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A B S T R A C T   

Increasing air temperatures and associated permafrost thaw in Arctic river watersheds, such as the Mackenzie 
River catchment, are directly affecting the aquatic environment. As a consequence, the quantity and the quality 
of dissolved organic carbon (DOC) that is transported via the Mackenzie River into the Arctic Ocean is expected 
to change. Particularly in these remote permafrost regions of the Arctic, monitoring of terrigenous organic 
carbon fluxes is insufficient and knowledge of distribution and fate of organic carbon when released to the 
coastal waters is remarkably lacking. Despite its poorly evaluated performance in Arctic coastal waters, Satellite 
Ocean Colour Remote Sensing (SOCRS) remains a powerful tool to complement monitoring of land-ocean DOC 
fluxes, detect their trends, and help in understanding their propagation in the Arctic Ocean. 

In this study, we use in situ and SOCRS data to show the strong seasonal dynamics of the Mackenzie River 
plume and the spatial distribution of associated terrigenous DOC on the Beaufort Sea Shelf for the first time. 
Using a dataset collected during an extensive field campaign in 2019, the performance of three commonly-used 
atmospheric correction (AC) algorithms and two available colored dissolved organic matter (CDOM) retrieval 
algorithms were evaluated using the Ocean and Land Colour Instrument (OLCI). Our results showed that in 
optically-complex Arctic coastal waters the Polymer AC algorithm performed the best. For the retrieval of CDOM, 
the gsmA algorithm (Mean Percentage Error (MPE) = 35.7%) showed slightly more consistent results compared 
to the ONNS algorithm (MPE = 37.9%). By merging our measurements with published datasets, the newly- 
established DOC-CDOM relationship for the Mackenzie-Beaufort Sea region allowed estimations of DOC con
centrations from SOCRS across the entire fluvial-marine transition zone with an MPE of 20.5%. Finally, we 
applied SOCRS with data from the Sentinel-3 OLCI sensor to illustrate the seasonal variation of DOC concen
trations in the surface waters of the Beaufort Sea on a large spatial scales and high frequency throughout the 
entire open water period. Highest DOC concentrations and largest lateral extent of the plume were observed in 
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spring right after the Mackenzie River ice break-up indicating that the freshet was the main driver of plume 
propagation and DOC distribution on the shelf. Satellite-derived images of surface water DOC concentration 
placed the in situ observations into a larger temporal and spatial context and revealed a strong seasonal vari
ability in transport pathways of DOC in the Mackenzie- Beaufort Sea region.   

1. Introduction 

Warming in the Arctic watersheds is expected to affect the biogeo
chemistry of riverine and coastal waters (Frey and McClelland, 2009; 
Holmes et al., 2012a). Particularly, the mobilization of organic carbon 
from thawing permafrost (Frey and Smith, 2005) accompanied by an 
increase in river discharge (McClelland et al., 2006; Peterson, 2002) 
might have a significant impact not only on local carbon cycling but also 
on the global air-sea fluxes of carbon dioxide (CO2) through physical and 
biogeochemical processes. Most of the terrestrial organic carbon is 
transported as dissolved organic carbon (DOC; mg L− 1) via rivers into 
the Arctic Ocean (McGuire et al., 2009). Arctic rivers are characterized 
by a strong seasonal variation of water discharge and, therefore, of DOC 
export to the Arctic Ocean (Holmes et al., 2012b; Juhls et al., 2020; Le 
Fouest et al., 2013; Raymond et al., 2007; Stedmon et al., 2011). This has 
essential implications regarding the distribution of DOC on Arctic 
shelves and complicates accurate monitoring. 

The Mackenzie River is the fourth largest riverine freshwater source 
to the Arctic Ocean (Holmes et al., 2012b), releasing 1.17–1.66 Tg DOC 
yr− 1 to the Beaufort Sea (Bertin et al., 2022). Almost half of its catch
ment area is underlain by continuous and discontinuous permafrost 
(Holmes et al., 2012b) and is thus especially vulnerable to warming in 
the Arctic (Frey and McClelland, 2009). Tank et al. (2016) reported a 
39.3% increase in DOC flux from the Mackenzie River over the last four 
decades and suggested permafrost thaw as an important driver for this 
increase. While the monitoring of organic matter, associated carbon 
fluxes and their characteristics in Arctic rivers is steadily improving 
(Cooper et al., 2008; Holmes et al., 2012b; Juhls et al., 2020; Raymond 
et al., 2007; Stedmon et al., 2011; Tank et al., 2016), not much attention 
has been paid to the fluvial-marine transition zone, mostly due to the 
challenge it poses in terms of accessibility. These transition zones 
include estuarine, coastal, and near-shore waters, and are suspected to 
be crucial for the fate of organic carbon in the Arctic Ocean and in the 
overall cycling of carbon in the Arctic (Granskog et al., 2009; Lasareva 
et al., 2019; Vetrov et al., 2004). Several studies suggest that fluvial 
fluxes are substantially altered (e.g. by degradation and flocculation) in 
these transition zones before they reach the open Arctic Ocean 
(Emmerton et al., 2008; Holmes et al., 2012b; McClelland et al., 2012). 
However, distribution, transport pathways, and removal rates of 
terrigenous organic matter on the shelf are poorly constrained. Although 
several studies provided first insights into dissolved organic matter 
(DOM) fluxes and optical characteristics of the Mackenzie River (Mann 
et al., 2016; Raymond et al., 2007; Tank et al., 2016) and the offshore 
Beaufort Sea (Antoine et al., 2013; Doxaran et al., 2012; Fichot et al., 
2013; Matsuoka et al., 2012, 2013), they focused on either the fluvial or 
marine system, leaving an understudied gap in the transition zone be
tween them. The low number of samples across a large region and 
limited seasonal coverage collected in these coastal transition zones 
(Emmerton et al., 2008; Forest et al., 2014; Osburn et al., 2009; Retamal 
et al., 2008; Shen et al., 2012; Vallières et al., 2008) could not resolve 
the spatial distribution and seasonal patterns of the Mackenzie River 
plume and its changing optical DOM characteristics. A better under
standing of the distribution of DOM including its quantity, quality, and 
related alteration processes is needed to understand the potential impact 
on future changes for the global carbon cycle. 

Satellite Ocean Colour Remote Sensing (SOCRS) is a tool that facil
itates the monitoring of surface water organic carbon concentration. The 
intensity of light absorption by colored dissolved organic matter 
(aCDOM(λ); m− 1) can be retrieved by satellite, for example empirically 

(Bélanger et al., 2008; Mannino et al., 2008), semi-analytically (Mat
suoka et al., 2013), or via neural networks (e.g. Doerffer and Schiller, 
2007; Hieronymi et al., 2017) and can be linked to DOC concentration 
through empirical relationships derived from in situ measurements 
(Massicotte et al., 2017; Matsuoka et al., 2013, 2017). The application of 
SOCRS to measure dissolved organic matter (DOM) concentrations and 
their distributions on large spatial scales in Arctic shelf waters is 
growing (Bertin et al., 2022; Fichot et al., 2013; Juhls et al., 2019; 
Matsuoka et al., 2016, 2017). SOCRS is a powerful tool, which provides 
synoptic views of water properties at high temporal resolution. On the 
other hand, SOCRS in Arctic coastal waters is challenged due to the 
presence of frequent cloud and ice cover, snow and sea-ice adjacency 
effects, low sun elevation and optically complex waters (Babin et al., 
2015). Moreover, the performance of SOCRS in near-shore Arctic coastal 
waters is still poorly evaluated, mainly due to a lack of in situ 
observations. 

To improve the use of SOCRS in Arctic shelf waters, Matsuoka et al. 
(2013) designed a new algorithm for the retrieval of aCDOM(443) using a 
semi-analytical approach, specifically adapted for Arctic waters. While 
the algorithm showed a reasonable accuracy (12% Mean Percentage 
Error(MPE)) in offshore waters of the Arctic Ocean (Matsuoka et al., 
2017), the performance in optically complex near-shore waters has yet 
to be comprehensively evaluated. Recently, another CDOM retrieval 
algorithm, the OLCI Neural Network Swarm (ONNS), was designed by 
Hieronymi et al. (2017) for a broad range of water constituent concen
trations. ONNS consists of several algorithms specialized for different 
optical water types including extremely highly absorbing and scattering 
near-shore waters. The evaluation of the ONNS algorithm was per
formed on the Laptev Sea shelf and included coastal waters near the 
Lena River mouth (Juhls et al., 2019). The ONNS algorithm showed 
reasonable agreement to in situ data (r2 = 0.72) for the SOCRS retrieval 
of CDOM in these waters, which are comparable to the Beaufort Sea 
coastal waters. 

Besides testing the accuracy of CDOM retrievals, the performance of 
the atmospheric correction algorithms in Arctic near-shore coastal wa
ters also requires thorough evaluation, hence the requirement for in situ 
radiometric measurements. While recent studies by Mograne et al. 
(2019) and Renosh et al. (2020) investigated the performance of several 
atmospheric correction algorithms for Sentinel 3 OLCI in temperate 
waters, Arctic coastal waters remain largely understudied. 

Another critical component needed to monitor DOC from space is a 
robust relationship between DOC concentration and CDOM absorption 
that is suited for the region of interest. Reported relationships from 
varying Arctic regions (Juhls et al., 2019; Mann et al., 2016; Matsuoka 
et al., 2017; Pugach et al., 2018) indicated that substantial regional and 
seasonal variability of DOM characteristics can affect these relation
ships. Matsuoka et al. (2012) established a relationship for the Beaufort 
Sea region which was, however, limited in its validity to summer months 
and mostly offshore waters. In order to provide accurate estimates of 
DOC concentrations across the fluvial-marine transition zone using 
SOCRS, CDOM-DOC relationships require inclusion of a wider range of 
water types across domains. 

This study aims at improving the understanding of the seasonal and 
spatial variability of DOC in the fluvial-marine transition zone in the 
Mackenzie River – Beaufort Sea region using in situ and SOCRS data. We 
first evaluate the performance of multiple SOCRS algorithms and 
establish a new DOC-CDOM relationship to monitor DOC concentrations 
from space. Second, we employ SOCRS to display the seasonal vari
ability of DOC distribution on the Beaufort Sea Shelf on a larger spatial 
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Fig. 1. (A) Sampling locations (red points) for each of the four legs. (B) Northern part of the Mackenzie River catchment and underlying permafrost zones (from Obu 
et al., 2019). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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scales and higher frequency. To achieve these goals, we use a unique in 
situ dataset that was collected during an extensive field campaign in the 
Mackenzie Delta region from April to September 2019. 

2. Methods 

2.1. Study area, sampling periods, and strategies 

We carried out an extensive field campaign in the Mackenzie Delta 
region that consisted of four legs between April and September 2019 to 
capture the seasonal variability of DOM distribution and characteristics. 
The period covered late winter before ice break-up to late fall before ice 
freeze-up. The repeated sampling focused on surface waters in the two 
main outflow regions of the Mackenzie River: Shallow Bay and Mack
enzie Bay in the west and Kugmallit Bay in the east as well as on the river 
channels across the delta. Many sampling locations were revisited at 
least once for each of the four legs (Fig. 1). 

Sampling during different seasons is extremely challenging in this 
region due to uncertain ice cover and broken ice fields during and after 
ice break-up in addition to very shallow water (<5 m). To tackle these 
challenges, various sampling platforms were used (Fig. 2). The logistical 
efforts that were required for such a multi-platform operation are a part 
of the value and uniqueness of the dataset presented in this study. 

During the first leg (April 20–28, 2019), the Mackenzie River and the 
coastal Beaufort Sea had a consolidated ice cover. Sampling locations 
were visited by a helicopter (Shallow and Mackenzie Bay) and snow
mobiles (Kugmallit Bay). Water samples and CTD profiles were taken 
from holes drilled through the ice. During leg 2 (June 15–29, 2019), 
remnant ice fields were expected in Mackenzie and Shallow Bay in the 
early period of the open-water season, rendering the use of boats 
dangerous. Thus, water samples and CTD profiles were taken from a 
hovering helicopter, which had the advantage of allowing greater spatial 
coverage in a short period of time. In Kugmallit Bay, small motorboats 
(~6 m in length) were used and additional radiometric profile mea
surements, using a Compact-Optical Profiling System (C-OPS), were 
added. Similar boats were used during leg 3 (July 25 – August 2, 2019) 
and leg 4 (August 28 – September 6, 2019) for both Mackenzie and 
Shallow Bay. The sampling stations were located near the river mouth to 
capture a salinity gradient from 0 (river water) to >20 (marine-domi
nated water). In total, sampling was carried out at 143 stations 
throughout the four legs, of which 13 stations were revisited at each leg. 

For a detailed overview of the complete dataset resulting from the 
four campaigns we refer to Lizotte et al. (2022). 

2.2. In situ hydrological, biogeochemical and radiometric data 

Hydrological data of the water column were acquired with a 
conductivity-temperature-depth probe (CTD RBR Maestro during leg 1 
and a CTD RBR Concerto during legs 2 to 4). During leg 1, the CTD was 
manually lowered in the water through an ice hole with a velocity of 

<0.3 m s− 1 and an acquisition frequency of 6 Hz, yielding a vertical 
resolution of a few centimetres. During legs 2 to 4, the CTD was installed 
on a Seabird Scientific optical package frame, which was deployed with 
a velocity of 0.3 m s− 1 and an acquisition frequency of 8 Hz. Only data 
from downcasts were used and poor-quality profiles, that had been 
affected by ice-covered sensors, were removed. Atmospheric pressure 
observed at weather stations near the sampling locations (Aklavik, 
Inuvik, Shingle Point and Tuktoyaktuk) was used to tare the CTD pres
sure sensors. CTD profiles were smoothed and binned to a regular 0.01 m 
depth grid. 

For DOC concentration, water samples were filtered through 0.7 μm 
GF/F filter, and acidified with 25 μL Suprapur HCl (10 M) on the same 
day of sampling. DOC samples were stored at 4 ◦C in the dark during 
transport until further analysis. Concentration of DOC was measured 
using high-temperature catalytic oxidation (TOC-VCPH, Shimadzu) at 
the Alfred-Wegener-Institute (AWI) Potsdam, Germany. Blanks (Milli-Q 
water) and certified reference standards (Battle-02, Mauri-09 or Super- 
05 from the National Laboratory for Environmental Testing, Canada) 
were measured for quality control. 

Measurement of CDOM absorption was conducted from a water 
sample within 12 h of collection using an UltraPath liquid waveguide 
system (World Precision Instruments, Inc.) over the wavelengths 
ranging from 200 to 722 nm (see also Matsuoka et al. (2012) for details). 
Before measurement, the sample was filtered using a 0.2 μm GHP 
Acrodisc. To minimize temperature effects, both the sample and the 
reference water were kept at 4 ◦C for at least 30 min prior to analysis. We 
followed the International Ocean Colour Coordinating Group (IOCCG) 
Ocean Optics and Biogeochemistry CDOM protocols (Mannino et al., 
2019) with a few modifications: 1) reference water with salinity ±2 
relative to the sample was prepared on site a few hours before sample 
analysis to minimize the effect of difference in refractive index between 
sample and reference; 2) aCDOM(λ) was measured in flow mode, meaning 
that a measurement was made while water was running using a peri
staltic pump (Lefering et al., 2017). While the use of a long optical cell 
provides a better signal, particularly within the visible spectral domain 
essential to SOCRS, it necessarily suffers from light saturation in the UV 
domain (Belz et al., 1999). To overcome this issue, an optimal cell length 
(i.e. 10 cm or 200 cm) was selected following an empirical relationship 
between optical density observed at 350 and 443 nm based on Matsuoka 
et al. (2012). For each sample, triplicate measurements were conducted. 
Each measurement was visually inspected for quality control (light 
saturation and microbubble effects). Suspicious spectra were discarded 
from our analysis. A baseline correction was applied when aCDOM(λ) 
averaged between 718 and 722 nm fell within the noise levels (2 times 
the mean of reference in the same wavelengths range). CDOM absorp
tion measurements were fitted using the following equation: 

aCDOM(λ) = aCDOM(λ0)*e− S(λ− λ0), (1)  

where S is the spectral slope of aCDOM(λ) between 350 and 500 nm 

Fig. 2. Sampling platforms used during the expedition. (A) Under-ice sampling in Shallow Bay in April 2019 (credit: Laurent Oziel). (B) In-flight helicopter sampling 
in Shallow Bay in June 2019 (credit: Bennet Juhls). (C) Typical small boat used for sampling in Mackenzie, Shallow, and Kugmallit Bays during the open water period 
(credit: Martine Lizotte). 
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(Babin et al., 2003b; Matsuoka et al., 2012). Uncertainties for aCDOM(λ) 
were derived by calculating the standard deviation of the triplicates 
relative to the mean (of the triplicates) (Neeley et al., 2018). 

2.3. Radiometric C-OPS data 

Vertical profiles of downwelling irradiance (Ed(z, λ)) and upwelling 
radiance (Lu(z, λ)) were measured during legs 2, 3, and 4 using a C-OPS 
secured to an ICE-Pro frame from Biospherical Instruments, Inc. (for a 
detailed description see Morrow et al., 2010). During leg 2, C-OPS 
measurements were conducted only in Kugmallit Bay. There were no 
under-ice radiometric measurements using the C-OPS during leg 1. At all 
stations, profiling was performed until Lu(z, λ) reached near zero and 
was below the detection limit of the radiometer. Moreover, at a number 
of locations, no C-OPS measurements were possible due to rough sea 
conditions. This resulted in a significantly lower number of locations 
with radiometric measurements compared to water samples. 

In addition to profiling, above-surface downwelling incident irradi
ance (Es(0+, λ)) was measured at about two meters above sea level and 
was used to correct in-water Ed(z, λ) and Lu(z, λ) for changes in the 
incident light field during Lu(z, λ) profiling (Zibordi et al., 2019). All 
radiometric quantities were measured at 19 wavelengths spanning from 
380 to 875 nm. In-water profiles were obtained from the boat using a 3 
m long pole, deployed towards the sun to avoid shading from the boat. 
The data that were acquired with a tilt of >5◦ were discarded (Hooker 
et al., 2013). 

Due to the high absorption and scattering of the sampled waters and 
considering the relatively large dimensions of the ICE-Pro (Appendix 
Fig. 2), self-shading correction was required. Absorption coefficients 
observed in the present study were mostly outside the limits examined 
by Gordon and Ding (1992), suggesting that the application of the self- 
shading correction could be questionable. To overcome this issue, we 
performed Monte-Carlo simulations using the SimulO software (Ley
marie et al., 2010) to determine the self-shading correction factor on 
Lu(z, λ) at null depth (Gerbi et al., 2016; Leymarie et al., 2018). The 
exact dimensions of the ICE-Pro were simulated and virtually placed at a 
depth of 0.5 m. A wide range of inherent optical properties (IOPs) was 
considered to cover the conditions encountered in the field (Appendix 
Fig. 3). The simulations provide a robust relationship between the 
computed self-shading and the quantity x(λ) = a(λ) + bb(λ) for solar 
zenith angles >45◦ (Appendix Fig. 3), where a is the total absorption 
coefficient (i.e., the contributions of pure water, CDOM, algal and non- 
algal particles) and bb is the total backscattering coefficient (i.e., the 
contributions of water molecules and particles). The shade-corrected 
upwelling radiance (Lu

corrected(λ)) can be expressed as a function of the 
measured radiance (Lu

measured(λ)) as: 

Lcorrected
u (λ) =

Lmeasured
u (λ)

(1 − ε(λ) ), (2)  

ε(λ) = 1 − e− 0.14*(a(λ)+bb(λ) ), (3) 

Where a(λ) is the sum of aCDOM(λ) and aP(λ). bb(λ), which was not 
measured in the field, was calculated using an empirical relationship 
from the Malina-cruise dataset (Doxaran et al., 2012; Massicotte et al., 
2020) (see Appendix). The self-shading factor is individually determined 
for each profile to obtain Lu

corrected(λ). 
Subsurface downwelling irradiance and upwelling radiance Ed(0− , λ) 

and Lu(0− , λ) were estimated with an iterative linear fitting of the log- 
transformed Ed(z, λ) and Lu(z, λ) vs depth z. Fitting was applied to 
successively greater depths until the correlation coefficient (r2) excee
ded 0.99 or until the layer thickness reached 2.5 m (Bélanger et al., 
2017). Remote Sensing Reflectance (Rrs(λ)) was calculated following 
Mobley (1999) with: 

Rrs(λ) =
0.54*Lu(0− , λ)

Es(0+, λ)
, (4) 

To calculate the Rrs(λ) we used the R “Cops” package (https://github. 
com/belasi01/Cops). 

2.4. Remote sensing data 

Data from the Ocean and Land Colour Instrument (OLCI) aboard the 
Sentinel-3A and 3B satellites were acquired at full resolution (FR) Level 
1b (L1b) from https://coda.eumetsat.int (product version reference: 
S3IPF.PDS.004.1). We downloaded all available scenes acquired during 
the open water season from 1 May 2019 and 31 Oct. 2019. In this study, 
we tested three algorithms for atmospheric corrections: (1) The baseline 
atmospheric correction BAC/BIAC which is used in the Eumetsat L2 FR 
water product (WFR; processing baselines v.2.43 (OLCI-A) and 1.15 
(OLCI-B)), based on the black pixel assumption including bright pixel 
correction for high-scattering waters (Moore et al., 2010), downloaded 
as L2 product (further referred to as WFR) from https://coda.eumetsat. 
int; (2) The spectral optimization algorithm Polymer v.4.13 (Steinmetz 
et al., 2011), which models the atmospheric contribution through a 
polynomial function and resolves both the atmospheric and marine 
signal simultaneously, processed in ython using the L1b FR (OL_1_EFR) 
data; and (3) the neural network approach C2RCC v.2.1, processed via 
GPT in SNAP v.7.0.3 using L1b FR (OL_1_EFR). System vicarious cali
bration (SVC) gains were applied by default for WFR and Polymer but 
not C2RCC. While bidirectional correction is intrinsically included in the 
Polymer and C2RCC atmospheric correction, this was not the case for 
the BAC/BIAC. Atmospherically corrected OLCI Remote Sensing 
Reflectance (Rrs(λ)) was then used as an input to two in-water retrieval 
algorithms. (1) The semi-analytical in-water algorithm gsmA (Matsuoka 
et al., 2013), which was specifically adapted from the GSM algorithm 
(Maritorena et al., 2002) for the retrieval of aCDOM(λ) in Arctic waters 
and adjusted from Moderate-resolution Imaging Spectroradiometer 
(MODIS) to OLCI bands for this study; and (2) the ONNS processor 
(Hieronymi, 2019; Hieronymi et al., 2017), which consists of several 
blended neural networks that are specialized for 13 different optical 
water classes including optically complex waters. Note that while 
negative reflectances were kept for gsmA they were set to 0.0001 sr− 1 

for the ONNS processor. 
For match-up comparisons between in situ and satellite data, we 

followed the criteria proposed by Bailey and Werdell (2006), with some 
modifications as follows: 1) a three-by-three pixel matrix centered 
around each sampling location was extracted from all satellite images 
acquired within ± six hours of the in situ sampling time, 2) all pixels 
flagged for quality control by the individual atmospheric corrections 
were removed (see Appendix Table 1 for masks that were used) match- 
ups with less than five valid of a total of nine possible pixels were dis
carded, 4) for stations that were covered by more than one satellite 
acquisition within the six hours surrounding the sampling time, all 
available pixels were included in the analysis, relaxing the recom
mended criterion of ± one hour (or ideally shorter for coastal waters), 5) 
we calculated a median Rrs(λ) of the extracted pixels for each station. 

2.5. Match-up statistics 

To evaluate the performance of the match-ups, we used the slope and 
the coefficient of determination (r2) of the type-II linear regression be
tween in situ and remotely-sensed Rrs(λ). In addition, the MPE and the 
root-mean-square error (RMSE) (as in e.g. Bailey and Werdell, 2006; 
Matsuoka et al., 2017, 2021) were calculated as: 

MPE (%) = median
(

100*
⃒
⃒
⃒
⃒
Xsat − Xin situ

Xin situ

⃒
⃒
⃒
⃒

)

, (5)  

RMSE
(
sr− 1) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

n=1[Xsat − Xin situ]
2

N

√

, (6)  
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BIAS (%) =
1
N

*
∑N

n=1

|Xsat − Xin situ|

Xin situ
*100, (7)  

Chi squaremean (%)=
1
N

*
∑N

n=1

(
∑11

j=1

((
Ksatj (i) − Kin situj (i)

)
2

Kin situj (i)

))

;Kj=
X
(
λj
)

X(λ560nm)
,

(8)  

where Xsat and Xin situ are the satellite-derived and in situ measured 
aCDOM(443), respectively. i is the index of the Rrs wavelength (λ) and j is 
the index of the wavelength with the exception of the 560 band. K is the 
at 560 nm normalized X. For the comparison between in situ Rrs(λ) and 
satellite Rrs(λ), we used identical wavelengths, with the following two 
exceptions: 1) in situ 395 nm vs. satellite 400 nm and 2) in situ 765 nm 
vs. satellite 754 nm. Furthermore, stations that were close to the coast 
(e.g. river locations, Fig. 1) and might be influenced by adjacency effects 
were not included in the match-up comparison. 

3. Results and discussion 

3.1. Hydrographic seasonality of coastal waters in the Mackenzie Delta 
region 

The Mackenzie River, like all Arctic rivers, is characterized by a nival 
hydrographic regime (Yang et al., 2015): low water discharge in winter 
is followed by a very high discharge in spring during a short freshet. In 
summer, the discharge is variable and mostly depends on the intensity of 
rain events within the catchment. The extent of river plume propagation 
to the Beaufort Sea strongly depends on the volume of exported water, 
but also on other factors including wind and ocean currents (Ehn et al., 
2019; Macdonald et al., 1995; Mulligan and Perrie, 2019). 

During the four legs, we collected hydrographic data for the com
plete water column. Fig. 3 shows the in situ surface salinity distribution 
in the coastal Mackenzie Delta region during the four expedition legs in 
2019. The variability in stratification of the coastal waters is shown in 
Fig. 4. In April (leg 1), when the coastal waters of the Beaufort Sea were 
still ice-covered, solely fresh river water was found below the ice, with 
low salinity ranging between 0.11 and 0.17. Even at the distant offshore 
stations (>50 km from the river mouth), no elevated salinity from ma
rine waters was observed (Fig. 3A). No significant vertical stratification 
was observed within the fresh waters (Figs. 4A & 4E). 

In June (leg 2), the fresh river water plume displayed the greatest 
extent of the three legs during the open water period (Fig. 3B). Whereas 
in the western bay (Mackenzie and Shallow Bays), the river plume 
propagated over large areas with low salinities (<5) observed >100 km 
away from the river mouth, the plume extent in the eastern bay (Kug
mallit Bay) was limited to only a few tens of kilometres from the river 
mouth. The larger plume in the Mackenzie Bay (west) compared to the 
Kugmallit Bay (east) is likely a direct result of a larger freshwater 
reception in the Mackenzie Bay. 

In late July/early August (leg 3), the river plume extent was sub
stantially smaller compared to that of leg 2. Higher salinity waters (>20) 
were found in the eastern sector of Mackenzie Bay and in the northern 
sector of Kugmallit Bay. At the end of August/ beginning of September 
(leg 4), the plume extent with low salinity water once again increased 
and high salinity waters were found only in the most offshore stations. 

3.2. Seasonal variability of dissolved organic matter 

The carbon content of the dissolved organic matter was measured as 
DOC. The colored fraction of organic matter was measured as the light 

Fig. 3. Spatial distribution of the in situ surface salinity in the coastal waters for leg 1 (A), leg 2 (B), leg 3 (C) and leg 4 (D).  
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absorption by CDOM (aCDOM(λ)). Fig. 5 shows the observed ranges of 
CDOM and DOC for stations that were revisited during all four expedi
tion legs (n = 13). Concentrations of DOC during leg 1 (under ice sam
ples) showed the highest range from 3.3 to 8.8 mg L− 1 with a mean value 
of 5.7 mg L− 1. The mean DOC concentration for leg 2 (5.8 mg L− 1) was 
the highest among all legs, while the mean DOC concentration for leg 3 
was the lowest (4.1 mg L− 1). During leg 1, aCDOM(443) was lowest 
compared to all other legs and, unlike DOC concentrations, showed a 
very narrow range (from 0.39 to 0.73 m− 1). Seasonal patterns of DOC 
and aCDOM(443) were, however, similar with lowest aCDOM(443) during 
leg 1 (mean of 0.55 m− 1) and the highest during leg 2 (mean of 1.41 
m− 1). DOC and aCDOM(443) in the study area are mostly dependent on 
the discharge and resulting input of organic matter by the Mackenzie 
River. The lower discharge during leg 3 compared to leg 4 (Fig. 13) 
explains the lower DOC and aCDOM(443) during leg 3 compared to leg 4. 

Observed DOC concentrations and aCDOM(443) showed a strong 
relationship with salinity for all expedition legs during the open water 
period (Fig. 6) when excluding stations with salinity <0.5. The mixing 
line for both DOC and aCDOM(443), varied slightly between the expedi
tion legs in slope and intercepts (represented by grey areas in Fig. 6). 
Zero salinity (fresh water) intercept of the mixing lines (red symbols in 
Fig. 6), including the variability between the legs, are within or close to 
the observed river concentrations. The highest DOC and aCDOM(443) 
along the salinity gradient were observed during leg 2, whereas the 
lowest DOC were observed during leg 3 and lowest aCDOM(443) during 
leg 4. 

The strong relationship of DOC and aCDOM(443) to salinity is 
consistent with earlier studies that reported conservative mixing 
behaviour of DOM in river-influenced coastal Beaufort Sea (Emmerton 
et al., 2008; Matsuoka et al., 2012; Osburn et al., 2009) and clearly 

Fig. 4. Depth profiles of salinity (A-D) and temperature (E-H) for the four expedition legs. For leg 1 (A & E) the inset figures show lower value ranges.  

Fig. 5. Main statistics for surface DOC concentration (A), and surface CDOM absorption at 443 nm (B) associated with the stations that were revisited during all four 
expedition legs (n = 13). 
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identifies terrigenous material as the dominant source of DOM. Larger 
amounts of autochthonously produced DOM from primary production or 
additional release of DOC by coastal erosion could explain positive de
viations from the hypothetical mixing line (regression line in Fig. 6). In 
contrast, degradation and flocculation processes could explain de
viations below the hypothetical mixing line. The main driver for the 
seasonal variability of the mixing line slope is likely the seasonal vari
ation of DOC and aCDOM(443) in the Mackenzie River, which defines the 
initial concentration at zero salinity which then propagates to the 
coastal waters and the Beaufort Sea shelf. Thus, the seasonal variation of 
the river water DOC and aCDOM(443) can also be a reason for strong 
deviations from the mixing line along the salinity gradient when water 
sampled is influenced by different initial concentrations. This likely also 
causes the generally weak relationship of DOC and aCDOM(443) to 
salinity in the salinity range between 0 and 5. 

Only for leg 4 is the mixing line lower compared to leg 3 (not shown), 
despite river DOC and aCDOM(443) being higher during leg 4. The found 
relationship between DOC and salinity (combined legs 2 to 4, red line in 
Fig. 6A) agrees well with the relationships reported in Osburn et al. 
(2009) and Matsuoka et al. (2012). The relationship between 
aCDOM(443) and salinity (combined legs 2 to 4, red line in Fig. 6B) agrees 
well with Osburn et al. (2009) whereas the relationship reported by 
Matsuoka et al. (2012) is substantially different. 

3.3. DOC-CDOM relationship 

Concentrations of DOC in river-influenced water can be estimated 
from aCDOM(λ) as supported by multiple studies reporting a strong 
relationship between DOC and CDOM on Arctic shelf seas (Gonçalves- 
Araujo et al., 2015; Juhls et al., 2019; Matsuoka et al., 2012, 2017; 
Pugach et al., 2018). For an accurate quantification of DOC from CDOM 
in the fluvial-marine transition zone, a robust relationship must be 
developed that addresses the knowledge gap associated with nearshore 
waters and changing seasons. Variations of the DOC-CDOM relationship 
can result from geographical and seasonal differences in sampling, as 
well as the range of concentration of DOM and CDOM used to infer the 
relationships. The identification and characterization of this variability 
is a prerequisite to define the limits of validity of these relationships. In 
order to evaluate limitations of this relationship, we compared the 
relationship of this study to previously reported DOC-CDOM relation
ships from other Arctic shelves. 

Fig. 7 shows the relationship between DOC and aCDOM(443) for all 
the samples from this study. We found a strong non-linear relationship 

(r2 = 0.8) considering only legs 2 to 4 during the ice-free period. The 
relationship of samples from leg 1 differed substantially. Leg 1 showed 
high variability in DOC but a low variability in aCDOM(443) (light grey 
squares in Fig. 7). This result indicates that the relationship, which was 
developed from samples during the open water period, cannot be used to 
estimate DOC from CDOM during the ice-covered period and also may 
not be representative of the shoulder seasons in spring and fall. The 
seasonal differences of the relationship can be caused by changes in 
source, composition and degradational state of the DOM (e.g. Juhls 
et al., 2020). 

Generally, the DOC-CDOM relationship for the open water period 
(combined legs 2–4) is similar to previously reported relationships for 

Fig. 6. Relationships between DOC and salinity (A) and aCDOM(443) and salinity (B) for all samples from four expedition legs. The red lines show the regressions for 
the samples from legs 2, 3, and 4 (samples with salinity <0.5 were excluded). Red symbols show the mean DOC (A) and mean aCDOM(443) from each leg (B) for 
samples with salinities <0.5 (river water). The grey filled areas show the range of relationships, when calculated separately for each leg. Reported regression lines 
from Osburn et al. (2009) for the coastal Beaufort Sea (*O09) and from Matsuoka et al. (2012) for the offshore Beaufort Sea (*M12) are given for comparison. Note 
that for leg 1 no salinities >0.5 were observed and thus no regression line between salinity and DOC or aCDOM(443) was considered. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Relationships between DOC and aCDOM(443) with their measurement 
uncertainties. The red solid line shows the regression for samples from this 
study (only legs 2, 3 and 4) (DOC = 4.61 x aCDOM(443)0.546). The dashed black 
lines shows the relationships reported by Osburn et al. (2009) for the coastal 
Beaufort Sea (*O09), Matsuoka et al. (2012) for the offshore Beaufort Sea 
(*M12), Matsuoka et al. (2017) for the pan-Arctic (*M17), and Juhls et al. 
(2019) for the Laptev Sea (*J19). (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.) 
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the Lena River – Laptev Sea transitional zone (Juhls et al., 2019), 
offshore Beaufort Sea (Matsuoka et al., 2012), and pan-Arctic (Matsuoka 
et al., 2017). The relationships from Matsuoka et al. (2012, 2017) differ 
substantially from the relationship of the combined legs 2, 3 and 4 of this 
study in high concentration DOC ranges (>5 mg L− 1), which is likely 
caused by a lack of samples from the river mouth waters with high DOC 
concentration that were used by Matsuoka et al. (2012). This is 
confirmed by a close resemblance between the DOC–CDOM relationship 
from this study and the DOC–CDOM relationship from Juhls et al. 
(2019), which was developed using a large number of samples from 
river, coastal, and offshore waters in the Laptev Sea region. The 
resemblance between relationships from the Beaufort Sea region and 
those from the Laptev Sea region may reflects a regional similarity of the 
DOM lability and susceptibility to microbial and photochemical re
actions and flocculation. The comparison of reported relationships with 
the cross-domain coverage of the relationship from this study endorsed 
the use of non-linear models for an optimal fit. Seasonal differences in 
DOM characteristics that result in changing relationships between DOC 
and CDOM further complicate the development of a robust model. 
Nevertheless, the non-linear model established in this study captures 
most of the DOC-CDOM relationship across ice-free seasons. 

3.4. Evaluation of Satellite Ocean Colour Remote Sensing data 

To evaluate the performance of SOCRS in the coastal waters of the 
Mackenzie Delta – Beaufort Sea region, we first tested three available 
atmospheric corrections (WFR, C2RCC v.2.1, and Polymer 4.13) by 
comparing in situ Rrs(λ) versus satellite Rrs(λ). We also tested two CDOM 
retrieval algorithms (ONNS and gsmA) using the Rrs(λ) retrieved from 
each of the three tested AC’s. Given that the surface of the water was 
covered by ice during leg 1, this analysis was only considered for legs 2, 
3 and 4. 

3.4.1. Atmospheric correction 
Fig. 8 shows the match-up comparisons between in situ Rrs(λ) and the 

satellite-derived Rrs(λ). While all three AC’s show only moderate per
formances regarding slope and coefficient of determination (r2), overall, 
the Polymer algorithm provided the best performance with a mean bias 
of 9.25% (mean of all bands with exception of the 709 nm), a root mean 
square error (RMSE) of 0.003 sr− 1 (mean of all bands with exception of 
the 709 nm, and the lowest Chi squared mean of 4.5% (mean of all bands 
with exception of 709 nm) compared to the other two AC’s (Fig. 8, 
Table 1). The low slopes (mean of 0.468) indicate that Polymer does not 
capture the dynamic range of the in situ Rrs(λ), leading to an over
estimation at low values and underestimation at high values, especially 
at shorter wavelengths (Appendix Table 2). 

We excluded the 709 nm band from the reported mean statistics since 

it showed exceptionally worse performance compared to all other bands, 
which might result of poor representativeness of internal model or 
training dataset to the waters of this study or of the poor water vapor 
correction at this band. It is noted that the Polymer algorithm retrieved 
Rrs(λ) at more stations (n = 60) than the other AC’s (WFR n = 46, C2RCC 
n = 58). The lower number of retrieved Rrs(λ) for WFR and C2RCC was 
caused by flagging values that were outside of validity bounds for these 
AC algorithms. However, it is noted that the use of flags is subjective, 
might be related to algorithm maturity and raised flags do not neces
sarily mean that the retrieved information is out of scope for an suc
cessive algorithm application. Red bands, which have the highest Rrs(λ) 
range, showed the best performance for all tested AC’s. 

Overall, the match-up comparison indicated rather poor perfor
mances of all three AC’s in the near-shore waters of the Mackenzie Delta 
- Beaufort Sea region. Additionally, they showed significantly different 
Rrs(λ) retrieval results on same pixels, which cannot be solely explained 
by varying implementation of the bidirectional correction. However, the 
shape of the Rrs(λ) spectra were relatively well retrieved throughout all 
AC algorithms and similar to the Rrs(λ) spectra from in situ measure
ments (Fig. 9). Note, that this evaluation is based on the measurements 
during the ice-free period. 

The evaluation of AC’s in extremely optically complex waters as in 
this study is difficult due to at least two factors. First, an evaluation 
requires a high accuracy of in situ measured Rrs(λ) (Bélanger et al., 
2017), which is challenging to achieve in hydrographically and optically 
complex waters. This is because subsurface radiometric measurements 
for the retrieval of Rrs(λ) require extrapolation of Lu(z, λ) to just below 
the sea surface (z = 0− ). The quality of the Rrs(λ) estimates at the 0− m 
depth strongly depends on whether the layer that was used for the 
extrapolation is representative of the layer from which water-leaving 
radiance is sensed by a satellite ocean colour sensor. If multiple water 
layers with different optical properties are present, it is necessary to 
restrict the extrapolation to the uppermost water layer. At some loca
tions, only a very thin layer (<50 cm) of turbid river waters overlaid 
transparent saline waters (Fig. 4) with distinctly different optical prop
erties. This also reduced the total thickness of the layer that can be used 

Fig. 8. Match-up of in situ and satellite Rrs(λ) after using the AC’s WFR (A), C2RCC (B) and Polymer (C). Only the stations where in situ measurements could be 
paired with satellite acquisitions (± 6 h of sampling period) were used. The error bars along the y axis show the standard variation within pixels used for the match- 
up. The error bar along the x axis shows the range of Rrs(λ) for uncorrected and our applied shadow correction. 

Table 1 
Performance of different AC’s as a mean of all wavelengths: match-ups between 
in situ and satellite Rrs(λ). Best performing AC for each statistical parameter are 
highlighted in grey.  

AC N Slope r2 MPE 
(%) 

RMSE 
(sr− 1) 

Bias 
(%) 

Chi 
squared 
mean (%) 

WFR 45.6 1.325 0.231 45.123 0.005 49.018 12.923 
C2RCC 57.1 1.202 0.281 32.87 0.005 49.682 12.127 
Polymer 59.5 0.468 0.26 40.842 0.003 9.248 4.473  
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for Lu(z) extrapolation, which complicates the accuracy of extrapolation, 
especially for blue and NIR bands where the signal is smallest. Using 
small vessels, measurements often took place at high tilt angles, 
reducing the number of data points that were used and resulting in a 
weaker regression for the extrapolation of Lu(z) to the water surface. The 
minimum at 443 nm for some Rrs(λ) spectra (Fig. 9a) is a distinct 
example for in situ Rrs(λ) uncertainties. Additionally, the inherent op
tical properties found in this study (extreme scattering, strong absorp
tion) are mostly outside the limits of traditional self-shading corrections 
(e.g. Gordon and Ding, 1992). The self-shading correction has a signif
icant impact on the Rrs(λ) (x-axis error bars in Fig. 8) and thus may also 
introduce higher uncertainties. Second, waters within the fluvial-marine 
transition zone can be highly turbulent and a time difference of even just 
a few minutes can be sufficient to explain the observed deviation be
tween satellite and in situ Rrs(λ). For the match-up analysis, we 
considered all pixels from satellite images that were acquired within ±6 
h of the sampling timing for in situ measurements. Although no distinct 
patterns of a time dependency of the match-up performance were 
observed, the influence of rapidly changing water masses cannot be 

entirely excluded. 
However, there are a number of additional challenges for AC algo

rithms in high latitudes and turbid waters, particularly related to CDOM 
retrievals. These challenges include large sun zenith angles, a relatively 
high air mass, adjacency effects from snow and ice, very low marine 
reflectance, sensitivity to subvisible clouds and dust, and the relative 
importance of blue bands, where most AC algorithms exhibit larger 
biases (IOCCG, 2010; Tilstone et al., 2021). 

Our AC performance test agrees with other reported OLCI AC com
parisons for coastal waters (Gossn et al., 2019; Mograne et al., 2019; 
Renosh et al., 2020). Mograne et al. (2019) evaluated five different OLCI 
AC’s (WFR, C2RCC v.2.1 and Polymer v. 4.10, among others) for turbid 
coastal waters. They concluded that C2RCC and Polymer performed 
best. The weaker performance of the match-up results in our study 
compared to Mograne et al. (2019) could be explained by a higher op
tical complexity of the waters in our study which potentially increases 
the uncertainty of the in situ Rrs(λ). Nonetheless, to our knowledge, the 
present study shows the first extensive in situ radiometric data that 
provide insights into the performance of recent atmospheric correction 

Fig. 9. Rrs(λ) spectra derived from in situ measurements (A) and from satellite using three different AC algorithms (B), where the thick colored line shows the mean 
of each AC algorithm. 

Fig. 10. Match-up comparison between in situ CDOM and satellite-derived CDOM for the three tested AC’s and two CDOM retrieval algorithms: (A) gsmA, (B) ONNS.  

B. Juhls et al.                                                                                                                                                                                                                                    



Remote Sensing of Environment 283 (2022) 113327

11

algorithms in optically-complex Arctic waters near a large river mouth. 

3.4.2. CDOM retrieval performance 
In this study, we tested two in-water CDOM retrieval algorithms 

(gsmA and ONNS) applied to Rrs(λ) data retrieved using the three 
different AC algorithms (Fig. 10). The two algorithms apply funda
mentally different approaches for the retrieval of CDOM. gsmA is based 
on a mathematical iteration method to minimize differences between 
observed (satellite) Rrs(λ) and modeled Rrs(λ) using varying absorption 
and backscattering coefficients (Maritorena et al., 2002). In contrast, 
ONNS employs blended various neural network algorithms each of 
which was trained with an optimized scope of relations between the 
optical properties of water constituents and Rrs(λ) (Hieronymi et al., 
2017). The results of match-up comparisons with in situ CDOM mea
surements showed that the gsmA algorithm’s performance was more 
stable across the three AC’s (Table 2). The use of the gsmA in combi
nation with the Polymer AC resulted in the best match-up performance 
(slope = 1.08, r2 = 0.4, MPE = 35.72%, RMSE = 0.71 m− 1). The CDOM 
retrieval using the gsmA in combination with WFR AC and ONNS in 
combination with C2RCC showed the next highest performance statis
tics. The combination of ONNS with WFR resulted in a poor performance 
(slope = 2.82, r2 = 0.19, MPE = 49.1%, RMSE = 3.39 m− 1) with large 
deviations from the 1 to 1 line. This may be related to excessive provi
sion of negative reflectances (Fig. 9b), which results in out of scope 
values within the optical water type (OWT) classification of the ONNS 
algorithm. Consequently, and with respect to ONNS, the spectral shape 
is most important and partly explains poor OWT classifiability and 
CDOM retrieval capacity. The use of fewer bands for gsmA compared to 
ONNS (that uses all bands between 400 and 865 nm) could explain the 
differences in performances. For none of the AC and CDOM retrieval 
combinations were significant differences between Sentinel-3 A (S3A) 
and Sentinel-3 B (S3B) observed. 

Results from in this study indicate higher errors (~35% MPE if using 
Polymer AC) compared to Matsuoka et al. (2013) reporting a ~ 20% 
MPE for coastal waters of the Beaufort Sea and Matsuoka et al. (2017) 
reporting a ~ 10% MPE for pan-arctic offshore waters using the gsmA 
CDOM retrieval using MODIS satellite data. It should be noted however 
that the ranges of aCDOM(443) observed in this study were substantially 
higher compared to other reported match up exercises. Most stations 
that were sampled in this study were near the Mackenzie River mouth, 
resulting in higher CDOM and sediment load and overall higher optical 
complexity compared to previous studies. Lower retrieval performances 
for the near-shore waters are thus expected. 

3.4.3. Retrieving DOC concentrations from CDOM 
DOC concentrations can be estimated using ocean colour data when 

retrieved CDOM absorption is accurately retrieved and applied to a 
robust empirical relationship between DOC concentration and CDOM. 
We merged the available in situ data including those obtained for the 
Mackenzie Delta - Beaufort Sea region from Osburn et al. (2009) and 
Matsuoka et al. (2012) and this study and established a new DOC-CDOM 
relationship: 

DOC = 4.4907*aCDOM(443)0.578 (9) 

This relationship includes data obtained from river, coastal and 
offshore waters and thus enables the retrieval of DOC concentration 
across the fluvial-marine transition zone within its validity of 0.0197 
m− 1 < aCDOM(443) < 2.612 m− 1, and 0.593 mg L− 1 < DOC <7.12 mg 
L− 1. However, the relationship is limited to salinities <25, where river 
water is the dominant source of DOC. Fig. 11 shows the match-up result 
between in situ and the satellite-derived DOC concentrations using the 
best performing AC and CDOM retrieval (i.e., Polymer-retrieved Rrs(λ) 
applied to gsmA) through the new DOC-CDOM relationship. The 
satellite-derived DOC concentrations lay within a 20.5% error (1.45 mg 
L− 1) of the in situ data as a whole. The use of our merged DOC-CDOM 
relationship substantially improved the retrieval of DOC concentra
tions for near-shore waters of the Mackenzie Delta - Beaufort Sea region 
compared to relationships that were developed for a specific area and 
sampling period. 

3.5. Synoptic satellite maps of DOC concentrations 

The high temporal resolution of polar orbiting satellites (such as 
OLCI) provides a powerful tool for synoptic monitoring of surface water 
DOC distribution and river plume propagation for the entire sea-ice free 
season. Fig. 12 shows satellite maps of the surface water DOC concen
trations for the wider Mackenzie Delta – Beaufort Sea region between 
May and mid October 2019 using Polymer, gsmA and our merged DOC- 
CDOM relationship (Eq. 9) with an estimated uncertainty of 20.5% 
(Fig. 11). 

The maps in Fig. 12 show strong variability in the extent of the 
Mackenzie River plume with higher DOC concentrations throughout the 
open water season. In the first half of May, sea ice still covered the water 
surface in the near-shore areas and most of the Beaufort Sea Shelf. 
Nevertheless, in the open water area between landfast and pack ice, the 
onset of the river plume propagation initiated by the river ice breakup 
was visible. The spatial distribution of the DOC-rich river plume further 
expanded and was highest during the first half of June. Besides the 
farthest northward propagation, waters with high DOC concentrations 
(>1.5 mg L− 1) were transported to the northwest and the northeast. The 
extent of the plume rapidly decreased in the second half of June. This is 
likely associated with the termination of the spring freshet coupled with 
dilution by low-DOC oceanic water. The decrease in DOC concentrations 
could be partly due to the higher biological and photochemical lability 
of DOM particularly during the spring freshet (Amon et al., 2012; Mann 
et al., 2012; Osburn et al., 2009). Later in the year, the extent of the 
plume was significantly smaller and varied only slightly. High concen
trations (>4 mg L− 1) were restricted to a relatively narrow band around 
the Mackenzie Delta (<5 km). 

Table 2 
Performance statistics of CDOM retrieval using the three tested AC algorithms 
and two CDOM retrieval algorithms.  

AC Algorithm Slope r2 MPE (%) RMSE (m− 1) 

WFR 
gsmA 0.6 0.2 38.2 0.49 
ONNS 2.82 0.19 49.1 3.39 

C2RCC 
gsmA 0.4 0.22 123.54 0.76 
ONNS 0.64 0.14 37.89 0.78 

Polymer 
gsmA 1.08 0.4 35.72 0.71 
ONNS − 0.29 0.06 40.52 1.11  

Fig. 11. Performance of DOC retrieval using Polymer AC in combination with 
the gsmA CDOM retrieval and the merged DOC-CDOM relationship for the 
Beaufort Sea (Eq. 9). The red line shows the linear regression. (For interpre
tation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 
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Fig. 13A illustrates the DOC concentrations along the 136.4◦W me
ridian (from 69◦N to 71◦N, black line in Fig. 12) during the open water 
season from May 1 to October 1, 2019. Variations in DOC along the 
south-north transect over time demonstrate the impact of Mackenzie 
runoff (Fig. 13B) on the northward river plume propagation over the 
Beaufort Sea Shelf. The highest concentrations, as well as the farthest 
northward propagation of DOC-rich waters, correspond to the peak of 

the Mackenzie River water level (as a proxy for discharge). The satellite- 
derived DOC concentrations of the southernmost part of the transect 
corroborate the observed in situ seasonal variation with the highest DOC 
during leg 2, low concentrations during leg 3, and moderate concen
trations during leg 4. At the beginning of the open water period, the 
concentration and propagation of DOC appear to be dependent entirely 
on the Mackenzie River runoff due to the large volume of water that 

Fig. 12. Half-month mean surface water DOC concentration of the Mackenzie Delta – Beaufort Sea region. The Polymer AC, in combination with the gsmA CDOM 
retrieval, was applied to all available S3 OLCI data. DOC concentration was calculated using Eq. 9. The black line in the upper left map shows the position of the 
transect described in Fig. 13. White areas correspond to sea-ice or cloud cover. 
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entered the Beaufort Sea at that time. While the DOC concentration near 
the river mouth later in the year was still strongly associated with the 
Mackenzie runoff, the extent of the northward plume propagation 
appeared to vary independently. During the low discharge of the 
Mackenzie River, other processes such as ocean currents and winds 
likely controlled the propagation of the river plume in the Beaufort Sea 
(e.g. Carmack et al., 1989). 

Overall, the applicability of SOCRS for this study benefited from 
exceptionally ice-free and relatively cloud-free conditions over large 
areas of the Beaufort Sea Shelf, as well as the early northward pro
gression of the pack ice-edge in 2019. The use of SOCRS improved the 
extent of both spatial and temporal monitoring of river plume propa
gation and the distribution of DOC on the Beaufort Sea Shelf. Further
more, SOCRS places in situ observations into a wider context, reveals 
transport pathways and indicates the speed of how rapid DOC concen
trations in surface waters of Arctic shelves change. 

4. Conclusion 

In this study, we show that the Mackenzie Delta - Beaufort Sea region 
is characterized by a strong seasonal variability of the Mackenzie River 
plume propagation and the associated distribution of terrigenous DOC. 

We use collected in situ data to 1) evaluate and 2) improve the perfor
mance of SOCRS. Furthermore, this study demonstrates that SOCRS is a 
powerful tool to expand in situ observations and to improve our 
knowledge about distribution and transport of DOC. This is especially 
relevant in Arctic regions where in situ data are limited in spatial and 
temporal coverage partly due to significant logistical efforts. 

Our results show that assessing the performance of atmospheric 
corrections in near-shore Arctic coastal waters remains challenging. This 
is on the one hand due to lack of valid match-up data related to clouds 
and ice, and on the other hand due to difficulties in obtaining accurate in 
situ ground truth data in highly turbid and/or absorbing waters as in this 
study. 

In the coastal waters of the Beaufort Sea, the best (of three) per
forming atmospheric correction to retrieve Rrs(λ) from Sentinel 3 OLCI 
imagery has mean bias of 9.25%. In combination with the best (of two) 
performing CDOM retrieval algorithm and our new DOC-CDOM rela
tionship that is valid across river, coastal and marine waters, we show 
that SOCRS can be used to map DOC concentrations across the fluvial- 
marine transition zone over the Beaufort Sea Shelf with an accuracy of 
20.5% (mean percentage error). With the new DOC-CDOM relationship, 
this study closes a critical gap by establishing a robust relationship be
tween DOC and CDOM from river, coastal and offshore waters (0.0197 

Fig. 13. (A) DOC concentrations along the 136.4◦W meridian (see Fig. 12, consisting of 313 × 9 pixels) from 68.5 to 71◦N from May to October 2019. All available 
OLCI acquisitions were processed with the Polymer AC. aCDOM(443) was retrieved using the gsmA algorithm. The DOC concentrations were estimated using the 
merged DOC-CDOM relationship (Eq. 9). To account for masked satellite data due to cloud and ice cover, transect medians of eight days were used. The number of 
valid pixels for each eight-day median is displayed in the upper histogram and the number of valid pixels along a latitudinal grid is shown in the histogram on the 
right. Appendix Fig. 1 shows the number of observations that were used for each grid point of this fig. (B) shows the provisional water level of the Mackenzie River 
(East Channel) at Inuvik (Station 10LC002) for May to October 2019 (Water Survey of Canada). Vertical lines show the periods of the expedition legs. 
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m− 1 < aCDOM(443) < 2.612 m− 1, and 0.593 mg L− 1 < DOC <7.12 mg 
L− 1), which is required for the retrieval of DOC concentration with 
SOCRS. 

Currently, SOCRS is mostly limited to quantifying DOC. To examine 
the quality of DOC (e.g. degradational state and bioavailability) or 
sources of DOC (e.g. old permafrost-originating carbon vs. young 
vascular plant carbon), continuous field observations are necessary. 

To evaluate the performance of SOCRS in other river-influenced 
Arctic seas and to identify potential regionally varying uncertainties of 
remotely-sensed DOC concentrations, extensive in situ data collections 
of radiometric and biogeochemical data from these regions are needed. 
Continuous in situ data collection and improvements in AC algorithms 
and CDOM and DOC retrieval will be necessary for an accurate esti
mation of carbon fluxes from land to the Arctic Ocean on a pan-Arctic 
scale. The projected decrease in sea ice extent and shortening of the 
ice-covered period will further increase the applicability of SOCRS in the 
Arctic. Future work on exploiting existing satellite data from the past 
~20 years can reveal potential trends in fluxes of DOC associated with 
ongoing climate change in the Arctic. 

Funding 

This research has been supported by the EU Horizon 2020 pro
gramme (Nunataryuk, grant no. 773421), the Network of Centres of 
Excellence of Canada ArcticNet (P66-Nunataryuk), JAXA GCOM-C 
(Contract number: 19RT000542 and 20RT000350), NASA ROSES pro
jects (Award number: 210319602), Québec-Océan, the Aurora Research 
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Appendix 

Flags used for different atmospheric corrections  

Appendix Table 1 
List of flags that were used to mask invalid pixel for satellite data 
extraction.  

AC Flags used 

WFR 

Pixels excluded that were flagged with: 
WQSF_lsb_LAND 
WQSF_lsb_CLOUD_AMBIGUOUS 
WQSF_lsb_CLOUD_MARGIN 
WQSF_lsb_SNOW_ICE 
WQSF_lsb_AC_FAIL 
WQSF_lsb_HISOLZEN 
WQSF_lsb_LOWRW 
WQSF_msb_ANNOT_TAU06 

C2RCC 
Pixels excluded that were flagged with: 
quality_flags_bright 

(continued on next page) 
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Appendix Table 1 (continued ) 

AC Flags used 

quality_flags_land 
quality_flags_invalid 

Polymer 
Only pixels included that were flagged with: 
1024 (Case 2) 
0 (no flag).  

Number of observations for transect time series (Fig. 12)

Appendix Fig. 1. Number of observations (sum of 9 pixel transect width) for each grid point of the extracted transect along 136.4◦W.  

Shading correction estimated by Monte Carlo 

The physical dimensions of the C-OPS ICEPro (Appendix Fig. 2) were accurately transcribed in the Monte-Carlo modelling.

Appendix Fig. 2. Geometry used to simulate the C-OPS IcePro. The sensor is placed at a depth of 0.5 m.  

The radiance sensor has an angular aperture of 3◦. >80 virtual samples were simulated with absorption coefficients ranging from 0.1 to 12.5 m− 1 

and scattering coefficients ranging from 0.1 to 100 m− 1. Two particulate phase functions (Fournier-Forand) were used with backscattering ratios of 
1.83 (from (Petzold et al., 1972) and 4% (selected value from measurements in similarly particle-loaded waters; McKee et al., 2009). Sky is assumed to 
be black (dominated by direct sunlight). The shading, i.e., the error on the measured Lu(λ) signal due to self-shading induced by the C-OPS IcePro 
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estimated by Monte-Carlo, can be estimated from the quantity x(λ) = a(λ) + bb(λ) (Appendix Fig. 3).

Appendix Fig. 3. Self shading induced by the IcePro estimated from Monte Carlo simulations in function of the quantity a(λ) + bb(λ) for various solar zenith angles 
from 45 to 85 deg. In black simulations are done with a back-scattering ratio of 4% and in red with 1.83%. 

As it was not measured in the field, bb was estimated from the measured absorption coefficient based on the Malina dataset (Doxaran et al., 2012). 
From this dataset, considering measurements carried out in the Mackenzie delta, the total scattering coefficient at 555 nm b(555) can be expressed as: 

b(555) = 14.267*a(555)+ 0.8667, (n = 37)

Applied to this data set, b(λ) was calculated as above for the 555 nm reference wavelength. It was assumed that the water contribution to light 
scattering was negligible compared to the contribution of suspended particles. For other wavelengths, we applied the following equation: 

b(λ) = b(555)*
λ

555

− 0.5

,

where 0.5 is the mean spectral slope of the particulate scattering coefficient (Babin et al., 2003a). Then, bb was estimated as bb = 0.04 * b, where 0.04 
is the backscattering ratio of 4%, assuming the water contribution to be negligible compared to the particulate contribution. 

Performance of AC algorithms for all wavelengths

Appendix Fig. 4. Statistical performance of AC algorithms as a function of the S-3 bands.   
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Appendix Table 2 
Statistics of AC algorithm performance for each wavelength.  

WFR 

λ (nm) 400 412 443 490 510 560 665 681 709 754 779 865 Mean 

N 37 43 46 47 47 47 47 47 47 47 47 46 45.667 
Slope 3.417 1.733 1.349 0.885 0.688 1.189 1.207 1.273 0.721 1.54 0.889 0.407 1.275 
Intercept − 0.006 − 0.002 0.003 0.005 0.011 − 3.645 0.001 − 0.003 − 0.002 0.001 − 0.001 − 0.001 0.001 
R2 0.019 0.003 0.057 0.054 0.064 0.002 0.469 0.506 0.531 0.657 0.634 0.075 0.256 
MPE (%) 47.555 42.948 46.007 22.996 29.652 25.829 18.075 19.8 123.283 39.157 36.232 168.107 51.637 
RMSE (m− 1) 0.005 0.005 0.007 0.005 0.008 0.007 0.006 0.005 0.008 0.004 0.002 0.002 0.005 
Bias (%) 80.647 89.01 114.71 47.654 63.015 28.532 28.232 7.637 − 48.604 96.432 − 5.083 − 11.584 40.883 

C2RCC 
N 48 54 58 59 59 59 59 59 59 59   57.300 
Slope 2.019 1.409 1.528 1.18 1.041 1.029 0.628 0.933 0.457 1.051   1.128 
Intercept − 7.734 0.001 0.001 − 7.019 0.004 − 0.001 0.002 − 0.001 − 0.001 0.001   0.001 
R2 0.292 0.111 0.206 0.209 0.181 0.069 0.458  0.599 0.721   0.34 
MPE (%) 55.848 46.788 43.001 19.265 21.703 21.939 35.902 30.836 165.865 20.552   46.17 
RMSE (m− 1) 0.004 0.004 0.006 0.004 0.006 0.005 0.006 0.005 0.009 0.002   0.005 
Bias (%) 162.649 90.708 93.928 26.878 40.464 5.398 − 21.123 − 12.115 − 59.217 60.351   38.782 

Polymer 
N 51 57 60 61 61 61 61 61 61 61 61 60 59.667 
Slope − 0.89 0.389 0.751 0.65 0.696 0.904 0.884 0.849 0.395 0.979 0.475 − 0.54 0.462 
Intercept 0.005 0.002 0.002 0.002 0.004 − 0.002 0.001 − 0.003 − 0.001 0.001 0.001 0.002 0.001 
R2 0.079 0.032 0.144 0.082 0.04 0.012 0.377 0.467 0.519 0.62 0.603 0.035 0.251 
MPE (%) 59.966 31.005 15.162 34.656 14.744 35.823 25.408 52.932 234.617 24.848 92.839 61.88 56.99 
RMSE (m− 1) 0.002 0.002 0.002 0.004 0.004 0.006 0.005 0.006 0.01 0.002 0.003 0.002 0.004 
Bias (%) 34.335 25.758 27.867 − 14.863 7.544 − 13.772 − 6.071 − 29.399 − 66.879 37.499 − 28.177 61.003 2.908  
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