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Nonuniversality of quantum noise in optical amplifiers operating at exceptional points
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The concept of exceptional points-based optical amplifiers (EPOAs) has been recently proposed as a new
paradigm for miniaturizing optical amplifiers while simultaneously enhancing their gain-bandwidth product.
While the operation of this new family of amplifiers in the classical domain provides a clear advantage, their
performance in the quantum domain has not yet been evaluated. Particularly, it is not clear how the quantum
noise introduced by vacuum fluctuations will affect their operation. Here, we investigate this problem by
considering three archetypal EPOA structures that rely either on unidirectional coupling, parity-time symmetry,
or particle-hole symmetry for implementing the exceptional point. By using the Heisenberg-Langevin formalism,
we calculate the added quantum noise in each of these devices and compare it with that of a quantum-limited
amplifier scheme that does not involve any exceptional points. Our analysis reveals several interesting results:
most notably that while the quantum noise of certain EPOAs can be comparable to those associated with
conventional amplifier systems, in general the noise does not follow a universal scaling as a function of the
exceptional point but rather varies from one implementation to another.
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I. INTRODUCTION

Optical amplifiers are the backbone of modern photonics
technology. Typical amplifier schemes rely on traveling wave
structures which enjoy large bandwidth of operation at the ex-
pense of a relatively large footprint. The possibility to shrink
the size of optical amplifiers by using optical cavity structures
has been demonstrated in a number of studies [1–3]. Unfor-
tunately, these cavity-based devices suffer from a limitation
imposed by their gain-bandwidth product. In other words, one
can increase the gain by sacrificing the bandwidth and vice
versa. Recently, our groups introduced the notion of excep-
tional points (EPs) [4–7] based optical amplifiers (EPOAs),
which enjoy both a small footprint due to their cavity-based
construction and an enhanced gain-bandwidth product en-
abled by the presence of EPs [8]. As a result, an EPOA
operates at a larger gain and bandwidth than their counterpart
cavity-based devices that do not possess an EP. Interestingly,
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in this early work, it was found that the scaling of the gain-
bandwidth product is not universal but rather depends on how
the system supporting the EPs is implemented. For an am-
plifier made of parity-time (PT) -symmetric [9–11] coupled
resonators, the values of the gain and bandwidth can be decou-
pled from each other, allowing for the building of devices with
arbitrary parameters that are limited only by the fabrication
constraints. On the other hand, for devices based on chiral EPs
[12,13] and exceptional surfaces [14–17], the gain-bandwidth
product is a function of the respective EP order (i.e., the
number of the coalescing eigenvalues and eigenvectors). This
early work considered only operation in the classical domain
and hence quantum noise was neglected. Given the current
intense activities in quantum photonics technology [18], it is
of interest to study the operation of EPOAs in the quantum
domain and evaluate their performance in the presence of
quantum noise. While earlier studies have investigated the
role of quantum noise in specific PT symmetry arrangements
[19,20], here we focus on the performance of EP-based am-
plifiers by considering various, realistic optical schemes that
can be used to realize EPOAs. These include configurations
that feature either unidirectional coupling, PT symmetry, or
particle-hole symmetry. Several approaches can be used to
investigate the effect of quantum fluctuations in these systems
[21], such as the Lindblad master equation or the quantum
Langevin equations. Here, we adopted the quantum Langevin
technique for calculating the input-output relation, and we use
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an effective model that involves one parameter for modeling
each loss channel and one parameter for modeling the gain.
The physical origin of the quantum noise is attributed to
the coupling between the amplifier structure and these open
channels (vacuum fluctuations in the loss channels and noise
arising from light-matter coupling under pumping conditions
to provide gain—see for instance [22]).

Before we proceed, it is beneficial to first recap some of
the main results in the quantum theory of phase-insensitive
amplifiers [23] and, in doing so, outline the physics of the
problem. The frequency domain input-output field relation for
a phase insensitive amplifier is described by the canonical
expression for the amplifier response [23]:

Ŝout[ω] = G[ω](Ŝin[ω] + N̂ [ω]), (1)

where Ŝin and Ŝout are the bosonic annihilation operators
at the input/output channels and N̂ [ω] = ∑

m cm[ω]η̂m[ω] +∑
n dn[ω]ξ̂ †

n [ω] is the total noise operator, with η̂m[ω] and
ξ̂n[ω] being the Gaussian white noise operators associated
with individual loss/gain channels [24], indicated by the
subscripts m, n. They obey the statistics 〈η̂†

m[ω]η̂m′[ω′]〉 =
〈ξ̂ †

n [ω]ξ̂n′[ω′]〉 = 0, 〈η̂m[ω]η̂†
m′[ω′]〉 = 2πδ(ω + ω′)δm,m′ , and

〈ξ̂n[ω]ξ̂ †
n′[ω′]〉 = 2πδ(ω + ω′)δn,n′ , with the expectation val-

ues involving cross terms, i.e., both η̂ and ξ̂ , vanishing. In
the above, the expectation values are evaluated with respect
to the vacuum state since thermal noise can be neglected at
optical frequencies. In writing the above correlation relations,
we used the convention Â[ω] ∼ ∫

Â(t )eiωt dt and Â†[ω] ∼∫
Â†(t )eiωt dt , i.e., Â†[ω] = (Â[−ω])†, for any operator Â.

These definitions imply that operating at any frequency ωo

corresponds to ω = ωo and ω′ = −ωo. In what follows, we
will focus on the case when ωo is the resonant frequency
of the microresonators. Finally, the amplitude amplification
factor G[ω], and the coefficients cm[ω] and dn[ω], are com-
plex functions whose actual values depend on the amplifier
structure. By imposing the bosonic commutation relation on
Ŝout in Eq. (1), we obtain the constraint

1 +
∑

m

|cm[ω]|2 −
∑

n

|dn[ω]|2 = 1

G[ω]
, (2)

where G[ω] = |G[ω]|2 is the power amplification factor. The
above relation is generic and applies to any linear, phase
insensitive optical amplifier. While the impact of the amplifier
noise on the input signal depends on the amplifier’s design,
the measured noise at the output is a function of both the
amplifier’s structure and the particular light detection schemes
(see Fig. 1) which can be coherent (heterodyne/homodyne)
or incoherent (direct detection). The former requires com-
plex setups and measures information encoded in the electric
field (which is often used with very high-speed commu-
nication networks), while the latter requires simpler setups
and measures the power without providing any informa-
tion about the phase. In what follows, we will focus on
homodyne detection and discuss direct detection briefly in
Appendix C. Under this condition, the added noise is given by
n̄add ≡ S[ωo], where S[ω] ≡ ∫

dω′/4π 〈{N̂ [ω], N̂ †[ω′]}〉 is
the symmetrized noise spectral density [23,24] and {} denotes
anticommutation. Intuitively, S[ω] quantifies the sum of the
uncertainties associated with measuring the two quadratures

FIG. 1. Schematic of an optical amplification and detection sys-
tem. The input signal Sin is boosted at the output Sout with the addition
of extra noise (indicated by the blurring of the output arrow). The
added noise value depends on the noise contribution from each inde-
pendent open channel and their mutual interactions. To illustrate the
main goal of this work, a hypothetical amplifier configuration with
hypothetical open channels f1−4 is depicted. Tuning the system to
operate at an EP may introduce new open channels, say f5,6, and/or
feedback between some of these channels as illustrated by the dashed
blue and red arrows for bidirectional and unidirectional feedback
scenarios. However, the quantum noise of each individual channel is
not affected since this is dictated by the Heisenberg uncertainty prin-
ciple. These effects combined will consequently change the added
noise at the output. Possible detection schemes include coherent or
direct detection. In this work, we evaluate the added noise for some
practical implementations of EPOAs for coherent detection, which is
widely used in communication networks.

of the electric field [23]. From the mathematical definition of
S[ω], it follows that

S[ω] = 1

2

(∑
m

|cm[ω]|2 +
∑

n

|dn[ω]|2
)

. (3)

If there is only one input noise channel associated with
the applied gain (i.e., in the absence of any c terms and by
retaining only one d term), such as for the OA shown in Fig. 2
under the condition γ ′

W = 0, and if the output is collected from
port P1 (see Fig. 2), Eqs. (2) and (3) give n̄add = Go−1

2Go
, where

Go ≡ G[ωo] is the power gain at resonance. In the limit of
large Go, this yields n̄add ≈ 1

2 . This value represents the quan-
tum limit of linear, phase-insensitive OAs [23]. On the other
hand, Eqs. (2) and (3) do not impose such a bound when the
system involves more than one noise channel. For instance,
the amplifier system shown in Fig. 2 will have a noise floor of
n̄add ≈ 3

2 when γ ′
W = γW and the output is collected from port

P2. By recalling that the formation of an EP often involves
the fine-tuning of Hermitian and non-Hermitian parameters,
EPOAs will typically have several noise channels associated
with the various non-Hermitian degrees of freedom. In addi-
tion, the formation of an EP can introduce coupling and/or
coherent feedback between some of these channels. Thus,
while the presence of an EP does not change the fundamental
noise properties in each open channel (this is dictated by the
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FIG. 2. Optical amplifier made of a microring resonator
(gain element) with evanescently coupled waveguides serving as
input/output channels. In the ideal case of negligible back reflection,
only one optical mode (here the CW wave) contributes to the am-
plification process. When γ ′

W = 0, the output from port P1 exhibits
a minimum quantum noise of n̄add ≈ 1

2 . On the other hand, when
γ ′

W = γW , the output from port P2 will feature a purely Lorentzian
amplification but at the same time will have a larger quantum noise
of n̄add ≈ 3

2 .

Heisenberg uncertainty principle), it may introduce interfer-
ence effects between the different channels and alter the total
output noise value (see Fig. 1 for a schematic illustration of
this discussion). Hence it is not a priori clear whether EPOAs
are quantum limited or not.

In this work, we investigate this question by considering
various, realistic implementation schemes of EPOAs featur-
ing a second order EP. To analyze the noise properties of
these systems, we employ the Heisenberg-Langevin formal-
ism. Before we present the details of our calculations, we
first summarize the main results. Our analysis reveals that the
quantum noise in EPOAs does not follow a universal scaling
with the order of the EP but rather varies widely depending on
the actual photonic implementation. For instance, the noise
in an amplifier featuring a chiral EP can be very different
from that associated with an implementation based on PT
symmetry. This is a rather surprising result given that the
noise enhancement factor in laser systems is expected to fol-
low a universal scaling behavior according to the Petermann
factor. Importantly, we find that, for some implementations,
the noise performance of an EPOA can be comparable to
that of conventional amplifiers based on diabolic points (DPs)
while simultaneously providing an advantage in terms of the
gain-bandwidth scaling.

II. RESULTS

In what follows, we evaluate the added quantum noise
associated with several different implementations of optical
amplifiers having an exceptional point of order two. In all of
our calculations, we employ Eq. (1) together with the defini-
tions of N̂ and n̄add to calculate the quantum noise.

FIG. 3. Optical amplifier configuration that implements a chiral
EP via unidirectional coupling (for details, see [8]). The input/output
channels as well as the noise sources are also depicted on the figure.

Amplifiers with chiral EPs and two coupling channels. We
start our analysis by considering an EPOA based on unidi-
rectional coupling as shown in Fig. 3. Achieving asymmetric
coupling can be accomplished by a variety of techniques (see
for instance [13,25]). Here we focus on a simple configura-
tion that employs the coupling between a microring resonator
and a waveguide with an end mirror [8,14–16] as shown in
Fig. 3. For this structure, the Heisenberg-Langevin equations,
expressed in a frame rotating with the resonant frequency of
the bare resonator, take the form

d

dt
â = �â +

√
2γW 1Ŝin +

√
2γRχ̂a

+
√

2γW 2η̂a +
√

2gξ̂ †
a , (4a)

Ŝm = η̂a −
√

2γW 2â, (4b)

d

dt
b̂ = �b̂ +

√
2γW 2eiφ Ŝm +

√
2γRχ̂b

+
√

2γW 1η̂b +
√

2gξ̂ †
b , (4c)

Ŝout = η̂b −
√

2γW 1b̂, (4d)

where â and b̂ are the annihilation operators associated with
the clockwise (CW) and counterclockwise (CCW) modes of
the microring resonators, respectively, and � = g − γW 1 −
γW 2 − γR. Here γW 1,2 denote the coupling to the two waveg-
uides and γR accounts for intrinsic losses in the resonator,
as illustrated in Fig. 3. Additionally, φ represents the phase
acquired by the mode upon traveling twice along the waveg-
uide and reflecting from the mirror (see Fig. 3). Crucially,
the two loss mechanisms described by γW 1,2 and γR are two
independent noise channels for each mode. In addition, the
gain process comes with its own noise channel.

In the absence of a drive and noise, the system
can be described using the non-Hermitian Hamiltonian
H = ( i� 0

−2i eiφγW 2 i�

)
, which in the bases e−iλt [i.e., when

the stationary solution is expressed as x̂(t ) = X̂ e−iλt ,
with x = a, b] has the eigenvalues λ1,2 = i�, and a sin-
gle eigenvector, i.e., it exhibits a second order chi-
ral EP (the term chiral here refers to the propagation
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FIG. 4. Series of two identical optical amplifiers with CW modes
a and b coupled through a common waveguide. Both resonators have
the same gain g with identical coupling coefficients γW and radiation
loss γR.

direction inside the ring, CW or CCW, and not to the chirality
associated with encircling EPs [26]).

From Eq. (4), it is straightforward to show that the power
amplification factor of the above amplifier is given by Go =
16γ 2

W 1γ
2

W 2/�
4, with the high gain limit obtained when the

system approaches the lasing threshold (g = γW 1 + γW 2 + γR)
from below. As has been demonstrated in [8], this scheme has
an enhanced gain-bandwidth scaling compared to a standard
cavity-based OA that does not exhibit an EP. On the other
hand, the EPOA described via Eqs. (4) has two additional
external noise channels compared to a standard OA with one
waveguide. Under steady state conditions, we find (see Ap-
pendix A for a detailed derivation)

n̄add = 1

2

[
γW 2 + γR + g

γW 1
+ �2

4γ 2
W 2

(
1 + γW 2 + γR + g

γW 1

)

+ �4

16γ 2
W 1γ

2
W 2

]
. (5)

In the high gain limit of g → γW 1 + γW 2, and under the
realistic assumption of γR 	 γW 1,2 (both conditions taken
together imply that �

γW 1,2
→ 0), Eq. (5) reduces to n̄add =

1
2 + γW 2

γW 1
. This expression shows that the quantum noise can

be decreased by choosing γW 2 	 γW 1. However, this will also
decrease the gain dramatically and the output signal from the
port indicated on the figure vanishes altogether for γW 2 = 0).
In fact, the gain can be expressed as a function of the noise
factor according to

Go = 16γ 4
W 1

γ 4
R

(
n̄add − 1

2

)2

. (6)

Note that, in this system, n̄add � 1
2 . Of practical importance

is the case when γW 1 = γW 2. Under this condition, the gain

can attain a large value of Go = 16γ 4
W 1

γ 4
R

. However, the noise

is now given by n̄add = 3
2 , i.e., exactly similar to the DP-

based amplifier shown in Fig. 2 with two waveguides. This
may indicate that the extra noise is mainly due to the ad-
ditional waveguide channel rather than an intrinsic feature
of EPs themselves. Importantly, however, despite sharing the
same noise values, the EPOA of Fig. 3 enjoys a better gain-
bandwidth scaling as compared to the DP amplifier.

To test whether the extra noise is an intrinsic feature of
EPs themselves or is due to the additional waveguide, we
now consider the geometry shown in Fig. 4, where two iden-
tical microring resonators are coupled through a common

FIG. 5. PT-based optical amplifier. The two microrings are cou-
pled to each other with a coupling coefficient κ and also to identical
waveguides with coupling coefficients γW and γ ′

W . The top ring
exhibits a gain g1 while −g2 represents a loss in the bottom ring.
In our analysis, when γ ′

W = γW , the output is collected from port P2.
On the other hand, when γ ′

W = 0, P1 is the output port.

waveguide. By considering the subspace of CW modes and
the input/output channel depicted on the figure, we can obtain
the system’s response as before and show that it features an
EP. In this case, we find that the power gain at resonance is

given by Go = 16γ 2
W (g−γR )2

(g−γW −γR )4 and the added noise is n̄add = 1
2 in

the large gain limit. This favorable noise scaling, however, is
contrasted by a spectral response that features a superposition
between Lorentzian and super-Lorentzian line shapes which
may suppress the enhancement in the gain-bandwidth product
predicted for EPOAs. Thus, while the introduction of an EP in
the linear spectrum of an OA does not change the fundamental
noise properties of the individual channels, the coherent feed-
back and interference effects arising due to the presence of the
EP can lead to different output noise values compared to those
obtained in the DP case.

Finally, we remark that in the above analysis we consid-
ered a perfectly reflecting mirror for implementing the EP.
In Appendix B, we show that considering the more realistic
scenario of a partially reflecting mirror does not change the
added noise in the high gain limit. This is mainly because the
finite reflectivity of the mirror affects the amplification and
noise factors in the same manner.

PT-symmetric amplifiers with two coupling channels.
Next, we consider different implementation of EPs that re-
lies on PT-symmetric arrangements as shown in Fig. 5.
For the input/output channels indicated on the figure, the
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Heisenberg-Langevin equations associated with the relevant
optical modes of the microring resonators read

d

dt
â = −(γW − g1)â − iκ b̂ +

√
2γW Ŝin +

√
2g1ξ̂

†
a , (7a)

d

dt
b̂ = −(γ ′

W + g2)b̂ − iκ â +
√

2γ ′
W η̂W +

√
2g2η̂b. (7b)

Here, γW , γ ′
W , and κ denote the coupling rate between the

resonators and their respective waveguides and the coupling
coefficient between the two microring resonators, whereas
g1 > 0 is the gain factor associated with the first resonator. On
the other hand, g2 > 0 is an extra loss applied to the second
resonator in order to tune the operating point and achieve
pseudo-PT symmetry (i.e., PT symmetry up to an additional
symmetric gain or loss) when γ ′

W = γW and g1 = g2. Here,
we neglected intrinsic losses and assumed resonant excitation.
In what follows, we take γ ′

W = γW . Note that this amplifier
architecture is exposed to three noise channels due to the
coupling to the waveguide and the gain and loss channels of
the resonators. Thus we obtain one noise channel less than the
amplifier described via Eqs. (4). In the absence of driving, and
in the classical limit, the non-Hermitian Hamiltonian asso-
ciated with Eqs. (7) is given by H = (−i(γW − g1 ) κ

κ −i(γW + g2 )

)
and its eigenvalues in the bases e−iλt read

λ1,2 = −i(γW + g−) ±
√

κ2 − g2+, (8)

where g± = (g2 ± g1)/2. Clearly, the spectrum of H in this
case exhibits an EP when κ = g+. Under an external excita-
tion Ŝin and for output channel P2, we obtain the following
noise expression:

n̄add = 1

2

(
1 + 1

Go
− 2�1

γW
+ √

Go
�2

1

γ 2
W

)
, (9)

with �1 = γW + g−. As has been noted before [8], this am-
plifier has an interesting feature in the classical domain: its

bandwidth (BEP = 2F�1 with F =
√√

2 − 1) and resonant

gain (Go = 4γ 2
W g2

+
�4

1
) are decoupled from one another when it

operates in the regime g− > 0. Therefore, one can achieve
high gain by increasing g+ by increasing both g1,2 without
crossing the lasing threshold, while keeping the bandwidth
constant by fixing �1. This however comes at the expense of
an increased quantum noise given by Eq. (9) far above the
quantum limit. This unusual scaling for the added quantum
noise can be understood by noting that the device shown
in Fig. 5 is a multiport structure. Hence there are various
choices for configuring the input and output channels. If a
particular configuration is not optimal in the sense that it does
not provide the maximum possible signal amplification, then
it is possible that the amplification factor for a specific noise
channel exceeds that of the signal. It is exactly this effect that
leads to the large noise predicted by Eq. (9) in the high gain
limit.

Interestingly, this unfavorable noise scaling can be cir-
cumvented by considering the parameter regime of g− < 0.
However, this condition leads to an operation regime that
resembles that of a DP amplifier where the large gain limit
coincides with the lasing threshold at �1 = 0. Given that the
bandwidth scales with �1, it is evident that, in this regime, the

gain-bandwidth coupling is reintroduced. The upside is that,
in this same regime of g− < 0, we have �1/γW < 1, which,
for some parameter range, may lead to noise suppression.
To demonstrate this, we first set r ≡ 2g+

�1
> 0 or equivalently

�1/γW = r/
√

Go. The noise and bandwidth expressions of the
PT amplifier then take the form

n̄add = 1

2

[
1 + 1

Go
+ r√

Go
(r − 2)

]
, (10a)

BEP = 2rF
γW√
Go

. (10b)

Thus, compared to a DP amplifier with gain-bandwidth prod-
uct of 4γW , we have BEP/BDP = rF/2. Figure 6(a) depicts the
added noise and bandwidth as a function of the parameter
r. When 1 −

√
1 − 1/

√
Go < r < 1 +

√
1 − 1/

√
Go (which

becomes 0 < r < 2 in the high gain limit), the added noise
is below the quantum limit of half a photon. However, in that
same domain, the corresponding bandwidth is far below the
bandwidth of the DP amplifier. When r ∼ 2 in the aforemen-
tioned high gain limit, the added noise equals that of a DP
amplifier with a single waveguide, having significantly lower
added noise as the DP amplifier with two waveguides, but with
bandwidth reduced by a factor F . For r > 1 +

√
1 + 1/

√
Go,

the bandwidth continuously increases together with the added
noise. The upshot of this analysis is that, when compared
to a two-channel DP amplifier, the PT amplifier with two
waveguides can exhibit improved gain-bandwidth scaling for
r > 2/F and less noise for r < 1 + √

2G1/4
o . The intersec-

tion of these two intervals thus defines the optimal operating
regime as shown by the shaded gray area in Fig. 6.

PT-symmetric amplifiers with one coupling channel. It is in-
structive at this point to also consider a PT amplifier geometry
with only one waveguide channel. This situation corresponds
to Fig. 5 with γ ′

W = 0. The output channel in that case is port
P1. The Langevin equations for this system are

d

dt
â = −(γW − g1)â − iκ b̂ +

√
2γW Ŝin +

√
2g1ξ̂

†
a , (11a)

d

dt
b̂ = −g2b̂ − iκ â +

√
2g2η̂b. (11b)

Here the number of noise channels is only two, as opposed
to three for the two waveguide setup. The noise channels
are again arising due to the gain and loss channels of the
resonators and the coupling to the waveguide (neglecting
intrinsic losses for simplicity). For this system, the non-
Hermitian Hamiltonian now reads as H = (−i(γW − g1 ) κ

κ −ig2

)
.

In the classical domain, the eigenvalues of the structure in the
bases e−iλt become

λ1,2 = −i
(γW

2
+ g−

)
±

√
κ2 −

(γW

2
− g+

)2
. (12)

The spectrum exhibits an EP for κ = |γW /2 − g+| and the
lasing threshold coincides with g− > −γW /2.

At this EP point, and below the lasing threshold, the power
gain as a function of frequency detuning from the resonant
frequency is given by

G[ω] = 1 + 4γW g1 ω2(
ω2 + �2

2

)2 + 4γW g2(γW g2 − �2
2 )(

ω2 + �2
2

)2 , (13)
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FIG. 6. Characteristics of PT-like optical amplifiers operated at an exceptional point. The dashed lines denote the corresponding results
for a DP amplifier. (a) Added noise n̄EP

add and bandwidth BEP for the PT-like architecture with two waveguides as a function of the factor
r = √

Go�1/γW . The gray area denotes the regime where the PT-like architecture outperforms the DP amplifier in terms of reduced noise and
enhanced bandwidth. Note that we only plot the interesting domain of BEP/γW since this quantity vanishes at r = 0. (b) Added noise n̄EP

add and
bandwidth BEP for the PT-like architecture with one waveguide as a function of the loss rate g2/�2.

with �2 = γW

2 + g−. This expression reflects the fact that the
output features an interference between three different trajec-
tories. The first term arises due to direct transmission path
from the input channel to the output port. The second and
third terms can be rearranged into the sum of two Lorentzian
functions and a super-Lorentzian of order two, which is a
characteristic noted before for systems with second order EPs
under general excitation conditions [16,17,27]. As before, in
the regime of g− > 0, this system realizes an amplifier with
decoupled gain and bandwidth. However, in that regime the
amplifier cannot be quantum limited as the noise is amplified
more strongly than the signal just as for the two waveguide
architecture. Thus we focus on the regime where −γW /2 <

g− < 0, with a coupling between the gain and bandwidth.
Here, an enhancement of the bandwidth is still expected due
to the presence of a double pole in the super-Lorentzian
term’s denominator, while noise contributions should scale
with the same gain factor. More specifically, the added
noise reads

n̄add =
(

g2 − 2�2

γW
+ 1

2

)(
1 + 1√

Go

)2

+ 1√
Go

+ 1

Go
,

(14)

where, again, we used Go = G[ω = 0]. In the large
gain limit, which is achieved as �2 → 0, the added noise
becomes

lim
�2→0

n̄add = 1

2
+ g2

γW
, (15)

which shows that the system can approach the quantum limit
when g2 	 γW . Figure 6(b) plots the noise and bandwidth
of this amplifier as a function of g2/�2 when the resonant
gain value is Go = 20 dB. As expected from Eq. (14), the
added noise approaches the value of ∼0.7 in the limit g2 → 0.
Interestingly, increasing the value of g2 decreases the added
noise until g2 = �2, where the noise reaches its minimum
value. An expression for the minimum noise can be obtained
by using the relations g2 = �2, ω = 0 in Eq. (13), solving

for γW /�2, and substituting back into Eq. (14). Doing so gives

lim
g2=�2

n̄add = 1

2

(
1 − 1

Go

)
, (16)

which has the same form as the added noise of the DP ampli-
fier with a single waveguide. Importantly, we also note that, at
this same point, the bandwidth attains its minimum value and
the expression for the gain takes the form

lim
g2=�2

G[ω] = 1 + 4γW (γW − g2)(
ω2 + g2

2

) . (17)

Note that the super-Lorentzian term does not exist at this
point and the gain expression scales similar to that of a DP
amplifier. This analysis shows that a PT-like amplifier with
one waveguide is only quantum limited when it behaves sim-
ilar to single-pole DP amplifier. Operating away from this
point leads to bandwidth enhancement, but at the expense of
additional noise.

Amplifiers with EP implementation via particle-hole sym-
metry. For completeness, we have also studied an EP
implementation that features particle-hole symmetry [28–31].
It is described by the non-Hermitian Hamiltonian H =(ω + i(g − γW ) iκ

iκ −ω + i(g − γW )

)
, where here we explicitly retain

the dependence on the detuning ω. Note that the Hamilto-
nian H anticommutes with the PT operator; hence it is also
called anti-PT symmetric [31–33]. The eigenvalues of H , as
written in the bases e−iλt , are given by λ1,2 = i(g − γW ) ±√

ω2 − κ2, which exhibits an EP when κ = ω. Imple-
menting the above Hamiltonian requires dissipative coupling
[34], which is expected to add more noise terms, but for clarity
we neglect this here and consider only noise contributions
similar to that of Eqs. (7). At the EP, the gain and noise of
this system are given by

G[ω] = 4γ 2
W [ω2 + (g − γW )2]

(g − γW )4
(18)

033226-6



NONUNIVERSALITY OF QUANTUM NOISE IN OPTICAL … PHYSICAL REVIEW RESEARCH 4, 033226 (2022)

and

n̄add = 1

2

[
ω2

ω2 + (g − γW )2

+ g

γW

(
1 + ω2

ω2 + (g − γW )2

)]
. (19)

In the high gain limit (g → γW ), the above expression
reduces to n̄add = 3

2 , which is not quantum limited. In reality, it
is expected that the actual noise level of such a system will be
even larger than this value when accounting for the loss chan-
nels introduced by implementing the dissipative coupling.

While the above analysis does not constitute a gen-
eral proof that EP-based optical amplifiers with enhanced
gain-bandwidth products are not quantum limited, it shows
clearly that practically feasible devices will indeed have noise
above the minimum possible value for conventional ampli-
fiers. Interestingly, the level of added quantum noise correlates
with the scaling enhancement in the gain-bandwidth product.
Particularly, for the configuration depicted in Fig. 3, where
the aforementioned scaling is enhanced but the values of the
gain and bandwidth remain interconnected, the added noise
increases but remains finite. On the other hand, for a two
waveguide PT-symmetric arrangement (as in Fig. 5) where
the gain and bandwidth are completely decoupled in the case
when g− > 0, the added noise value blows up. As we ex-
plained earlier, this observation can be understood by noting
that, in the first case, the large gain limit is achieved for a finite
value of the optical gain coefficient g, while, in the second, it
is approached for g+ → ∞.

III. DISCUSSION AND CONCLUSION

In conclusion, we have calculated the quantum noise as-
sociated with optical amplifiers operating at EPs for various
device implementations by using the Heisenberg-Langevin
approach. Our analysis shows that the added noise due to vac-
uum fluctuations can vary dramatically between two different
devices corresponding to different implementations for the
same EP. In other words, the noise values depend on the device
topology. For instance, an amplifier structure that features
a chiral EP with an enhanced gain-bandwidth product will
exhibit a quantum noise larger than but close to that of an am-
plifier operating at a DP. On the other hand, a PT-symmetric
amplifier operating in a regime where the gain and bandwidth
are totally decoupled will have a divergent noise value in the
large gain limit. These results indicate that there is a trade-off
between the improved device performance (defined by the
enhanced gain-bandwidth product) and the added quantum
noise. Importantly, however, the quantum noise does not scale
linearly with the order of the EP. In fact, for certain device
geometries, the quantum noise may even saturate as the order
of the EP is increased infinitely. To demonstrate this effect, we
consider the structure depicted in Fig. 7. It is straightforward
to see that a similar device made of M rings will exhibit an
EP of order M. An input signal from the leftmost waveguide
will cross every ring before it enters the next stage, i.e., the
device features an amplifier made of M cascaded stages, with

FIG. 7. Cascaded optical amplifier configuration with an EP of
order M. An input signal Ŝin from the leftmost waveguide enters am-
plifier Amp1 that has quantum noise N̂o. The output of this amplifier
is then fed into a second waveguide and then into a second amplifier
that also has quantum noise N̂o, with this process then repeating
for M amplifiers. For large values of gain, the noise of Amp1 will
dominate the quantum noise in Ŝout.

the total output given by

Ŝout = GM

(
Ŝin + N̂o

M−1∑
m=0

G−m

)
, (20)

where as before Ŝin and Ŝout are the bosonic annihilation
operators at the input and output channels, respectively, G
is the amplitude amplification factor, and N̂o is the quantum
noise operator associated with each stage (see Fig. 7). For a
large value of G, only the first term in the summation (cor-
responding to m = 0) will dominate (in fact, for an infinite
series, the contribution of the first term exceeds that of all the
other terms combined when G > 2) and thus only this term
will contribute to the total added quantum noise. From our
earlier discussion about the DP-based optical amplifier made
of one ring resonator and two waveguides, it is clear that the
first amplification stage will thus contribute a noise value of
n̄add = 3

2 . The upper limit on the noise due to the multistage
amplification can be obtained by taking limM→∞. In this case,
the summation reduces to G

G−1 . For G = 10, the maximum
noise for a device with infinite number of cascaded stages
increases only by a factor of ∼0.11 while, for G = 100, this
factor becomes ∼0.0101. These predictions can also be under-
stood in light of the recent work on the linear response theory
of resonant non-Hermitian systems [35]. Finally, we note that,
while considering a direct detection scheme will affect the
measured noise levels, it does not have a significant impact
on the comparison between EP- and DP-based amplifiers (see
Appendix C).

These results, aside from their technical importance for
device design, raise some fundamental questions regarding
the noise consideration in non-Hermitian photonic systems
operating at EPs. Particularly, in the context of laser theory,
it was shown that non-Hermitian effects lead to enhanced
linewidth close to the lasing threshold as quantified by the
Petermann factor [36]. This description, however, fails at EPs
(as it predicts infinite linewidth) and also under highly non-
linear conditions [37]. Consequently, this begs the following
questions: does the linewidth of an EP-based laser device
scale with the EP’s order, or does it also depend on the details
of the implementation? Does the Petermann factor indeed
limit the sensitivity of an EP-based sensor [38] regardless of
how the sensor is built [39–43], or can one cleverly design
some sensing devices that circumvent the otherwise predicted
bound on sensitivity? The answers to these questions are of
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fundamental importance for designing next generation pho-
tonic devices.
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APPENDIX A: DERIVATION OF ADDED NOISE

While the derivation of n̄add for various amplifier structures
is straightforward, here we present the detailed derivation for
one example, which we take to be Eq. (5), for the benefit of the
reader. Evaluating the noise starts with solving Eqs. (4) that
describe the structure in Fig. 3 under steady state conditions
to express the output field in terms of the input signal. This
is achieved by first solving for â (describing CW mode) in
Eq. (4a),

â = −
√

2γW 1

�

(
Ŝin +

√
γR

γW 1
χ̂a +

√
γW 2

γW 1
η̂a +

√
g

γW 1
ξ̂ †

a

)
, (A1)

and then substituting into Eq. (4b) to arrive at

Ŝm = η̂a + 2
√

γW 1γW 2

�

(
Ŝin +

√
γR

γW 1
χ̂a +

√
γW 2

γW 1
η̂a +

√
g

γW 1
ξ̂ †

a

)
. (A2)

Repeating the same calculation for the CCW mode by substituting Eq. (A2) into Eq. (4c) gives

b̂ = − 1

�

[
2
√

2γW 1γW 2eiφ

�

(
Ŝin +

√
γR

γW 1
χ̂a +

√
γW 2

γW 1
η̂a +

√
g

γW 1
ξ̂ †

a

)
+

√
2γW 2eiφη̂a +

√
2γRχ̂b +

√
2γW 1η̂b +

√
2gξ̂ †

b

]
. (A3)

By substituting Eq. (A3) into Eq. (4d), we obtain the following expression for the output:

Ŝout = 4γW 1γW 2eiφ

�2

[
Ŝin + �2

4γW 1γW 2eiφ
η̂b +

√
γR

γW 1
χ̂a +

√
γW 2

γW 1
η̂a +

√
g

γW 1
ξ̂ †

a

+ �

2γW 2eiφ

(√
γR

γW 1
χ̂b +

√
γW 2

γW 1
eiφη̂a + η̂b +

√
g

γW 1
ξ̂

†
b

)]
. (A4)

From the definition of the noise operator in Eq. (1), we find

N̂ = �2

4γW 1γW 2eiφ
η̂b +

√
γR

γW 1
χ̂a +

√
γW 2

γW 1
η̂a +

√
g

γW 1
ξ̂ †

a

+ �

2γW 2eiφ

(√
γR

γW 1
χ̂b +

√
γW 2

γW 1
eiφη̂a + η̂b +

√
g

γW 1
ξ̂

†
b

)
. (A5)

From this expression, the coefficients cm and dn are identified and substituted back into Eq. (3) and we obtain the result in Eq. (5).
An important point here is that writing Eq. (4) in a frame rotating with the resonant frequency of the resonator corresponds

to using n̄add ≡ S[ωo = 0]. Of course, one can work in a nonrotating frame and use the actual value of ωo to arrive at the same
results.

APPENDIX B: IMPACT OF FINITE MIRROR REFLECTIVITY

Here, we examine the impact of the finite mirror reflectivity on the noise associated with the amplifier structure depicted in
Fig. 3. We start by noting that Eqs. (4) mostly remain the same except for Eq. (4c), which is now modified according to

d

dt
b̂ = �b̂ +

√
2γW 2rmeiφ Ŝm +

√
2γRχ̂b +

√
2γW 1η̂b +

√
2γW 2tmeiθ η̂m +

√
2gξ̂ †

b , (B1)

where rm and tm are the magnitudes of the field reflection and field transmission coefficients across the mirror. In addition, θ is
the phase of the transmission coefficient. The new noise term η̂m is associated with the newly opened noise channel to the left of
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the mirror. By following the same algebraic steps as before, we arrive at

N̂ = �2

4γW 1γW 2rmeiφ
η̂b +

√
γR

γW 1
χ̂a +

√
γW 2

γW 1
η̂a

+
√

g

γW 1
ξ̂ †

a + �

2γW 2rmeiφ

(√
γR

γW 1
χ̂b +

√
γW 2

γW 1
rmeiφη̂a + η̂b +

√
γW 2

γW 1
tmeiθ η̂m +

√
g

γW 1
ξ̂

†
b

)
, (B2)

which in turn gives

n̄add = 1

2

[
γW 2 + γR + g

γW 1
+ �2

4γ 2
W 2r2

m

(
1 + γW 2 + γR + g

γW 1

)
+ �4

16γ 2
W 1γ

2
W 2r2

m

]
. (B3)

In the above, we assumed a lossless mirror, i.e., t2
m + r2

m =
1. In the high gain limit, this expression reduces to n̄add =
1
2 + γW 2

γW 1
= 3

2 |γW 1=γW 2 , which is the same expression as the case
with a perfect mirror.

APPENDIX C: DIRECT DETECTION

In the main text, we focused on noise arising when the
homodyne detection scheme is used for the readout of the
optical signal. Here, we briefly discuss how these calcu-
lations will change if a direct detection scheme is instead
used. In that case, the measured quantity is the light in-
tensity rather than the quadratures of the electric field. As
usual, the added noise is defined as the difference between
the output noise and the amplifier input noise normalized
by the gain value: Var(Ŝ†

outŜout )/|G|2 − Var(Ŝ†
inŜin ), where

Var(Â) ≡ 〈Â2〉 − 〈Â〉2
for any operator Â. In terms of the

noise operator N̂ , direct detection with photon counting is
given by the normal-ordered noise expression: n̄add ≡ S[ωo],
where S[ω] ≡ ∫

dω′/2π 〈N̂ †[ω′]N̂ [ω]〉, which in turn

reduces to

S[ω] =
∑

n

|dn[ω]|2. (C1)

Note that, while the above expression depends directly on
the coefficients of the noise terms associated with the gain
channels, i.e., dn, it has an indirect dependence on the loss
channels in the high gain limit since these latter channels
affect the lasing threshold. As an example, let us consider
again the structure shown in Fig. 3, which implements a
chiral EP. From Eq. (A4), we immediately see that, under the
approximation γR 	 γW 1,2, the added noise in the high gain
limit (obtained at the lasing threshold g = γW 1 + γW 2) is given
by n̄add = g/γW 1, which becomes n̄add = 2 for γW 1 = γW 2. For
comparison, we also note that this noise level is identical to
that obtained for the DP amplifier of Fig. 2. For a PT amplifier
with two waveguides (see Fig. 5), we find that n̄add = g1/γW ,
which is large in the high gain limit. This behavior is similar
to the noise associated with the homodyne detection scheme.
From this discussion, it is evident that, while changing the
detection scheme affects the overall value of the noise, it does
not have a significant impact on the ratio between noise levels
in EP-based and DP-based optical amplifiers.
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