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a b s t r a c t 

Optimal decision making in complex environments requires dynamic learning from unexpected events. To speed up learning, we should heavily weight information 

that indicates state-action-outcome contingency changes and ignore uninformative fluctuations in the environment. Often, however, unrelated information is hard 

to ignore and can potentially bias our learning. Here we used computational modelling and EEG to investigate learning behaviour in a modified probabilistic choice 

task that introduced two task-irrelevant factors that were uninformative for optimal task performance, but nevertheless could potentially bias learning: pay-out 

magnitudes were varied randomly and, occasionally, feedback presentation was enhanced by visual surprise. We found that participants’ overall good learning 

performance was biased by distinct effects of these non-normative factors. On the neural level, these parameters are represented in a dynamic and spatiotemporally 

dissociable sequence of EEG activity. Later in feedback processing the different streams converged on a central to centroparietal positivity reflecting a signal that is 

interpreted by downstream learning processes that adjust future behaviour. 
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. Introduction 

Learning to accurately predict desirable or undesirable outcomes

ased on beliefs about states of the world is crucial for adaptive be-

aviour. A critical challenge during learning is that most state-action-

utcome contingencies fluctuate from one moment to the next and some-

imes even reverse. Consider for example the food in your favourite

estaurant. Even though the food quality might vary to some degree

e.g., mood of the chef, availability of fresh ingredients), you have learnt

o revisit this place for a tasty meal. However, after the retirement of

he head chef, you might disagree with the taste of the new chef and

ust search for a new reliable source for a delicious meal. 

A wealth of studies report that people can adaptively integrate

ew information into their beliefs about the world by considering

he environment’s stochasticity and volatility ( Behrens et al., 2007 ;

’Acremont & Bossaerts, 2016 ; Diederen et al., 2016 ; Nassar et al., 2019 ;

ummerfield & Tsetsos, 2015 ). Specifically, learning in dynamic envi-

onments is driven by prediction errors (i.e., a simple form of surprise:

s the outcome better or worse than expected and by how much?) and

n individual learning-rate that scales the impact of prediction errors on

alue updates ( Sutton & Barto, 2018 ). Recent evidence suggests that hu-

an participants are capable to adaptively calibrate the learning rate ac-

ording to the statistical context of the environment, whereby prediction

rrors caused by uninformative outliers (oddballs) are down-weighted

nd prediction errors in volatile environments up-weighted ( d’Acremont

 Bossaerts, 2016 ; McGuire et al., 2014 ; Nassar et al., 2019 ). The P3b, a
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timulus-locked centroparietal positivity in the EEG that has previously

een associated with adjustments in learning behaviour ( Jepma et al.,

018 ; Jepma et al., 2016 ; Polich, 2007 ), has been shown to be mod-

lated by the current learning rate, both after factual and counterfac-

ual outcome information ( Fischer & Ullsperger, 2013 ). Indeed, a recent

tudy explicitly showed that the P3b reflects neuronal processes that

lay an important role in adaptively calibrating learning, depending on

he statistical context of the prediction error ( Nassar et al., 2019 ). In

his study the amplitude of the P3b positively predicted learning in the

ontext of stimulus-outcome contingencies reversals, but negatively pre-

icted learning in the presence of (uninformative) oddballs. 

Importantly, in complex environments additional factors can influ-

nce learning, some of which even may be uninformative for upcom-

ng decisions. Considering the restaurant example alluded to previously,

ne’s expectation about having a tasty meal at a particular restaurant

ould also be influenced by factors not directly related to the food qual-

ty. For example, being soaked by a sudden rainstorm on the way to

he restaurant can spoil the whole evening and perhaps also worsen the

emory of food quality despite an excellent meal. Indeed, there is ev-

dence, that irrelevant information such as randomly varying outcome

agnitudes are tied to learning and thus biasing future outcome ex-

ectations ( Daw et al., 2011 ; Fischer et al., 2017 ). In a previous study,

here participants had to catch bags dropped from a helicopter hid-

en in the clouds, they learned quickly to infer the helicopter’s location

ased on where the bags fell down ( McGuire et al., 2014 ). Interestingly,

articipants updated their belief about the helicopter location more on

are trials, when the bags contained gold rather than stones. This bias
e 2022 
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n belief update could have been driven (a) by the higher obtained re-

ard and/or (b) by the unexpectedness, i.e., salience of the gold bags.

 major open question in learning and decision-making field is how the

uman brain integrates normative and biasing influences to guide future

ehaviour. 

To address this question we combined computational modelling,

lectroencephalography (EEG), and decoding to study distinct effects of

elevant and irrelevant information on learning. Specifically, we mea-

ured learning behaviour in a modified probabilistic reversal-learning

ask that introduced two task-irrelevant factors that were uninformative

or optimal task performance, but nevertheless could potentially bias

earning. First, pay-out magnitudes were varied randomly and there-

ore did not help participants to learn reward probabilities but may

till be considered for future decisions. Second, occasionally, feedback

resentation was enhanced by visual surprise. This uninformative sur-

rise could either increase learning via increased attention to the out-

ome or decrease learning as participants could be distracted from the

utcome. We hypothesized that participants are unable to ignore these

ask-irrelevant factors despite explicit knowledge of their irrelevance for

ask performance. This should be reflected in biased learning, choice be-

aviour and independent feedback-induced EEG dynamics that govern

uture behaviour. In line with our expectations, we demonstrate that

articipants’ overall good learning performance was indeed biased by

andom pay-out magnitudes and sensory surprise. On the behavioural

evel these biases manifest themselves by slowing on consecutive tri-

ls and in future decisions on the same stimuli. Modelling results re-

ealed that participants’ learning was influenced by two biases: (1) they

eweighted the outcomes depending on the (irrelevant) magnitude and

2) were distracted by visual surprise to an individually variable degree.

n the neural level these biases were accompanied by distinct feedback-

ocked EEG correlates that predict behavioural adaptations. 

. Materials and methods 

.1. Participants 

Twenty-eight healthy participants were recruited into this study. The

ata of four participants were excluded because of technical problems

n = 1) or because they performed the task at chance level (n = 3). The

nal sample consisted of 24 participants (18 female, mean age: 24.25

SD = 4.12)). All participants were informed about the experimental

rocedures and gave written, informed consent. The study protocol was

pproved by the local ethics committee. 

.2. Experimental task 

Participants performed a reversal learning variant of an established

robabilistic learning task ( Fischer & Ullsperger, 2013 ) that was specifi-

ally tailored to our research question. To maximize financial earnings,

articipants had to learn the reward probabilities of three different stim-

li. At each trial, participants could either decide to gamble on a specific

timulus and win or lose 10 or 80 points (translating to 0.10/ 0.80 EUR)

r choose to avoid the stimulus and observe what would have happened,

ithout any financial consequences (see Fig. 1 Ai). During the task,

eward probabilities of the stimuli could change unexpectedly, such

hat a good stimulus, that would usually lead to gain of money, could

hange to be either neutral (random pay-outs), or bad and vice versa.

he task was administered using Presentation 16.3 (Neurobehavioral

ystems). 

The task consisted of seven blocks in which the three stimuli were

lternated but their reward probability was kept constant. In each block,

timuli were presented for at least 26 times and not more than 42 times.

fter every block reward contingency changed without notice. In to-

al, the task comprised 18 reward probability reversals (six reversals

er stimuli and 720 trials). Reward probabilities could either be low
2 
20%), neutral (50%), or high (80%). Moreover, we introduced two task-

rrelevant factors to the task that were uninformative for optimal task

erformance but nevertheless could potentially bias learning: a) simple

isual surprise, where on 20% of the trials, the standard colour of the

eedback background (black) was briefly replaced by a colour matching

he feedback colour (i.e., background flash in green for positive feed-

ack and in red for negative feedback, respectively; see Fig. 1 Aii), and

) random pay-out magnitudes. Here, reward magnitudes randomly var-

ed, so that on 50% of the trials 10 points and on the other half of the

rials 80 points could be won or lost (see Fig. 1 Aiii). Visual surprise trials

ere balanced across each reward magnitude condition, so that of the

isual surprise trials, 50% occurred on low magnitude trials and 50%

n high outcome trials. Importantly, we explicitly informed the partici-

ants, that pay-out magnitudes varied randomly and therefore should be

gnored. We did not brief participants about the occasionally changing

eedback background. 

Each trial began with a random jitter between 300 ms and 700 ms,

uring this jitter period a central fixation cross and two response options

choose – green tick mark or avoid – red no-parking sign) were shown

see Fig. 1 Ai). The response options sides were counter-balanced across

articipants and remained in place until the feedback was presented. Af-

er the fixation cross, the stimulus was shown centrally until the partic-

pant responded or for a maximum duration of 1700 ms. If participants

ailed to respond in time, they were instructed to speed up. Thereafter,

articipants’ choices were confirmed by a white rectangle surrounding

he chosen option for 350 ms. Finally, the outcome was presented for

50 ms. If subjects chose to gamble on the presented stimuli, they re-

eived either a green smiling face and a reward of 10 or 80 points or

 red frowning face and a loss of either 10 or 80 points. When subjects

voided a symbol, they received the same feedback but with a slightly

aler colour and the points that could have been received were crossed

ut to indicate that the feedback was fictive and had no monetary

ffect. 

.3. Behavioural regression analyses 

To determine factors influencing choices (bGLM 1 & 3) and RT

bGLM 2 & 4), we performed multiple-robust regression analyses

 Fischer et al., 2018 ), predicting either participants decisions to gam-

le or avoid a stimulus or their reaction times on a given trial. We per-

ormed regressions on two subsets of trials: First we run the regression

n the original trial order. Here, stimuli appeared in intermixed fash-

on allowing us to investigate the influence of directly preceding trials

n participants behaviour on a given trial (bGLM 1 & 2). Learning was

nvestigated in a different trial-order. Here, we resorted the trial-order

ccording to stimulus identify (bGLM 3 & 4) allowing us to directly ex-

mine how the behaviour and task factors on the last encounter of a

pecific stimuli influenced the behaviour on the next encounter of the

ame stimulus. 

The logistic choice model in the original trial order was given by: 

ℎ𝑜𝑖𝑐𝑒 = 𝛽0 + 𝛽1 𝑃 𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝐹 𝑙𝑎𝑠ℎ + 𝛽2 𝑃 𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 

+ 𝛽3 𝑃 𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝐶ℎ𝑜𝑖𝑐𝑒 + 𝛽4 𝑃 𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑂𝑢𝑡𝑐𝑜𝑚𝑒 

+ 𝛽5 𝑅𝑒𝑤𝑎𝑟𝑑𝑃 𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝛽6 𝑇 𝑟𝑖𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟 

+ 𝛽7 𝑆𝑦𝑚𝑏𝑜𝑙 𝑇 𝑟𝑖𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 + 𝛽8 𝐹 𝑅𝐼 

GLM 1 

The logistic choice model run in resorted trial order was defined by:

ℎ𝑜𝑖𝑐𝑒 = 𝛽0 + 𝛽1 𝑃 𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝐹 𝑙𝑎𝑠ℎ + 𝛽2 𝑃 𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 

+ 𝛽3 𝑃 𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝐶ℎ𝑜𝑖𝑐𝑒 + 𝛽4 𝑃 𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑂𝑢𝑡𝑐𝑜𝑚𝑒 

+ 𝛽5 𝑇 𝑟𝑖𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟 + 𝛽7 𝑆𝑦𝑚𝑏𝑜𝑙 𝑇 𝑟𝑖𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 + 𝛽7 𝐹 𝑅𝐼 

GLM 3 
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Fig. 1. Experimental design, observed and 

modelled behaviour. 

(Ai) Time course of the task. On each trial, a 

fixation dot and choice options were presented 

for 300 – 700 ms. Next, the stimulus was pre- 

sented for up to 1700 ms. During this time par- 

ticipants had to decide, if they wanted to gam- 

ble on the stimulus or not. After subject’s deci- 

sions their choice was highlighted for 350 ms. 

Finally, depending on participants choice, ei- 

ther factual or counterfactual feedback was 

presented for 750 ms. (Aii) On 20% of the 

trials, the colour of the feedback background 

changed from black to a feedback-matching 

colour (i.e. red or green), introducing irrele- 

vant visual surprise to the task. (Aiii) A sec- 

ond manipulation in the task focused on the re- 

ward magnitudes. Here, magnitudes randomly 

varied between 10 and 80 points. (B) Mod- 

elled and choice behaviour of the participants 

in the task, stretched out for all stimuli. Note 

that in the task the three different animal stim- 

uli were presented in an intermixed and ran- 

domized fashion, but this visualisation allows 

one to see that participants’ choices followed 

the reward probabilities of the stimuli. Ground 

truth represents the current reward probability 

(20%, 50% or 80%) of the respective stimulus. 

Vertical lines reflect where the data has been 

broken up to sort trials by stimulus identity. 

Data is the plotted with the running average 

( + /- 2 trials). 
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The regression model on RT in the original trial order included the

ollowing regressors: 

𝑜𝑔 ( 𝑅𝑇 ) = 𝛽0 + 𝛽1 𝑃 𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝐹 𝑙𝑎𝑠ℎ + 𝛽2 𝑃 𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 

+ 𝛽3 𝑃 𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝐶ℎ𝑜𝑖𝑐𝑒 + 𝛽4 𝑃 𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑂𝑢𝑡𝑐𝑜𝑚𝑒 + 𝛽5 𝐶ℎ𝑜𝑖𝑐𝑒 

+ 𝛽6 𝑇 𝑟𝑖𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟 + 𝛽7 𝑆𝑦𝑚𝑏𝑜𝑙 𝑇 𝑟𝑖𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 + 𝛽8 𝐹 𝑅𝐼 

GLM 2 

The regression model on RT in resorted trial order is described below:

𝑜𝑔 ( 𝑅𝑇 ) = 𝛽0 + 𝛽1 𝑃 𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝐹 𝑙𝑎𝑠ℎ + 𝛽2 𝑃 𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 

+ 𝛽3 𝑃 𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝐶ℎ𝑜𝑖𝑐𝑒 + 𝛽4 𝑃 𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑂𝑢𝑡𝑐𝑜𝑚𝑒 + 𝛽5 𝐶ℎ𝑜𝑖𝑐𝑒 

+ 𝛽6 𝑇 𝑟𝑖𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟 + 𝛽7 𝑆𝑦𝑚𝑏𝑜𝑙 𝑇 𝑟𝑖𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 + 𝛽8 𝐹 𝑅𝐼 

GLM 4 

The individual factors are: Previous Flash = visual surprise in the pre-

ious trial (bGLM1 & 2) / last stimulus encounter (bGLM3 & 4): 0 = no

isual surprise, 1 = visual surprise). Previous Magnitude = low (0) or
3 
igh (1) reward magnitude in the previous trial (bGLM1 & 2) / last stim-

lus encounter (bGLM3 & 4). Previous Choice: coded participants choice

0 = avoided, 1 = chosen) in either the last trial (bGLM1 & 2) or last en-

ounter of the same stimuli (bGLM3 & 4). Previous Outcome = outcome

f the immediately preceding trials or last stimulus encounter (0 = loss,

 = win). Reward Probability = reward probability of the current stimu-

us. This predictor was a general marker for task performance and only

ncluded in bGLM1 to investigate whether participants considered the

eward probability of the respective stimuli in their choices. Trial Num-

er = log-scaled trial number (reflecting the time in the task; its value did

ot change when resorting the trial-order for bGLM3 & 4). Symbol Trial

umber = block-trial number for each symbol (reflecting how often the

ymbol has been seen in the respective block; again, its value did not

hange when resorting the trial-order for bGLM3 & 4). FRI = feedback

esponse interval. Trial number, symbol trial number and FRI served

ainly to control for unspecific effects of task duration, like fatigue or

uctuations in motivation. Regression analyses were performed sepa-

ately for each participant. Individual participants t-values per regres-

or were then tested on group level via two-sided t -test against zero

 p -values were corrected for multiple comparisons (0.05/number of re-

ressors)). See supplementary materials for a detailed visualization of

ll the results of the bGLMs. 
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.4. Computational modelling 

To better account for participants behaviour and disentangle roles of

otential learning biases and reinforcement learning (RL), we fitted four

ifferent models to participants’ choice data. We first summarize the key

roperties of these models, before describing the model details. The first

odel was a standard RL model, that consequently weighted randomly

igh outcomes as eight times as important as low outcomes. Next, we

onsidered a binary model in which outcomes were weighted equally

model 2). In model 3, outcomes could freely be weighted in relation to

heir impact on learning. Finally, we extended model 3 by introducing a

urprise parameter, that allowed learning to be increased or decreased

hen visual surprise was present during feedback presentation. 

.4.1. Learning model details 

Model 1 : Standard model. This was a standard Q-learning model.

ere, the expected value of an action was calculated as follows: 

 𝑡 +1 = 𝑄 𝑡 + 𝛼 ∗ 𝛿𝑡 𝑤𝑖𝑡ℎ 𝛿𝑡 = 𝑅 𝑡 − 𝑄 𝑡 

Q values represent the expected value of an action at trial t. 𝛼 reflects

he learning rate (i.e., to what extend does new info override old infor-

ation). 𝛿𝑡 represents the prediction error with 𝑅 𝑡 being the reward

agnitude of that trial. In this model, high reward magnitudes were

eighted eight times higher than low magnitudes (see Supplementary

igure1A for a visualization of reward coding) . The likelihood for the

odel to choose a stimulus was calculated according to a softmax rule:

 𝑐,𝑡 = 

1 

1 + exp 
(
− 

𝑄 𝑡 

𝛽

)

The free parameter 𝛽 reflects choice stochasticity, with high values

orresponding to more random choices and low values corresponding

o more deterministic choices. 

Model 2 : Binary model. This model is identical to model 1, except

hat high and low reward magnitudes are scaled equally (namely all

ins = 1 and all losses = 0). 

Model 3. Outcome-weighted model. This model is identical to model

, with the addition of an outcome weighting parameter 𝛾, that can

own-weight or up-weight outcome: 

𝑓 𝛾 < . 5 

 low magnitude , win = . 5 + γ

 low magnitude , loss = . 5 − γ

f γ > . 5 

 high magnitude , win = 1 − ( γ − . 5 ) 

 high magnitude , loss = γ − . 5 

Specifically, we first scaled all rewards equally (all wins = 1 and all

oss = 0). Second, depending on its values the free parameter 𝛾 could

ither down-weight low outcome magnitudes ( 𝛾< 0.5) or down-weight

igh outcome magnitudes ( 𝛾> 0.5) (see Supplementary Figure1C for a

isualization of reward coding). Hence, 𝛾 regulates the effect of the re-

ard prediction error on value update, as described in Model 1: 

 𝑡 +1 = 𝑄 𝑡 + 𝛼 ∗ 𝛿𝑡 𝑤𝑖𝑡ℎ 𝛿𝑡 = 𝑅 𝑡 − 𝑄 𝑡 

Model 4. Outcome weighted plus surprise model. This model is iden-

ical to model 3, except that 𝛼 can change on visual surprise trials

hrough the parameter 𝜆: 

= 𝛼 + 𝑎𝑏𝑠 ( 𝛼 − ( 1 − 𝜆 > 0 ) ) ∗ 𝜆 ∗ 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑒 
𝑡 

4 
The second term in this equation calculates the distance to maximal

1) or minimal (0) learning rate depending on parameter 𝜆 (i.e., for a

ositive 𝜆 this term is the absolute difference between alpha and the

aximal learning rate 1; for negative 𝜆 this term is simply the learning

ate 𝛼). The term Surprise is a Boolean expression that is true (i.e., 1)

or trials with visual surprise and false (i.e., 0) for trials without sur-

rise. Here, 𝜆 can vary between -1 (i.e., learning rate becomes 0 on

isual surprise trials) and 1 (then the learning rate becomes 1 on visual

urprise trials). In general, positive 𝜆 values suggest increased learning

nd thereby up-weighting of the effect of the reward prediction error

n value update on respective trials. Negative values have the opposite

ffect, i.e., reflect a distracting effect of the visual surprise. 

.4.2. Parameter estimation and model comparison 

Parameters were optimized using custom-written scripts in MATLAB

2017a (The Mathworks Company, Natick, MA) and constrained op-

imization using MATLAB’s function fmincon to minimize the sum of

he negative log likelihood of the data given the parameters and neg-

tive prior probability ( Gershman, 2016 ). See supplementary materials

or empirical prior distribution and hyperparameters for parameter con-

trains. The integrated Bayesian Information Criterion (iBIC) was used

o compare between different models ( Huys et al., 2011 ). Here, smaller

alues indicate better and more parsimonious model fits whereby more

omplex models (i.e., models with more model-free parameters) are pe-

alised. To validate our models, we applied model and parameter recov-

ry analyses ( Wilson & Collins, 2019 ), reported in the supplementary

aterials (see Supplementary Figure 1). 

.5. EEG measurements and analyses 

Scalp voltages were recorded and A-D converted from 64 channels

sing BrainAmp MR + amplifiers (Brain Products, Gilching, Germany)

t a sampling rate of 500 Hz. The ground electrode was located at AFz.

ata was recorded with CPz as reference channel and re-referenced to

ommon average for analyses. Pre-processing of the EEG data was done

nder Matlab 2017b (The MathWorks, Natick, MA) and the EEGlab 13

oolbox (Delorme and Makeig, 2004) using custom routines and follow-

ng pre-processing steps described previously (Kirschner et al., 2020).

pecifically, pre-processing steps included: (1) Filtering (0.2 Hz high-

nd 40 Hz low-pass filter), 2) re-referencing to common average, 3)

egmentation into feedback-locked epochs spanning from 3500 ms pre-

eedback to 1400 ms post-feedback, 4) automatic epoch rejection, 5)

emoval of blink and eye-movement components using adaptive mix-

ure independent component analysis (AMICA; Palmer et al., 2012).

ollowing baseline correction ( − 150 to − 50 ms relative to feedback on-

et), epochs spanning -400 ms to 1000 ms around feedback presenta-

ion were then used for multiple robust single-trial regression analyses

 Fischer et al., 2016 ; Fischer & Ullsperger, 2013 ). 

Based on previous findings suggesting differences in feedback pro-

essing between real and fictive outcomes ( Fischer & Ullsperger, 2013 ;

chuller et al., 2020 ), we split up the data according to feedback reality

nd analysed effects of learning and surprise signals in separate GLMs

real feedback -eegGLM1 & fictive feedback – eegGLM2). These mod-

ls included single-trial estimates of the signed reward prediction errors

RPE) derived from Model 4 and regressors coding random magnitudes

low vs. high) and visual surprise (no surprise vs. surprise). In addition,

oth models included trial number and jitter length as regressors of no

nterest to account for unspecific task effects. 

 𝐸 𝐺 = 𝛽0 + 𝛽1 𝑠𝑖𝑔𝑛𝑒𝑑 𝑅𝑃 𝐸 + 𝛽2 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 + 𝛽3 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑒 

+ 𝛽4 𝑇 𝑟𝑖𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟 + 𝛽5 𝐽𝑖𝑡𝑡𝑒𝑟 

egGLM 1&2 

These analyses resulted in regression coefficients for every time point

nd electrode, revealing the time course and scalp topographies of the
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elationship between each predictor and neural activity. Resulting p val-

es were corrected for multiple comparisons using false discovery rate

 Benjamini & Yekutieli, 2001 ). Significant regression coefficients repre-

ent unique contributions of the respective regressor to the EEG signal,

s shared variance between regressors is automatically not attributed to

ny of the regressors ( Leong et al., 2017 ; Mumford et al., 2015 ). 

.6. Multivariate pattern analyses 

To link feedback-related EEG dynamics to behavioural adaptations,

e used neural activity averaged across trials (epochs spanning from

 200 ms to 800 ms after feedback presentation) of the whole scalp to

rain a support vector machine to classify whether a participant switched

ehaviour from choosing to avoiding a gamble or from avoiding to

hoosing a gamble on the next encounter of the same stimulus identity

on average, 3 trials later (range 1 -9)). Following recent recommenda-

ions ( Bae & Luck, 2018 ; Grootswagers et al., 2017 ) we averaged 16 tri-

ls per condition (switch vs. no switch). We applied the support vector

achine functions implemented in MATLAB 2017b (fitcsvm, predict).

he ERP data was smoothed by averaging − 10 ms to + 10 ms around

ach datapoint with a step size of 10 ms throughout each epoch. All

nput data was z-scored across and within electrodes and time. A 100-

old cross-validation using 80% of the trials as training and 20% of the

rials (but at least two ERPs per condition) as prediction set was ap-

lied. Specifically, for each fold, we randomly divided single-trials into

raining and test sets and then randomly averaged over each condition.

ccuracy was calculated as the percentage of overlap between predicted

abels and the ground truth at each datapoint and for each participant.

vailable trials for each condition were matched with a reduction to

he smaller data size via random subsampling. We used cluster-based

ermutation analyses ( Bae & Luck, 2019 ; Maris & Oostenveld, 2007 ) to

ontrol for multiple-comparison and identify time points of correct clas-

ification above chance-level. To localize the information for the clas-

ification, we applied a searchlight analysis approach ( Fischer et al.,

016 ) using the same settings as described above. Specifically, we cal-

ulated the average accuracy for each electrode alone, every lateralized

lectrode together with its contralaterally located electrode, and each

lectrode clustered with the 7 nearest neighbouring electrodes. This re-

ulted in an average accuracy per electrode and time point. To investi-

ate which task factors contribute to the EEG representation of future

ehavioural switches (i.e., the decoding topographies), we adopted a

onjunction map approach ( Nichols et al., 2005 ). Here, we display the

inimum t -statistics topography against the null hypothesis that one or

ore effects are null. t -statistics for the decoding topographies were de-

ived from t -test against chance level and t -values for task factors were

he result of eegGLM 3. This GLM was defined as followed: 

 𝐸 𝐺 = 𝛽0 + 𝛽1 𝑠𝑖𝑔𝑛𝑒𝑑 𝑅𝑃 𝐸 + 𝛽2 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 + 𝛽3 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑒 

+ 𝛽4 𝑇 𝑟𝑖𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟 + 𝛽5 𝐽𝑖𝑡𝑡𝑒𝑟 

egGLM 3 

This model comprised both, real and fictive feedback trials. The sign

f the RPE was inverted for fictive feedback trials in this analysis (see

upplementary Figure 7 for a summary the results of eegGLM 3). The

ationale behind this was that objective feedback valence and subjec-

ive valence are opposite in fictive outcomes (a missed reward is un-

avourable, and an avoided loss is favourable). We report temporospa-

ial conjunction maps displaying minimum t -statistics of the included

actors and masque out all non-significant electrodes after FDR correc-

ion ( Benjamini & Yekutieli, 2001 ). 

.7. Data and code availability 

The data of this study can be downloaded on the Open Science

ramework at https://osf.io/6ykqh/ . The scripts for the regression anal-

sis can be accessed here: http://www.adrianfischer.de/teaching.html . 
5 
. Results 

.1. Behavioural results 

In general, participants’ choices followed the reward probabilities of

he stimuli (see Fig. 1 B and Supplementary Figure 4), suggesting that

he participants learned the task well. In addition, we observed no dif-

erence in the absolute number of correct decisions following good as

ompared to bad stimuli ( t (23) = 1.31, p = .20). On average, after re-

ersals it took participants 8.43 (SD: 1.72) trials to switch to the now

dvantageous response (at least two consecutive correct choices). There

as no difference between reversals from good to bad vs. bad to good

timuli (8.68 (0.49) vs. 8.43 (0.36); t (23) = 0.60, p = .55, d = 0.13 CI

-0.91, 1.66]; see supplementary Figure 3 for a visualization of these

ata). 

.1.1. Visual surprise and pay-out magnitudes modulate participants’ 

ehaviour 

To investigate the factors influencing or biasing decisions, we per-

ormed regression analyses, predicting either participants’ decisions to

hoose or avoid gambling, or their reaction times (RT) on a given trial

see Supplementary Results for a detailed description of the models and

esults). To study immediate trial effects, we submitted the original trial

rder, where the three stimuli were intermixed. Neither preceding vi-

ual surprise (bGLM1; previous flash: t (23) = -0.52, p (corrected) > 0.99)

or higher previous outcome magnitudes (bGLM1; previous magnitude:

 (23) = -1.21, p (corrected) > 0.99) affected participants’ choices (see

ig. 2 A). Interestingly, we found that both types of unexpected events

ad a slowing effect on RTs on subsequent trials (see Fig. 2 B; bGLM2;

revious flash: ΔRT = ∼23 ms; t (23) = 4.23, p (corrected) = 0.001; pre-

ious magnitude: ΔRT = ∼12 ms; t (23) = 3.32, p (corrected) = 0.036). 

Learning was investigated in a separate model (see methods and

ig. 2 C and 2 D). This model was based on reordered data (we resorted

he trial-order according to stimulus identify) and therefore tests se-

uences of trials with the same stimulus. We demonstrate, that choosing

o gamble on a stimulus became more likely after previous wins (bGLM3;

revious outcome: t (23) = 16.95, p (corrected) < 0.001) and when the

timulus was chosen before (bGLM3; previous choice: t (23) = 13.91,

 (corrected) < 0.001). Importantly, these effects were modulated by

he previous reward magnitude (bGLM3; previous magnitude x previ-

us outcome: t (23) = 5.61, p (corrected) < 0.001; previous magnitude x

revious outcome x previous choice: t (23) = -2.83, p (corrected) = 0.06).

ollow-up analyses revealed that participants were more likely to gam-

le on a stimulus after wins with high reward magnitudes ( t (23) = 5.71,

 < .001, d = 0.49) and less likely to choose a stimulus after high losses

 t (23) = 2.82, p = .01, d = 0.21). Moreover, subjects were more likely to

amble on a stimulus after having received a high counterfactual reward

 t (23) = 6.42, p < .001, d = 0.76). On the contrary, participants were

ess likely to choose a stimulus after high factual losses ( t (23) = 2.62,

 = .02, d = 0.42). These results may reflect an enhancement of simple

in-stay/lose-shift heuristics ( Nowak & Sigmund, 1993 ) during decision

aking by high reward magnitudes. In contrast, reward magnitudes did

ot affect choices after factual wins and counterfactual losses which pos-

ibly reflects ceiling effects (i.e., these situations already have highest

eward probabilities and are hence not further affected by reward mag-

itudes). 

Receiving visually surprising feedback during a previous stimulus

ncounter did not influence participants’ choices or switch probability

Supplementary Figure 5B and 6). In addition, there was no systematic

odulation of participants’ RTs through previous choice, outcome, mag-

itude, or feedback background colour of the same stimulus beyond the

ffect of immediately preceding outcomes (bGLM4, Fig. 2 ). 

Taken together, both, random pay-out magnitudes and sensory sur-

rise have an impact on behaviour in the task. Specifically, we show

hat visual surprise and random reward magnitudes both increase RT on

onsecutive trials. Moreover, we demonstrate that non-normative task

https://osf.io/6ykqh/
http://www.adrianfischer.de/teaching.html
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Fig. 2. Behavioural Results. 

(A - B) Main results for regressions on original trial order, investigating the impact of visual surprise and outcome magnitude on choices (A) and RT (B) on the next 

trial while ignoring stimulus identity. We found that visual surprise and high outcome magnitude slowed down subsequent responses but did not affect participants’ 

choices. (C-D) Regression analyses on a resorted trial order according to appearance of the same stimulus identity show that reward magnitudes influenced participants 

decisions (C) but not their RTs (D). (Cii) shows follow-up analyses of the previous magnitude x previous outcome interaction. (Ciii) depicts the previous magnitude 

x previous outcome x previous choice interaction. Note: Impact is quantified and visualized as averaged within-subject t -values. Box plots show the distribution of 

the respective t-values over subjects. ∗ = Significant regressor (derived from t-tests of the individual regression t-values against zero). Boxes = interquartile range 

(IQR), − = median, o = mean, whiskers = 1.5 × IQR. 

6 
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5  
actors bias learning, despite explicit knowledge of its irrelevance. We

herefore utilized computational modelling to quantify potential vari-

bles involved in this learning bias. 

.1.2. Task-irrelevant information biases learning by scaling the size and 

mpact of RPE 

We fitted four reinforcement learning models to participants’ be-

aviour. The optimal way to maximize outcome in this task, is to ig-

ore random pay-out magnitudes and visual surprise during decision

aking. However, we hypothesized that participants are unable to ig-

ore task-irrelevant factors. Indeed, modelling results suggest that par-

icipants’ learning was influenced by two biases: (1) they reweighted

he outcomes depending on the (actually irrelevant) magnitude and (2)

ere distracted by the visual surprise to an individually variable degree.

n the best fitting model, this was operationalized by a reward-scaling

arameter gamma ( 𝛾< 0.5 indicated down-weighting of low outcome

agnitudes; 𝛾> 0.5 indicated down-weighting of high outcome magni-

udes; Methods) and an attention parameter lambda which scaled the

ndividual learning rate on trials with visual surprise ( 𝜆 < 0 suggests

own-weighting and 𝜆 > 0 up-weighting of the individual learning rate).

In our sample, the average reward-scaling parameter gamma was

maller than the indifference value ( 𝛾 = 0.5, where high and low mag-

itudes outcomes have identical reward magnitudes; t (23) = -10.77, p

 .001, d = -2.25, CI [0.14,0.26]), suggesting that participants down-

eighted low magnitude outcome leading to decreased value updating

 Fig. 3 ). Interestingly, we found that the less a participant’s choices

ere biased by magnitudes (the larger, i.e., the closer gamma was to

.5), the better was the participant’s performance in the task ( Fig. 3 C).

he lambda parameter was significantly smaller than 0 ( t (23) = -2.54,

 = .02, d = -0.53, CI [-0.28,-0.03], see Fig. 3 B), suggesting that sen-

ory surprise did not get ignored, but had a rather distracting effect by

educing the learning rate (and thereby down-weighting the effect of

he reward prediction error on value update) on respective trials. The

earning bias induced by visual surprise reflected in lambda did not cor-

elate with overall task performance ( Fig. 3 C). Interestingly, when ex-

mining the distribution of the lambda parameter, participants appear

o cluster into two groups: Individuals distracted by visual surprise (i.e.,

hey update their values less on trials with visual surprise; bright dots

n Fig. 3 C), and individuals with small positive lambda scores, suggest-

ng slightly enhanced learning through increased feedback salience by

isual surprise (dark dots in Fig. 3 C). In addition, there was a trend for a

ositive correlation between the absolute difference to the indifference

alue between gamma and lambda scores ( r = 0.20, p = .08), suggesting

 general susceptibility to learning biases that would be interesting to

ollow up in larger samples. 

Model comparison revealed, that neither the alternative model that

eighted high outcomes eight times as important as low outcomes (stan-

ard RL model), nor the model that weighted outcomes equally (binary

odel, the optimal way to learn in the task), fit participants behaviour

etter than the model accounting for outcome reweighting and visual

urprise provided the best fit to the data ( Figs. 3 , 1 Bii). This was sup-

orted by model and parameter recovery analyses (Supplementary Fig-

re 1). 

Taken together, the behavioural results suggest that the task-

rrelevant information affected participants’ behaviour. Both random

ay-out magnitudes and sensory surprise induce learning biases. These

earning biases in part explain the variance in task performance between

articipants. 

.2. Neural correlates 

We submitted feedback-locked EEG epochs to mass-univariate mul-

iple robust regression analysis across single trials to reveal representa-

ions of the variables driving or biasing value update and future choice

ehaviour, namely reward prediction errors (RPE), outcome magni-

udes, and visual surprise. 
7 
.2.1. EEG correlates of reward prediction errors are dynamic and differ 

etween real and fictive outcomes 

Replicating previous findings ( Fischer & Ullsperger, 2013 ), we found

n early dissociation of feedback processing between real and fictive

utcomes. First, an occipital negative early reward prediction error

RPE) effect that occurred 180–220 ms after feedback onset was exclu-

ively significant for fictive feedback (peak at Oz 210 ms, t (23) = -4.99,

 < .001, d = -1.04, CI [-2.42,-1.00]). Second, only real outcomes were

ssociated with an early frontal positive prediction error effect span-

ing from 200–290 ms (peak at FCz 260 ms, t (23) = 5.07, p < .001,

 = 1.06, CI [1.21,2.88]) and a subsequent negative frontal prediction

rror covariation in the time range of 330–400 ms with a peak at elec-

rode FCz at 360 ms, t (23) = -4.47, p < .001, d = -0.93, CI [-3.46,-1.27],

ee Fig. 4 A). As depicted in Fig. 5 A, in the averaged event-related po-

entials these covariations reflect the feedback-related negativity (FRN,

alsh & Anderson, 2012 ) and P3a components (see Fig. 5 A). Formal

ests of the exclusiveness of these effects to real and fictive feedback

rocessing are reported in Supplementary Figure 7. Similar to Fischer &

llsperger (2013) , we find that, as feedback processing continues, real

nd fictive outcomes converge on a similar parietal RPE correlate that

atches the P3b ERP component (real, peak at Pz 560 ms, t (23) = -

.09, p < .001, d = -1.06, CI [-2.50,-1.06]; fictive, peak at Pz 430 ms,

 (23) = 6.42, p < .001, d = 1.34, CI [1.50,2.93]; see Fig. 4 A and Fig. 5 A).

he directions of the parietal RPE effects are such that for both, real and

ctive outcomes, the ERP is more positive-going for more unfavourable

utcomes (i.e. more negative RPEs when the gamble was chosen and

ore positive RPEs when the gamble was avoided). 

.2.2. Reward magnitude and surprise differentially modulate 

eedback-related ERPs 

As can be seen in Fig. 4 B and 5 B, reward magnitude is coded in a

airly similar fashion in real and fictive outcomes. Specifically, we found

 positive frontal-to-frontocentral covariation in the time range of the

RN for both real (230 – 290 ms, peak at Fz 280 ms, t (23) = 3.88,

 < .001, d = 0.81, CI [0.17, 0.57]) and fictive (260 – 290 ms, peak

t Fz 280 ms, t (23) = 4.35, p < .001, d = 0.91, CI [0.20, 0.57]) feed-

ack. In other words, larger outcome magnitudes are associated with

ore positive FRN amplitudes. Later in feedback processing we find a

ositive parietal covariation between the magnitude regressor and neu-

al activity in the P3b range (real feedback: 320 – 790 ms, peak at Pz

50 ms, t (23) = 7.00, p < .001, d = 1.46, CI [0.65, 1.19]; fictive feed-

ack: 310 – 750 ms, peat at Pz 500 ms, t (23) = 6.64, p < .001, d = 1.38,

I [0.60,1.15]). 

Neural correlates of visual surprise are very dynamic, yet similar in

eal and fictive feedback (see Fig. 4 C and 5 C). First, there is an early

rontocentral negative covariation combined with a positive bilateral

ccipital covariation around 100 ms (real feedback: 70 – 110 ms, peak

t FCz 90 ms, t (23) = -5.56, p < .001, d = -1.16, CI [-0.89, -0.41]; fic-

ive feedback: t (23) = -4.67, p < .001, d = -0.97, CI [-0.77,-0.30]) fol-

owed by a positive covariation around 160 ms (real feedback: 130 -

70, – 100 ms, peak at FCz 160 ms, t (23) = 3.48, p = .002, d = 0.72, CI

0.29, 1.16]; fictive feedback: t (23) = 5.27, p < .001, d = 1.10, CI [0.57,

.31]). Next, we found a positive parieto-occipital covariation with po-

arity reversal at Oz around 200 ms (real feedback: 190 – 210, peak

t Pz 200 ms, t (23) = 4.48, p < .001, d = 0.95, CI [0.40,1.09]; fictive

eedback: t (23) = 4.74, p < .001, d = 0.98, CI [0.53, 1.35]). This was

ollowed by a frontocentral negative (real feedback: 220 – 250 ms, peak

t FCz 230 ms, t (23) = -4.39, p < .001, d = -0.92, CI [-1.40, -0.51]; fic-

ive feedback: t (23) = -3.01, p = .006, d = -0.63, CI [-1.25, -0.23]) and a

ubsequent mid-latency strong positive covariation (real feedback: 290

390 ms, peak at FCz 330 ms, t (23) = 4.46, p < .001, d = 0.93, CI

0.84, 2.28]; fictive feedback: t (23) = 4.92, p < .001, d = 1.03, CI [0.79,

.94]), which contribute to the FRN and P3a, respectively ( Fig. 5 C). Fi-

ally, there was a small central positive covariation contributing to the

3b with a shorter time window in the real (490 – 510 ms, peak at Cz

00 ms, t (23) = 3.34, p = .003, d = 0.70, CI [0.25,1.05]) as compared
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Fig. 3. Computational modelling results. 

(A) Comparison of the candidate models by in- 

tegrated BIC indicates, that model 4 that al- 

lows for free reward scaling and the learning 

rate to be changed by surprise fit the data 

best. (B) Fitted parameter distribution of model 

4 plotted over subjects. Boxes = interquartile 

range (IQR), − = median, o = mean, whiskers 

= 1.5 × IQR. (C) Depicts the correlation be- 

tween model parameters reflecting learning bi- 

ases and task performance. 

t  

t

 

w  

c  

5  

g  

A  

(  

3  

(  

t  

f

 

t  

a  

p  

t  

d  

o  

o  

t  

m  

o

3

 

n  

r  

h  

t  

h  

r  

l  

w  

w  

a  

A  

a  

w  

d  

s  

F  

w  

s  

v  

(  

a  

c  
o the fictive feedback condition (470 – 610 ms, peak at Pz 590 ms,

 (23) = 2.87, p = .009, d = 0.60, CI [0.15, 0.93]). 

To formally test for spatiotemporal differences of our task factors,

e extracted averaged b-values at Fz, FCz, Cz and Pz at the laten-

ies 100 ms ( ± 10 ms), 250 ms ( ± 10 ms), 350 ms ( ± 10 ms), and

00 ms ( ± 10 ms) from the RPE, magnitude and visual surprise re-

ressors of eegGLM 1&2. These data were then analysed in a four-way

NOVA with the factors: location, latency, factor, and factuality (real

eegGLM1) vs. fictive (eegGLM2) feedback). Results yield a significant

-way (location ∗ latency ∗ factor, F(18,414) = 14.66, p < .001) and 4-way

location ∗ latency ∗ factor ∗ factuality, F(18,414) = 4.60, p < .001) interac-

ion which point towards dissociable neural representations of our task

actors. 

Taken together, the results from eegGLM1 and eegGLM2 revealed

hat reward prediction errors are initially processed differently in real

nd fictive outcomes but converge on a common late central parietal

ositivity that coincides with the P3b ERP component. This suggests

hat learning from fictive feedback engages a specific neural mechanism

istinct from learning from real outcomes. In contrast, neural correlates

f magnitude and visual surprise effects are similar for real and fictive

utcomes and broadly overlap with RPE processing in real outcomes

emporally and spatially. Interestingly, these results suggest, that both

agnitude and surprise effects contribute to the FRN/P3 ERP complex

ver and above the effects of reward prediction errors. 
8 
.2.3. Feedback-related EEG dynamics predict future behaviour 

Next, we tested our hypotheses whether feedback-related EEG dy-

amics govern behaviour adaptations. Specifically, we investigated the

elationship between EEG activity during feedback processing and be-

avioural switches on the next encounter of stimuli with the same iden-

ity. To parse out effects on response switching, we analysed switch be-

aviour with logistic regression on trial-by-trial data (see supplementary

esults for more details). We found that response switches were more

ikely after disconfirming feedback (factual losses and counterfactual

ins) with high reward magnitudes and shortly after reversals. Next,

e used multivariate pattern analysis on ERP activity of the whole scalp

nd trained a support vector machine to predict behavioural switches.

s can be seen in Fig. 6 A, cluster-based permutation analyses revealed

 large cluster of time points in which the decoding of future switches

as significantly greater than chance level. Interestingly, this time win-

ow is spanning over all the significant neural correlates of the regres-

ors of interest in eegGLM 1&2, ramping up from 110 ms across the

RN/P3a latency range, plateauing at its maximum in the P3b time

indow, and tapering off until 790 ms after feedback presentation. A

earch light analysis at the maximal individual decoding accuracy re-

ealed a topographic match with the P3b which occurs in this time range

see Fig. 6 Bi). To formally test which feedback-locked EEG dynamics

re reflected in the response switch decoding topography, we applied

onjunction map analyses ( Nichols et al., 2005 ). We found that both,
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Fig. 4. Single-trial regression analysis of feedback-locked EEG epochs. 

Time course of regression weight topographies for the feedback-locked reward prediction error (A) , magnitude (B), and surprise (C) regressor split up into real and 

fictive outcomes. Topographies show beta coefficients thresholded at critical p-value from FDR correction. 
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PE and magnitude, are reflected in the decoding topography. In con-

rast, there was no significant covariation that survived correction for

ultiple comparison when we included visual surprise to the conjunc-

ion map analyses. These results mirror our behavioural findings, where

oth previous outcome and magnitude influenced participants’ choices.

oreover, these results corroborate previous findings suggesting the

3b provides a common signal that is interpreted by downstream learn-

ng processes that guide future decisions ( Fischer & Ullsperger, 2013 ;

assar et al., 2019 ; Razmi & Nassar, 2022 ). In a follow-up analysis, we

omplimented eegGLM 3 with a switch regressor to investigate neural

epresentations of choice switches, that are not predicted by our model

RPE), reward magnitude, and surprise. Results indicate that this re-

ressor covaries positively with midlatency and late parietal EEG am-

litudes (see supplementary Figure 10E). This suggest that the P3b

ay contain information about choice switches over and above task

actors that have been shown to influence choices in the behavioural

nalyses. 

Additionally, we sought to investigate possible relationships between

ingle-trial feedback-related EEG activity to adaptations in RT in subse-

uent trials. Therefore, we regressed feedback-related EEG activity at

ach data point onto RT in consecutive trials including factors of no

nterest (jitter, trial number) that controlled for task-unspecific effect

n consecutive RT. We found a positive covariation between single-trial

EG activity and consecutive RT in the P3a time range displaying a typ-

cal, yet slightly more parietal, scalp topography (Cz peak at 380 ms,

 (23) = 2.98, p = .006, d = 0.62, CI [.28,1.56], see Fig. 6 C and 6 Di).

onjunction map analysis ( Nichols et al., 2005 ) revealed a significant

oactivation of the surprise and magnitude regressor of eegGLM3 at

80 ms with this scalp topography (see Fig. 6 Dii), suggesting that neu-

al correlates of the task-irrelevant factors contribute to RT slowing in

onsecutive trials. 
9 
. Discussion 

In this study we examined whether and how factors that are ir-

elevant for goal achievement (i.e., task-irrelevant information) alter

earning, and which temporospatial EEG correlates accompany these

otential biases. We used a reversal learning variant of a previously

stablished task ( Fischer & Ullsperger, 2013 ) that allowed us to in-

estigate contributions of two task-irrelevant factors (i.e., random pay-

ut magnitudes and sensory surprise) to human participants’ task per-

ormance. Consistent with previous work, we found that participants’

earning was influenced by irrelevant information ( Kao et al., 2020 ;

cGuire et al., 2014 ). In line with models of reinforcement learning

 Sutton & Barto, 2018 ), participants updated decision-guiding-stimulus-

alues based on RPEs. Importantly, we show that the size (via random

ay-out-magnitudes) and the impact of RPEs (via visual surprise) on this

alue-update was inappropriately scaled by irrelevant information. On

he behavioural level, these biases manifest themselves by post-feedback

lowing (PFS) on the immediately following trial, and in choice be-

aviour at the next encounter of the same stimulus, which could occur

ithin the next ten trials. On the neural level, we expected these pa-

ameters (RPE and non-normative factors) to be linked to dissociable

eural correlates, but also to converge in a common signal guiding fu-

ure behaviour ( Fischer & Ullsperger, 2013 ; Nassar et al., 2019 ; Razmi

 Nassar, 2022 ). This is exactly what we found. Common to all param-

ters is that they modulate the stereotypical ERP sequence after visual

eedback (i.e., the early visual P1/N1 complex, and the subsequent FRN,

3a/P3b complex ( Kappenman & Luck, 2012 ; Ullsperger, Fischer, et al.,

014 )) in some way. Yet, they differ in terms of their temporal dynam-

cs and dependence on feedback factuality. In the following we begin

y describing contributions of each parameter to this uniform sequence

f EEG activity. We then argue that the common central to centropari-
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Fig. 5. EEG representations of outcome parameters reward prediction error, magnitude, and surprise contribute differentially to feedback-locked event- 

related EEG dynamics and ERPs. 

The first two columns show feedback-locked event-related potential (ERP) waveforms separately for real and fictive feedback split up for the main task manipulations 

outcome (A), magnitude (B) and visual surprise (C). The column on the right depicts the regression time courses for the according main effects in the models eegGLM 

1 & 2, comparing processing of real (blue) and fictive (purple) feedback. Shown are electrodes of maximal effects of early (FRN, P3a at FCz) and late (P3b at Pz) ERP 

correlates. Shadings indicate 99% confidence intervals. 

10 
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Fig. 6. Feedback-related EEG dynamics predict future be- 

haviour. 

(A ) Mean accuracy of ERP-based decoding of behavioural 

switches. Chance-level performance is indicated by the dashed 

horizontal line. Shadings indicate ± 1 SEM. grey area indi- 

cates the cluster of time points in which decoding accuracy 

significantly surpassed chance level after correction for mul- 

tiple comparisons using cluster-based permutations analysis 

( Bae & Luck, 2019 ; Maris & Oostenveld, 2007 ). (Bi) A search 

light analysis at the latency of the maximal individual de- 

coding accuracy revealed a centroparietal topography match- 

ing the P3b. ( Bii ) Temporospatial conjunction map analyses 

( Nichols et al., 2005 ). Minimum t -statistics of significant coac- 

tivation of all included regressors (decoding accuracy, reward 

prediction error (RPE) and magnitude) after FDR correction 

are shown. Results indicate that both, RPE and magnitude, 

contribute to the decoding topography. Note : One participant 

was excluded from this analysis as there were not enough 

switch trials for this participant to generate two valid ERPs per 

category for the test set. ( C,D ) Coupling between neural signals 

and consecutive RT slowing at Cz (electrode with the maximal 

effect). Robust regression coefficients indicate across all sub- 

jects that the neural signal on a given trial covaries with the 

following trial’s RT with a peak in the P3a time range. Thus, 

longer RT’s in the next trial are associated with higher P3a am- 

plitudes on a given trial. Shades represent SEM and the grey 

shaded areas mark the time of significant effects that survived 

FDR correction. ( Di ) The topography plot display regression 

weights at the RT prediction peak and all non-significant elec- 

trodes after FDR correction are masked out. ( Dii ) Conjunction 

map analyses ( Nichols et al., 2005 ) indicating that both the 

surprise and magnitude regression show a coactivation with 

the topography of the peak RT prediction. 
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tal EEG coactivation of all parameters provides a signal driving future

ehaviour and learning adjustments. 

.1. Early visual EEG activity following feedback 

The first significant covariation of feedback-locked EEG activity was

ound for the visual surprise regressor during both processing of real

nd fictive feedback. Specifically, we found an early frontocentral nega-

ive covariation combined with a positive bilateral occipital covariation

round 100 ms that was followed by a positive parieto-occipital covari-

tion with polarity reversal at Oz around 200 ms. We interpret this ac-

ivation as response of the visual system to the surprising background

olour change during feedback presentation on 20% of the trials. Indeed,

arly sensory EEG responses have been shown to be affected by surprise

e.g., Sowman et al., 2012 ). On the other hand, the frontocentral nega-

ive covariation around 100 ms post feedback might not just be a mere

rojection of the effect of the visual system. It could also be, that this

ovariation already reflects a very early cognitive evaluation of surprise.

upporting this argument, there is evidence of involvement of early ac-

ivation of the posterior medial frontal cortex (pMFC) during decision

aking ( Mulert et al., 2008 ). The pMFC has been consistently impli-

ated in performance monitoring, cognitive control, and decision mak-

ng ( Kolling et al., 2018 ; Shenhav et al., 2016 ; Ullsperger, Danielmeier,

t al., 2014 ). 

Replicating previous findings ( Fischer & Ullsperger, 2013 ), we found

 negative early occipital reward prediction error (RPE) effect that oc-

urred around 200 ms exclusively after fictive feedback. This effect
11 
s likely generated in extrastriate visual areas and parietal postero-

edial cortex ( Boorman et al., 2011 ; Fischer & Ullsperger, 2013 ) and

ay reflect a mechanism that eases counterfactual learning ( Gold &

hadlen, 2007 ). 

.2. Dissociable contributions to a uniform sequence of EEG activity 

ssociated with performance monitoring 

A uniform sequence of EEG activity associated with performance

onitoring is typically found after feedback: an early frontocentral neg-

tivity (the FRN), followed by a frontocentral positivity (the P3a ERP

omponent), that is succeeded by a more sustained parietal positivity

alled P3b ( Ullsperger, Fischer, et al., 2014 ). In the following, we dis-

uss dissociable contributions of our task factors to this sequence. 

The FRN peaks 200 – 300 ms after feedback, is modulated by RPEs

nd surprise, and consistently localized to the pMFC ( Ullsperger, Fis-

her, et al., 2014 ; Walsh & Anderson, 2012 ). In line with previous work,

e found that the FRN tracks RPE signals ( Sambrook & Goslin, 2015 ),

ut only if rewards were actually obtained, rather than counterfactual

 Fischer & Ullsperger, 2013 ). This suggests that the FRN may require ac-

ive involvement to track RPE signals. Supporting this argument, there

s evidence that the RPE signal contributing to the FRN is also absent in

bservational learning ( Burnside et al., 2019 ). An alternative explana-

ion may be a general disengagement of attention during counterfactual

r observed feedback to others’ actions. However, this is unlikely given

hat our participants learn equally well from factual and counterfactual

utcomes and that EEG representations of visual surprise in the FRN
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ime window are similar for both conditions. These results suggest that

isual surprise is coded in the FRN independent of feedback valance and

actuality. This data fits well with the idea that the FRN reflects reward

redictions errors for both positive and negative feedback ( Sambrook

 Goslin, 2015 ) and is in line with recent research suggesting novelty

o affect feedback processing in the FRN time window ( Ernst & Stein-

auser, 2020 ). However, the manipulation of the FRN through surprise

oes not appear to habituate over time (see supplementary Figure 8D).

hus, visual surprise may alternatively introduce some modulation of

he FRN time window through visual-evoked responses. With respect

o random pay-out magnitudes, we found that they are also tracked in

he FRN during both, real and fictive feedback. This suggests objective

oding of the reward magnitude in the FRN, regardless of whether the

eward is actually obtained or not. Coding of reward magnitude in the

RN is at odds with a previous study suggesting that the FRN is in-

ensitive to reward magnitudes ( Yeung & Sanfey, 2004 ). In this study,

igh and low reward magnitudes could be predicted because the partic-

lar card colours were consistently associated with high or low reward

agnitudes. In contrast, in the present study reward-magnitudes varied

andomly and could therefore not be learnt. One possible characterisa-

ion of these findings is that under maximal expected uncertainty the

RN tracks reward magnitudes in a similar fashion as surprise (i.e., un-

xpected high or low reward magnitude), while this is not the case when

rior reward magnitude prediction is possible ( Yeung & Sanfey, 2004 ). 

Following the FRN, the pronounced midlatency frontal-central effect

or real RPEs and feedback-factuality-independent visual surprise fits

ell with research linking the P3a to attentional allocation of resources

o stimuli ( Polich, 2007 ). Our data suggests that negative RPEs trigger

ttentional orienting and that this is reflected in the increased amplitude

f the P3a. However, in line with previous work, this effect appears to

epend on whether or not feedback had factual consequences ( Fischer

 Ullsperger, 2013 ). In contrast to RPEs, increased feedback salience

y visual surprise triggered attention orienting regardless of whether

he feedback was factual or counterfactual. This was indexed by a large

rontocentral P3a effect. This feedback-factuality-independent effect of

isual surprise may be an index of the central nervous response to per-

eptual novelty ( Friedman et al., 2001 ; Wessel & Aron, 2017 ). Given that

he coloured background of the feedback occurs at a stable frequency of

0%, participants build up an expectation of these rare feedback events,

hich, in turn, should reduce the surprise elicited by them. Therefore, a

eduction (habituation) of surprise-related effects with increasing time-

n-task is expected (on a behavioural level, this is reflected in a reduc-

ion of post-surprise slowing over time (see supplementary Figure 9)).

his habituation effect on PSS may suggest that participants were par-

icularly distracted by visual surprise at the beginning of the task. In

ontrast, early visual evoked potentials generated in primary visual cor-

ex should not be reduced over time. In a follow-up analysis, we found

n interaction of surprise x trial number (see supplementary Figure 8D)

ndicating a habituation of the frontocentral surprise effect with increas-

ng exposure to the rare visually surprising feedbacks. This supports our

nterpretation that this frontocentral P3a-like effect at 300 ms indeed re-

ects surprise. However, we cannot rule out, that this ERP is only driven

y attention shifts. 

As feedback processing continues, the different task factors appear

o converge on a common late central parietal positivity that coincides

ith the P3b ERP component ( Polich, 2007 ). The P3b has been linked to

alue encoding in working memory and more generally to value updat-

ng in the reinforcement learning context ( Fischer & Ullsperger, 2013 ;

olich, 2007 ). Thus, the effect of RPEs and random pay-out magnitudes

n the P3b likely reflect updating and (re-)encoding of a stimulus’ ex-

ected value that guides future behaviour independently of feedback

actuality. This assumption is in line with more recent work suggest-

ng that the P3b relates to learning ( Jepma et al., 2018 ; Jepma et al.,

016 ). Nassar et al ( Nassar et al., 2019 ) further disentangled the re-

ationship between learning and the P3b. They demonstrated that the

3b does not naively reflect increased value-updating but may adap-
12 
ively adjust learning depending on the statistical context of the ob-

erved surprising event (i.e., increasing learning from surprising events

ndicative of chance points and decreasing learning from uninforma-

ive oddballs). In the present study, we do not see a strong modula-

ion of the P3b though visual surprise. One explanation for this effect

ight be that participants quickly learn that visual surprise is uninfor-

ative for stimuli values. Therefore, the effect of visual surprise may

e reflected during earlier feedback processing (see above) and its pro-

essing may be terminated before influencing value update and future

hoice behaviour. In contrast, the effect of oddballs on belief updating

n the Nassar et al (2019) study may have to be actively suppressed via

3b activity. Interestingly, in an explorative analysis we found that the

ess a participant’s choices were biased by magnitudes the more pro-

ounced their P3b was within the EEG representation of outcome mag-

itude. This might point towards active suppression of the incorporation

f outcome magnitudes into behavioural updates via P3b activity (see

upplementary Figure 12A and C) and is in line with recent work sug-

esting that the P3b may bidirectional adjusts learning depending on

ontext ( Nassar et al., 2019 ; Razmi & Nassar, 2022 ). However, it should

e noted that these effects do not survive FDR correction (see supple-

entary Figure 12B). Hence, these results should be followed up more

ormally and within lager samples. 

.3. A common late centroparietal positivity serves as a signal that guides 

uture behaviour 

Taken together, the results discussed above suggest that the

RN/P3a/P3b complex is dynamically and in a spatio-temporally disso-

iable fashion driven by representations of multiple outcome parameters

eemed relevant by the learning agent. These are RPEs and other mo-

ivationally relevant, yet task-irrelevant, parameters like simple visual

urprise and random pay-out magnitudes. While the FRN and P3a likely

equire active involvement to track RPEs signals, other motivationally

alient parameters are tracked in this ERP complex irrespectively of

eedback factuality. Later in feedback processing these streams of pro-

essing decision-related parameters (including subcortical processing of

PEs for counterfactual feedback, cf. Jocham et al. (2014) ) converge on

 common integrative process reflected in a centroparietal positivity.

n line with previous research ( Chase et al., 2011 ; Fromer et al., 2021 ;

assar et al., 2019 ; Razmi & Nassar, 2022 ; Ullsperger, Fischer, et al.,

014 ; Wessel & Aron, 2017 ) we suggest, that this EEG correlate provides

 signal that is interpreted by downstream processes to set the stage for

uture behaviour. This view is supported by our decoding analyses sug-

esting that behaviour switches are best predicted by an EEG activity

ith a topography and latency matching the P3b. Regression weight

opographies of the feedback-locked RPE and magnitude regressor con-

ributed to this decoder’s topography. These results fit well with our

ehavioural and modelling results, suggesting that participants’ choices

re affected by previous outcomes, pay-out magnitudes and behaviour.

ne possible confound in our pattern analysis is that the switch decod-

ng results can potentially also be explained by differences in motor

esponse-switching EEG activity (i.e., the difference between EEG activ-

ty for right and left responses). Although motor response differences

hould be averaged out in our ERP decoding approach (where right/left

nd left/right response switches are averaged together), future studies

ay randomly vary gamble-avoid motor mappings from trial-to-trial to

etter control for this confound particularly for single-trial decoding of

witch behaviour. In line with another prominent theory linking the

300 to the anticipation of the need to inhibit responding after unex-

ected events ( Wessel, 2018 ; Wessel & Aron, 2017 ), we were able to

redict post-feedback slowing on the immediately following trial with a

entroparietal topography matching the P3b. Interestingly, the peak of

his prediction preceded the peak prediction of choice switches by ap-

roximately 100 ms and was driven by both visual surprise and random

ay-out-magnitudes. This may fit well with the idea that cognitive shifts

fter unexpected or conflicting events are preceded by motor inhibition



H. Kirschner, A.G. Fischer and M. Ullsperger NeuroImage 259 (2022) 119437 

s  

t  

f

 

f  

i  

a  

m  

H  

t  

c  

T  

d  

s  

a

5

 

m  

e  

i  

l  

l  

r  

t  

p  

t

F

 

(  

t  

2

A

 

d  

m

D

A

 

t

S

 

t

R

B  

 

B  

 

B  

 

B  

 

B  

 

B  

 

C  

 

 

d  

 

D  

 

D  

 

 

E  

F  

 

F  

 

F  

 

F  

 

F  

 

F  

 

G  

G  

G  

 

 

H  

 

 

J  

 

J  

 

J  

 

K  

 

K  

K  

 

L  

 

M  

M  

 

M  

 

 

 

M  
ignals ( Wessel & Aron, 2017 ) and suggest that the latency of the cen-

roparietal positivity plays a role in pinning down different aspects of

uture behaviour. 

When discussing the neural representations of task factors relevant

or future behaviour, it is worth mentioning that their representation

s broader than the centroparietal positivity most predictive for future

daptions. For example, we show that our parameters also modulate

ore frontal parts of the FRN/P3a complex, with larger effects sizes.

owever, our data suggest that the centroparietal positivity coactiva-

ion seems to best predict future behaviour. Moreover, the FRN/P3a

omplex does not have to be elicited to initiate this common signal.

his is shown by the absence of the RPE effect in the FRN/P3a time win-

ow after counterfactual feedback. Here RPEs seem to be coded solely

ubcortically, specifically in the striatum ( Jocham et al., 2014 ), whose

ctivity is not projected to the scalp-recorded EEG. 

. Conclusions 

We found that individuals are unable to ignore task-irrelevant infor-

ation during decision making despite explicit knowledge of the irrel-

vance to these factors for optimal task performance. Specifically, un-

nformative reward magnitudes alterations and sensory surprise biased

earning behaviour in a novel probabilistic choice task. On the neural

evel, these parameters are represented in a dynamic and spatiotempo-

ally dissociable sequence of EEG activity. Later in feedback processing

he different streams converge on a P3b-like central to centroparietal

ositivity that serves as a final pathway of adaptation and governs fu-

ure behaviour. 
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