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ABBREVIATIONS 
 

CABG   Coronary artery bypass graft 

CAPE   Caffeic acid phenethyl ester 

CI   Confidence interval 

CRP   C-reactive protein 

DNA   Deoxyribonucleic acid 

ECG   Electrocardiographic 

GRACE  Global Registry of Acute Coronary Events 

H-FABP  Heart-type fatty acid binding protein 

Hs-cTnT  High-sensitivity cardiac troponin T 

KCl   Potassium chloride 

LDL   Low-density lipoprotein 

L-NAME  Nɷ-nitro-L-arginine methyl ester 

MAP kinase  Mitogen-activated protein kinase 

MRP 8/14  Myeloid-related protein 8/14 

NAD    Nicotinamide adenine dinucleotide 

Na+/K+-ATPase Sodium-potassium-activated adenosine triphosphatase 

NO   Nitric oxide 

OR   Odds ratio 

PAPP-A  Pregnancy-associated plasma protein-A 

PARP-1  Poly(adenosine diphosphate [ADP]-ribose) polymerase-1 

PCI   Percutaneous coronary intervention  

PCR   Polymerase chain reaction 

PEG    Polyethylene glycol 

PI3K   Phosphoinositide 3-kinase 
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RNA   Ribonucleic acid 

ROS   Reactive oxygen species 

SVG   Saphenous vein graft 

TIMI   Thrombolysis in Myocardial Infarction 

TNF-α   Tumor necrosis factor alpha 
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INTRODUCTION 

Cardiovascular disease is the leading cause of morbidity and mortality in the Western 

world,(1) and its prevalence is expected to rise in near future given the increasing 

burden of obesity and diabetes, along with the ageing of the population. Early 

identification of patients at increased risk gained therefore further importance, and 

novel diagnostic and therapeutic approaches to improve patient outcomes are needed. 

Much research interest is focused on inflammatory processes within the arterial wall 

which are known to be importantly involved in the pathogenesis of atherosclerosis. The 

endothelium, by modulating vascular tone, regulating hemostasis, and orchestrating 

inflammatory cascades, constitutes a key player in the disease process. A better 

understanding of pathophysiological mechanisms may pave the way for novel 

therapeutic concepts.  

In the present habilitation thesis, aspects of altered endothelial function under 

inflammatory conditions are discussed with main focus on the regulation of vascular 

tone and coagulation. Further, potential clinical implications for patients with coronary 

artery disease are elucidated.  

 

The endothelium in cardiovascular disease 

The endothelium as the innermost layer of the arterial wall separates the circulating 

blood from the vessel wall and maintains vascular integrity and hemostasis. 

Endothelial factors such as nitric oxide (NO) are importantly involved in maintaining 

the balance between vasodilation and vasoconstriction, thereby regulating blood flow. 

Besides acetylcholine, various factors such as histamine, prostaglandins or shear 

stress can evoke endothelium-dependent relaxation, mainly mediated via NO.(2) Nitric 

oxide, generated in endothelial cells from the amino acid L-arginine by the NO 

synthase, induces vascular smooth muscle cell relaxation via guanylate cyclase 
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activation, and further exerts pleiotropic anti-inflammatory, anti-proliferative, and anti-

platelet effects.(2, 3) A functional endothelial layer further prevents thrombus formation 

and platelet aggregation not only by separating the circulating blood from the highly 

thrombogenic subendothelial layer, but also by expressing anti-coagulant or fibrinolytic 

factors such as tissue factor pathway inhibitor or tissue-type plasminogen activator.(4, 

5)  

Chronic exposure to cardiovascular risk factors such as diabetes, hypertension, 

obesity, or smoking have been associated with endothelial dysfunction.(2, 6, 7) 

Activated endothelial cells are characterized by the release of prothrombotic and 

vasoactive substances such as tissue factor or endothelin-1,(5, 8) and display an 

enhanced production of reactive oxygen species (ROS), finally resulting in decreased 

NO bioavailability.(2, 6) When endothelial function is impaired, vasodilator capacities 

are reduced, and vessels prone to vasospasm. Endothelial dysfunction can be 

investigated in vitro in organ chamber experiments for isometric tension recording, and 

in vivo by different modalities such as the assessment of flow-mediated dilation of the 

brachial artery or the measurement of coronary blood flow velocities.(9-11) Further, 

activated endothelial cells display an enhanced expression of adhesion molecules 

including intercellular adhesion molecule 1, vascular cell adhesion molecule 1 or 

selectins, and thereby promote leukocyte adhesion and migration.(12) Endothelial 

dysfunction is therefore considered the initial step in the pathogenesis of 

atherosclerosis, and an enhanced proliferation of inflammatory and vascular smooth 

muscle cells, along with the accumulation and peroxidation of lipids, ultimately lead to 

the formation of atherosclerotic plaques which may cause flow-limiting stenosis or 

acute plaque rupture.(13)  

Tissue factor (coagulation factor III, F3), the initiator of the extrinsic coagulation 

cascade, is expressed by various vascular cell types including activated endothelial 
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cells, vascular smooth muscle cells, and monocytes, and can further be detected in 

the circulating blood in tissue factor containing microparticles and as an alternatively 

spliced soluble isoform.(14-17) It is well documented that tissue factor is highly 

expressed in atherosclerotic plaques,(18) and increased in patients with unstable 

angina and acute myocardial infarction.(19, 20) Tissue factor binds activated factor VII 

and in turn catalyzes the activation of factor IX and factor X, ultimately leading to fibrin 

formation and thrombus generation.(21) Tissue factor expression is upregulated by 

different inflammatory mediators such as thrombin, tumor necrosis factor alpha (TNF-

α), lipopolysaccharides, or interleukin-1, (14, 22, 23) as well as by vasoactive amines 

including histamine and serotonin.(24, 25) These mediators act via various intracellular 

signal transduction pathways including mitogen-activated protein (MAP) kinases, 

phosphoinositide 3-kinase (PI3K), or protein kinase C.(14) Alternative splicing of the 

primary full-length tissue factor gene transcript eliciting a loss of exon 5 results in the 

formation of the soluble alternatively spliced tissue factor protein form, which lacks the 

transmembrane domain and is considered to exert less procoagulant activity as 

compared to the full-length form.(15, 26) Most recently, small non-coding ribonucleic 

acids (microRNAs) such as microRNA-19b and microRNA-223 have been identified as 

post-transcriptional regulators of endothelial tissue factor expression and procoagulant 

activity.(27, 28) Beyond its critical role in coagulation, tissue factor has been shown to 

modulate inflammatory responses, mostly via interaction with protease-activated 

receptors.(29) Hence, tissue factor acting as a key player in coagulation and 

inflammation may represent an interesting target for novel anti-thrombotic as well as 

anti-inflammatory therapeutic strategies in patients with coronary artery disease.  

The adhesion molecule P-selectin, expressed at the surface of activated 

endothelial cells and platelets, mediates interactions between leukocytes and platelets 

and the activated vessel wall, thereby acting at the interface between thrombosis and 
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inflammation.(30, 31) Being stored in α and dense granules of platelets and Weibel-

Palade bodies of endothelial cells, P-selectin is rapidly expressed at the cellular 

surface upon stimulation, and protein expression is further enhanced by various 

inflammatory cytokines.(30) P-selectin binds to its primary ligand P-selectin 

glycoprotein ligand-1 that is constitutively expressed on leukocytes, and thereby 

supports platelet-leukocyte interactions and initiates leukocyte rolling on the 

endothelium.(30, 32) Given its central role in mediating cell-cell-interactions, P-selectin 

is a key player in the pathogenesis of both atherosclerosis and thrombosis, and may 

represent a promising therapeutic target in selected patients with cardiovascular 

diseases. P-selectin-based therapies are further supported by studies demonstrating 

reduced neointima formation and in-stent restenosis after inhibition of P-selectin-

mediated leukocyte recruitment in animal models of vascular injury,(33, 34) and a 

smaller infarction size after P-selectin antibody administration in a rat model of 

myocardial ischemia-reperfusion injury.(35) Further, the recent SELECT-ACS (Effects 

of the P-Selectin Antagonist Inclacumab on Myocardial Damage After Percutaneous 

Coronary Intervention for Non-ST-Segment Elevation Myocardial Infarction) trial 

suggested beneficial effects of the P-selectin antibody inclacumab on peri-procedural 

myocardial infarction in patients with non-ST-segment elevation acute coronary 

syndromes undergoing percutaneous coronary intervention (PCI).(36)  

 

Coronary stents and stent thrombosis 

In patients with flow-limiting coronary artery disease, revascularization by PCI or 

coronary artery bypass graft (CABG) surgery is the standard treatment, along with 

optimal medical therapy, to reduce symptoms and improve patient outcomes.(37) After 

the introduction of percutaneous coronary revascularization by Andreas Grüntzig in 

1977,(38) PCI has become one of the most frequently performed therapeutic 
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procedures worldwide, and has experienced an impressive refinement with the advent 

of coronary stents and the use of highly potent anti-platelet agents.(39-43)  

Albeit rare and occurring with rates of about 1% at 1 year and 0.2 to 0.4% yearly 

thereafter,(44) stent thrombosis remains one of the feared complications in patients 

undergoing coronary artery stent implantation.(45-47) Stent thrombosis mostly 

presents as ST-segment elevation myocardial infarction and has been associated with 

high mortality rates of about 20 to 40%.(44, 47) The pathogenesis of stent thrombosis 

is multifactorial, and patient-, lesion-, and procedure-related factors are importantly 

involved. Predisposing factors include comorbidities such as diabetes and renal failure, 

premature cessation of anti-platelet therapy, complex lesion morphology, as well as 

malapposed, underexpanded and uncovered stent struts.(48-51) In recent years, 

impressive technical developments including the implementation of novel stent 

platforms and polymers, along with the use of potent anti-proliferative agents, were 

made to further advance stent design and improve vascular healing responses.  

Recent registries reported an improved safety and efficacy with newer-generation 

drug-eluting stents such as the zotarolimus- and everolimus-eluting stent as compared 

with first-generation drug-eluting stents with a reduced risk of stent thrombosis.(48, 52, 

53) Indeed, in a large registry of unselected patients undergoing coronary artery 

stenting, the cumulative incidence of definitive stent thrombosis at 3 years was 1.5% 

with bare metal stents, and 2.2% and 1.0% with first- and second-generation drug-

eluting stents.(48) However, similar to rapamycin and paclitaxel used on first-

generation drug-eluting stents,(54, 55) both everolimus and zotarolimus were found to 

exert pro-thrombotic properties and increase tissue factor expression.(56) Hence, 

alternative compounds combining anti-thrombotic, anti-inflammatory, and anti-

proliferative effects may have the potential to further improve patient outcomes 

following coronary artery stent deployment. 
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Coronary artery bypass graft surgery and saphenous vein graft disease 

Coronary artery bypass graft surgery is one of the most commonly performed surgical 

procedures and the preferred coronary revascularization strategy in selected patients 

with severe coronary artery disease including those with left main and three-vessel 

disease, particularly when the proximal left anterior descending coronary artery is 

involved and in diabetic patients.(37, 57, 58) In CABG surgery, autologous saphenous 

vein grafts (SVG) remain the most frequently used graft. However, SVG failure 

continues to impede outcomes following CABG surgery as vein grafts are often 

subjected to endothelial damage during harvesting and then chronically exposed to 

arterial pressures. Hence, they are characterized by reduced patency rates as 

compared with arterial conduits.(59, 60) Saphenous vein graft disease has been 

observed in up to 50% of patients at 1 year after surgery in recent studies, and graft 

patency rates at 10 years are considered to be around 30 to 70%.(37, 59, 61) While 

thrombosis remains a major cause of vessel occlusion when SVGs fail early after 

CABG surgery, neointimal hyperplasia and accelerated atherosclerosis typically occur 

in later stages.(62) Considering these pathophysiological mechanisms, it is not 

surprising that therapeutic strategies targeting platelet aggregation and lipid 

accumulation have shown favourable effects on the progression of SVG disease and 

occlusion.(63-65) While aspirin was clearly associated with improved SVG patency 

after CABG surgery,(65, 66) dual antiplatelet therapy including aspirin and clopidogrel 

did not yield incremental benefit.(67) Given the high prevalence of failed vein grafts 

and the increased mortality associated with redo CABG surgery,(68) along with the 

limited pharmacological treatment options currently available, there is an unmet clinical 

need for novel therapeutic concepts in this field. In view of the pivotal role of the 

adhesion molecule P-selectin in inflammation and thrombosis discussed above, (33, 

34, 69) and the observed attenuated leukocyte adherence to mechanically dilated 
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SVGs after administration of an anti-P-selectin antibody,(69) we hypothesized that P-

selectin-directed therapies may exert beneficial effects in SVG disease.  

 

Inflammatory biomarkers in cardiovascular disease risk assessment 

As highlighted above, inflammatory cascades represent key pathophysiological 

mechanisms of atherosclerosis, and based on the concept that inflammatory 

biomarkers mirror processes within the vessel wall, research interest has focused on 

the identification of novel markers as mediators of cardiovascular risk in different 

patient populations.  Patients with suspected acute coronary syndromes represent an 

important patient subset at the emergency department, and rapid identification of 

patients with true coronary events is crucial and provides the basis for a timely 

treatment strategy. Besides clinical judgement and electrocardiographic (ECG) 

changes, cardiac biomarkers complement patient assessment and early risk 

stratification. In recent years, high-sensitivity cardiac troponins (hs-cTn) have been 

shown to diagnose acute myocardial infarction at an earlier point in time and with a 

higher sensitivity as compared to conventional assays, however, at the expense of a 

decreased specificity.(70-72) Indeed, various other clinical conditions including 

pulmonary embolism, tachyarrhythmia, hypertension, and sepsis may cause elevated 

troponin levels, and thereby hamper decision making in clinical practice.(73) Indeed, 

the positive predictive value of small elevations of hs-cTn in predicting acute coronary 

syndromes may be low.(70, 72) Therefore, additional rule-in parameters are needed 

in patients presenting with suspected acute coronary syndromes to identify those at 

increased risk of adverse events and need for timely coronary revascularization. 

Various inflammatory biomarkers such as heart-type fatty acid binding protein (H-

FABP), myeloperoxidase, or myeloid-related protein (MRP) 8/14 have been suggested 

in this context,(74, 75) and multimarker testing – in comparison to a single-marker 
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strategy – was proposed as an attractive tool to improve risk prediction in patients with 

suspected acute coronary syndromes.(76-78) Major efforts are currently being 

undertaken to identify novel markers with increased diagnostic accuracy and improved 

predictive value. 
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AIMS 

The aims of this habilitation thesis were: 

 

1) To investigate the endothelial regulation of vascular tone under inflammatory 

conditions. 

2) To elucidate the endothelial regulation of coagulation under inflammatory 

conditions and develop novel therapeutic strategies.  

3) To investigate the predictive role of inflammatory biomarkers in patients with 

suspected acute coronary syndromes. 
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RESULTS 

1. Absence of histamine-induced nitric oxide release in the human radial artery: 

implications for vasospasm of coronary artery bypass vessels. Stähli BE,* 

Greutert H,* Mei S, Graf P, Frischknecht K, Stalder M, Englberger L, Künzli A, 

Schärer L, Lüscher TF, Carrel TP, Tanner FC. American Journal of Physiology – 

Heart and Circulatory Physiology 2006;290(3):H1182-9. (*shared first authorship) 

 

The radial artery is known to be prone to vasospasm both when used as bypass graft 

vessel and during coronary angiography and PCI performed via the radial access.(79, 

80) As histamine is known to elicit vasospasm,(81) its effect on vascular reactivity of 

different vessels used as bypass grafts including the radial artery, the internal 

mammary artery, and the saphenous vein was compared. Vessel segments were 

collected from patients undergoing CABG surgery and examined in organ chamber 

experiments for isometric tension recording. Histamine H2-receptor expression was 

assessed by real-time polymerase chain reaction (PCR), and endothelial NO synthase 

expression by Western blot analysis. This study showed that after precontraction with 

norepinephrine, histamine at lower concentrations induced relaxations in the internal 

mammary artery (-31.2±3.7% of contraction to potassium chloride [KCl]) and the 

saphenous vein (-13.0±3.6% of contraction to KCl), but not in the radial artery. At 

higher concentrations, histamine-induced contractions reached similar levels in all 

three vessels (p=ns). Endothelial removal, the competitive antagonist of NO formation 

Nɷ-nitro-L-arginine methyl ester (L-NAME), and the histamine H2-receptor blocker 

cimetidine blunted relaxations in the internal mammary artery and the saphenous vein 

(p<0.05), but did not alter histamine responses in the radial artery. The cyclooxygenase 

inhibitor indomethacin enhanced relaxations (p<0.05) and tended to reduce 

contractions (p=0.10) to histamine in the saphenous vein. Consistently, a lower 
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endothelial histamine H2-receptor expression was detected in the radial artery as 

compared to the internal mammary artery and the saphenous vein (p<0.05), while 

endothelial NO synthase expression was similar in the three vessels (p=ns). Hence, 

histamine-induced relaxations of the mammary artery and the saphenous vein appear 

to be caused by NO release mediated via activation of endothelial H2-receptors, and 

the lower endothelial histamine H2-receptor expression in the radial artery may explain 

the absence of relaxations in this vessel. Further, as indomethacin enhanced 

relaxations and reduced contractions in saphenous veins, vasoconstrictor 

prostaglandins seem to counteract relaxations in vein grafts. These findings illustrate 

a different regulation of vascular tone among different vascular beds, and may 

represent a possible mechanism for vasospasm observed in the radial artery.  
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Hier findet sich folgende Arbeit: http://dx.doi.org/10.1152/ajpheart.00280.2005, die aus 

urheberrechtlichen Gründen aus der elektronischen Version der Habilitationsschrift 

entfernt wurde.   

http://dx.doi.org/10.1152/ajpheart.00280.2005


18 
 

Hier findet sich folgende Arbeit: http://dx.doi.org/10.1152/ajpheart.00280.2005, die aus 

urheberrechtlichen Gründen aus der elektronischen Version der Habilitationsschrift 

entfernt wurde.   

http://dx.doi.org/10.1152/ajpheart.00280.2005
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urheberrechtlichen Gründen aus der elektronischen Version der Habilitationsschrift 

entfernt wurde.   

http://dx.doi.org/10.1152/ajpheart.00280.2005


20 
 

Hier findet sich folgende Arbeit: http://dx.doi.org/10.1152/ajpheart.00280.2005, die aus 

urheberrechtlichen Gründen aus der elektronischen Version der Habilitationsschrift 

entfernt wurde.   

http://dx.doi.org/10.1152/ajpheart.00280.2005
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Hier findet sich folgende Arbeit: http://dx.doi.org/10.1152/ajpheart.00280.2005, die aus 

urheberrechtlichen Gründen aus der elektronischen Version der Habilitationsschrift 

entfernt wurde.   

http://dx.doi.org/10.1152/ajpheart.00280.2005
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Hier findet sich folgende Arbeit: http://dx.doi.org/10.1152/ajpheart.00280.2005, die aus 
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entfernt wurde.   

http://dx.doi.org/10.1152/ajpheart.00280.2005
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Hier findet sich folgende Arbeit: http://dx.doi.org/10.1152/ajpheart.00280.2005, die aus 

urheberrechtlichen Gründen aus der elektronischen Version der Habilitationsschrift 

entfernt wurde.   

http://dx.doi.org/10.1152/ajpheart.00280.2005
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Hier findet sich folgende Arbeit: http://dx.doi.org/10.1152/ajpheart.00280.2005, die 

aus urheberrechtlichen Gründen aus der elektronischen Version der 

Habilitationsschrift entfernt wurde.   

http://dx.doi.org/10.1152/ajpheart.00280.2005
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2. Poly(ADP-ribose) polymerase-1 protects from oxidative stress induced 

endothelial dysfunction. Gebhard C*, Stähli BE*, Shi Y, Camici GG, Akhmedov 

A, Hoegger L, Lohmann C, Matter CM, Hassa PO, Hottiger MO, Malinski T, 

Lüscher TF, Tanner FC. Biochemical and Biophysical Research Communications. 

2011;414:641-6. (*shared first authorship) 

 
As highlighted above, endothelial dysfunction occurring in the early phases of 

atherosclerosis is associated with an increased production of ROS. Poly(adenosine 

diphosphate [ADP]-ribose) polymerase-1 (PARP-1) is a nuclear chromatin-associated 

enzyme which transfers ADP-ribose units from nicotinamide adenine dinucleotide 

(NAD+) to itself and other nuclear acceptor proteins, and acts as a downstream effector 

of oxidative stress.(82, 83) This study aimed at investigating the role of PARP-1 in 

endothelial dysfunction under conditions of intracellular oxidative stress. Therefore, 

PARP-1 (-/-) and PARP-1 (+/+) mice were treated with paraquat (10 mg/kg i.p.) to 

induce oxidative stress,(84) and aortic rings were suspended in organ chambers for 

isometric tension recording. Paraquat impaired endothelium-dependent relaxations in 

PARP-1 (-/-) mice, but not in PARP-1 (+/+) mice (p<0.001). Paraquat enhanced 

contractions to norepinephrine by 1.9-fold in PARP-1 (-/-) as compared to PARP-1 

(+/+) mice (p<0.001). Paraquat-induced alterations of endothelium-dependent 

relaxation and norepinephrine-induced contractions in PARP-1 (-/-) mice were 

prevented by polyethylene glycol (PEG)-superoxide dismutase and PEG-catalase, two 

scavengers of superoxide anion and hydrogen peroxide, as well as by indomethacin. 

L-NAME caused baseline contractions in paraquat-treated PARP-1 (-/-) mice, and 

increased acetylcholine-induced contractions by 3.3-fold in paraquat-treated PARP-1 

(-/-) mice as compared to PARP-1 (+/+) mice (p<0.001), demonstrating that NO 

bioavailability is preserved under basal and stimulated conditions. The vasoconstrictor 
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effects of L-NAME were inhibited by indomethacin. Extracellular peroxynitrite and NO 

concentrations were similar in PARP-1 (-/-) and PARP-1 (+/+) mice. These results 

suggest that PARP-1 activity protects from oxidative stress-induced endothelial 

dysfunction by inhibiting the production of vasoconstrictor prostanoids, and thereby 

may play an important role in maintaining endothelial function under these conditions.  
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Hier findet sich folgende Arbeit: http://dx.doi.org/10.1016/j.bbrc.2011.09.029, die aus 

urheberrechtlichen Gründen aus der elektronischen Version der Habilitationsschrift 

entfernt wurde. 
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Hier findet sich folgende Arbeit: http://dx.doi.org/10.1016/j.bbrc.2011.09.029, die aus 

urheberrechtlichen Gründen aus der elektronischen Version der Habilitationsschrift 

entfernt wurde. 

  



29 
 

Hier findet sich folgende Arbeit: http://dx.doi.org/10.1016/j.bbrc.2011.09.029, die aus 

urheberrechtlichen Gründen aus der elektronischen Version der Habilitationsschrift 

entfernt wurde. 
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Hier findet sich folgende Arbeit: http://dx.doi.org/10.1016/j.bbrc.2011.09.029, die aus 

urheberrechtlichen Gründen aus der elektronischen Version der Habilitationsschrift 

entfernt wurde. 
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Hier findet sich folgende Arbeit: http://dx.doi.org/10.1016/j.bbrc.2011.09.029, die aus 

urheberrechtlichen Gründen aus der elektronischen Version der Habilitationsschrift 

entfernt wurde. 
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Hier findet sich folgende Arbeit: http://dx.doi.org/10.1016/j.bbrc.2011.09.029, die aus 

urheberrechtlichen Gründen aus der elektronischen Version der Habilitationsschrift 

entfernt wurde. 
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3. Cardiac glycosides regulate endothelial tissue factor expression in culture. 

Stähli BE, Breitenstein A, Akhmedov A, Camici GG, Shojaati K, Bogdanov N, 

Steffel J, Ringli D, Lüscher TF, Tanner FC. Arteriosclerosis, Thrombosis, and 

Vascular Biology. 2007;27:2769-76. 

 
Tissue factor is a key regulator of the coagulation cascade, and has been implicated 

in the pathogenesis of acute coronary syndromes. Stent thrombosis is a dreaded 

complication following stent implantation given the associated high morbidity and 

mortality. Hence, much interest is focused on the development of novel stent designs 

and the search for alternative drugs to attenuate both proliferative and thrombotic 

responses to vascular injury following stent deployment. Therefore, the aim of this 

study was to assess the effect of cardiac glycosides, known to impair vascular smooth 

muscle cell proliferation at higher concentrations,(85) on endothelial tissue factor 

expression. A concomitant inhibitory effect on tissue factor expression would render 

cardiac glycosides particularly well suited for the application on drug-eluting stents. We 

therefore assessed the effect of the cardiac glycoside ouabain on TNF-α-induced 

tissue factor expression in human aortic endothelial cells. We demonstrated that 

ouabain significantly reduced TNF-α-induced endothelial tissue factor protein 

expression with a maximal inhibition of 70% at a concentration of 10-5 mol/L (p<0.001), 

and reduced tissue factor surface activity by 44% (p<0.001). Ouabain-induced 

inhibition of the sodium-potassium-activated adenosine triphosphatase (Na+/K+-

ATPase) activity was confirmed by a ouabain-induced decrease of 86Rb influx (p<0.05). 

Consistently, inhibition of Na+/K+-ATPase activity by lowering extracellular potassium 

concentrations inhibited TNF-α-induced tissue factor protein expression (p<0.001). As 

the gap junction inhibitor carbenoxolon did not alter TNF-α-induced endothelial tissue 

factor protein expression, ouabain does not exert its effect by interfering with the 
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function of gap junctions. Further, our results suggest that ouabain effects are 

mediated at the post-transcriptional level as expression of full-length tissue factor 

mRNA was not altered, and as ouabain did not affect tissue factor protein degradation. 

These findings provide novel insights into the regulation of endothelial tissue factor 

expression, and may open new avenues for potential applications of cardiac glycosides 

when applied locally, e. g. on drug-eluting stents. 
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Hier findet sich folgende Arbeit: http://dx.doi.org/10.1161/ATVBAHA.107.153502, die 

aus urheberrechtlichen Gründen aus der elektronischen Version der 

Habilitationsschrift entfernt wurde. 
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Hier findet sich folgende Arbeit: http://dx.doi.org/10.1161/ATVBAHA.107.153502, die 

aus urheberrechtlichen Gründen aus der elektronischen Version der 

Habilitationsschrift entfernt wurde. 
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Hier findet sich folgende Arbeit: http://dx.doi.org/10.1161/ATVBAHA.107.153502, die 

aus urheberrechtlichen Gründen aus der elektronischen Version der 

Habilitationsschrift entfernt wurde. 
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Hier findet sich folgende Arbeit: http://dx.doi.org/10.1161/ATVBAHA.107.153502, die 

aus urheberrechtlichen Gründen aus der elektronischen Version der 

Habilitationsschrift entfernt wurde. 
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Hier findet sich folgende Arbeit: http://dx.doi.org/10.1161/ATVBAHA.107.153502, die 

aus urheberrechtlichen Gründen aus der elektronischen Version der 

Habilitationsschrift entfernt wurde. 
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(*shared first authorship) 

 

As highlighted above, the key role in the coagulation cascade renders tissue factor a 

promising therapeutic target in cardiovascular disease, and besides cardiac 

glycosides, we tested other anti-inflammatory compounds for their ability to alter tissue 

factor expression. Caffeic acid phenethyl ester (CAPE) is an active component of 

propolis from honeybee hives, which has previously been shown to exert anti-oxidant 

and anti-inflammatory properties and to inhibit platelet activation.(86, 87) In animal 

models of vascular injury and atherosclerosis, CAPE prevented restenosis after 

balloon angioplasty and reduced atherosclerotic plaque formation.(88, 89) Given these 

beneficial effects of CAPE and the critical role of tissue factor in the coagulation 

cascade, this study was designed to assess whether CAPE modulates endothelial 

tissue factor expression. We demonstrated that CAPE significantly reduced TNF-α-

induced endothelial tissue factor protein expression reaching a 2.1-fold decrease at 

10-5 mol/L (p<0.001). Consistently, CAPE inhibited tissue factor surface activity 

(p=0.02). Tumor necrosis factor-α-induced MAP kinase activation, tissue factor 

promoter activity, and tissue factor mRNA expression were not affected by CAPE. 

CAPE did not alter TNF-α-induced IκB-α degradation, but slightly prolonged its 

resynthesis as compared to TNF-α alone (p=0.045). However, as neither promoter 

activity nor TF mRNA expression were altered, these alterations in the kinetic profile 

of IκB-α resynthesis are unlikely to mediate the effects of CAPE on tissue factor 

expression. Hence, a post-transcriptional regulation of tissue factor expression is again 
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suggested. Future studies are needed to assess whether CAPE may represent a 

promising therapeutic compound for patients with cardiovascular disease. 
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Besides tissue factor, the adhesion molecule P-selectin is importantly involved in the 

regulation of hemostasis. P-selectin is expressed on activated endothelial cells and 

platelets, and stimulates their interaction with leukocytes. (30, 90) For patients with 

complex and/or multivessel coronary artery disease, CABG surgery is considered a 

standard treatment with proven long-term safety and efficacy,(91-94) however, with 

SVG disease being a frequently observed concern. As several animal and clinical 

phase I and II studies supported P-selectin as a potential target in SVG disease, (34, 

36, 95) we raised the hypothesis that the P-selectin antagonist inclacumab may prove 

efficient in reducing SVG disease after CABG surgery. The aim of this prospective, 

randomized, multicentre, double-blind, placebo-controlled trial was therefore to assess 

the effects of inclacumab, a monoclonal antibody directed against P-selectin, on SVG 

disease. A total of 384 patients undergoing elective or urgent CABG surgery were 

enrolled at 38 centers located in Canada and the United States, and randomized in a 

1:1 ratio to receive inclacumab (20 mg/kg) or placebo at 4-weeks intervals during a 

treatment period of 32 weeks. The primary efficacy measure was the proportion of 

patients with diameter stenosis > 50% (including total occlusion) of at least 1 SVG on 

invasive angiography at 1 year as assessed by quantitative coronary angiography. This 

study demonstrated that inclacumab exerted no significant effect on the primary 

efficacy measure (26.4% versus 22.3% of patients in the placebo and inclacumab 

groups, adjusted odds ratio [OR] 0.80, 95% confidence interval [CI] 0.47-1.38, p=0.43). 
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A post hoc analysis revealed that inclacumab tended to reduce the primary efficacy 

measure in patients with higher as compared to those with lower baseline P-selectin 

levels (12.8% versus 27.8%, adjusted OR 0.37, 95% CI 0.12-1.15, p=0.085), findings 

which are interesting and need to be evaluated in future studies.  
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Plos One. 2014;9(6):e98626. 

 

In patients presenting with symptoms suggestive of acute coronary syndromes, 

identification of those at increased risk and need for early coronary angiography with 

subsequent coronary revascularization if needed is paramount. High-sensitive cardiac 

biomarkers play a key role in the diagnosis of myocardial infarction, and markers of 

inflammation may complement patient assessment. The aim of this observational 

single center study was to establish a risk prediction tool for patients presenting with 

signs and symptoms of acute coronary syndromes. A total of 538 patients were 

screened, and 377 patients included in the study. On admission, the Thrombolysis in 

Myocardial Infarction (TIMI) and Global Registry of Acute Coronary Events (GRACE) 

risk scores were calculated for each patient, and a panel of 15 laboratory biomarkers 

was measured. The primary endpoint (cardiac event) was a composite of coronary 

revascularization, subsequent myocardial infarction, and cardiovascular death at 30 

days. Coronary angiography and subsequent coronary revascularization were 

performed in 44% and 33% of patients, respectively. This study demonstrated that in 

patients presenting without ST-segment elevations, the performance of single 

biomarkers such as hs-TnT and myeloperoxidase in cardiac event prediction 

depended on the clinical pretest probability, with a better performance of hs-TnT in 

patients with low, and of myeloperoxidase in those with high clinical risk scores. 

Further, best prediction of cardiac events was achieved by combining clinical risk 
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scores with hs-TnT. These observations underline the importance of clinical 

parameters in the risk stratification of patients presenting with suspected acute 

coronary syndromes to the emergency department.  
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DISCUSSION 

The burden of coronary heart disease 

Cardiovascular diseases are the most frequent cause of morbidity and mortality 

worldwide, with coronary heart disease accounting for the majority of them.(96) The 

total coronary heart disease prevalence in the United States is expected to be about 

6% in adults over 20 years of age, meaning that an estimated 15.5 million Americans 

over 20 years of age are suffering from coronary heart disease,(1) and lifetime risk of 

fatal coronary heart disease or nonfatal myocardial infarction is considered to increase 

from 3.6% and below 1% for men and women with an optimal risk factor profile to 

37.5% and 18.3% in those with 2 or more major cardiovascular risk factors.(97) Albeit 

a significant reduction of coronary heart disease mortality was achieved over the last 

decades given the better risk factor management and the improvements in 

pharmacological and interventional treatment, coronary heart disease is considered to 

account for every 7th death in the United States, and yet about a third of patients 

experiencing a coronary event will die of it in the same year.(1, 98). Similar rates have 

been reported in European countries with cardiovascular diseases causing about 4 

million deaths each year, and coronary heart disease accounting for about half of 

them.(99) In near future, the burden of coronary heart disease is expected to rise 

further with the ageing of the population and the growing rates of obesity and diabetes, 

and an almost 20% increase in disease prevalence is projected by 2030.(1) The high 

prevalence of coronary heart disease and the associated morbidity and mortality, along 

with the related socioeconomic consequences, highlight the importance of both basic 

and clinical research efforts in this field to further enhance our understanding of 

pathophysiological aspects and to provide the basis for novel treatment approaches.  

Hence, the aims of this habilitation thesis were 1) to elucidate the endothelial 

regulation of vascular tone under inflammatory conditions, 2) to investigate the 
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endothelial regulation of coagulation and develop novel therapeutic strategies, and 3) 

to improve risk stratification in patients with suspected acute coronary syndromes 

investigating the predictive role of inflammatory biomarkers. 

 

Endothelial regulation of vascular tone 

As highlighted above, the endothelium plays a key role in the regulation of vascular 

tone and maintains the balance between vasodilation and vasoconstriction. Nitric oxide 

is a key endothelial factor mediating endothelium-dependent vasodilation of the 

adjacent vascular smooth muscle cells.(2, 3) A variety of mediators are involved in the 

regulation of vascular tone under inflammatory conditions, and different responses to 

vasoactive substances among different vascular beds have previously been 

reported.(80, 100, 101) In this habilitation thesis, effects of histamine, known to be 

abundant in diseased coronary arteries,(102) and of PARP-1, orchestrating cellular 

responses to oxidative stress,(82, 83) on vascular function were further elucidated. 

Therefore, vessel segments of both human bypass conduits and mice aorta were 

collected and mounted in organ chambers for isometric tension recording. We 

demonstrated that histamine at lower concentrations induced relaxations in the internal 

mammary artery and to a lesser extent in the saphenous vein, but not in the radial 

artery due to minimal histamine H2 receptor expression in this vessel.(9) Histamine at 

higher concentrations, however, elicited contractions in all three vessels, mediated via 

the histamine H1 receptor. Similar responses to histamine in the saphenous vein with 

a relaxation at lower and a contraction at higher concentration have previously been 

reported.(101) As endothelium-dependent relaxations to acetylcholine were similar in 

the internal mammary and the radial artery, along with a comparable expression of the 

endothelial NO synthase in the two vessels, differences in the activation pattern of the 

NO pathway seem to explain the lack of histamine-induced relaxation in the radial 
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artery rather than the functionality of the NO pathway per se. The observation that 

histamine-induced relaxations in the internal mammary artery and the saphenous vein 

were blunted by removal of the endothelium and by the inhibitor of NO formation L-

NAME confirms that these responses are mediated by NO derived from the 

endothelium. Cimetidine blocked relaxations to a similar extent as L-NAME both in the 

internal mammary artery and the saphenous vein, findings which strongly support the 

interpretation that the release of NO is mediated via histamine H2 receptor activation. 

Consistent with these findings, histamine H2 receptor-mediated vasodilation of 

coronary arteries has previously been reported in a dog model,(81) and cimetidine-

induced coronary artery vasospasm was observed in patients with Prinzmetal 

angina.(103) As indomethacin did not alter histamine-induced vessel responses in the 

internal mammary and the radial artery, prostaglandins do not seem to be involved in 

the vessel responses observed in these arteries. However, as indomethacin unmasked 

histamine-induced relaxations in the saphenous vein, vasoconstrictive prostaglandins 

seem to counteract NO-mediated relaxations in these vessels. Taken together, the lack 

of histamine-induced NO release may represent a possible mechanism for radial artery 

vasospasm, and may be involved in the pathogenesis of bypass graft disease in this 

conduit as well. From a clinical perspective, as platelets are a main source of 

histamine,(104) consequent inhibition of platelet aggregation may be particularly 

important to reduce vasospastic complications in radial artery bypass grafts. Further, 

these findings add to the evidence that a heterogeneous distribution of receptors in the 

vascular bed accounts for different vessel responses to the same mediator. 

Oxidative stress is a hallmark of endothelial dysfunction and atherosclerotic 

changes within the vessel wall. Given the importance of the nuclear enzyme PARP-1 

in oxidative stress responses, we investigated the effects of genetic deletion of PARP-

1 on endothelial function under conditions of oxidative stress. Poly(adenosine 
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diphosphate [ADP]-ribose) polymerase-1, by transferring ADP-ribose units to nuclear 

acceptor proteins, is importantly involved in deoxyribonucleic acid (DNA) repair 

mechanisms, thereby maintaining genomic stability,(105, 106) and was shown to 

promote endothelial integrity by mediating anti-apoptotic effects of the vascular 

endothelial growth factor.(107) Besides these beneficial properties, detrimental effects 

of PARP-1 activation are well known, and were mostly linked to the intracellular 

depletion of NAD+ and ATP pools and the enhanced expression of pro-inflammatory 

mediators. Activation of PARP-1 has been shown to mediate tissue damage in animal 

models of diabetes and atherosclerosis,(108-110) and pharmacological PARP 

inhibition and genetic deletion of PARP-1 diminished endothelial adhesion molecule 

expression, reduced atherosclerotic plaque formation, and promoted plaque stability 

in mice models of atherosclerosis.(109) Our study showed that PARP-1 protects from 

oxidative stress induced endothelial dysfunction by inhibiting the production of 

cyclooxygenase-derived vasoconstrictor prostanoids.(111) These findings are in line 

with previous studies suggesting an increased production of vasoconstrictor 

prostanoids in response to oxidative stress in different animal models of vascular 

disease and diabetes.(112, 113) Contrary to our findings, beneficial effects of 

pharmacological PARP inhibition on endothelial function were observed in animal 

models of atherosclerosis and hypertension,(114-117) although effects may depend 

on the model used.(114) We can only speculate about the reasons for these diverse 

observations, however, the nature of the stimulus and the level of PARP-1 activation 

per se may play an important role in mediating beneficial or detrimental effects of 

PARP-1 activity.(118) Further, results obtained with pharmacological PARP inhibition 

may not be comparable to those observed in knockout mice, and different 

pharmacological PARP inhibitors may exert diverse effects or pleiotropic actions. 
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Future studies are needed to elucidate potential clinical implications of various PARP 

inhibitors in cardiovascular disease.  

 

Two key players in coagulation and inflammation: tissue factor and P-selectin 

The endothelium not only mediates vascular tone, but is also crucially involved in the 

regulation of coagulation. The research discussed in this habilitation thesis focuses on 

tissue factor and the adhesion molecule P-selectin, and was mainly fuelled by the 

ongoing search for improved stent designs and novel anti-thrombotic and anti-

inflammatory treatment strategies in patients with acute coronary syndromes. Drug-

eluting stents are covered with anti-proliferative agents to inhibit vascular smooth 

muscle cell proliferation, and thereby restenosis. Substances combining both anti-

proliferative and anti-thrombotic properties therefore represent interesting candidate 

agents for the application on drug-eluting stents, and tissue factor as the main initiator 

of coagulation may be an interesting target.(14) This approach was further supported 

by the observation of our group that paclitaxel used on first-generation drug-eluting 

stents significantly increased endothelial tissue factor protein expression and surface 

activity via stabilization of microtubules and selective activation of the c-Jun terminal 

NH2 kinase.(54) Therefore, we tested the effect of different agents on endothelial tissue 

factor expression. Ouabain is a cardiac glycoside which exerts its action via inhibition 

of the Na+/K+-ATPase, a protein located in the cellular membrane and regulating the 

active transport of sodium and potassium ions.(119) Previous studies have suggested 

that ouabain decreases vascular smooth muscle cell proliferation at higher 

concentrations.(85) We demonstrated that ouabain significantly reduced TNF-α-

induced endothelial tissue factor expression, and that this effect was most likely 

mediated at the post-transcriptional level as neither TNF-α-induced MAP kinase 

activation nor IκB-α degradation were affected, and tissue factor protein degradation 
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remained unaltered.(120) The anti-proliferative and anti-thrombotic properties of 

ouabain may render this compound an interesting candidate agent for the application 

on drug-eluting stents. Further, these findings provide novel insights into the post-

transcriptional regulation of tissue factor expression which has only rarely been 

reported before.(55) We then investigated the effect of the natural compound CAPE, a 

propolis component from honeybee hives, on endothelial tissue factor expression. 

Indeed, CAPE inhibited TNF-α-induced tissue factor expression, and similarly to 

ouabain, effects are considered to be mediated at the post-transcriptional level as 

neither the MAP kinase activation pattern, nor promoter activity or mRNA expression 

were altered.(121) Differences between the effects of both ouabain and CAPE on 

tissue factor protein expression and surface activity may be due to the distribution of 

tissue factor in various cellular compartments, along with the presence of encrypted 

tissue factor.(14) As caffeine consumption has frequently been linked with an 

increased risk of cardiovascular events such as acute myocardial infarction and 

stroke,(122-124) we further assessed whether caffeine exerts any effect on tissue 

factor expression. Caffeine significantly enhanced TNF-α- and thrombin-induced 

endothelial tissue factor expression via inhibition of PI3K activity with an effect 

comparable to that of the PI3K inhibitor LY294002.(125) As concentrations used in the 

study were comparable to those reached in humans after regular coffee 

consumption,(126, 127) these findings strongly support pro-thrombotic properties of 

caffeine and further underline the importance of the PI3K pathway in cardiovascular 

disease.  

The second therapeutic concept discussed in this habilitation thesis involves the 

modulation of inflammatory and coagulation pathways by targeting the adhesion 

molecule P-selectin. The SELECT-CABG study demonstrated that the anti-P-selectin 

antibody inclacumab did not reduce venous graft failure in patients undergoing CABG 
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surgery,(128) suggesting that the P-selectin pathway seems to play an overall less 

important role in the pathogenesis of SVG disease than previously postulated. 

However, the fact that patients with elevated baseline levels of soluble P-selectin had 

a numerically lower rate of diseased SVG when treated with inclacumab compared to 

placebo raised the hypothesis that the pre-existing level of activation of the P-selectin 

pathway may determine the response to inclacumab in terms of SVG disease 

prevention. Although the identical dosage of inclacumab was proven to be successful 

in the recent SELECT-ACS trial enrolling patients with non-ST-segment elevation 

myocardial infarction undergoing PCI,(36) it cannot be excluded that treatment 

regimens involving pre-operative drug administration or longer treatment durations 

may have favorably affected the outcome measures.  

 

Inflammatory biomarkers and their potential to improve risk prediction in 

coronary artery disease  

As highlighted above, timely diagnosis and early risk stratification of patients 

presenting with signs and symptoms suggestive of acute coronary syndromes are 

important. However, the identification of patients at increased risk and need for early 

coronary revascularization may be challenging, particularly in patients presenting 

without ST-segment elevations. Different risk scoring systems have been established 

for the prediction of ischemic events and cardiovascular death such as the TIMI risk 

score which incorporates the variables age, presence of ≥3 cardiovascular risk factors, 

known coronary artery disease, episodes of angina, and the use of antiplatelet agents, 

along with positive cardiac biomarkers and ECG changes.(129) Although the 

implementation of hs-cTn assays in clinical practice has improved the diagnosis of 

myocardial infarction,(70-72) an increasing number of chest pain patients now 

presents with slight increases in cardiac troponin levels without finally being diagnosed 
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with acute coronary syndromes.(130, 131) Given the key role of inflammation in the 

pathogenesis of atherosclerosis, plaque rupture, and associated thrombotic 

complications, much research interest has been focused on markers of inflammation 

to further improve the assessment of patients presenting with suspected acute 

coronary syndromes. Inflammatory markers such as C-reactive protein (CRP) have 

been shown to predict the risk of cardiovascular events in both asymptomatic 

individuals and patients with established coronary artery disease,(132-134) and were 

linked to coronary plaque burden and atherosclerosis progression in patients 

undergoing coronary angiography.(135-137) Therefore, we tested different candidate 

biomarkers for the prediction of cardiac events (defined as need for coronary 

revascularization, consecutive myocardial infarction, and cardiovascular death at 30 

days) in patients with suspected acute coronary syndromes.(138) The MyRiAd study 

demonstrated that clinical assessment by the TIMI risk score and hs-cTnT levels best 

predicted cardiac events, and that the predictive value of inflammatory biomarkers, 

particularly hs-cTnT and myeloperoxidase, depended on the clinical pretest probability 

as assessed by the TIMI risk score. The predictive value of inflammatory biomarkers 

in this study, however, was rather poor. Although H-FABP, a cytoplasmic protein 

released in response to myocardial injury, has previously been identified as an early 

marker of myocardial infarction and an independent predictor of major adverse 

cardiovascular events in patients with acute coronary syndromes,(139-141) consistent 

with other studies, this marker did not improve diagnostic accuracy beyond sensitive 

troponin assays.(142-144) Similarly, MRP 8/14, reflecting monocyte and granulocyte 

activation and known to be highly abundant in coronary thrombi,(74) did not 

significantly improve risk prediction. These findings may be rather disappointing as 

MRP 8/14 was shown to be elevated in patients with acute coronary syndromes,(74) 

and was linked with cardiovascular events both in healthy subjects and acute coronary 
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syndrome patients.(145, 146) Other biomarkers of plaque instability including the 

metalloproteinase pregnancy-associated plasma protein-A (PAPP-A) and the 

leukocyte-derived enzyme myeloperoxidase did not improve diagnostic accuracy as 

compared with cardiac troponin assays, although they have been associated with an 

increased risk of adverse events in coronary artery disease and chest pain 

patients.(147-149) The observation that the predictive value of single biomarkers 

varied among different risk categories supports the integration of clinical variables and 

biomarker information in more complex risk prediction models. Indeed, similar 

algorithms incorporating both the TIMI risk score and cardiac troponin levels have been 

investigated in other studies enrolling patients with suspected acute coronary 

syndromes, and were found to accurately identify individuals at low risk of adverse 

events.(150-153) Other diagnostic concepts for an improved patient assessment 

involve multimarker strategies which may be superior to stand-alone testing of 

individual biomarkers. However, the best combination of candidate markers and their 

clinical role in the era of hs-cTn assays remains unclear. 

Besides patients with suspected acute coronary syndromes, various candidate 

biomarkers have also been tested in other high-risk patient subsets. We have shown 

that carbamylated low-density lipoprotein (LDL) cholesterol not only elicited endothelial 

dysfunction via lectin-like-oxidized LDL receptor-1 activation, but also independently 

predicted adverse cardiovascular events and all-cause mortality in patients with 

chronic kidney disease.(154) Further, we demonstrated that emerging biomarkers 

such as midregional proadrenomedullin, neopterin, and tryptophan may bear the 

potential to improve risk prediction in aortic stenosis patients.(155-158) In coronary 

artery disease, imaging biomarkers may complement patient assessment beyond 

circulating biomarkers. Given the inability of conventional angiography and most 

intravascular imaging modalities to provide information about atherosclerotic plaque 
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composition and activity, near infrared fluorescence imaging and different molecular 

probes have been proposed for advanced intravascular plaque imaging,(159-162) and 

an novel bimodal intravascular ultrasound/near infrared fluorescence imaging system 

has recently been validated by our group in an animal model of atherosclerosis.(163)  

Taken together, novel risk prediction algorithms combining different modalities 

such as clinical parameters, inflammatory biomarkers, and selected plaque imaging 

technologies, may further improve risk stratification in coronary artery disease patients 

in near future.  

 

SUMMARY 

In conclusion, aspects of endothelial dysfunction under inflammatory conditions with 

focus on vascular tone and coagulation were discussed in this habilitation thesis, which 

may provide the ground for future basic and clinical research. Further, novel 

therapeutic concepts acting at the interplay between inflammation and coagulation 

were investigated. In particular, the lack of histamine-induced NO production was 

identified as possible mechanism of vasospasm of the radial artery, and beneficial 

effects of the nuclear enzyme PARP-1 on endothelial function under conditions of 

oxidative stress were identified. In addition, anti-thrombotic effects of several 

compounds including cardiac glycosides and CAPE were demonstrated, and the role 

of a therapeutic strategy targeting P-selectin in SVG failure assessed with trends 

towards beneficial inclacumab effects observed in patients with high P-selectin levels. 

Further, we demonstrated that the performance of inflammatory biomarkers in 

predicting cardiac events depended on the clinical pretest probability assessed by the 

TIMI risk score. Taken together, these findings extend our knowledge about 

inflammatory alterations in cardiovascular disease both at the molecular level and from 
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a clinical perspective, and may influence future study designs aimed to further improve 

patient outcomes. 
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