see Figure 5.8).

Similarly to the KiSSim comparison, given two kinases K and K’, all avail-
able structures in KLIFS for these kinases are fetched using opencadd [368].
Each structure is mapped to its corresponding IFP. The interaction finger-
prints fp, fp’ corresponding to kinases K, K’ respectively are the ones for
which the Jaccard distance [410] is minimized (Figure 5.7). Note that the
Euclidean distance is used in case of the KiSSim fingerprint, which contains
continuous and discrete values, while the Jaccard distance is employed in
case of the binary IFPs.

Finally, two kinases K, K’ are compared using their respective minimal
distance between interaction fingerprint fp, fp’ and calculating the Jaccard
distance:

IFP dissimilarity (fp, fp’) = dJ(fp, fp’), (5.3)

where dJ is the Jaccard distance.
In this case, the closer the value to 0, the more similar the kinases.
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Ligand profile

In the context of drug design, the following assumption is often made: if
a compound was tested active on two different kinases, it is suspected that
these two kinases may have some degree of similarity [411]. This is the
rationale behind the ligand profile similarity. Given bioactivity data for a set
of compounds measured against a set of targets—in this case kinases—and
two kinases K, K’, ligand profile similarity is defined as

lig. profile similarity(K, K’) =
# actives on both K and K’
# tested on both K and K’

. (5.4)

The closer the value is to 1, the more similar are the kinases. If no
compounds were commonly tested on two kinases, then the similarity is set
to 0. Computing the similarity between a kinase and itself may be interpreted
as kinase promiscuity, where the similarity described above would therefore
represent the fraction of active compounds over all tested compounds for this
kinase.

Bioactivity data The bioactivity data used for this method comes from
Kinodata [412], from the Openkinome organization [413]. It is a pre-processed
kinase subset of the ChEMBL data [54], version 29. Further processing in-
cludes keeping only IC50 values given in nM, and converting them to pIC50

values. If there are several measurements for a kinase-compound pair, then
the most active value, i.e., the entry with the highest pIC50 value, is kept.
Finally, the pIC50 values are binarized using a 6.3 cutoff to discriminate
between an active or inactive compound as described in [414].

In the pipeline, one can additionally compute the non-reduced ratio of
number of active compounds against the total number of compounds to gain
insight into the actual number of measurements for each kinase pair.

Kinase comparison and clustering

To assess kinase similarities based on the calculated (dis)similarity matrices,
two visualization methods are used, namely heatmaps and dendrograms.

Heatmaps The heatmaps are generated using matplotlib [398] to de-
pict the similarity between a set of kinases. The maximum value is 1, in-
dicating exact similarity, as is the case for diagonal entries. The value 0
indicates total dissimilarity. Plotting such figures allows to see and extract
patterns thanks to the gradient of colors, see top row in Figure 5.9.

Dendrograms Clustering algorithms are used to identify groups such
that the similarities within clusters are higher than compared to other clus-
ters [415]. In this study, hierarchical clustering is used, and, unlike heatmaps,
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Figure 5.9: Visualization of kinase similarity from four different angles: se-
quence, KiSSim, interaction fingerprint (ifp) as well as ligand-profile. The
top, bottom row shows four heatmaps, dendrograms respectively for a set of
nine study kinases.

it is based on distance (or dissimilarity). Hierarchical clustering can be
graphically displayed using a dendrogram (see bottom row in Figure 5.9),
where the height of each node is proportional to the dissimilarity between
its two daughter clusters. The clustering and plotting is done using scikit-
learn [27] and matplotlib [398], respectively.

For fair comparison, the distance matrices for all four methods are nor-
malized so that each entry lives between 0 and 1. Similarity matrices—as
used for the heatmaps—are then computed using 1−distance matrix. Con-
trary to the dendrograms, that use the distance matrix.

5.5 Pipeline

Measuring kinase similarity is a non-trivial task; distinct measures can pro-
vide different insights, which can be complementary, confirmatory, or con-
tradictory, and therefore expand our knowledge on the target(s) at hand.
However, implementing multiple methods can be time-consuming and com-
paring results across many output types can be laborious. Turning such
processes into a functional pipeline helps to avoid the scattering of scripts
and to speed up iterations of the design-make-test-analyze cycle [416] of drug
design campaigns. Moreover, following the findable, accessible, interopera-
ble, and reusable (FAIR) principles [61] makes such pipelines long-lasting
and available to the community.

In the pipeline presented herein, we implemented the different methods
once and streamlined each method’s results into a standardized output with
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a pre-defined set of visualization tools for easy comparison. Moreover, the
pipeline is flexible enough so that adding new methods or new visualization
tools is effortless, making the whole process easy to understand, maintain,
and expand.

Means of the pipeline

The proposed pipeline is a collection of six Jupyter notebooks [394] that al-
lows the study of kinase similarity from four different angles in an automated
and modular fashion (Figure 5.10).

Structure of the notebooks

The structure of all notebooks is as follows: the first section covers the theory
written in Markdown and summarizes the necessary concepts to understand
the task. Relevant references are also mentioned. The second part of a
notebook deals with the actual implementation of the task in a pedagogical
manner, including motivation for practical steps and detailed comments on
coding decisions. Finally, a discussion and a quiz section wrap up the note-
book. This structure is very well suited from a teaching perspective, since it
contains both theory and hands on programming. The notebook can easily
be used as a medium for a presentation, and it allows for self-study as well
as usage in own research projects.

About the code

The programming section is done in Python exclusively and the code follows
the latest software best practices. It is written pythonically and contains lots
of code comments. Thanks to the continuous integration (CI), all outputs
and results are fully reproducible and the maintenance of the pipeline is
facilitated.

Content of the pipeline

As mentioned previously, the proposed pipeline contains six notebooks, de-
scribed below:

The first notebook sets the stage with a kinase introduction and refer-
ences/tools on where to find kinase-related information. It is also in this
first notebook that a set of kinases of interest is defined. In this study, nine
kinases are selected, the same nine as in the paper by Schmidt et al. [417],
where the authors discussed the challenges and advantages of tackling kinase
similarity from multiple perspectives. Table 5.2 summarizes the information
used for these kinases. The pipeline can be executed out of the box with the
defined set of kinases, but it can equally be run with a different user defined
set of kinases. The only condition is that the uploaded CSV file with the
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Figure 5.10: The proposed pipeline consists of six Jupyter notebooks [394].
Given a set of kinases in a CSV format, four similarity measures are imple-
mented, and kinases are compared using heatmaps and dendrograms. The
project is part of TeachOpenCADD [4, 80] and uses open-source tools and
databases such as KLIFS [353] and ChEMBL [54].
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kinases of interest contains two mandatory columns, namely kinase_klifs,
which is the KLIFS name of the kinase, and uniprot_id, the Uniprot iden-
tifier (ID) [386] of the kinase (Figure 5.10).

The four following notebooks describe one similarity method at a time
as discussed in Section 5.4: the pocket sequence, the KiSSim fingerprint, the
interaction fingerprint, and the ligand profile.

The final notebook collects the information from the previous ones and
compares the different perspectives with easy-to-understand visualization
such as heatmaps and dendrograms (see Section 5.4). Additionally, an
equally weighted average to combine distance and similarity matrices from
all four perspectives can be computed, yielding a single heatmap, and a sin-
gle dendrogram. The user can easily extend this to a knowledge-informed
weighting scheme based on their own research focus.

Features of the pipeline

The developed pipeline contains many useful features. Firstly, it is part of
the TeachOpenCADD project [4, 80] and extends it with this special kinase
edition. Being part of TeachOpenCADD has the following advantages:

1. TeachOpenCADD is open-source and freely available at https://gi
thub.com/volkamerlab/teachopencadd, under the Attribution 4.0
International (CC BY 4.0) license.

2. A dedicated conda package [418] facilitates installation.

3. Online execution is possible via the Binder project [404].

4. The teaching approach makes the notebooks easy to follow.

Moreover, the pipeline is easily adaptable to new sets of kinases as well as
new similarity methods, defined by a user.

5.6 Conclusion

In this study, a full pipeline for the assessment of kinase similarity is pre-
sented, using four methods of comparison. The pipeline is composed of six
Jupyter notebooks:

1. An introduction to kinases and their central role in drug discovery, as
well as the collection of the kinase set for the downstream notebooks.

2. The similarity from a pocket sequence point of view.

3. The similarity based on the KiSSim fingerprint, which encodes physico-
chemical and spatial properties of the kinase pocket.

https://github.com/volkamerlab/teachopencadd
https://github.com/volkamerlab/teachopencadd
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Table 5.2: Set of defined kinases. The table lists the kinases used in the
pipeline, the same nine as in the study by Schmidt et al. [417]. It is note-
worthy that the pipeline is applicable to an arbitrary set of kinases, the
only condition being that the input CSV file should contain two columns,
kinase_klifs and uniprot_id, displayed in bold.

kinase kinase_klifs uniprot_id group full kinase name
EGFR EGFR P00533 TK Epidermal growth

factor receptor
ErbB2 ErbB2 P04626 TK Erythroblastic

leukemia viral
oncogene homolog
2

PI3K p110a P42336 Atypical Phosphatidylinositol-
3-kinase

VEGFR2 KDR P35968 TK Vascular endothe-
lial growth factor
receptor 2

BRAF BRAF P15056 TKL Rapidly acceler-
ated fibrosarcoma
isoform B

CDK2 CDK2 P24941 CMGC Cyclic-dependent
kinase 2

LCK LCK P06239 TK Lymphocyte-
specific protein
tyrosine kinase

MET MET P08581 TK Mesenchymal-
epithelial transi-
tion factor

p38a p38a Q16539 CMGC p38 mitogen acti-
vated protein ki-
nase alpha



134 CHAPTER 5. KINASE-CENTRIC DRUG DESIGN

4. The similarity based on KLIFS interaction fingerprints between the
kinase pocket residues and a co-crystallized ligand.

5. The similarity based on ligand profiling data collected from ChEMBL,
measuring a compound’s activity on a kinase.

6. An analysis notebook which collects the proximity matrices calculated
for the four methods, visualizes the similarities with heatmaps and the
clusters with dendrograms, and finally discusses the results.

We encourage users to develop their own similarity methods and to con-
tribute to the existing pipeline.

This paper could be of interest to

1. researchers who want to gain insights into off-target prediction and
kinase similarity, and integrate their new comparison methods to a
working workflow,

2. beginners in software development who need inspiration to set up a
fully functional pipeline,

3. teachers who want a starting point for lecture material,

4. students with a background in bioinformatics, cheminformatics, and
the life sciences in general,

5. anyone who is curious.



Chapter 6

Conclusion

The global COVID-19 pandemic hit the world by surprise in March 2020.
Nobody knew for certain how long it would last: a year? Two years? A
decade? Or even more? To date, although lockdown and restrictions have
been lifted in most, if not all, European countries, coronavirus cases are still
emerging, and death casualties are exceeding 6 million worldwide [419]. If
there is one take away message from this global crisis, it is that new diseases
will keep appearing and finding efficient treatments rapidly is of utmost im-
portance. In other words, drug design is not ready to fade away. Tremendous
collaborative scientific effort has been devoted to finding efficient oral drugs
for coronavirus, as in the case of the Covid Moonshot project [420].

In this thesis, we have shown, among other, how implementing modu-
lar open-source pipelines could potentially speed up the discovery of new
treatments, and how deep learning models show great improvements in the
prediction of important physicochemical properties of drugs.

More specifically, in Chapter 1, we discussed the challenges that arise
in the development of new drugs, and particularly, cancer treatments. We
discussed the role of kinases as drug targets and explained how designing
selective drugs is challenging due to the highly conserved binding site in the
human kinome.

In Chapter 2, we exhibited the state-of-the-art in virtual screening and
described methods to find molecules in the huge chemical space, which is ap-
proximately 1060 [421], that are active and selective toward a given target.
Virtual screening workflows were described, including ligand-based, that take
into account ligand information only, complex-based, that requires a protein-
ligand complex, and pair-based, that depends on independent protein and
ligand information. In this context, several molecular encodings were de-
scribed. For ligands, molecular graphs, SMILES, and circular fingerprints
were covered. In the case of proteins, identifier, sequence, and structural
fingerprints were described, and finally a variety of interaction fingerprints,
three-dimensional grids, and complex graph were outlined. Moreover, deep
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learning models were introduced, encompassing multilayer perceptrons, con-
volutional, recurrent, and graph neural networks. Popular data sets used in
virtual screening were summarized, including PDBbind, DUD-E, ChEMBL,
and kinase-specific data sets. Finally, research using prominent deep learning
models reaching state-of-the-art results were analyzed, showing remarkable
progress in the accuracy of affinity prediction.

Chapter 3 dealt with one of the major challenges in drug design, the
scarcity of data, data which is crucial when applying a deep learning model.
We developed augmentation techniques revolving around the idea that mul-
tiple valid SMILES exist for one molecular compound. Models based on
convolutional and recurrent layers were built and trained on physicochemi-
cal and bioactivity tasks. More specifically, the affinity towards the EGFR
kinase was predicted based on a preprocessed version of ChEMBL data.
Performance metrics greatly improved when applying these augmentation
strategies. For example, on the FreeSolv data set, the root mean squared
error on the test set dropped from 1.96 using one SMILES per compound
to 1.03 generating 70 SMILES per compound. The results of this research
outperformed the results from studies using the same data sets, but without
augmentation techniques.

In Chapter 4, we described a way to interpret the outcome of a deep
learning model. The model built, FNN —feedforward fully-connected neural
network —, is composed of three fully-connected hidden layers of 512, 192,
and 128 units, respectively. The input to the model is the 2, 048-bit long
Morgan fingerprint, a binary vector indicating the presence or absence of
molecular substructures. The output determines whether a molecule should
be classified as cytotoxic. The model was trained on an imbalanced, yet con-
sistent data set from the FMP, the Leibniz-Forschungsinstitut für Moleku-
lare Pharmakologie, containing over 34, 000 molecule, label pairs. The model
reached similar performance metrics as ones trained on similarly composed
data sets. Moreover, using the Deep Taylor Decomposition, we were able to
map the output of the model to its input, assigning to each atom environ-
ment a cytotoxicity, or relevance, score. The substructures with the highest
score were identified as toxicophores, and a visualization technique to show
these toxicophores within a 2D molecular compound was developed.

Chapter 5 stressed the importance of automated pipelines in drug design
and showcased the implementation of a workflow in the context of kinases,
known for their role as drug targets. The pipeline is part of TeachOpen-
CADD, a platform dedicated to open-source tasks in computer-aided drug
design. Various similarity measures were explored and implemented, includ-
ing the ATP binding site sequence from KLIFS, the KiSSim fingerprint which
consists of physicochemical and spacial information, the kinase-ligand inter-
action fingerprint defined in KLIFS, as well as ligand profiling data, queried
from ChEMBL. The pipeline generates cluster trees such that kinases that
are considered similar given a particular measure are grouped together. The
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results showed that there is some concordance across some perspectives. For
example, the EGFR and ErbB2 kinases, of the same family, were grouped
together in three out of four approaches. And the atypical p110a kinase is
a singleton when using sequence, structure and interaction. Such a pipeline
confirms the importance of exploring kinases using different measures in or-
der to gain insight into off-targets.

Although astounding progress has been made in computer-aided drug
design, challenges still remain. One of the most crucial ones is data: from
scarcity, to heterogeneity, labelling, and provenance, as reported by Bender
and Cortes-Ciriano [241]. In light of Chapter 3 and in the aim of providing
solutions to data scarcity, although SMILES notation for small molecules is
largely popular in cheminformatics and can be easily computed using soft-
ware such as RDKit [131], no 3D information about the compound is re-
tained. Would using the atomic coordinates provide beneficial information
to improve the accuracy of the models? Knowing that different conforma-
tions of a molecule could be exploited as data augmentation, would training
a deep neural network be a sustainable solution given the tremendous com-
putational cost it would require? Future work could investigate the existence
of a trade-off between the simplicity (and therefore low computational cost
of SMILES) vs. the rich, three dimensional atomic information (and the
expensive compute cost) of a molecule.

Regarding Chapter 5, the main focus was on kinases, a family of proteins,
known for their involvement in various diseases such as cancer. Outlook and
extension could cover the possibility of translating the methods developed
in the context of kinases to other protein families. For example, G-protein-
coupled receptors (GPCRs) that are involved in various diseases and for
which only meager data exist. More broadly, how could the kinase-centric
methods and associated pipelines be applied to proteins in general to steep
up the drug discovery process?

Given the necessity of designing new treatments for both existing and
emerging diseases, this thesis presents improvements for multiple challenges
related to machine learning in computed-aided drug design. It also pro-
vides useful methods and pipelines, and discusses the possibilities for future
research.
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Appendix A

Evaluation strategies and
metrics

In the following section, metrics commonly used to evaluate the performance
of a given model are described. Depending on the learning task, these metrics
may vary. First, metrics used in binary prediction leading to a classification
framework are discussed. Then, the typical metrics used in the regression
framework are described and finally the metrics that can be applied in both
cases.

Classification Often times, the area under the ROC curve (AUC) [422]
is reported, when the learning task requires determining if there is a hit or
non-hit given a ligand and a protein. The receiver operating characteristic
(ROC) curve plots the true positive rate (y -axis) versus the false positive
rate (x -axis) when the threshold of the classifier varies. Obtaining a 100%
true positive rate and 0% false positive rate would be the ideal setting and
would yield an AUC value of 1. As a measure to compare models, the closer
the AUC value is to 1, the better the classifier. A detailed explanation of
ROC curves and AUC values can be found in [423].
The accuracy (Acc) [424] is defined by

Acc =
TP+TN

TP+TN+FN+FP
,

where TP, TN, FN, FP are the true positives, true negatives, false negatives
and false positives, respectively.
The enrichment factor (EF) [193] is a measure for evaluating screening effi-
ciency. At a pre-defined sampling percentage χ, EFχ% shows the proportion
of true active compounds in the sampling set in relation to the proportion
of true active compounds in the whole data set and is defined by

EFχ% =
ns
Ns
n
N

,
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where N is the number of compounds in the entire data set, n the number
of compounds in the sampling set, Ns the number of true active compounds
in the entire data set, and ns the number of true active compounds in the
sampling set.

Regression In the following, yi is assumed to be the ith true value of y,
ŷi the ith predicted value of ŷ by the algorithm, and n the number of data
points considered.
The mean squared error (MSE) measures the difference between y and ŷ
using the Euclidean norm:

MSE = MSE(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)
2.

The root mean squared error (RMSE), as its name suggests, is simply the
squared root of the MSE,

RMSE =
√
MSE.

Since the MSE and the RMSE are metrics that represent the difference be-
tween the true and predicted values, the smaller these errors are, the better
the model.

Classification & regression R2 is a measure of goodness of fit which can
be applied in both the classification and the regression framework [425, 426]
and is defined by

R2 = 1−
∑

i(yi − ŷi)
2∑

i(yi − ȳ)2
,

where

ȳ =
1

n

n∑
i=1

yi.

The closer is the R2 to 1, the better the fit. R2 = 0 when the model predicts
all values to the mean ȳ.
The Pearson’s correlation coefficient R [189, 221, 427] defined below is also
often used.

R =

∑
i(yi − ȳ)(ŷi − ¯̂y)√∑

i(yi − ȳ)2
∑

i(ŷi − ¯̂y)2
.

The Spearman’s rank correlation coefficient ρ [190, 191] can be calculated
with

ρ = 1−
6×

∑
i

(
rank(yi)− rank(ŷi)

)2
n× (n2 − 1)

,

where n is the number of observations. In contrast to Pearson’s correlation
coefficient R, the ranks between the observed (yi) and predicted (ŷi) values
are compared.
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Appendix B

Figures

Figure B.1: Encoding and padding. Starting from a SMILES string, the
characters can be stored in a dictionary (or the dictionary can be constructed
prior using a set of known characters). Label encoding consists of enumerat-
ing the characters in the dictionary. One-hot encoding consists of assigning
a binary vector to each character. (a) Constructing the label encoding for a
given SMILES by assigning the integer associated to the character as they
appear in the SMILES. (b) Constructing the one-hot encoding by concate-
nating the binary vectors of the characters as they appear in the SMILES.
(Pad) Inputs of same dimension are often required when using machine learn-
ing. A common solution is to use padding, which consists of adding zeros to
either the label vector or to the one-hot matrix up to the maximum length
of the SMILES in the data set.
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Figure B.2: Test RMSE using data augmentation on the FreeSolv
data set. The table shows the root mean squared error (RMSE) on the test
set for three deep learning models and five SMILES augmentation strate-
gies, using various augmentation numbers, as well as a baseline consisting of
a Random Forest (RF) model with Morgan fingerprint as input. The lighter
the purple color, the better the model. The overall best setting is high-
lighted in yellow, which for the FreeSolv data set is augmenting the data set
70 times keeping all duplicates and training a 1D convolutional neural net-
work (CONV1D). For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.
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Figure B.3: Test RMSE using data augmentation on the lipophilic-
ity data set. The table shows the root mean squared error (RMSE) on
the test set for three deep learning models and five SMILES augmentation
strategies, using various augmentation numbers, as well as a baseline con-
sisting of a Random Forest (RF) model with Morgan fingerprint as input.
The lighter the purple color, the better the model. The overall best setting
is highlighted in yellow, which for the lipophilicity data set is augmenting
the data set 80 times removing duplicates and training a 1D convolutional
neural network (CONV1D). For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.
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Figure B.4: Generating a large portion of the SMILES space does
not lead to the best performance. Even though the CONV1D model is
presented with SMILES variations that cover a large portion of the SMILES
space using the augmentations strategy with estimated maximum, on the
FreeSolv data set, this strategy does not achieve the best results.

Figure B.5: Performance reaches a plateau independently of the
augmentation strategy. The performance of the CONV1D model trained
and evaluated on the ESOL data set reaches a test RMSE value slightly below
0.6 as of 40 augmentation steps and fluctuates below this value thereafter,
for all augmentation strategies: with, without, and with reduced duplication.
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Figure B.6: Performance reaches a plateau independently of the aug-
mentation strategy. The performance of the CONV1D model trained and
evaluated on the lipophilicity data set reaches a test RMSE value slightly
below 0.6 as of 60 augmentation steps and fluctuates below this value there-
after, for all augmentation strategies: with, without, and with reduced du-
plication.
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Figure B.7: Trade-off between performance and computation time.
As expected, the training time of the CONV1D model on the ESOL data
increases with the augmentation number for all augmentation strategies:
with, without, and with reduced duplication. Augmenting the training set
by 100 and keeping duplicate leads to 90, 200 data points (see Table 3.1).
Training the model on a GPU takes approximately three hours and reaches
a test RMSE of 0.580 (see Figure 3.2). However, augmenting the data by
just 19 leads to a test RMSE of 0.605 in less than 30 minutes.

Figure B.8: Confidence curves of the Maxsmi models on the ESOL
and lipophilicity data. The general trend of the curve in the left plot (the
ESOL data) is decreasing, showing a relationship between high confidence
and small mean prediction error. Although also generally decreasing, the
mean prediction error in the right plot (the lipophilicity data) is still above
0.3 when only keeping the 10% of compounds with the highest confidence.
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Figure B.9: The Deep Taylor Decomposition was used on a feed-forward
neural network to assign a relevance score to each atom environment, which
can be used to identify potential toxicophores. The five highest scores were
selected and are associated to bits 85, 713, 812, 904 and 1, 316. The figure
shows molecules in the test set which contain at least one of the five atom
environments, highlighted in red. The label for each molecule specifies its
name, weather it was correctly predicted cytotoxic (TP) by the model or not
(FP: False Positive) and lastly the bit(s) it contains.
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Table C.1: The table shows the IDs of the decomposable molecules in the
test set sorted by decreasing order with respect to the FNN model prediction
probability, the true value experimentally determined (1: toxic, 0: non-toxic)
and the value predicted by the model (TP: true positive, FP: false positive).

Molecule ID FNN Score True Value Predicted Value

2E 0.91 1 TP
2C 0.90 1 TP
2B 0.89 1 TP
2D 0.89 1 TP
2A 0.86 0 FP
4 0.83 1 TP

3C 0.79 1 TP
3D 0.78 1 TP
3A 0.78 1 TP
1 0.75 1 TP

3G 0.72 1 TP
6 0.69 0 FP

3B 0.68 0 FP
3H 0.67 0 FP
3E 0.61 0 FP
3F 0.61 0 FP
5 0.58 0 FP



Acronyms

ADMET Absorption, distribution, metabolism, excretion, and toxicity

AI Artificial intelligence

ANN Artificial neural network

API Application programming interface

ATP Adenosine triphosphate

AUC Area under the roc curve

CADD Computer-aided drug design

CASF Comparative assessment of scoring functions

CI Continuous integration

CNF Convolutional neural fingerprint

CNN Convolutional neural network

CONV1D 1D convolutional neural network

CONV2D 2D convolutional neural network

CPU Central processing unit

CV Cross-validation

DL Deep learning

DUD Directory of useful decoys

ECFP Extended-connectivity fingerprint

EF Enrichment factor

EGFR Epidermal growth factor receptor
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FAIR Findable, accessible, interoperable, and reusable

FDA Food and drug administration

GAN Generative adversarial network

GANN Graph attention neural network

GCNN Graph convolution neural network

GGNN Gated graph neural network

GNN Graph neural network

GPU Graphics processing unit

GRU Gated recurrent unit

HTS High-throughput screening

ID Identifier

IFP Interaction fingerprint

KIBA Kinase inhibitor bioactivity

KiSSim Kinase structure similarity

KLIFS Kinase-ligand interaction fingerprints and structures

LSTM Long short-term memory

MCS Maximum common substructure

ML Machine learning

MLP Multilayer perceptron

MolPMoFiT Molecular prediction model fine-tuning

MSE Mean squared error

MUV Maximum unbiased validation

NA Not available

NN Neural network

PCM Proteochemometric
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PDB Protein data bank

QSAR Quantitative structure-activity relationship

RF Random forest

RMSD Root mean square deviation

RMSE Root mean squared error

RNN Recurrent neural network

ROC Receiver operating characteristic

SF Scoring function

SMILES Simplified molecular input line entry

SVM Support vector machine

TDC Therapeutics data commons

TPU Tensor processing unit

VS Virtual screening
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Zusammenfassung

Krebserkrankungen sind eines der größten Probleme des Gesundheitswe-
sens und verursachen jedes Jahr mehrere Millionen Todesfälle. Die com-
putergestützte Arzneimittelforschung ist zu einem Eckpfeiler für die En-
twicklung von Therapien für bestehende und neu auftretende Krankheiten
geworden. Sie zielt nicht nur darauf ab, den Prozess der Arzneimittelen-
twicklung zu beschleunigen, sondern auch kostspielige Experimente und In-
vivo-Tierversuche zu reduzieren. Innerhalb der letzten zehn Jahre hat Deep
Learning eine wichtige Rolle bei der Vorhersage von molekularer Aktivität,
Eigenschaften und Toxizität eingenommen.

Wir haben Techniken zur Daten-Augmentation entwickelt, die auf der
SMILES-Kodierung von Molekülen basieren, und sie auf drei Deep-Learning-
Modelle sowie auf vier Eigenschafts- und Aktivitätsdatensätze angewendet.
Die Ergebnisse zeigen, dass die Datenerweiterung die Modellgenauigkeit un-
abhängig vom Deep-Learning-Modell und der Größe des Datensatzes
verbessert. Die Berechnung der Unsicherheit des Modells mit Hilfe der Aug-
mentation zum Zeitpunkt der Inferenz hat gezeigt, dass der Fehler umso
kleiner ist, je sicherer das Modell ist. Das bedeutet, dass einer gegebenen
Vorhersage vertraut werden kann und sie nahe am Zielwert liegt.

Um besser zu verstehen, wie ein neuronales Netzwerk eine Substanz
auf der Grundlage ihrer Input-Merkmale klassifiziert, haben wir die inneren
Schichten eines tiefen neuronalen Netzwerks zerlegt, um die toxischen Sub-
strukturen einer Substanz zu identifizieren, und eine Methode entwickelt,
um sie in 2D zu visualisieren. Das Deep-Learning-Modell erreicht nicht nur
Ergebnisse auf dem neuesten Stand der Technik, sondern die identifizierten
Toxikophore bestätigen bekannte toxische Substrukturen und liefern neue
potenzielle Kandidaten.

Um den Prozess der Arzneimittelforschung zu beschleunigen, ist der Zu-
gang zu robusten und modularen Arbeitsabläufen äußerst vorteilhaft. In
diesem Zusammenhang wurde das vollständig quelloffene TeachOpenCADD-
Projekt mit einer speziellen Pipeline für Kinasen entwickelt —eine Familie
von Proteinen, von denen bekannt ist, dass sie an Krankheiten wie Krebs
beteiligt sind. Es wurden vier Maßstäbe für die Ähnlichkeit von Kinasen im-
plementiert, die Sequenz- und Strukturinformationen sowie Protein-Ligand-
Interaktions- und Ligandenprofilierungsdaten berücksichtigen und die Anal-
yse von Off-Target-Effekten von Inhibitoren ermöglichen. Die Ergebnisse
zeigen, dass die Analyse von Kinasen aus verschiedenen Blickwinkeln entschei-
dend für den Einblick in die Off-Target-Vorhersage ist.

Diese neuartigen Methoden können bei der Entdeckung neuer Arzneimit-
tel und insbesondere bei Krankheiten genutzt werden, die mit einer Dysreg-
ulation von Kinasen einhergehen, wie z. B. Krebserkrankungen.
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