
Applications of Molecular Dynamics simulations for
biomolecular systems and improvements to density-based

clustering in the analysis
Inaugural dissertation to obtain the academic degree

doctor rerum naturalium (Dr. rer. nat.)

submitted to the department of Biology, Chemistry, Pharmacy,

Freie Universität Berlin

by
Jan-Oliver Felix Kapp-Joswig

2022

1st reviewer
Prof. Dr. Bettina G. Keller

Freie Universität Berlin

Institute of Chemistry and Biochemistry

Theoretical Chemistry

Arnimallee 22, 14195 Berlin

2nd reviewer
Prof. Dr. Beate Paulus

Freie Universität Berlin

Institute of Chemistry and Biochemistry

Theoretical Chemistry

Arnimallee 22, 14195 Berlin

Date of defence: 13.12.2022

GROMACS reminds you:

‘If 10 years from now, when you are doing something quick and dirty,
you suddenly visualize that I am looking over your shoulders and say to yourself:

“Dijkstra would not have liked this”,
well that would be enough immortality for me.’

—Edsger Dijkstra

Acknowledgement

I
would like to express my deep gratitude to my primary supervisor Professor Bettina Keller for her

invaluable guidance and support during my doctoral studies. To begin with, she accepted me into

her research group when I had little experience in Computational Chemistry, trusted my abilities,

and sparked my enthusiasm for the field. I want to thank her for the encouragement and motivation

when I encountered difficulties, the freedom to pursue my own ideas, and the interesting science we

did together.

I would also like to thank Professor Beate Paulus a lot for being always approachable and quick with

good advice, and for taking on the role of the second reviewer for this thesis.

Furthermore, I want to thank Professor Roderich Süssmuth and Professor Christoph Rademacher

and their groups for our productive collaborations.

I thank the DFG for the generous funding via SFB765, RTG2473, and EXC 2008 ‘UniSysCat’, the HLRN

and PC2 for the granted computational capacity, and the ZEDAT for the solid technical support.

I will keep countless good memories of the last five years in Theoretical Chemistry at the FU Berlin

and I consider myself very lucky to have met so many great people. In particular I want to name my

former colleagues Stevan Aleksić who animated me to join the group as an intern in the first place

and Oliver Lemke from whom I inherited a passion for clustering algorithms. There are of course

also my long-time early office partners Felix Witte, Tim Küllmey, and Christian Becker who made me

enjoy my work ever since we started together in a small room at Takustraße 3.

Likewise, I would like to thank Marius Wenz for his friendship, his helpful feedback on my writing,

and his great commitment to our various group activities. I also thank Stefanie Kieninger that I could

ask her for help with different small and big problems I faced in my work. And I do not want to forget

to thank Jennifer Anders who shared a substantial amount of time with me on the langerin project

and Dr. Jan Götze for many stimulating discussions and ideas. At the risk of not doing justice to all the

other group members and colleagues, I just want to say that I am very grateful for the time we spent

together. I will miss our numerous BBQs, movie evenings, Halloween parties, ‘Feierabend’-beers,

lunchtimes, and coffee breaks.

Finally, I want to thank my friends and family who may not have seen me a lot lately but who are

always there for me. Among others, I thank Jan Zawallich for having an open ear and his incentive

words. This also includes my parents who appreciate what I am doing and supported me all the way

since the beginning. Especially my wife, Larissa, has been a big help and deserves a title on her own

for hanging in there with me until the end.

Selbstständigkeitserklärung

H
ierdurch versichere ich, dass ich meine Dissertation selbstständig verfasst und keine anderen

als die von mir angegebenen Quellen und Hilfsmittel verwendet habe. Diese Arbeit hat in

gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen und wurde bisher

nicht veröffentlicht.

Abstract

M
olecular Dynamics simulations provide a powerful tool to study biomolecular systems with

atomistic detail. The key to better understand the function and behaviour of these molecules

can often be found in their structural variability. Simulations can help to expose this information

that is otherwise experimentally hard or impossible to attain. This work covers two application

examples for which a sampling and a characterisation of the conformational ensemble could reveal the

structural basis to answer a topical research question. For the fungal toxin phalloidin—a small bicyclic

peptide—observed product ratios in different cyclisation reactions could be rationalised by assessing

the conformational pre-organisation of precursor fragments. For the C-type lectin receptor langerin,

conformational changes induced by different side-chain protonations could deliver an explanation

of the pH-dependency in the protein’s calcium-binding. The investigations were accompanied by

the continued development of a density-based clustering protocol into a respective software package,

which is generally well applicable for the use case of extracting conformational states from Molecular

Dynamics data.

M
olekulardynamik Simulationen bieten ein mächtiges Instrument für die Studie biomolekularer

Systeme mit atomarer Auflösung. Der Schlüssel dazu, die Funktion und das Verhalten dieser

Moleküle besser zu verstehen, kann oft in ihrer strukturellen Variabilität zu finden sein. Simulationen

können helfen diese Information freizulegen, was auf anderemWege experimentell nur schwer oder

unmöglich zu erreichen wäre. Diese Arbeit umfasst zwei Anwendungsbeispiele, wo eine Generier-

ung und Charakterisierung des konformationellen Ensembles die strukturelle Basis dafür aufdecken

konnte eine aktuelle Forschungsfrage zu beantworten. Für das Pilz-Toxin Phalloidin—ein kleines bicyc-

lisches Peptid—konnten beobachtete Produktverhältnisse in verschiedenen Cyclisierungsreaktionen

nachvollzogen werden, indem die konformationelle Vororganisation von Precursor-Fragmenten

beurteilt wurde. Für den C-Typ Lektin-Rezeptor Langerin konnten Konformationsänderungen, aus-

gelöst durch verschiedene Seitenketten-Protonierungen, eine Erklärung für die pH-Abhängigkeit der

Kalzium-Bindung dieses Proteins liefern. Die Untersuchungen wurden durch die Weiterentwicklung

eines Dichte-basierten Clustering-Protokolls in ein entsprechendes Software-Paket begleitet, das

generell sehr gut für den Anwendungsbereich geeignet ist, konformationelle Zustände aus Molekular-

dynamik Daten zu extrahieren.

Contents

List of abbreviations . xv

List of figures . xvi

List of tables . xviii

I. Introduction xix

1. Overview 1
2. A brief history of Molecular Dynamics 3
3. Projects and research questions 9

II. Theoretical basics 13

4. The Molecular Dynamics formalism 15
4.1. Equations of motion . 17

4.2. Types of molecular interactions . 20

4.3. Polarisable force fields . 31

4.4. Periodic boundary conditions . 32

4.5. Neighbour lists . 40

4.6. Integrators . 42

4.7. Velocity generation . 46

4.8. Thermostats . 47

4.9. Steered Molecular Dynamics . 49

5. Molecular trajectory analysis 53
5.1. A universal workflow . 54

5.2. Basic features . 56

5.3. Dimensionality reduction . 61

5.4. Mutual information . 64

6. Markov models 69
7. Graph theory 75
7.1. Connected component search . 78

7.2. Minimum spanning trees . 81

III. Phallo- and amatoxins 83

8. Fungal toxins 85
9. The phalloidin project 87

xii Dissertation J.-O. F. Kapp-Joswig

IV. C-type lectin receptors 91

10. The human immune system 93
11. The langerin project 99
11.1. Mutual information analysis . 108

11.2. Polarisable force field simulations . 113

12. Simulation setup 119
12.1. Structure inspection . 119

12.2. Structure preparation . 121

12.3. Energy minimisation . 125

12.4. Ensemble equilibration . 128

V. Clustering algorithms 135

13. Clustering—the basics 137
13.1. Data sets and representations . 142

13.2. Definitions of similarity and clustering categories . 149

14. Clustering methods 157
14.1. Linkage clustering . 157

14.2. Spectral clustering . 161

14.3. k-Means clustering . 163

14.4. Gaussian mixture models . 169

14.5. Density-based clustering using histograms . 170

14.6. Density-based clustering using level-sets . 174

14.7. DBSCAN . 176

14.8. Jarvis-Patrick clustering . 180

14.9. Common-nearest-neighbour clustering . 182

14.10. Density-peaks . 184

15. The CommonNNClustering project 187
15.1. Primer on generic interfaces in object-oriented programming 187

15.2. Generic threshold-based CommonNN clustering . 190

15.3. Package realisation and basic usage . 192

15.4. Module overview . 197

15.5. Technical remarks . 198

15.6. Fast threshold-based clustering . 203

15.7. Parameter selection . 207

15.8. Manual hierarchical clustering . 210

15.9. Semi-automatic hierarchical clustering . 211

15.10. Hierarchical clustering using minimum spanning trees 213

16. Benchmarking clustering algorithms 219
16.1. The framework . 221

16.2. CommonNN clustering performance . 224

Dissertation J.-O. F. Kapp-Joswig xiii

Appendix 233

References 243
Publications 245
‘Total Synthesis of the Death Cap Toxin Phalloidin:
Atropoisomer Selectivity Explained by Molecular-Dynamics Simulations’ 246

‘The molecular basis for the pH-dependent calcium affinity of
the pattern recognition receptor langerin’ . 246

‘CommonNNClustering—
A Python package for generic common-nearest-neighbour clustering’ 294

xiv Dissertation J.-O. F. Kapp-Joswig

List of abbreviations

API application programming interface

BFS breadth-first-search

CLR C-type lectin receptor

CRD carbohydrate recognition domain

CTLD C-type lectin-like domain

CommonNN common-nearest-neighbour

DC dendritic cell

DFS depth-first-search

GMM Gaussian mixture model

IC independent component

KDE kernel density estimate

LC Langerhans cell

MC Monte Carlo

MD Molecular Dynamics

MI mutual information

ML Machine Learning

MM Molecular Mechanics

MSM Markov-state model

MST minimum spanning tree

OOP object-oriented programming

PBC periodic boundary condition

PC principal component

PCA principal component analysis

PCCA Perron-cluster cluster analysis

PRR pattern recognition receptor

QM QuantumMechanics

RMSD root-mean-square deviation

RMSF root-mean-square fluctuation

tICA time-lagged/time-structure based independent component analysis

Dissertation J.-O. F. Kapp-Joswig xv

List of Figures

2.1. Examples for dynamic Newtonian systems . 4
4.1. Minimum simulation scheme . 15
4.2. Free particles in cartesian and polar coordinates . 18
4.3. Phase diagrams . 19
4.4. Bonded interaction types and forces . 21
4.5. Harmonic bond potential . 22
4.6. Harmonic vs. Morse potential . 23
4.7. Harmonic vs. cosine angle potential . 24
4.8. Harmonic vs. periodic dihedral potential . 25
4.9. Dihedral potential for pseudo-butane . 25
4.10. Lennard-Jones potential . 26
4.11. Potential cut-off modifiers . 28
4.12. Coulomb potential . 29
4.13. Coulomb potential with reaction-field . 30
4.14. Surface fraction in cubic boxes of different particle numbers . 33
4.15. Periodic boundary conditions . 33
4.16. Periodic boundary example in 1D . 34
4.17. Difference in the modulo operator for Python and C . 35
4.18. Periodic boundary example in 2D . 36
4.19. Periodic boundary example in 2D (triclinic box) . 37
4.20. Minimum image convention in 2D . 38
4.21. Hard sphere argon simulation in 2D . 40
4.22. Verlet list . 40
4.23. 2D Grid neighbour search . 42
4.24. Analytic solution for a harmonic C-C bond vibration . 43
4.25. Midpoint Euler solution for a harmonic C-C bond vibration . 43
4.26. Midpoint Euler for a harmonic C-C vibration (phase space) . 44
4.27. Euler-Cromer solution for a harmonic C-C bond vibration . 44
4.28. Euler-Cromer for a harmonic C-C bond vibration (phase space) 45
4.29. Maxwell-Boltzmann distribution . 47
4.30. Steered dynamics in a double well potential . 49
5.1. A conformational MD analysis workflow . 55
5.2. Histograms versus kernel density estimates . 59
5.3. Autocorrelation . 60
5.4. 6-dimensional example data set of multivariate Gaussian states 62
5.5. Principal component analysis example . 63
5.6. Time-lagged independent component analysis example . 64
5.7. Entropy coin flip example . 65
5.8. Conditional entropy coin flip example . 65
5.9. Mutual information protein example . 66
6.1. Empirical illustration of the law of large numbers . 69
6.2. Markov’s extension of the law of large numbers . 70
6.3. Markov model for FASTA sequences . 71
7.1. The seven bridges of Königsberg . 75
7.2. Examples of undirected, unweighted graphs . 77
7.3. Example of a directed tree . 77

xvi Dissertation J.-O. F. Kapp-Joswig

7.4. Minimum spanning tree example . 81
8.1. Phalloidin binding to F-actin . 85
9.1. Structural formula of phalloidin . 87
9.2. Structure of phalloidin atropoisomers . 87
9.3. Reported synthetic approaches towards phalloidin . 88
10.1. Dendritic cells in the human immune system . 94
10.2. Langerin publication query . 95
10.3. Structural domain organisation in langerin . 96
10.4. Langerin mannose binding . 97
11.1. Langerin H294 protonation: the key result . 100
11.2. Short-loop/long-loop distance convergence . 101
11.3. Competing H-bond patterns in protonated langerin . 103
11.4. Studied protonations and binding/unfolding equilibria in langerin 107
11.5. Mutual information matrix for calcium-bound langerin . 108
11.6. Mutual information graphs for calcium-bound langerin . 110
11.7. Potential further allosteric communication in langerin . 111
11.8. Minimum spanning trees of mutual information graphs . 112
11.9. Spectral clustering of langerin MI graphs . 113
11.10. Basic feature analysis for histidine protonated langerin using the AMOEBA2018 force field 114
11.11. K257–D308 hydrogen bonded conformation (AMOEBA2018) . 115
11.12. Conformations for histidine protonated langerin using the AMOEBA2013 force field 116
11.13. RMSD trajectories (AMOEBA2013) . 117
12.1. Langerin PDB structure overlay . 120
12.2. Titrable side chains in the langerin CRD . 121
12.3. Potential energy minimisation . 127
12.4. Minimised langerin structures . 128
12.5. Langerin NVT equilibration . 131
12.6. Thermostat coupling groups . 132
12.7. Langerin NPT equilibration (1) . 133
12.8. Langerin NPT equilibration (2) . 133
13.1. Clustering an image of plastic ducks . 138
13.2. Clustering is imprecise . 138
13.3. Iris plant data set with biological classes . 143
13.4. Iris plant data set as a graph . 146
13.5. Iris plant data feature standardisation . 148
14.1. Single-linkage clustering in a nutshell . 158
14.2. Iris data set single-linkage (3 clusters) . 159
14.3. Iris data single-linkage dendrogram . 159
14.4. Iris data set single-linkage (distance threshold) . 160
14.5. Spectral embedding of the Iris data set . 163
14.6. Iris data set spectral clustering (3 clusters) . 163
14.7. k-Means in a nutshell . 165
14.8. Choosing the k in k-means (elbow plot) . 166
14.9. Choosing the k in k-means (silhouettes) . 167
14.10. Choosing the k in k-means (Calinski-Harabasz) . 167
14.11. Choosing the k in k-means (external scores) . 168
14.12. Iris data set k-means (3 clusters) . 169
14.13. Iris data set GMM (3 clusters) . 169
14.14. Density-based clustering using histograms . 171
14.15. Density-based clustering using histograms and a density threshold 172
14.16. Density-based clustering using histograms hierarchically . 174
14.17. Level-set tree for a 1D multimodal Gaussian distribution . 175
14.18. DBSCAN for themoons data set . 176
14.19. Iris data HDBSCAN hierarchy and clustering result . 179

Dissertation J.-O. F. Kapp-Joswig xvii

14.20. Iris data DBSCAN with a threshold selected from the hierarchy 180
14.21. Jarvis-Patrick for themoons data set . 180
14.22. Iris data Jarvis-Patrick hierarchically . 181
14.23. CommonNN for themoons data set . 182
14.24. Iris data CommonNN hierarchically . 183
14.25. Iris data set density-peaks (3 clusters) . 185
15.1. Aggregation of generic types for CommonNN clustering . 193
15.2. UML class diagram for the CommonNNClustering project . 195
15.3. Density estimate for neighbourhoods with and without self-counting 200
15.4. Variation of pair candidates scheme . 201
15.5. Fast CommonNN clustering of scikit-learn toy data sets . 205
15.6. Recorded toy set clustering execution times . 205
15.7. Similarity check variants . 207
15.8. Distance histograms for scikit-learn toy data sets . 209
15.9. Parameter scans with fixed r for the varied data set . 209
15.10. Manual hierarchical clustering of an alanine dipeptide data set 211
15.11. Tree of clustering results for the alanine data set . 211
15.12. Semi-automatic hierarchical clustering of the helix data set . 212
15.13. Clusters obtained by semi-automatic clustering of the helix data set 213
15.14. Runtime expectation of BFS vs. MST . 214
15.15. Full hierarchy of clustering results for the helix data set and example clusters with MSTs 216
15.16. CommonNNmutual reachability distance . 216
16.1. Comparison of input data recipes . 225
16.2. Comparison of neighbourhoods sorting by index and member count 226
16.3. Comparison of cluster parameters with sorted neighbourhoods 226
16.4. Execution timings for the similarity check . 228
16.5. Impact of conditional switching before containment checks . 228
16.6. Worst case scaling of similarity checks . 229

List of Tables

12.1. Langerin RCSB PDB structure overview . 120
13.1. Extraction of Fisher’s Iris plant data set . 142
14.1. SciPy single-linkage hierarchy format . 160

Part I.

Introduction

{ 1 }
Overview
Motivation and thesis organisation

T
he work presented on these pages circulates about one big topic: Molecular Dynamics (MD).

This fascinating methodmelds many different subtopics and scientific fields. Speaking broadly, to

completely understandMD as the valuable research tool it is, one needs to acknowledge the underlying

physics, as well as the chemistry, biology, or engineering background to which it is applied, and a fair

deal of the mathematics involved, with an emphasis on statistics of large amounts of data. Last but

not least, daily practice requires to cope with modern computer technology und programming. MD

really is in theory and application what can be called interdisciplinary. Numeric simulations bring

together the experimental observations we make and the theoretical models we build. How we use

and appraise them in modern scientific research also has a philosophical dimension.[1]

The central content of this thesis are three concrete MD based research projects. Of all the possible

areas of application for this method, I concentrated on the equilibrium sampling of biomolecules

(mostly proteins) and the identification of long-lived conformational states to explain their biological

function and observed behaviour. I will present two molecular systems that have been investigated

in the last years and describe the development of a density-based clustering protocol that has been

of major relevance for the respective analyses. To put these projects into context, the related theory

and the methods used will be addressed here as well. I tried to provide a rough overview of the most

important aspects—about what needs to come together to perform a MD simulation of a biomolecule

and to draw sensible conclusions from it. Necessarily, this has to be limited and the primary intend will

be to outline the big picture. At the same time, I will restrict myself mostly to standardised classical

MD as we used it. The focus lies on the extraction of meaningful information from MD data in terms

of characteristic conformational states that can be eventually linked to biomolecular function.

Against this background, the thesis is structured as follows. I would like to continue the introduction

with a brief general review of some of the historical circumstances and milestones that in the long run

led to the development of MD as the research instrument it is today (chapter 2). Then, there will be a

summary of the projects I worked on (chapter 3) with a comment on what makes them interesting

and what connects them.

A basic theoretical part (part II) should level out the foundation for the main body of this thesis.

This includes a selection of typical ingredients for MD simulations (chapter 4) with short excursions

into polarisable force fields (section 4.3) and steered MD (section 4.9). It also contains a chapter on

the standard approach that we employed in conformational analyses (chapter 5), and one on kinetic

Markov models (chapter 6). A versatile concept that will reappear frequently throughout this work

are connected networks in terms of graphs, which are addressed separately in chapter 7.

Subsequently, one part is dedicated to each research topic: the cyclic peptide phalloidin as a

representative of the phallo- and amatoxins (part III), langerin as a member of the C-type lectin

receptor family (part IV), and density-based common-nearest-neighbour (CommonNN) clustering

in comparison to other clustering algorithms (part V). Each project part is divided into a general

Dissertation J.-O. F. Kapp-Joswig 1

1. Overview

contextual chapter and one to recap the journal article that has been published on the respective

research topic. These associated publications can be found in the appendix under Publications.
Please note that the theoretical groundwork affiliated with the clustering project is not included

in the regular theoretical part but has been moved to the general project part (chapter 13). For the

langerin project, sections 11.1 and 11.2 represent new preliminary results as a practical outlook on

possible continuations of the study. At the end of the langerin part, there is furthermore a chapter of

rather pragmatic nature with basic advice on how to run MD simulations in GROMACS (chapter 12).

I would like to make a few formal remarks on how the content of this thesis is presented.

To support an easy orientation within the text, I make use of margin notes (see left) to highlight a

specific detail that a specific paragraph is about.content
landmark

In text, I use italic font to put emphasis on important

terms when they occur for the first time. Certain abbreviations are furthermore listed in the List
of abbreviations and will mostly be written out in full on first use. Text elements that are clickable

hyperlinks in the PDF version of this thesis—URLs, citations, and figure and table references—are

highlighted in a lighter grey. A monospace typewriter fontface will be used for URLs. Sporadically,

references to online sources may be mentioned in footnotes and figure captions only, while regular

citations will be collected in the References at the very end.

Code and (Python flavoured) pseudo-code examples are typeset inline or in separate blocks using

a monospace fontface and language specific syntax highlighting. Inline filenames, data structures

and types, module names and such are treated in this sense as code elements. Note that two spaces

are universally used for each level of indention to save some horizontal space against the general

recommendation to use four spaces in practice instead.

def heaviside(x):
"""Positive integers to 1, negative to 0"""
return int(x > 0)

When command-line snippets are shown, they are visually distinguished from code snippets via a

prepended $ sign, like in: $ gmx check -f out.xtc .

I try to maintain a consistent notation in the presented mathematical equations, which mostly have

a physical context. The majority of the conventions followed is fairly standard but I mention them

here just to avoid confusion. For reference see [2].

Physical quantities and mathematical variables will be in general italic symbols, e.g. f (x) = ax + b.

This includes arbitrary functions and physical constants, e.g Avogadro’s number NA. It also includes

vector quantities which are, however, additionally distinguished as bold symbols. Whenever a vector

is defined in the way of x = (x1, x2, x3) it is implied that it should be treated as a column vector unless

stated otherwise, i.e.

x = (x1, x2, x3) =
⎛

⎝

x1

x2

x3

⎞

⎠
= (x1 x2 x3)

⊺
.

Inline row vectors will be distinguishable by a smaller font of the elements and the omission of commas

like in xrow = (x1 x2 x3).

Upright letters are used to discern symbols explicitly as non-variable, that is for labels, especially

mnemonic indices, e.g. kB (where the index B stands for the label ‘Boltzmann’). This extends to

physical units, e.g. m = 1 kg, as well as to established mathematical constants and functions, e.g. eiπ,

sin, log, etc.

Shell letters (blackboard fontface) are used only to denote special mathematical sets, e.g. an n-
dimensional real space Rn. Although arbitrary, a calligraphic font is used to distinguish certain other

sets, e.g. a time seriesQ as a set of configurations, or in general a data setD. Just to be consistent with

the common literature notation the Lagrangian will be set as L as well.

2 Dissertation J.-O. F. Kapp-Joswig

{ 2 }
A brief history of Molecular Dynamics
How came about what all this is about

S
ince ancient times, humankind is fascinated by moving objects and occupied with the discovery

of mathematical laws to describe physical motion. The phrase πάντα ῥεῖ—everything flows—

expresses the idea of early greek philosophers like Herakleitos and Plato that ‘all things are in motion

like streams’.[3] When arguably the foundation for modern natural science was laid around 500 BCE,

it was already felt by the scholars of the time that nature is intrinsically dynamic and that motion

is essential to understand the world around us. The major subject of investigation always was the

observation of the sky, particularly the night sky, that dates back in a systematic form as far as 2000

BCE to babylonian astrology.[4] Historically, it was motivated by religion, agricultural praxis, or used

for orientation.

At the latest, however, starting with Nicolaus Copernicus (1473–1543) who studied the planets

orbiting in our solar system and popularised the heliocentric theory, the analysis and prediction of

celestial bodymotion became a science. Hewas followed among others by great names like TychoBrahe

(1546–1601), Johannes Kepler (1571–1630), Galileo Galilei (1564–1642), René Descartes (1596–1650),

and Giovanni Cassini (1625–1712) but it was not until 1687 that Isaac Newton (1643–1727) published

his three fundamental laws of motion in the seminal Philosophiæ Naturalis Principia Mathematica.[5]

With Newton’s theory of gravity, the way was paved for a ‘system of the world’ as we more or less see it

today. The connection of effective acceleration to forces that drive body motion, unified the dynamic

description for many (macroscopic) physical objects—celestial as well as terrestrial—and set a corner

stone for all classical mechanics. Moreover, as Steven Strogatz expressed it, ‘in the 300 years since
Newton, mankind has come to realize that the laws of physics are always expressed in the language of
differential equations.’[6]
Figure 2.1 shows three illustrative examples of physical systems that can be and are routinely

described using Newton’s laws. For most purposes, it is sufficiently accurate to describe planetary

motion by Kepler orbits, that is by parametrised solutions to Newton’s equation, where each orbit is

separately considered as a two-body problem (figure 2.1a). The influence of planet-planet interactions

is ignored here as well as relativistic effects, which would lead to deviations of the orbits from their

idealised elliptic form. Over time, the error made by this approximation accumulates, which is why

Kepler orbit parameters are only valid within a certain time window.

Bodies, much smaller than planets, moving in the gravitational field of the earth near the earth

surface can be described accurately by the same physical laws (figure 2.1b). Projectiles like fireworks

exhibit typical parabola shaped flight trajectories if external forces like friction or wind are neglected.

But even atoms in molecules can be treated to some extent as Newtonian particles—and this is the

basis also for this thesis—when the present inter-atomic interactions, originating from their electronic

structure, are approximated with parametrised forces (figure 2.1c). This makes Newton’s laws with

limitations valuable for the study of problems over length scales of several picometres to billions

of kilometres and time scales of femtoseconds to hundreds of years, i.e. give or take 20 orders of

magnitude.

Dissertation J.-O. F. Kapp-Joswig 3

2. A brief history of Molecular Dynamics

Figure 2.1 Examples for dynamic Newtonian systems
a) Kepler orbits for selected planets and the Halley comet around the sun. These ellipses are idealised approximations

to the real trajectories drawn based on the orbit elements obtained from NASA (valid for 1800 CE – 2050 CE),

ignoring the inclination and the longitude of perihelion (Halley data fromThe SkyLive). For visual clarity, the planet

diameters are scaled by a factor of 2000, and the sun diameter is scaled by a factor of 50. b) Projectile motion for

firework rockets started from the same positions but with different initial velocities and shooting angles, set up to

explode five seconds after ignition. The trajectories are solutions to Newton’s equation in the gravitational field of

the earth and in absence of other forces. c)Molecular system of several interacting carbohydrates. In Molecular

Dynamics (MD) simulations, Newton’s equations are used to propagate atomic positions according to forces from

interatomic interactions.

Of course, the fundamental theoretical progress in the study of motion did not came to a halt after

Newton. Major contributions related to equations of motion can be attributed to Leonhard Euler

(1707–1783), Joseph-Louis Lagrange (1736–1813), and William Rowan Hamilton (1805–1865). Before

many interesting problems could be addressed and more than only the most simple systems could be

studied under the influence of physical forces in dynamic detail, however, another important aspect

needed to be promoted: numerical methods to produce approximations to the solutions of differential

equations. In many cases, and this is true for almost any interesting molecular system, the equations

of motion are complex and can not be solved analytically. Again it were Newton, Euler, Lagrange, but

also Carl Friedrich Gauss (1777–1855) to whom we owe early advances into the direction of a numeric

treatment of these problems.

The practical usefulness and feasibility of numerical methods experienced an upswing with the

invention and development of modern computers in the first half of the last century, which coincided

with the catastrophe of World War II.¹ The electronic numeric integrator and computer (ENIAC),

one of the first general-purpose computers, was constructed for the numeric calculation of ballistic

trajectories of artillery projectiles and also came to use in the context of the Manhatten project at the

Los Alamos National Laboratory.[7, 8] There it was also that themathematical analyzer numerical
integrator and automatic computer (MANIAC) model I, an indirect successor of the ENIAC, was

eventually put to more civil applications than only research related to the thermonuclear process and

the hydrogen bomb. Besides playing anti-clerical chess,[9] it ran the probably first Monte Carlo (MC)

simulation of a liquid—a 2-dimensional system of rigid spheres interacting via pairwise spherical

potentials—done byNicholasMetropolis, Arianna andMarshall Rosenbluth, and Augusta and Edward

Teller.[10] Another famous study of the time on anharmonic 1-dimensional crystals is attributed to

Fermi, Pasta, Ulam, and Tsingou.[11, 12]

Berni Alder from the university of California can be considered the ‘inventor’ of Molecular Dynam-

ics (MD) as an alternative tool to MC simulations for the study of many-body problems. Among other

things, he did pioneering work on phase transitions of hard sphere systems,[13] a matter that caused

¹See computerhistory.org/timeline/computers for a short illustrative overview on the history of computers

4 Dissertation J.-O. F. Kapp-Joswig

https://ssd.jpl.nasa.gov/planets/approx_pos.html
https://theskylive.com/halley-info
https://www.computerhistory.org/timeline/computers/
computerhistory.org/timeline/computers

2. A brief history of Molecular Dynamics

heated discussions at the time and started sort of a footrace between advocates of the previously estab-

lished MC and the newer MD approach.[14] Alder and his close working partner TomWainwright

also count as early explorers in the realm of impactful scientific visualisation to communicate their

results.[15] Landmark publications in the evolution of MD as an accepted research tool (and numeric

simulations in science in general) are for example also Vineyard’s studies on copper crystals,[16] and

Rahman’s work on correlated motion in liquid argon,[17] making the transition to realistic systems.

Among the next steps were simulations of liquid water and the construction of appropriate water

models to describe this exceptionally tricky system.[18, 19]

The first classical MD simulation of a protein molecule might have been that of bovine pancreatic

trypsin inhibitor (BPTI) performed in the group of Martin Karplus in 1977.[20] The small protein of

58 amino acids plus four crystal water molecules (almost 1000 atoms) was simulated for about 9 ps

in its folded state. Before that, the same molecule has already been subjected to a folding protocol

consisting of energy minimisation and thermalisation stages by Michael Levitt and AriehWarshel.[21]

The authors were aware of the complications associated with protein folding due to the vastness of

potential conformations that the molecule could adopt—earlier expressed in terms of the Levinthal

paradox.[22] Notably, a surprisingly elaborate kind of excited state simulation (using the so called semi-

classical trajectory approach) of the fast retinal isomerisation in rhodopsin has also been achieved

around the same time,[23] a process that still receives much attention.[24]

Some of the methodological fundaments and technical details, which remain relevant for the

execution of MD simulations today, had already been settled at this time. An example is the essential

Verlet list without which most simulations would be prohibitively expensive, due to the unfavourable

scaling in the computation of non-bonded interactions.[25] Also the combination of typically used

inter-atomic interactions—the force field—had been established in a basic form.[26, 27] Others still

needed to be invented or systematically improved in the light of simulations of macromolecular

systems, like suitable dynamic integrators or algorithms that satisfy constraints.[28] Berendsen and

van Gunsteren gave one of the earliest comprehensive overviews in this regard shortly after the above

mentioned BPTI simulation.[29] To name only a few milestones from the early 1980s, this is when

Andersen proposed the means for simulations at constant temperatures and pressure,[30] closely

followed by Parrinello and Rahman,[31, 32] de Leeuw applied Ewald sums in the context of MD to

solve the electrostatic interactions on a periodic lattice, and Swope published about the velocity-Verlet

integrator.[33] Also, free energy perturbation emerged as a motivation for MD simulations.[34, 35]

The first notable textbook dedicated to the topic of MD, Computer simulation of liquids by Allen and

Tildesley,[36] marks the turning point at which these simulations becomemore andmore standardised

and gives practical advice for the setup. Slowly, force fields started to mature for example with the

OPLS parameter set.[37, 38]

From than on, the methodology was consolidated further,[39] also with a focus on trajectory

analysis and visualisation,[40] and the number of applications exploded in the 1990s. MD was applied

to simulatemelts of polymer chains with up to 400monomers using a bead springmodel that is an early

example for coarse grained dynamics,[41] similar to what has previously been done by Rapaport.[42]

Grubmüller studied ligand binding with steered MD.[43] Jarzynski showed that equilibrium free

energy differences can be obtained from non-equilibrium work.[44] First steps into the direction

of including charge polarisation effects in simulations in terms of the AMOEBA force field were

made,[45] although polarisation as such has been already considered much earlier.[46] Later in the

decade, the use of Markov models for the analysis of trajectory data was introduced.[47] And finally,

an explicit solvent folding simulation of the villin headpiece subdomain (about 10,000 atoms) by

Kollman set new standards by crossing the 1 µs total simulation time mark—a time scale on which

folding processes of peptides and very small proteins can already be adequately studied.[48]

Dissertation J.-O. F. Kapp-Joswig 5

2. A brief history of Molecular Dynamics

Simulations of this magnitude necessitated the development of professional programs and parallel

computing.[49] Many popular simulation suites like GROMACS[50] and AMBER[51] stem from this

era and started to substitute the various codes used by research groups around the world. But this was

only the beginning. With the next millennium, advances in computer hardware and in particular the

implementation of MD routines for GPUs, boosted the performance of simulations tremendously.[52,

53] A broad array of medium sized problems became tractable even for individual researchers with

only access to limited resources. High performance computing clusters, on the other end, partly

specifically just dedicated to the efficient execution of MD simulations, led to a series of ephemeral

records in terms of treated system sizes and achieved simulation times on a regular basis. In 2006 for

instance, the first atomistic simulation of an entire satellite virus (50 ns, about 1 million atoms) and its

analysis got published.[54] Today, the Anton 3 supercomputer of D. E. Shaw research, which went

operational last year, can produce over 100 µs per day for respectable system sizes of about 100,000

atoms. For a massive HIV-1 capsid simulation with about 72 million atoms, it reaches still almost

2 µs per day.[55] Just for comparison, a smaller version of this system has been simulated already

for 1 µs in total, which has been quite sensational only four years earlier.[56] Currently, more than a

billion atoms can be simulated in extreme cases and open the way to study biomolecular processes on

a cellular level.[57] In a fast reaction to the recent pandemic, large scale simulations of SARS-Cov-2

spike proteins and the complete virion have been performed to help understand and eventually control

the virus.[58, 59] The continuing demand for longer simulations of larger systems in shorter effective

time also led to the conquering of novel computation infrastructure like the Azure cloud.[60] This

is contrasted by the simulation strategy of the Folding@home project that distributes the sampling

workload over a multitude of compute nodes, made available by private donors. Just this year, 1.8ms of

accumulated simulation time for a series of peptides helped with assessing their therapeutic potential

as inhibitors of cancer cell growth.[61]

The field of MD simulations has evolved rapidly. Its general framework is very stable, a lot of

its elements are still used in the same form as 50 years and more ago, but over time, the technique

has diversified into many different sub-branches and flavours. MD can be considered a dispersed
method, having a high input complexity with regard to its setup.[62] Although a fair portion of what

a simulation consists of is standardised nowadays, users of this tool still need to be experts in general

to make the right decisions about simulation parameters, the preparation of the system, or quantities

to compute. It is easy for a non-expert to get nonsensical simulation results. Maybe the next years

will bring further improvements in terms of user-friendliness and automation of standard tasks.²

This is for instance especially critical for the organisation of free energy perturbation series in large

drug discovery campaigns.[63, 64] Here, many individual simulations need to be set up robustly in a

correct way and it should be ideally convenient and fast so that it can be done by researchers with a

primary focus on drug design rather than the technical internals of a MD program.

But also in other aspects the evolution of MD will not stall. The used force fields are still con-

tinuously improving, not only for proteins[65] as the main object of interest, but also for lipids[66],

carbohydrates,[67] nucleic acids,[68] and metal ions in conjunction with the newest generation of

water models.[69] Still the hardest challenge is probably posed by the parametrisation of small organic

(drug) molecules.[70] This is one of the parts for which a recent trend could be a real game changer:

the advent of Machine Learning (ML) in the molecular sciences. ML models trained with Quantum

Mechanics (QM) based calculations can already yield accurate force field parameters for individual

molecules and are very quick in doing so.[71] Generally, ML will have a rather big impact on howMD

²Several (mostly commercial) platforms committed to this goal have appeared in the last years, like Schrödinger’s

Maestro/Desmond, Acellera’s PlayMolecule/ACEMD, or OpenEye’s Orion suite, not to forget Quantistry started at FU

Berlin in 2019.

6 Dissertation J.-O. F. Kapp-Joswig

2. A brief history of Molecular Dynamics

simulations will be carried out in the future, be it by providing intelligent coarse-graining schemes,[72]

or by learning reaction coordinates for enhanced dynamics.[73] There will be even areas where MD

simulations, which are still a quite expensive tool, are not required any more at all. Nothing made this

more obvious than the recent success of AlphaFold that can findmeaningful folded protein states faster

than any MD protocol ever could.[74] It is also already not a completely unrealistic endeavour for

example to predict structures from equilibrium distributions of complex systems without repeatedly

running a simulation of importance sampling like MD.[75] The decision of when to use MD because

it is the tool of choice and when to use something else, will become more and more important if we

aim on a sensitive use of our available resources.

ML assisted tools will impact beyond that the way how we analyse MD data in terms of feature se-

lection and extraction, dimensionality reduction, and kinetic model construction.[76] The applicative

potential of ML to support or substitute MD is immense but also without it, there are far-reaching

developments underway.[77] Examples from our group for methodology that might change the way

how and when we use MD, are the estimation of kinetic models via the square root approximation

without the need for conformational sampling[78] and path re-weighting to retain unbiased dynamics

from enhanced simulations.[79]

Alongside theories and practical experiments, computer simulations are also from an official side

considered a part of the ‘third pillar’ of 21st century science. In bloomy words: ‘computational science
enables researchers and practitioners to bring to life theoretical models of phenomena too complex, costly,
hazardous, vast, or small for “wet” experimentation’.[80]The days are definitely over that nobel laureates

are quoted on the need to resort to numeric simulations as an ‘indignity’.[81] Quite on the contrary,

computational modelling has become a central and indispensable element in the advancement of new

theories by testing the models predicted by existing theories.[82]

Dissertation J.-O. F. Kapp-Joswig 7

{ 3 }
Projects and research questions
The exploration of conformational spaces

A
s mentioned in the preface and honoured with the last chapter, this thesis is about Molecular

Dynamics (MD). The three main research projects I have worked on in the last years and that

are included here make extensive use of it. The first two of them are application centred. In both, we

used classical MD simulations to produce a data set of conformational snapshots for a biologically

relevant system: phalloidin, a small bicyclic peptide found in a poisonous mushroom, and langerin, a

medium sized receptor protein playing a big role in our immune system.

The questions we wanted to answer were simple—at least initially—and quite different for these

two molecules. Phalloidin confronted us with the problem why seemingly similar synthetic pathways

could lead to the desired natural product with varying success. Langerin challenged us with the riddle

how it is affected by environmental changes in the pH so that it looses its ability to bind calcium.

While these questions have not much in common at a first glance, the key to their answer was the same

in both cases: a characterisation of the respective conformational ensembles. What unites the two

projects, is the molecular simulation we used to assess the conformations the system can be observed

in, their relative population, and the timescales on which they change.

Moreover, for both these projects it was not enough to analyse the absolute conformations of one

specific molecule. Rather we needed to compare the conformational ensembles of several systems

with each other because the answer to our question was found in the differences between them or

the recognisable population shifts upon a perturbation. For phalloidin, the distinct conformational

predisposition of precursor model systems, with respect to the orientation of a characteristic bridge

before a final cyclisation reaction, could be used to predict and explain the varying product selectivities.

For langerin, a hidden conformation that is exclusively accessible in an acidic environment and that

could only be revealed by careful investigation of respectively protonated states, was identified as a

promising calcium-affinity modulating candidate.

A MD simulation generated the primary source of information about the systems and all of our

following investigationswere based upon this. But also beyond that, the tools we used in the subsequent

analysis were very similar in the two projects. For the characterisation of the conformational ensembles,

we needed a reduced projection of the high dimensional atomic trajectories onto suitable coordinates.

That means we needed to choose low dimensional representations that are comprehensible and able

to explain what we wanted to learn about the systems. Even for the simple heptapeptide phalloidin, a

direct visual evaluation of the original data could only deliver insufficient anecdotal evidence. For

langerin, collecting meaningful observations by watching simulation movies was even more hopeless,

not only because of the sheer amount of aggregated data but also because the conformational changes

of interest are very subtle. To filter out the relevant pieces, we had to extract expressive features—be it

a single smartly defined dihedral angle that illustratively described the bridge orientation in phalloidin

or an inter-atomic distance that reduced the complex langerin dynamics to the movement of a small

flexible loop region. As another example, hydrogen bonded interactions were useful to characterise

Dissertation J.-O. F. Kapp-Joswig 9

3. Projects and research questions

and separate conformational states of langerin as well as to understand the relative conformational

stability of phalloidin precursor fragments.

The complexities we faced in tackling our research questions were unevenly greater, however, for

langerin then for phalloidin. We used a larger portfolio of dimensionality reduction techniques, had to

be more rigorous in our characterisation and isolation of conformational states, used a Markov-model

to argue about their relative live times, and subjected selected structures to pKa-value estimation and

steered MD pulling experiments. Also the number of considered langerin sub-systems grew quickly

once we considered more and more protonation, calcium-binding, and unfolding states. Systems

directly related to phalloidin were further investigated later in the group in terms of the α-amanitin

and its derivates. Still, the fundamental approach remained always the same: we tried to derive

knowledge from a dynamic series of atomic positions or respective probability distributions.

In this context, another relationship that can be found in all our work here, lies in the way how we

addressed problems conceptually. It can be taken as an underlying philosophy that we preferred tools

that are easy to grasp, easy to operate, and cost efficient over those that are rather elaborate, complicated,

and expensive. This is reflected by the use of classical MD in the first place and we stretched the

domain of applicability with our projects in which we predicted product ratios as the outcome of an

organic reaction and modelled a metal containing protein under pH changes. Both situations can be

more accurately described with higher levels of theory—reactive dynamics, constant-pH dynamics,

QM/MM or ab-initio dynamics to only name a few—but at much greater cost. The same goes for other

tools where we used for example readily available empirical pKa-value estimates and rupture force

affinity proxies instead of more exact but tricky free energy perturbation schemes. Our reasoning

always was that the most accurate measure could still be of limited explanatory power if we could only

afford to obtain it for a very small number of molecular conformations. We valued the thorough and

extensive sampling of the conformational ensembles, to attain a Boltzmann-weighted distribution of

what we measure, higher than accurate single observations for small data sets. Similarly, we cut down

our studied systems to a minimal relevant subset, i.e. integral parts of phalloidin precursors ignoring

peripheral chains or protecting groups and only the binding domain of a single langerin monomer.

The quality of our results justifies this approach. In parts, we reach the limitations of the tools we use

and we recognise where more apt descriptions are in order. We exhausted simplistic investigation

possibilities first from which refined studies could be started as appropriate.

Finally, a last important element that the phalloidin and langerin projects have in common is the

close connection to laboratory experiments. Without the background to eventually rationalise and

improve the phalloidin synthesis in cooperation with the Süssmuth group¹ and without the agreement

between the theoretical prediction and the practical result, the whole study would have been in

vain. Similarly, the starting point for the langerin investigation were calcium affinity measurements,

NMR-experiments, and point mutations done by the Rademacher group² without which the study

would never have been kicked of. MD simulations are a powerful tool to get atomistic insight into the

behaviour of various systems but it is the exchange and balance with experimental data that makes

them really useful.

The third project I worked on falls into the category of method development although it is still

tightly bound to the previous application examples. As the production of conformational data sets

and their characterisation is the basis of our studies, tools to extract conformational states from

MD simulations are invaluable to our undertakings. We use low-dimensional projections of MD

trajectories to bring out significant aspects of our systems. Eventually, we relied on a specific analysis

as the key element to separate conformational states in these projections, referred to as clustering.

¹R. Süssmuth, Biological Chemistry, Technische Universität Berlin

²C. Rademacher, Molecular Drug Targeting, Universität Wien

10 Dissertation J.-O. F. Kapp-Joswig

https://www.biochemie.tu-berlin.de/
https://medienportal.univie.ac.at/uniview/professuren/cv/artikel/univ-prof-drrernat-christoph-johannes-heinrich-rademacher/

3. Projects and research questions

Clustering allows us to identify groups of related molecular structures in terms of coherent sets, which

can be characterised individually, compared to each other and to the complete ensemble, and finally

linked to potential functionality.

Molecular conformational states are associated with potential energy minima, i.e. sets of struc-

tures disjoint from other structures by sufficiently high energy barriers. A particular formulation of

clustering—density-based clustering—finds clusters matching exactly this notion: clusters are dense

groups of data points separated by low density. In the group, we use and develop a density-based clus-

tering procedure called common-nearest-neighbour (CommonNN) clustering, which is particularly

well suited for the application to molecular data sets. The analytic challenge posed by our langerin

data set stimulated the re-implementation of this clustering approach in an easy to use and efficient

Python package. It allowed us to process large amounts of structures, to screen many cluster parameter

combinations, and to explore the hierarchical nature of the data. A clustering of this kind led to the

discovery of the prominent langerin conformation that constitutes our central result and was the basis

of a kinetic model that put it in proportion to other conformational states.

The work on the CommonNN clustering methodology in parallel to our langerin study is an

excellent example for how application and method development can go successfully hand in hand.

Our improvements to the clustering facilitated our langerin analysis. At the same time, the clustering

profited from the direct validation via the application and was developed into a direction targeted

towards practical usefulness. In this course, the algorithms used for the clustering were conceptually

simplified, the internal components of the procedure were reviewed in detail, and the feature set

of the clustering package was greatly enriched. In particular, the formulation of the clustering in a

hierarchical manner beyond the traditional threshold-based picture might take the procedure to the

next level in the near future. From a technical implementation standpoint, the generic formulation of

the clustering procedure that we have employed, greatly improves the reusability of the code for a

broad array of possible applications.

To sum up, the projects we studied helped to shed light onto the specific scientific problems

they entail. Beyond that, I hope that our general approach could serve as a template for how to

address similar research questions and can contribute incrementally to the further maturing of MD

simulations and their analysis in practically relevant research. In particular, I would like to see density-

based clustering promote into the standard method of choice to isolate conformational states from

configurational trajectories.

Dissertation J.-O. F. Kapp-Joswig 11

Part II.

Theoretical basics

{ 4 }
The Molecular Dynamics formalism
Ingredients to run basic molecular simulations

I
n this chapter, I would like to discuss (a few of) the integral parts that are needed to run classical

MD simulations. The selection of things that are addressed in detail is sort of biased towards what

I consider most important to understand the basics. MD simulations do, however, require a complex

interplay of a multitude of technical details in practice, which would go far beyond what I can describe

here. I will try to point out where the provided overview is limited. To begin with, I give a rough

example for a possible program structure that can be used to realise finite time numerical simulations

of molecular systems in general. The following sections will then give credit to individual aspects.

Figure 4.1 summarises a typical realisation of a MD simulation in a respective program. Roughly,

a MD simulation takes a starting structure (a configuration) of a molecule as input and produces a

time series of atomic positions by repeating two fundamental operations: a computation of current

forces acting on each atom, and the propagation of positions according to these forces for a tiny step

forward in time. A minimal setup of a molecular system in the context of such a simulation brings

together the following elements: 1) a current configuration, i.e. usually cartesian coordinates for each

particle contained in the system. 2) Current particle velocities (optional on initial input). 3) A set of

interactions, e.g. potentials to parts of a
simulation

model bonds, angles, dispersive interactions, external influences etc.

4) A list of drivers through which the simulation should be progressed. 5) Optionally a mechanism

to account for periodic boundary conditions (PBCs). 6) Optional reporters that collect and output

information about the current state of the simulation.

Figure 4.1 Minimum simulation
scheme A simulated system from

the MD perspective is basically a set

of atomic coordinates (the configur-

ation) and velocities. These are up-

dated during a simulation in steps

by drivers that may evaluate present

interactions (compute forces) and

propagate the configuration. For the

evaluation, atom specific (topology)

parametersmay need to be looked up

and supporting elements like neigh-

bourlists may be used. Optionally,

PBCs can be applied and informa-

tion about the run can be reported.

When a simulation is started, a number of steps is executed sequentially in order to propagate

the system further in time. A driver goes through the list of specified interactions and triggers the

computation of forces acting on the atoms in the system based on the current coordinates. Depending

on the interaction, this can entail different logic. Basic types of commonly used interactions are

Dissertation J.-O. F. Kapp-Joswig 15

4. The Molecular Dynamics formalism

discussed in section 4.2. For simple harmonic bonds for example, it has to be known on which pair of

atoms it should be evaluated and which parameters (equilibrium bond length and force constant)

should be used for that. The mechanisms of how to get these information, i.e. the way how topological
information is stored and accessed in a program, can be fairly intricate and should not be discussed

here. Non-bonded interactions that should not be evaluated for fixed pairs but rather for atoms

at a certain current maximum distance from each other, may need to make use of structures like

neighbourlists (section 4.5), which in turn have to be updated as needed. What an interaction actually

calculates can be arbitrarily complex but what it outputs is always an additive force contribution.

Subsequently, the driver uses the summed up forces to modify the current coordinates and optionally

also velocities according to an integration scheme. A few basic integrators are discussed in section 4.6.

Drivers decide when (and how often) to evaluate specific interactions and may fulfil also other roles,

modifying the state of the system in any possible way. For example they can act as thermostats

(discussed in section 4.8). After each driver has successfully done its part, the coordinates of the

system’s particles may be corrected for PBCs of which basic schemes are found in section 4.4. Finally,

different reporters can be used to write the current coordinates to disk (every other time step) or print

out information like temperature, energies, or the simulation progress. The reported output will be

the basis for subsequent analyses (see chapter 5). These steps are repeated until the desired simulation

length has been reached.

In parts, what will be described in the following sections of this chapter is underpinned by a small

MD program implemented in Cython that allows example implementations for educational purposes

while being a bit more robust and efficient than an ad-hoc implementation.¹ Most widely used software

packages to realise MD simulations are highly optimised for performance and their code base can be

daunting and hard to navigate in search for a specific implementation detail. An exception is Lumol,

implemented in Rust.²

The theoretical basis for a simulation like this, are Newton’s equations of motion (see section 4.1).

We treat the atoms we simulate as Newtonian particles that interact via empirical potentials and

approximate the complex, chaotic solutions to the underlying mechanics numerically. That this

approach is justified and can produce practically usable results, rests upon a number of assumptions

and theorisations.justification On a quantum mechanical level, we need the Born-Oppenheimer approximation

that allows us to treat themotion of atomic cores and electrons separately.[83]MDpropagates the cores

classically on a potential energy surface governed by the electronic structure of the molecular system.

This energy surface is in turn substituted with an approximate function, the quality of which strongly

influences the validity of the simulation. In the same line of basic argumentation falls the Ehrenfest

theorem, according to which under certain conditions the time-dependence of the expectation values

of the quantum mechanical position and momentum operator resemble the motion of a classical

particle.[84] From the standpoint of statistical mechanics, the most important point might be the

ergodic theorem (see chapter 5) that equates macroscopic ensemble averages with time-averages

of single molecules as they are accessible from simulations. On a technical side, MD has to rely

on accurate propagation schemes that minimise numerical errors and ensure the reproduction of a

thermodynamic ensemble.[85] While it is under debate if classic numeric integrators can ‘shadow’

the true dynamics of a system,[86] it is widely excepted that MD simulations are valid in a statistical

sense in terms of ensemble distributions, averages, and autocorrelation functions.[87, 88] Finally,

the successful execution of a simulation and its potential to model molecular behaviour realistically,

depends on a multitude of fine-tunable parameters and settings.[89]

¹See the repository on GitHub: github.com/janjoswig/Eski
²See the repository on GitHub: github.com/lumol-org/lumol

16 Dissertation J.-O. F. Kapp-Joswig

https://github.com/janjoswig/Eski
github.com/janjoswig/Eski
https://github.com/janjoswig/Eski
github.com/lumol-org/lumol

Equations of motion

4.1 Equations of motion

Newton’s second law of motion tells us that the acceleration of point particles (or rigid bodies

approximated by their center of mass) is proportional to the net force acting upon them. The dedicated

fundamental equation of motion is essentially a second order differential equation: Newton’s
2nd law

F =M
d2q
dt2

, (4.1)

where t denotes time and q(t) = (q1, ..., qn) is a position vector in a suitable set of n chosen coordinates

to describe a physical system at a specific point in time. The mass matrixM is a diagonal matrix³

whose elements hold a corresponding mass for each of the n positional coordinates. Consequently,

F is a vector of n force components. With dq/dt = q̇ = v(t) as the instantaneous velocity vector,

d2q/dt2 = q̈ = a(t) as the systems acceleration, and the definition of momentum p = Mv, other

possible formulations of Newton’s second law are

F =Ma =M
dv
dt
=
dp
dt

. (4.2)

The latter expression in terms of the systems momenta is often referred to as the most general one

because it does not necessitate that the particle masses are actually constant. As far as we should be

concerned here about molecular mechanics, however, masses will always be in fact constant, which

means in particular that we will stay exclusively within the non-relativistic limit.4 The total force

F acting on a system can in general be a function of the systems current positions, velocities, and

time F(t, q, q̇) = (F1, ..., Fn), depending on which forces are actually present. To describe a physical

system by Newton’s equation, essentially means to write down all the acting forces, i.e. to find the

corresponding force law. Individual forces have the important property that they are additive vector

quantities so that the net force F on a system can be expressed as a sum

F = ∑Fcontrib (4.3)

of contributing forces Fcontrib, which can each influence all or only a subset of the systems coordinates.

Once the force law is formulated, the resulting second order differential equation can be solved

analytically in some simple cases. Given two initial conditions—usually set positions and velocities—

onemight be able to find an agreeing equation for q(t) that will describe the system at hand at all times.

For most practical cases, however, one needs to resort to numerical approximations as solutions.

Let’s consider a few very simple examples, beginning with a system of a single, free particle

with mass m in two dimensions. The current position of the particle is given in cartesian coordinates

as q = (x , y) with velocity v = (ẋ , ẏ), while the adjective ‘free’ connotes that the system has two

corresponding degrees of freedom and can move unrestrictedly. constant force
example

In the case of this particle being

subject to a constant force or no force at all, the force law will be just Fconst = md2q/dt2 = maconst.

With an initial particle position q0 and velocity v0, a solution to this equation would be

q(t) = q0 + v0t + aconst

2
t2 (4.4)

with q̇(t) = v0 + aconstt and q̈(t) = aconst, where aconst is possibly 0. In accordance to Newton’s first

law, a particle that experiences no force is either at rest (v0 = 0) or moves with constant velocity along

³If the mass is actually the same for all coordinates (e.g. if only one particle is considered), the mass is usually given just

as a scalar m.

4A formulation of Newton’s second law that allows for changing mass is F = dp/dt =M dv/dt + vdM/dt. This can be

used even in the classical limit for example to account for airplanes losing mass due to fuel consumption.

Dissertation J.-O. F. Kapp-Joswig 17

Equations of motion

Figure 4.2 Free particles in cartesian and polar coordinates
Plots in a) cartesian coordinates, b) polar coordinates embedded in a cartesian reference frame, and c) polar co-

ordinates as a separate projection. The red particle motion follows equation 4.4 with no acceleration in cartesian

coordinates and has been converted to polar coordinates for the other subplots. The black dotted line is a numeric

solution to the same trajectory but propagated in polar coordinates, which necessitates the consideration of coordinate

fictitious forces. The green, pale, and dark particle trajectories follow equation 4.4 in polar coordinates and are

translated into cartesian coordinates for subplot a). While the pale motion can be indeed understood as force-free,

the circular motion described by the green and dark particle implies the presence of forces.

a straight line q(t) = q0 + v0t. The red particle in figure 4.2a illustrates this case for q0 = (3, 1) and
v0 = (−1.5, 1).

We want to realise, however, that the choice of cartesian coordinates is not at all binding. Let’s

for example consider the description of a free particle in two dimensions with polar coordinates

where the particle position is given as qpol = (r, ϕ) with the radial distance of the particle to the

origin r and the rotational angle ϕ with respect to an axis of reference (say the x-axis).polar
coordinates

The polar

velocities are the changing rates with respect to these coordinates vpol = (ṙ, ϕ̇). Positions in polar

coordinates and cartesian coordinates can be interconverted via x = r cos ϕ and y = r sin ϕ, or vice

versa ϕ = atan2(y, x) and r =
√
x2 + y2. The encoded information is exactly the same but a particular

kind of particle motion takes different forms in both these coordinate systems. Depending on the

specific situation, one set of coordinates may be preferable over the other.

If we now re-use the kinematic equation 4.4 as q(t) = q0 + v0t with qpol

0
= (1, 0), vpol

0
= (0, π/4)

and no respective acceleration as shown in figure 4.2c with the green particle, we again observe a

straight line trajectory—at least in the rϕ-plot. In cartesian coordinates on the other hand it becomes

obvious that the same trajectory does actually describe a uniform circular motion. This is because the

situation with a constant angular velocity ϕ̇ implies a constant acceleration of the particle towards the

center of the rotation and is as such not without the influence of a force. The acceleration from the

cartesian perspective expressed in polar coordinates is in general acart = (r̈ − rϕ̇2)r̂ +(rϕ̈+ 2ṙϕ̇)ϕ̂ and
the velocity is taken as the tangential velocity vcart = ṙr̂+ rϕ̇ϕ̂. The unit vectors of the polar coordinate

system are r̂ = cos ϕx̂ + sin ϕŷ and ϕ̂ = − sin ϕx̂ + cos ϕŷ, with for example x̂ = (1, 0) and ŷ = (0, 1)
being the standard cartesian unit vectors. These polar unit vectors are rotating themselves wih ϕ,
which gives rise to the fictitious terms rϕ̇2 (referred to as the centrifugal term) and 2ṙϕ̇ (called the

Coriolis term). When we have ṙ = 0, r̈ = 0, and ϕ̈ = 0, a particle in polar coordinates will still be

subject to an acceleration apol = (−rϕ̇2, 0) just because the coordinate system in wich it is described

rotates.

18 Dissertation J.-O. F. Kapp-Joswig

Equations of motion

Consequently, the force law for particle motion in polar coordinates does in fact look a bit more

complicated than in cartesian coordinates:

F +m(rϕ̇2

−2ṙϕ̇) = m(
r̈

rϕ̈) . (4.5)

When we want to use equation 4.4 as a solution to this problem, we need to set the actual forces acting

on the system equal to the coordinate fictitious ones, i.e. in particular for the circular motion we need

to include a centripetal force Fcentripetal = −mrϕ̇2. The extra terms in the force law make the derivation

of an analytical solution in the general case quite difficult.

Figure 4.2 shows two further examples for particle trajectories in cartesian and polar coordinates.

The pale dots mark an ‘outward’ motion for qpol

0
= (2.5, 7/4π), vpol

0
= (1, 0), and apol = (0, 0) in which

case both coordinate fictitious force terms amount to 0 and the dark dots describe an ‘inward spiral’

motion for qpol

0
= (3, 5/4π), vpol

0
= (−0.3, π/7), and apol = (0, 0), where both centrifugal and Coriolis

contribution play a role. The black dotted line in figure 4.2b represents a numeric approximation to

the force-free straight line motion propagated in polar coordinates according to an Euler-Cromer

integration scheme (see section 4.6).

To find an analytical solution to the force law of a system is only feasible in very few cases.

Examples, besides the free particle motion under the influence of a constant force discussed above,

would be a harmonic oscillator or (with considerable effort) a pendulum under the influence of

gravity,[90] if the problem is smartly reduced to one dimension by choosing a suitable internal

coordinate. The pendulum problem in two planar cartesian coordinates becomes more difficult.

Numerical approaches can provide an approximate solution to equations of motion, given a set of

initial conditions. But also without actually employing a numeric scheme, it is possible already to gain

some insight about a system by just looking at how the position and momentum combined would

change for different initial conditions. A visualisation in which the change in position q̇i = vi = pi/m
is plotted versus the change in momentum ṗi = Fi with respect to the ith system coordinate is

called a phase (space) plot, diagram, or portrait. phase plotsFigure 4.3 shows such vector field plots for a

one-dimensional linear motion, the vertical component of a projectile, and a pendulum with added

friction term. Starting at any point in the plot, we can anticpate how position and momentum will

change with time and follow a specific trajectory the system will take. A numeric computation of

trajectories can achieve in principle the same: the production of a trajectory through phase space.

Figure 4.3 Phase diagramsThe change

in position and momentum with respect

to one coordinate is represented for pairs

of starting conditions (q0 , p0) by a vector

(p0/m, F). Vectors can be optionally nor-

malised in length and their magnitude is

indicated by color. a) Particle being either

at rest or moving with constant velocity

in one direction. b) Particle under con-

stant acceleration in negative direction. c)
Damped pendulum motion according to

θ̈ = −g/l sin(θ)−γθ̇. For two starting con-

ditions A and B, the trajectory was com-

puted using an Euler-Cromer integrator.

Dissertation J.-O. F. Kapp-Joswig 19

Types of molecular interactions

The derivation of force laws for particle motion can be complex. A helpful concept may be to

inspect the Lagrangian of a system

L = Ekin − Epot , (4.6)

acknowledging that forces and motion have their origin in energetic terms. Equations of motions can

be generated from it, using the Euler-Lagrange equation (assuming the system has a stationary state):

d

dt
(

∂L
∂q̇
) −

∂L
∂q
= 0 . (4.7)

For the case that the system’s potential energy does only depend on particle positions and the kinetic

energy only on velocities (which is the case for mechanical systems we should be concerned here with),

we have in particular that ∂L/∂q = −∂Epot/∂q = F and recover Newton’s equation (equation 4.1).Lagrangian
Forces that fulfil this requirement of coming from a position-only dependent potential can be called

conservative forces. As an important property, work done in a field of conservative forces is independent

of the path taken between the two end states. Non-conservative (dissipative) forces that depend on

particle velocities can be present in a system as well but will make equation 4.7 not equate to 0, that

is the total energy of the system is not constant. Using the Lagrange formalism, one can describe

particle motion in any set of coordinates, possibly adding a number of constraints to obtain a system

with fewer effective degrees of freedom.[91] Pre-requirement for the set of generalised coordinates is

that they are complete, independent, and holonomic. Independency means that if we fix the motion

along one coordinate, all the others still need to be able to explore their whole value range freely. As a

consequence, there must not be any redundancies in the used coordinates. Completeness means that

we need to be able to describe the state of the system at all times. And holonomicity states that the

number of used coordinates needs be equal to the actual number of degrees of freedom in the system.

In particular this means that used constraints have to be expressible as functions of coordinates only.

For the pendulum problem in figure 4.3c for example, the use of two cartesian coordinates x and y
violates independency. Holding either one of them fixed, will not allow the system to move anymore.

Intrinsically, the pendulum has only one degree of freedom. We can add a holonomic constraint,

though, to replace x and y with a single new coordinate.[92] Alternatively, the system’s Hamiltonian

can be formally used to derive equations of motion.

For molecular systems in the context of MD, we construct a position dependent potential energy

function and correspondingly conservative forces from empirical contributions. Which molecular

interactions are typically considered in this, will be the topic of the next section.

4.2 Types of molecular interactions

The forces acting on particles that are considered in molecular simulations are usually

corresponding to inter- and intra-molecular interactions of some kind.standard
forces

In classic MD, it is common

to construct the potential energy expression for a given system additively for example from the

following contributions:

Epot = Ebonds + Eangles + Etorsions

´¹¹¸¹¹¶
bonded

+ Edispersion + Eelectrostatics

´¹¹¹¸¹¹¶
non−bonded

. (4.8)

Atoms (or groups of atoms) are treated as Newtonian particles with a certain mass and fixed partial

charge, and the modelled interactions between them are supposed to represent chemical bonds

(involving two atoms), valence angles (involving two geminal atoms via a third central atom, i.e. two

bonds), and torsion angles (involving two vicinal atoms over a third and fourth atom, i.e. three bonds),

20 Dissertation J.-O. F. Kapp-Joswig

Types of molecular interactions

as well as dispersion and electrostatics between non-bonded atom pairs. The above terms represent

summations over all the respective individual interactions, for instance the set of all chemical bonds

B between atoms a and b present in a system Ebonds = ∑a,b∈B Ebond(a, b), etc. Other interactions are

possible, as for example improper dihedral angle or mixed bond-angle terms, constraining forces, and

forces from external fields. Historically, there were also dedicated interaction terms used for hydrogen

bonds.[93]

Each of these contributions can take on different functional forms. The combination of interactions

that is employed in a simulation is called a force field or potential field, providing energies and forces

for every system configuration. All considered forces also form the topology of a molecular system.

The details of how topologic information is handled by different simulation programs, i.e. how the

forces and corresponding parameters for complex systems are communicated, stored, and accessed

efficiently, can be fairly intricate, however, and I will not go into it here. A force field is meant

to provide an approximation to the actual forces acting on atoms, originating from the electronic

structure of a system and interactions of the atomic cores in a QM description. It breaks down the

(probably unknown) potential energy surface into a set of quasi-physical contributions, which can be

parametrised, cheaply evaluated (analytically), and mixed and matched for a wide array of molecular

systems.

Picking a set of reasonable interactions by hand can be hard for complex systems. For this reason, a

multitude of consistent template force frameworks exist for various types of systems, i.e. well designed

pools of interactions from which the suitable ones can be selected more or less automatically for

specific molecules. These are also referred to as force fields and prominent examples are those from

the AMBER, CHARMM, GROMOS, or OPLS family, which are often associated with respective

simulation program suites.[94] They are based on slightly varying philosophies for the determination

of interaction parameters. Equation 4.8 may look different in detail for each of them. In its original

form, which still remains largely valid, though, this fundamental equation was supposedly published

first in 1969.[27]

In the following, examples of a few typically used potentials will be discussed briefly. Figure 4.4

gives on overview on the definition of bonds and (torsion) angles that these potentials depend on.

Figure 4.4 Bonded interaction types and forces
a) Pair of atoms at positions qa and qb connected by a chemical bond. The acting forces Fa and Fb depend on the

bond distance rab and either pull the two atoms closer together (blue) or further away from each other (orange). b)
Three atoms (qa , qb , qc) connected by two bonds forming an angle θabc . The respective forces on the atoms act to

either tighten (blue) or widen this (angle). c) Four atoms (qa , qb , qc , qd) over three bonds forming the dihedral angle

ϕabcd , which is equal to the angle between the normal vectors uabc and ubcd , i.e. the angle between the two planes

described by rab × rbc and rbc × rcd . The ϕ-dependent forces act on the atoms involved to either tighten or widen this

angle. Similarly, improper dihehdral angles are defined as the angle between any two planes formed by four atoms

not necessarily in this typical torsion arrangement.

Dissertation J.-O. F. Kapp-Joswig 21

Types of molecular interactions

A commonly used, parametrised model for atomic bonds in classic MD is the harmonic

spring potential

Ebond =
1

2
k(rab − r0)2 , (4.9)

where rab is the (euclidean) distance between two bonded atoms a and b at positions qa and qb, and
r0 is the equilibrium distance at which the interaction energy is minimal (here E = 0).5harmonic bond The strength

of the bond is scaled with the force constant k: the larger k, the steeper and narrower the potential.

We have the distance vector rab = qb − qa with length rab = ∣∣rab ∣∣ and normalisation r̂ab = rab/∣∣rab ∣∣.
The internal force implied by the potential is

F = − dE
drab

= −k(rab − r0) . (4.10)

While this gives us a value for how the potential changes with the bond distance, for the evaluation of

the force in a simulation by its components we are actually interested in how the potential changes

with the position of the bonded particles, e.g. ∂E/∂qb . From this, we can get the force vector Fb acting

on particle b as

Fb = −
dE
drab

∂rab
∂qb
= F r̂ab . (4.11)

The bonded interaction is symmetric so that Fa = −Fb. Figure 4.5 shows a harmonic spring potential

and the resulting force on atom a.

Figure 4.5 Harmonic bond potential Dis-
tance dependent potential energy according

to equation 4.9 for a C-C single bond with

r0 = 0.1525 nm and k = 259, 408 kJ/(mol

nm
2
), and corresponding force acting on one

of the particles. Parameters taken from the

AMBER99SB-ildn force field.[95]

When tabulated parameters for this potential are looked up, attention must be paid to how the

potential energy function is defined exactly (this actually extends to any kind of potential). In AMBER

for example, equation 4.9 is understood alternatively as Ebond = k(rab − r0)2, which implies a force

constant differing by a factor of 2.tabulated
paramters

AMBER force fields ported to GROMACS on the other hand

use equation 4.9 as is. It should be also checked carefully in which units force constants and other

parameters are given. While k in molecular units can for example be communicated in kJ/(mol nm2)

(as in GROMACS), kcal/(molÅ2) are also common (as in AMBER). In SI(-derived) units, this quantity

is given in kg/s2 or N/m. Force constants can also be derived from and converted to vibrational

(angular) frequencies ω as

ω =

¿
Á
ÁÀ k

µ
, (4.12)

5For the evaluation of interaction forces in a simulation, the actual energy value at the minimum is not important. If

actual energies should be calculated, however, a suitable (tabulated) minimum value for the binding energy needs to be

subtracted.

22 Dissertation J.-O. F. Kapp-Joswig

Types of molecular interactions

where µ is the reduced mass of the partaking atoms µ = (mamb)/(ma +mb). Frequencies in turn

relate to the perhaps more abundantly tabulated wavenumbers ν̃ or wavelengths λ via

ν̃ = 1

λ
=

ω
2πc

(4.13)

with speed of light c. For the force constant used in figure 4.5, one obtains for example ν̃ = 1103.86/cm,

which corresponds to a vibrational period of about T = 2π/ω = 0.03 ps.

A harmonic potential as in equation 4.9 is not the only possible option to model chemical bonds

in MD simulations. Another example would be the more realistic yet more complicated Morse Morse potential
potential[96] with

Ebond = є [1 − exp (−α(rab − r0))]
2

with α =
√

k
2є

(4.14)

and implied force

F = 2єα exp (−α(rab − r0)) [1 − exp (−α(rab − r0))] . (4.15)

Here, an additional parameter є controls the depth of the potential energy well compared to a dissoci-

ation limit. As figure 4.6 illustrates, a Morse potential differs quite substantially from the harmonic

picture with respect to a steeper increase of the energy at short bond distances and asymptotic beha-

viour at large distances. In terms of what is accessible to a molecular system at thermal energy kBT ,
both potentials agree, however, quite well so that the simple harmonic form can be mostly used safely.

Bond potentials that account for a correct anharmonic description are among other things inter-

esting in simulations where particle dissociation should be incorporated[97] or where vibrational

spectra should be reproduced.[98]

Figure 4.6 Harmonic vs. Morse potential
Distance dependent harmonic potential en-

ergy for a C-C single bond (see also figure 4.5)

compared to a Morse potential according to

equation 4.14with є = 355.64 kJ/mol. V(σ) =
є, σ = − ln(2)/α + r0.

Similar to chemical bonds between two atoms, valence angles formed by three atoms each can

as well be modelled with a harmonic term harmonic angle

Eangle =
1

2
k(θabc − θ0)

2 (4.16)

with force

F = − dE
dθabc

= −k(θabc − θ0) . (4.17)

Calculating the actual forces on the atoms a, b, and c involved is, however, a bit less straightforward

than in the bond case. The angle θabc can be computed as the scalar product of the distance unit

vectors between the central and the other two atoms

cos θabc = r̂ab ⋅ r̂cb (4.18)

Dissertation J.-O. F. Kapp-Joswig 23

Types of molecular interactions

and through the derivatives

∂θabc
∂qa

=
cos θabc r̂ab − r̂cb

sin θabcrab
and (4.19)

∂θabc
∂qc

=
cos θabc r̂cb − r̂ab

sin θabcrcb
(4.20)

we get the force vectors Fa and Fc in analogy to equation 4.11. The force on the central atom can

then be obtained as Fb = −(Fa + Fc), because the total internal force should amount to zero. Instead

of a plain harmonic potential, angles can also be modelledcosine angle by a cosine potential that allows angle

transitions across 180° to an equivalent equilibrium angle with energy

Eangle =
1

2
k(cos θabc − cos θ0)

2 (4.21)

and force

F = k(cos θabc − cos θ0) sin θabc . (4.22)

Figure 4.7 compares the two potentials for the H-O-H angle in water. Other special angle potentials

are for example the restricted-bending and the Urey-Bradley potential used in CHARMM.[99]

Figure 4.7 Harmonic vs. cosine angle po-
tential Angle dependent harmonic poten-

tial energy according to equation 4.16 for a

H-O-H angle with θ0 = 104.52 ° and k =
836.8 kJ/(mol rad

2
), compared to a cosine po-

tential according to equation 4.21. Paramet-

ers taken from the AMBER99SB-ildn force

field.[95]

Torsion angles are in principle just regular angles (see figure 4.4) and can also be treated

harmonically in analogy to equation 4.16. For improper dihedrals, this is actually common practice

when a certain molecular geometry should be enforced, e.g. the planarity of aromatic rings or the

relative orientation of substituents on a tetrahedron. Chemically it makes more sense, though, to

model proper torsion dihedrals periodically for which a possible potential would beperiodic torsion

Etorsion = A[1 + cos(nϕ − δ)] (4.23)

with the energy amplitude A that takes the place of a force constant: the larger A, the stronger the

interaction. Two additional parameters, the multiplicity n and phase shift δ, control the shape of the

potential. The respective torsion angle force is given by

F = nA sin(nϕ − δ) . (4.24)

To calculate the force exerted on the atoms involved during a simulation we can first compute the

dihedral angle as

ϕabcd = atan2(rbc(ubcd ⋅ rab), uabc ⋅ ubcd) , (4.25)

where uabc = rab×rbc and ubcd = rbc×rcd are the normal vectors to the two planes formed by the atoms

a, b, c, and b, c, d. By convention, the angle ϕabcd takes on values in the half-closed interval [-180°,

180°) where 0° describes the syn-periplanar setting. Negative angles correspond to anti-clockwise

24 Dissertation J.-O. F. Kapp-Joswig

Types of molecular interactions

rotation while positive angles denote a clockwise rotation. To get the force vectors, we need the

derivatives

∂ϕabcd
∂qa

= −
rbc

u2

abc
uabc , (4.26)

∂ϕabcd
∂qd

=
rbc

u2

bcd
ubcd , (4.27)

∂ϕabcd
∂qb

= (−
rab ⋅ rbc

r2

bc
− 1)

∂ϕabcd
∂qa

+ (
rbc ⋅ rcd

r2

bc
)

∂ϕabcd
∂qd

, and (4.28)

∂ϕabcd
∂qc

= (−
rbc ⋅ rcd

r2

bc
− 1)

∂ϕabcd
∂qd

+ (
rab ⋅ rbc

r2

bc
)

∂ϕabcd
∂qa

. (4.29)

Figure 4.8 shows a harmonic angle potential in comparison with periodic potentials using different

amplitudes and multiplicities. Often, dihedral angles are represented by a combination of more than

one of these terms with varying values for n and δ.

Figure 4.8 Harmonic vs. periodic dihedral
potential Angle dependent harmonic poten-

tial energy (k = 25 kJ/(mol rad
2
)) and peri-

odic energies according to equation 4.23 for a

C-C-C-C torsion angle with (n = 1/2/3, A =
25/20/15 kJ/mol, δ = 0/180/0°). Parameters

chosen arbitrarily.

Figure 4.9 shows a combination of periodic potentials resembling the situation in butane, overlaying

interactions for the C-C-C-C and C-C-C-H torsion angles. It should be noted, though, that for torsion

angles of this type, usually also 1,4-non-bonded interactions have to be considered to get the full

picture. butane torsionTypically, these are scaled down by a force field specific factor.[93] Together with 1,5- and

1,6-interactions, the realistically expected potential for the torsion angle rotation in butane is in total

quite different to what is shown in the figure. For bond and angle potentials, 1,2- and 1,3-non-bonded

interactions are in contrast normally excluded because the interaction is sufficiently modelled by the

used bonded terms. For some torsion angle potentials, 1,4-non-bonded contributions are excluded

as well, for example when Ryckaert-Belleman potentials are used.[100] Arguably, dihedral angles

are the most difficult to get right in a simulation. They depend sensitively on how the force field is

constructed overall and can in general not be well transferred to other force fields.

Figure 4.9 Dihedral potential for pseudo-butane
Angle dependent potential energy according to equa-

tion 4.23 for the C-H2C-CH2-C torsion with contribu-

tions from one C-C-C-C (δ = 0/180/180°, n = 1/2/3,
A = 0.75312/1.04600/0.8368 kJ/mol) and four C-C-C-H

(δ = 0°, n = 3, A = 0.66944 kJ/mol) angles. Parameters

taken from the AMBER99SB-ildn force field.[95]

Dissertation J.-O. F. Kapp-Joswig 25

Types of molecular interactions

The non-bonded interactions in MD simulations are conceptually treated similarly to bond

potentials involving two atoms at a time, only that the number of considered non-bonded terms scales

quadratically with the number of particles in the system, i.e. in general each particle interacts with

any other particle (disregarding exclusions). Dispersive interactions are commonly modelled using a

12,6-Lennard-Jones potential as a function of the distance between two particlesLennard-Jones

ELJ = 4є
⎡
⎢
⎢
⎢
⎢
⎣

(
σ

rab
)

12

− (
σ

rab
)

6⎤
⎥
⎥
⎥
⎥
⎦

(4.30)

with force

F = 24
є

rab

⎡
⎢
⎢
⎢
⎢
⎣

2(
σ

rab
)

12

− (
σ

rab
)

6⎤
⎥
⎥
⎥
⎥
⎦

. (4.31)

The interaction is parametrised with the distance σ at which the interaction energy is zero and the

potential depth є. Alternatively, σ can be converted to the equilibrium distance r0 = 6
√

2σ , for which

Epot(r0) = −є. The quantity rvdW = σ/2 is known as the atom specific van der Waals-radius. Instead

of σ and є, it is also common to write out the potential with factors A = 4єσ 12 and B = 4єσ6. The

potential is constructed from a repulsive soft-sphere (Pauli) term that false of quickly (1/r12) with

increased distance and an attractive (van der Waals) term (1/r6). Figure 4.10 shows this potential for

two interacting argon atoms, including the attractive and repulsive parts, and the corresponding force

expected on one of the atoms.

Figure 4.10 Lennard-Jones potential Dis-
tance dependent potential energy accord-

ing to equation 4.30 for Ar-Ar with σ =
0.3401 nm and є = 0.978638 kJ/mol. Para-

meters taken from the OPLS-AA/L force

field.[101]

Lennard-Jones parameters are determined and tabulated for homo-dimers. The parameters for

interactions of mixed dimers are usually obtained by averaging, although this may not always be a

satisfying approach in which case specialised parameters can be used for individual pairs. A common

averaging strategy uses for example arithmetic averages for σ and geometric averages for є-values

according to the Lorentz-Berthelot combination rulescombination
rules

σab =
σaa + σbb

2
and (4.32)

єab =
√
єaaєbb . (4.33)

Besides the 12,6-Lennard-Jones type potential, there exist variations with different exponents. For

metal ions, a 12,6,4-potential has promising properties.[102, 103] Other popular alternatives are the

Buckingham potential, which differs in the repulsion being modelled with an exponential term,[104]

or the Born-Meyer-Huggins potential with two separate attractive terms, which is for example used

to model glasses.[105]

As a side note regarding the performance of force and energy calculations, the Lennard-Jones

equations 4.30 and 4.31 can be implemented in a way to avoid two operations that are rather costly (if

26 Dissertation J.-O. F. Kapp-Joswig

Types of molecular interactions

they are repeated many times): instead of the actual distance between the atoms, the squared distance

can be used, which saves a computation of the square root, and the σ6 term can be reused saving a

floating point division. implementa-
tion

Furthermore, it is possible to store є inmemory as already including a prefactor

of 4 saving this repeated multiplication or to defer the multiplication to after all Lennard-Jones

contributions have been calculated, but this may not make practical sense for every implementation.

rv = get_distance_vector(a, b)
rsq = distance_squared(rv)
sr2 = (s * s) / rsq
sr6 = sr2 * sr2 * sr2
energy = 4 * e * sr6 * (sr6 - 1)
force = 24 * e * sr6 * (2 * sr6 - 1) / rsq
fva = -force * rv
fvb = force * rv

The calculation of non-bonded interactions can become the bottleneck of a simulation when

actually all possible pairs are considered because the number of pairs scales on the order ofO(n2)

with the number of particles. non-bonded
cut-off

To limit the number of pairs, it is common practice to truncate the

Lennard-Jones potential at a certain cut-off distance and to calculate the interaction only for pairs for

which rab < rc. For pairs at rab ≥ rc, the contribution will be zero. The reasoning behind this, is that

the interaction is essentially short-range in its nature and that contributions beyond a cut-off can be

neglected without substantial error (for mor details see section 4.5). Moreover, the error can basically

be made arbitrarily small by choosing a sufficiently large cut-off.

A disadvantage of this truncation, is that the potential and force profiles may become discontinuous,

which can negatively affect energy conservation.[106] While this is not necessarily a problem within

the normal accuracy limit of classic MD simulations, a number of modifiers (also called tapering

functions) can be used to ensure that the respective functions are zero at the cut-off distance. It is often

distinguished between shifting functions s(r; rc) that modify interactions over the whole range [0, rc]
and switching functions s(r; r1, rc) that only act within a range [r1, rc]. Shifting can, however, just be

considered a special case of switching when r1 = 0. The modifiers are in general either multiplicative

or additive so that the changed potential or force function is either obtained as f ′ = f ⋅ s or f ′ = f + s.

The choice of modification is a very sensitive one and is usually strongly coupled with the used force

field framework. Tabulated parameters are often strictly valid only for specific cut-off values and

certain potential modifications.

Figure 4.11 shows a few example modifications to the Lennard-Jones potential energy function. The

probably most simple approach, is to just use the energy at the cut-off as a constant to be added to

the potential. modifiersThis will set the energy at the cut-off to zero but the derivate at the cut-off will be in

general still non-zero. When this modifier is applied to a potential, forces remain unchanged so that

the sampling during a simulation is overall not altered. This is for example the default behaviour in

the simulation package GROMACS.[107]

An example for a simple multiplicative shifting function that decays smoothly to zero at the cut-off

but increases the energy values over a larger distance range more drastically, is

s(r; rc) =
⎡
⎢
⎢
⎢
⎢
⎣

1 − (
r
rc
)

p⎤
⎥
⎥
⎥
⎥
⎦

q

with p, q ∈ Z . (4.34)

Dissertation J.-O. F. Kapp-Joswig 27

Types of molecular interactions

For p = 2 and q = 2, this is a standard shift setting in CHARMM.[99] A more complex example for a

modification as an additive series expansion is given by the Stoddard-Ford potential

ELJ = 4є
⎧⎪⎪
⎨
⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎣

(
σ

rab
)

12

− (
σ

rab
)

6⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

6(
σ
rc
)

12

− 3(
σ
rc
)

6⎤
⎥
⎥
⎥
⎥
⎦

(
r
rc
)

2

− 7(
σ
rc
)

12

+ 4(
σ
rc
)

6⎫⎪⎪
⎬
⎪⎪⎭

. (4.35)

Finally, a pretty involved polynomial switching function implemented in GROMACS is

s(r; r1, rc) = 1 −
10(r − r1)

3(rc − r1)
2 + 15(r − r1)

4(rc − r1) − 6(r − r1)
5

(rc − r1)
5

. (4.36)

Such a switching leads to a smooth decay while influencing a potential function in a relatively small

distance range. A possible disadvantage of this, is that artificially high forces can be observed in the

switching region.

Figure 4.11 Potential cut-offmodifiers
Original Lennard-Jones potential (pink, compare figure 4.10) and modified potentials that reach 0 at the cut-off

distance rc = 2.5σ : constant shift (orange) just adds −ELJ(rc) to the potential, relative shift (green) multiplies the

potential by equation 4.34 with p = 4 and q = 2, polynomial switch (blue) multiplies it by equation 4.36 where

r ≥ r1 = 0.7, and Stoddard-Ford (red) applies a shift in accordance with equation 4.35. Note that for rel. shift and pol.
switch, the energy for distances beyond the cut-off was explicitly set to zero ELJ(r ≥ rc) = 0.

A further approach to counter the effect of truncated potentials, is to correct energies by an

approximate long-range term. This is known as tail correction.tail correction For each particle in the system,

energy contributions from partners within the cut-off distance are calculated explicitly. Assuming a

homogeneous distribution of particles beyond the cut-off, a contribution

Etail

LJ =
nρ
2
∫

∞

rc
4πr2g(r)Epot(r)dr (4.37)

can be added, where n is the number of particles in the system, ρ = n/V is the number density, and

g(r) is a radial distribution function that is for simplicity normally set to g(r) = 1. For the standard

Lennard-Jones potential in equation 4.30, this integral gives[108]

Etail

LJ =
8

3
πρєσ3

⎡
⎢
⎢
⎢
⎢
⎣

1

3
(

σ
rc
)

9

− (
σ
rc
)

3⎤
⎥
⎥
⎥
⎥
⎦

. (4.38)

Assuming a large enough cut-off so that the repulsive part of the interaction can be dropped and using

a potential with a constant shift, the simpler expression[36]

Etail

LJ = −
8

3
πnρєσ6

r3
c

(4.39)

28 Dissertation J.-O. F. Kapp-Joswig

Types of molecular interactions

can be derived. For indeed perfectly homogeneous systems, for example composed of only one kind of

particle, this is a very good approximation. If a system contains mixed particle types, the interaction

parameters can be averaged. The approach remains valid to some extent also for inhomogeneous

systems.[109] Again, the use of tail correction needs to be consistent with the employed force field and

it depends on the origin of the interaction parameters if its application is necessary or advised.[89]

Electrostatic interactions are the second type of non-bonded interactions that are typically

included in MD simulations. They can be modelled using a Coulomb potential between point charges

za and zb at distance rab:

ECoulomb =
fC
erel

zazb
rab

with fC =
1

4πe0
. (4.40)

The electric conversion factor fC contains the dielectric permittivity in vacuum e0 and amounts

to fC = 138.935458 kJ nm/(mol ze) in molecular units. Here, ze denotes the elementary charge.

The atomic charges za and zb can therefore be conveniently given in multiples of ze. CoulombThe relative

permittivity erel is set to 1 if no implicit medium is assumed in which the interaction takes place but

can take on a medium specific value if needed. This potential causes a force

F = fC
erel

zazb
r2

ab
. (4.41)

Figure 4.12 illustrates the Coulomb potential for an interacting charge pair in vacuum and in implicit

water.

Figure 4.12 Coulomb potential Distance de-

pendent potential energy according to equa-

tion 4.40 for two interacting elementary

charges with equal (orange) and opposite

(blue) sign in vacuum (erel = 1) and implicit

water (erel = 80).

In principle, the same considerations as for the dispersive interaction terms apply in regard of

a possible truncation of the electrostatic potential. Similar shifting and switching schemes can be

applied. The problem with this, is that while a 12,6-Lennard-Jones potential falls of relatively quickly

with an increased distance between the interacting particles, Coulombic interactions decaymuchmore

slowly (1/r). This means that the long-range character of the potential can not be neglected by applying

a finite cut-off without accepting a large error. Approaches like a tail correction as described above

with equation 4.37 will not work in this case. reaction-fieldWhat does work, however, is something conceptually

quite similar: By assuming a homogeneous medium with a given permittivity erf beyond the cut-off

distance, it is possible to define a physically justified, shifted Coulomb potential

ECoulomb = fCzazb (
1

rab
+

erf − erel

erel + 2erf

r2

ab
r3
c
−

3erf

erel + 2erf

1

rc
) . (4.42)

This is the so called reaction-field approach in its basic formulation for which several improvements

exist.[110] Figure 4.2 shows an example for a Coulomb potential plus reaction-field.

Besides the continuum approach, most widely usedmethods to treat electrostatics work via periodic

lattice sums. Without going into the complex details of it, the basic idea is to divide the Coulomb

Dissertation J.-O. F. Kapp-Joswig 29

Types of molecular interactions

interaction into a near and a far part. The near part can be evaluated directly, possibly using cut-offs

and shifting schemes.lattice sums The long range part, on the other hand, is solved by various different schemes

in reciprocal space where the infinite sum of point charges on the lattice converges more quickly. Such

methods are popular because of their accuracy and general applicability as long as a system is in total

charge neutral and in fact periodic. Compared to reaction field approaches that basically scale linearly

with the number of atoms in a system, typical lattice sum schemes are more expensive, scaling on the

order of O(n log n).[111] Recently, the u-series has been proposed as a more efficient scheme.[112]

Another potential drawback of lattice sums is that the pairwise interaction picture is essentially lost,

that is pairwise energy contributions can not be easily recovered.[110]

Figure 4.13 Coulomb potential with
reaction-fieldDistance dependent potential

energy for two interacting elementary

charges with equal sign using erel = 1 and

a reaction-field with erf = 1 (orange) or

erf = 80 (green) according to equation 4.42 in

comparison to the unmodified potential.

The set of different interactions as they are described here, have proven themselves

usable in countless simulations. A rather strong limitation of this classic combination (mostly of

the way how electrostatic interactions are treated) is, however, that it usually falls short in providing

accurate descriptions of ions. To recall, atomic partial charges are usually treated as scaled point charges

on top of atomic positions, such that they can only reflect one very specific (average) situation.Improved
charge models

Without

modification, this model is not very well suited to reproduce consequences for energetics and geometry

arising from changes in the atomic charges, their relative strength and their actual distribution. A

more realistic, flexible model can potentially improve the description of ionic species, first of all metal

ions. But even beyond that, there are many aspects concerning biological systems where polarisability

can play a major role.[113] Examples are π-π interactions of aromatic fragments, or cysteine anions,

because for delocalised or diffuse charges, the point charge model can be insufficient.[114] It has been

also shown that the induction of peptide bond dipoles can be important for helix formation.[115]

Improvements are likely also for intrinsically disordered proteins, where flexible charges can change

in different states of (un)folding.[116] Further, it is considered important for water dynamics, and in

general for phase transitions, e.g. from aqueous solution into a protein cavity or cell membrane. As a

slightly more exotic example, it helps to describe the binding and diffusion of diatomic gas molecules

like O2 in a protein. [117]

In the next section (section 4.3), a brief overview on polarisable force fields, aiming on countering

this shortcoming, will be given. For the sake of completeness, I would like to name a few alternative

approaches first, though. Within the limit of fixed atomic point charges, the only possible variation

would be to scale the charges. For calcium this has been successfully done and helps with reproducing

the energetics of hydration and protein-binding,[118, 119] but polarisation is still only treated in a

mean-field way. Otherwise, a tuning of ion properties in a simulation can be achieved via Lennard-

Jones interactions.[120] It has been shown, however, that a parametrisation of this potential for (higher

charged) ions is very difficult and that it is essentially impossible to optimize hydration free energies,

coordination numbers, and ion-oxygen distances at the same time with a single set of parameters.

The use of an extended 12,6,4-Lennard-Jones potential with an additional 1/r4 term accounting for

30 Dissertation J.-O. F. Kapp-Joswig

Polarisable force fields

ion-induced dipole interactions constitutes a considerable improvement here.[102, 103] This modified

potential was already successfully used to model metalloproteins,[121, 122] and is being actively

improved.[123] Further possibilities in particular aiming on geometric criteria, are to use a number

of dummy atoms without mass but with charges distributed around a central atom to mimic the

coordinative sites,[124] or to use covalent potentials, moving away from a solely non-bonded treatment

of ions.[125] Both these latter approaches tend to make strong assumption, though, about the expected

behaviour of the considered ions.

4.3 Polarisable force fields

Considerations to include polarisation effects into MD simulations date far back to

the early days in the development of this method.[46] Only the formal difficulties and in particular

the computational cost associated with this, did defer its widespread use in standard simulation

procedures to more recent times. As described in the last section, the fully classical MD framework

does usually use a fixed point charge model to account for electrostatic interactions. Despite the

general success of this approach and the evolution of well refined respective force fields, it is insufficient

for many also biologically relevant systems. It became clear that the next major step in advancing

protein force field accuracy requires a different representation of the molecular energy surface.[126]

Three dominating approaches exist to account for polarisability of atoms inMD simulations, though

many flavours and alternatives are available. The first is called the fluctuating charge model.[127] It is

conceptually the most simple and allows to alter atomic partial charges while keeping the general fixed

point charge picture. Polarisation is, however, limited to the exchange of charge along covalent bonds

unless additional dummy sites are introduced. The second approach uses additional particles, called

Drude oscillators, with non-zero charge attached to a central methodsatom via harmonic spring potentials. In

this model, actual polarisation can be represented by the motion of these charges, where the force

constant of the binding potential corresponds inversely to polarisability.[128] And the third approach

uses multipoles that describe the distribution of charges around atoms and models electrostatic

contributions as interactions between and polarisation of these multipoles.[129]

Both the Drude oscillator and the mulitpole models have been intensively improved since 2013 in

terms of theDrude,[130, 131] and theAMOEBA force fields.[132, 133] It is not clear yet if either one of the

approaches could turn out as general preferable. Theoretically, the two descriptions should be basically

equivalent, though.[134] We want to focus here on the AMOEBA force field as the arguably more

intuitive way to account for polarisation. The use of multipoles offers also one important conceptual

advantage over moving charge particles, which is permanent electrostatics. This entails everything

that improves the fixed point charge model without actually including a form of polarisation, i.e. a

perturbation of charges. For one thing, a multipole defines an anisotropic charge distribution around

an atom. To explain interactions in terms of aromatic systems, lone pairs, or σ-holes, this can already

capture a lot of the necessary information. It also covers the effect of charge penetration because charge

distributions that posses an effective radius can interact differently (less strongly) if they are close to

each other and partly overlapping. Polarisation is then incorporated on top, achieving self-consistency

by using an iterative scheme. The inclusion of explicit polarisation necessitates the substitution of

the commonly used 12,6-Lennard-Jones potential against a 14,7-potential to avoid redundancies in

the description. The inclusion of further effects like charge transfer already led to the spin-off of the

independent AMOEBA+ force field.[135]

Theperformance of polarisable force fields has been evaluated before the background of the question:

‘do they really offer a more accurate description of the modelled systems?’. The answer to that question

seems to be ‘yes’ in general, although the details are still inconclusive. The matter is complicated by the

Dissertation J.-O. F. Kapp-Joswig 31

Periodic boundary conditions

fact that the results produced by different force fields can vary considerably even among mature non-

polarisable force fields.[136, 137] A long lasting issue is, among other things, the discrepancy between

descriptions for folded and intrinsically disordered proteins.[138, 139] A stabilising effect by a certain

force field may be desired in one case and completely inapt in another. It has been shown in the context

of folding simulations, that helix stability is generally well captured by the AMBER99SB force field (a

modification of which was mainly used in our simulations), at least in contrast to CHARMM36a2

and OPLS-AA, which over- or under-estimate it.[140] For polarisable force fields, there seems to be a

general tendencystability towards higher protein flexibilities.[126] They have been found to accurately model

disordered states but can have problems with stabilities of native states, which is usually reversed for

non-polarisable force fields.[141] In the reference papers for the Drude2013 and AMOEBA2013 force

fields,[130, 132] protein flexibilities were, however, supposedly on an acceptable level. On the one

hand, a more flexibel description is appreciated in some cases as the classical AMBER99SB force field

was rendered responsible for an over-stabilisation of a salt-bridge in a PDZ-domain compared to a

polarisable Drudemodel.[142] But on the other hand, using the Drude2013 force field, a non-negligible

destabilisation of the folded native states of a β-hairpin peptide, a villin headpiece variant, and a

WW domain was be observed. In contrast, the non-polarisable force field AMBER14SB was found

to over-stabilise folded conformations, while CHARMM36m and GROMOS54A7 were identified as

the most appropriate choice in these cases.[143] Interestingly, exactly the opposite is noticed for the

C-terminal β-hairpin of GB1.[144] In any case, the stability issues found addressing in the most recent

version of the Drude force field (Drude2019).[131] The newest AMOEBA force field concentrates

among other things on respective optimisations for nucleic acids.[133] In a current benchmark on G-

quadruplexes, however, the Drude force field turned out to be preferable over the AMOEBA approach

in terms of maintaining the stability of the simulated structure.[145] Although detailed comparative

assessments of conformational stabilities are otherwise scarce, AMOEBA has been successfully used

in simulations of metalloproteins[146, 147] and enzymes[148, 149] without reported stability issues.

AMEOBA showed also a very good performance in small molecule conformational searches.[150]

Another important aspect of force field accuracy concerns the modelling of molecular kinetics.

For polarisable force fields the number of available studies in this direction is limited, possibly due

to the higher computational cost of these simulations.kinetics Classic force fields often overestimate the

conformational relaxation rates of proteins. Polarisation can apparently help to slow these down but

for a truely accurate description, transition state energies would need to be actively integrated into

the force field development process.[151]

4.4 Periodic boundary conditions

Molecular simulations are limited to a rather small amount of particles. Large scale

simulations—maybe dealing with millions of atoms—require huge computational resources and

even they can capture only a vanishingly small fraction of the atoms partaking in a wet lab experiment.

Typically, a simulated system is confined in a simulation box with a narrow volume unless it is spe-

cifically desired to simulate in vacuum where particles can drift away from each other freely. Without

further provisions, a simulation in such a box would be heavily influenced by artificial interactions of

the system with the box boundaries and observations drawn from it would be hardly relatable to the

real system that is being modelled. Unwanted modelling artifacts arising from this scale discrepancy

are often summarised as finite size and edge effects[152]. The smaller the box, the more drastic would

be the distortion of the model. Yet, the computation of bulk properties by using large enough boxes is

technically unfeasible.

32 Dissertation J.-O. F. Kapp-Joswig

Periodic boundary conditions

A solution to the problem are periodic boundary conditions (PBCs). They are used to approximate

the situation in the real system by an infinite repetition of the simulation box that can be understood

as a unit cell. Instead of hitting a wall at the simulation borders, particles are allowed to cross them

and enter a periodic image of the simulation box. Still only one realisation of each particle is actually

physically represented, keeping the total number ofmodelled particles small. The periodically repeated

unit cells are exact replications of the primary simulation box and form a space filling lattice. This

Figure 4.14 Surface fraction in cubic boxes of different particle numbers
Assuming cubic particles, the box of 125 particles on the left has only 27 particles (22 %) not directly in contact with

the boxes surfaces. All of them are found within the first three shells from the surface. For typical particle numbers

in molecular simulations of up to 10
6
, still about 6 % are in contact with the surface and 17 % are among the first 3

shells.[108]

Figure 4.15 Periodic boundary
conditions a) In practical experi-

ments, the amounts of handled sub-

stance are typically in the molar

to micromolar range, which is or-

ders of magnitude more than is

realistically achievable in molecu-

lar simulations. These are in most

cases limited to a few thousands

or millions of atoms. b) Deal-
ing with small numbers of simu-

lated particles in narrow simula-

tion volumes can have undesired ef-

fects on the observed properties of

a system. c) Under periodic bound-

ary conditions, simulation artifacts

arising from limited box volumes

can be avoided by treating the sys-

tem on an infinite lattice of equi-

valent unit cells as an approxima-

tion to the real system. This disreg-

ards of course the fact that there are

no infinite periodic real systems in

nature.

lattice L has the property that each point on the lattice is part of an infinite set of equivalent points

that can be transformed into one another by integral translation along lattice vectors (also called box

vectors), i.e.[152]

L = {ka + lb} with k, l ∈ Z (4.43)

Dissertation J.-O. F. Kapp-Joswig 33

Periodic boundary conditions

in 2D like shown in figure 4.15c with square boxes spanned by the vectors a and b. The lattice points

in figure 4.15c are marked with red diamond shapes. The location of each simulation box is defined

by a single lattice point. It should be noted that the shown lattice is not unique and that any other

set of lattice points could have been chosen to define it on the basis of the particle coordinates.

Furthermore, while a particular box layout implies a lattice, a lattice does not impose a certain box

layout. Considering only the lattice, the choice of a particular box is arbitrary.

The treatment of periodic boundaries in MD touches two aspects: the first question is, how and

when exactly the coordinates of individual atoms are modified while they are crossing a box border.

This step is equivalent to conditionally ‘putting (or folding) particles back into the simulation box’ and
is entirely optional. The second question is, how to consider interactions of particles with each other

across a periodic boundary, which especially concerns the calculation of pairwise distances. This can

be formalised by a minimum image convention that determines the actual interaction partners for

each particle, i.e. the set of closest partners found over all periodic images. The calculation of the

minimum image may depend on whether all particles are ensured to be in the primary simulation

box in the first place.

4.4.1 Position folding over periodic boundaries

As an illustration for the practical application of PBCs, let’s consider the 1-dimensional

case of two particles with positional coordinates q = (q1, q2) simulated in a box that is given by a box

vector a with length a. We put the lattice point of the primary simulation box at the origin of the

reference frame for the particle’s coordinates. This means that in this view, the center of the box is

located at 0.5a, while the lower and upper bound of the box coincide with 0 and a, respectively. In

principle, it is possible to place the origin of the particle coordinates in the center of the box or at any

other location as well, in which case shifted bounds would need to be considered. Figure 4.16a shows

this system at a given configuration q(t) in time, from which a single simulation time step shifts the

system to a configuration q(t + τ) in figure 4.16b. During this propagation, one of the particles moved

outside of the simulation box in positive direction. The particle can be translated back into the box to

a periodically equivalent location by subtracting the box vector from its current position q′i = qi − a.

Figure 4.16 Periodic boundary example in 1D
a) Two particles in a 1D simulation box at a certain point in time. b) After the propagation of the current particle

positions within a discrete time interval, the orange particle has moved out of the simulation box, c)The orange

particle has been placed back into the simulation box.

34 Dissertation J.-O. F. Kapp-Joswig

Periodic boundary conditions

Programmatically, this operation can be performed after every simulation time step (or a different

interval) by checking for each particle if it has moved beyond the box borders and putting it back if it

did:

a = 2 # 1D box vector with bounds 0 and 2
for qi in q:

if qi < 0:
qi += a

elif qi >= a:
qi -= a

In one line, the above conditional statements can be substituted with the more general approach of

computing the modulo qi mod a, which gives the PBC-corrected position as the remainder after the

division of the actual position by the length of the box.

for qi in q:
qi = qi % a

This variation will also successfully re-locate particles from periodic images that are arbitrarily far

away while the first method implies that all particles have been in the primary simulation box at time

t and have only traveled to a directly adjacent box at time t + τ.

When using the modulo, a bit of care needs to be taken because its definition is ambiguous and

varies among Modulo
sidenote

programming languages, which is mainly due to a different handling of integer division.

In principle, the modulo operator is equivalent to something like:

def modulo(dividend, divisor):
return dividend - (divisor * (dividend // divisor))

where // represents a division that returns an integer. In Python for instance, integer division

corresponds to a rounding of the division result towards −∞ (flooring). In C, however, the result is

always rounded towards 0 (truncated). How this difference manifests itself in the modulo for negative

dividends, can be seen in figure 4.17. The Python realisation is the one that we want for the correction

of positions over periodic boundaries.

Figure 4.17 Difference in the modulo operator for Python and C
Due to the fact how integer division is implemented in different programming languages, the result of the modulo

operation for negative dividends can be inconsitent. Note that we do not need to consider the case of negative divisors

in this context because box vectors can only take on positive values.

As an alternative to relying on the modulo operator of a certain programming language, it is of

course possible to explicitly calculate a remainder using flooring.

for qi in q:
qi -= floor(qi / a) * a

The shown 1D scheme can be scaled to infinite dimensional systems if the box vectors are all orthogonal,

that is for most practical applications to orthorhombic unit cells in 3D. In fact, it is sufficient to know

the upper bounds of the box in each dimension, which can be given as an array of length 3 if the

Dissertation J.-O. F. Kapp-Joswig 35

Periodic boundary conditions

origin of the simulation box is located at qo = (0, 0, 0). Each particle position is given by a vector

qi = (qi ,x , qi ,y , qi ,z) and the box vectors a, b, and c are in this case aligned with the positional

coordinates x, y, and z, e.g. a = (1, 0, 0), b = (0, 1, 0), c = (0, 0, 1) for a cubic box with side length 1.

For the correction of the periodic postions, we need to consider each dimension separately:

Upper box bounds
bounds = [a, b, c]
for qi in q:

for d in range(3):
qi[d] = qi[d] % bounds[d]

Figure 4.18 Periodic boundary example in 2DAparticlemoving

with constant velocity through a periodically bounded box with

orthogonal box vectors while crossing the box boundariesmultiple

times. The particle positions are corrected after each step using the

scheme above. The current time step is indicated for each postion

by colour.

Orthorhombic unit cells are conceptionally easy to treat but from amodellers perspective, other box

layouts may bemore beneficial in terms of simulation efficiency. An example for a common simulation

setup, are molecular systems in which the simulation box contains a single macromolecule (a protein)

surrounded by solvent andmaybe a few counter ions. A popular alternative space-filling box geometry

for the simulation of such a system is the dodecahedron.[107] Compared to a cubic box with the same

periodic distance between unit cells, a dodecahedral box has a smaller volume by a factor of 0.71.6 This

means that while maintaining the same distance between the solvated macromolecule (in the center

of the box) and its nearest periodic image, the volume and therefore the number of needed solvent

molecules to fill the box, can be reduced by switching from a cube to a dodecahedron. Keeping the

periodic distance constant (and in fact large enough7) may be important to avoid simulation artifacts

due to an interaction of the macromolecule with itself beyond the periodic boundaries.

Dodecahedral and other box shapes, like the hexagonal prism or the truncated octahedron, pose

some difficulties for the implementation of PBCs. Fortunately, it can be shown that these complex

box layouts (as well as the friendly orthorhombic unit cell) can be transformed into the general case

of a triclinic box of which they are essentially a special case and which is comparably painless to

deal with.[156]triclinic boxes A triclinic unit cell distinguishes itself by the absence of any symmetry elements, i.e.

by the fact that there are neither restrictions on the lengths of the box vectors, nor on their relative

orientation.

So let’s now have a look at a practical PBC implementation for the general case of a triclinic box.

For this purpose, it is reasonable to express the box layout in terms of a matrix A in which the box

6Refer to the GROMACS documentation for details: manual.gromacs.org/documentation/current/onlinehelp/
gmx-editconf.html

7While there is no definite advice for a specific box size, a commonly applied heuristic is to keep the distance between the

solute and the box borders at about at least 1 nm. This is based on the rational that this distance is a common setting for

the cut-off used on short range non-bonded interaction terms, which in turn is essentially a requirement of the used

force-field.[153] Another fix-point is the correlation distance in liquid water of about 0.8 nm.[154] The effective box

size should also take into account that a macromolecule can undergo conformational changes during a simulation,

which can increase its circumscribed radius.[152] For a recent discussion on the topic see [155].

36 Dissertation J.-O. F. Kapp-Joswig

https://manual.gromacs.org/documentation/current/onlinehelp/gmx-editconf.html
manual.gromacs.org/documentation/current/onlinehelp/gmx-editconf.html
https://manual.gromacs.org/documentation/current/onlinehelp/gmx-editconf.html
manual.gromacs.org/documentation/current/onlinehelp/gmx-editconf.html

Periodic boundary conditions

vectors ad are collected as column vectors with respect to the positional reference frame, that is in 3D

with a1 = a, a2 = b, and a3 = c:

A =
⎛
⎜
⎝

ax bx cx
ay by cy
az bz cz

⎞
⎟
⎠
, (4.44)

which would be for the again specialised case of a cubic box with box length 1:

A =
⎛
⎜
⎝

1 0 0

0 1 0

0 0 1

⎞
⎟
⎠

. (4.45)

The position qi of a particle can be expressed in the basis of these box vectors

qi = Aq∗i (4.46)

where q∗i denotes the position in fractional coordinates with respect to the box. The above matrix-

vector multiplication is equivalent to the following summation:

qi = ∑
d
adq∗i . (4.47)

In reverse, we can now obtain a particle position in fractional box coordinates using the inverse of the

box vector matrix B = A−1 as

q∗i = Bqi . (4.48)

If our initial intent was to ensure that all particles are placed in the primary simulation box, this would

mean that we want to manipulate these fractional coordinates so that they are restricted to the interval

0 ≤ q∗i ,d < 1 in each dimension d. This can be done again by either taking the modulo q∗i ,d mod 1 or by

directly substracting the nearest lower integer, e.g. q∗i ,d = q∗i ,d − floor(q∗
i,d
). The corrected positions in

the original coordinates can be re-obtained afterwards according to equation 4.46.

Figure 4.19 Periodic boundary example in 2D (triclinic box)
a) Two particles with positions outside of the primary simulation cell that are given in fractional coordinates with

respect to the box vectors a and b obtained according to equation 4.48. b)The two particles have been shifted back to

their periodic image in the simulation box.

Asmentioned in the beginning, the described procedure of putting particles back into the simulation

box when they leave it, can be substantially modified or left out entirely. A variation of this would be

for example to re-position entire molecules as soon as they cross a boundary (or their center of mass

does) instead of individual atoms. This implies an additional complexity for the implementation and

an awareness of the topological nature of the molecules but may be advantageous if certain operations

or analyses are complicated for molecules broken over periodic boundaries. It should be noted, that

Dissertation J.-O. F. Kapp-Joswig 37

Periodic boundary conditions

periodic boundary manipulations like this can also be performed in post-processing steps on the

produced trajectory and do not necessarily need to be included into a simulation itself. Omitting the

PBC-correction and allowing the particles to populate multiple periodic images of the simulation box

can be helpful in certain situations where especially the unbroken path of individual particles is of

interest, e.g. for the investigation of diffusion and related properties.

4.4.2 Minimum image convention

Let us now come to the second aspect of periodic boundaries in MD, which is the treatment

of inter-particle interactions across box borders. In contrast to the first step discussed up to here, a

correction in this regard is mandatory if correct simulation results should be obtained. The interac-

tion terms commonly used in molecular simulations that represent for instance bonds, angles, and

dispersion, are in general many-body terms and depend on the spatial coordinates of more than one

atom. For each atom, it has to be ensured that the interactions it is involved in are calculated with

respect to sensible positions of its interaction partners, not only considering the primary simulation

box.

Let’s illustrate this again with a simple example first. Figure 4.20 shows a system of n particles in a

square simulation box in 2D. We want to evaluate an interaction that is based on the inter-particle

distances from one particle qi to all the other particles q j≠i . For some of the interaction partners in the

primary simulation box, there exists a periodic equivalent at a closer distance, which is the one that

should be used to evaluate the interaction. Effectively, we want to find the set of closest particles in all

periodic images with respect to qi , which is described as the minimum periodic image centred on qi .

Figure 4.20 Minimum image convention in 2D
Particles in the primary simulation box are colored in solid yellow. Periodic images of these particles in adjacent

simulation boxes are drawn in transparent yellow. The green particle interacts with all other particles in the central

box in a distance dependent manner. For those particles that are crossed out, there is a periodic expression of this

particle that is actually closer to the green particle. The calculated dotted distances need to be PBC-corrected and the

solid, shorter distances to the periodic equivalents should be used instead to evaluate the interaction. The dashed box

centred around the green particle contours its minimum image.

It should be noted, that the treatment of interactions under the minimum image convention is

only strictly sensible for bonded and short-range non-bonded terms. For long-ranged non-bonded

terms, a consideration of the closest interaction partner alone may actually be a rough truncation and

contributions from interactions over the (infinite) lattice may not be negligible (see also sections 4.2

and 4.5).

38 Dissertation J.-O. F. Kapp-Joswig

Periodic boundary conditions

In analogy to the programmatic solution for a correction of particle positions over the periodic

boundaries, distances can be corrected by checking for each dimension if the respective component of

the distance vector exceeds the bounds of theminimum image, i.e. half the length of the corresponding

box vector, in either direction from the particle in its center. If it does, the component needs to be

shifted by the respective component of the box vector. For one particular distance di j between two

particles qi and q j in 2D, this could be realised like this:

Upper box bounds
bounds = [a, b]
for d in range(2):

dij_d = qi[d] - qj[d]
if dij_d <= -0.5 * bounds[d]:

qij_d += bounds[d]
elif dij_d > 0.5 * bounds[d]:

dij_d -= bounds[d]

Alternatively, distances can again be corrected by performing an operation, which can account for

periodicity over arbitrary unit cells similar to taking the modulo when correcting positions. For

a short (maybe not quite up-to-date) comparison of different realisations thereof in the context of

minimum image computation for orthorhombic boxes including the effect of compilers and computer

architectures see [157].

In the more interesting general case of triclinic boxes, the minimum image convention follows a

scheme that is quite similar to what has been presented before for the correction of particle positions

as well: assuming we have the matrix of box vectors A and its inverse B, we would use B to find the

particle positions in fractional coordinates of the box basis according to equation 4.48. Then we

can compute a distance vector d∗i j in fractional coordinates, which can be subsequently shifted and

transformed back into the original positional coordinates.[91] Note that we use a rounding function

(which refers to a nearest integer operation) instead of flooring to shift the distances in this case.

d∗i j = q∗i − q∗j (4.49)

d∗i j = d
∗
i j − round(d∗i j) (4.50)

di j = Ad∗i j (4.51)

To summarize this section, let us finally have a look at a complete simulation example using the

presented PBC-correction and minimum image convention for triclinic boxes, although for an easier

plotting of the results, a cubic box in two dimensions should suffice here. The example system consists

of nine argon atoms interacting purely via harmonic quasi-hard sphere potentials (no attraction, only

repulsion) with radii σ = 0.340 100nm (taken as the Lennard-Jones parameter from the OPLSAA/L

force field) and a very high force constant. Initial particles where chosen accordingly on a grid. To

introduce some asymmetry into the interactions, the parameter with respect to one of the atoms has

been scaled to 0.8σ . Snapshots from the simulation showing the current atom positions are collected

to be inspected in figure 4.21.

Dissertation J.-O. F. Kapp-Joswig 39

Neighbour lists

Figure 4.21 Hard sphere argon simulation in 2D
The atom coloured in purple interacts with the green atoms using different repulsive parameters than the green

particles with each other. A black xmarks the starting position of the purple atom in the pictures of the subsequent

time steps. The path taken by the purple atom in 2 ns intervals is marked by a black line while every time the atom

crosses a periodic boundary, the path segment is coloured differently. The simulation was carried out using an

Euler-Maruyama integration scheme with a timestep of 1 fs, and a friction coefficient of 1/fs at 150K.

4.5 Neighbour lists

In a molecular system of n particles, non-bonded interactions need to be in principle

evaluated for (n2−n)/2 pairs (Gauss summation) avoiding self-interaction and double counting—but

not considering that some of these pairs may be irrelevant because the corresponding particles are

connected already by bonded interaction terms. In section 4.2, it was already mentioned that certain

interactions of limited range can be cut off after a radius rc so that their contribution is neglected for

pairs at larger distances. Basic interaction modifiers have been discussed dealing with the introduced

discontinuity.non-bonded
cut-off

As a rule of thumb, the error that is made by employing a cut-off and neglecting

the long-ranged part of an interaction is acceptable in a nd-dimensional system for potentials that

decrease on the order ofO(1/rnd) or faster when r →∞. In this case, the error can be treated as a

finite integral for homogeneous systems, which can be treated in terms of a tail correction.[108, 109]

The typical Lennard-Jones potential fulfils this requirement while electrostatic Coulomb interactions

do not. Note that also the minimum image convention (compare section 4.4) can be viewed as a

form of cut-off approach in itself, since interactions are only evaluated with respect to the closest

interaction partner in all periodic images—not with respect to all periodic partners.

Figure 4.22 Verlet list a) By us-

ing a cut-off rc, the number of

considered non-bonded interac-

tion partners for the central red

particle can be reduced to the

blue particles. To avoid a re-

computation of the neighbours

at each step, additionally the or-

ange particles within a buffer zone

are considered as potentially rel-

evant. b) Two orange particles

entered the cut-off region. One

grey particle almost entered it as

well, which should be avoided.

The truncation of pairwise potentials alone, can, however, not lead in general to a significant

increase in computational performance. This is because, although the actual evaluation of a force

is skipped when a pairwise distance exceeds rc, stillO(n2) distances need to be calculated at every

40 Dissertation J.-O. F. Kapp-Joswig

Neighbour lists

simulation time step in the first place. A standard approach to address this bottleneck and to reduce

the number of necessary distance computations, is found in the buffered Verlet list.[25] Figure 4.22

illustrates, how it works.

The basic reasoning behind the Verlet list approach, is that within each MD propagation step atoms

travel only a very short distance. Pairs that have been identified as close enough that a force evaluation

would be forth it at some point in time t, will most likely form a relevant pair also at time t + τ.

A redundant distance calculation to find pairs, i.e. atoms that are neighbours with respect to the

cut-off radius, may therefore be saved. The straightforward approach would now be, to determine the

neighbour pairs only in regular intervals and to recycle this information for a number of simulation

time steps. We may run into problems with this, though, when we use exactly the cut-off radius to

find the neighbours, because the assumption that the neighbourhood does not change in between

time steps may not always hold. Atoms may enter the relevant cut-off range and an error will be made

when their contribution is not considered.

Verlet’s solution to this, is to compute the neighbours at an increased radius rv buffered with a

certain safe zone. In the beginning, the resulting neighbour list will contain pairs that are strictly

not relevant because they exceed the cut-off distance rc. Verlet listOn the upside, particles may drift now

during propagation from the buffer zone into the cut-off range, which is no problem because they

will be considered. We only need to ensure that the buffer is large enough so that no (or acceptably

few) particles can drift from outside the safe zone into the cut-off range, before the neighbour list is

re-computed. Two basic options exist here: first we could choose a fixed update interval that could in

turn be based on the expected maximum distance travelled by the particles in a certain time. This

distance is essentially a function of temperature. Taking the form of the respective potential into

account, it is also possible to set the buffer size indirectly via an error tolerance (so done for example in

GROMACS via verlet-buffer-tolerance). Alternatively, one could keep track of the maximum

current atom displacement and update the neighbour list only on demand. While this can be more

accurate, it causes additional overhead and can be less performant.

Besides the storage of neighbour pair information, also the way how these neighbours are computed

in the first place can be improved, compared to a brute force calculation of all pairwise distances.

While naive search is not always a bad option, especially not in high-dimensional spaces,[158] the

usually 3-dimensional and regular simulation box used in MD simulations is prone to be tackled

differently. Themost widely applied neighbour search schemes are either tree-based or grid-based.[159]

Tree-based methods, like kd-trees,[160, 161] separate the set of atoms in a simulation system iteratively

into smaller and smaller portions according tree searchto same criterion. After this has been done, neighbour

queries supported by the tree structure can be efficiently realised because neighbours of a specific

point are likely to be found in the same leaf node or can be systematically searched for in other leaf

nodes. A potential drawback of trees can be that they may require a rather long time to build, and

as a neighbour list is usually only constructed once before the tree needs to be re-built, this can be a

non-negligible factor. Another complication is that trees often require dynamic memory allocation

but implementations can differ substantially here.

Dissertation J.-O. F. Kapp-Joswig 41

Integrators

Figure 4.23 2D Grid neighbour search To find the neighbours of the

red point efficiently, we first need to tile the simulation box into regular

grid cells. The minimum size requirement for these is the non-bonded

cut-off value rc . Thenwe can limit our search for neighbours to the points

in the same cell as the red particle and in all neighbouring cells. This

are only nine in total compared to 25 if we had to search the complete

box. The gain in performance is larger if rc is small compared to the

simulation box size.

In contrast, grid-based approaches may introduce a smaller overhead. The basic idea is, similar

to trees, to decompose the positional space of the atoms into fixed size grid cells before neighbour

searches are performed.grid search A simulation box can be for example tiled into virtual cells of size rc in each

dimension by mapping atom coordinates to a cell index, like

Icelli = qi mod rc (4.52)

where qi is a positional component in the ith dimension, mod is the modulo operator (see also

section 4.4 for a short discussion), and it is assumed that the box origin lies at 0 with respect to all

dimensions. If we known the cell index for a certain point and the points associated with a given cell, all

neighbours can be found by only searching one cell and its direct neighbours (27 cells in total in three

dimensions). Figure 4.23 illustrates this in two dimensions. In practice, this indexing can be a bit more

involved and may require a pre-sorting of cell and particle indices for good performance.[162, 163]

Furthermore, there are improved computer architecture specific pair search schemes available.[164]

4.6 Integrators

An integral part of every MD simulation is a numeric integration scheme, or more precisely

a method to find an approximate solution to differential equations, i.e. the equations of motion of a

given molecular system. MD integrators use finite time differences τ to solve the equations in steps.

The number of available methods is immense, there is no single superior one, and new methods are

still actively developed. This section should only give a rough overview.

In section 4.1 we saw a few examples already for simple dynamic systems, but let’s consider onemore

for a brief look on typical MD integrators. The equation of motion for the one dimensional classical

harmonic oscillator is mq̈ = −kq, where q = rab − r0 could be the displacement of a chemical bond

from the equilibrium setting, modelled according to equation 4.9.harmonic
oscillator

This can be immediately stated

using Hooke’s law but could be also derived using the Lagrangian L = Ekin − Epot = 1/2mq̇2 − 1/2 kq2,

and equation 4.7 with ∂L/∂q̇ = mq̇ and ∂L/∂q = −kq. An analytic solution for this case would be

q(t) = q0 cos ωt + q̇0/ω sin ωt , (4.53)

q̇(t) = q̇0 cos ωt − q0ω sin ωt (4.54)

q̈(t) = −ω2
(q0 cos ωt + q̇0/ω sin ωt) (4.55)

starting with initial position q0 and velocity and q̇0, and with a relation for the force constant k/m = ω2

(compare equation 4.12). Figure 4.24 shows the analytic evolutions of bond length and respective

velocity for a C-C bond vibration with k = 259, 408 kJ/(mol nm) and equilibrium bond length

r0 = 0.1525 nm.

42 Dissertation J.-O. F. Kapp-Joswig

Integrators

Figure 4.24 Analytic solution for a harmonic C-C bond vibration
Starting at q0 = rab(t = 0) − r0 = 0.16 nm and q̇0 = 0, the trajectory taken by the system with respect to the single

coordinate is shown for 100 fs. The period of the vibration is about 30 fs.

A straightforward approach to the numeric prediction of this trajectory is given by the Eulermethod.

Thinking of the kinematic equation for uniform motion (equation 4.4), we can understand the Euler

method as using this as an approximation at any integration time step. Euler methodGiven current positions

and velocities, first the forces are computed. Assuming the respective acceleration to be constant,

we can propagate the system for a very short time (the chosen integration time step τ) before we

recompute the forces and repeat. The Euler method can be also thought of as an approximation to the

real trajectory by a local Taylor series, cut off after the first term. In other words, it tries to find an

approximation to a nearby point on a curve by following the tangent to the curve at the current point.

The propagation steps for position and velocity with respect to a single coordinate are:

q(t + τ) = q(t) + q̇(t)τ , (4.56)

q̇(t + τ) = q̇(t) + q̈(t)τ . (4.57)

Actually it is often also encountered in form of the ‘midpoint’ algorithm (note the acceleration term

in the position update) with

q(t + τ) = q(t) + q̇(t)τ + 1/2 q̈(t)τ2 , (4.58)

q̇(t + τ) = q̇(t) + q̈(t)τ . (4.59)

While this does in principle work, it has a few problems, which makes the scheme inappropriate for

MD simulations. As figure 4.25 indicates, it can not reproduce the analytic solution very accurately

for an integration time step of 1 fs. Lowering this to 0.1 fs can defer the problem only for a short time.

Figure 4.25 Midpoint Euler solution for a harmonic C-C bond vibration
For the same system as in figure 4.24, the positions and velocities were approximated using the Euler scheme. For any

time step, the method does not preserve energy and can become unstable.

The approximation error introduced with the Euler method is proportional to the used step size τ2

and the accumulated error over time is linearly proportional to τ, which makes it a 1st order method.

The midpoint variation is 2nd order in the positions but this is still not very accurate in a MD context.

Dissertation J.-O. F. Kapp-Joswig 43

Integrators

Usually, 3rd order position accuracy is taken to be required.[165] It makes the method in reverse very

expensive if a very small step size has to be chosen. But more severely, this method will not conserve

the total energy of the system, in fact it will lead to energy amplification.phase space
volume

This can be in particular

seen in the plots of ṙ versus r in figure 4.26 through which it becomes clear that the phase space

volume is not conserved. As a consequence, the method may not be stable over longer simulation

times. Moreover, the Euler method is not time reversible (also called asymmetrical). Integrating a

curve backwards, will usually not result in the same trajectory as forward integration because in each

integration interval only information at the beginning of the interval is used.[166]

Figure 4.26 Midpoint Euler for a har-
monic C-C vibration (phase space)
The outward spiral pattern of the tra-

jectory in phase space indicates an amp-

lification of the energy.

The standard Euler method is sometimes called the forward or explicit Euler, in contrast to the

backward or implicit variation. The backward Euler uses the positions q(t + τ) to compute the forces

but in order to find these in the first place, an energy minimisation is actually needed at each step.impli-
cit/explicit Its use in MD simulations seems to be disappointing at best.[167] Other notions of explicit versus

implicit are open versus closed or predictor versus predictor-corrector methods.[165]

There is yet another possible formulation, wich is the semi-explicit or symplectic Euler, so far

addressed as Euler-Cromer method in previous sections. The difference in the propagation steps is

small but impactful:

q̇(t + τ) = q̇(t) + q̈(t)τ , (4.60)

q(t + τ) = q(t) + q̇(t + τ)τ . (4.61)

Note that the position update uses the velocity from the next time step.8 While somewhat counter

intuitive, this variation is energy preserving, at least for oscillatory problems.[168]

Figure 4.27 Euler-Cromer solution for a harmonic C-C bond vibration
For the same system as in figure 4.24, the positions and velocities were approximated using the Euler-Cromer scheme.

For the given problem, the method conserves the energy. The time step can be increased drastically but then the real

particle trajectory is not reproduced very exactly anymore.

As figure 4.27 and 4.28 show, the Euler-Cromer scheme has the interesting property of conserving

the energy in the respective system, even for very large time steps. The phase space volume is

8The midpoint Euler above can be actually obtained by using the average of velocities at the current and the next time

step q(t + τ) = q(t) + 1/2(q̇(t) + q̇(t + τ))τ and substitute q̇(t + τ) = q̇(t) + q̈(t)τ.

44 Dissertation J.-O. F. Kapp-Joswig

Integrators

preserved, although distorted quite a bit when the time step is increased. Two points should we note

here. Accuracy in terms of MD integrators is more than just the order of the method. Algorithms that

preserve the phase space volume can be more usable than others of the same order that do not.[169]

And second, accuracy can primarily mean to sample from a thermodynamic ensemble rather than

shadowing actual particle trajectories exactly.

Figure 4.28 Euler-Cromer for a har-
monic C-C bond vibration (phase
space) The stable circular pattern of

the trajectory in phase space indicates

a conservation of energy.

But also the Euler-Cromer scheme is in general not time reversible. An integrator that is time

reversible is the Verlet integrator.[25] VerletIt is also know as the explicit central difference algorithm and

contains the update steps

q(t + τ) = 2q(t) − q(t − τ) + q̈(t)τ2 , (4.62)

q̇(t) = (q(t + τ) − q(t − τ))/(2τ) . (4.63)

It can be derived by summing the approximations for a step in positive and negative direction from a

harmonic Taylor expansion at q(t). The motion is integrated independently of the velocities, which

can be obtained from the positional change. The algorithm is not self-starting, though, and q(t − τ)
needs to be obtained from a different source beforehand.

A reformulation9 of the Verlet scheme is found in the leap-frog integrator that is also used in our

simulations.[170] leap-frogThe position update is here done using the velocity of a half step

q̇(t + 1/2 τ) = q̇(t − 1/2 τ) + q̈(t)τ , (4.64)

q(t + τ) = q(t) + q̇(t + 1/2 τ)τ . (4.65)

This algorithm has a 3rd order position accuracy and exhibits essentially no energy drift. The trajector-

ies produced by the leap-frog and the Verlet algorithm are identical. There is another mathematically

equivalent formulation in terms of the so called velocity Verlet scheme with[33]

q(t + τ) = q(t) + q̇(t) + 1/2 q̈(t)τ2 (4.66)

q̇(t + τ) = q̇(t) + 1/2(q̈(t) + q̈(t + τ))τ . (4.67)

The leap-frog and the Verlet integrator will (without further modification of velocities) produce

identical trajectories when the starting points are correspondingly shifted. velocity VerletThe advantage of the latter

is that it is self-starting and gives synchronised instead of overlapping velocities and positions, which

can be advantageous if temperature coupling is used (see section 4.8). Compared to the plain Verlet,

velocity Verlet and leap-frog can be numerically more stable because the velocities are not obtained as

averages of positions, i.e. from two numbers of possibly very similar proportion.[171]

As an interim conclusion, we can state that suitable integration algorithm for MD have ideally a

relatively high order, and are time reversible and phase-space preserving. Another important practical

point, however, is also howmany force calculations per time step are necessary because this is the most

expensive part of the whole simulation. higher order
methods

Accurate methods like the 4th order Runge-Kutta method

9The leap-frog scheme can be traced back to the Verlet scheme if the expression for q̇(t + 1/2 τ) is put in the expression

for q(t + τ) and we then use q̇(t − 1/2 τ) = (q(t) − q(t − τ)) /τ.

Dissertation J.-O. F. Kapp-Joswig 45

Velocity generation

(which is, however, not symplectic by the way) are therefore typically not used because they require

multiple force calculations per time step.[165] It should also be mentioned that the overall accuracy

in a simulation is further determined by other factors like non-bondend cut-offs (see section 4.2)

and that higher order integrators may be wasted in the light of larger errors from these sources. A

further point in the general assessment of integrators is their interplay with constraints and respective

algorithms that satisfy these.[171]

Besides deterministic integrators, there exists a broad family of stochastic integrators as well.stochastic
dynamics The equations of motion addressed by these integrators are non-differentiable stochastic differential

equations like the Langevin equation to describe Brownian motion[172]

mq̈ = −γmq̇ + η(t) (4.68)

where particle acceleration is determined by the interplay between a friction term with scaling

coefficient γ > 0 and a random thermal noise term, which can for example come from a Wiener

process η(t) = σẆt , with proportionality σ =
√

2kBTmγ. For a molecular system governed by a

potential of internal forces, the dynamical equation can also be written as

mq̈ = −∂Epot/∂q − γmq̇ + η(t) . (4.69)

A solution to this can be for example approximated using the Euler-Maruyama integrator with update

steps[173]

q(t + τ) = q(t) + q̇(t)τ , (4.70)

q̇(t + τ) = q̇(t) − ∂Epot/∂q τ/m − γq̇τ + σ/mN(0, τ) , (4.71)

or for the high friction limit (overdamped case), where γmq̇≫ mq̈ and the left side of equation 4.69

can be set to zero, just

q(t + τ) = q(t) − ∂Epot/∂qτ/(γm) + σ/(γm)N(0, τ) . (4.72)

HereN(µ, σN) denotes a sample from a normal distribution with mean µ and variance σ2

N . While

the scheme is completely valid for the overdamped case, it has divergence issues for the unmodified

Langevin equation.[174] Quite a few more sophisticated methods exist, some of which have very

interesting properties for the simulation of biomolecular systems.[85, 175, 176]

4.7 Velocity generation

When the initial conditions at the start of a molecular simulation are chosen, it may be desired

to set the velocities of individual atoms to a meaningful value. A popular way to do so, is to select them

in accordance with probabilities from a Maxwell-Boltzmann distribution at a certain temperature

T . Let’s consider a system of n particles in three dimensional cartesian coordinates with a respective

velocity vector v = (v1, ..., v3n), or alternatively n per particle velocity vectors va = (vx , vy , vz). The

Maxwell-Boltzmann probabilities for velocities along single coordinates vi are given as

p(vi) = (
mi

2πkBT
)

1/2

exp(−
miv2

i
2kBT

) , (4.73)

where mi is the corresponding particle mass and kB is Boltzmann’s constant. For absolute velocities

va = ∣∣va ∣∣ of particles a, the equation takes the form:

p(va) = 4πv2
(

ma
2πkBT

)

3/2

exp(−
mav2

a
2kBT

) . (4.74)

46 Dissertation J.-O. F. Kapp-Joswig

Thermostats

The generation of velocities can follow a simple scheme,¹0 beginning with the sampling of values vi
from a normal distribution with the standard deviation

√
kBT/mi of equation 4.73. In a second step,

the center-of-mass velocity is computed from the velocity vectors va as

vcom =
n
∑
a=1

va
ma
mtot

(4.75)

with the system’s total mass mtot, which is then subtracted from the obtained velocities so that

v ′a = va−vcom. The generated velocity distribution may now not exactly match the desired temperature.

To correct this, all velocities can be scaled by a factor, v ′ = αv with

α =

¿
Á
ÁÀ

Ttarget

Tsystem

. (4.76)

For this, the current temperature of the system Tsystem needs to be calculated which can be done via

computing the total kinetic energy from the particle velocities:

Ekin =
1

2

n
∑
a=1

ma ∣∣va ∣∣2 , (4.77)

T = 2Ekin
ndofkB

. (4.78)

A system of n particles has in general 3n degrees of freedom that distribute over translation, rotation,

and vibrational modes. If the center-of-mass translation of a system as a whole is set to zero, 3 degrees

of freedom have to be subtracted from this number. The same goes for 3more if also the center-of-mass

rotation is suppressed. Further, a number of coordinates can be fixed by constraints, so that the final

number of degrees of freedom is ndof = 3n − ncom − nconstr. Figure 4.29 shows an expected velocity

distribution for argon atoms next to a distribution generated by the described scheme.

Figure 4.29 Maxwell-Boltzmann distribution Distribu-

tion of particle velocities for argon at 300K according to

equation 4.74 (black line). Generated velocities for a system

of 1000 argon atoms (red bars).

A short practical remark: in SI units kB is given in J/K, masses should be given in kg, and velocities

in m/s, so that energies come out in J. This can be rather inconvenient because we have to deal with

unhandy numbers (e.g. mAr ≈ 6.64 ⋅ 10−26 kg). It can be preferable to work in molecular units by using

R in kJ/(K mol) instead of kB, masses in g/mol, and velocities in nm/ps. Energies are then obtained in

kJ/mol.

4.8 Thermostats

In molecular simulations, it is usually desired to sample conformations from a thermodynamic

ensemble. Without extra controls and a non-stochastic integrator, this is the microcanonical NVE

¹0So seen for example in GROMACS and Lumol

Dissertation J.-O. F. Kapp-Joswig 47

https://manual.gromacs.org/documentation/current/index.html
https://lumol.org/lumol/latest/book/index.html

Thermostats

ensemble in which the number of particles n, the system’s volumeV , and its total energy E are constant.

Thermostats can be used to sample from a canonicalNVT ensemble at constant temperature T instead.

Here, ‘constant’ temperature means constant on average and might be better understood as conserved.

The instantaneous kinetic energy and therefore temperature of (small groups of) particles is in contrast

not fixed and expected to fluctuate. A correct average temperature and correct standard deviation due

to fluctuations of the right magnitude correspond to a correct canonical ensemble.

A reason for why one would want to use a thermostat in a simulation, is the better comparability

of results with experiments that where performed at constant temperature. On the other hand, it

can be used to counter practical problems with energy conservation that may arise for example from

numerical inaccuracies, the presence of external forces, or technical parts like the truncation of

non-bonded interactions. It has to be paid attention, though, that a thermostat is not used purely out

of the motivation to conceal fundamental issues with non-physical simulations.

There exists a number of technical realisations of controlling the temperature in a simulation. Not

all satisfy both the demands of keeping the temperature at a set average and ensuring a physical

distribution of temperatures or respectively their correct fluctuation.

One possibility, is to use the velocity generation scheme described in section 4.7 to repeatedly

reset particle velocities after a certain amount of simulation time has passed, i.e. after time τT or

after τT/τ steps, where τ is the simulation time step. This is basically what the Andersen thermostat

entails.[30] The resetting of velocities models collisions of particles with a fictitious infinite heat

bath. There is room for variation with respect to the number of simultaneously affected particles.

Instead of modifying all velocities at every step (called the massive collision scheme), particles can be

individually selected with a certain probability (stochastic collisions), e.g. pa = 1 − exp(−ξτ) where ξ
scales the collision frequency. On the upside, this approach is very effective in maintaining the desired

temperature and does not negatively effect ergodicity. On the downside, randomising the velocities

regularly disturbs the dynamics of the system.[177] Some extra care needs to be taken when it comes

to handling constraints.[178]

An alternative is to use a weak coupling scheme as in the Berendsen thermostat in which the current

velocities in the system are relaxed to match a target temperature.[179] Individual particle velocities

are not reset completely but scaled by a factor similar to what has been described in equation 4.76.

Choosing

α =

¿
Á
ÁÀ1 +

ncoupleτ
τT

(
Ttarget

Tsystem

− 1) (4.79)

one obtains the new velocities as v ′ = αv. Here, τ is the simulation time step, τT is the coupling

constant (i.e. roughly the effective relaxation time towards the target temperature), and ncouple is the

simulation interval in steps after which the coupling is actually applied. Since the rescaling suppresses

temperature fluctuation, the produced ensemble is technically incorrect, which is, however, less severe

for larger systems.

The thermostat mostly used in our simulations is a modification of the Berendsen scheme. It is

called the v-rescale thermostat in GROMACS but can elsewhere be found as the Bussi, or canonical
sampling through velocity rescaling (CSVR) thermostat.[180] The addition to the original rescaling

approach is that the target temperature to which the system is relaxed is randomised to ensure correct

fluctuations. This is essentially achieved through a stochastic integration step that propagates the

current kinetic energy to a new value from the canonical distribution. The velocities of the system

can than be scaled towards this kinetic energy as a target value.

48 Dissertation J.-O. F. Kapp-Joswig

Steered Molecular Dynamics

Similar to thermostats, there exist methods for pressure control as well. These should

not be discussed here, only so much as that pressure in a simulation can be computed from the kinetic

energy and the virial tensors

P =
2

V
(Ekin − Evir) (4.80)

from which the scalar pressure can be obtained as P = trace(P)/3. Note that the kinetic energy

tensor can be computed as 1/2∑
n
a mava ⊗ va using the outer product of velocity vectors for individual

particles. The virial only depends on dispersive interactions (typically Lennard-Jones) and can be

computed from contributions of considered pairs a and b as

Evir = −
1

2
∑
a,b

rab ⊗ Fab . (4.81)

If a non-bonded cut-off is used, similar consideration as for energy correction (see for example

equation 4.37) apply also for the pressure.

4.9 Steered Molecular Dynamics

As we saw in section 4.2, a MD simulation is governed by the forces considered to be present in a

system. This can be extended from intra-molecular force contributions with physical interpretation

to additional external (artificial) forces. In so called steeredMD experiments,[181, 182] an otherwise

conventional MD setup is employed with the addition of a pulling force along a pre-set reaction

coordinate. The aim of adding this force is to assess the response of the simulated system. It can for

example be used to force a system out of a very stable state and observe transitions that are too slow

to be sampled within realistically achievable time scales. Moreover, it can provide measurements of

how strong the probed interactions are that resist the applied pulling force.

Figure 4.30 Steered dynamics in a double well poten-
tial Particle simulated in an asymmetric double well poten-

tial of the form E = ax4 − bx2 + σ
√
a/(2b)x, with a = 60,

b = 20, and σ = 0.5, using an Euler-Maruyama scheme.

Thermal energy is not sufficient for the particle to cross the

central energy barrier (blue). Applying a constant bias in x
direction, the particle can overcome the barrier (orange).

The applied force plus thermal contribution needs to be

larger than the maximum force created by the barrier.

In detail, pulling experiments can be designed in slightly different ways. For one thing, a constant

force could be applied that uniformly nudges atoms in a certain direction. Figure 4.30 shows a very

simple example of this. It might be used to pull a small molecule trough a membrane or ions through

a channel.[183–185] In this case it is often common to track the displacement of the pulled group

along the pull coordinate. The applied force can help that certain energetic barriers can be overcome.

It should be noted, though, that the system can still be stuck in stable states when the force is not large

enough. On the other hand, very large artificial forces can disturb a system substantially, creating

unrealistic simulation artefacts. In general, it might be desirable to find a compromise and run

repeated simulations with different forces to see how the system reacts.

Alternatively, the applied force can be constantly increased with time. This can be useful if the force

necessary to overcome a certain barrier is not known but the barrier should be crossed in any case. In

contrast to constant force steered MD, this can be called a constant velocity experiment. Instead of the

force, one has to choose a rate at which the force should build up. Again one usually needs to find a

Dissertation J.-O. F. Kapp-Joswig 49

Steered Molecular Dynamics

compromise between fast pulling to save simulation time and slow pulling to give a molecular system

time to adjust to the increased force. It may especially play a role if pulling experiments should be

compared for the same system in different conformations because than the pulling should probably

be done faster than the relaxation time of the probed conformation. In constant velocity steered

MD simulations, the simulated system is never really in equilibrium. It can be for example used to

assess the force necessary to pull out a ligand from a binding-site,[186] to separate protein monomers,

subdomains, or complexes[43, 187] or to unfold a helix.[188]

During such an experiment, the force acting on the atoms pulled upon can be recorded. The

maximum recorded force can be taken as an indicator for the slope of the steepest energy well. To

make this maximum force manifest itself in terms of a so called rupture event, the time-dependent

force increase should not be modelled directly as an external force but rather has a harmonic spring

force, though. Here, one has again multiple options to realise this in terms of a reaction coordinate. It

is possible to choose an arbitrary axis along which to pull. Figuratively spoken, one could think of

this situation as attaching a spring to a certain atom, which is than displaced at a predefined rate and

translates into a force on the atom in proportion to a force constant that also needs to be chosen. As

long as there are resiting forces holding the atom pulled upon in place, the force will steadily build up,

before a point is reached where it becomes to high. This point will be visual in a force trajectory as a

sudden decrease of the force felt by the atom because it can finally follow the spring it is attached to.

Less illustrative but often preferable is actually to choose an internal coordinate that a harmonic

force could be applied to. When a pulling is done in a fixed direction in space, it may become necessary

to suppress translational and rotational degrees of freedom in the system to maintain the intended

pulling. This can be realised via position restraints and it might be okay. In general, however, it is

an additional artificial factor influencing the system and if possible, it should be avoided. One can

choose for example a certain distance, say the center-of-mass distance between two groups that should

be pulled apart, or an angle. The pulling causing an increased force along this coordinated can be

imagined as an displacement of the respective equilibrium value. No position restraints or other

restrictions need to be put on the system. It should be ensured, however, that the simulation box is

large enough in any direction to account for the effective size increase due to the pulling (see also

section 4.4). Fixing the orientation of a molecule in space and pulling into a certain fixed direction,

can be computationally cheaper because than the box volume may only need to be increased along

one axis.

Rupture forces are interesting because they can provide an estimate of the steepness of potential

energy barriers. Assuming a situation in which a system is only altered slightly, a steeper energy

barrier is, however, also an indicator for a deeper energy minimum before the barrier. Loosely, this

stretches the argumentation of the Hammond postulate, stating that for comparable transition states,

endothermic reaction rates are determined by the stability of the startingmaterial.[189] In our langerin

study presented in chapter 11, we take the force needed to pull out a calcium ion from the protein’s

binding site as a weak proxy for the energy of the bound structure. In other words, protein states of

decreased calcium-binding affinity should be on first order detectable by comparably low rupture

forces and how tightly the ion is bound should affect how hard it is to remove it from the binding

site. In this context, where relative rupture forces are compared it should be stressed that the pulling

velocity should be carefully balanced so that the system has enough time to adjust to the pulling. A

too swift increase of the pulling force can lead to artificially high rupture forces but the slower the

pulling, the higher the probability that the system undergoes conformational transitions, which may

dilute the comparison between conformational states.

50 Dissertation J.-O. F. Kapp-Joswig

Steered Molecular Dynamics

Beyond that, it is indeed possible to translate the force needed to provoke a certain reaction of a

system into a work estimate. Approaches to do so, are based on the Jarzynski-equality

exp(−β∆G) = ⟨exp(−βW)⟩ , with β = kBT (4.82)

that connects the free energy difference of two end states A and B with the average work done in the

transformation process—independently of the speed of the process.[44] It provides a justification for

the estimate of equilibrium free energy differences from non-equilibrium work. It is also possible to

construct a potential of mean force.[188, 190] For the practical realisation of these estimates see [191]

and recently [192].

Dissertation J.-O. F. Kapp-Joswig 51

{ 5 }
Molecular trajectory analysis
Making sense of high-dimensional data

A
successfully performedMD simulation does usually generate output of some kind. We start with

an initial configuration of the simulated system at time t0 = t(s = 0) and propagate it in time

for example by regular time intervals of ∆t = τ to get configurations at time steps t(s + 1) = t(s) + τ.

After ns time steps, the simulation will finally arrive at a configuration at time t(ns). At the very least,

the simulation output will probably contain the configuration of the system at this last time step for

a subsequent analysis. Typically, though, configurational snapshots are taken every nth time step,

say after each picosecond. It is also common to record only a relevant subset of the configuration

(say only protein atoms) or to write out different parts of the configuration at different intervals (say

protein and solvent combined only after each nanosecond). Additionally, computed quantities like

temperature, pressure, or energies can be included in the output at certain time steps. simulation
output

Most of the

quantities we should be concerned with here, however, can be derived more or less directly from

the system’s coordinates and can be computed also at a later stage. As in the previous chapters, the

configuration of a molecular system (neglecting momenta) will be denoted as a vector q(t) or rather

q(s) = (q1, ..., qnd
) where nd is the dimensionality of the system (e.g. nd = 3na cartesian coordinates).

A MD trajectory is then an ordered set of configurationsQ = {q0, ..., qns
} with ns denoting the total

number of output steps rather than propagation steps. Q is a statistical sample set ideally obeying

the underlying Boltzmann distribution of the system, i.e. containing lower energy configurations

with higher probability. Q can also be written as a function with discrete domain Q(s) = qs, with
s ∈ [0, ns], mapping time steps to configurations.

With that, MD analysis mostly entails the analysis of time series and corresponding distributions.

An important foundation for the fact that we are able to conclude anything meaningful from a time

series of molecular configurations, is the ergodic theorem.[193] ergodic
theorem

For a quantity f (q), its expected

value is given by an integral over all possible configurations of the configurational space Ω, that is

R3na for a system of na atoms in cartesian coordinates, as

⟨ f ⟩ = ∫
Ω

ρ(q) f (q)dq . (5.1)

Each configuration is weighted here by its observation probability ρ. Practically, the same should be

obtained by conducting a measurement of f for a very large number of molecules nm, distributed

according to ρ at a certain point in time (as for example done in a macroscopic experiment):

⟨ f ⟩ = lim
nm→∞

1

nm

nm

∑
i=1

f (qt,i) , (5.2)

with qt,i being the configuration of the ith molecule at time t. The ergodic theorem states that this

average over configurations of molecules can be, in the limit of infinite sampling as the time goes to

Dissertation J.-O. F. Kapp-Joswig 53

A universal workflow

infinity, substituted with a time-average for a single molecule adopting configurations distributed

according to ρ:

⟨ f ⟩ = lim
ns→∞

1

ns

ns

∑
s=0

f (qs) , (5.3)

with qs being the configuration of the molecule at time t = ts. Of course, limited sampling in MD

simulations can be problematic when ensemble averages are estimated from a time-series.

In the analysis of MD data, one is beyond that often not only concerned with the computation of a

quantity from full trajectories to reproduce wet-lab experimental data, but also with an assertion of

the underlying probability distributions and dynamic processes. These are normally not accessible in

macroscopic experiments but can give valuable insight into which molecular states are responsible for

an observation in terms of an average and how it can be broken down into possible contributions.

In other words, a configurational sample set from a MD simulation allows us to separate subsets of

configurational states (i.e. conformations¹)conformations for which quantities can be computed separately. This

chapter will be focused on analyses techniques to identify and separate conformational states from

a complete molecular ensemble rather than on the quantities that can be calculated from it. It will

concentrate on proteins as the systems of interest but it is in general also valid for other kinds of

molecules.

A molecular configuration q can be very high-dimensional, proportionally to the number of

considered atoms that can easily be on the order of 103 to 106. It is therefore a non-trivial task to extract

conformational information from the data. For a first-order impression, a time series of molecular

coordinates can be inspected visually in full in terms of a movie. An expert might be able to spot

relevant conformations and to draw rough conclusions about changes over time and differences to

other systems. In spite of the potential usefulness of such observations to guide subsequent research

efforts, they will, however, always remain anecdotal and a purely visual analysis will become more

difficult with the increasing complexity of the systems.

In the following, a generally applicable workflow (section 5.1) to extract meaningful information

from high-dimensionalMD data will be discussed. Then, a few standardmethods are explained as they

found usage in our work (section 5.2). A separate section each is dedicated to specific transformation

techniques applied to the effect of dimensionality reduction (section 5.3) and to mutual information

analysis (section 5.4). The broader topic of Markov models is addressed in its own chapter (chapter 6),

as well as the theory related to clustering that is included in the respective part (part V) due to its

central relevance for this work.

5.1 A universal workflow

MD has a long history as briefly outlined in chapter 2 and so does its analysis. A set of standard

tools and approaches has evolved that is commonly applied to extract and present information from

molecular trajectories. Despite being fairly established, the right combination of analyses may be

non-trivial to find in specific use-cases, though. A successful trajectory analysis is tightly bound to

¹Note the use of conformation here in a chemical sense to describe a sub-ensemble of similar configurations that can be

structurally different but are associated with the same (smoothed) energy basin. In this sense, it includes the IUPAC

definition of ‘conformation’ as ‘the spatial arrangement of the atoms affording distinction between stereoisomers which
can be interconverted by rotations about formally single bonds’.[194] This use is in contrast to a possible alternative

distinction of a conformation as a single point in positional space from a single point in phase space (including

momenta). I refrain, on the other hand, from the stereochemical use of configuration to distinguish stereoisomers that

can not (readily) interconvert, like for the E/Z-isomerie of double bonds.[194] For a short discussion of molecular

conformations from the perspective of density-based clustering, see section 13.1.

54 Dissertation J.-O. F. Kapp-Joswig

A universal workflow

a sensible setup of the respective simulations. Beyond asking the question ‘How can I technically
simulate a system?’, it may help to contemplate also over ‘Why am I simulating this system?’ and ‘What
do I want to do with the trajectory data?’. prior

considerations
The answers to these questions may take real shape only with

the progression of a research project but they should at least in parts be sorted out before a simulation

is actually done. It should be avoided to acquire trajectory data, which can take a substantial amount

of time and resources, and then having to realise that it is not clear what to do with it or that a slightly

different setup would have been actually necessary to successfully carry out a certain analysis.

Figure 5.1 A conformational MD analysis workflow
MD simulations produce trajectories of molecular configurations starting from a given input structure. Since high-

dimensional trajectories are difficult to analyse, a main effort is to select meaningful features that provide a reduced

representation of the simulated system. Features can be inspected directly, compared for different systems, or further

processed to give new features. Conformational states can be identified through clustering (discretisation) in feature

spaces. Those are the primary result of the workflow and their inspection can be the basis to draw conclusions in a

research project. They can be, among other things, also be used for sensible seeding of new simulations. Markov

models can give insight into the kinetic relations between conformations or help to identify them in the first place.

The example analysis workflow in figure 5.1 should present an overview of howMD analyses can be

roughly organised. It assumes as common ground that the main interest lies in the identification and

characterisation of conformational states. Note that this implies some faith into the general paradigm

that molecular structure is directly connected to function and differences in structure are indeed the

basis to explain observed behaviour. The planning of a simulation and analysis project starts with the

sensible choice of starting configurations. What this should comprise will be heavily influenced by

what is expected to learned from the simulation. Often one will use available crystal or NMR solution

structures but decisions have to be made in terms of the size of the model (Do I need all residues or
only a specific part of the structure? Do I need crystal water or co-crystallised ligands? Do I need to add
missing parts like an unresolved side chain or loop segment, or a whole membrane?) and in terms of

environmental conditions (Do I need to model a specific pH or salt concentration?). It also should be

considered whether the simulation of a single individual system is enough or if a meaningful analysis

Dissertation J.-O. F. Kapp-Joswig 55

Basic features

would require a comparative assessment between separate simulations with different structures or

setups (force fields, temperatures, protonation states, ligand complexes, mutations, etc.). In this case,

it should be taken extra care that the simulations remain consistent over axes of variation that could

distort a comparison. For example, it might be not ideal if systems at different temperatures use

different thermostats.

Once an array of simulations has been organised—with a later form of analysis in mind—a direct

visual inspection of the obtained trajectories is possible as mentioned earlier.feature
selection and
extraction

What one is normally

interested in, however, is the selection or extraction of relevant (dynamic) features,² onto which

a trajectory can be projected. The goal is to identify (collective) variables that matter to describe

the behaviour of a system. Effectively we want to reduce the complexity of the data and to make it

comprehensible. In this sense, a feature can be virtually anything that maps the full coordinates of

a system in each time step to a single value, for example a distance between two atoms, a backbone

dihedral angle, or an indicator for the existence of a hydrogen bond (see also section 5.2).

The extraction of features can be rationally guided. By using our already acquired knowledge of the

system, we might be able to select a suitable coordinate that captures the aspect we want to analyse

well. It can also be an iterative process, in which different kinds of standard features are investigated to

explore the system and to find suitable representations. Sometimes a single feature (a 1-dimensional

projection) will contain enough information, but often a set of features will be used in combination.

Features can be analysed as time series, to track respective changes in the course of a simulation,

or alternatively as distributions, to assess the relative populations of configurations. They can be

compared to other features in the same system to reveal differences and correlations. The same shared

feature can also be extracted for multiple systems to do a comparison between those.

It should be noted that while featurisation is in general indispensable to understand a molecular

system, it always comes at the cost of a projection error.projection error By reducing the full configuration of a system

to a low dimensional projection, we are not able any more to resolve every variation in the data. While

this error is often not quantified, it is desired to choose projections that are as simple as possible while

limiting the loss of (relevant) information. There are methods to choose features according to an

importance criterion rather than purely experience based decisions (section 5.3). These should allow

one to keep only features that encode a maximum amount of information. In practice, a combination

with a rational pre-filtering of features is still often required because these methods can usually not

handle very high-dimensional data themselves.

Most importantly, molecular configurations in low-dimensional projections can be clustered (see

part V) to separate out conformational states. These can be the key to explain the studied phenomena.

In particular, a clustering into such states can be used as the basis to construct a Markov model

of the conformational dynamics and to analyse the equilibrium distribution sampled by possibly

manny individual replicas in a statistically sound way (see chapter 6). From the relative population of

meta-stable conformations and the transition processes between them, comprehensible yet detailed

descriptions of molecular systems can be obtained.

5.2 Basic features

A feature x could be any 1-dimensional component, directly or indirectly derived from

information about a system (usually atomic positions). A collection of features (other than the full set

of cartesian coordinate features), i.e. any representation of a system in terms of chosen coordinates,

²Technically, a differentiation between feature selection and extraction can be made with respect to whether a subset of

already present features is selected or new features are computed (extracted) from the present features. The line is a bit

blurry and I will not insist on it here.

56 Dissertation J.-O. F. Kapp-Joswig

Basic features

can be called a projection q′ = (x1, ..., xnf
) where nf denotes the number of features. A projection

q′ can be still considered a configuration but in terms of positions in the feature space rather than

positions in the original space. It is also sometimes called more generally a feature vector.

The most simple features one could select for a reduced view onto the system, are cartesian co-

ordinates themselves without further modification. It is for example common to to pick out only the

cartesian coordinates for individual Cα atoms reducing the full configuration of a system q to the

position of a single atom i with q′ = qi = (qx , qy , qz). Since it is usually not very telling to look at the

time series of a set of positions directly, one can instead use its RMSF with respect to RMSFa reference

position

σi =

¿
Á
ÁÀ 1

ns

ns

∑
s=0
(qs,i − qref

i)
2

. (5.4)

The RMSF of an atomic postion is basically its standard deviation if qref is the actual mean position.

To detect relatively flexible or rigid regions in a system, one can compare the fluctuation for different

atoms. Note, that in principle the RMSF can be computed also for arbitrary features.

In contrast to that, one can also take a set of features like cartesian atomic positions and convert

them into a new feature. The RMSD is an example for that, measuring the average displacement RMSDof

feature values from a reference at a given time step as

d̃s =

¿
Á
ÁÀ

nf

∑
i
wi (xs,i − xref

i)
2

, (5.5)

where wi denotes the weight of each feature. For atomic positions, the deviations could for example

be weighted by the respective atomic mass. So while the RMSF and the RMSD are often considered to

be very similar, the first is a time-average over displacements with respect to a given projection and

the latter is a position-average over features, giving us a new feature.³

RMSDs are a good example for a feature that can be routinely analysed directly as a time series

or as a distribution. In the former case, it can be for example used as a basic sanity check (see for

example section 11.2) or to spot large scale conformational transitions. Similar to RMSF values, the

feature is relatively universal because one does not need to have prior knowledge about a system to

compute it for the backbone of a protein for example. This is in contrast to say a specific interatomic or

center-of-mass distance, which can only be effectively selected if its importance is already suspected.

For large numbers of features (many atoms), the RMSD can become, however, insensitive to local

deviations. Note also that its quality depends on the choice of features it was computed for and to the

used reference structure. It can furthermore contain a large projection error since it only measures

absolute deviations and not their direction.

Features can be relatively simple properties or measures of a molecule, for instance also (torsion)

angles. There is, however, no limit in how complex features or rather their derivation can be. Examples

for less straightforward features are the solvent accessibility surface area (SASA) of a protein,[195]

or the pocket volume of a binding-site.[196] In principle, any computed quantity like pKa-values,

energies, or let’s say dipole moments, can also serve as a feature.

Besides continuous features, there are many commonly used categorial features as well (see also

section 13.1 for a short discussion on this type of data). An example are DSSP classifications.[197,

198] DSSPThrough a comparison of a protein structure with a database, the DSSP program can assign

a secondary structure element (helix, sheet, loop, or a further specialised category) to each amino

³In other contexts, also the RMSF of atoms can be considered a feature, though. It is just not a time series mapping the

state of the system at a given point in time to a value.

Dissertation J.-O. F. Kapp-Joswig 57

Basic features

acid residue. If this is done for time frames from a MD simulation, the evolution of the assignments

can be used as an indicator for the protein’s stability, either as a basic sanity check or to spot large

conformational transitions that involve secondary structure changes.

Another context where categorial data can be encountered, are features that denote the presence or

absence of interactions, e.g. hydrogen bonds. While hydrogen bonds may be chemically transient in

reality and have a theoretically rather complex nature,[199] they are for the sake of simplicity in an

analysis often converted into binary information.H-bonds The identification of these bonds mostly follows

geometric criteria for the arrangement of donor, hydrogen, and acceptor atoms (D−H⋯A), although

it has been argued that this can be flawed.[200] Using the Baker-Hubbard criterion, the presence

of an H-bond can be assumed if the H⋯A distance is smaller than 2.5 Å and the D−H⋯A angle is

larger than 120°.[201] An alternative definition used by GROMACS requires the D⋯A distance to be

at most 3.5 Å long and the H−D⋯A angle to be at most 30° wide. VMD relies on the D⋯A distance

below 3.0Å and requires that 180° minus the D−H⋯A angle is smaller than 20°. Yet another criterion

for hydrogen bonds between water molecules derived from calculated spectra uses d(D⋯A) <
3.3Å − 0.00044 θ(H−D⋯A)2, accounting for the fact that the donor-acceptor distance can be larger

when the hydrogen-donor-acceptor angle is close to 0°.[202] Once H-bond existences have been

collected for each time frame in a simulation, relative populations and population differences can be

evaluated but also for example correlations between bonds.

Other types of interactions (e.g. hydrophobic contacts or ionic interactions in say salt bridges)

can be assessed in a similar way. An advanced treatment could use not only the binary existence

information but also the geometric centres of where an interaction takes place or a similar spatial

property. Such information is for example used in pharmacophore modelling,[203] or in the dynamic

adaptation of the concept in terms of dynophores.[204]

These are only a few examples of what could be selected or extracted as features fromMD trajectory

data to achieve a reduced, comprehensible representation of a molecular system and its properties.

For a modern perspective on this, be also referred to [205]. Their evaluation of features, on the other

hand, is often done in more or less the same way, namely as mentioned either in terms of the time

series directly or in terms of its distribution.

5.2.1 Time series and distributions

For the estimation of a distribution from a time series, a simple way is the binning of

value ranges into a histogram. This requires to set a bin width, which can be chosen arbitrarily to a

desired level of detail or according to a rule of thumb that depends on the number of samples in the

series. The Freedman-Diaconis rule suggests for example a uniform bin width of 2 iqr(x)/ 3
√

n based

on the interquartile range of the sample set and the number of samples n it contains.[206] There is

further the possibility to report absolute counts (the number of samples per bin) or to normalise the

result. A normalisation can be either done in terms of a discrete probability mass function (the sum

of all bin values is equal to 1) by dividing each bin count by n or in approximation to a continuous

probability density (the integral over all bins is equal to 1). For a comparison of features, either kind

of normalisation should be employed if the number of samples differs. If the bin width differs as well,

a density approximation is preferable.

Alternatively, a kernel density estimate (KDE) can be employed choosing a kernel and a bandwidth

ρ(y) =
n
∑
s=1

K(y − xs; h) (5.6)

where the kernel K is a window function, producing a certain kind of shape (e.g. a Gaussian) centred

around each sample point xs. The local density estimate for points y is then just the sum of these per

58 Dissertation J.-O. F. Kapp-Joswig

Basic features

point contributions. For large sample sets, the bandwidth has a bigger influence than the choice of

kernel. A too small value will result in a noisy estimate, a too large value can over-smooth the data.

For a good initial bandwidth value, there is for example the Silverman rule amounting to 0.9m/ 5
√

n,
with m = min (σ(x), iqr(x)/1.349).[207] More elaborate schemes exist, though.[208]

Figure 5.2 shows examples for histograms and KDEs for a distance feature extracted from a MD

simulation, illustrating the effect of bin width, bandwidth, and kernel. The tophat kernel used in

figure 5.2g is just a block of a certain width, much resembling histograms, only that each sample

contribution is centred around the point and not added to a respective bin. If later smoothing is

needed, interpolations can be done (5.2d) but it should be noted that this can distort the result. For

visualisation, either of the shown approaches (exceptmaybe 5.2f) would be acceptable. For quantitative

analyses, the small difference may matter, and for smaller data sets, they are likely to become more

pronounced. Density estimates can also be used in the context of density-based clustering (see

section 14.5 and the following). After all, what density-based clustering tries to achieve is a separation

of dense data regions (visible as peaks in a feature distribution) into disjoint groups.

Figure 5.2 Histograms versus kernel density estimates
a) Time series for a single distance feature with about 20 million data points (2000 shown). Histograms using b) 442

bins (Freedman-Diaconis), c) 40 bins d) 40 bins plus quadratic interpolation (scipy.interpolate.interp1d).

KDE (sklearn.neighbors.KernelDensity) using e) a Gaussian kernel with 0.03 bandwidth (Silverman), f) a
Gaussian kernel with 0.003 bandwidth, g) a tophat kernel with 0.02 bandwidth (Freedman-Diaconis). The histograms

use the full set of samples, while the KDEs use only every 100th point for the kernels and densities are estimated for

200 points in the data range. The diagrams in the lower left corner depict the binning of points into a histogram and

the kernels for points that are summed up in KDE.

Histograms and KDEs generalise to higher dimensions but their applicability degrades relatively

quickly. In the context of 2-dimensional representations, it is sometimes desired to convert an

approximate probability density with respect to a given projection into a pseudo free energy surface.

The following short sequence of operations can be useful for visualisation (assuming the density is

stored as grid points in a 2d NumPy array P):

P = -np.log(P) # ignore divide by zero
P -= np.min(P)
P[P > threshold] = threshold

This can then be plotted as a heatmap or contour-plot in which the lowest energy (highest probability

state) is set to 0, energies are given in units of kBT , and with a finite maximum value (see figure 5.9).

The comparison of two feature distributions can be done for example in terms of absolute differences

(subtracting one probability density from the other) or in terms of relative changes (dividing one by

Dissertation J.-O. F. Kapp-Joswig 59

Basic features

the other), at least if the same feature is compared over different setups, simulations, or systems. For

entirely different features, i.e. two basically unrelated features in the same system, this might, however,

be meaningless. Measures to quantify the difference or pairwise relationship between two probability

densities are for example the Kullback-Leibler divergence,[209] or the mutual information (MI) score

described in section 5.4.

We can also relate two features from the same trajectory by the means of correlations.pairwise
correlation

Correlation

coefficients are in general bounded to values between −1 and 1. Positive correlation can be usually

interpreted as a high tendency of two features to adopt a similar value while in reverse negative

correlation indicates opposite values at the same time. No correlation (0) can be associated with

randomness. A popular example for a correlation measure is given by the Pearson coefficient

cPearson =
cov(x , y)

σxσy
=

∑
ns

s=0(xs − µ(x))(ys − µ(y))
√

∑
ns

s=0(xs − µ(x))2
√

∑
ns

s=0(ys − µ(y))2
, (5.7)

as the covariance of two feature variables divided by the product of their standard deviations. The

respective mean of each variable is denoted with µ. The coefficient can be computed for continuous

or discrete features and measures linear correlation, i.e. how well a straight line can interpolate the

relation y = f (x). The sign of the correlation coefficient corresponds to the slope of a linear regression.

In this sense a high absolute correlation can also be interpreted as how well the value of one feature

can be predicted based on a value in the other feature.

An alternative that emphasises the notion of predictive potential is Matthew’s coefficient for binary

data (also called ϕ-coefficient). It is computed from the number of times both features show the same

one value (referred to as true positive) n11, the same other value (true negative) n00, or a different value

(false positive and false negative) n10 and n01 as

cMatthew =
n11n00 − n10n01

√
(n11 + n10)(n11 + n01)(n00 + n10)(n00 + n01)

. (5.8)

Matthew’s coefficient can be extended for multi-label categorial data.[210] Further, there exists a large

portfolio of other methods to measure (also non-linear) correlations.[211]

For the analysis of time series (where the order of the values of a feature really matters), we have

basically one closely connected option, which is the assessment of the autocorrelation.autocorrela-
tion

Given a series

of values, this type of correlation measures how much a value at time t influences possible values at

time t + τ. For the time discrete case we can write

cauto(k) =
1

ns − k

ns−k
∑

s
(xs − µ(x))(xs+k − µ(x)) (5.9)

where xs is a feature value at time t = ts and k is the lag time τ in steps. For τ = 0, we basically obtain

the variance of the data by which the autocorrelation can be normalised to the value interval [−1, 1].

Formally, autocorrelation can also be described as a convolution. Figure 5.3 shows a simple example.

Figure 5.3 Autocorrelation For a single distance

feature in two independent systems, the autocorrel-

ation has been computed for lag times up to 50 ns

for comparison. The decay indicates quick relaxa-

tion on the nanosecond time scale. The two system

exhibit the exact same behaviour.

Conceptually similar to autocorrelation, are analyses targeting towards the live-time of certain

states, e.g. the residence time of a water molecule in a protein cavity or the persistency of hydrogen-

60 Dissertation J.-O. F. Kapp-Joswig

Dimensionality reduction

bonded interaction. In principle, the whole point of kinetic Markov models is as well to identify

conformational states with high meta-stability, i.e. significant autocorrelation.

5.2.2 Bootstrapping

Considering a single set of samples, one can compute statistical quantities like the mean

and standard deviation. In the context of limited sampling, it might be desired, though, to get an

estimate on how valid a sample set is and how reliable an inference of the true underlying population

would be from it. A way to do this, is referred to as bootstrapping.[212] It essentially works like this:

by generating new sample sets from the set in question using random draws with replacement, one

can compare quantities computed from the new samples to assess how robust these observations are.

A sample set that exhibits low variation under resampling is likely to allow stronger inference on the

real population.

In our analysis, we use bootstrapping for example to compute confidence intervals on feature

histograms. Our sample set is in this sense a list of histograms for the same feature estimated on

individual simulation replica (blocks of the complete trajectory). This set of histograms gives us one

weight-averaged histogram for the full data. In a bootstrapping round, we resample with replacement

from our set of histograms to get a new set (of the same length) from wich we can compute a different

average histogram. This process is repeatedmany (e.g. 1000) times andwe can evaluate the distribution

of averages. Typically, we report the 95% confidence interval, which is the value range that contains

95% of the averages for each histogram bin. For reference, this is how this bootstrapping can be

implemented in Python using NumPy and scikit-learn. The function expects a list of histograms as

the base argument and returns a confidence interval on the mean:

def bootstrap(base, n=1000, weights=None, **resample_kwargs):
means = numpy.array([

numpy.average(
sklearn.utils.resample(base, **resample_kwargs),
weights=weights, axis=0
)

for _ in range(n)
])

return numpy.array([
numpy.percentile(means, 2.5, axis=0),
numpy.percentile(means, 97.5, axis=0)
])

An alternative strategy could try to resample directly from the full feature trajectory for a comparison

of histograms. In this case one would probably need to tune the size of the generated samples if the

trajectory is very large. Bootstrapping has many other applications in the context of MD.[155]

5.3 Dimensionality reduction

Rationally guided feature selection, which the basic features in the last section are in

principle examples for, is an integral part of the exploration related to a MD data set. It is grounded in

assumptions onemakes about what kind of features are important to reflect conformational transitions

in a molecule, either from system specific knowledge or by making an educated guess. As some of

these features, like backbone dihedral angles, tend to be relevant for many different systems, this may

not be a bad guess. Dimensionality reduction methods, on the other hand, take a set of input features

and find a new set of output features that can be ranked in accordance with a criterion. Technically,

also manual feature picking is done to the effect of reducing the dimensionality but the emphasis of

Dissertation J.-O. F. Kapp-Joswig 61

Dimensionality reduction

the use of dedicated methods for it, lies in the quantifiability of the selection process. As mentioned

earlier, however, such a dimensionality reduction can be supported by limiting the number of input

features beforehand based on a rational.

A classic method usable for dimensionality reduction is found in principal component analysis

(PCA). The first principal component (PC) of a set of points (represented in the input feature space)

is aligned with the axis along which the data shows the largest variance.PCA In other words, it is a feature

that explains or contains the largest part of the overall variance when the data is projected onto it. The

second PC is a feature linearly uncorrelated, i.e. orthogonal, to the first PC that explains the largest

part of the variance not captured by the first PC. For nf input features there will be also nf output

features with maximised and decreasing associated variance. If large variance is considered more

important than low variance, a projection onto only a subset of the output features can reduce the

dimensionality of the data without loosing important information. For molecular systems this can be

justified because large amplitude conformational changes can correlate with significant functional

transitions.

Practically, PCs can be found by constructing the covariance matrix from the mean-free (or op-

tionally standardised, see also equation 13.9) input data. The eigenvectors of this matrix are the PCs

while their corresponding eigenvalues are a measure for how much variance is explained by them, i.e.

how much information is preserved when the input data is projected onto them. The elements of the

eigenvectors also measure how much the original features contribute to it.

Let’s consider an example to illustrate this. Figure 5.4 shows a six dimensional data set comprising

three Gaussian distributions of which we could imagine that the data points stem from a MD simula-

tion. For visual clarity, the three distributions are highlighted in different colours but in a real scenario

these are not normally known beforehand.example data In fact, it rather would be the purpose of the feature

selection to find a suitable representation to identify these as separable conformational states. We

see already for this simple example that the view on the data changes considerably with the features

through which we look at it. Here it may be possible to find a good set of features among the six

dimensions but a PCA offers a more systematic way to achieve this, which does also not immediately

break down if we need to consider hundreds of possible features.

Figure 5.4 6-dimensional example data set
ofmultivariate Gaussian states For each pair

of dimensions, a 2-dimensional projection is

shown in respective boxes on the left. The indi-

vidual distributions the data was constructed

from, are distinguished by different colours.

In a conformational analysis of a MD data set,

it could be the goal to find exactly these state

assignments by the help of a suitable projec-

tion. Which would be the most faithful one in

retaining the information in the input data?

Figure 5.5 shows the result of a PCA on the data above. By looking at the eigenvalue spectrum,

it becomes clear that the first two PCs are probably sufficient to describe the data well. Combined,

they cover over 90% of the overall variance and the following components add little information.

The elements of the eigenvectors indicate that of the original features the first is contributing most

to the second, and the second most to the first PC. The fifth and sixth input dimension are rather

unimportant. In the projection of the original data onto the first two PCs, the distributions are well

separated.

62 Dissertation J.-O. F. Kapp-Joswig

Dimensionality reduction

Figure 5.5 Principal component analysis example
Analysis using sklearn.decomposition.PCA on the

data shown in figure 5.4. a) Eigenvalue spectrum indic-

ating that most of the variance in the input data can be

explained by two PCs (blue). b) Elements of the first

two eigenvectors (PCs) showing the contributions of

the original components. c) Projection of the original

data onto the first two PCs.

For biomolecular systems, a PCA can be for example carried out on cartesian input coordinates

(maybe filtered to only backbone or Cα atoms) or on torsion angles. In the latter case the input features

should be converted into sine and cosine parts.[213, 214]

A similar dimensionality reduction technique achieving a feature transformation that

can be even more appropriate in a MD context is time-lagged/time-structure based independent com-

ponent analysis (tICA).[215–217] It is in particular useful if the assumption underlying an application

of PCA that large variance can be considered highly important does not hold for a given system. tICA
Functionally significant conformational transitions in molecules can be also rather small. It might

be instead a better assumption that important conformational changes are in general rare, that is

collectively slow and not often observed in a simulation. Independent components (ICs) constitute a

set of features that aim on representing basically exactly this. By solving a similar eigenvalue problem

as in PCA considering additionally a time-lagged covariance matrix, one can obtain these components.

Figure 5.6 illustrates the result of this for the same data set as before in terms of a projection onto the

first two ICs. This time, even one component may have been sufficient because it covers already 98%

of what can be considered the kinetic variance of the data in terms of maximised autocorrelation. Note

that this type of analysis only works here because the data was generated in a time correlated manner,

faking transitions with unequal probabilities between the states (marked in figure 5.6b). There are

relatively few transitions back and forth between the purple and the green state, none between purple

and yellow, and many between yellow and green. The first IC is well aligned with the axis along which

rare transitions take place, that is where autocorrelation is high. In the picture, the components are

scaled to reflect kinetic distances, so that states that are farer away from each other are also involved

in fewer transitions.[218]

Dissertation J.-O. F. Kapp-Joswig 63

Mutual information

Figure 5.6 Time-lagged independent com-
ponent analysis example
Analysis on the input data in figure 5.4 us-

ing pyemma.coordinates.tica. a) Pro-

jection onto the first two ICs. Note the rel-

ative difference to figure 5.5c. b) For time-

autocorrelated data, the analysis identifies

components of rare (slow) spatial trans-

itions.

The success of this analysis for ICs depends on the choice of the input features and on the specified

lag time. For both there is no general recipe but there has been proposed a heuristic based on VAMP

scores.[219]lag time Roughly, the strategy is to select input data with a relatively high score for a given lag

time, and then to choose a lag time for which high scores are achieved while convergence is reached

with the inclusion of a sensibly low number of dimensions.4 In general, the obtained projections can

be complex, however, and can change significantly and abruptly with the lag time, as illustratively

shown recently for a series of random walks.[220]

The found ICs have been shown to be approximations to the eigenvectors of the transfer operator

underlying dynamical molecular processes.[216] Thus a corresponding projection can be an ideal

basis for the estimation of a Markov model (see chapter 6).MSMs tICA is a linear transformation method

but has been extended to a non-linear kernel variant that claims to alleviate the need for the estimation

of a Markov model on top of a tICA projection.[221]

Another dimensionality reduction technique that has become very popular lately is t-distributed
stochastic neighbour embedding (tSNE).[222] It has been also recently adopted for the analysis of MD

data.[223]

5.4 Mutual information

Entropy from an information theoretical perspective, is a measure for the expected

information content of a probabilistic event. Alternatively, the notion of expected surprise can be used,

both meaning the logarithm of inverse probability.information
content and

surprise

Considering the probability distribution p(xi)
of a discrete random variable x with possible outcomes xi , entropy can be expressed in terms of the

following equation:

S(x) = −∑
i

p(xi) logb p(xi) . (5.10)

This is known as the Shannon entropy.[224] The unit of measurement depends on the logarithm used

in here, typically log2 (bits), loge (nats), or log10 (dits). Let’s examine the entropy of a simple example:

a coin flip with probabilities p1 ∈ [0, 1] and p2 = 1 − p1 for a single event leading to the coin landing

on either side (see figure 5.7).coin flip Note the short-hand writing of p(x1) as p1 here. Depending on p1, the

result of a flip can be more or less surprising. For the extreme case of p1 = 0 or p1 = 1, the coin will

always land on the same side, meaning the result is absolutely certain and the information gain by

repeating the flip is minimal. To be a bit more precise, the information content of the outcome x1 for

p1 = 1 is 0 and it is undefined for p1 = 0. In the limit of p1 → 0, the surprise associated with x1 will

approach infinity. On the other hand, if p1 = 0.5, the outcome is as uncertain as possible and in this

case the entropy is maximised.

4For an explanation in the context of the analysis of a small peptide see emma-project.org/latest/tutorials/
notebooks/00-pentapeptide-showcase.html

64 Dissertation J.-O. F. Kapp-Joswig

http://www.emma-project.org/latest/tutorials/notebooks/00-pentapeptide-showcase.html
emma-project.org/latest/tutorials/notebooks/00-pentapeptide-showcase.html
http://www.emma-project.org/latest/tutorials/notebooks/00-pentapeptide-showcase.html
emma-project.org/latest/tutorials/notebooks/00-pentapeptide-showcase.html

Mutual information

Figure 5.7 Entropy coin flip example
The information content of a coin flip event − logb(p1) decreases with its probability (left). The gain in information

by repeating the experiment (the expected information content of a single event), i.e. the entropy according to

equation 5.10, depends on the probabilities of all possible results (right). It is maximised when the outcome of the

experiment is maximally uncertain, that is when all possible outcomes are equally probable.

In a loose interpretation, we can say that the repetition of a probabilistic experiment is more

interesting when the entropy is high because all possible outcomes tend to be equally probable and

the experiment reveals more information per repetition. interpretationThe entropy of data is a measure for the

information content per bit and is used in lossless data compression.[225]This information theoretical

concept of entropy translates directly to the Gibbs entropy used in thermodynamic chemistry to

describe the statistically favoured state of a molecular system as the most likely one (the one that

maximises the entropy) in the absence of energetic influences.[226]

For the consideration of two random variables x and y, one can define the conditional entropy

Sxy(x , y) = −∑
i
∑
j

pxy(xi , y j) log
pxy(xi , y j)

py(y j)
, (5.11)

in which pxy is the joint probability of an event with respect to the discrete outcomes xi and y j. This

non-symmetrical measure estimates how much uncertainty in y remains if x is known. conditional
entropy

Figure 5.8

exemplifies this with two subsequently tossed coins that are either uncorrelated or where the second

toss is magically influenced by the first one. The conditional entropy can be taken as an estimate of

how much a random variable depends on another one.

Figure 5.8 Conditional entropy coin flip example Given

the probability that when the first coin lands on one side, the

second coin lands on the respectively other side p12 , andwith

p21 = p12 and p11 = p22 = 0.5 − p12, how much uncertainty

is left in the second coin toss? The conditional entropy (here

in bits) is maximal if both coins are completely independent

of each other. It is minimal for perfectly synchronised coins,

i.e. when the second coin always lands on the same (p12 = 0)

or the other side (p12 = 0.5). The marginal probabilities

that the second coin lands on either side are equal. Note the

writing of px y(x1 , y2) as p12 here.

A related measure that estimates symmetrically how much two random variables depend on each

other, is the MI

MI(x , y) = ∑
i
∑
j

pxy(xi , y j) log
pxy(xi , y j)

px(xi)py(y j)
. (5.12)

Dissertation J.-O. F. Kapp-Joswig 65

Mutual information

Note the use of the product of the marginal distributions px and py in the denominator of the

logarithmic ratio here.mutual
information

In the analysis of MD data, this estimate can be taken to relate pairs of

individual features to each other. The score can be interpreted as a measure for howmuch information

content about a another feature is entailed by a feature. It measures to what extend the features are

correlated and can be used for example to reveal communications between amino acid residues in

protein networks. In this context, MI scores are usually normalised for instance by the minimum

or maximum entropy of the considered features to allow a better comparison between the score for

different feature pairs:

M̃I = MI(x , y)
min(S(x), S(y))

. (5.13)

Figure 5.9 illustrates the joint consideration of two simulated protein features. It is not untypical

to look at the torsion angles in such a system as it is often expected that relevant conformational

information is well captured by these internal degrees of freedom. In general, however, a MI analysis is

not restricted to a specific kind of features. The shown distribution reveals some degree of dependency

between the two features, which will be captured by a non-zero MI value.

Figure 5.9 Mutual information protein example
Considering two side chain torsion angles of two amino acids in a protein, extracted from a MD trajectory, a) shows

the joint probability distribution with respect to these features as a 2-dimensional contour plot and the marginal

distributions as 1-dimensional histograms on the right and upper sides. In b) the 2-dimensional outer product of the

marginal distributions is shown for comparison. The features exhibit some degree of mutual dependency because

the joint and the product distribution differ, for example in the area highlighted with a red circle. The highlighted

combination of marginal states is not observed in the simulation but would be if the two features were completely

independent. The normalised MI score amounts to M̃I = 0.049 (see equation 5.13). Whether this is significant has to

be evaluated in the context of the application and other mutual dependencies in the system.

An interpretation of individual, absolute MI values can be difficult, even when they are normalised.

A productive analysis could for example consider the full set of torsion angles in a protein to identify

significant dependencies by asserting feature pairs in a common setting relative to each other.protein
networks

The

obtained information of pairwise correlations between n features can be represented in terms of a

square MI matrix with n2 elements or in a graph structure. Both can be evaluated in multiple ways,

among other things by spectral clustering.[227]

It is common practice to filter the result using a significance threshold. Due to finite sampling,

even completely uncorrelated features may still exhibit non-zero MI scores.[228] The amount of this

effect can be for example estimated by re-sampling from the considered feature distributions.[229]

66 Dissertation J.-O. F. Kapp-Joswig

Mutual information

The excess MI found between hence uncorrelated features can be subtracted from the uncorrected MI

values, either individually or in terms of a mean value determined from all feature pairs and multiple

sampling rounds. Instead of such a rigorous re-sampling, a simple re-sorting of the original feature

trajectories could be done for a rough assertion as well. Alternatively, a low arbitrary threshold value

may be set based on the given data in order to reduce the number of considered MI pairs and to make

the result comprehensible. In the analysis presented later in section 11.1, the largest eigenvalue of the

MI matrixM was removed to the same effect by using

M′i j = Mi j −
(∑i Mi j ⋅ ∑ jMi j)

∑M
. (5.14)

It is furthermore possible, to condense a MI matrix from its feature-wise form to a residue-wise

form. This is handy because a detailed evaluation of all feature correlations can become complex

and a reduction to a perspective on which residues influence each other, without the breakdown

into individual feature contributions, may be easier to grasp. This can be achieved using a projection

matrix that indicates which features should be combined into which residue. A suitable projection

matrix has nresidues rows and nfeatures columns, where an element takes the value 1 if a residue contains

a respective feature and the value 0 otherwise, e.g.

P =
⎛
⎜
⎝

1 0 0 0 0 0

0 1 1 0 0 0

0 0 0 1 1 1

⎞
⎟
⎠

(5.15)

assuming a system of three residues and six features where the first residue comprises one, the second

two, and the third three features. The projection of the MI matrix is done as PMP⊺. One has to

be aware, however, about the fact that such a projection effectively summing up all per-residue

contributions can distort the overall picture when the number of features varies substantially among

the residues. commentsResidue pairs involving more features may appear as stronger correlated than pairs with

only few features that still can be of high importance after all. It can be for example considered to

normalise the per-residue score by the number of features that went into it or to just take the highest

observed score for each residue pair. A further point of consideration concerns which features to

compare exactly in the first place. For protein torsion angles, it is for example possible to treat the

backbone dihedrals as one feature (as a Ramachandran projection) and to correlate these to each

side chain torsion separately. Ideally, the effects of a variation in this regard on the output should be

considered.

As a final remark, pairwise mutual information calculations can become fairly expensive for long

trajectories (millions of data points) if many features (a few hundred) are considered. softwareIn the context

of the analysis presented in section 11.1, the needed functionality has been implemented in Cython

for the sake of efficiency while maintaining an accessible Python interface to be used in interactive

workflows.5

5Visit github.com/janjoswig/shiny-md-collection/tree/main/shiny/procedures/mutual_information
for an example notebook containing the implementation

Dissertation J.-O. F. Kapp-Joswig 67

github.com/janjoswig/shiny-md-collection/tree/main/shiny/procedures/mutual_information

{ 6 }
Markov models
Pseudo-random jumpprocesses to describemolecular kinetics

I
n his milestone work Ars conjectandi[230], Jakob Bernoulli (1654–1705) proofed the law of large
numbers for independent random variables. Bernoulli: law

of large
numbers

It says that in experiments where the result of a single

repetition of the experiment is determined in terms of a probability, the average of the results from

n repetitions should converge to the expected value when n growth towards infinity. It is required,

though, that the probability distribution underlying the outcome of the experiment indeed has a finite

expectation value (take a Cauchy or a Pareto distribution with α ≤ 1 as counter examples). Figure 6.1

illustrates the significance of Bernoulli’s law with the classic example of differently coloured balls in a

jar, the ratio of which can be determined by a series of drawing experiments.

Figure 6.1 Empirical illustration of the law of large numbers
Consider the following simple system: a non-transparent jar is filled with black (value 0) and white (value 1) balls

in the ratio 3:2 (see also figure 6.2a for an illustration). Suppose this ratio is unknown, it can be determined by

repeatedly drawing a ball out of the jar, recording its color and putting it back. a) In the limit of infinite draws, the

ratio of recorded results converges towards the true ratio of balls in the jar. b) Alternative representation in terms of

the mean of results.

Two centuries later, Andrei Markov (1856-1922) showed in another game-changing work that the

law of large numbers also holds for pseudo-random variables,¹ i.e. for those experiments in which

the result of an individual Markovrepetition depends on the outcome of the last repetition (or an initial

condition).[231] Figure 6.2 illustrates this in analogy to the Bernoulli example with a simple system of

two coupled jars on which repeated drawing experiments are carried out that depend on the previous

repetition.[232] In the previous example we had two possible outcomes for a single event, i.e. two

states we could find the system in with different probabilities. Now we have still two states but the

probability of the next state changes with the state we come from.

¹For an interesting account on Markov’s live and the background of his study see this blog article: https://www.
americanscientist.org/article/first-links-in-the-markov-chain

Dissertation J.-O. F. Kapp-Joswig 69

https://www.americanscientist.org/article/first-links-in-the-markov-chain
https://www.americanscientist.org/article/first-links-in-the-markov-chain
https://www.americanscientist.org/article/first-links-in-the-markov-chain
https://www.americanscientist.org/article/first-links-in-the-markov-chain

6. Markov models

Figure 6.2 Markov’s extension of the law of large numbers
a) Illustration of the Bernoulli jar system from figure 6.1. b) Consider the following simple 2-state system: a black and

a white non-transparent jar are filled with black (value 0) and white (value 1) balls in the ratios 3:2 and 4:1. Supposed

these ratios are unknown, they can be determined by drawing a ball out of one of the jars, recording its color, putting

it back, and continuing with the next draw from the jar that has the same colour as the ball drawn last. As long

as there is at least one black ball in the white jar and one white ball in the black jar, the ratios of recorded results

converges to the true ratios in the limit of infinite draws. Moreover, one can determine the ratio of drawing from the

black or the white jar, i.e. the ratio of black to white balls overall (which is 2:1).

A process of repeated draws on a system like this constitutes a Markov chain, or more generally a

Markov model. The trait that the only factor determining the next step in such atransition
probability

stochastic process is

the current state of the system (not the previous history) can be referred to as memoryless. The relative

probabilities in this system can be condensed into a transition matrix

T = (0.6 0.4

0.8 0.2
) , (6.1)

where the elements Ti j denote the conditional probability of going to (drawing) state j starting from

state i (of the last draw). The values in each matrix row should add up to 1. This matrix has interesting

properties. For instance, its kth power gives us the probabilities of arriving in a certain state after k
steps, given a current or initial state. Among other aspects, it is this predictive potential why Markov

chains are in widespread use, ranging from metrology to finance.

The first actual application of a Markov chain was by Markov himself, analysing an excerpt from

Pushkin’s Eugene Onegin, where each character represents a discrete state.[231] It can be demonstrated

for example that the probability of obtaining a vowel after a consonant and vice versa is significantly

larger than expected for a fully random, uncorrelated series of letters.example model Also in the broader context of

text processing, Shannon explored his ideas on information entropy with a Markov model for the

english language.[224] Quite similarly, we can build a Markov model for FASTA sequences of proteins.

Figure 6.3 shows the result of this exercise for langerin (see also section 11) and related receptors.

What can be learned from this is for example that the kind of amino acid built into the sequence at

a certain position can be strongly influenced by the preceding acid. The highest correlation can be

found for proline and glycine.

But we can do more with the estimated transition matrix. The first left eigenvector of this matrix

does for instance correspond to the equilibrium probability distribution of states predicted by the

model (figure 6.3c). It can be interpreted as an expected distribution of amino acids in other (related)

sequences, or as a prediction for sequences of the same type. In this example the sampled distribution

gives more or less the same. Depending on the context, also the higher eigenvectors can have an

intuitive interpretation.

70 Dissertation J.-O. F. Kapp-Joswig

6. Markov models

Figure 6.3 Markov model for FASTA sequences
Model estimation based on 200 sequences (81,913 amino acids in total)

from the C-type lectin receptor family. a) Transition probability matrix

for observing amino acid j directly after acid i. b) For each acid, the most

frequent successor is shown with the corresponding probability. The

black dashed linemarks the threshold of uncorrelated random succession.

c)Model equilibrium distribution (first left eigenvector) and observed

sample distribution.

Markov models can also be used to describe conformational transitions in molecules and

can be built from MD trajectory data.[47, 233] In this context, the models are often referred to as

Markov-state models (MSMs), based on the discrete conformational states they comprise.[234]

In essence, a transition probability matrix approximates the continuous transfer operator of the

true underlying dynamics of a molecular system. Let’s assume a given probability density ρt(q) on

molecular configurations q, different from the equilibrium distribution π(q), at any given point in

time t. transfer
operator

Weighting this density by the stationary density as ρ̃(q) = ρ(q)π(q)−1, its relaxation towards

the stationary state can be described in terms of a time discretised transfer operator T (τ), so that we

have[235]

ρ̃t+τ(q) = T (τ)ρ̃t(q) . (6.2)

By repeated acting of T , ρ̃t(q) will come closer to equilibrium by a certain time interval τ, while
once it has reached it, it remains invariant on further transportation. Fast configurational transitions

will lead to fast equilibrations of the respective regions of the density, while slow transitions take

longer to approach equilibrium. The nice thing about this is that by studying the transfer operator

(or rather approximating transition matrices) we can describe a molecular system in terms of global

conformational processes connecting portions of the configurational space. The eigenvalues of

a transition matrix can be associated with time scales on which a probability density relaxes to

equilibrium with respect to a conformational process. This can be expressed via the relation

λi(τ) = exp(−τ/tr,i) , (6.3)

where λi denotes the ith eigenvalue and tr,i the respective relaxation time. As shown by the variational

approach to conformational dynamics, these time scales can be taken as lower bounds allowing the

Dissertation J.-O. F. Kapp-Joswig 71

6. Markov models

systematic improvement of models.[236, 237] The corresponding eigenvectors can be interpreted as

indicators for which configurations (or which conformational states) are involved in each process.

While the first eigenvector corresponds to the stationary target density, the following associate with

relaxation processes of decreasing time scale. By focusing on the slow processes—on the premise that

these might be the decisive ones for a contingent functionality of the molecule—while neglecting the

faster processes as largely irrelevant, we can effectively reduce the complexity of the system greatly.

Note the similarity to the dimensionality reduction methods discussed in section 5.3. While Markov

models of the conformational dynamics of a molecule can be regarded as a dimensionality reduction

technique themselves, a direct construction of them without prior filtering to a suitable projection can

be rarely actually done. This is mainly because in practice there are quite a few technical challenges

associated with the estimation of Markov models.[217]

To begin with, a MD trajectory from which a Markov model should be constructed is (while being

discretised in time) continuous in configurational space. The first step in the modelling process is

therefore usually a discretisationdiscretisation of the configurational space into conformational states. A conven-

tional Markov model relies on a finite number of states for which pairwise transition probabilities can

be determined. The discretisation step involves a form of clustering and a large number of possible

realisations exist for it (see also chapter V). The problem of achieving a good discretisation is all but

trivial. Before it can be reasonably attempted, one needs a sufficiently low dimensional projection in

which a clustering is feasible in the first place. The discussed dimensionality reduction method tICA
can help immensely with that not only by pre-conditioning the clustered space to resolve slow dynamic

processes but also because distances can be identified here with kinetic distance (see section 5.3).

With the aim of estimating a Markov model, we have a few strict demands on a discretisation of

such a space into clusters and the most important one is probably that it needs to reflect the energetic

structure underlying the clustered configurations. Precisely, we want to respect and resolve energy

barriers. Configurational changes within clusters should be fast relative to transitions between clusters.discretisation
errors In this sense, we want our clustering to be kinetically relevant although being based on geometric

information.[238] In particular we want to avoid intrinsic barriers within the identified states. A

violation of this aspect can result in two negative effects: on the one hand, it can make outgoing

transitions from the state depend on from where exactly in the state the transition occurs—not only

on the state as a whole. In other words, it would make a transition depend on from where the system

entered the state, i.e. on the longer history of the stochastic process that should be modelled. This

would stand in conflict to the basic assumption that the process is memoryless, which is needed to

approximate it as a Markov chain in the first place. This behaviour can be described as non-Markovian.

On the other hand, misplaced state boundaries can lead to what is called the recrossing problem.[239]

Transitions into states via a pathway that does not involve the barrier it should be actually separated

by, are kind of fake transitions that are too fast (occur too frequently) and can effectively overestimate

the transition probability (or underestimate the required time scale). Another perspective on the

discretisation is to think of the state indicator functions as basis functions from which the transfer

operator eigenfunctions are constructed. A good discretisation is therefore one from which the

construction can be done smoothly.

Besides a bad discretisation, also the projection error that has been made when preparing the

clustered space, may distortprojection
errors

energetic barriers or prevent a clustering that resolves them adequately.

In general, any form of coarse-graining prior to the discretisation (e.g. by neglecting solvent degrees

of freedom when the solute is studied) can lead to a breaking of the Markov property.

The classic approach to arrive at a state discretisation that offers kinetic resolution, is to use a very

fine clustering into a lot of so called microstates. This can be for example realised with a (simple

regular) gridmicrostates discretisation or by using a prototype-based clustering algorithm like k-means (see

section 14.3). Here, transitions between neighbouring microstates can also be fast but the rational is

72 Dissertation J.-O. F. Kapp-Joswig

6. Markov models

that a transition over barriers would need to cross a large number of states. The number of states one

can actually use, is, however, not only balanced by the available resources (computer memory) but

also by the sampling situation of the data. If the number of data points is low compared to the number

of states, many states will be involved in only few transitions, leading to unfavourable statistics.

An alternative strategy that can suffice with a relatively low number of clusters and that avoids

problems with unresolved barriers, is to use a clustering into so called core-sets. In general, a core-set

is a set of data points that are a sure member of a respective cluster. By using for example a density-

based clustering technique (see in particular chapter 15), one can identify states that correspond well

with energetic minima, that is to a set of configurations representing the same conformation.[240]

Configurations in a cluster found by density-based clustering are connected by relatively high density,

while present energetic barriers (regions of low data point density) separate clusters, and can also be

excluded from the state assignment entirely if desired. A basic assumption for a partial discretisation

like this to work, is that the un-clustered noise or transition region is left quickly relative to the

slow processes of interest.[241] Markov models on core-sets have to be treated somewhat differently

than models on microstates, though, but in principle it is possible to use any discretisation for the

estimation.[242] Another potential advantage over microstate models can be that, as a consequence

of the lower cluster number and the natural correspondence of clusters with conformational states,

the post analysis of the Markov eigenvectors is arguably easier. For models comprising thousands of

states further (spectral) clustering techniques may need to be employed (see also section 14.2) to build

actual meta-stable conformational states from the small conformational microstates. Density-based

clustering furthermore allows to explore molecular free energy surfaces in a hierarchical fashion up

to a desired level of detail in the resolved conformational processes and can in consequence be used

for hierarchical MSM estimation.[243, 244]

With a suitable discretisation at hand, the nextmodelling step would be to count transitions between

states for a chosen lag time τ. A standardmethod would be to use a sliding window for that, or to count

only independent transitions without overlap.[238] Transition probabilities can then be obtained from

the absolute counts by normalising each matrix row with the total number of outgoing transitions

from the respective state. In modern practice, transition probabilities are, however, often obtained by

maximum likelihood or Bayesian estimators.[245] Through iterative optimisation, transition matrices

are found that reproduce the observed data best. Special considerations went into the estimation

of reversible matrices (see equation 6.4 further below). Another major concern is the correction of

models for non-equilibrium sampling situations and the quantification of the modelling error.[246]

Core-set Markov models can be furthermore based on approximations of committor functions from

milestoning.[242]

A central modelling decision is the choice of τ, which can be fairly subjective. Although MD

trajectories are discrete in time, the analysed time interval is kind of arbitrary and depends on the

time scale of the conformational processes that should be observed. The lag time is a lower limit

for the fastest conformational transition process that can be resolved by the model. lag timeIts value does

therefore indirectly tune the level of detail captured. To achieve a model that exhibits Markovian

behaviour, τ usually needs to exceed a certain value. At small lag times, the requirement that the

underlying process is memoryless may not be given with respect to the discretisation used but this

may average out for larger values. In theory, the quality of the model should be independent of the lag

time, i.e. the estimated relaxation times should be consistent when τ is varied, which can be tested by

the abundantly used implied time scale plots.[233] A suitable lag time might be the Markov time, i.e.

the smallest value above which the models show this expected behaviour.

A further important property detailed
balance

of transition matrices is that they should fulfil detailed balance if
they are estimated from equilibrium sampling. In equilibrium, there should be intuitively in the limit

of infinite sampling always be a transition from state j to i if there is one from i to j. The molecular

Dissertation J.-O. F. Kapp-Joswig 73

6. Markov models

process in question should be microreversible. i.e. each transition should be countered with its reverse

transition. In particular there must not be any cyclic (periodic) behaviour. Matrices determined from

finite sampling may not always satisfy this. Detailed balance can be enforced by averaging of the form

T ′ = (T + T⊺)/2, resulting in a symmetric matrix. Symmetry is not a necessary requirement, though.

In general, the equation

πiTi j = π jTji (6.4)

should hold, that is the probability of state i in equilibrium times the transition probability i → j
should equal the probability of j times the transition probability j → i. Detailed balance is not always

needed for transition matrices in other contexts. For the FASTA showcase above (figure 6.3), there is

for instance no reason to believe why a P→G transition should imply a G→P transition at any point.

Finally, a Markov model is normally not allowed to contain disjoint subsets of states or states that

can only be reached but not escaped. In our initial jar example, this meant that at least one ball of

the other jar’s color needed to be contained in each jar.connectedness For molecular simulations, this means that

separate replica, sampling different regions of the state space, need to contain connecting transitions

at some point. The set of connected states for which a model is estimated, is sometimes called the

active set. Connectedness is the pre-requirement for ergodicity to be in principle achievable, namely

that in the limit of infinite sampling every state is visited an infinite number of times. The system has

a unique equilibrium distribution that is independent of initial conditions and the ergodic theorem

(compare equation 5.3) holds. If connectedness is not fulfilled, one model can be estimated for each

connected sub-set or it would be necessary to continue the sampling to eventually connect all states.

A large influence in this regard has the technical realisation of the sampling. Besides effective seeding

to promote an exhaustive exploration of the configurational space, also the choice of integrator or

thermostat for example may enable or break ergodicity.[247] Enhanced sampling techniques can be

used in this context as well but one should be aware that the dynamics of a system are distorted by the

introduced bias. In some cases, re-weighting strategies may be applicable to correct for this.[79]

There is much room for exploratory freedom associated with the construction and evaluation of

MSMs. Only a small portion of the broader topic has been addressed here but many variations exist.

For two recent reviews on the topic, see [248] and [249].

74 Dissertation J.-O. F. Kapp-Joswig

{ 7 }
Graph theory
About connectivity, hierarchies, and trees

I
n the sense in which they will be discussed here, graphs are a universal construct that is used for

the study of all sorts of topological questions. Historically, a graph was perhaps employed more or

less explicitly for the first time by Euler in the 18th century: the seven bridges of Königsberg problem

became a landmark for the mathematical fields of graph theory and topology.[250] historyIn short, the city

that gave the problem its name comprised four major areas—two islands in the middle of a river

and both of the river banks—between which one could travel via seven bridges. Euler wanted to

answer the question if it is possible to visit all the areas by crossing each bridge exactly once. The

fundamentally new about using a graph for this, was to recognise that only the relative connectivity

between the areas matters and not the actual layout of the city as shown in figure 7.1.

Today, graphs are used to formalise a multitude of problems where the connectivity between

arbitrary objects is of importance. To name only one obvious example, chemical structures can be

described from a graph theoretical point as inter-connected atoms without considering actual atomic

positions, which was done already early on.[251] Essentially, also the topology of a molecule as a

typical MD concept is nothing else than a graph of atom types connected by a set of interactions.

Figure 7.1 The seven bridges of Königsberg
A graph can be used to represent the city of

Königsberg in an abstract way as a number of

areas (black circles) connected by a number

of bridges (black lines). Historic map from G.

Braun, F. Hogenberg, Civitates orbis terrarvm
III via Universitätsbibliothek Heidelberg.

A graph G is generally defined as the tuple (V , E ,w) consisting of a finite set of vertices (also

called nodes) V = {v1, v2, ...vn}, formal
definition

a finite set of edges E ⊆ {(vi , v j) ∣ vi , v j ∈ V}, and a weight function

w ∶ E → R.[252, 253]

Each vertex v in a graph represents a certain object, which can be virtually anything: a single point

in a (metric) data space, a geometric object, a container of objects, or any other (abstract) entity one

could think of—with the only limitation that individual vertices in a graph need to be distinguishable

from each other with a unique identifier. A common identification of vertices does for example use

integer indices, i.e. a consecutive enumeration of objects in the graph. A vertex can be equipped with

an arbitrary number of properties or attributes. verticesIn some sense, there is no such thing as duplicate

vertices: if each vertex represents a data point as a sample from some data space, each sample is a

unique vertex although two vertices may have the exact same attribute values (e.g. coordinates in a

Dissertation J.-O. F. Kapp-Joswig 75

https://www.doi.org/10.11588/diglit.16954
https://www.doi.org/10.11588/diglit.16954
https://www.doi.org/10.11588/diglit.16954
https://digi.ub.uni-heidelberg.de/diglit/braun1593bd3/0109

7. Graph theory

metric space). Alternatively, each vertex could in this case represent a point in the data space itself

while duplicate samples for the same point may be reflected by a count property on the vertex.

Each edge e in a graph connects exactly two vertices vi and v j. Self-connecting edges, where i = j,
are allowed as well. If an edge is denoted as the ordered tuple ei , j = (vi , v j), the graph is directed, that

is there can exist an independent edge (v j , vi).edges The edges {(v1, v j)} are called the outgoing edges

of vertex v1 while the edges {(v j , v1)} are called its incoming edges. If (vi , v j) = (v j , vi), the graph

is undirected and individual edges can be denoted as the set {vi , v j} without ordering. There is no

differentiation between outgoing and incoming edges in undirected graphs. In some graphs, more

than one edge is allowed for the same node pair in which case the graph can be called amultigraph.

Similar to vertices, edges can be equipped with an arbitrary number of properties. In particular each

edge can have a weight wi , j = w(ei , j) in which case the graph is called weighted. Edge weights are,

however, optional and a graph can be also unweighted.

It is usually a choice of representation if a graph is explicitly constructed with unweighted edges so

that edges are either contained in E or not, or if a graph is formally weighted but connecting (present)

edges are all equal in weight (say w = 1) and non-connecting (absent) edges are (implicitly) equal in

weight as well (say w = 0).weight
ambiguity

In a weighted graph, it is on the other hand also possible to distinguish

between absent edges and present zero-weight edges. It is also just a question of representation how

edge weights are interpreted, that is a high weight can for example correspond to high relevance, short

(i.e. strong) connection, or high gain but also to low relevance, far (i.e. weak) connection, or high cost.

The degree of a graph vertex is defined as the sum over all weights of edges connecting the vertex to

other vertices.vertex degree For directed graphs, it can be distinguished between the in-degree and out-degree only

considering incoming or outgoing edges.

deg(vi) = ∑
j
wi , j

´¹¹¹¹¹¸¹¹¹¹¹¶
outgoing

+∑
j
w j,i

´¹¹¹¹¹¸¹¹¹¹¹¶
incoming

(7.1)

For unweighted graphs, the vertex degree is just the number of edges to other vertices, wich is

equivalent to a situation where present edges have all weights of w = 1.

The size of a graph can be expressed as the number of vertices in V that is the cardinality of the

vertex-set card(V) = ∣V ∣.graph size Alternatively, it can be expressed as the volume of a graph that is the sum

over all edge weights of edges involving vertices in the graph vol(G) = ∑v∈V deg(v).
A graph G′ = (V ′, E′) is a subgraph of G—conversely, G is a supergraph of G′—if the vertices in

G′ are also in G, that is V ′ ⊆ V , and if the edges in G′ are also in G, that is E′ ⊆ E.subgraphs A subgraph is

called an induced subgraph if all edges in E that are connecting vertices in V ′, are also in E′. In other

words, edges of the supergraph that have both endpoints in the node set of a subgraph need to be

inherited by the subgraph. See figure 7.2 for an illustration of these relations.

A graph is connected if for any pair of nodes in the graph there is a path of edges from one node to

the other, so that all the intermediate nodes are also in the graph. Connectivity between vertices can

be denoted with vi ∼ v j based on if there is a connecting edge or a path of edges in between them.connectivity
Indirect connection of nodes via intermediate nodes follows the argumentation that if va ∼ vb and
vb ∼ vc , then va ∼ vc . A graph is called complete or strongly connected if for any pair of nodes in the

graph there is a direct connection between them. A connected subgraph of G is called a connected
component. If there is no edge in G that connects a node in a connected component G′ to a node

not in G′ (i.e. an edge that could be added to G′ to extend the component), then G′ can be explicitly

called amaximally connected component. When one refers to the connected components of a graph,

it is usually implied that these are maximally connected, though. An induced subgraph of G that is

complete can be furthermore called a clique.

76 Dissertation J.-O. F. Kapp-Joswig

7. Graph theory

Figure 7.2 Examples of undirected, unweighted graphs
a) A graph G comprising ten nodes numbered successively from 0 to 9 and connected by several edges. Its largest

clique is formed by nodes 0, 1, 2, and 5. b) An induced subgraph of G. c) A subgraph of G that is not connected and

contains the two maximally connected components {0, 1, 2, 5} and {4, 6}. Note that the edges connecting nodes 1, 2,

and 5 have been dropped so that the respective component becomes a tree without circular connections.

Depending on the overall connectivity in a graph, a few typical names are used to describe graphs

of a certain kind. A graph is for example called a tree if there are no circular connections, in other

words, if the graph is acyclic. trees and
forests

Formally, if there is a an edge (va , vb) and an edge (vb , vc), there must

not be an edge (va , vc). Another requirement for trees is that they need to be connected. A graph of

more than one tree can be called a forest.
For directed graphs, additional categorisations can be made with regard to in- and out-degree of

the graph nodes. Each node may for instance be only allowed to have at most one incoming edge.¹

If the number of outgoing edges, on the other hand, is limited to say two, four, or eight, a tree may

qualify as a binary tree, quadtree, or octree.
An undirected tree can be converted into an implicitly directed tree by selecting one of its nodes as

the root. The root is the starting point of the tree from which all other nodes are literally grown. In

originally directed trees, there is an obvious choice for the root if the maximum in-degree of nodes is

limited to 1. hierarchiesThere is a parent-child relationship between the nodes, which makes a tree in general a

hierarchical structure. The root of a tree can be found by following the present edges up to to the last

parent. By the common definition, the root node has no incoming edges. It is, however, mostly for

practical reasons also possible to set the root node formally as its own parent. Tree nodes that have no

children can be referred to as leafs.
Any connected subgraph of a tree may be called a branch and does also qualify as a tree. Most

importantly, branches of a tree can be recursively defined by setting any child node in the tree as the

root of a new subtree. Sometimes, this kind of branch selection is figuratively described as cutting of a

branch from the trunk of the tree. Figure 7.3 illustrates a typical tree structure.

Figure 7.3 Example of a directed tree Graph of ten nodes

with tree like connections and a maximum in-degree of 1.

Node 0 (highlighted in red) is the ultimate root of the tree

with node 1 and 2 as its two immediate children. Nodes 5, 8,

and 9 (highlighted in orange) are an example of a possible

branch in which 8 and 9 are leaf nodes.

¹There exist multiple naming conventions: if a maximum in-degree of 1 is a basic requirement for a tree in the first

place, a tree with a higher maximum in-degree can be called a polytree. Otherwise, a tree that additionally fulfils the

requirement can be called an arborescence. A graph of more than one arborescence may be called a branching.

Dissertation J.-O. F. Kapp-Joswig 77

Connected component search

7.1 Connected component search

A standard operational task in the context of graphs, is the identification of connected

components. Certain data clustering analyses (see chapter 14) for example can be formulated as a

search for such connected components.graph traversal Fundamentally, connected components can be explored

one at a time by traversing the nodes in a graph along the present edges, beginning with a given

root node. Graph traversal in turn can be realised by several classic algorithms. One of these is

called breadth-first-search (BFS): starting with a given root node, all the nodes of the same connected

component will be traversed in a specific order, where ‘breadth-first’ refers to an exploration of nodes

in shells or levels. Nodes with the same number of connections between themselves and the root

node will be visited before nodes with a larger number of connections separating them from the root.

This is in contrast to, say, a depth-first-search (DFS) traversal in which nodes with a larger number of

connections to the root tend to be visited first.[253]

DFS is a recursive algorithm, whereas BFS is co-recursive. While DFS analytically breaks down the

traversal of a graph into smaller and smaller pieces until it reaches a base case, BFS starts at the base

case and synthetically constructs the whole traversal. Both can be also implemented iteratively.

Let’s consider this taking the simple example tree in figure 7.3, referring to the tree as T . For a

co-recursive BFS, one proceeds as follows:BFS
co-recursive

we pick a root node (also called source node) and add

all nodes on the other end of its outgoing edges to a list of nodes that will be visited next. Then we

process all these nodes and update the list of nodes explored on the next level with the nodes they are

connected to. A working code example making use of a graph structure provided by the third party

Python library networkx could look like this:

def bfs_corecursive(graph, root):
"""Co-recursive BFS traversal passing on a parent node list"""
def _inner_bfs(graph, parent_list):

new_parent_list = []
for parent in parent_list:
yield parent
for a, b in graph.out_edges(parent):
new_parent_list.append(b)

if new_parent_list:
yield from _inner_bfs(graph, new_parent_list)

parent_list = [root]
yield from _inner_bfs(graph, parent_list)

Calling this function with 0 as the root node in T , yields the tree nodes in the order [0, 1, 2, 3,
4, 5, 6, 7, 8, 9]. Starting with 0 as the first and only parent node on the first level, 1 and 2 will

be the processed parents on the next level, and 3, 4, 5, 6, and 7 on the third level. The base case

(yielding a parent node and adding its children to the next level parent list) will be repeated until

there are no more child nodes on the next level. The co-recursive character of this is emphasized by

the implementation of the search as a generator function. In contrast to normal recursion, the search

is done ‘bottom up’ and we can lazily evaluate the currently processed parents while we go without

having explored the full tree yet.²

An iterative implementation, typically uses a FIFO (first-in-first-out) queue as the fundamental

data structure instead of the parent list that is passed on to further evaluation in the co-recursive

example.BFS iterative We repeatedly add parent nodes that should be processed to the queue and take nodes off

of it as long as it is not empty.

²Note, however, that lazy evaluation is also possible for the recursive DFS discussed later.

78 Dissertation J.-O. F. Kapp-Joswig

Connected component search

def bfs_iterative(graph, root):
"""Iterative BFS using a queue"""
q = deque()
q.append(root)
while q:
root = q.popleft()
yield root
for a, b in graph.out_edges(root):

q.append(b)

The result will be a traversal of T in the exact same order as before. I personally prefer the iterative

solution as the one that is arguably easier to understand.

Note that due to the consideration of only outgoing edges and the fact that each node in the tree can

only have one parent, we did not need to check during the traversal whether we visit the same node

twice. In general, however, one needs to keep an indicator structure to check track visited
nodes

for this if the considered

graph is not directed or if a node can have more than one parent. Typically, such an indicator can be a

boolean array of length n for a graph of n nodes but can also be interpreted as a list (or set) of already

‘visited’, ‘discovered’ or still ‘considered’ nodes.

Furthermore, it is possible to modify the graph traversal such that explored nodes (or respectively

the connections they are reached through) are evaluated according to some criterion before the

traversal is continued. conditional
traversal

Basically, this results in a conditional processing of further nodes so that

effectively not the whole tree might be explored but only a certain sub-graph. For the implementation

of the CommonNN clustering procedure (see section 15.2), this will be exploited. A modification of

the iterative BFS above, using an indicator structure as well as conditional proceeding is shown below.

def bfs_conditional(graph, root, condition):
"""Iterative BFS (modified)"""
q = deque()
visited = [0] * len(graph)
q.append(root)
visited[0] = 1
while q:

root = q.popleft()
yield root
for a, b in graph.out_edges(root):
if visited[b]: continue
if not condition(a, b): continue
q.append(b)
visited[b] = 1

Calling this with an admittedly silly condition function as list(bfs_conditional(T, 0, lambda
x, y: (x + y) < 10)) will result in the reduced output [0, 1, 2, 3, 4, 5, 6, 7].

A recursive DFS can be build around the base case of yielding a graph node after a DFS traversal

of all its child nodes: DFS recursive

def dfs_recursive(graph, root):
"""Recursive DFS"""
for a, b in graph.out_edges(root):

yield from dfs_recursive(graph, b)
yield root

This results in an output of the nodes in T in the order of [3, 4, 1, 8, 9, 5, 6, 7, 2, 0]. The

deeper nodes are yielded before their parent nodes. Note that since this recursively continues on

Dissertation J.-O. F. Kapp-Joswig 79

Connected component search

smaller and smaller branches of the tree until a leaf node is reached, the full stack of function calls is

build ‘top down’ before it es executed in reverse. Before the root node is being output, the whole tree

has been explored.

DFS is, however, flexibel in terms of the order it yields the traversed nodes. The shown implementa-

tion can be referred to as post-order DFS.DFS order It is possible to yield parent nodes before the continued

traversal instead, i.e. in pre-order. The output of the function below results in [0, 1, 3, 4, 2, 5,
8, 9, 6, 7].

def dfs_recursive_pre(graph, root):
"""Recursive DFS (pre-order)"""
yield root
for a, b in graph.out_edges(root):

yield from dfs_recursive(graph, b)

Another possible variant (that makes only strict sense for binary trees) is to process the graph nodes

in in-order by yielding a parent after its left branch has been explored and before the traversal is

continued on the right branch (the other branches in our case).

def dfs_recursive_in(graph, root):
"""Recursive DFS (in-order)"""
children = [b for a, b in graph.out_edges(root)]
if children:

left, *other = children
yield from dfs_recursive_in(graph, left)
yield root
for b in other:
yield from dfs_recursive_in(graph, b)

else:
yield root

The obtained order of this will be [3, 1, 4, 0, 8, 5, 9, 2, 6, 7] for T . Other processing

orders are conceivable.

An iterative DFS implementation uses a stack, i.e. a LIFO (last-in-first-out) queue, much like the

BFS used a FIFO queue. This led to the very common simplification that a DFS is just a BFS with

a stack instead of a queue. Note that the code below yields the nodes in T as [0, 2, 7, 6, 5, 9,
8, 1, 4, 3], which means it prioritises the rightmost branches but is otherwise identical to the

recursive implementation. If the order of branch processing matters, nodes added to the stack need to

be sorted accordingly.

def dfs_iterative(graph, root):
"""Iterative DFS (pre-order)"""
stack = []
stack.append(root)
while stack:

root = stack.pop()
yield root
for a, b in graph.out_edges(root):
stack.append(b)

The shown traversal algorithms essentially explore the connected graph component of which the

root node is a part of. When they should be used to find all the connected components in a graph,connected
components the exploration can be done successively. After one component has been fully discovered, a new root

node can be picked for the exploration of the next component if there are still nodes in the graph that

have not yet been visited.

80 Dissertation J.-O. F. Kapp-Joswig

Minimum spanning trees

7.2 Minimum spanning trees

A spanning tree of a connected graph G(V , E) is a tree that connects all vertices V in the

graph with nE = nV − 1 edges, i.e. by using only a minimally required subset of E. As stated in the

introductory section of chapter 7, a tree is by definition not allowed to contain circular connections.

If G is disconnected, which means it contains disjoint subsets in V , there exist separate spanning

trees for each of these subsets (connected components) and the set of trees can be called a minimum

spanning forest.

A spanning tree is called a minimum spanning tree (MST), if the total edge weight of the edges in

the tree is as small as possible. There may be more than one possible spanning tree per connected

graph with the same total edge weight. If the edges of a graph are not weighted, all spanning trees

are in this sense equal and therefore MSTs. Figure 7.4 gives an example for a connected graph and

corresponding (minimum) spanning trees.

Figure 7.4 Minimum spanning tree example
a) Connected graph G with edges weighted by the distance between two vertices. b) A spanning tree of G with the at

least required number of edges to connect all vertices. c) AMST of G with the smallest possible total edge weight.

MSTs find widespread application to solve optimisation problems. For example, such a tree can

be the cheapest solution for a network of supply lines (water, electricity, internet etc.) between a

couple of villages, where the villages are represented as vertices in a graph and the weight of the

edges connecting them corresponds to a cost of building the respective supply line. For us, MSTs will

become important in the context of clustering. The construction of a MST for given input data and a

revision of the remaining edges in order of their weight is identical to what is referred to as single

linkage clustering (see section 14.1).

There are several classic algorithms to find a MST of a given graph,[254] one of which should be

shortly discussed in the following subsection.

7.2.1 Prim’s algorithm

When we construct a MST Tmst for a given graph G following Prim’s algorithm (alternatively

called Jarník’s algorithm), we proceed as follows: we start by selecting any vertex vi in G as the root of

the tree and add it to Tmst. Then we add all edges ei j connecting the selected vertex to other vertices

in G to a structure that keeps track of unchecked edges, i.e. edges we may want to follow to find the

next vertices that can be added to Tmst. An appropriate realisation of this structure would be a priority

queue that allows us to efficiently access the edge with the currently lowest weight. As long as the

queue of edges to check is not empty, we pop the lowest weight edge ei j off of the queue. If the vertex

v j that is reached by this edge is already in Tmst, the connection is redundant and we will continue by

taking the next edge in the queue. Otherwise, the vertex v j is added to Tmst and all edges e jk from this

Dissertation J.-O. F. Kapp-Joswig 81

Minimum spanning trees

vertex to others in G are added to the queue of edges. Translated to (pseudo)code using the concrete

example of Pythons heapq as a priority queue for unchecked edges, this could look like this:

Start with arbitrary vertex (node) in G
spanning_tree.add_node(0)
queue = []
for eij, weight in get_edges(0):

heapq.heappush(queue, (weight, eij))
while queue:

weight, (i, j) = heapq.heappop(queue)
if j in spanning_tree:

continue
spanning_tree.add_edge(i, j, weight=weight)
for weight, ejk in get_edges(j):

heapq.heappush(queue, (weight, ejk))

Prim’s algorithm is called greedy because the tree is build by a sequence of locally optimal decisions as

we always add the next vertex along the lowestweight edge—the currently cheapest or best connection—

to the tree. Greedy algorithms are not in general guaranteed to find globally optimal solutions but

Prim’s algorithm does indeed always find aminimum spanning tree, whichmay not be unique, though.

In the presented way, the algorithm finds a tree for the respective connected component, which the

starting vertex is a member of. If G is disjoint, there are still vertices in G that are not in Tmst after

the algorithm is finished and the procedure can be repeated with one of the remaining vertices as

new root of another tree. There are different variations of Prim’s algorithm, including an eager and a
lazy.[254]

82 Dissertation J.-O. F. Kapp-Joswig

Part III.

Phallo- and amatoxins

{ 8 }
Fungal toxins
The death capmushroom and its poisonous peptides

P
halloidin is one of seven closely related toxic heptapeptides, the phallotoxins, found in the death

cap mushroom amanita phalloides.[255] Discovered and isolated in 1937,[256] it is also one of

the first known bicyclic peptides.[257] overviewBesides phallotoxins, amanitamushrooms contain an array of

other toxic compounds among which are the very similar cyclic virotoxins and the bicyclic amatoxins

composed of eight amino acids.[258]

The main clinical danger posed by these mushrooms when eaten is attributed to the amatoxins

that are neither decomposed by the acidic environment and the proteases of the human stomach

nor metabolised otherwise.[259] Their toxicological mechanism is rather complex and not yet fully

understood in detail, which contributes to the fact that a viable antidote is still missing despite a

number of therapeutic approaches.[260] toxicityIt is, however, a central mechanistic element that amanitins

are potent selective inhibitors of RNA polymerases, effectively preventing protein synthesis in affected

cell. This happens predominantly in the liver.[261, 262]

Virotoxins and phallotoxins, on the other hand, are orally non-toxic but critical when inserted into

the blood stream. They bind to filamentous F-actin of the cytoskeleton in hepatocytes and prevent the

depolymerisation into monomeric G-actin, thereby disrupting the actin equilibrium and destroying

the respective liver cells.[258] This is illustrated in figure 8.1 that shows phalloidin binding to F-actin

bridging between G-actin monomers.

Figure 8.1 Phalloidin binding to F-actin
The phalloidin binding pocket is mainly located in between two actin monomers (white and purple protein backbone)

and phalloidin (stick representation with green carbon atoms) interacts with several hydrophobic and charged

residues on both of them (stick representation with black carbon atoms). Interestingly, phalloidin binding does not

induce any actin conformational change.[263]

Because of its binding selectivity, phalloidin is used in fluorescently labelled form to identify F-actin

in microscopy experiments.[264] F-actinThis mainly serves as a way to highlight the cytoskeleton of the

studied cells. In this context, its small size is an advantage over much larger antibodies often used for

this kind of protein labelling. It allows for dense labelling, i.e. potentially higher resolution images,

and less drastic structural and mechanistic perturbations to the marked target.[263]

Dissertation J.-O. F. Kapp-Joswig 85

8. Fungal toxins

Optimised protocols exist to extract cyclopeptides from amanitamushrooms.[265] Besides for the

above mentioned practical application of phalloidin, these are for example exploited for toxicological

studies like investigations of the extraordinary cyclopeptide tolerance of certain fly species.[265]

Nonetheless, a robust synthetic route towards phalloidin and related compounds is very desirable, for

one thing because these mushrooms can apparently not be cultivated.[258] Beyond that, synthetic

access to these compounds is a key requirement for their systematic study under structural variation.

Peptides are in general becoming more and more interesting from a therapeutic viewpoint. With

insulin being only the earliest and best known example, a broad array of peptide drugs has been

approved worldwide (more than 30 since the year 2000), with various indications ranging from severe

chronic pain to the treatment of osteoporosis.[266] Unlike small organic drug molecules, peptides

are supposed to be well able to inhibit protein-protein interactions, among other things due to their

larger size and conformational flexibility.[267]

In particular, cyclic peptides, like phalloidin, are in the focus because they are usually structurally

well defined, balancing flexibility with potentially higher implied bioactivity.[268] Furthermore, they

do not possess charged terminiwithout the need for caps and often have promising transport properties,

at least in comparison to their linear counterparts. The details, however, of which factors are decisive

in this are still not very well understood. Ongoing research effort is for example targeted towards how

structural modifications of these compounds affect membrane permeabilities.[269, 270] In general

terms, an attention drawing matter of investigation are their structure-reactivity relationships.[271]

Studies in the group related the membrane diffusion abilities of cyclosporines to their conformational

adaptability in both polar and hydrophobic media.[272–274]

There are multiple examples for cyclic (especially bi- or tricyclic and stapled) peptide compounds

that entered the market as approved drugs or are in clinical tries.[61, 268] Amanitin specifically might

in conjugated form be used in oncology to target cancer cells when its toxicity for other host cells is

oppressed.[260]

86 Dissertation J.-O. F. Kapp-Joswig

{ 9 }
The phalloidin project
Rationalising pathways in natural product synthesis

S
everal synthetic routes have been proposed for the preparation of phalloidin 1 (structural formula

in figure 9.1) and its derivates. This endeavour is challenging for multiple reasons. For one

thing, the compound features three non-canonical amino acids among its seven building blocks: synthetic
challengesD-threonine, cis-(4S)-4-hydroxyproline (Hyp) and (4R)-4,5-dihydroxyleucine (Loh). While the

first two are readily available, enantioselective access to the latter leucine derivative is non-trivial.

Furthermore, the bicyclic arrangement of phalloidin is due to an unusual tryptathionin bridge linking

residue 3Cys and 6Trp. During the synthesis, two ring closures have to be achieved: typically one

macrolactamisation for the base peptide and a thioether coupling for the bridge formation. Eventually,

the success of the synthesis critically depends on the order in which these steps are executed and on

the position where the lactamisation takes place.

Figure 9.1 Structural formula of phalloidinThe base pep-

tide ring consists of the tetrapeptide turn I (3Cys, 4Hyp, 5Ala,

6Trp) and the pentapeptide turn II (6Trp, 7Loh, 1Ala, 2D-

Thr, 3Cys). For natural phalloidin, the tryptathionin bridge

is located ‘above’ the ring plane (here in the foreground). The

major retrosynthetic approaches are highlighted with col-

oured cuts and will be discussed in the context of figure 9.3.

As a prominent synthetic byproduct to the naturally occurring phalloidin 1, a kinetically hindered

conformer—an atropoisomer 1’—can be observed. atropoisomersIn this isomer, the stereochemistry of the com-

pound remains exactly the same but the tryptathionin bridge is located ‘below’ the ring plane (in the

background in terms of figure 9.1). Figure 9.2 shows example structures for both the isomers alongside

a simplified cartoon representation.

1 1’

⇌×

Figure 9.2 Structure of phalloidin atropoisomers Phal-
loidin 1 in a natural conformation as found in the crys-

tal structure CCDC-147 213 of 7Ala-phalloidin
[255]

(bridge

‘above’ the ring) and in an atropoisomeric conformation 1’
(bridge ‘below’ the ring). The two are not in equilibrium. The

atropoisomer 1’ was generated from the natural structure by

artificially forcing the bridge through the ring.

We tackled the question, research
question

how the formation of atropoisomers can be understood based on different

synthetic approaches. In this course, it was also assessed whether the isomers are indeed not in

conformational exchange with each other, and whether the modelled atropoisomeric structure 1’

Dissertation J.-O. F. Kapp-Joswig 87

9. The phalloidin project

indeed matches the synthetic byproduct previously recognised as the relevant atropoisomer.[255, 275]

We published our study in G. Yao, J.-O. Joswig, B. G. Keller, R. D. Süssmuth, Chem. Eur. J. 2019, 25,
8030–8034 under the title ‘Total Synthesis of the Death Cap Toxin Phalloidin: Atropoisomer Selectivity
Explained by Molecular-Dynamics Simulations’.study result The full article including supporting information

can be found in the Publications section of the appendix alongside an author contribution statement.

Here, we used classical MD simulations to simulate phalloidin and its synthetic pre-cursors to assess

the respective conformational ensembles and to make predictions about which synthetic route would

lead predominantly to the desired natural product. The theoretical results assisted in the design and

rationalisation of a laboratory synthesis that was carried out in the Süssmuth group¹ at TU Berlin in

a continued cooperation. This synthesis is the first complete total synthesis of naturally occurring

phalloidin including the problematic amino acid 7Loh.

A 2 Ð→ 1 + 1’

B/B’ 3a or 3b Ð→ 1

C 4 Ð→ 1

Figure 9.3 Reported synthetic approaches
towards phalloidin The last step in the pre-

paration of phalloidin can be A a ring clos-

ure between 5Ala and 6Trp (turn II formed

first),[255, 275] B/B’ a ring closure between

2Thr and 3Cys or between 6Trp and 7Loh

(turn I formed first),[276] or C the bridge form-

ation.[277]

Figure 9.3 summarizes the synthetic approaches reported in the literature and puts the new pathway

into context. A recent review of phallo- and amatoxin syntheses can be also found in [257]. The first

reported one by Paolillo et al. prepared 7Ala-phalloidin in 8 steps with a low overall yield of 1.3 %.

The authors follow a linear strategy to assemble a heptapeptide that is then cyclised in a tryptathionin

bridge formation to give precursor 2 (pathway A).[255]synthetic
pathways

The approach is based on the early work of

Wieland et al. on phallotoxins.[278] Atropoisomerism for phalloidin is mentioned but there is no

report on synthesis byproducts. In another article published at the same time, however, the authors

discuss atropoisomers for (2L-Thr,7Ala)-phalloidin, which was synthesised among a series of other

derivatives in the same way.[279] Not much later, Guy et al. published an alternative solid-phase

synthesis via precursor 2 (pathway A) that leads in 18 steps to 7Ala-phalloidin with the same overall

yield of 1.3 %. This time, two atropoisomers are isolated in a ratio of 1:2.5 with 3.2 % overall yield

for the undesired isomer.[275] Recently, a similar solid-phase synthesis over a turn II fragment but

with the final cyclisation between 4Hyp and 5Ala was used to produce a fluorescent 7Leu-phalloidin

conjugate with reported yields of 2-3 %.[280]

A promising synthetic approach that differs from these turn II centred ones, was proposed by

Lokey et al. with a solid-phase synthesis in which the base peptide cyclisation is executed before the

bridge formation via an intermediate 4 (pathway C). It gives 7Glu-phalloidin in 50% overall yield in

19 steps.[277]

We, however, concentrated on yet another strategy taking the route via turn I fragments 3a or

3b (pathway B/B’). By MD simulations of reduced phalloidin precursor models representing turn I
(residues 3, 4, 5, and 6) or turn II (residues 6, 7, 1, 2, and 3) species, it could be shown that turn I
fragments have a higher predisposition to form natural phalloidin in ring closure reactions. In the

modelled turn I system, the tryptathionin bridge was—judging by the dihedral angle between the

bridge and the fragmental ring plane—consistently found in an orientation resembling the situation

in the natural product. In the considered turn II system on the other hand, the bridge orientation

alternated between both ring sites. Whether the bridge is in an orientation above or below the ring

plane in themoment when the second ring closure takes place, presumably decides over which product

¹R. Süssmuth, Biological Chemistry, Technische Universität Berlin

88 Dissertation J.-O. F. Kapp-Joswig

https://www.biochemie.tu-berlin.de/

9. The phalloidin project

is formed. Hence, the distribution of bridge orientations in a precursor fragment should correlate

with the observed product ratio. And indeed the experimental result reported by Guy et al. is in
good agreement with the theoretical expectation (compare figure 2 in the main article). Similarly,

as the simulation analysis suggests, the obtained results from phalloidin syntheses via precursor 3a
(called the [4+3] strategy in the main article) or 3b (called the linear strategy) gave natural phalloidin

exclusively in improved overall yields of 12 and 17 % respectively.[276]

As a minor addition to the analysis of phalloidin precursors, we subjected representative snapshots

from simulations of the natural end-product and its atropoisomer to the prediction of CD spectra.

While the structure of the natural conformer is well known, that of the atropoisomer has not been fully

determined yet and is only presumed based on computational models.[275] CD spectraCD spectra, however,

have been measured for both the atropoisomers of two phalloidin derivatives. They show prominent

absorptions around 250 nm in positive direction for the natural orientation and in negative direction

for the other.[275, 279] For canonic phalloidin, only the natural form has been measured.[276] The

agreement of the predicted spectra with the expectation varied greatly over the tested functionals and

setups. Considering the small number of selected input structures and the suboptimal inclusion of

implicit methanol solvation, the best matching result was still satisfactory and gives reason to believe

that the produced and simulated atropoisomeric structure is correct (see figure 3 in the main article).

A major source of complexity is in particular posed by the fact that the tryptathionin bridge can adopt

two different arrangements even in the natural atropoisomer. The bridge can either rest above turn I as
in the crystal structure (see figure S12 and S13 in the SI) or flip over to turn II, potentially affecting the

helicity of the compound. Both structures are in moderately fast exchange and the helicity detected in

the predicted spectra tends to be of opposite sign for them.

The approach used in our study is apparently (and surprisingly) quite unique. We simulated

a natural product synthesis precursor with classical MD to estimate its eligibility to form a specific

product based on the distribution of conformations it can be found in. We cannot cite any literature

where something similar has been explicitly attempted to support a preparative organic synthesis. outlook
The study of product formation in terms of reaction pathways, rates, and transition states, usually calls

for more complex theoretical descriptions like reactive or ab-initioMD.[281, 282] Such means are

still prohibitively expensive in many cases to enter daily laboratory practice. Among the fundamental

techniques of organic synthesis, however, rough hypothetical assessments of (pre-)transition states

based on which conformational arrangement in the starting material is the most likely one have long

been the excepted standard. Consider for example the Zimmerman-Traxler model for stereoselective

aldolations in which product formation is purely rationalised by potential steric clashes between

the reactants in their possible relative orientation.[283] Using classic MD to hypothesise reacting

conformations on a basic, inexpensive level seems to be an obvious choice.

The present case, the macrolactamisation of a peptide, is very well suited for this type of ana-

lysis. Which cyclisation product is formed, apparently depends strongly on the conformational

pre-organisation of the starting compound. If different precursor conformations lead to different

products because the ring is closed from different sites or angles, the observed product ratio should

be strongly influenced by the relative population of these conformations. An implied assumption of

this, is that the reaction rates of the different assessed precursor conformations are approximately

the same, which should be the case for this type of peptide cyclisation in general. It should not be

forgotten, however, that this may not always hold. It is of course also required that the investigated

system can be described by MD with sufficient accuracy. This is usually given for peptide systems,

even when non-standard amino acids demand a force field parametrisation like in our case. Care

needs to be taken in the design of the simulated model so that it most closely resembles the actually

reacting species without being more complex than necessary. It needs to be decided on a case-by-case

Dissertation J.-O. F. Kapp-Joswig 89

9. The phalloidin project

basis if solvent, other reactants, or peripheral parts of a compound like protecting groups should be

included into the computation.

Within the boundaries of these limitations, we would like to see the use of MD increase in the

context of the planning and understanding of organic synthesis. Maybe in this way, about 20 years of

effort made to synthesise phalloidin via the suboptimal turn II pathway could have been replaced

with the better route via turn I fragments earlier. Recently, a similar approach was used in the group

to assess linear precursor fragments of α-amanitin with respect to their reactive predisposition in

tryptathionin bridge formations.[284]

90 Dissertation J.-O. F. Kapp-Joswig

Part IV.

C-type lectin receptors

{ 10 }
The human immune system
Dendritic cells and the pattern recognition receptor langerin

I
n the human immune system, dendritic cells (DCs) are an essential part and the discovery of

their significance was rewarded with the Nobel prize in Physiology or Medicine in 2011.[285,

286] Together with macrophages they are among cells in the first line of defence against invading

pathogens like viruses, bacteria, fungi, and other potentially harmful microorganisms. dendritic cellsThey are

found in different tissues such as mucosae and skin—directly at sites where the danger of foreign body

intrusion is greatest—and their main purpose is to capture all kinds of pathogenic threats. While

they are themselves counted among the evolutionary conserved innate immune response that reacts

towards intruders with a rather general and non-specific program, they are crucial for the initiation

of not only innate but also adaptive immunity (figure 10.1 shows a very simplified illustration). One

of their major characteristics in this regard is that they can act as efficient, professional antigen

presenting cells. When a pathogen is seized, internalised by a DC, and subsequently degraded, its

antigenic building blocks can be loaded onto MHC molecules displayed on the cell surface to be

forwarded to T cells. This process requires the cell to mature, in which course pathogen uptake is

downregulated, and to migrate for example to the lymph nodes. Activated T cells trigger specific

immune responses, tailored towards a particular kind of pathogenic menace. They can for example

either travel to locations in the body where an infection took place or remain in the lymphoid organs

to further activate B cells. Because of their central character, DCs are a popular target for therapeutic

studies and may for example be exploited in vaccination strategies.[287] For a general introduction to

the basic mechanisms of the human immune system see [288].

For the detection of pathogens, dendritic (and other) cells depend on PRRs that distinguish between

different kinds of hazards via conserved pathogen-associated molecular patterns. pattern
recognition
receptors

The composition

of expressed receptors can vary strongly among cell types and is an important characteristic, so that

individual receptors can be used as cell markers. A prominent class of these receptors are C-type

lectin receptors (CLRs), which recognise a variety of carbohydrate ligands on the surfaces of their

targets.[289, 290] In our studies, we focused in particular on one representative receptor, langerin

(CD207, also CLEC4K), which is primarily found on Langerhans cells (LCs), a type of cell that has

been encountered as early as 1868 by Paul Langerhans as the first known DC in human skin, although

not correctly identified as such at the time.[291] langerin &
Langerhans

cells

LCs play a complex role in the immune system,

exhibiting classic macrophage as well as DC phenotypical behaviour.[292] They share a common

origin and cell precursors with macrophages and the ability to proliferate, but their acting as migrating

antigen presenting cells is typical for DCs. In a rare disease called LC histiocytosis, tumors are caused

by uncontrolled excess proliferation of these cells.[293]

The CLR langerin can be classified as a group II member of the multifaceted C-type lectin-like

domain (CTLD) superfamily, which contains type II transmembrane proteins that bind their glycan

ligands in a calcium dependent fashion.[294, 295] The same group comprises the subgroups of

asialoglycoprotein receptors (ASGR, MGL), DC receptors in the DC-SIGN group (including CD23

Dissertation J.-O. F. Kapp-Joswig 93

10. The human immune system

and LSECtin), macrophage receptors (e.g. MCL,Mincle, dectin-2), and scavenger receptors. Although,

these receptors are structurally very similar because they posses a CTLD with a common fold (shown

later for langerin in figure 10.3)Group II
C-type lectin

receptors

that acts as a CRD, they are functionally heterogeneous and not

all of them are well understood. The fold of the CTLD allows for enormous sequential variation

without giving up the basic structure.[296] Structural variation among CLRs is mainly observed in

loop regions associated with calcium(II) binding sites.[297]

Figure 10.1 Dendritic cells in the human immune system
When pathogens invade the human body, they may among other things be intercepted by macrophages, which try

to eliminate them through phagocytosis followed by lysosomal degradation. Similarly, they may be captured by

receptors on DCs, which can trigger a variety of cell and receptor specific processes. DCs moderate between the

innate and adaptive immune system for example by presenting antigens from degraded pathogens to T cells, which in

turn may for one thing activate B cells to produce specialised antibodies. Note that the shown PRR does not represent

a specific receptor but drafts a general architecture that may cover domains for extracellular recognition, membrane

embedding, and intra-cellular signalling. Icon components by Servier Medical Art.

Figure 10.2 shows that langerin as a system, whichwas discovered in 1999,[298, 299] is still a hot topic

in the literature.langerin
literature

Since the start of this thesis in 2018, over 400 new publications have been recognised

by SciFindern under the search term langerin. The number of publications additionally linked to

the keyword or general concept of MD, however, is vanishingly small in comparison, indicating that

langerin is studied prevalently on a (cell) biological rather than computational atomistic level.

The count of langerin associated publications rose up in 2020 after the numbers were steadily

declining since 2015. This could be perhaps connected to the worldwide COVID-19 pandemic and an

increased general interest in pathogen binding receptors. A few articles even directly link langerin to

an infection with SARS-CoV-2.SARS-CoV-2 Recently, higher blood levels of langerin were causally associated with

an increased risk of hospitalisation and a need for respiratory support or death due to COVID-19.[300]

Langerin (as well as DC-SIGN) effectively binds SARS-CoV-2, but there is evidence that while LCs

do not get infected themselves they capture and transmit the virus to cells carrying ACE2,[301–303]

which is accepted to be the main host cell receptor for SARS-CoV-2 cell entry.[304]

Langerin is of broad interest in research also in the context of infections with HIV. The role of

LCs and langerin in this regard is discussed controversially. Investigations are complicated by the

fact that in vivo as well as authentic model studies are very difficult.[305]HIV-1 It has been found for

instance that langerin poses a restrictive barrier against HIV-1 and can effectively prevent the infection

of immature LCs and the transmission of the virus to T cells. Langerin binds HIV-1 gp120 due

94 Dissertation J.-O. F. Kapp-Joswig

https://smart.servier.com/
https://scifinder-n.cas.org/

10. The human immune system

to a specificity for mannose and internalises the virus in Birbeck granules,[306] a special form of

cytoplasmic organelles exclusive to LCs.[307] Mechanistically it is suggested that TRIM5α associated

with langerin acts as a restriction factor by inducing autophagic degradation of the endocytosed

receptor-virus complex, triggered by the virus binding event.[308] This mechanism is in contrast for

example not accessible to DC-SIGN, which is expressed on other types of DCs and was identified as

a source of HIV-1 dissemination. On the other hand, LCs were shown to be productively infected

with HIV-1 via the CD4 entry receptor and CCR5 co-receptor,[309] and that transmission to T cells is

indeed possible.[305, 310, 311] Both pathways, direct HIV fusion and capture by langerin that guides

the virus to its degradation, are likely competing. In a third alternative route, captured viruses may not

be completely degraded but actually protected in virus-containing compartments—literally turning

the cell into a trojan horse of preserving virus reservoirs for later infections.[310, 312] An additional

influencing factor for what happens if the virus encounters a LC may be the cell’s maturisation state,

which changes its physiology and its susceptibility to infections, as well as that immune responses of

cells can be different in inflamed tissues.[312] Furthermore, interactions of LCs with other DC types

may be important, i.e. LC-DC cross-talk, in which langerin plays a role as adhesion protein for cell

clustering.[313]. It has also been reported that there is a complex interplay between HIV and HSV

infection.[305] Moreover, the human complement system can be involved non-trivially as shown by

the observation that HIV-1 opsonisation can have the unintended effect of increasing the probability

of infection.[314] Finally, there may yet exist a completely unknown receptor as the missing link.[315]

Unfortunately, what is learned about langerin in the context of HIV may not always be taken

one-to-one to explain how langerin responses to other pathogens. For influenza-A for example it

was shown that langerin acts as an entry point promoting the dissemination of the virus but it is not

known why that is.[316]

Figure 10.2 Langerin publication query Publications

per year according to a SciFinder
n

query (in March 2022)

for the search term langerin with and without connec-

tion to MD as a concept or keyword. Discrepancies with

the search results presented in [317] may be due to im-

provements in the search engine—in particular, the result

presented here already includes entries for CD207 as an
alias to langerin.

The complexity posed by the co-evolution of protective strategies of the immune system

on one side and pathogenic counter-strategies that hijack these mechanisms on the other, makes it

extremely difficult to develop therapeutic approaches to support human immunity. Because of the key

importance of PRRs, it has become a main objective to design selective effectors that modulate the

binding and signalling capabilities of these receptors.[318] receptor
targeting

Although CLRs are reckoned to be difficult

subjects or even ‘undruggable’, significant progress has been made in this direction.[297] It is for

example possible to tailor ligands that either bind preferentially to langerin orDC-SIGNdespite the fact

that both have a wide array of native ligands in common, which could allow blockage of one receptor

while the other remains active.[319] Also, mannosylated antigen targeting to langerin before the

background of using this receptor for vaccination did lead to an increased uptake but not to improved

antigen presentation,[320] which could, however, be potentially improved using a different targeting

strategy.[321] Furthermore, a secondary previously identified binding site[322] has been targeted for

Dissertation J.-O. F. Kapp-Joswig 95

https://scifinder-n.cas.org/

10. The human immune system

DC-SIGN to increase binding to its native glycan ligands.[323] Similarly, thiazolopyrimidines have

been found to inhibit ligand binding in murine langerin by addressing a secondary binding site.[324]

The phenomenon that a remote section of the protein interacting with an effector can modulate

the protein’s activity is called allostery and CLRs are excellent examples where allosteric regulation

plays a major role.[325]allostery CTLDs are fine-tuned, yet robust networks through which information can

be transferred in various ways. Understanding the architecture of these networks at atomistic detail

may be crucial to learn how CLRs fulfil their biological functions and how they could be manipulated.

Progress in this direction was also the goal of our investigation of langerin, which will be addressed

separately in the next chapter 11. MD simulations are an excellent tool to study allosteric protein

regulation on the atomic level.[326]

Figure 10.3 Structural domain organisation in langerin
The receptor has a short cytoplasmic tail comprising a proline rich motive that is likely to undergo protein-protein

interactions,[299, 327] followed by a hydrophobic transmembrane region and a long extracellular α-helical neck

that is involved in coiled-coil trimerisation important for multivalent ligand binding.[328] The C-terminal CRD

exhibits the typical CTLD fold, comprising two extended β-sheets (β0,1,5 and β2,3,4, turquoise) flanked by α-helices

(purple, the structurally rather flexibel α3-helix in red). Calcium(II) in the canonic binding site (2) is drawn as sphere

(grey) while alternative binding sites (1, 3, 4) not present in langerin are made transparent. Also shown are conserved

cystein disulfide bridges (yellow).[294, 295, 329, 330]

Figure 10.3 illustrates the structure of langerin schematically. Its most prominent feature is the

C-terminal CRD that harbours a single calcium(II) binding site formed by mainly three acidic amino

acid residues, E285, E293, and D308, in the so called long loop (blue segment).CLR structure In the presence of

calcium, the protein binds carbohydrates through this site. Other calcium-binding sites are observed

in CLRs but not in langerin (indicated transparently). The CRD can be described as compact and

globular. In its center sits a highly conserved WIGL motif (residues 252 to 255) that serves as a

sequence identifier but was not attributed a dedicated function.

The selectivity of langerin binding towardsmannose but also fucose, glucose, andN-acetylglucosamine

is commonly attributed to the partially conserved EPN motif (E285, P286, N287).[329, 331, 332]carbohydrate
binding

Also

conserved is the WNDmotif (W308, N307, D308) associated with the binding site. Figure 10.4 shows

a typical binding mode of a mannose disaccharide to the primary binding site in langerin via the two

vicinal equatorial hydroxyl groups 3-OH and 4-OH.

96 Dissertation J.-O. F. Kapp-Joswig

10. The human immune system

Figure 10.4 Langerin mannose
binding Structure of the langerin

calcium(II) binding site in complex

with Manα1–2Man a) in licorice

representation andb) in surface rep-

resentation. Crystal structure PDB-

ID 3P5F.[332]

K299 and K313, which possess positively charged side chains, can interact with ligands in the peri-

phery and are decisive factors for the stability of binding complexes of langerin with 6-sulfogalactose

while galactose itself is not efficiently bound.[332, 333] Similar stability enhancements are observed for

sulfonated glucose,[319] and heparan sulfates where furthermore a preference for ligands with longer

chain length can be found.[334, 335] Interestingly, ligand affinity in langerin is species dependent

partly because K299 and K313 are for example missing in murine langerin.[336]

Dissertation J.-O. F. Kapp-Joswig 97

{ 11 }
The langerin project
Explaining pH-dependent calcium-binding

W
e embarked on our study of the CLR langerin motivated by a plain and simple observation: the

binding affinity of this receptor towards its co-factor calcium(II) is pH-dependent.[329, 337]

While the protein binds calcium ions rather well at neutral pH, the binding constant is significantly

weakened at moderately acidic pH values of about 6. As carbohydrate binding is in turn calcium

dependent, a decrease in calcium-binding affinity goes hand in hand with a loss of glycan ligand

binding capability.

At a first glance, this may not be very surprising. A pH dependency of calcium-binding has been

long known for othermembers of the CLR family, a classic example being ASGPR.[338] CLR calcium-
binding

This endocytic

receptor binds pathogenic targets on the surface of liver cells and releases them after clathrin-mediated

endocytosis to be recycled and returned to the outer cell membrane, leaving its cargo for lysosomal

degradation. In the extracellular milieu, where the receptor binding to pathogens occurs, we can

assume an above neutral pH (a physiological pH of 7.4) and plenty of calcium in solution.[339] After

internalisation, the pH is swiftly lowered in the early endosome to about 6.0 to 6.5.[340, 341] At the

same time, calcium ions are transported out of the compartment.[342]This triggers the dissociation of

protein-ligand complexes, opening the way for further processing stages. The pH-dependent calcium-

binding of ASGPR is thus a necessity to enable its biological function. A similar pH-dependency

is found for example in DC-SIGN.[343] The tight control of biological processes by cellular pH is

furthermore a general motif in nature.[344]

It seems reasonable to suppose that langerin acts in a comparable fashion and that the observed

pH dependency is a manifestation of its function as an endocytic receptor for which extracellular

binding and endosomal release are tightly controlled by its environment. recycling
langerin

Experiments with gold-

labelled antibody DCGM4 that is selectively bound by langerin, suggest in fact a recycling of the

receptor and an association of Birbeck granules—whose formation is induced by langerin—with the

endosomal recycling compartment.[307, 345] Those also propose that internalisation takes a classic

clathrin-mediated route and that Birbeck granules themselves are no endocytic vesicles. At least in the

context of HIV-1 internalisation, however, it is contradictingly supposed that entire Birbeck granules

including protein-virus complexes are destroyed by autophagosomes.[308] Receptor recycling in cells

is a very complex topic involving different forms of endocytotic processes, sorting mechanisms in

early endosomes, and multiple degradation and recycling pathways.[346] The exact fate of langerin

and its cargos after internalisation remains essentially unknown, especially considering that it may be

different for different kinds of ligands.[290] Nonetheless, understanding how langerin is influenced

by pH-changes is certainly a crucial piece of the overall puzzle.

On a closer look at the observation that langerin shows a pH-dependency in its calcium-binding,

this is actually quite astonishing. research
question

It was found that the pH-dependency is a sole property of the CRD

(see figure 10.3) and cannot be attributed to a change in the oligomerisation state.[329, 337] In fact,

however, the CRD alone shows not much potential to be effected by a higher proton concentration. A

Dissertation J.-O. F. Kapp-Joswig 99

11. The langerin project

protonation of the acidic residues in the calcium-binding site right away is rather unlikely due to the

low pKa values of the respective carboxyl groups in the calcium coordinating side chains. The only

amino acids that are sensitive to a change in pH in the relevant range are the two histidines H229 and

H294. Indeed, point mutation of H294 to alanine could show that this site constitutes a pH sensor

since the degree to which the calcium-binding affinity of the protein is reduced upon acidification is

significantly lower when this residue is missing. Additionally, mutation of H294 and K257 leads to

alterations in the calcium-binding as was illustrated by NMR chemical shift perturbations. This is in

contrast to other residues that influenced the calcium bound and unbound state when mutated but

did not change the perturbation pattern upon calcium binding.[337] Mechanistically, this gives rise to

the question, though, how H294 protonation could effect the calcium-binding site because there is a

non-negligible spatial gap between the two sites. There needs to be some sort of allosteric regulation

via which the protonation signal is transported to the remote calcium-binding site. The experiments—

counting in a MI analysis based on MD simulation data—revealed a complex involvement of a larger

portion of the protein network including K257 and the short loop region but the atomistic details

remained unclear.

We published our study of the CLR langerin and give an answer to this question in J.-O. Joswig,

J. Anders, H. Zhang, C. Rademacher, B. G. Keller, J. Biol. Chem. 2021, 296, 100718 under the titlestudy results ‘The
molecular basis for the pH-dependent calcium affinity of the pattern recognition receptor langerin’. The

full article including supporting information can be found in the Publications section of the appendix

alongside an author contribution statement. In there, we used classical MD simulations of langerin

in various protonation states to elucidate the pH-induced structural changes through which the

allostericmodulation of the calcium-binding affinity is realised in this protein. Laboratory experiments,

including point mutations and affinity measurements were carried out by the Rademacher group¹

in a continued cooperation. Figure 11.1 summarizes the key result: protonation of H294 facilitates

the formation of a new conformation in which K257—in the neutral state occasionally engaged in a

hydrogen bonded interaction with H294—bridges over to D308, effectively moving a positive charge

into close vicinity of the calcium-binding site.

Figure 11.1 Langerin H294 protonation: the key result
On the right side, a crystal structure of the langerin CRD is shown in the assumed neutral state (both H294 and H229

have neutral side chains). According to our findings, side chain protonation makes a new protein conformation

accessible that features a K257–D308 H-bond (left side).[347] This conformation is a hot candidate to explain how

H294 protonation affects the calcium binding site.

¹C. Rademacher, Molecular Drug Targeting, Universität Wien

100 Dissertation J.-O. F. Kapp-Joswig

https://medienportal.univie.ac.at/uniview/professuren/cv/artikel/univ-prof-drrernat-christoph-johannes-heinrich-rademacher/

11. The langerin project

The CRD of the CLR langerin hid its secrets rather well. We started by concentrating on

simulations of the calcium bound protein in a presumed neutral and histidine protonated state. For

the practical fine points of how the simulations were carried out see chapter 12. Ideally, we expected

to detect a rather global conformational transition of the protein in the protonated state that involves

H294 as well as the calcium-binding site. This means we hoped to find a structural change that

obviously translates the information of an environmental pH change into something that indirectly

(allosterically) affects how well the protein can bind calcium. A classic example for a protein regulated

functionally in such a fashion is nitrophorin 4 that releases nitric oxide when undergoing a pH-induced

transition from a closed to an open conformation.[348]

Soon we had to learn, though, that the investigation of quite a few structural features could not bring

convincing differences between the two langerin states to light (compare figure 2 in the paper[347]). neutral vs.
protonated
bound state

The protein is—independently of the protonation state—overall quite rigid, except for the segments

associated with the short-loop, the α3-helix, and a part of the long-loop. Secondary structure elements

that could be identified in the protein sequence are virtually unaffected by the modelled protonation.

Also, fluctuations and respectively deviations of individual atomic positions are not very informative

here. At the same time, gauging local features like backbone and side chain dihedral angles gave us

only an impression of isolated changes with respect to single protein residues but it was not possible

to establish a link to H294 and the calcium-binding site. In particular, we could not detect any

striking influence on the calcium-binding site itself. In short, there was no pH-induced large scale

conformational transition that could be rendered responsible for a change in the calcium-binding

affinity.

Figure 11.2 Convergence of the short-loop/long-loop distance
For simulations of calcium bound langerin in the a) neutral and b) histidine protonated state, histograms of the

observedM260–G290 Cα-distance are shown as themean over an increasing number of replicas. c) Final distributions

for both the states with 95% confidence interval on the mean (transparent area) obtained by bootstrapping (1000

samples).

A straightforward inspection of the system was hindered also by a slow convergence of the simu-

lation data. Figure 11.2 illustrates this taking the M260–G290 Cα-distance as an example, which we

used to get an impression of the short-loop movement with respect to the long-loop. loop distanceThis distance

distribution changed substantially with the progressive execution of additional simulation replicas.

In particular for the protonated state, about half of the simulation effort (∼10 µs) was necessary to

observe a set of conformations at intermediate loop distances as a noticeable population (indicated

by the arrow). As it turned out, especially these conformations are connected to the K257–D308

bonded structure that was eventually identified as potentially crucial for themodulation of the proteins

calcium-binding affinity. Similarly, loop orientations with shorter distances were for both protonation

states observed representatively only after a considerable amount of simulation time. While the

distributions over all replicas appear to be reasonably equilibrated for the acquired data set on average,

Dissertation J.-O. F. Kapp-Joswig 101

11. The langerin project

the broad confidence intervals indicate that separate replicas sample only subsets of the ensemble and

that it can make a big difference for the analysis which replicas are taken into account.

From the differentiated short-loop/long-loop distance distributions we could continue to further

narrow our search for pH-triggered changes in langerin to the inter-loop region. While it was

suspected from the beginning that the short-loop would play a major role, it became now clear that

H294 protonation kind of causes a separation of closed and rather open loop orientations. Yet, at

this point it was not obvious that this entailed the population of an entirely new conformation that

becomes only accessible after protonation.allostery? On the contrary, it seemed that while both protonation

states cover the same conformational space, there is just a change taking place with regard to which

conformations are favoured. In other words, it looked like as if the protonation led to a population

shift—a redistribution of the conformational ensemble—in terms of a very subtle allosteric mechanism

that does not manifest itself in a distinct (large scale) conformational change covering the calcium-

binding site. Allostery in protein networks can show itself in many different ways.[349] This includes

the considered possibility of allosteric regulation in the absence of conformational changes,[350, 351]

although it can well be in these cases that ‘not observed’ does not actually mean ‘not existent’.[352]

We obtained a similar picture like that shown by the loop distance above by leveraging PCA (see

theory in section 5.3, compare figure 3 in the paper[347]). The first eigenvector of this analysis—a

collective coordinate along which the protein exhibits a motion with the largest observed amplitude—

coincides well with the distance between short- and long-loop.PCA A two dimensional projection of the

simulation data into the reduced space of the first two PCs reveals more detail, though, than the inter-

loop distance alone. As it was the case for the loop distance distributions, the PC projections needed

excessive sampling to be reasonable converged and to show the differences between the protonation

states as clear as in the final analysis. PCA has the beneficial trait that the two protonation states that

cover a very similar conformational range could be subjected to a joint analysis in which a set of

PCs was obtained that are likewise suitable to condense the information for both systems, i.e. it was

possible to represent the two states within the same projection for a direct comparison. Again, for the

protonated state we could notice a population emerging in the center of the distribution.

We went on by taking a closer look at the (projected) conformational states that experience a

change in their population upon protonation. For the separation of the conformations we used Com-

monNN clustering (see chapter 14) that was continuously developed further back-to-backPC clustering alongside

our langerin study and is particularly appropriate to extract clusters of conformations that are not

necessarily constrained to a specific shape or spatial layout but correspond to low energetic, highly

populated groups of molecular structures.

The most fruitful characterisation of the obtained states was achieved by collecting information

on hydrogen bond occupancies from the simulation data (compare figure 4 in the paper[347]). In

parallel, a hydrogen bond analysis for the complete ensembles of the neutral and the protonated state

exposed several interesting interactions that are perturbed upon histidine protonation.H-bond
analysis

Figure 10 in

the SI of our paper[347] shows a filtered summary of the full analysis in which we considered changes

in the relative observation frequency of interactions as well as pairwise Pearson correlations between

these interactions. The combination of the discovery of virtually two sets of correlated hydrogen

bonds in the short- and long-loop region with the fact that these could be strongly associated with

distinct conformational clusters in the PC projection of the protonated state, enabled us to draw a

detailed image of what happens to the protein upon protonation and to identify the key conformation

presented in the beginning. This key conformation is aptly described by the presence of two highly

correlated side chain/side chain hydrogen bonds: the already mentioned K257–D308 bridge, which is

barely populated in the neutral state, and H294–E261, which is not observed in the neutral state at all.

The set can be supported by a bridge of K257 to the E293 backbone. Consistent with the notation in

102 Dissertation J.-O. F. Kapp-Joswig

11. The langerin project

our paper, I will refer to this conformational state as the G conformation as it can be associated with

the green cluster in the PC projection. The other set of correlated interactions is competing with G
and comprises foremost N288–E261, N288–M260, G262–E261, and K257–E261 hydrogen bonds. In

the neutral state, this second set is present and correlated as well but could not be linked to a cluster

in the PC projection. In the protonated state, H294 can engage with the backbone of N291 in the

context of this set as well. It will be referred to as the O conformation related to the orange cluster in

the projection of the protonated state.

Figure 11.3 Competing H-bond patterns in protonated langerin
In the histidine protonated calcium bound state, two prominent, largely mutually exclusive sets of pairwise correlated

hydrogen bonds can be found among the conformational ensemble. The illustration here is an extended version of

figure 5 in our langerin paperwith the added complexity of weaker correlated interactions.[347] a)TheG conformation

that potentially explains a decrease in the calcium-binding affinity upon protonation is strongly characterised by

simultaneous formation of K257–D308 andH294–E261 bridges. Secondary contributions are K257–E293, D308–E285,

and A289–N287 related to the calcium-binding site. Remote correlation can be noticed with Q276–N273 (side chain)

in the α3-helix and interactions originating from protonated H229 close to the α1-helix: H229–E220, L230–E220,

and C223–A219. b)The other set of interactions, the O set, is centred around N288 as the major player: N288–E261,

N288–M260, G262–E261, and K257–E261 tightly couple short- and long-loop in a very close arrangement. Additional

factors are H294–N291, and A289-E293 and D308–E285 in the binding site. Among the more remote correlations are

interactions in the α3-helix and the sequence connecting this helix to the short-loop: W266-T270, F272–W264, and

Q276–N273 (backbone). Note that this combination of interactions implies a peculiar ‘kink’ of the α3-helix between

N273 and Q276 and occasionally a K274–E285 H-bond. Amino acid backbones are coloured in green, side chains in

red, hydrogen in white, and H-brides with dashed blue lines (all shown interactions involve N-H donors)

Interestingly, both sets G and O can be associated with an increased population of a D308–E285

interaction in the binding site as a shared feature. This bond is drastically more frequent in the

histidine protonated state. Furthermore, extended
H-bond
analysis

the two sets of dominating interactions are accompanied by

other weaker correlated interactions that are partly taking place in remote areas of the protein or can

be related to the calcium-binding site (see figure 11.3). There is for one thing A289 in the long loop

that can undergo an interaction with the side chain of E293, which can be connected to the O set, or

with the side chain of N287, which can in contrast be linked to the G set. A289–E293 and A289–N287

are highly anti-correlated. The absolute observation frequency of the two bonds does not change

upon protonation though. On the other hand, there is Q276 in the α3-helix, which can be found to

interact with the side chain of N273 in conjunction with the G set. In the O set, however, Q276 can

bridge over to the N273 backbone, which gives rise to an eye-catching distortion of the early segment

Dissertation J.-O. F. Kapp-Joswig 103

11. The langerin project

in the helix, marked as a kink in figure 11.3b. Both these Q276–N273 interactions are again highly

anti-correlated, while only the one involving the N273 backbone is more populated after histidine

protonation. Beyond this, the variation in the O set correlates significantly with a pair of H-bonds in

the sequence connecting the α3-helix and the short-loop, i.e. W266-T270 and F272–W264. It can

also enable a K274–E285 H-bond, which is very rare, though. There may be as well other structural

consequences that have not yet been considered separately as suggested by a rearrangement of the

β3β4-loop and the α2-helix in the background. Finally and somewhat surprisingly, the G set correlates

also with interactions where H229 is located like H229–E220, L230–E220, and C223-A219 that are in

reverse anti-correlated with interactions in theO set. H229–E220 and L230–E220 are highly correlated

themselves and very abundant in the histidine protonated state but close to absent in the neutral state.

In our continued analysis, we focused on themain characteristic of theG set because the K257–D308

H-bond did strike us as most important for the modulation of the calcium affinity and concentrated

on the short-loop/long-loop region. The extended view of the present perturbations to the protein

network shows, however, that potential implications for other areas should not be entirely forgotten.

It should also be mentioned that while our interest lies primarily on H294 as a proton sensor, which is

backed by wet-lab experimental results,[337] when this residue is protonated, H229 is almost certainly

protonated, too.H229 Consequently, we incorporated the H294 together with the H229 protonation in our

low-pH simulations and contingently observed effects are always a result of both these protonations.

An investigation of the influence of independent protonations at the two sites has so far not been

attempted. Experimental data on a possible H229 mutant and its calcium-binding are not available

either. H229 was rejected, however, as a significant factor based on the observation that around

its location only rather weak chemical shift perturbations were recorded upon calcium-binding

The rejection follows the argumentation that if H229 should have an effect on the calcium-binding,

calcium-binding should in turn have an effect on H229, which is apparently not the case with Y217

and S232 being the closest residues experiencing a stronger perturbation. Moreover, H229 did not

stand out in the respective MI analyses at least not with an obvious connection to the calcium-binding

site.[337] A short review of the analysis with our updated data can be found in section 11.1. From

our structural analysis of the simulation data, we recognised the H229 protonation only through

rather local effects as well, apart from the above presented long range correlation of hydrogen bonded

interactions.

Now, after the exploration of the K257–D308 comprising G conformation, we had two

tasks ahead of us to confirm that it is indeed relevant. First, we needed to assess if it really was a

representative conformational state with a sufficiently long live-time and not just a fluctuation within

a broader ensemble of structures. Second, we needed to show that it could really have the supposed

effect of lowering the calcium-binding affinity. The first objectiveMarkov model was relatively straightforwardly

addressed using a Markov model of the conformational dynamics in which a sufficiently metastable

macrostate could have been recovered that agrees well with the conformation in question (compare

figure 7 in the main article and figure 11 to 18 in the SI[347]).

The second part—proofing a potential decrease in calcium-binding affinity caused by the K257–

D308 interaction—turned out to be exceptionally tricky. A basic validation of the possibility that the

positively charged K257 side chain in the vicinity of the calcium-binding site creates an unfavourable

interaction with the calcium ion was done by inspecting the Coulomb contributions of the K257–

Ca2+ pair (compare figure 20 and 21 in the SI and figure 6 in the main body of our paper[347]).calcium affinity
This illustrates that indeed there is a significant repulsive interaction between K257 and the calcium

ion in the K257–D308 bridged state that is higher populated after histidine protonation. At the

same time, the analysis confirms that the protonated H294 side chain contributes negligibly to the

calcium repulsion. Rigorous approaches to calculate protein-ion binding free energies are, however,

104 Dissertation J.-O. F. Kapp-Joswig

11. The langerin project

conceptually complex, imply large computational costs, and significant progress in the field has been

only made quite recently.[122, 353, 354] Within the scope of our study, this was out of reach at the

time, and we were not willing to put in the necessary effort without having a first order assessment

of the potential relevance of the conformations we discovered. Chemical intuition tells us that the

K257–D308 hydrogen bonded interaction is very likely to effect the calcium-binding but we needed

a relatively cheap, well accessible technique to estimate roughly if this could be actually true. We

decided to use steered-MD simulations for exactly this purpose (see section 4.9 for theory), in which

the calcium ion is pulled out of the binding site and the force necessary to remove it completely is

recorded.

The measurement of calcium-release rupture forces for an array of langerin states (compare figure 8

in the paper[347]), confirmed that we are not on the wrong track with the conjecture that K257 is a big

factor for the modulation of the calcium affinity by bridging over to D308 in the histidine protonated

state. As the main message, the rupture forces are noticeably decreased when the pulling experiments

are started from the G conformation—featuring the K257–D308 H-bond—compared to simulations

of the neutral state that is virtually missing this interaction. steered-MDSecondary observations, speaking in

favour of the importance of K257–D308, are for one thing that the rupture forces in K257A mutants

are independent of the protonation and mutation state of H294. Further, for H294A in which K257 is

present but the K257–D308 interaction is only weakly populated, the rupture forces are comparable to

the neutral state. Further testing of the G conformation by for example mutating E261 to aspartate

is difficult because such mutations can have various other implications. On the one hand, E261D

has a negative effect on the stability of the G set and starting pulling simulations from a respective

analogue of this conformation showed that the decrease in rupture forces is largely compensated

by the mutation. On the other hand, E261D had no effect on wet-lab experimental measurements

of the calcium-binding affinity (compare figure 9 in our paper[347]), which could be owed to the

fact that E261 is also a stabilising factor in the O set—preventing K257 from an engagement with

D308—for which we have at this point no reason to suspect that it decreases the calcium-binding

affinity. Conventional simulations of E261D showed that the K257–D308 interaction is still favourable

in the histidine protonated state, in line with the observed binding affinities in praxis (compare figure

19 in the SI of our paper[347]).

It is a limitation of the steered-MD approach that while we aim on explaining a difference in the

calcium affinity between the neutral and the protonated langerin ensembles tested in laboratory

experiments, we essentially probe conformational sub-states in the computer experiments. steered-MD
limitations

On the

one hand, a comparison of the rupture forces for the neutral crystal structure with those for the

protonated G set taken from the computer model agrees well with the trend for the ‘real’ ensemble:

both show a reduction in calcium-binding capability upon protonation. But on the other hand, a

comparison with the forces for the E261D modified G set does not: in the computer experiment, E261

mutation diminishes the rupture force reduction, indicating that E261 is important for the modulation

of the calcium-binding affinity. In the laboratory experiment, however, E261D mutation had no effect

on the pH-sensitivity of the protein. A possible explanation is that the E261D ensemble comprises

conformational states that effect the calcium-binding affinity, different from the one subjected to the

pulling experiment. Unfortunately, a comprehensive probing of all conformational states in both the

neutral and the protonated ensemble becomes quickly intractable.

The assessment of the calcium affinity from classic MD simulations has another, potentially crucial

flaw. In standard force fields like the well established AMBER99SB variant that we used in our

simulations, metal ions including divalent calcium are treated only rudimentary. The calcium ion

is modelled as a simple point charge in connection with soft sphere Lennard-Jones parameters. calcium model
Apart from missing terms that could account for coordinative contributions with possible geometric

consequences, a major drawback of this model is that electrostatic interactions between the ion and

Dissertation J.-O. F. Kapp-Joswig 105

11. The langerin project

residues in the protein as well as with the surrounding solvent are probably overestimated.[118, 119]

Before this background, it is actually a bit surprising how well the simplistic steered-MD analysis does

in comparison with the laboratory experiments. We might get away with it here because we are only

evaluating rupture force differences and the error we make is made systematically in all individual

experiments. It can be suspected, though, that the behaviour of the system is in reality quite a bit

different to what we see in the simulation. In particular, the implications of the K257–D308 interaction

could be more substantial, considering that the D308–Ca2+ interaction is not accurately described and

could be actually much weaker. A fully satisfying model of the system using a higher level of theory

may call for very elaborate and costly QM/MM descriptions. As a compromise, polarisable force fields

represent an addition to the purely classical MD picture that could counter the problems of an inapt

calcium ion model and the present protein-ion interactions. First results of langerin simulations using

an AMOEBA force field can be found in section 11.2.

With the discovery of the K257–D308 interaction, its identification as part of a stable and

relevant protein conformation, and an assessment of how it affects calcium-binding, we have now a

neat atomistic description of how pH-induced changes can mechanistically control the calcium affinity

in langerin. Although the allosteric transition in this context is quite small and does not include

significant structural changes in the orthosteric binding site, it really is a clear switching mechanism.

Still there remain many open questions. To begin with, when H294 was identified as a pH-sensor,

it was already clear that mutation of this residue was only responsible for a partial decrease in the

pH-sensitivity of the calcium affinity.second
pH-sensor

Even without this sensor, langerin is still influenced by a change

in pH in this regard. If H229 is excluded as a potential second sensor, a direct protonation of the

calcium coordinating residues in the binding site comes back on the table. Although as mentioned

earlier, the low pKa values of these acidic residues normally prohibit a significant protonation in the

pH regime of about 6, we could show that a shared protonation of two adjacent side chains—especially

E285 and D308—in the binding site may be feasible (compare figure 11 in the paper[347]). Because of

the presumably intense competition between a binding site protonation and calcium-binding, it seems

likely that such a protonation would pre-dominantly occur in the absence of calcium. Furthermore,

via the K257–D308 interaction, a protonation of D308 may be a conceivable consequence. It is

thinkable that a binding site protonation is the dominating factor that eventually modulates the

calcium-binding affinity, rendering the H294 mediated mechanism that brings K257 close to the

binding site a supporting trigger to shuttle protons towards D308 and make the protonation there

more efficient. In our work, we chose the relatively cheap PROPKA 3.1[355, 356] method to be able

to estimate pKa-values for a very large number of different conformations. As our results show, the

computed values are strongly conformation dependent and broadly distributed, which confirms the

importance of basing this analysis on a diverse set of structural samples. It is possible to calculate

pKa-values with higher accuracy[357] but if the higher implied cost allows the consideration of only a

few structures, this can be a critical trade-off.

Another level of complexity is posed by the observation that the long-loop region harbouring the

calcium-binding site can unfold, which goes hand in handwith a loss of the calcium-binding capability.long-loop
unfolding In our classical simulations, this was never observed in the presence of calcium sitting in the binding

site and holding the long-loop tightly in place but happened frequently in simulations of the protein

when the calcium ion was removed (compare figure 10 in the paper[347]). Binding site protonations

can significantly accelerate this unfolding. The effect of histidine protonations was inconclusive,

though, since a protonation seemed to affect the unfolding pathways but did not accelerate the

unfolding overall. For the complete picture, pH controlled calcium-binding in langerin has to be

considered in the context of the unfolding, calcium-binding, and protonation states summarized in

figure 11.4.

106 Dissertation J.-O. F. Kapp-Joswig

11. The langerin project

In conclusion, our study of the CRD of the CLR langerin is the first investigation of this scale

with MD. A conformational transition upon histidine protonation has been identified, rendering

K257 as centrally important to transport the allosteric signal that the pH has changed in the protein

environment to the calcium-binding site. Further research will need to be put forward to confirm

the significance of this finding. A focus will need to be to overcome the limitations of the classic MD

description (see section 11.2 for first steps into this direction). This will be especially important in the

context of free energy estimates. Our presented approach will hopefully be inspirational for future

investigations also of similar proteins. The CLR family offers much room for this and will possibly

provide comparative insight into the behaviour of these systems (see also figure 32 in the SI of our

article[347]). It may also promote the general description and understanding of calcium-binding

proteins that fulfil various biological roles in nature.[358] As a quick outlook, the concept of mutual

information will be addressed as an example for further analysis of allosteric communication within

the CLR-CRD scaffold, in the next section.

Figure 11.4 Studied protonations and binding/unfolding equilibria in langerin
In a neutral environment (pH 7.4) given a sufficiently high calcium concentration, the presumably dominating

state is canonically folded calcium-bound langerin. This state is carbohydrate binding competent. Unfolding in

the presence of calcium is not favourable but this is alleviated in the absence of calcium. Though unfolding was

observed as being irreversible on the timescale of our simulations, we can make no statement about the actual

folding/unfolding equilibrium. Experimentally, unfolding has been linked to P286 cis/trans isomerisation, which is

not shown for the sake of simplicity.[337] In amildly acidic environment, a histidine protonation is very likely, shifting

the calcium-binding equilibrium towards the unbound state (the calcium bound state is, however, still preferred).

It should be stressed that H229/H294 protonation is equally likely and has not been studied separately. Unfolding

equilibria are virtually not affected. The possibility of an additional binding site protonation has been considered

but is preliminary ruled out in the presence of calcium. Such a protonation drastically favours calcium release and

unfolding.

Dissertation J.-O. F. Kapp-Joswig 107

Mutual information analysis

11.1 Mutual information analysis

In our langerin study, we used the produced MD trajectories to compare the conformational

ensemblesthermody-
namic vs.
structural
allostery

of protonation states in the hope to detect differences in the populated structures that

could explain an effect on the calcium-binding site—and we eventually did. In the context of allostery,

this can be seen as the thermodynamic or free energy surface centred approach: allosteric effector

binding gives rise to a perturbation of the system that favours or disfavours certain conformational

states.[359, 360] On first order, it interprets allosteric transitions as a switching between active and
inactive protein states. The case of langerin demonstrates that these transitions can be subtle and

difficult to describe.

Figure 11.5 Mutual information matrix for calcium-bound langerin
Residue-wise projected, normalised MI on backbone and side chain torsion angle trajectories. The values in the

neutral state are in the upper left, and those of the protonated state in the lower right triangle. Before the background

of possible allosteric communication, several relationships over a longer sequence distance can be of interest. a)
Between the WNDmotif and the β3-strand. b) Between H229 and the α1-helix. c)Within the short-loop. d) Between

the WNDmotif/β3-strand and the α2-helix. e) Between H294 and the short-loop. Not zoomed in but highlighted are

communications in the α2-helix and between long-loop and WND-motif, i.e. within the calcium-binding site.

108 Dissertation J.-O. F. Kapp-Joswig

Mutual information analysis

AMI analysis like the one performed already for the previous publication,[337] is another approach

that can be used to reveal allosteric communication pathways in proteins (see section 5.4 for theory).

It gives a representation of a system in terms of pairwise dependencies between feature distributions.

This reflects a structure centred approach: regions in a protein that are interconnected in terms of

this measure are likely to transport information.[359, 360] Perturbations on one site of a MI network

may affect the network all together. A study from this point of view allows arguing about possible

allosteric regulation in terms of its structural basis without describing the allosteric (conformational)

transition itself.

Both the perspective in terms of population shifts and in terms of communication networks provide

information about the same underlying allosteric process but individual systems may be not equally

well approachable from either side. Especially in the (apparent) absence of conformational changes, a

structural approach still provides insight into available allosteric pathways. It is also a main factor

in the description of dynamic allostery. The terminology is admittedly not very clear since of course

also thermodynamic population shifts are connected to structure and communication over structural

networks have a thermodynamic basis.[361]

Here, we take kind of a hybrid approach comparing MI networks for calcium-bound langerin in

the neutral and in the histidine protonated state. From the perturbation of the network upon the

protonation, onemight learn which protein regions are jointly affected by it, hence being the structural

basis for the allosteric effect.

For each pair of dihedral angle distributions (backbone and side chain) extracted from our MD

trajectories of the langerin CRD, a pairwise MI score was computed. This gives essentially a square

matrix of n2 elements where n is the total number of considered angle features. Then, this angle-wise

result was projected into a condensed residue-wise form to become comprehensible (see section 5.4

for theory). Figure 11.5 shows the final MI matrix. MI matrixBesides expectedly strong communication between

sequentially neighbouring residues, other potentially interesting connections become visible here. In

particular there is a correlation between H294 and the short-loop, and between the calcium-binding

site (the WNDmotif), the β3-strand and the α2-helix. The magnitude of the computed scores, i.e. the

intensity of the communication, changes due to the protonation.

An expressive alternative way to illustrate MI networks is depicted in figure 11.6 in the terms of

graphs. In these graphs, each residue is represented as a node and the edges connecting pairs of nodes

are scaled in width proportionally to the respective MI score. MI graphsInterconnected regions of protein

residues become even more clearly visible in this way than in the matrix picture. Especially when

differences in the MI scores between the protonation states are considered (figure 11.6c), connected

sub-networks in the langerin CRD that are potentially important for allosteric communication become

apparent. We see a strong increase in communication within the short-loop, especially involving K257

upon histidine protonation. At the same time, the connection between E293 and H294, virtually the

only visible connection between short-loop and long-loop, is weakened. Note that the conformational

transition we have observed can not be anticipated based on this view, but it is clear that it involves

the short-loop including K257. This can be mainly attributed to the structural inflexibility of D308.

Changes affecting this residue are at least not detectable in terms of torsion angle populations. As a

word of caution related to this, it should be noted that a high MI score should not be misinterpreted

as a molecular interaction. Significant mutual dependencies can have their origin in such interactions

(like for the H229–E220 H-bond) but this is not generally the case. For H294 and K257 we see exactly

the opposite: in the neutral state, where a H-bond between these residues can be formed, the MI score

is lower than in the protonated state, where the same is forbidden. In reverse, a low dependency does

not exclude the possibility of strong functional interactions.

Dissertation J.-O. F. Kapp-Joswig 109

Mutual information analysis

Figure 11.6 Mutual information graphs for calcium-bound langerin
Networks for a) the neutral and b) the histidine protonated state. c) Difference plot where purple and red edges

highlight communications that are more pronounced before and after the protonation, respectively. The node

positions were found using a spring layout, constrained with Cα distances in the crystal structure 3p5g, using atomic

positions of the same as initial guess (the plot was created using networks.draw). Residues of the short-loop are

coloured in orange and those of the long-loop in blue. Residues mutually connected to other residues above a

threshold of 0.12 are highlighted with bigger nodes and ID labels.

110 Dissertation J.-O. F. Kapp-Joswig

Mutual information analysis

Interestingly, another area of intensive communication involves a series of residues starting at the

calcium-binding site (E285, N307) and proliferating via W306 of the WNDmotif to the β3-strand

(N297) and the α2- (Q239) and α3-helices (F280). Moreover, communication in this area is also

affected by the histidine protonation. further
allosteric

pathways?

Figure 11.7 shows an illustration of this network. The identified

protein region resembles remarkably well a route to what has been identified and targeted as a cryptic

binding pocket in DC-SIGN, located between α2-helix and β0/β1-strand.[322, 323] A similar allosteric

regulation is suspected for murine langerin.[324] It might be that this is a common communication

channel in the CRD fold.

Figure 11.7 Potential further allosteric communica-
tion in langerinTheMI differences between the neut-

ral and the histidine protonated langerin state as well

as the absolute magnitude of the scores in both states

hints towards a network of connected residues that

has not been explicitly part of our analysis yet. It in-

volves the calcium-binding site, the β3-strand and the

α2- and α3-helices.

Dissertation J.-O. F. Kapp-Joswig 111

Mutual information analysis

Still inconclusive remains the role of H229. In the MI networks, this histidine and its surroundings

appear as largely isolated, although locally the protonation seems to have a very strong effect. Long

range communication between here and the previously described sub-network via residues 230, 231,

232, 233, and 239 is still noticeably present and seems to be weakly disturbed upon protonation as

well. This becomes a bit more clear in figure 11.8 that shows the MI networks reduced to the most

important connections in terms of MSTs (see also section 7.2).

a) neutral b) protonated

Figure 11.8 Minimum spanning trees of mutual information graphs
Trees connecting all nodes in the networks by using only the most important connections (found using

networkx.algorithms.minimum_spanning_tree). Node positions were determined from a spring layout con-

strained by the MI scores and with positions from figure 11.6 as initial guess. Interesting regions are highlighted by

colour: short-loop (257 to 264) in orange, long-loop (283 to 293) in blue, H229/H294 in yellow, α1-helix (216 to 226)

in purple, α2-helix (235 to 246) in pink, α3-helix (273 to 282) in red.

Taking the analysis of the MI networks one step further, it is possible to cluster this kind of data

when the MI matrix is interpreted as a pairwise similarity matrix. We can for example use spectral

clustering (see section 14.2) to find a separation of the graphs into sub-graphs based on a normalised

cut, i.e. a cut along connections of low importance leaving two relatively balanced sub-networks.spectral
clustering Figure 11.9 shows the result of this when two clusters each are considered for both the neutral and

the protonated langerin MI graphs. It is apparent that the changes in the underlying network give

rise to a different preferred partitioning for each case. In the neutral state, short-loop, long-loop

and the helix regions highlighted in figure 11.7 are part of the same cluster, separated from the lower

protein segment. After the protonation, the assignment changes and part of the calcium-binding

site including E285 and D308 is assigned to the same cluster as the lower protein together with the

high-communication region around the α2/α3-helices. While it is not immediately clear, how to

interpret this in terms of a functional mechanism, it emphasises that the allosteric regulation in

langerin upon histidine protonation may yet be more complex and global than what we considered

up to here. The conformational transition involving K257 and D308 may only be a piece of the overall

puzzle.

112 Dissertation J.-O. F. Kapp-Joswig

Polarisable force field simulations

Figure 11.9 Spectral clustering of langerin MI graph
The clustering was performed with sklearn.cluster.SpectralClustering. Graph nodes are coloured by their

cluster label assignments.

11.2 Polarisable force field simulations

As mentioned during the recap of our langerin study, the conventional MD model may be

suboptimal for langerin with respect to the present calcium(II) ion. This could potentially be improved

using a polarisable force field description that accounts in one way or another for redistributions of

partial charges (see section 4.3). To make an explorative step into this direction, MD simulations

using a polarisable AMOEBA force field (AMOEBA2018[133]) have been carried out for the histidine

protonated, calcium bound langerin state. test simulationsThe setup of an AMOEBA simulation is not much different

to a standard MD simulation setup as described in chapter 12.² Based on 600 ns simulation time,³ we

can already get a feeling for how the polarisable description affects this system. One simulation each

has been started from the langerin crystal structure 3p5g, and two representative frames of the G and
the O set (compare figure 11.3). The acquired data set is too small, though, to draw premature general

conclusions and should mainly serve as an indicator whether the simulations are sensible in principle.

As the polarisable description constitutes a conceptual improvement, we kind of expect to see minor

changes that reflect the true behaviour of the system more correctly. This concerns especially the

calcium-binding site. Very large differences, however, could be a sign for technical issues.

Figure 11.10 shows selected basic analyses of the AMOEBA simulations in comparison to the non-

polarisable ones. It can be recognised right away that the system’s behaviour changes quite a bit.

From the short-loop/long-loop distance (figure 11.10a), it is apparent that the previously observed

strong preference for open or closed loop settings is weakened. structural
analysis

The highest population samples

intermediate loop distances, potentially altering the view of what is going on in the inter-loop region

substantially. Relative populations should, however, not be over-interpreted at this point because the

simulation time is short and the distribution is most likely not converged. More important from a

stability perspective is here that the distance value range is not altered overall.

²See also simtk.org/projects/openmm-amoeba for an OpenMM setup example script

³The initial test runs were kept at a minimum because the polarisable simulation is considerably more expensive. On

1GPU + 1 CPU we obtain about 20 ns/day using OpenMM 7.7 (that is a factor of ten times slower than a comparable

simulation using a classical force field).[362]

Dissertation J.-O. F. Kapp-Joswig 113

https://simtk.org/projects/openmm-amoeba
simtk.org/projects/openmm-amoeba

Polarisable force field simulations

A striking observation, on the other hand, is that the backbone flexibility (figure 11.10b) asmeasured

by the RMSF of Cα atoms is clearly increased through the inclusion of polarisation. This includes

in particular but not exclusively the helical regions. Interestingly, the only primary residue in the

calcium binding site affected by this is E293. The secondary structure remains, however, still well

intact. Furthermore, the backbone RMSD with respect to the crystal structure (figure 11.10c) appears

to be stable over the course of all simulations, indicating no large scale conformational change.

Figure 11.10 Basic feature analysis for histidine protonated langerin using the AMOEBA2018 force field
a) Short-loop/long-loop distance measured as the M260–G290 Cα distance (compare figure 11.2). While covering

the same value range, the polarisable simulation (blue) notably samples loop settings around 1.2 nm. These have

been virtually unobserved in the non-polarisable picture (black, dashed). b) Cα RMSFs reveal increased flexibilities,

in particular with regard to the α2- and α3-helix, the segment around H229, the short-loop, the late long-loop,

and the β3-strand. Note, that E285 and D308 of the calcium-binding site are not affected in contrast to E293 (red

vertical lines, histidines marked with orange lines). c)The backbone RMSD with respect to the crystal structure is

unremarkable and does not indicate major conformational transitions. Black vertical lines mark the separation of

individual simulation replicas. The maxima of the RMSD distribution (red dots) could be used as sensible seeds for

new simulations.

Protein flexibility is a difficult topic and the effect of included polarisation is not fully conclusive

yet (for a general discussion see section 4.3). There is, however, no serious reason to mistrust the

AMOEBA simulation of langerin fundamentally, although the possibility has to be considered that

the observed flexibility increase can be at least partially a simulation artefact.flexibility
through

polarisation?

At the same time, the

non-polarisable picture could as well be too rigid. A better assertion of the effect that the choice of

force field might have on the system could involve separate simulations with other state-of-the-art

classical force fields (e.g. AMBER99SB-disp,[138] AMBER19SB,[65] or CHARMM36m[363]) or a

different polarisable model (e.g. Drude2019[131]). A concise validation of which force field offers the

most realistic description in this specific case, is essentially hard to achieve without benchmarking

against experimental results, which are not readily available. The only indication that we currently

have is that in NMR measurements, residues of the long-loop could not be resolved, even in the

presence of access calcium strongly favouring the calcium-bound state.[337] However, this bound

state appears very inflexible in our AMBER99SB simulations. Maybe, the flexibility of the protein is

indeed actually larger at least with respect to this region.

Despite the first-off inspection of the langerin AMOEBA simulations presented in figure 11.10, it is

of course a major concern whether the K257–D308 bonded interaction of the G set is representatively

sampled in these simulation. The minimum distance between the two side chains (amine hydrogens

and carboxy oxygens) is depicted in figure 11.2 and shows indeed a good agreement with the previous

simulation.K257–D308 Close arrangements are relatively low populated but this should again not be over-

interpreted due to the limited sampling. It is, however, notable that wider distances are sampled

as well, which have not been seen in the non-polarisable description. These wider distances partly

correspond to conformations where K257 undergoes little interaction with any other protein residue

114 Dissertation J.-O. F. Kapp-Joswig

Polarisable force field simulations

Figure 11.11 K257–D308 hydrogen bonded
conformation (AMOEBA2018) As shown in

the plot above, langerin samples comparable

K257–D308 side chain distances in the polar-

isable (blue) and in the non-polarisable (black,

dashed) description. Notably, wider distances

(around 0.6 nm) are sampled with polarisation,

which where previously unobserved. The ex-

ample structure was observed after about 100 ns

and has a live time of several nanoseconds. Wa-

ter molecules at most 0.4 nm away from the

calcium ion or the lysine amine hydrogens are

shown as well. Note the bidental binding mode

of E285 towards the calcium ion, an accurate

description of which can be crucial for a correct

modelling of the calcium-binding site.[364]

and reaches out into the solvent. This might be connected to the polarisable water description (see

comment further below), favouring a lysine water interaction. Also notable is that the lysine-aspartate

interaction appears not to be strongly correlated to the H294–E261 hydrogen bonded interaction and

the implied characteristic short-loop orientation of the G set. It is consistent with the experimental

data (see figure 9 in our paper[347]) that suggests that the H294–E261 interaction is not important.

These further signs of increased conformational flexibility could extent our view on what is going on in

the inter-loop region of langerin rather substantially. Definite conclusions can not be drawn, though,

without more simulation data and a comparison to the situation in the neutral protein. Structural

differences with respect to the calcium-binding site have not been spotted in the first-order analysis

but the polarisable description will be most likely a more faithful representation than the one given

by the canonical point charge model. Not only energetically but also geometrically in terms of the

coordination number (expectedly ∼7 for calcium[365]) and acetate binding, there is little doubt that

the current AMOEBA model constitutes an improvement.[364]

Commenting on the influence of water in our setup, another potentially very important difference

between the polarisable and the previous simulations is the used water model. As also shown in

figure 11.2, individual water molecules can coordinate to vacancies at the calcium-binding site or enter

the loop-coupling zone. In our previous simulations we relied on the simple TIP3P water model in

consistency with the used force field but this has its limitations even among 3-point water models.[69,

366]TheAMOEBA force field comes with its own polarisable version of water.[129, 367, 368] Although

there is still room for improvement on this side,[369, 370] the incorporated polarisation effects have a

potentially big influence on the relative protein-solvent/calcium-solvent interactions.[141, 371] Explicit

solvent effects have not been included so far in our analysis but an accurate water model would be the

premise for their consideration.

Dissertation J.-O. F. Kapp-Joswig 115

Polarisable force field simulations

Figure 11.12 Conformations for histidine protonated langerin using the AMOEBA2013 force field
The sampled conformations resemble only partly what has been found in the non-polarisable simulations. a) A
K257–D308 H-bond is frequently observed but strong correlation with H294–E261 as in the G set is not apparent. b)
K257–E261/N288-E261 interactions as in the O set. c) Simultaneous interaction of K257 with E261 and D308, and d)
of K257 with N288 and D308, which have not been observed in the non-polarisable description. e) D308 leaving

its coordinative role in the bindings site, a weaker form of which is also noticeable in b). f) Severe unfolding of the

long-loop in conjunction with the α3-helix which is likely a simulation artefact. Increased loop flexibility is also

present in c) and e).

116 Dissertation J.-O. F. Kapp-Joswig

Polarisable force field simulations

As a negative example for when a polarisable AMOEBA simulation went wrong, figure 11.12

shows selected conformational snapshots from trajectories (2 µs over 10 replicas) using the older

AMOEBA2013 force field.[132]These have been performed prior to the above presented AMOEBA2018

simulations. While on a first glance, the sampled structures look indeed interesting and also resemble

in parts what has been observed in the non-polarisable simulations, the flexibility of the protein is

increased to an extent that the long-loop region unfolds. This is very suspicious and also figure 11.12,

showing backbone RMSDs with respect to the crystal structure, reveals that the simulations are

probably not as stable as they should be. This counter example ismainly included here to emphasise that

it is easy to get nonsensical simulation results although the run might finish without crashing. Also, in

this case the temperature and potential energy evolutions during equilibration and production appear

to be fine, not offering an explanation for the observed instability either. Both the AMOEBA setups are

virtually identical except for the force field version. Extrapolated mutually induced polarisation was

used, rendering the effect of the convergence cut-off (mutualInducedTargetEpsilon in OpenMM)

for the otherwise employed iterative optimisation unimportant. In general, however, this setting

might have a rather large effect on the accuracy of a simulation.

Figure 11.13 RMSD trajectories (AMOEBA2013) In con-

trast to the RMSD values shown in figure 11.10c for the

AMOEBA2018 simulations, here at least 6 out of 10 replica

exhibit instable behaviour. Black vertical lines mark the

separation of individual simulation replicas.

Dissertation J.-O. F. Kapp-Joswig 117

{ 12 }
Simulation setup
Protocols for langerin and practical advice

T
he default preparative steps that are mandatory for the setup of a MD simulation are not much

different for members of the C-type lectin family then for any other proteinogenic molecular

system in comparison. Nonetheless, the correct execution of these steps is crucial and can be tricky at

times although they are widely standardised. In this chapter, I would like to discuss practically how

the simulations for this work have been performed. In a nutshell, the MD setup procedure includes

the following parts: basic steps1) structure inspection and planning, 2) structure cleanup and preparation 3)

energy minimisation, and 4) equilibration. Note that the slightly specialised setups for the performed

steered-MD and polarisable simulations are not separately addressed here.

The simulation software packages we used for these steps are GROMACS[50, 107, 372–376] and

OpenMM[362]. Basic structuremanipulations can be done directly by altering the respective structure

text files. Beyond this we used mostly GROMACS tools for these tasks but it is worth mentioning

that the PDBFixer from the OpenMM cosmos can be helpful as well, in particular for adding missing

protein residues. programsStructure visualisations are done with VMD[377] or with NGLview[378] directly in

Jupyter notebooks. The NGLview package is nice because a lot of MD setup and analysis tasks can be

combined in an interactive Python session without breaking the workflow but VMD offers superior

functionality especially for image production via the Tachyon renderer although its handling is rather

clumsy.

12.1 Structure inspection

For human langerin, multiple crystal structures are available from the RSCB protein data bank,

released between 2009 and 2018 (see table 12.1). crystal
structures

With the exception of 3KQG that covers a trimeric

assembly of the langerin extracellular domain including a part of the α-helical neck region, the

structures contain only the CRD. All of the structures were obtained in the presence of calcium

at neutral pH or above and contain a calcium ion bound at the canonic site. The only langerin

mutant listet here is 4AK8 because it was obtained at a lower pH of 6, but there is also a K313I and a

K313I/N288D double mutant (4N34 to 4N38). Many published structures contain sure ligands bound

via the calcium binding site. Besides human langerin, crystal structures for the murine variant are

available as well (5M62, 5K8Y).

The considered structures show remarkably little differences between each other. Figure 12.1

illustrates this in an overlay. structure
overview

Chain A in the trimeric crystal structure 3KQG is the only one that

stands out in terms of a short-loop arrangement closed towards the long-loop. In the other structures

the short-loop adopts a wider opened conformation. A K257–H294 hydrogen bonded interaction can

be assumed for all structures with the open loop setting, indicating an ε-protonation of H294 and

a neutral side chain—interestingly also for the F241L mutant structure that was obtained at a lower

Dissertation J.-O. F. Kapp-Joswig 119

Structure inspection

pH. Free side chain orientation vary expectedly to a larger extent. We did not detect any structurally

critical crystal water molecules.

Table 12.1 Langerin RCSB PDB structure overview

ID main author pH year resolution / Å comment

5G6U Porkolab, V. 7 2018 1.844

4N33 Feinberg, H. 7 2013 1.85

4N32 Feinberg, H. 7 2013 1.75

4AK8 Chabrol, E. 6 2013 1.4 F241L

3P5I Feinberg, H. 7 2010 1.8

3P5H Feinberg, H. 7 2010 1.6051

3P5G Feinberg, H. 7 2010 1.6027

3P5F Feinberg, H. 7 2010 1.7501

3P5E Feinberg, H. 7 2010 1.7012

3P5D Feinberg, H. 7 2010 1.8013

3P7H Skerra, A. 6.9 2010 2.3

3P7G Skerra, A. 6.9 2010 1.5

3P7F Skerra, A. 6.9 2010 2.5

3KQG Feinberg, H. 8 2010 2.3 trimer

3C22 Thepaut, M. 7 2009 1.5

Figure 12.1 Langerin PDB structure overlay Available
crystal structures listed in table 12.1 aligned on top of

each other. Side chains of residues K257, E261, E285,

E293, H294, and D308 highlighted in red. The short-loop

(residues 258 to 264) representation is coloured in orange

and that of the long-loop (residues 283 to 294) in blue.

Calcium(II) in the binding site drawn as a grey sphere.

As a side note, an alignment of two structures in VMD can be achieved with a short custom TCL

function by selecting a common set of positionally inflexible atoms (here the backbone atoms of

residues 308, 256, and 239)structure
alignment

in the reference and in the target structure, computing a translation

matrix for the superimposition of both structures, and moving all atoms in the target structure by

applying this translation. Such a function can be directly defined in the VMD console or sourced

from a respective file.

proc align {reference target} {
expects two molelue IDs
set sel_a [atomselect $reference {resid 308 256 239 and backbone}]
set sel_b [atomselect $target {resid 308 256 239 and backbone}]
set sel_b_all [atomselect $target all]
set M [measure fit $sel_b $sel_a]
$sel_b_all move $M

}

For the initial seeding in aMD simulation of the langerin CRD, the majority of the shown structures

is basically equivalent and we settled predominantly on 3P5G because of the relatively recent publica-

120 Dissertation J.-O. F. Kapp-Joswig

Structure preparation

tion date and overall good scores (resolution: 1.60 Å, R-value free: 0.219, low amount of clashes and

outliers). 3P5GIn the relevant residue range (G198 to P325), chain A of the structure is complete. It contains

alternative atom positions only for the S277 side chain (figure 12.2b), where it makes presumably

very little difference which one is chosen. Figure 12.2a gives an overview over titrable amino acids

in the protein. In the pH range of 6 to 7.4, we can generally assume the side chains of aspartic and

glutamic acid to be deprotonated (negatively charged), lysine protonated (positively charged), and

tyrosine protonated (neutral) as well. Histidine may change its protonation state from a single δ- or

ε-protonation (neutral), where the latter is normally preferred if there are no influencing factors, to a

complete protonation (positively charged). There a no free cysteine side chains that are not bound in

disulfide bridges in the protein.

Figure 12.2 Titrable side chains in the langerin CRD
Langerin crystal structure 3P5G with a) side chains of

titrable residues coloured by residue type from acidic to

basic: aspartic and glutamic acid (red), histidine (green),

cystein (yellow), tyrosin (purple), lysine (blue). b) Altern-

ative atom locations for S277.

12.2 Structure preparation

The first step in setting up the raw crystal structure for a simulation is to add missing hydrogen

atoms and to define the topology of a specific protonation state. This is conveniently done with the

GROMACS tool pdb2gmx even if GROMACS is not been used to drive the actual simulation. The

execution of this tool on the command-line could look like this:

$ gmx pdb2gmx -f ../conf.pdb -ignh -his -merge all

Here, I assume that roughly the following directory layout is used for the structure preparation with a

dedicated root directory for this kind of work within a bigger project: directory
layout$SETUP_DIR

3p5g
3p5g.pdb
conf.pdb
h3

conf.gro
topol.top
...

As a practical recommendation, it makes sense to create a new sub-directory for each preparation

step, so that a certain operation has its input files in a parent and its output files in a child directory. A

Dissertation J.-O. F. Kapp-Joswig 121

Structure preparation

separation of input and output on progressive directory levels does not only make the order of the

applied steps obvious—which would not be the case if all files are cramped successively within the

same folder—but also allows a quick redo of operations if things go wrong and easy branching if the

setup steps should be altered in the future.

The above stated GROMACS command is in this context executed from the h3¹ folder highlighted

in red, which marks the addition of hydrogens to an input structure (-f ../conf.pdb) and the

setting of a specific protonation state. Its main output will be the conf.gro (the modified structure)

and topol.top (the systems GROMACS-topology) files where the default output location can be

modified with -o and -p flags.pdb2gmx flags The -ignh option ensures that any hydrogen atoms in the input file

are ignored prior to the automatic addition of these atoms to avoid that they interfere with this step.

To interactively set the protonation state of histidine residues, the -his flag is passed. Similar flags

exist for aspartic and glutamic acid, and other titrable residues. If they are not set, GROMACS will

prepare a default protonation state in each case, which for histidine is a single δ- or ε-protonation

depending on possible hydrogen bonded interactions in the environment that may stabilise one or

the other state. As a further hint, the -merge all option can be specified to combine all molecules

in the input structure into one chain, which limits the amount of produced output files. Otherwise

GROMACS will for example create separate topology files for our protein and the calcium ion. If it is

in contrast intended to split the protein and calcium into two separate moleculetypes, -merge no
should be used, which is the default. Here we deliberately chose to model the termini of the protein in

their charged form (NH+
3
and COO−) to stay consistent with the already existing langerin simulations.

This default behaviour can be changed with the -ter flag. For a bigger protein that is stably folded the

modelled state of the termini is assumed to have a minor influence even if in the real system their

state may be different because the modelled sequence segment is only a subset of the complete protein

sequence. In general it should be considered, though, to use capped termini if this agrees better with

the real system, which depending on the used force field would require to add respective terminal

residues to the structure. This is especially the case if unwanted interactions between the termini

are likely. It should also be kept in mind here, that a real system under biological conditions may

differ from a real system subjected to experiments under laboratory conditions. Because pdb2gmx is
meant to be a setup tool for simulations with GROMACS, the user is also required to name a force

field and a water model, which, however, can still be altered at a later stage and completely ignored if

GROMACS is not used for the simulation itself.limitations It should also be mentioned that this tool is only

suited for the preparation of protein systems for which the set of standard amino acids are known. In

other cases, the creation of structure and topology files can be more complicated and often needs to

be done separately and manually.

In the above example, the input file to the pdb2gmx command used here was not 3p5g.pdb (a

crystal structure as obtained from a data base) but conf.pdb, which implies that there may have been

necessary pre-processing steps.Structure
pre-processing

Raw crystal structure may contain multiple copies (chains) of the

same protein, additional ligand molecules, crystal water, and potential short-comings that need to be

addressed prior to the automatic setup. For one thing, if alternative atom positions are present in the

structure as in 3P5G for SER277 (see figure 12.2), GROMACS will silently choose one of these, which

may not be intended. A selection of the interesting individual entries in a crystal structure is best

done with a short script that can be stored alongside the structure to record what has been done (or at

least a description if the pre-processing has been achieved in a different way). The following lines

do for example extract only the relevant parts of 3p5g.pdb (ignoring water and ligands, and keeping

only protein chain A including calcium) into conf.pdb leaving the meta information intact.²

¹Identifier for the H229/H294 protonated state. For details see the SI of [347]

²For details on the general structure of PDB files see wwpdb.org/documentation/file-format

122 Dissertation J.-O. F. Kapp-Joswig

http://wwpdb.org/documentation/file-format
wwpdb.org/documentation/file-format

Structure preparation

allowed_res_ids = set(range(198, 326))
allowed_res_ids.add(500) # calcium
with open("3p5g.pdb") as in_file:
with open("conf.pdb", "w") as out_file:

for line in in_file:
if not line.startswith(("ATOM", "TER", "HETATM")):
out_file.write(line)
continue

if not line[21] == "A": # chain
continue

if not int(line[22:26]) in allowed_res_ids:
continue

if line[16] == "B": # altLoc
continue

if line[16] == "A":
line = line[:16] + " " + line[17:]

out_file.write(line)

Somtimes, crystal structures need to be altered to generate other systems of interest. For langerin

for example, we built the calcium unbound state in lack of a crystal structure from the calcium bound

state by just deleting the calcium ion from the structure. structure
mutation

For the simulation of langerin mutants, the

respective amino acid side chains have been modified as well. Mutations to alanine are particularly

simple because the side chains of other residues can essentially be removed entirely up to the Cβ-atom.

ATOM 273 N HIS -> ATOM 273 N ALA
ATOM 274 CA HIS -> ATOM 274 CA ALA
ATOM 275 C HIS -> ATOM 275 C ALA
ATOM 276 O HIS -> ATOM 276 O ALA
ATOM 277 CB HIS -> ATOM 277 CB ALA
ATOM 278 CG HIS -> x
ATOM 279 ND1 HIS -> x
ATOM 280 CD2 HIS -> x
ATOM 281 CE1 HIS -> x
ATOM 282 NE2 HIS -> x

Non-consecutive atom IDs as a result of the deletion of atom entries are usually not a problem for

setup tools like pdb2gmx but if required this is easy to fix by looping through the file and renumbering

ATOM, HETATM, and TER entries in position 7 to 11. Similarly, mutation of glutamate to aspartate is

straightforward as it only requires to delete the Cγ-atom (or alternatively Cδ-atom) and to rename the

carboxylate oxygen atoms. This introduces some conformational stress in terms of the now elongated

Cβ–Cγ bond but with careful structure minimisation this is normally solvable.

ATOM 200 N GLU -> ATOM 200 N ASP
ATOM 201 CA GLU -> ATOM 201 CA ASP
ATOM 202 C GLU -> ATOM 202 C ASP
ATOM 203 O GLU -> ATOM 203 O ASP
ATOM 204 CB GLU -> ATOM 204 CB ASP
ATOM 205 CG GLU -> x
ATOM 206 CD GLU -> ATOM 205 CG ASP
ATOM 207 OE1 GLU -> ATOM 207 OD1 ASP
ATOM 208 OE2 GLU -> ATOM 208 OD2 ASP

For more complex mutations that involve an actual addition of atoms at sensible positions, it can help

to have a template of the target amino acid to be aligned with respect to the backbone on top of the

residue that should be mutated (see the alignment snippet above for such an operation in VMD) and

to copy the complete target acid with the obtained coordinates into the file. Alternatively, side chains

can be modelled using software like the VMDmolefacture plugin.

Dissertation J.-O. F. Kapp-Joswig 123

Structure preparation

Once a particular structure for a molecular system including all desired protonations has been

set up, the next step usually is to add solvent (normally water) unless a treatment in vacuum should

be done. This necessitates in general the prior definition of a simulation box that can be filled with

solvent molecules. GROMACS provides another tool for this step that is used like:

$ gmx editconf -f ../conf.gro -o box.gro -d 1 -princ -c -bt cubic

Again, it is assumed that a new sub-folder (e.g. d1_cubic) is created for this next step from which

the command is executed.simulation
box

Here it has to be ensured that the box is big enough so that the solute is

adequately distanced from the box borders, which becomes important if PBCs are used at a later stage

(see section 4.4). A distance of 1 nm as set with the flag -d 1 is generally considered sufficient with

normal cut-off values for the calculation of short-range non-bonded interactions. If larger structural

changes are expected to happen during a simulation, the box may, however, need to be much larger.

This might be for example the case in steered-MD experiments where the distance between groups

that are pulled away from each other is expected to increase considerably. GROMACS provides several

box geometries that can be chosen via the -bt option. While it can be beneficial in terms of efficiency

to select a complex box type like dodecahedron, let’s stick here for simplicity with the cube. The other

used flags -princ and -c align the principle axis of the protein with the z-axis of the box and center

the molecule in it, which is of rather cosmetic reasons if a special orientation of the system is not

required.

A created simulation box can be now filled with solvent.

$ gmx solvate -cp ../box.gro -cs spc216.gro -o solv.gro -p topol.top

This requires the specification of the solute structure (-cp ../box.gro) and a template of a (ideally pre-

equilibrated) solvent box via -cs weresolvation spc216.gro is a standard water box provided by GROMACS.³

Here it becomes useful if the solvation step is carried out in its own sub-directory because GROMACS

modifies the topology of the system (input -p topol.top) by adding the number of solvent molecules

to the respective [molecules] section. It is advised to copy the topology without solvent to the

solvation directory and to modify it there, leaving the original untouched GROMACS itself by default

creates backup files if files are altered but keeping the overview over those backups and restoring files

in question from the correct backup can become quite messy.

To finalise the setup, we can in a last step add additional counter ions to give the system a neutral net

charge. The wild type langerin CRD in a default protonation state has an equal number of positively

and negatively charged side chains so that it is already neutralised by itself but the presence of the

calcium ion introduces a total charge of +2.charge
neutralisation

Side chain protonations of the two histidine residues

increase this to a number of +4. We can use yet another GROMACS tool to for example replace a few

water molecules with chloride in these cases. The working of the genion tool is a bit counter-intuitive

because it requires us to run a dummy simulation. So we call the GROMACS pre-processor to create

a run input file (ions.tpr) with an empty run parameter file (dummy.mdp) first.

gmx grompp -f dummy.mdp -c ../solv.gro -p topol.top -o ions.tpr
gmx genion -s ions.tpr -p topol.top -o ions.gro \

-nname CL -pname CA -neutral

Again, the tool will modify the system’s topology by adding the number of counter-ions. The -nname
and -pname flags control which type of ions are used, and the -neutral option tells the program to

add as many ions needed to neutralise the system, which is more robust than giving it a concrete

number of ions. In our langerin setup, we avoided the additional complexity to model a physiological

salt concentration beyond the plain neutralisation of the system. With one equivalent CaCl2 per

³Other solvent templates may for example be obtained from virtualchemistry.org

124 Dissertation J.-O. F. Kapp-Joswig

http://virtualchemistry.org/
virtualchemistry.org

Energy minimisation

simulation box and an approximate box volume of 300 nm3 (which corresponds to a cubic box length

of roughly 7 nm) we are in a salt concentration regime of 50mM.This is already very high compared to

the realistically expected calcium concentration (about 20mM) although not too high in comparison

with typical NaCl (about 150mM) or KCl (about 260mM) concentrations.[379]

Now, the system is at a preparation stage where the last created file ions.gro is ready to serve as

a starting structure. It can be further processed with GROMACS but if OpenMM should be used

for the following computations this is possible as well. There are basically two options do this. OpenMMFirst,

the structure could be converted to a PDB file (using the GROMACS tool trjconv) that can then be

loaded in an OpenMM script using the openmm.app.PDBFile reader. Note, however, that this ports

only the structure while the topology information is lost, which is fine if this should be set up with

OpenMM anyways. Otherwise, to keep the GROMACS topology including a potentially specified

force field, use

from openmm import app
gro = app.GromacsGroFile('ions.gro')
top = app.GromacsTopFile(

'topol.top',
periodicBoxVectors=gro.getPeriodicBoxVectors(),
includeDir=DATA_PREFIX + '/share/gromacs/top'
)

where DATA_PREFIX is the location of the shared folder of the installed GROMACS version under

which for example the force field definitions are found.

12.3 Energy minimisation

After the basic setup of a molecular system as described in the last section, the obtained

structures are in a probably high energetic state. The addition of solvent around the solute may have

introduced strain and minor clashes and the conformation of the solute minimisation
strategies

as obtained from a crystal

structure is likely not favourable in the same way in solution. Starting a simulation right away from

such a state may lead to computational instabilities because of potentially very large force acting on

individual atoms, and can make the system blow up. In order to avoid this, a relaxation of the structure

to a local energy minimum should be performed. If the structure was not modified significantly before

the solvation, it is usually sufficient to minimize only after it has been solvated. A minimisation of the

solute alone in vacuum can actually make things worse since a minimum structure in the absence of

any surroundings may even be further away from the favourable state in solution than the crystal

structure minimum. On the other hand, if severe modifications have been done (e.g. a critical residue

mutation), a minimisation of the protein alone may be advisable. It is possible to freeze certain atoms

during a minimisation via positional restrains. position
restraints

This can be used to specifically optimise only a certain

part of a molecule (e.g. only a mutation site) while avoiding larger rearrangements in other parts.

Position restrains are also an option for edge cases were a direct minimisation of a system in solution

fails. They can for example be used to hold the solute molecule in place while only the solvent around

it is minimised first, which is then followed by a minimisation of the complete system. The langerin

CRD is a thankful system in this regard and its minimisation did not require an elaborate approach.

There are different minimisation algorithms available to chose from. The steepest descent method

that is implemented in GROMACS does just fine in most cases. For a more rigorous optimisation the

conjugate gradient method is available as well. A combination of both, an initial steepest descent run

followed by conjugate gradient—possibly in combination with a minimisation approach in stages for

parts of the system—can yield in general good results even in difficult cases. optimisation
algorithms

If very tight convergences

Dissertation J.-O. F. Kapp-Joswig 125

Energy minimisation

are desired (as may be needed for normal mode analyses), GROMACS needs to be compiled in double

precision, though. It should also be kept in mind that the standard GROMACS structure GRO-files

have a limited precision of 10−3nm and are not suited to reflect accurate convergences. In an MD

context, higher precision is normally not needed but if it should not be lost, a g96 text file or a TRR

trajectory file needs to be used. Another potent algorithm available in GROMACS and OpenMM is

the limited-memory Broyden-Fletcher-Goldfarb-Shanno quasi-Newtonian minimizer (L-BFGS).[380]

To run a steepest descent minimisation in GROMACS, we need to specify parameters for this task.

Settings that were sufficient to minimise the langerin CRD (at least using GROMACS 2019) are:

integrator = steep
emtol = 100 ; kJ / (mol nm)
emstep = 0.01 ; nm
nsteps = -1
coulombtype = PME
cut-off_scheme = verlet

The two essential parameters here are emtol, setting the convergence criterion, and emstep, setting the

initial maximum step size.basic settings If themaximum residual force on atoms of the system falls below emtol the

run finishes successfully. In case of convergence issues emstep can be reduced. For tighter convergence,

emtol can be lowered. Setting nsteps = -1 does not limit the run in terms of a maximum number

of iterations. For our langerin systems that comprises about 30,000 atoms (∼2, 000 protein atoms

plus ∼9, 000 water molecules), the minimisation is inexpensive and converges routinely within 5, 000

iteration, which takes about 4 minutes in serial on workstations of the QCNet.

Further specified options are coulombtype = PME to chose a PME scheme to treat the electrostatic

interactions instead of using a plain cut-off (see also section 4.2). The option cut-off-scheme =
verlet controls what kind of neighbourlist implementation should be used to limit for which atom

pairs short-range non-bonded interactions are calculated—here by using a buffered Verlet-list (see

section 4.5). The chosen option is actually the default but this was not the case in older GROMACS

versions. It is listed here, nonetheless, because it is quite critical.other settings For energy minimisations (no

dynamics), the neighbourlist is updated every time the energy is calculated, so it has no effective

relevance for the computation. The other possible option, cut-off-scheme = group, makes use

of charge groups. It was, however, deprecated already in GROMACS 5.1 but was not removed until

GROMACS 2020, making GROMACS 2019 the last release in which this option is still available.vacuum
settings Unfortunately, vacuum runs depend indirectly on the group scheme because the Verlet approach

is not (yet) available for non-periodic systems. Therefore, for now they not supported by recent

GROMACS versions. In earlier versions, the following altered settings can be used for a steepest

descent minimisation in vacuum:

coulombtype = cut_off
rcoulomb = 0
rvdw = 0
cut-off_scheme = group
nstlist = 0
rlist = 0
ns_type = simple
pbc = no

The coulombtype = cut_off option is put back to its default because the PME scheme cannot be

used in a non-periodic system, either. Periodicity needs to be explicitly turned of with pbc = no.

The respective short-range cut-offs, rcoulomb and rvdw, should be set to 0 to essentially eliminate

these truncations. Equally, rlist = 0 should be used, which defines the short-range cut-off for the

neighbourlist. In consequence, we do not need to update the neighbourlist and can set nstlist =

126 Dissertation J.-O. F. Kapp-Joswig

Energy minimisation

0 so that it is only calculated once in the beginning. By default, the neighbourlist is calculated by

searching for neighbours on a grid (ns_type = grid) but in a vacuum calculations without cut-offs

a brute force approach should be used (ns_type = simple). It should also be noted that vacuum

runs can only be executed in serial.

To prepare a minimisation with the above settings we call the GROMACS pre-processor by passing

an input structure (-c ../ions.gro), its topology (-p ../topol.top), executionand the parameters (-f
steep.mdp) to it.

$ gmx grompp -f steep.mdp -c ../ions.gro -p ../topol.top -o steep.tpr

The actual minimisation is then started from the created run input file by using the main GROMACS

work horse mdrun.

$ gmx mdrun -nt 1 -deffnm steep -v -pin on

Here, -nt 1 states that the calculation should be done using one single OpenMP thread, i.e. one

CPU. If this flag is omitted, GROMACS guesses the number of threads to use and claims all available

resources. Setting -pin on is generally advised if not all CPUs should be used on multi-core machines,

which pins individual threads to fixed CPUs and avoids a swapping of threads.4

The -v flag leads to verbose output and -deffnm steep is actually a shortcut for

$ gmx mdrun -s steep.tpr \
-o steep.trr -g steep.log -e steep.edr -c steep.gro

The output files produced are structure files (a normal text file steep.gro and a full precision binary

file steep.trr), a log file steep.log, and an energy file (steep.edr). The energy file is similar to

a log file that stores information about the run in a condensed binary form. Besides the minimised

structure, it is the most important file to check if a minimisation was successful. evaluationData can be extracted

from this file into a text file using the GROMACS energy tool and can then be read5 to plot for example

the potential energy evolution of the system throughout the minimisation as shown in figure 12.3.

Figure 12.3 Potential energy minimisation
a) Steepest descent (GROMACS, emtol = 100) followed by conjugate gradient optimisation (GROMACS,

emtol = 1). b) Direct conjugate gradient with flexible water versus L-BFGS (GROMACS, emtol = 1; OpenMM,

tolerance = 1). Target energy values from runs in a) are marked with horizontal lines. Note that the set conver-

gence criterion in GROMACS is lower than what can be reached by the machine in single precision. OpenMM does

not give feedback in this regard. All runs use the Amber99sb-ildn force field bundled with GROMACS.

Normally, rough convergence as provided by the steepest decent step in figure 12.3a is sufficiently

accurate to subject the system to further processing steps. It should be noted that the conjugate

4For more information on how to control the behaviour of mdrun in terms of resources and performance see also

manual.gromacs.org/documentation/current/user-guide/mdrun-performance.html
5Alternatively, there is for example Panedr to read energy files into Pandas data frames in Python.

Dissertation J.-O. F. Kapp-Joswig 127

https://manual.gromacs.org/documentation/current/user-guide/mdrun-performance.html
manual.gromacs.org/documentation/current/user-guide/mdrun-performance.html
https://github.com/jbarnoud/panedr

Ensemble equilibration

gradient implementation has a problem with constraints, including the SETTLE mechanism used for

water. For the continued run from a pre-converged state, the optimisation is nonetheless successful

with rigid water. LINCS constraints were used none in all runs. If conjugate gradient is used without

the preliminary steepest decent step, convergence can be difficult, but in the present case it was

possible to accurately minimize the system by explicitly using flexible water (define = -DFLEXIBLE
in mdp-file). Interestingly, the direct approach seems to converge to a different energy minimum

(compare figures 12.3 and 12.4). In OpenMM, the standard minimiser implements a L-BFGS scheme,

wich can be called by

simulation.minimizeEnergy()
state = simulation.context.getState(getEnergy=True)
energy = state.getPotentialEnergy()

after setting up a simulation object for the system, which is the convenience route for directly using

openmm.LocalEnergyMinimizer.minimize() with a given openmm.Context. Here, the keyword

argument tolerance corresponds to the GROMACS setting emtol but convergence is reached if the

root-mean-square error of forces on all atoms falls below it. If as many iterations as needed should

be allowed, maxIterations = 0 should be used. GROMACS provides an L-BFGS variant as well,

which does not run in conjunction with constraints at all and is limited to serial execution. This

implementation recommends to use a PME solver also for the Lennard-Jones interactions (vdwtype
= PME). Structurally, the different optimisations yield consistent results as shown in figure 12.4, with

deviations in side chain orientations that will not play a big role for the next processing steps.

Figure 12.4 Minimised langerin structuresOptimisation

results for the langerin CRD using different algorithms for

the same starting structure: steepest descent (blue), steepest

descent + conjugate gradient (red), conjugate gradient (or-

ange), L-BFGS in GROMACS (green), L-BFGS in OpenMM

(pink).

12.4 Ensemble equilibration

Starting from a completed energy minimisation of amolecular system, it is usually required

to let at least one equilibration run follow before the actual production simulation can be started.

Technically, an equilibration is a production run itself and if no special precautions have to be taken

here, a certain time interval at the beginning of a production simulation can serve as an equilibration

period, which should not be included when equilibrium properties are studied. If, however, a set of

parameters is required to properly equilibrate a system that is different from the production settings,

these runs need to be executed separately. In general, a system can be assumed to have reached an

128 Dissertation J.-O. F. Kapp-Joswig

Ensemble equilibration

equilibrium state when fluctuations of the energy around a mean value have been stabilised and there

is no critical drift over time. If a thermostat is used to simulate at a constant temperature, this should

hold also for temperature fluctuations, as well as for pressure and density if additionally a barostat is

employed.

It depends on the system what kind equilibration protocol is most suitable and how long the

equilibration period should be. A standard approach, if temperature and pressure should be controlled,

is to first let the temperature equilibrate without pressure coupling before the pressure is equilibrated

afterwards while maintaining the temperature coupling. equilibration
strategies

On the other hand, if in production only the

temperature should be controlled but the system should have a well defined starting pressure, i.e. a

reasonable density, it is possible to let the pressure equilibrate without temperature coupling before in

a following run the barostat is turned off and the thermostat is turned on. The same goes for constant

total energy simulations in which neither temperature nor pressure should be controlled but where it

should be ensured that the energy in the system corresponds to a certain temperature. In this case,

temperature (and pressure) can be equilibrated before switching off the coupling in production.

Similar to energy minimisations, it is possible to use position restraints on portions of the system to

for example equilibrate solvent and solute separately, which may be necessary if a direct equilibration

attempt of the whole system leads to instabilities. It is also common, to use somewhat more accurate

settings during equilibrations to ensure a stable run in early stages where a systemmight still be fragile

and to relax these settings in favour of performs for production once a stable state has been acquired.

Here, I would like to discuss a relatively rigorous equilibration protocol for the langerin CRD to

level the field for productions in the NPT ensemble. langerin NPT
ensemble

This does not agree to a hundred percent with

the employed setup for the simulations used in our langerin study (compare SI of [347]) and is rather

meant as a set of slightly refined recommendations. Eventually, we want to use the following standard

settings in our final MD runs, which are close to what GROMACS employs as its defaults. Note that

these settings depend partly on the used force field, which in this case is AMBER99SB-ildn.[95]

integrator = md
nsteps = 100000000
dt = 0.002 ; ps
nstcalcenergy = 5000
nstenergy = 50000
nstlog = 500000
nstxout_compressed = 2500
compressed_x_grps = Protein CA
constraints = h_bonds
coulombtype = PME
fourierspacing = 0.15 ; nm
pme_order = 6
tcoupl = v_rescale
tc_grps = Protein non_Protein
tau_t = 1 1 ; ps
ref_t = 300 300 ; K
pcouple = Parrinello_Rahman
tau_p = 2.0 ; ps
ref_p = 1.0 ; bar
compressibility = 4.5e-5
gen_vel = no
continuation = yes

First, we have chosen an integrator to drive the dynamics. The value integrator = md corresponds

to a leap-frog integration scheme (see also section 4.6). Next, it is specified that we want to run

Dissertation J.-O. F. Kapp-Joswig 129

Ensemble equilibration

the simulation for nsteps = 100000000 steps at a time step of 2 fs (dt = 0.002), amounting to a

total of 200 ns. We took this length as a rough standard length for a simulation replica (long enough

to observe larger timescale dynamics but short enough to be easy manageable). Options for the

generated output follow: energies are calculated in intervals of 10 ps (nstcalcenergy) and written

to the energy file every 100 ps (nstenergy). Energy calculations and output generation impact the

simulation performance negatively and when there is no general interest in these quantities beyond

simple sanity checks, too frequent operations in this regard can be avoided. This also limits the

size of the output files. The value for energy output counts for the output of other quantities like

temperature and pressure as well. It should be noted that GROMACS provides statistics (average,

drift, etc.) for these data calculated at nstcalcenergy but only individual values at nstenergy can
be read out later from the energy file (e.g using gmx energy). For the same reason of avoiding

unnecessary output, log entries are only generated every 1 ns (nstlog). Coordinate output is set to

an interval of 5 ps with nstxout_compressed = 2500, which should be sufficient for most analyses,

and compressed_x_grps restricts the output to the protein and the calcium ion. Keeping solvent

coordinates as well would increase the trajectory file size enormously and should be done only if

explicitly needed (possibly using a lower output frequency).6 The constraint = h_bonds option is

an important one because it defines that all heavy atom bonds to hydrogen should be constrained

using by default a LINCS algorithm. This allows us to use the chosen time step of 2 fs. It is critical that

this setting complies with the recommendation in conjuntion with the used force field. Like already

for the minimisations, we use a PME scheme to treat electrostatics (coulombtype). Two additional

settings can be played with in productions here: fourierespacing is related to the number of grid

points used in the FFT part of this method and indirectly gives a lower bound for the accuracy, and

pme_order controls the interpolation.

In our simulations, temperature will be controlled using a velocity-rescale thermostat (option

tcoupl) (see section 4.8) and pressure using a Parrinello-Rahman barostat (option pcoupl). We will

start our equilibrations by switching on the thermostat. The velocity-rescale thermostat as implemen-

ted in GROMACS is well suited for equilibrations to reach a target temperature and for productions

to hold the temperature and produce a correct canonical ensemble.[180] In the first run, the option

continuation = no is used to tell the program that this is a fresh simulation. In subsequent runs, this

is set to continuation = yes while the starting configuration including velocities is inherited from

the final state of the last run. To generate initial velocities that correspond to a certain temperature,

we use gen_vel = yes and gen_temp = 300 (see also section 4.7). In continuation runs this should

be strictly set to gen_vel = no unless the velocities obtained from a prior equilibration should be

overridden. The generation of velocities at the beginning of the first temperature equilibration run is

actually optional and the system can be alternatively warmed up solely by coupling to the thermostat.

Starting with velocities at a given temperature just shortens the equilibration period or avoids problems

with equilibrations to target temperatures over a too broad range. Especially for high temperatures,

it can be necessary, though, to warm up a system in stages to avoid that high temperature initial

velocities blow up an essentially low temperature minimum starting configuration.

We define furthermore two coupling groups (tc_grps) so that temperature is controlled separately

for the protein and the solvent (the calcium ion is counted as non-protein). The set groups need

to be either standard groups recognised by GROMACS or passed over to grompp as and index file

(.ndx). For each group, we set a target temperature in Kelvin with ref_t and a coupling constant

tau_t in picoseconds that defines how tightly temperature should be controlled. Note that this is not

6Note that simulations in OpenMM are more convenient in this regard because separate reporters can be used to write out

the whole system including at a lower frequency. Have a look for example at the mdtraj.reporters.DCDReporter
that allows to specify an atom subset for the output.

130 Dissertation J.-O. F. Kapp-Joswig

Ensemble equilibration

the frequency of thermostat coupling during a simulation that can be separately set with nsttcoupl
and is by default equal to the frequency of neighbourlist updates. Overall, example settings for the

temperature equilibration are (leaving out unchanged production settings from above):

nsteps = 200000
dt = 0.001 ; ps
nstcalcenergy = 10
nstenergy = 100
nstlog = 10000
nstxout_compressed = 0
gen_vel = yes
gen_temp = 300
continuation = no

Here, we reduced the time step to 1 ps for a higher accuracy in equilibration and let the total simulation

time amount to 200 ps. The frequency of energy output is increased to 0.1 ps to get better statistics

when we analyse these. In contrast, coordinate output is not necessary at all. Preparing and running a

simulation with the given settings passed as nvt.mdp text file could look this:

gmx grompp -f nvt.mdp -c ../ions.gro -p ../topol.top -o nvt.tpr
gmx mdrun -nt 6 -deffnm nvt -pin on

A quick equilibration run like this does not require a lot of resources. On 6 CPUs one can expect a

performance of about 10 ns d−1 for the langerin CRD, which makes the run finish in under 15min.

Figure 12.5 shows temperature, pressure, and energy evolutions for equilibration runs with different

tau_t values. Note right away the small drift in the energy that is, however, normal and not to worry

about.

Figure 12.5 Langerin NVT equilibration
Temperature, pressure, and conserved energy evolution in 200 ps simulations using a velocity-rescale thermostat

(GROMACS 2020) with coupling values of τT = 0.01, 0.1 (default), or 1 ps. The mean µ over the last 75% percent of

each trajectory is marked with a dashed black line. A least-squares fit of the data measuring the drift ∆ is added with

a red line.

The output of these equilibrations looks satisfactory as the temperature fluctuates stably around an

average that matches the set target value and has essentially no drift for all tested coupling values. The

Dissertation J.-O. F. Kapp-Joswig 131

Ensemble equilibration

equilibration is fairly quick so that we also could have chosen shorter runtimes, say 50 to 100 ps. It

can be seen how a weaker coupling (τT = 1.0) leads to slightly slower equillibration but still yields a

good result. In production we can therefor safely use this value. A fluctuation of the instantaneous

temperature about a few degrees is expected due to the small size of the system. As figure 12.4 illustrates,

the fluctuation is less pronounced for the larger non-protein group.

Figure 12.6 Thermostat coupling groupsThe temperat-

ures for the two groups protein and non-protein are equally

well equilibrated. Fluctuations are notably reduced for

the larger solvent group. The plot corresponds to an equi-

libration with τT = 0.01 (compare figure12.5).

Pressure is not controlled yet but stable as well. Since we want to simulate at a reference pressure

closer to ambient conditions, though, we will turn on a barostat next. In recent GROMACS version, a

stochastic cell rescaling (C-rescale) barostat is available that can be used for equilibration and produc-

tion equally well.[381] Prior to this, one usually needed to employ two separate NPT equillibrations:

one to quickly reach the reference pressure, and one to sample from the correct ensemble. Figure 12.7

and 12.8 show equillibration runs to this effect using first a Berendsen and than a Parrinello-Rahman

barostat with different coupling constants. The runs were continued from the NVT run with the

smallest coupling value, which was now set to τT = 0.1 in all runs. The second pressure equilibratation

was continued from the first with τT = 1. As can be seen from the figures, the first run equillibrates

very quickly, pressure and density are well maintained, and the coupling constant has no big impact.

Notably, though, the density fluctuates less with weaker coupling. For the Parrinello-Rahman barostat,

the reference pressure is slightly less well maintained with larger coupling constants and the density

starts to oscillate over longer time intervals. We should therefor leave the coupling at a value close to

τp = 1 in production.

132 Dissertation J.-O. F. Kapp-Joswig

Ensemble equilibration

Figure 12.7 Langerin NPT equilibration (1)
Temperature, pressure, and density evolution in 100 ps simulations using a Berendsen barostat (GROMACS 2020)

with coupling values of τp = 0.1, 1 (default), or 10 ps. The mean µ over the last 75% percent of each trajectory is

marked with a dashed black line. A least-squares fit of the data measuring the drift ∆ is added with a red line.

Figure 12.8 Langerin NPT equilibration (2)
Temperature, pressure, and density evolution in 100 ps simulations using a Parrinello-Rahman barostat (GROMACS

2020) with coupling values of τp = 1 (default), 5, or 10 ps. The mean µ over the last 75% percent of each trajectory is

marked with a dashed black line. A least-squares fit of the data measuring the drift ∆ is added with a red line.

Dissertation J.-O. F. Kapp-Joswig 133

Part V.

Clustering algorithms

{ 13 }
Clustering—the basics
Terminology and definitions

C
lustering¹ is an analytic process that identifies associations of some kind (i.e. clusters) among

a number of considered objects. Phrasing this differently, ‘clustering is a synonym for the

decomposition of a set of entities into natural groups’.[382] The word ‘natural’ appearing in this quote

indicates already that this definition leaves room for interpretation. general
definition

Clustering as a task has as such no

precise, unambiguous goal, and what a cluster actually is can not be universally defined. Sometimes,

clustering is even reduced to just achieving ‘a grouping of objects’ as a common denominator without

further specifications.[383] A sorting of arbitrary objects into groups can be done in many different

ways, and how it is done best, does usually depend on the question of why it is done. The same set

of objects can be clustered based on all of its properties or only a selection thereof, and even if the

same properties are used, different clustering approaches will in general yield different results. I will

proceed on the common ground, that clustering tries to establish some sort of relation between the

clustered objects, meaning that objects within the same identified group should be alike with respect

to (some of) their properties, and in reverse, objects in different groups should be less alike. This still

rather open notion can be expressed as the paradigm of object
relationship

strong within-cluster relationship versus weak
between-cluster relationship, that should be satisfied by a structure found among objects through a

clustering.[382] How different clustering techniques understand the broader notion of relationship,

will be discussed in section 13.2.

Obviously, relationships among objects can be subjective and finding relationships has a lot to do

with human intuition. Humans are in a way intuitively very good at the task of clustering objects

visually by distinguishing different kinds of objects according to spatial proximity, colour, or other—

sometimes oblivious—criteria. Just by looking at a set of objects, we can often immediately see or feel

how individual objects could be appropriately split into groups. human
analysis

The problem is of course, that not

every set of objects can be conveniently visualised and even worse, our intuition would depend on the

exact way how the visualisation is achieved. Additionally, human analysis is usually limited to a rather

low number of objects or a low number of simultaneously considered properties, not to mention that

while we may be able to identify groups of objects in an instance, documentation and isolation of the

result to make further use of it is more often than not extremely tedious.

Figure 13 should illustrate the ambiguity that usually accompanies clustering tasks with a casual

example. It shows a photograph of plastic ducks which can be analysed by clustering in many different

ways. Most important would be the question, what the clustering should be done for. Do we want to

split the image into areas of different colour so that each identified cluster contains pixels of related

colours? a casual
example

Do we want to identify groups of pixels that form individual ducks so that each cluster

contains only the set of pixels for one respective duck? Or do we want to identify groups of ducks,

that is for example ducks with a certain orientation or local rafts of ducks? The overall goal may be

¹The term clustering will be used here either as a verb to describe the act of performing the respective analysis (to cluster

objects), or as a noun to describe the outcome of the analysis (a clustering of objects).

Dissertation J.-O. F. Kapp-Joswig 137

13. Clustering—the basics

accomplished by either considering individual pixels or entire ducks or parts of the ducks as the set of

objects to cluster and the examined object properties will be different in each case. Along the line,

there are many open detail questions: how fine should the clustering be? Do we only want to separate

red from yellow or do we want to distinguish different shades of yellow? Is there a maximum number

of clusters we want to deal with? Should each cluster be restricted to contain a minimum or maximum

number of object members? Some of these clustering tasks can be in principle well done by human

visual analysis but in practice this is seldom really feasible or efficient.

Figure 13.1 Clustering an image of plastic ducksThe picture

on the left shows a crowd of plastic ducks. The formulation of

a clustering task involves several questions: what do we want to

achieve—a separation into areas of different colour? A grouping

of pixels belonging to each duck? A grouping of related ducks?

What do we consider as objects—individual pixels? Individual

ducks? By which property do we want to cluster—colour of pixels?

Orientation of ducks? For many of these tasks, we have an intuitive

idea about what the result looks like. Photo by Marcus Lenk on

Unsplash.

Computer aided clustering schemes try to produce fast and reliable groupings of possibly very large

numbers of objects based on objective, quantitative criteria.computer
analysis

As such, computer analysis is supposed

to complement intuition driven human analysis. It turns out, however, that it is not an easy endeavour

to find automatic clustering schemes that are universally adequate. A vast number of clustering

techniques has been proposed, based on various underlying principles, expressed in many different

method frameworks, and realised through an even larger number of concrete implementations of

the respective algorithms. The reason for this might be, that clustering commonly serves a specific

practical purpose and the question of what a clustering scheme should do and the notion of what a

cluster should be, depends on the formulation of the clustering problem—which in turn varies strongly

among disciplines. Different clustering approaches have been developed before different application

backgrounds, making different assumptions about the clustered objects andmaking different demands

on the clustering results.[384] The matter is complicated by the fact that clustering approaches are

hard to compare with each other and that in general it cannot be argued about the right or wrong of a

specific clustering result. Clustering schemes produce clusterings in accordance with their underlying

design. In this sense, any clustering result is basically correct—disregarding of course that clustering

implementations may contain bugs that make them incorrect. This does not mean, however, that

any clustering result is also relevant or meaningful in any situation. The question of what is a good

clustering is biased by the view and beliefs of whoever uses it.[384] Consider the six different groupings

of ball-like objects in figure 13.2. Based on a personal opinion, you may find one of the groupings

most persuasive but without further context all of them are equally appropriate.

Figure 13.2 Clustering is impreciseThe

formulation of what a clustering should

achieve and the definition of what a cluster

should be is ambiguous and depends on

the perspective of the user. All the cluster-

ings on the left can be legitimate (including

the trivial case of just one group).

138 Dissertation J.-O. F. Kapp-Joswig

https://unsplash.com/@marcuslenk?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/rubber-duck?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

13. Clustering—the basics

Eventually, the usefulness of a clustering result with respect to the initial intention decides whether

it is indeed valid. The validity of a clustering result can be effectively judged only either by an expert

through careful analysis of the obtained clusters (calledmanual evaluation) or by a further use of the

clustering in yet another application to deliver a result that can be better evaluated (indirect evaluation).

Manual evaluation puts the focus on human intuition (or let’s call it expertise for that matter) back

on the table. manual
evaluation

Expert users need to have a certain expectation about the result of a clustering that

is predicated on an intuitive or experience-based idea of the identified clusters, which may also be

called some sort of domain knowledge. A clustering is good, if it meets the expectation. Clustering

schemes can be chosen or results can be refined in order to match the expectation as closely as possible.

Things become difficult, though, if manual inspection, which mostly means visual inspection, is not

feasible for example when a clustering contains many groups or if groups are split based on many

object properties. A fundamental issue about expectation is also that it could be unjustified. If a

clustering does not meet the expectation, it could be either the clustering or the expectation that

needs adjustment. It can also be a problem, if there is no expectation. In many practical situations,

it is not exactly known what kind of clustering is most suitable for a given set of objects. Generally

speaking, clustering is often employed in the hope of finding some sort of structure in the set of

clustered objects. What is actually done by a clustering process is that a certain structure in accordance

with the design of the chosen clustering method is imposed upon the objects.[385] Clustering always

produces a structure as a kind of hypothesis about the clustered objects[384] but there is no guarantee

that this structure is actually well-founded or—to make a connection to the introductory definition of

clustering—the natural structure among the objects.

Indirect evaluation can partly counter the vagueness that we are confronted with when the quality

of clusterings should be assessed. Instead of comparing clusters obtained by a specific procedure to a

subjective expectation that may still be flawed, it can be helpful to indirect
evaluation

get objective feedback from an

application which the clusters are used for. The clustering result itself is of secondary importance if it

proves functional for something that should be done with the clustering. The result of a subsequent

step validates or invalidates the clustering step. Unfortunately, such indirect evaluation is not always

practical, for example because the groups obtained through a clustering are themselves the result

of interest or because the application they are used for does not give a definite positive or negative

response. It can also be problematic, if the validating application gives falsely positive feedback, that is

if things seem to work well but they actually do not. Similarly, things may work well in an application

for the wrong reason which makes it difficult to infer anything about the quality of a clustering in

general. An example for indirect evaluation with a direct connection to the content of this thesis

would be the construction of kinetic Markov-models from molecular simulations. In this context,

clustering is used to define conformational (micro-)states on top of which the model is estimated. In

principle, a good clustering is one that allows the construction of a good Markov-model. In reality,

the question whether one has got a good model is not that straightforward, though, in particular

not if the aim is to rank clustering results quantitatively. Moreover, also a suboptimal clustering, for

example one where certain conformational states (i.e. relevant information) are missing, may give a

seemingly good model.

There are two other forms of clustering validation that are worth mentioning: internal and ex-
ternal evaluation. Internal evaluation tries to assess the quality of a clustering result based on the

corresponding grouping of objects itself. Making assumptions about how identified clusters should be

constituted in the ideal case, clustering results can be quantified with respect to these assumptions. internal
evaluationIn fact there exists a whole bunch of statistical measures that can be used for checking to what extent

a clustering satisfies some idealised theorization. A few of them will be discussed in section 14.3

in the context of k-means—a particular clustering approach for which internal validation criteria

can be well applied. There is, however, the potential risk of running into a circular argumentation.

Dissertation J.-O. F. Kapp-Joswig 139

13. Clustering—the basics

A conjecture about what ideal clusters are, is likely to be one that could be used as the underlying

principle of a clustering method in the first place. Clustering schemes that find clusters according

to some criterion for how the resulting clusters should be organised will of course be considered

favourable by a validation that uses the same criterion. Clustering schemes on the other hand that are

based on different assumptions, will be probably considered less favourable. An agreement with a

certain validation criterion is therefore only meaningful if different concrete clustering algorithms,

based on the very same principle, are compared to find out which one produces clusterings in closest

agreement with the initial clustering objective. In other words, internal validation can proof if a

specific algorithm or implementation is successful in realising an underlying principle. Conversely, an

agreement or disagreement of a clustering result with a validation criterion tells us basically nothing

if it is not the intend of the clustering method to satisfy the validation criterion in the first place. In

any case, internal validation measures may just be nonsensical because the assumption they are based

on are not aligned with the actual nature of a specific object set, and the validity of the validation

technique itself often needs to be scrutinised.

External validation uses a reference clustering to compare that to the result of a specific clustering

method. It assumes that for a given set of objects the true groups are known so that the groups

obtained in a clustering can be judged by the number of individual objects correctly assigned to a

certain group. Because it is in general impossible to know the true group structure of arbitrary object

sets, external validation uses exemplary benchmark sets for which it is presumed that the inherent

groups are obvious or at least apparent to the expert that created the example.external
validation

These sets are often

synthetic and relatively simple. Benchmarking different methods of clustering against an array of

representative test object sets, can give valuable insight to the fitness of a method for a given purpose.

It can tell us, if a clustering solves a designed problem in the desired fashion and can reveal major

differences between clustering techniques. It can also be used to check if a specific clustering algorithm

produces results in line with its own principles. On the other hand, a good clustering performance in

benchmarks can not be transferred one-to-one to the assessment of realistic objects sets. It can only

give a hint if a clustering method is in principle suitable for the analysis of a specific object set under

the constraint that the set in question resembles the benchmark set but it can not validate the actual

clustering result. And yet again, benchmark sets are based on certain assumptions about identified

clusters—assumptions that may be flawed because they are based on intuition or because they were

made to comply with a specific purpose or idea about clustering.

Clustering is a complex and sometimes confusing topic that entails a fair amount of tension

between objectivity and intuition—between theoretical conciseness and practical relevance. It can be

understood from multiple standpoints and its proper usage depends on perspective, which makes it

not surprising that the terminology in the context of clustering is often not very consistent. Despite

all this, a combination of computational clustering techniques based on objective criteria with human

inspection and decision making can be very powerful.[386] In practice, clustering is often a tool for

exploration and a way to get some relational insight about the considered objects from different angles.

It cannot be considered a tool that provides definitive answers about the actual group structure of the

objects in all cases. Acquiring knowledge through clustering, is often an iterative and incremental

process. Clustering is applied to various problems in a wide array of scientific and industrial fields.[387]

A very early documented example goes back to 1855 when during a massive cholera outbreak in

London, cases of death were tracked on a city mapclustering
applications

and revealed major sources of infection where they

accumulated in clusters.[388] Of course neither the term cluster in the present formal sense nor the

respective analysis has been established at this time, although an intuitive comprehension of object

groups may as well existed already much earlier. For instance, [383] names Aristotle’s classification of

living things as one of the first-known clusterings. Clustering as an acknowledged computational tool

has its roots in the 1960s beginning with biological taxonomy.[385, 389] Naturally, the focus of this

140 Dissertation J.-O. F. Kapp-Joswig

13. Clustering—the basics

thesis lies on the clustering of molecular objects, that is conformational snapshots obtained from MD

simulations, which experienced an upswing in the 1990s.[390–392]

To cluster objects usually means to put group labels on individual objects that indicate a

membership. Clustering procedures can be technically discriminated based on how this assignment is

made: forms of object
labelling

in the simplest case, each object will be given exactly one label, e.g. an integral number (object

a belongs to group 1, object b to group 2, and so forth). If in the end all of the initially considered

objects are labelled, the clustering is called complete, or exhaustive, or is described as full clustering.

The property of assigning objects to one and only one group makes a clustering exclusive, hard, strict
or crisp. If on the contrary, some of the objects may be left out of the assignment—that is they are

treated as noise or outliers—the clustering can be called partial or explicitly a clustering with outliers.
Furthermore, the counterpart of hard clustering would be either overlapping if objects are allowed to be

a member of more than one cluster, or soft (also fuzzy) if objects are assigned to clusters with a certain

degree of membership. Probabilistic label assignments are more or less the same as fuzzy just with the

additional flavour that group memberships are seen as probabilities while the true memberships of

objects to groups are assumed to be crisp.[383]

To assign group labels to objects is also the aim of classification which describes the association

of objects into one of multiple classes or categories. Traditionally, clustering can be therefore seen as

a form of classification and both are in fact widely used as synonyms in literature especially from

a statistical standpoint.[393] clustering
vs.

classification

Arguably, they are not referring to the same thing, though. On the

one hand, classification through clustering is possible as the clusters identified by clustering can be

interpreted and used as categorical classes. On the other hand, clustering is not necessarily always

classification because the resulting clusters can be interpreted and used differently, e.g. as a form of

discretisation or condensation. Moreover, classifications can be done not only through clustering but

through a variety of other techniques. In machine learning terms, clustering and classification are

predominately distinguished more strictly.[383, 394] Clustering can be understood as an unsupervised
learning process through wich objects are labelled without any kind of labels already being present that

could guide the procedure. Clustering basically invents the labels in the first place.[384] Classification

of objects on the contrary is equivalent to object labelling with present labels for those or other objects

that are used to control the process, which is understood as supervised learning. Classification uses

labels that have been established through something else. If clustering is used for classification, it may

be referred to as unsupervised classification to discern it from forms of supervised classification. It

should be noted, however, that this differentiation is softened by the fact that there is indeed such a

thing as semi-supervised and supervised clustering.[395, 396] Coming back to the somewhat silly

duck example at the beginning in figure 13, one could ask now the question if humans are actually

very good at intuitive clustering or rather at classification. Can we identify individual ducks because

we can cluster them ad-hoc or because we already know from experience what a duck looks like? The

difference between the process of grouping objects into groups that are de facto unknown and created

while the grouping happens—independent of previous groupings—and that of grouping objects into

groups that are already fixed may be subtle but it contributes to the overall bewilderment that may at

times accompany clustering as an analysis tool. In any case, it can make a rather big difference for the

choice of clustering methods whether they should be used to classify data or not.

Up to here, we rather abstractly talked about ‘objects’ as the entities that are being subjected to a

clustering. The next section will try to clarify what this actually means concretely for computational

clustering—using either the concept of objects as points embedded in a metric space or as nodes in a

graph network.

Dissertation J.-O. F. Kapp-Joswig 141

Data sets and representations

13.1 Data sets and representations

The topic of clustering that is concernedwith finding groupings of objects based on relationships

between these objects, leads us to the concept of data. To cluster objects means to cluster data of some

specific shape or form. The rather open term data set, i.e. a collection of data, is unfortunately in

turn not defined very sharply and its use varies among disciplines. According to the UNECE cited

in the OECD glossary of statistical terms,[397] ‘data is the physical representation of information in

a manner suitable for communication’[398].general
definiton

Depending on the actual context, the kind of stored

information can be very different. As far as we should be concerned throughout this chapter, a data

set is a collection of identically structured records where each record is basically a listing of values for

arbitrary variables. Following a particularly practical definition in the IBM z/OS documentation, a

record in a data set ‘is the basic unit of information used by a program’[399]. As such, records can be

usually understood as tabular data, which makes a data set essentially a data table (a file) in which

each column stands for a variable and each row represents a single coherent group of values for these

variables—neglecting the complexity that is posed by a multitude of file-formats that structure this

information in different ways. Alternative names for records are examples or samples. An individual

variable within a record can also be referred to as a field or feature, and its values (a single datum) can

be of numerical, ordinal, or nominal nature—or actually of any other imaginable abstract type.

A classic example is Ronald Fisher’s Iris plant data set which collects 150 records of flowers for

which the sepal and petal length and width (the dimensions of two different leaf types) have been

measured (see table 13.1).[400]Iris data For each measured flower, additionally the botanical class (one of

setosa, versicolour, or virginica) is known.

ID sl sw pl pw class

1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa

. . .

Table 13.1 Extraction of Fisher’s Iris plant data set Each
entry is marked with a unique record ID and identified with

a category (class). The quantities sl (sepal length), sw (sepal

width), pl (petal length), and pw (petal width) are measured

in centimeters.

In the following we will have a closer look at how to represent, visualise, and analyse a tabular

data set like this before the background of clustering. Fisher’s Iris plant data set has four real-valued

numeric features with identical physical dimension (a length in centimetres). These features as such

span a feature space in which each record can be represented as a single point, i.e. a feature vector in

four dimensions. The data set of n = 150 entries can be generally denoted as

D = {x1, ..., xn} , (13.1)

where each data point is a sample from the m = 4 dimensional feature space xi ∈ X with xi =
(x i ,1 , ..., x i ,m). In this special case, the feature space coincides with R4

>0.feature space For clustering analyses, it

is generally beneficial if the feature space is a real space X ⊂ Rm because then basic mathematical

operations with respect to the samples in a data set (in particular distances between points) are

well-behaved, and in fact there are clustering methods that do explicitly depend on this. Figure 13.3

shows a visualisation of the Iris data as two separate 2-dimensional projections for the sepal and the

petal features. Each data sample appears in the plots as a single point at coordinates corresponding

to the values of the respective orthogonal features, and coloured according to the known biological

flower class of the sample.

142 Dissertation J.-O. F. Kapp-Joswig

Data sets and representations

Figure 13.3 Iris plant data
set with biological classes
Data points plotted in the

4-dimensional feature space

of sl (sepal length), sw (sepal

width), pl (petal length),

and pw (petal width) with

their biological classifica-

tion indicated by colour.

For the representation of this tabular data set in a computer program, the data can take the general

form of a n×mmatrix D, point
coordinates

so that there is one row for each data point and one column for each feature

and the matrix element Di j holds the jth attribute of the ith data point. Different programming

languages provide their own concrete data structures for this. In Python, the native choice of data

structure would be a list of lists which would look for the Iris data like:
D = [

[5.1, 3.5, 1.4, 0.2,],
[4.9, 3.0, 1.4, 0.2,],
[4.7, 3.2, 1.3, 0.2,],
[4.6, 3.1, 1.5, 0.2,],
...

]
coordinates_i = D[i]

This can be replaced by a ndarraywith the third party library NumPy, or with a DataFrame in Pandas,
but there is a wide bouquet of other structures to represent this kind of information. Usually, the

important characteristic property of these ‘matrix’-like data structures is that they are indexable (allows

access to the element i j) or iterable (allows to loop over all points). Implementations of clustering

methods may make strict requirements on how the data is stored and how individual points (or better

their coordinates) are accessed.

While for clustered objects identified with points in a (metric) data space different cluster methods

can make direct use of point coordinates, it is often not the location of the points itself that is of

interest but only the spatial distance between them. pairwise
distances

So instead of representing a data set as a n ×m
matrix of coordinates, it can be possible (or required) to have a n × n distance matrix of pairwise

distances where each element Di j holds the distance between point i and point j. In principle, the

same concrete data structures as for point coordinates can also be used for distances, so using the

Euclidean distance for the Iris example one would have something like:

D = [
[0.00, 0.54, 0.51, 0.65, ...],
[0.54, 0.00, 0.30, 0.33, ...],
[0.51, 0.30, 0.00, 0.24, ...],
[0.65, 0.33, 0.24, 0.00, ...],
...

]
distance_ij = D[i][j]

Similar to a data structure for point coordinates, central properties of distance data structures are

that individual points (or rather their distances to other points) can be accessed by some form of

indexing and that one can iterate over all objects in the data set. It should be noted, though, that the

memory complexity for distance matrices of O(n2) can prohibit the explicit storage of all matrix

Dissertation J.-O. F. Kapp-Joswig 143

Data sets and representations

elements for larger data sets, so that sparse data structures should be leveraged, which for example

avoid the storage of 0-valued elements and the duplicate storage of symmetric elements. In this way,

the number of physically stored distances can be reduced to at most (n2 − n)/2. Distances can also

be given implicitly as a distance function while still only point coordinates are physically stored. A

distance metric d ∶ X × X → R is a function that maps two points x and y of the data space to a value

so that the following is fulfilled:

d(x , y) ≥ 0 non-negativity (13.2)

d(x , y) = d(y, x) symmetry (13.3)

d(x , y) = 0 ⇔ x = y indiscernibility (13.4)

d(x , y) ≤ d(x , z) + d(z, y) triangle inequality (13.5)

For sampled data in a data set D, the identity of indiscernibles 13.4 can usually not hold because a

data set can contain duplicates. If two samples have identical coordinates, a distance between them

should be zero, but from a zero distance does not follow that two points are the same sample so that

equation 13.4 becomes d(x , y) = 0 ⇒ x = y. It is a practical question, if duplicate samples should be

removed from a data set prior to a clustering. In the context of clustering, the concept of pairwise

object distance is construed within the broader concept of object similarity that will be addressed

further in section 13.2. If distance evaluations are decoupled from the general internals of a clustering

method, it can be said that a clustering operates on a latent space that is the actual data space can be

unknown or is regarded irrelevant for the grouping into clusters.

Taking the representation of a data set through pairwise distances one step further, it is also possible

to look at the data in terms of neighbourhoods.point neigh-
bourhoods

A clustering may depend on the information if two

points are considered neighbours of each other rather than on how far two points are away from each

other exactly. There are two basic, practically used forms of defining neighbourhoods derived from a

distance function: fixed radius near and k-nearest neighbourhoods. Using a fixed distance (radius) r,
the sampled neighbours of a point x in the data set can be denoted as the set Br

Br(x) = {y ∈ D ∣ d(x , y) < r} open-ball (13.6)

or

Br(x) = {y ∈ D ∣ d(x , y) ≤ r} closed-ball (13.7)

that is the collection of samples that lie within or below r measured from the location of x. While it

may make a fundamental mathematical difference if Br is defined to be the open-ball or closed-ball

around x, it is usually considered a technicality when it comes to clustering. The same goes for the

question if y = x should be contained in the neighbourhood or not, which means if formally a point x
is its own (closest) neighbour. Note that the neighbourhood of a point is in this sense directly the near

neighbourhood with respect to r and not any set of points containing Br . Instead of a fixed distance,

the k nearest samples to a point can be used to define neighbourhoods as the set Bk

Bk(x) = {y ∈ D ∣ d(x , y) ≤ dk(x)} (13.8)

where the k-nearest distance dk from a point x is the distance for which there are at least k points

at d(x , y) ≤ dk and at most k − 1 points at d(x , y) < dk . Again it may be optionally required that

y ≠ x. Other definitions of neighbourhoods—derived from distances or not—are conceivable. For the

choice of data structures to represent neighbourhood information there are multiple options among

which there are two fundamentally different approaches. The first would be to use a n × n matrix

comparable to a distance matrix but with binary entries indicating pairwise neighbour relationships

in a true/false manner, which could result in the following for the Iris example when a fixed radius

r = 0.52 is used on the previously shown distances:

144 Dissertation J.-O. F. Kapp-Joswig

Data sets and representations

D = [
[1, 1, 0, 1, ...],
[1, 1, 0, 0, ...],
[0, 0, 1, 0, ...],
[1, 0, 0, 1, ...],
...

]
is_neighbour_ij = D[i][j]

This type of matrix can be called an adjacency matrix. Since it contains a lot of 0-valued elements in

some cases, this type of information is prone to be stored in sparse data formats. Alternatively, it is

possible to represent the same information in the form of a sequence of neighbourhoods, for example

by keeping a list of point indices to refer to the neighbours of each point:

D = [
[0, 1, 3, ...],
[0, 1, ...],
[2, ...],
[0, 3, ...],
...

]
neighbours_i = D[i]

The term neighbour list is sometimes used in this context but it is not exactly optimal because it can

be ambiguous whether it refers to the neighbours of an individual point (i.e. a single neighbourhood)

or the full list of neighbourhoods. It is usually again an important property of these data structures

that points (that is their neighbours) can be indexed and that one can iterate over all points. As it is

the case for distances, it may be possible that neighbourhood determination can be decoupled from

the actual clustering.

A universal pattern behind the representation of a data set either in terms of object attributes (point

coordinates), pairwise distances, or neighbourhood relations, is to understand a data set as a graph in

which each object is a vertex and distances or neighbour relations are indicated by possibly weighted

edges (see also chapter 7). graph dataThinking about data sets as graphs is really more a mindset and it is not

tied to a specific data structure. In fact, all the presented matrix-like data structures can be viewed as

manifestations of graphs making the node-edge nature of data objects more or less explicit. The graph

picture is more general than a certain conceptualisation of a specific type of information because it

unifies them all. A node in a graph, i.e. an object in the data set, may have attributes that may in turn

correspond to coordinates in a metric space—but this is not actually required. Edges between nodes

can encode distances or neighbourhood relations, which may be derived from object coordinates or

may be the primary source of information, as a general form of connectivity but this is again optional

(the graph does not need to be complete). Note that the terms distance, adjacency, and as we will see

later (dis)similarity or also affinity, and the associated matrix types can become a little bit blurry in

general here. All have in common that they correspond to edge weights of an (implicit) graph and

while it can make sense to use one of them over the other depending on the situation, they are also

often used interchangeably. It depends on the clustering method if it is practically advantageous to

think about the data as a graph and which kind of information is captured in it.

On the other hand, there are certain data structures that are especially valuable for the representation

of graph data because they alleviate certain operations beyond the access of individual points and

iterations over the data set. In particular, these operations are membership lookups, the addition

and removal of data objects, the splitting and merging of data (sub)sets, and the modification of

inter-object relations. A simple, explicitly graph-like representation of the Iris data using a Python

Dissertation J.-O. F. Kapp-Joswig 145

Data sets and representations

dictionary for the set of nodes and a Python set for the set of edges (indicating binary neighbourhood

connections) could look like this:

D_nodes = {
0: [5.1, 3.5, 1.4, 0.2,],
1: [4.9, 3.0, 1.4, 0.2,],
2: [4.7, 3.2, 1.3, 0.2,],
3: [4.6, 3.1, 1.5, 0.2,],
...

}
D_edges = {

(0, 1), (0, 3), ...
}

Many specialised implementations of graph data structures are available in different programming

languages, the networkxmodule being only one example for a third party Python package for exactly

this purpose. A plot of the Iris data in terms of a graph is shown in figure 13.4.

Figure 13.4 Iris plant data set as a graph Data points

plotted as nodes in a graph coloured by their biological

classification. The edges are scaled in length by weights

corresponding to the Euclidean distance between the data

points. Distances d(x , y) > 3 have been omitted.

We stated that the Iris data feature space is a real space, and so it can be the case for other

data sets, in particular for MD data where the considered data space is often a configurational space

with (projected) cartesian coordinates. Generally, however, the feature space associated with a data set

does not have to be restricted to real valued components as the records in a data set can be composed

of basically arbitrary variables.non-numeric
features

The graph perspective on the clustered objects becomes even more

appropriate then because graph nodes can be equipped with any attribute and non-standard attribute

combinations do not need to be forced into a strict matrix-like layout. Care needs to be taken, however,

in these cases about how basic mathematical operations can be defined. Without going into great

detail of working with non-numeric data and the problems that it can involve, here are a few general

points to keep in mind. It is often possible and good advice to convert the features of a data set in a

way that makes them numeric.

For example, binary categorical values (e.g. yes/no, true/false, present/absent) can usually be

represented by 0 and 1 respectively.binary features It just may need to be considered that to compute a distance

between points in a binary space, the Euclidean distance may be not very appropriate and other

distance measures should be preferred. Take for example, the following data set of three points with

four binary attributes

D =[
[1, 0, 1, 1],
[0, 0, 0, 1],
[0, 0, 1, 1],
]

The Euclidean distances of d0,1 =
√

2 and d0,2 = 1 between the points are not very intuitive while

the Manhatten (or in this case equivalently Hamming) distances d0,1 = 2 and d0,2 = 1 can be well

interpreted as the number of features in which two points differ.

146 Dissertation J.-O. F. Kapp-Joswig

Data sets and representations

Things become more difficult with nominal categorical values (e.g. countries DE/FR/GB) where

the only valid operations are absolute comparisons (e.g. DE = DE, FR ≠ GB). nominal
features

A common approach

to transform these, is to introduce a number of dummy features, one for each categorical value that a

nominal feature can adopt. This is called a one-hot encoding. A single nominal feature comprising

three categories would be replaced by three binary features like shown here with an example of four

data points:

D_nominal = [
["a"],
["b"],
["c"],
["a"],
]

D_one_hot = [
[1, 0, 0],
[0, 1, 0],
[0, 0, 1],
[1, 0, 0],

]

It is now possible to use the Manhatten distance again so that points differing in one nominal feature

have a distance of d = 2 from each other. Note, however, that the Hamming distance works well

with categorial data even without the encoding. There are other possible comparisons, e.g. via the

Sørensen-Dice or Jaccard index, just to name a few.

It is arguably most difficult to adequately represent ordinal, categorical values (good/neutral/bad,

low/rather low/medium/rather high/high). ordinal featuresThese can be either treated in the same way as nominal

values which will, however, ignore the fact that there is an ordering in the categories and distances

between each pair of categories are not all equal (e.g. d(good, bad) ≠ d(good, neutral)). Alternatively,

they can be mapped to numerical values (e.g. good: 3, neutral: 2, bad: 1) to reflect the ordering

(that is good > neutral > bad) but it may be difficult to ensure that the numeric distances (e.g. here

d(good, neutral) = d(bad, neutral) = 1) are aligned with the true, intrinsic distance of the categories.

For special data objects or attribute values, it may be furthermore necessary to select specialised

treatments of comparisons. There is for example the Levenshtein distance to compare strings. Espe-

cially problematic may be mixed data spaces with partly numeric, partly categorical features (more on

this further below).

A typical problem with feature spaces can occur when individual features have very different

dynamic ranges, or different physical dimensions or meaning. In particular, this can be the case

for mixed data. Let’s first have a look at the influence of feature ranges. feature rangesFigure 13.5 shows the

histogramed features of the Iris data set and it can be noticed that the distributions for the lengths

features (sl , pl) cover larger intervals than the respective width features (sw , pw). For the calculation

of distances between data points, this can have the consequence that a difference with respect to a

length has a larger influence than a difference with respect to a width, just because widths differences

are consistently smaller than length differences. In other words, individual features may dominate

distance measures.

Dissertation J.-O. F. Kapp-Joswig 147

Data sets and representations

Figure 13.5 Iris plant data feature standard-
isation Feature distributions before (left) and

after (right) standardisation of the features

through z-scaling, i.e. removal of the mean

and normalisation by the standard deviation.

Note that it is not advised to do this in this case.

To counter the effect of disproportionate distribution ranges of individual features, we can apply a

standardisation that will in some sense make each feature equally important. A typical standardisation

protocol is found in the so called z-scaling.z-scaling This will transform feature values (here x j is the jth
component of a single data point) by subtracting the mean of the respective feature µ j and dividing

by the feature’s standard deviation σ j

x′j =
x j − µ j

σ j
. (13.9)

As the result, each standardised feature will have a mean of µ′j = 0 and a standard deviation of

σ ′j = 1. Alternative protocols are min-max scalingmin-max
scaling

that normalises a feature to a given closed interval

[min j
′, max j

′] (e.g. [0, 1]) by subtracting the minimum feature value and dividing by the feature

range

x′j =
x j −min j

max j −min j
(max j

′
−min j

′
) +min j

′ (13.10)

and max-abs scalingmax-abs
scaling

that divides by the maximum absolute feature value and effectively normalises

to the interval [−1, 1]

x′j =
x j

max(∣max j ∣, ∣min j ∣)
. (13.11)

The question is now, if a standardisation or normalisation is actually advisable for the Iris data set.

All features in this set have the same physical dimension and by re-scaling the features, the relative

proportions of the features are distorted.always
normalise?

By scaling the widths to the same ranges as the lengths, we

equalise their influence on distance calculations but this may lead to false interpretations because

the influence of widths and lengths is not the same in reality. Another way to think about it, is that

both width and length are coupled quantities that are two sub-features of say an area-feature. By

re-scaling the sub-features the jointly described feature is skewed. The Iris data set is therefore actually

a counter example in which case a strict feature-wise standardisation is not recommended. If the

ranges are to be scaled, this should be done proportionally. It would be a possibility to scale the sepal

features (sl , sw) and the petal features (pl , pw) as separate pairs, equalising the ranges corresponding

to different leafs while maintaining the proportions of features describing the same leaf but this is still

debatable. Another example in which case independent feature-wise normalisation is not appropriate

are molecular configurational spaces given as let’s say m real-valued features. It is possible to scale all

m dimensions proportionally to a new range but setting all of them individually to the same range

distorts the structural information of the data. Feature standardisation and normalisation should only

be applied if separate features have very different meaning, for example ‘age’, ‘height’, and ‘weight’ in a

data set containing samples of different persons. These features may cover very different ranges (e.g.

148 Dissertation J.-O. F. Kapp-Joswig

Definitions of similarity and clustering categories

height: [150, 200], age: [30, 60], etc.) and a combined distance measure to which each feature should

contribute equally calls for a re-scaling of each feature to say the interval [0, 1].

Different feature ranges are especially encountered in mixed data sets. An example would be a

molecular feature space that contains not only real-valued dimensions but also binary features (e.g.

interaction indicators). mixed dataThe binary features are naturally confined to the interval [0, 1] and to equate

their influence on distance calculations, a proportional re-scaling of numeric spatial coordinates may

be an option. We face, however, a much more crucial problem here because the question is, what

would be a good distance measure to combine binary indicators with spatial coordinates? Obviously,

using the Euclidean distance to which a binary feature contributes a value of 0 or 1 would be difficult

to balance against the influence of the numeric features, that is it would be hard to decide what the

relative importance of the presence or absence of a single interaction is compared to a structural

change along a specific spatial dimension. In this case it may be advisable to use a set of different

distance metrics suitable for a comparison along only a subset of the features and to average over the

weighted contributions from these distances. Such an approach of computing partial distances that

can be re-combined into a single distance is formalised for example in the Gower distance.[401, 402]

In the Iris data set, each record carries a categorical value that associates it with a biological flower

class besides the four measured numerical features. This nominal feature can in principle be included

into the feature space as well if it is seen as a source of information on which basis the data points

should be grouped into clusters. reference labelsHere we want to treat the class field differently, namely as a source

of reference. We can interpret the points of the data set as labelled data and treat the class-field as a

true classification, which can be compared to classifications that are based on a clustering. In other

words, we can use the class field for an external validation of clusterings for the Iris data and we will

consider a clustering good if it is able to reproduce the reference labels. This is based on the premise

that firstly the class field represents indeed true information, i.e. we assume that there is no mistake in

the assigned biological class, and second we will presume that it is actually possible to reproduce the

reference labels using the information of the remaining features.

As a last remark, it would also be imaginable to use the ordering of the records (the record ID in

table 13.1) as a feature on its own. In this particular case it might be not very meaningful because the

ordering of the samples is arbitrary. geometric vs.
kinetic

clustering

It may, however, be the case in other data sets that the ordering

encodes information itself, as for example in MD data were each data point is a structural snapshot at

a given point in time. Clusterings disregarding the ordering of data points that only use the positions

of objects in a feature space can be referred to as geometric clusterings while kinetic clustering on the

other hand tries to incorporate the temporal relation between clustered objects.

No matter how we choose to represent objects in a data set to be analysed by a clustering and

no matter which object properties we consider for this, a clustering C = {C1, ...,Ck} is always a

decomposition of n objects into k subsets (C j ∈ C) ⊆ D. In the next section we will discuss different

clustering approaches in a general fashion while selected methods and algorithms are presented in

chapter 14.

13.2 Definitions of similarity and clustering categories

At the beginning of this chapter, clustering was described as an analytical process to identify

groups of objects that are characterised by strong relationships between objects within the same group

and weak relationships between objects in different groups. This conception is wilfully very open

and a relationship can be basically anything. Practical clustering procedures need to transform it

into something tangible and need to specify how relationships are actually defined and determined.

Based on how this transformation is done and how the clustering works, clustering procedures can

Dissertation J.-O. F. Kapp-Joswig 149

Definitions of similarity and clustering categories

be roughly categorised.clustering
categorisation

These categories should, however, not be seen too dogmatic and are rather

an orientation. Throughout the literature, substantially different categorisations are proposed—and

criticised.[243, 383, 384, 403] We already encountered one form of categorisation previously in this

chapter with the assessment of how clusterings assign labels to objects (e.g. in a strict or fuzzy manner).

This is a very practical way to look at it but it tells us little about the actual clustering. In a way, it is

primarily a modelling decision if a clustering uses a certain type of label assignment and methods can

be flexible in this regard.

Clustering methods can be understood as being comprised of three different aspects. The heart of

each clustering technique is (or I should say should be) amodel that is some idea of what potential

clusters in a group of objects actually are, although the model may not be always obvious for every

method.cluster model Categorisations based on cluster models are popular and I will address a few of them. Most

paramount are connectivity- and prototype-basedmodels. It should be noted, though, that the borders

between models can be blurry and that their association with a specific category may only reflect or

emphasise one model property. A good way to describe the cluster model of a given method can also

be to think about the kind of output that is produced.

A certain model can be paired with an inductive principle, which may be either a mathematical

formalism—an objective function that a model should strive to optimise—or rather a more or less

formal description of how a model should be constructed.inductive
principle

Such an inductive principle provides an

opinion on what is a good clustering. Explicit categorisations of inductive principles are rather rare,

which may be owed to the fact that for many clustering methods the underlying principle is not exactly

easy to grasp so that the focus simply shifts towards the model. When an inductive principle does not

manifest itself in a mathematical formalism, it may also become unclear where the model and the

underlying principle differ. Inductive principle and model need to match each other but in principle

the same model can be evaluated in the light of different objectives and one inductive principle may

apply to different kinds of models.

Lastly, a clustering method needs to be realised through an algorithm while in turn different

implementations are possible for the same algorithm. If a clustering is actually applied, it is an imple-

mentation of an algorithm that eventually needs to be chosen for it.algorithms Clustering algorithms and their

concrete implementations produce a model for the clustered data while an inductive principle suggests

what the best model should be.[384] Methods can be exact in their formulation of an underlying

principle but concrete algorithms may in many cases only provide approximations. Especially, when

there is no concise mathematical formulation for what an algorithm should yield, algorithms are only

heuristic protocols to construct good models. Algorithms are in general very convertible and the

same context (model and inductive principle) can lead to a variety of algorithms and realisations. Cat-

egorisations of clustering methods that claim to be focused on the model or the underlying principle

are sometimes scrambled with a focus on algorithmic or implementation details, that is in particular

the type of data structures that are used or produced. Examples are the categories of graph based or

grid basedmodels. Graph based puts an emphasis on the fact that the output of a clustering is a graph

or that the method explicitly uses a graph representation of the data. With some effort, however, most

if not all clustering methods could be transformed to use some kind of graph structure—particular

ones may just be more obviously suited to be expressed in graph theoretical terms. I would therefore

argue that a description of a model as graph based (possibly as a subcategory of connectivity-based)

is not very informative and foremost a property of the algorithmic formulation or implementation.

Whether a clustering method uses a form of grid, is also more a question of procedure rather than

of what the model for the data is. Of course it can be the case that the cluster model decidedly is

grid based and a grid is the final result of a clustering (possibly with the grid cells as a certain kind of

prototype) but in the way it is normally used, the grid plays often a rather auxiliary role (compare

section 14.5). Many clustering methods can be formulated with or without involving a grid.

150 Dissertation J.-O. F. Kapp-Joswig

Definitions of similarity and clustering categories

A prominent concept to substantiate object relationships is to leverage the term

similarity. Similarity is in fact so abundantly used that many alternative definitions of clustering

include it in their basic formulation. object
similarity

It can for example be found that the aim of clustering is

to identify groups among objects that maximise intra-cluster similarity and minimise inter-cluster
similarity.[384, 387] I personally think, that such a statement can be problematic because of two

reasons: first, against what is suggested here, clustering can by far not always be expressed as an

optimisation problem in which a certain quantity is minimised or maximised. It may of course well

be true that clustering is intrinsically an optimisation (or at least that an objective to optimise for is in

general desirable) and that an objective function can just not be established or discovered, or is too

hard to solve. But the statement does in this form not aptly describe clustering in reality where it can be

studied from a rather procedural level. And second, while ‘similarity’ is used here without obligations,

the term has actually a distinct meaning and by far not every clustering approach does rely on it

literally. We have to be careful to not bloat the concept of similarity to an extend where it just replaces

‘relationship’ in the broad initially proposed definition and becomes essentially hollow. It remains

legitimate to say, that clustering has the aim to identify groups of ‘similar’ objects when it is supposed

to mean generally ‘alike’ or ‘somehow related’ but similarity as such should probably be treated with a

bit of caution. Clustering procedures that use similarity as an underlying idea are based on a similarity

function s(x , y) that maps two objects to a single value. Similarity is something that can be measured

and compared quantitatively, which means it can take either a low or high value. Instead of similarity,

the same can be expressed inversely using a dissimilarity function d(x , y). Such a function can be just

a common distance metric (compare eq. 13.2 to 13.5). A short distance between objects with respect

to the space they are embedded in corresponds to low dissimilarity, i.e. high similarity. Because of the

frequently made analogy between dissimilarity and distance, proximity can be used synonymously

to similarity. It should be noted, however, that similarity measures are not necessarily always classic

distance measures. Similarity and dissimilarity functions can be much less formal than distance

metrics in the sense that neither non-negativity, symmetry, nor satisfaction of the triangle inequality

are strictly required, although especially symmetry may be generally helpful. Possible measures of

similarity include divergences, correlations, mutual information, kinetic distances, but also generic

notions of pairwise object connectivity as the number of shared neighbours (like in the CommonNN

scheme described in section 14.9 and chapter 15 in detail). It can be also something arbitrary like the

number of text messages that are send from user to user in a social network. Thinking about data sets

in terms of graphs, similarity can be expressed as anything that can serve as the weight of an edge

connecting two nodes in the graph.

Similarities can be confined to arbitrary value ranges. They can for example be expressed in a

binary form, i.e. 1 ≡ ‘similar′, 0 ≡ ‘not similar′. similarity
values

Normalised distances (dissimilarities) can be

converted to a similarity via s(x , y) = 1 − d(x , y), so that similarity is restricted to the interval [0, 1],

but it is also possible to have similarities in the interval [0,∞] with a relation s(a, b) = d(a, b)−1

(with d(a, b) = 0 ⇒ s(a, b) = ∞). In principle, similarities can be obtained through any (non-

linear) mapping of distances, say radial functions like for example a generalised Cauchy function

s(x , y; a, b) = 1/(d(x , y)a + b). A combined similarity/dissimilarity measure could furthermore take

on values in an interval as say [−1, 1].

Clusterings that employ a similarity concept, can produce models in accordance with the idea that

based on the similarity of two objects x and y, it can be decided if they should be part of the same

cluster. One should refrain, however, from the tempting conclusion that in reverse two points x and y
are similar (in the sense of a high pairwise similarity value) in general if they are in the same cluster. connectivity

clusteringAlso, an actual maximisation or minimisation of the similarity can not be claimed for all similarity

based clusteringmethods. The property of linking pairs of objects through similarity, affiliatesmethods

with the connectivity-based category of clusterings. To use a set of representative connections between

Dissertation J.-O. F. Kapp-Joswig 151

Definitions of similarity and clustering categories

objects is a kind of model for a data set where clusters are groups of inter-connected objects. Inductive

principles for connectivity-basedmodels can select a set of relevant connections (based on similarities)

and can be rather subtle. Conceptually, pairwise similarity to guide clustering models can for example

take a strong and a weak form. If for any point x in the data set that is a member of cluster Ci the

condition is fulfilled that for any other point y, also a member of Ci , the similarity s(x , y) is larger

than the similarity s(x , z) of x and any other point z in cluster C j with i ≠ j, this clustering contains

strongly similar groups. In a graph picture of the data, this can be related to the identification of

strongly connected sub-graphs. In other words, the strong version requires that points within the

same cluster are strictly more similar to each other than to points in different clusters. Note that this

condition can be fulfilled for more than one grouping of the same object set—in particular it is true

for the trivial cases of having only one group (no actual clustering) and having each object in its own

group (over clustering). For an actual optimisation of some sort, additional requirements would need

to be made as for example that the minimum similarity within a cluster should be as large as possible

(that is the maximum dissimilarity between two points within the same cluster is minimal). The weak

version of this principle, on the other hand, would only require that for any point x in cluster Ci
the most similar point y in the data set is also a member of cluster Ci . In the graph picture, this is

equivalent to a search for connected components. Note again, that without any further specification

this condition can be fulfilled for more than one grouping of the same object set, as well.

A connectivity-based element can be found in many clustering methods and their models. A

common trait of such models is that they do not necessarily make any assumptions about the shape,

size, number, or spreading of the clusters that should be found in a data set. These characteristics

will be just an implication of how individual objects are connected to each other. Connectivity-based

clustering has a predisposition to be formulated using graph concepts. As mentioned already, clusters

can be understood in this way as connected sub-sets within the graph for the whole data set. The term

connected component (see also chapter 7) will reoccur multiple times in the context of connectivity-

based clustering. A universal clustering paradigm within the framework of data graphs isgraph sparsity to state that

the aim of clustering is to maximise within-cluster density and to maximise between-cluster sparsity.

where in this context within-cluster density means many significant connections of objects within

the same group and between-cluster sparsity refers to few connections of low importance between

objects in different groups.[382]

Pairwise similarities between objects are used for example in agglomerative clustering, a family of

clustering methods that will be discussed in section 14.1 in more detail.similarity
clustering

This clustering approach uses,

in addition to similarity, a so called linkage criterion that states how similarity is further treated to

assign objects to the same group. Interestingly, agglomerative clustering does in general not maximise

the within-cluster similarity while minimising the similarity between clusters overall in the sense of

an optimisation according to a global objective function. Instead it provides just an iterative protocol

that yields a hierarchy of clusterings by making a series of locally optimal decisions in the sense

of the linkage formulation. As such, the model it produces for the data is a tree of clusterings in

accordance with a connectivity-based principle. A single optimal solution can be selected from the

model hierarchy only by further requirements for example on the number of identified clusters or

using a threshold on the similarity.

Another broad family of clustering methods that make use of pairwise similarities is spectral

clustering, which will be briefly described in section 14.2. Through eigenvalue decomposition of a

similarity matrix, precisely its graph Laplacian, the input data is embedded into a lower dimensional

space that can reveal the cluster structure. The objects in a data set can then be clustered in this

embedding using a method of choice. Therefore, spectral embedding is arguably only a helpful

transformation that facilitates a clustering and not an actual clustering technique itself. Conceptually,

152 Dissertation J.-O. F. Kapp-Joswig

Definitions of similarity and clustering categories

it is tightly related to the general idea of rearranging a similarity matrix into a block-diagonal form in

which clusters appear as blocks of elements with high similarity values.

Besides clustering methods with a connectivity-based model of how clusters should be identified,

which is more or less directly tied to object similarity (i.e. connections can be found based on a

similarity definition—a connection can be seen as a form of similarity), there are methods that have

a different idea about this. homogeneityOne widely-used alternative approach is to infer that a data set can be

described as a composition of a number of equally behaved clusters. The paradigm for finding clusters

can for these methods sometimes be expressed as amaximisation of within-cluster homogeneity or

generally as the idea of splitting an inhomogeneous data set into more homogeneous subsets. A

similarity concept may play a role here as well but similarity between objects is not fundamental. prototype
clusteringBecause of the shift in the notion of object relationship from pairwise similarity to a comparison of

objects with some shared representative, these methods can be categorised as prototype-based. Such a

method could for example hypothesise that a data set could be modelled by a set of k representatives

µi so that the following objective function is satisfied:

min

C

⎧⎪⎪
⎨
⎪⎪⎩

k
∑
i=1

∑
x∈C i

d(x − µi)
⎫⎪⎪
⎬
⎪⎪⎭

. (13.12)

This objective states that the best model for the data is the one that partitions the objects in such

a way that the sum over some distance function computed for all points within a cluster and the

cluster representative is minimal over all clusters. Each data object will be associated to its best fitting

representative. A popular variant of this is the k-means method when the distance function d is the

squared Euclidean distance and the used representatives are cluster centroids (centroid based is a

special type of prototype-based), meaning the arithmetic mean points of each cluster. This method will

be addressed in section 14.3. In contrast to connectivity-based methods, prototype-based clustering

does commonly make more or less strict assumptions about the number, shape, size, and general

distribution of ideal clusters.

Another example for a prototype-based clustering approach are GMMs also known under the

family of expectation maximisation algorithms (see section 14.4 for an example). Sometimes these

will be explicitly referred to as distribution based models. The idea behind these, is that a data set

can be modelled by a set of overlapping normal distributions. expectation
maximisation

Each data point is assumed to be

sampled from one of these underlying distributions (the prototype they will be associated with) and

the aim of the clustering is to identify the set of distributions that represents the observed data in

the best possible way. The inductive principle can in these cases often be formulated as a likelihood

maximisation. Other related methods may take different kinds of distributions as their basis. Here

it becomes particularly clear that similarity between objects plays a very subordinate role and is

overruled by the aim to find homogeneous groups within the data of which each can be described by

a single simple distribution. In categorisations, these clustering methods are sometimes also called

model based, which, however, makes little sense before the background that essentially every clustering

implies a cluster model of some form.

Yet another principle of clustering models, which should be especially important to us, comprises

the category of density-based clusterings. The central idea from this point of view is that clusters

cover regions in the data space in which the object density is relatively high, and that are separated

from each other by relatively low density. density
clustering

Already early on in the history of clustering, this was

taken as a ‘natural’ notion of clusters.[404] Presumably, it is the ‘discontinuity in “closeness”’ that

makes us intuitively perceive groups of objects when we see them. A density-based model provides a

prescription for how object density can be estimated and consequently how clusters of high density

can be identified. As such it is normally predicated that the data set is sampled from an unknown

Dissertation J.-O. F. Kapp-Joswig 153

Definitions of similarity and clustering categories

underlying probability distribution. For the actual clustering, it is, however, usually not enough to have

a solely density-basedmodel. Eventually, a notion of how object density is evaluated needs to be paired

with either a connectivity-based element so that clusters are identified as pairwise connected (groups

of) objects of relatively high density, or with a prototype-based element so that cluster representatives

are aligned with data regions of high density.

Prototype-based models can be described as being focused on mode seeking, which means they

usually try to identify the maxima of a data distribution. Note, however, that density-based clustering

in general is sometimes referred to as modal clustering. Examples for prototype-based, density-based

clusterings are mean-shift and density-peaks (see section 14.10). Connectivity-based models on the

other hand can be related to the concept of level-sets (see section 14.6) of the approximated probability

density. From this perspective, clusters are universally the connected components of a super level-set.

Examples for connectivity-based, density-based clustering methods are DBSCAN (section 14.7), Jarvis-

Patrick (section 14.8) and CommonNN clustering (section 14.9). As connectivity-based clustering in

general, these clusterings make no assumptions on the shape, size, or number of identified clusters.

Since the notion of level-sets is intrinsically hierarchical, they also produce in essence a hierarchical

tree of clustering results much like in linkage clustering.

Taking a short detour, density-based clustering schemes are also most valuable for the identification

of molecular conformational states from molecular simulations. The notion of a conformation as
an ensemble of molecular structures associated with a potential energy minimum (a region of high

Boltzmann density) separated from other minima by transition regions (of low Boltzmann density)

has a very natural and intuitive correspondence to the density-based clustering assumption.molecular
conformations

The

property of these clusterings that they find the high density regions independent of the spatial layout

of these regions allows to identify molecular conformations truly as what they are, detached from

purely structural information. A conformational ensemble can be structurally quite diverse as long as

the respective atomic arrangements are separated by no (or very low) energetic barriers. Although

density-based clustering is in principle geometric, i.e. does not make explicit use of temporal inform-

ation, the result in a molecular context can be interpreted as kinetically relevant. A low energetic

separation of molecular structures can be equated with fast interconversion, whereas conformations

identified as different clusters will be in relatively slow exchange. The definition of a conformation

as being associated with an energetic minimum is of course somewhat blurry (especially for com-

plicated potential energy surfaces), but so is the definition of density-based clusters. The complete

conformational ensemble of a molecule can be seen as a hierarchy of sub-ensembles. With increasing

granularity, one can split the whole ensemble first into the most clearly separated sub-ensembles

(the ones with the highest barriers in between them) and continue by further splitting along the

smaller separations. Along the way, individual conformations can be considered with varying extent,

shrinking from the complete region they exist in up to the transition boarders, down to a splitting

point or until they are reduced to only the closest structures to the minimum.core sets The term core set is
often used in this context to denote those data points that are a ‘sure’ member of a cluster. Illustrative

examples for this association can be found in applications of CommonNN clustering in chapter 15.

Sometimes, clusterings are categorised by the fact whether they produce a hierarchical or

flat result.² It is true that individual clustering methods can be predominatelyhierarchical vs.
flat

hierarchical or flat:

agglomerative clustering is intrinsically hierarchical while k-means gives a single flat partitioning.

I would argue, though, that it is not profound to a method to be either of it but that it is rather

a consequence of the existence or missing of an explicit objective function according to which a

²Instead of flat, the opposite of hierarchical is regularly also referred to as partitional. I will avoid this, however, since

there can be some confusion with the term partition used to refer to a crisp, non-overlapping, possibly also exhaustive

clustering (e.g. full partitioning vs. partial clustering).

154 Dissertation J.-O. F. Kapp-Joswig

Definitions of similarity and clustering categories

single clustering result can be optimised. Flat clusterings can be often applied quasi-hierarchical by

reusing the method on a subset of the data identified as a cluster. Hierarchical clusterings can be used

quasi-flat by taking a certain level of the hierarchy as a single partition, i.e. by for example applying a

termination criterion. CommonNN clustering is a good example for a method that can be practised

in a flat manner (using a specified density threshold) or fully hierarchically.

Another form of categorisation judges clustering methods by the parameters that they depend on.

Prototype-based methods are typically parametric, (non-)
parametric
clustering

which means that for example the number of

clusters or their constitution needs to be pre-defined. An optimal solution to the clustering problem is

sought given the constrains of the mandatory parameters. The outcome of the clustering can depend

non-trivially on these parameters. In contrast to this, non-parametric clusterings do not depend on

parameters that pre-define the number of obtained clusters or their constitution. They can still use

parameters but these are seen as tuning parameters to set the granularity of the process. The outcome

of the clustering usually varies systematically with these parameters. Parametric clustering can be

related to flat clustering that produces a single result while non-parametric clustering can be related to

hierarchical clustering in the sense that a screening of the granularity parameter produces a hierarchy

of clusterings.[383]

I would like to close this section with mentioning a very different, yet tempting approach to

categorise clustering methods, that is to compare them in terms of the output they produce on

example data sets.[403] Using an index of external validation, it can be evaluated how well the cluster

label assignments obtained through two different methods agree, without assuming that either one of

them represents the ground truth. clustering
clusterings

By comparing a set of clusterings in a pairwise fashion, one does

essentially build up a similarity matrix since the used index of external validation can be interpreted as

a similarity measure between clustering results. Based on this matrix it is possible to cluster clusterings

and to find groups of seemingly related algorithms. This perspective offers a purely assignment centred

approach beyond categorisations based on how clustering methods assign labels, the structures they

produce, how they operate, or what the cluster model is. Any categorisation can only provide an idea

about how a specific method may be distinguished from others but the myriad of available clusterings

may after all be judged solely by whether they find the result that fits the application best.

Dissertation J.-O. F. Kapp-Joswig 155

{ 14 }
Clustering methods
Many tools for the same purpose

T
he pool of available clustering methodologies to choose from is very large. As outlined in

section 13.2, they may differ in the kind of cluster model they try to adapt to the clustered data,

the presence or absence of an explicit objective (that can be optimised in a mathematical sense), and

in the algorithms that will eventually make them usable. Technically, a lot of clustering algorithms are

actually a combination of more than one fundamental algorithm, which can lead to a possibly even

larger number of detailed algorithmic variations and implementations. This can make things difficult

if we want to compare clustering methods from a bird’s eye perspective since what can be ultimately

compared are always only individual algorithms and specific implementations thereof. While in

principle different realisations of the same method should yield the same if not very similar results,

this may not be true in reality in any case, for example when they employ constrains or make decisions

in inconclusive situations. On top of contingent qualitative differences, individual implementations of

basically the same algorithm can vary drastically in their efficiency.[405]

The name used to refer to a clustering can either describe the basic idea that the method is based

on, or rather a specific algorithm, or even just a concrete implementation. In the following, I will

discuss a few commonly used clusteringmethods with corresponding algorithms and (rough) example

implementations. The selection is influenced by whether knowledge about them is potentially useful

to fully understand CommonNN clustering and to put it into context. For each presented method, I

will try to point out what is the cluster model, what could serve as an inductive principle, what are

typical variations, and what are suitable cases of applications, that is for which data sets is a method in

general suitable.

14.1 Linkage clustering

Let’s start our short survey of clustering procedures with one of the ancestral methods

that has its origins back in the early 1950s.[406] Single-linkage clustering is an archetype of connectivity-

based clustering, which makes use of pairwise object similarities or dissimilarities to find groups of

objects. The method aged rather well and is still widely applied. As one of the standard clustering

techniques, it has been used for the development of a multitude of other clustering methods or as a

building block in more complex procedures.

In a nutshell, single-linkage clustering is based on the following idea: the two most similar objects

in a given data set should be grouped into the same cluster. The argument can be continued, so that

the next two most similar objects in the data set should also be grouped into the same cluster, followed

by the next most similar pair of objects, and so forth. principleThis reasoning is intrinsically hierarchical.

It leads to the somewhat unfortunate use of hierarchical clustering as a synonym for single-linkage

clustering and closely related methods. In a bottom-up fashion, objects are iteratively merged into

larger and larger clusters at decreasing granularity of similarity until eventually all objects end up in

Dissertation J.-O. F. Kapp-Joswig 157

Linkage clustering

the same cluster. At each step, merged objects are less and less similar. An alternative term to describe

this bottom-up approach of this method is agglomerative clustering. Figure 14.1 illustrates this process

with a simple example.

Figure 14.1 Single-linkage clustering in a nutshell
Data points are merged iteratively into clusters bottom-up, two data points at a time. In step 1, the two closest (most

similar) data points are connected and form the first cluster. In step 2, the next two closest points are connected

and form a second cluster. In step 3, the two next closest points are already part of separate clusters in which case

the two sub-clusters are merged into a bigger super-cluster. The process is continued until all points are part of the

same cluster or until a stoppage criterion is reached. A user might be interested in either the hierarchy of clusters or

clusters at certain stages.

A hierarchy of clusterings with atomic objects at the bottom and a single cluster containing all

objects at the top is called a full hierarchy. The connectivity-based model that will be produced by

single-linkage clustering is essentially a rooted tree of clusterings. An individual clustering result may

be selected from the hierarchy for example by adding the constraint that a specific number of clusters

should be obtained.stoppage
criterion

Such an additional demand on the cluster result can be seen as a stoppage or

threshold criterion. Instead of the (full) hierarchy, the preferred model for the data will consequently

be a flat clustering.

Figure 14.2 shows an application of single-linkage clustering to the Iris data set. Note, that the used

similarity measure is just the Euclidean distance here. A specification of three target clusters does,

however, not yield a result that is in good agreement with the expectation. We can observe that the

orange cluster has swallowed up the green cluster almost entirely. Such behaviour is not untypical for

single-linkage clustering that has therefore a bad reputation for being sensitive to chaining effects, i.e.

to spurious data points that prevent larger clusters from separating.

158 Dissertation J.-O. F. Kapp-Joswig

Linkage clustering

Figure 14.2 Iris data set single-linkage (3 clusters)
Data points (compare figure 13.3) with cluster labels found by agglomerative clustering

(sklearn.cluster.AgglomerativeClustering using single-linkage). 68% of the

cluster labels match the true classification labels. Non-matching assignments are

marked with squares.

Alternatively, the hierarchical tree of clustering results can be investigated to select a specific

clustering at an appropriate distance (similarity) threshold. A typical way to plot single-linkage

hierarchies to this effect is to use a dendrogram as shown in figure 14.3. In such a plot, the similarity

measure is put on one axis while the indices of individual data points are shown on the other one. dendrogram
Amerge of points and respectively clusters into a bigger cluster is represented by two legs of a tree

that meet at a specific similarity level. From this, we can identify a similarity level at which (among

others) three clusters are obtained that agree better with the expectation (see figure 14.4). The cluster

hierarchy can give deep insight into the structure of a data set. Of course it is also possible to select a

combination of clusters as branches of the tree with differing similarity thresholds. It may, however,

become increasingly difficult to fully grasp these hierarchies when larger data sets are considered.

Figure 14.3 Iris data single-linkage dendrogram
Cluster hierarchy (compare figure 14.2). At the lower end of the dendrogram are individual data points where a

coloured dot indicates the true class label. The legs of the tree show which points are merged into clusters with a

respective distance (similarity) at which the merge occurs. Selection of a distance threshold d = 0.41 results in seven

clusters (coloured legs) among which the three largest clusters match the true classification rather well.

Dissertation J.-O. F. Kapp-Joswig 159

Linkage clustering

Figure 14.4 Iris data set single-linkage (distance threshold)
Data points (compare figure 13.3) with cluster labels found by single-linkage clustering

after choosing a distance threshold from the cluster hierarchy (compare 14.2). 81 %

of the cluster labels match the true classification labels (98% if smaller clusters are

neglected as noise). Non-matching assignments are marked with squares.

The way how such a dendrogram can be communicated deserves special attention and a good

example for that is given by SciPy with the scipy.cluster.hierarchy. Let’s say we have a set of n
data points.SciPy hierarchy In each single-linkage clustering iteration, two clusters a and b are joined to form a

new parent cluster c. Clusters are labelled with successive integers (starting with 0), where the first

n − 1 clusters are the singletons represented by the n data points in the set. There will be i = n − 1

iterations, giving rise to the new clusters {n, n + 1, ..., 2n − 2} that will be collected in rows of a i × 4
hierarchy matrix Z. The elements Zi ,0 and Zi ,1 contain the labels of the clusters that are merged to

give the c = (n + i)th cluster. Zi ,2 holds the distance value of the respective merge and Zi ,3 holds the

total number of data points in the new cluster.

Hierarchies in this format can be subjected to a lot of Scipy’s hierarchy related functionalities

(including the plotting of dendrograms) and it may thus be beneficial to adhere to this format in

general. As a plus, storage of such a matrix is relatively efficient. It may be, however, a disadvantage

in certain situations that at each iteration only the information on which clusters are merged is kept

while the information on which points were responsible for the merge is lost.

i c a b dab size

0 5 0 1 d0 2

1 6 2 3 d1 2

2 7 4 5 d2 3

3 8 6 7 d3 5

Table 14.1 SciPy single-linkage hierarchy format Example Z matrix for

a set of 5 data points. In iteration i, cluster c is formed by merging a and
b at distance dab .

Since single-linkage clustering does in essence only make use of pairwise similarities

and not of individual object properties, single-linkage can be understood as being detached from the

(metric) data space that objects may be embedded in.latent space In this sense, the data space is treated as a latent

space. Object coordinates with respect to the data space may well be necessary to compute similarities

in the first place but as far as the clustering is concerned similarities could have a discretionary source.

In principle, single-linkage clustering can be adopted for arbitrary similarity concepts.

Besides single-linkage, whichmerges clusters at each step by theminimumdistance between existing

clusters, there are also other types of linkages. In complete-linkage for example, the maximum distance

between existing clusters is taken to decide which clusters are merged next.other linkages Average-linkage uses the

mean distance between clusters. A linkage uses a similarity measure and provides a prescription of

160 Dissertation J.-O. F. Kapp-Joswig

Spectral clustering

how to extend the similarity estimate to non-singleton clusters. In a way, a linkage criterion is also

a kind of (greedy) clustering objective, suggesting an optimal cluster merge at each hierarchy step.

Depending on the linkage, the choice of meaningful distance functions may be limited.

Traditionally, linkage clustering is thought of and implemented based around a distance or similarity

matrix. At each step, the minimum value in this matrix decides over which points are merged. implementa-
tion

For

the next step the matrix has to be reduced by the just used elements and respectively modified with

the distances to the newly formed cluster. A generic way to realise most common linkage schemes at

this point is given by the Lance-Williams dissimilarity update formula.[407, 408] A procedure like

this has a rather costly runtime complexity ofO(n3) with respect to the number of points in the data

set n. If a distance matrix is explicitly stored during the clustering, it also has a memory demand on

the order ofO(n2). It should be noted, though, that in some cases leveraging priority queues to store

and retrieve similarities in the needed order is preferable over the pure matrix centred approach.[409]

For single-linkage clustering specifically, there exist also other neat solutions. SLINK clustering

deserves to be mentioned here for example.[410] In the context of CommonNN clustering, which

will be discussed later, however, one fact is of particular interest: single-linkage
and minimum
spanning tree

all the information that is required

for the single-linkage clustering of a data set is contained in a minimum spanning tree (MST) for

the data.[411] This basically means that the clustering problem can be substituted by the well studied

problem of building MSTs (see also chapter 7). Through a revision of the edges in a MST in order of

there similarity weight, a hierarchy can be constructed that is equivalent to a single-linkage clustering

result.

As a last remark, it is in principle also conceivable to use divisive top-down strategies instead of the

described agglomerative approaches to split an initially un-clustered data set into smaller and smaller

sub-clusters. divisive
clustering

Because there exists a combinatorial number of 2n−1−1 possible solutions for each cluster

split, where n is the number of objects in the cluster, divisive methods are, however, computationally

very difficult to operate and are usually heuristically heavy as for example in DIANA clustering.[412]

Recall that the number of possible merges in agglomerative clustering only amounts to n(n − 1)/2,

where n is the current number of clusters available for a merge. Divisive strategies play, however,

an important role in the context of the interesting question of how to cut graphs in an optimal way

under various constraints. Consider for example theminimum cut problem of splitting a graph into

components by removing a minimum number of edges or edges with a minimal total weight.[413] graph cutsA

variation of this would be to find a normalised cut that is a split into components where the cost of

the split amounts to the total weight of the removed edges normalised by the total edge weight of the

resulting components,[414] which favours cuts into ‘balanced’ components. Spectral clustering for

example, which will be addressed in the following section, can be considered an approximate solution

to the relaxed normalised cut problem.[415] Another common example for graph cut problems is

sparsest cut where the total weight of removed edges is normalised by the number of nodes in the

smallest of the resulting components, which favours components of equal size.[416]

14.2 Spectral clustering

Pairwise data object similarities are the fundament of another broad family of clustering

procedures referred to as spectralmethods. As mentioned in section 13.2, a spectral embedding of a

data set does not actually represent a clustering itself in the classic sense but rather tries to provide

a convenient transformation of the data space into a lower dimensional representation in which a

clustering can be done easier or the cluster structure becomes more obvious. In general, a spectral

Dissertation J.-O. F. Kapp-Joswig 161

Spectral clustering

clustering requires a similarity matrix S (often also called affinity matrix in this context) as input.

From that, one constructs the graph Laplacian L as[415]graph
Laplacian L = D − S , (14.1)

where D stands in for the diagonal degree matrix Dii = ∑ j Si j. Note that the elements of the similarity

matrix correspond to edge weights w(i , j) between a pair of data objects i and j when the data is

thought of in a graph representation (recall that the degree of a graph node is the total weight of edges

connecting the node to other nodes as defined in chapter 7).

S is generally required to describe an undirected graph, i.e. it has to be symmetric which does also

make L a symmetric matrix. Furthermore, the used similarities need to be well-behaved, which means

they are not allowed to be negative and need to be actual similarities, not distances for instances. A

typically used similarity is for example found in symmetric k-nearest graphs in which a pair of data

points is consideredsimilarity
examples

similar (w = 1) if one of the points is a k-nearest neighbour of the other or if both

points are mutually among their k-nearest neighbours. Another example for a continuous similarity

are Gaussian neighbourhoods w(i , j) = exp(−∣∣x − y∣∣2/(2σ2)) for a given σ-value, here with x and y
as the coordinates of data point i and j.
We are then interested in the (smallest) eigenvalues and corresponding eigenvectors of L. In practice

there are a few possible variations on how to find those and on how to normalise L beforehand,[415,

417] but let’s ignore this here for the sake of simplicity. L has n (the number of graph nodes) non-

negative eigenvalues λ1 ≤ λ2 ≤, ..., ≤ λn, with λ1 = 0 of which the corresponding eigenvector is a

constant one-vector. Laxly spoken, the neat thing about this is that the eigenvalues can be interpreted

as a cost of separating the input graph into clusters.evaluation The kth eigenvalue gives us a separation of

the graph nodes into k disjoint sets, that is if we are interested in an isolation of two clusters, we

have to consider the 2nd eigenvalue λ2. Zero-valued eigenvalues (no cost) are an indicator for the

number of connected components (initially disjoint sub-graphs) in the input graph, i.e. if there are

two zero-valued eigenvalue λ1 = λ2 = 0 the graph contains two connected components that are not

connected to each other. From the associated eigenvectors, we can get the cluster memberships of

individual graph nodes by evaluating their projection onto the first k chosen eigenvectors. This is

typically done for example by a k-means clustering (see section 14.3) in the resulting low dimensional

projection.

Figure 14.5 shows an example for a spectral embedding of the Iris data set. In figure 14.5a we can

see the eigenvalue spectrum for a Laplacian constructed from k-nearest neighbour similarities. Since

we are interested in three clusters to be isolated, we focus on the first three smallest eigenvalues. While

figure 14.5b shows the input similarity matrix (that exhibits a block diagonal form because the input

point samples are ordered by their true classification label), figure 14.5c illustrates the 2-dimensional

projection of the data points onto the 2nd and 3rd eigenvector. In this low dimensional projection,

the group structure of the data becomes well identifiable.

A particular form of spectral clustering, which plays a considerable role before the background

of MD and the estimation of kinetic Markov models to identify clusters of molecular metastable

conformations, is found in Perron-cluster cluster analysis (PCCA).[417, 418] This method solves an

eigenvalue problem for a stochastic matrix T , namely for example a transition probability matrix

modelling a molecular trajectory as a Markov chain.PCCA The eigenvalues of this matrix start with

λ1 = 1 (the Perron eigenvalue) and one is typically interested in the next smaller eigenvalues for the

identification of kinetic clusters. The eigenvectors of T are the same as those of a corresponding graph

Laplacian L and so is the way how one uses a low dimensional projection onto these eigenvectors

for the separation of weakly connected sub-blocks within T . The clustered objects are in this case

the Markov states on top of which T was constructed and the obtained clusters can be interpreted as

metastable conformational states between which transitions are slow (i.e. rare). PCCA as a method

162 Dissertation J.-O. F. Kapp-Joswig

k-Means clustering

does as such, however, not refer to the spectral embedding part but rather to the procedure of how

to analyse the eigenvectors as an alternative to the wide use of k-means. In its basic form, it exploits

the sign structure of individual eigenvectors to assign states to one of two groups while iteratively

considering higher eigenvectors. The more recent robust implementation does rely on the property of

the eigenvectors that these ideally form a k-dimensional simplex if one considers k eigenvectors at

the same time.[419]

Figure 14.5 Spectral embedding of the Iris data set
a)The first ten eigenvalues in the sorted eigenvalue spectrum of the graph Laplacian. We want a partitioning of the

data into 3 components based on the first three eigenvalues. b) Affinity (similarity) matrix in block-diagonal form

with matrix elements coloured by value. c) Embedding of the data into the reduced space defined by the 2nd and 3rd

eigenvector of the Laplacian. Points are coloured by their true classification label. The identification of clusters can be

done by separating the points along each eigenvector (e.g. below and above 0 indicated by the dashed lines) or by

using another clustering approach, e.g. k-means (see section 14.3). Points highlighted with a red outline will probably

be assigned to the wrong cluster.

Figure 14.6 Iris data set spectral clustering (3 clusters)
Data points (compare figure 13.3) with cluster labels found by spectral clustering

(sklearn.cluster.SpectralClustering using symmetric k-nearest neighbour

similarities with k = 26). 91 % of the cluster labels match the true classification labels.

Non-matching assignments are marked with squares.

14.3 k-Means clustering

The k-means method is arguably the most popular of all clustering procedures.[383] Being not

much younger than single-linkage clustering, k-means has quite a long history and has been studied

extensively from various perspectives.[420] Its popularity may be not least due to a solid mathematical

framework. The fundamental idea behind this method, is that a set of objects D = {x1, ..., xn}
can be partitioned into a fixed number of k subsets C = {C1, ...,Ck}, so that ⋃

k
i=1
Ci = D and

Ci ∩ C j = ∅ ∀ i ≠ j, and where each Ci is characterised by a representative µi , so that D can be

Dissertation J.-O. F. Kapp-Joswig 163

k-Means clustering

modelled by the set of representativesM = {µ1, ..., µk}. The inductive principle underlying the

k-means method is a particularisation of equation 13.12

min

C

⎧⎪⎪
⎨
⎪⎪⎩

k
∑
i=1

∑
x∈C i

d(x − µi)
⎫⎪⎪
⎬
⎪⎪⎭

= min

C

⎧⎪⎪
⎨
⎪⎪⎩

k
∑
i=1

1

2∣Ci ∣
∑

x ,y∈C i

d(x − y)
⎫⎪⎪
⎬
⎪⎪⎭

(14.2)

with d being the squared Euclidean distance in m dimensions

d(a, b) = d2

Euclidean
=

m
∑
i=1

(ai − bi)2 . (14.3)

Algorithms implementing k-means strive to optimise the partition C according to equation 14.2,

which states literally: ‘pick the model (the set of k representatives) that minimises the total squared
error’,[384] where error needs to be understood as the deviation of objects from the representative

for the cluster they where assigned to. It is important to emphasise, that the squared Euclidean

distance is used here, which requires that the clustered data points x ∈ D are given as feature vectors

in Rm. The representatives that minimise in this case the sum of squared distances for a given

partition C are the arithmetic mean points of each cluster µi = 1/∣Ci ∣∑x∈C i
x. These so called centroids

constitute a special form of prototype-based model. A minimisation of the sum of squared distances

between points in a cluster and the mean is related to a minimisation of within-cluster variance via

∣Ci ∣σ2

i = ∑x∈C i
d2

Euclidean
(x − µi). A minimisation of intra-cluster variance implies a maximisation of

inter-cluster variance according to the law of constant variances.[405] In turn, it is also equivalent to

a minimisation of the squared pairwise distances between points of the same cluster as stated by the

right side of equation 14.2. Although I am reluctant to say that k-means is similarity-based, it is true

that each point in the data set will be assigned to the cluster with the closest (that is most similar)

centroid and that points in the same cluster can be characterised by a shared similarity to the same

centroid. Also, a minimisation of squared pairwise distances between points of the same cluster can

be understood as a maximisation of within-cluster similarity on average. Note, however, that two

individual points in the same cluster can still be less similar to each other than to points in a different

cluster. In particular, for any given point the most similar points may not always be found within the

same cluster. As pointed out in section 13.2, the paradigm of the method may be more aptly described

as a maximisation of within-cluster homogeneity.

The dependence of k-means on the squared Euclidean distance (L2 norm) is non-negotiable. To

exchange the distance metric that evaluates the deviation of objects and their cluster representatives

means to change the inductive principle underlying themethod (equation 13.12) and implies a different

kind of prototype-based model for the data. The mean minimises the sum of squared deviations

within clusters. Using for example the Manhatten distance (L1 norm) instead, results in an objective

for the identified clusters that is optimised by their medians—not their means. The median minimises

the sum of absolute deviations within clusters. This is incorporated in other clustering methods like

k-medians or in a generalised form for arbitrary metrics in PAM (k-medoids), where the prototypes

are constrained to be among the clustered objects themselves so that µi ∈ D ∀ i.[421] It is, however,

possible to transform the clustered data in a way so that the Euclidean distance after the transformation

corresponds to a different distance before the transformation, which allows the application of k-means

for example in the context of cosine similarity, covariance (Mahalanobis distance), and correlation.

Equation 14.2 can be computationally quite hard to satisfy exactly.[422]. A classic algorithm

that provides an iterative, locally optimal solution to the problem was presented by Lloyd,[423]

but there are many other proposed heuristic algorithms.[424] It is based on the rational of two

alternately applied optimisation steps: first, given a set of current centroidsM, the currently best

partition of the data C can be constructed by assigning each data point to the closest centroid so that

164 Dissertation J.-O. F. Kapp-Joswig

k-Means clustering

Ci = {x ∈ D ∣ d(x , µi) ≤ d(x , µ j) ∀ j ≠ i}. Second, given a current partition C, the currently best

centroids can be computed as the mean of the data points in each cluster. Starting with an initial set of

centroids, the two steps can be repeated until for example the positions of the centroids or the within-

cluster variances or the cluster assignments are converged, or if a maximum number of iterations is

reached. It is generally considered an asset of the k-means method that this standard algorithm is easy

to implement and computationally cheap. A single iteration requires only one distance calculation

for each pair of n data points and k cluster centres while a single distance calculation requires a

summation over contributions in m dimensions. The overall runtime complexity can therefore be

given asO(nkmi) with the total number of iterations i. If k andm are fixed, the cost of the algorithm

scales basically linear with the number of data points, assuming that the number of needed iterations

is relatively small as well.

A problem with the Lloyd algorithm in this basic form, is that the found solution is not necessarily

globally optimal and that it depends on the starting condition, that is on the initially chosen positions

of the cluster centres. For randomly placed starting centroids, the final result is non-deterministic.

Also, the number of necessary iterations to reach convergence can vary and there is the danger of

picking unlucky candidates that may lead to empty clusters. Figure 14.7 demonstrates this with a

simple example. A commonly accepted workaround, is to run the algorithm multiple times with

different starting conditions and to select the best result according to equation 14.2, which would

be the one in figure 14.7b (the k-means objective is denoted by J2). Many k-means implementations

have this already built in and proceed like this by default. Alternatively, swapping procedures can be

employed to escape local minima.

Figure 14.7 k-Means in a nutshell
Clustering with two different sets of

k = 3 randomly placed initial centroids

in a) and b). While the results are

stable with respect to the assignments

of the cluster in the lower-right corner,

they do not agree for the other two

clusters. Convergence in terms of chan-

ging centroid positions is reachedmore

quickly in a).

Nonetheless, since the choice of the starting centroids is so critical, a lot of effort went into the

development of improved initialisation schemes.[425] Among the most successful strategies, is what

is known as the k-means++ method.[426] Starting with an empty set of selected starting centroidsM,

the first centroid to be added is chosen as a random point x ∈ D. By defining the function dmin,M(x)
as the minimum distance between a point of the data set to already selected centroids inM, the

next centroids x′ are added one by one with probability dmin,M(x′)2/∑x∈D dmin,M(x)2. This should

ensure that the starting centroids are well distributed over the whole data set to speed up convergence

and decrease the chance to pick unlucky candidates.

Another potential drawback of k-means, is that the number of clusters that should be identified

through the clustering needs to be specified beforehand. If the aim of the clustering is to isolate distinct

groups of data points, we ideally need to have an idea about how many groups there are in the first

place. When a guess is difficult to make, a typical strategy would be to try clusterings with different

Dissertation J.-O. F. Kapp-Joswig 165

k-Means clustering

values of k and to pick the best result. But how could we judge what would be best? Equation 14.2

is not very suitable to compare clusterings with different numbers of clusters as the within-cluster

variance does always decrease with larger k. It can still be used, though, by trading within-cluster

variance against the assumption that a low number of k is generally better, in the spirit of optimising

this criterion with a minimum complexity in the obtained model. Figure 14.8 shows a plot of this

objective versus k for the Iris data set. One could now choose the k-value in the plot up to which the

sum of squared distances of data points to the centroid of their cluster decreases relatively fast, and

after which the decrease is substantially diminished, which is given for k = 3 (although admittedly not

very clearly) in the present example. This is called the ‘elbow’ method, as the optimal value for k is
presumed to be found where the plotted line shows a kink in reminiscence of a bent arm.

Figure 14.8 Choosing the k in k-means (elbow plot)The plot shows

the sum of squared deviations of points from their respective cluster

center, i.e. the evaluation of the k-means objective J2 , versus the num-

ber of identified clusters. The within-cluster variance is also termed

inertia or distortion in the literature. The optimal k is indicated by the

arrow.

Alternatively, the silhouette score can be used for a similar analysis (figure 14.9).[427]The silhouette

score for a single data point is defined as

ssilhouette(x) =
d̄nearest(x) − d̄same(x)

max (d̄same(x), d̄nearest(x))
(14.4)

with d̄same as the mean distance between a point x and all other points in the same cluster, and

d̄nearest as the mean distance between a point x and all other points in the next nearest cluster (by

centroid distance). The score is bounded by −1 and 1 where values close to 1 are better in the sense that

within-cluster distances are low while between-cluster distances are high. In the present example, a

preference for k = 2 or k = 3 is conveyed by the fact that many data points have silhouette coefficients

above the average (indicated by the dotted vertical line) and the individual clusters show a distinct

elbow-like characteristic (few points with low scores and many points with high scores). The relative

sizes of the clusters can also be taken as an indicator, although it depends on whether equally sized

clusters are actually desirable.

A third validation technique is illustrated in figure 14.10 with the Calinski-Harabasz score, also

known as the variance ratio criterion.[428] In contrast to the two previous indicators, this score is

optimal for a given clustering if it is maximised, and one should look for a maximum in the plot of it

versus k. The score is defined for a partitioning of n data points into k subsets as

sCalinski−Harabasz(x) =
trace(Σinter)

trace(Σintra)

n − k
k − 1

(14.5)

with the within-cluster covariance matrix (the sum of covariance matrices for individual clusters)

Σintra =
k
∑
i=1

∑
x∈C i

(x − µi)(x − µi)⊺ (14.6)

and the between-cluster covariance matrix (the covariance of the cluster centres weighted by cluster

size) where µD is the mean of the complete data set

Σinter =
k
∑
i=1

∣Ci ∣(µi − µD)(µi − µD)⊺ . (14.7)

166 Dissertation J.-O. F. Kapp-Joswig

k-Means clustering

Figure 14.9 Choosing the k in k-means (silhouettes)
Silhouette coefficients of the obtained clusters for k = 2, 3, 4, 5, and 6. The profile of the scores for points in specific

cluster is generally considered good if it shows a clear kink and the majority of data points has a score above average

(dotted vertical line). The decision between k = 2 and k = 3 remains somewhat ambiguous in this case. Relatively

equal cluster sizes speak in favour of k = 3 while the individual cluster profiles are more distinctly elbow-like for

k = 2.

This score is high if within-cluster variances are low and clusters are well separated. In the present

example, the Calinski-Harabasz score strongly prefers the clustering with k = 3.

Figure 14.10 Choosing the k in k-means (Calinski-Harabasz)The

clustering with k = 3 is clearly preferred because the score is maxim-

ised for this number of clusters.

The three presented evaluation techniques are all internal validation criteria, that is they judge the

obtained clusterings based solely on the grouping itself. As mentioned in the introduction of this

chapter, internal validation works well if we have a concrete idea about how ideal clusters should be

constituted. The k-means approach has a strong opinion about this and the used validations have

strong opinions on their own that are essentially very similar. Identified clusters are in general ideally

compact, convex (globular), equally sized and well-separated. With this assumption in mind, we can

make a judgement about which k-means clustering agrees best with our expectation. I would like to

stress again that this validation tells us very little about the actual quality of the clustering as the true

group structure of the data set can still differ from our expectation. A clustering not aligned with the

ideal image of clusters represented by these validations will be ranked poorly even if it may reflect the

true nature of the data better.

For the Iris data set, we are in the luxurious situation of having true group assignments available,

on the premise of course that the provided expert classification into groups of plant species is indeed

true. In this case, we can also validate the obtained clusterings by comparing them to the given group

assignments using a set of external validation criteria, for which a few examples are condensed in

figure 14.11.

Dissertation J.-O. F. Kapp-Joswig 167

k-Means clustering

Figure 14.11 Choosing the k in k-means (external
scores)While the homogeneity and completeness score

are not very telling on their own, a combination of the

two in the V-measure strongly favours the clustering with

k = 3, which is confirmed by the adjusted Rand index

(ARI) and the adjusted mutual information (AMI).

Here, the homogeneity score assesses to what extent each cluster contains only members of a single

class. The score is bounded by 0 and 1 where 1 is best. Note, that this is very similar to homogeneity in

terms of low cluster variance, which is optimised in k-means under the belief that low-variance clusters

represent distinct (that is homogeneous) classes. Indeed we see the homogeneity score increasing with

larger values for k. Complementary, the completeness score measures to what extent all members of a

given class are assigned to the same cluster. Like the homogeneity score, completeness is bounded

by 0 and 1 where 1 is best, as well. We see this score decreasing with larger values for k as more and

more homogeneous groups appear, which, however, reproduce the same class. It feels natural to

balance these two scores against each other, which is formalised in the V-measure as the harmonic

mean of homogeneity and completeness.[429] For this score, we see an optimal (maximal) value for

the k-means clustering with k = 3. Besides that, we can use the Rand index to define a similarity

measure between two clusterings (the obtained one and the underlying truth). This index considers

all pairs of objects in a data set and counts how many pairs are correctly or incorrectly assigned to the

same or to different clusters based on the provided expected assignments. The adjusted version of the

index (ARI) contains a correction for matching assignments by chance.[430] The k-means clustering

with k = 3 is most similar to the expert classification. Finally, we can use the mutual information

between the obtained and the true cluster label assignments to assess how much information about

the underlying classes is captured by a given clustering, or more generally speaking how much two

clusterings agree. The adjustedmutual information (AMI) does again account for expected agreements

by chance.[431] We can see, that it is fairly straightforward to quantitatively compare clustering results

with an assumption of ground truth. The problem with this is just that reference assignments are

almost never available for practically interesting data sets and it would be very brave to speculate that

a k-means clustering with k = 3 is universally a good choice even for data sets that are most similar to

the considered case.

Figure 14.12 shows the result of a k-means clustering with k = 3 on which we could have settled

using the presented validation schemes or because we knew how many clusters there should be in

the first place. The agreement with the expectation is quite good, as the expected clusters can be well

approximated by compact, globular, well-separated clusters of roughly equal spatial extent—which is

the ideal view of clusters from the k-means perspective. The k-means approach is not suitable for data

sets where there is reason to suspect that clusters can differ from this idealisation, at least if the aim is

to generate a clustering where each cluster represents a separate interpretable class of objects. The

approach is still valid and widely-used if there is a clear focus on homogeneity, meaning when it is

accepted that true object groups can be split into multiple k-means clusters. A good example for this,

are MD data sets. For these it can generally not be assumed that clusters of molecular conformations

are globular, and low within-cluster variance may not be actually desirable. Still, k-means can be

168 Dissertation J.-O. F. Kapp-Joswig

Gaussian mixture models

used with a potentially very large number of clusters with the intention of data discretisation or

condensation. As such it can for example be used to prepare a state-space for a MSM analysis, or as a

preliminary clustering step to reduce the size of a data set from n points to k points so that further

(clustering) steps can just operate on the obtained cluster centres.

Figure 14.12 Iris data set k-means (3 clusters)
Data points (compare figure 13.3) with cluster labels found by k-means clustering (sklearn.cluster.KMeans) with

k = 3. 89 % of the cluster labels match the true classification labels. Non-matching assignments are marked with

squares. Cluster centres are drawn with crosses.

14.4 Gaussian mixture models

Clustering from a statistical point of view is nicely represented by GMMs or distribution-

based mixture models in general.[432] If one has reason to believe that the observed samples in a data

set are the manifestation of several overlapping well behaved probability distributions, say normal

distributions, then it would be only logical to try to reproduce the observed data by fitting a certain

number of said distributions to the data. model
distributions

It turns out that for the Iris data set, this is actually an

excellent approach. The measured leaf proportions of plants belonging to the three different classes

are indeed likely to be more or less normally distributed, which means that a good approximate model

for the data can be achieved by a combination of three independent Gaussian distributions (one for

each plant class). Figure 14.13 illustrates the result of this.

Figure 14.13 Iris data set GMM (3 clusters)
Data points (compare figure 13.3) with cluster labels predicted from a GMM (us-

ing sklearn.mixtures.GaussianMixture). The means of the used distributions

are marked by red dots while the circumference of the ellipses corresponds to three

standard deviations. 97 % of the cluster labels match the true classification labels.

Non-matching assignments are marked with squares.

Dissertation J.-O. F. Kapp-Joswig 169

Density-based clustering using histograms

In principle, mixture models are a form of prototype clustering where each data point is associated

with the prototypical distribution it was probably sampled from—or with all of the underlying

distributions with respective probabilities.prototypes What is achieved, is the decomposition of a full population

of samples into k homogeneous sub-populations. There is no directly used similarity concept apart

from that points identified with the same sub-population can be considered similar and that a sample

probability kind of measures a similarity to a specific prototype.

Conceptually, the problem of finding the distributions that model the observed data best can be

formulated in terms of a maximum likelihood approach. We want to find the distributions that

are most likely to have producedmaximum
likelihood

the data set. Practically, a locally optimal solution to this can

be found with the expectation maximisation algorithm.[433] Under the condition that we know

beforehand how many distributions the data should be modelled with, one can start with an initial

guess for the parameters (mean and variance) of each distribution. This initial guess can for example be

generated with k-means. Then the probabilities for data points being sampled from each distribution

are calculated and weighted so that the total probability of each sample over all distributions sums up

to 1. The parameters are iteratively varied to improve them until convergence.

A clear weaknesses of mixture models is that while it can be a very good fit for data that truly

originates from distributions that are similar to the chosen ones, it will more or less fail if one picked

an inappropriate prototypical distribution. In other words, without decent knowledge about the

clustered data, it may be hard to make a well founded decision about this. The same goes for the

number of chosen distributions, although similar techniques as for k-means exist on how to tweak

the number of underlying distributions, e.g. via the Bayesian information criterion (BIC-score).[434]

14.5 Density-based clustering using histograms

So far we have discussed classic examples for connectivity-based and prototype-

based clustering methods that may or may not employ an explicit concept of similarity. Let’s now

proceed to density-based clustering, meaning methods that primarily identify clusters as groups of

densely packed objects, rather than certainly behaved object groups. This type of clustering philosophy

is most valuable for the clustering of molecular conformations and an overview over commonly used

techniques should level the field to fully understand the CommonNN clustering approach (see

section 14.9 and later chapter 15).

A clustering method that is on first glance almost trivially simple but yet very illustrative and with

modifications also very powerful, makes use of (regular) spatial grids.grid-based
clustering

We want to have a look at this

method, to demonstrate some of the basic ideas and variations of density-based clustering and to

build the bridge to connectivity-based and prototype-based cluster models as well as to flat partitional

versus hierarchical clustering. It turns out that density-based as a trait alone can not provide a model

that is sufficient to cluster data. It always has to be eventually combined with a notion of connectivity

or prototyping.

Figure 14.14a shows a data set of points scattered in two dimensions. A density-based view on the

data suggests the existence of two intertwined, sickle-shaped clusters as cohesive regions of high data

point density, separated by low (zero) density. Formally, we expect the sampled data to be generated by

an unknown probability density function ρ ∶ X → R≥0. A density-based model for the data depends

on an estimate of the true probability density based on the scattered samples. One way to achieve

such an estimate is to impose a grid of cells with constant volume upon the data (figure 14.14b) and

to count the number of points that fall into each cell, which means nothing else than to construct a

histogram on the data (figure 14.14c).

170 Dissertation J.-O. F. Kapp-Joswig

Density-based clustering using histograms

Figure 14.14 Density-based clustering using histograms
a)The scikit-learn moons data set (2000 points in 2D) with true cluster labels indicated by green and orange color. b)
A regular grid with 10 bins in each dimension imposed upon the data. c)Cell-wise point density estimate (histogram).

The process of choosing a grid of cells that bins the data points can itself already be interpreted as a

simple form of clustering in the sense of a discretisation. By setting the width of each cell to a constant

є and by limiting the extend of the grid in each dimension with xi ,low and xi ,high, one obtains a number

of nbins,i = ceil ((xi ,high − xi ,low)/є) cells in each dimension or∏i nbins,i cells in total. regular gridAlternatively,

the number of bins per dimension can be set, which determines the bin width є. A cell is uniquely

addressed via its location on the grid by an indexing tuple, e.g. icell = (i1, i2) in the shown 2D-case, or

an indexing function icell = i1nbins,1 + i2, which is equivalent to a cluster label for all data points in

the respective cell. The cells themselves or for example the midpoints of the cells constitute a form of

prototype that individual points are identified with. There are many alternative approaches to impose

a grid upon objects in a data set. Another rather sophisticated approach to tile objects recursively into

bounding boxes is for example the construction of an R-tree.[435] It should be noted, though, that for

grid cells of unequal volume, density can not just be estimated as the number of points per cell but

has to be normalised by the cells volume.

The discretisation of the data points into grid cells can in a way be seen as a pre-clustering of the

data. We use this clustering as a support that provides a way to approximate the underlying probability

density ρ. connectivityNote that the grid dimension controls the resolution at which the density is estimated.

Having a density estimate for portions of the data space based on our notion of density as shown in

figure 14.14c is, however, only half of what is necessary to derive density-based clusters. We also need

a model for how our final clusters should be constructed, continuing on the density information. This

could be done conveniently in this case by establishing a connectivity-based model.

We could for example say that adjacent cells on the grid should be assigned to the same cluster if

they both represent regions of relatively high density. threshold‘Relatively’ high implies that we could define a

density threshold above which density is considered high. Two adjacent grid cells within which the

threshold is exceeded will be regarded as connected.

An intuitive way to illustrate this, is to think of the (pre-clustered) data in terms of a graph structure

in which each grid cell is a vertex and unweighted edges are drawn for pairs of adjacent cells in case

their density is higher than the threshold (figure 14.15a). In this picture, clusters become immediately

discernable as data graphconnected components of the respective graph, which is displayed in figure 14.15b for

an example threshold. The cluster labels obtained for the histogram grid cells can then be transferred

back to the original points. Figure 14.15c shows the final result of this, which is in agreement with the

initially expected clustering (compare figure 14.14a). A particularity of the clustering is that grid cells

below the density threshold that are not connected to any other cell can be labelled as noise, i.e. as not

part of any cluster.

Dissertation J.-O. F. Kapp-Joswig 171

Density-based clustering using histograms

Figure 14.15 Density-based clustering using histograms and a density threshold
A density threshold is applied to identify connected grid cells. a)Histogrammed data represented as unweighted

graph with edges connecting adjacent grid cell when both exceed the density threshold (e.g. here 15 points per cell).

b) Clusters identified as connected components of grid cells. Grid cells with low density are not assigned to any

cluster and are omitted. c) Cluster labels of the grid cells translated back to the original data points. Data points not

assigned to any cluster (noise) are coloured in black.

Let’s pause for a second and recapitulate how we could characterise the presented clustering ap-

proach. To begin with, we are using a type of grid to join individual data objects into groups.How to
describe this
clustering?

Based

on this, we could say that our method is grid-based and in fact two typical methods doing something

very similar, STING[436] and CLIQUE[437], are commonly referred to as grid-based methods. Note,

however, that this naming is chosen to emphasise that the respective methods are supposed to be

eligible for the clustering of large, high-dimensional data sets. The employed grids are a neat trick

to condense the contained information, so that the clustering can be carried out on a pre-clustered

data set, which is easier to handle. The finally produced cluster model on the other hand is not

actually grid-based. The employed grid is exchangeable without altering the method in its essence, so

grid-based is an implementation focused categorisation.

In contrast, it is vital to the method that the grid cells are used to estimate object density, so we can

say that themethod entails a density-basedmodel. Further, the density-basedmodel is characterised as

connectivity-based because clusters of high density are identified as networks of connected (adjacent)

dense cells.

Finally, we have a threshold-based criterion. Threshold-based is a categorisation focused on the

inductive principle. The used threshold on the estimated density suggests what the optimal model

for the considered data would be: a partitioning of the data objects according to their pairwise

connectivity, where the threshold determines which connections exist and which are neglected. Each

object can be reached directly or indirectly from any other point in the same cluster just by following

the these connections. This objective is equivalent to a search for maximally connected components

in the data graph from which low density connections where trimmed off. As was pointed out in

chapter 7, finding connected components in graphs is a routine task that can be solved efficiently by

well established graph traversal algorithms.

A similar threshold-based approach is used by the popular DBSCAN method (see section 14.7)related
methods

in

its original formulation and can also be applied to CommonNN clustering (see section 14.9). These

methods differ from the presented grid-based approach primarily in the way how density is estimated

and how dense objects are connected with each other. In the following section 14.6, the unifying

concept of level-sets that underlies all of these methods will be discussed briefly.

The connectivity between object vertices in the implied graph structure for the data can be inter-

preted as a form of similarity. Two connected points are similar with respect to how the connection

was defined in the connectivity-based model.similarity When the density threshold is applied to select valid

172 Dissertation J.-O. F. Kapp-Joswig

Density-based clustering using histograms

connections, similarity can be viewed as a binary relation, that is two objects can either be similar

(because they pass the threshold criterion) or not. In a relaxed view, it would also be possible to state

that all points within the same cluster are similar to each other if one allows the following reasoning:

if two points a and b are connected (similar) and b is connected to a third point c, then a is also

(indirectly) connected to c. Note, however, that this form of similarity is detached from similarity

measures with respect to the data space the clustered data points where originally embedded in. This

means that two points in the same cluster can be actually very dissimilar (far away from each other),

and vice versa two points in different clusters can be actually very similar (close to each other), from a

different perspective on similarity.

Interestingly, the actual data space plays only a minor role for the presented grid-based approach.

The decisive element for the clustering latent spaceis the density estimate that does only require the grid, which

in turn is in general any kind of discretisation—of not necessarily known origin. There is no direct

dependence on another concept of similarity, neglecting that the needed discretisation of the space

may involve one. In this sense, the clustering can be said to operate on a latent data space.

For threshold-based approaches to work with a density estimate on a data set, the clustering

result is obviously dependent on the choice of the threshold. choice of
threshold

For lower thresholds, the two disjoint

components of the graph as shown in figure 14.15 may for instance become connected. In this case,

only one cluster will be found. For even higher thresholds, the two components are expected to shrink

since lower density grid cells on their outer rims will fall below the minimum density requirement.

Where to put the threshold, can be understood as a tuning parameter. It is left to the user of the

clustering to select an ideal value in the context of a specific application and possible expectations.

There is no universal concept of what a suitable threshold would be.

Effectively, a variation of the threshold criterion creates a hierarchy of clusterings of systematically

varying granularity. From this perspective, the applied threshold acts as termination criterion on an

intrinsically hierarchical cluster model. cluster
hierarchy

It provides a strict inductive principle that prefers a model at

a specific level of the hierarchy and turns the method into a quasi-flat clustering. Yet, it is also possible

to not apply a threshold on the estimated density and to obtain the actual hierarchy of clusterings

instead. Let’s recall that the use of a density threshold gave us a binary perspective on pairwise object

similarity (connectivity) where the threshold was exceeded. To relinquish the threshold means to find

a quantitative description of connections between grid cells as weighted edges in the respective data

graph. In this picture, objects can be more or less similar.

A simple variant of this could be to use the minimum density of two connected cells as a weight for

their connection. In this way, a pair of cells in which one of the cells represents a low density data

region will consequently have a low edge weight on the connection between the pair, rendering it

of low importance (note that it is in principle arbitrary whether high density equates to low or high

edge weight). A hierarchy of clustering results is than basically given by reviewing all connections in

the graph in the order of their importance, for example by beginning with the least important one

and dropping one connection at a time. As more and more connections are ignored each level in the

hierarchy represents a new clustering. Starting with all objects in the data set in one cluster when

still all connections are considered, the hierarchy is ending with each data object in a separate cluster

(i.e. as noise) once the last connection has been dropped. In reverse, it is also possible to begin with

adding the most important connection and to proceed with lower weight edges.

Figure 14.16 shows the data graph with weighted edges and the resulting hierarchy of clustering

results for our example case. From this, it is now clear at which density threshold a splitting of the data

set into sub-clusters can be observed exactly. Note that here clusters need to contain more than two

cells to be counted as such and are considered noise otherwise. For this demonstration, a connected

component search was performed on a graph at each hierarchy level after adding all edges of a certain

Dissertation J.-O. F. Kapp-Joswig 173

Density-based clustering using level-sets

weight. It should be mentioned that this is in general very inefficient and that other approaches can be

used, for example by leveraging MSTs (see section 7.2 for theory). Using a MST of density weighted

edges transforms the clustering into nothing else than single-linkage clustering.

Figure 14.16 Density-based clustering using histograms hierarchically
Not applying a threshold, the full hierarchy of clusterings can be built instead. a) Data set represented as weighted

graph with edges connecting adjacent grid cells quantitatively. b) Hierarchy of clusterings. Each edge weight on

the y-axis gives rise to a new hierarchy level when edges of the corresponding weight are removed from the graph

(or added). Starting at the bottom with all grid cells in one cluster (all connections are present), the graph becomes

more and more disconnected at higher levels until all grid cells are separated at the top. The absolute number of cells

assigned to each cluster at each level is represented with coloured horizontal bars where black stands in for noise.

14.6 Density-based clustering using level-sets

Connectivity-based density-based clustering like introduced in the last section can be

uniformly expressed with the help of level-sets. A level-set of a function f (x) is in principle just

the set of points L = {x ∣ f (x) = λ} for which the function takes on a certain value λ. The use of

level-sets for the definition of density-based clusters is usually attributed to Hartigan.[438]level-sets Let ρ(x)
be an underlying probability density on a continuous data space X (practically usually a subset of

Rd) from wich a data set D = {x1, ..., xn ∣ xi ∈ X} can be sampled. Then, a level-set of ρ using a

density criterion λ corresponds to a density iso-surface (in 2D a contour-line) on this density function.

A super level-set (also often called an upper level-set or just a level-set) is furthermore defined as

L = {x ∈ X ∣ ρ(x) ≥ λ}, i.e. the set of points for which the density exceeds the specified λ-threshold.

Density-based clusters are the connected components of such a super level-set. The sub level-set,

the domain of the function for which the density falls below the threshold, is ignored for the cluster

assignment and treated as a ‘noise’, outlier, or ‘fluff ’ region.[439] A clustering based on level-sets does

not yield a full partitioning of a data set.

While a clustering can be achieved with a respective λ-value, the level-set formulation makes it

obvious that there is actually a hierarchy of connected components corresponding to a continuous

variation of λ in the interval [0,max(ρ(x))]. It can be shown that this leads to a finite level-set tree of

clustering results.[440] A property of this tree is for example that for any connected component Cchild

obtained at a density value λ, there is exactly one connected component Cparent withlevel-set trees Cchild ⊂ Cparent

for any λ′ < λ, that is there is a strict child-parent relation between connected components at different

levels. Furthermore, if of two connected components one is not a subset of the other, they do not

overlap at all. There is a large of amount of level-set tree related theory, on how to construct and

analyse them, and on how to estimate them from scattered data.[441, 442] Density-based clustering of

174 Dissertation J.-O. F. Kapp-Joswig

Density-based clustering using level-sets

point samples is one possibility to estimate level-set trees for unknown probability density functions.

Of particular interest might also be the connection between density-based clusters and single-linkage

clustering (using MSTs).[439, 443, 444]

Figure 14.17 shows an example of a level-set tree on a 1-dimensional multimodal distribution

for which ρ(x) is known. In this case one can construct the tree of connected components quasi-

analytically for different λ values just by finding the respective level-sets, i.e. the points where the

threshold and ρ intersect. The plot represents the size of each component and its mean location. 1D example
For an analysis aiming on the extraction of clusters, one is usually most interested in the λ-values

at which the number of connected components increases.[440] In the example, this is the case for

λ1 and λ2. Up to λ1 there is only a single connected region under the curve of the function, which

shrinks from the borders when λ is increased starting from 0. Above λ1, the minimum between the

rightmost peak and the rest of the function falls below the threshold and leaves the two respective

regions as disjoint sets. Note that once λ3 is reached, the maximum of the right component falls below

the threshold and the component vanishes. One single threshold value is not able to select a partition

of three components corresponding to the peaks of the distribution. The intuitively correct clustering

result is a combination of the components from the orange, red, and green branch of the level-set tree.

Figure 14.17 Level-set tree for a 1DmultimodalGaussian
distribution Slicing the shown probability density distri-

bution along a λ threshold value, we obtain corresponding

clusters as the connected components of the respective su-

per level-set. For each component, its size is represented

by a coloured horizontal bar scaled in width by the integ-

ral ∫
x2
x1

ρ(x), where x1 and x2 are the components bounds.

The bars are centred around the mean of the component.

When density-based clusters should be discovered from discrete point samples in accordance

with the level-set approach, one essentially needs a density estimate ρ′ for the unknown underlying

probability density ρ. density
estimate

The connected components of the discrete level-set L′ = {x ∈ D ∣ ρ′(x) ≥ λ},
that is the identified clusters, are an approximation to the corresponding components of the true

density. Naturally, the validity of a clustering does therefore depend on a consistent density estimate

and beyond that on a robust definition of connectivity between data points in L′.
A generic realisation of connectivity that does in principle work with arbitrary density estimates is,

to give another example, found in the following approach. Consider a Voronoi partitioning of the n
points in a data setD into n cells, i.e. a spatial tessellation in which any other point not inD would fall

into the same cell as its respectively closest neighbour inD. Then take the Delaunay triangulation by

connecting each data point to other data Delaunay
connectivity

points that are in adjacent cells. Given a point-wise density

estimate, for example the reciprocal k-nearest distance (with say k = 1), one can drop those points

from the just created network that fall below a specified density threshold and reveal the clusters as the

remaining connected components.[445] Note that this is very similar to the previously discussed grid-

based example only that the grid served there as the density estimate as well while it does here primarily

establish connectivity. A slightly different realisation using a k-nearest neighbours graph from which

low density nodes are removed at each iteration of λ is available with DeBaCl clustering.[446] The

following sections will discuss connectivity-based density-based clustering procedures that solve the

problem of establishing a density estimate and connectivity differently.

Dissertation J.-O. F. Kapp-Joswig 175

DBSCAN

14.7 DBSCAN

A very popular density-based clustering method is DBSCAN,[447] which stands for density-
based spatial clustering for applications with noise. Occasionally, DBSCAN and density-based clustering

are even used as synonyms in the literature. As mentioned in section 14.5, the method is conceptually

very similar to the previously described density-based clustering using grid cells. Virtually, the only

difference lies in how density is estimated based on the samples in a data set. Instead of the number of

objects per cell, DBSCAN takes the number of neighbouring points as a density estimate for individual

points.

Typically, the neighbourhood of a point is the open- or closed-ball neighbourhood Br as defined in

and 13.7, using a distance metric (usually the Euclidean distance) and a fixed radius r. The cardinality

of the set Br provides the density estimate for a single point. Frankly speaking, the volume element

corresponding to a neighbourhood can also be viewed as a special type of cell, making the relation

to grid-based clustering quite obvious—only that the cells are centred around individual points and

partially overlapping.

Just as in grid-based clustering, the density-estimate alone does not suffice to group data points

into clusters. We still need a connectivity concept to decide when two points should be part of the

same cluster. In the original formulation of DBSCAN,[447] this is defined leveraging a threshold.

Points that possess a density estimate exceeding the threshold, i.e. that have at least a number of nc

neighbours with respect to a neighbour search radius r, are called core points. Core points that are

neighbours of each other are in turn considered to be connected. Fundamentally, the set of all present

connections constitutes a graph for the data and clusters are the maximally connected components of

this graph. This notion is in line with the formulation of the clustering problem in terms of level-sets

(compare section 14.6). Additionally, points that are not themselves core points but neighbours of a

core point are termed border points. Connections of border points to core points can optionally be

added to the graph as well, but note that this introduces some ambiguity because border points may

be connected to core points in different clusters. In this case, it has to be decided to which cluster a

point should be assigned, which can be done randomly or for example by choosing the closest core

point or by evaluating the membership of all neighbouring core points against each other.

Figure 14.18 illustrates the DBSCAN density criterion with a threshold and a clustering result for

the previously used scikit-learn moons data set.

Figure 14.18 DBSCAN for themoons data set
a) Original data points with neighbour search radius r = 0.15 shown for a single point with a red circle. b) For a

density threshold of nc = 10, the point highlighted in a) is a core-point since it has 20 neighbours. All its neighbours

are connected to it as indicated by blue lines. Border points are drawn in gray. c)The connections between the data

points form a graph in which clusters correspond to maximally connected components. The data points are coloured

by their cluster labels (noise in black). The edges of a graph build from a connected component search (see code

snippet further below) are shown with black lines.

176 Dissertation J.-O. F. Kapp-Joswig

DBSCAN

The DBSCAN publication coins the terms density-reachable and density-connected. A point b is
directly density-reachable from a point a if a is a core point and b is a neighbour of a. density-

reachability
and

connectivity

Furthermore,

a point c is indirectly density-reachable from a if there is a chain of directly density-reachable points

from a to c, say there is a point b that is reachable from a while c is reachable from b. Finally, two

points are density-connected if there is a point from which both are (indirectly) reachable. Density-

connectivity is a symmetric definition while density-reachability is only symmetric for core points.

Clusters are identified as sets of density-connected points. The paper does not identify this with the

concept of connected components of a graph in which edges correspond to the direct reachability of

two data points but the notion is exactly equivalent.

Practically, DBSCAN can be implemented using a connected component search algorithm like

breadth-first-search (BFS) (see also section 7.1). Starting with any point of the data set as the root of

the first cluster, the full cluster can be explored iteratively by adding all points that are connected to

this first point, then adding all points connected to the newly added points and so forth. implementa-
tion

Once no

other point can be added, the next cluster can be explored by choosing a new root if there are still

unassigned points left in the data set. During such a search, it is possible to either build a graph of

connections explicitly or to just directly assign cluster labels to data points. The short code snippet

below gives an example for how to do both at the same time. The example assumes that core points

have been previously identified by checking the neighbour count against a threshold. As usual, the

algorithm depends on a FIFO queueing structure to collect points from which the cluster can be

grown further and an indexable indicator structure to keep track of which points have been already

visited. The graph in figure 14.18c has been generated in this way. Note that this graph contains only a

(minimum) set of required connections that depends on how the graph is explored. Note also that the

code example will add border points to the first possible core point if the used neighbour lists contain

not only core points.

clabel = 1
for p in core_points:

if visited[p]:
continue

visited[p] = True
labels[p] = clabel
queue.push(p)
while queue:

p = queue.pop()
for q in neighbours[p]:
if visited[q]:
continue

visited[q] = True
labels[q] = clabel
graph.add_edge(p, q)
queue.push(q)

clabel += 1

As a side note, one of the earliest density-based clustering method, which was proposed by Wishart

in 1969,[448] does something very close to DBSCAN with a different notion of how to establish Wishart
variantconnectivity. The idea is to identify core points using the same density estimate, but than using classic

single-linkage clustering on these core points to find the clusters.

Like for the grid-based approach, the choice of the threshold value tunes the outcome of

the clustering in DBSCAN. A complete screen of the threshold results in a hierarchy hierarchywhere higher

thresholds create splits in denser data regions while larger portions of the data fall below the threshold

and are declared noise. Choosing a suitable threshold can, however, be unintuitive and cumbersome,

Dissertation J.-O. F. Kapp-Joswig 177

DBSCAN

not to mention that a systematic test of many different thresholds can be fairly expensive for larger

data sets. There exists a number of possible approaches to use the DBSCAN density estimate without

a threshold instead, though.

The equivalent to what was described for the grid-based example, would be to define a weight for

connections between two data points based on their density estimate. This could be the minimum

density of the two points. An evaluation of all connections ordered by their weight will then lead to

the complete hierarchy of clusterings where each hierarchy level corresponds to a specific density

threshold (compare 14.16). In this case, one needs to additionally define when two points should be

connected to each other in the first place. For the grid example, connections where considered only

between adjacent cells. Correspondingly, connections can be considered only between neighbouring

points here. Note, however, that this in turn again depends on the neighbour search radius r, which
kind of acts as a resolution parameter comparable to the bin size in the grid case.

Another variation that turns theDBSCANconcept upside downwas proposedwithHDBSCAN.[449,

450]The idea is to transform the point-wise density estimate into a newHDBSCAN metric calledmutual reachab-
ility distance that can be used as a connection weight between data points. In conventional DBSCAN,

the question is ‘how many neighbours does a point have?’ or rather ‘does a point have at least nc

neighbours?’. In HDBSCAN, this is turned into ‘how large does r need to be so that a point has at least
nc neighbours?’ The neighbour search radius r at which a point fulfils this density criterion is called

the point’s core distance dcore—the radius for which a point becomes a core point—and is equal to the

k-nearest distance for k = nc, i.e. the distance to its ncth closest neighbour. The mutual reachability

distance between two points a and b is then defined as

dmutual(a, b) = max (dcore(a), dcore(b), d(a, b)) , (14.8)

where d(a, b) is a regular (the Euclidean) distance between the points. Effectively, points that are

in relatively sparse data regions and have large core distances are pushed further away from other

points. Dense points with low core distances remain at their original distance to other dense points.

DBSCAN can be reformulated as single-linkage clustering on this new metric. In practice, however,

the set of all pairwise connections between the data points can be reduced to a minimal set of relevant

connections, namely a MST. Bottom-up iteration over the edges of this MST starting with the two

most closely connected points creates the hierarchy of clusters. A certain slice of the hierarchy is

exactly what is achieved with conventional DBSCAN with a certain density threshold.

Unfortunately, single-linkage hierarchies can be complex for larger data sets. For n data points, the

MST has n − 1 edges and hence the cluster hierarchy comprises n − 1 merges. The number of merges

one eventually might be interested in, can be much smaller, though, because many of them typically

correspond to a situation where two small clusters merge or where a small cluster is swallowed by a

big one. To narrow the number of merges down to those where two big clusters are joined, one can

define a minimum cluster size. Clusters with a member count lower than this minimum requirement

can be regarded as noise. A merge of a noise cluster can be simply seen as cluster growing and can be

ignored in the hierarchy of merges.

Figure 14.19 shows an example application of HDBSCAN to the Iris data set including the single-

linkage hierarchy obtained directly from the MST of mutual reachability and a condensed hierarchy

using a minimum size for relevant clusters.

The full hierarchy of clustering results is more powerful than individual flat clusterings. For one

thing, the hierarchy can guide the choice of again a simple threshold to eventually extract a certain

slice of the hierarchical tree.analysing
hierarchies

On the other hand, the hierarchy can be processed to select a final

clustering result as a combination of clusters from different branches of the tree, which means with

possibly different thresholds for each cluster. This selection of child clusters can be just done rationally

by the user but HDBSCAN does also provide a heuristic automatic approach for it. Starting with the

178 Dissertation J.-O. F. Kapp-Joswig

DBSCAN

Figure 14.19 Iris data HDBSCAN hierarchy and clustering result
a) Dendrogram for a single-linkage clustering on a MST using the mutual reachability distance for nc = 2 (see

equation 14.8) and b) condensed tree applying a minimum cluster size value of 5. Note that while the single-linkage

tree is labelled on the y-axis with the actual distance value at which a respective merge can be observed, the condensed

tree is given in values of λ = 1/dmutual, which is an efficient density estimate. Based on the relative persistence of the

clusters in the condensed tree, HDBSCAN (hdbscan.HDBSCAN) suggests a preferred clustering result as a combination

of clusters from different branches of the tree (highlighted with circles around them). c) Recommended clustering

result based on cluster persistency. 67 % of the cluster labels match the true classification labels. Non-matching

assignments are marked with squares.

outer leaf clusters, a persistence, or in other words a live time, is determined for each cluster in terms

of the threshold range in which the cluster exists. If the live time of a parent cluster is longer than

the summed live times of its children, the parent will be kept as the more relevant cluster. How to

process cluster hierarchies programmatically will be discussed further in the context of CommonNN

clustering in chapter 15.

Of course, it still depends on the application if such a processing of a hierarchy leads to a desired

outcome. For the Iris data set, the HDBSCAN live time rational prefers two clusters, which is not well

in agreement with the biological assignment (compare figure 14.19 and 13.3). Figure 14.20 shows amore

agreeable clustering for which the threshold was selected based on the hierarchy as the smallest value

where three clusters can be obtained. Finding this threshold without the hierarchy would necessitate

a manual try-and-evaluate approach with different threshold values.

Dissertation J.-O. F. Kapp-Joswig 179

Jarvis-Patrick clustering

Figure 14.20 Iris data DBSCANwith a threshold selected from the hierarchy
Investigating the single-linkage hierarchy (compare figure 14.19), it is possible to select dmutual = 0.4 as a threshold

value at which the data set is partitioned into three clusters of similar size. The respective cluster labels can be extracted

from the HDBSCAN hierarchy. Conventional DBSCAN (using sklearn.cluster.DBSCAN) with r = dmutual and

nc = 2 gives the same result. 81 % of the cluster labels match the true classification labels (98% if noise points are

neglected). Non-matching assignments are marked with squares.

14.8 Jarvis-Patrick clustering

In the previous sections, we discussed density-based clustering protocols that defined the

notion of how density is estimated using either a certain kind of volume elements (grid cells) or

the neighbourhoods of individual data points. For the actual identification of clusters, a separate

introduction of a connectivity concept was necessary in these cases because the entities for which the

density is estimated have no intrinsic density-related relationship to each other. Connectivity was

derived by mixing another type of relation (the adjacency of grid cells or the neighbourhood relation

of points) with the density estimate.

The Jarvis-Patrick clustering methodology is relatively unpopular (at least in comparison to DB-

SCAN) but it does in contrast provide a density estimate that directly serves as a connectivity definition

as well.[451]density
estimate

Density is taken as the number of neighbours that two points share with respect to their

k-nearest neighbourhood. Since this density estimate involves two points, it establishes a connection

between them. The definition is also sometimes referred to as the shared nearest neighbour (SNN)

similarity.

Figure 14.21 Jarvis-Patrick for themoons data set
a) Original data points with k-nearest radii (k = 20) shown for a data point (red) and its 15th closest neighbour

(orange). b) For a density threshold of nc ≤ 11, the points highlighted in a) are connected since they share 11

neighbours. c)The connections between the data points form a graph in which clusters correspond to maximally

connected components. For a clustering with nc = 10, the data points are coloured by their cluster labels (noise in

black). The edges of a respective graph build from a connected component search (see code snippet in section 14.7)

are shown with black lines.

180 Dissertation J.-O. F. Kapp-Joswig

Jarvis-Patrick clustering

Figure 14.22 Iris data Jarvis-Patrick hierarchically
a) Original data points with true classification labels (compare figure 13.3) and MST using the Jarvis-Patrick con-

nectivity criterion for k = 15. The edges of the tree are shown with black lines, scaled by their weight. b) Single-linkage
hierarchy illustrated as a dendrogram. By investigating the hierarchy, it is possible to select three clusters, corres-

ponding to a flat clustering with nc ∈ {6, 7}. The legs of the tree are coloured by the resulting cluster labels while

circles on the bottom denote the true classification of individual points. A threshold nc ≤ 6 would lead to a merge of

the orange and green cluster. A threshold nc ≥ 7 creates several splits in the shown clusters. c) Flat clustering for

nc = 7 result as scatter plot. 90% of the cluster labels match the true classification labels (91 % if noise points are

neglected). Non-matching assignments are marked with squares.

The size of the k-nearest neighbourhoods to evaluate is kind of a resolution parameter comparable

to the neighbour search radius r in DBSCAN. It should be noted, though, that the k-nearest neigh-

bourhoods can not be associated with a fixed spatial volume. For data points in sparse environments,

the distances to their kth neighbour are naturally much larger than for dense points. In principle, the

density estimate can be done for all possible pairs of points, which essentially constructs a similarity

matrix. However, a crucial additional requirement is usually made: points for which the similarity

is evaluated must be a kth nearest neighbour of each other. The similarity is set to zero for all other

pairs. Without this limitation, the outcome of the clustering is altered substantially. For the identi-

fication of clusters as connected components, a minimal set of local connections between points is

sufficient. Consequently, what is practically dealt with in implementations of this clustering is not the

full similarity matrix but rather a subset of necessary connections in terms of edges in a graph.

Dissertation J.-O. F. Kapp-Joswig 181

Common-nearest-neighbour clustering

Similar to the already described density-based clustering schemes, Jarvis-Patrick clustering is

traditionally used with a threshold to produce a flat clustering. Points that share at least nc common

neighbours with respect to their k-nearest neighbourhoods are identified to belong to the same cluster.

Figure 14.21 illustrates the Jarvis-Patrick density-criterion on the scikit-learn moons data set.

What has been stated about hierarchical clustering in the previous sections, can also be translated

almost one-to-one for Jarvis-Patrick clustering as well. The basic idea is to use the similarity between

data points quantitatively instead of converting it to a binary relation using a threshold. Figure 14.22a

shows a MST of edges corresponding to the Jarvis-Patrick density estimate for the Iris data set. By

single-linkage clustering of this tree, the full hierarchy of clustering results with increasing threshold

can be built and analysed as shown in figure 14.22b. Three clusters in close agreement with the

expectation can be selected, which are shown in figure 14.22c. The details of this will be discussed

further in the context of the very closely related CommonNN clustering in chapter 15.

It should be noted, however, that the MST of the data and consequently the hierarchy of clustering

results still depends on the cluster parameter k, i.e. number of nearest neighbours to be considered in

the point neighbourhoods.

14.9 Common-nearest-neighbour clustering

A variation of the Jarvis-Patrick clustering approach is found in the formulation of an

independent method, referred to as common-nearest-neighbour (CommonNN) clustering. As an

alternative to the use of k-nearest neighbourhoods and the SNN similarity in Jarvis-Patrick clustering,

CommonNN clustering uses fixed radius neighbourhoods with an accordingly modified shared fixed
radius near neighbours similarity (for which to my knowledge no widely accepted abbreviation exists).

In other words, the similarity between a pair of data points in CommonNN clustering is defined as

the number of points that can be found in both the fixed radius neighbourhoods of each point, i.e. as

the number of their in this sense common neighbours. A differentiation between common near(est)

and shared nearest neighbours in terms of a similarity definition just by the naming is admittedly a

bit blurry, though. If the character of the neighbour lists is neglected, Jarvis-Patrick and CommonNN

clustering are basically identical. From an objective standpoint it would make sense to treat the two

clustering methods as different flavours of essentially the same method, let’s say shared neighbours

Figure 14.23 CommonNN for themoons data set
a) Original data points with fixed near neighbourhood radii (r = 0.2) shown for a data point (red) and one of its

neighbours (orange). b) For a density threshold of nc ≤ 18, the points highlighted in a) are connected since they share

18 neighbours. c)The connections between the data points form a graph in which clusters correspond to maximally

connected components. For a clustering with nc = 10, the data points are coloured by their cluster labels (noise in

black). The edges of a respective graph build from a connected component search (see code snippet in section 14.7)

are shown with black lines.

182 Dissertation J.-O. F. Kapp-Joswig

Common-nearest-neighbour clustering

Figure 14.24 Iris data CommonNN hierarchically
a)Original data points with true classification labels (compare figure 13.3) andMST using the CommonNN connectiv-

ity criterion for r = 0.45. The edges of the tree are shown with black lines, scaled by their weight. b) Single-linkage
hierarchy illustrated as a dendrogram. By investigating the hierarchy, it is possible to select three clusters, corres-

ponding to a flat clustering with nc = {4} (note that this includes an offset of 2 due to neighbour self-counting). The

legs of the tree are coloured by the resulting cluster labels while circles on the bottom denote the true classification

of individual points. c) Flat clustering result for nc = 4 as scatter plot. 67 % of the cluster labels match the true

classification labels (90% if noise points are neglected). Non-matching assignments are marked with squares.

clustering for that matter. shared
neighbours
clustering

Besides, shared neighbours clustering with fixed radius near neighbours or

k-nearest neighbours, any other neighbourhood definition might be used as well—possibly, though,

with drastically different outcome. Like for Jarvis-Patrick clustering, we will see for shared neighbours

clustering in general that it can in turn be viewed as a form of single-linkage clustering with a density

derived similarity measure.

In the original publication of 2010[452], the name for the CommonNN clustering was coined in

analogy to the previously developed neighbour algorithm, which is conceptionally, however, quite

different.[453] Later, the abbreviation CNN clustering was used.[240, 454] This is avoided here,

however, because CNN is prominently occupied by the concept of convolutional neural networks.
While this term falls into the same broader topic of machine learning like clustering does in general,

it is otherwise completely unrelated and thus can be only confusing.

Dissertation J.-O. F. Kapp-Joswig 183

Density-peaks

Figure 14.23 illustrates theCommonNNdensity-criterion on the scikit-learnmoons data set. Like the

other connectivity based clustering methods discussed so far, it is traditionally used with a threshold.

Points that share a number of at least nc neighbours with respect to a neighbour search radius r will
be considered connected, rendering the final clusters connected components of the graph formed by

these connections.

CommonNN clustering can also be done hierarchically by building a MST from the un-truncated

density criterion. Figure 14.24 exemplifies this with the Iris data set. Note that the result may not be

fully satisfactory in this case but this can be attribute to the relatively low number of samples in the

data set. Density-based clustering in general depends on a sufficiently high number of data points

for a robust density estimate. This is even more true for CommonNN clustering where the density

estimate relies on a sufficient sampling of neighbourhood intersections. The fact that other clusterings

like DBSCAN and Jarvis-Patrick clustering seem to perform better for the Iris data set should not be

taken prematurely as a general qualitative difference.

The details of how we implemented the CommonNN clustering procedure in a convenient and

efficient Python package will be lain out in the following in chapter 15.

14.10 Density-peaks

The last density-based clustering procedure I want to put some attention to is density-

peaks clustering.[455] So far we discussed connectivity-based density-based clusterings that essentially

aimed on the identification of connected components of a super level-set on an approximate probability

density. The hierarchies (or hierarchy slices) presented by these methods can be understood in terms

of level-set trees, i.e. there has been a focus on where a considered data set splits when a density tuning

parameter exceed a certain threshold value. In a way we could say that this view is centred on the

minima of the probability distribution underlying a data set. By excluding regions of low density, the

high density regions reveal themselves as disjoint components.

Density-peaks clustering is interesting because it can be in contrast considered a prototype-based

approach. This perspective is focused on the maxima of the (approximate) probability density of a

sample set.prototypes By identification of the highest density data points, the method tries to find those that

could be suitable prototypes for the modes of the distribution that attract the lower density points

around them. This idea is similar to what is done by mean-shift clustering,[456] where a set of test

points is converged to the closest density maxima by updating their position iteratively to be the mean

of their respective neighbourhoods. The way how density-peaks finds the maxima is, however, quite

different. An important thing to point out is that density-peaks is able to find non-spherical clusters

of arbitrary shape and form—a trait commonly only attributed to connectivity-based clustering

procedures.

Density-peaks is based around two assumptions: 1) the desired cluster prototypes (the cluster

centres) are points of relatively high density, surrounded by neighbouring points with lower density,

and 2) they are relatively far away from other points of high density in the sense of 1). Practically, we

need to assess the density of individual points and their distance to the nearest point of higher density.implementa-
tion Local point density can be estimated around each point, like seen before in DBSCAN (section 14.7),

as the number of neighbouring points with respect to a neighbour search radius r. Lets denote this

number by ρ′a , the density estimate for point a. The authors of density-peaks claim that the clustering

is robust against variations in r because only the relative proportion of density differences between

points is of interest, not the absolute value of the density estimate. So while r can still be seen as a

resolution parameter that should be set in a reasonable range—a too low value might give a noisy

184 Dissertation J.-O. F. Kapp-Joswig

Density-peaks

estimate, a too large value might not be able to resolve density differences—it should not have a direct

effect on the clustering result in terms of a tuning parameter.

Next, let’s denote the distance of each point to the closet denser point as

δa = min
b ∣ ρ′b>ρ′a

(d(a, b)) , (14.9)

where d(a, b) is a distance function. The densest point is conventionally assigned the maximum

distance found in the data set. Proper prototypes are expected to have a much larger δa value than

other points. Points that at the same time have a very low density may be rather considered outliers,

though. For the actual selection of clusters, density-peaks provides a decision heuristic in terms of a

two dimensional plot of δa versus cluster selectionρ′b (see figure 14.25a). The user can manually select those points

that are both dense and far away from other dense points. All remaining points will be assigned

recursively to the same cluster as their closest point with higher density. Note that in contrast in

mean-shift clustering, points are typically assigned to their closest prototype, which tends to yield

globular clusters and ignores the fact that the closest prototype may represent an actually different

data region of high density.

Figure 14.25 Iris data set density-peaks (3 clusters)
a) Density-peaks decision graph for cluster selection. Valid cluster prototypes are supposed to stand out in terms of a

relatively high density and a relatively large distance to the next densest data point. b)Data points (compare figure 13.3)

with cluster labels from density-peaks clustering (pydpc.Cluster¹). Prototypes highlighted with diamond shapes.

91 % of the cluster labels match the true classification labels. Non-matching assignments are marked with squares.

Within the limits of the applied heuristic to select clusters, density-peaks provides kind of a

hierarchical view on the data set as well, only that child-parent relationships are not made explicit. hierarchy
By systematically including an increasing number of cluster centres in the result, data regions that

where mingled with the respectively closest denser region become succeedingly separated as their

own clusters. The decision of which density-peaks are relevant in the end has to be made by the user.

¹Visit the development repository on GitHub: https://github.com/cwehmeyer/pydpc

Dissertation J.-O. F. Kapp-Joswig 185

https://github.com/cwehmeyer/pydpc
https://github.com/cwehmeyer/pydpc

{ 15 }
The CommonNNClustering project
Design of a generic Python package

T
he density-based CommonNN clustering approach and how it works fundamentally has been

addressed in section 14.9. We saw that this approach provides a pairwise similarity measure that

entails a density estimate, which is suitable to be used in connectivity-based clustering. The clustering

can be done using a threshold criterion or in a hierarchical fashion.

This chapter should shed some light on the design process that led to our current implementation

of the procedure, which is publicly available as a Python package.¹ The project itself runs under the

name CommonNNClustering while the Python package as it was published to the Python package

index is currently named cnnclustering and after installation importable as such. An independent

subset of this project, i.e. essentially the core clustering procedure, was moreover contributed to

scikit-learn-extra.² A previous implementation of CommonNN clustering is available in terms of

the CNNClustering project,³ which was used so far in related publications.[240, 454] The presented

re-implementation of the procedure aims to offer improvements with regard to usability, flexibility,

and efficiency. In its core, the project is based on the idea of a generic approach to CommonNN

clustering.4

Before the actual architecture of the provided package should be described in detail, the following

section provides a short detour on the design principle of generic programming, achieved through

object-orientation. This is essential to understand how the CommonNNClustering project is struc-

tured. The explanation will be focused on Python but the underlying principles are also valid for

other programming languages. We use Cython to translate performance crucial elements of the

implementation to C/C++.[457] The complexities introduced through this will in general not be

discussed throughout this chapter with the exception of a few important details.

15.1 Primer on generic interfaces in object-oriented programming

Python is intrinsically an object-oriented programming language. Although this

does not mean that every bit of Python code has to be aware Python OOPof this nature or has to be based on object-

oriented design principles, the language offers wide support of typical mechanisms used in OOP.

Python (like for example C++) can still be used following procedural or functional programming

paradigms and does not force the use of object-oriented features upon the user5.

¹Visit the development repository on GitHub (github.com/janjoswig/CommonNNClustering) or the latest release in

the Python package index (pypi.org/project/cnnclustering/)

²Visit the development repository on GitHub: github.com/scikit-learn-contrib/scikit-learn-extra
³Visit the development repository on GitHub (github.com/bettinakeller/CNNClustering)

4Before the background that the abbreviation ‘CNN’ is substituted with ‘CommonNN’ here (see also 14.9), the package

name cnnclustering should be probably revised. Furthermore, the whole project is not at all restricted any more to

CommonNN clustering and it should be eventually renamed to reflect its generic character better.

5See the Python docs for more information: docs.python.org/3/howto/functional.html

Dissertation J.-O. F. Kapp-Joswig 187

https://github.com/janjoswig/CommonNNClustering
github.com/janjoswig/CommonNNClustering
https://pypi.org/project/cnnclustering/
pypi.org/project/cnnclustering/
https://github.com/scikit-learn-contrib/scikit-learn-extra
github.com/scikit-learn-contrib/scikit-learn-extra
https://github.com/bettinakeller/CNNClustering
github.com/bettinakeller/CNNClustering
https://docs.python.org/3/howto/functional.html
docs.python.org/3/howto/functional.html

Primer on generic interfaces in object-oriented programming

A key element for object orientation is the concept of objects. In general, objects are said to bundle

data (variables) with behaviour (functions).objects The data on an object defines its current state and can

be referred to through individual attributes of the object. An object is usually aware of itself and

can modify its state through the use of functional attributes, also calledmethods. In object-oriented

programming, problems that a certain program should address are broken down into operations on

and interactions between objects that model the partaking entities.

As an example, the code that drives a laboratory inventory management system behind the scenes

could make use of User objects to represent registered staff members that have access to the inventory.

Typical data associated with such an object may be the user’s name or personal ID, or the current list

of items a user has borrowed at the moment to make an experiment.objects
example

Certain actions that a user can

perform, like taking a needed chemical from the stock, may be realized through a respective methods.

A selectable article would be probably in turn modelled as a different object as well as the item list

itself.

Objects can map to ‘real’ things that should be represented but also to all kinds of possible entities

of only conceptual nature. An ideal breakdown of a problem with a suitable set of objects can be

non-trivial to find and is often a core challenge in the design of an object-oriented program. A useful

principle to define and grasp objects, is to think of objects as nouns (‘who or what is the actor? With
whom or what is been interacted?’) and of its methods (like of functions in general) as verbs (‘what
is being done?’). ‘User x takes item i from the inventory’ could be a possible action in this particular

example and it could be realized through a call of the take_item(item)method associated with the

user object. This method is internally aware of the object it is called on, i.e. it has a direct reference to

the object and can modify its state, which means to manipulate the objects attributes.

Python is furthermore a class-based6 language. A class in object-oriented programming can be

understood as an object factory. In this sense, a class knows how to make a certain type of object

following some sort of blue-print or template.classes Objects are called instances of the class they were made

of. For an instance of a Python class the access of a certain attribute or method on the instance can be

delegated to the respective value on the class. Individual instances are, however, usually independent

of each other and each instance can have different values for attributes that are directly set on the

instance, not on the class. Attributes on the instances are called instance attributes while attributes on

the class are called class attributes.
Methods are fundamentally a special kind of class attribute (descriptors) that are bound to an

instance when accessed from it. To bind a method to an instance means to insert the instance object

itself as the first argument to any call of the method, so that the instance can be referred to from within

the method. By convention, this first argument that represents the instance object itself is named self
in Python. Besides regular methods, Python knows the concept of classmethods that are not bound to

an instance but to a class instead, and staticmethods that are bound to neither instance nor class.

Pythonmakes a differentiation between the creation of a new object and the subsequent initialization
through a constructor. Object creation is done through the __new__ method of a class that is by

design implemented as a staticmethod. The default constructor is defined through __init__ which is

a regular method and operates on a just created instance.

Picking up the ‘inventory’ example from above, individual user objects could be instances of a User
class. Every user object will be created and initialized through the User class and will have the same

set of common attributes and methods but each instance will have individual attribute values.class example A

minimal working example for how to define and use a custom class in Python is lain out below.

6The counterpart to class-based is prototype-based. Although Python is fundamentally class-based, the prototype design

pattern can still be used to create objects from other objects through cloning.

188 Dissertation J.-O. F. Kapp-Joswig

Primer on generic interfaces in object-oriented programming

class User:
def __init__(self, name: str):
"""Default constructor/sets an instance attribute"""
self.name = name

user = User("Cleese")
another_user = User("Idle")
assert user.name != another_user.name # passes

Note that we did explicitly only provide an __init__ constructormethod here, and left out __new__.

This is possible because every class (at least in Python 3) automatically inherits from object. In-

heritance is the process of sharing the definitions of a class with other classes further down in the

inheritance hierarchy. An inheritance relationship between two classes can be compared to that of

child and parent. A child class takes over all the attributes and methods of its parent class. Another

valid name for parent is base. Inherited attributes and methods on the child can be overridden so

that the implemented functionality changes and new ones can be added to extend the child. The

class object is Python’s default class at the top of the inheritance hierarchy. It is the base class for all

classes. When we instantiate a customer object in the above example through the syntax of calling the

User class, this actually creates an object via object.__new__ followed by a call to __init__ on the

just created object. While object.__new__ expects the class of which a new instance should be cre-

ated as the first argument and returns an instance object, object.__init__ expects the constructor

arguments and returns None. It is roughly equivalent to:

user = object.__new__(User)
user.__init__("Cleese")

As a twist, classes are objects themselves. Python knows the concept ofmetaclasses, which can be

understood as class factories in analogy to classes being object factories. The default metaclass from

which all other classes are created is called type. type vs. class7 As far as we should be concerned here, however,

type can be also used as a function to retrieve the class of an object.

type(user) # <class '__main__.User'>
user.__class__ # gives the same
type(User) # <class 'type'>

So basically, the type and the class of an object are virtually identical here. This notion is, however,

somewhat different to how types and classes are normally understood in object-oriented design. The

type of an object is in general determined through the interface it provides. interfacesAn interface is a set

of public attributes and methods that can be accessed on an object to interact with it. Since a class

defines such a set, it does also define a type for its objects. But while an object can be a direct instance

of only one class it can provide many interfaces and therefore can fulfil the requirements for many

different types.

Let’s contemplate over this with a simple example. Python’s list class is a standard container. An

instance of this class can be considered of multiple types depending on which of its characteristics

is emphasized. For the role as a Container, it is sufficient that it carries a __contains__ method

through which it can be checked if some item is contained in it. To be called a Sized type, it only

needs to provide a __len__ method that returns the number of items it holds. A list is also a

Sequence because it additionally can return individual items by index via its __getitem__method.

Furthermore it is iterable, reversible, and so forth.

For many of these commonly needed types, Python provides abstract base classes.8 Abstract classes

are not meant to be initiated but only serve to define abstract base
classes

a certain interface. If a type is in this way

7See the Python docs for more information: docs.python.org/3/reference/datamodel.html
8See also docs.python.org/3/library/collections.abc.html

Dissertation J.-O. F. Kapp-Joswig 189

https://docs.python.org/3/reference/datamodel.html
docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/library/collections.abc.html
docs.python.org/3/library/collections.abc.html

Generic threshold-based CommonNN clustering

documented via a class, the differentiation between types and classes becomes admittedly again

somewhat blurry.

Long story short, the concept of types with certain interfaces can be extremely valuable for the design

of a program architecture. Whenever a certain kind of functionality should be implemented, it makes

sense to program against interfaces not against specific classes. A function should not care whether it

is passed a dict, list, or set as an argument if it only needs to iterate over the contained elements. The

principle of writing programs so that they can work with any type of object as long as they only provide

the necessary interface is called generic programming.generic
programming

For the CommonNNClustering package, we

made extensive use of generic interfaces to make the program as flexible as possible and to allow the

clustering of data sets in many different concrete formats.

15.2 Generic threshold-based CommonNN clustering

Let’s recall that in connectivity-based clustering a data set of objects can be concep-

tually treated as a graph. The objects that should be grouped into clusters are connected by edges

corresponding to some relation in the sense of a distance or similarity. Once these connections are

known, the clustering problem can be solved via operations on the respective graph. In CommonNN

clustering, the similarity measure is given as the number of neighbouring objects that two objects

share with respect to a neighbour search radius r. In this sense, the clustering is a special type of

clustering using shared neighbours with the extra specification to make use of fixed radius near

neighbours. For threshold-based CommonNN clustering, the similarity measure is converted into

a binary relation using a minimum number of nc neighbours that two points need to share to be

considered as connected to each other. The desired clusters are the maximally connected components

of a graph with these connections. Connected components can in turn be discovered for example in a

breadth-first-search (BFS) traversal of the graph.

There are basically two different strategies for the implementation of this. On the one hand, one

could construct the graph completely before it is subjected to the connected component search. Then

the graph itself would be a primary output of the procedure, which could be interesting if the graph

should be processed also in other ways.graph
construction
and traversal

The graph construction incorporating the CommonNN logic

and the cluster extraction would be decoupled. On the other hand, one could run the search directly

while exploring the connections of the graph just when they are needed. In this way, the graph is

only treated implicitly. The output of the procedure are the clusters themselves without detour. In the

present work, we focused so far on the latter of these strategies.

For the actual implementation of the connected-component search and the determination of the

connections, there are a lot of possible variations. They arise partly from the fact that there are many

different starting points for the clustering.implementa-
tion variations

We could for example work for one thing with data point

coordinates in a metric space in which neighbourhoods need to be computed before the similarity

criterion can be checked, or we could start from already pre-computed neighbourhoods. In the former

case, the point coordinates could be presented for example in a classic matrix format (e.g. a NumPy

array) or in some other data table (e.g. a Pandas data frame). Different concrete data formats may

require slightly different ways to retrieve the needed information from them. We could just restrict

the input source for the clustering to a specific format but this would be not satisfactory in terms

of the broad usability of the clustering. Besides this, we may want to be flexible with regard to the

metric that is used to compute fixed radius neighbourhoods from point coordinates. Furthermore,

the comparison of two neighbourhoods with respect to the similarity criterion can be technically

realised in more than one way. As a last example, the queuing structure that is required to support the

BFS could be implemented differently.

190 Dissertation J.-O. F. Kapp-Joswig

Generic threshold-based CommonNN clustering

This is where generic programming comes into play. We want to have an implementation of the

implicit connected-component search that is agnostic of these details. We do not want to have a whole

bunch of implementations accounting for each possible variation but only one that remains unchanged

if individual parts of the procedure are exchanged or extended. generic BFSTo make this objective more clear,

the code snippet below shows the formulation of an implicit BFS for connected components with

the use of abstract types rather than concrete data structures. For the sake of brevity, statements

and arguments of secondary importance are omitted here, which is then marked by an ellipsis (...).

Compare this to the more concrete code example in the DBSCAN section 14.7 and the theory in

section 7.1 for more details.

Initialise component label
current = 1
n = input_data.n_points
for init_point in range(n):

...
Get neighbours of init_point
neighbours_getter.get(...)
labels[init_point] = current
while True:

for member in neighbours:
...
Get neighbours of member
neighbours_getter.get(...)
Check neighbours intersection
if similarity_checker.check(...):

labels[member] = current
queue.push(member)

if queue.is_empty():
break

point = queue.pop()
Get neighbours of point
neighbours_getter.get(...)

current += 1

Notice the use of the following generic types here: input_data stands in for anything that represents

a data set. The algorithm does not need to be concerned with how the data is actually stored here. generic types
What matters is that the input_data type allows access to an n_points attribute that reveals how

many objects are in the data set so that we can iterate over it. Next, neighbours_getter represents

a type that can be called via its getmethod to fill up a generic container, here named neighbours.

Again, the BFS procedure is unaware of how the neighbours_getter extracts the neighbours of a

point from the input_data and how those are stored in the intermediate neighbours container. A

neighbours container can be anything that allows us to retrieve individual neighbours to then call the

neighbours_getter again and fill up another container with the neighbours of a neighbour—let’s

call them the neighbour neighbours. With the retrieved neighbourhoods of two points, the check
method of a generic similarity_checker type can be called to test whether the similarity criterion

is fulfilled. As far as the component search is concerned, it is not important how this is done exactly

as long as it returns a definite true or false. During the process, a queue type is used to store point

indices in one or the other way. Note, that whatever the queue actually does, the BFS only requires it

to be called via push, pop, and is_emptymethods.

Virtually the only entity that is not treated generically in this example, is the labels object. To

be fully consistent, this could be indeed also substituted with a generic type, but at the time there

Dissertation J.-O. F. Kapp-Joswig 191

Package realisation and basic usage

was no pressing need to do so.labels array The cluster labels are basically just stored and exposed as an array,

which is sufficiently flexibel for most situations. If there should be a demand for a variation of the

logic associated with the labels container, it can always be converted into a generic type with which

interactions flow via a certain interface later. In general, all building blocks that are used during the

clustering can be discretionarily and gradually translated into generic types or treated as concrete data

structures.generic vs.
concrete

It should be mentioned, though, that generic interfaces may come at a cost. In terms of

efficiency, it is naturally almost always faster to interact with objects directly (e.g. indexing a NumPy

array) instead of using an extra layer of function calls to interact with them generically (e.g. accessing

points in a NumPy array in the same way as any other possible format through a universal getmethod

that hides the internal logic of point retrieval).

The next section will discuss how such a generic BFS and the respective generic types are dealt

with in our CommonNNClustering project. To avoid unnecessary confusion, here is a brief note

on the notation that is used to address the different objects and classes.comment on
notation

In compliance with the

conventions communicated in PEP8,9 classes (including generic types represented by abstract classes)

will be written in camel case, i.e. using no underscores and capitalised words, like in InputData and
NeighboursGetter. Object instance names that appear as variables in code examples like above will

in contrast be written in all lowercase with underscores, e.g. input_data and neighbours_getter.

Apart from that, the different clustering building blocks that are represented by generic types will be

generally referred to in text also without markup, e.g. just as input data and neighbours getter.

15.3 Package realisation and basic usage

Taking the generic BFS formulation from the last section one step further, we decided

to provide another exchangeable type that represents the component search itself: the fitter. Within

our CommonNNClustering framework, the clustering procedure can be swapped entirely against a

different one just by selecting afitter different Fitter type that is essentially interacted with by the same

interface (essentially a fitmethod) but that may contain a completely different implementation. As

an example, one could use a depth-first-search (DFS) strategy instead or modify the algorithm to

implement DBSCAN or Jarvis-Patrick clustering.

Figure 15.1 summarizes the design idea for the CommonNNClustering package with generic types.

For the convenience of the user, we provide a main Clustering class. The API of the package contains

a set of classes that define and implement the generic clustering building blocks described above.Clustering class
For the actual execution of a clustering, these building blocks need to be combined and called in a

certain way. This provides a maximum degree of flexibility but on the downside can be fairly complex.

The Clustering class provides a high-level user interface to allow a simple and intuitive execution

of clusterings. The usage of this class is quite similar to how other popular Python packages like

for example scikit-learn expose their clustering protocols and should feel familiar to users that have

already some experience with those. The internal details of how a clustering is realised are hidden

from the unconcerned user as much as possible. In essence, the execution of a clustering is as simple

as this:

clustering = Clustering(data)
clustering.fit(**params)
clustering.labels # array([...])

First, a Clustering instance (here named clustering) needs to be created with some input data.

On initialisation, the correct assembly of the necessary clustering building blocks is taken care of in

9See peps.python.org/pep-0008/

192 Dissertation J.-O. F. Kapp-Joswig

https://peps.python.org/pep-0008/
peps.python.org/pep-0008/

Package realisation and basic usage

the background. This follows the builder design pattern,[458] and is described in section 15.3.1. On

first approximation, a Clustering object bundles the input data alongside a Fitter. By calling the

objects fitmethod with suitable cluster parameters, the execution of the clustering is delegated to

the Fitter, which in turn orchestrates the procedure and populates a labels container as the result.

Figure 15.1 Aggregation of generic types for
CommonNN clusteringThe Clustering class

provides the main pathway for user interaction

with the clustering functionality. Basically, this

class bundles input data (i.e. a data set of arbit-

rary format wrapped into a suitable InputData
type) with a Fitter that controls how a cluster-

ing is executed. The Fitter does in turn carry

a set of generic building blocks that are needed

during the procedure. For details on how the

correct aggregation is controlled using a recipe

and a Builder on Clustering initialisation see

section 15.3.1.

Like a Clustering object is associated with a Fitter, the Fitter bundles generic types like for

example a NeighboursGetter. As can be also seen from figure 15.1, there are still more generic

types involved than the already discussed. In particular, a NeighboursGetter may require also a

DistanceGetter to work properly. A DistanceGetter does in general depend on a Metric. Theway

how the individual building blocks are associated with each other follows the fundamental approach

of object aggregation. object
aggregation

This means that a certain building block possesses a number of attributes

that refer to other lower-level building blocks that it depends on. The behaviour of the higher-level

building block is controlled by the types it aggregates. Object attributes that refer to a generic building

block are named after the respective abstract type with a leading underscore to indicate their use as

private attributes. The Fitter type associated with a Clustering for example will be found under

the Clustering._fitter attribute.

The flow of method calls from tip to toe does in general look like the following when a user ini-

tialised a Clustering object and wants to execute a clustering: 1) The user calls clustering.fit
to trigger the procedure. 2) chain of

delegations
The call is (after a few basic checks and a general setup) delegated to

clustering._fitter.fit, which contains the generic clustering logic. 3) During the execution, dif-

ferent generic building blocksmay be utilised, for example via ~._fitter._neighbours_getter.get.

In this case, input data and neighbours container types are passed to the get call. 4) Depending on

the logic of this method, this may involve calls to ~._neighbours_getter._distance_getter.get.

5) If the input data contains point coordinates, ~._distance_getter._metric.calc_distance
will eventually return a specific distance between two points. The whole purpose of this chain of

delegations is to allow the exchange of individual parts of it. While the methods of the used generic

types are always called in the same way, the logic they entail and the kind of further types they call

may be very different.

Figure 15.2 gives a rough overview of the most important generic and non-generic types as a

UML class diagram. For each of them, the diagram shows the relation to other types and it also

lists a selection of attributes and methods. A Clustering aggregates primarily an InputData type

and a Fitter. relations
between types

A Clustering is also equipped with an instance of Labels that holds the cluster

label assignments and an instance of Summary that collects statistical records for past clustering

executions. A Fitter aggregates for example a Queue, a SimilarityChecker, a NeighboursGetter,

Dissertation J.-O. F. Kapp-Joswig 193

Package realisation and basic usage

and normally two Neighbours containers. It should be noted though that other fitters may use a

different set of building blocks. The NeighboursGetter fills the Neighbours container, so that the

SimilarityChecker can check if they fulfil the similarity criterion. Both require access to the cluster

parameters because to get the neighbours of a point we may need the neighbour search radius r and
to check the similarity we need the similarity cut-off nc. These parameters are passed around via a

ClusterParameters object that has to be created before Fitter.fit is called, which will be also

done internally by Cluster.fit.

Italic class names indicate here that the respective classes are abstract classes. These define an

interface but are not to be initialised. The actually aggregated objects need to be concrete realisa-

tion of those. The standard BFS clustering procedure is for example exposed by the concrete type

FitterBFS. For InputData, the interface is, however, further differentiated by inheritance into

InputDataComponents to store point coordinates (or distances), InputDataPairwiseDistances
and InputDataNeighbourhoods. The difference between the two types InputDataComponents and
InputDataPairwiseDistances is that in the former case information is retrieved from it via a

get_componentmethod. This is expected to be called by a Metric type. InputDataComponents can
still be used to store distances if a dummy metric (e.g. MetricPrecomputed) is used. On the contrary,

InputDataPairwiseDistances reveals its content via a get_distancemethod, which bypasses the

metric type and is supposed to be used for distances only. For distances and neighbourhoods input

data types, there also exist corresponding Computer interfaces. These are extended by methods that

can be used to compute distances and neighbourhoods in bulk. For each of these input data type, a

matching NeighboursGetter needs to be selected that can actually deal with it and implements the

necessary logic to extract neighbours from it.

For InputDataComponents, the diagram shows an example for a concrete realisation, namely

InputDataExtComponentsMemoryview. The Ext in the class name indicates that this is a Cython

extension type instead of a regular Python class.Cython
extension types

These types are generally more performant and

whenever possible they should be used instead of the pure Python counterparts. It should be noted that

extension types can be used as building blocks aggregated by Python types but in reverse extension

types may only aggregate other extension types. Instances of InputDataExtComponentsMemoryview
use a Cython specific typed memoryview to store their content and allow very fast C-array-like item

access and processing.

194 Dissertation J.-O. F. Kapp-Joswig

Package realisation and basic usage

Figure 15.2 UML class diagram for the CommonNNClustering project
Each of the shown classes is represented by a box with sub-boxes for a header with the class name, selected attributes,

and selected methods. Italic class names denote abstract classes that define the interface for a (generic) type, while

concrete classes have upright names. Relations between the classes are indicated by different kinds of arrows, pointing

from a class A to a class B. Dotted arrows with filled heads describe associations of the form ‘class A uses class B (e.g.

as an argument to one of its methods)’. Dotted arrows with empty heads say ‘concrete class A realises abstract class B’,

while solid arrows with empty heads say ‘(abstract) class A inherits from (abstract) class B’. Most importantly, solid

arrows with empty diamonds stand in for ‘class A is aggregated by class B’. These arrows are annotated according to

the ratio of the aggregation, e.g. a Clustering aggregates only 1 Fitter, but the same Fitter can be a part of many

(⋆) Clustering instances. Function argument and return types are set in italic (void/None is omitted).

15.3.1 Internal aggregation

We discussed the fundamental architecture of the CommonNNClustering project and

a typical set of generic clustering building blocks used in threshold-based CommonNN clustering.

As already mentioned, the provided building blocks can be used directly for a clustering if they are

assembled in a sensible manner. To get a better impression on how this could actually look like, let’s

assume we have some example input data of point coordinates stored in a 2D NumPy array. How do

we proceed from here?

Dissertation J.-O. F. Kapp-Joswig 195

Package realisation and basic usage

First, it is required to choose a suitable InputData type to wrap our raw data in, to be generically

processable (see figure 15.1). The best choice for this would be the highly performant InputDataExt-
ComponentsMemoryview class (see section 15.4 for more information on where to find available

types).manual
aggregation

This class can be initialised with the data right away if our NumPy array of data points is of

the shape npoints × ndimensions, of dtype=numpy.float64, and C-order memory layout. If this was not

the case, the data would need to be pre-processed accordingly (see further below and section 15.4

for more information). Next, we need to choose a metric, since we have to compute distances in

order to extract neighbourhoods from the given point coordinates. We can for example settle on

MetricExtEuclideanReduced, which needs no arguments on initialisation and computes reduced

(squared) Euclidean distances as its name suggests. Now, we take this Metric object and initialise a

DistanceGetter with it, for which the obvious choice would be DistanceGetterExtMetric. Then

we continue by initialising a NeighboursGetter, e.g. NeighboursGetterExtBruteForce, which
expects the distance getter on initialisation and computes neighbourhoods brute force by commanding

distance calculations from a point a to all other points in the data set to identify its neighbours. Weneed

more building blocks, though, if we want to use the fitter FitterExtBFS for the clustering. That would

be a queue (say the first-in-first-out QueueExtFIFOQueue that is based around a C++ std::queue),

a similarity checker (e.g. SimilarityCheckerExtSwitchContains, which will be further discussed

in section 15.6.1) and two neighbourhood containers (e.g. NeighboursExtVectorCPPUnorderedSet,
also addressed in section 15.6.1).

The full aggregation of the admittedly somewhat cryptic types above is expressed in the following

code example. At the end, it is also shown how to start the clustering procedure for which we also

need Labels and ClusterParameters. For the creation of the latter, it is recommended to use the

make_parametersmethod of the established fitter to ensure that the parameters are consistent with

what the fitter actually requires.

input_data = InputDataExtComponentsMemoryview(data)
metric = MetricExtEuclideanReduced()
dgetter = DistanceGetterExtMetric(metric)
ngetter = NeighboursGetterExtBruteForce(dgetter)
queue = QueueExtFIFOQueue()
checker = SimilarityCheckerExtSwitchContains()
na = NeighboursExtVectorCPPUnorderedSet()
nb = NeighboursExtVectorCPPUnorderedSet()
fitter = FitterExtBFS(

ngetter, na, nb, checker, queue
)

labels = Labels.from_length(data.shape[0])
cluster_params = fitter.make_parameters(

1.5, 1, 1 # r, nc, start label
)

fitter.fit(input_data, labels, cluster_params)

Such a manual setup is obviously not very convenient. To simplify these steps, we established the

concept of a Builder,[458] which is a class that has the only purpose of reproducibly assembling

above componentsBuilder &
recipes

for direct use. A builder requires a recipe that it can follow, which is basically a

mapping of argument values to generic types. For the above composition, the respective recipe can be

defined as such:

recipe = {
"input": "components_mview",
"prep": "points_from_parts",
"fitter": "bfs",
"fitter.ngetter": "brute_force",

196 Dissertation J.-O. F. Kapp-Joswig

Module overview

"fitter.na": "vuset",
"fitter.checker": "switch",
"fitter.queue": "fifo",
"fitter.ngetter.dgetter": "metric",
"fitter.ngetter.dgetter.metric": "euclidean_r",

}

Each key-value pair in this mapping defines which generic type should be used for which building

block. For nested aggregations, the keys contain dots to indicate lower building block levels. Note,

that the recipe refers to the building blocks and generic types with brief names and aliases (see the

next section 15.4 for more information on where theses names and recipes in general can be found).

The key "prep" refers to a function that will be used to prepare the passed input data in some way

before it is wrapped in a specific InputData type (see also section 15.4). Instead of string identifiers,

a recipe does also allow function and class objects directly to be used as valid values. Furthermore,

values can be a tuple of the form ("value", (), {}) to allow the extra specification of initialisation

arguments and keyword arguments. This recipe can now be used to initialise a builder and to create

input data and fitter.

Builder(recipe, **recipe_kwargs)
input_data = builder.make_input_data(data)
fitter = builder.make_component("fitter")

Instead of passing a mapping as the first argument on Builder initialisation, it is also possible to

refer to a pre-defined recipe with a string identifier. The example recipe is accessible through the

name "coordinates". Other currently available recipes are "distances", "neighbourhoods", and
"sorted_neighbourhoods". Remaining keyword arguments passed on initialisation are used to over-

ride the base recipe, e.g. like **{"fitter.na": _types.NeighboursExtVector} or equivalently

fitter__na="vector" (note the use of double underscores instead of dots in this case because dots

would be misunderstood by Python in keyword arguments as attribute access). When a Clustering
is initialised, it is a builder that controls the assembly of the object behind the scenes.

15.4 Module overview

The CommonNNClustering project is organised into several sub-modules. Here is a quick

overview of where to find what within the cnnclustering Python package. Each of the modules

can be imported, e.g. by a statement of the form from cnnclustering import cluster. Some of

the modules are Cython extensions, which can be imported from Python as regular modules. To use

these extensions from Cython, it is required to import them for instance as from cnnclustering
cimport _types. Cython extensions are marked with a superscribed C (e.g. _typesC).

cluster Provides the main high level entry point of the API through the Clustering class. Besides

the bundling of generic clustering building blocks, it exposes convenience functions for the evaluation

and post-processing of clustering results.

recipes Provides the Builder class for clustering building block aggregation. It also defines

available default recipes (REGISTERED_RECIPES), a set of names to refer to individual building

blocks (COMPONENT_NAME_TYPE_MAP), and available aliases (COMPONENT_ALT_KW_MAP). It is also the

place where preparation functions can be found to convert raw input data into something that

can be wrapped by an input data type (named by convention prepare_<*>), e.g. the function

prepare_points_from_parts that takes data point coordinates in nested sequences and returns

them ready to be wrapped by InputDataExtComponentsMemoryview.

Dissertation J.-O. F. Kapp-Joswig 197

Technical remarks

plot Convenience functionality for different kinds of plots using Matplotlib. Several functions are

only available if Networkx or SciPy are installed. Most of the provided aspects are either directly

accessible or via respective methods of a Clustering.

report Functionality to collect (record and summarise) cluster results, normally done on the same

Clustering object. Mainly provides a Record and a Summary class.

_typesC Crucial low level extension. Defines the interface for generic types through Python abstract

base classes and in case of extension types additionally through a concrete <*>ExtInterface variant

because Cython does not support abstract extension types in the same sense as Python does. Also

provides concrete realisations for each type. This is the place where to look for if a user needs to

implement a new custom type, e.g. an unsupported metric or an input data type that can deal with

specific data. Provides also Labels and ClusterParameters.

_fitC Defines the Fitter interface and provides concrete implementations. Also comprises the up

to here not discussed Predictor and HierarchicalFitter interface.

_bundleC As an additional layer of indirection, a Clustering object is not actually aggregating

an InputData object itself but instead a Bundle that is defined here. A bundle brings together the

input data and the cluster labels or a corresponding graph structure. Essentially it levels the field to

deal with cluster hierarchies as it can be engaged in child-parent relations with other bundles. See

sections 15.8 to 15.10 for more details on hierarchical clustering.

_primitive_typesC Lowest level definition of integer, float, and boolean values.

15.5 Technical remarks

Before we proceed further to examples of CommonNN clustering in use, this section

should address a few assumptions and decisions that went into the current implementation. First of

all, we should sort out a few things concerning the notation of parameter values because this was

treated quite differently in the literature so far.

The core of the CommonNN concept are fixed radius ball neighbourhoods Br (compare equa-

tion 13.7). Data point density is estimated from the intersection of the neighbourhoods of two points

Br(a) and Br(b) as

ρ′(a, b) = nsn(a, b) = card(Br(a)⋂Br(b)) . (15.1)

The dash in ρ′ should emphasise that this is only an estimate on the true (unknown) probability density

ρ based on discrete point samples.present
notation

Here, I denote the cardinality of the neighbourhoods intersection,

i.e. the number of points that are in both the neighbourhoods, with nsn with a subscript for shared
neighbours. Such a density estimate is also valid for shared neighbours clustering in general with a

difference in how the neighbourhoods are defined (compare for example k-nearest neighbourhoods in

Jarvis-Patrick clustering discussed in equation 13.8 and section 14.8). The density estimate is considered

a similarity measure that can be converted into a binary relation using a cut-off (threshold) criterion

(referred to also as similarity or density criterion) nc that is a minimum number of neighbours that

need to be shared by two points to be considered connected

s(a, b) =
⎧⎪⎪
⎨
⎪⎪⎩

0, for nsn < nc

1, for nsn ≥ nc

. (15.2)

198 Dissertation J.-O. F. Kapp-Joswig

Technical remarks

Additionally, it is possible to normalise the density estimate by the volume of the neighbourhood

intersection to counter the fact that this is not a constant[459]

ρ̃′ = ρ′

VI(a, b)
. (15.3)

In the original publication introducing threshold-based CommonNN clustering, the two necessary

cluster parameters were called the ‘nearest-neighbour-distance cut-off nndc’ (here the neighbour

search radius r) and the ‘nearest-neighbour-number cut-off nnnc’ (here nc).[452] Subsequent pub-

lications used R (called the neighbourhood parameter) and respectively N instead.[240, 454] other notationsThe

corresponding implementation used the flags -Cut/--Cut-off for R and -Sim/--Similarity for

N as arguments to the clustering script but used the notation of the original paper internally. In

the present implementation, the standard fit-function arguments are called radius_cutoff and
similarity_cutoff (or cnn_cutoff for backwards compatibility).¹0 In the scikit-learn-extra imple-

mentation, the CommonNNClustering class expects the parameters as eps and min_samples, which
is universal for clustering procedures part of the scikit-learn universe.

There are multiple practical decisions to make for the implementation of CommonNN

clustering. For one thing, we can either use closed- or open-ball neighbourhoods. So far there seems

to be a general consensus on closed-ball neighbourhoods so that points that are exactly found at a

radial distance r from a reference point a will be included in the neighbour list of a. closed- vs.
open-ball
neighbour-
hoods

The currently

available NeighboursGetter types adhere to this convention but note that the addition of alternative

behaviour in other types is trivial. Furthermore, neighbourhoods that were pre-computed in any

possible way can also be fed into the clustering procedure. The discrepancy between closed- and

open-ball neighbourhoods in the clustering output is expected to be minor for most data sets.

Another more critical decision to make is whether neighbourhoods should be constructed in a

self-counting or self-exclusive manner. Self-counting neighbourhoods treat each point as its own

neighbour. The original formulation of CommonNN clustering assumes that and it is also commonly

done by scikit-learn’s neighbour computation functionality. self-counting vs.
self-exclusive

neighbour-
hoods

As a consequence, neighbourhoods

will never be empty and points that are neighbours of each other will automatically have at least two

shared neighbours, namely themselves. This perspective is consistent with the formulation of the

density estimate in terms of the number of points that are found in a neighbourhood intersection. Two

neighbouring points lie in fact both in their neighbourhood intersection volume and consequently

the density estimate can be considered higher than for point pairs that are not neighbours. On the

other hand, if neighbourhoods are self-exclusive, neighbourhoods can be empty and points that

are neighbours of each other have 0 shared neighbours unless there is at least a third point in their

neighbourhood intersection. This perspective is arguably more intuitive in terms of the formulation

of the similarity criterion as the number of ‘shared’ neighbours. In other words, while self-counting

neighbourhoods represent an intersection focused view (‘how many points are found in a specific
volume element?’), the self-exclusive view focuses on the connectivity between two points (‘how many
other neighbouring points are shared by the two considered points?’).

Figure 15.3 illustrates the difference for the density estimate with a simple example of two points at

varying distance to each other. In the first series, where only the two points themselves are considered,

self-exclusive neighbourhoods always result in a zero density estimate while self-counting gives rise to

a jump in the density once the two points are neighbours. Normalisation by the intersection volume

dampens this jump. In the second series, where a third point is included, the self-exclusive estimate

is only effected by this other point while self-counting again gives rise to a density jump once the

¹0It should be noted, though, that a Fitter can in principle take any arguments to its fitmethod.

Dissertation J.-O. F. Kapp-Joswig 199

Technical remarks

two main points become neighbours. Normalisation has the somewhat counter-intuitive effect of

lowering the density estimate significantly in the self-exclusive case.

Figure 15.3 Density estimate
for neighbourhoods with and
without self-counting For two

points coming closer together,

the number nsn of points in their

neighbourhood intersection with

and without self-counting is noted

above the subfigures in absence of

any other points (a), b), and c))
and in presence of a third point

(d), e), and f)). The nsn values

normalised by the intersection

area are shown in parentheses.

Which of the neighbourhood conventions is chosen, effects the values of the density estimate and

the values to be set for the similarity threshold, but it is also coupled to another important decision to

make: between which pairs of points do we check the similarity criterion?pair candidate
selection

Figure 15.4 illustrates a

few possibilities for schemes to select a pair of candidate points for which the similarity should be

determined.

The naive approach would be to check all possible pairs. This is, however, very wasteful not only

because there can be a lot of pairs but also because the density between points that are at least 2r away
from each other will always be zero. The approach that is normally followed instead and which also

the currently provided Fitter types are based on, therefore makes the assumption that it is sufficient

to check only pairs of points that are neighbours of each other in the first place. This drastically

limits the number of point pairs that need to be checked. It also limits the possible differences in

the neighbourhood intersection volumes because two checked points are a maximum distance of

one neighbour search radius r away from each other. In practice, this assumption yields satisfactory

results.[240, 454] A detailed assessment of contingently resulting discrepancies between an exhaustive

check of all pairs and a check of neighbours only has not been done so far, though.

Alternatives that can be considered a compromise between the two first approaches would be for

example to use a buffer region є around the neighbourhood of each point and check all pairs that

have a distance of at most (r + є) < 2r between each other. Furthermore, it would be possible to

check the density criterion between a point and all its k-nearest neighbours. Especially in low density

regions this is, however, expected to yield a lot of unnecessary checks because the distances to the

nearest points can be fairly large. It is, however, not clear if any of these approaches could constitute

a substantial improvement of the clustering that is worth the expected performance cost and the

introduction of an additional є or k parameter.

200 Dissertation J.-O. F. Kapp-Joswig

Technical remarks

Figure 15.4 Variation of pair candidates schemeWithin uni-

formly distributed data points, a) shows a neighbourhood for a

point a. To check the similarity criterion for a and other points,

one can check b) all other points, c) only the neighbours of a, d)
neighbours within a buffer-extended neighbourhood around

a, or e) the k-nearest neighbours of a.

Under the assumption that only pairs of neighbouring points will be subjected to a similarity check,

we can come back to the last decision about self-counting versus self-exclusive neighbourhoods. In

this case the two conventions are interconvertible. The current standard fitter FitterExtBFS is based
on the self-exclusive approach, that means the density estimate has a minimum value of nsn = 0.

When the cluster parameters are prepared before the fit, the similarity cut-off nc specified by the user

needs to be adjusted in case that self-counting neighbourhoods are provided. nc adjustmentThis information can

be collected from the fitter by accessing a respective is_selfcounting attribute on its associated

neighbours getter (the attribute needs to be set when a NeighboursGetter type is initialised). If it

finds self-counting neighbourhoods, nc is increased by 2 to account for the fact that a neighbourhood

intersection contains two neighbours when it is expected to contain none. The advantage of this is that

the user can always pass the same nc value, based on the self-exclusive convention, no matter which

convention is actually used for the neighbourhoods. Additionally, the high level Clustering.fit
method offers a similarity_offset (cnn_offset for backwards compatibility) keyword argument

so that the user can pass the nc value as if the fitter was based on the self-counting convention. When

similarity_offset=2 is given, nc is internally decreased by 2.

One should be careful though with this conversion if the assumption that two checked points are

always neighbours is not made. In this case, it has to be differentiated during the clustering if two

checked points are actually neighbours (nc may need adjustment) or not (no adjustment). As a side

note, the assumption that two checked point have to be neighbours is also practical for another reason. neighbours vs.
non-

neighbours
In this case, the behaviour of the clustering nc = 0 in the self-exclusive view is unambiguously defined.

Points that are neighbours but have no further shared neighbours will nonetheless be part of the same

cluster. For checked point pairs that could be non-neighbours, it has to be differentiated between

neighbouring and non-neighbouring pairs in the situation where nsn = 0. It might be conceptually

the cleanest option to forbid nc = 0 entirely then.

Apart from these quite essential decisions, there are also a fewmore technicalities that solely concern

the efficiency of the clustering procedure. When during a clustering the neighbourhood of a certain

point was collected, it is possible to skip the normally following similarity check if the neighbourhood

does not have enough members to possibly pass the check in the first. skipping
similarity
checks

Say we set nc = 10 and a just

collected neighbourhood turns out to have only nine members. Then we do not need to check the

similarity criterion and can exclude the point entirely for the rest of the procedure as it will never share

enough neighbours with another point. The standard fitter FitterExtBFS includes this short-cut.

Dissertation J.-O. F. Kapp-Joswig 201

Technical remarks

The check can also be executed in bulk before the clustering if neighbourhoods are pre-computed.

Note that for the adjustment to self-counting neighbourhoods, the required member count for a

neighbourhood to be forwarded to a similarity check is increased by 1 because one member is always

the checked point itself.

The next remark concerns an assumption that was made in the previous CommonNN publications.

In order to make the clustering more efficient, the exploration of a new cluster was not started with an

arbitrary point but always with the one still unassigned point that has the currently highest neighbour

count, i.e. that is found in the densest data region. In light of the original implementation at the time,

this made sense.cluster
initialisation

Here, the basic algorithm behind the clustering entailed repeated loops over all

points in the data set and points that have been already assigned to the current cluster to check if more

points could be added to it.[452]. In this case, it is good advice to explore the densest clusters (the

ones to which the presumably largest portion of the data set can be assigned) first because it ensures

that the first (and most expensive) loops over the whole data can add as many points as possible,

which can than be ignored in subsequent loops. For the present BFS approach that recognises the

desired clusters as connected components, it is, however, not so clear if such an approach yields a

general performance improvement. It is true that in special cases, it may be beneficial to explore the

densest parts of a data set first if the following reasoning holds: a cluster growth step is efficient if the

respective similarity check is successful because a point will be added to the current cluster and will be

only checked once again when it is considered as a potential starting point for further cluster growth.

It is not efficient if the similarity check fails because in this case the checked point partner will not be

added to the current cluster and remains available for further similarity checks. In the worst case, a

single point will be checked many times before it is eventually merged into a cluster or chosen as the

source point of a new cluster. Checks in high density regions are more likely to pass than checks in

low density regions and hence it can be advantageous to prioritize points with high member counts.

It should be, however, considered that a selection of source points in dense regions is only possible

if neighbourhoods are pre-computed and that it comes at the cost of finding these source nodes. A

gain in clustering efficiency is only worth it if it makes up for the additional overhead. In the current

default fitter FitterExtBFS, no such effort is implemented. Instead, source nodes are just found by

iterating further trough the data set from top to bottom until an unassigned point is found. To mimic

the behaviour of source selection according to neighbour counts, one may pre-compute and pre-sort

the points in the data set after their neighbour count, but beware that the actual order of points in

a data set may need to be remembered for later (e.g. in case of MD data). For simple toy data sets,

it does indeed look like such an approach can produce very fast clusterings (see section 15.6) but

for definite statements, excessive benchmarks will be necessary, and representative benchmarks are

notoriously difficult to achieve (see chapter 16).

As a last remark, it may be desired to control the minimum size of valid clusters. While it is in

principle possible to integrate this demand into the clustering procedure itself, the present approach

defers it to an optional post-processing step after the clustering.member cut-off The FitterExtBFS type numbers

the clusters it yields by default with increasing cluster labels starting by default from 1 and identifies

single member clusters among them as separate clusters. The resulting Labels container provides a

sort_by_sizemethod that can be used to clean-up the result by sorting the cluster labels in such a

way that the largest cluster will get the lowest label. In this course, it can also declare clusters with less

than member_cutoffmembers as noise (labelled with 0)¹¹ and remove them from the cluster label

assignment. Clustering.fit offer keyword arguments to sort the labels, and to set the member

cut-off and the starting label for newly found clusters.

¹¹Note that the scikit-learn clusterings denote noise with -1 and label valid clusters starting at 0 instead.

202 Dissertation J.-O. F. Kapp-Joswig

Fast threshold-based clustering

15.6 Fast threshold-based clustering

So now that we have a first overview of the CommonNNClustering project, it is time for an

actual clustering example and advice on how to run it to get the fastest result. We will consider six toy

2-dimensional toy data set of 2000 points each, which can be created using the sklearn.datasets
module.

As has been discussed, there are many options for how to feed data into a clustering. When we have

actual point coordinates available, it seems straightforward to directly use them as the input source.

During the clustering, distances can be calculated from the coordinates, which can than be used to

identify the neighbours of points when two points should be subjected to a similarity check. on-the-fly
approach

This

can, however, be quite expensive because it may be necessary to calculate the same distances (and

neighbourhoods) multiple times if individual data points are involved in more than one check. Note,

that so far no NeighboursGetter or DistanceGetter supports caching but respective additions

would be of course possible. The advantage of this direct on-the-fly approach is that the memory

demand of the procedure is minimal since besides the input coordinates, only intermediately needed

distances and neighbourhoods have to be stored somewhere. Note also that it can make a significant

difference how distances are calculated. Brute force calculation (NeighboursGetterExtBruteForce)

offers just a baseline. The hybrid input data type InputDataSklearnKDTree, storing point coordinates

alongside a kd-tree, in combination with NeighboursGetterRecomputeLookup¹² that can extract

neighbours from the input data (the tree) and trigger the re-building of the tree on demand, may

be for example an alternative. These types are, however, only available as pure Python classes at the

moment and not used in the provided default recipes.

It might be worthwhile to instead pre-compute distances to start the clustering from here and

to avoid repeated distances calculations. This offers the flexibility to leverage any possible external

solution to efficiently prepare the distance input. It should be noted, though, that a bulk computation

of pairwise distances usually has a high memory demand. bulk approachIn the worst case, a n × n square distance

matrix needs to be stored, which becomes quickly infeasible. Input data types that support sparse

storage and access distances can be an option but currently we do not provide any. Users are, however,

encouraged to implement custom InputData types as needed.

If one is willing to pre-compute distances, why not go the full way to pre-compute neighbourhoods.

The gain in performance is expected to be even greater. Again, we can take advantage of any available

tool to outsource the calculation of neighbours in the most efficient way possible. Also the memory

demand of a neighbourhoods calculation in bulk is usually much lower than for distances. Especially

for small neighbour search radii r, the average number of neighbours that each point has is expected

to be much smaller than the total number of data points. A possible disadvantage of neighbourhoods

over distance could be only that they are less reusable. Once distances are available, clusterings with

different parameter combinations can be run without limitation. For neighbourhoods, a variation in r
necessitates a re-computation.

There exist two further optimisations when input data is provided in terms of neighbourhoods.

First, it can make a big difference if each neighbourhood is sorted by the indices of the members it

contains. This means for example if a neighbourhood of a point contains the points 3, 4, 1, 7, 8, and

0 of the data set, it is a good idea to store it in an equivalent of the list [0, 1, 3, 4, 7, 8]. See

section 15.6.1 for the explanation why. For this setup, there is a recommended recipe, which will be

shown further below. Furthermore, it might be also a good idea to sort all neighbourhoods relative to

each other so that point 0 in the data set is the one with the highest neighbour count (see the end

¹²Note that figure 15.2 shows how the InputData interface is differentiated. A NeighboursGetter needs to be compatible

with what the input data provides.

Dissertation J.-O. F. Kapp-Joswig 203

Fast threshold-based clustering

of section 15.5). The following code example illustrates how both these optimisations are practically

realised, using a kd-tree as provided by scikit-learn to pre-compute distances:

from cnnclustering import cluster
import numpy as np
from sklearn.neighbors import KDTree
Pre-compute distances (data of coordinates in NumPy array)
tree = KDTree(data)
neighbourhoods = tree.query_radius(

data, r=params["radius_cutoff"], return_distance=False)
Sort by neighbour count (and remember sort-order)
n_members = np.array([n.shape[0] for n in neighbourhoods])
sort_by_member_count = np.argsort(n_members)
revert_sort = np.argsort(sort_by_member_count)
neighbourhoods = neighbourhoods[sort_by_member_count]
neighbourhoods = [revert_sort[n] for n in neighbourhoods]
Sort each neighbourhood by member indices
for n in neighbourhoods:

n.sort()
Clustering with recipe
clustering = cluster.Clustering(

neighbourhoods, recipe="sorted_neighbourhoods")
clustering.fit(**params)
Get labels in original order
clustering.labels[revert_sort]

The aggregation of clustering building blocks according to the specified recipe on clustering initial-

isation looks as follows. One can get this information by calling Clustering.__str__, e.g. via

print(clustering). Note that this recipe requires individual neighbourhoods to be sorted and will

produces nonsense otherwise. Sorting of neighbourhoods by member count is optional, though.

Clustering(
input_data=InputDataExtNeighbourhoodsMemoryview,
fitter=FitterExtBFS(

ngetter=NeighboursGetterExtLookup(
sorted=True, selfcounting=True),

na=NeighboursExtVector,
nb=NeighboursExtVector,
checker=SimilarityCheckerExtScreensorted,
queue=QueueExtFIFOQueue))

Figure 15.5 shows the clustering results for the six considered data sets. In all cases, the procedure yields

an intuitive partitioning of the data into clusters.clustering
results

As expected, the identified groups of data points are

independent of size and shape and correlate with regions of high data point density separated by low

density. For more information on how to choose suitable cluster parameters to obtain these results,

see 15.7.

204 Dissertation J.-O. F. Kapp-Joswig

Fast threshold-based clustering

Figure 15.5 Fast Com-
monNN clustering of
scikit-learn toy data
sets Independent of the

used recipe, CommonNN

clustering deterministically

yields the same result. For

each of the shown example

cases, the clustering is

aligned with what would

be intuitively expected.

Clusters are coloured by

cluster label (noise in grey).

To get an impression of how quickly clusterings for data sets of the considered size may be done,

table 15.6 summarizes the execution times for the standard clustering recipes discussed above. timingsIn

all cases, the procedure finishes in no time but there is a clear advantage of pre-computing distances

or neighbourhoods over the brute-force on-the-fly computation from point coordinates. The best

performance is achieved when neighbourhoods are sorted by member indices and by neighbour

counts.

time

ms

recipe

P D N S Sa

d
at
a

se
t

circles 172 91 45 4 3

moons 170 110 63 5 4

varied 188 139 75 7 5

aniso 147 84 38 5 4

blobs 241 187 135 14 11

none 124 71 30 4 3

Figure 15.6 Recorded toy set clustering execu-
tion times For the standard recipes "points" (P),

"distances" (D), "neighbourhoods" (N), and

"sorted_neighbourhoods" without (S) and with

points additionally sorted by neighbour count (S
a
). Tim-

ings where obtained on a machine with an Intel® Xeon®

CPU E5-2690 v3 @ 2.60GHz and comprise the execution

of Fitter.fit without pre- or post-processing.

15.6.1 Similarity check variants

The optimal recipe for CommonNN clustering starting from pre-computed sorted neigh-

bourhoods discussed in the last section depends on a special implementation of the similarity check.

So let’s focus for a moment on how this check can in general be implemented. Let’s assume we have

two neighbour containers filled with the indices of neighbouring points for two points that should be

subjected to a similarity check. To assess the similarity between two points, we want to get in principle

the number of elements (point indices) that can be found in both the neighbours containers.

Such an operation is highly optimised for specific data structures in different programming lan-

guages. For instance, NumPy provides it for its own array type (intersect1d) and C++ has it for

sorted ranges like std::set (std::set_intersection). In the context of our generic approach and

a generic treatment of neighbours containers in terms of Neighbours types, we run into problems if

Dissertation J.-O. F. Kapp-Joswig 205

Fast threshold-based clustering

we like to use one of those, though. This is because, these functions explicitly demand certain data

structures or respective interfaces. If we want to have similarity checkers that implement them, we

would either have to write many different checkers that all require a different type of neighbours

container (not very generic any more) or we would have to convert generic containers, which are

passed to the checker, internally into the specifically demanded data structure (not very efficient). The

only other alternative would be to settle on the one best solution for the check, and to have only one

type of neighbours container (again not at all generic any more). So what we need to do instead, is to

program the checks against our Neighbours interface.

There is another important point why we would want to implement the check without the use of

specialised external functions: for threshold-based clustering, we are not actually interested in the

exact number of shared neighbours but only in the fact if there are enough shared neighbours. In

certain situations, the similarity check can be accelerated by aborting the check once a sufficiently high

number of elements is found in the two neighbours containers. By using a function that returns the

cardinality of the container intersection we deprive ourselves of this potentially performant option.

Figure 15.7 explains the different approaches to the similarity check that have been so far considered.

The first variant is called the ‘contains’ methods here because it is based on repeated containment

checks. Essentially, we loop over the point indices stored in the neighbours container for a point a
and then ask the question if this element is contained also in the neighbours container of a point b.

For this containment check, there are in turn three prevalent options.

First, there could be another loop over the second container to compare the current element picked

from the first container to all the element stored here. This is the worst conceivable solution because it

has a runtime complexity of O(nanb), where na and nb are the lengths of the two containers, in the

worst case if there are no shared neighbours—for each element in container a there will be a full loop

over container b. Only in the case that the first nc elements in container a are also the first elements

in container b (the absolute best case), the runtime is reduced to O(n2
c/2), where nc is the specified

similarity threshold.

The second option is much more promising but requires the data to be stored in a data structure

that allows fast element lookup via a hash function, e.g. a set or map. This is on average assumed

to take constant time so that the overall runtime complexity is dominated only be the loop over

container a and therefore improved to O(na) in the worst case and O(nc) in the best case. In the

default recipes, except for the one that requires sorted neighbourhoods, this approach is realised

by the NeighboursExtVectorCPPUnorderedSet type that uses a combination of a std::vector
(fast looping) and a std::unordered_set (fast lookup). The matching similarity checker would

be SimilarityCheckerExtContains or SimilarityCheckerExtSwitchContains where the latter

always ensures that the looping part is done over the shorter of the two containers.

Last but not least, it is possible to follow a binary search scheme here that has a logarithmic runtime

complexity and would lead to O(nalognb) (respectively O(nclognb) on early breaks) scaling. This

requires, however, that the neighbourhoods are sorted, i.e. that the indices stored in the containers are

found in strictly ascending order.sorted neigh-
bourhoods

The binary search approach was so far not implemented because for

sorted neighbourhoods there is another much better way. It is called the ‘screen’ check here because it

is based on a simultaneous screen through both containers. It works like this: for each container we

initialise a pointer to its first element. The two elements are compared and if there is a match both

pointers will be advanced by 1 in forward direction. If the two compared elements are not same, only

the pointer pointing to the smaller of the elements is advanced before another comparison takes place.

For the worst case of for example alternating and non-overlapping containers the runtime complexity

is still O(na + nb − 1), which is not too bad. In the best case, only O(nc) comparisons are necessary to

find nc matching elements. To realise this approach, it is recommended to use NeighboursExtVector
containers and the SimilarityCheckerExtScreensorted checker.

206 Dissertation J.-O. F. Kapp-Joswig

Parameter selection

Figure 15.7 Similarity check variants For the assess-

ment of the similarity between two data points a and
b based on their respective neighbourhoods, there

are two fundamentally different approaches available.

a)The ‘contains’ check loops through one neighbour-

hood and queries from the other neighbourhood

whether the current item is also contained in there.

Depending on how the containment check is done,

this is of varying efficiency. b)The ‘screen’ check runs

trough both the neighbourhoods at the same time and

evaluates their items in a linear chain of comparis-

ons. This requires neighbourhoods sorted by member

indices.

15.7 Parameter selection

Threshold-based CommonNN clustering depends on the two cluster parameters r (neigh-

bour search radius) and nc (similarity cut-off). The result of the clustering depends sensitively on

the values that are selected here. Before the background that the two parameters represent a density-

estimate, it becomes clear that the tuning of r versus nc can be considered antipodal. The larger

we set nc and the smaller we set r, the higher is the requirement on the density estimate for two

checked points to be connected. That means that an increase of nc simultaneously with r may result

in essentially the same effective threshold and qualitatively identical results for technically different

parameter combinations.

To choose appropriate values of r and nc is fundamentally a difficult task. The in the first instance

rigorous approach to it would entail essentially a 2-dimensional parameter scan over a broad value

range and a selection of the best result from the set of all possible results. 2D scansThis can be, however,

problematic for multiple reasons. For one thing, detailed scans using a fine enough grid of parameter

combinations are relatively expensive especially for big data sets. On the other hand, a validation of

the cluster results to select the best one may not be straightforward. It is possible to categorise the

results in terms of statistical quantities like the number of obtained clusters, the points assigned to

the biggest cluster, or the number of noise points but there is no guarantee that any of these metrics

actually connects to the quality of the clustering. There is in general no reliable basis for the preference

of a certain number of clusters for example. Typically used validation methods for clusterings like for

example shown in section 14.3 are not very applicable for density-based clusterings either because

the obtained clusters may have arbitrary shapes and sizes and their quality is hard to measure on an

internal scale. Eventually, clustering results may need to be validated manually, that is visually or

otherwise inspected by an expert. Inspection of a vast number of results from an extensive parameter

scan may be tedious and error-prone, though. Ideally, an indirect method of validation would be

used but this is closely tied to specific fields of application. In case of MD data, one option might be

Dissertation J.-O. F. Kapp-Joswig 207

Parameter selection

the construction of Markov-models where the best model identifies the best clustering. This may,

however, only shift the problem to the question of what the best Markov-model would be, which is

also not trivial.

That said, a parameter scan is still the best chance to find good cluster parameters. A principle that

may help in the identification of reasonable parameter regions, is to look for those in which the cluster

label assignments stay qualitatively the same.stable
parameter

regions

This reasoning is similar to the live-time argument

made by HDBSCAN to select clustering results. Cluster assignments that can only be produced in a

very narrow parameter region may likely be meaningless. Again, there is no guarantee, though, that

the best result is also the most stable one.

We should also recall, that a systematic variation of the cluster parameters, i.e. a screen of the

density threshold, is in essence nothing else than a pseudo-hierarchical approach. Starting with a low

similarity threshold, most points will be connected by a sufficiently high density threshold.pseudo-
hierarchies

Likely,

all points will be part of the same one cluster (or of a low number of very well separated clusters).

When we increase the threshold, the points will be split into clusters as more and more points in low

density regions fall below the threshold and carve out disconnected high density regions. Typically,

the present clusters will at first only shrink (i.e. split off noise points) before larger parts of them

become disconnected. As the data point density can vary drastically within a data set, it may also

happen that lower density clusters vanish completely into noise before other higher density clusters

are split into sub-clusters. Therefore it should be kept in mind, that the best clustering result may not

be achievable at all by applying a single similarity threshold. What we want to find ideally, are those

threshold values where clusters split and there might be more than one of them. Before one puts too

much energy into the search for an optimal parameter combination on a vast grid, the possibility

should be considered that the one combination does not exist there.

Therefore, a well-tried approach to tackle the problem of parameter optimisation, is to do the

following. Starting with a low density threshold, one does increase the threshold continuously and

records the number of obtained clusters. With higher thresholds, the cluster count is expected to go up.basic plateau
strategy One does proceed with increasing the threshold up to the point where the cluster number goes down

again. This might be a good point to stop because starting from here we loose low density clusters

into noise. One may want to combine this with the notion of looking for stable parameter regions and

specifically try to find the last plateau region before the cluster count decreases. This approach levels

the field for manual hierarchical clustering, which will be described in the next section 15.8. Let’s

record for our following considerations that a cluster parameter optimisation is only really meaningful

in the sense of finding the most far-reaching partition on the current hierarchy level of clusterings

before information is lost when clusters vanish into noise.

As a further strategy, it is possible to consider the tuning of r and nc separately instead of a complex

2D parameter scan. In the selection of r, one should in general aim for a low values. The neighbour

search radius can be understood as a resolution parameter for the density estimate.resolution
parameter

We want this

resolution to be as fine as possible to get a sufficiently local estimate of the density. Large values for

r may not be able to resolve the differences in the density that lead to a separation of clusters. Also

in terms of the efficiency of the clustering, low values for r are preferable because this keeps the

neighbourhoods of individual data points small. On the other hand, r can not be too small because

depending on the sampling of the data set, the density estimate may become noisy. Moreover, the

sensitivity of the density estimate towards a variation in nc becomes higher for small r—one additional

shared neighbour makes a bigger difference when the neighbourhood radius is small. A time-proven

heuristic to select a good first guess for r based on the relative positions of data points is to plot a

histogram of pairwise inter-point distances.distance
distributions

Figure 15.8 exemplifies this for the toy data sets clustered

in section 15.6. The first peak in each of the shown distributions can give an orientation for what can

be considered local for the respective data set. Additionally, the better the given sampling situation,

208 Dissertation J.-O. F. Kapp-Joswig

Parameter selection

the smaller we can set r. So while for scarce data a good radius might be found on the right side of the

peak, it might be found on left side for dense data.

Figure 15.8 Distance histo-
grams for scikit-learn toy
data setsThe distribution

of pairwise distances can

give on orientation for a

good first guess on a suit-

able value for the cluster

parameter r. The first max-

imum represents a distance

that can be considered suffi-

ciently local in terms of the

specific data set.

One thing should be pointed out in connection with theses distance distributions. Although it

might be tempting, it is in general not possible to deduce the optimal number of clusters that can be

found in a data set from these plots. It is true that a globular cluster gives rise to one single distribution

maximum. distribution
interpretation

Further, there should be one additional peak for each pair of globular clusters. The total

number of visible peaks may, however, be lower due to overlaps so that the plots are not a reliable way

to predict how many clusters there should be. For non-globular clusters that may themselves give

already rise to multiple peaks the attempt is accordingly hopeless.

After settling on a rough value for r, the cluster parameter scan can essentially be focused on nc.

This has the pleasant side effect that only the integer value nc needs to be screened and not the floating

point valued radius. Starting with a low value for the similarity cut-off (e.g. nc = 0), the value can now

be increased in (small) increments for successive clusterings until the desired result is found or until a

plateau region is reached as described above from which an further increase of the value leads to a

loss of clusters.

Figure 15.9 Parameter scans with fixed r for the varied data set
A general strategy to find suitable cluster parameters is to select a rough value for r (e.g. judging the distribution of

pairwise distances) and to increase nc until a plateau region with respect to the number of identified clusters is found

after which the cluster number decreases again. For the given example, the regions selected according to this approach

are highlighted in the scan with red rectangles. The corresponding cluster label assignments are shown on the right.

While reasonable results are obtained with the larger radii, r = 0.1 is definitely too small because no traceable increase

in the cluster number can be detected before the number decreases. All clusterings use member_cutoff=20.

Figure 15.9 illustrates this approach for one of the previously used toy data sets. The data set has a

relatively low number of points so the radius is supposed to rather be larger then what is suggested

by the distance distribution. The cluster results within each of the identified plateau regions are

qualitatively the same—only the cluster size varies. From the standpoint of cluster quality, all of

them are basically equivalent and the user has to decide in which state a particular cluster should be

Dissertation J.-O. F. Kapp-Joswig 209

Manual hierarchical clustering

obtained. It would be possible to either select the largest state (the situation right at the first threshold

where a cluster emerges caused by a split) or the smallest state (the situation right before a cluster is

further split). If there is a method of validation, any state in between may also be identified as the

most appropriate.

15.8 Manual hierarchical clustering

We stated in the last section that an optimisation of cluster parameters can be only

really valid in terms of the same hierarchy level. To indeed systematically optimise a clustering result

one actually needs to do the following. Starting from a low value, nc is increased until no further splits

are achieved without loosing clusters or, more concisely, even only until the first split occurs. Then

the procedure needs to be independently continued on the data sub-sets that were separated by the

split, in other words a further clustering of the obtained clusters into sub-clusters has to be done. In

this way, the hierarchical tree of clusterings is explored branch by branch. Doing this by the means of

the provided threshold-based clustering functionality will be referred here to as manual hierarchical

clustering.

The CommonNNClustering project offers the tools to support this approach. First of all, to be able

to represent clustering hierarchies, we use the concept of a Bundle.bundle concept Such a bundle aggregates for

example a data set, a labels container, potentially a graph structure for the data, somemeta information,

and a summary of all previously done clustering attempts. It also can be associated to other bundles in

a child-parent relationship. Bundle._children is a mapping of cluster labels to other child bundles.

Bundle._parent is a weak reference to the parent bundle. Standard threshold-based clustering

operates on one bundle at the time. The later described hierarchical clustering approaches can also

operate on a hierarchy of bundles. A Clustering is not directly associated to a specific input data

set but to a root bundle Clustering._bundle. One clustering object can therefore handle single

bundles but also full hierarchies.

For manually orchestrated hierarchical clustering this means that we start by clustering the root

bundle. Once a satisfying split has been achieved, a child bundle is created for each obtained cluster.

This step will be referred to the isolation of a clustering result. Then the clustering can be continued

for each child bundle individually.isolate & reel In the end, cluster results from lower hierarchy levels can be

integrated back into the root bundle as desired. This will be figuratively described as to reel in clustering

results. These two steps are realised by respective methods of the Bundle class, which are also callable

via Clustering.isolate and Clustering.reel. During isolation, child bundles are by default

equipped with a subset of the input data that is relevant to it. To reel in information from child

bundles, ReferencIndices stored on child bundles are used to map cluster label assignments for

data sub-sets back to the parent or the root bundle.

Let’s have a look at how the isolate-reel approach works in practice with a MD data set for alanine

dipeptide (a 2-dimensional projection on backbone torsion angles of 10020 data points). In principle,

we have to use the following pattern:

Root data
clustering = Clustering(data)
clustering.fit(**params) # Find first split
clustering.isolate()
First child
b1 = clustering.get_child(1) # Same as clustering._bundle._children[1]
clustering.fit(**params, bundle=b1) # Find next split
b1.isolate() # To proceed to deeper levels
Second child

210 Dissertation J.-O. F. Kapp-Joswig

Semi-automatic hierarchical clustering

...
Once satisfied with the hierarchy
clustering.reel()

Figure 15.10 illustrates the result of this procedure. A proper clustering of the shown data points

requires a hierarchical approach because lower density clusters will vanish at threshold values needed

to split clusters in the higher density regions. Applying the isolate-reel formalism, the root data set is

partitioned into three clusters. The largest cluster is split further into two cluster of which the larger

one is again split. The final result is a combination of splits at different threshold values. For each

hierarchy level, the first threshold at which a split is observed is chosen as the isolation point.

Figure 15.10 Manual hierarchical clustering of an alanine dipeptide data set
Cluster label assignments for clusterings at different hierarchy levels. All clusterings use a neighbour search radius of

r = 0.4, which was derived from the respective pairwise distance distribution. On the first level, the member cut-off

was set to 10 wich was then increased to 100 at deeper hierarchy levels. Note, that the data set is periodic in ϕ and ψ
and requires a corresponding metric or a transformation to sine and cosine components, which was done here.

Cluster hierarchies represented by bundles associated with each other can be visualised as a tree

by using Clustering.tree. Figure 15.11 shows the tree for the manual hierarchical clustering of the

alanine data.

Figure 15.11 Tree of clustering results for the alanine data setThe

root bundle at the top has the label 1 because without applied clustering

there will be only one cluster. In the first stage, the data is split into three

clusters of which 2 and 3 constitute cluster 4 and 5 in the final result

(indicated by colour). The obtained cluster 1 is split into two further

clusters in the next stage where cluster 2 is the later cluster 1. In the

last stage, obtained cluster 1 splits into cluster 1 and 2 that are the later

clusters 3 and 2.

15.9 Semi-automatic hierarchical clustering

Manual hierarchical clustering as addressed in the last section offers full control

over splits on different hierarchy levels. For large data sets that may contain many clusters appearing

at varying threshold values, it can be, however, problematic. Each split does essentially require a

separate parameter scan to find the next split or at least careful rationalisation of what to choose as the

next threshold value. An alternative is offered by an approach that should be called semi-automatic
hierarchical clustering here.

This approach is still pseudo-hierarchical but instead of forcing the user to orchestrate each hierarchy

split manually, it only requires the specification of a range of cluster parameters. In essence, it works

like a scan along this range while constructing the hierarchy of clustering result without further

Dissertation J.-O. F. Kapp-Joswig 211

Semi-automatic hierarchical clustering

user interaction. Because such a hierarchical clustering needs access to the cluster hierarchy, we

introduced another generic fitter type with a slightly different interface: the HierarchicalFitter.

Semi-automatic clustering is currently realised by the HierarchicalFitterRepeat class. It is called

Repeat because it repeatedly uses a standard threshold-based Fitter to get the next clustering. After

each clustering execution, the labels of the current run are compared with those of the previous one.

Each bundle from the last step will then be extended by the children that appeared in the current step.

The result is a raw hierarchy with as many levels as parameter combinations specified. This hierarchy

can than be processed in multiple ways to be condensed and to find the clusters that are most relevant.

To exemplify the semi-automatic hierarchical clustering strategy, let’s have a look at another data

set: 37500 data points from a MD simulation of a small helical peptide (PDB-ID 6a5j) projected onto

4 time-lagged independent components using backbone and χ1-, and χ2 side chain torsion angle

features as input. This data set is much more complex than those considered before, revealing a fairly

large number of clusters. It would probably be very time consuming to find all the clusters manually

but the semi-automatic approach can help with that. Hierarchical clustering from the user perspective

is not much different to pure threshold-based clustering. The only thing we have to do is to equip

a Clustering instance with a HierarchicalFitter and to call Clustering.fit_hierarchical.

HierarchicalFitterRepeat excepts iterable collections of radii r and thresholds nc. Here, we want

to keep our previous approach of fixing r at a reasonable value and then control the density criterion

with increasing values for nc.

Figure 15.12 shows the considered data set in its original projection and the clustering result. The raw

hierarchical tree was trimmed by removing child clusters that represent a shrinking of the respective

clusters without splitting using Clustering.trim_shrinking_leafs. Before the final result was

reeled back in onto the root bundle, Clustering.trim_trivial_leafs additionally ensured that

there were no all-noise leafs in the tree. In the end, we get a 7-step hierarchical result (tree not shown)

where the first split of the root cluster into 9 sub-clusters happens at nc = 0 before there are multiple

further binary splits at higher threshold values.

Figure 15.12 Semi-automatic
hierarchical clustering of the
helix data set a) 4-dimensional

projection as pseudo free-energy

surfaces. They contain multiple

minima each of which corresponds

to a cluster that might be desirable

to find. b) Semi-automatic clustering

with r = 0.3 and nc = [0, 600]
(member_cutoff=20) presumably

exposed most of them. Data points

coloured by cluster label assignment

(noise in grey).

As figure 15.13 confirms, the achieved separation of the data into clusters was quite successful. Most

of the identified conformational states are structurally well defined. Whether this result is indeed

satisfactory has to be evaluated, though, before the background of a possible application.

212 Dissertation J.-O. F. Kapp-Joswig

Hierarchical clustering using minimum spanning trees

Figure 15.13 Clusters obtained by semi-automatic clustering of the
helix data set Among the identified conformational states, the fully folded

helix (17) is well separated from different stages of unfolding and hairpin-

like structures (2).

Semi-automatic hierarchical clustering depends sensitively on the parameter range that is specified

as the input. In principle, the grid of parameter values that is scanned here should be as fine as possible

so that no threshold value that generates a split is being missed. For practical reasons, this might,

however, not be possible because frequent execution of the clustering may be too costly. In this case,

the accuracy of the approach has to be balanced against the computation time that should be afforded.

The presented example using 601 similarity cut-off values finished in about 20 minutes but for larger

data sets one may need to reduce the number of grid points or except a considerably larger time

investment.

15.10 Hierarchical clustering using minimum spanning trees

The previous sections dealt with the application of threshold-based CommonNN clustering in a

pseudo-hierarchical fashion. By repetition of the clustering at different thresholds, an approximate

view on the underlying cluster hierarchy can be obtained, either fully rationally guided level after level

(the manual approach) or more conveniently and less influenced by user decisions on a pre-defined

parameter grid (the semi-automatic approach). One could ask the question now, why threshold-based

clustering is used in the first place if the result we are interested in is often a hierarchy, and rightfully

so.

As has been discussed in themethods chapter 14, density-based clustering is intrinsically hierarchical.

By the choice of a threshold, which means for CommonNN clustering to truncate the pairwise density

estimate and to convert it into a binary similarity measure, we simplify the clustering result and prefer

a single slice of the hierarchy that is actually present. Why this is so commonly done may be due

to historical reasons, because it is conceptually clean, easy to grasp, and fast, or because for a broad

range of applications it is just good enough. To take the threshold-based picture and turn it back into

a hierarchical formalism is, however, arguably fairly counter-intuitive. There is actually no need to

convert a quantitative density and connectivity estimate as we have it for CommonNN clustering (see

equation 15.1) into a cut-off criterion (see equation 15.2), so that the hierarchy can be screened by

repeated searches for connected components at each level. The full hierarchy can already be directly

learned from the un-truncated connectivity information. How to do it, was introduced in the last

chapter in terms of single-linkage clustering using the pairwise density estimate as a quantitative

similarity measure.

Practically, we want to construct aminimum spanning tree (MST) containing only themost relevant

connections between the data points. Then we review theMST edges in the order of their weight (from

Dissertation J.-O. F. Kapp-Joswig 213

Hierarchical clustering using minimum spanning trees

low to high, where a low weight equates to a high similarity). Each edge will produce a new merge of

two sub-clusters (initially single data points) and we will end up with a binary tree representing the full

single-linkage hierarchy of clusters. The advantages of this over pseudo-hierarchical threshold-based

approaches would be that it is expected to be both more efficient and more concise. A single search for

connected components may be faster than the construction of a MST plus single-linkage clustering

but while the latter approach yields the full hierarchy in one go, it may require a lot (maybe thousands)

of connected component searches to achieve the same result.

Let’s assumewe estimate a graph for a data set containing edges in accordance with the CommonNN

similarity. Based on a certain neighbour search radius r, we end up with a graph of m edges (one for

each neighbour pair) and n nodes (one for each data point). Neglecting the fact that in the threshold-

based picture the number of explicitly considered edges may be lower (non-connecting edges can be

removed), the graph will be of the same size no matter whether the density-estimate is truncated or

kept as a continuous quantity. Also neglecting the fact that similarity checks with a threshold can

be quicker due to early breaks once the similarity criterion is fulfilled, the construction of the graph

takes about the same time for both cases. The classic BFS algorithm to find connected components

in the graph has a runtime complexity ofO(m + n). A standard approach for MST construction is

Prim’s algorithm that scales withO(m log n). We have to add a linear O(n − 1) to review the n − 1

edges of the MST. Figure 15.14 shows a comparison of the theoretically expected runtime scaling for

different values of n and m. The atomic operations of both algorithms are virtually the same, namely

a processing of the graph’s edges, so we can take the scaling as a rough approximation to expected

absolute run times. In reality, the execution prefactor for the MST algorithm might be higher, though,

because edges are sorted on the way to be processed in order of their weight. Still, for the largest shown

value of n = 1, 000, 000, theMST approach has diverged from the BFS scaling by only a factor of 13 and

will quickly be amortised when multiple repetitions of the latter are necessary. The MST construction

can furthermore be achieved in even more efficient ways by choosing a different algorithm.

Figure 15.14 Runtime expectation of BFS vs. MST On an

input graph of n nodes andm edges, compared is a connec-

ted components search (O(m + n)) to MST construction

(Prim) plus single-linkage clustering (O(m log n+(n−1))).

The number of edges was set to either m = (n2 − n)/2 (A)

or m = 0.05n2
(B). The runtime ratio MST/BFS (marker

labels) is the same for (A) and (B).

I also like to stress again that the fact that we obtain the full hierarchy of clusters in the single-

linkage approach ensures that we can not ‘miss’ any clusters—with the limitation of how the MST is

constructed of course. A threshold-based parameter scan, however, can only ensure this if a sufficiently

wide range and a fine a enough grid of thresholds is used while it is not known in advance what will be

the optimal choice in this regard. It should be also acknowledged, that the MST approach eliminates

the cut-off parameter nc (or rather does no introduce it). Therefore a tuning of this value will not be

necessary at all.

For the MST construction taking the quantitative density-estimate (equation 15.1) saying ‘howmany
neighbours are shared by two points with respect to the neighbour search radius?’, we have to choose

a value for the cluster parameter r. Depending on this value, the MST we obtain can be a different

one. In principle, the same considerations as for threshold-based clustering apply for how to settle

on a value for r here. It has to be sufficiently small to allow a local density estimate but must not be

too small so that the estimate becomes noisy. It is still an open question, how sensitive the quality of

214 Dissertation J.-O. F. Kapp-Joswig

Hierarchical clustering using minimum spanning trees

the MST and consequently the clustering really is with respect to r. For a given radius, we can then

determine the pairwise density estimate for pairs of points. Here, we have again the same basic choices

like before in threshold-based clustering in terms of what are suitable candidates for the similarity

check (compare figure 15.4). So far we stayed with the former assumption that only neighbouring

pairs will be assessed.

For more details on howMSTs are found using Prim’s algorithm see section 7.2 on graph theory.

The following code snippet shows a scheme for a generic implementation as it is incorporated in

HierarchicalFitterMSTPrim. Like the implicit BFS for threshold-based clustering, this does not

actually construct a physical graph but only tries to find the corresponding set of edges to be directly

processed further. Note the appearance of another generic type providing a data structure to which

edges can be added and retrieved back in order of their weight: the PriorityQueue type. Such a

queue will be both used to stored candidate edges (prio_queue) as well the final edges of the MST

(prio_queue_mst). Also note the use of SimilarityChecker.get instead of check to get the actual

number of shared neighbours not only an assessment of whether there are enough of them.

n = input_data.n_points
for point in range(n):

...
neighbours_getter.get(...) # Get neighbours of point
for member in neighbours:

...
neighbours_getter.get(...) # Get neighbours of member
weight = similarity_checker.get(...)
prio_queue.push(point, member, weight)

while not prio_queue.is_empty():
a, b, weight = prio_queue.pop()
...
prio_queue_mst.push(a, b, weight) # New MST edge!
neighbours_getter.get(...) # Get neighbours of b
for member in neighbours:
...
neighbours_getter.get(...)
weight = similarity_checker.get(...)
prio_queue.push(b, member, weight)

Once we have the MST edges, we can build the single-linkage hierarchy. There are multiple options

for how to store and present this hierarchy. One would for example be to use the SciPy format

described in section 14.1, which can be analysed directly or further condensed.[444] Here, however,

we want to convert the binary hierarchy into a hierarchy of bundles where one-to-many parent-child

relations are allowed. Furthermore, we want to apply a member cut-off to condense the hierarchy

such that only those merges appear as relevant where large enough clusters are combined. In this

hierarchy building step, we actually make use of explicit graphs for each bundle.¹³ The whole process

is a bit involved and not particularly well optimised at the moment, so instead of presenting it here the

interested reader is invited to check the source code for HierarchicalFitterMSTPrim.fit directly

for more information.

Figure 15.15 illustrate such a tree as obtained for the helix data set. The result is similar to what we

had before with the semi-automatic approach (compare 15.12 and 15.13) but this time we can be sure

that we found every possible cluster there is for the given radius cut-off r and after trimming using the

member cut-off. Execution of this example took about 30 minutes to finish. This is comparable to the

¹³For now, the Python third party Networkx package is used for that. A generic Graph type may be an option for future

improvements. Maybe even a generic HierarchyBuilder type might be in order to be able to exchange the way how

the hierarchy is made and to decouple it from the MST building step.

Dissertation J.-O. F. Kapp-Joswig 215

Hierarchical clustering using minimum spanning trees

semi-automatic approach shown before, but it should be kept in mind that while the threshold-based

clustering procedure is fairly optimised already, the MST hierarchical variant should be considered a

proof-of-concept implementation at the moment.

Figure 15.15 Full hierarchy of clustering results for the helix
data set and example clusters with MSTs
The shown tree represents an 8-stage hierarchical clustering. When the MSTs were constructed, the 9 clusters on the

first level ended up as disjoint, which corresponds to a threshold-based clustering with nc = 0. For each split in the

hierarchy, one can compare a parent to its children to decide which partitioning should be kept. Since each bundle in

the hierarchy carries a weighted graph, one can furthermore fine tune clusters in the nc range they exist. For a few

example bundles, their tree is shown and the minimum/maximum edge weight is annotated above the subplots. Note,

that a cluster appears in threshold-based clustering when the maximum edge weight of its parent is exceeded but its

own minimum weight can be higher.

Besides the possibility to use the quantitative CommonNN density estimate at a fixed radius r as an
edge weight for the construction of MSTs, there is also a second way to derive a continuous similarity

from the CommonNN notion of density. This would be more similar to what is done for example

in the HDBSCAN scheme (see section 14.7) under the concept ofmutual reachability distance.[450]
For this we would turn our density estimate upside down and ask the question ‘How large does r
need to be for two points to share a certain number of neighbours?’. While the previously discussed

approach eliminated the cluster parameter nc for the clustering procedure, this alternative formulation

eliminates the neighbour search radius r and requires us to only set nc. Figure 15.16 illustrates this

idea.

Figure 15.16 CommonNNmutual reachability distance Given two

points a and b, how large does r have to be so that a and b share nc

of their neighbours? Optionally, mutual reachability can be defined

as max(rreach(a, b; nc), d(a, b)). The radii were found using the code

snippet below.

Algorithmically, the determination of the required radius rreach(a, b; nc) is a bit more complicated

than a plain evaluation of neighbourhood intersections. It can for example be realised, however, by

216 Dissertation J.-O. F. Kapp-Joswig

Hierarchical clustering using minimum spanning trees

the following approach: maintain for each of the two checked points a mapping that allows quick

membership lookups of point indices and associated distances. Then do a series of alternating kth

nearest neighbour queries for the two points and check after each query if the next nearest neighbour

of point a was already seen as a k-nearest neighbour of point b. Track the number of neighbours

that are seen in both neighbourhoods and return the distance in question once the given threshold is

reached.

"""At which distance do point a and b share nc neighbours"""
na_distance_map = {} # Keep track of neighbours and distances
nb_distance_map = {}
common = 0
ka_count = kb_count = 1 # Current kth neighbour for a and b
ka_index, ka_distance = get_kth_neighbour(a, ka_count)
kb_index, kb_distance = get_kth_neighbour(b, kb_count)
while True:

if ka_distance <= kb_distance:
if ka_index in nb_distance_map:
common += 1
if common >= c: return max(ka_distance, nb_distance_map[ka_index])

na_distance_map[ka_index] = ka_distance
ka_count += 1
ka_index, ka_distance = get_kth_neighbour(a, ka_count)

else:
if kb_index in na_distance_map:
common += 1
if common >= c: return max(kb_distance, na_distance_map[kb_index])

nb_distance_map[kb_index] = kb_distance
kb_count += 1
kb_index, kb_distance = get_kth_neighbour(a, ka_count)

The approach does heavily really on efficient logic in get_kth_neighbour to retrieve the kth

nearest neighbours of the checked point in order. Practically, one may perhaps want to limit the

number of k or to set a maximum distance beyond which two points a and b are not checked any

more. It should also be noted that the case nc = 0 becomes meaningless here because any point pair

trivially fulfils this for rreach = 0.

CommonNN clustering usingMSTs weighted bymutual reachability distances is a rather theoretical

possibility at the moment and there is no hierarchical fitter type in our package supporting this

approach yet. It will be interesting to see if there are fundamental differences in the robustness of the

two different hierarchical approaches with respect to the selection of the remaining cluster parameter

r or c. Qualitatively, both approaches should still yield essentially the same results, though.

Dissertation J.-O. F. Kapp-Joswig 217

{ 16 }
Benchmarking clustering algorithms
Execution timemeasurements alongmultiple axes of
variation

F
or the broad applicability of a clustering procedure it is not only important that it is conceptually

sound and capable of yielding qualitatively good results, it does also need to be reasonably

performant. How fast a useful clustering method needs to be, depends on the value it provides and on

the relative performance of other similar methods. Good performance can be understood in basically

two ways: in terms of the absolute runtime requirement absolute
runtime vs.

scaling

(‘How many seconds, minutes, or hours does
the procedure need to complete?’) and in terms of the runtime scaling (‘How much longer does the
procedure need to complete if the problem size is twice as large?’). In general, one would ideally have

satisfied both, a cheap base case and friendly linear, logarithmic, or even constant scaling. The scaling

of a method becomes especially important for larger data sets. Absolute runtimes are nice for a basic

orientation.

For CommonNN clustering, in particular the threshold-based approach, quick execution is very

important because in typical data exploration use-cases, the method is probably applied interactively

with a large number of different cluster parameter combinations. On moderately sized data sets of 103

to 105 points, execution times longer than a few seconds will strongly hamper the practical usefulness

for many workflows. From the hierarchical perspective, longer execution times are probably less of

a problem because as long as a method reliably exposes the full hierarchy of clusters without much

tuning and repetitions, users might except runtimes of multiple hours (e.g. a running over night).

Here it becomes very important that the approach does not scale too badly to be also useful for an

application to large data sets of say ≥ 106 data points.

To argue about the speed and scaling of a clustering procedures, we have to measure it in the first

place. Theoretical scaling analyses are very valuable and I tried to comment on expected runtime

complexities in the CommonNN context whenever possible. However, it is not always easy to assess

the scaling precisely here or while it can be stated for individual algorithmic aspects (for example

for the BFS in general), it is sometimes not very clear how the parts add up to the full picture. To

get a realistic impression of the efficiency of a complex procedure, eventually we need to run it and

just see how long it takes to finish. Only that this is easier said than done: benchmarking clustering

algorithms (representatively) is hard.

Mainly it is hard because the performance of a clustering procedure (that is often more than just

one fundamental algorithm) can depend on a lot of factors. The biggest difference is probably made by

the kind of input data that we provide. Starting from point coordinates, which necessitates (repeated)

distance calculations, is likely more expensive than reading off pre-computed neighbourhoods. varying the
procedure

But

how much more expensive? Will it only effect the absolute runtime or does a circumvention of

brute-force distance calculations also improve the scaling? Does it make a big difference if we use

one storage format over another, e.g. a memoryview instead of a NumPy array? It will probably also

Dissertation J.-O. F. Kapp-Joswig 219

16. Benchmarking clustering algorithms

have a great impact if we change how the similarity check is executed. The CommonNNClustering

project is very flexible in the combination of building blocks it allows. Only by measuring the impact

of a certain modification we can identify possible weaknesses in our current recipes and see which

difference is made by a potential optimisation.

Apart from the fact that we can change how the clustering works and what it generally uses as the

input format, we can also change the character of the data set itself. For density-based clustering

it may make a substantial difference how the points of the data set are distributed.varying the
data

To assess the

scaling of the method, we normally also need to measure clustering execution times for the ‘same’

set but with an increasing number of data points. Similarly, we may need to scale the number of

dimensions. Last but not least, the efficiency of the clustering does heavily depend on the cluster

parameters. For large neighbour search radii, neighbourhoods contain more members, which may

increase the time needed to process them. Also the similarity threshold may slow down the clustering

because for large numbers of shared neighbours the program has to do more exhaustive comparisons

of the neighbourhoods. On the other hand, for even larger neighbour cut-offs it is expected that the

clustering is trivially fast because only few neighbourhoods may be able to fulfil the criterion in the

first place.

With the involvement of the cluster parameters we touch upon a very sensitive aspect of the

benchmark: would it be a fair comparison to use any (the same) cluster parameter combination for

two different data sets—no matter whether the cluster result is actually meaningful in both cases?varying the
parameters Should we instead compare the best parameters (whatever that might be) for each data set with each

other? When scaling the number of points a data set consists of, should we adjust the parameters to

maintain the cluster result or would it distort the impression we get from the scaling?

This last and the other aspects may become even more critical if we compare different clustering

procedures. Is it fairest to try two methods against each other with any, the best, the most similar, or

the default parameters?method
comparison

Are the methods even entirely comparable? Are they not using a completely

different input source? When it comes to the comparison of different methods, a fixation of all other

variations so that both are tried under the exact same conditions may not always be possible.

As a short note on how to interpret obtained timings (a list of individual results from independent

repetitions), the basic question is whether to report the best, worst, or average result? Generally,

it is recommended to use the best one: this is the fastest the machine could do. Considering that

the execution times under otherwise identicalbest vs. average
vs. worst result

circumstances can vary due to various factors on

the machine level—pre-dominantly other processes running simultaneously and blocking available

resources—the best of several timings is normally the ‘purest’ one, meaning the one that is least

influenced by peripheral negative effects. For the benchmarking of clustering procedures, we will

adhere to that practice. Average timings may, however, be of interest if the runtime of a procedure

for a given problem setup is expected to be not deterministic. Does the result contain an element of

randomness? Does this influence the performance? In this case, a consideration of only the best timing

may give the wrong impression on how fast the procedure is overall. Beyond that, a consideration of

average or even worst timings is often only useful if the stability of a procedure should be benchmarked

under ‘real life’ condition. They can also be specifically used to spot issues with the system on which a

procedure is executed.

Before the background of best timings being of general interest on how to asses how fast a clustering

procedure can ideally be, it is recommended to choose a benchmark context that minimises any

kind of negatively influencing effects.varying the
machine

A dedicated run on a HPC cluster for example, where an

execution with specifically allocated resources in the absence of other competing processes is possible,

may be universally a good idea. Besides that, a comparison of absolute runtimes on different typical

machines (a standard workstation, server, or notebook) may also be interesting. It should be kept in

220 Dissertation J.-O. F. Kapp-Joswig

The framework

mind, though, that the benchmark might be influenced by whatever runs in the background when

the timings are measured.

When execution times t for a series of variation along a specific quantity (e.g. different problem

sizes n) are collected, one can determine an empirical growth factor b by fitting the measurements to

the power function

t ≈ anb . (16.1)

On a log-log-plot, b is the slope of the resulting line if the scaling is stable over the tested parameter

range. A factor of b = 2 or b = 1 correspond for example to empirical quadratic or linear scaling.

Increasing the problem size by a factor of 10, quadratically scaling applications will take 100 times

longer to complete while linearly scaling ones only take 10 times longer. The pre-factor a is just a

proportionality constant we do not need to put much attention to. For applications with a larger

overhead, which means that for example trivial execution for n = 0 already takes up a substantial

amount of, a fitting to the extended power function

t ≈ anb
+ c (16.2)

can be an option, where c offers an estimate on the baseline for the execution of a procedure.

As a last side-note, empirical execution time measurements are not the only benchmark tool that

might be of interest to assess the performance of clusterings. profilingTo find bottle-necks in a procedure,

it might also be interesting to run them while monitoring what they are doing with a line profiler.

Tools like that offer more or less detailed insight into how often certain functions and statements

are executed during the runtime and how much time each of them takes. This can give valuable

hints on which parts of a procedure take up the most computation time and can reveal where further

improvement may be worthwhile. Similarly, there are also memory profilers that show in detail how

the memory demand evolves during the execution. I will not go into the complex details of profiling

here but it should be noted that profiling usually creates a big overhead. Execution time measurements

and profiling can therefore usually not be done simultaneously. The CommonNNClustering package

also needs to be compiled with the TRACE_CYTHON=1 option to allow line profiling for the Cython

functions, which will drastically decrease the performance of the package.

In the following section, Iwill discuss the benchmark setup thatwas used in theCommonNNClustering

development. This should offer the starting point for how these benchmarks can be realised in general,

before a few actual benchmarks are presented in section 16.2.

16.1 The framework

The Python standard library provides the basic means to measure the execution time of

function calls through the timeitmodule. Often, the convenience function timeit.timeit suffices

to collect a timing for a small code fragment within a Python script:

import timeit
x = 1
execution_time = timeit.timeit(

stmt="a + b",
setup="b = 1",
globals={"a": x}

)

The executed code passed in as stmt runs in timeit’s own namespace which can be overridden by

using the get_kth_neighbour keyword argument. Alternatively, setup code passed in as setup is

Dissertation J.-O. F. Kapp-Joswig 221

The framework

executed once prior to the measurement and can be used to set the values of needed variables. By

default, code is executed 106 times (this can be modified by the number keyword) and the timings are

averaged for the returned result.

Extra care needs to be taken, if variables are changed by the measured code which may effect sub-

sequent executions. The following for example, will provoke an IndexError in the second repetition

as popping from an empty list is not allowed:

timeit.timeit(stmt="a.pop()", setup="a = [1]")

When we benchmark clusterings, the timed functions may alter the utilised data structures. In

particular, our BFS implementation of CommonNN clustering for example uses an array to track

which points have been already assigned to a cluster. This array needs to be reinitialised in between

clusterings and we run into problems when we are interested in measuring pure clustering execution

times. Setup code is either only executed once by timeit for all measurings or included in the code

portion for which a timing should be measured. To prevent distorting (or breaking) effects on the

obtained results, we therefore collect only single timings for one particular setup and do the averaging

over multiple repetitions separately.

Benchmarking clusterings generally can be broken down into three setup stages: 1) A data set of

a particular kind, size, and dimensionality needs to be generated. 2) The data optionally needs to

be transformed into something that should be used as input to the clustering. 3) A timed function

needs to be defined that can be passed to timeit. With loose type annotations this translates into the

following functional signatures:

def gen_func(*args, **kwargs) -> Type["RawData"]: ...
def transform_func(

data: Type["RawData"], *args, **kwargs) -> Type["Data"]: ...
def setup_func(

data: Type["Data"], *args, **kwargs) -> Callable: ...

Such a benchmark approach is realised within the CommonNNClustering-Benchmark framework.¹

For the organisation of setup and timing, it uses the concept of a benchmark unit (BMUnit) that

bundles the functions used in each stage alongside proper (keyword) arguments under a unit ID. Note,

that it furthermore excepts timed_args and timed_kwargs that will be used to call the function to

time, which will be prepared by the setup.

class BMUnit:
def __init__(

self, id,
gen_func=None, gen_args=None, gen_kwargs=None,
...
timed_args=None, timed_kwargs=None):

self.id = id
...

A benchmark unit can be subjected to the time_unit function which orchestrates repeated setups

and timings for this specific unit and returns a list of timings.

An iterable collection of benchmark units can be further grouped as a Run. Typically a benchmark

run collects units through which only a few constraints of a clustering setup are varied, e.g. an

increasing data set size while dimensionality and cluster parameters are fixed. A trivial example for

the execution of a benchmark run is shown below for timings of the time.sleep standard library

function. Note, that the benchmark framework is not (yet) an installable package but only a collection

¹Visit the repository on GitHub: https://github.com/janjoswig/CommonNNClustering-Benchmark

222 Dissertation J.-O. F. Kapp-Joswig

https://github.com/janjoswig/CommonNNClustering-Benchmark

The framework

of functions in provisional module files (helper_<*>). To use them from anywhere beyond the

directory they are saved to (bm_src_dir), one can make them discoverable from within Python by

using sys.path.insert(0, bm_src_dir) of the standard library.

run_name = "sleep_example"
bm_units = [

helper_base.BMUnit(
id=1,
setup_func=lambda x: time.sleep,
timed_args=(0.1,)
),

helper_base.BMUnit(
id=2,
setup_func=lambda x: time.sleep,
timed_args=(0.2,)
)

]
run = Run(run_name, bm_units)
run.collect()

The resulting timings are accessible in a mapping of unit IDs to instances of the convenience type

IPython.core.magics.execution.TimeitResult via Run.timings:

{1: <TimeitResult : 100 ms ± 6.92 µs per loop (...)>,
2: <TimeitResult : 200 ms ± 16.9 µs per loop (...)>}

For the reporting and plotting of timing results, respective functionality is provided in helper_plot
and helper_timeit.

To use this framework for our benchmarks, we need to do the following: 1) Define generation

functions to produce data sets with different numbers of points, dimension, etc. (we can use the

sklearn.datasets module for that). 2) Define transform functions if necessary to pre-compute

distances or (sorted) neighbourhoods. 3) Define a setup function, that returns the function we actually

want to time (i.e. creating a Clustering instance and returning the fit function or a wrapper

including pre-processing steps). 4)Think about cases we want to test and define them as Run instances.

5) Run the benchmarks.

For the final step, the actual execution of the benchmarks, there is the little bm.py binary that can

be run from the shell, for example like

python bm.py -runs bm_e -m qcm07

This expects the name of a Python-file in which a list of Run objects is defined as run_list. It can

among other things also be passed a name identifier for the machine it currently runs on. The script

will take care of the execution of all runs and saves the reported timings in json-format in sensible

locations. The content of bm_e.py could look like the following:

n_points = [500 * 2**x for x in range(10)]
runs_report_dir = "examples"
raw_run_list = [

(
f"no_structure_e_{param_letter}",
{

"r_list": r,
"c_list": c,
"d_list": 2,
"n_list": n_points,

Dissertation J.-O. F. Kapp-Joswig 223

CommonNN clustering performance

"gen_func": helper_base.gen_no_structure_points,
"transform_func": helper_base.compute_neighbours,
"transform_args": ("<r>",),
"transform_kwargs": {"sort": True, "sort_by_n": True},
"setup_kwargs": {

"recipe": "sorted_neighbourhoods"
}

}
)
for param_letter, (r, c) in [

("a", (0.25, 0)), ("b", (0.25, 50)), ("c", (0.25, 100)),
("d", (0.1, 0)), ("e", (0.1, 50)), ("f", (0.1, 100)),
]

]
run_list = (

helper_base.Run(
run_name,
cases.gen_bm_units_cnnclustering__fit(**kwargs),

)
for run_name, kwargs in raw_run_list

)

Thismakes additional use of a setup specific convenience function gen_bm_units_cnnclustering__fit
that creates a series of BMUnits for the Clustering._fit function. It expects keyword arguments

that control how the number of points or the cluster parameter should be varied in this series. The

raw_run_list provides these for multiple runs. This convenience function is defined alongside

the actual setup function in the cases module. In this example, we prepare six runs on a data

set of uniformly distributed data points in 2D where the size is increased from 500 to 256,000

points. The cluster parameters r and nc are kept within each run as fixed values but differ between

the runs (each parameter combination is given a letter code "a" to "f"). Each clustering will

use the sorted_neighbourhoods recipe on pre-computed neighbourhoods (denoted by the let-

ter code "e"). The "<r>" placeholder in the transform function arguments is substituted by the

actual value of r when the units are created, which ensures that the transformation always uses

the correct value even if r is varied within the run. This example will generate six output-files

"<bm_src_dir>/reports/qcm07/examples/no_structure_e_<param_letter>.json" containing

the specific timings.

16.2 CommonNN clustering performance

Using the benchmark facilities described in the last section, a few interesting execution

timings for the CommonNN clustering procedure in the present implementation have been done and

will be shown here. The shown plots deliberately violate the normally good practice of comparing

only one aspect of variation at a time to present the observations in a rather condensed form.

Figure 16.1a presents threshold-based clustering timings for growing data sets of uniformly distrib-

uted points in 2D using the different fundamental input data recipes that have been already mentioned

in section 15.6 (table 15.6).comparing
recipes

Compared are clusterings starting from point coordinates (brute force

on-the-fly distance calculation), from pre-computed distances, and from neighbourhoods that have

been optionally sorted by member indices—always in conjunction with the ideal combination of

generic types. The obtained numbers correspond to the execution of the fit only, excluding for example

the data preparation time and the post-processing of the obtained labels. Expectedly, the absolute

runtimes decrease when the input data contains pre-computed information. The biggest impact,

224 Dissertation J.-O. F. Kapp-Joswig

CommonNN clustering performance

however, has the sorting of neighbourhoods (see section 15.6.1) which amounts to a gain in efficiency

by over two orders of magnitude with respect to the brute force base case. 256k data points can be

clustered in about 9 seconds. Note that for the case of pre-computed distances, 64k data points where

the maximum that could be handled with the available memory.

Also clearly noticeable is an acceleration when the neighbour search radius is reduced. In all

clusterings, the similarity cut-off was set to nc = 0, which will essentially bypass the similarity check.

Small neighbourhoods are therefore even beneficial when neighbours only have to be retrieved

and their comparison with respect to the number of shared neighbours is skipped (constant time).

Strikingly, the relative scaling of all approaches remains the same as obviously quadratic. This can be

rationalised in terms of the fact that a doubling of the number of points for this uniform data set will

also roughly double the number of points in each neighbourhood. The number of potential pairs for

which neighbourhoods need to be collected in order to be compared depends in turn quadratically

on this. It is still surprising that the runtime complexity of how neighbours are retrieved, i.e. either

trough a quadratically scaling calculation or a linear look-up, seems to be negligible for the overall

scaling.

Figure 16.1b and c puts the gain in efficiency through a pre-computing of information into perspect-

ive as it shows absolute timings including the data preparation time. The clusterings use the scikit-learn

varied data set (compare figure 15.5). For distances, the gain is only minimal if the information is not

recycled. For neighbourhoods, however, the pre-computation cost is already repaid in the first run.

The cluster parameter nc was set to a fixed non-zero value while the radius was scaled down for the

test cases with bigger problem sizes. This approach is legitimate because for denser data the resolution

parameter r may usually be reduced. Note that the observerd scaling is now sub-quadratic for the

neighbourhood cases.

Figure 16.1 Comparison of input data recipes a) Clus-

terings using default recipes on uniformly distributed data

points. Timings included the fit only. All cases use nc = 0.

b) Complete benchmarks including data preparation time

for the varied data set. We used nc = 50 and scaled the

radius from r = 0.2 by a factor of 0.9 each time the number

of points was increased. c) Same as in b)with linear y-scale.

Benchmarkswhere carried out on amachine equippedwith

an Intel® Xeon® CPU E5-2690 v3 @ 2.60GHz and 164GB

(a)) or 200GB (b)) memory.

In section 15.6, the approach was discussed to sort neighbourhoods not only by the indices of their

members to allow quick similarity checks (section 15.6.1) but also in total by the number of members

they contain. neighbour-
hoods sorting

Figure 16.2 assesses the effect of this for timings measuring the fit only with uniformly

distributed data points and nc = 0 like in figure 16.1a and with complete timings for the varied data set

Dissertation J.-O. F. Kapp-Joswig 225

CommonNN clustering performance

as in figure 16.1b. For the uniform case, a priorisation of the point processing order by total neighbour

counts has basically no effect for larger numbers of points. In the varied case, however, we see an

efficiency gain that even counter-balances the larger preparation cost.

Figure 16.2 Comparison of neighbourhoods sorting by
index andmember count For uniformly distributed data,

timings measuring the fit only (r = 0.25, nc = 0) are shown

for neighbourhoods pre-sorted by member indices and ad-

ditionally sorted by absolutemember counts (superscript
a
).

The same is done for complete timings on the varied data

(r = 0.2 and scaled down by a factor 0.9 at step, nc = 50).

We largely ignored the effect of the cluster parameters on the actual result of the clustering and

focused only on execution times here. It was already noticed, that the neighbour search radius r
can have a strong effect on the clustering performance but also the similarity cut-off nc may have

a substantial impact.comparing
parameters

Figure 16.3 compares different parameter combinations on the uniform set

using the "sorted_neighbourhoods" recipe. For non-zero similarity thresholds, there is a sudden

increase in the execution timings at a certain point. The reason for that might be that the number of

successful and failing similarity checks, which is a consequence of the cluster parameters relative to

the size (and distribution) of the data set, influences the clustering performance. Most interestingly,

very large density thresholds (low r, high nc in the context of n) accelerate the procedure probably

because a lot of points can be declared noise and do not need to be checked. In general, however,

larger nc values cause a higher cost of similarity checks. Overall the performance influence is highly

unpredictable. For more details, the interested reader is refered to the benchmark repository that also

contains examples for 2D parameter scans.

Figure 16.3 Comparison of cluster parameters with sor-
ted neighbourhoods Execution timings, measuring the

fit only, on uniformly distributed data sets. The relative set-

tings for r and nc with respect to the data set size n decides

not only over the clustering result but also its performance.

From the shown timings, we can conclude the following universal advice. If possible, always

use pre-sorted neighbourhoods with the respective recipe for the best performance and optionally

consider also sorting of the data points with respect to their neighbour count. Choose a preferably

small radius r.General advice Since the other cluster parameter nc is then responsible for tuning the cluster result,

there is not much freedom on how to set it for good performance. Be aware that when tuning nc

from low to high, the computation cost is generally expected to go up. Only for very large values a

drastic performance increase will be observed but this may not yield a useful result any more. If a lot

of parameter combinations should be tested (e.g. in semi-automatic hierarchical clustering), try to

226 Dissertation J.-O. F. Kapp-Joswig

CommonNN clustering performance

limit the total number of data point to < 100k so that a single clustering is not taking more time than

a few seconds.²

Benchmarks for the more or less entire clustering procedure can deliver a good overall

performance impression but the results are often not straightforward to interpret. Especially when the

cluster parameters are varied it can in general only be guessed why the execution time is influenced.

A crucial element of the whole procedure is the similarity check, which is done very frequently,

and it can be suspected that it impacts the timings quite a lot. To assess in more detail how the

performance of individual similarity checks changes depending on the strategy that is used here

(compare section 15.6.1), let’s consider a few separate benchmarks of only this function.

For this, we have set up a bunch of synthetic test cases to model extrem situations of neighbourhood

containers with different lengths that can be subjected to a similarity check.

equal Two identical containers of length na with strictly increasing member indices. Each item

comparison is a success.

shuffled Like equal but the container content was brought into no specific order. Each item compar-

ison is a success.

mixed Like equal but the second container contains only every 2nd element is of length nb = na/2.

Each item comparison from b to a is a success.

different Two containers of length na with strictly increasing indices in non-overlapping ranges.

All item comparisons fail.

different (alternating) Like different but with perfectly alternating indices between the two contain-

ers. All item comparisons fail.

With these cases, different flavours of the similarity check have been timed. Figure 16.4a shows

the basic possibilities. For naive containment checks using the Contains similarity checker with

two Vector neighbours containers on the equal case, we observe the expected quadratic scaling (not

recommended). Leveraging of an unordered set for constant time containment checks brings this

done to linear scaling. If the similarity cut-off nc is set to lower values (33 % instead of 50% of the

neighbourhoods length na), it is not surprising that the check is a little bit faster because we can break

out early once nc is satisfied. A shuffling of the containers makes the check less predictable, although

it is not a hundred percent clear why that is (still every item comparison should be a success). A

linear screen of sorted neighbourhoods gives the absolute best performance. For nc = 0, the check is

bypassed entirely.

In contrast, figure 16.4b shows an assessment of the equal case with 625k items but with increasing

values for the similarity cut-off nc. The trends for the different approaches are the same as before.

Note that the possibility of switching in the SwitchContains similarity checker has no impact here

because the neighbourhoods are of the same lengths.

²It is not discussed here but it is often a possibility to cluster only a representative subset of a data set (e.g. generated

by striding or k-means pre-clustering) and to assign the full set to the identified clusters in a later step. This can be

referred to as cluster label prediction and the CommonNNClustering project provides the Predictor interface for it.

Dissertation J.-O. F. Kapp-Joswig 227

CommonNN clustering performance

Figure 16.4 Execution timings for the similarity check
a) Compared are different check variants on neighbourhood test containers with increasing length. A linear screen

on sorted containers performs best. b) Comparisons for the equal neighbourhoods case with increasing values for nc .

In general, however, switching can indeed have a positive effect. Figure 16.5 shows timings for the

mixed case with and without switching. While the scaling of the approaches is of course not effected,

absolute runtimes are reduced. The effect is expectedly smaller for the quadratically scaling naive

approach because a single containment check involves a loop over both of the containers anyway.

Figure 16.5 Impact of conditional switching before con-
tainment checks If two neighbourhoods of unequal length

are subjected to a similarity check, it can make sense to

ensure that the shorter container is looped over while the

longer will be used for the contains check.

Finally, let us get an idea about the worst case performance of the similarity check. The worst

case here means that the similarity cut-off is not satisfied by the containers and that there can be

no early break. For test cases of non-overlapping containers, figure 16.6 shows the timings for all

considered approaches. Generally, the naive approach suffers the most while the linear screen is almost

not effected by the different case. The latter check only has a hard time with perfectly alternating

containers. This case can be, however, assumed to be quite rare in reality.

228 Dissertation J.-O. F. Kapp-Joswig

CommonNN clustering performance

Figure 16.6 Worst case scaling of similarity checksOn

non-overlapping neighbourhoods, the performance of a

single similarity check can be slow. We observe about one

order ofmagnitude for the naive case and a factor of two for

the set-lookup variants. Linear screens are not necessarily

affected by segmentally differing containers. Their worst

case are perfectly alternating non-overlapping containers

where we see one order of magnitude loss in performance.

Dissertation J.-O. F. Kapp-Joswig 229

Appendix

References

[1] R. Frigg, J. Reiss, Synthese 2009, 169, 593–613.

[2] I. Mills, W. Metanomski, Quantities, Units and
Symbols in Physical Chemistry, (Eds.: E. R. Cohen,

T. Cvitas, J. G. Frey, B. Holström, K. Kuchitsu, R.

Marquardt, I.Mills, F. Pavese,M.Quack, J. Stohner,

H. L. Strauss, M. Takami, A. J.Thor), Royal Society

of Chemistry, Cambridge, 2007.

[3] J. Burnet, Early greek philosophy, 3rd ed., A & C

Black, London, 1920.

[4] J. H. Holden, A History of Horoscopic Astrology,
2nd ed., AFA, 1996.

[5] G. Smith, ‘Newton’s Philosophiae Naturalis Prin-

cipia Mathematica’ in Stanford Encycl. Philos. (Ed.:

E. N. Zalta), Metaphysics Research Lab, Stanford

University, 2008.

[6] S. Strogatz, New York Times Opinionator Guest

Column: Loves Me, Loves Me Not (Do the Math),

2009.

[7] H. Goldstine, A. Goldstine, IEEE Ann. Hist. Com-
put. 1996, 18, 10–16.

[8] W. T. Moye, ENIAC: The Army-Sponsored Revolu-
tion, ARL Historian, 1996.

[9] H. L. Anderson, Los Alamos Sci. 1986, 14, 104–105.

[10] N. Metropolis, A. W. Rosenbluth, M. N. Rosen-

bluth, A. H. Teller, E. Teller, J. Chem. Phys. 1953,
1087–1092.

[11] E. Fermi, J. G. Pasta, S. M. Ulam, LASL Rep. LA-
1940 1955.

[12] T. Dauxois, Phys. Today 2008, 61, 55–57.

[13] B. J. Alder, T. E. Wainwright, J. Chem. Phys. 1957,
27, 1208–1209.

[14] G. Battimelli, G. Ciccotti, Eur. Phys. J. H. 2018, 43,
303–335.

[15] B. J. Alder, T. E. Wainwright, J. Chem. Phys. 1959,
31, 459–466.

[16] J. B. Gibson, A.N.Goland,M.Milgram,G.H.Vine-

yard, Phys. Rev. 1960, 120, 1229–1253.

[17] A. Rahman, Phys. Rev. 1964, 136, A405–A411.

[18] A. Rahman, F. H. Stillinger, J. Chem. Phys. 1971, 55,
3336–3359.

[19] F. H. Stillinger, A. Rahman, J. Chem. Phys. 1974,
60, 1545–1557.

[20] J. A. McCammon, B. R. Gelin, M. Karplus, Nature
1977, 267, 585–590.

[21] M. Levitt, A. Warshel, Nature 1975, 253, 694–698.

[22] C. Levinthal, ‘Levinthal’s Paradox’ in Mossbauer
Spectrosc. Biol. Syst. Proc. aMeet. held Allert. House,
Monticello, Illinois, (Eds.: J. T. P. DeBrunner, E.

Munck), University of Illinois Press, 1969, pp. 22–

24.

[23] A. Warshel, Nature 1976, 260, 679–683.

[24] P. Nogly, T. Weinert, D. James, S. Carbajo, D.

Ozerov, A. Furrer, D. Gashi, V. Borin, P. Skopintsev,

K. Jaeger, K. Nass, P. Båth, R. Bosman, J. Koglin, M.

Seaberg, T. Lane, D. Kekilli, S. Brünle, T. Tanaka,

W. Wu, C. Milne, T. White, A. Barty, U. Weier-

stall, V. Panneels, E. Nango, S. Iwata, M. Hunter,

I. Schapiro, G. Schertler, R. Neutze, J. Standfuss,

Science 2018, 361, DOI 10.1126/science.
aat0094.

[25] L. Verlet, Phys. Rev. 1967, 159, 98–103.

[26] S. Lifson, A.Warshel, J. Chem. Phys. 1968, 49, 5116–

5129.

[27] M. Levitt, S. Lifson, J. Mol. Biol. 1969, 46, 269–279.

[28] J.-P. Ryckaert, G. Ciccotti, H. J. Berendsen, J. Com-
put. Phys. 1977, 23, 327–341.

[29] W. van Gunsteren, H. Berendsen,Mol. Phys. 1977,
34, 1311–1327.

[30] H. C. Andersen, J. Chem. Phys. 1980, 72, 2384–

2393.

[31] M. Parrinello, A. Rahman, Phys. Rev. Lett. 1980,
45, 1196–1199.

[32] M. Parrinello, A. Rahman, J. Appl. Phys. 1981, 52,
7182–7190.

[33] W. C. Swope, H. C. Andersen, P. H. Berens, K. R.

Wilson, J. Chem. Phys. 1982, 76, 637–649.

[34] J. P. M. Postma, H. J. C. Berendsen, J. R. Haak,

Faraday Symp. Chem. Soc. 1982, 17, 55.

[35] U. C. Singh, F. K. Brown, P. A. Bash, P. A. Kollman,

J. Am. Chem. Soc. 1987, 109, 1607–1614.

[36] M. P. Allen, D. J. Tildesley, Computer Simulation
of Liquids, Vol. 1, 2nd ed., Oxford University Press,

2017.

[37] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura,

R. W. Impey, M. L. Klein, J. Chem. Phys. 1983, 79,
926–935.

[38] W. L. Jorgensen, J. Tirado-Rives, J. Am. Chem. Soc.
1988, 110, 1657–1666.

[39] A. K. Mazur, R. A. Abagyan, J. Biomol. Struct. Dyn.
1989, 6, 815–832.

[40] R. Abagyan, P. Argos, J. Mol. Biol. 1992, 225, 519–

532.

Dissertation J.-O. F. Kapp-Joswig 233

https://doi.org/10.1126/science.aat0094
https://doi.org/10.1126/science.aat0094

References References

[41] K. Kremer, G. S. Grest, J. Chem. Phys. 1990, 92,
5057–5086.

[42] D. C. Rapaport, J. Phys. A. Math. Gen. 1978, 11,
L213–L217.

[43] H. Grubmüller, B. Heymann, P. Tavan, Science
1996, 271, 997–999.

[44] C. Jarzynski, Phys. Rev. Lett. 1997, 78, 2690–2693.

[45] M. J. Dudek, J. W. Ponder, J. Comput. Chem. 1995,
16, 791–816.

[46] A. Warshel, M. Kato, A. V. Pisliakov, J. Chem. The-
ory Comput. 2007, 3, 2034–2045.

[47] C. Schütte, A. Fischer, W. Huisinga, P. Deuflhard,

J. Comput. Phys. 1999, 151, 146–168.

[48] Y. Duan, P. A. Kollman, Science 1998, 282, 740–

744.

[49] S. Plimpton, Comput. Mater. Sci. 1995, 4, 361–364.

[50] H. J. C. Berendsen, D. van der Spoel, R. van

Drunen, Comput. Phys. Commun. 1995, 91, 43–56.

[51] D. A. Pearlman, D. A. Case, J. W. Caldwell, W. S.

Ross, T. E. Cheatham, S. DeBolt, D. Ferguson, G.

Seibel, P. Kollman, Comput. Phys. Commun. 1995,
91, 1–41.

[52] J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J.

Hardy, L. G. Trabuco, K. Schulten, J. Comput.
Chem. 2007, 28, 2618–2640.

[53] J. A. Anderson, C. D. Lorenz, A. Travesset, J. Com-
put. Phys. 2008, 227, 5342–5359.

[54] P. L. Freddolino, A. S. Arkhipov, S. B. Larson, A.

McPherson, K. Schulten, Structure 2006, 14, 437–

449.

[55] D. E. Shaw, P. J. Adams, A. Azaria, J. A. Bank, B.

Batson, A. Bell, M. Bergdorf, J. Bhatt, J. A. Butts,

T. Correia, R. M. Dirks, R. O. Dror, M. P. East-

wood, B. Edwards, A. Even, P. Feldmann, M. Fenn,

C. H. Fenton, A. Forte, J. Gagliardo, G. Gill, M.

Gorlatova, B. Greskamp, J. Grossman, J. Gulling-

srud, A. Harper, W. Hasenplaugh, M. Heily, B. C.

Heshmat, J. Hunt, D. J. Ierardi, L. Iserovich, B. L.

Jackson, N. P. Johnson, M. M. Kirk, J. L. Klepeis,

J. S. Kuskin, K. M. Mackenzie, R. J. Mader, R.

McGowen, A. McLaughlin, M. A. Moraes, M. H.

Nasr, L. J. Nociolo, L. O’Donnell, A. Parker, J. L.

Peticolas, G. Pocina, C. Predescu, T. Quan, J. K.

Salmon, C. Schwink, K. S. Shim, N. Siddique, J.

Spengler, T. Szalay, R. Tabladillo, R. Tartler, A. G.

Taube,M.Theobald, B. Towles,W.Vick, S. C.Wang,

M. Wazlowski, M. J. Weingarten, J. M. Williams,

K. A. Yuh in Proc. Int. Conf. High Perform. Com-

put. Networking, Storage Anal. ACM, New York,

NY, USA, 2021, pp. 1–11.

[56] J. R. Perilla, K. Schulten, Nat. Commun. 2017, 8,
15959.

[57] J. Jung, C. Kobayashi, K. Kasahara, C. Tan, A. Kur-

oda, K. Minami, S. Ishiduki, T. Nishiki, H. Inoue,

Y. Ishikawa, M. Feig, Y. Sugita, J. Comput. Chem.
2021, 42, 231–241.

[58] L. Casalino, Z. Gaieb, J. A. Goldsmith, C. K.Hjorth,

A. C. Dommer, A. M. Harbison, C. A. Fogarty, E. P.

Barros, B. C. Taylor, J. S. McLellan, E. Fadda, R. E.

Amaro, ACS Cent. Sci. 2020, 6, 1722–1734.

[59] A. Dommer, L. Casalino, F. Kearns, M. Rosenfeld,

N. Wauer, S.-H. Ahn, J. Russo, S. Oliveira, C. Mor-

ris, A. Bogetti, A. Trifan, A. Brace, T. Sztain, A.

Clyde, H. Ma, C. Chennubhotla, H. Lee, M. Turilli,

S. Khalid, T. Tamayo-Mendoza, M. Welborn, A.

Christensen, D. G. A. Smith, Z. Qiao, S. K. Siru-

malla, M. O’Connor, F. Manby, A. Anandkumar,

D. Hardy, J. Phillips, A. Stern, J. Romero, D. Clark,

M. Dorrell, T. Maiden, L. Huang, J. McCalpin, C.

Woods, A. Gray, M. Williams, B. Barker, H. Ra-

japaksha, R. Pitts, T. Gibbs, J. Stone, D. Zuckerman,

A. Mulholland, T. Miller, S. Jha, A. Ramanathan, L.

Chong, R. Amaro, bioRxiv 2021, DOI 10.1101/
2021.11.12.468428.

[60] J.-M. Chia, Accelerating Drug Discovery with Su-

percomputing Scale Biomolecular Simulations on

Azure, 2020.

[61] M. S. Islam, S. L. Junod, S. Zhang, Z. Y. Buuh, Y.

Guan, M. Zhao, K. H. Kaneria, P. Kafley, C. Co-

hen, R. Maloney, Z. Lyu, V. A. Voelz, W. Yang, R. E.

Wang, Nat. Commun. 2022, 13, 350.

[62] E. J. Maginn, J. R. Elliott, Ind. Eng. Chem. Res. 2010,
49, 3059–3078.

[63] F. Fratev, S. Sirimulla, Sci. Rep. 2019, 9, 16829.

[64] L. Carvalho Martins, E. A. Cino, R. S. Ferreira, J.
Chem. Theory Comput. 2021, 17, 4262–4273.

[65] C. Tian, K. Kasavajhala, K. A. A. Belfon, L.

Raguette, H. Huang, A. N. Migues, J. Bickel, Y.

Wang, J. Pincay, Q. Wu, C. Simmerling, J. Chem.
Theory Comput. 2020, 16, 528–552.

[66] C. J. Dickson, R. C. Walker, I. R. Gould, J. Chem.
Theory Comput. 2022, 18, 1726–1736.

[67] G. Balogh, T. Gyöngyösi, I. Timári, M. Herczeg, A.

Borbás, K. Fehér, K. E. Kövér, J. Chem. Inf. Model.
2019, 59, 4855–4867.

[68] A. M. Salsbury, J. A. Lemkul, Curr. Opin. Struct.
Biol. 2021, 67, 9–17.

[69] Z. Li, L. F. Song, P. Li, K. M. Merz, J. Chem. Theory
Comput. 2020, 16, 4429–4442.

[70] X. He, V. H. Man, W. Yang, T.-S. Lee, J. Wang, J.
Chem. Phys. 2020, 153, 114502.

[71] R. Galvelis, S. Doerr, J. M. Damas, M. J. Harvey,

G. De Fabritiis, J. Chem. Inf. Model. 2019, 59, 3485–

3493.

[72] M. Chen, Eur. Phys. J. B 2021, 94, 211.

[73] R. Menichetti, M. Giulini, R. Potestio, Eur. Phys. J.
B 2021, 94, 204.

[74] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Fig-

urnov, O. Ronneberger, K. Tunyasuvunakool, R.

Bates, A. Žídek, A. Potapenko, A. Bridgland, C.

Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie, B.

Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T.

Back, S. Petersen, D. Reiman, E. Clancy, M. Zielin-

ski, M. Steinegger, M. Pacholska, T. Berghammer,

234 Dissertation J.-O. F. Kapp-Joswig

https://doi.org/10.1101/2021.11.12.468428
https://doi.org/10.1101/2021.11.12.468428

References References

S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior,

K. Kavukcuoglu, P. Kohli, D. Hassabis,Nature 2021,
596, 583–589.

[75] F. Noé, S. Olsson, J. Köhler, H. Wu, Science 2019,
365, DOI 10.1126/science.aaw1147.

[76] A. Glielmo, B. E. Husic, A. Rodriguez, C. Clementi,

F. Noé, A. Laio, Chem. Rev. 2021, 121, 9722–9758.

[77] G. Ciccotti, C. Dellago, M. Ferrario, E. R. Hernán-

dez, M. E. Tuckerman, Eur. Phys. J. B 2022, 95, 3.

[78] L. Donati, M.Weber, B. G. Keller, J. Phys. Condens.
Matter 2021, 33, 115902.

[79] S. Kieninger, B. G. Keller, J. Chem. Phys. 2021, 154,
094102.

[80] President’s Information Technology Advisor Com-

mittee, Rep. to Pres. 2005.

[81] P. W. Anderson, ‘Local moments and localized

states (1977)’ in Nobel Lect. Phys. 1971-1980, (Ed.:

S. Lundqvist), World Scientific, Singapore, 1992.

[82] S. Y. Diallo, J. J. Padilla, I. Bozkurt, A. Tolk, ‘Model-

ing and Simulation as aTheory Building Paradigm’

in 2013, pp. 193–206.

[83] M. Born, R. Oppenheimer, Ann. Phys. 1927, 389,
457–484.

[84] P. Ehrenfest, Zeitschrift für Phys. 1927, 45, 455–457.

[85] J. Fass, D. Sivak, G. Crooks, K. Beauchamp, B.

Leimkuhler, J. Chodera, Entropy 2018, 20, 318.

[86] W. B. Hayes, Phys. Rev. Lett. 2003, 90, 054104.

[87] W. F. van Gunsteren, D. Bakowies, R. Baron, I.

Chandrasekhar, M. Christen, X. Daura, P. Gee,

D. P. Geerke, A. Glättli, P. H. Hünenberger, M. A.

Kastenholz, C. Oostenbrink, M. Schenk, D. Trzes-

niak,N. F. A. van derVegt,H. B. Yu,Angew. Chemie
Int. Ed. 2006, 45, 4064–4092.

[88] R. D. Skeel, SIAM J. Sci. Comput. 2009, 31, 1363–

1378.

[89] E. Braun, J. Gilmer, H. B. Mayes, D. L. Mobley,

J. I. Monroe, S. Prasad, D. M. Zuckerman, Living
J. Comput. Mol. Sci. 2019, 1, DOI 10.33011/
livecoms.1.1.5957.

[90] K. Johannessen, Eur. J. Phys. 2014, 35, 035014.

[91] M. E. Tuckerman, Statistical Mechanics: Theory
andMolecular Simulation, OxfordUniversity Press,

2010.

[92] J. K. Vandiver, D. Gossard, ‘Lecture 15: Introduc-

tion to Lagrange with examples’ in Struct. Mech.
Course 2.003S No.∼1.053J, Cambridge∼MA, 2011.

[93] W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould,

K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T.

Fox, J. W. Caldwell, P. A. Kollman, J. Am. Chem.
Soc. 1995, 117, 5179–5197.

[94] S. Riniker, J. Chem. Inf. Model. 2018, 58, 565–578.

[95] K. Lindorff-Larsen, S. Piana, K. Palmo, P. Maraga-

kis, J. L. Klepeis, R. O. Dror, D. E. Shaw, Proteins
Struct. Funct. Bioinforma. 2010, 78, 1950–1958.

[96] P. M. Morse, Phys. Rev. 1929, 34, 57–64.

[97] K. Farah, F. Müller-Plathe, M. C. Böhm, ChemPhy-
sChem 2012, 13, 1127–1151.

[98] D. M. Ferguson, J. Comput. Chem. 1995, 16, 501–

511.

[99] B. R. Brooks, C. L. Brooks, A. D. Mackerell, L.

Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Arch-

ontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves,

Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao,

M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J.

Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B.

Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable,

H. L. Woodcock, X. Wu, W. Yang, D. M. York, M.

Karplus, J. Comput. Chem. 2009, 30, 1545–1614.

[100] A. Kania, K. Sarapata, M. Gucwa, A. Wójcik-

Augustyn, J. Phys. Chem. A 2021, 125, 2673–2681.

[101] G. A. Kaminski, R. A. Friesner, J. Tirado-Rives,

W. L. Jorgensen, J. Phys. Chem. B 2001, 105, 6474–

6487.

[102] P. Li, L. F. Song, K. M. Merz, J. Phys. Chem. B 2015,
119, 883–895.

[103] P. Li, Front. Chem. 2021, 9, DOI 10 . 3389 /
fchem.2021.721960.

[104] R. A. Buckingham, Proc. R. Soc. London A 1938,
168, 264–283.

[105] J. Delaye, V. Louis-Achille, D. Ghaleb, J. Non. Cryst.
Solids 1997, 210, 232–242.

[106] M. Levitt, M. Hirshberg, R. Sharon, V. Daggett,

Comput. Phys. Commun. 1995, 91, 215–231.

[107] M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C.

Smith, B. Hess, E. Lindahl, SoftwareX 2015, 1-2, 19–

25.

[108] D. Frenkel, B. Smit, Understanding Molecular Sim-
ulation, 2nd ed., (Eds.: D. Frenkel, B. Smit), Aca-

demic Press, San Diego, 2002, pp. 167–200.

[109] K.M. Jablonka, D. Ongari, B. Smit, J. Chem.Theory
Comput. 2019, 15, 5635–5641.

[110] A. Kubincová, S. Riniker, P. H. Hünenberger, Phys.
Chem. Chem. Phys. 2020, 22, 26419–26437.

[111] H. Wang, P. Zhang, C. Schütte, J. Chem. Theory
Comput. 2012, 8, 3243–3256.

[112] C. Predescu, A. K. Lerer, R. A. Lippert, B. Towles, J.

Grossman, R. M. Dirks, D. E. Shaw, J. Chem. Phys.
2020, 152, 084113.

[113] V. S. Inakollu, D. P. Geerke, C. N. Rowley, H. Yu,

Curr. Opin. Struct. Biol. 2020, 61, 182–190.

[114] F.-Y. Lin, P. E. M. Lopes, E. Harder, B. Roux, A. D.

MacKerell, J. Chem. Inf. Model. 2018, 58, 993–1004.

[115] J. Huang, A. D. MacKerell, Biophys. J. 2014, 107,
991–997.

[116] J. Huang, A. D. MacKerell, Curr. Opin. Struct. Biol.
2018, 48, 40–48.

[117] H. Torabifard, G. A. Cisneros, Chem. Sci. 2017, 8,
6230–6238.

[118] Š. Timr, J. Kadlec, P. Srb, O. H. S. Ollila, P. Jung-

wirth, J. Phys. Chem. Lett. 2018, 9, 1613–1619.

[119] T. Martinek, E. Duboué-Dijon, Š. Timr, P. E. Ma-

son, K. Baxová, H. E. Fischer, B. Schmidt, E.

Pluhařová, P. Jungwirth, J. Chem. Phys. 2018, 148,
222813.

Dissertation J.-O. F. Kapp-Joswig 235

https://doi.org/10.1126/science.aaw1147
https://doi.org/10.33011/livecoms.1.1.5957
https://doi.org/10.33011/livecoms.1.1.5957
https://doi.org/10.3389/fchem.2021.721960
https://doi.org/10.3389/fchem.2021.721960

References References

[120] P. Li, K. M. Merz, Chem. Rev. 2017, 117, 1564–1686.

[121] A. Sengupta, A. Seitz, K. M. Merz, J. Am. Chem.
Soc. 2018, 140, 15166–15169.

[122] L. F. Song, A. Sengupta, K. M. Merz, J. Am. Chem.
Soc. 2020, 142, 6365–6374.

[123] P. Kantakevičius, C. Mathiah, L. O. Johannissen,

S. Hay, J. Chem. Theory Comput. 2022, 18, 2367–

2374.

[124] F. Duarte, P. Bauer, A. Barrozo, A. Amrein, M.

Purg, J. Åqvist, S. Caroline, L. Kamerlin, J. Phys.
Chem. B 2014, 118, 4351–4362.

[125] M. B. Peters, Y. Yang, B. Wang, L. Füsti-Molnár,

M. N. Weaver, K. M. Merz, J. Chem. Theory Com-
put. 2010, 6, 2935–2947.

[126] P. E. M. Lopes, O. Guvench, A. D. MacKerell, ‘Cur-

rent Status of Protein Force Fields for Molecular

Dynamics Simulations’ in 2015, pp. 47–71.

[127] S. Patel, C. L. Brooks,Mol. Simul. 2006, 32, 231–

249.

[128] G. Lamoureux, A. D. MacKerell, B. Roux, J. Chem.
Phys. 2003, 119, 5185–5197.

[129] J. W. Ponder, C. Wu, P. Ren, V. S. Pande, J. D.

Chodera, M. J. Schnieders, I. Haque, D. L. Mobley,

D. S. Lambrecht, R. A. DiStasio, M. Head-Gordon,

G. N. I. Clark, M. E. Johnson, T. Head-Gordon, J.
Phys. Chem. B 2010, 114, 2549–2564.

[130] P. E. M. Lopes, J. Huang, J. Shim, Y. Luo, H. Li, B.

Roux, A. D. MacKerell, J. Chem. Theory Comput.
2013, 9, 5430–5449.

[131] F.-Y. Lin, J. Huang, P. Pandey, C. Rupakheti, J. Li,

B. Roux, A. D. MacKerell, J. Chem.Theory Comput.
2020, 16, 3221–3239.

[132] Y. Shi, Z. Xia, J. Zhang, R. Best, C. Wu, J. W. Pon-

der, P. Ren, J. Chem.Theory Comput. 2013, 9, 4046–

4063.

[133] C. Zhang, C. Lu, Z. Jing, C.Wu, J.-P. Piquemal, J.W.

Ponder, P. Ren, J. Chem. Theory Comput. 2018, 14,
2084–2108.

[134] J. Huang, A. C. Simmonett, F. C. Pickard, A. D.

MacKerell, B. R. Brooks, J. Chem. Phys. 2017, 147,
161702.

[135] C. Liu, J.-P. Piquemal, P. Ren, J. Chem.Theory Com-
put. 2019, 15, 4122–4139.

[136] F. Vitalini, A. S. J. S. Mey, F. Noé, B. G. Keller, J.
Chem. Phys. 2015, 142, 084101.

[137] S. Jephthah, F. Pesce, K. Lindorff-Larsen,M. Skepö,

J. Chem. Theory Comput. 2021, 17, 6634–6646.

[138] P. Robustelli, S. Piana, D. E. Shaw, Proc. Natl.
Acad. Sci. 2018, 115, DOI 10 . 1073 / pnas .
1800690115.

[139] A. Kuzmanic, R. B. Pritchard, D. F. Hansen, F. L.

Gervasio, J. Phys. Chem. Lett. 2019, 10, 1928–1934.

[140] K. K. Patapati, N. M. Glykos, Biophys. J. 2011, 101,
1766–1771.

[141] A.Wang, Z. Zhang, G. Li, J. Phys. Chem. Lett. 2018,
9, 7110–7116.

[142] N. Panel, F. Villa, E. J. Fuentes, T. Simonson, Bio-
phys. J. 2018, 114, 1091–1102.

[143] A. S. Kamenik, P. H. Handle, F. Hofer, U. Kahler, J.

Kraml, K. R. Liedl, J. Chem. Phys. 2020, 153, 185102.

[144] A. J. Hazel, E. T. Walters, C. N. Rowley, J. C. Gum-

bart, J. Chem. Phys. 2018, 149, 072317.

[145] N. Li, Y. Gao, F. Qiu, T. Zhu,Molecules 2021, 26,
5379.

[146] Z. Jing, C. Liu, R. Qi, P. Ren, Proc. Natl. Acad. Sci.
2018, 115, DOI 10.1073/pnas.1805049115.

[147] J. Litman, A. C. Thiel, M. J. Schnieders, J. Chem.
Theory Comput. 2019, 15, 4602–4614.

[148] R. Qi, B. Walker, Z. Jing, M. Yu, G. Stancu, R.

Edupuganti, K. N. Dalby, P. Ren, J. Phys. Chem.
B 2019, 123, 6034–6041.

[149] V. V. Welborn, T. Head-Gordon, J. Am. Chem. Soc.
2019, 141, 12487–12492.

[150] T. Lewis-Atwell, P. A. Townsend, M. N. Grayson,

Tetrahedron 2021, 79, 131865.

[151] Z. Jing, C. Liu, S. Y. Cheng, R. Qi, B. D. Walker,

J.-P. Piquemal, P. Ren, Annu. Rev. Biophys. 2019,
48, 371–394.

[152] T. A. Wassenaar, PhD thesis, 2006.

[153] K. Lindorff-Larsen, P. Maragakis, S. Piana, M. P.

Eastwood, R. O. Dror, D. E. Shaw, PLoS One 2012,
7, e32131.

[154] M. C. Bellissent-Funel, J. Mol. Liq. 1998, 78, 19–28.

[155] V. Gapsys, B. L. de Groot, Elife 2020, 9, 9:e57589.

[156] H. Bekker, J. Comput. Chem. 1997, 18, 1930–1942.

[157] U. K. Deiters,Zeitschrift für Phys. Chemie 2013, 227,
345–352.

[158] R. Weber, H.-J. Schek, S. Blott in Proc. 24rd Int.

Conf. Very Large Data Bases, Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1998,
pp. 194–205.

[159] J. Groß, M. Köster, A. Krüger, Comput. Graph. &
Vis. Comput. 2019, 55–63.

[160] J. L. Bentley, Commun. ACM 1975, 18, 509–517.

[161] F. Gieseke, J. Heinermann, C. Oancea, C. Igel in

Proc. 31st Int. Conf. Int. Conf. Mach. Learn. - Vol.

32, JMLR.org, 2014, pp. I–172–I–180.

[162] S. Green, NVIDIA whitepaper 2010, 6, 121–128.

[163] R. Hoetzlein, GPU Technol. Conf. 2014.

[164] S. Páll, B. Hess, Comput. Phys. Commun. 2013, 184,
2641–2650.

[165] H. J. C. Berendsen, W. F. van Gunsteren, ‘Prac-

tical Algorithms for Dynamics Simulation’ inMol.
Simulations Stat. Syst. (Enrico Fermi Summer Sch.
Varenna, 1986, pp. 43–65.

[166] H. Gould, J. Tobochnik, W. Christian, An Intro-
duction to Computer Simulation Methods, 3rd ed.,

2007.

[167] J. Wu, R. O. Watts, J. Chem. Phys. 1995, 103, 3718–

3732.

[168] A. Cromer, Am. J. Phys. 1981, 49, 455–459.

[169] E. Hairer, C. Lubich, G.Wanner,Acta Numer. 2003,
12, 399–450.

[170] R. Hockney, S. Goel, J. Eastwood, J. Comput. Phys.
1974, 14, 148–158.

236 Dissertation J.-O. F. Kapp-Joswig

https://doi.org/10.1073/pnas.1800690115
https://doi.org/10.1073/pnas.1800690115
https://doi.org/10.1073/pnas.1805049115

References References

[171] R. A. Lippert, K. J. Bowers, R. O. Dror, M. P. East-

wood, B. A. Gregersen, J. L. Klepeis, I. Kolossvary,

D. E. Shaw, J. Chem. Phys. 2007, 126, 046101.

[172] D. S. Lemons, A. Gythiel, Am. J. Phys. 1997, 65,
1079–1081.

[173] N. Bou-Rabee, Entropy 2013, 16, 138–162.

[174] M. Hutzenthaler, A. Jentzen, P. E. Kloeden, Proc. R.
Soc. A Math. Phys. Eng. Sci. 2011, 467, 1563–1576.

[175] J. Finkelstein, G. Fiorin, B. Seibold, Mol. Phys.
2020, 118, DOI 10.1080/00268976.2019.
1649493.

[176] S. Kieninger, B. G. Keller, 2022, DOI 2204 .
02105.

[177] J. E. Basconi, M. R. Shirts, J. Chem.Theory Comput.
2013, 9, 2887–2899.

[178] Z. Zhang, X. Liu, K. Yan, M. E. Tuckerman, J. Liu,

J. Phys. Chem. A 2019, 123, 6056–6079.

[179] H. J. C. Berendsen, J. P. M. Postma, W. F. van

Gunsteren, A. DiNola, J. R. Haak, J. Chem. Phys.
1984, 81, 3684–3690.

[180] G. Bussi, D. Donadio, M. Parrinello, J. Chem. Phys.
2007, 126, 014101.

[181] B. Isralewitz, J. Baudry, J. Gullingsrud, D. Kosztin,

K. Schulten, J. Mol. Graph. Model. 2001, 19, 13–25.

[182] B. Isralewitz, M. Gao, K. Schulten, Curr. Opin.
Struct. Biol. 2001, 11, 224–230.

[183] Y. Wang, S. A. Shaikh, E. Tajkhorshid, Physiology
2010, 25, 142–154.

[184] T. Giorgino, G. De Fabritiis, J. Chem. Theory Com-
put. 2011, 7, 1943–1950.

[185] W. Zhang, T. Yang, S. Zhou, J. Cheng, S. Yuan, G. V.

Lo, Y. Dou, Biomolecules 2019, 9, 852.

[186] C. F. Wong, J. Comput. Chem. 2018, 39, 1307–1318.

[187] H. Grubmüller,Methods Mol. Biol. 2005, 305, 493–

515.

[188] S. Park, F. Khalili-Araghi, E. Tajkhorshid, K. Schul-

ten, J. Chem. Phys. 2003, 119, 3559–3566.

[189] G. S. Hammond, J. Am. Chem. Soc. 1955, 77, 334–

338.

[190] A. Pohorille, C. Jarzynski, C. Chipot, J. Phys. Chem.
B 2010, 114, 10235–10253.

[191] O. K. Dudko, G. Hummer, A. Szabo, Proc. Natl.
Acad. Sci. 2008, 105, 15755–15760.

[192] F. M. Boubeta, R. M. Contestín García, E. N.

Lorenzo, L. Boechi, D. Estrin, M. Sued, M. Arrar,

Chem. Biol. Drug Des. 2019, 93, 1129–1138.

[193] C. C. Moore, Proc. Natl. Acad. Sci. 2015, 112, 1907–

1911.

[194] A. D. McNaught, A. Wilkinson,The IUPAC Com-
pendium of Chemical Terminology, 2nd ed., (Ed.:

V. Gold), International Union of Pure and Applied

Chemistry (IUPAC), Research Triangle Park, NC,

2019.

[195] S. Ali, M. Hassan, A. Islam, F. Ahmad, Curr. Pro-
tein Pept. Sci. 2014, 15, 456–476.

[196] J. D. Durrant, L. Votapka, J. Sørensen, R. E. Amaro,

J. Chem. Theory Comput. 2014, 10, 5047–5056.

[197] W. Kabsch, C. Sander, Biopolymers 1983, 22, 2577–

2637.

[198] W. G. Touw, C. Baakman, J. Black, T. A. H. te Beek,

E. Krieger, R. P. Joosten, G. Vriend, Nucleic Acids
Res. 2015, 43, D364–D368.

[199] S. C. C. van der Lubbe, C. Fonseca Guerra, Chem.
– An Asian J. 2019, asia.201900717.

[200] I. Y. Torshin, I. T. Weber, R. W. Harrison, Protein
Eng. Des. Sel. 2002, 15, 359–363.

[201] E. Baker, R. Hubbard, Prog. Biophys. Mol. Biol.
1984, 44, 97–179.

[202] P. Wernet, D. Nordlund, U. Bergmann, M.

Cavalleri, M. Odelius, H. Ogasawara, L. Å.

Näslund, T. K. Hirsch, L. Ojamäe, P. Glatzel,

L. G. M. Pettersson, A. Nilsson, Science 2004, 304,
995–999.

[203] A. Voet, X. Qing, X. Y. Lee, J. De Raeymaecker, J.

Tame, K. Zhang, M. DeMaeyer, J. Receptor. Ligand
Channel Res. 2014, 81.

[204] M. Janežič, K. Valjavec, K. B. Loboda, B. Herlah,

I. Ogris, M. Kozorog, M. Podobnik, S. G. Grdadol-

nik, G. Wolber, A. Perdih, Int. J. Mol. Sci. 2021, 22,
13474.

[205] O. Fleetwood, M. A. Kasimova, A. M. Westerlund,

L. Delemotte, Biophys. J. 2020, 118, 765–780.

[206] D. Freedman, P. Diaconis, Zeitschrift für Wahr-
scheinlichkeitstheorie und Verwandte Gebiete 1981,
57, 453–476.

[207] B. W. Silverman, Density Estimation for Statistics
and Data Analysis, Chapman and Hall, 1986.

[208] Z. I. Botev, J. F. Grotowski, D. P. Kroese, Ann. Stat.
2010, 38, DOI 10.1214/10-AOS799.

[209] J. M. Joyce, ‘Kullback-Leibler Divergence’ in Int.
Encycl. Stat. Sci. Springer BerlinHeidelberg, Berlin,

Heidelberg, 2011, pp. 720–722.

[210] J. Gorodkin, Comput. Biol. Chem. 2004, 28, 367–

374.

[211] Y. Wang, Y. Li, H. Cao, M. Xiong, Y. Y. Shugart,

L. Jin, BMC Bioinformatics 2015, 16, 260.

[212] B. Efron, R. J. Tibshirani, An Introduction to the
Bootstrap, Chapman & Hall, Boca Raton, 1993.

[213] A. Altis, P. H. Nguyen, R. Hegger, G. Stock, J. Chem.
Phys. 2007, 126, 244111.

[214] M. K. Scherer, B. Trendelkamp-Schroer, F. Paul,

G. Pérez-Hernández, M. Hoffmann, N. Plattner,

C. Wehmeyer, J. H. Prinz, F. Noé, J. Chem. Theory
Comput. 2015, 11, 5525–5542.

[215] L. Molgedey, H. G. Schuster, Phys. Rev. Lett. 1994,
72, 3634–3637.

[216] G. Pérez-Hernández, F. Paul, T. Giorgino, G. De

Fabritiis, F. Noé, J. Chem. Phys. 2013, 139, 15102.

[217] C. R. Schwantes, V. S. Pande, J. Chem.Theory Com-
put. 2013, 9, 2000–2009.

[218] F. Noé, C. Clementi, J. Chem.Theory Comput. 2015,
11, 5002–5011.

[219] H. Wu, F. Noé, J. Nonlinear Sci. 2020, 30, 23–66.

[220] S. Schultze, H. Grubmüller, J. Chem. Theory Com-
put. 2021, 17, 5766–5776.

Dissertation J.-O. F. Kapp-Joswig 237

https://doi.org/10.1080/00268976.2019.1649493
https://doi.org/10.1080/00268976.2019.1649493
https://doi.org/2204.02105
https://doi.org/2204.02105
https://doi.org/10.1214/10-AOS799

References References

[221] C. R. Schwantes, V. S. Pande, J. Chem.Theory Com-
put. 2015, 11, 600–608.

[222] L. van der Maaten, G. Hinton, J. Mach. Learn. Res.
2008, 9, 2579–2605.

[223] V. Spiwok, P. Kříž, Front. Mol. Biosci. 2020, 7, DOI
10.3389/fmolb.2020.00132.

[224] C. E. Shannon, Bell Syst. Tech. J. 1948, 27, 379–423.

[225] J. Duda, K. Tahboub, N. J. Gadgil, E. J. Delp in 2015

Pict. Coding Symp. IEEE, 2015, pp. 65–69.

[226] E. T. Jaynes, Am. J. Phys. 1965, 33, 391–398.

[227] G. R. Bowman, P. L. Geissler, Proc. Natl. Acad. Sci.
2012, 109, 11681–11686.

[228] M. S. Roulston, Phys. D Nonlinear Phenom. 1999,
125, 285–294.

[229] K. H. DuBay, J. P. Bothma, P. L. Geissler, PLoS
Comput. Biol. 2011, 7, (Ed.: E. I. Shakhnovich),

e1002168.

[230] J. Bernoulli,Wahrscheinlichkeitsrechnung (Ars con-
jectandi, 1713), (Ed.: R. Haussner), Wilhelm Engel-

mann, 1899.

[231] A. A. Markov, Sci. Context 2006, 19, 591–600.

[232] P. A. Gagniuc,Markov Chains: FromTheory to Im-
plementation and Experimentation, 1st ed., John

Wiley & Sons, Hoboken, 2017.

[233] W. C. Swope, J. W. Pitera, F. Suits, J. Phys. Chem. B
2004, 108, 6571–6581.

[234] N. Singhal, C. D. Snow, V. S. Pande, J. Chem. Phys.
2004, 121, 415.

[235] M. Sarich, J.-H. Prinz, C. Schütte, ‘Markov Model

Theory’ in 2014, pp. 23–44.

[236] F. Noé, F. Nüske,Multiscale Model. Simul. 2013, 11,
635–655.

[237] F. Nüske, B. G. Keller, G. Pérez-Hernández,

A. S. J. S. Mey, F. Noé, J. Chem. Theory Comput.
2014, 10, 1739–1752.

[238] G. R. Bowman, V. S. Pande, F. Noé,An Introduction
to Markov State Models and Their Application to
Long Timescale Molecular Simulation, (Eds.: G. R.

Bowman, V. S. Pande, F. Noé), Springer Nether-

lands, Dordrecht, 2014.

[239] P. G. Bolhuis, D. Chandler, C. Dellago, P. L.

Geissler, Annu. Rev. Phys. Chem. 2002, 53, 291–

318.

[240] O. Lemke, B. G. Keller, J. Chem. Phys. 2016, 145,
164104.

[241] M. Sarich, C. Schütte, Commun. Math. Sci. 2012,
10, 1001–1013.

[242] C. Schütte, F. Noé, J. Lu, M. Sarich, E. Vanden-

Eijnden, C. Schütte, F. Noé, J. Lu, M. Sarich, E.

Vanden-Eijnden, J. Chem. Phys. 2011, 134, DOI
10.1063/1.3590108.

[243] J. H. Peng, W. Wang, Y. Q. Yu, H. L. Gu, X. Huang,

Chinese J. Chem. Phys. 2018, 31, 404–420.

[244] D. K. Wolfe, J. R. Persichetti, A. K. Sharma, P. S.

Hudson, H. L. Woodcock, E. P. O’Brien, J. Chem.
Theory Comput. 2020, 16, 1816–1826.

[245] J.-H. Prinz, J. D. Chodera, F. Noé, ‘Estimation and

Validation of Markov Models’ in 2014, pp. 45–60.

[246] F. Nüske, H. Wu, J.-H. Prinz, C. Wehmeyer, C.

Clementi, F. Noé, J. Chem. Phys. 2017, 146, 094104.

[247] B. Cooke, S. C. Schmidler, J. Chem. Phys. 2008, 129,
164112.

[248] B. E. Husic, V. S. Pande, J. Am. Chem. Soc. 2018,
140, 2386–2396.

[249] F. Noé, E. Rosta, J. Chem. Phys. 2019, 151, 190401.

[250] R. Shields,Theory Cult. Soc. 2012, 29, 43–57.

[251] E. Cayley, Berichte der Dtsch. Chem. Gesellschaft
1875, 8, 1056–1059.

[252] Network Analysis, Methodological Foundations,
(Eds.: U. Brandes, T. Erlebach), Springer, 2005.

[253] M.Needham, A. E. Hodler,Graph algorithms, Prac-
tical Examples in Apache Spark & Neo4j, 1st ed.,

O’Reilly, Boston, 2019.

[254] R. Sedgewick, K. Wayne, Algorithms, 4th ed.,

Addison-Wesley Professional, 2011.

[255] G. Zanotti, L. Falcigno, M. Saviano, G. D. Auria,

B. M. Bruno, T. Campanile, L. Paolillo, Chem. Eur.
J. 2001, 7, 1479–1485.

[256] F. Lynen, U. Wieland, Justus Liebig’s Ann. der
Chemie 1938, 533, 93–117.

[257] J. A. Swain, S. R. Walker, M. B. Calvert, M. A.

Brimble, Nat. Prod. Rep. 2022, 39, 410–443.

[258] T. Wieland, Peptides of Poisonous Amanita Mush-
rooms, De Gruyter, 1987.

[259] B. Le Daré, P.-J. Ferron, A. Couette, C. Ribault, I.

Morel, T. Gicquel, Toxicol. Lett. 2021, 346, 1–6.

[260] B. Le Daré, P.-J. Ferron, T. Gicquel, Toxins (Basel).
2021, 13, 417.

[261] J. Vetter, Toxicon 1998, 36, 13–24.

[262] T. Wieland, Int. J. Pept. Protein Res. 2009, 22, 257–

276.

[263] A. Kumari, S. Kesarwani, M. G. Javoor, K. R.

Vinothkumar, M. Sirajuddin, EMBO J. 2020, 39,
DOI 10.15252/embj.2019104006.

[264] G. H. Kim, T. A. Klotchkova, B.-C. Lee, S. H. Kim,

Bot. Mar. 2001, 44, 501–508.

[265] C. H. Scott Chialvo, L. H. Griffin, L. K. Reed, L.

Ciesla, Ecol. Evol. 2020, 10, 4233–4240.

[266] L. Wang, N. Wang, W. Zhang, X. Cheng, Z. Yan, G.

Shao, X. Wang, R. Wang, C. Fu, Signal Transduct.
Target. Ther. 2022, 7, 48.

[267] I. Petta, S. Lievens, C. Libert, J. Tavernier, K. De

Bosscher,Mol. Ther. 2016, 24, 707–718.

[268] J.-S. Choi, S. H. Joo, Biomol. Ther. (Seoul). 2020,
28, 18–24.

[269] A. F. B. Räder, M. Weinmüller, F. Reichart, A.

Schumacher-Klinger, S. Merzbach, C. Gilon, A.

Hoffman, H. Kessler, Angew. Chemie Int. Ed. 2018,
57, 14414–14438.

[270] E. H. M. Mohammed, D. Mandal, S. Mozaffari, M.

Abdel-Hamied Zahran, A. Mostafa Osman, R. Ku-

mar Tiwari, K. Parang,Molecules 2020, 25, 2581.

238 Dissertation J.-O. F. Kapp-Joswig

https://doi.org/10.3389/fmolb.2020.00132
https://doi.org/10.1063/1.3590108
https://doi.org/10.15252/embj.2019104006

References References

[271] A. G. Jamieson, N. Boutard, D. Sabatino, W. D.

Lubell, Chem. Biol. Drug Des. 2013, 81, 148–165.

[272] J. Witek, B. G. Keller, M. Blatter, A. Meissner, T.

Wagner, S. Riniker, J. Chem. Inf. Model. 2016, 56,
1547–1562.

[273] J. Witek, M. Mühlbauer, B. G. Keller, M. Blatter, A.

Meissner, T. Wagner, S. Riniker, ChemPhysChem
2017, 18, 3309–3314.

[274] J. Witek, S. Wang, B. Schroeder, R. Lingwood,

A. Dounas, H.-J. Roth, M. Fouché, M. Blatter, O.

Lemke, B. Keller, S. Riniker, J. Chem. Inf. Model.
2019, 59, 294–308.

[275] M. O. Anderson, A. A. Shelat, R. Kiplin Guy, J. Org.
Chem. 2005, 70, 4578–4584.

[276] G. Yao, J.-O. Joswig, B. G. Keller, R. D. Süssmuth,

Chem. Eur. J. 2019, 25, 8030–8034.

[277] L. A. Schuresko, R. S. Lokey, Angew. Chemie - Int.
Ed. 2007, 46, 3547–3549.

[278] T. Wieland, T. Miura, A. Seeliger, Int. J. Pept. Pro-
tein Res. 1983, 21, 3–10.

[279] L. Falcigno, S. Costantini, G. D’Auria, B. M. Bruno,

S. Zobeley, G. Zanotti, L. Paolillo, Chem. - A Eur.
J. 2001, 7, 4665–4673.

[280] A. Blanc, M. Todorovic, D. M. Perrin, Chem. Com-
mun. 2019, 55, 385–388.

[281] M. Döntgen, M.-D. Przybylski-Freund, L. C.

Kröger, W. A. Kopp, A. E. Ismail, K. Leonhard,

J. Chem. Theory Comput. 2015, 11, 2517–2524.

[282] R. Iftimie, P. Minary, M. E. Tuckerman, Proc. Natl.
Acad. Sci. 2005, 102, 6654–6659.

[283] R. Brückner, Reaktionsmechanismen, 3rd ed., Spek-

trum, 2004.

[284] G. Yao, C. H. Knittel, S. Kosol, M. T. Wenz, B. G.

Keller, H. Gruß, A. C. Braun, C. Lutz, T. Hechler,

A. Pahl, R. D. Süssmuth, J. Am. Chem. Soc. 2021,
143, 14322–14331.

[285] J. Banchereau, R. M. Steinman, Nature 1998, 392,
245–252.

[286] R. M. Steinman, Annu. Rev. Immunol. 2012, 30, 1–

22.

[287] T. A. Patente, M. P. Pinho, A. A. Oliveira, G. C. M.

Evangelista, P. C. Bergami-Santos, J. A.M. Barbuto,

Front. Immunol. 2019, 9, DOI 10.3389/fimmu.
2018.03176.

[288] B. Alberts, J. Johnson, Alexander Lewis, M. Raff,

K. Roberts, P. Walter,Molecular Biology of the Cell,
4th ed., Garland Science, 2002.

[289] T. B. H. Geijtenbeek, S. I. Gringhuis, Nat. Rev. Im-
munol. 2009, 9, 465–479.

[290] M. Bermejo-Jambrina, J. Eder, L. C. Helgers,

N. Hertoghs, B. M. Nijmeijer, M. Stunnenberg,

T. B. H. Geijtenbeek, Front. Immunol. 2018, 9, DOI
10.3389/fimmu.2018.00590.

[291] P. Langerhans, Arch. für Pathol. Anat. und Physiol.
und für Klin. Med. 1868, 44, 325–337.

[292] T. Doebel, B. Voisin, K. Nagao, Trends Immunol.
2017, 38, 817–828.

[293] K. L.McClain, C. Bigenwald,M. Collin, J. Haroche,

R. A. Marsh, M. Merad, J. Picarsic, K. B. Ribeiro,

C. E. Allen, Nat. Rev. Dis. Prim. 2021, 7, 73.

[294] A. N. Zelensky, J. E. Gready, Proteins Struct. Funct.
Genet. 2003, 52, 466–477.

[295] A. N. Zelensky, J. E. Gready, FEBS J. 2005, 272,
6179–6217.

[296] S. A. McMahon, J. L. Miller, J. A. Lawton, D. E.

Kerkow, A. Hodes, M. A. Marti-Renom, S. Dou-

latov, E. Narayanan, A. Sali, J. F. Miller, P. Ghosh,

Nat. Struct. Mol. Biol. 2005, 12, 886–892.

[297] J. Aretz, E.-C. Wamhoff, J. Hanske, D. Heymann,

C. Rademacher, Front. Immunol. 2014, 5, DOI 10.
3389/fimmu.2014.00323.

[298] J. Valladeau, V. Duvert-Frances, J.-J. J. Pin, C.

Dezutter-Dambuyant, C. Vincent, C. Massacrier, J.

Vincent, K. Yoneda, J. Banchereau, C. Caux, J. Da-

voust, S. Saeland, Eur. J. Immunol. 1999, 29, 2695–

2704.

[299] J. Valladeau, O. Ravel, C. Dezutter-Dambuyant, K.

Moore, M. Kleijmeer, Y. Liu, V. Duvert-Frances,

C. Vincent, D. Schmitt, J. Davoust, C. Caux, S. Le-

becque, S. Saeland, Immunity 2000, 12, 71–81.

[300] A. B. Palmos, V. Millischer, D. K. Menon, T. R.

Nicholson, L. S. Taams, B. Michael, G. Sunderland,

M. J. Griffiths, C. Hübel, G. Breen, PLOS Genet.
2022, 18, (Ed.: C. Cotsapas), e1010042.

[301] I. Trbojević-Akmačić, T. Petrović, G. Lauc, Gly-
coconj. J. 2021, 38, 611–623.

[302] M. Thépaut, J. Luczkowiak, C. Vivès, N. Labiod,

I. Bally, F. Lasala, Y. Grimoire, D. Fenel, S. Sattin,

N. Thielens, G. Schoehn, A. Bernardi, R. Delgado,

F. Fieschi, PLOS Pathog. 2021, 17, (Ed.: A. Pekosz),

e1009576.

[303] M. Bermejo-Jambrina, J. Eder, T. M. Kaptein, J. L.

Hamme, L. C. Helgers, K. E. Vlaming, P. J. M.

Brouwer, A. C. Nuenen, M. Spaargaren, G. J. Bree,

B. M. Nijmeijer, N. A. Kootstra, M. J. Gils, R. W.

Sanders, T. B. H. Geijtenbeek, EMBO J. 2021, 40,
DOI 10.15252/embj.2020106765.

[304] P. Verdecchia, C. Cavallini, A. Spanevello, F. Angeli,

Eur. J. Intern. Med. 2020, 76, 14–20.

[305] R. A. Botting, H. Rana, K. M. Bertram, J. W.

Rhodes, H. Baharlou, N. Nasr, A. L. Cunningham,

A. N. Harman, Rev. Med. Virol. 2017, 27, e1923.

[306] L. de Witte, A. Nabatov, M. Pion, D. Fluitsma,

M. A. W. P. de Jong, T. de Gruijl, V. Piguet, Y. van

Kooyk, T. B. H. Geijtenbeek, Nat. Med. 2007, 13,
367–371.

[307] R. Mc Dermott, U. Ziylan, D. Spehner, H. Bau-

singer, D. Lipsker, M. Mommaas, J.-P. Cazenave,

G. Raposo, B. Goud, H. de la Salle, J. Salamero, D.

Hanau,Mol. Biol. Cell 2002, 13, (Ed.: S. R. Pfeffer),

317–335.

[308] C. M. S. Ribeiro, R. Sarrami-Forooshani, L. C. Se-

tiawan, E. M. Zijlstra-Willems, J. L. van Hamme,

W. Tigchelaar, N. N. van der Wel, N. A. Kootstra,

Dissertation J.-O. F. Kapp-Joswig 239

https://doi.org/10.3389/fimmu.2018.03176
https://doi.org/10.3389/fimmu.2018.03176
https://doi.org/10.3389/fimmu.2018.00590
https://doi.org/10.3389/fimmu.2014.00323
https://doi.org/10.3389/fimmu.2014.00323
https://doi.org/10.15252/embj.2020106765

References References

S. I. Gringhuis, T. B. H. Geijtenbeek, Nature 2016,
540, 448–452.

[309] C. B. Wilen, J. C. Tilton, R. W. Doms, Cold Spring
Harb. Perspect. Med. 2012, 2, a006866–a006866.

[310] N. Nasr, J. Lai, R. A. Botting, S. K. Mercier, A. N.

Harman, M. Kim, S. Turville, R. J. Center, T.

Domagala, P. R. Gorry, N. Olbourne, A. L. Cun-

ningham, J. Immunol. 2014, 193, 2554–2564.

[311] C. M. Ribeiro, R. Sarrami-Forooshani, T. B.

Geijtenbeek, Future Virol. 2015, 10, 1231–1243.

[312] K. M. Bertram, O. Tong, C. Royle, S. G. Turville, N.

Nasr, A. L. Cunningham, A. N. Harman, Front. Im-
munol. 2019, 10, DOI 10.3389/fimmu.2019.
02263.

[313] L. M. van den Berg, S. Cardinaud, A. M. G. van

der Aar, J. K. Sprokholt, M. A. W. P. de Jong, E. M.

Zijlstra-Willems, A. Moris, T. B. H. Geijtenbeek, J.
Immunol. 2015, 195, 1763–1773.

[314] B. M. Nijmeijer, M. Bermejo-Jambrina, T. M.

Kaptein, C. M. S. Ribeiro, D.Wilflingseder, T. B. H.

Geijtenbeek,Mucosal Immunol. 2021, 14, 743–750.

[315] E. E. Vine, J. W. Rhodes, F. A. Warner van Dijk,

S. N. Byrne, K. M. Bertram, A. L. Cunningham,

A. N. Harman,Mucosal Immunol. 2022, DOI 10.
1038/s41385-022-00492-0.

[316] W. C. Ng, S. L. Londrigan, N. Nasr, A. L. Cunning-

ham, S. Turville, A. G. Brooks, P. C. Reading, J.
Virol. 2015, 90, 206–221.

[317] J.-O. Joswig, Master Thesis, Freie Universität Ber-

lin, 2017.

[318] J. Cramer, RSC Med. Chem. 2021, 12, 1985–2000.

[319] V. Porkolab, E. Chabrol, N. Varga, S. Ordanini, I.

Sutkevičiute, M. Thépaut, M. J. García-Jiménez, E.

Girard, P. M. Nieto, A. Bernardi, F. Fieschi, ACS
Chem. Biol. 2018, 13, 600–608.

[320] R.-J. E. Li, T. P. Hogervorst, S. Achilli, S. C. M.

Bruijns, S. Spiekstra, C. Vivès, M. Thépaut, D. V.

Filippov, G. A. van der Marel, S. J. van Vliet, F. Fi-

eschi, J. D. C. Codée, Y. van Kooyk, Front. Cell Dev.
Biol. 2020, 8, DOI 10.3389/fcell.2020.
00556.

[321] M. Rentzsch, R. Wawrzinek, C. Zelle-Rieser, H.

Strandt, L. Bellmann, F. F. Fuchsberger, J. Schulze,

J. Busmann, J. Rademacher, S. Sigl, B. Del Frari,

P. Stoitzner, C. Rademacher, Front. Immunol. 2021,
12, DOI 10.3389/fimmu.2021.732298.

[322] J. Aretz, H. Baukmann, E. Shanina, J. Hanske, R.

Wawrzinek, V. A. Zapol’skii, P. H. Seeberger, D. E.

Kaufmann, C. Rademacher,Angew. Chemie Int. Ed.
2017, 56, 7292–7296.

[323] R.Wawrzinek, E.-C.Wamhoff, J. Lefebre,M. Rentz-

sch, G. Bachem, G. Domeniconi, J. Schulze, F. F.

Fuchsberger, H. Zhang, C. Modenutti, L. Schnirch,

M.A.Marti, O. Schwardt,M. Bräutigam,M.Guber-

man, D. Hauck, P. H. Seeberger, O. Seitz, A. Titz,

B. Ernst, C. Rademacher, J. Am. Chem. Soc. 2021,
143, 18977–18988.

[324] J. Aretz, U. R. Anumala, F. F. Fuchsberger, N.

Molavi, N. Ziebart, H. Zhang, M. Nazaré, C.

Rademacher, J. Am. Chem. Soc. 2018, 140, 14915–

14925.

[325] B. G. Keller, C. Rademacher, Curr. Opin. Struct.
Biol. 2020, 62, 31–38.

[326] S. Hertig, N. R. Latorraca, R. O. Dror, PLOS Com-
put. Biol. 2016, 12, 1–16.

[327] G. B. Cohen, R. Ren, D. Baltimore, Cell 1995, 80,
237–248.

[328] H. Feinberg, A. S. Powlesland, M. E. Taylor, W. I.

Weis, J. Biol. Chem. 2010, 285, 13285–13293.

[329] N. S. Stambach, M. E. Taylor, Glycobiology 2003,
13, 401–410.

[330] M.Thépaut, J. Valladeau, A. Nurisso, R. Kahn, B.

Arnou, C. Vivès, S. Saeland, C. Ebel, C.Monnier, C.

Dezutter-Dambuyant, A. Imberty, F. Fieschi, Bio-
chemistry 2009, 48, 2684–2698.

[331] W. I. Weis, K. Drickamer, W. A. Hendrickson,

Nature 1992, 360, 127–134.

[332] H. Feinberg, M. E. Taylor, N. Razi, R. McBride,

Y. A. Knirel, S. A. Graham, K. Drickamer, W. I.

Weis, J. Mol. Biol. 2011, 405, 1027–1039.

[333] A. Holla, A. Skerra, Protein Eng. Des. Sel. 2011, 24,
659–669.

[334] J. C. Muñoz-García, E. Chabrol, R. R. Vivès, A.

Thomas, J. L. de Paz, J. Rojo, A. Imberty, F. Fieschi,

P. M. Nieto, J. Angulo, J. Am. Chem. Soc. 2015, 137,
4100–4110.

[335] J. Zhao, X. Liu, C. Kao, E. Zhang, Q. Li, F. Zhang,

R. J. Linhardt, Biochemistry 2016, 55, 4552–4559.

[336] J. Hanske, J. Schulze, J. Aretz, R. McBride, B. Loll,

H. Schmidt, Y. Knirel, W. Rabsch, M. C. Wahl, J. C.

Paulson, C. Rademacher, J. Biol. Chem. 2017, 292,
862–871.

[337] J. Hanske, S. Aleksić, M. Ballaschk, M. Jurk, E.

Shanina, M. Beerbaum, P. Schmieder, B. G. Keller,

C. Rademacher, J. Am. Chem. Soc. 2016, 138, 12176–

12186.

[338] T. Onizuka, H. Shimizu, Y. Moriwaki, T. Nakano,

S. Kanai, I. Shimada, H. Takahashi, FEBS J. 2012,
279, 2645–2656.

[339] Cell Physiology Source Book, (Ed.: N. Sperelakis),

Elsevier, 2012.

[340] J. L. Goldstein, M. S. Brown, R. G. W. Anderson,

D. W. Russell, W. J. Schneider, Annu. Rev. Cell Biol.
1985, 1, 1–39.

[341] A. Sorkin, M. von Zastrow,Nat. Rev. Mol. Cell Biol.
2002, 3, 600–614.

[342] J. V. Gerasimenko, A. V. Tepikin, O. H. Petersen,

O. V. Gerasimenko, Curr. Biol. 1998, 8, 1335–1338.

[343] T. Gramberg, E. Soilleux, T. Fisch, P. F. Lalor, H.

Hofmann, S. Wheeldon, A. Cotterill, A. Wegele,

T. Winkler, D. H. Adams, S. Pöhlmann, Virology
2008, 373, 189–201.

[344] B. Garcia-Moreno, J. Biol. 2009, 8, 98.

[345] N. Romani, B. E. Clausen, P. Stoitzner, Immunol.
Rev. 2010, 234, 120–141.

240 Dissertation J.-O. F. Kapp-Joswig

https://doi.org/10.3389/fimmu.2019.02263
https://doi.org/10.3389/fimmu.2019.02263
https://doi.org/10.1038/s41385-022-00492-0
https://doi.org/10.1038/s41385-022-00492-0
https://doi.org/10.3389/fcell.2020.00556
https://doi.org/10.3389/fcell.2020.00556
https://doi.org/10.3389/fimmu.2021.732298

References References

[346] P. J. Cullen, F. Steinberg, Nat. Rev. Mol. Cell Biol.
2018, 19, 679–696.

[347] J.-O. Joswig, J. Anders, H. Zhang, C. Rademacher,

B. G. Keller, J. Biol. Chem. 2021, 296, 100718.

[348] N. V. Di Russo, M. A. Martí, A. E. Roitberg, J. Phys.
Chem. B 2014, 118, 12818–12826.

[349] E. D. Kim, C. D. Kim, J. Chaney, S. Kim, ‘Protein

Function | Allostery in Proteins: Canonical Mod-

els and New Insights’ in Encycl. Biol. Chem. III,
Elsevier, 2021, pp. 27–43.

[350] A. Cooper, D. T. F. Dryden, Eur. Biophys. J. 1984,
11, 103–109.

[351] C.-j. Tsai, A. del Sol, R. Nussinov, J. Mol. Biol. 2008,
378, 1–11.

[352] R. Nussinov, C. J. Tsai, Allostery without a con-

formational change? Revisiting the paradigm,

2015.

[353] A. Basit, R. K.Mishra, P. Bandyopadhyay, J. Biomol.
Struct. Dyn. 2021, 39, 7213–7222.

[354] Q. Tan, Y. Ding, Z. Qiu, J. Huang, ACS Phys. Chem.
Au 2022, 2, 143–155.

[355] C. R. Søndergaard, M. H. M. Olsson, M.

Rostkowski, J. H. Jensen, J. Chem. Theory Comput.
2011, 7, 2284–2295.

[356] M. H. M. Olsson, C. R. Søndergaard, M.

Rostkowski, J. H. Jensen, J. Chem. Theory Comput.
2011, 7, 525–537.

[357] P. Dobrev, S. P. B. Vemulapalli, N. Nath, C. Grie-

singer, H. Grubmüller, J. Chem. Theory Comput.
2020, 16, 2561–2569.

[358] N. Pinotsis, K. Zielinska, M. Babuta, J. L. Arolas,

J. Kostan, M. B. Khan, C. Schreiner, A. Salmazo,

L. Ciccarelli, M. Puchinger, E. A. Gkougkoulia,

E. d. A. Ribeiro, T. C. Marlovits, A. Bhattacharya,

K. Djinovic-Carugo, Proc. Natl. Acad. Sci. 2020,
117, 22101–22112.

[359] V. J. Hilser, J. O. Wrabl, H. N. Motlagh, Annu. Rev.
Biophys. 2012, 41, 585–609.

[360] C. J. Tsai, R. Nussinov, PLOS Comput. Biol. 2014,
10, e1003394.

[361] M. A. Cuendet, H. Weinstein, M. V. LeVine, J.
Chem. Theory Comput. 2016, 12, 5758–5767.

[362] P. Eastman, J. Swails, J. D. Chodera, R. T. Mc-

Gibbon, Y. Zhao, K. A. Beauchamp, L.-P. Wang,

A. C. Simmonett, M. P. Harrigan, C. D. Stern, R. P.

Wiewiora, B. R. Brooks, V. S. Pande, PLOS Comput.
Biol. 2017, 13, (Ed.: R. Gentleman), e1005659.

[363] J. Huang, S. Rauscher, G. Nawrocki, T. Ran, M.

Feig, B. L. de Groot, H. Grubmüller, A. D. MacK-

erell, Nat. Methods 2017, 14, 71–73.

[364] Z. Jing, R. Qi, C. Liu, P. Ren, J. Chem. Phys. 2017,
147, 161733.

[365] D. Jiao, C. King, A. Grossfield, T. A. Darden, P. Ren,

J. Phys. Chem. B 2006, 110, 18553–18559.

[366] S. Izadi, A. V. Onufriev, J. Chem. Phys. 2016, 145,
074501.

[367] P. Ren, J.W. Ponder, J. Phys. Chem. 2003, 107, 5933–

5947.

[368] M. L. Laury, L.-P. Wang, V. S. Pande, T. Head-

Gordon, J. W. Ponder, J. Phys. Chem. B 2015, 119,
9423–9437.

[369] A. K. Das, O. N. Demerdash, T. Head-Gordon, J.
Chem. Theory Comput. 2018, 14, 6722–6733.

[370] E. Lambros, F. Paesani, J. Chem. Phys. 2020, 153,
060901.

[371] N. Prabhu, K. Sharp, Chem. Rev. 2006, 106, 1616–

1623.

[372] E. Lindahl, B. Hess, D. van der Spoel, J. Mol. Model.
2001, 7, 306–317.

[373] D. van der Spoel, E. Lindahl, B. Hess, G. Groen-

hof, A. E. Mark, H. J. Berendsen, J. Comput. Chem.
2005, 26, 1701–1718.

[374] B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl,

J. Chem. Theory Comput. 2008, 4, 435–447.

[375] S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar,

R.Apostolov,M.R. Shirts, J. C. Smith, P.M.Kasson,

D. van der Spoel, B. Hess, E. Lindahl, Bioinformat-
ics 2013, 29, 845–854.

[376] S. Páll, M. J. Abraham, C. Kutzner, B. Hess,

E. Lindahl, ‘Tackling Exascale Software Chal-

lenges in Molecular Dynamics Simulations with

GROMACS’ in Solving Softw. Challenges Exascale.
EASC 2014. Lect. Notes Comput. Sci. Vol. 8759,
(Eds.: S. Markidis, E. Laure), Springer, Cham, 2015,
pp. 3–27.

[377] W.Humphrey, A.Dalke, K. Schulten, J.Mol. Graph.
1996, 14, 33–38.

[378] H. Nguyen, D. A. Case, A. S. Rose, Bioinformatics
2018, 34, (Ed.: A. Valencia), 1241–1242.

[379] C. A. Terry, M.-J. Fernández, L. Gude, A. Lorente,

K. B. Grant, Biochemistry 2011, 50, 10375–10389.

[380] D. C. Liu, J. Nocedal,Math. Program. 1989, 45, 503–

528.

[381] M. Bernetti, G. Bussi, J. Chem. Phys. 2020, 153,
114107.

[382] M. Gaertler, ‘Clustering’ in Netw. Anal. Methodol.
Found. (Eds.: U. Brandes, T. Erlebach), Springer-

Verlag, 2005, pp. 178–215.

[383] Handbook of Cluster Analysis, (Eds.: C. Henning,

M. Meila, F. Murtagh, R. Rocci), CRC Press, 2016.

[384] V. Estivill-Castro, ACM SIGKDD Explor. Newsl.
2002, 4, 65–75.

[385] M. Aldenderfer, R. Blashfield, Cluster Analysis,
SAGE Publications, Inc., Thousand Oaks, CA,

1984.

[386] M. Sips, ‘Visual Clustering’ in Encycl. Database
Syst. (Eds.: L. Liu, M. T. Özsu), Springer, Boston,

MA, 2009.

[387] J. Han, M. Kamber, Data Mining: Concepts and
Techniques, Morgan Kaufmann, San Mateo, CA,

2000.

[388] J. Snow, On the mode of communication of cholera,
2nd ed., John Churchill, London, 1855.

[389] R. R. Sokal, Taxon 1963, 12, 190–199.

[390] M. E. Karpen, D. J. Tobias, C. L. Brooks, Biochem-
istry 1993, 32, 412–420.

Dissertation J.-O. F. Kapp-Joswig 241

References References

[391] P. S. Shenkin, D. Q. McDonald, J. Comput. Chem.
1994, 15, 899–916.

[392] A. E. Torda, W. F. van Gunsteren, J. Comput. Chem.
1994, 15, 1331–1340.

[393] R. M. Cormack, J. R. Stat. Soc. Ser. A 1971, 134, 321.

[394] A. K. Jain, Pattern Recognit. Lett. 2010, 31, 651–666.

[395] C. C. Aggarwal, C. K. Reddy, Data Clustering Al-
gorithms and Applications, CRC Press, 2014.

[396] T. Finley, T. Joachims in Proc. 22nd Int. Conf.

Mach. Learn. - ICML ’05, ACM Press, New York,

New York, USA, 2005, pp. 217–224.

[397] OECD,OECDGlossary of Statistical Terms, OECD
Publishing, 2008.

[398] UNECE, ‘Terminology on Statistical Metadata’ in

Conf. Eur. Stat. Stat. Stand. Stud. No. 53, 2000.

[399] IBM Corporation, z/OS Basic Skills, https://
www.ibm.com/docs/en/zos- basic-
skills?topic=more-what-is-data-
set.

[400] R. A. Fisher, Annu. Eugen. 1936, 7, 179–188.

[401] J. C. Gower, Biometrics 1971, 27, 857–871.

[402] S. Bishnoi, B. Hooda, Int. J. Chem. Stud. 2020, 8,
338–343.

[403] A. Jain, A. Topchy, M. Law, J. Buhmann in Proc.

17th Int. Conf. Pattern Recognition, 2004. ICPR

2004. IEEE, 2004, 260–263 Vol.1.

[404] J. W. Carmichael, R. S. Julius, Syst. Biol. 1968, 17,
144–150.

[405] H.-P. Kriegel, E. Schubert, A. Zimek, Knowl. Inf.
Syst. 2017, 52, 341–378.

[406] R. Graham, P. Hell, IEEE Ann. Hist. Comput. 1985,
7, 43–57.

[407] G. N. Lance, W. T. Williams, Comput. J. 1967, 9,
373–380.

[408] G. N. Lance, W. T. Williams, Comput. J. 1967, 10,
271–277.

[409] D. Krznaric, C. Levcopoulos,Theor. Comput. Sci.
2002, 286, 139–149.

[410] R. Sibson, Comput. J. 1973, 16, 30–34.

[411] J. C. Gower, G. J. S. Ross, Appl. Stat. 1969, 18, 54.

[412] L. Kaufman, P. Rousseeuw, Finding Groups inData:
An Introduction to Cluster Analysis, John Wiley &

Sons, 2009.

[413] M. Stoer, F. Wagner, J. ACM 1997, 44, 585–591.

[414] J. Shi, J. Malik, IEEE Trans. Pattern Anal. Mach.
Intell. 2000, 22, 888–905.

[415] U. von Luxburg, Stat. Comput. 2007, 17, 395–416.

[416] S. Arora, S. Rao, U. Vazirani, J. ACM 2009, 56, 1–

37.

[417] M. Weber, A. Rungsarityotin, Wasinee Schliep,

ZIB-Report 2004.

[418] P. Deuflhard, M.Weber, Linear Algebra Appl. 2005,
398, 161–184.

[419] S. Röblitz, M. Weber, Adv. Data Anal. Classif. 2013,
7, 147–179.

[420] H.-H. Bock, J. Électronique d’Histoire des Probab.
la Stat. [electronic only] 2008, 4, Article 14, 18 p.,

electronic only–Article 14, 18.

[421] E. Schubert, P. J. Rousseeuw, Inf. Syst. 2021, 101,
101804.

[422] M.Mahajan, P. Nimbhorkar, K. Varadarajan,Theor.
Comput. Sci. 2012, 442, 13–21.

[423] S. Lloyd, IEEE Trans. Inf. Theory 1982, 28, 129–137.

[424] A. Tarsitano, Pattern Recognit. 2003, 36, 2955–

2966.

[425] M. E. Celebi, H. A. Kingravi, P. A. Vela, Expert Syst.
Appl. 2013, 40, 200–210.

[426] D. Arthur, S. Vassilvitskii, Proc. 18th Annu. ACM-
SIAM Symp. Discret. algorithms 2007, 8, 1027–1035.

[427] P. J. Rousseeuw, J. Comput. Appl. Math. 1987, 20,
53–65.

[428] T. Calinski, J. Harabasz, Commun. Stat. - Theory
Methods 1974, 3, 1–27.

[429] A. Rosenberg, J. Hirschberg in Proc. 2007 Jt. Conf.

Empir. Methods Nat. Lang. Process. Comput. Nat.

Lang. Learn. Association for Computational Lin-

guistics, Prague, Czech Republic, 2007, pp. 410–

420.

[430] D. Steinley, Psychol. Methods 2004, 9, 386–396.

[431] N. X. Vinh, J. Epps, J. Bailey, J. Mach. Learn. Res.
2010, 11, 2837–2854.

[432] G.McLachlan, D. Peel, FiniteMixtureModels, John

Wiley & Sons, Hoboken, 2000.

[433] A. P. Dempster, N. M. Laird, D. B. Rubin, J. R. Stat.
Soc. Ser. B 1977, 39, 1–38.

[434] L. Scrucca, M. Fop, T. B. Murphy, A. E. Raftery, R
J. 2016, 8, 289–317.

[435] A. Guttman, ACM SIGMOD Rec. 1984, 14, 47–57.

[436] W. Wang, J. Yang, R. R. Muntz in VLDB, 1997.

[437] R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan,

ACM SIGMOD Rec. 1998, 27, 94–105.

[438] J. A. Hartigan, Clustering Algorithms, John Wiley

& Sons, New York, 1975.

[439] W. Stuetzle, R. Nugent, J. Comput. Graph. Stat.
2010, 19, 397–418.

[440] I. Steinwart in Proc. 24th Annu. Conf. Learn. The-

ory, (Eds.: S. M. Kakade, U. von Luxburg), PMLR,

Budapest, Hungary, 2011, pp. 703–738.

[441] K. Chaudhuri, S. Dasgupta in Adv. Neural Inf. Pro-

cess. Syst. Vol. 23, (Eds.: J. Lafferty, C. Williams,

J. Shawe-Taylor, R. Zemel, A. Culotta), Curran As-

sociates, Inc., 2010.

[442] J. Klemelä, WIREs Comput. Stat. 2018, 10, DOI
10.1002/wics.1436.

[443] J. A. Hartigan, J. Am. Stat. Assoc. 1981, 76, 388–394.

[444] W. Stuetzle, J. Classif. 2003, 20, 25–47.

[445] A. Azzalini, G. Menardi, J. Stat. Softw. 2014, 57,
DOI 10.18637/jss.v057.i11.

[446] B. P. Kent, A. Rinaldo, T. Verstynen, 2013, DOI
arXiv:1.

242 Dissertation J.-O. F. Kapp-Joswig

https://www.ibm.com/docs/en/zos-basic-skills?topic=more-what-is-data-set
https://www.ibm.com/docs/en/zos-basic-skills?topic=more-what-is-data-set
https://www.ibm.com/docs/en/zos-basic-skills?topic=more-what-is-data-set
https://www.ibm.com/docs/en/zos-basic-skills?topic=more-what-is-data-set
https://doi.org/10.1002/wics.1436
https://doi.org/10.18637/jss.v057.i11
https://doi.org/arXiv:1

References References

[447] M. Ester, H.-P. Kriegel, J. Sander, X. Xu in Proc.

Second Int. Conf. Knowl. Discov. Data Min. AAAI

Press, 1996, pp. 226–231.

[448] D. Wishart, ‘Mode analysis: A generalization of

nearest neighbor which reduces chaining effects’

in Proc. Colloq. Numer. Taxon. (Ed.: A. J. Cole), St.

Andrews, Scotland, 1969.

[449] R. J. G. B. Campello, D. Moulavi, J. Sander,

‘Density-Based Clustering Based on Hierarchical

Density Estimates’ in 2013, pp. 160–172.

[450] L.McInnes, J. Healy, S. Astels, J. Open Source Softw.
2017, 2, 205.

[451] R. Jarvis, E. Patrick, IEEE Trans. Comput. 1973,
C-22, 1025–1034.

[452] B. G. Keller, X. Daura, W. F. Van Gunsteren, J.
Chem. Phys. 2010, 132, 074110.

[453] X.Daura,W. F. vanGunsteren, A. E.Mark,Proteins
Struct. Funct. Genet. 1999, 34, 269–280.

[454] O. Lemke, B. Keller, Algorithms 2018, 11, 19.

[455] A. Rodriguez, A. Laio, Science 2014, 344, 1492–

1496.

[456] D. Comaniciu, P. Meer, IEEE Trans. Pattern Anal.
Mach. Intell. 2002, 24, 603–619.

[457] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S.

Seljebotn, K. Smith, Comput. Sci. & Eng. 2011, 13,
31–39.

[458] E. Gamma, R. Helm, R. Johnson, J. Vlissides,

Design Patterns: Elements of Reusable Object-
Oriented Software, 1st ed., Addison-Wesley, 1994.

[459] R. G. Weiß, B. Ries, S. Wang, S. Riniker, J. Chem.
Phys. 2021, 154, 084106.

Dissertation J.-O. F. Kapp-Joswig 243

Publications

T
he following publications relevant to this thesis are attached in the order they are listed below.

Author contributions are reported as accepted by the publishing journal or in accordance with

the ICMJE Recommendations for the Conduct, Reporting, Editing, and Publication of Scholarly Work in
Medical Journals (May 2022).

‘TotalSynthesisof theDeathCapToxinPhalloidin: AtropoisomerSelectivityExplainedbyMolecular-
Dynamics Simulations’ G. Yao, J.-O. Joswig, B. G. Keller, R. D. Süssmuth, Chem. Eur. J. 2019, 25,
8030–8034 (permission granted by John Wiley and Sons under the license number 5371821147027).

Supporting information are included. Author contributions as published with the article: G. Y. and R.
D. S. designed the experiments. G. Y. performed the synthesis of all shown compounds. J.-O. J. and B.
G. K. performed the theoretical calculations of the precursors and phalloidin analogues. G. Y., J.-O. J.,
B. G. K., and R. D. S. wrote the manuscript. All authors read, discussed, and approved the manuscript.

‘Themolecular basis for the pH-dependent calcium affinity of the pattern recognition receptor
langerin’ J.-O. Joswig, J. Anders, H. Zhang, C. Rademacher, B. G. Keller, J. Biol. Chem. 2021,
296, 100718 (open access under the Creative Commons CC-BY license). Supporting information

are included. Author contributions as published with the article: J.-O. J. performed the computer

experiments, except for the simulations of the long-loop unfolding, analysed and interpreted the data,

made all figures, and drafted and revised the manuscript. J. A. performed the computer experiments

for the long-loop unfolding and analysed the data. H. Z. performed the laboratory experiments and

analysed the data. C. R. interpreted the data of the laboratory experiments and drafted and revised the

corresponding part of the manuscript. B. G. K. designed the study, interpreted the data, and drafted

and revised the manuscript.

‘CommonNNClustering—APython package for generic common-nearest-neighbour clustering’
J.-O. Joswig, B. G. Keller drafted manuscript. Author contributions: J.-O. J. designed and developed

the presented program, performed the experiments, analysed and interpreted the data, prepared all

figures, and drafted and revised the manuscript. B. G. K. designed the study, interpreted the data, and

drafted and revised the manuscript.

Dissertation J.-O. F. Kapp-Joswig 245

Total Synthesis of the Death Cap Toxin Phalloidin: Atropoisomer Selectivity
Explained by Molecular-Dynamics Simulations

Chemistry : A European Journal

Volume 25, Issue 34

June 18, 2019

Pages 8030-8034

https://doi.org/10.1002/chem.201901888

https://doi.org/10.1002/chem.201901888

The molecular basis for the pH-dependent calcium affinity of
the pattern recognition receptor langerin
Received for publication, February 16, 2021, and in revised form, April 12, 2021 Published, Papers in Press, May 12, 2021,
https://doi.org/10.1016/j.jbc.2021.100718

Jan-O. Joswig1 , Jennifer Anders1, Hengxi Zhang1,2,3,4, Christoph Rademacher1,2,3,4, and Bettina G. Keller1,*
From the 1Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany; 2Department of
Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany; 3Department of Pharmaceutical
Chemistry, 4Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, University of Vienna, Vienna, Austria

Edited by Roger Colbran

The C-type lectin receptor langerin plays a vital role in the
mammalian defense against invading pathogens. Langerin re-
quires a Ca2+ cofactor, the binding affinity of which is regulated
by pH. Thus, Ca2+ is bound when langerin is on the membrane
but released when langerin and its pathogen substrate traffic to
the acidic endosome, allowing the substrate to be degraded.
The change in pH is sensed by protonation of the allosteric pH
sensor histidine H294. However, the mechanism by which Ca2+

is released from the buried binding site is not clear. We studied
the structural consequences of protonating H294 by molecular
dynamics simulations (total simulation time: about 120 μs) and
Markov models. We discovered a relay mechanism in which a
proton is moved into the vicinity of the Ca2+-binding site
without transferring the initial proton from H294. Protonation
of H294 unlocks a conformation in which a protonated lysine
side chain forms a hydrogen bond with a Ca2+-coordinating
aspartic acid. This destabilizes Ca2+ in the binding pocket,
which we probed by steered molecular dynamics. After Ca2+

release, the proton is likely transferred to the aspartic acid and
stabilized by a dyad with a nearby glutamic acid, triggering a
conformational transition and thus preventing Ca2+ rebinding.
These results show how pH regulation of a buried orthosteric
binding site from a solvent-exposed allosteric pH sensor can be
realized by information transfer through a specific chain of
conformational arrangements.

When pathogens invade a mammal (or more specifically: a
human), Langerhans cells capture some of the pathogens,
process them, and present antigens to the adaptive immune
system. The swift activation of the adaptive immune system is
critical for the survival of the mammal, and langerin plays a
vital role in this process. Langerin is a transmembrane car-
bohydrate receptor, which is expressed by Langerhans cells of
mammalian skin and mucosa (1, 2). It belongs to the class of
type II C-type lectin receptors (3, 4). It detects pathogens such
as influenza virus (5), measles virus (6), HIV (7), fungi (8),
mycobacteria (9), and bacteria (10).

Langerin recognizes these pathogens by binding to carbo-
hydrates on the pathogen surface. Its carbohydrate-binding

pocket contains a Ca2+ cation as cofactor that is essential for
carbohydrate binding, and thus for the capture of pathogens.
After the initial binding event, the pathogen is captured in an
endocytic vesicle, and langerin releases the pathogen into the
endosome (Fig. 1A) (1, 2, 7, 11). This cargo release is triggered
by a drop of pH from 7 in the extracellular medium to 5.5 to 6
in the early endosome (12) and by a substantial drop in the
Ca2+ concentration from about 1 to 2 mM to a value in the
micromolar range (13–15).

The pH-dependent cargo release is accomplished by a
fascinating mechanism in which various chemical equilibria
are carefully balanced. To be able to release the cargo into
the more acidic endosome, the carbohydrate affinity of lan-
gerin needs to be pH dependent. However, the change in pH
does not affect the carbohydrate binding itself. Instead,
langerin depends on a Ca2+ cofactor for carbohydrate
binding, and the observed pH dependence of the carbohy-
drate affinity is caused by an underlying pH dependence of
the Ca2+ affinity (17). We previously showed that the Ca2+

affinity is lower at pH 6 than at pH 7. The pH sensitivity,
measured as the difference in the Ca2+ binding free energies,
is ΔΔG = 5.1 kJ mol−1 (17). At high Ca2+ concentrations
(10 mM) the carbohydrate affinity ceases to be pH depen-
dent, because the excess in Ca2+ outweighs any change in
Ca2+ affinity due to a change in pH. However, in the endo-
some the Ca2+ concentration is low. Thus, the drop in pH
from the extracellular medium to the endosome causes a
decrease in Ca2+ affinity, and the unbinding of the Ca2+

cofactor leads to the dissociation of the carbohydrate ligand
and to the release of the pathogen. Similarly, pH sensitivities
of either ligand or Ca2+ affinities have been observed for
several other C-type lectins (18), including ASGPR (14, 19,
20) the macrophage mannose receptor (21), DC-SIGN and
DC-SIGNR (22–25), and LSECtin (26) (example structures
in Fig. S32). In DC-SIGNR and LSECtin, which have a
different biological role than langerin, a drop in pH causes an
increase in ligand affinity. The mechanisms underlying the
regulation by the pH in C-type lectins are highly diverse and
not yet studied in detail.

The observation that the Ca2+ affinity in C-type lectins is pH
dependent is surprising. First, when a carbohydrate (and
attached to it an entire virus) is bound to a C-type lectin, the

* For correspondence: Bettina G. Keller, bettina.keller@fu-berlin.de.

RESEARCH ARTICLE EDITORS’ PICK

J. Biol. Chem. (2021) 296 100718 1
© 2021 THE AUTHORS. Published by Elsevier Inc on behalf of American Society for Biochemistry and Molecular Biology. This is an open access article under the CC
BY license (http://creativecommons.org/licenses/by/4.0/).

Ca2+-binding site is almost certainly not solvent exposed. Sec-
ond, the Ca2+ in C-type lectins is coordinated by either aspartate
or glutamate side chains, whose reference pKa values (27) (in
water at 25 �C) are 3.71 (aspartate) and 4.15 (glutamate). By
themselves, these residues are not sensitive to a change in pH
from 7 to 6. Pairs of acidic residues can in principle form a
protonated dyad, which is the close arrangement of two residues
with acidic side chains such that protonation of their carboxyl
groups is coupled. This results in an increased pKa of the pro-
tonated residue, stabilized by the unprotonated form of the
other group. Prominent examples of this effect are found in the
proteins HIV-1 protease (28, 29), BACE-1 (30), BACE-2, and
CatD, where it can increase the pKa of aspartic acid from its
reference value to 5.2 (31). The presence of organic ligands can
increase these values further (32). However, a protonated dyad
can only form if Ca2+ has already left the binding pocket. So, the
question arises: how do C-type lectins sense a change in pH,
and how does this lead to the release of Ca2+?

For langerin we previously identified the histidine residue
H294 as a partial pH sensor that regulates the Ca2+ affinity
(17). The reference pKa of histidine is 6.04 (in water at 25 �C)
(27), which makes it sensitive to a pH change from 7 to 6.
When H294 is mutated to A294, the pH sensitivity is about
40% smaller than in the wildtype (ΔΔG = 3.1 kJ mol−1 upon a
change in pH from 7 to 6). Because the histidine side chain
points away from the Ca2+-binding site, it is unlikely that the
decrease in Ca2+ affinity is caused by electrostatic repulsion
between the protonated histidine and the Ca2+. This mecha-
nism has been suggested for the C-type lectin ASGPR, in
which, however, the histidine pH sensor is located directly
underneath the Ca2+-binding pocket (Fig. S32D) (20). Instead,
we showed—by combining NMR experiments, site-directed
point mutations, and molecular dynamics simulations—that
H294 is at the center of an allosteric network that contains the
Ca2+-binding site. More specifically, in its unprotonated form
H294 forms a hydrogen bond with lysine K257, which is also
present in the known crystal structures of langerin (16). This
hydrogen bond cannot be formed if H294 is protonated, and
the allosteric mechanism that regulates the Ca2+ affinity likely
hinges on this hydrogen bond.

Yet, protonation of H294 is only the initial detection that
the surrounding medium has changed. Even though we
identified the residues that are involved in the allosteric
network, we do not yet understand how the protonation of
H294 could ultimately affect the Ca2+-binding pocket.
Several allosteric effects have been reported for C-type lec-
tins (see ref. (33) for a recent review), but little is known
about their underlying molecular mechanisms that could be
applied to the situation in langerin. The goal of this study is
to elucidate how the protonation of H294 changes the
conformational ensemble of langerin and to investigate the
effect these conformational changes have on the Ca2+-
binding pocket. A model of how the signal, that the pH has
changed, traverses the allosteric network to the buried Ca2+-
binding site and triggers the Ca2+ release might serve as a
blueprint for understanding how pH-sensitive ligand binding
is achieved in C-type lectins and other proteins.

Results and discussion

Structure of the langerin carbohydrate recognition domain

Langerin forms a homotrimer. The monomers consist of a
short cytoplasmic tail, a transmembrane region, and a long
alpha-helical neck (residues 56–197) extending into the
extracellular milieu, which carries the C-terminal carbohydrate
recognition domain (16, 18). The carbohydrate recognition
domain has the typical C-type lectin domain fold (Fig. 1B) (4),
which consists of two extended β sheets (turquoise), each
composed of three single strands. The two β sheets are flanked
by three α helices (purple, α3 in red). The carbohydrate-
binding pocket, which contains the Ca2+-binding site, is
located on top of the β4 strand. One residue from this β sheet
directly binds to the Ca2+: D308. In addition, the Ca2+ is held
in place by E293 and E285 in the long-loop (blue), which co-
ordinate to Ca2+ from the side. E285 is part of a conserved

Figure 1. C-type lectin langerin. A, langerin’s function as an endocytic
pattern recognition receptor (www.scistyle.com; https://creativecommons.
org/licenses/by-sa/4.0/). B, langerin carbohydrate recognition domain (Pro-
tein Data Bank ID 3p5g (16)).

EDITORS’ PICK: pH-dependent calcium affinity in langerin

2 J. Biol. Chem. (2021) 296 100718

EPN-motif (E285, P286, N287 in langerin), which determines
the selectivity for mannose, fucose, and glucose over galactose
(18, 34, 35). The pH sensor H294 (pink) is located at the end of
the long-loop. If its side chain is unprotonated, it forms a
hydrogen bond to K257 (also pink) in the short-loop (orange).
The allosteric network that regulates the Ca2+ affinity com-
prises the long- and the short-loop (17). H229 (yellow) is the
only other histidine residue in the langerin carbohydrate
recognition domain. A pathogen would bind via a carbohy-
drate ligand (dark red) to langerin and would be separated
from the pH sensor by the long-loop. If Ca2+ is bound to
langerin, we will call the system holo-langerin, otherwise apo-
langerin.

The effect of H294 protonation on the conformational
ensemble

We conducted 31 μs of molecular dynamics simulations of
holo-langerin, in which all residues were protonated according
to their default protonation state at pH 7, i.e., H294 was
unprotonated, and the overall protein was neutral (neutral
state). We compare these simulations with 27 μs of holo-
langerin, in which H294 was protonated (protonated state).
Protonation of H294 has no influence on the secondary
structure of langerin (Fig. 2A, Fig. S1). Thus, any conforma-
tional change due to the protonation of H294 affects the side
chains, or those residues that are not assigned to a specific
secondary structure, i.e., the loop regions.

One way a conformational change in the loop regions could
manifest itself, is by a change of the loop flexibility. This is,
however, not corroborated by the root-mean-square fluctua-
tions of the individual residues (Fig. 2B). The short-loop (sharp
peak around residue 260) and the α3 helix (broad peak around
residue 275) are more rigid in the protonated state, but the

difference is very small. The flexibility in all other regions of
the protein, and in particular the long-loop region, does not
change upon protonation.

To gauge whether protonation of H294 has an influence on
the conformation of the Ca2+-binding site, we measured the
distance distribution between the carboxyl group of the Ca2+-
coordinating residues—E285, E293, and D308—and the Ca2+

(Fig. 2, C and D). For E293 and D308 the differences are too
minor to explain the observed difference in Ca2+ affinity. For
E285 the distribution shifts slightly to lower distances and thus
to a potentially tightly bound Ca2+, not explaining it either.
The distance difference between the two populated states is
about 0.05 nm.

Yet, we know from our previous analyses (17) that pro-
tonation of H294 causes a significant shift in the confor-
mational ensemble, and this is again confirmed by the
distance distributions between the H294 side chain and the
Ca2+ in the neutral and the protonated state (Fig. 2E). In the
protonated state the distribution shifts to larger distances,
well beyond 1 nm. At this distance, we do not expect a
significant influence of the positively charged H294 side
chain on the Ca2+, considering that H294 is located on the
protein surface and that the dielectric constant between the
two interacting groups is relatively high (see Figs. S20 and
S21 for an assessment of the Coulomb interaction) (36).
Thus, we can rule out that the decrease in Ca2+ affinity is
caused by direct Coulomb repulsion between the proton-
ated H294 and the Ca2+.

To uncover which residues besides H294 are involved in the
conformational shift, one needs to compare the two confor-
mational ensembles. This cannot be accomplished in the full
high-dimensional conformational space. Instead, one needs to
project the two ensembles into a low-dimensional space that is
representative of both systems. Principal component analysis

Figure 2. Structural consequences of H294 protonation. A, analysis by the hydrogen bond estimation algorithm DSSP of the secondary structure in the
neutral (left) and the protonated holo-state (right). Legend: S, bend; T, hydrogen bonded turn; I, 5-helix; G, 3-helix; E, extended strand, part of β-ladder; B,
isolated β-bridge; H, α helix; O, unassigned. B, Cα-root-mean-square fluctuation (RMSF). C, carboxyl carbon–Ca2+ distance histograms for E285 (upper graph),
E293 (middle graph), and D308 (lower graph). D, structure of the Ca2+-binding site showing the distances plotted in C with dashed lines. E, histogram of the
minimum distance between Ca2+ and the side-chain N atoms (Nδ and N

ε
) of H294. Solid lines, mean of the histograms calculated for each simulation replica.

Shaded area, 95% confidence interval of the mean obtained by bootstrapping (1000 samples). ll, long-loop; sl, short-loop.

EDITORS’ PICK: pH-dependent calcium affinity in langerin

J. Biol. Chem. (2021) 296 100718 3

(37) identifies low-dimensional spaces that preserve the di-
rections of the largest conformational variance (38). To be able
to directly compare the neutral and the protonated ensemble,
we combined the simulations in the two protonation states to
obtain a joint principal component space. The principal
component with the largest variance represents the opening
and closing of the gap between the short-loop and long-loop
(blue sequence of structures in Fig. 3A). The second principal
component represents a sideways shear motion of the short-
loop (orange sequence of structures in Fig. 3A). This is in line
with our previous finding that the allosteric network is
centered on these two loops (17). Even though the two prin-
cipal components cover only about 28% of the total structural
variance (Fig. 3B), they represent the conformational fluctua-
tions that are most sensitive to a protonation of H294. Sepa-
rate principal component analyses of the two protonation
states yielded principal components that were almost identical,
indicating that the joint principal components are a faithful
representation of the largest variances for both protonation
states. Figure 3C shows the free energy surface of the two
systems in the space of the first two joint principal compo-
nents. The free-energy surface of the unprotonated system is
shallow with two minima corresponding to the open and
closed states of the short- and long-loop. Upon protonation,
the free energy surface becomes much steeper and more
structured. One can discern at least three minima. The dif-
ference plot of the probability densities in the neutral and

protonated states (Fig. 3C to the right) shows these emerging
conformations in red.

We extracted the highly populated regions by clustering in
the space of the first two principal components using the
density-based common-nearest-neighbors cluster algorithm
(39–41) and characterized the hydrogen bond pattern of the
short- and long-loop residues in each of the clusters (Fig. 4).
Figure 4, C and D show a subset of the full analysis (see
Fig. S10) focusing on fluctuating hydrogen bonds. In the
neutral state, the clusters have essentially the same hydrogen
bond populations as the total ensemble, which is consistent
with the shallow free-energy surface in Figure 3C.

The situation is different in the protonated state. Here, each
of the four clusters is stabilized by a hydrogen bond pattern
that is distinctively different from the hydrogen bond pattern
of the total distribution (Fig. 4B). This indicates that, upon
protonation of H294 several distinct short-loop/long-loop
conformations emerge.

The most striking change arises in the green (G) cluster: the
hydrogen bond between the side chain of K257 and the side
chain of D308, which is barely populated in the unprotonated
state (4.2%), is populated to 65.4% in this cluster and 12.9% in
the ensemble. In parallel, the side chain of the now protonated
H294 forms a hydrogen bond with the carboxyl group of E261.
The structure is further stabilized by a hydrogen bond between
the side chain of S265 and the main chain of T256. Note the
significance of this finding: the K257 side chain, which is no

Figure 3. Principle component analysis. A, structural interpolations along the first two principal components. B, Eigenvalue spectrum of the principal
component analysis (blue dots) and the cumulative sum normalized by the total sum of all N eigenvalues n ¼ PN

i¼1λi (orange dots). C, free-energy surfaces
from the 2D projections of the individual holo-langerin trajectories onto principal components 1 and 2 and difference plot of the underlying probability
distributions (neutral – protonated).

EDITORS’ PICK: pH-dependent calcium affinity in langerin

4 J. Biol. Chem. (2021) 296 100718

longer engaged in a hydrogen bond with H294, forms a new
hydrogen bond with the Ca2+-coordinating residue D308 and
thereby moves a proton into the vicinity of the Ca2+-binding
pocket.

The conformation of the orange (O) cluster is comple-
mentary to that of the green cluster. The side chain of K257
forms a hydrogen bond with the carboxyl group of E261, while
H294 engages in a hydrogen bond to the backbone carbonyl
oxygen of N291. The conformation is stabilized by hydrogen
bonds between the side chain of N288 and the backbone
carbonyl oxygen of M260 and the side chain of E261. N288 is
located in the center of the long-loop, and E261 is located in
the center of the short-loop. Thus, these two hydrogen bonds
closely connect the two loops explaining why this structure
appears in the closed-loop region of the free-energy surface.
The main chain–main chain hydrogen bond between N292
and A289 additionally stabilizes this structure.

The blue (B) cluster is an open-loop structure in which
neither K257 nor H294 is engaged in one of the considered

hydrogen bonds. It features the 258m–256m and 262m–259m
hydrogen bonds within the short-loop. The red (R) cluster is a
slightly sheared structure in which the K257 side chain partly
forms a hydrogen bond to the carboxyl group of E261 and
partly to the carboxyl group of D308.

Three hydrogen bonds in Figure 4 directly involve Ca2+-
coordinating residues. First, we already discussed the
hydrogen bond K257–D308. Second, the hydrogen bond
between the main chain of N287 and the side chain of D308 is
important for the stability of the long-loop fold. It is occupied
to about 90% in both protonation states. Third, population of
the hydrogen bond between the main chain amid group of
D308 and the carboxyl group of E285 is increased in the
protonated state. This is particularly true for cluster G (green)
and O (orange). This hydrogen bond might compete with the
coordination of E285 to Ca2+ and thereby might contribute to
the observed decrease in Ca2+ affinity. In both the neutral and
the protonated systems, the bonds N288s–M260m, N288s–
E261s, K257s–E261s, and G262m–E261s are strongly corre-
lated (see Fig. S10). In the protonated state a strong corre-
lation between K257s–D308s and H294s–E261s arises,
indicating that these two hydrogen bonds are formed and
broken simultaneously.

A mechanism for the pH-sensitive Ca2+ affinity in langerin

We are now ready to propose a mechanism that explains
how protonation of H294 can lead to a decrease in Ca2+ af-
finity. In the neutral state, K257 and H294 form a hydrogen
bond that is populated over a wide range of conformations. We
also observe a weak hydrogen bond of the K257 side chain to
the main chain of the Ca2+-coordinating residue E293, but
direct hydrogen bonds to the Ca2+-coordinating carboxyl
groups are hardly ever formed (Fig. 5A). Upon a drop of pH
from 7 to 6, the side chain of H294 is protonated in accordance
with its pKa: H294 is the initial pH sensor. The protonation of
H294 changes the hydrogen bond pattern between the short-
and the long-loops. In particular, the side chains of H294 and
K257 form new contacts, which gives rise to previously inac-
cessible conformations. Cluster O (orange) and cluster G
(green) exhibit mutually exclusive hydrogen bond patterns. In
cluster O, multiple hydrogen bonds connect the short- and the
long-loops causing a closed loop conformation. The positively
charged side chain of K257 forms a hydrogen bond to the
negatively charged side chain of E261. But similar to the
neutral state, there is no direct hydrogen bond to the Ca2+-
coordinating carboxyl groups (Fig. 5C). This is different in
cluster G. Here the positively charged side chain of H294
forms a hydrogen bond with the negatively charged carboxyl
group of E261. Simultaneously, the positively charged side
chain of K257 forms a hydrogen bond with the carboxyl group
of D308 (Fig. 5B). This hydrogen bond withdraws electron
density from the coordinative bond between D308 and Ca2+

and thereby reduces the Ca2+ affinity. It is even conceivable
that the proton is transferred entirely to the carboxyl group of
D308 (42). We thus propose that cluster G (green) is
responsible for the decrease in Ca2+ affinity at pH 6.

Figure 4. Characterization of conformational states via hydrogen
bonds. Four most populated clusters in the principal-component free-en-
ergy surface of A, the neutral and B, the protonated holo-langerin. Per
cluster hydrogen bond occupancy in C, neutral and D, protonated holo-
langerin (populations in the full ensemble in gray). Hydrogen bonds
involving K257 or H294 are highlighted by a gray background.

EDITORS’ PICK: pH-dependent calcium affinity in langerin

J. Biol. Chem. (2021) 296 100718 5

In this mechanism, K257 acts as a proton reservoir. The
initial detection of a pH change via protonation of H294 leads
to the cluster G, in which K257 moves a proton into the vi-
cinity of the Ca2+-binding site and locally increases the proton
concentration. Thus, the signal that the pH has changed is
allosterically transferred to the Ca2+-binding pocket without
transferring the actual proton that triggered the mechanism.

A crucial assertion in the proposed mechanism is that the
life time of cluster G (green) represents a distinct conforma-
tion that is stable enough for the Ca2+ to leave the binding
pocket. The fact that cluster G corresponds to a free-energy
minimum in the space of the principal components hints at
a stable conformation. But because the principal components
maximize the spatial variance and not the variance in time, this
is not sufficient to be certain.

Figure 6A shows the distance distribution between the K257
and D308 side chain for the neutral and the protonated states.
In both protonation states, the maximum at short distances
around 0.2 nm is well separated from the maximum at larger
distances.

In the neutral state, the short distances are populated only in
4.3% of all simulated conformations, which increases to 13.2%
when H294 is protonated. This is in line with the increase of
population in the K257–D308 hydrogen bond from 4.2% to
12.9%. We obtain the same results, when plotting the distance
between the K257 side-chain amine and the Ca2+ in Figure 6B.
Thus, cluster G (green) indeed represents a distinct
conformation.

To assess the stability of conformations in cluster G (green),
and to relate its formation to other dynamic processes in the
protein, we constructed a core-set Markov model of the
conformational dynamics (43–45). In Markov models, the
conformational space is discretized into states and the
conformational dynamics are modeled as Markov transitions
within a lag time τ between pairs of these states, where the
transition probabilities are obtained from molecular dynamics

simulations. From the eigenvectors and eigenvalues of the
Markov-model transition matrix one obtains long-lived con-
formations as well as the hierarchy of the free-energy barriers
separating them. The special feature of core-set Markov
models is that the states are confined to the regions close to
the minima of the free-energy surface, i.e., so-called core sets,
whereas the regions between these minima are modeled by
committor functions. This reduces the discretization error of
the model considerably.

The Markov model construction is preceded by a dimen-
sionality reduction of the conformational space using the time-
independent component analysis (46, 47). Time-independent
components (tICs) maximize the variance within lag time τ
rather than the instantaneous variance maximized by principal

Figure 5. Allosteric mechanism for the pH-sensitive Ca2+ affinity in langerin. A, neutral state, B, cluster G (green) in the protonated state, and C, cluster O
(orange) in the protonated state. Lines, hydrogen bonds with population in percent. Arrows, coordination between carboxyl groups and Ca2+.

Figure 6. Frequency of K257 interaction with the Ca2+-binding site. A,
K257–D308 side-chain distance distribution. B, K257 side-chain amine –
Ca2+distance distribution. Solid lines, mean of the histograms calculated for
each simulation replica. Shaded area, 95% confidence interval of the mean
obtained by bootstrapping (1000 samples).

EDITORS’ PICK: pH-dependent calcium affinity in langerin

6 J. Biol. Chem. (2021) 296 100718

components. A projection into a low-dimensional tIC space
can thus be interpreted as projection into the space of the
slowly varying coordinates of the system. Figure 7A shows the
free-energy surface of the protonated system projected into the
space of the first and the second tICs (see Supporting
information for other projections), and Figure 7B shows the
projection of cluster G (green) and O (orange) into this space.

We then identified 22 core sets in the space of the first six
tICs using common-nearest-neighbors clustering (39, 41) and
used them to construct a core-set Markov model. The implied
timescale test shows that the timescales of our core-set Mar-
kov model are independent of the lag time τ indicating a very
small discretization error and thus a high-quality Markov
model (Fig. 7C). The slowest dynamic process occurs on a
timescale of about 1.3 μs and corresponds to changes in the
local conformations of E261 and its hydrogen bond pattern. It
thus separates the conformations of cluster G (green) and
cluster O (orange) along the blue barrier in Figure 7A. Note
that all conformations in which the K257s–D308s hydrogen

bond is formed alongside H294s–E261s are located on the
right-hand side of this barrier (see Supporting information).
The fact that we find some structures that have originally been
assigned to the G (green) conformation on the left-hand side
of the barrier is likely due to the insufficient separation of long-
lived conformations in the principal component space
(Fig. 7B). Next, protonated langerin has two slow timescales
that occur at about 500 ns. One process describes transitions
between the closed loop conformations in region 1 and con-
formations in which the distance between the long- and the
short-loop is larger in region 2. The other process represents a
transition between conformations in which the backbone
orientation of N291 forbids the N292m–A289m hydrogen
bond giving rise to a distortion of the long-loop (region 5) and
the conformations in which the N292m–A289m hydrogen
bond is possible (regions 3 and 4). The dashed barrier marks
transitions to more open short-loop forms occurring on a
timescale of 210 ns.

In summary, conformations in which the K257–D308
hydrogen bond is formed are separated from the alternative O
(orange) conformation by a rare transition that occurs on a
timescale of 1.3 μs. Within the right-hand side of the barrier in
Figure 7A the G (green) conformation is at least stable on a
timescale of 200 ns. This is likely sufficient to enable the escape of
the Ca2+ from the binding pocket. A core-set Markov model of
neutral holo-langerin is reported in the Supporting information.

To directly probe how the stability of the Ca2+-bound state
of the protein depends on the protonation state and on the
conformation of langerin, we used constant-velocity steered–
molecular dynamics (MD) experiments (48–50). In these
simulations, a force that increases linearly with time is applied
to the Ca2+ atom (Fig. 8A), and the opposing force (i.e., the
resistance against this pulling force) is measured. At a certain
maximum force the ionic bonds between the Ca2+ atom and
the coordinating residues rupture and the Ca2+ leaves the
binding pocket. In the computer experiment, this is marked by
a sudden drop in the opposing force (Fig. 8C). The rupture
force is a rough measure for the free-energy difference to the
transition state ΔG‡. The rational is that a deeper free-energy
minimum of the Ca2+-bound state is associated with a
steeper slope to the transition state, and the rupture force,
reflecting the maximal slope, reports on the stability of the
Ca2+-bound state (51, 52). We chose the pulling rate such that
the rupture events are observed after several nanoseconds.
This ensures that the system has enough time to adjust to the
pulling and also that the initial starting conformation is pre-
served to some degree.

For each system, we conducted 40 steered-MD simulations
and report the data as notched boxplot in Figure 8B. Overall,
the plot shows that we could determine the median of rupture
force with high confidence and hardly any outliers. The
rupture force decreases from the neutral to the protonated
system (H294+) and then further to simulations of the pro-
tonated system started in the G (green) conformation, in which
the K257 amine forms a hydrogen bond with the D308
carboxyl group. This decrease is predicted by our mechanism.
Note that classical force fields cannot model instantaneous

Figure 7. Core-set Markov model of the conformational dynamics of
protonated holo-langerin. A, free energy surfaces from the 2D projections
of protonated holo-langerin trajectories onto the first two time-
independent components (tICs). Solid lines, transition regions between the
five metastable states connected by the four slowest dynamic processes. B,
projections of cluster G (green) and O (orange) into the space of the first two
tICs. C, implied time scales of the core-set Markov model. The colors of the
processes match the transition regions drawn into (A).

EDITORS’ PICK: pH-dependent calcium affinity in langerin

J. Biol. Chem. (2021) 296 100718 7

shifts in the electron density due to the formation of hydrogen
bonds. Thus, the rupture force in the G (green) conformation
might actually be somewhat lower. If the Ca2+-coordinating
residue D308 is protonated, corresponding to a situation in
which the proton is transferred from K257 to D308, the
rupture force is about 150 kJ/(mol nm) lower than in the
neutral system.

The same is observed when one of the other two Ca2+-
coordinating residues is protonated. A drastic reduction in the
rupture force is observed, when the experiment is started from
a state where the long-loop is unfolded. This is expected, as
one of the Ca2+-coordinating residues E285 is removed from
the cage of the binding site in this arrangement. The rupture
force for the mutant E261D (started from an analogon of the G
conformation) and the mutant H294A are in the same range as
for the neutral wild-type langerin.

Of note, the rupture forces for K257A mutants are insensitive
toward the modeled state of H294. The binding capability is
virtually the same, no matter if H294 is neutral, protonated, or
mutated. This substantiates the importance of K257 to transport
a protonation signal to the Ca2+-binding site.

Comparison with experimental data

The Ca2+-dissociation constant of wildtype langerin at pH 7 is
Kd = 105 ± 15 μM and increases to Kd = 800 ± 150 μM at pH 6
(17), as determined by isothermal titration calorimetry (ITC).
These dissociation constants correspond to binding free energies
of ΔGpH 7 = −22.9 kJ/mol, and ΔGpH 6 = −17.8 kJ/mol at T = 300
K, yielding a pH sensitivity of ΔΔG = ΔGpH 6 − ΔGpH 7 = 5.1
kJ/mol (Fig. 9). By contrast the dissociation constants of the
H294A mutant, in which the pH sensor H294 is removed, are
Kd = 35 ± 15 μM at pH 7 (ΔGpH 7 = −25.6 kJ/mol) and Kd =
125 ± 5 μM at pH 6 (ΔGpH 6 = −22.4 kJ/mol), corresponding to a
reduced pH sensitivity of ΔΔG = 3.2 kJ/mol (17) (Fig. 9). Our
mechanism so far explains the pH sensitivity due to the pH
sensor H294. The fact that the H294A mutant exhibits a
residual pH sensitivity indicates that langerin has a second pH
sensor.

To convince ourselves of the robustness of these results, we
remeasured the dissociation constants of wildtype langerin
(see Supporting information). We obtained Kd = 113 ± 14 μM
at pH 7 (ΔGpH 7 = −22.6 kJ/mol) and Kd = 802 ± 150 μM at pH
6 (ΔGpH 6 = −17.8 kJ/mol), yielding a pH sensitivity of ΔΔG =
4.8 kJ/mol (Fig. 9). This is in excellent agreement with our
previous results.

Four residues are central to our mechanism: H294, K257,
D308, and E261. D308 directly coordinates to Ca2+and is
therefore not a suitable candidate for site-directed mutagen-
esis. In contrast to H294A, the pH sensitivity of K257A could
not be determined because the protein precipitated at pH 7.
However, both mutants have a higher Ca2+ affinity than
wildtype langerin at pH 6, which previously could not be
explained. The overall higher Ca2+ affinity in the K257A
mutant is predicted by our mechanism, because the K257–
D308 hydrogen bond that destabilizes the Ca2+ coordination
cannot be formed in the absence of the K257 side chain. The
H294A mutant has the K257 side chain, and the conformation
in which K257 is in the vicinity of D308 (Fig. 6) can in principle
be formed. However, in our simulations of H294A we find that

Figure 8. Constant-velocity steered-MD. A, pull coordinate defined as the
distance vector between Ca2+ and the center of mass of the Cα-atoms of
residues 257, 264, 281, 282, 293, and 294. B, maximal pulling force observed
acting on Ca2+ during simulations of langerin in various states as notched
box representation. The orange line represents the median, while the box
enframes the interquartile range. The box notches indicate the 95% confi-
dence interval on the median. Points lying beyond 1.5 times the edges of
the box are regarded as outliers (+), and the whiskers mark the data range
without outliers. C, example for a force trajectory with a rupture event at
about 12 ns. Maximum force indicated by an arrow.

Figure 9. Ca2+ binding free energies under standard conditions in kJ/
mol. Calculated as ΔG = −RTln (Kd), where R = 8.314 J/(K mol) is the gas
constant, T = 300 K is the temperature, and Kd in units of mol/l are the
experimentally determined dissociation constants. Measurements at pH 6
(blue) and pH 7 (orange) with experimental uncertainties indicated with
error bars and pH sensitivities in kJ/mol calculated as ΔΔG = ΔGpH 6 − ΔGpH 7
(red).

EDITORS’ PICK: pH-dependent calcium affinity in langerin

8 J. Biol. Chem. (2021) 296 100718

the K257 side chain is in the vicinity of the D308 side chain in
only 1.7% of the simulated structures, which might explain the
higher Ca2+ affinity of the H294A mutant (see Supporting
information).

Besides H294 and K257, residue E261 is important for the
stabilization of the G (green) conformation, which is respon-
sible for lowering the Ca2+ affinity. However, it also stabilizes
the cluster O (orange), which is not expected to increase the
Ca2+ affinity, because K257 forms a hydrogen bond with E261
rather than with D308 in this conformation. We therefore
predicted that mutating E261 has little effect on the pH
sensitivity. We measured the Ca2+-dissociation constants for
the E261D mutant at pH 6 and pH 7 by ITC (see Supporting
information), and the results confirm our prediction. The
dissociation constants of the E261D mutant are Kd = 108 ± 11
μM at pH 7 (ΔGpH 7 = −22.8 kJ/mol) and Kd = 742 ± 141 μM at
pH 6 (ΔGpH 6 = −18.0 kJ/mol), yielding a pH sensitivity of
ΔΔG = 4.8 kJ/mol (Fig. 9).

Long-loop unfolding

So far, our mechanism explains how Ca2+ is destabilized in
the binding pocket of holo-langerin. However, if the proton is
transferred from K257 to D308, the mechanism also has pro-
found effects on apo-langerin. In holo-langerin the long-loop
is stabilized in a well-defined conformation (folded long-loop
conformation) by E285, which coordinates to Ca2+. In apo-
langerin this interaction is not possible, and the long-loop
spontaneously unfolds in our simulations as shown by the
RMSD evolution in Figure 10B. Similar long-loop unfolding
has been observed in the crystal structures of other C-type
lectins, like tetranectin (53), TC14 (54), or MBP (55). To es-
timate the unfolding rate, we conducted 30 to 60 simulations
(see Supporting information) for each of the following

protonation states of apo-langerin: neutral, H294 protonated,
H294 and E285 protonated, H294 and E293 protonated, and
H294 and D308 protonated, each of them started in the folded
conformation. In four of the five protonation states 44% to 54%
of all trajectories unfold within 220 ns simulation time, as
determined by visual inspection (Fig. 10C, blue dots). The
carboxyl group D308 is critical for the stabilization of the
folded loop conformation in the absence of Ca2+ by forming
hydrogen bonds with the N287 side chain, as well as with the
backbone amide-hydrogen of N287 and N288 (Fig. 10A). If
D308 is protonated, all three hydrogen bonds are much
weaker, and consequently the long-loop unfolds at a higher
rate (75% within 220 ns).

Long-loop unfolding often occurs via an intermediate
conformation, in which the hydrogen bonds with the backbone
amides of N287 and N288 are broken, while the hydrogen
bond to the N287 side chain is still possible. In this interme-
diate form the loop is more flexible than in the fully folded
state, but the characteristic turns in the loop backbone are still
largely present, and we observe refolding to the fully folded
state in some of the trajectories. The transition to the fully
unfolded conformation occurs when one or more of the
backbone torsion angles in the long-loop rotate and the
hydrogen bond between the side chains of D308 and N287
breaks. This transition is irreversible on the timescale of our
simulations.

To corroborate our visual analysis of the simulation end
points, we determined the time of the unfolding event by four
additional criteria: the mean between last fully folded frame
and first fully unfolded frame determined by visual inspection,
the Cα-RMSD of the long-loop residues exceeds 0.2 nm, and
breaking of the hydrogen bonds between the D308 carboxyl
group or the backbone amide-hydrogen of N287 and N288. All
four criteria confirm the first analysis (Fig. 10C).

Figure 10. Long-loop unfolding in apo-langerin. A, example structures for a fully folded (A1), intermediate (A2), partially unfolded (A3), and fully unfolded
(A4) state. B, example trajectory of the long-loop Cα-RMSD; 22 ns, intermediate state; 30 ns, unfolding event. C, percentage of unfolded trajectories within
220 ns determined by: last folded frame (visual), mean of last folded and first unfolded frame (visual mean), RMSD > 0.2 nm, and hydrogen bonds N287m–
D308s (287m) and N288m–D308s (288m). D, decay plot of folded trajectories (last folded frame) and exponential fit (dashed line ±σ), H294+: H294 pro-
tonated, D308+: H294 and D308 protonated.

EDITORS’ PICK: pH-dependent calcium affinity in langerin

J. Biol. Chem. (2021) 296 100718 9

If E285 is protonated, a hydrogen bond between the proton-
ated carboxyl group of E285 and the unprotonated carboxyl
group of D308 stabilizes a partially folded loop structure, such
that for some criteria we observe even fewer unfolding events
than by the simple visual analysis for this system. We determined
the half-life periods t1/2 of the folded states from the decay plots
of the folded trajectories (see Supporting information). Inde-
pendent of the criterion, the decay is fastest, when D308 is
protonated. In particular, unfolding is over twice as fast if D308
is protonated than if only H294 is protonated (t1/2 = 218 versus
93 ns, Fig. 10D). Some of the decays deviate from a single-
exponential decay, hinting at a more complex underlying
unfolding mechanism.

Since the folded conformation binds Ca2+ much more
strongly than the unfolded conformation (Fig. 8), the equilib-
rium between folded and unfolded long-loop is critical for the
overall Ca2+ affinity. Thus, the protonation of D308 has a 2-
fold effect: First, it destabilizes the Ca2+ in the binding
pocket. Second, after the Ca2+ has left the binding pocket, it
destabilizes the folded loop conformation and thereby reduces
the likelihood of Ca2+ rebinding.

The second pH sensor

In the ITC experiments the H294A mutant exhibits a pH
sensitivity of ΔG = 3.2 kJ/mol, even though the pH sensor
H294 is missing (17). This suggests that langerin has a second
pH sensor. To convince ourselves that this residual pH
sensitivity is indeed due to a second pH sensor, we checked
whether K257 forms another potentially pH-sensitive
hydrogen bond in the H294A mutant that could replace the
pH-sensitive K257–H294 hydrogen bond and explain the re-
sidual pH sensitivity. In our simulations of the H294A mutant,
K257 does not form any highly populated hydrogen bond.
With 13% population the hydrogen bond between the side
chain of K257 and the main-chain carbonyl group of E293 is
the most frequently formed hydrogen bond. However, in
wildtype langerin it is formed with the same frequency. All
other hydrogen bonds of K257 are populated with less than
5%. Thus, the experimentally determined pH sensitivity in the
H294A mutant does indeed indicate that wildtype langerin has
a second pH sensor.

There are two possible mechanisms to explain the residual
pH sensitivity. First, langerin could have a second allosteric pH
sensor that, similar to H294, is activated by protonation from
the surrounding solvent prior to the dissociation of Ca2+.
Second, the carboxyl groups of the Ca2+-coordinating residues
E285, E293, and D308 could form a dyad with an effective pKa

that makes it sensitive to a pH change from 7 to 6. That is,
after initial dissociation of Ca2+, one of the coordinating resi-
dues (Fig. 2D) is protonated and the protonated state is sta-
bilized as a hydrogen bond to an unprotonated carboxyl group
(56). We first discuss the possibility of a second allosteric pH
sensor before investigating whether a dyad is possible.

H229 is the only other histidine residue in langerin. It is
solvent exposed and will indeed be protonated when the pH
changes from 7 to 6. However, H229 is located far away from

the Ca2+-binding site, which makes an allosteric influence on
the Ca2+-binding affinity unlikely (Fig. 1). This is further
corroborated by the previously published mutual information
analysis of the allosteric network in langerin and by chemical
shift perturbation experiments (17). In the extended simula-
tion data set used for this study, protonation of H229 has a
local effect on the lower protein region including the α1 helix,
but these conformational shifts are well separated from the
Ca2+-binding site. We therefore exclude H229 as a potential
pH sensor.

Other candidates for allosteric pH sensors are aspartic and
glutamic acids, whose pKa (in water at 25 �C 4.15 for E and
3.71 for D) (27) can be shifted by several units by the local
environment in the protein, such that their carboxyl groups
could become sensitive to a pH change from 7 to 6 (57). Apart
from the Ca2+-coordinating residues E285, E293, and D308,
langerin has nine aspartic or glutamic acids. Using PROPKA
3.1 (58, 59), we calculated the distribution of the pKa values for
these residues in holo-langerin in the neutral and the H294-
protonated state, as well as for apo-langerin in the neutral
and the H294-protonated state. The distributions are based on
10,000 to 30,000 structures extracted from the simulations of
the corresponding systems and are reported along with the
mean and the standard deviation in the Supporting
information. The mean pKa value of all tested residues is
below 5.0, and none of the distributions reaches into the
critical region between pH 6 and 7, indicating that none of
them acts as pH sensor. We therefore conclude that the re-
sidual pH sensitivity in langerin is not generated by a second
allosteric pH sensor.

PROPKA 3.1 can detect the coupling between two carboxyl
groups that are in close vicinity. It returns two alternative pKa

values. In alternative a, one carboxyl group is protonated first
and stabilized by the second (unprotonated) carboxyl group, in
alternative b the situation is reversed. Figure 11A shows the
pKa distribution of the Ca2+-coordinating residues E285, E293,
and D308 as well as the pKa distribution of H294 for apo-
langerin in the neutral and the H294-protonated state. No
coupling between E285, E293, and D308 was detected by
PROPKA 3.1. Their mean pKa value is below 5.0, and none of
the distributions reaches into the critical region between pH 6
and 7. By contrast, the mean pKa values of H294 are about 6 in
the neutral and the H294 protonated states, and the pKa dis-
tributions have a large overlap with the critical region between
pH 6 and 7. Thus, from these simulations one would conclude
that langerin does not have a protonatable dyad in the Ca2+-
binding pocket and that only H294 is sensitive to a pH change
from 7 to 6.

However, in the neutral and the H294-protonated states, the
carboxyl group of the Ca2+-coordinating residues are nega-
tively charged and repel each other, making structures in
which the two carboxyl groups are close enough to potentially
stabilize a protonation unlikely. We therefore also calculated
the pKa distribution for the following protonation states of
apo-langerin: H294 and E285 protonated (Fig. 11B), H294 and
E293 protonated (Fig. 11C), and H294 and D308 protonated
(Fig. 11D). For these protonation states, substantial coupling

EDITORS’ PICK: pH-dependent calcium affinity in langerin

10 J. Biol. Chem. (2021) 296 100718

between the Ca2+-coordinating residues is detected. D308 and
E285 couple in 74% of all structure if E285 is protonated and in
56% of all structures if D308 is protonated. When E293 is
protonated, E293 and D308 couple in 27% of all structures.

These couplings give rise to a strong shift of the pKa distri-
butions compared with neutral apo-langerin. We report the
distributions of both pKa estimates, which should be interpreted
as limiting cases of the true distribution. If D308 is protonated,
the pKa distributions of D308 for both limiting cases reach well
into the critical region between pH 6 and 7, and for alternative a
we obtain a mean pKa value in coupling frames of 6.4 ± 0.7
(Fig. 11D). If E285 is protonated, the coupling to D308 in alter-
native b yields a mean pKa value of 6.2 ± 0.6 for E285, and the
corresponding distribution of all frames is almost centered on the
critical region between pH 6 and 7 (Fig. 11B). The effect is not as
strong, if E293 is protonated (Fig. 11B). For alternative a the pKa

distribution of D308 reaches slightly into the region between pH

6 and 7, and for alternative b the pKa distribution of E293 reaches
into this region.However, the corresponding pKa values, 5.2 ± 0.7
and 5.5 ± 0.7, are clearly lower than those for the coupling be-
tween D308 and E285.

These results show that, in the absence of Ca2+, D308 and
E285 can form a protonated dyad with an effective pKa that is
likely high enough to sense a pH change from 6 to 7. We
therefore believe that the second pH sensor that is active in the
H294A mutant is the dyad between D308 and E285. In wild-
type langerin the pH sensor H294 and this dyad would amplify
each other: the K257–D308 hydrogen bond increases the
probability that D308 is protonated, and, after Ca2+ has
escaped, the protonated D308 is stabilized by the D308–E285
dyad. Constant-pH simulations (60–62) or mixed quantum
mechanics/molecular mechanics simulations (63, 64) could be
used to verify whether D308 and E285 indeed form a dyad and
constitute the second pH sensor.

Note that the conformational fluctuations in the Ca2+-
binding pocket give rise to large fluctuations in the instanta-
neous pKa value (Fig. 11) with some distributions covering
more than six pKa units. Thus, knowing the underlying
conformational distribution is essential for a reliable estimate
of the overall pKa value.

Comparison with other C-type lectins

To gain insight into whether the proposed mechanism for
the pH sensitivity is found in other C-type lectins, we
compared the sequences of human langerin with mouse lan-
gerin and with human variants of 15 related C-type lectins
(Fig. S31). All 16 proteins exhibit the typical C-type-lectin fold,
as evidenced by crystal structures (Fig. S32). The residues
D308 and E285, which form the proposed second pH sensor,
are highly conserved. However, one should be careful to
interpret this as evidence for a conserved second pH sensor,
because these residues are also essential for the coordination of
Ca2+ and might be conserved for this reason.

The H294–K257 motif, the primary pH sensor in langerin, is
not conserved in our sequence alignment. Thus, the proposed
mechanism for the pH sensitivity of the Ca2+ affinity via H294
protonation does not seem to be the most widespread mech-
anism to sense a change in the environment in C-type lectins.
But the sequence alignment points to possible other mecha-
nisms for sensing a change in the environment.

The selectines P-, E-, and LSECtin share the lysine K257
with langerin in the same position. In addition, the preceding
threonine T256 in langerin is replaced by an arginine in these
three proteins, while H294 is replaced by an aspartic acid. Note
that, in LSECtin Ca2+ affinity increases if the pH decreases
(26). It is, however, unclear whether this reversed pH sensi-
tivity is brought about by the change of the H294–K257 motif.
Other lysine residues in the short-loop in comparable posi-
tions as K257 in langerin can also be found in the macrophage
C-type lectin, lung surfactant protein (SP), CD23a, Endo180,
and the macrophage mannose receptor.

H294 only appears in human and mouse langerin, and is
replaced by aspartic acid in most of the other C-type lectins.
Instead, we find a Ca2+ in the position where langerin has the

Figure 11. Calculation of pKa values with PROPKA 3.1. A, pKa distribu-
tions for the neutral (blue) and the H294 protonated (orange) apo-systems.
B, distributions for residues involved in coupling, neutral versus E285 pro-
tonated (green), C, neutral versus E293 protonated (red), and D, neutral
versus D308 protonated (purple). Alternative distributions due to the
coupling left and right. Percentages of coupling frames are placed over the
binding site illustrations.

EDITORS’ PICK: pH-dependent calcium affinity in langerin

J. Biol. Chem. (2021) 296 100718 11

H294–K257 hydrogen bond in 6 of 15 lectins in our analysis
(ASGPR, MBP, DCSIGN, DCSIGNR, SP, SR). This Ca2+ would
be partially solvent exposed even when a large entity (such as a
pathogen) is bound to the C-type lectin (Fig. S32). One
therefore might speculate that these lectins do not sense a
change in pH but rather a change in Ca2+ concentration.

Several C-type lectins have histidines in other positions
close to the Ca2+-binding site, which might act as pH sensors
via a different mechanism. As already mentioned, ASGPR has
a histidine residue that is close to the Ca2+ in the primary
Ca2+-binding site and thereby acts as pH sensor. Furthermore,
dectin-2 and the macrophage mannose receptor have a histi-
dine residue as a neighbor to a Ca2+-coordinating residue, and
Endo180 and the macrophage C-type lectin have histidines at
the beginning of the long-loop. Whether these histidines act as
pH sensors can be tested by mutating the histidine residue and
measuring the pH sensitivity of the Ca2+ affinity and of the
carbohydrate affinity. Once a residue is confirmed as a pH
sensor, the approach presented in this contribution can be
used to propose a molecular mechanism for the pH sensitivity.

Conclusion

We have described the consequences of a H294 proton-
ation in langerin and its implications for its biological func-
tion as an endocytic pattern recognition receptor. When
langerin enters the acidic environment of an endosome, it
releases its Ca2+ cofactor and subsequently its pathogenic
cargo, triggered by a moderate change in pH. The Ca2+-
binding site is blocked from direct solvent access by the
pathogen, and additionally, the Ca2+-coordinating residues
have low protonation probabilities in the presence of calcium.
Instead, H294 acts as an accessible site, sensing already a
change in pH from 7 to 6 (17).

In this contribution, we have uncovered a mechanism in
which protonation of H294 perturbs the hydrogen-bonded
network of the surrounding residues and alters the confor-
mational ensemble of langerin. A new conformation becomes
accessible, in which the protonated K257 side chain forms a
hydrogen bond with the Ca2+-coordinating D308, thereby
moving a positive charge into the vicinity of the Ca2+-binding
site. This alone can facilitate the Ca2+ release as shown by the
reduction in the required force to pull out the ion from its
binding site in our steered-MD experiments.

The close availability of K257 as a proton source next to the
Ca2+-binding site possibly results in a proton transfer to the
side chain of D308. At least it has been shown in a theoretical
model that the neutral form of a lysine–aspartate pair can be
favored over the salt bridge, if the dielectric constant of the
medium is low as it can be the case in the environment of a
protein (42). Thus, protonation of the initial pH sensor H294
likely triggers a cascade of events that ensures the unbinding of
Ca2+: K257 transfers a proton to D308, protonation of D308
competes drastically with Ca2+ binding and, after Ca2+ is
expelled, the protonation of D308 is stabilized by a dyad with
E285. Protonation of D308 additionally accelerates the
unfolding of the long-loop, preventing Ca2+ from rebinding.

For langerin’s role as endocytic pattern recognition receptor
a fast and irreversible Ca2+ release is essential. On the cell
surface, Ca2+ needs to be tightly bound such that the receptor
is continuously ready to bind to pathogens. Yet, after endo-
cytosis langerin is probably recycled within minutes (13, 65).
This leaves little time for the release of the pathogen, which
must be preceded by the unbinding of Ca2+. The mechanism
that we proposed is an elegant solution to these contradicting
requirements: the Ca2+-unbinding rate is increased by the
K257–D308 hydrogen bond, and after the initial Ca2+ release, a
transfer of the proton from K257 to D308 triggers a transition
to a conformation to which Ca2+ cannot rebind.

Note that, although our results show that the K257–D308
interaction decreases the stability of Ca2+ in the binding pocket
and that the protonation of D308 triggers the long-loop
unfolding, the transfer of a proton from K257 to D308 is
currently an assumption. More work is needed to study the
equilibrium between the initial and the end states of the pro-
ton transfer. Computationally, this could be tackled by mixed
quantum mechanics/molecular mechanics calculations (63,
64), free-energy calculations with classical force fields, or by
constant pH simulations (60–62).

Another concern is that the point charge Ca2+ model might
not capture the energetics of Ca2+ binding accurately enough,
because the point charge model does not enforce coordina-
tion and neglects polarization effects. In our study, we tried to
minimize the influence of these force-field effects by
analyzing the differences between two protonation states.
However, more elaborate Ca2+ models such as reparame-
trized point-charge models (66, 67), multisite models (68), or
polarizable models (69) are available and should be used, for
example, for the computation of state-specific Ca2+ binding
free energies.

Our close atomistic inspection of langerin and its conforma-
tional shift upon protonation gives insight into howpHsensitivity
can be incorporated in biological systems. What seemed like a
general conformational shift upon protonation in Figure 3 could
be focused to a specific rearrangement of a side chain (K257) to
transport the information from the primary pH sensor (H294) to
the allosterically regulated site (Ca2+-binding site). Even though
the H294–K257 motif is not typical for C-type lectins, many of
these proteins exhibit a highly specific pH sensitivity and have
potential pH sensors in the vicinity of the primary Ca2+-binding
site. Our approach can serve as a road map to elucidate the
mechanism of pH sensitivity in these systems.

Experimental procedures

Molecular dynamics simulations

We used the software package GROMACS (70–76) in setup
and production to simulate the considered systems in the
NPT-ensemble (1 bar, 300 K) with AMBER99SB-ILDN force-
field parameters (77) and the TIP3P water model (78). Prior to
production, starting structures were put into a sufficiently
large simulation box, solvated, neutralized, and equilibrated for
several hundred picoseconds. For further details refer to the
Supporting information.

EDITORS’ PICK: pH-dependent calcium affinity in langerin

12 J. Biol. Chem. (2021) 296 100718

Protein expression and purification

All standard chemicals and buffers used within this work
were purchased from Sigma-Aldrich or Carl Roth if not indi-
cated otherwise.

Human langerin CRD WT and all mutants (amino acids
193–328) were cloned from a codon-optimized langerin gene
for bacterial expression (GenScript) into a pET-28a vector
(GenScript) with His-tag, T7 promoter, and Kanamycin resis-
tance. Insoluble expression was performed in E. coli BL21
(Thermo Fisher Scientific) in LB medium or in isotope-labeled
M9 medium at 37 �C. Protein expression was induced by add-
ing 1mM IPTG. Bacteria were harvested 3 to 4 h after induction
by centrifugation at 4000g for 30 min. Cell pellets were lysed in
lysis buffer (50 mM Tris, 150 mM NaCl, 10 mM MgCl2, 0.1%
Tween-20, pH 8) with 1 mg ml−1 lysozyme and 100 μg ml−1

DNase I (Applichem) for at least 3 h at RT. Inclusion bodieswere
washed twice with 20 to 30 ml lysis buffer and twice with water
to remove soluble proteins. Inclusion bodies were denatured in
20ml of denaturation buffer (6Mguanidiniumhydrochloride in
100 mM Tris, pH 8) with 0.01% β-mercaptoethanol for at least
1 h at 37 �C by shaking or overnight at 4 �C by rotating. After
centrifuging (15,000g, 90 min, 4 �C), the supernatant was slowly
diluted 1:10 with langerin refolding buffer (0.4 M L-arginine in
50 mM Tris, 20 mM NaCl, 0.8 mM KCl, pH 7.5) with 1 mM
reduced glutathione (GSH) and 0.1 mM oxidized glutathione
(GSSG) while stirring at 4 �C for at least 24 h. The refolded
protein solution was dialyzed against 2 l TBS buffer (50 mM
Tris, 150mMNaCl, 5mMCaCl2) and subsequently centrifuged
to remove precipitated protein (15,000g, 90 min, 4 �C). The
supernatant was purified via Ni-NTA agarose affinity chroma-
tography and the elution fractions were pooled and dialyzed
against MES (25mMMES, 40mMNaCl, pH 6) or HBS (25mM
Hepes, 150 mM NaCl, pH 7) buffer. Precipitated protein was
removed by centrifugation (15,000g, 90 min, 4 �C), and the su-
pernatant was used for experiments. Note that this procedure
varies slightly from the one in our previous paper (17).

ITC measurements

ITC experiments were performed using a MicroCal iTC200
(Malvern Instruments) using either chelex-filtered HBS
(25 mM Hepes, 150 mM NaCl, pH 7) or low-salt MES buffer
(25 mM MES, 40 mM NaCl, pH 6). The titrant was dissolved
in the same buffer as was used for dialysis of the protein
sample. Using the iTC200, the titrant CaCl2 (15 mM stock)
was added in defined steps of 1 to 2.5 μl to 80 μl protein so-
lution at 298 K while stirring at 750 rpm. The differential heat
of each injection was measured and plotted against the molar
ratio. The data were fitted to a one-set of sites binding model
assuming a Hill coefficient of 1. Owing to the low c-values of
the measurements (c < 5), the enthalpy could not be deter-
mined reliably. See also Figs. S29 and S30.

Data availability

The data that support the findings of this study are avail-
able from the corresponding author upon reasonable request.

All remaining data are contained within the article and its
supporting information. The software used for common-
nearest-neighbor clustering and core-set Markov-state
model estimation is publicly available on GitHub (https://
github.com/janjoswig/CommonNNClustering).

Supporting information—This article contains supporting
information (16, 36, 38, 58, 59, 70–90).

Acknowledgments—Funded by the Deutsche For-
schungsgemeinschaft (DFG, German Research Foundation) under
Germany’s Excellence Strategy – EXC 2008 – 390540038 – Uni-
SysCat. The authors thank the North-German Supercomputing
Alliance (HLRN), the Paderborn Center for Parallel Computing
PC2, and the ZEDAT of the FU Berlin for computing time. Also
funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) through CRC 765, and DFG RA1944/6-1.
We thank the Max Planck Society for support.

Author contributions—J.-O. J. performed the computer experi-
ments, except for the simulations of the long-loop unfolding,
analyzed and interpreted the data, made all figures, and drafted and
revised the manuscript. J. A. performed the computer experiments
for the long-loop unfolding and analyzed the data. H. Z. performed
the laboratory experiments and analyzed the data. C. R. interpreted
the data of the laboratory experiments and drafted and revised the
corresponding part of the manuscript. B. G. K. designed the study,
interpreted the data, and drafted and revised the manuscript.

Conflict of interest—The authors declare that they have no conflicts
of interest with the contents of this article.

Abbreviations—The abbreviations used are: ITC, isothermal titra-
tion calorimetry; MD, molecular dynamics; tIC, time-independent
component.

References

1. Valladeau, J., Duvert-Frances, V., Pin, J. J., Dezutter- Dambuyant, C.,
Vincent, C., Massacrier, C., Vincent, J., Yoneda, K., Banchereau, J.,
Caux, C., Davoust, J., and Saeland, S. (1999) The monoclonal antibody
DCGM4 recognizes Langerin, a protein specific of Langerhans cells, and
is rapidly internalized from the cell surface. Eur. J. Immunol. 29, 2695–
2704

2. Valladeau, J., Ravel, O., Dezutter-Dambuyant, C., Moore, K., Kleij-
meer, M., Liu, Y., Duvert-Frances, V., Vincent, C., Schmitt, D.,
Davoust, J., Caux, C., Lebecque, S., and Saeland, S. (2000) Langerin, a
novel C-type lectin specific to Langerhans cells, is an endocytic re-
ceptor that induces the formation of birbeck granules. Immunity 12,
71–81

3. Zelensky, A. N., and Gready, J. E. (2003) Comparative analysis of struc-
tural properties of the C-type- lectin-like domain (CTLD). Proteins 52,
466–477

4. Zelensky, A. N., and Gready, J. E. (2005) The C-type lectin-like domain
superfamily. FEBS J. 272, 6179–6217

5. Ng, W. C., Londrigan, S. L., Nasr, N., Cunningham, A. L., Turville, S.,
Brooks, A. G., and Reading, P. C. (2016) The C-type lectin Langerin
functions as a receptor for attachment and infectious entry of influenza A
virus. J. Virol. 90, 206–221

6. van der Vlist, M., deWitte, L., de Vries, R. D., Litjens, M., de Jong, M. A.
W. P., Fluitsma, D., de Swart, R. L., and Geijtenbeek, T. B. H. (2011)
Human Langerhans cells capture measles virus through Langerin and

EDITORS’ PICK: pH-dependent calcium affinity in langerin

J. Biol. Chem. (2021) 296 100718 13

present viral antigens to CD4+ T cells but are incapable of cross-pre-
sentation. Eur. J. Immunol. 41, 2619–2631

7. de Witte, L., Nabatov, A., Pion, M., Fluitsma, D., de Jong, M. A. W. P., de
Gruijl, T., Piguet, V., van Kooyk, Y., and Geijtenbeek, T. B. H. (2007)
Langerin is a natural barrier to HIV-1 transmission by Langerhans cells.
Nat. Med. 13, 367–371

8. de Jong, M. A., Vriend, L. E., Theelen, B., Taylor, M. E., Fluitsma, D.,
Boekhout, T., and Geijtenbeek, T. B. (2010) C-type lectin Langerin is a β-
glucan receptor on human Langerhans cells that recognizes opportunistic
and pathogenic fungi. Mol. Immunol. 47, 1216–1225

9. Hunger, R. E., Sieling, P. A., Ochoa, M. T., Sugaya, M., Burdick, A. E.,
Rea, T. H., Brennan, P. J., Belisle, J. T., Blauvelt, A., Porcelli, S. A., and
Modlin, R. L. (2004) Langerhans cells utilize CD1a and Langerin to effi-
ciently present nonpeptide antigens to T cells. J. Clin. Invest. 113, 701–
708

10. van Dalen, R., Fuchsberger, F. F., Rademacher, C., van Strijp, J. A., and van
Sorge, N. M. (2020) A common genetic variation in langerin (CD207)
compromises cellular uptake of Staphylococcus aureus. J. Innate Immun.
12, 191–200

11. Ribeiro, C. M. S., Sarrami-Forooshani, R., Setiawan, L. C., Zijlstra-Wil-
lems, E. M., van Hamme, J. L., Tigchelaar, W., van der Wel, N. N.,
Kootstra, N. A., Gringhuis, S. I., and Geijtenbeek, T. B. H. (2016) Receptor
usage dictates HIV-1 restriction by human TRIM5α in dendritic cell
subsets. Nature 540, 448–452

12. Sorkin, A., and von Zastrow, M. (2002) Signal transduction and endo-
cytosis: Close encounters of many kinds. Nat. Rev. Mol. Cell Biol. 3, 600–
614

13. Cote, R., Lynn Eggink, L., and Kenneth Hoober, J. (2017) CLEC receptors,
endocytosis and calcium signaling. AIMS Allergy Immunol. 1, 207–231

14. Onizuka, T., Shimizu, H., Moriwaki, Y., Nakano, T., Kanai, S., Shimada, I.,
and Takahashi, H. (2012) NMR study of ligand release from asialogly-
coprotein receptor under solution conditions in early endosomes. FEBS J.
279, 2645–2656

15. Gerasimenko, J. V., Tepikin, A. V., Petersen, O. H., and Gerasimenko, O.
V. (1998) Calcium uptake via endocytosis with rapid release from acidi-
fying endosomes. Curr. Biol. 8, 1335–1338

16. Feinberg, H., Powlesland, A. S., Taylor, M. E., and Weis, W. I. (2010)
Trimeric structure of langerin. J. Biol. Chem. 285, 13285–13293

17. Hanske, J., Aleksic, S., Ballaschk, M., Jurk, M., Shanina, E., Beerbaum, M.,
Schmieder, P., Keller, B. G., and Rademacher, C. (2016) Intradomain
allosteric network modulates calcium affinity of the C-type lectin receptor
langerin. J. Am. Chem. Soc. 138, 12176–12186

18. Stambach, N. S., and Taylor, M. E. (2003) Characterization of carbohy-
drate recognition by langerin, a C-type lectin of Langerhans cells. Gly-
cobiology 13, 401–410

19. Loeb, J. A., and Drickamer, K. (1988) Conformational changes in the
chicken receptor for endocytosis of glycoproteins. J. Biol. Chem. 263,
9752–9760

20. Wragg, S., and Drickamer, K. (1999) Identification of amino acid residues
that determine pH dependence of ligand binding to the asialoglycoprotein
receptor during endocytosis. J. Biol. Chem. 274, 35400–35406

21. Mullin, N. P., Hall, K. T., and Taylor, M. E. (1994) Characterization of
ligand binding to a carbohydraterecognition domain of the macrophage
mannose receptor. J. Biol. Chem. 269, 28405–28413

22. Guo, Y., Feinberg, H., Conroy, E., Mitchell, D. A., Alvarez, R., Blixt, O.,
Taylor, M. E., Weis, W. I., and Drickamer, K. (2004) Structural basis for
distinct ligand-binding and targeting properties of the receptors DC-
SIGN and DC-SIGNR. Nat. Struct. Mol. Biol. 11, 591–598

23. Tabarani, G., Thépaut, M., Stroebel, D., Ebei, C., Vivès, C., Vachette, P.,
Durand, D., and Fieschi, F. (2009) DC-SIGN neck domain is a pH-sensor
controlling oligomerization. SAXS and hydrodynamic studies of extra-
cellular domain. J. Biol. Chem. 284, 21229–21240

24. Probert, F., Mitchell, D. A., and Dixon, A. M. (2014) NMR evidence for
oligosaccharide release from the dendritic-cell specific intercellular
adhesion molecule 3-grabbing non-integrin-related (CLEC4M) carbohy-
drate recognition domain at low pH. FEBS J. 281, 3739–3750

25. Mitchell, D. A., Fadden, A. J., and Drickamer, K. (2001) A novel mech-
anism of carbohydrate recognition by the C-type lectins DC-SIGN and

DC-SIGNR. Subunit organisation and binding to multivalent ligands. J.
Biol. Chem. 276, 28939–28945

26. Powlesland, A. S., Fisch, T., Taylor, M. E., Smith, D. F., Tissot, B., Dell, A.,
Pöhlmann, S., and Drickamer, K. (2008) A novel mechanism for LSECtin
binding to Ebola virus surface glycoprotein through truncated glycans. J.
Biol. Chem. 283, 593–602

27. Lide, R. D., ed. (2006) CRC Handbook of Chemistry and Physics, 87th Ed,
CRC Press, West Palm Beach, FL

28. Hyland, L. J., Tomaszek, T. A., and Meek, T. D. (1991) Human immu-
nodeficiency virus-1 protease. 2. Use of pH rate studies and solvent ki-
netic isotope effects to elucidate details of chemical mechanism.
Biochemistry 30, 8454–8463

29. Torbeev, V. Y., and Kent, S. B. H. (2012) Ionization state of the catalytic
dyad asp25/250 in the HIV-1 protease: NMR studies of site-specifically
13C labelled HIV-1 protease prepared by total chemical synthesis. Org.
Biomol. Chem. 10, 5887

30. Toulokhonova, L., Metzler, W. J., Witmer, M. R., Copeland, R. A., and
Marcinkeviciene, J. (2003) Kinetic studies on β-site amyloid precursor
proteincleaving enzyme (BACE). J. Biol. Chem. 278, 4582–4589

31. Huang, Y., Yue, Z., Tsai, C.-C., Henderson, J. A., and Shen, J. (2018)
Predicting catalytic proton donors and nucleophiles in enzymes: How
adding dynamics helps elucidate the structure–function relationships. J.
Phys. Chem. Lett. 9, 1179–1184

32. Yamazaki, T., Nicholson, L. K., Torchia, D. A., Wingfield, P., Stahl, S. J.,
Kaufman, J. D., Eyermann, C. J., Hodge, N. C., Lam, P. Y. S., Ru, Y.,
Jadhav, P. K., Chang, C. H., and Weber, P. C. (1994) NMR and X-ray
evidence that the HIV protease catalytic aspartyl groups are protonated in
the complex formed by the protease and a non-peptide cyclic urea-based
inhibitor. J. Am. Chem. Soc. 116, 10791–10792

33. Keller, B. G., and Rademacher, C. (2020) Allostery in C-type lectins. Curr.
Opin. Struct. Biol. 62, 31–38

34. Drickamer, K. (1992) Engineering galactose-binding activity into a C-type
mannose-binding protein. Nature 360, 183–186

35. Drickamer, K., and Taylor, M. E. (2015) Recent insights into structures
and functions of C-type lectins in the immune system. Curr. Opin. Struct.
Biol. 34, 26–34

36. Li, L., Li, C., Zhang, Z., and Alexov, E. (2013) On the dielectric “constant”
of proteins: Smooth dielectric function for macromolecular modeling and
its implementation in DelPhi. J. Chem. Theory Comput. 9, 2126–2136

37. Jolliffe, I. T. (2002) Principal Component Analysis, 2nd Ed, Springer, New
York, NY

38. Scherer, M. K., Trendelkamp-Schroer, B., Paul, F., Pérez-Hernández,
G., Hoffmann, M., Plattner, N., Wehmeyer, C., Prinz, J.-H., and Noé,
F. (2015) PyEMMA 2: A software package for estimation, validation,
and analysis of Markov models. J. Chem. Theory Comput. 11, 5525–
5542

39. Keller, B. G., Daura, X., and van Gunsteren, W. F. (2010) Comparing
geometric and kinetic cluster algorithms for molecular simulation data. J.
Chem. Phys. 132, 074110

40. Lemke, O., and Keller, B. G. (2016) Density-based cluster algorithms for
the identification of core sets. J. Chem. Phys. 145, 164104

41. Lemke, O., and Keller, B. G. (2018) Common nearest neighbor
clustering – a benchmark. Algorithms 11, 19

42. Nagy, P. I., and Erhardt, P. W. (2010) Theoretical studies of salt-bridge
formation by amino acid side chains in low and medium polarity envi-
ronments. J. Phys. Chem. B 114, 16436–16442

43. Schütte, C., Noé, F., Lu, J., Sarich, M., and Vanden- Eijnden, E.
(2011) Markov state models based on milestoning. J. Chem. Phys.
134, 204105

44. Prinz, J.-H., Wu, H., Sarich, M., Keller, B., Senne, M., Held, M., Chodera,
J. D., Schütte, C., and Noé, F. (2011) Markov models of molecular ki-
netics: Generation and validation. J. Chem. Phys. 134, 1–23

45. Prinz, J.-H., Keller, B., and Noé, F. (2011) Probing molecular kinetics with
Markov models: Metastable states, transition pathways and spectroscopic
observables. Phys. Chem. Chem. Phys. 13, 16912

46. Schwantes, C. R., and Pande, V. S. (2013) Improvements in Markov state
model construction reveal many non-native interactions in the folding of
NTL9. J. Chem. Theory Comput. 9, 2000–2009

EDITORS’ PICK: pH-dependent calcium affinity in langerin

14 J. Biol. Chem. (2021) 296 100718

47. Pérez-Hernández, G., Paul, F., Giorgino, T., De Fabritiis, G., and Noé, F.
(2013) Identification of slow molecular order parameters for Markov
model construction. J. Chem. Phys. 139, 15102

48. Izrailev, S., Stepaniants, S., Isralewitz, B., Kosztin, D., Lu, H., Molnar, F.,
Wriggers, W., and Schulten, K. (1998). In: Deuflhard, P., Hermans, J.,
Leimkuhler, B., Mark, A. E., Reich, S., Skeel, R. D., eds. Computational
Molecular Dynamics: Challenges, Methods, Ideas, Springer-Verlag, Berlin:
39–65

49. Dudko, O. K., Hummer, G., and Szabo, A. (2008) Theory, analysis, and
interpretation of single-molecule force spectroscopy experiments. Proc.
Natl. Acad. Sci. U. S. A. 105, 15755–15760

50. Rico, F., Russek, A., González, L., Grubmüller, H., and Scheuring, S.
(2019) Heterogeneous and ratedependent streptavidin–biotin unbinding
revealed by high-speed force spectroscopy and atomistic simulations.
Proc. Natl. Acad. Sci. U. S. A. 116, 6594–6601

51. Cheng, F., Shen, J., Luo, X., Jiang, H., and Chen, K. (2002) Steered mo-
lecular dynamics simulations on the “tail helix latch” hypothesis in the
gelsolin activation process. Biophys. J. 83, 753–762

52. Guzmán, D. L., Roland, J. T., Keer, H., Kong, Y. P., Ritz, T., Yee,
A., and Guan, Z. (2008) Using steered molecular dynamics simu-
lations and single-molecule force spectroscopy to guide the rational
design of biomimetic modular polymeric materials. Polymer 49,
3892–3901

53. Nielbo, S., Thomsen, J. K., Graversen, J. H., Jensen, P. H., Etzerodt, M.,
Poulsen, F. M., and Thøgersen, H. C. (2004) Structure of the plasminogen
kringle 4 binding calcium-free form of the C-type lectin-like domain of
tetranectin. Biochemistry 43, 8636–8643

54. Poget, S. F., Freund, S. M. V. V., Howard, M. J., and Bycroft, M. (2001)
The ligand-binding loops in the tunicate C-type lectin TC14 are rigid.
Biochemistry 40, 10966–10972

55. Ng, K. K. S., Park-Snyder, S., and Weis, W. I. (1998) Ca2+-dependent
structural changes in C-type mannosebinding proteins. Biochemistry 37,
17965–17976

56. Kim, M. O., Blachly, P. G., and McCammon, J. A. (2015) Conforma-
tional dynamics and binding free energies of inhibitors of BACE-1:
From the perspective of protonation equilibria. PLoS Comput. Biol.
11, 1–28

57. Pace, C. N., Grimsley, G. R., and Scholtz, J. M. (2009) Protein ionizable
groups: pK values and their contribution to protein stability and solubi-
lity. J. Biol. Chem. 284, 13285–13289

58. Søndergaard, C. R., Olsson, M. H. M., Rostkowski, M., and Jensen, J. H.
(2011) Improved treatment of ligands and coupling effects in empirical
calculation and rationalization of pKa values. J. Chem. Theory Comput. 7,
2284–2295

59. Olsson, M. H. M., Søndergaard, C. R., Rostkowski, M., and Jensen, J. H.
(2011) PROPKA3: Consistent treatment of internal and surface residues
in empirical pKa predictions. J. Chem. Theory Comput. 7, 525–537

60. Khandogin, J., and Brooks, C. L. (2005) Constant pH molecular dynamics
with proton tautomerism. Biophys. J. 89, 141–157

61. Lee, J., Miller, B. T., Damjanovic, A., and Brooks, B. R. (2015) Enhancing
constant-pH simulation in explicit solvent with a two-dimensional replica
exchange method. J. Chem. Theory Comput. 11, 2560–2574

62. Radak, B. K., Chipot, C., Suh, D., Jo, S., Jiang, W., Phillips, J. C.,
Schulten, K., and Roux, B. (2017) Constant-pH molecular dynamics
simulations for large biomolecular systems. J. Chem. Theory Comput.
13, 5933–5944

63. Paasche, A., Schirmeister, T., and Engels, B. (2013) Benchmark study for
the cysteine–histidine proton transfer reaction in a protein environment:
Gas phase, COSMO, QM/MM approaches. J. Chem. Theory Comput. 9,
1765–1777

64. Duster, A. W., and Lin, H. (2019) Tracking proton transfer through
titratable amino acid side chains in adaptive QM/MM simulations. J.
Chem. Theory Comput. 15, 5794–5809

65. Jonker, C. T. H., Deo, C., Zager, P. J., Tkachuk, A. N., Weinstein, A. M.,
Rodriguez-Boulan, E., Lavis, L. D., and Schreiner, R. (2020) Accurate
measurement of fast endocytic recycling kinetics in real time. J. Cell Sci.
133, jcs231225

66. Yoo, J., Wilson, J., and Aksimentiev, A. (2016) Improved model of hy-
drated calcium ion for molecular dynamics simulations using classical
biomolecular force fields. Biopolymers 105, 752–763

67. Timr, S., Kadlec, J., Srb, P., Ollila, O. H. S., and Jungwirth, P. (2018)
Calcium sensing by recoverin: Effect of protein conformation on ion af-
finity. J. Phys. Chem. Lett. 9, 1613–1619

68. Saxena, A., and Sept, D. (2013) Multisite ion models that improve co-
ordination and free energy calculations in molecular dynamics simula-
tions. J. Chem. Theory Comput. 9, 3538–3542

69. Jing, Z., Liu, C., Cheng, S. Y., Qi, R., Walker, B. D., Piquemal, J.-P., and
Ren, P. (2019) Polarizable force fields for biomolecular simulations:
Recent advances and applications. Annu. Rev. Biophys. 48, 371–394

70. Berendsen, H. J. C., van der Spoel, D., and vanDrunen, R. (1995) GRO-
MACS: A message-passing parallel molecular dynamics implementation.
Comput. Phys. Commun. 91, 43–56

71. Lindahl, E., Hess, B., and van der Spoel, D. (2001) GROMACS 3.0: A package
for molecular simulation and trajectory analysis. J. Mol. Model. 7, 306–317

72. van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., and
Berendsen, H. J. (2005) GROMACS: Fast, flexible, and free. J. Comput.
Chem. 26, 1701–1718

73. Hess, B., Kutzner, C., van der Spoel, D., and Lindahl, E. (2008) GRO-
MACS 4: Algorithms for highly efficient, load-balanced, and scalable
molecular simulation. J. Chem. Theory Comput. 4, 435–447

74. Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R.,
Shirts, M. R., Smith, J. C., Kasson, P. M., van der Spoel, D., Hess, B., and
Lindahl, E. (2013) GROMACS 4.5: A high-throughput and highly parallel
open source molecular simulation toolkit. Bioinformatics 29, 845–854

75. Páll, S., Abraham, M. J., Kutzner, C., Hess, B., and Lindahl, E. (2015)
Tackling Exascale software challenges in molecular dynamics simula-
tions with GROMACS. In: Markidis, S., Laure, E., eds. Solving Software
Challenges for Exascale. EASC 2014. Lecture Notes in Computer Sci-
ence, vol 8759, Springer, Cham

76. Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., and
Lindahl, E. (2015) GROMACS: High performance molecular simulations
through multi-level parallelism from laptops to supercomputers. Soft-
wareX 1-2, 19–25

77. Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L.,
Dror, R. O., and Shaw, D. E. (2010) Improved side-chain torsion poten-
tials for the Amber ff99SB protein force field. Proteins 78, 1950–1958

78. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., and
Klein, M. L. (1983) Comparison of simple potential functions for simu-
lating liquid water. J. Chem. Phys. 79, 926–935

79. Feinberg, H., Taylor, M. E., Razi, N., McBride, R., Knirel, Y. A., Graham,
S. A., Drickamer, K., and Weis, W. I. (2011) Structural basis for langerin
recognition of diverse pathogen and mammalian glycans through a single
binding site. J. Mol. Biol. 405, 1027–1039

80. Bussi, G., Donadio, D., and Parrinello, M. (2007) Canonical sampling
through velocity rescaling. J. Chem. Phys. 126, 014101

81. Parrinello, M., and Rahman, A. (1981) Polymorphic transitions in single
crystals: A new molecular dynamics method. J. Appl. Phy. 52, 7182–7190

82. Hess, B. (2008) P-LINCS: A parallel linear constraint solver for molecular
simulation. J. Chem. Theory Comput. 4, 116–122

83. van Gunsteren, W. F., and Berendsen, H. J. C. (1988) A leap-frog algo-
rithm for stochastic dynamics. Mol. Simulat. 1, 173–185

84. Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., and Ped-
ersen, L. G. (1995) A smooth particle mesh Ewald method. J. Chem. Phys.
103, 8577–8593

85. Blomberg, F., Maurer, W., and Rüterjans, H. (1977) Nuclear magnetic
resonance investigation of 15N-labeled histidine in aqueous solution. J.
Am. Chem. Soc. 99, 8149–8159

86. Hass, M. A. S., Hansen, D. F., Christensen, H. E. M., Led, J. J., and Kay, L.
E. (2008) Characterization of conformational exchange of a histidine side
chain: Protonation, rotamerization, and tautomerization of His61 in
plastocyanin from Anabaena variabilis. J. Am. Chem. Soc. 130, 8460–8470

87. Hansen, A. L., and Kay, L. E. (2014) Measurement of histidine pKa values
and tautomer populations in invisible protein states. Proc. Natl. Acad. Sci.
U. S. A. 111, E1705–E1712

EDITORS’ PICK: pH-dependent calcium affinity in langerin

J. Biol. Chem. (2021) 296 100718 15

88. Humphrey, W., Dalke, A., and Schulten, K. (1996) VMD: Visual molec-
ular dynamics. J. Mol. Graphics 14, 33–38

89. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A.,
and Haak, J. R. (1984) Molecular dynamics with coupling to an external
bath. J. Chem. Phys. 81, 3684–3690

90. Dogan, T., MacDougall, A., Saidi, R., Poggioli, D., Bateman, A.,
O’Donovan, C., and Martin, M. J. (2016) UniProt-DAAC: domain
architecture alignment and classification, a new method for auto-
matic functional annotation in UniProtKB. Bioinformatics 32, 2264–
2271

Jan-Oliver Joswig is a doctoral student at Freie Universität Berlin in the Molecular Dynamics Group led by Prof. Dr Bettina
Keller. In his research he focuses on the application of molecular simulations to biomolecular systems with complex dynamics.
In addition, he develops software solutions for advanced analyses methods, e.g., density-based clustering for the construction of
kinetic models. GitHub: https://github.com/janjoswig.

EDITORS’ PICK: pH-dependent calcium affinity in langerin

16 J. Biol. Chem. (2021) 296 100718

The molecular basis for the pH-dependent calcium affinity of the pattern recognition receptor langerin –
Supporting information

Jan-O. Joswig1, Jennifer Anders1, Hengxi Zhang1234, Christoph Rademacher1234, Bettina G. Keller1∗

1Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin,
Arnimallee 22, 14195 Berlin, Germany

2Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces,
Am Mühlenberg 1, 14424 Potsdam, Germany

3Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
4Department of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna,

Campus Vienna Biocenter 5, 1030 Vienna, Austria

∗ Corresponding author: bettina.keller@fu-berlin.de

Molecular dynamics simulations
With small deviations in the individual setup procedure, all considered systems have been prepared according to the
same general protocol. Langerins carbohydrate recognition domain (CRD) consisting of the residues G198 to P325 is
the basis for all simulations. Initial starting conformations were derived from PDB crystal structures of holo-langerin
(3p5h, 3p5g or 3kqg) (1, 2) by removing crystal water, ligands and excessive residues and ions as needed. Further starting
structures were manually selected from completed simulations focusing on rarely visited conformations. GROMACS
2016+ (3–9) was used for the subsequent tasks. Desired protonation states of the protein were automatically attained
during topology preparation. As force field for the protein and the Ca2+-cofactor AMBER99SB-ILDN (10) was chosen.
The system was put into a dodecahedral box at a distance of at least 1 nm to the box borders, solvated in explicit TIP3P
water (11) and minimized (steepest decent, eps < 1000 kJ mol−1 nm−1) after the replacement of water by chloride to
neutralize contingent charges. Equilibration was done with position restraints on all heavy atoms of the solute in the
NVT- (300 K, V-rescale thermostat (12), coupling rate at 0.1 ps, coupling groups protein and non-protein, 100 ps length)
and NPT-ensemble (1 bar, Parrinello-Rahman barostat (13), isotropic, coupling rate at 2 ps, 150 ps length). For both,
equilibration and production, the LINCS (14) (order 4, 1 iteration) algorithm was applied to constrain all bonds. The
leap-frog integrator (15) was used at a time step of 2 fs. For Lennard-Jones (cut-off) and electrostatic (PME (16), order 4)
interactions the cut-off was set to at least 1 nm, while the Verlet cut-off scheme was used to create the neighbor lists.
Periodic boundary conditions were imposed in all three dimensions. Protein/calcium coordinates were written to a
compressed trajectory file at a time step of 1 ps. The individual length of the production simulations varies between 0.15
and 1 µs as listed in the respective tables below (see Tab. 2 to 12). In cases where the total number of replicas and the
number of starting structures do not match, multiple simulations have been started from the same structure with different
initial velocities.

1

System nomenclature
To distinguish the langerin systems under consideration we denote the cofactor bound state with one letter: a – apo,
h – holo. For the protonation state we use a summation scheme in which each protonation site contributes a specific
increment. For example, the H229 protonation adds the value 1, while the H294 protonation adds the value 2. If both
protonations are present, this is indicated by the sum (1 + 2, e.g. in h3). Refer to table 1 for an overview. Finally we
numerate the different mutations, e.g. m1 for H294A. Later we also differentiate the folding state of the long-loop in
italic: f – folded, uf – unfolded. Similarly we mark the key conformation of the H294 protonated systems where the
K257–D308 and the H294–E261 hydrogen bonds are formed (quoted as the “green” PCA-cluster in the main document)
with an asterisk (∗).

Table 1: Langerin system state notation scheme.

bound protonation mutation conformation

h: holo H229: 1 m1: H294A f : folded
a: apo H294: 2 m2: E261D uf : unfolded

E285: 4 m3: K257A ∗: K257s–D308s/H294s–E261s
E293: 8
D308: 16

2

Neutral holo-langerin (h0)
In the neutral protein state, the side-chains of the acidic residues aspartic and glutamic acid are modeled as deprotonated
(charge −1) and those of the basic residues arginine and lysine as protonated (charge +1). All other residues including
histidine are kept neutral. The presence of the bound calcium ion results in a net-charge of the system of +2, which was
neutralized by two chloride atoms in solution. For neutral histidine two different tautomers, the δ- and ϵ-state exist. In
high pH solutions of the free acid the ratio of the tautomers is ∼1 : 4 in favor of the ϵ-form. In a protein environment,
however, the ratio depends strongly on stabilization factors like possible hydrogen bond formation (17–19). For each
simulation starting structure the corresponding state was automatically determined during topology preparation, always
resulting in the ϵ-form for H294. For H229 the used form is denoted in table 2.

Table 2: Simulation overview for h0.

#Replica
#Starting
structures #δ #ϵ C/µs Ctot/µs

1 1 0 1 1 1
1 1 0 1 0.58 0.58
5a 5 5 0 0.4 2
5 1 5 0 0.25 1.25
119 14 43 76 0.22 26.18
2 1 1 1 0.15 0.3

133 23 54 79 31b

a Simulations reused from our previous paper (20), which uses
a slightly different preparation protocol. b About 1.2 µs of the
simulation data contain no calcium output coordinates. Calcium
in the binding pocket is present during the simulation but the
trajectories cannot be used for analyses that include the calcium
positions.

3

Histidine protonated holo-langerin (h3)
In the histidine protonated protein state, the side-chains of H229 and H294 are both modeled as protonated. All other
protonation states are as in h0. The presence of the bound calcium ion and the two side-chain protonations results in a
net-charge of the system of +4, which was neutralized by four chloride atoms in solution.

Table 3: Simulation overview for h3.

#Replica
#Starting
structures C/µs Ctot/µs

1 1 1 1
1 1 0.63 0.63
7 1 0.25 1.75
104 15 0.22 22.88
2 1 0.2 0.4
2 1 0.15 0.3

117 20 27b

b About 6.3 µs of the simulation data contain no calcium output
coordinates. Calcium in the binding pocket is present during the
simulation but the trajectories cannot be used for analyses that
include the calcium positions.

Neutral holo-langerin H294A mutant (h0m1)
The H294A mutant was created in silico using the VMD (21) molefacture plugin from the crystal structure. The presence
of the bound calcium ion results in a net-charge of the system of +2, which was neutralized by two chloride atoms in
solution.

Table 4: Simulation overview for h0m1.

#Replica
#Starting
structures C/µs Ctot/µs

10 10 0.25 2.5a

20 1 0.25 5

30 11 7.5
a Simulations reused from our previous paper (20), which uses a
slightly different preparation protocol.

4

Neutral apo-langerin (a0)
The neutral apo-state was prepared in the same way as the neutral holo-state after manual deletion of the Ca2+-ion from
the structure. Note that in all simulations H229 is modeled in its δ-form, while H294 always remains in its ϵ-form.

Table 5: Simulation overview for a0.

#Replica
#Starting
structures C/µs Ctot/µs

1 1 1 1
6 2 0.5 3.0
4 1 0.25 1
22 2 0.22 4.84
4 1 0.1 0.4

37 7 10

Histidine protonated apo-langerin (a3)
The protonated apo-state was prepared in the same way as the protonated holo-state after manual deletion of the Ca2+-ion
from the structure. The presence of two protonations results in a net-charge of the system of +2, which was neutralized by
two chloride atoms in solution.

Table 6: Simulation overview for a3.

#Replica
#Starting
structures C/µs Ctot/µs

1 1 1 1
1 1 0.5 0.5
6 1 0.25 1.5
51 8 0.22 11.22
1 1 0.15 0.15

60 12 14

5

Histidine and glutamic acid 285 protonated apo-langerin (a6, a7)
The apo-state a6 is protonated at H294 and E285. The presence of two protonations results in a net-charge of the system
of +2, which was neutralized by two chloride atoms in solution.

Table 7: Simulation overview for a6.

#Replica
#Starting
structures C/µs Ctot/µs

4 3 0.25 1

The apo-state a7 is protonated at H229, H294 and E285. The presence of three protonations results in a net-charge of the
system of +3, which was neutralized by three chloride atoms in solution.

Table 8: Simulation overview for a7.

#Replica
#Starting
structures C/µs Ctot/µs

22 6 0.22 4.84
4 1 0.21 0.84
1 1 0.18 0.18
3 2 0.17 0.51

30 6 6.37

6

Histidine and glutamic acid 293 protonated apo-langerin (a10, a11)
The apo-state a10 is protonated at H294 and E293. The presence of two protonations results in a net-charge of the system
of +2, which was neutralized by two chloride atoms in solution.

Table 9: Simulation overview for a10.

#Replica
#Starting
structures C/µs Ctot/µs

4 4 0.25 1

The apo-state a11 is protonated at H229, H294 and E293. The presence of three protonations results in a net-charge of
the system of +3, which was neutralized by three chloride atoms in solution.

Table 10: Simulation overview for a11.

#Replica
#Starting
structures C/µs Ctot/µs

1 1 0.50 0.50
28 6 0.22 6.16
1 1 0.21 0.21
1 1 0.17 0.17
3 3 0.16 0.48
2 2 0.15 0.30
5 2 0.14 0.70
1 1 0.13 0.13
1 1 0.10 0.10

43 6 8.75

7

Histidine and aspartic acid 308 protonated apo-langerin (a18, a19)
The apo-state a18 is protonated at H294 and D308. The presence of two protonations results in a net-charge of the system
of +2, which was neutralized by two chloride atoms in solution.

Table 11: Simulation overview for a18.

#Replica
#Starting
structures C/µs Ctot/µs

4 4 0.25 1

The apo-state a19 is protonated at H229, H294 and D308. The presence of three protonations results in a net-charge of
the system of +3, which was neutralized by three chloride atoms in solution.

Table 12: Simulation overview for a19.

#Replica
#Starting
structures C/µs Ctot/µs

2 2 0.55 1.10
2 2 0.51 1.02
17 6 0.22 3.74
2 2 0.21 0.42
2 2 0.16 0.32
4 2 0.15 0.60
1 1 0.10 0.10

30 6 7.30

DSSP analysis

Figure 1: Analysis by the hydrogen bond estimation algorithm DSSP of the secondary structure in the neutral (left) and
the protonated holo-state (right). Legend: S – bend, T – hydrogen bonded turn, I – 5-helix, G – 3-helix, E – extended
strand, part of β-ladder, B: isolated β-bridge, H: α-helix, O: unassigned.

8

Calculation of pKa-values with PROPKA
For selected conformational snapshots from simulations with a reduced time resolution of 1 ns (table 13), pKa-values of
titrable amino acids have been estimated using PROPKA 3.1 (22, 23), allowing to treat groups automatically as coupled
where appropriate. D308 was detected in some frames non-covalently coupled to either E285 or E293 or both. In frames
with no coupling, there is only one pKa-value per residue. For frames with two coupling residues (dyad), PROPKA
provides a pair of pKa-values per residue, a higher value for the situation as proton acceptor and a lower one for the role
as supporting nucleophile. We report these pairs in the way that the higher pKa for D308 and the corresponding lower
values for E285 and E293 are treated as alternative. For frames in which E285 and E293 couple to D308 at the same
time (triad), PROPKA returns a set of different pKa-values per residue based on interaction permutations. We report the
minimum and the maximum of these values as a pair for each residue.

Table 13: Overview pKa-value calculation.

#coupling conformations

System #conformations #folded D308–E285 D308–E293 E285–D308–E293

h0 30,192 30,192 10,684 4,003 11,175
h3 20,795 20,795 7,341 2,094 8,842
a0 10,363 5,310 20 4 –
a3 14,029 7,127 26 – –
a7 6,368 4,435 4,744 – 1
a11 8,702 6,315 22 2,333 11
a19 7,289 2,193 4,062 72 26

Figure 2: Calculated pKa-values for the neutral (blue, h0) compared to the H294 protonated (orange, h3) holo-system.

Figure 3: Calculated pKa-values for the neutral (blue, a0) compared to the H294 protonated (orange, a3) apo-system.

9

Figure 4: Calculated pKa-values for the neutral (blue, a0) compared to the H294 protonated (orange, a3) apo-system
where only folded structures are considered.

Figure 5: Calculated pKa-values for the neutral (blue, h0) compared to the H294 protonated (orange, h3) holo-system.
Alternative pKa-values due to coupling on the right.

Figure 6: Calculated pKa-values for the neutral (blue, a0) compared to the H294 protonated (orange, a3) apo-system.
Alternative pKa-values due to coupling on the right. Note, that due to the fact that there is almost no coupling of the
considered residues observed in these two systems (compare table 13), the two alternative distributions shown left and
right are essentially the same.

10

Figure 7: Calculated pKa-values for the neutral (blue, a0) compared to the E285 protonated (green, a7) apo-system.
Alternative pKa-values due to coupling on the right.

Figure 8: Calculated pKa-values for the neutral (blue, a0) compared to the E293 protonated (red, a11) apo-system.
Alternative pKa-values due to coupling on the right.

Figure 9: Calculated pKa-values for the neutral (blue, a0) compared to the D308 protonated (purple, a19) apo-system.
Alternative pKa-values due to coupling on the right.

11

Table 14: Mean and standard deviation of calculated pKa-values using PROPKA 3.1 for each ns of simulation time (all
frames considered).

pKa ` ± f
residue h0 h3 a0 a3 a7 a11 a19
D263 3.2 ± 0.6 3.3 ± 0.6 3.1 ± 0.6 3.2 ± 0.6 3.1 ± 0.6 3.1 ± 0.6 3.2 ± 0.6
D268 2.7 ± 0.4 2.9 ± 0.3 2.8 ± 0.4 2.9 ± 0.4 2.9 ± 0.3 2.9 ± 0.3 2.9 ± 0.3
D269 4.0 ± 0.1 4.0 ± 0.0 4.0 ± 0.1 4.0 ± 0.1 4.0 ± 0.0 4.0 ± 0.0 4.0 ± 0.0
D308 2.3 ± 0.5 2.2 ± 0.6 3.8 ± 0.7 3.7 ± 0.7 2.9 ± 0.7 3.5 ± 0.6 4.8 ± 1.2
E312 3.5 ± 0.4 3.6 ± 0.4 3.7 ± 0.3 3.6 ± 0.3 3.6 ± 0.3 3.6 ± 0.3 3.6 ± 0.3
E220 4.8 ± 0.3 4.7 ± 0.3 4.9 ± 0.3 4.8 ± 0.3 4.8 ± 0.3 4.8 ± 0.3 4.8 ± 0.3
E236 3.5 ± 0.5 3.6 ± 0.5 3.6 ± 0.6 3.6 ± 0.6 3.6 ± 0.5 3.6 ± 0.5 3.6 ± 0.5
E238 3.4 ± 0.6 3.3 ± 0.6 3.4 ± 0.6 3.3 ± 0.6 3.4 ± 0.6 3.4 ± 0.6 3.4 ± 0.6
E240 4.1 ± 0.5 4.1 ± 0.5 4.1 ± 0.5 4.1 ± 0.5 4.1 ± 0.5 4.1 ± 0.5 4.1 ± 0.5
E261 4.4 ± 0.6 4.0 ± 0.9 4.5 ± 0.4 4.4 ± 0.5 4.5 ± 0.5 4.4 ± 0.5 4.5 ± 0.3
E285 5.1 ± 0.4 5.2 ± 0.5 4.4 ± 0.5 4.4 ± 0.5 6.0 ± 0.9 4.5 ± 0.4 5.2 ± 1.3
E293 4.8 ± 0.4 4.8 ± 0.4 3.8 ± 0.9 3.9 ± 0.9 3.6 ± 0.8 4.1 ± 1.0 3.6 ± 0.9
H229 6.1 ± 0.4 7.1 ± 0.3 6.2 ± 0.4 7.2 ± 0.3 7.2 ± 0.2 7.2 ± 0.3 7.2 ± 0.3
H294 5.9 ± 0.3 6.2 ± 0.4 6.0 ± 0.3 6.1 ± 0.3 6.0 ± 0.3 6.0 ± 0.3 6.0 ± 0.3

Alternative pKa ` ± f
residue h0 h3 a0 a3 a7 a11 a19
D308 4.1 ± 0.9 4.0 ± 0.9 3.8 ± 0.7 3.7 ± 0.7 4.5 ± 1.0 4.0 ± 0.9 6.2 ± 0.8
E285 3.9 ± 0.5 3.9 ± 0.6 4.4 ± 0.5 4.4 ± 0.5 4.4 ± 0.9 4.5 ± 0.4 3.8 ± 0.6
E293 4.1 ± 0.6 4.0 ± 0.6 3.8 ± 0.9 3.9 ± 0.9 3.6 ± 0.8 3.6 ± 0.6 3.6 ± 0.9

Table 15: Mean and standard deviation of calculated burying-values using PROPKA 3.1 for each ns of simulation time.

%buried ` ± f
residue h0 h3 a0 a3 a7 a11 a19
D263 1 ± 2 0 ± 1 1 ± 2 1 ± 3 1 ± 2 1 ± 2 1 ± 2
D268 37 ± 13 45 ± 11 42 ± 10 48 ± 8 49 ± 6 49 ± 6 48 ± 8
D269 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
D308 38 ± 4 38 ± 4 35 ± 6 34 ± 5 34 ± 5 33 ± 5 41 ± 7
E312 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
E220 16 ± 7 41 ± 10 18 ± 7 42 ± 10 44 ± 7 43 ± 9 43 ± 9
E236 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
E238 44 ± 10 46 ± 8 47 ± 8 50 ± 8 49 ± 7 53 ± 10 48 ± 8
E240 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
E261 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
E285 10 ± 7 13 ± 8 4 ± 5 4 ± 6 11 ± 11 3 ± 5 22 ± 12
E293 15 ± 4 14 ± 4 1 ± 3 1 ± 3 1 ± 3 1 ± 3 1 ± 3
H229 30 ± 13 23 ± 5 24 ± 12 24 ± 5 24 ± 4 24 ± 4 23 ± 4
H294 8 ± 9 12 ± 9 4 ± 6 13 ± 9 14 ± 9 16 ± 8 16 ± 8

12

Hydrogen bond analysis
We investigated the occurrence of hydrogen bonds in the langerin holo-systems (h0, h3) as we suspected that a change in the
protonation state may (transforming a potential hydrogen bond acceptor into a donor) also perturb the observed hydrogen
bonded interactions. To get a neutral impression of the present interactions we extracted time-resolved information about
all possible bonds, disregarding only those bonds involving the termini (residues 198 to 214 and 322 to 325) and applying
an occupancy filter (10 % < occupancy < 90 % in at least one of the systems). The hydrogen bond existence information
was collected using the GROMACS tool gmx hbond using the default criteria (hydrogen–donor–acceptor angle ≤ 30°
and donor-acceptor distance ≤ 3.5Å). Figure 10 visualises the resulting subset of interactions sorted by occupancy in h0.
Bonds that undergo a large change in occupancy upon H294/H229 protonation (gray highlighting for changes >20 %) can
be considered important under the reservation of a potential sampling bias. When a residue of the short- or long-loop is
involved, this is indicated by colored circles above the bars. Absolute occupancy is of secondary importance since neither
a particularly high nor low value allows a conclusion regarding a contingent function of the structural element.

As a complementary selection criteria we looked for pairwise correlations in the existence of hydrogen bonds, since it
can be a hint towards allosteric communication over a hydrogen bonded network. We calculated the Pearson-correlation
coefficient for all found (and filtered) hydrogen bonds and refined the result by only looking at those bonds above a
correlation cutoff (bond is involved in a correlation >0.6 in at least one of the systems). In figure 10 the resulting
correlation matrix is illustrated as a heatmap. The upper left triangle shows the correlation in the individual system while
the lower right triangle shows the absolute difference in the correlation between the two systems. The diagonal elements
represent again the occupancy of the bonds. Highly correlated bonds are of special interest, in particular if the degree of
correlation changes upon protonation.

Combining the decision criteria, occupancy and correlation, and focusing on those bonds formed by residues of
the short- and long-loop and respectively the interconnecting segment, we settled on the following set of important
hydrogen bonds as structurally interesting main factors effected by histidine H294 protonation: 253m-296m, 256s-294m,
257s-261s, 257s-293m, 257s-294s, 257s-308s, 258m-256m, 262m-259m, 262m-261s, 265s-256m, 266m-270m, 272m-
264m, 274s-263s, 276m-273m, 287m-308s, 288s-260m, 288s-261s, 288s-291s, 292m-289m, 294m-292m, 294m-309m,
294s-261s, 294s-291m, 297s-307s, 308m-285s.

13

a) ←Hydrogen bond occupancy in the neutral (blue)
and histidine protonated (orange) holo-state.
Colored dot: interaction in the short-loop (red),
long-loop (yellow) and both (purple). Gray
highlight: occupancy change >20%.

↓Hydrogen bond correlations in b) the neutral
and c) the protonated holo-state.

b)

c)

Figure 10: Hydrogen bond analysis.

14

Principle component analysis
For the principle component analysis (PCA) we used the GROMACS tool gmx covar in a joint fashion on a concatenated
trajectory of h0 and h3, including only non-hydrogen protein atoms of the residues 201 to 322 (989 atoms), with an
increased time step of 1 ns (57481 frames). All structures have been fitted using the backbone atoms of residues 201 to
256 and 295 to 322 (252 atoms) as a reference. Replicawise projections of the individual systems (31091247 frames for
h0, 26389202 frames for h3) onto the resulting eigenvectors and structure interpolations have been obtained with the
GROMACS tool gmx anaeig.

Time-lagged independent component analysis
We used the PyEmma (24) package version 2.5.7 for the time-lagged independent component analysis (TICA). The
analysis was done for the neutral (h0) and the protonated (h3) holo-system separately on the same set of input features,
which are backbone dihedrals of the residues 253 to 312, j1 and j2 side-chain dihedrals of the residues 285, 293, 294 and
308 and existence-functions for the set of hydrogen bonds we settled on previously (see section Hydrogen bond analysis):
253m-296m, 256s-294m, 257s-261s, 257s-293m, 257s-294s, 257s-308s, 258m-256m, 262m-259m, 262m-261s, 265s-
256m, 266m-270m, 272m-264m, 274s-263s, 276m-273m, 287m-308s, 288s-260m, 288s-261s, 288s-291s, 292m-289m,
294m-292m, 294m-309m, 294s-261s, 294s-291m, 297s-307s, 308m-285s. Dihedral angles were decomposed into sine
and cosine components. Hydrogen bond existences were converted to trajectories of 1 (present) and -1 (not present). We
included 128 replica for the unprotonated and 116 replica for the protonated system with a time-step of 5 ps. Lag times
between 1 and 30 ns were tested, giving the most satisfying result with respect to eigenvalue decay and state separation in
the projections at 20 ns. Projections in 6D are shown in figure 11.

Figure 11: 6D projections of the unprotonated and protonated system onto the first 6 independent components of the
TICA.

Figure 12 shows correlations of the input coordinates with components obtained from the TICA to get an impression
on what degrees of freedom contribute most to the transformed coordinates.

Figure 12: Correlation of input features to the transformed coordinates of the TICA (cutoff >0.5).

15

neutral protonated

Figure 13: Eigenvalue spectra of the TICA for the neutral and the protonated holo-system.

Clustering and core-set Markov-state model construction
For the clustering of data points in the PCA- and TICA-space we used the density-based common-nearest neighbors
(CNN) cluster-algorithm in an implementation that is currently under development. The source is available on GitHub:
git@github.com:janjoswig/CNN.git. The package includes also functionalities for the estimation of core-set
Markov-state models on top of a discretization obtained from such a clustering.

In figure 14 we show the final cluster results for the TICA-projections of the neutral and the protonated system. In
the unprotonated case we isolated 25 clusters in a 5-step hierarchical procedure. For the protonated system we found
22 clusters in 6 steps. Clustering was done on a reduced data set with a time step of 1 ns. Cluster assignments were
subsequently predicted for a data set with a time step of 100 ps.

Figure 14: 6D projections of the unprotonated and protonated system onto the first 6 independent components of the
TICA clustered into 25 and 22 core-sets, respectively.

We estimated MSMs for lag-times between 1 and 16 ns. Figure 15 shows the implied time-scale teste for these models.

neutral protonated

Figure 15: Implied time scales for MSMs of the neutral and the protonated system.

The core-sets were lumped by Perron-cluster cluster analysis (PCCA) on the basis of a MSM with 7 ns lag-time,
giving the meta-stable sets of clusters connected by the first 5 transition processes shown in figure 16. Also shown are
representative structures for each set of long-lived conformations in figure 17.

16

Figure 16: Core-sets from figure 14 grouped to meta-stable sets by PCCA incorporating the 5 slowest processes.

a) b) c)

Figure 17: Example structures for meta-stable conformations from figure 16 in the H294-protonated holo-system. a)
K257s–D308s bonded conformations referred to as the “green” cluster. b) Open loop forms with distinct short-loop
conformations. c) Closed loop-forms referred to as the “orange” cluster. Within this set, α3-helix conformations exchange
on a time scale of 130 ns (lighter and deeper orange; not shown in the 2D projection).

Figure 18: Hydrogen bond occupancy in meta-stable sets of the H294-protonated holo-system from figure 16 (ensemble
in gray).

17

K257–D308 distance

Figure 19: K257–D308 distance distribution for the H294A mutant and E261D with protonated and neutral H294. 95 %
confidence interval on the mean over replica-wise probability densities obtained by bootstrapping (1000 samples).

Coulomb interactions
Fig. 20 shows the Coulomb force between two positive elementary point-charges as a function of the distance for several
typical relative dielectric constants. In our MD simulations with explicit water, the pairwise Coulomb interactions are not
truncated and are calculated at a relative dielectric constant of one, i.e following the blue curve in Fig. 20. But the atoms
in the space between Ca2+ and H294 can rearrange according to the surrounding electrostatic field thereby causing an
overall shielding effect, such that the effective force between two residues on the protein surface, e.g. H294 and K257,
will be similar to the green curve. Thus, at distances of 3 > 1.0 nm, the effective Coulomb forces between residues on
the protein surface are close to zero.

Fig. 21 shows histograms of the pairwise Coulomb-energies in vacuum between H294, K257 and Ca2+ of the
neutral and H294 protonated holo-state. As expected, the Coulomb energy between Ca2+ and the overall neutral
H294 is approximately zero, and increases to about 30 kJ mol−1 when H294 is protonated. Note that in the presence
of water, the corresponding repulsive force is dampened by a shift of the charge distribution in the space between
Ca2+ and H294+. The most striking result of this analysis is the change of interaction energies between Ca2+ and
K257 upon protonation of H294. In the protonated state the interaction energies reach values beyond 100 kJ mol−1.
We confirmed that these high energy values correspond to conformations in which the K257s–D308s hydrogen bond
is formed, i.e. to those conformations that, according to our model, are responsible for the regulation of the Ca2+-
affinity. When the K257s–D308s hydrogen bond is formed, the repulsion between the positively charged K257 and
Ca2+ cannot be mitigated by the rearrangement of atoms in the intervening space. Thus, in these conformations
the Coulomb repulsion between K257 and Ca2+ is strong enough to explain the observed decrease in Ca2+ affinity.
Finally, the Coulomb energy between K257 and H294 shifts from negative energy values to positive values upon
protonation of H294, in accordance with the observed opening of the hydrogen bond (dotted lines in Fig. 21).

18

Figure 20: Expected distance dependent Coulomb-force between two positive elementary charges for assumed relative
dielectric constants in vacuum (nr = 1), within a protein (nr = 6 (25)), on a protein surface (nr = 25 (25)) and in water
(nr = 80). For media with higher dielectric constants, the interaction is very small beyond distances of 1 nm.

Figure 21: Coulomb contributions during MD runs between H294, K257 and calcium. The interaction energies were
obtained from a GROMACS rerun with energy groups on the full trajectory data of neutral (blue) and H294 protonated
(orange) holo langerin. 95 % confidence interval on the mean over replica-wise probability densities obtained by
bootstrapping (1000 samples).

19

Steered molecular dynamics simulations
All systems simulated in a steered MD setup were prepared following the same general procedure that is very similar to
the one used for the conventional MD simulations, but more concise. For a selected starting structure of holo-langerin
(as denoted in table 16) without crystal waters, ligands and excessive residues and ions, a topology in the desired
protonation state was automatically generated using GROMACS 2019 (3–9) and the AMBER99SB-ILDN force field
(10). The molecule was put into a cubic box at a distance of at least 1.5 nm to the box borders and minimized in vacuum
(steepest decent, eps < 100 kJ mol−1 nm−1) before it was solvated in explicit TIP3P water (11) and the replacement
of water by chloride to neutralize contingent charges. It was minimized again in solution twice (1. steepest decent,
eps < 100 kJ mol−1 nm−1, 2. conjugate gradient, eps < 1 kJ mol−1 nm−1) and then equilibrated without any position
restraints in the NVT- (300 K, V-rescale thermostat (12), coupling rate at 0.1 ps, coupling groups protein and non-protein,
200 ps length) and NPT-ensemble (1. 1 bar, Berendsen barostat (26), isotropic, coupling rate at 1 ps, 200 ps length,
2. 1 bar, Parrinello-Rahman barostat (13), isotropic, coupling rate at 2 ps, 400 ps length). For both, equilibration and
production, the LINCS (14) (order 6, 2 iterations in equilibration and order 4, 1 iteration in production) algorithm was
applied to constrain bonds to hydrogen. The leap-frog integrator (15) was used at a time step of 1 fs during equilibration
and 2 fs in production. For Lennard-Jones (cut-off) and electrostatic (PME (16), order 6) interactions the cut-off was set to
1 nm, while the Verlet cut-off scheme was used to create the neighbour lists. Periodic boundary conditions were imposed
in all three dimensions. The vacuum minimisation differs substantially from these settings as the group cut-off scheme
was utilised, for Lennard-Jones (cut-off) and electrostatic (cut-off) interactions the cut-off was set to infinity (0), and no
periodic boundary conditions were applied. In production a force was exerted in form of a harmonic (umbrella) potential
along a single coordinate, defined as the distance between the Ca2+-ion in the binding pocket and the center of mass of
the “upper” protein region represented by the Cα-atoms of residues 257, 264, 281, 282, 293 and 294 (see figure 22).
The harmonic spring constant was set to : = 500 kJ mol−1 nm−2 and the pulling-force acting on the pull-coordinate
was constantly increased at a velocity of 1 × 10−4 nm ps−1. Protein/calcium coordinates were written to a compressed
trajectory file at a time step of 1 ps as well as the instantaneous pull-force. The individual simulations were prolonged to
a maximal length of 20 ns or until the pulling-distance exceeded the length of the boxvector. For each system (starting
structure) the pull experiment was repeated 40 times. As rupture force, the force needed to remove the Ca2+-ion from the
binding pocket, we took the maximum pull-force from the force trajectories smoothed by the running mean within a
window of 10 ps.

Table 16: Overview steered MD.

System Starting structure

h0 crystal structure PDB-ID 3p5g (1)
h0uf unfolded conformation selected from a0, calcium inserted manually
h0m1 H294A mutant created with the VMD (21) molefacture plugin,

crystal structure analogue
h0m3 K257A mutant created with the VMD (21) molefacture plugin,

crystal structure analogue
h0m1m3 K257A/H294A double mutant created with the VMD (21) molefacture plugin,

crystal structure analogue
h3 crystal structure analogue
h3∗ H294–E261/K257–D308 hydrogen bonded conformation

selected from h3 (“green” PCA cluster)
h3m2∗ E261D mutant created with the VMD (21) molefacture plugin,

H294–D261/K257–D308 hydrogen bonded conformation
h3m3 K257A mutant created with the VMD (21) molefacture plugin,

crystal structure analogue
h7 crystal structure analogue
h11 crystal structure analogue
h19 crystal structure analogue

20

Figure 22: The pull coordinate (solid magenta line) is defined as the distance between the center of mass of the Cα-atoms
of residues 257, 264, 281, 282, 293 and 294 (yellow spheres, dashed magenta lines), representing the rigid “upper”
protein, and the Ca2+-ion (gray Van der Waals sphere).

21

Rate determination of apo-langerins long-loop unfolding
Unfolding of apo-langerins long-loop was determined by following five different criteria applied to trajectories with a
time step of 1 ns: a) We determined – by visual inspection in VMD (21) – the last frame in which the long-loop appears
to be clearly folded. b) If applicable, we also determined the first frame from which on the loop is clearly unfolded
irreversibly on the time scale of the simulation. The mean between “last folded” and “first unfolded” point was taken as
the unfolding point. c) We tracked the long-loop (residues P283 to E293) Cα root-mean-square deviation (RMSD) with
the crystal structure as reference (PDB-ID 3p5g (2)) and detected the first frame in which a value higher than 0.2 nm was
reached. d) We tracked the existence of the N287m–D308s hydrogen bond and determined the first frame from which on
the bond is not constantly occupied anymore. e) We did the same for N288m–D308s. The hydrogen bond existence
functions were obtained as described in section Hydrogen bond analysis on page 13. RMSDs were calculated using
the GROMACS tool rms. The RMSD time series, smoothed by a running average window of 5 ns, were evaluated by a
change-point detection algorithm (mean shift clustering using a bandwidth of 0.035).

Table 17: Trajectories showing an event of unfolding or a clearly folded structure throughout the simulation time of
220 ns by a) visual inspection (last folded frame), b) visual inspection (mean of last folded and first unfolded frame), c)
RMSD cut-off (>0.2 nm), d) breaking of N287m–D308s H-bond, e) breaking of N288m–D308s H-bond.

a0 a) b) c) d) e)
unfold 17 13 15 12 13
stay folded 18 18 20 22 21
sum 35 31 35 34 34

a3
unfold 29 17 29 23 25
stay folded 25 25 25 30 28
sum 54 42 54 53 53

a6+a7
unfold 16 5 6 0 4
stay folded 18 18 24 26 22
sum 34 23 30 26 26

a10+a11 a) b) c) d) e)
unfold 19 12 13 7 7
stay folded 24 24 26 27 27
sum 43 36 39 34 34

a18+a19
unfold 24 20 19 17 20
stay folded 8 8 9 8 5
sum 32 28 28 25 25

a) b) c)

d) e)
a) b) c) d) e)

t1/2
ns 160 248 277 229 232

Figure 23: Unfolding events in neutral apo-langerin (a0) and exponential fits measured by a) visual inspection (last folded
frame), b) visual inspection (mean of last folded and first unfolded frame), c) RMSD cut-off (>0.2 nm, d) breaking of
N287m–D308s H-bond, e) breaking of N288m–D308s H-bond.

22

a) b) c)

d) e)
a) b) c) d) e)

t1/2
ns 122 218 151 251 206

Figure 24: Unfolding events in H294-protonated apo-langerin (a3) and exponential fits measured by a) visual inspection
(last folded frame), b) visual inspection (mean of last folded and first unfolded frame), c) RMSD cut-off (>0.2 nm, d)
breaking of N287m–D308s H-bond, e) breaking of N288m–D308s H-bond.

a) b) c)

Criterion
not

applicable

e)
a) b) c) d) e)

t1/2
ns 175 433 549 – 788

Figure 25: Unfolding events in E285-protonated apo-langerin (a6/a7) and exponential fits measured by a) visual inspection
(last folded frame), b) visual inspection (mean of last folded and first unfolded frame), c) RMSD cut-off (>0.2 nm, d)
breaking of N287m–D308s H-bond (never observed), e) breaking of N288m–D308s H-bond.

23

a) b) c)

d) e)
a) b) c) d) e)

t1/2
ns 158 189 242 400 369

Figure 26: Unfolding events in E293-protonated apo-langerin (a10/a11) and exponential fits measured by a) visual
inspection (last folded frame), b) visual inspection (mean of last folded and first unfolded frame), c) RMSD cut-off
(>0.2 nm, d) breaking of N287m–D308s H-bond, e) breaking of N288m–D308s H-bond.

a) b) c)

d) e)
a) b) c) d) e)

t1/2
ns 57 93 137 110 82

Figure 27: Unfolding events in D308-protonated apo-langerin (a18/a19) and exponential fits measured by a) visual
inspection (last folded frame), b) visual inspection (mean of last folded and first unfolded frame), c) RMSD cut-off
(>0.2 nm, d) breaking of N287m–D308s H-bond, e) breaking of N288m–D308s H-bond.

24

a) b)

c) d)

Figure 28: Unfolding events by visual inspection (last folded frame) and double exponential fits in a) neutral apo- (a0),
b) E285 protonated (a6/a7), c) E293 protonated (a10/a11), and d) D308 protonated (a18/a19) langerin. The single
exponential fit for the H294 protonated case is already sufficiently good (see fig. 24).

25

ITC measurements
Data analysis, plotting and curve fitting was performed with OriginPro 2019 (OriginLab, Northampton, MA).

Figure 29: ITC measurements for wild type langerin.

26

E261D pH 7

E261D pH 6

Figure 30: ITC measurements for the E261D langerin mutant.

27

Comparison of langerin to other C-type lectins

P07306|ASGR1_HUMAN|ASGPR NWVEH------ERSCYWFSRSGKAW-ADADNYCRLEDAHLVVVTSWEEQKFVQHHIGPV-N--TWMGLHDQ--N 217
P16109|LYAM3_HUMAN|PSECtin LISELTNQKEVAAWTYHYSTKAYSW-NISRKYCQNRYTDLVAIQNKNEIDYLNKVLPYY-SSYYWIGIRKN--N 98
P16581|LYAM2_HUMAN|ESECtin ALTLVLLIKESGAWSYNTSTEAMTY-DEASAYCQQRYTHLVAIQNKEEIEYLNSILSYS-PSYYWIGIRKV--N 78
P14151|LYAM1_HUMAN|LSECtin LCCDFLAHHGTDCWTYHYSEKPMNW-QRARRFCRDNYTDLVAIQNKAEIEYLEKTLPFS-RSYYWIGIRKI--G 95
P11226|MBL2_HUMAN|MBP KWLTFSLGKQVGNKFFLTNGEIMTF-EKVKALCVKFQASVATPRNAAENGAIQNLI----KEEAFLGITDEKTE 172
Q6EIG7|CLC6A_HUMAN|Dectin2 SWKSF------GSSCYFISSEEKVW-SKSEQNCVEMGAHLVVFNTEAEQNFIVQQLNES-FS-YFLGLSDPQGN 146
Q9NNX6|CD209_HUMAN|DCSIGN EWTFF------QGNCYFMSNSQRNW-HDSITACKEVGAQLVVIKSAEEQNFLQLQSSRS-NRFTWMGLSDLNQE 324
Q9H2X3|CLC4M_HUMAN|DCSIGNR DWTFF------QGNCYFMSNSQRNW-HDSVTACQEVRAQLVVIKTAEEQNFLQLQTSRS-NRFSWMGLSDLNQE 336
Q9UJ71|CLC4K_HUMAN|Langerin GWKYF------KGNFYYFSLIPKTW-YSAEQFCVSRNSHLTSVTSESEQEFLYKTAGGL-I--YWIGLTKAGME 261
Q8VBX4|CLC4K_MOUSE|Langerin GWKYF------SGNFYYFSRTPKTW-YSAEQFCISRKAHLTSVSSESEQKFLYKAADGI-P--HWIGLTKAGSE 264
Q9ULY5|CLC4E_HUMAN|Mincle NWEYF------QSSCYFFSTDTISW-ALSLKNCSAMGAHLVVINSQEEQEFLSYKKPKM-RE-FFIGLSDQVVE 147
Q8WXI8|CLC4D_HUMAN|MCL DWRAF------QSNCYFPLTDNKTW-AESERNCSGMGAHLMTISTEAEQNFIIQFLDRR-LS-YFLGLRDENAK 151
P35247|SFTPD_HUMAN|SP KVELFPNGQSVGEKIFKTAGFVKPF-TEAQLLCTQAGGQLASPRSAAENAALQQLVVAK-NEAAFLSMTDSKTE 321
Q5KU26|COL12_HUMAN|SR HWKNF------TDKCYYFSVEKEIF-EDAKLFCEDKSSHLVFINTREEQQWIKK-QMVG-RESHWIGLTDSERE 674
P06734|FCER2_HUMAN|CD23 KWINF------QRKCYYFGKGTKQW-VHARYACDDMEGQLVSIHSPEEQDFLTKHASHT-G--SWIGLRNLDLK 229
Q9UBG0|MRC2_HUMAN|Endo180 SWQPF------QGHCYRLQAEKRSW-QESKKACLRGGGDLVSIHSMAELEFITKQIKQE-VEELWIGLNDLKLQ 449
P22897|MRC1_HUMAN|MMR QWWPY------AGHCYKIHRDEKKIQRDALTTCRKEGGDLTSIHTIEELDFIISQLGYEPNDELWIGLNDIKIQ 432
 : * : . * : ::.: .

P07306|ASGR1_HUMAN|ASGPR GPWKWVDGTDYETGF--KNWRPEQPDDWYGHGLGGGEDCAHF-----TDDGRWNDDVCQRPY-RWVCETELDK 282
P16109|LYAM3_HUMAN|PSECtin KTWTWVGTKKALT-NEAENWADNEPNNK-----RNNEDCVEIYIKSPSAPGKWNDEHCLKKK-HALCYTASCQ 164
P16581|LYAM2_HUMAN|ESECtin NVWVWVGTQKPLT-EEAKNWAPGEPNNR-----QKDEDCVEIYIKREKDVGMWNDERCSKKK-LALCYTAACT 144
P14151|LYAM1_HUMAN|LSECtin GIWTWVGTNKSLT-EEAENWGDGEPNNK-----KNKEDCVEIYIKRNKDAGKWNDDACHKLK-AALCYTASCQ 161
P11226|MBL2_HUMAN|MBP GQFVDLTGNRLTY----TNWNEGEPNNA-----GSDEDCVLL-----LKNGQWNDVPCSTSH-LAVCEFPI-- 228
Q6EIG7|CLC6A_HUMAN|Dectin2 NNWQWIDKTPYEKNV--RFWHLGEPNH-----SA--EQCASIVFW-KPTGWGWNDVICETRR-NSICEMNKIY 208
Q9NNX6|CD209_HUMAN|DCSIGN GTWQWVDGSPLLPSF-KQYWNRGEPNN-----VGE-EDCAE------FSGNGWNDDKCNLAK-FWICKKSAAS 381
Q9H2X3|CLC4M_HUMAN|DCSIGNR GTWQWVDGSPLSPSF-QRYWNSGEPNN-----SGN-EDCAE------FSGSGWNDNRCDVDN-YWICKKPAA- 394
Q9UJ71|CLC4K_HUMAN|Langerin GDWSWVDDTPFNKVQSVRFWIPGEPNN-----AGNNEHCGNIKA---PSLQAWNDAPCDKTF-LFICKRPYVP 325
Q8VBX4|CLC4K_MOUSE|Langerin GDWYWVDQTSFNKEQSRRFWIPGEPNN-----AGNNEHCANIRV---SALKCWNDGPCDNTF-LFICKRPYVQ 328
Q9ULY5|CLC4E_HUMAN|Mincle GQWQWVDGTPLTKSL--SFWDVGEPNN-----IATLEDCATMRDS-SNPRQNWNDVTCFLNY-FRICEMVGIN 211
Q8WXI8|CLC4D_HUMAN|MCL GQWRWVDQTPFNPRR--VFWHKNEPDN-----SQ--GENCVVLVY-NQDKWAWNDVPCNFEA-SRICKIPGTT 213
P35247|SFTPD_HUMAN|SP GKFTYPTGESLVY----SNWAPGEPNDD-----GGSEDCVEI-----FTNGKWNDRACGEKR-LVVCEF---- 375
Q5KU26|COL12_HUMAN|SR NEWKWLDGTSPDY----KNWKAGQPDNW-GHGHGPGEDCAGL-----IYAGQWNDFQCEDVN-NFICEKDRET 736
P06734|FCER2_HUMAN|CD23 GEFIWVDGSHVDY----SNWAPGEPTS-----RSQGEDCVMM-----RGSGRWNDAFCDRKLGAWVCDRLATC 288
Q9UBG0|MRC2_HUMAN|Endo180 MNFEWSDGSLVSF----THWHPFEPNNF----RDSLEDCVTIW----GPEGRWNDSPCNQSL-PSICKKAGQL 510
P22897|MRC1_HUMAN|MMR MYFEWSDGTPVTF----TKWLRGEPSHE----NNRQEDCVVMK----GKDGYWADRGCEWPL-GYICKMKSRS 492
 : * :* . * * * :*
 Legend

Uniprot annotations:
 * fully conserved
 : strongly similar
 . weakly similar

Legend

Short-loop
Long-loop

Legend

W Conserved residue found in langerin
H HIS294
H Other histidines in interesting positions
E Primary Ca2+ binding-site residue
E Secondary Ca2+ binding-site residue
K K257 or analouge
K K close to K257 analouge

Figure 31: Sequence alignment using UniProtKB (27) for langerin’s carbohydrate recognition domain (residues 198 to
325) with selected C-type lectins. Annotations have been added by comparing available crystal structures of ASGPR
(PDB 5JPV), PSECtin (PDB 1G1S), ESECtin (PDB 1G1T), LSECtin (PDB 5VC1), MBP (PDB 1HUP), dectin-2 (PDB
5VYB), DC-SIGN (PDB 1SL4), DC-SIGNR (PDB 1XPH), Mincle (PDB 3WH2), MCL (PDB 3WHD), SP (PDB 1PWD),
SR (PDB 2OX8), CD23a (PDB 4G9A), Endo180 (PDB 5AO5), and MMR (PDB 5XTS).

28

a) LSECtin

K55

b) DC-SIGN

Ca-2
Ca-1

Ca-3

c) Dectin-2

Ca-4

H113

H171

H165

d) ASGPR

H256

D266

Figure 32: a) LSECtin (PDB 5VC1) has a lysine residue (K55) at the same position as langerin (K257). b) The
carbohydrate recognition domains of C-type lectins may contain multiple secondary Ca2+ binding-sites (Ca-1, Ca-3) like
it is the case for DC-SIGN (PDB 1SL4). c) Potentially pH-sensitive histidine residues are found for example in dectin-2
(PDB 5VYB) in two positions close to the primary Ca2+ binding site. A moderately conserved histidine H113 (H229 in
langerin) can be found close to a secondary bindig-site (Ca-4). d) ASGPR (PDB 5JPV) with pH sensing residue H256.
The distance between the histidine side-chain and the Ca2+-ion in the binding pocket is about 0.6 nm in this structure
and potentially lower in the protonated state due to a likely interaction with D266. This close proximity suggests a
pH-switching mechanism for the Ca2+-affinity through direct interaction.

29

References
1. Feinberg, H., Powlesland, A. S., Taylor, M. E., and Weis, W. I. (2010). Trimeric structure of Langerin. Journal of

Biological Chemistry 285, 13285–13293.
2. Feinberg, H., Taylor, M. E., Razi, N., McBride, R., Knirel, Y. A., Graham, S. A., Drickamer, K., and Weis, W. I.

(2011). Structural Basis for Langerin Recognition of Diverse Pathogen and Mammalian Glycans through a Single
Binding Site. Journal of Molecular Biology 405, 1027–1039.

3. Berendsen, H. J. C., van der Spoel, D., and van Drunen, R. (1995). GROMACS: A message-passing parallel
molecular dynamics implementation. Computer Physics Communications 91, 43–56.

4. Lindahl, E., Hess, B., and van der Spoel, D. (2001). GROMACS 3.0: A package for molecular simulation and
trajectory analysis. Journal of Molecular Modeling 7, 306–317.

5. van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., and Berendsen, H. J. (2005). GROMACS: Fast,
flexible, and free. Journal of Computational Chemistry 26, 1701–1718.

6. Hess, B., Kutzner, C., van der Spoel, D., and Lindahl, E. (2008). GROMACS 4: Algorithms for Highly Efficient,
Load-Balanced, and Scalable Molecular Simulation. Journal of Chemical Theory and Computation 4, 435–447.

7. Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M.,
van der Spoel, D., Hess, B., and Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open
source molecular simulation toolkit. Bioinformatics 29, 845–854.

8. Páll, S., Abraham, M. J., Kutzner, C., Hess, B., and Lindahl, E., Tackling exascale software challenges in molecular
dynamics simulations with GROMACS; Markidis, S., and Laure, E., Eds.; Springer: 2015; Vol. 8759.

9. Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., and Lindahl, E. (2015). GROMACS: High
performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2,
19–25.

10. Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., and Shaw, D. E. (2010).
Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins: Structure, Function, and
Bioinformatics 78, 1950–1958.

11. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., and Klein, M. L. (1983). Comparison of simple
potential functions for simulating liquid water. The Journal of Chemical Physics 79, 926–935.

12. Bussi, G., Donadio, D., and Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of
Chemical Physics 126, 014101.

13. Parrinello, M., and Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics
method. Journal of Applied Physics 52, 7182–7190.

14. Hess, B. (2008). P-LINCS: A Parallel Linear Constraint Solver for Molecular Simulation. Journal of Chemical
Theory and Computation 4, 116–122.

15. van Gunsteren, W. F., and Berendsen, H. J. C. (1988). A Leap-frog Algorithm for Stochastic Dynamics. Molecular
Simulation 1, 173–185.

16. Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., and Pedersen, L. G. (1995). A smooth particle mesh
Ewald method. The Journal of Chemical Physics 103, 8577–8593.

17. Blomberg, F., Maurer, W., and Rüterjans, H. (1977). Nuclear magnetic resonance investigation of 15N-labeled
histidine in aqueous solution. Journal of the American Chemical Society 99, 8149–8159.

18. Hass, M. A. S., Hansen, D. F., Christensen, H. E. M., Led, J. J., and Kay, L. E. (2008). Characterization of
conformational exchange of a histidine side chain: Protonation, rotamerization, and tautomerization of His61 in
plastocyanin from Anabaena variabilis. Journal of the American Chemical Society 130, 8460–8470.

19. Hansen, A. L., and Kay, L. E. (2014). Measurement of histidine pKa values and tautomer populations in invisible
protein states. Proceedings of the National Academy of Sciences 111, E1705–E1712.

30

20. Hanske, J., Aleksić, S., Ballaschk, M., Jurk, M., Shanina, E., Beerbaum, M., Schmieder, P., Keller, B. G., and
Rademacher, C. (2016). Intradomain Allosteric Network Modulates Calcium Affinity of the C-Type Lectin Receptor
Langerin. Journal of the American Chemical Society 138, 12176–12186.

21. Humphrey, W., Dalke, A., and Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular
Graphics 14, 33–38.

22. Søndergaard, C. R., Olsson, M. H. M., Rostkowski, M., and Jensen, J. H. (2011). Improved Treatment of Ligands
and Coupling Effects in Empirical Calculation and Rationalization of pKa Values. Journal of Chemical Theory and
Computation 7, 2284–2295.

23. Olsson, M. H. M., Søndergaard, C. R., Rostkowski, M., and Jensen, J. H. (2011). PROPKA3: Consistent Treatment
of Internal and Surface Residues in Empirical pKa Predictions. Journal of Chemical Theory and Computation 7,
525–537.

24. Scherer, M. K., Trendelkamp-Schroer, B., Paul, F., Pérez-Hernández, G., Hoffmann, M., Plattner, N., Wehmeyer, C.,
Prinz, J.-H., and Noé, F. (2015). PyEMMA 2: A Software Package for Estimation, Validation, and Analysis of
Markov Models. Journal of Chemical Theory and Computation 11, 5525–5542.

25. Li, L., Li, C., Zhang, Z., and Alexov, E. (2013). On the Dielectric “Constant” of Proteins: Smooth Dielectric Function
for Macromolecular Modeling and Its Implementation in DelPhi. Journal of Chemical Theory and Computation 9,
2126–2136.

26. Berendsen, H. J. C., M., P. J. P., van Gunsteren, W. F., DiNola, A., and Haak, J. R. (1984). Molecular dynamics with
coupling to an external bath. Journal of Chemical Physics 81, 3684–3690.

27. Dogan, T., MacDougall, A., Saidi, R., Poggioli, D., Bateman, A., O’Donovan, C., and Martin, M. J. (2016).
UniProt-DAAC: domain architecture alignment and classification, a new method for automatic functional annotation
in UniProtKB. Bioinformatics 32, 2264–2271.

31

CommonNNClustering—A Python package for
generic common-nearest-neighbour clustering

Jan-Oliver Joswig and Bettina G. Keller∗

Department of Theoretical Chemistry, Freie Universität Berlin, Arnimallee 22, 14195
Berlin, Germany

E-mail: bettina.keller@fu-berlin.de

Abstract
Density-based cluster algorithms are widely
used in a variety of data science applications.
Their advantage lies in the capability to find
arbitrarily shaped and sized clusters and the
robustness against outliers. In particular they
proved effective in the analysis of Molecular Dy-
namics (MD) simulations, where they serve to
identify relevant, low energetic molecular con-
formations. As such they can provide a conve-
nient basis for the construction of kinetic (core-
set) Markov-state models (MSMs). Here we
present the open source Python project Com-
monNNClustering, which provides an easy-
to-use and efficient re-implementation of the
common-nearest-neighbour (CommonNN) clus-
ter algorithm. Included are tools for its integra-
tion into the workflow of MD analysis and MSM
estimation covering rationally guided hierarchi-
cal clustering and parameter selection. We put
our emphasis on a generic API design to keep
the implementation flexible and open for cus-
tomisation.

Introduction
Density-based clustering procedures—like
CommonNN clustering—identify clusters in
general as data regions of high sample den-
sity separated by sparse, low density regions1

and have interesting properties for a wide range
of applications. In particular, they are useful
in the classification of molecular structures be-

cause clusters identified by density-based clus-
tering methods tend to have a natural corre-
spondence to what is understood as a molecular
conformation: an ensemble of structures with
relatively high observation probability associ-
ated with the same potential energy minimum
or separated by sufficiently small energetic bar-
riers (see figure 1 for an illustrative example).

Figure 1: Molecular conformations with low po-
tential energy (high observation probability) iden-
tified in a MD simulation of a small helical pep-
tide (PDB ID 6A5J), shown here projected onto
the root-mean-square deviation (RMSD) of back-
bone atom coordinates with respect to the starting
structure.

Three points make density-based clustering
methods exceptionally suitable in this situa-
tion: 1) a conformational cluster is not con-
strained to a particular shape or layout. Nei-
ther is it restricted in its size or extent. Com-
monNN clustering makes no assumptions in this

1

regard. 2) Not every molecular structure is a
good representative for a stable conformation.
This means, it is usually beneficial if a cluster-
ing can treat individual data points as outliers
(noise), which is the case for the CommonNN
method. 3) The representations of molecules,
i.e. the data space in which they are clus-
tered, can be high dimensional and complex. In
general, it is not possible for example to know
the correct number of conformational clusters
that are to be found beforehand. The clus-
tering should not require any prior knowledge
about the data, or should allow easy data explo-
ration. CommonNN offers systematic parame-
ter screening and optimisation.

CommonNN clustering has proven to be a
viable density-based clustering scheme. It
yields intuitively correct clustering results in a
wide range of challenging test data cases, as
we showed previously in comparative bench-
marks.2,3 In application, CommonNN cluster-
ing has been for example successfully used to
characterise the rich conformational ensemble
of a foldamer and a tandem WW domain—two
rigid protein domains connected by a flexible
linker that sample a huge variety of relative
orientations and domain-domain interfaces.4 In
other instances, the conformational clustering
of small organic molecules has been applied in
the context of ligand-protein interactions and
pharmacophore modelling.5,6 As a discretisa-
tion scheme for very well converged core-set
Markov models,7,8 CommonNN clustering is ca-
pable of detecting subtle changes in conforma-
tional equilibria and has been useful to ex-
plain differences in the membrane permeabil-
ity of cyclic peptides9 and to describe regula-
tive allosteric processes.10 Meanwhile, the Com-
monNN scheme found adaptation in a volume-
scaled variant vs-CNN,11 used in very recent
research12,13.

In this work, we present a revisited implemen-
tation of density-based CommonNN clustering
and we provide an accessible Python package
to make its use easier and more efficient for a
broader audience.

We will quickly summarise the theoretical
idea underlying the clustering method and
how we approach its algorithmic realisation in

section Theoretical background. In the sec-
tions “Basic usage”, Advanced usage, and Prac-
tical advice we describe the usage of the package
and some of the program design decisions. Sec-
tion Benchmark provides a small benchmark of
the new implementation.

Theoretical background
Consider a data set of points that should be
clustered as a set of samples from an underly-
ing probability density p : Ω → R≥0 with re-
spect to a d-dimensional feature space Ω ⊂ Rd.
Density-based CommonNN clustering rests on
the idea of applying a density threshold λ to p
that separates Ω into regions of high and low
density like shown in figure 2 for 1D. Clusters
are the resulting isolated, continuous regions of
high density while everything below λ is noise.
The set of possible clustering results is system-
atically gathered through variation of λ.

Figure 2: Example probability distribution in 1D
with two maxima. Applying different density-
thresholds λ splits the distribution into isolated
high-density regions (clusters) separated by low
density (noise).

Of course, the probability density p for an ar-
bitrary data set is usually not known and diffi-
cult if not impossible to obtain. CommonNN
clustering employs therefore a local estimate
of the density, based on discrete samples: the
proxy for the density is the number of data
points within the neighbourhood intersection of
two points. A point pair is identified to be part

2

of the same cluster if the density estimate ex-
ceeds a defined threshold (compare λ), i.e. if
the two points share at least a number of c
common neighbours with respect to their neigh-
bourhoods circumscribed by a neighbour search
radius r (see figure 3). The two points are in
this case said to “fulfil the density-criterion” or
“pass the similarity check”. The density esti-
mate requires the definition of a metric on the
feature space that allows the calculation of pair-
wise distances and the determination of neigh-
bourhoods.

Figure 3: Illustration of the density-criterion in
the CommonNN scheme for random points in 2D.
The green and the blue data point share two of
their neighbours with respect to the search radius
r (yellow points). For a set value of c ≤ 2, the
two points are considered part of the same dense
region, indicated by a red edge between them. A
network of points connected in this way constitutes
a cluster.

Programmatically, it is convenient to think
of the clustered data set as a graph G(V,E)
in which each sample is represented by a node
(vertex) vi. Edges eij indicate pairwise rela-
tionships between points. If the edges corre-
spond to whether two points vi and vj fulfil the
density-criterion, the connected components—
sub-networks of nodes that are disjoint from
the rest—of the graph are the clusters that we
want to find. Hence, the main task of the clus-
tering can be solved by leveraging well estab-
lished graph traversal algorithms, for example
a breadth-first-search approach like shown in
code snippet 1.

Snippet 1: Pseudo code for a breadth-first-search
graph traversal to identify connected components
(clusters) in a data graph. The CommonNN
density-criterion determines if two nodes are con-
nected.

Basic usage
The CommonNNClustering package re-
quires Python ≥ 3.6. It can be installed
from PyPi (pip install cnnclustering)
or from the development repository on
GitHub (https://github.com/janjoswig/
CommonNNClustering). The installation re-
quires Cython, which is used to implement
core functionalities efficiently. At runtime,
NumPy is mandatory as well. Optionally, Mat-
plotlib, Networkx, Pandas, scikit-learn, and
scipy are leveraged for additional functionality.
Documentation is available under https://
janjoswig.github.io/CommonNNClustering.

Getting started with the clustering of any
data set using the CommonNNClustering pack-
age is easy and should feel familiar to the use of
similar available object-oriented Python APIs
like that used by scikit-learn.14 Code snippet 2

3

illustrates the four essential steps of a cluster-
ing: 1) how to import the main cluster mod-
ule (line 1), 2) prepare a clustering object as
an instance of the Clustering class from the
data (line 5), 3) trigger the clustering (fit) it-
self with specified parameters (line 6), and 4)
access the resulting cluster label assignments
for further analysis (line 7). As a general de-
sign principle, we settled on a data oriented
approach for the whole clustering procedure,
which means that a created clustering object
will be always associated with exactly one data
set of some form. This data set can be clus-
tered based on different combinations of cluster
parameters, re-using the same clustering object.

Snippet 2: Default cluster object creation and
data point clustering. The scatter plots be-
low are created using the convenience method
default_cl.evaluate().

The example assumes the presumably most
frequent use-case of having the data presented
as a NumPy array of shape (#points, #dimen-
sions) or something equivalent for that matter,
i.e. the data contains information on feature
space coordinates for each sample point. The
program can use these for the calculation of dis-
tances and effectively neighbourhoods to per-
form the clustering. This is, however, by far
not the only possible scenario. In general, input

data can be fed into a clustering in one of three
fundamentally different formats: 1) point coor-
dinates, 2) pairwise inter-point distances, or 3)
fixed radius neighbourhoods. Each of these ba-
sic types of information can eventually be ma-
terialised in a multitude of different data struc-
tures. In particular, it is allowed and encour-
aged to leverage other specialised programs to
take over the distance or neighbourhood calcu-
lation, e.g. with kd-trees as provided by scikit-
learn.14

Advanced usage
Figure 4 gives a rough overview of how we
achieve it that our package stays flexible with
regard to different input formats and variations
in other constraints like for example the used
distance metric.

Figure 4: Aggregation of a clustering object from
generic types representing exchangeable clustering
components.

The central idea is the following: when the
clustering algorithm is executed (e.g. as laid
out in code snippet 1), it has to loop over input
data points and query their neighbourhoods.
Instead of accessing whatever input data struc-
ture may have been presented directly, the raw
input data is wrapped within one of several in-
put data objects that all can be worked with
through a common generic interface, i.e. which
are of a certain defined type. The task of ac-
quiring neighbourhood information is delegated

4

Figure 5: 1D cluster parameter scans: number of clusters vs. c for fixed radii r (proposed initial
guess and much smaller). The most promising regions (stable, high cluster number) are marked with
red. Clustering examples for parameters in the highlighted ranges below. Data points are coloured
by cluster label in two shades of the same colour for the lowest and highest c value, respectively.

to one of many possible neighbours getter ob-
jects. In this way, the clustering that is itself
implemented in a fitter object does not have
to be concerned with how needed information
is stored in and retrieved from the input data.
In the same way, other important components
as the testing of the density-criterion (similarity
checker type), intermediate storage of retrieved
neighbourhoods (neighbours type), or the met-
ric (metric type) used for distance calculations
(distance getter type) are represented by ex-
changeable objects adhering to generic inter-
faces. A clustering object as initialised in code
example 2 aggregates all the objects needed for
a clustering and is assembled in the background
according to a recipe.

Please refer to the documentation for details
on how the different interfaces are defined ex-
actly, which generic types are available already,
and how custom types and recipes can be de-
fined and invoked.

Practical advice
Let’s recall that the outcome of a CommonNN-
clustering depends on the two cluster pa-
rameters r (neighbour-search radius) and c
(CommonNN-cutoff). The higher the value of c

compared to r, the higher is the estimated den-
sity required to be for two points ending up in
the same dense cluster. Which values are even-
tually to be chosen for r and c depends strongly
on the (subjectively) expected clustering result
and on the nature of the data set (its distribu-
tion and sampling), and is in general not possi-
ble to decide a priori.

In selecting a suitable radius r, the aim is to
choose a value that allows for a sufficiently lo-
cal density estimate. In this sense, r functions
as a kind of “resolution” for the clustering pro-
cedure. With a low resolution (a large radius
r), local differences in the point density can
not be detected, and hence no splitting of the
data into clusters is achieved. On the other
hand, if r is very small, fluctuations in the local
point density that may originate from insuffi-
cient sampling, can lead to meaningless split-
tings of points into undesired clusters. Further-
more, with a high resolution (small values of r),
the sensitivity of the density threshold towards
the neighbour cutoff c is increased. As a heuris-
tic for a good first guess on a neighbour search
radius r, which allows an appropriately local
density estimate, it has proven useful to take
the distance value at which the distribution of
pairwise inter-point distances has its first max-
imum. There is no such heuristic for c.

5

We propose now as a general strategy, to set r
according to said heuristic and to screen c from
small to large values, to obtain clusterings at
increasingly high density thresholds. This al-
lows to systematically select the favoured clus-
tering result. For comparison, r may be ad-
justed slightly in both directions—in particular
for high sampling rates, the resolution can usu-
ally be increased. Figure 5 illustrates this strat-
egy with four representative data sets. When
settling on a specific clustering result, it is ad-
visable to look for a parameter range in which
the clustering is qualitatively stable, meaning
where only the size of individual clusters varies
(shrinks for increased c) but not their num-
ber. The general observation is that while the
density-criterion goes up, the number of clus-
ters increases as more and more splittings oc-
cur. On the other hand the number will eventu-
ally go down again as more and more low den-
sity clusters fall below the density threshold and
vanish into noise.

Snippet 3: Manual hierarchical clustering in-
volves the isolation of clustering results and a
re-clustering of child clusters.

It is often the case that the finally desired
clustering result can not be achieved with a sin-
gle parameter combination. The variation of
the density-criterion essentially leads to a hier-
archy of clusterings and individual clusters may
be extracted at different levels of this hierar-
chy. We support currently two ways of doing
this. Full user-control on each hierarchy level

is offered by the manual approach as illustrated
with code snippet 3 and figure 6. The idea is to
follow the strategy of increasing c with fixed r to
a point where the number of isolated clusters is
locally maximised without to many low density
clusters being lost into noise. Than this cluster-
ing result is isolated—i.e. frozen or saved—and
the clustering is continued only on a subset of
child clusters. Finally, the resulting hierarchy
can be reeled—wrapped up—back into a single
partitioning.

Figure 6: Manual hierarchical clustering of the
alanine data set. Upper: Data points coloured
by cluster label assignment after 2-step cluster-
ing (re-clustering of cluster 1 and 2 obtained in
a first step). Lower: A hierarchy of clustering
objects can be visualised as pie-chart showing
the hierarchy levels going outward from high
(root) to low (children) where the size of the
pieces represents the amount of data points in a
certain cluster. Alternatively, a Sugiyama tree-
diagram can be drawn showing the splittings at
individual hierarchy levels from top to bottom.

The second approach, is based on the idea to
semi-automatically build the hierarchy of clus-
terings at certain levels by specifying a list of
parameter combinations. This necessitates that
in a second step, the resulting hierarchy needs
to be screened according to some criteria for
which child clusters should be kept as the final

6

result. Code snippet 4 and figure 7 illustrate
this approach employing a hierarchy screen that
simply avoids that clusters vanish completely.
Again, please refer to the documentation for
more details on hierarchical clustering and the
different approaches.

Snippet 4: Semi-automatic hierarchical cluster-
ing is based on the specification of a list of clus-
ter parameters and selection of child clusters
according to user-defined criteria.

Figure 7: Semi-automatic hierarchical cluster-
ing on the helix data set. Upper: Pseudo free
energy surface plot of the original distribution.
Lower: Data points coloured by cluster label as-
signment after 5-step clustering and trimming
of trivial leafs.

Benchmark
If large data sets are clustered or many pa-
rameter combinations are used, it becomes im-
portant that the clustering procedure can be

executed relatively fast, and we will present
a rough assessment of its performance. We
would like to begin, though, with a word of cau-
tion. Accurate and fully representative bench-
marks of the clustering are essentially hard to
achieve, since the overall performance of the
procedure, i.e. the total execution time needed
to obtain cluster label assignments for the given
input data, depends on many factors, for ex-
ample: Which input source is used? Dis-
tance and neighbourhood calculation can be
very costly. Which distance metric is used?
Which data structures are utilised during the
clustering? How is information retrieved and
stored? How is the density-criterion tested? As
the present generic implementation in the Com-
monNNClustering package is open to a cus-
tomisation of the various components that play
a role during the clustering, we would like to
stress that the user is encouraged to mix and
match the provided building blocks as needed,
to make use of external methods e.g. by pre-
computing neighbourhoods, or even to imple-
ment their own specialised types with a match-
ing interface.

Additionally, the observed clustering timings
depend non-trivially on the cluster parame-
ters and the structure of the data set. This
is because the values for r and c define how
many neighbours are retrieved or checked, and
how quickly points can be assigned to clus-
ters. It should be mentioned that besides com-
putational efficiency in terms of speed, also
the memory requirement of the employed data
structures can be important.

That said, figure 8 shows the impact of data
set size on the clustering performance with col-
lected timings for clusterings under varying con-
straints using qualitatively the same data set
but an increasing number of points. Empirical
scaling was determined by fitting the measured
execution times t versus problem size n to the
power function t ≈ anb where a is a proportion-
ality constant and b is the growth factor of inter-
est. The presented timings have been measured
on a Debian 10 operating system, equipped
with an Intel(R) Xeon(R) CPU E5-2690 v3 @
2.60GHz and 200 GB RAM. Note, that all im-
plementations are serial at the moment. Par-

7

allel fitter schemes are planned for future re-
leases. Timings are reported as the best out
of ten repetitions. The used benchmark frame-
work is organised under https://github.com/
janjoswig/CommonNNClustering-Benchmark.

Figure 8: Clustering benchmarks for data sets
with an increasing number of data points. A
Comparison of different input data formats and
corresponding default recipes measuring clus-
tering execution times only, disregarding in-
put data preparation. Based on uniformly dis-
tributed data points in 2D. The similarity cutoff
was set to c = 0 in all runs. B Full clustering
benchmarks including input data preparation
time. Based on the varied data set. The simi-
larity cutoff was set to c = 50 while the neigh-
bour search radius was set to r = 0.2 initially
and scaled down by a factor of 0.9 each time
the number of points was increased. Note, that
for the “distance” input the stored dense matrix
eventually exceeded the available memory (164
GB for A and 200 GB for B).

Figure 8 A shows benchmarks on uniformly

distributed points with fixed cluster parame-
ters. The CommonNN-cutoff is set to c = 0,
which means that the similarity criterion check
is essentially skipped and the timings reflect
only the general breadth-first search clustering
procedure, including the construction of the in-
termediate neighbour lists.

We compare the clustering execution time
for different input data formats and the cor-
responding default recipes (see the documenta-
tion for details on what these recipes entail). In
all cases, we observe an empirically quadratic
scaling of the computation time with respect
to the number of points in the data set. It is
obvious, however, that computing and sorting
neighbourhood information prior to the clus-
tering gives absolutely the best performance:
256,000 data points can be clustered on the
order of seconds. We see that it is beneficial
to choose a rather small radius r. This will
keep the number of neighbours per point small,
which leads to faster filling of the neighbours
containers and also to a lower memory demand
especially if neighbourhoods are pre-calculated.

Figure 8 B shows benchmarks on the Var-
ied set for, which in contrast to A the time
needed to prepare the input data—i.e. the pre-
calculation of distances or neighbourhoods—is
included in the measurements. The advantage
of using pre-calculated distances on the clus-
tering execution time is essentially nullified if
the preparation time has to be considered for
the overall clustering performance. Clustering
from pre-computed neighbourhoods, however,
clearly outperforms a clustering starting from
point coordinates even if the preparation time
is considered. Here, putting in the effort of sort-
ing the neighbourhoods still offers a little edge.

Note that for the benchmarks in B the cluster
parameter c was fixed but r was scaled down
progressively, which can be justified for large
(well sampled) data sets. This has the effect of
producing sub-quadratic scaling.

Conclusion
We demonstrated the cnnclustering Python
package that provides a convenient user in-

8

terface to threshold-based, density-based Com-
monNN clustering. The presented revised im-
plementation rigorously improves our previous
one in terms of clustering performance, usabil-
ity and flexibility. We have described only a
subset of the currently available functionality.
Its generic design allows the application of the
clustering procedure in a wide range of situa-
tions. The package is open to be extended with
specialised types to cover additional use-cases—
for example other forms of input data. Future
work will be dedicated to broaden the array of
available types and on incorporating computa-
tional parallelisation schemes into their design.
Furthermore, automatic hierarchical clustering
is explored.

References
(1) Sander, J. In Encyclopedia of Machine

Learning ; Sammut, C., Webb, G. I., Eds.;
Springer US: Boston, MA, 2010; pp 270–
273.

(2) Keller, B.; Daura, X.; van Gun-
steren, W. F. Comparing geometric and
kinetic cluster algorithms for molecular
simulation data. The Journal of Chemical
Physics 2010, 132, 074110.

(3) Lemke, O.; Keller, B. G. Common Nearest
Neighbor Clustering—A Benchmark. Al-
gorithms 2018, 11 .

(4) Wenz, M.; Keller, B. G. in preparation
2021,

(5) Lemke, O.; Götze, J. P. On the Stability
of the Water-Soluble Chlorophyll-Binding
Protein (WSCP) Studied by Molecular
Dynamics Simulations. The Journal of
Physical Chemistry B 2019, 123, 10594–
10604, PMID: 31702165.

(6) Mortier, J.; Dhakal, P.; Volkamer, A.
Truly Target-Focused Pharmacophore
Modeling: A Novel Tool for Mapping
Intermolecular Surfaces. Molecules 2018,
23 .

(7) Schütte, C.; Noé, F.; Lu, J.; Sarich, M.;
Vanden-Eijnden, E. Markov state mod-
els based on milestoning. The Journal of
Chemical Physics 2011, 134, 204105.

(8) Lemke, O.; Keller, B. G. Density-based
cluster algorithms for the identification of
core sets. The Journal of chemical physics
145, 164104.

(9) Witek, J.; Wang, S.; Schroeder, B.;
Lingwood, R.; Dounas, A.; Roth, H.-
J.; Fouché, M.; Blatter, M.; Lemke, O.;
Keller, B. G.; Riniker, S. Rationalization
of the Membrane Permeability Differences
in a Series of Analogue Cyclic Decapep-
tides. J. Chem. Inf. Model. 2019, 59, 294–
308.

(10) Joswig, J.-O.; Anders, J.; Zhang, H.;
Rademacher, C.; Keller, B. G. The molec-
ular basis for the pH-dependent calcium
affinity of the pattern recognition receptor
langerin. Journal of Biological Chemistry
2021, 296, 100718.

(11) Weiß, R. G.; Ries, B.; Wang, S.;
Riniker, S. Volume-scaled common nearest
neighbor clustering algorithm with free-
energy hierarchy. The Journal of Chemical
Physics 2021, 154, 084106.

(12) Weiß, R. G.; Losfeld, M.-E.; Aebi, M.;
Riniker, S. N-Glycosylation Enhances
Conformational Flexibility of Protein
Disulfide Isomerase Revealed by Microsec-
ond Molecular Dynamics and Markov
State Modeling. The Journal of Physi-
cal Chemistry B 2021, 125, 9467–9479,
PMID: 34379416.

(13) Mathew, C.; Weiß, R. G.; Giese, C.;
Lin, C.-w.; Losfeld, M.-E.; Glockshu-
ber, R.; Riniker, S.; Aebi, M. Gly-
can–protein interactions determine kinet-
ics of N-glycan remodeling. RSC Chem.
Biol. 2021, 2, 917–931.

(14) Pedregosa, F. et al. Scikit-learn: Machine
Learning in Python. Journal of Machine
Learning Research 2011, 12, 2825–2830.

9

	List of abbreviations
	List of figures
	List of tables
	Introduction
	Overview
	A brief history of Molecular Dynamics
	Projects and research questions

	Theoretical basics
	The Molecular Dynamics formalism
	Equations of motion
	Types of molecular interactions
	Polarisable force fields
	Periodic boundary conditions
	Neighbour lists
	Integrators
	Velocity generation
	Thermostats
	Steered Molecular Dynamics

	Molecular trajectory analysis
	A universal workflow
	Basic features
	Dimensionality reduction
	mutual information

	Markov models
	Graph theory
	Connected component search
	minimum spanning trees

	Phallo- and amatoxins
	Fungal toxins
	The phalloidin project

	C-type lectin receptors
	The human immune system
	The langerin project
	mutual information analysis
	Polarisable force field simulations

	Simulation setup
	Structure inspection
	Structure preparation
	Energy minimisation
	Ensemble equilibration

	Clustering algorithms
	Clustering—the basics
	Data sets and representations
	Definitions of similarity and clustering categories

	Clustering methods
	Linkage clustering
	Spectral clustering
	k-Means clustering
	Gaussian mixture models
	Density-based clustering using histograms
	Density-based clustering using level-sets
	DBSCAN
	Jarvis-Patrick clustering
	common-nearest-neighbour clustering
	Density-peaks

	The CommonNNClustering project
	Primer on generic interfaces in object-oriented programming
	Generic threshold-based CommonNN clustering
	Package realisation and basic usage
	Module overview
	Technical remarks
	Fast threshold-based clustering
	Parameter selection
	Manual hierarchical clustering
	Semi-automatic hierarchical clustering
	Hierarchical clustering using minimum spanning trees

	Benchmarking clustering algorithms
	The framework
	CommonNN clustering performance

	Appendix
	References
	Publications
	"Total Synthesis of the Death Cap Toxin Phalloidin:Atropoisomer Selectivity Explained by Molecular-Dynamics Simulations"
	"The molecular basis for the pH-dependent calcium affinity ofthe pattern recognition receptor langerin"
	"CommonNNClustering—A Python package for generic common-nearest-neighbour clustering"

