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Breaking through the Mermin-Wagner limit
in 2D van der Waals magnets

Sarah Jenkins1,2,3, Levente Rózsa 4, Unai Atxitia5,6, Richard F. L. Evans 1,
Kostya S. Novoselov 7 & Elton J. G. Santos 8,9,10

The Mermin-Wagner theorem states that long-range magnetic order does not
exist in one- (1D) or two-dimensional (2D) isotropicmagnets with short-ranged
interactions. Here we show that in finite-size 2D van der Waals magnets typi-
cally found in lab setups (within millimetres), short-range interactions can be
large enough to allow the stabilisationofmagnetic order atfinite temperatures
without anymagnetic anisotropy.Wedemonstrate thatmagnetic ordering can
be created in 2Dflakes independent of the lattice symmetry due to the intrinsic
nature of the spin exchange interactions and finite-size effects. Surprisinglywe
find that the crossover temperature, where the intrinsic magnetisation chan-
ges from superparamagnetic to a completely disordered paramagnetic
regime, isweakly dependent on the system length, requiring giant sizes (e.g., of
the order of the observable universe ~ 1026 m) to observe the vanishing of the
magnetic order as expected from the Mermin-Wagner theorem. Our findings
indicate exchange interactions as the main ingredient for 2D magnetism.

The demand for computational power is increasing exponentially,
following the amount of data generated across different devices,
applications and cloud platforms1,2. To keep upwith this trend, smaller
and increasingly energy-efficient devices must be developed, which
require the study of compounds not yet explored in data-storage
technologies. The discovery of magnetically stable 2D vdW materials
could allow for the development of spintronic devices with unprece-
dented power efficiency and computing capabilities that would, in
principle, address some of these challenges3. Indeed, the magnetic
stability of vdW layers has been one of the central limitations for
finding suitable candidates, given that strong thermal fluctuations are
able to rule out any magnetism. As it was initially pointed out by
Hohenberg4 for a superfluid or a superconductor, and extended by
Mermin andWagner5 for spins on a lattice, long-range order should be
suppressed at finite temperatures in the 2D regime, when only short-
range isotropic interactions exist. Importantly, the theorem only

excludes long-range magnetic order at finite temperature in the ther-
modynamic limit5, i.e., for infinite system sizes. However, the common
understanding is that the theoremalso excludes the alignment of spins
in samples studied experimentally which are a few micrometres in
size6,7, suggesting that such systemsare indistinguishable from infinite.
Previous reports8–17 havediscussed atdifferent levels of theoretical and
experimental approaches the limitations and the potential ways to
overcome the Mermin-Wagner theorem, which provides a historical
evolution of the common concepts used in the field of 2D magnetism.

The long-range order characterising infinite systems only becomes
distinguishable fromshort-range order describing the local alignment of
the spins if the system size exceeds the correlation length at a given
temperature18. Previous numerical studies and the scaling analysis of 2D
Heisenbergmagnets19–22 have established that althoughonly short-range
order is observable at finite temperature, the spin correlation length can
be larger than the system size below some finite crossover temperature.
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An intriguingquestion on this long-range limit is howwe canunderstand
real-life materials, which routinely have a finite size L (Fig. 1a), in light of
the Mermin-Wagner theorem. It is known that thermal fluctuations will
affect the emergence of spontaneous magnetisation at low dimension-
ality. Nevertheless, it is unclear which kind of spin ordering can be
foreseen in thin vdW layered compounds when finite-size effects and
exchange interactions play together. With recent advances in compu-
tational power and parallelisation scalability, it is possible to directly
model magnetic ordering processes and dynamics of 2D materials on
the micrometre length-scale accessible experimentally.

Here, we show that short-range order can exist in systems with no
anisotropy, even down to the 1D and 2D limits. By using computer-
intensive atomistic spin simulations and analytical models, we
demonstrate the non-applicability of theMermin–Wagner theorem for
practical length scales and device implementations. The theorem
requires that the thermodynamic limit be taken and only for distances
beyond the diameter of the observable universe, as revealed by our
results, it might be valid. The large distance character of short-range
interactions in 2D vdW magnets drives the formation of magnetic
ordering at different lattice symmetries, flakes shapes and chemical
compositions. Our results unveil that exchange interactions are the
main driving force behind the stabilisation of 2D magnetism and
broaden the horizons of possibilities for the exploration of com-
pounds with low anisotropy at an atomically thin level.

Results
We start by defining the magnetisation in our systems as:

m=
1
N

X

i

Si, ð1Þ

where Si denotes the classical spin unit vector at lattice site i and N is
the number of sites. In the absence of external magnetic fields, the
expectation value of the magnetisation 〈m〉 vanishes in any finite-
size system due to time-reversal invariance. Yet, 3D systems of only a
few nanometres in size that are far from infinite have been studied for
decades and exhibit a clear crossover from amagnetically ordered to a
paramagnetic phase23,24. The Mermin-Wagner theorem establishes
that〈m〉must also be zero in infinite 2D systems with short-ranged
isotropic interactions. However, for practical implementations it is
relevant to unveil whether the average magnetisation vanishes
because the spins are completely disordered at any point in time, or
if they are still aligned on short distances but the overall direction of
themagnetisationm strongly suffers time-dependent variation. Short-
range order may be characterised by the intrinsic magnetisation25:

h∣m∣i=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X
i
Si

� �2
s* +

, ð2Þ

which is always positive by definition. The intrinsic magnetisation is
〈∣m∣〉 ≈ 1 in the short-range-ordered regime and converges to zero
when the spins become completely disordered6,26,27.

For simplicity we first consider a 2D honeycomb lattice (Fig. 1a) to
model the magnetic ordering process for a large flake of
1000 × 1000 nm2. Such a symmetry is very common in several vdW
materials holding magnetic properties and interfaces3,28, such as
Cr2Ge2Te6 (CGT) or CrI3 in which 2D magnetic ordering was first
discovered29,30. The system consists of 8 million atoms with nearest-
neighbour Heisenberg exchange interactions Jij and no magnetic ani-
sotropy (K) described via highly accurateMonte Carlo simulations (see

Fig. 1 | Short-range magnetic ordering at finite temperatures in a 2D isotropic
magnet. a Local viewof the spin directions extracted from the atomistic simulations
on a 2D honeycomb lattice. a is the atomic spacing (a =0.4 nm), L is the length
considered in the computations, and Mav is the averaged magnetisation vector.
θ corresponds to the angle between Mav and the z-axis. θ0 =0 denotes the initial
configuration aligned with the z-axis. b Temperature-dependent intrinsic

magnetisation〈∣m∣〉 with (K = 1 × 10−24 J/atom) and without (K =0) anisotropy in a
1000× 1000 nm2

flake. Solid lines are the fit to Eq. (3). For K =0, the fitting para-
meters areβ =0.54 ±0.020andTx= 23.342 ±0.237K. ForK >0,β =0.427 ±0.021 and
Tx= 26.543 ±0.320 K. c,d Temporal variation of themagnetisation (m/ms) and angle
θ −θ0, respectively, atT = 10K.All three spatial components (x, y, z) are considered in
c. The dashed line in d shows the initial state in the simulations.
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Supplementary Sections 1–2 for details). We use an isotropic Heisen-
berg spin Hamiltonian H= �P

i<j JijSi � Sj as stated in the
Mermin–Wagner theorem5. As it is shown below, our conclusions do
not depend on the magnitude of the exchange interactions chosen.
Nevertheless, to give a flavour of a potentialmaterial to study, we set Jij
to similar values to those obtained for CGT layers29 where a negligible
magnetic anisotropy (< 1μeV) was observed for thin layers but yet a
stable magnetic signal was measured at finite temperatures ( ~ 4.7 K).
We begin by assessing the existence of anymagnetic order at non-zero
temperatures by equilibrating the system for 39 × 106 Monte Carlo
steps using a uniform sampling31 to avoid any potential bias before a
final averaging at thermal equilibrium for a further 106 Monte
Carlo steps.

Strikingly, a crossover between the low-temperature short-range-
ordered regime and the completely disordered state (〈∣m∣〉 ≈0) is
observed at nonzero temperatures (Fig. 1b) and zero magnetic aniso-
tropy (K = 0). To estimate the crossover temperature (Tx), the simula-
tion data was fitted by the Curie–Bloch equation in the classical limit6:

h∣m∣iðTÞ= 1� T
Tx

� �β

, ð3Þ

whereT is the temperature and β is an exponent in thefitting. From the
fitting one obtains Tx = 23.342 ± 0.237 K (β =0.54 ± 0.020), which is
about one-third of the mean-field (MF) critical temperature
TMF
c = zJij= 3kB

� �
= 70:8 K (where z = 3 is the number of nearest

neighbours) even for this considerable system size. The simulations
were then repeated, including magnetic anisotropy (K = 1 × 10−24 J/
atom), which resulted in a slight increase in the crossover temperature
(Tx = 26.543 ±0.320 K, β =0.427 ±0.021) (Fig. 1b). We observed that
this difference in Tx between isotropic and anisotropic cases becomes
negligible as the flake size is reduced (100 × 100 nm2) with minor
variations of the curvature of the magnetisation versus temperature
(Supplementary Section 3 and Supplementary Fig. 1). We also checked
that different Monte Carlo sampling algorithms (i.e., adaptive) and
starting spin configurations (i.e., ordered, disordered) do not modify
the overall conclusions (Supplementary Section 4 and Supplementary
Fig. 2). Taking dipolar interactions into account only has aminor effect
on the intrinsic magnetisation curve (Supplementary Fig. 3). Although
the magnetocrystalline anisotropy K or the dipolar interactions
circumvent the Mermin-Wagner theorem and lead to a finite critical
temperature, this indicates that systems up to lateral sizes of 1μm are
not suitable for observing the critical behaviour. Instead the crossover
in the short-range order defined by the isotropic interactions
dominates in this regime, regardless of whether the anisotropy is
present or absent. Previous studies on finite magnetic clusters on
metallic surfaces32,33 suggested that anisotropy is not the key factor in
the stabilisation of magnetic properties at low dimensionality and
finite temperatures, but rather it determines the orientation of the
magnetisation.

Even though short-range interactions can stabilise short-range
magnetic order in 2D vdW magnetic materials, this does not neces-
sarily imply that the direction or themagnitude of themagnetisation
is stable over time. As thermally activated magnetisation dynamics
may potentially change spin directions34, it is important to clarify
whether angular variations of the spins are present. Hence we com-
pute the time evolution of the magnetisation along different direc-
tions (x, y, z) and its angular dependence (Fig. 1c, d) through the
numerical solution of the Landau-Lifshitz-Gilbert equation (see
Methods for details). Over the whole simulation (40 ns), all compo-
nents of the magnetisation assume approximately constant values
which deviate by ± 5° from the mean direction θav. Similar analyses
undertaken for different flake sizes (L × L, L = 50, 100, 500 nm) show
that the spin direction is very stable at each temperature considered
(2.5 K, 10 K, 20 K, 30 K, 40 K) and follows a Boltzmann distribution

(Supplementary Section 5 and Supplementary Fig. 4). These results
show that the magnetisation in a 2D isotropic magnet is not only
stable in magnitude but its direction only negligibly varies over time.

An outstanding question raised by the modelling of the 2D finite
flakes is whether other kind of common lattice symmetries (i.e., hex-
agonal, square), lower dimensions (i.e., 1D) and different sizes may
follow similar behaviour to that found in the honeycomb lattice. Fig-
ure 2 shows that the effect is universal regardless of the details of the
latticeor the dimension considered.Wefindpersistentmagnetic order
for T >0K at zeromagnetic anisotropy for the cases considered. There
is a consistent reduction in the crossover temperature as a function of
the system size L→∞ in agreement with the general trend of the
temperature dependence of the correlation length discussed above
(Fig. 2a–c). The 1D model (atomic chain) displays a similar trend
(Fig. 2d) although the variation of〈∣m∣〉with T is different due to the
lower dimensionality. We have also checked that several additional
factors do not affect these conclusions, such as i) the type of boundary
conditions, e.g., open; ii) flake shape (e.g., circular), and iii) strength of
the exchange interactions. Supplementary Figs. 5 and 6 provide a
summary of this analysis. Indeed, the stabilisation of magnetism in 2D
is independent of the magnitude of the exchange interactions con-
sidered, as a linear re-scaling of the temperatures is obtained for dif-
ferent Jij values. This indicates the generality of the results which are
valid regardless of the chemical details of the 2D material and its
corresponding Jij interactions. Moreover, if the exchange coupling
between atoms could be engineered via chemical synthesis35–37, then
magnets with either low or high crossover temperatures might be
fabricated depending on the target application. Such a procedure
would not require heavy elementswith sizeable spin orbit-coupling for
the generation of magnetic anisotropy since it is not necessary for 2D
magnetism.

To give an analytical description of these effects, we use the ani-
sotropic spherical model (ASM) for the calculation of the finite-size
effects on the intrinsic magnetisation25,38,39 (see Supplementary Sec-
tion 6 for details). The ASM takes into account Goldstonemodes in the
system and self-consistently generates a gap in the correlation func-
tions which avoids infra-red divergences responsible for the absence
of long-range order for isotropic systems in dimensions d ≤ 2 as L→∞
as per the Mermin-Wagner theorem. We applied the formalism to 1D
and 2D systems for the isotropic Heisenberg Hamiltonian in the
absence of an external magnetic field25. The results of our analytical
calculations are shown as shaded regions in Fig. 2 (see Supplementary
Section 6 for the definition of the regions). At low temperatures both
limits agree well with our Monte Carlo calculations within the statis-
tical noise and clearly show the existence of a finite intrinsic magne-
tisation at non-zero temperature for finite size. At higher temperatures
there is a systematic difference between the degree of magnetic
ordering between the simulations and the analytical calculations due
to the ASM only becoming exact in the limit of infinitely many spin
components. The large number of Monte Carlo steps and strict con-
vergence criteria to the same thermodynamic equilibrium for ordered
and disordered starting states (Supplementary Section 4) rule out
critical slowing down40 as a source of difference between the analytical
calculations and the simulations.

One may also argue in terms of the correlation length ξ which is
comparable to the system size at the crossover temperature. It has
been demonstrated20 that ξ / expðcJ=TÞ, where c is a constant,
meaning that the inverse crossover temperature T�1

x only logarith-
mically increases with the system size. Although our simulations are at
the limit of the capabilities of current supercomputers, this effect is
expected to persist for larger sizes of 2–10μm. These values represent
typical sizes of continuous 2D microflakes in experiments, and much
larger than the ideal nanoscale devices likely to be used in future 2D
spintronic applications. Fitting a scaling function to the crossover
temperatures for different lattice symmetries (Fig. 2), we can plot the
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scaling of the crossover temperaturewith size (Fig. 3a), which can then
be extrapolated to larger scales. The crossover temperature is still
approximately 30K for 2–10μm flakes (Fig. 3b). The graph can be
extrapolated to show that only at the 1015 − 1025 m range does the
crossover temperature become lower than ~ 1 K. To put these numbers
into perspective for physical systems, these length scales lie between
the distance of the Earth to the Sun and the diameter of the observable
universe. Therefore, the often asserted notion3 that experimental 2D
magnetic samples can be classified as infinite and therefore display no
net magnetic order at nonzero temperatures, as expected from the
Mermin–Wagner theorem, is not applicable. Surprisingly, simple esti-
mations by Leggett41 for the stability of graphene crystals following the
Mermin–Wagner theorem would require sample sizes of the order of
the distance from the Earth to the Moon, which are in sound agree-
ment with our simulation results.

The significance of the crossover temperature Tx in relation to the
Curie temperature TC is particularly important when discussing the
nature of the magnetic ordering in 2D magnets at zero anisotropy for
T >0 K. We investigate this behaviour through colour maps of the spin
ordering after 40 million Monte Carlo steps comparing different sys-
tem sizes and temperatures (Fig. 4). At very low temperatures T = 2.5 K,
where there is a high degree of order, the spin directions are highly
correlated, as indicated by a mostly uniform colouring. Although the
temperatures are near zero, the system is superparamagnetic indicat-
ing that over time themagnetisationdirectionfluctuates, and theeffect
is most apparent for the smallest sizes where the average direction has
moved significantly from the initial direction S∣∣z. At higher tempera-
tures, the deviation of the spin directions within the sample increases
as indicated by the more varied colouring. To quantitatively assess the
spin deviations we plot the statistical distribution of angle between the
spin direction and the mean direction for different temperatures for
each size (Supplementary Fig. 4). For an isotropic distribution on the
unit sphere there is a sinðθÞ weighting, which is seen at the highest
temperature for all system sizes. For lower temperatures where the

spin directions are more correlated, the distribution is biased towards
lower angles. Qualitatively there is little difference in the spin dis-
tributions for the different samples. At T = 20 K, there is, however, a
systematic trend in the peak angle increasing from θ = 40° for the
50 × 50nm2

flake (Supplementary Fig. 4a) to around θ = 60° at
1000 × 1000nm2 (Supplementary Fig. 4d) indicating an increased level
of disorder averaged over the whole sample. This effect is straight-
forwardly explained by the size dependence of spin-spin correlations
(Supplementary Fig. 7). At small sizes the spins are strongly exchange
coupled, preventing large local deviations of the spin directions. At
longer length scales available for the larger systems, the variations in
the magnetisation direction are also larger. Surprisingly, our calcula-
tions reveal that this effect is weak: even for very large flakes of a
micrometre in size, only a small increase can be observed in the posi-
tion of the peak in the angle distribution at a fixed temperature. Above
the crossover temperature, the spin-spin correlation length becomes
very small compared to the system size with rapid local changes in the
magnetisation direction, indicative of a completely disordered para-
magnetic state. Our analysis reveals that the spins in finite-sized 2D
isotropicmagnets are strongly aligneddue to short-rangeorder at non-
zero temperatures and up to the crossover temperature.

Discussion
Mathematically a phase transition is defined as a non-analytic change
in the state variable for the system, such as the particle density or the
magnetisation in the case of spin systems. For any finite system the
state variable is continuous by definition due to a finite number of
particles, forming a continuous path of intermediate states between
two distinct physical phases42. The same is true for a magnetic system,
forming a continuous path between an ordered and a paramagnetic
state. A priori then, it is impossible to have a true phase transition for
anyfinitemagnetic sampleswhich are routinely implemented in device
platforms. Yet, nanoscale magnets that are far from infinite have been
studied for decades and exhibit a clear crossover from magnetically

Fig. 2 | Temperature- and size-dependent properties of isotropic 1D and 2D
materials with different crystal structures. a–d Comparative simulations of the
temperature-dependent magnetisation for honeycomb, hexagonal, square lattices
and an atomicchain (1D), respectively, fordifferent systemsizes. Points indicate the
results of Monte Carlo simulations, the lines show fits to the Curie-Bloch Eq. (3) in
the classical limit, and the shaded regions indicate the anisotropic spherical model
calculations for different assumptions of the renormalisation factor for the Curie

temperature arising from the mean-field approximation. See Supplementary Sec-
tion 6 for details. The dashed and solid lines in d indicate the anisotropic spherical
model calculations, and the exact solution, respectively. Both show a sound
agreement with the atomistic simulations. The datasets in a–c clearly show the
existenceof short-range collinearmagnetic order for all 2D lattices at the simulated
sizes considered with nonzero crossover temperature. Zeromagnetic anisotropy is
included in all calculations.
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ordered to paramagnetic phases, occurring for systems only a few
nanometres in size23,24. The crossover temperature in a finite-size sys-
tem hence can be described as an inflection point in 〈∣m∣〉. The precise
definition of a phase transition is significant when considering the
main conclusions of Mermin and Wagner5, which explicitly only apply
in the case of an infinite system. As our results clearly show, sample
sizes measured experimentally are not classifiable as infinite and,
therefore, not subject to theMermin-Wagner theorem. It is noteworthy
that 3D compounds have weak dependence of their critical tempera-
ture on magnetic anisotropy43. Similar analysis performed for a finite
3D bulk system (Supplementary Fig. 8a, b) show that the inclusion of

anisotropy barely changes the results for Tc. This suggests that mag-
netism is an exchange-driven effect in both two and three dimensions.

On the practical side, heterostructures with conventionalmetallic
magnetic materials could establish preferential directions of the
magnetisation through anisotropic exchange and dipolar couplings.
However, it is important to point out that the short-range order is
enforced by the isotropic exchange couplings, and even a low aniso-
tropy may suffice for stabilizing the direction of the magnetisation in
the vdW layers, i.e., from underlying magnetic substrates. We can
imagine micrometre-sized samples where all spins are still correlated
at finite temperatures so it could represent a single bit. However, for
miniaturization purposes multiple nanometre-sized bits are required
on the same sample in order to be implemented in recording media.
This is typically achieved by magnetic domains, but there are no
domains in an isotropic model since the domain wall width is infinite.
However, if vdW layers can be grown with grain boundaries, like in 2D
mosaics44, which are large enough that each grain area would have a
uniform magnetisation, then a magnetic monolayer would have as
many bits as available on the material surface. The underlying sub-
strate hence would set the magnetisation direction for further imple-
mentations. This spin-interface engineering would be a considerable
step towards on-demandmagnetic properties at the atomic level given
the flexibility on the orientation of the magnetic moments without a
predefineddirection at the layer.While the anisotropy circumvents the
Mermin-Wagner theorem and causes the critical temperature Tc to be
nonzero in infinitely large systems, in finite samples the short-range
order persists up to much higher temperatures (Tx > Tc) since Tx is
proportional to the isotropic exchange rather than the anisotropy45,46.
Indeed, the long tail features observed in the intrinsic magnetisation
(Fig. 2) extending above the crossover temperature suggest that short-
range order is present. In addition, the existence of short-range order
in bulk magnetic systems near and above the Curie temperature has
been experimentally and theoretically discovered in elemental transi-
tion metals47–49. These studies indicate the persistence of magnetic
ordering within the supposedly disordered phase above the Curie
temperature, where any ordered phase is primarily controlled by
exchange interactions as in the case for 2D magnets. For instance, in
bcc-Fe a short-range order within 5.4 Å was found47 which is much
smaller than the magnitudes obtained in our simulations for vdW
materials.

In conclusion, we presented large-scale spin dynamics simula-
tions and analytical calculations on the temperature dependence of
the intrinsic magnetisation in 2Dmagnetic materials described by an
isotropic Heisenberg model. We found that short-range magnetic
order at non-zero temperature is a robust feature of isotropic 2D
magnets even at experimentally accessible length and time scales.
Ourdata show that the often assertedMermin-Wagner limit5 does not
apply to 2Dmaterials on real laboratory sample sizes . Since the spins
are aligned due to the exchange interactions already in the isotropic
model, the direction of the magnetisation may be stabilized by
geometrical factors or finite-size effects. These findings open up
possibilities for a wider range of 2D magnetic materials in device
applications than previously envisioned. Furthermore, the limited
applicability of the analyticalMermin–Wagner theoremopens similar
possibilities in other fields such as superconductivity9 and liquid
crystal systems50, where the relevant length scale of correlations is
known to be much greater than that required for experimental
measurements and applications. Our results suggest that if the
magnetic anisotropy can be controlled to a certain degree51 until it
completely vanishes, neweffects of strongly correlated spins ormore
unusual disordered states may be observed.

Methods
We used atomistic simulations methods6,27,52–56 implemented in the
VAMPIRE software57 to compute the magnetic properties of 2D

Fig. 3 | Size scaling of the simulated crossover temperature for the different 2D
lattices. a Variation of the crossover temperature Tx with system size for different
symmetries (Hexagonal, Square, Honeycomb) on a log-scale. The curves are a fit
using Tx =A=logðL=BÞ, whereA and B are fitting constants and L is the system size. A
and B are 327.28 K and 0.000542 nm, 484.96K and 0.00166 nm and 1018.50K and
5.7 × 10−5 nm for honeycomb, square and hexagonal lattices, respectively.
b Extrapolation of the exponential fits in a to larger sizes on all studied symmetries.
The crossover temperature remains finite (>4 K) for systems as large as ~ 1025 m
indicating no dependence of themagnetic anisotropy for stabilisation of magnetic
ordering. Insets provide a comparisonwith physical distances observed in different
systems. Figures in b are adapted with permission under a Creative Commons CC
BY license fromWiki Commons.Microchip: Integratedcircuit on amicrochip by Jon
Sullivan, 2006, at Public Domain from Wiki Commons. Sun: inset is from ESA &
NASA/Solar Orbiter/EUI team, 2022 at Public Domain from Wiki Commons. Data
processingbyE.Kraaikamp. Everest:Wikivoyagebanner forMount Everest orNepal
by Fabien1309. This file is made available under the Creative Commons CC0 1.0
Universal Public Domain Dedication. Universe: The Observable Universe by Pablo
Carlos Budassi fromWikipedia under Attribution-ShareAlike 3.0 Unported (CC BY-
SA 3.0) in Public Domain.
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magnetic materials. The energy of our system is calculated using the
spin Hamiltonian:

H= �
X

i<j

JijSi � Sj � K
X

i

Szi
� �2, ð4Þ

where Si,j are unit vectors describing the local spin directions on
magnetic sites i, j and Jij is the exchange constant between spins. An
easy-axis magnetocrystalline anisotropy constant K can be included as
well, with negligible modifications of the results as described in the
text. Simulations were run for system sizes of 50nm, 100 nm, 500nm
and 1000nm laterally along the x and y directions with periodic
boundary conditions (PBCs), and 1 atomic layer thick along the z
direction. Similar PBCs were used in the analytical model. However,
simulation results usingopenboundary conditions (OBCs) endedup in
similar conclusions (Supplementary Fig. 5). For the honeycomb lattice,
the simulations were initialised in either a perfectly ordered state
aligned along the z direction or a random state corresponding to
infinite temperature. For these simulations the final 〈∣m∣〉(T) curves
were identical to each other. However, at low temperatures it took ten
times as many steps to reach the final equilibrium state from the
random state, so for the remaining structures only simulations starting
from the ordered states were run. The systemswere integrated using a
Monte Carlo integrator using a uniform sampling algorithm57 to
remove any bias introduced from more advanced algorithms31. To
investigate the temperature dependence, the simulation temperature
was varied from 0 to 90 K in 2.5 K steps. 40 × 106 Monte Carlo steps
were run for each temperature step. This was split into 39 × 106

equilibration steps and then 106 time steps from which the statistics

were calculated. The Monte Carlo simulations use a pseudo-random
number sequence generated by the Mersenne Twister algorithm58 due
to its high quality, avoiding correlations in the generated random
numbers andwith an exceptionally long period of 219937 − 1 ~ 106000. The
parallel implementation generates different random seeds on each
processor to ensure no correlation between the generated random
numbers.

The time-dependent simulations in Fig. 1c, d were performed by
solving the stochastic Landau–Lifshitz–Gilbert equation:

∂Si

∂t
= � γe

1 + λ2
Si ×Beff + λSi × Si ×Beff

� �� �
, ð5Þ

which models the interaction of an atomic spin moment Si with an
effective magnetic field Beff = � 1=μs ∂H=∂Si. The effective field cau-
ses the atomic moments to precess around the field, where the fre-
quency of precession is determined by the gyromagnetic ratio of an
electron (γe = 1.76 × 1011 rad s−1T−1) and λ = 1 is the damping constant.
The large value of λ was used to accelerate the relaxation dynamics in
order to be computationally achievable ( ~ 72 hours). For a different
damping, one has towait longer or shorter for this to happen. Basedon
the system sizes used in our computations, this can vary
between ~ 5 days up to several weeks, which is not practical. However,
once the system is at equilibrium, the value of the damping is not
important. Moreover, a large damping would correspond to large
fluctuations on the magnitude of the magnetisation and its direction.
Lower damping would lead to naturally slower dynamics of the mag-
netisation. Nevertheless, we barely noticed any at the timescale
included in our work (Fig. 1c–d). It is worth mentioning that no

Fig. 4 | Temperature-dependent magnetic order. Visualisations of the magnetic
spin configurations for the honeycomb lattice starting from an ordered state as a
function of system size (vertical column) at different temperatures. The spins are

projected following the colour scale shown in the sphere on the left. The bottom
row shows a local viewof the spins inside a 5 nm× 5nmarea at the locationoutlined
by the small boxes in the 1000 × 1000nm2 snapshots.
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damping parameter are used in the Monte Carlo calculations which
support our conclusions. The effect of temperature is taken into
account using Langevin dynamics59 (as in Eq. (5)), where the thermal
fluctuations are represented by a Gaussian white noise term. At each
time step the instantaneous thermal field acting on each spin is given
by

Bi
th =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λkBT
γμsΔt

s

Γ ðtÞ ð6Þ

where kB is the Boltzmann constant, T is the system temperature and
Γ(t) is a vector of standard (mean 0, variance 1) normal variables which
are independent in components and in time. The thermal field is added
to the effective field in order to simulate a heat bath. The system was
integrated using a Heun numerical scheme57.

Data availability
The data that support the findings of this study are available within the
paper and its Supplementary Information.
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