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Obtaining accurate ground and low-lying excited states of electronic systems
is crucial in a multitude of important applications. One ab initio method for
solving the Schrodinger equation that scales favorably for large systems is
variational quantum Monte Carlo (QMC). The recently introduced deep QMC
approach uses ansatzes represented by deep neural networks and generates
nearly exact ground-state solutions for molecules containing up to a few
dozen electrons, with the potential to scale to much larger systems where
other highly accurate methods are not feasible. In this paper, we extend one
such ansatz (PauliNet) to compute electronic excited states. We demonstrate
our method on various small atoms and molecules and consistently achieve
high accuracy for low-lying states. To highlight the method’s potential, we
compute the first excited state of the much larger benzene molecule, as well as
the conical intersection of ethylene, with PauliNet matching results of more

expensive high-level methods.

The fundamental challenge of quantum chemistry, solid-state physics,
and many areas of computational materials science is to obtain solu-
tions to the electronic Schrédinger equation for a given system, which
in principle provides complete access to its chemical properties. The
ground and low-lying excited states typically determine the behavior
of a system and are therefore of the most interest in many applications.
Understanding and being able to describe excited-state processes',
including a wide variety of important spectroscopy methods such as
fluorescence, photoionization, and optical absorption of molecules
and solids, is key to the successful design of new materials.
Unfortunately, the Schrédinger equation cannot be solved exactly
except in the simplest cases, such as one-dimensional toy systems or a
single hydrogen atom. Accordingly, many approximate numerical
methods have been developed which provide solutions at varying
degrees of accuracy. Time-dependent density functional theory*’
(TDDFT) is the most popular method due to its computational effi-
ciency but has well-known limitations*’. Higher-accuracy methods
have a computational cost that scales rapidly with system size—the
well-established full configuration interaction'® (FCI) and coupled
cluster (CC) techniques scale ~ O(exp (N)) (FCI scales exponentially,

while truncated Cl scales polynomially.) and ~ O(N>~1%) (The scaling of
CC depends on the particular method used: CC2 O(N°), CCSD O(N®),
CCSD(T) O(N7), CC3 O(N”), CCSDT O(N®), CCSDT(Q) O(N?), CCSDTQ
O(N').) respectively, where N is the number of electrons, thereby
severely limiting their practical use. There is thus a huge need for ab
initio methods that scale more favorably with system size, allowing the
modeling of practically relevant molecules and materials.

Quantum Monte Carlo (QMC) techniques offer a route forward
with their favorable scaling (O(N>~*)) and therefore dominate high-
accuracy calculations where other methods are too expensive>”. A
state-of-the-art QMC calculation typically involves the construction of
a multi-determinant baseline wavefunction through standard
electronic-structure methods, which is augmented with a Jastrow fac-
tor to efficiently incorporate electron correlation, and then optimized
through variational QMC (VMC) to obtain a trial wavefunction. This is
then used within fixed-node diffusion QMC (DMC) to obtain a final
electronic energy. The fixed-node approximation is used to avoid
exponential scaling, with the drawback that the nodal surface of the
trial wavefunction cannot be modified, which limits the accuracy of the
DMC result™. A more expressive baseline wavefunction can improve
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Fig. 1| Deep VMC obtains highly accurate excited states for single elements.
PauliNet results for the excitation energies (with (red) and without (yellow) var-
iance matching (see the “Methods” section for details)) are compared to the the-
oretical best estimates (TBE) taken from the NIST database®. Multiple PauliNet
ansatzes with identical energies correspond to orthogonal degenerate states. For
the TBE we have depicted four excitations per atom, taking account of the
degeneracies. For all atoms, we find the first excited state with high accuracy. For B,
C, and O the ground state is threefold degenerate. For these systems we choose one
of the three states to compute excitation energies, resulting in transitions with a
relative energy of zero. For Li and Be a further excitation energy is found. While we
obtain the second excited state for Be, in Li we miss out intermediate states and
instead find the transition from the ground state to the 2D state. This can be related
to the generic CASSCF initialization of the ansatzes (see the “Methods” section for
details). (The numerical data can be found in Supplementary Table II; source data
are provided as a Source Data file).

upon this but traditional DMC often needs thousands to hundreds of
thousands of determinants to reach convergence®. Additionally, DMC
only provides the final energy, restricting the calculation of other
electronic properties’. Both of these limitations can, in principle, be
resolved at the VMC level, with the accuracy of VMC constrained only
by the flexibility of the trainable wavefunction ansatz. So far, these
techniques have mostly been developed for ground-state calculations,
with different extensions proposed to address excited states™'" 2,

Recently, the new ab initio approach of deep VMC methods has
been introduced”?° and subsequently further extended and
improved® . In particular, PauliNet” and FermiNet®® were the first
methods to demonstrate that highly accurate ground-state results for
molecules could be obtained using deep VMC with lower computa-
tional complexity and using orders of magnitude fewer Slater deter-
minants than typically employed in other methods that achieve similar
accuracy.

In the same spirit as Carleo and Troyer proposed for optimizing
quantum states in lattice models®, VMC is used in order to train a
neural network model that represents the many-body wavefunction in
an unsupervised fashion, i.e. in contrast to other quantum machine
learning approaches the only input to the method is the Hamiltonian,
and training data are generated on the fly by sampling from the current
wavefunction model and minimizing the variational energy. In both
PauliNet and FermiNet deep antisymmetric neural networks are used
to represent the fermionic wavefunction in the real space of electron
coordinates.

Recently, there has been much interest in developing deep
learning methods for excited states™. In this paper, we extend PauliNet
towards the ab initio computation of electronic excited states (see the
“Methods” section for details). The input is again only the Hamiltonian
of the quantum system. By employing a simple energy minimization
and numerical orthogonalization procedure, we are able to obtain the
lowest excited-state wavefunctions of a given system. The excited-
state optimization makes use of a penalty method that minimizes the
overlap between the nth excited state and the lower-lying states in the
spectrum. Optimization methods that introduce additional constraints
have been used in the context of VMC before” and provide a simple
way to obtain orthogonal states without explicit enforcement in the
wavefunction ansatzes. Combining these techniques with the

expressiveness of neural network ansatzes yields highly accurate
approximations to excited states with direct access to the wavefunc-
tions for the evaluation of electronic observables. Neural network-
based methods have targeted low-lying excited states of one-
dimensional lattice models®”, but have not been applied to first-
principles systems.

We demonstrate our method on a variety of small- and medium-
sized molecules, where we consistently achieve highly accurate total
energies, outperforming traditional quantum chemistry methods. We
also compute excitation energies, transition dipole moments, and
oscillator strengths, the main ground-to-excited transition properties,
with the latter two known to be more sensitive to errors in the
underlying wavefunctions than energies. In all test systems, we find
PauliNet closely matches high-order CC and experimental results.
Next, we show that our method can be applied in a straightforward
manner to much larger molecules, using the example of benzene
where we match significantly more expensive high-level electronic-
structure methods. Finally, we demonstrate that PauliNet can be used
to compute excited-state potential energy surfaces by modeling an
avoided crossing and conical intersection of ethylene, a highly multi-
referential problem.

Results

Nearly exact solutions for small atoms and molecules

To demonstrate our method we start by applying it to a range of small
atoms and molecules. We optimize the lowest-lying excited states and
compute their vertical excitation energies for the ground-state equi-
librium geometry (see Supplementary Table I), with each PauliNet
wavefunction containing a maximum of 10 determinants. In all sys-
tems, we obtain highly accurate total energies and estimates of the first
few excitation energies competitive with high-accuracy quantum
chemistry methods.

In Fig. 1 the excitation energies of the lowest states are shown for
several atoms. For all the atoms the excitation energies are obtained
within 4 mHa of the theoretical best estimates (TBE)*. Due to the
high degree of symmetry the atoms exhibit degeneracies, that is,
multiple orthogonal states can be found with the same energy. Being
subject to the orthogonalization constraint, PauliNet approximates
all orthogonal states of an energy level individually, which is
observed by attaining multiple results at the same energy level. The
multiplicity of the exact solution can be obtained theoretically by
considering the electronic configurations of the atoms and is
reproduced within our experiments.

We then compute a larger number of excited states for LiH,
BeH and Be. In each experiment, we optimize eight ansatzes in
parallel. In Fig. 2 we illustrate the training process by plotting the
convergence of the total energies and excitation energies. Addi-
tionally, we plot the training estimates of the pairwise overlaps of
the wavefunctions, which remain small throughout the optimi-
zation process. We confirm that the final overlaps are near-zero
by exhaustively sampling the trained wavefunctions, thereby
obtaining well-converged Monte Carlo estimates (see Supple-
mentary Table VI). Based on the degeneracies we find a total of
five (LiH), four (BeH), and three (Be) distinct excitation energies,
respectively. The excitation energies match those from reference
values, and in particular, we find that for all systems studied here
we reliably obtain the first excited state, and apart from one case
also the second excited state. However, especially for clusters of
higher-lying excited states with similar energies, we typically do
not find all members of the cluster. In these cases, which states
are found depends on the initialization of our ansatzes, as well as
the total number of states that are being sought. To give a
transparent picture of the capabilities of our method, in this work
we have refrained from optimizing the CASSCF baseline in order
to find all possible excitations.
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Fig. 2 | Optimizing low-lying excited states for small molecules. Several excited
states of LiH, BeH, and Be are approximated. The convergence of the total energies
(upper row), excitation energies (middle row), and the pairwise overlaps between
the wavefunctions (bottom row) are shown. For degenerate states, multiple
ansatzes attain the same energy. Dotted horizontal lines are excitation energies

from FCI calculations and other highly accurate references®*~’, Due to the initi-
alization from the CASSCF baseline, the wavefunctions start with a small overlap,
which is retained throughout the optimization. (The numerical data can be found in
Supplementary Table II; source data are provided as a Source Data file).

Highly accurate wavefunctions: transition dipole moments and
oscillator strengths

Total energies and vertical excitation energies are the primary focus
when benchmarking excited-state methods as they are readily avail-
able from many theoretical models and provide a good initial guess of
a particular method’s accuracy. However, they provide only a partial
characterization of the electronic states, and while a method in ques-
tion may give accurate energies, other quantities of key importance
may be inaccurate® ™,

Transition dipole moments (TDM) and oscillator strengths are
two principal ground-to-excited transition properties and are of great
interest. TDMs determine how polarized electromagnetic radiation
will interact with a system due to its distribution of charge, and
therefore determine transition rates and probabilities of induced state
changes. In the electric dipole approximation, the TDM between two
states i and j is given by

d; = (@ilmy)), @
where i=>",qr, is the sum over the position operator of each particle
weighted by its charge, with g =-e for electronic systems. We obtain
the expectation value by Monte Carlo sampling according to Eq. (15).
While the TDM is important for understanding a number of processes,
including optical spectra, it is generally a complex-valued vector
quantity and not an experimental observable by itself. The closely
related oscillator strength is what is inferred through the experiment
and is given by

fy= %Afd? @

ij’

where AE is the excitation energy between states i and j, and d; is the
dipole strength. It is known that, in addition to being more basis-set
sensitive, dj and f; are both highly dependent on the quality of the trial
wavefunctions®® and represent a more rigorous test for ab initio
methods than just energies.

Recently, transition energies and oscillator strengths for a variety
of small molecules have been computed using high-order CC calcula-
tions, systematically extrapolating to the complete basis set (CBS)
limit, and comparing to experimental results where possible, in order
to supply a comprehensive set of theoretical benchmarks**, In that

spirit, we now use these results to benchmark the accuracy of oscillator
strengths computed using PauliNet. Furthermore, we also compare
multi-reference CC (MR-CC) results where possible*’. We compute the
first few electronic states for five molecules (BH, CH*, H,0, NH;, CO),
such that we obtain the first non-zero oscillator strength (within the
dipole approximation) for each. All calculations (CH* was not included
in the CC calculations in refs. 2, We instead compare to (MR-)CC
results in ref. **, using the same ground-state equilibrium geometry,
which was obtained in a split-valence basis augmented with diffuse and
polarization functions. See refs. **** for more details.) are performed at
the same ground-state equilibrium geometries as refs. *** (see Sup-
plementary Table I) and using the same number of determinants (<10)
as in the section “Nearly exact solutions for small atoms and
molecules”.

Our results for all systems are shown in Fig. 3. First, we compute
the amount of correlation energy recovered in the ground state and
find PauliNet matches high-order CC methods (panel a). Second, we
compute the excitation energy for each transition and find this to be
close to the TBE, on par with CC and much more consistent than
TDDFT where the accuracy depends on the molecule and on the exact
TDDFT method used (panel b). Finally, we compare the oscillator
strengths (for the O > 2 transition) in panel c. Even high-order methods
such as CC and MR-CC can produce a spectrum of results depending
on the expansion and basis set used, with this exacerbated in cheaper
methods such as TDDFT (see the example of CO). In all systems, Pau-
liNet compares well with experimental results, demonstrating the
quality of deep VMC wavefunctions with just a minimal number of
determinants.

Application to larger molecules

The previous two sections showed that we achieve highly accurate
results across a range of small systems. While this is encouraging,
traditional high-accuracy methods that are better established are
readily available for such small systems. In this section, to demon-
strate the potential of excited PauliNet, we show that it can be
applied in a straightforward manner to significantly larger mole-
cules. For this objective, we choose the example of the benzene
molecule (panel a of Fig. 4). Studies of its electronic structure and
other properties are plentiful due to its importance in bio and
organic chemistry, and with 42 electrons all-electron calculations
will be extremely demanding or even intractable for a high-level
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Fig. 3 | Deep VMC obtains highly accurate excited-state energies and wave-
functions for small molecules. a PauliNet recovers the same amount of correla-
tion energy as high-order CC methods*. (CH': No better reference energy to
compare with.) b Lowest triplet (O > 1) and singlet (0 - 2) excitation energies
obtained using PauliNet (with (red) and without (yellow) variance matching), CC,
and TDDFT, with the TBE given. (BH and CH" exhibit degeneracy for the triplet
state; CC is CCSD or higher, except for the triplet state of BH which includes CC2.)
¢ Oscillator strengths computed for the 0 - 2 transitions. PauliNet compares well to
experiment in all systems and matches the accuracy of (MR-)CC results, demon-
strating the quality of few-determinant PauliNet wavefunctions. (We have omitted a
factor of two linked to degeneracy in BH and CO.) Refs: exact correlation
energies®*°**'; excitation energies from CC**3¢2%¢ TDDFT® 8 and TBE*"*>#+¢>¢%;
oscillator strengths from (MR-)CC* ~**”%”\, TDDFT’* and experiment’>”". (The
numerical data can be found in Supplementary Table III; source data are provided
as a Source Data file).

description of its electronic states, depending on the theory
level used.

Using a PauliNet ansatz with just 10 determinants, the same as in
the much smaller systems, and slightly deeper neural networks (see
Supplementary Table VII) we obtain very good total energies for the
ground state and first excited state (upper left of Fig. 4). We note the
better accuracy than high-level CC calculations, with this signifying
highly accurate wavefunctions that can be used to compute other
observables, as demonstrated in the previous section. The computed
excitation energy is also shown (right of Fig. 4), with PauliNet com-
pared against several experimental and theoretical results. The lower
experimental result* (dashed black line) quantifies an adiabatic exci-
tation energy, i.e. the energy difference between the ground state and
the excited state at the corresponding relaxed geometries. This
quantity is corrected to obtain the vertical excitation energy” (solid
black line), which omits nuclear relaxation and vibrational effects. As
our calculations are performed at the ground-state equilibrium geo-
metry, we are targeting the vertical excitation energy, and therefore
consider this corrected experimental result to be closer to the ground
truth. We find this to be slightly underestimated by high-order
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Fig. 4 | Calculating the two lowest electronic states of the benzene molecule.
Inset: Benzene structure. a Convergence of the total energies of the ground state
(red) and excited state (light red) with training. Total energies of the ground state
from CCSD(T) in the frozen-core approximation with the aug-cc-pVnZ basis set
(n=D, T) (dashed blue), and full CCSD(T) at the CBS limit (solid blue) are shown®.
b Convergence of the excitation energy with training (with (red) and without
(yellow) variance matching). ¢ Excitation energy computed using PauliNet,
TDDFT®®, CC’®, DMC?®, CAS-PT (" and calculations in openMolcas*°) and
Experiment®** (adiabatic (dashed black) and vertical (solid black) excitation
energies). (The numerical data can be found in Supplementary Table IV; source data
are provided as a Source Data file).

methods (CC, DMC), and slightly overestimated by PauliNet. In other
systems (panel b of Fig. 3) we notice a similar trend when comparing to
the TBE.

PauliNet formally scales as O(N*) with the number of electrons N,
and in practice, we observe a scaling behavior O(N?) for the systems
investigated so far, which is related to quadratic scaling of the neural
network with an extra factor from the evaluation of the local energy. As
PauliNet is currently implemented in a research code, which is not
optimized for production purposes, the computational time will have a
large prefactor which makes it computationally unfavorable to, e.g. CC
methods for small molecules. However, its very favorable scaling in N
compared to O(N°79) of high-level electronic-structure methods
dominates for larger molecules, and this is clearly visible in benzene.
For instance, ref. *® used several state-of-the-art methods to obtain
accurate benzene ground-state energies, with calculations run on
several CPU types in a highly parallel manner (see Supporting Infor-
mation of ref. *® for details). PauliNet was run on a single RTX
3090 GPU at a fraction of the number of node hours. Although Pauli-
Net is the computationally cheapest method in this comparison, it
provides a significantly better (variational) ground-state energy than
all methods (-0.48 Ha lower). As all methods compared in Fig. 4 pro-
vide similar excitation energies, these cannot be used to group the
methods into more or less accurate, but overall this data indicates that
PauliNet and deep VMC methods in general have a very favorable cost/
accuracy trade-off for molecules of the size of benzene and beyond.

Multi-reference application: conical intersections

Molecular configurations that produce electronic states with similar
energies are fundamental in photochemical applications. Such con-
figurations can lead to several states mixing, meaning they are all
necessary for an accurate description of a particular process. Conical
intersections are produced when two states become degenerate and
require the computation of excited-state potential energy surfaces.
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Fig. 5 | Modeling a conical intersection of ethylene. Inset: Ethylene structure.

a Total energies (relative to the ground state of the planar geometry E) of the
ground state and first-excited singlet state as a function of torsion angle 7, with MR-
CI*° and TDDFT* results also plotted for comparison. TDDFT overestimates the
barrier (the ground state at 7= 90°) and produces an unphysical cusp, while the MR-
Cl results which predict an avoided crossing are well reproduced by PauliNet.

b Same as above but as a function of pyramidalization angle ¢ (r=90°), with the
degeneracy of the two states producing a conical intersection. The arrows denote
the conical intersection, with PauliNet (¢ ~100°) closely matching the MR-CI result
(¢ ~ 96°). Note: The geometric parameters (bond lengths and angles) vary slightly
between the torsion and pyramidalization experiments (see ref. *°). (The numerical
data can be found in Supplementary Table V; source data are provided as a Source
Data file).

The modeling of energy surfaces near degeneracies is inherently multi-
reference with significant electronic correlation and is thus a challen-
ging application for electronic-structure methods.

As afinal application of excited PauliNet, we compute ground- and
excited-state potential energies for ethylene (H,C=CH,) as a function
of its torsion and pyramidalization angles (see inset of Fig. 5). Twisting
around the C=C bond raises the energy of the ground state while
lowering that of the first-excited singlet state, giving rise to an avoided
crossing at a torsion angle 7 of 90°. From this twisted structure, the
energy gap between the two states is further reduced through the
pyramidalization of one of the CH, groups, leading to a conical inter-
section. These potential energy curves, whose modeling is often too
challenging for single-reference methods*’~*°, have been characterized
using multi-reference configuration interaction (MR-CI) methods*®
which we use for comparison.

We choose the same ground-state (planar) geometry as ref. *
(optimized using a small CAS and the aug-cc-pVDZ basis set; see
Supplementary Table I) and find the excitation energy between the
ground state and first-excited singlet state to be within a few mHa of
the MR-CI results. As we vary 7, while keeping all other geometric
parameters fixed, we find the energy curves to be well reproduced by
PauliNet, with an avoided crossing at 7=90° (panel a of Fig. 5; curves
symmetric about 7=90°). Single-reference methods, such as TDDFT
(see figure), often overestimate the energy of the ground state at
7=90° (barrier) and produce an unphysical cusp.

Next, we take the same twisted structure (7=90°) as ref. *° (opti-
mized using a small CAS and the aug-cc-pVDZ basis set; see Supple-
mentary Table I) and vary the pyramidalization angle ¢, while keeping
all other geometric parameters fixed. While there is a small dis-
crepancy between PauliNet and the MR-Cl results (panel b of Fig. 5), the

trend of the energy curves is well described, including the correct
minimum of the excited-state curve (-70°) and the conical intersection
(PauliNet: ¢-~100° MR-CI: ¢-96°). We note that many single-
reference methods are unable to even qualitatively describe the con-
ical intersection, instead predicting spurious features®.

Discussion

We have introduced an approach to compute highly accurate excited-
state solutions of the electronic Schrodinger equation for molecules
by using deep neural networks that are trained in an unsupervised
manner with variational Monte Carlo. We have employed the PauliNet
architecture” to approximate the ground- and excited-state wave-
functions, however other architectures such as FermiNet® or second
quantization approaches®” could also be employed, with suitable
modifications. As our approach to find excited states only constrains
the excited-state wavefunctions, the ability to compute highly accurate
and variational absolute ground-state energies is unchanged. In addi-
tion, we demonstrate for a number of small molecules containing up to
42 electrons, that excited PauliNet can reliably find the first excitation
energies with an accuracy that is on par with high-level electronic-
structure methods, whereas cheaper methods such as TDDFT are less
consistent in approximating these energies. The accuracy of the
excited-state wavefunctions is underlined by an accurate match of
oscillator strengths, which depend on the transition dipole moment, a
quantity that is more sensitive to the exact form of the wavefunction
than the energy. For benzene (42 electrons), PauliNet already requires
significantly less computational time than higher-order methods, and
this advantage will only improve for larger molecules. Formally, a
single PauliNet is an O(N*) method for N electrons, due to the com-
putational cost of the Hartree-Fock or CASSCF baseline, however, in
practice we empirically observe an O(N*) dependency for the system
sizes tested, as discussed above. In addition, for excited-state calcu-
lations n PauliNet replicas are used which gives rise to
O(nN3)+On2N?*), with the latter term arising from the pairwise
overlaps and having a much smaller prefactor than the former.

Notably, almost identical excited PauliNet architectures are used
across the systems shown in this paper—up to minor modifications
such as the budget of Slater determinants and the total number of
excited states requested, and a deeper network for benzene to adapt
for a potentially more complex wavefunction. Whereas a skilled
quantum chemist can usually tune and specialize an existing
electronic-structure method to give very high-accuracy results for a
given molecule, our aim is the exact opposite: to provide a method
that, by leveraging machine-learning tools, is as automated as possible
and will work over a wide range of Hamiltonians provided.

We have demonstrated that we can compute ground- and excited-
state potential energy surfaces with the example of ethylene where we
model an avoided crossing and conical intersection. Here, where
single-reference methods often fail, PauliNet performs well against
multi-reference CI results. By combining the present approach with
recent and ongoing extensions of PauliNet” and FermiNet™ that var-
iationally compute entire potential energy surfaces, both highly
accurate ground- and excited-state energy surfaces are now accessible
with deep VMC methods. Future work will investigate the application
of PauliNet to other interesting processes where molecular dynamics
interacts with excited states.

One of the limitations of the current approach is that it appears
difficult to reliably find all excited states up to a given desired number,
especially in cases where several excited states have similar energies.
This is a complex problem that depends on the Hartree-Fock/CASSCF
initialization, on the total number of states requested, on the learning
algorithm, and the expressiveness of the architecture and will be stu-
died in more detail elsewhere. However, the first excited state could be
reliably found for all molecules studied here, and apart from one
exception also the second excited state. This, in combination with the
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high numerical accuracy and the favorable computational cost, makes
deep VMC a promising method to compute both ground- and excited-
state properties for small- and medium-sized molecules with dozens or
even low hundreds of electrons.

Methods

PauliNet ansatz

At the heart of our approach is the PauliNet ansatz, introduced in ref. %’
and further refined in ref. *!, a multi-determinant Slater-Jastrow-back-
flow type trial wavefunction that is parametrized by highly expressive
deep neural networks:

P(r) =™ % ¢, det [(pg.ﬂpi(r)] det {(pé,ﬂpi(r)] ’ 3)

Po,ui(1) =X g0+ (D), )

where r=(ry,...,ry) is the 3N-dimensional real space of electron
coordinates. The structure of our ansatz ensures that the correct
physics is encoded: the wavefunction obeys exact asymptotic behavior
through the fixed electronic cusps y, and is antisymmetric with respect
to the exchange of like-spin electrons through the use of generalized
Slater determinants, guaranteeing the Pauli exclusion principle is
obeyed.

The expressiveness of PauliNet is contained in the Jastrow factor /g
and backflow fg, which introduce many-body correlation, and are both
represented through deep neural networks (denoted by trainable
parameters ). Jo and fy are constructed in ways that preserve the
antisymmetry of the fermionic wavefunction with respect to exchan-
ging like-spin electrons, as well as its cusp behavior. The Jastrow factor
is an exchange-symmetric function, and captures complex correlation
effects through augmenting the Slater-determinant baseline, but is
incapable of modifying the nodal surface of the determinant expan-
sion. Changes to the nodal surface are possible through the backflow,
which acts on the single-electron orbitals ¢, directly, transforming
them into permutation-equivariant many-electron orbitals @,. fy is
split into multiplicative (m) and additive (a) components (Eq. (4)), and
is designed to be equivariant under the exchange of like-spin electrons.

Ground-state optimization

Like traditional VMC methods, PauliNet is based on the variational
principle, which guarantees that the energy expectation value of a trial
wavefunction g is an upper bound to the true ground-state energy:

Eq= min(iH1p) < min(glHlge). ®)

For a given system, a standard quantum chemistry method
(Hartree-Fock (HF) for a single determinant; complete active space
self-consistent field (CASSCF) for multiple determinants) is performed,
with the solution supplemented by the analytically-known cusp
conditions, thus producing a reasonable baseline wavefunction. We
then optimize the PauliNet ansatz by minimizing the total electronic
energy (serving directly as the loss), following the standard VMC trick
of evaluating it as an expectation value of the local energy,
Ejoc() = Hip(r) /g(r), over the probability distribution |gg|*

LO)=E, iy, [Eroc[@ol(1)]- (6)

This means that, in practice, we alternate between sampling
electron positions generated using a Langevin algorithm with the
probability of the trial wavefunction serving as the target distribution,
and optimizing the trial wavefunction parameters using stochastic
gradient descent. For further details, see ref. /.

Computing excited states

We now introduce the central idea of this paper: a deep VMC method
to compute the ground and low-lying excited states of a given elec-
tronic system. While we employ PauliNet to represent the individual
wavefunctions, the method can also employ FermiNet or other real-
space wavefunction representations with suitable modifications.

In a similar spirit to the ground-state optimization process, we
first obtain a reasonable baseline for each state by performing a
minimal state-averaged CASSCF calculation. This optimizes the energy
average for all states in question and yields a single set of orbitals to
construct each multi-determinant wavefunction, which in turn
are supplemented by the analytically-known cusp conditions. We fix
the number of determinants in our ansatz by cutting off the CASSCF
expansion based on the absolute values of their determinant coeffi-
cients. The choice of the CASSCF baseline ensures that the PauliNet
ansatzes for the different excited states are close to orthogonal upon
initialization. In contrast to the ground-state calculation, the optimi-
zation of excited states requires a more nuanced choice of active
space. In principle, we must ensure that the solutions contain deter-
minants with orbitals of the necessary rotational symmetries (the Jas-
trow factor and backflow correction are rotationally-symmetric
modifications of the orbitals) and spin configurations (the choice of
the number of spin-up and spin-down electrons does impose restric-
tions on the states that may be attained by our ansatz). For most
systems studied in this paper, a generic choice of the active space was
sufficient (see Supplementary Table VIII) and we have not studied the
dependence on the CAS initialization in more depth. As shown in
previous studies the quality of the orbitals has only a minor effect on
the training and does not change the final energy. If, however, the
initialization is not accounted for and the baseline solutions provide a
qualitatively wrong spectrum of excited states our ansatzes may be
trapped in local minima and miss intermediate excited states (see
Fig. 2), even though we keep the Slater-determinant coefficients ¢, and
linear coefficients ¢, of the single-electron orbitals @,(r;) = X «CuPr(ry)
trainable.

Our objective is to calculate the lowest n eigenstates of a given
system, that is, find the set of orthogonal states that minimizes the
energy expectation value. We approach this challenge by introducing a
penalty term to the energy loss function (Eq. (6)) and optimizing the
joint loss for n PauliNet instances:

1
£(6)= Z Ei[Eoclta 0] ) (1——|5| - 1) ' )

i>) ij

energy minimization overlap penalty
where E; = By g2 and Sj; is the pairwise overlap between states i and
j. The functional form of the overlap penalty is chosen to diverge when
two states collapse and behave linearly when states are close to
orthogonal (see the next section for details). This allows states to
overlap during the optimization procedure while preventing their
collapse and eventually driving them to orthogonality when they have
settled in a local minimum of the energy. The hyperparameter a
weights the two loss terms and can be increased throughout the
training to strengthen the orthogonality condition when approaching
the final wavefunctions. For a sufficiently large a, the true minimum of
the loss function corresponds to the sum of the energies of the lowest-
lying excited states with these states having no overlap. Thus,
optimizing the penalized loss function (Eq. (7)) leads to an unbiased
convergence towards the lowest-lying excited states (see below). In
practice a small a is typically sufficient, making a robust choice
possible.

To stabilize the training and reduce the computational cost we
detach gradients in such a way that we only consider the overlap with
the lower-lying states respectively, that is, the ground state is subject
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Fig. 6 | Sketch of the loss function. This figure illustrates the behavior of our loss
function for a two-state system. The ground state is kept fixed and the second state
is considered to be a linear combination of the ground state and first excited state
(Eq. (9)). The scales are to be understood in arbitrary units, as they depend on the
choice of hyperparameters and the energies of the system under investigation.

to unconstrained energy minimization and the nth excited state
introduces n pairwise penalty terms. We compute the overlap of the
unnormalized states i and j as the geometric mean of the two Monte
Carlo estimates, obtained over distributions |ig,|* and [¢g,I*, respec-
tively:

_ ‘l’w(")} > {‘Po/(r)} Pg (1)
S = I I E; . 8
i Sg“( '{wa,,-m “\ g 7 |y ®

The sign of the overlap can be obtained from either of the two
estimators, which match in the limit of infinite sampling. If the overlap
is close to zero and the signs of the two estimates differ due to sta-
tistical noise of the sampling, we consider the states to be orthogonal.
Similar to the energy loss, the gradient (We employ gradient clipping
to stabilize the training.) of the pairwise overlap can be formulated
such that it depends on the first derivative of the log wavefunction with
respect to the parameters only (see below for details).

Finally, we note that different states may be modeled at different
levels of quality, which can lead to erroneous excitation energies. In
order to improve the error cancellation of our ansatzes we employ a
variance-matching technique. As the variance of the energy ¢® can be
considered a metric of how close a wavefunction is to a true eigenstate,
variance-matching procedures can be useful tools**>%, Here, we uti-
lize a simple scheme: for single-state quantities such as total energies,
we evaluate all wavefunctions at the end of training. For multi-state
quantities, such as excitation energies or transition dipole moments,
we match states of a similar variance. That is, if final ¢ ; has a lower
variance than final ¢y, we take g at an earlier point in training. This
simply involves computing ¢® of the training energies and applying an
exponential moving average at each iteration to monitor convergence
(see below for details). We find this procedure typically improves the
final results.

Loss function and overlap penalty

There are a number of choices of possible loss functions for the
optimization of excited states in quantum Monte Carlo?>****, In order
to assess the feasibility of excited-state optimization with deep neural
network ansatzes in variational Monte Carlo we conducted a range of
experiments with different types of optimization objectives. Our
empirical findings showed that employing a penalty method is the
conceptually most straightforward approach and gives stable results
when combining it with our implementation of PauliNet. Initially, we
started with an overlap penalty term similar to Pathak et al**. However,
we found that our optimization could still collapse even if we chose a
sufficiently large prefactor («) and the training could not recover. We
therefore switched to an alternative penalty term (Eq. (7)) which
diverges upon a collapse of the states. The effect of our penalty term
can be illustrated by considering the loss for a two-state system with
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Fig. 7 | Behavior of the loss function with batch size. The ground state and first
excited state of LiH are approximated. The convergence of the total energies (a),
excitation energy (b), and the pairwise overlap between the wavefunctions (c) are
shown. Dotted horizontal lines are excitation energies from highly accurate
references”®. While the optimization works well for the large batches that we
typically employ in our calculations (=2000), this becomes less reliable, at least for
the excited state, in the limit of smaller batch sizes. Note: Darker corresponds to a
larger batch size in each respective color.

the exact ground state |¢y) and a linear combination of the ground
and first excited state |¢;) (see Fig. 6):

§e) =V1—€ly) +Velo). ©®)
The overlap and the energy can be obtained as

Wolge) =VE, (PclHIpe)=(1 — €)F; +€Ey. 10)
In the vicinity of the orthogonal solution, the Taylor expansion of
the penalty term is

1

— —1=|S|+|S]>+|S]P + =
- I=|SI+|SI7+|S]" +...,at |S|=0,

an

that is, the overlap penalty behaves linearly to first order. This gives
rise to a penalty that is locally stable for any prefactor, lower bounded
by the §? penalty term, and diverges if states collapse. For a large
enough a parameter the global optimum of the total loss is at zero
overlap, that is, the optimization method is incentivized to find exactly
orthogonal states without mixing.

In practice, for the batch sizes used in our calculations, we have
not observed a bias due to the non-linear nature of the penalty when
applied to sampled expectation values of the overlap. However, it is
expected that this is no longer the case in the limit of small batches. In
order to elucidate how our loss function behaves in this regard, we
compute the two lowest states of LiH using a range of different batch
sizes (see Fig. 7). We find the optimization procedure to be robust for
the large batch sizes that we typically employ (=2000), with the exci-
tation energy within 1mHa of the exact, and the pairwise overlap
remaining small throughout training (panel c). For smaller batch sizes,
we observe a larger degree of statistical noise in the pairwise overlap,
which leads to a less reliable approximation for the excited state and
the corresponding excitation energy (panel b).
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Gradient of the loss function
In order to differentiate the loss function we explicitly formulate the
gradient. We consider the general case of a mixed observable:

1 3 -
0= / e (1) O, )], 1)
N; O‘Paj(r)
=i 13
N { G0 o)
where N, N; are the norms of the wavefunctions and E;=E, .2+ BY

the property of Hermitian matrices, O;= Oy, we derive an expression
that does not depend on the wavefunction norms:

_|Niy [O%e; 0] | N; - [O,(r)
0y \ijh’{tpm(r)}\JNihf[(/)oJ(r)}’

Ogy, (1) O, (1)] .. [0, (1)
=sen| E; J x | E. J E; il . (15)
g < [[ Pg (1) }) \J l{ g (1) 4 P ,(1)
This expression reduces to the pairwise overlaps (Eq. (8)) upon
setting O =1d. The derivative of this term can be expressed as

1 [ [ (00 (O , - [0, 0],
%% Oy{”“‘Kwo,,-(r) L‘{we,.(r)Da'""””"“)'}XLf{ww—(r)}”"z’”}'

(14)

16)

where (i &) is an additional term with the two indices interchanged.
By considering the Hamiltonian operator H and setting i=j we
recover the gradient of the energy loss””:

_op | (A%eum) . [Hgu(1) ,
6E,-,-—2E,K ) IEZ‘,,{II)M(I‘)})i)lnu[)g,,(r)q~ 17)

Variance matching

As far as relative energies are concerned most computational chem-
istry methods rely heavily on the cancellation of error. While quantum
Monte Carlo methods using neural network-based trial wavefunctions
provide highly accurate total energies, the flexibility of these ansatzes
is difficult to control which can lead to varying qualities of approx-
imations for different states. In order to account for potential imbal-
ances we utilize the variance of the wavefunctions as a measure of the
quality of the approximation (zero-variance principle) and employ a
variance-matching scheme. Variance-matching techniques as well as
variance extrapolation have typically been applied by optimizing a
family of ansatzes and comparing variances across the optimized
wavefunctions®. Instead of training multiple ansatzes we checkpoint
wavefunctions during the training and compute excitation energies by
rewinding the ground state to match the variance of the excited state
as depicted in Fig. 8. The mean and variance of each wavefunction are
computed over the batch dimension at each step in training and
smoothed with an exponential walking average. For the final estima-
tion of excitation energies, the respective wavefunctions are then
sampled exhaustively as in the usual evaluation process. While the
variance matching hardly impacts the excitation energies for small
systems, for larger and harder-to-optimize systems, such as benzene, it
becomes increasingly relevant.

Spin treatment
PauliNet encodes only the spatial part of the wavefunction and its like-
spin antisymmetry explicitly”?, while the spin part, which guarantees
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Fig. 8 | Sketch of the variance-matching procedure. The excitation energy of the
benzene calculation at step 4000 is obtained for illustration purposes. The variance
(b) of the excited state is higher than that of the ground state and is therefore
matched with the variance of the ground state at a previous iteration. The excita-
tion energy is computed by comparing the mean energies (a) at the respective
iterations. This acts to reduce the excitation energy and is found to improve the
results in all of our experiments.

the opposite-spin antisymmetry, is only implicit. Every spin-assigned
spatial ansatz such as PauliNet is always an eigenstate of S, with an
eigenvalue of M= %(NT — N,), but it may not be an eigenstate of S2.
The spatial part of eigenstates of S? is characterized by specific sets of
permutational symmetries involving opposite-spin electrons®. Pauli-
Net does not enforce these symmetries but instead attempts to learn
them through the variational principle because eigenstates of the
Hamiltonian are also eigenstates of 5. Therefore, we do not, in gen-
eral, control the spin of the eigenstates found in the optimization
procedure—they are simply found in the order of increasing energy,
independent of spin. The spin of a found eigenstate can be obtained in
principle by Monte Carlo sampling®. Whether a particular spin state is
found in practice may be influenced by the spin of the CASSCF baseline
wavefunction, which we, therefore, report in Supplementary Table VIII.
In special cases, we may wish to target a specific spin state (e.g., see the
section “Multi-reference application: conical intersections”), and for
that, we can take advantage of the orbital-assigned backflow of Pauli-
Net. Combined with the freezing of the determinant coefficients, this
ensures that PauliNet remains in the same spin state as the CASSCF
baseline wavefunction.

Data availability

The dataset generated in this study is openly available in Zenodo
(https://doi.org/10.5281/zenodo.7274855). Source data are provided
with this paper.

Code availability
The computer code used in this study is openly available in Zenodo
(https://doi.org/10.5281/zenodo.7347937).
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