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Gyroscope

This admirable gadget, when it is
Wound on a string and spun with steady force,

Maintains its balance on most any smooth
Surface, pleasantly humming as it goes.

It is whirled not on a constant course, but still
Stands in unshivering integrity

For quite some time, meaning nothing perhaps
But being something agreeable to watch,

A silver nearly silence gleaning a still-
ness out of speed, composing unity

From spin, so that its hollow spaces seem
Solids of light, until it wobbles and

Begins to whine, and then with an odd lunge
Eccentric and reckless, it skids away

And drops dead into its own skeleton.

Howard Nemerov
(1920-1991)
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1. Introduction

The poem by Howard Nemerov prefixed to this thesis describes what is familiar to everyone
who, as a child, has played with a humming top. The elementary yet charming physics
of such a classical gyroscope balancing on a “smooth surface” is based on the (of course
imperfect) conservation of its angular momentum. In the realms of quantum mechanics,
this phenomenon finds its approximate counterpart—although not a strict analog—in
the spin, discovered and formalized as an intrinsic angular momentum of the electron in
seminal works by Pauli [1925], Uhlenbeck and Goudsmit [1925], and Dirac [1928a;b]. Being
actually much more than only some “admirable gadget” of quantum theorists, the electron
spin influences many properties of the matter that surrounds us every day: through the
spin-statistics theorem [Fierz, 1939; Pauli, 1940] and Pauli’s exclusion principle [Pauli,
1925] it provides the very basis for large-scale stability of many-electron systems and
determines in part the structure of the periodic table of elements.

Recently, the electron spin has indeed become a favorite toy of many condensed matter
physicists, and even a whole new research field, dubbed spintronics, has emerged [Wolf
et al., 2001; Awschalom et al., 2002; Zuti¢ et al., 2004; Awschalom and Flatté, 2007]. From
an—admittedly somewhat constricted—spintronics perspective, one could argue that Ne-
merov’s poem is a description of what in a sober scientific language would be called a spin
relazation process. In this picture, the “quite some time, meaning nothing perhaps” until
the gyroscope “drops dead into its own skeleton” represents the spin’s lifetime (proving
that physicists’ jargon is not that prosaic after all). A central challenge of spintronics
is precisely that this relaxation time during which one can control a localized or itiner-
ant spin means actually a lot: it can decide about the feasibility of efficient spin-based
(quantum) information storage and processing in the future.

Another, even younger area of research that offers bright prospects for technological
applications and at the same time provides a test bed for fundamental physics hitherto
unaccessible in the laboratory is graphene [Geim and Novoselov, 2007]. Concerning the
dichotomy of application-oriented versus fundamental scientific interest, it is certainly
justifiable to say that, while in spintronics the practical aspect prevails, in the graphene
research both kinds of motivation are rather equilibrated—on a very high level. Materials
scientists attempt to exploit the unique mechanical properties and the huge thermal and
electrical conductivities of the two-dimensional carbon allotrope, and theorists are thrilled
by the possibility to investigate numerous effects connected with the relativistic nature of
the electrons in graphene, which behave like massless, chiral Dirac fermions.

As postmodern as the introductory poem by Nemerov are, in a sense, the methods em-
ployed in todays condensed matter theory. Concepts and techniques have been borrowed
from different branches and eras of physics and developed further (e.g., quantum field theo-
retical tools such as the Feynman diagrams from quantum electrodynamics). For instance,
the semiclassical description of nonequilibrium phenomena, which we will make abundant
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use of in this thesis, combines the Boltzmann equation dating back to the 19th century
with several quantum mechanical features (notably spin and Fermi statistics) from the
“classical modern” period of physics in the 20th century. The general goal is to describe
concrete observable phenonema rather than to find grand unified theories, which allows
for a (most of the time) tolerant coexistence of alternative (or sometimes complementary)
formal approaches. Nevertheless, the plurality of approaches raises the question for their
equivalence in certain contexts.

The present thesis is concerned with problems belonging to two seemingly distinct global
topics—spintronics and graphene. However, as will become clear in the remainder of this
introductory chapter, these two fields have more in common than the fact that both have
been in the spotlight of condensed matter physics over the past years, with two very recent
Nobel Prizes in Physics! being an expression and, obviously, a reinforcement of this focus.

1.1. Spintronics

The 2007 Nobel Prize in Physics was awarded to Peter Griinberg and Albert Fert for their
independent discovery of the Giant magnetoresistance [Griinberg et al., 1986; Baibich
et al., 1988; Binasch et al., 1989]. This effect is observed in layered metallic structures
composed of alternating ferromagnetic and nonmagnetic films. The presence of a mag-
netic field causes a significant decrease in the electrical resistance of these compounds.
Apart from having a tremendous technological impact through the use of the Giant mag-
netoresistance and of the related Tunnel magnetoresistance [Julliere, 1975] in read heads
for commercial data storage devices, the experimental achievements of Griinberg and Fert
are generally considered the “birth of spintronics”.

Yet, the present activities in this research field are based on pioneering work that dates
back much earlier (see D’yakonov [2008]): at a time when spin as a concept was still
unknown, Wood and Ellett [1924] observed that polarization-resolved fluorescence mea-
surements on mercury vapor were influenced by the magnetic field of the earth. This
effect was thoroughly investigated and given a physical interpretation by Hanle [1924],
with whose name it is connected to date. The subject was taken up again by Brossel and
Kastler [1949] in their studies of optical pumping in atoms, which included three basic
steps that later became programmatic for spintronics: optical excitation of a nonequilib-
rium distribution of angular momentum, its subsequent manipulation with magnetic fields
and, finally, detection of the resulting distribution via the polarization of its luminescence.
Lampel [1968] developed analogous techniques for the optical orientation of the carrier
spins in semiconductors (see also Meier and Zakharchenya [1984]). In the sequel, a lot of
experimental and theoretical effort was devoted to these kinds of problems. An important
result by D’yakonov and Perel’ [1971] was their prediction of spin currents that flow trans-
versely to charge currents in semiconductors with spin-orbit coupling. This phenomenon
was later named spin Hall effect [Hirsch, 1999]. The recent experimental observation [Kato
et al., 2004; Wunderlich et al., 2005; Sih et al., 2005] of the resulting spin accumulation

1Speaking of highly rated awards, it is fair to mention that the little piece of “spin relaxation literature”
that we chose as an epigraph for this thesis has played its part in earning Howard Nemerov the Pulitzer
Prize for poetry in 1978.
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at the sample boundaries of electron as well as hole systems has prompted a vivid the-
oretical debate about the underlying mechanisms (see, e.g., Sinova et al. [2004]; Engel
et al. [2007]). Unlike the Giant magnetoresistance, which can be understood within a
two-channel picture (“spin-up” and “spin-down” with respect to some quantization axis),
the theoretical description of the spin Hall effect (and of other phenomena relevant to
spintronics such as the current-induced spin torque [Ralph and Stiles, 2008]), requires a
coherent treatment of the spin.

In a broad sense, spintronics deals with spin-related effects in solids, including equilib-
rium phenomena (with respect to the spin degree of freedom) such as the aforementioned
Giant magnetoresistance. D’yakonov [2004] narrows the subject as follows:

“What most people apparently mean by spintronics is the fabrication of some
useful devices using a) creation of a non-equilibrium spin density in a semicon-
ductor, b) manipulation of the spins by external fields, and c) detection of the
resulting spin state.”

This sketches the program of what has since become established as semiconductor spin-
tronics [Fabian et al., 2007; D’yakonov, 2008].

Research in this field is largely fueled by the technological interest to improve on the per-
formance of conventional semiconductor microelectronics. To date the chip industry has
kept up with the pace described by “Moore’s law” [Moore, 1965], an empirical observation
saying that the number of transistors on an integrated circuit doubles approximately in ev-
ery 18 to 24 months. Recently, the Intel Corporation announced a new three-dimensional
“Tri-Gate” structure with a 22 nm scale, as opposed to 32 nm in the present transistor
generation [Cartwright, 2011]. However, even with such ingenious exploits within conven-
tional technology as the extension of the transistor architecture to the third dimension,
further improvements in terms of, e.g., reduction of power consumption will become in-
creasingly difficult to achieve in the future. Here, semiconductor spintronics offers new
vistas through a radical change in paradigm: the idea is to largely stick to the highly
developed semiconductor structures of existing microelectronics (including the elaborate
lithographical fabrication techniques), but to exploit the conduction electrons’ spin degree
of freedom in addition to their charge for information storage (as already done in MRAMs
and hard drives) and processing. Possible advantages lie in a better integration of the two
functionalities—processing and storage of information—as well as in increased operation
speeds and higher energy efficiency. The latter expectation is based on the fact that, being
time reversal symmetric by definition, spin currents can, in principle, flow dissipationless
[Murakami et al., 2003]. This is a particularly important point, since Joule heating is a
key limiting factor for further miniaturization.

1.1.1. Spin-orbit interactions and spin relaxation

A great asset of using semiconductor structures as spintronics devices is that therein
spin polarization can be generated and coherently manipulated without ferromagnetism
or external magnetic fields [Awschalom and Samarth, 2009] via spin-orbit coupling.

In atomic physics, spin-orbit interactions reveal themselves as corrections in the spectra,
which can be modeled by including in the Hamiltonian describing electrons with mass m
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and momentum p the Thomas term

eh
4m?2c?
It is derived as a relativistic correction to the Pauli equation. Here, V' is the atomic
potential and o denotes the vector of Pauli matrices.? In general, the spin-orbit coupling
is small due to its relativistic origin (the huge energy gap between electrons and positrons
2mc? appears in the denominator).

In semiconductor structures, however, the effects of spin-orbit interaction can be mag-
nified considerably, depending on band structure parameters and confining potentials. In
the absence of magnetic fields (i.e., if time-reversal symmetry is granted) and if, in addi-
tion, the potential in which the electrons move is space-inversion symmetric, the electronic
states for given wave vector k are two-fold degenerate, e1(k) = €| (k). This spin-degeneracy
can be lifted if the space inversion asymmetry is broken either by the crystal structure
(bulk inversion asymmetry, e.g., in materials of the zinc-blende type [Dresselhaus, 1955])
or as a consequence of the structure inversion asymmetry due to a confining potential as
frequently encountered in semiconductor heterostructures [Bychkov and Rashba, 1984].3

Using k-p theory [Moss, 1980] and the envelope function approximation one can describe
the physics of structures that are based on direct semiconductors within the 8 x 8 Kane
Model [Winkler, 2003]. The band structure is depicted in Figure 1.1: besides the spin-
degenerate s-type conduction band this model takes into account the light and heavy hole
bands and the spin-orbit split-off band (all of them p-type and also spin degenerate). We
recall that the famous two-band Pauli equation is obtained in the nonrelativistic limit of
the Lorentz invariant four-band Dirac equation (electrons coupled to positrons). The spin-
orbit interaction Hamiltonian (1.1) is a leading-order relativistic correction. Analogously,
using quasi-degenerate perturbation theory (Léwdin partitioning*), one derives from the
coupled equations for the eight bands of the Kane model an effective 2 x 2 Hamiltonian
for the conduction band electrons [Winkler, 2003]. The result is an energy eigenvalue
equation for the envelope function spinor of the conduction band electrons that resembles
the Pauli equation with relativistic corrections. As constituents of the Hamiltonian one
finds, in addition to the kinetic energy (with an effective mass expressed in terms of the
band structure parameters), a Zeeman term (with an effective g-factor), a Darwin term
and, in particular, as the analog of the Thomas term (1.1), the effective spin-orbit coupling

P2

Hsoi = 3|:

Hrhomas o (VV xp). (1.1)

1 1

Here, Fy and A are the fundamental band gap and the spin-orbit split-off energy, re-
spectively (see Figure 1.1), and P parametrizes the strength of the coupling between

2The Pauli matrices read

_ (01 _ (0 —i 4o =(1 0
Uz_lo,O'y_iO arn O'Z_O_l,

3Further contributions, which are not considered in this thesis, can arise from strain or from the lack
of microscopic symmetry of the atoms at the interface.

“In the context of the derivation of the Pauli equation with relativistic corrections, this technique is
also known as Foldy- Wouthuysen transformation.
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Figure 1.1.: Band structure of the 8 x 8 Kane model: conduction band (c), heavy hole
band (hh), light hole band (lh) and spin-orbit split-off band (so) All bands
are two-fold spin-degenerate. Indicated are further the fundamental band gap
Ey and the spin-orbit splitting Ag. This figure is adopted from Fabian et al.
[2007].

conduction and valence band.

In Eq. (1.2) V can, for instance, represent the Coulomb potential of charged impurities.
As a result of this extrinsic spin-orbit coupling the spin of an electron that scatters from
impurities precesses during the collision processes. Thus, impurity scattering contributes
to the decay of spin polarization—a mechanism called Elliot- Yafet spin relaxation [Elliott,
1954; Yafet, 1963].

Next we consider the Rashba spin-orbit interaction [Bychkov and Rashba, 1984] arising
from structure inversion asymmetry, e.g., in a two-dimensional electron gas (2DEG) real-
ized inside a GaAs/AlGaAs heterostructure with an imbalance of doping on both sides of
the quantum well. Then the relevant potential gradient in Eq. (1.2) is the average elec-
tric field in z-direction that is due to this asymmetric confining potential. By integrating
out the (out-of-plane) motion in z-direction one obtains a Zeeman-like term, but with an
effective magnetic field br(k) that depends on the in-plane wave vector k = (ks, ky). Its
magnitude increases linearly with the one of the momentum argument k. The directional
dependence is shown in Figure 1.2 b). It is characterized by a winding number N = 1.
For a momentum-dependent in-plane field b(k), N is defined by the relation

by +ib, = ePtiNY (1.3)

Here, 6 is the polar angle of k and 6y is a constant phase (6p = 7 for b = bp).

In order to also account for effects of bulk inversion asymmetry of the crystal lattice
one has to resort to the extended Kane model [Winkler, 2003], which includes another six
energetically higher p-type conduction bands. This yields the Dresselhaus spin-orbit cou-
pling field [Dresselhaus, 1955] bp(k), which is a priori cubic in k. However, taking again
the mean value of the momentum component in the growth direction of the quantum well,
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(b)

Figure 1.2.: Sketch of the two kinds of linear-in-momentum spin-orbit fields in semicon-
ductor devices with bulk inversion asymmetry (BIA) or structure inversion
asymmetry (SIA): a) the linear Dresselhaus field bp (k) has a negative winding
sense (winding number -1); b) the Rashba field br(k) has a positive winding
sense (winding number +1). This figure is taken from Winkler [2006].

k2 — (k?), one can split off a linear contribution with winding number N = —1, see
Figure 1.2 a). Since (k?) ~ (7/d)? where d is the quantum well width, the linear Dressel-
haus spin-orbit coupling is dominant over the cubic contributions for thin quantum wells,
where d < k;l (with kr denoting the Fermi momentum). Nevertheless, cubic Dressel-
haus interactions can become important, in particular in the special situation considered
in Chapters 3 and 4 of this thesis where the effects of the two linear contributions cancel
each other (see also Section 1.1.2 below).

Both kinds of intrinsic spin-orbit interaction discussed above cause D’yakonov-Perel’
spin relazation [D’yakonov and Perel’, 1972], which, unlike the extrinsic Elliot-Yafet re-
laxation, occurs between the scattering events: the spin precesses about the spin-orbit field
b(k), which changes with every momentum scattering event, see Figure 1.3. If the preces-
sion frequency is of the order of (or larger than) the scattering rate the spin is completely
randomized already after a few scattering processes. In the opposite limit of weak spin-
orbit coupling or strong scattering, the precession angle between two collisions is small.
Then the spin is subject to a diffusion process where the scattering actually stabilizes the
spin: the more scattering, the larger the spin lifetime.> The D’yakonov-Perel’ mechanism
is typically the dominant source of spin relaxation in semiconductor quantum wells.

1.1.2. Towards maximizing spin lifetimes and coherence lengths

A paradigmatic (yet in its pure form so far not realized) device of semiconductor spin-
tronics that relies on the manipulation of the spin via intrinsic spin-orbit fields is the
spin field-effect transistor proposed by Datta and Das [1990]. The idea is to inject a spin
current® from a spin-polarized source lead (e.g., a semi-metal or ferromagnetic semicon-

5This phenomenon is often referred to as “motional narrowing” in analogy with the reduction of line
widths in NMR spectroscopy due to disorder in local magnetic fields.
SFor a survey on spin-injection, see Fabian et al. [2007].
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b(k")

Figure 1.3.: Schematic D’yakonov-Perel’ spin relaxation: The black line is the trajectory
of an electron; the blue arrows mark the electron spin, which precesses about
the momentary spin-orbit field b(k) (green). The frequent change of the pre-
cession axis results in a random walk behavior with the scattering effectively
stabilizing the spin.

ductor) into a two-dimensional semiconductor structure with Rashba spin-orbit coupling
that is tunable via an electrostatic gate. Depending on the magnitude of the spin-orbit
interaction, which determines the precession period, the itinerant spin will, at the moment
when it arrives at the other end of the sample, more or less match the polarization of the
drain lead, thus making it easy or hard to flow off (see Figure 1.4). As a result, the per-
meability of the device for spin currents can be controlled all-electrically. Obviously, this
principle requires that the spins remain coherent during their passage through the device.
Therefore, the original proposal was for a ballistic situation, where spin dephasing due to,
e.g., D’yakonov-Perel’ relaxation, does not play a role. In order to lift this strict and exper-
imentally demanding requirement Schliemann et al. [2003] came up with the idea to use a
sample where linear Dresselhaus spin-orbit interaction in addition to the Rashba coupling
is present. Then, under certain conditions, which include in particular that both kinds
of linear spin-orbit coupling have to be of equal magnitude, the D’yakonov-Perel’ spin
relaxation mechanism is effectively suppressed. Conceptually this allows the construction
of a Datta-Das-type spin field effect transistor even in the presence of (spin-independent)
scattering.

A closer investigation of the Hamiltonian describing such a spin-orbit tuned semiconduc-
tor system with equal Rasbha and Dresselhaus spin-orbit coupling lead to the discovery of
an exact SU(2) symmetry and the prediction of the persistent spin heliz by Bernevig et al.
[2006]. The actual realization of such a long-lived spin density wave was achieved recently
by means of optical orientation of electron spins in an n-type GaAs/AlGaAs quantum well
[Koralek et al., 2009]. This experiment confirms the prediction of the persistent spin helix,
but it also raises new questions, e.g., for an explanation of the observed temperature de-
pendence of the spin helix lifetime. In Chapter 3 of this thesis we are able to present results
on that topic, which are based on the solution of a semiclassical spin diffusion equation
(cf. Burkov et al. [2004]; Mishchenko et al. [2004]; Stanescu and Galitski [2007]; Weng et al.
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Figure 1.4.: Sketch of the Datta-Das spin transistor: the Rashba spin-orbit interaction
(acting as an effective magnetic field perpendicular to the plane) is tunable
via the gate voltage. For zero Rashba field (upper panel) the spin polarization
injected from the left source lead passes through unchanged; for finite Rashba
field (lower panel) the itinerant spins precess, and the spin conductance varies
depending on the strength of the spin-orbit coupling. In the situation depicted
in the lower panel no spin current flows because in the drain (right lead) there
are no states available for electron with a spin that points to the right.

[2008]). In particular, we show that electron-electron interactions (which have no effect
in the perfectly SU(2) symmetric situation, see also Section 1.1.3) come into play when
the special symmetry underlying the persistent spin helix is broken by cubic Dresselhaus
interactions, explaining the temperature-dependent lifetime [Liiffe et al., 2011].

The physics of the persistent spin helix appears also in other contexts, such as the ac
driven spin helix proposed by Duckheim et al. [2009] and the Spin Hall Effect Transistor
experiment by Wunderlich et al. [2010], which realizes an analog of the persistent spin
helix in single-particle transport.

1.1.3. Effects of Coulomb interaction

The Coulomb interaction, being per se SU(2) invariant, does not directly couple to the
electron spin. However, it is well known that electron-electron interactions can affect spin
transport and spin diffusion by relaxing spin currents via the spin Coulomb drag [D’Amico
and Vignale, 2000; 2001; 2002; Flensberg et al., 2001; D’Amico and Vignale, 2003]. Let
us imagine a situation where the center of mass of a population of spin-up electrons has a
finite velocity relative to the one of spin-down electrons, i.e., a spin current flows. In that
case, as depicted in Figure 1.1.3 for a single scattering event, electron-electron collisions
exchange momentum between the two populations and tend to equalize the center-of-mass
motion of spin-up electrons and spin-down electrons. As a result, the spin current decays
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Figure 1.5.: Schematic representation of the non-conservation of spin currents in a
Coulomb scattering process: before the scattering event both electron spins
contribute to the up-spin current. After the collision the total momentum is
unchanged, but the sign of the spin current has flipped. This figure is taken
from Winkler [2006].

due to Coulomb interaction.” D’Amico and Vignale [2000] showed that this mechanism
inhibits spin diffusion. The predicted temperature-dependent reduction of the diffusion
constant was readily observed by Weber et al. [2005].

Since Coulomb interactions provide a mechanism of momentum scattering, they tend to
increase spin lifetimes in situations where the D’yakonov-Perel’ spin relaxation is operative
[Wu and Ning, 2000; Weng and Wu, 2003; Glazov and Ivchenko, 2003]. In clean samples at
not too low temperatures, electron-electron scattering can even dominate the D’yakonov
Perel’ dynamics. For a review on spin Coulomb drag effects in semiconductor spintronics,
see D’Amico and Ulrich [2010]. In Chapter 3 of the present thesis we incorporate electron-
electron scattering in the spin diffusion equations that describe the persistent spin helix,
thus generalizing the Boltzmann equation based derivation of the spin Coulomb drag by
Flensberg et al. [2001] to a spin coherent treatment.

Besides two-particle scattering, there is a second way in which Coulomb interaction
influence the spin dynamics in semiconductors: as is well known from the spin diffusion in
spin-polarized liquid 3He [Leggett and Rice, 1968; Leggett, 1970], in a three-dimensional
Fermi liquid the individual spins precess about the molecular field (as obtained within
a Hartree-Fock mean field approach) caused by a local average spin polarization. The
exchange field thus exerts a torque on spin currents, which influences the drift-diffusion
dynamics of the spin density (rendering it nonlinear, in particular). Takahashi et al. [1999]
showed that this anomalous spin diffusion occurs also in a degenerate two-dimensional
electron gas at low temperatures. In measurements by Stich et al. [2007], a nonlinear
behavior of the spin relaxation was observed, which can be attributed to the Hartree-Fock
precession [Weng and Wu, 2003].

In Chapter 4 of this thesis we study the consequences of the Hartree-Fock interaction
on the dynamics of the persistent spin helix. The nonlinear precession term that enters
the spin diffusion equation brings about changes in the lifetime of the persistent spin helix

"In analogy with hydrodynamics one can understand the spin Coulomb drag as corresponding to the
laminar friction between two neighboring layers of a liquid that have a relative velocity.
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Figure 1.6.: The energy bands for electrons and holes in graphene as derived from a tight-
binding Hamiltonian [Wallace, 1947] touch at the Dirac points. In their vicin-
ity the dispersion is linear, with a slope given by the group velocity, which
is approximately 300 times smaller than the velocity of light. This figure is
taken from Castro Neto et al. [2009].

and affects its shape. We estimate quantitatively that a realization of the regime where
these effects are observable should be within reach of current experimental techniques.

1.2. Graphene

The 2010 Nobel Prize in Physics was awarded to Andre Geim and Konstantin Novoselov in
recognition of their experimental achievement to isolate the two-dimensional allotrope of
carbon known as graphene [Novoselov et al., 2004]. In the sequel of this first ever realization
of a two-dimensional crystal, graphene has attracted extensive attention for its promising
material properties (high mechanical stability and stiffness, extraordinary thermal and
electrical mobility) and for a variety of theoretically intriguing phenomena such as the
Klein tunneling (for an overview see Calogeracos and Dombay [1999]), a stunning minimal
conductivity at seemingly zero carrier density, an anomalous integer quantum Hall effect
at room temperature [Schakel, 1991; Novoselov et al., 2005] and, most recently, a giant
spin Hall effect [Abananin et al., 2011]. The experimental and applied aspects have been
reviewed by Geim and Novoselov [2007]. In particular, a lot of work has been devoted
to the study of the electrical conductivity of graphene. For a review on the electronic
peculiarities of graphene, see Castro Neto et al. [2009] and Das Sarma et al. [2011].

For neutral monolayer graphene the low-lying electronic excitations are, within a tight-
binding model, well described as massless, chiral Dirac fermions in two dimensions [Wal-
lace, 1947; Semenoff, 1984; Castro Neto et al., 2009]. The characteristic Dirac cones in
the dispersion express pseudospin-orbit coupling, where the pseudospin derives from a
sublattice index (the honeycomb lattice being bipartite). The conical electron and hole
bands touch at the two inequivalent Dirac points K and K’ in the Brillouin zone, see Fig-

10
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ure 1.6. In the low energy theory this introduces a valley index in addition to the indices
for peudospin and real spin. Neglecting the real spin index (or keeping it implicit) and
introducing the four-spinor (u4,up, vy, us), where the lower indices (A,B) represent the
sublattice and the prime (no prime) indicates the Dirac cone K’ (K), one can write the
effective Hamiltonian as

H = hopll.®o-k. (1.4)

Here, 11, and o, are Pauli matrices in the space of Dirac points and sublattices, re-
spectively, and vp &~ 1/300¢ is the constant group velocity. If the scattering between
the two Dirac cones is negligible it is enough to consider a single Dirac cone, which corre-
sponds indeed to the physics of massless Dirac particles. A comparison of the Hamiltonian
H = hvpo - k for the cone K and the dispersion ¢, = +hvpk shows that the spinor
(uag,up) is also an eigenvector of the chirality operator o - k/|k|, with eigenvalues +1.

We mention that also the surface states of three-dimensional topological insulators such
as Bi;_,Sb,, BisTes, SboTes and BisSes, which have recently attracted a lot of attention,
are governed by Dirac cone physics (with only one cone to start with) [Fu et al., 2007;
Moore and Balents, 2007; Roy, 2009; Hsieh et al., 2008; Zhang et al., 2009; Xia et al.,
2009], see also Hasan and Kane [2010].

Like in conventional semiconductors, one can change the chemical potential of a
graphene sheet via doping or external electrostatic gates. This makes it possible to study
transport of electrons as well as holes. Furthermore, the tuning of the Fermi wave number
kr with respect to the mean free path £ given by, e.g., impurity scattering, allows to access
two qualitatively different transport regimes: the (almost) undoped case with (kp < 1
corresponds to the Dirac regime, where quantum coherences are most important, produc-
ing the bigger part of the striking phenomenology that graphene is famous for. At higher
doping one enters the Boltzmann regime where £ kr > 1. Here, an approximate treatment
with a semiclassical kinetic equations becomes meaningful, and the leading-order results
for, e.g., the electrical conductivity are rather intuitive. However, effects of electron-hole
coherence (i.e., pseudospin-orbit coupling) can find their expression in next-to-leading or-
der corrections in the transport quantities. This is discussed in detail in Chapter 5 of this
thesis, where we calculate the first-order quantum correction to the Drude conductivity
of graphene (cf. Auslender and Katsnelson [2007]; Trushin and Schliemann [2007]; Culcer
and Winkler [2007b]; Liu et al. [2008]). We find that the result is sensitive to the choice
of formalism that one uses to derive collision terms and we observe that the discrepancies
can be removed to some extent by using an unconventional ansatz distribution function.
We further find that for the problem at hand it is important to include principal value
parts, which are often neglected, in the calculation (see also Auslender and Katsnelson
[2007]).

1.3. Generic Hamiltonian
A common feature of the different systems considered in this thesis is the prominent role of

(pseudo)spin-orbit coupling. One should, however, keep in mind that the microscopic ori-
gins of, on the one hand, the spin-orbit coupling in GaAs/AlGaAs quantum wells and, on
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1. Introduction

the other hand, the pseudospin-orbit coupling in monolayer graphene are of a fundamen-
tally different nature: the former case is a reminiscence of genuinely relativistic physics (in
the sense of a Lorentz invariant formulation of quantum mechanics), whereas the latter is
a consequence of the bipartite honeycomb lattice whose band structure happens to exhibit
Dirac cones.?

On a practical level, when it comes to setting up a semiclassical but (pseudo)spin-
coherent description of either the spin relaxation in semiconductor quantum wells or the
electrical conductivity of graphene, one is confronted with a nonequilibrium problem where
the undisturbed? Hamiltonian has the generic form

H() = EO(k) +o- b(ki) . (15)

Here, ¢y(k) = h; :12 for semiconductors (m being the effective mass) as opposed €p(k) = 0

in the case of graphene. The general isotropic (pseudo)spin-orbit coupling
b = b(k)b(0) (1.6)

is characterized by the winding number N as defined in Eq. (1.3). This includes, in
particular, Rashba and linear Dresselhaus spin-orbit coupling with b(k) o< k and N = +1
as well as cubic Dresselhaus spin-orbit interaction with b(k) oc k% and N = £3. (The
total spin-orbit coupling in quantum wells with a bulk inversion asymmetric material is
then the sum of the three contributions.) For electrons close to the Dirac point K in
monolayer graphene the pseudospin-orbit coupling (1.6) is given by b = hvp k (with the
constant vp ~ 1/300c¢) and b =k, i.e., N =1. For the Dirac cone K’, one has again
b = vpk, but now b = (cosf,—sinf), i.e., N = —1. Note that also the Hamiltonian
commonmly studied in the context of bilayer graphene (with b = h?k?/2m and N = 2) as
well as similar Hamiltonians for multilayer graphene [McCann and Fal’ko, 2006; Guinea
et al., 2006; Koshino and Ando, 2007; Min and MacDonald, 2008] belong to the class of
Hamiltonians given in Eq. (1.5).

An important difference between semiconductors and monolayer graphene lies in the
fact that the quasiparticles in the latter are massless Dirac fermions. As a consequence,
one has ¢y(k) = 0, and all kinetic energy is in the pseudospin-orbit coupling. This makes
an expansion as in the semiconductor case, where spin-orbit coupling terms are small
corrections to a large leading-order term determined by €y (k), impossible (see Chapter 5).

1.4. Outline of this thesis

In Chapter 2 we recall some useful tools and concepts of nonequilibrium theory. This
lays the basis for the derivation of semiclassical kinetic equations in the context of con-
crete realizations of the generic spin-orbit coupled Hamiltonian (1.5) in the subsequent
chapters. Using such a semiclassical approach we investigate in Chapter 3 the lifetime

8Spin-orbit interaction of genuine relativistic origin is of course also present in graphene, but due to
its smallness it can be safely neglected in our considerations of transport in the Boltzmann regime.

9As a perturbation in the nonequilibrium problem we will add electron-impurity interactions or
electron-electron interactions. In the case of graphene we will further include an electromagnetic potential,
since we will be interested in the electrical conductivity.

12



1.4. Outline of this thesis

of the persistent helix in the presence of symmetry breaking mechanisms and Coulomb
scattering. Chapter 4 is devoted to the study of effects of the Coulomb exchange interac-
tion on the persistent spin helix state. We focus on the influence on the lifetime as well
as on qualitative changes in the shape of the spin density wave. Finally, in Chapter 5,
we apply the methods introduced in Chapter 2 as a comparative study to the problem
of pseudospin-orbit coupling corrections in the electrical conductivity of graphene in the
Boltzmann regime. The concluding Chapter 6 summarizes the results and gives an outlook
on potential future avenues of research related to the content of this thesis.

13






2. Methods of quantum kinetic theory

The rich phenomenology of nonequilibrium systems reflects the diversity of the physical
objects involved and of their mutual microscopic interactions. In general, details of this
kind elude a macroscopic thermodynamic description. In order to capture these at least to
some extent one often resorts to a description based on the kinetic theory. This approach
deals to some level of precision, i.e., down to certain length- and timescales, with the
microscopic processes in nonequilibrium systems.

Historically the first and arguably the simplest playground for the kinetic theory is the
classical ideal gas. This theoretical model was scrutinized by Clausius, Maxwell, Boltz-
mann and others in the second half of the 19th century. The underlying assumption
is that point-like particles move along classical trajectories and occasionally undergo in-
stantaneous collisions with other particles. This picture allows for a description with the
famous classical Boltzmann equation [Boltzmann, 1872] for the one-particle distribution
function in phase space.

By complementing the Boltzmann equation ad hoc with some basic quantum mechanical
features (such as the Fermi statistics for degenerate electrons) a semiclassical Boltzmann
equation can be obtained on heuristic grounds. This will be concretized in the first section
of the present chapter. In the remaining sections we will give a basic introduction to several
established approaches of nonequilibrium quantum theory, which will serve as the basis for
a systematic derivation of spin coherent semiclassical kinetic equations in later chapters:
the Nonequilibrium statistical operator formalism (NSO) as presented in Section 2.2 is
the starting point for our derivation of kinetic equations and, in a second step, coupled
diffusion equations for the three components of the spin density in Chapter 3. Here, the
collision integral for two-particle scattering will play a particularly important in explaining
experimental observations on the persistent spin helix. Also in Chapter 5 we will use the
Nonequilibrium statistical operator—this time with a focus on the collision terms for
electron-impurity scattering in graphene, where we keep corrections from electron-hole
(i.e. pseudospin) coherences. For comparison we will also apply the Green’s function
approach (see Section 2.3) to this problem in Chapter 5.

2.1. The semiclassical Boltzmann equation

We follow Smith and Jensen [1989] in presenting the fundamentals of the Boltzmann
equation. Let us first consider an ensemble of classical particles that is described by the
single-particle distribution function in phase space f(r,p,t). This function fulfills the
equation

af @ of

o= U 2.1
ot " am, D = | 1)
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Figure 2.1.: Schematic phase space trajectory of a particle that is part of an ensemble
described by the Boltzmann equation: The smooth drift (or streaming) due
to moderate potential gradients is interrupted by collisions that change the
momentum abruptly.

with 0/0x, = (0/0r,0/0p) and the six-dimensional generalized velocity v = (#*,p). The
left-hand side of this equation expresses that the number of particles in a differential
phase space volume changes depending on the (phase space) currents of particles flowing
in or out, which can be written as a six-dimensional divergence of the phase space density
analogously to the continuity equation in hydrodynamics. On the right-hand side, we
have a source term due to instantaneous momentum scattering. If we follow the phase
space trajectory of a single particle, the left-hand side represents its drift under the action
of smooth gradients, whereas the collision term on the right-hand side takes into account
abrupt changes of its momentum due to scattering, see Figure 2.1. Exploiting the Hamilton
equations, 7 = 0H/0p and p = —0H/Or, we see that the second term in the divergence
v, Of /0x, + f Ov,/0x, vanishes, and thus Eq. (2.1) takes the form

of of of _ of

A~

a PP e T | (2:2)

coll

We want to keep the freedom to describe charged particles under the action of a magnetic
field B = V x A with the vector potential A. Therefore, it is preferable to write the
distribution function and the Boltzmann equation (2.2) in terms of the kinetic momentum

k(r,p,t) = p—eA(r,t) (2.3)

rather than the canonical momentum p. The distribution function is unchanged, since the
relation

fe(r,t)drdk = f(r,p,t)drdp (2.4)

holds, and from Eq. (2.3) one has dk = dp. Thus, Eq. (2.2) can be rewritten with p
replaced by k and with the last term on the left-hand side containing the force F' = k.
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2.1. The semiclassical Boltzmann equation

Let us next introduce some quantum mechanics by giving the phase space distribution
function a discrete spin index o =1,/ (having Fermions in mind). Then the Boltzmann
equation for fg (7, t) reads

afka+v aka+F 8fk0 _ afka

ot or ok Ot

One might immediately object that in quantum mechanics, due to Heisenberg’s uncer-
tainty principle, the concept of a phase space distribution fails. However, if one considers
Wigner’s quasi-probability distribution (see e.g. Rammer [1998])

feo(r,t) = /dwe’kw@ﬁ —x/2,t) V(T +x/2,1)), (2.6)

(2.5)

coll

where 15(r,t) (¥, (r,t)) is a field operator that creates (annihilates) an electron with
spin projection! o at time ¢ and position r, one can deal with it quite analogously to the
classical phase space distribution function. This includes, in particular, the applicability
of a semiclassical Boltzmann equation of the form (2.5). An important condition for
this to work is that the mean free path ¢ of the Fermions is much larger than the Fermi
wavelength, i.e., kpf > 1, where kp is the Fermi momentum.? In addition, the Boltzmann
equation in the form (2.5) is only valid if the potentials yielding the force term vary only
little on the scale of the Fermi wavelength.

The right-hand side of the semiclassical Boltzmann equation contains the collision inte-
grals for, e.g., electron-impurity scattering and electron-electron scattering,

8fk0
ot

The rate of change in fr, due to elastic, spin conserving scattering off non-magnetic

impurities is given by

jlmp = Z Wik 0(eko — €' o) [frr o — frol - (2.8)

kl

Jime 4 ge—e. (2.7)

coll

The interpretation of this equation is rather intuitive: the density fx, gains from scattering
processes with probability (per unit time) Wy 0(€xo — €x7) that change momentum k’
into k to the extent that particles with momentum k’ are available (hence the term
X fro). Conversely, it is decreased by processes changing k into k/ (term o fg,), for
which we assumed the same probability, Wy, = Wi Quantum mechanics enters also
here if the transition probability for the process |k o) — |k’ o) and vice versa is calculated
with Fermi’s golden rule (see e.g. Sakurai [1994]).

The relaxation of the distribution function fr, due to electron-electron collisions is
taken into account via the additional collision integral

Tet = 2w Y W g, K —k—q|)(eno + €k o — Ehigo — r—qor) (2.9)
k’qo’

X [(1 - fkcr) (1 - fk'a’) fk:—i—qa fk’—qa’ - (1 - fk+qcr) (1 - fk’—qa’) Jeo fk’a’]

1'With respect to some fixed quantization axis.

2Strictly speaking this so-called Landau criterion is in low dimensions d < 3 not sufficient to justify
a Boltzmann-equation treatment. However, in this work this point is of no importance, since we are not
interested in effects of, e.g., weak localization. For details, see e.g. Rammer [1998].
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kn‘ (k + q)n kg (k + q)rr’
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Figure 2.2.: Momentum conserving scattering of two electrons characterized by the states
|ko) and |k’ o’). The wiggled line represents the Coulomb interaction. If
o' = o, the final states of the processes (a) and (b) are indistinguishable,
and therefore their transition amplitudes need to be summed up coherently,

yielding the rate (2.10).

with a transition rate due to two-particle scattering
We (g, |k —k—4q|) = V(@) =50 V(Q) V(K —k —ql), (2.10)

where V(q) denotes the matrix element of the Coulomb potential in momentum space.
The transition amplitudes for indistinguishable scattering processes (see Figure 2.1) are
summed up coherently, i.e., before taking the absolute square of the matrix element in
Fermi’s golden rule. This explains the form of the transition rate (2.10), which has addi-
tional exchange contribution for scattering events between electrons with the same spin
projection o = o’.

The structure of the distribution function factors in two-body collision integral (2.9)
reflects the fact that, according to Pauli’s exclusion principle, only a single electron can
occupy each state. Thus, for the scattering process depicted in Figure 2.1 (a) to occur,
it is not enough that both initial states |ko) and |k’ o’) are occupied, but it is also
required that the final states |k 4+ q o) and |k’ — q 0’) are unoccupied. This translates into
the characteristic Pauli blocking factors, e.g. (1 — fk+qa)-3 In equilibrium the electron-
electron collision integral must be zero. In fact, this is one way to derive the famous
Fermi-Dirac distribution, which has precisely the property that it makes the integrand of
Eq. (2.9) vanish.

Note that the semiclassical Boltzmann equation (2.9) is not spin coherent, i.e., it does
not describe the evolution of all three spin (density) components, but only of the spin
projections on a pre-defined quantization axis. Therefore, it is not possible to capture
phenomena that are related to, e.g., spin precession about a magnetic (or spin-orbit) field.
Below we will see how spin coherent semiclassical kinetic equations can be derived from the
Liouville-von Neumann equation for the density matrix (see Chapter 5.5.1) or using other
nonequilibrium formalisms as introduced in Sections 2.2 and 2.3 of the present Chapter.

3In general, also the electron-impurity collision integral contains Pauli blocking factors. However, for
Wyt = Wy they drop out, yielding the simple structure of Eq. (2.8).
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2.2. Zubarev's Nonequilibrium statistical operator method

2.2. Zubarev’s Nonequilibrium statistical operator method

The Nonequilibrium statistical operator (NSO) approach as presented in detail in the
book by Zubarev et al. [1996] is a fully-fledged, second-quantized formalism describing the
irreversible evolution of nonequilibrium (quantum) systems. In the context of topics that
the present thesis is concerned with, it was recently used by Auslender and Katsnelson
[2007] for the derivation of a pseudospin coherent collision integral for graphene. We have
chosen to present the NSO formalism in a rather detailed manner here, because it appears
to be less standard than, e.g., the Kadanoff-Baym or Keldysh methods (see Section 2.3).
In outlining the NSO approach to the derivation of quantum kinetic equations for systems
with weak interactions we closely follow Zubarev et al. [1996].

2.2.1. Reduced description of nonequillibrium problems

The theoretical description of nonequilibrium processes in quantum systems poses a seem-
ingly paradoxical challenge: on the one hand, one wants to take into account the mi-
croscopic evolution according to the Liouville-von Neumann equation of motion for the
density matrix, which is time reversible; on the other hand, one has to fulfill, as a ba-
sic principle of thermodynamics, the macroscopic demand to maximize the information
entropy, which necessarily introduces time irreversibility. One way out of this dilemma
consists in a reduced description relying on restricted information about the system. For
instance, one can work with a coarse-grained density matrix that is averaged over small
volumes in momentum space or over small time intervals.

In the NSO formalism the reduced description is based on the assumption that the state
of the system is fully characterized by a set of macroscopic observables (P,)!, which are
time-dependent mean values of the relevant operators P,,

(Pa)' = Tt [5(t) Pul. (2.11)

Here, p is the usual quantum mechanical statistical operator and m is a general index,
which is possibly composite (e.g., for momentum and spin). The relevant operators are
chosen according to the timescale on which the description is meant to be accurate. To
illustrate this point it is instructive to recall the hierarchy of different relaxation times
in the classical dilute gas. In this model, each particle moves along smooth classical
trajectories until, after an average free time 7y, it enters the small interaction radius of
another particle. The interaction occurs quickly during the collision time 7.. The third
timescale, 7., characterizes the relaxation into a local equilibrium within a volume that
is macroscipically small but still large enough to contain many particles. Finally, 7eq is
the time it takes the system to reach its global equilibrium state. Clearly, we have the
relations (see Fig. 2.2.1)

Te L Tp L Tp K Teq - (2.12)

If one wishes to capture the dynamics down to time intervals At < 7., there is no chance
for a reduced description, and thus one has to solve the full many body problem. For time
intervals 7. <« At < 7, a kinetic description in terms of the single-particle distribution
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Figure 2.3.: Hierarchy of timescales in the classical dilute gas, c¢f. Eq. (2.12). Note that
not all of these timescales are necessarily meaningful in all systems: e.g., in a
very dilute gas one has 7 < Teq, rendering the hydrodynamic stage obsolete.

function f(r,p,t) as the relevant operator is meaningful. The next level is the hydrody-
namic one. It applies in the regime 7, < At < 7o, where a local equilibrium is already
established and the local densities of particle number, momentum, and energy play the
role of relevant observables. The state of global equilibrium that is established for times
At 2 Teq is completely characterized by the particle number density and temperature.

In the following we will be interested in the kinetic regime of a quantum gas of weakly
interacting fermionic or bosonic quasiparticles. The relevant operator is

Pll’ = C;rcl/, (2.13)
where clT (¢;) are creation (annihilation) operators for single particle states |I). In this re-

duced description the relevant observables are the mean values of single-particle operators
A, which are obtained from the single-particle density matrix

fwr®) = (Pn)t = Tr[pt)ce) (2.14)

as

(A = ToAf@®)] = Y Aw fu(t). (2.15)

N

2.2.2. Relevant statistical operator

For given (Py;)t, Eq. (2.14) does not unambiguously fix the statistical operator p(t). In
equilibrium thermodynamics the valid distribution is the one that maximizes the infor-
mation entropy. This leads to the famous Gibbsian ensembles. Analogously, for nonequi-
librium problems one introduces as an auxiliary quantity the relevant statistical operator
Pre1(t), which among all statistical operators p/(t) yielding the correct expectation values
(Py)t guarantees a maximum of entropy S’ = —Tr [p/(¢t) Inp'(t))]. In order to find the
absolute extremum of entropy under the constraints (Py;)t = Tr [§/(t) P] and Tr p/(t) = 1,
the Lagrange parameters Fyy(t) and A(t) are introduced. With the functional

§ = —Te[f() mFO)] - S () [0 Pu] - MO Trp(t)  (2.16)
i
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2.2. Zubarev's Nonequilibrium statistical operator method

the extremal distribution is then determined from the vanishing of its first variation,
05’ = 0. This procedure yields

prai(t) = eXP( ZFll’ Pw) (2.17)

w
The normalization condition for py(t) fixes A(¢), which then relates to the distribution

function

Z(t) = Tr (2.18)

eXP( ZFw Pl’l>

w

according to
1+A(t) = InZ(t). (2.19)

The Lagrange multipliers Fj(t) are determined by the self-consistency relation
(cf. Eq. (2.14))

fll'(t) = <C;cl>r017 (220)

where the lower index is to say that the average must be taken with respect to prei(t).
Averages of the form (C1 Cy...Cs)rel, where C; stands for either a creation operator
T

¢; or an annihilation operator c;, allow for Wick decomposition. For a proof we refer

to Zubarev et al. [1996]. Here, we only state the important and advantageous practical

| —
implications. To this end, the pairing of two operators is introduced as C; Cj = (C; Cj)rel
When permuting the operators and then pairing the first with the second the thlrd with

the fourth and so on, we obtain a complete system of pairings C“ C’Z2 . C’Zk1 Cs The
content of Wick’s theorem is that the average (C1 Cy...Cs)pe is the sum of all complete
systems of pairings, each of which, in the case of fermions, obtains the sign (—1)” with P
indicating the parity of the permutation. Since the relevant statistical operator connects
only states with the same number of particles, only pairings of the form

(cheva = fur, (2.21)

(crelhwe = Ow F fu (2.22)
contribute to the sum (“—”
example, one has

stands for fermions and “+” for bosons in Eq. (2.22)). For

(a1 C; Cg carel = (C1 C£>rel <C£ Ca)rel F (€1 C‘;t,>re1 (Cg C4)rel
= (012 F fi2) fa3 F (613 F f13) fa2. (2.23)

2.2.3. Liouville-von Neumann equation with broken time-reversal symmetry

It is important to note that the relevant distribution (2.17) is not yet the solution to a
given quantum kinetic problem, since it is determined only implicitly by the macroscopic
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observables (Py;)! that determine the Lagrange parameters F(t). In general, it does not
satisfy the microscopic Liouville-von Neumann equation (b = 1)

O pt)+iLpt) = 0, (2.24)
with the Liouville operator
Lp = [Hiot,pl, (2.25)

where Hiq is the full Hamiltonian in second quantization. Nevertheless, with the help of
the relevant statistical operator one can construct a solution of a time irreversible Liouville-
von Neumann equation to be derived in the following, which fulfills both the microscopic
and macroscopic demands.

Let us start from Eq. (2.24) and assume that at an initial point in time ¢; in the past
the system was described by the relevant distribution,

pti) = prati)- (2.26)

Thus, initially the statistical operator satisfies Eq. (2.14) as well as the Liouville-von
Neumann equation (2.24). However, this is not the case for later times, because p(t)
evolves according to Eq. (2.24), whereas the temporal evolution of pe(t) is determined
by the one of the observables via the self-consistency relation (2.20). Let us for notational
simplicity first consider a time-independent Hamiltonian. (The generalization to problems
with an explicit time dependence will become clear below when the time-ordering operator
is introduced.) We then have, from Eq. (2.24) with (2.26),

pt) = e (t). (2:27)

In order to reflect that a macroscopic system loses the detailed memory of its initial
state after some microscopic time and assuming that all times between a certain ¢y in the
remote past and ¢ are equally probable as the starting point for the evolution according
to Eq. (2.27), we take its average over t;,

1

t .
O /t dt; e~ (1. (2.28)
0

The interval t — ¢y over which the average is performed has to be large enough to allow for
all relevant physical correlations to build up (eventually let t) — —oc). Taking the time
derivative we see that the averaged distribution (2.28) satisfies a modified Liouville-von
Neumann equation with a source term,

ﬁ(t) — ﬁrel(t)

0Pt +iLple) = (2.29)

In Eq. (2.28) we take the limit ¢t — tqg =  — oo by introducing t; = t; — t and using
1 0 0
lim = [ dtf(t) = lim 77/ dt f(t) e (2.30)

isoot J_ g n—0t  J_o
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to obtain

0 .
p(t) = lim 7 / dty €M L (ty +1). (2.31)

n—0% —00

Before the limit process is performed, the statistical operator (2.31) obeys the Liouville-von
Neumann equation with an infinitesimal source term (n — 07),

@ +iL)p(t) = —n[p(t) = pra(t)] (2.32)

The source term introduces time irreversibility by picking the retarded solution when the
average of an observable A is calculated from a statistical operator p(t) satisfying (2.32)
according to

(A = lim  lim  Tr[p(t) A (2.33)
7]4)0+ N/\?/: const.
—00

It is important to take the thermodynamic limit first, see Zubarev et al. [1996].

2.2.4. Perturbation theory for weak interactions

Consider the total Hamiltonian
Hyw = H)+V, (2.34)

which contains, in addition to the part HY (where we now allow for an explicit time depen-
dence) describing non-interacting (quasi-)particles, a weak interaction V. It is assumed
that the former has the property

chen HY = > i Qe () € - (2.35)

mm/’

1
7l

(In this section we display #/ explicitly.) In particular, when writing the second-quantized
single-particle Hamiltionian as

o = > (L) e (2.36)
124

in terms of the matrix element h°(I’,1;t) of the first-quantized Hamiltonian, one has

Qll’mm’ (t) = % [5lm ho(m’, l/; t) — 5l’m’ ho(l, m; t)] . (2.37)
If it were not for the interaction V', one could, by virtue of relation (2.35), obtain a closed
system of equations for the single-particle density matrix (2.14) simply by multiplying
the Liouville-von Neumann equation (2.32) by cj,cl and taking the trace. In the presence
of interactions this is in general not possible because the commutator with V' does not
necessarily take the form (2.35). However, as will be shown in the following, it is possible
to approximately construct the nonequilibrium statistical operator to a given order in the
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2. Methods of quantum kinetic theory

interaction, which then allows to derive a closed set of equations, i.e., a kinetic equation
describing the nonequilibrium problem at hand.
For the Hamiltonian (2.34) the retarded Liouville-von Neumann equation (2.32) becomes

. 1. . 1.
(O +m) p(t) + = [p(#), HY] = nprar(t) — = [6(1), V], (2.38)
which is (as can be easily verified by insertion) equivalent to the integral equation
t

pt) = / dt' e Uy (t,4) prar (E) UG (¢, 1) (2.39)

| t / 1
‘/ dt' e Uy (1, 8') = [p(t), VIUS (L)

—oo ih

with the time-ordered evolution operator
Up(t,t) = Te #lrdrH?, (2.40)

Here, the time-ordering operator T positions the factors of an arbitrary product of oper-
ators according to their time arguments (the one with the earliest time argument goes to
the very right and so on). Partial integration of the first term on the right-hand side of
Eq. (2.39) yields

ﬁ(t) = ﬁrel(t) (2.41)

t : 1 1

- / dt, e (t=t) Z/[O (ta t,) {at’ﬁrel(t/) + 71 [ﬁrel(t,)v Htg] + 71 [[)(t/), V} } Z/{(J]r (t7 t/)'
7 1

— 00

Let us next multiply Eq. (2.38) by c;r/cl and take the trace. This gives

O fur(t) — i Z Qurmm (t) frme (1) = T (t) (2.42)
with on the right-hand side what will become the collision term,
1 .
Jw(t) = —=T{[V, chel pt)}. (2.43)

In order to write a perturbation expansion in the interaction V starting vom Eq. (2.42)
with Eq. (2.41), we need to relate the time derivative Oy pre(t') in Eq. (2.41) to V. Using
Eq. (2.42) we can write

dprel(t)
upalt) = 3 e { D Qum (¢ fmm«)mlf(t)}. (244)
2

It can be shown? that

Z Z Opral(?) Qurmmy (8) frme (t) = % [ﬁrel(t)7HP] (2.45)

T =, 0 fu(t)

4Apply to the ﬁrelgt) on the left-hand side and the right-hand side of Eq. (2.45), respectively, the
relation O,e(® = fo dz e 49, Aet—04 — fol dzel=®49,Ae** and the Kubo identity [B,eA} =
fol dz 4 [B, A] e 4 e?. Here, A, B are operators and « is a general parameter. Further make use of
Egs. (2.17) and (2.35).
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2.2. Zubarev's Nonequilibrium statistical operator method

Thus, Eq. (2.44) takes the form

X 1 O prel(t)
O prat(t) + - [prei(t) S m/l 3 Twt) (2.46)
L

and upon insertion in Eq. (2.41) the nonequilibrium statistical operator is given as
ﬁ(t) = ﬁrel(t)

! _ dprer(t 1.
- dt' e 1(t=1) re —[p"), V] Sul(t,¢). (2.47
/_Oo e {%;W T (t') + = [p(t) ]} 3t 1) (2.47)

With this, Eqgs. (2.42)-(2.43) provide an ezact kinetic equation for the density matrix,

1 I o (t—t
00 S (®) =1 3 Dt t) ot (0) = i VD= | vt

Tr {M(J)r(t,t/) [CZ,CZ,V] Uy (t, 1) <Z M

~ 0 frrum (t') T (¢) + % [p(t'), V]) } . (2.48)

Next we apply the Born approximation in order to write a tractable kinetic equation
accurate to second order in the interaction. To this end, assuming that the nonequilibrium
problem is analytic in the interaction strength, we write the statistical operator and the
collision integral as a series in V/,

P = pra® + 3P, T ) = YT (2), (2.49)

k=1 k=1

where terms marked with a superscript (k) are proportional to V*. By inserting (2.49)
n (2.48), neglecting terms of third or higher order in the interaction and exploiting the
cyclic invariance of the trace, one obtains

1 1 [t o
O fir () =1 D, D (€) frome (8) = = (lcher, Vi — 53 / dt’ e x

(5j (t,t)
A T Y AR
xTr {prel(t') <[V [(cha)(t, ), V(t, )] } + ih Z ey m,cm> } , (2.50)
where the double time dependence of the operators is according to the Heisenberg picture,

At t) = ULt t) AU(t, 1), (2.51)
and the first order (mean field) term is

1 1
T = e Via- (2.52)

Notice that the averages in Egs. (2.52) and (2.50) are taken with respect to the relevant
statistical distribution, which allows for Wick decomposition. However, there is still one
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2. Methods of quantum kinetic theory

practical obstacle to overcome: the time dependence of the relevant statistical operator
on the integration variable ' means that memory effects are contained. The Markov
approzimation allows us to get rid of those. In the present context it actually amounts to
a consistent implementation of the Born approximation, since the time dependence of the
statistical operator prei(t’) in Eq. (2.50) is only needed to first order in the interaction,
i.e., without the right-hand side of Eq. (2.46). Thus, the full evolution is replaced by the
free evolution,

ﬁrel(t/) = u(;r (t? t/) ﬁrel(w Z/lg(t, t/) + O(V) ) (253)

leading to®

O fur(8) =i Qs () frnme (1) = T (6) + T (1) + O(VP)  (2.54)

with Eq. (2.37) jlg,l)(t) as defined in Eq. (2.52) and the second-order collision term in
Markovian form,

t (1) t
S p— / nt=t) r_ i 5N 0w ()
TP = / e V(' — 1), V.che +zhm§m:/ 57 e )

rel

(2.55)

2.2.5. Gradient expansion and semiclassical approximation

As yet, Eq. (2.54) does not quite resemble the Boltzmann equation (2.5). In particular,
the force term and the velocity term do not appear explicitely. These drift terms arise
ultimately from the second term on the left-hand side of Eq. (2.54) upon Wigner trans-
formation and first-order gradient expansion. This will be explained in the remainder of
the present subsection.

We introduced the Wigner transformed density matrix already in Eq. (2.6). Note,
however, that the general form of Eq. (2.54) with its abstract and possibly composed
indices gives us the freedom to keep the matrix structure in spin space while treating
the spatial coordinates semiclassically, i.e., going over to slowly varying center-of-mass
coordinates and integrating out the fast oscillating relative coordinates. In the following
we will therefore work with the semiclassical density matrix

fk: ao’(rv t) = /dm eik:-m <1/)3;/(T - m/27 t) %(7‘ + 217/2, t)> (2'56)

instead of the spin-diagonal version Eq. (2.6). We can easily rewrite Eq. (2.54) for field
operators in real space, ¥, (r) (Q[):;(T’)) instead of the creation (annihilation) operator ¢
(clT), i.e., understand the composed index [ as space coordinate and spin. In order to
obtain an equation for 0y fg ./ (7,t) we apply the Wigner transformation to Eq. (2.54).

5Use that, with Eq. (2.53), 7\ (t,t') =~ J\1 (t)
5.7 570
and Y, 76fjll/,<(2)cjn/cm DD 75fjlll,((i?) (Cjn/Cm)(t, t'), see Zubarev et al. [1996].
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2.3. Green's function approaches

The second term on the left-hand side is a convolution product in real space of single-
particle Hamiltonian and density matrix. Upon Wigner transformation the convolution of
two operators X and Y is translated according to®

r.t;k,w) — r. bt k,w e% r.t;k,w), .
XY k X k Dy k 2.57

where the matrix product in spin remains, but the convolution of time and real space
variables is replaced by a Moyal product with a Poisson-bracket-like gradient D.

The semiclassical approximation consists in taking the gradient expansion of this expo-
nential operator only to first order. The underlying assumption is that external perturba-
tions, such as electromagnetic potentials, change negligibly on length and time scales of
the de Broglie wavelength Ap and the time 75 = Ag/vp. In a gauge invariant formulation
applicable to situations where the electromagnetic fields are weak and vary “slowly” (see
e.g. Zubarev et al. [1996]), one introduces the kinetic momentum k(p,r,t) = p—e A(r,t)
(¢f. Eq. (2.3)) and the renormalized frequency @(w,r,t) = w—e¢(r,t) and lets {r, k,t, o}
become the new set of independent variables (i.e., 0,k = 0). This changes the gradient
into

D = %ng}% — %klgn + g@ﬁt — gtgg, + El(%a,gkz - %]ﬁg@) + Eilei%kj 3]61
(2.58)

with the notation X 9Y := (9X)Y and X dY := X(9Y).

Operating this gradient on the single-particle Hamiltonian and the density matrix in
the second term of Eq. (2.54) yields the familiar velocity term (c¢f. Eq. (2.2)), a driving
term containing the electric field E and, in the presence of a magnetic field B, the Lorentz
force and the spin precession term. For the generic Hamiltonian (1.5) one further obtains
a term for the spin precession about the spin-orbit field (see already Eq. (3.16)), which
will play an important role in the following chapters.

2.3. Green’s function approaches

Green’s functions are a widely used tool for the description of equilibrium as well as
nonequilibrium physics. In this section we briefly summarize the key elements of the
Kadanoff-Baym approach to nonequilibrium phenomena, which is for the kind of problems
addressed in the remainder of this thesis (in particular Chapter 5) equivalent to the Keldysh
formalism.” Since the involved concepts (e.g. the self-energy) and basic equations are more
established than the Nonequilibrium statistical operator method presented in Section 2.2
and extensive literature on the subject is available, we refrain from presenting explicit
derivations. For details of this kind consult, e.g., Haug and Jauho [2008] on the Kadanoff-
Baym formalism and Rammer [2007] on the Keldysh method.

SHere we consider the general case where also the time variable is Wigner transformed.

"In general, Kadanoff-Baym is more powerful than Keldysh because it can deal with interaction terms
in the equilibrium Hamiltonian and incorporates effects of initial correlations, thus making the study of
transient phenomena possible6.
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2. Methods of quantum kinetic theory

1:0 t1 t1'

t,- iB

Figure 2.4.: Contour C'. The integration starts from ¢y and then goes slightly above the
real axis (C7) towards max(t1,t1/), then it goes back to tg slightly below the
real axis (Cy) and finally to tg—i 8, where § = kgT'. In the depicted situation,
t1 is located on Cf.

The central quantity is the contour ordered Green’s function

G(1,1) = —i{Tc)wia), (2.59)

where we abbreviated the arguments of the field operators, e.g., (1) = (7r1,t1). The
contour ordering operator Te arranges the operators according to the position of their time
arguments on the Kadanoff-Baym contour depicted in Figure 2.3. The time dependence
of the field operators is according to the Heisenberg picture.

Depending on the position of the time arguments, the contour ordered Green’s function
can be one of the four

Gc(l,ll) t1,t17 € Cl
G>(1 1/) t1 € 02 tyy € Cl
/ o 9 9
GLY) = ) G<(1.1) ety e (2.60)
G&(1,17) t1,t1r € Cy

where G.(1,1') (Ge(1,1")) is called the (anti)causal Green’s function and G~ (1,1')
(G=(1,1")) the greater (lesser) Green’s function. Furthermore, it is useful to introduce
the retarded and advanced Green’s functions

G'(1,1) = 6(t —tv) [G7(1,1) - G=(1,1)], (2.61)
GY1,1) = 0ty —t1) [G=(1,1) - G~ (1,1)]. (2.62)

The ultimate goal is to derive tractable kinetic equations based on the equation of motion
for the nonequilibrium Green’s function. Using a transformation that involves S-Matrices
defined along the contour C and along a simpler contour without an excursion into along
the imaginary axis at the end, one can bring the contour ordered Green’s function to a
form that has a perturbation expansion based on Wick’s theorem (see Section 2.2.2). For
details we refer to Haug and Jauho [2008].

Introducing a self-energy 3 to resum effects of the interaction one can writing the Dyson
equation for the contour-ordered Green’s function (see e.g. Rammer [2007]). An analytical
continuation from the complex arguments to real times is most conveniently achieved by
using Langreth’s rules [Haug and Jauho, 2008]. This yields the generalized Kadanoff-Baym
equation [Kadanoff and Baym, 1962; Langreth and Wilkins, 1972] in its integral form,

G< = GRE<GM+ (1+GRER)GO< (1 +24GY), (2.63)
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2.3. Green's function approaches

where all products are to be interpreted as convolution products in real space/time and
in spin variables. The retarded and advanced components are determined by the Dyson
equations ((G%)~! — ¥R)GR =1 and ((GO)~! — ¥4)GA = 1.

In Chapter 5.5.3 we will see with the concrete example of electron-impurity interactions
how this equation is further transformed into the differential form of the Kadanoff-Baym
equation and ultimately into a kinetic equation with drift terms and a collision integral.
We will further discuss the issue of an appropriate ansatz for the solution of such equations.
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3. Relaxation of the persistent spin helix —
the role of electron-electron scattering

In this chapter we study the dynamics of an unusually (a priori infinitely) long-lived he-
lical wave of spin polarization that can exist in semiconductor quantum wells where the
Rashba and linear Dresselhaus spin-orbit interactions are precisely of equal magnitude.
The relaxation of this persistent spin heliz [Bernevig et al., 2006] displays, according to
recent measurements by Koralek et al. [2009], an intriguing temperature dependence with,
notably, a so far unexplained maximum. In order to address the temperature-dependent
lifetime of this peculiar excitation we derive and solve a semiclassical spin diffusion equa-
tion, taking into account spin-dependent impurity scattering, cubic Dresselhaus spin-orbit
interactions and, in particular, electron-electron interactions in addition to the basic in-
gredients (i.e., Rashba and linear Dresselhaus spin-orbit coupling and spin-independent
impurity scattering). By comparison with data of Koralek et al. we establish that in
the experimentally relevant regime the lifetime of the persistent spin helix is mainly de-
termined by the interplay of cubic Dresselhaus spin-orbit coupling and electron-electron
scattering. We propose that a spatially damped spin profile can have even larger lifetimes
than the genuine persistent spin helix state. Most of the results presented here have been
published in Liiffe et al. [2011].

3.1. Motivation and experiment

Semiconductor devices with important spin-orbit interactions have attracted extensive
attention over the past years (for a survey, see Awschalom et al. [2002]; Zutié¢ et al.
[2004]; Awschalom and Flatté [2007]). The coupling between the orbital motion of the
charge carriers and their spin allows for an electric generation and manipulation of spin
polarization in the absence of ferromagnetism or external magnetic fields. This opens up
the perspective of adding the spin degree of freedom to the existing semiconductor logic
in information technology while circumventing the challenge to artificially integrate local
magnetic fields in devices [Awschalom and Samarth, 2009]. On the other hand, spin-orbit
interactions inevitably contribute to spin dephasing and spin relaxation. In general, this
is an unwelcome effect, since, from the point of view of technological applications, it is
obviously desirable to maximize the spin lifetimes and spin coherence lengths.

A promising candidate setting where spin-orbit coupling could be exploited for spin
manipulation, but at the same time the unwanted spin-orbit coupling induced spin relax-
ation is absent (or minimal) is a two-dimensional electron systems with Rashba and linear
Dresselhaus spin-orbit interactions of equal magnitude. Schliemann et al. [2003] were the
first to notice that the case of equal Rashba and Dresselhaus spin-orbit coupling is spe-
cial and they used this insight to propose a nonballistic version of the famous Datta-Das
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3. Relaxation of the persistent spin helix — the role of electron-electron scattering

Figure 3.1.: Blue arrows mark the spin-orbit field b(k) = —2 a« vp k; § in momentum space
for Rashba and linear Dresselhaus spin-orbit interactions of equal strength a.
The dashed circle is the Fermi circle. Two electron spins that are initially
oriented in z-direction and travel with the Fermi velocity vp along paths
a and o (in real space), respectively, precess about ¢ by the same angle
w = 2bt =2t = —4dakpa. The larger traveling time t' = ¢/cos¢ is
exactly made up for by the smaller precession frequency b’ = b cos¢. For
a = 2m/qp, with the “magic” wave number gy = 4 kr o, both spins perform a
full precession by w = 27. Thus, within a helical spin density profile of wave
vector qg &, it does not matter how exactly the individual spins of the ensemble
diffuse and precess back and forth due to spin-independent scattering—they
will always match the orientation of this profile, thus rendering it persistent.

spin field effect transistor [Datta and Das, 1990]. Later, Bernevig et al. [2006] uncovered
a novel SU(2) symmetry in the corresponding Hamiltonian. This symmetry implies the
perfect conservation of a helical spin density wave with a “magic” wave vector whose mag-
nitude depends on the spin-orbit coupling strength. They named this peculiar excitation
the persistent spin heliz (PSH). Its characteristic shape is depicted in the lower panel of
Figure 3.3.

As put forward by Bernevig et al. [2006] and shown explicitly by Chen and Chang
[2008], an alternative way of deriving the persistent spin helix is to see the spin-orbit
interaction as a non-Abelian SU(2) gauge potential [Jin et al., 2006] and to apply a gauge
transformation (acting as a local spin rotation) that, under the PSH conditions, maps the
Hamiltonian on the one of the free electron gas. The transformed PSH profile, which is
simply a uniform spin polarization, is then obviously conserved. In this context, see also
Yang et al. [2008], Tokatly and Sherman [2010] and Geifller [2010].

On a less abstract level the PSH can also be understood as arising from the combination
of spin diffusion and spin precession: as depicted in Figure 3.1, the momentum-dependent
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Figure 3.2.: Schematic creation of a spin grating in a GaAs quantum well: a pair of co-
herent near-bandgap laser beams with perpendicular linear polarizations are
brought to interfere at the semiconductor surface, producing a pattern of
photon helicity as shown in panel a). Since, via the optical orientation ef-
fect (see Meier and Zakharchenya [1984]), the photon helicity couples directly
to the spin of the excited carriers, a sinusoidal profile of out-of-plane spin
polarization is created [panel b)], which in turn translates into a grating of
different diffraction indices for photons of different helicity, allowing for the
time-resolved detection of the spin grating with polarized probe pulses. This
figure is adopted from Cameron et al. [1996].

spin-orbit field is aligned in the y-direction with its magnitude increasing linearly with the
projection of the momentum argument on the x-axis. If an itinerant spin-up electron from
within the PSH starts, for instance, at the crest of z-spin polarization and travels with the
Fermi velocity along the PSH wave vector (here the z-direction), its spin precesses precisely
by a full angle 27 during the time it takes to cover the distance of one PSH wavelength,
i.e., to reach the neighboring crest. If the electron propagates off direction, the spin will
still match the phase of the surrounding spin density (the initial PSH profile) everywhere
because the larger traveling time to the neighboring crest is exactly compensated by the
smaller precession frequency.

A remarkable progress on the experimental side was the recent realization of the per-
sistent spin helix in a GaAs/AlGaAs quantum well by Koralek et al. [2009]. They applied
the technique of transient spin grating (TSG) spectroscopy [Cameron et al., 1996] in order
to optically excite a sinusoidal pattern of out-of-plane spin polarization with the “magic”
PSH wave vector (see Figure 3.2 and upper panel of Figure 3.3). Due to the presence of
symmetry breaking effects in a real quantum well no state of infinite lifetime was observed,
but instead two exponentially decaying modes (see Figure 3.4a), which Koralek et al. la-
beled the spin-orbit reduced and enhanced mode—the latter being the actual PSH (see
lower panel of Figure 3.3). Although the lifetime of the observed PSH mode is not infinite
it is still of the order of 100 ps, exceeding typical transient spin grating lifetimes by two
orders of magnitude. Interestingly, as can be seen in Figure 3.5, the observed temperature
dependence of the PSH lifetime displays a maximum close to 100 K.

In order to enhance the stability of the PSH it is necessary to figure out what the
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3. Relaxation of the persistent spin helix — the role of electron-electron scattering

Figure 3.3.: Schematic representation of the transient spin grating experiment by Koralek

34

et al.: initially, a sinusoidal profile of z-spin density with the “magic” wave
number ¢ is excited in the GaAs quantum well (upper panel) using the optical
orientation effect. This initial condition is a superposition of two helical modes
with opposite winding sense. The backward winding mode decays quickly on
the timescale g, leaving only the forward winding persistent spin helix mode
(lower panel) with the much longer lifetime 75.
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Figure 3.4.: a. Temporal evolution of the z-spin density for different wave numbers ¢ as
monitored by analyzing the intensities of transmitted and reflected polarized
probe pulses (for details of the detection scheme see Weber [2005]). The
decay follows a double-exponential function, from which the lifetimes of the

spin-orbit enhanced and
approaching the “magic”

reduced modes, 7 and Tg, are deduced. b. When
wave number gy, 7g increases by nearly two orders

of magnitude. This figure is taken from Koralek et al. [2009].
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Figure 3.5.: Temperature-dependent lifetimes of each helix mode for the wave number gg
(as determined by maximizing 75 at fixed temperature T' = 75 K). This figure
is taken from Koralek et al. [2009)].
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3. Relaxation of the persistent spin helix — the role of electron-electron scattering

dominant relaxation mechanisms are. The temperature dependence of the PSH lifetime
suggests the involvement of electron-electron interactions [Koralek et al., 2009], which are
known to relax spin currents via the spin Coulomb drag effect [D’Amico and Vignale, 2000;
Flensberg et al., 2001; D’Amico and Vignale, 2003; Weber et al., 2005]. However, since
electron-electron interactions per se respect the SU(2) symmetry of the PSH state, they
cannot be the sole reason for a finite lifetime, but other symmetry breaking mechanisms
must be present as well.

It is the purpose of the present chapter to develop a theoretical understanding of the
PSH lifetime and of possible ways to improve upon this lifetime. In particular, we con-
sider the effect of Coulomb scattering in the diffusive D’yakonov-Perel’ regime. Regarding
symmetry breaking mechanisms, our model (Section 3.2) takes into account the effect of
extrinsic spin-orbit coupling (see e.g. Raimondi and Schwab [2009]), which results from the
interaction of the conduction electron spins with the impurities, as well as cubic Dressel-
haus spin-orbit interaction, which is known to be present in the experimental quantum well
to a non-negligible amount [Koralek et al., 2009]. In Section 3.3, we show in which ways
these effects enter the spin diffusion equation (c¢f. Burkov et al. [2004]; Mishchenko et al.
[2004]; Stanescu and Galitski [2007]; Weng et al. [2008]) that describes the dynamics of the
spin density. In Section 3.4 we discuss the resulting PSH lifetime. The symmetry-breaking
mechanisms of our model are at first considered separately and under the simplifying as-
sumption that the renormalization of the linear Dresselhaus spin-orbit coupling due to
cubic one is negligible. We propose a spatially damped initial spin profile in order to
enhance the TSG lifetime in presence of symmetry breaking mechanisms. For the experi-
mental parameters of Koralek et al. [2009] it turns out that electron-electron interactions
in combination with cubic Dresselhaus spin-orbit interactions are the key ingredients to
qualitatively explain the temperature dependence of the PSH lifetime (Section 3.5). We
also find reasonable quantitative agreement in the (temperature) range of validity of our
theory. A summary and outlook on possible extensions of the theory are given in the
concluding Section 3.6.

3.2. Model

As discussed in the introductory Chapter 1.1.1, in the standard envelope-function descrip-
tion (see e.g. Winkler [2003]), the spin-orbit interaction of conduction band electrons in a
semiconductor quantum well takes the form of a momentum-dependent, in-plane effective
magnetic field. The two dominant contributions to this field are linear in the in-plane
momentum: The Rashba field [Bychkov and Rashba, 1984], which has winding number
1 in momentum space (c¢f. Eq. (1.3)), is caused by structure inversion asymmetry and
can be tuned by changing the doping imbalance on both sides of the quantum well. The
linear Dresselhaus contribution [Dresselhaus, 1955], in contrast, has winding number —1.
Its physical origin is the bulk inversion asymmetry of the zinc-blende type quantum well
material. It is proportional to the kinetic energy of the electron’s out-of-plane motion and
therefore decreases quadratically with increasing well width. In addition, a small cubic
Dresselhaus spin-orbit interaction is present as well.

We write the Hamiltonian for conduction band electrons in the (001) grown quantum
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well as
H = Hy+ Himp + He.. (31)

The first term represents a two-dimensional electron gas (2DEG) with a quadratic disper-
sion and intrinsic spin-orbit interaction,

Hy = Z d}]tsl Hos's Vs (32)

s,s';k
where the 2 x 2 matrix in spin space

Ho = e, +b(k)-o (3.3)

exhibits the form of our generic single-particle Hamiltonian (1.5). The symbols 1/),1 s (Vrs)
are creation (annihilation) operators for electrons with momentum k and spin projection
s. Within the envelope function approximation [Winkler, 2003] one finds ¢ = % where
m is the effective mass. The vector of Pauli matrices is denoted by o. The in-plane

spin-orbit field
b(k) = br(k)+bp(k) (3.4)

contains Rashba as well as linear and cubic Dresselhaus spin-orbit interactions of the form
(henceforth we set A= 1)

br(k) = avp ( _’“]g) (3.5)

— K3
botk) = spemza [ () 15 (000)]

k3 i
+ vpsin 2¢ [6/ <Zz> + Ly <SZ;S§9>} (3.6)

(see e.g. Weng et al. [2008]). Here, vy is the Fermi velocity, the angle 6 gives the direction of
k with respect to the x axis and ¢ denotes the angle between the latter and the (100) crystal
axis. The strength of the Rashba spin-orbit field is controlled by a and the coefficient for
linear Dresselhaus coupling 3’ contains a momentum-dependent renormalization due to
the presence of cubic Dresselhaus coupling,

B = B—vk*/4, (3.7)

where the “bare” linear Dresselhaus coefficient (5 is related to the one for cubic Dresselhaus
v via B = y(k2) =~ (7/d)* (d being the quantum well width). We assume in the following
that the spin-orbit interaction is small compared to the Fermi energy Ep, i.e., bp/Epr < 1,
where bp = b(kp) with kp denoting the Fermi momentum.

Furthermore, we have included in Eq. (3.1) electron-impurity interactions,

1
Himp = V Z w;;/s/Uk’ks’swks (38)
s,s":k,k’!
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(henceforth we set the volume V' = 1). The impurity potential is a matrix in spin space,
Uy = Vit? ({R;}) (1 + 02003 /4 [k x K] ), (3.9)

where the spin-dependent part arises from extrinsic spin-orbit interaction of the conduction
electrons with the impurity potential, ¢f. Raimondi and Schwab [2009]. In real space the
matrix operator for electron-impurity interactions reads

Ux) = V() +iN/4[o x VV™(z)] . ¥ (3.10)

with VP (z) = 3. v(z— R;), where v(x) denotes the potential of each single impurity, and
{R;} are the impurity positions (eventually to be averaged over). The material parameter
Ao = 4.6 x 10719m, obtained from band structure calculations for GaAs (cf. Eq. (1.2)),
characterizes the spin-orbit coupling for conduction band electron spins in the presence
of electric fields. It is also hidden in the Rashba spin-orbit coupling constant, where
the electric field is not caused by impurity potentials but by the confining quantum well
potential. Eq. (3.9) with V,.)" ({R;}) = > v(k' — k) e "K' =K)'B; is then obtained by
Fourier transformation.
Finally, the Hamiltonian (3.1) contains electron-electron interactions

1
He—e = 5 Z Vk3,k47k1,k2 ¢L452¢L351¢k131¢k232 (311)

k1...ka
51,82

with the Thomas-Fermi screened Coulomb potential (see e.g. Akkermans and Montambaux
[2007])

v(lks — kal)
Vi kakiks = Okyths—ks—ka0 (ks —Fa|) (3.12)
where v(q) = 1?:(]2;1 is the Fourier-transformed Coulomb potential in 2d and e(q) ~ 1+ qi*

denotes the polarizability. Here, a* = % is the effective Bohr radius. For the GaAs
dielectric constant we will take the typical value €, = 12.9 [Blakemore, 1987] in numerical
evaluations.

3.3. Derivation of the spin diffusion equation

In this section, starting with the semiclassical kinetic equation (3.16) for the spin den-
sity, we derive the general spin diffusion equation (3.48). This derivation is based on the
expansion of the momentum space spin density in terms of winding numbers (Eqgs. (3.22)-
(3.25)) and uses the separation of time scales in the D’yakonov-Perel’ regime [D’yakonov
and Perel’; 1972]. More precisely, by momentum integration of the kinetic equation, we
derive continuity equations (3.31)-(3.33) for the isotropic spin components and the gener-
alized Ohm'’s laws, Egs. (3.38) and (3.45), for the anisotropic spin components. Plugging
the steady state solutions for the anisotropic spin components into the isotropic equations
we arrive at the general spin diffusion equation (3.48). It is valid for general initial and
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boundary conditions and takes into account all SU(2) breaking elements of our model as
presented in the previous section. Eq. (3.48) is the basis of our investigation of the PSH
lifetime in the following Sections 3.4 and 3.5, where the choice of a definite initial condi-
tion similar to the experiment by Koralek et al. [2009] reduces the problem to the 2 x 2
diffusion equations (3.59) and (3.74), respectively.

3.3.1. Semiclassical kinetic equation

Our goal is to describe the dynamics of the spin density in real space. Using the Nonequi-
librium statistical operator method! (see Chapter 2 and Zubarev et al. [1996]) we derive
kinetic equations for the charge and spin components of the Wigner transformed density
matrix

pr(xz,t) = ng(z,t) + sk(x,t) - o, (3.13)
where (cf. Eq. (2.56))

Priss' (T, 1) = /dr eik'r(wi,(az —7/2,t)Ys(x+7/2,1)). (3.14)

If we restrict our calculation to the zeroth order in b/Er and furthermore neglect terms
that are nonlinear in the spin density sg(x,t),2 the equations for charge and spin read

Opng+v-Opri, = T+ T, (3.15)
25k X b(k)+ 0 sk +v-0z 8k = Ji,;anrJZ'e (3.16)

with v; = k;/m, where the index ¢ = z,y labels the in-plane spatial directions. Note that
the spin and charge equations decouple in this approximation because the gradient terms
containing O, b(k), which would connect them, are of higher order in b/ Er. Moreover, in
the diffusive limit bp7 < 1 (where 7 is the momentum relaxation time), they would yield
terms of higher order in the small parameter bgp7, see Burkov et al. [2004] and Stanescu
and Galitski [2007]. On the right-hand side of Egs. (3.15)-(3.16), we have the collision
integrals for impurity scattering,

im )\4
T == Wi 8(Ac) An {1 i 17(3) [(k x k,)Z]Q} ’ S
kl
. 22 —sy, A\ , (5= + s,
TP = =" Wi 6(Ae) { As + S x K| si |+ g e x ED | sy +s§, 7
K’ 0 Sz — S,
(3.18)

! Alternative derivations with the Keldysh formalism or standard density matrix approaches yield, to
the desired zeroth order in br/EF, the same equations. Note, however, that to general orders in br/FEr,
important differences between the formalisms may arise, see Chapter 5 and Kailasvuori and Liiffe [2010].

2In principle, an additional Hartree-Fock precession term (of second order in sy and first order in the
electron-electron interaction V) in Eq. (3.16) could become important (see Chapter 4), as well as quadratic
in s terms in the electron-electron collision integrals (3.19)-(3.20). However, for small polarization these
effects can be neglected. The clean (double-)exponential decay of the transient spin grating as documented
in Fig. 1a in Koralek et al. [2009] is a strong hint that in this particular experiment nonlinear effects are
irrelevant.
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3. Relaxation of the persistent spin helix — the role of electron-electron scattering

with the transition rate Wy = 27 n; |v (k' — k) |2, where n; is the impurity concentration,
Ae =€, — e, An =ng — n and As = s, — sy, as well as electron-electron scattering,

Ty = 27 Z (2/Vi234]® — Vi34 Vizaz) 6(AE) (3.19)
2,34
[(1 — nl)(l — TLQ) n3ng — (1 <~ 3, 2+ 4)] R
b= 21y 048 {(1—m)(1 —n2)ngna (3.20)
2,34

S3 31 83 S4 S1 82
2| Vagaal® | = — —ViogaVigaz | — + — — -
ns 1—711 ns Ny 1—711 1—712

—(1+3,2+4)}.

Here, we abbreviated j = k; (where j = 1,2,3,4 labels initial and final states of the two
collision partners) and A€ = €x, + €k, — €kg — €ky-

In our approximation the charge kinetic equation (3.15) decouples from the spin kinetic
equation (3.16) and is independently solved by the Fermi-Dirac distribution ng(x,t) =

fler) =1+ e(ek*EF)/kBT] 717 where kp is the Boltzmann constant and 7" the temperature.
Since we are not interested in charge transport or local charge excitations, we assume that
the charge distribution is given by this spatially uniform solution. In the next subsection
we use the spin kinetic equation (3.16) to derive a drift-diffusion equation for the spin
density in real space [Burkov et al., 2004; Mishchenko et al., 2004; Stanescu and Galitski,
2007; Weng et al., 2008].

3.3.2. Spin diffusion equation in the D’yakonov-Perel’ regime

In the following, we consider the D’yakonov-Perel’ regime of strong scattering or weak
spin-orbit interaction [D’yakonov and Perel’, 1972], i.e.,

bpr < 1. (3.21)

During the average time interval 7 between collisions that alter the momentum of an
electron—and thereby the effective spin-orbit field b(k)—its spin precesses about this
field by the small angle bp7, see Figure 1.3. This results in a random walk behavior of the
spin (in the context of the PSH, see Yang and Orenstein [2010]). The spin polarization
is actually stabilized by the momentum scattering: the stronger the scattering, the slower
the D’yakonov-Perel’ spin relaxation.

In the spirit of the original derivation by D’yakonov and Perel’ [1972] we exploit the
separation of the timescales that govern the evolution of isotropic (in momentum space)
and anisotropic parts of the spin distribution function. Since we deal with a spatially
inhomogeneous spin density we make the additional assumption that the timescale con-
nected with the gradient term in Eq. (3.16) is large as compared to the transport time,
i.e. vpqT < 1, where ¢ is a typical wave vector of the Fourier transformed spin density.
Thus, when speaking of “orders in bp7” in the following, we actually have in mind “orders
in max{bp1, vpqT}”.
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3.3. Derivation of the spin diffusion equation

In order to solve the spin kinetic equation (3.16) we split off an isotropic component
S(x,t) from the spin density s; and expand the remaining anisotropic component in
winding numbers and powers of momentum £,

2
su(z,t) = _% Fex) S+ spa(x,t) + 8z, t) + sps(x,t) (3.22)
with
k .
Spi(z,t) = fl(ﬁk)% Z Ok (z,t) €', (3.23)
n==+1
~ / kg 1. in6
Sri(@t) = fler) 1 > Skp(w,t) e, (3.24)
rm n==+1
/ kg in@
ska(e,t) = f'er) 15— > bkn(z,t) e, (3.25)
an::t3

The anisotropic components of the distribution function arise due to the gradient term
in the Boltzmann equation and due to precession about the spin-orbit field. Since the
spin-orbit fields (3.5), (3.6) contain terms with winding numbers +1 and £3, only these
winding numbers need to be considered for the anisotropic part of the spin density to
lowest order in bp7. This point will become clear in the course of the derivation of
diffusion equations (see discussion below (3.38)). The same applies for the powers of k:
we need to include in our ansatz only those powers that are contained in the driving terms
resulting from the Hamiltonian (3.3). We therefore consider a k-term and a k3-term in the
ansatz for the winding-number-+1 terms of the spin density (3.23) and (3.24), because the
winding-number-+1 driving terms of the kinetic equation (3.16) are the gradient term, the
linear Rashba and Dresselhaus spin-orbit fields as well as the renormalization of the linear
Dresselhaus term due to cubic Dresselhaus spin-orbit interaction. The winding-number-
+3 component of the spin density (3.25), on the other hand, contains only a k3-term, since
only the cubic Dresselhaus spin-orbit field contributes to windin number +3 in the kinetic
equation (3.16).
In the following we consider point-like impurities, i.e., isotropic scattering with a rate

1 = mn;v(0)2. (3.26)

Furthermore, we assume low temperature T' < Tp = Er/kp and perform a Sommerfeld
expansion up to order (T/Tr)? in all momentum integrations of distribution functions:

from the standard Sommerfeld technique in the theory of the Fermi gas it is well known
that the approximation
[e%¢] Er 7T2
| deg@r 0 = [ degto + T (eat g (Br) s 0T (320)
0 0

holds, where f(e€) is the Fermi distribution and g(e) is a function of the energy that varies
slowly for € &~ Er. In the derivation of the spin diffusion equation we have to deal with
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3. Relaxation of the persistent spin helix — the role of electron-electron scattering

powers of momentum k2, k3, k%, k5, k8. Since the dispersion is quadratic, and the 2d DOS

is constant, the problem reduces to (n =1, 3,2, 3,4)

dee™ f'(e) = — dene™ ! f(e
/o fie) /0 f(e)
1+n(n—1) 5 <k >

Thus, the powers k2, k%, k® and k® are not simply replaced by —k%, - — k:% upon momen-
tum integration, but acquire corrections according to the prescription

= —(Ep)" +O(T*)T%). (3.28)

/ dey f'(ex) k" = —kp 2,(T) (3.29)
0
with 2o(7") = 1 and the Sommerfeld functions

»(T) = 1+ 2T2+O( ) all) = 1+5 5,

z%(T) = 1+ w(T) = 1+2n2 L T2 +O( ) (3.30)

T27

With the goal of obtaining diffusion equations for the real space spin density we start
by momentum integration of the kinetic equation, ﬁ J dk [Eq. (3.16)], using the ansatz
(3.22). This yields the isotropic equation for the isotropic component of the spin density,

2
9,5, — kF { 1 (a Shey + 0 5ksx> + qupbha, — ﬁvF(smqu&;%CZ +c0s2¢5ksz)}
271 | 2m ’ ’ ’
— %4 ey Sz, (3'31)
k% (1 -
0S8y = 5= { (020keyy + y8hsy ) + avihs,. + Bup (sin26 8k, — cos 26 6k)}
— 24 Yey Sy , (3.32)
k% (1
oS, = & {2 (a She.s + 0 5/<;8Z) — qwp(Skep + 0y )
+Bur [sin26 (ke — iy ) + 0526 (S + 0Fsa) |} (3.33)
with
akc(s) = 6kc(s) + Z4akc(s) )
dﬁc(s) = 5kc(s)_<(z45kc(s) + zﬁékc(s) + zgdkcg(&g)) , (3.34)
akc(s) = 6kc(s) _C(Z45kc(s) + 2651{70(5) - 265kc3(s3)) :
Here,
_ kR
¢ = 13 (3.35)
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3.3. Derivation of the spin diffusion equation

represents the ratio of cubic and linear Dresselhaus coupling strengths and we have intro-

duced

5kc(03) = 2Re 6k1(3)7 5’:30 = 2Re 5’:51,

Okysz) = —2Im Okyz), Ok, = —2Im oky. (3.36)

Eqs.(3.31)-(3.33) can be seen as continuity equations for the spin density where the
anisotropic components 6k, (,), dk.(5)3 and 6150(5) play the role of (generalized) spin cur-
rents. The impurity collision integral (3.18) contains a spin-dependent part due to ex-
trinsic spin-orbit interaction, which acts as a sink for in-plane spin-polarization with the
Elliot-Yafet relaxation rate [Raimondi and Schwab, 2009]

Mokr\*1
Yoy = < 02F) = (3.37)

This relaxation mechanism can be understood as the net effect of the electron spins pre-
cessing by a small angle about the extrinsic spin-orbit field during the collision with an
impurity. Since this field is perpendicular to the electronic motion, i.e., it points in z-
direction, the z component of the isotropic spin density is unaffected by the Elliot-Yafet
mechanism.

The anisotropic components k), 61::0( s) and 8k, 3(3) can in turn be expressed in terms
of the isotropic spin density S; by integrating the kinetic equation (3.16) multiplied with
the velocity over momentum, where, this time, we omit the time derivative. The jus-
tification is that, in order to capture the slow precession-diffusion dynamics of the real
space spin density, it is sufficient to interpret the time derivative as a coarse-grained one,
i.e. 0y S — AS/At with At ~ b.' > 7. Then the fast relaxation of the anisotropic com-
ponents into the steady state at the beginning of each At contributes to the average over
this time interval only with terms of higher order in bp7. For an explicit demonstration we
refer to Appendix A. Another way of seeing this is in analogy with the Born-Oppenheimer
approximation: similarly to the fast moving electrons in a molecule, which almost instan-
taneously find their equilibrium positions with respect to the slowly vibrating nuclei, the
anisotropic parts of the spin distribution quickly adjust to the momentary isotropic spin
density. The backaction of the anisotropic parts on the isotropic spin density is then well
described using their steady state solution.

By integrating ﬁ J dk vy, [Eq. (3.16)], equating terms of the same order in k and
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3. Relaxation of the persistent spin helix — the role of electron-electron scattering

solving for the coefficients, we obtain the following anisotropic equations:

Okey = 4Amjovp(1 + 2aYswT1) — BUF sin 2¢(1 — 2475w T1)] 7152

2
+ ETI (8$Sx + Z4’st7_18y8y) )
27
Okey = —4mBvpTicos2¢ (1 — z4YswT1) S: + gl (0 Sy — z4YswT10y Sz) ,

2
Oke. = 4w (—avp + Bupsin2¢) 7S, + 4 wPvp T cos2¢ Sy + —Wﬁﬁz S,
m

27
5ks,x = —4 7"-BUF"Tl COS 2¢ (1 - Z4rst7—1) SZ + ETl (81/ Sa: - Z4'YSW7—1830 Sy) ,

Oksy = 4Amjowp(l 4 24vswTi) + Bvp sin 2¢(1 — z4vswT1)] 7152

27
+ ETl (8y Sy + Z4'st7—18x Sa?) s

(3.38)

2
Oks . = AmPupTicos2¢ Sy — 4 [awp + fopsin2¢] 715, + —Wn(‘)y S,
™m
Skey = —0ksy = 4mBupCsin 207 (1 — Sy )Ss |
24
Skey = 0ksy = AmBuRCcos 207 (1 — Sy #)S, |
Z4

Oke, = —4mBup(Fi(sin2¢ Sy + cos26 Sy)
5];35@ = —47 Pvp(Ti(cos2¢ S, —sin2¢ Sy).

The spin densities .S; act as sinks and sources in the equations for the anisotropic coeffi-
cients 0k+1 43, 61?&172-. Since the spin densities S;(t = 0) are determined by the initial con-
ditions, they are of zeroth order in bp7, whereas the anisotropic coefficients 6k 41 +3., 5l~€:|:1’i
are already of first order in bp7. If we had included parts with higher winding numbers
+2,4+4,+5,... in our ansatz, these would have been generated only indirectly via the
0k 41 43,4, 512&171- (all of which are already of first order in bp7) and would therefore be of
even higher order in bpT.

In the Egs. (3.38) we have defined the rate of “swapping of the spin currents” [Lifshits
and D’yakonov, 2009] as

 (Mokr)?1
Tsw = < 9 > ;7 (339)

which is due to extrinsic spin-orbit interaction like the Elliot-Yafet rate vey (Eq. (3.37)),
but of lower order in Ag. It leads to a “swapping of spin currents” because a finite Vg
generates, e.g., a S, spin current in response to a gradient of the S, spin density in x
direction. Egs. (3.38) are valid to linear order in 7 gy < 1.

Since the anisotropic components dk+; and 0k~ are related to (generalized) spin cur-
rents, the anisotropic equations (3.38) express generalized Ohm’s laws. In accordance with
Matthiessen’s rule (see e.g. Smith and Jensen [1989]), the effective relaxation times for
the anisotropic parts of the spin distribution function are obtained as the inverse sum of
the collision integrals for normal impurity scattering, spin-dependent impurity scattering
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3.3. Derivation of the spin diffusion equation

and electron-electron scattering,

1 1 \*!

T = <+’yey26+ > , (3.40)
T e-e,1

5 1 2 1 -1

P <+%y8+ L ) , (3.41)
T 24 24 Te-e,1

Here, the rates Teels %e-e,l account for the decay of the respective component (sg, 1 or 5k 1)

of the spin distribution due to two-particle Coulomb scattering. The rate at which winding-
number-+1 and linear-in-k components of the spin distribution relax due to electron-
electron interaction is

TTI = F(TL = 1ap = 171 = 1)7 (342)

where

o k;::’m P / / dky dks dks 8(AE) (3.43)
ki [1 - f(ek:s)] [1 - f(€k1+k2—k3)] f(€k1)f(€k2)
{2V (|k1 — ks|)|* [cos(n[03 — 61]) K; — KT
+V(|k1 — k3|)V ([k2 — ks|)
[k} + cos(n[fy — 61]) k5 — cos(n[fs — 61])kL
—cos(n[f142-3 — 01]) |k1 + k2 — ks|"]} .

I'(n,p,l) =

The rate (3.42) is related to the spin Coulomb drag conductivity [D’Amico and Vignale,
2000; Flensberg et al., 2001; D’Amico and Vignale, 2003] via the Drude formula. The
analogous expression for the winding-number-+1 but cubic-in-k components is

e-e,1

with I'(n, p, 1) from Eq. (3.43).
In order to find the anisotropic equations for dki3 we follow a similar procedure as
before and integrate ﬁ [ dk e*39 [Eq. (3.16)]. This results in

sin2¢ S,
Ok.s = yup ]{7%71’7'3 —cos2¢ S, ,
cos 2¢ Sy —sin2¢ S,
cos2¢ S,
Okss = yurp ]{7%71’7'3 sin2¢ S,
—sin2¢ Sy — cos2¢ S,

(3.45)

with

1 28 1 \!
T3 = <7_ T Yey — + ) . (3.46)
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3. Relaxation of the persistent spin helix — the role of electron-electron scattering

The electron-electron scattering rate that enters the effective relaxation time (3.46) for
the winding-number-+3 parts of the spin distribution is given by Eq. (3.43) as

Teas = (n=3,p=3,1=0). (3.47)

e-

Finally we insert the steady-state solutions for the anisotropic coefficients, Eqgs. (3.38)
and (3.45), into the isotropic equations (3.31)-(3.33) and thus obtain a closed set of coupled
diffusion equations for the three vector components of the spin density,

O Sy = (DV? =Ty — 7eD 26 — Yey 24) Sz + L Sy + (K. 0y — M 9y) S-,

Sy = (DV? =Ty — YD 26 — Yey 24) Sy + L Sy + (K. 0y — M 0;) S,

S.=(DV? =T, —Ty =279 26 — Dsw) S» — (Ko 0p — M. 0y) Sy
— (K,y 8y — M, 0y) Sy .

(3.48)

On its diagonal, the diffusion operator that corresponds to Egs. (3.48) (when writing them
in matrix form) contains the genuine diffusion terms with V2 = 8%—#85 and the Elliot-Yafet
relaxation rate 7., due to extrinsic spin-orbit interaction. Also on the diagonal, we have
the D’yakonov’-Perel’ relaxation rates I';(,) and ~v.p which reflect the randomization of
the spin orientation due to precession (between the collisions) about the winding-number-
+1 and winding-number-+3 spin-orbit fields, respectively. The S, component suffers
relaxation as a consequence of precession about the y component of the spin-orbit field
only, and wvice versa. In contrast, the S, component is relaxed by the precession about
the full spin-orbit field. Thus the relaxation rate of S, due to precession is the sum of the
ones for S, and Sy, plus a correction I'sy, for processes that involve the swapping of the
spin currents due to extrinsic spin-orbit interaction. Due to precession there are also off-
diagonal rates L, which couple the in-plane spin components, as well as several off-diagonal
mixed diffusion-precession rates, which are accompanied by partial derivatives.

In terms of the parameters of our model and previously defined quantities the coefficients
in the spin diffusion equation (3.48) are given by:

1
YeD = gv% v kg3, (3.49)

) g ~7
Ty = 7% DﬂFa[2D—CZ4(D+D)} sin 2¢ (3.50)

2 ~ , -
+5 [D—<z4<D+D>+<z6DD,

L 2 Cx M = 2, 27 %

FSW:QQU’YSW DT124—$ D7'124—<DT1Z6—CD7'12’4+< DTIZZ , (351)
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3.4. Persistent spin helix in the presence of symmetry breaking mechanisms

Koz(y2) = o (D F g [D - %Cn (D + D)} sin 2¢> (3.52)

1 .
+§75qu <7'1Dz4:|:5 {71D24—C7~'1D26} sin2¢),
e

K o(zy) = Q0 <D F g [D - %Cm (D + D)} sin 2¢> (3.53)
+%7sw7_1quZ4 |:12|Z§(1—CZ4>SH12¢:| ,
M = cos2¢q0§ [D — %sz; (D—i—f))] (3.54)
—%Wswqo COS2¢é [71D24_C7~'1DZ6]»
(6%
M, = cos 2¢)q0§ [D — %ga (D + f))] (3.55)
*%vswﬁqODzz; cos2¢>§(1*624),
L(¢) = coquﬁ%ng {D - %ga (D + [))] (3.56)

with the PSH wave vector
g = 4dvpma (3.57)
and the effective diffusion constants

1 -
D:§v%71, D= % 7. (3.58)

| =

At T = 0, we have z, = 1, and the electron-electron scattering is suppressed due to the
lack of phase space for final states, such that D = D. Then, the spin diffusion equation
(3.48) agrees (except for the sign of L) with the one presented in Weng et al. [2008] if
we leave extrinsic spin-orbit interactions aside. If we further omit cubic Dresselhaus spin-
orbit interaction in our diffusion equation, it also concurs with the one of Bernevig et al.
[2006] provided that the spin-charge coupling is negligible.

3.4. Persistent spin helix in the presence of symmetry breaking
mechanisms

In this section, we use the spin diffusion equation (3.48) to calculate the lifetime of the
persistent spin helix. We consider extrinsic spin-orbit interaction, cubic Dresselhaus spin-
orbit interaction, and simple spin-flip scattering as possible symmetry breaking mecha-
nisms. In order to allow for simple analytical solutions we discuss each of the candidate
mechanisms separately. In the case of cubic Dresselhaus spin-orbit interaction we neglect
at first the renormalization of the linear Dresselhaus spin-orbit interaction (see Eq. (3.7)).
This is formally achieved by setting ¢ = 0 in Eqgs. (3.50)-(3.56) while keeping the ~.p
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3. Relaxation of the persistent spin helix — the role of electron-electron scattering

Table 3.1.: Specification of the rate X and the integer N in Eq. (3.59)

Simple spin flips Extr. spin-orbit int. Cubic Dress.

X 1/7et Vey VeD %6
N 1 0 2

term in Eq. (3.48). However, we will include the renormalization of the linear Dresselhaus
spin-orbit interaction when we discuss a possible stationary solution in the present section
and also when we compare to the experimental results in a GaAs/AlGaAs quantum well
[Koralek et al., 2009] in Section 3.5.

We choose our coordinate system such that the z axis points in the (110)-crystal di-

s

rection, corresponding to ¢ = 7§ in Eqgs. (3.50)-(3.56). Then, considering an initial spin
polarization that is uniform in z-direction, due to L(%) = M(%) = 0 the S, component
decouples from the Sy and S, components and we can set S; = 0. Since a = (3, Eq. (3.48)

reduces for the remaining S, and S, components to

DO —-¢@D-X 2qoD O
S = Yy 0 Yy S
o ( —2¢qyD9, DO —-q3D—-N X> ’ (8.59)

where the relaxation rates due to the respective symmetry-breaking mechanism are rep-
resented by X and an integer N according to Table 3.1.

For the SU(2) symmetric situation (X = 0) there exists a steady state solution with the
wave vector gg. This is the persistent spin helix state. More precisely, for an initial spin
polarization of the form

S(x,t=0) = S| 0 |, (3.60)
Cos qoy

similar to the experimental set-up of Koralek et al., one finds that the time-dependent
solution to Eq. (3.59) is

- So (e~ Pt — 1] sinqoy
SX=0(y, 1) = =2 . 3.61
(1) 2 ([64 % Dt 1] cos qoy (3.61)

In the stationary limit ¢ — oo this reduces to the persistent spin helix state. The solu-
tion (3.61) can, for instance, be constructed by applying the Laplace transformation in
order to eliminate the time variable. Then the spatial part reduces to an eigenvalue prob-
lem. After solving the eigenvalue problem Eq. (3.61) is obtained by an inverse Laplace
transformation.

In the presence of symmetry breaking mechanisms, i.e., for X # 0, one can still find a
steady state solution of the form

Syly) = —% e ¥ Oy singyy,

So _ .
Si(y) = 5 e ¥/ (Cy singxy + cosqxy)

(3.62)
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3.4. Persistent spin helix in the presence of symmetry breaking mechanisms

This solution is a spatially damped persistent spin helix state with the coefficients

7 = qﬁ\/25+ (N+1)é—2, (3.63)
qx = qo\/2~ 1)€+2,

4,2E—(1+N) §+2[4+(3N+ ){—N(N—1)§2—(4+(N—1)§)E]
@ = F8V -1 1 (N - 1% |
0, _ S-(N-1P€-4pE- (V119

(N=1)&VB(N+1)E— (N —1)2¢

where ¢ = X/(g2D) and E = /(1 +&)(1+ NE). For £ — 0 the t — oo asymptotics
of Eq. (3.61), i.e., the truly persistent spin helix state in the absence of SU(2) breaking
mechanisms, is readily recovered. The spatially damped persistent spin helix state (3.62)
can in principle be excited with the initial spin polarization profile

0
S(x,t =0) = Spe ¥/x 0 : (3.64)
CoS gxy

Although the spatially damped persistent spin helix is clearly a valid steady state so-
lution when the symmetry breaking is caused by simple spin flips or extrinsic spin orbit
interaction, it is not obvious that this applies also to the case of cubic Dresselhaus spin
orbit interaction, since we have neglected the renormalization of the linear Dresselhaus
spin orbit interaction (¢ # 0), which might lead to a finite lifetime of the spatially damped
state. Nevertheless, even when the renormalization of the linear Dresselhaus spin orbit
interaction is taken into account one can still find a steady state solution of the form (3.62)
when the ratio of the linear Rashba and Dresselhaus spin orbit interactions is given by

B D

a  D-l¢z(D+D) (3.65)

It should generally be possible to fulfill this relation for realistic experimental parameters
upon appropriate tuning of the spin-orbit interaction or the temperature. According to
Egs. (3.52)-(3.53), we then have K .(}) = K.,(7) = 2qo D, as in Eq. (3.59). Furthermore,

T,(r/4) = qé D1+ F(T)], (3.66)
I.(r/4) = ¢ D1 +2F ()],
with
AT = %( D?— (2 D(D+ D)+ (?2DD _1>, (3.67)

—(z2D(D + D) + 1¢223(D + D)2

Thus, the spin diffusion equation can still be cast into the form of Eq. (3.59) when the
symmetry breaking rate X is redefined as X = X +¢3D F(T). For this symmetry breaking
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3. Relaxation of the persistent spin helix — the role of electron-electron scattering

rate X and spin orbit couplings satisfying (3.65) the spatially damped spin profile of the
form (3.62)-(3.63) is, again, infinitely long-lived.

This stationary state should in principle be realizable in the GaAs/AlGaAs quantum
well of Koralek et al., because there the ratio of /o almost fulfills relation (3.65) at a
temperature of 7' = 100 K. For the parameters of the GaAs/AlGaAs quantum well used
by Koralek et al. the steady state solution is characterized by a wavevector ¢3 ~ qo and
a damping length of hardly more than one PSH wavelength, [ ~ 1.06 2(1—(?. Although a
spin grating with such a strong spatial damping might be difficult to realize in practice,
it should be noted that the required damping length is o< (~!, so that one can expect
much longer damping lengths for thinner quantum wells, where the importance of cubic
Dresselhaus spin-orbit coupling (as compared to the linear one) is reduced.

We now want to consider the conventional PSH solution. If we stick to an initial spin
polarization with the form of a plane wave (3.60) similar to the experimental set-up, the
time-dependent solution of Eq. (3.59) is characterized by a double-exponential decay,

_t
So 4q D (e TR — ¢ TE)
Sy(y,t) = — sin , 3.68
y(y, 1) B) q0Y JAZDP + (N-12 X (3.68)
S — 5 .. (N-1DX (6*5 _ e*i) )
,t) = — cos e "R +e "E + .
R VA@DP T (V1P X
with the spin-orbit-enhanced and -reduced lifetimes

Tom = 260D+ 5 SN XF \/4q0 24 (N —1)2X2. (3.70)

In the absence of any symmetry-breaking relaxation mechanism, i.e., for X = 0, the
proper persistent spin helix state (7p = 00) is recovered. Expanding Eq. (3.70) for small
X/(4¢3 D) < 1 we obtain

2 N-1\% 1
~ 2 x! 3.71
Y +<N+1> 1D’ (37

1 (N+1)X
4q(2)D 2(4q§D)2

Q

TR (3.72)

The reduced lifetime 75 is not very sensitive to details of the (weak) symmetry-breaking
mechanism. Correspondingly, the temperature dependence of the reduced lifetime 7p
is almost independent of the precise mechanism (and is essentially determined by the
electron-electron relaxation rate 711 contained in D via 71, see Eq. (3.40)). The tem-
perature dependence of the enhanced lifetime 7z, by contrast, depends crucially on the
symmetry breaking mechanism under consideration and thus offers a way to discriminate
between the different mechanisms. For small symmetry breaking terms the enhanced life-
time 7 is proportional to the inverse of the respective scattering rate X ~!. Therefore also
the temperature dependence of 75 is determined by the one of the scattering rate. For
simple spin-flip scattering X = ngl we expect a temperature-independent lifetime 75 due
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3.5. Persistent spin helix in GaAs/AlGaAs quantum wells
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Figure 3.6.: (a) Temperature-dependent relaxation rates due to electron-electron interac-
tions: 7__ el,l (solid curve), 7 el,l (dot-dashed curve) and 7 el 5 (dashed curve) as
computed numerically from Eq. (3.42) using the experimental parameters of

Koralek et al. [2009]. For comparison: the inverse transport time at 7' = 100K

is 771 =1 ps~'. (b) The resulting effective relaxation rates: 7; * (solid), 75 *

(dashed) and 7; ! (dot-dashed), cf. Egs. (3.40)-(3.41) and (3.46).

to a constant 7. For extrinsic spin-orbit interactions with X = .y, the only temperature
dependence to leading order in X/(4 g3 D) comes from the Sommerfeld corrections. Thus
T decreases quadratically with temperature. For cubic Dresselhaus spin-orbit interaction
one finds

2
B A~ g%Dlzﬁl (3.73)

and therefore 7 is proportional to 75 ' (see Eq. (3.49)). Since 73 decreases with temper-
ature as a consequence of the enhanced electron-electron scattering Tefel 5 (see Eq. (3.46))
the lifetime 7g increases initially with temperature due to the motional narrowing effect
in the D’yakonov-Perel’ regime. The presence of the Sommerfeld function zg, on the other
hand, leads to a decrease of 7 with increasing temperature. Thus for cubic Dresselhaus
spin-orbit interaction we find that the temperature dependence is governed by a compe-
tition between increasing and decreasing contributions. We will compare this theoretical
interpretation with experimental results for the persistent spin helix in GaAs/AlGaAs
quantum wells [Koralek et al., 2009] in the next section.

3.5. Persistent spin helix in GaAs/AlGaAs quantum wells

In order to address the lifetime of the PSH observed experimentally in GaAs/AlGaAs
quantum wells we consider cubic Dresselhaus spin-orbit coupling alongside with extrinsic
spin-orbit interaction as possible symmetry breaking mechanisms in our model. We fur-
ther include the renormalization of the linear Dresselhaus coupling constant due to cubic
Dresselhaus spin-orbit interaction (¢ # 0 in Egs. (3.50)-(3.56)). Analogously to the pre-
vious section we can set S; = 0. Then the spin diffusion equation (3.48) reduces for the
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3. Relaxation of the persistent spin helix — the role of electron-electron scattering

remaining components Sy and S, to

Dd?-Y K (”)8)
oS = v vz.4779) 8 3.74
t (-sz(4)ay Do —Z (3.74)

with

Y = Ty(n/4) + YD 26 + Yey 24,

3.75
Z = Typ(n/4)+Ty(n/4) + 27D 26 + Tsw - (3.75)

For an initial spin polarization of the form S(z,t = 0) = Sy (0, 0, cosqoy) the time-
dependent solution is a double-exponential function,

Sy(y,t) = %sinqoy 2Kyzqole e 7¢) , (3.76)
VKR Ky (D @+ (Z - Y )2
_t _t
So .t (Z-Y) (6 R —e TE)
S:(y,t) = - cosqoy e TR e T A+ , (3.77)
VAKR (D) Ky (D @ +(Z - Y )2

where the spin-orbit-enhanced relaxation rate 7 L and a spin-orbit-reduced relaxation rate

1

Trp are now given as

. 1 |
ot = 3 Y+ D)+ DF 5 VO = 2)2 4 463 Kyol(/4) Koy (/4). (3.78)

It may be instructive to expand the relaxation rate of the enhanced mode up to linear
order in the small rate v.p (assuming that v.p/g3 D < 1 is the smallest parameter of the
problem) and to subsequently expand the zeroth order terms of this expansion up to the
quadratic order in deviations from 3/a =1 and ¢ = 0. This procedure yields

Z3C2+<§—1>2—22 (1+g)<<§—1)]. (3.79)

_ 3 3
TR §’YcDZG+§CJ§D

The zero temperature limit 77" = 3 Yen(T = 0) + %Dqg (¢— g + 1)2 is minimal (and
equal to the zero-temperature limit of the simplified result (3.73) in the previous section,
where we have neglected the renormalization of linear due to cubic Dresselhaus coupling)
for /a =1+¢(, i.e., a = 3 instead of @ = § (¢f. Stanescu and Galitski [2007]).

In order to quantitatively compare our theory with the experimental findings of Koralek
et al. we need to calculate the coefficients that occur in Eq. (3.78)—in particular the
temperature-dependent rates for electron-electron scattering. Fig. 3.6 (a) shows numerical
results for 7__ 6171, T 6171 and 7, 6173 (for intermediate steps, see Appendix B) for the parameters
of Koralek et al. For the practical purpose of obtaining continuous curves for the lifetimes
we have interpolated the discrete set of points we obtained by Monte Carlo integration of
Egs. (3.42)-(3.47) with a fit to the functional form AT? + BT?InT. This form has been

shown to describe the low-temperature behavior of the spin Coulomb drag conductivity in
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Figure 3.7.: Temperature-dependent lifetimes of the enhanced (red) and reduced (blue)
PSH modes. The points are experimental data from Koralek et al. [2009].
Solid lines are our theoretical results in different approximations: (a) including
only extrinsic spin-orbit interactions (no cubic Dresselhaus spin-orbit inter-
actions and electron-electron interactions); (b) including extrinsic and cubic
Dresselhaus spin-orbit interaction, but no electron-electron interaction; (c)
including extrinsic and cubic Dresselhaus spin-orbit interactions as well as
electron-electron interactions; here, the thin dashed line shows for compari-
son the simplified result (3.73).

D’Amico and Vignale [2003]. With these electron-electron scattering rates we find for the
effective scattering rates in Eqgs. (3.40)-(3.41) and (3.46) the values depicted in Fig. 3.6(b).
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3. Relaxation of the persistent spin helix — the role of electron-electron scattering

75[ps] (a) 75[ps] (b)
f 560
500 -
[ 5551
400 ¢ ssol
300 545 ¢
‘ ‘ ‘ . TIK]
fa 50 100 150 200 ® 250 300 54060

Figure 3.8.: (a) Linear plot of the enhanced lifetime 75 as measured by Koralek et al.
[2009] (points) and calculated theoretically (solid line) taking into account
linear and cubic Dresselhaus spin-orbit interactions as well as electron-electron
scattering. (b) Zoom into the maximum of of the theoretical curve for 7. The
dashed line is the result without extrinsic spin-orbit interaction.

In Fig. 3.7, we show the numerical results for the temperature dependence of the spin-
orbit-enhanced and -reduced lifetimes 75(g) where we use the experimental parameters of
Koralek et al.> In particular, we take Tr = 400 K as the Fermi temperature, o = 0.0013
for the Rashba spin-orbit interaction and yvp = 5.0 eV A? for the cubic Dresselhaus spin-
orbit interaction. We assume ¢ = 0.2 for the ratio of cubic-to-linear Dresselhaus spin-orbit
coupling and adjust the linear Dresselhaus spin-orbit interaction to f = 1.29 « in order
to maximize 7 for T = 75 K—the temperature at which also in the experiment the
spin-orbit interaction was tuned to maximize 7g.

Note that over the whole temperature range depicted in Fig. 3.7 we use for the transport
relaxation time the value 7 = 1 ps, which is correct for T = 100 K.* Since the experi-
mental 7 exhibits a neat decrease with increasing temperature—roughly by one order of
magnitude between 5 and 100 K—due to mechanisms that are not included in our model,
we cannot expect our results to accurately match the experimental data for very low and
high temperatures. At intermediate temperatures around 100 K, i.e., in the temperature
range where our theory should be most applicable, we find good agreement between our
theory and the experimental lifetimes, see Fig. 3.7 (c). We observe a maximum in 75 close
to where the experimental data points exhibit one, see also the non-logarithmic plot in
Figure 3.8 (a). Also the size of 7 as well as of 7 is very close to the experimental val-
ues. Since the scattering rates due to extrinsic spin-orbit interaction are very small in the
GaAs/AlGaAs quantum well under consideration (Yey/vep ~ 107% and 7 g ~ 3 x 1073),
effects of extrinsic spin-orbit interaction turn out to be negligible, see Fig. 3.8 (b). A
calculation which includes extrinsic spin-orbit interactions and electron-electron interac-
tions but excludes cubic Dresselhaus spin-orbit interaction (Figure 3.7 (a)) yields enhanced
lifetimes that exceed the experimental ones by a factor ~ 10?2 — 103.

Interestingly, the simple result (3.73) for the enhanced lifetime, where we neglected the

3These parameters are in turn partly obtained from fits to the theory of Stanescu and Galitski [2007].
4J. D. Koralek, private communication.

54



3.6. Summary

renormalization of the linear Dresselhaus spin-orbit interaction due to cubic Dresselhaus
spin-orbit interaction, is a fairly good approximation (see dashed curve in Fig. 3.7 (c)).
Thus the simple interpretation of the temperature dependence of 75 can also be extended
to the present situation. The formation of the maximum in 75 at intermediate tempera-
tures around 100 K is caused by the competition between two effects: on the one hand, 75
increases with temperature due to increasing electron-electron scattering, which leads in
the presence of symmetry breaking cubic Dresselhaus interaction to the usual motional-
narrowing effect in the D’yakonov-Perel’ regime (cf. Glazov and Ivchenko [2003]). On the
other hand, the magnitude of Sommerfeld corrections increases with temperature reducing
the lifetime 75 in two ways: (i) by increasing the effective cubic Dresselhaus scattering
rate 7.4 26 and (ii) by increasing the linear renormalization of the Dresselhaus spin-orbit
interaction, which leads to a detuning of the Rashba and the effective linear Dresselhaus
spin-orbit interactions.

The important effect of electron-electron scattering for the temperature dependence of
the lifetimes 75 and 7 can also be deduced from Fig. 3.7 (b), where we show the lifetimes
excluding the effect of electron-electron interactions. Obviously, the initial increase of the
lifetimes with temperature is absent for both 75 and 7 in the absence of electron-electron
interaction.

Deviations between our theory and the experimentally observed lifetimes are more pro-
nounced for very low temperatures and for high temperatures. We suppose that at high
temperatures symmetry breaking mechanisms that are not captured by our model (e.g.,
effects involving phonons) can become important. Furthermore, since the Fermi temper-
ature in the GaAs/AlGaAs quantum well under consideration is only Tp = 400 K we
cannot expect our calculation, which is based on a low-order Sommerfeld expansion, to
be as accurate in the high temperature range above 200 K. The disagreement at low tem-
peratures, on the other hand, results most likely from the fact that we do not take into
account the temperature dependence of the transport lifetime but rather use the experi-
mental 100 K-transport lifetime 7(100 K) = 1 ps at all temperatures. In reality, however,
the transport lifetime increases with decreasing temperature such that bpr 2 1 for low
temperatures, i.e., the system is outside the D’yakonov-Perel’ regime and our theory is
no longer applicable. In this low temperature regime other approaches, which account for
strong spin-orbit interaction, should be used [Bernevig and Hu, 2008; Liu et al., 2011].

3.6. Summary

Using a Boltzmann-type approach we have derived semiclassical spin-diffusion equations
for a 2DEG with Rashba and linear Dresselhaus spin-orbit interactions that also take
into account the cubic Dresselhaus spin-orbit interaction, extrinsic spin-orbit interaction
and electron-electron scattering. Our results for the temperature-dependent lifetime of
the persistent spin helix are, within the range of validity of our diffusive low-temperature
theory, in qualitative and reasonable quantitative agreement with recent measurements by
Koralek et al. [2009].

It turns out that the influence of extrinsic spin-orbit interaction is negligible for the
parameters of the experiment. The lifetime of the PSH at finite temperatures is mainly
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3. Relaxation of the persistent spin helix — the role of electron-electron scattering

a result of the interplay of cubic Dresselhaus spin-orbit interaction and electron-electron
scattering: due to the latter, the relaxation rate of winding-number-4+3 components of
the spin distributions function in momentum space grows with increasing temperature.
Since, in the D’yakonov-Perel’ regime, the inverse of this rate enters the effective relax-
ation rate due to cubic Dresselhaus spin-orbit interaction, electron-electron interactions
tend to increase the PSH lifetime with increasing temperature. However, at some point
the competition with positive finite-temperature corrections in the expression of the re-
laxation rate is won by the latter, which explains the formation of a maximum. Another
contribution to the reduction of the lifetime are temperature-induced deviations from the
symmetry point due to a momentum-dependent renormalization of the linear Dresselhaus
coupling constant in the presence of cubic Dresselhaus spin-orbit interaction.

Note that, qualitatively, the mechanism described above would as well work with extrin-
sic spin-orbit interaction as the only SU(2) violating ingredient in the model. In that case,
ordinary spin Coulomb drag would be responsible for the PSH lifetime to increase with
temperature, whereas, again, Sommerfeld expansion corrections would tend to decrease
the lifetime. Thus, apart from the issue of the PSH lifetime and leaving cubic Dresselhaus
spin-orbit interaction and extrinsic spin-orbit interaction aside, we have presented the gen-
eralization of the Boltzmann-equation derivation of spin Coulomb drag for the collinear
case (only spin-up and spin-down) by Flensberg et al. [2001] to a coherent description,
which is necessary to capture a spin precession term. In order to respond to the cubic
Dresselhaus spin-orbit interaction in our problem we have extended the calculation to
distribution functions which contain winding-number-+3 components.

We propose a spatially damped sinusoidal spin profile as initial condition for a TSG
experiment in order to further enhance the PSH lifetime. In theory, the infinite lifetime
can thus be restored in presence of symmetry breaking mechanisms as long as these appear
as relaxation rates in the spin diffusion equation.

In order to further refine the theory for general situations where the cubic Dresselhaus
spin-orbit interaction might be less dominant, it would be interesting for future work to
include disorder in the local Rashba spin-orbit coupling or spin-dependent electron-electron
scattering (a variant of the Elliot-Yafet mechanism, but based on two-particle Coulomb
scattering). These relaxation mechanisms are currently discussed in the context of spin
relaxation in (110) grown GaAs quantum wells [Sherman, 2003; Glazov et al., 2010].
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4. Effects of Coulomb exchange interaction
on the persistent spin helix

In this chapter we investigate how the persistent spin helix is affected by the mean field
(Hartree-Fock) contribution of the electron-electron interactions, which we have neglected
all along in Chapter 3. As a consequence of the nonlinear nature of this extended problem,
the lifetime of the spin-density wave becomes dependent on the degree of initial spin-
polarization. We find that for large initial spin polarizations in the percentage range
a considerable increase in the relaxation time is to be expected. Furthermore, we find
qualitative changes in the shape of the spin helix with, in particular, the so far inactive
third component of the spin polarization vector (i.e., S, when coordinates are chosen as
in Chapter 3) and higher harmonics coming into play.

4.1. Introduction

The persistent spin helix has been introduced in Chapter 3 as a peculiar spin-density wave
of infinite lifetime that exists in two-dimensional electron systems with Rashba and linear
Dresselhaus spin-orbit interactions of equal magnitude [Bernevig et al., 2006]. We have
seen that in real systems the lifetime of the persistent spin helix is no longer infinite due to
the presence of additional terms that break the SU(2) symmetry of the Hamiltonian. For
the particular experimental realization of a spin helix in a GaAs/AlGaAs quantum well
by Koralek et al. [2009], cubic Dresselhaus spin-orbit interaction has been proposed as the
primary suspect among other candidate symmetry breaking mechanisms that can cause
a finite lifetime of the persistent spin helix state [Koralek et al., 2009; Liiffe et al., 2011].
As pointed out by Koralek et al., the observed temperature dependence of the lifetime of
the persistent spin helix suggests that also electron-electron interactions strongly affect
the relaxation process. Developing this idea to the stage of a quantitative theory, we
have found in Chapter 3 that the inclusion of Coulomb scattering, in combination with
cubic Dresselhaus spin-orbit interaction as the required symmetry breaking mechanism,
can fairly well account for the observed temperature dependent PSH lifetime [Liiffe et al.,
2011].

Regarding the influence of Coulomb interactions, in our previous treatment we have only
considered electron-electron collisions, which are of second order in the electron-electron
interaction, but we have neglected the mean field Hartree-Fock term, which arises in first
order. This approximation is valid when the initial spin polarization is small and it appears
to be appropriate for the description of the experiment by Koralek et al. However, it is
also possible to realize large initial spin polarizations experimentally [Stich et al., 2007].
The Hartree-Fock term then acts as an effective magnetic field pointing along the local
spin polarization, which can enhance the spin lifetime considerably [Weng and Wu, 2003;
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4. Effects of Coulomb exchange interaction on the persistent spin helix

Stich et al., 2007]. As put forward by Takahashi et al. [1999], the influence of the molecular
field produced by an average spin polarization in a degenerate two-dimensional electron
gas is analogous to the spin diffusion dynamics in liquid *He in 3d, where the exchange
field of the average spin exerts a torque on spin currents [Leggett and Rice, 1968; Leggett,
1970].

In the present chapter it is our goal to analyze the effect of the Hartree-Fock term on
the persistent spin helix in the diffusive D’yakonov Perel’ regime. In particular, we want
to answer the following questions:

(i) what effect does the Hartree-Fock field have on the lifetime of the persistent spin
helix and

(ii) does it qualitatively modify the pattern of the persistent spin helix?

We restrict our calculation to zero temperature in order to avoid formal complications
due to, e.g., the renormalization of linear Dresselhaus spin-orbit coupling by the cubic one
(¢f. Chapter 3). This approximation seems acceptable also for quantitative evaluations
and predictions, since the temperature dependence of the Hartree-Fock interaction turns
out to be weak.

The structure of this chapter is the following: in Section 4.2 we derive the Hartree-Fock
contribution to the kinetic equation for the spin density within the Nonequilibrium statis-
tical operator method. In Section 4.3 we obtain the spin diffusion equations valid in the
diffusive D’yakonov Perel’ regime including the effect of the Hartree-Fock field. Then we
analyze in Section 4.4 the effect of the Hartree-Fock interaction on the lifetime (Subsec-
tion 4.4.2) and the pattern (Subsection 4.4.3) of the persistent spin helix for small cubic
Dresselhaus spin-orbit interactions—a regime that can also be addressed perturbatively.
Finally, in Subsection Section 4.4.4, we consider the influence of the Hartree-Fock field in
a situation where the cubic Dresselhaus spin-orbit interaction is of similar order of mag-
nitude as the linear Rashba and Dresselhaus spin-orbit interactions. In this parameter
regime nonlinear effect turn out to be quite pronounced.

4.2. Derivation of the Hartree-Fock term

In this section, we derive the Hartree-Fock mean field term due to electron-electron inter-
actions. Its consequences for the persistent spin helix will be studied in the following. Our
considerations are based on the model Hamiltonian of a GaAs quantum well as presented
in Chapter 3.2, which includes Rashba as well as linear and cubic Dresselhaus spin-orbit
coupling and, in addition, electron-impurity and electron-electron interactions.

In a first step we go back to the general expressions from Chapter 2.2, which have
served us in Chapter 3 as a starting point for the derivation of the kinetic equation for the
spin density (3.16) including the collision integrals for electron-impurity scattering and
electron-electron scattering. We recall that for a general nonequilibrium problem, where
the system Hamiltonian H = Hy 4+ V contains an exactly solvable single-particle part Hy
and an interaction V', the Nonequilibrium statistical operator formalism (see Chapter 2.2)
permits to derive a closed set of equations describing the irreversible temporal evolution
of the density matrix fiy(t) = <1/1;r,z/1l>t = Tr[p(t) 1/1;,1/)1}. For our purpose, [ is a composed
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4.2. Derivation of the Hartree-Fock term

index for both momentum and spin. The kinetic equation in Born approximation (i.e., up
to quadratic order in V') reads (cf. Eq. (2.54))

B ()t — i ([Ho, i)t = T3 (6) + T2 (8) . (4.1)

The commutator becomes a simple linear combination of density matrix entries, resulting
for the particular Hamiltonian under consideration in the gradient term and the precession
term on the left-hand side of Eq. (3.16). On the right-hand side of Eq. (4.1), we have the

second-order (in the interaction V') collision term Jl(ﬁ) (t), ¢f. Eq. (2.55), and the first-order
mean field term (2.52)

(4.2)

t
rel '

10 = + (W)

Here, the average is with respect to the relevant statistical operator (see Chapter 2.2.2),
thus allowing for a decomposition according to Wick’s theorem.

Taking for Hg the spin-orbit coupled Hamiltonian from Chapter 3.2 with Rashba as well
as linear and cubic Dresselhaus spin-orbit interaction and identifying V' = Hiyp+ Hee with
the Hamiltonians for the electron-impurity interactions and electron-electron interactions,
one obtains, upon Wigner transformation and first-order gradient expansion of the left-
hand side, kinetic equations for the charge and spin parts of the density matrix with the
corresponding second-order collision integrals (see Chapter 3.3). In the case of electron-
impurity interaction the mean field contribution (4.2) vanishes. This is, however, not the
case for electron-electron interactions.

In Chapter 3 we neglected the mean field term (4.2) because in the particular experiment
by Koralek et al. [2009] the initial polarization Sy was supposedly so small that nonlinear
effects of the Hartree-Fock precession term were negliglible. The fact that no dependence
of the persistent spin helix lifetime on the magnitude of the initial polarization Sy could be
observed! fosters this view. However, it would be beneficial to understand the smallness
of the term from a calculation with the parameters of this very experiment (and thus
possibly find an upper boundary for the polarization that was actually reached). Apart
from that, it is interesting to study the consequences of the mean field term for general
parameter regimes.

We evaluate the mean field term (4.2) for electron-electron interactions (cf. Eq. (3.11))

1
He—e = 5 Z Vk353,k454,k151,k282 ¢L434¢2333¢k151¢k252 (43)

k1...ka
51,52,53,54

with the Thomas-Fermi screened Coulomb potential
Vk353,k454,k151,k252 = 5k3+k4—k1—k2,0 581,83 582,84 6(|k3 - k1|) ) (4'4)

where 0(k) = Z((’,:)) with the Fourier transform of the Coulomb potential in 2d, v(q) =
h22 7w

€gmaqa*’

denotes the effective Bohr radius.

and the polarizability ¢, =~ 1+ q%. We recall from Chapter 3.2 that a* = RAmeger

me?

1J. D. Koralek, private communication.
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4. Effects of Coulomb exchange interaction on the persistent spin helix

In the following we will occasionally shorten the expressions by writing, e.g., Y1 = Yk, s, -
Evaluation of the commutator in (4.2) yields in this notation

T = 2 ([Heerwln])
_ ! Z Vargras (513' <¢I/¢; (05 ¢3> — 013 <¢;¢; (0 ¢1> ) (4.5)

ih 93793 rel rel

rel

Upon Wick decomposition of the averages

<1/}I¢; 1/}3 1/}4>re1 - <¢]1L ng>re1 <w$ w4>rel + <¢1L w4>rel <”¢J2r w3>rel (46)
— _(5k1 ks 6k2 ka fslsg (kl) f8254 (kZ) + 6](:1 ka 6k2 ks f5154 (kl) f$253 (kz)
and by exploiting the Kronecker symbols we obtain a mean field term that is diagonal in
momentum but remains a matrix in spin space,

TEO®) = SR~ KD [(FK) FR),, — (FR)TRD) ). (47)

k:l
By decomposing the spin space matrices according to

A

fk) = np+o-s,, JEO = g4 g ge® (4.8)

one finds that the mean field term does not affect the charge density ng (since Jze(l) =0),
but has an influence on the spin density s, with the additional term

ee(1 2 dq ~
Jk() = hSkX/WU(q)Sk+q (49)

entering on the right-hand side of the kinetic equation for the spin density (cf. Eq. (3.16))

O sk + 28 X b(k) +v-Ops = JP 4 g (4.10)

4.3. Spin diffusion equation with Hartree-Fock precession

The goal of the present section is to derive from the kinetic equation (4.10) a spin diffusion
equation (c¢f. Chapter 3.3.2) that enables us to discuss the effect of the Hartree-Fock
interaction on the persistent spin helix. In the presence of cubic Dresselhaus spin-orbit
interaction this state is characterized by the vector components

2
_t _t
S = 0, Sy = —Spe TEsinquy, S, = Spe TE( 1+7§2D—7;D cos QoY -

(4.11)
These are obtained from our result for the transient spin grating experiment, Eqs. (3.68)-
(3.69), in the limit of large times (use that 7z < 7). We recall that the PSH lifetime 75
is given as (¢f. Eq. (3.70))

1 1
- = <I‘+3%D—\/F2+702D), (4.12)
TE 2
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4.3. Spin diffusion equation with Hartree-Fock precession

where I' = 4q(2)D with the PSH wave vector qo = 4mwvpa and the ordinary diffusion
constant D = %v%ﬁ. The relaxation rate vy.p = %0%7216%7'3 results from cubic Dres-
selhaus scattering, cf. Eq. (3.49). Here, 7y(3) is the effective relaxation time for the
winding-number-+1(+£3) parts of the phase-space spin distribution function. Although
in our model (with spin-independent, isotropic scattering from point-like impurities and
no electron-electron scattering, since 7' = 0) we have 71 = 73 = 7, this is not true in gen-
eral, cf. Egs. (3.40) and (3.46). Therefore we use the more general 73y in all expressions
in order to make an extension to including, e.g., second-order electron-electron interaction
at finite temperatures straightforward.

We follow the approach used already in Chapter 3.3.2 to set up a diffusion equation for
the spin density sg, which is valid in the diffusive D’yakonov-Perel’ regime, i.e., in the
case bpT < 1, where the spin polarization is stabilized due to strong scattering. In order
to solve Eq. (4.10) for the real-space spin density S(x,t) we expand the spin density into
k-space winding numbers (cf. Eq. (3.22)),

sp(x,t) = spo(x,t)+ ski(x,t) + sk3(x,t). (4.13)
We include in this ansatz distribution the isotropic component

2 e S(at) (4.14)

sk70(az, t) =

and anisotropic components with winding numbers +1 and +3 of the form (n =1, 3)
/ k™ i 10
Skm(®,t) = f'(er) T > Sky(x,t) e’ (4.15)
JA Ly

As discussed in Chapter 3.3.2, all contributions with other winding numbers would be
of higher order in bp7 and therefore they can be safely neglected in the diffusive regime
considered in the following. Note, however, that in Eq. (4.13) we do not include a term like
the 8p 1 from Eq. (3.22), i.e., we do not consider the effects of cubic Dresselhaus spin-orbit
coupling renormalizing the linear one (which is consistent with a strict zero temperature
calculation).

Inserting the ansatz distribution (4.13) into the Hartree-Fock interaction term (4.9) and
anticipating that we will, as in Chapter 3.3.2, consider the kinetic equations for different
winding numbers (I = 0, £1, £3) by integrating ﬁ [ dk ¢'9 [Eq. (4.10)], we find that the
Hartree-Fock term can be written in the compact form

T = 8 x (k) s + xa(k) si) (4.16)

with (n = 1,3)
B o= =0 [ Y g— ki) e (1 L costno 4.17
) = =[S ba— k) ) (1= 1 costnta) ). (D)

At zero temperature we thus have

27 n
Xn (k) =0 % ; doo <\/k2 + k% — 2kpk c059> <1 - % cos(n 0)) . (4.18)
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4. Effects of Coulomb exchange interaction on the persistent spin helix

Since in a T' = 0 calculation the momentum arguments of all terms in the Boltzmann
equation (when integrated over momentum) are fixed at kp, we need to calculate

T=0 i 21 1

dé -
m Jo 1+0£Fm

Plugging the Hartree-Fock precession term (4.16) back into the kinetic equation for the
spin density Eq. (4.10) one finds for the isotropic (in k-space) part of the spin density

Xn(kF)

(1 —cos(nb)). (4.19)

Orsg = —g@xsc - %(%35 — 8. X by — 85 X bg — 8.3 X beg — 853 X bss (4.20)
with
S¢ = 81+ 8-1, S¢3 = 83+ 5_3,
. . 4.21
Ss = i(s1—s-1), Ss3 = i(83—s_3) ( )
and the spin-orbit fields
b. = vpk(—a+5)é,, bs = vpk(a+ B)é,,
K s W - (4.22)
bes = —yur = €y bss = YVF €z

In order to obtain a closed equation for sy one needs to determine s, S, Sc3 and Sg3
from the anisotropic components of the Boltzmann equation. In the diffusive regime it is
sufficient to find the (quasi-)equilibrium solutions for the anisotropic coefficients, which are
obtained by omitting the time derivative of the anisotropic components (c¢f. Chapter 3.3.2
and Appendix app:coarsegraining). Using this approximation one finds for the winding-
number-+1 components:

Sc
— 00,80 + 2b, 2B X s., 4.2
(k) v0; S0 + X 89 +2B1 X s (4.23)
Ss
= — 2b, 2B s
Tl(k‘) UayS()—l- X 8o + 1 X8

where B1 = x1.5 is the Hartree-Fock field experienced by winding-number-£1 spins. The
transport relaxation times due to impurity scattering that we need here and below are

(cf. Eq. (3.18))

(k)N = D Wi 6(ex — e) (1 — cosnb) , (4.24)
o

where n = 1 refers to winding-number-+1 spins and n = 3 refers to winding-number-
43 spins. Note that, within our model of isotropic impurity scattering, the cosine term
vanishes and one has 7 = 73 = 7. One should, however, keep in mind that in the case
of scattering from, e.g., charged impurities, differences between 71 and 73 arise due to the
angular dependence of Wy, in Eq. (4.24). Solving Egs. eq:ScSs one finds

S = —7_'1(]{3) {v@wso —2b. x sg + QTl(kZ)U(le @cso) (425)
*47’1(]43)Bl>< (bCX 80) + 4T1(k)2UB1(Bl . 89380)} ,
Ss = —f‘l(k) {Uaysl) — 2bs X 8¢ + 27 (k)U(le 8y80)

—4T1(]€)B1>< (bs XS()) + 47’1(]{:)21131(31 : 8y80)} s
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4.3. Spin diffusion equation with Hartree-Fock precession

where we have used that Bj||sp and a renormalized relaxation time

’7‘1(]{})

k) = T RBn )

(4.26)

has been introduced. Similarly, the steady state of the winding-number-+3 anisotropic
components of the spin density is governed by the equations

S
- (Z) = 2bes X 8o+ 2 B3 X Se3, (4.27)
553 = 2bs3 X 5o+ 2Bj3 X 843,
3(k)

where Bs = x3S is the Hartree-Fock field acting on winding-number-43 spins. Solving
these equations for s.3 and sg3 one finds

Sc3 = 27_'3(]{3) {bc3 X 80 + 27’3(]{3)33 X (bcg X 80)}, (4.28)
ss3 = 2T73(k) {bs3 x 80+ 273(k) B3 x (bs3 X S0)}

where we have used that Bgs||sg and defined

o n)
50 = TG RnmE

(4.29)

Plugging the solutions for the anisotropic components Eq. (4.25) and Eq. (4.28) back
into the equation for the isotropic spin density Eq. (4.20) and using the condition for the
persistent spin helix, &« = £, one finds that the spin density S = [ %so obeys the
diffusion equation

%S = DS+HS. (4.30)
Here, the matrix
. D 85 _'70D 3 0 0_
D = 0 D(@~a3)~%p  2¢D, (4.31)
0 —2qo D8, D (9} —q3)—27p

corresponds to the usual spin diffusion matrix in the absence of Hartree-Fock fields
(¢f. Eq. (3.59)), but with a renormalized diffusion constant D and a renormalized cu-
bic Dresselhaus scattering rate 4.p given by

D YcD

D= —— " Hp =D
T T T (xa7s S)2

s 4.32
T an 572 (4.32)
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4. Effects of Coulomb exchange interaction on the persistent spin helix

The matrix H arises only in the presence of fields and is given by

HypSy = 471 DO,(B,0,S:), (4.33)
HyyS, = —2mDB1.0,S, — 211q0D0y(B1ySy)
+477 DOy(B12B1y0ySy)
H,.S. = 2mDB1,0,5.—271q0D9y(B1.S:)— 27390 B3y S-
+472 D0, (B1,B1.0,S.),
HyoS: = 211 DB1.9.S, — 2110 DB1y0, S,

+477D [0y(B1oB1y0ySa) + qoB1aB120y Sy |
Hy,,S, = 21190D(8yB1:Sy + 2B1:0,Sy)

+477 D(0y(B},0ySy) + q0B1yB1:0,Sy) ,
H,.S, = 2739 B3sS: + 21 DB1,(¢5S: — 3§5z)

+47{ D[0y(B1yB1:9,5-) + q0Bi.9,5:]

H..S; = 213%.pB3ySz — 27’11_7(313,355} + qoB1.0yS:)
+472 D[, (B12B1.0ySz) — qoB1:B1,0,5:] ,
H.ySy = —273%pBs:Sy + 211 DB1,(0;8, — ¢3.5,)
+4712D[8y(BlyBlzaySy) - qoB%yaySy] )
H..S. = 27¢oD(9yB1.S- + 2B1,9,5.)

+4712D(8y(sz8ySz) - qoBlyBlzaySZ) .

Due to the renormalized coefficients (4.32) in the D-matrix and the presence of the H-
matrix the spin diffusion equation Eq. (4.30) becomes a nonlinear partial differential equa-
tion, because the coefficients By, and Bs, (o = z,y,2) depend on the solution for the
spin density via Bi, = X154 and B, = x3S.. Thus, only for small Hartree-Fock fields
By 3713y < 1 a perturbative solution can be found (see Section 4.4.3) whereas for large
Hartree-Fock fields, as realized for large initial spin polarizations, the spin diffusion equa-
tion (4.30) needs to be solved numerically.

4.4. Effect of the Hartree-Fock field on the PSH state

In this Section we will discuss the effect of the Hartree-Fock fields on the PSH state. Our
main findings are: (i) the lifetime of the PSH state can be enhanced considerably, be-
cause the Hartree Fock field effectively reduces the symmetry breaking effect of the cubic
Dresselhaus spin-orbit interaction (see Subsection 4.4.2); (ii) although the Hartree-Fock
field is always parallel to the local mean spin polarization, somewhat counterintuitively,
its presence slightly rotates the PSH out of the yz-plane and introduces a small but finite
Sz-component (see Subsection 4.4.3). Since the spin diffusion equation becomes nonlin-
ear in the presence of Hartree-Fock fields, typical nonlinear effects like the appearance of
higher harmonics are expected to modify the PSH state. Indeed, we find that this non-
linear regime can be accessed easily for small linear Rashba and Dresselhaus spin-orbit
interactions, where v.p/I' & 1 (see Subsection 4.4.4).
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4.4. Effect of the Hartree-Fock field on the PSH state

In order to investigate the effect of the Hartree-Fock field on the PSH state, we start by
considering the PSH in the presence of cubic Dresselhaus spin-orbit interaction but in the
absence of the Hartree-Fock term as described by Eq. (4.11) as an initial state. Then we
imagine to turn on the Hartree-Fock field at time t = 0 and study the time evolution of the
PSH state under the Hartree-Fock field by solving the spin diffusion equation Eq. (4.30).
Since this is a nonlinear partial differential equation, a simple analytical solution is out
of reach. Therefore, Eq. (4.30) has to be solved perturbatively or numerically. In Sub-
section 4.4.3 we will perform a perturbation expansion in the Hartree-Fock fields valid for
By (3)Ti(3) < 1, otherwise the spin diffusion equation (4.30) will be solved numerically.

4.4.1. Parameters

In order to describe the evolution of the PSH state for realistic situations, we use the
parameters of a typical quantum well such as the one used for the experimental observa-
tion of the PSH by Koralek et al. [2009]. Unless specified otherwise we assume a Fermi
temperature of Tp = 400 K, an effective electronic mass of m = 0.067 m., where m, is
the mass of an electron, and a dielectric constant of ¢, = 12.9. Evaluating Eq. (4.19) with
these parameters and for T' = 0, we obtain

x1 = 34.7cm?/s,  x3 = 43.2cm?/s. (4.34)

We further assume a charge density of n = 8 x 10" cm™2. We take the linear Rashba and
Dresselhaus spin-orbit coupling to be a = 5 = 0.0013 and the cubic Dresselhaus spin-orbit
interaction to be yvp = 5.0 eV A®. Since the linear spin-orbit interactions can be tuned
(by changing the doping asymmetry and the width of the quantum well), in contrast
to the magnitude of the cubic Dresselhaus spin-orbit interaction, which is fixed by the
crystal symmetry, we will also allow for variations of the magnitude of linear spin-orbit
interactions in order to access the nonlinear regime (Subsection 4.4.4). For the electronic
relaxation time we use as a default value 7 = 1 ps—the lifetime extracted at 7' = 100 K
for the quantum well used by Koralek et al. [2009].

Strictly speaking, our theory applies only to the zero temperature case, where the re-
laxation time should be correspondingly longer than 1 ps. However, one can argue either
that we expect our theory to apply (without major modifications) also to higher tempera-
tures or that we describe a dirtier quantum well where 7 = 1 ps is the accurate electronic
relaxation time at 7= 0 K. Since 7 can be varied to some extent by making a quantum
well either dirtier or cleaner, we will also allow for some variation of 7. The initial spin
polarization, finally, is the main parameter to be varied, because it directly controls the
strength of the Hartree-Fock fields. It will be given in percentage fractions of the full spin
polarization which corresponds to the carrier density given above.

4.4.2. Enhancement of the PSH lifetime

One of the main effects of the Hartree-Fock term is to enhance the lifetime of a spin
polarization injected into a quantum well. This has been observed experimentally by
Stich et al. [2007] using time-resolved Faraday rotation on a high-mobility GaAsAl/GaAs
quantum well. So far, the spin lifetime enhancement due to electron-electron interaction in
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4. Effects of Coulomb exchange interaction on the persistent spin helix

a quantum well with spin-orbit interactions has only been analyzed by numerical solutions
of the Boltzmann equation [Takahashi et al., 1999; Weng and Wu, 2003; Weng et al.,
2004]. Here, we are able to analyze the effect of the Hartree-Fock field in a somewhat
more analytical fashion at least in the diffusive strong scattering regime, where the spin
diffusion equation Eq. (4.30) is valid.

Since the Hartree-Fock field is always parallel to the local spin polarization, it re-
duces the effect of rotations around the transversal spin-orbit fields and in this way
it enhances the lifetime of a spin polarization. More formally, this works in our ap-
proach as follows: the size of the anisotropic spin components, which are perpendicu-
lar to the local spin-orbit field is reduced by rotations around the local Hartree-Fock
field according to Eqs. eq:ScSs, eq:Sc3Ss3. This effect is captured by the reduction
of the effective relaxation times 71 = 7/(1 + (x1719)%) and 75 = 7/(1 + (x3735)?)
in the equations for the anisotropic components of the spin density s./, and s.3/.3 in
Egs. eq:SolutionWindingNumberl, eq:SolutionWindingNumber3. Smaller anisotropic spin
components reduce the time derivative of the isotropic spin component d;sp in Eq. (4.20)
and thus increase the lifetime of the isotropic spin density sg. In the spin diffusion equation
(4.30) the reduced lifetimes 7; and 73 are absorbed in a reduced effective spin diffusion
constant D and a reduced effective cubic Dresselhaus scattering rate 4.p (see Eq. (4.32)).

In principle we have now three mechanisms at hand, which could modify the lifetime of
the PSH in the presence of Hartree-Fock fields: (i) the reduced effective diffusion constant
D, (ii) the reduced effective cubic Dresselhaus scattering rate J.p and (iii) the additional
H-matrix. Since in our model cubic Dresselhaus spin-orbit interaction is the symmetry
breaking mechanism, i.e., the lifetime of the PSH would be infinite in the absence of cubic
Dresselhaus spin-orbit interaction, it seems plausible to assume that a reduction of the
effective cubic Dresselhaus spin-orbit interaction provides the strongest contribution to
the lifetime enhancement of the PSH state.

This hypothesis can be checked by solving the spin diffusion equation (4.30) for the spin
density by setting D = D and by neglecting the effect of the H-matrix and thus effectively
considering only the effect of a reduced effective cubic Dresselhaus spin-orbit interaction
ep- We use the PSH pattern (4.11) as an initial condition and solve the spin diffusion
equation (4.30) numerically. In Figure 4.1 we show the resulting time evolution of the
S, spin polarization for various degrees of initial spin polarizations and for the remaining
parameters as given in Subsection 4.4.1. The PSH state without Hartree-Fock field is
also shown for comparison. For realistic quantum well parameters the lifetime of the PSH
state can easily be enhanced by factors 10 to 20 when the initial spin polarization is in
the percentage range. For large initial spin polarization the nonlinearity of the problem
becomes obvious and the spin-polarization does no longer decay exponentially. On the
scale of Figure 4.1 no difference is visible between the full solution of the spin diffusion
equation (4.30) and the solution, where only the effective reduction of the cubic Dressel-
haus spin-orbit interaction 4.p is taken into account. Thus, considering only the reduction
of the effective cubic Dresselhaus spin-orbit scattering rate 4.p is a good approximation
to the full solution, at least for v.p/T" < 1.

In principle one could imagine to enhance the PSH lifetime by increasing the lifetime 7
instead of the initial spin polarization, since both quantities appear in the denominator of
Aed = Yed /(14 (x3735)?) as a product. However, increasing 7 also increases the bare cubic
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Figure 4.1.: Time dependence of the S,-amplitude of the PSH in the presence of Hartree-
Fock fields for several degrees of initial spin polarization. For comparison the
result without Hartree-Fock field (cyan) is shown. On the scale of this plot,
no difference is visible between the full solution of the spin diffusion equation
(4.30) depicted here and the solution, where only the effective reduction of
the cubic Dresselhaus spin-orbit interaction 74.p is taken into account.

Dresselhaus spin-orbit scattering rate y.p o< 7 (see definition of v.p below Eq. (4.12)).
Thus, whether increasing the lifetime 7 will decrease or rather increase the effective cubic
Dresselhaus spin-orbit scattering rate 4.p depends on the ratio of 7 over the Hartree-Fock
field x3S. Only for x375 > 1 will an increase in 7 indeed reduce #4.p and thus enhance
the lifetime of the PSH state.

Although a simple analytical solution of the spin diffusion equation cannot be con-
structed, because 7.p(t) is a function of the time dependent solution for the spin density
S(t), it is still instructive to compare the numerical solution with simple limits where
an analytical solution is possible. For a constant (i.e., time independent) effective cu-
bic Dresselhaus scattering rate J.p(t) = Fp the solution of the spin diffusion equa-
tion is the PSH pattern given in Eq. (4.11) with a lifetime of 75 &~ (34.p)~! for small
vep/T < 1 (see Eq. (4.12)). Since at ¢ = 0 the reduced effective cubic Dresselhaus rate
is Jep(t = 0) =~ vep/(1 + 2(x37350)?) for small y.p/I", the solution of the spin diffusion

3 YeD

. - U 75 s W . .
equation starts off as e 2 1+2(x37350)*) " for small times. For lagge times, on the other hand,
where 7.p(t — 00) = Y.p the solution approaches zero as e~ 27P¢,

4.4.3. PSH pattern

Up to this point we have only considered the first part of the spin diffusion equation
(4.30), i.e., the D-matrix, which corresponds to the ordinary spin diffusion equation with
renormalized parameters. In addition the spin diffusion equation contains the H-matrix
with terms arising due to the Hartree-Fock fields. The presence of these new terms can
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4. Effects of Coulomb exchange interaction on the persistent spin helix

rotate the spin helix out of the yz-plane and introduce a small but finite S;-compontent.
This seems counterintuitive at first sight, because the Hartree-Fock field is always parallel
to the local mean spin polarization.

This effect can be analyzed best by calculating the spin density in a perturbation ex-
pansion in the Hartree-Fock fields as

s = s0O e g2 4 ... (4.35)

where S denotes the nth order in the Hartree Fock fields x17150 and x373S5g9. The
zeroth order S is simply the PSH without Hartree-Fock fields (Eq. (4.11)). The first-
order correction to the spin density S can be obtained by solving the equation resulting
from the spin diffusion equation (4.30) when only terms of first order in the Hartree Fock
terms are kept:

8,8 = DO L FMgO) (4.36)

Here, S is the zeroth order persistent spin helix of (4.11), D© is the matrix of the
ordinary spin diffusion equation, i.e., the D matrix in Eq. (4.31) with D replaced by D and
7.p replaced by vep. H® is the H-matrix expanded to first order in x1715y and in x373.50.
It is obtained by plugging Bgl) = x15 ©) and Bgl) = x38 ) into the linear-in-B terms
of the H-matrix (the terms quadratic in B are at least second-order in the Hartree-Fock
fields and therefore do not contribute to S (1)). In the first-order approximation (4.36)
to the spin diffusion equation only the ordinary diffusion constant D and the ordinary
cubic Dresselhaus rate v.p enter, since differences between D and D (and between ~.p
and 7.p) are already of second order. With ﬁzsll,) = ﬁé? - H z(gl,) - H éi) = 0 one finds

Sz,(,l) = Sgl) = 0, whereas the S,-component, which vanishes in zeroth order, becomes

52 _ __t
53(51) _ b ban X323) ’YcD2 (e—(F—&-%D)t_ e TE) sin 2qoy . (4.37)
[(1— 224 /1432 — T

Thus, to leading order in v.p/I" one has

YeD
r

S~ 82 (x171 — x373) (e_rt — e_%%Dt) sin 2qoy - (4.38)

T

This shows that Sgg;l) contains a term that decays on the long time scale 7p, implying
that Sél) really contributes to the PSH. Thus the PSH also acquires an S,-component,
which oscillates with double wave vector 2qq in real space but is smaller than the S,- and
S.-components by a factor of v.p/T" (for 4.p/T" < 1). In first order in the Hartree-Fock
fields the S,-component vanishes for 171 = x373. This is, however, not true for the full
solution as can be seen from the numerical evaluation.

At first sight it might be a surprising result, that the presence of Hartree-Fock fields
parallel to the local spin polarization modifies the pattern of the spin polarization. Naively,
one would expect that a parallel magnetic field simply strengthens the parallel spin orien-
tation. In the presence of spin-orbit fields, however, the spin density consists of parts with
different winding numbers, where only the winding number zero contributes to the local
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4.4. Effect of the Hartree-Fock field on the PSH state

spin polarization, since the other winding numbers (+1, +3) average out to become zero.
Since the anisotropic components of the spin density arise from rotations of the isotropic
spin density (winding number zero) around the respective spin-orbit fields (see Eqgs. (4.23)
and (4.27)), they are not parallel to the local spin density and therefore not parallel to the
Hartree-Fock field. Consequently, these anisotropic components of the spin density can
precess about the Hartree-Fock field and in this way modify the local spin polarization,
which is affected by rotations of the anisotropic components of the spin density around
their respective spin-orbit fields (see Eq. (4.20)). Thus, the orientation of the isotropic
spin density can indeed be changed by parallel fields due to the presence of anisotropic
components of the spin density.

In order to see how this mechanism causes the PSH to rotate out of the xy-plane and
induces a finite S;-component, we will now analyze the equations for the spin density
derived in Section 4.3 in more detail. The perturbative result in Eq. (4.37) suggests that
both winding number one and winding number three spins contribute to the generation
of a finite S;-polarization.

Regarding winding number one spins, it follows from Eq. (4.20) for the isotropic spin
density sg, that winding number one spins can generate a finite S,-component only via the
diffusion term $0y,s. (since b, = 0 for o = 3, b,||é and 9,509 = 0). Plugging the solution
for s, of Eq. (4.25) into the the equation for the isotropic spin density sg, one finds that
the only term generating a finite S;-component is proportional to dy,(sg % (bs x s¢)) =
bsays% ~ b, 253 Qo V%D sin 2qoy, where we have used that the difference in the initial .S,
and S, amplitudes of the PSH state is approximately given by So*2. This contribution
corresponds to a process, where the isotropic spin polarization sy precesses at first about
the spin-orbit field by and then about the local Hartree-Fock field By, which is parallel
to sg. Although this double rotation results in a polarization along the x-direction, this
effect would cancel after integration over k because electrons with momenta £k rotate
into opposite directions. Only due to the derivative d, in the diffusion term a finite S,-
polarization remains after k-integration, because +k and —k travel into opposite directions
and rotate around Hartree-Fock fields at y + Ay, which differ in magnitude due to the
elliptical profile of the initial PSH pattern, see Figure 4.2. This explains the presence of the
factor %2 in the contribution of the winding-number-41 spins to S;E;l). When the isotropic
spin polarization is parallel to one of the symmetry axes of the ellipse, i.e., for Sy, = 0
or S, = 0, the Hartree-Fock fields for the +k-states are of equal magnitude resulting in

S, = 0. This explains the oscillation of Sg(cl) with double wavevector 2¢g.

Winding number three spins, on the other hand, can create a finite S,-component
directly by rotation around the cubic Dresselhaus spin-orbit field b.3. Plugging the solution
for s.3 of Eq. (4.28) into the equation for the isotropic spin density s one finds that
the only term, which generates a finite S, polarization, is proportional to bes X (sg X
(bes x 80)) = —(bez % 80)(bes - 80). Since bes||éy and sg lies within the zy-plane for the
undisturbed PSH, a finite S,-component is generated only unless sg||é, and unless sg||é.
This explains, why the winding number three contribution to Sg(gl) oscillates with double
wavevector 2qq.

In Figures 4.3 and 4.4 we show the results for the S;-component at its first maximum
= m/(4qo) obtained by numerical solution of the spin diffusion equation (4.30) (red)
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@
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Figure 4.2.: Due to the elliptic profile of the PSH pattern there is a net creation of S,
polarization at position “2”: here (unlike situation “1”), contributions from
precessing spins coming in from right an left with momentum =+ do not cancel
each other.

in comparison to the analytical first-order expression Sg(gl) of Eq. (4.37) (green). For

the small initial spin polarization of 0.5% used in Figure 4.3, the analytical first-order
result agrees quite well with the full numerical solution. The S;-component increases
quickly on the timescale 1/T" and then decays slowly on the timescale 75 ~ (%%D)*l.
For larger initial spin polarizations, however, the analytical first-order result no longer
describes so accurately the time evolution of the S,-polarization. Instead of a sharp
initial increase on the timescale of 1/T" the S,-component now displays an oscillatory
behavior that is damped on the larger timescale 1/T, see Figure 4.4. The overall lifetime
of the S,-component is enhanced by a large factor in comparison to the lifetime 75 of
the perturbative result analogous to the lifetime enhancement of the PSH discussed in
Subsection 4.4.2. Interestingly, the magnitude of the S;-component remains well below
the maximum of perturbative result.

4.4.4. Large cubic Dresselhaus SOl (y.p = T)

So far we have focused on the regime, where the cubic spin-orbit interaction is small
(vep < T'), because there one expects the largest PSH lifetimes. The quantum wells,
in which the PSH has been observed experimentally by Koralek et al. [2009], are in this
regime. Nevertheless, it should be possible to also realize quantum wells where the magni-
tude of the cubic Dresselhaus spin-orbit interaction is comparable to the linear spin-orbit
interactions. The magnitude of the cubic Dresselhaus spin-orbit interaction is given by the
crystal structure, whereas the magnitude of the linear Rashba and Dresselhaus spin-orbit
interactions a and 3 can be varied in experiments by changing the doping asymmetry and
the width of the quantum well. Thus, in our calculations we will access the y.p ~ I'-
regime by reducing the magnitude of the linear spin-orbit interactions while keeping the
magnitude of the cubic Dresselhaus spin-orbit interaction fixed. Interestingly, the lifetime
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Figure 4.3.: Time dependence of S;-amplitude for an initial spin polarization of 0.5%.
Red shows the full numerical solution of Eq. (4.30) and green is the first-order
analytical result Eq. (4.37). The right panel is a zoom into small times.
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Figure 4.4.: Same as Figure 4.3 (red: full numerical solution of Eq. (4.30) vs. green:
first-order analytical solution from Eq. (4.37)) but with a larger initial spin
polarization of 10%.

of the PSH does not change dramatically when the magnitude of the cubic Dresselhaus
spin-orbit interaction is kept fixed. For 7.p < I' one finds from Eq. (4.12) 7 LS %%D
and in the opposite limit, i.e., for v.p > I', one finds Tgl /A Y.D, t.e., the PSH lifetime
depends rather on the absolute value of 7.p than on the ratio 7.p/I', implying that even
for v.p > I the lifetime of the PSH can be quite long, as long as the regime ~.p > T is
reached by reducing I instead of increasing v.p.

In the extreme limit, where no linear spin-orbit interactions but only cubic Dresselhaus
spin-orbit interaction exists, i.e., for I' = 0, the wavevector gg as well as the S,-component
of the initial PSH state (see Eq. (4.11)) go to zero. This implies that in the absence of linear
spin-orbit interactions no long-lived helix state exists but rather a spatially homogeneous
Sy spin polarization. In this case the spin diffusion equation (4.30) reduces to 0,5, =
—%DSy, since the diffusion term as well as the H-matrix vanish for a homogeneous Sy-
spin polarization. Thus, the decay of the homogeneous S,-spin polarization is simply
determined by the renormalized cubic Dresselhaus spin-orbit scattering rate 4.p(t). The
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4. Effects of Coulomb exchange interaction on the persistent spin helix

time evolution of the homogeneous S,-spin polarization looks therefore very similar to the
spin polarization of the PSH state discussed in Section 4.4.2, as can be inferred from the
numerical solution shown in Figure 4.5. However, the lifetime in the I' = 0-limit is longer,
because it is determined by 1/7.p(t) instead of 2/(3%.p(t)) as for v.p/I' < 1.

t

“\“‘\\\\\\\\\\\\\www\—7p:2%
20 30 40 50 60 7
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— p=10%
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Figure 4.5.: Effect of the Hartree-Fock field on the time dependence of the homogeneous
Sy-polarization in the absence of linear spin-orbit interactions, i.e., I' = 0.

In the intermediate regime between v.p/I" < 1 and I' = 0 the time evolution of the
PSH state is not universal and can be quite complicated, because the timescales set by
1/T and 1/4.p, i.e., by rotations around the linear and cubic spin-orbit fields, are of
similar order of magnitude. We expect that the simple reduction of the effective cubic
Dresselhaus scattering rate 4.p, which was quite successful in describing the v.p < I'-
regime in Section 4.4.2, will fail to account for the full time evolution of the PSH state
and that the H-matrix in the spin diffusion equation (4.30) will start to play a more
important role.

In order to demonstrate the effect of the H-matrix we show in Figure 4.6 the time de-
pendence of the S.-, Sy-, and Sy-amplitudes (red) for reduced linear spin-orbit interactions
corresponding to v.p/I" = 6.8. A comparison of the full numerical solution for the S,- and
Sy-components in Figure 4.6 (blue curve) with the approximate solution shown in green
demonstrates that the lifetime of the PSH is enhanced even more than predicted by the
simple reduction of the effective cubic Dresselhaus spin-orbit scattering 4.p. In particular,
the time evolution of the S,-component, which is suppressed considerably in the initial
undisturbed PSH state, seems to depend crucially on the H-matrix. Also the magnitude
of the S,-polarization becomes quite sizable and reaches almost 8% of the initial PSH
amplitude.

Since the nonlinear terms of the H-matrix play a more important role in the intermediate
regime v.p ~ [, also the spatial profile of the PSH is affected by these nonlinear terms.
Indeed, the spatial profile of the spin polarization clearly deviates from the simple PSH
pattern of Eq. (4.11) when time evolves, i.e., the effect of higher harmonics becomes quite

72



4.4. Effect of the Hartree-Fock field on the PSH state

> s,
S S t
020: Ly Lo b b1 | | J—
: 5 10 15 207 25 3B e
015/ -02
i _04l
010/
-06
0.05 |
: -038
-1.0

002

5 10 15 20 25 30 35 1

Figure 4.6.: Time dependence of the S,-amplitude (top left), of the S,-amplitude (top
right) and of the S,-amplitude (bottom) taken at their respective maximum
for an initial spin polarization of 10% and with the linear spin-orbit interaction
reduced by a factor of 0.02. Here, blue depicts the full numerical solution,
green is the solution which takes into account only the renormalization of ~.p
(i.e., D = D and H = 0), and red represents the PSH in the absence of
Hartree-Fock fields (y.p/T" = 6.8 and 75 = 324 ps).

pronounced for larger times (see Figure 4.7). In particular, the S,-component of the PSH
state differs strongly from the original cos goy-dependence and the S;-components differs
from the sin 2¢gy-dependence found for Sg(cl) in first-order in the Hartree-Fock fields. The
formation of the additional sharp maxima in the spatial profile of S, can be assigned to
the contribution of the winding-number-+1 spins. Since the contribution of the winding-
number-+1 spins depends on the variation of the magnitude of spin polarization along the
elliptical profile of the PSH (see discussion in Section 4.4.3), the maximal contribution
is shifted from m/(4qp) towards the semi-major axis with increasing eccentricity of the
elliptical spin profile (i.e., for larger values of 7.p/I') and thus give rise to the additional
sharp maxima close to integer multiples of 7/qp.

73



4. Effects of Coulomb exchange interaction on the persistent spin helix

7
......
L7 AZF
S
LLLZTH
T
c/

005t

) ;

Sy 000t

— ¥

So 70051
b

—0.10%
¥
0.0 T

Figure 4.7.: Time and spatial dependence of S, (top left), S, (top right), and S, (bottom)
for the situation described in the caption of Figure 4.6.

4.5. Summary

In this chapter, we have complemented our understanding of the influence of electron-
electron interactions on the persistent spin helix, which we have gained from the treatment
of second-order electron-electron collisions in Chapter 3, by including also the first-order
mean field interaction in the kinetic equation for the spin density. An additional precession
term rotates the anisotropic (in momentum space) parts of the spin density around the
isotropic one, i.e., around the local average spin polarization. In the spin diffusion equation
for the latter, this results in nonlinear corrections, which we have investigated numerically
and to some extent analytically.

We find that the main effects of the Hartree-Fock interaction on the persistent spin helix
state is twofold: (i) the lifetime of the persistent spin helix can be enhanced drastically,
because the Hartree Fock field, which is always parallel to the local mean spin polarization,
effectively reduces the influence of the symmetry breaking cubic Dresselhaus spin-orbit
interaction; (ii) the shape of the persistent spin helix is changed. In particular, it is slightly
rotated out of the yz-plane with a small S;-component coming about. Furthermore,
typical nonlinear effects such as the appearance of higher harmonics, are visible in the
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PSH pattern.

From the fact that none of the above effects were observed in the PSH experiment by
Koralek et al. [2009] we conclude, based on the numerical calculations presented in this
chapter, that there the degree of initial spin polarization must have been in a range well
below 1%, rendering nonlinear effects negligible. However, since polarizations in the per-
centage range can be realized experimentally and since the transient spin grating technique
should be well-suited for the detection of higher spatial harmonics in the PSH pattern, we
are confident that our theretical predictions will be verified in future experiments. Our
results suggest that, in order to reach the clearly nonlinear regime, it might be advanta-
geous to use thicker quantum wells, where the linear spin-orbit coupling is of the same
order of magnitude as the cubic Dresselhaus spin-orbit coupling.
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5. Pseudospin-orbit coupling corrections in
the Boltzmann conductivity of graphene

As indicated already in Chapter 2, kinetic equations can be derived from quantum theory
in numerous ways, including in particular nonequilibrium Green’s function techniques
and approaches based on the Liouville-von Neumann equation for the density matrix.
The resulting collision integrals coincide in common textbook examples without spin-
orbit coupling and for perturbative calculations in systems where the spin-orbit coupling
represents only a small part of the kinetic energy (cf. theoretical studies of the spin Hall
effect by Mishchenko et al. [2004]; Shytov et al. [2006]; Raimondi et al. [2006]; Culcer and
Winkler [2007a]; Kailasvuori [2009]). In this chapter we show that there are also relevant
problems where different formalisms yield different collision integrals already to leading
order and with physical implications. In the Dirac cone physics that governs graphene
and surface states of three-dimensional topological insulators [Hasan and Kane, 2010],
the pseudospin-orbit interaction constitutes the entire kinetic energy. We shall see that
in that case the differences in the collision integrals manifest themselves in the precise
value of quantum corrections do to the Drude conductivity that arise from electron-hole
coherences. Another open issue in this context is the significance of the often neglected
principal value terms in the collision integrals. It turns out that it is important to include
principal value integrals in the calculation of quantum corrections in the conductivity.

It is beyond the scope of the present work, the results of which have been published
in Kailasvuori and Liiffe [2010], to find a final answer to the question as to which one
of the commonly used approaches is adequate and why. However, since in the literature
different approaches have been used for the same problem [Auslender and Katsnelson,
2007; Trushin and Schliemann, 2007; Culcer and Winkler, 2007b; Liu et al., 2008], our
comparative study can help to sensitize to this ambiguity and establish benchmarks for a
comparison with numerical or even experimental results.

5.1. Motivation and previous work

The main focus of the extensive research activity on graphene has so far been on the
undoped system with the chemical potential exactly at the degenerate Dirac points.
This regime of chemical potential close to zero—the Dirac regime—hosts the most ex-
otic features such as a finite minimal conductivity at seemingly zero charge carrier density
[Novoselov et al., 2005; Zhang et al., 2005]. Here, quantum effects due to electron-hole
coherence (i.e., pseudospin coherence) like Zitterbewegung can determine the observed con-
ductivity even to lowest order [Katsnelson, 2006]. We refer to Castro Neto et al. [2009]
for a review of early work on the Dirac regime.

Away from the Dirac points, at a large enough charge carrier density, there is a crossover
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5. Pseudospin-orbit coupling corrections in the Boltzmann conductivity of graphene

to the Boltzmann regime £ krp > 1, where ¢ denotes the mean free path of the electrons
and hkp is the Fermi momentum. Here, the conductivity can be understood to leading
order without taking into account quantum effects such as electron-hole coherence and is
therefore more intuitive. The crossover between the two regimes has recently been studied
numerically [Adam et al., 2009; Cappelluti and Benfatto, 2009; Trushin et al., 2010].
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Figure 5.1.: Schematic dc conductivity ¢ in monolayer graphene as a function of the elec-
tron density n measured in experiments [Novoselov et al., 2005; Zhang et al.,
2005; Schedin et al., 2007; Tan et al., 2007], including in particular the residual
conductivity dc as observed by Chen et al. [2008]. At the neutrality point n =0
the charge density is zero, and hence one would expect zero conductivity at low
temperatures. One of the surprises of graphene is the conductivity minimum
om ~ €2/h. The observed linear dependence in the Boltzmann regime (black)
is described by the Drude conductivity og = 2e?£kp/h o |n| for screened
charged impurities. (Point-like impurities, in contrast, yield og o< |n|°. Their
influence starts to compete with that of screened charged impurities for |n|
large enough.) Effects of electron-hole coherence reveal themselves in quan-
tum corrections of higher order in (£kp)~!. A contribution oc (£kp)~! can
explain the initial convexity as one approaches the Dirac regime. A contri-
bution o (£kr)? enters as a constant shift in the Boltzmann conductivity
and thus contributes to the residual conductivity do that is read off by linear
extrapolation.

In several experiments with graphene on a substrate the dc conductivity in the Boltz-
mann regime is observed to be linear in the electron (hole) density [Novoselov et al., 2005;
Zhang et al., 2005; Schedin et al., 2007; Tan et al., 2007; Chen et al., 2008]. This results
in a characteristic V-shape in the conductivity as a function of gate voltage, see Fig-
ure 5.1. The linearity is less pronounced for suspended graphene, where the influence of
charged impurities is reduced [Bolotin et al., 2008; Du et al., 2008]. Provided that screened
charged impurities are the dominant source of scattering, which yields for the mean free
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path ¢ « kp, the linear dependence on the carrier density n (o k:% at low temperatures)
is theoretically well described by the ordinary Drude conductivity

o2

doyg = 42h€/~€p (5.1)
with a factor 4 due to valley and spin degeneracy. This result is easily derived (see
Section 5.7) from a Boltzmann equation with four degenerate, incoherent bands (valley
index and real spin) [Nomura and MacDonald, 2006; Ando, 2006; Nomura and MacDonald,
2007]. In contrast, point-like impurities with ¢  1/kr lead to a Drude conductivity that
is independent of the charge carrier density. Therefore, this model fails already on a
qualitative level [Shon and Ando, 1998]. As one expects the charge carriers to be mainly
of one type (either electrons or holes), the pseudospin band index can be left aside in
a first approximation. When interband coherences are neglected, the collision integral
contains only transition rates between energy eigenstates. Such rates are easily derived
with Fermi’s Golden rule. The specific properties of massless Dirac electrons enter merely
in the transition rates as a spin-overlap factor that is due to the well-defined chirality of the
eigenstates as well as in the Thomas-Fermi screening length, which depends on the Fermi
momentum (and thereby on the electron density) due to the linearity of the spectrum. By
contrast, in a 2DEG with quadratic dispersion the screening length is independent of the
Fermi momentum.

In the Boltzmann regime ¢ kr >> 1, the electron-hole coherent features of Dirac electrons
manifest themselves only if one goes beyond the leading-order (in the small parameter
(€ kp)~Y) result og o< £ kp to address quantum corrections. A Boltzmann-type approach to
these quantum corrections requires a kinetic equation that is quantum coherent in band
indices (for graphene, the pseudospin index), see for instance Auslender and Katsnelson
[2007]; Trushin and Schliemann [2007]; Culcer and Winkler [2007b]; Liu et al. [2008].
Interband coherent collision integrals are, however, beyond the range of applicability of
Fermi’s Golden rule. To access the “transition rates” involving the interband components
in the collision integral one typically has to resort to a fully quantum coherent theory. A
Boltzmann equation is then obtained by a semiclassical expansion in the space and time
variables while keeping the spin degree of freedom quantum coherent.

Common methods in this context are density matrix approaches and nonequilibrium
Green’s function approaches (see Chapter 2). The former start with a single-time density-
matrix-type state variable p(x1,x2,t1) governed by the Liouville-von Neumann equation.
The latter start with a double-time correlator G<(z1, t1, x2, t2) whose evolution is governed
by dynamic equations derived from, e.g., the Kadanoff-Baym equation or the Keldysh
equation [Haug and Jauho, 2008; Rammer, 2007]. At a later stage, some approximation
has to be invoked in order to recover single-time equations. This choice of approximation
is the problem of ansatz, which will be discussed below.

Most of the the aforementioned treatments of pseudospin-coherence induced quantum
corrections in graphene use a density matrix approach [Auslender and Katsnelson, 2007;
Trushin and Schliemann, 2007; Culcer and Winkler, 2007b], an exception being the work
by Liu et al. [2008], which relies on a Green’s function derivation. Another context in which
spin coherent Boltzmann-type approaches have been applied to transport in a spin-orbit
coupled system is the spin Hall effect [D’yakonov and Perel’, 1971; Kato et al., 2004; Engel
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et al., 2007]. Here, Green’s function techniques have been widely used [Mishchenko et al.,
2004; Shytov et al., 2006; Raimondi et al., 2006; Culcer and Winkler, 2007a; Kailasvuori,
2009]. Note that in these papers transport coefficients are calculated to leading order only.

The first of two central questions that we will address in this chapter is whether the
two groups of approaches—density matrix methods versus Green’s function methods—
are equivalent in general, and in particular when addressing quantum corrections in the
conductivity of graphene. The second central question is at which order the power series
in ({kp)~! of the pseudospin-orbit coupling corrections to the conductivity of graphene
starts. A correction do ~ %(f kr)~! to the Drude conductivity og ~ %E kr would depend
on the impurity concentration as well as on the impurity strength. For screened Coulomb
scatterers it would increase with decreasing electron density, in qualitative accordance
with the onset of a convex behavior of the conductivity as one approaches the Dirac
regime, see Figure 1.6. Far away from the neutrality point, such a contribution becomes
arbitrarily small. A contribution of the lower order do ~ %(6 kr)? would be independent
of the impurity density and impurity strength. At least in monolayer graphene it would
also be independent of the electron density, thus yielding a constant shift of the Drude
conductivity as illustrated in Figure 5.1. Electron-hole coherent effects would then remain
finite arbitrarily far away from the Dirac regime, which appears rather counterintuitive.

Within a pseudospin coherent Boltzmann approach, Auslender and Katsnelson [2007]
find the leading correction to the dc conductivity to be of the order (¢ kp)~!. Trushin and
Schliemann [2007] find a leading correction of the same order, although their approach
is qualitatively different in that they, in contrast to Auslender and Katsnelson, discard
principal value terms in the pseudospin coherent collision integral (see also Trushin and
Schliemann [2008]). Both papers find their results to be ultraviolet divergent for point-
like impurities. Culcer and Winkler [2007b] study screened charged impurities. They, too,
neglect principal value terms and solve their spin coherent Boltzmann equation only up
to order (£kp)?, wherefore the previously found corrections o< (£ kp)~! [Auslender and
Katsnelson, 2007; Trushin and Schliemann, 2007] are out of reach. Solving the Boltzmann
equation for an ac setup by introducing a frequency dependence, they obtain a quantum
correction do o (£ kr)? for non-zero temperatures. As this correction vanishes in the zero-
frequency limit, the result of Culcer and Winkler is consistent with that of Trushin and
Schliemann and, at first sight, also with that of Auslender and Katsnelson.

In the present study we have mainly monolayer graphene in mind. However, since we
formulate the Boltzmann equation for a spin-orbit coupling of arbitrary winding number
N, our results apply as well to certain models for bilayer and multilayer graphene [McCann
and Fal’ko, 2006; Guinea et al., 2006; Koshino and Ando, 2007; Min and MacDonald,
2008]. Quantum corrections in the bilayer case N = 2 have been considered by Culcer and
Winkler [2009] with a similar approach as in Culcer and Winkler [2007b]. We will refer to
|N| =1 as the “monolayer case” and to |[N| > 1 as the “multilayer case.” (Note, however,
that realistic N-layer graphene Hamiltonians can, depending on the stacking, be written as
tensor products of lower-N Hamiltonians, including in some cases the monolayer |[N| =1
Hamiltonian [Koshino and Ando, 2007; Min and MacDonald, 2008]). The results apply to
any setting in 2d where the electrons are described by one or several (decoupled) Dirac
cones. They should therefore also be relevant in the context of 3d topological insulators
such as Bij_,Sb,, BisTes, SbyTe3 and BisSes, the 2d surface states of which are described
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by Dirac cone physics [Fu et al., 2007; Moore and Balents, 2007; Roy, 2009; Hsieh et al.,
2008; Zhang et al., 2009; Xia et al., 2009], see also Hasan and Kane [2010]. There, the
occurrence of only a single Dirac cone removes the problem of intervalley scattering. These
systems should therefore be a better setting to apply those parts of our calculations that
deal with point-like impurities, for which the assumption of negligible intervalley scattering
in graphene might be invalid.

The remainder of this chapter is organized as follows: In Section 5.2 we anticipate the
main results on a qualitative level. In Section 5.3 we present the Wigner transformed
Hamiltonians that we examine in the subsequent sections. In Section 5.4 the semiclassical
distribution function and the Boltzmann equation for a spin-orbit coupled system are
introduced. Derivations of collision integrals with different approaches are presented in
Section 5.5. In Section 5.6 the resulting general collision integrals are compared and
simplified for the case of spin-orbit coupled systems, in particular graphene. Section 5.7
deals with the solution of the Boltzmann equation neglecting principal value terms and
the resulting dc and ac conductivity. In Section 5.8, we solve the Boltzmann equation
including the principal value terms and present the resulting conductivity for both dc and
ac. A summary and an outlook are given in Section 5.9.

5.2. Main results

Concerning the first central question raised in the introductory section—the one for
the equivalence of alternative derivations of kinetic equations—we find that when
(pseudo)spin-orbit coupling is present different formalisms yield different collision inte-
grals. In particular, Green’s function derivations with the standard Kadanoff-Baym ansatz
(KBA) [Kadanoff and Baym, 1962] or the Generalized Kadanoff-Baym ansatz (GKBA)
[Lipavsky et al., 1986] do not result in the same general collision term as the single-time
density matrix approaches. We propose an alternative “anti-ordered” ansatz for which the
translation between density matrix and Green’s function approaches can be established.

Reassuringly, the general collision integrals of all approaches (always taken to zeroth
order in gradient expansion) coincide at least for spinless electrons. On a practical level
this applies also in the presence of a small spin-orbit coupling: the difference between
collision integrals affects the delta function terms, but only in parts that capture second
and higher order effects in the spin-orbit interaction, see also Kailasvuori [2009]. The
difference shows up in the principal value terms as well, but those are typically neglected
altogether in calculations where the focus is, e.g., on spin and charge currents to leading
order. This might explain why the discrepancy between density matrix approaches and
Green’s function derivations using the the GKB ansatz does not seem to be an issue of
debate in the context of the spin Hall effect, where a variety of approaches have been used
to derive spin coherent Boltzmann equations [Mishchenko et al., 2004; Shytov et al., 2006;
Raimondi et al., 2006; Culcer and Winkler, 2007a; Kailasvuori, 2009].

Both with and without principal value terms, the leading quantum correction to the
Drude conductivity in graphene depends generally! on the approach. The differences

! An exception is the case of point-like impurities in a bilayer |N| = 2. For this problem the principal
value terms vanish in all approaches, and the remaining delta function terms of the collision integral
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can be quantitative (e.g., a relative factor of 3 between the results of the density matrix
calculation and a Green’s function approach implementing the GKBA for the case of
monolayer graphene with point-like impurities when principal value terms are neglected)
or, when principal value terms are included, even qualitative with leading-order corrections
of opposite sign or of different order in (¢ kp)~?.

The latter point leads us to our results regarding the second central question, namely
the one for the leading order quantum corrections to the Drude conductivity of graphene:
We find that when principal value terms are neglected, the first quantum correction is
of the order (£kr)~! both in the dc conductivity and in the dissipative ac conductivity.
Corrections beyond the order (¢kp)~! are absent in the monolayer case, but present to
infinite order in the multilayer case. The first point is in qualitative agreement with the
result of Trushin and Schliemann [2007]. The ac result, however, is at odds with the
frequency-dependent correction ~ (£ kg)? found by Culcer and Winkler [2007b; 2009].

When including the principal value terms in the calculation of the dc conductivity, we
obtain a leading quantum correction of the order (£kr)°. This appears to disagree? with
the findings of Auslender and Katsnelson [2007] who present a leading quantum correction
of order (¢ kr)~!. Intriguingly, our correction is independent of the impurity concentration
and of the impurity strength. For screened charged impurities at a negligible distance from
the graphene plane it depends only on the dimensionless parameter kr/ktr, where hkp
denotes the Fermi momentum and 1/kpp the Thomas-Fermi screening length. In the
monolayer case one has krrp x kp, and the correction is therefore also independent of kg
(i.e., of the electron density). It is then determined only by natural constants and the
dielectric constant.

An electron-hole coherent quantum correction of the order (¢kp)° can provide one can-
didate mechanism for generating a residual conductivity (see Figure 5.1). Our result could
therefore be a part of the explanation of the residual conductivity observed in the experi-
ments by Chen et al. [2008] in monolayer graphene. This residual conductivity is observed
to be surprisingly constant, depending at the most weakly on the impurity concentration—
in contrast to the conductivity minimum. Our proposed contribution to the residual con-
ductivity is independent of the impurity density. However, it can in principle depend on
the dielectric environment of the graphene sample. There are experiments where the di-
electric constant is varied, for example by coating the sample with ice [Chen et al., 2009].
However, the extraction of the residual conductivity appears to be rather precarious, and
it is too early to say if there is any relation with the dielectric behavior of our result.

In accordance with all mentioned previous studies the corrections that we find are con-
vergent in the case of screened charged impurities. For point-like impurities the corrections
are convergent in the multilayer case but require an ultraviolet cut-off in the monolayer
case.

We finally observe that for point-like impurities in the multilayer case the contribution

coincide. Therefore the density matrix approach of Trushin et al. [2010] is not affected by the ambiguities
unraveled in the present work.

2Concerning this disagreement M. I. Katsnelson communicated to us that their Eqs. (84) and (85) are
not the full result and that the full result treated in the appendix of their paper might also contain contri-
butions of order O(1) (see also the statement at the end of their appendix) in which case the qualitative
disagreement could be removed.
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from principal value terms vanishes trivially to the orders (£ kr)? and (£ kr)~!. The leading
quantum correction is then the correction of order (¢kg)~! derived with principal value
terms neglected. This is consistent with recent results of Trushin et al. [2010].

5.3. Model

Semiclassical descriptions of a nonequilibrium problem are typically based on the Wigner
transformed one-particle Hamiltonian (or envelope function Hamiltonian) [Haug and
Jauho, 2008; Zubarev et al., 1996; Rammer, 1998; Rammer and Smith, 1986; Winkler,
2003]. Effects of potentials that vary rapidly, i.e., on the length scale of the de Broglie
wavelength Ap = 1/kp or on the corresponding time scale Ap/vp are already captured
in effective masses, spin-orbit fields etc., and only the—in the same sense—slowly varying
potentials appear explicitly. For the spin-orbit coupled systems in presence of an electric
field that we set out to study, the effective Hamiltonian without impurities reads (see
Chapter 1.3)

H(x,p,t) = eo(k)+0o-b(k)+ep(x,t) (5.2)

with & = 1, the elementary charge e < 0 and the kinetic momentum k(x,p,t) = p —
eA(x,t). The energy bands in the absence of electromagnetic fields are €, = €y + sb,
where s = +1 gives the sign of the spin projection along the pseudospin quantization axis
b, i.e., o -b|bs) = s|bs). We want to describe a 2d system with  and p chosen to lie in
the x, y-plane.

The spinless part of the dispersion is given by €j. In the Hamiltonians studied in
the literature on the intrinsic spin Hall effect this is typically the quadratic dispersion
€0 = k%/2m*, which usually constitutes the larger part of the kinetic energy. In contrast,
for monolayer graphene, leaving the small “real” spin-orbit coupling aside, one has ¢y = 0,
i.e., the pseudospin-orbit coupling constitutes the entire kinetic energy. In addition to the
electron spin (treated as being trivial in the following) and the pseudospin connected to
the bipartite lattice of graphene, the electrons have a valley index corresponding to the
two Dirac cones K and K’. We neglect inter-valley scattering and treat each Dirac cone
independently, which reduces the graphene problem to the 2 x 2 Hamiltonian (5.2). This
approximation should be fine as long as the disorder is smooth, but becomes doubtful
for short-ranged impurity potentials and in particular for the extreme case of point-like
impurities.

For the Dirac point K the spin-orbit coupling for the pseudospin is given by b = vp k
(i.e., b=vpk and b= 12:) with the Fermi velocity vrp =~ ¢/300. Here we consider the more
general isotropic spin-orbit coupling

b = b(k)b(h) (5.3)

with a winding number N as defined in Eq. (1.3). This includes, in particular, the Dirac
cone K’ of monolayer graphene (with b = vp k and b = (cosf, —sinf), i.e. N = —1) and
the Hamiltonian

1 0 (ke Fiky)2\ Kk 0 T
H o= o ( (ky & iky)? 0 T oomr \ e 0 (54)
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(with b = k%/2m* and N = 2) studied in the context of bilayer graphene as well as
similar Hamiltonians for multilayer graphene [McCann and Fal’ko, 2006; Guinea et al.,
2006; Koshino and Ando, 2007; Min and MacDonald, 2008|.

The total Hamiltonian Hio, = H + V includes an impurity potential V(x) =, u(x —
@) of non-magnetic impurities at positions x,, eventually to be averaged over. We distin-
guish between point-like impurities wugys = const. and screened charged impurities in 2d
with

e* /o

Uk:kl = m. (5'5)

Here, kg is the dielectric constant and the Thomas-Fermi momentum ktp = 22062 Dy with
the density of states at the Fermi energy D determines the range 1/krp of the screened
potential. For a recent review on screening in graphene with an enlightening comparison
of monolayers, bilayers, and 2DEGs, see Das Sarma et al. [2011]. Here we recall a few
facts that will be important for our later discussions. It is convenient to introduce the
dimensionless parameter g5 = krp/kp characterizing the strength of the screening. An
unscreened Coulomb interaction corresponds to ¢s = 0. In the opposite limit ¢; — oo the
potential becomes almost angularly independent and the effects of the charged impurities
resemble in some, although not all, respects the ones of point-like impurities. In the
monolayer case, for example, one has the special situation that Dp o« kp, hence ¢g is
independent of kg, implying that for short and long screening lengths alike the potential
behaves like an unscreened Coulomb potential in that 7' (kr) & D kp? o< kg', and
therefore o9 ~ 7, (k) er o< k& o |n|. Thus, not even for strong screening the situation
turns into that of point-like impurities, for which thl x kg yields a Drude conductivity
that is independent of the density. For graphene on SiOs substrates, the standard value is
gs ~ 3.2, see Das Sarma et al. [2011]. This suggests that screening is important (g5 > 1),
and when discussing the quantum correction ~ (£kp)? below we shall see that for this
quantity the screened potential as encountered in realistic monolayers has after all more
in common with point-like impurities than with an unscreened Coulomb potential.

In bi- and multilayers the situation is different from the monolayer case: here, g5 de-
creases with increasing kr and consequently with increasing density—just like in an ordi-
nary 2DEG, but contrary to a 3DEG. Thus, the further one moves away from the Dirac
point, the weaker the screening and the stronger the effect of the interaction. Thus, when
discussing the correction ~ (£kp)" we expect that in the vicinity of the Dirac point the
screened potential has more in common with point-like impurities, whereas far away from
the Dirac point the potential has more in common with an unscreened Coulomb potential.

5.4. The drift side of the Boltzmann equation

In the Boltzmann regime ¢ kr < 1, the spatial degrees of freedom can be dealt with semi-
classically. The treatment of the pseudospin must, however, remain quantum mechanical
in order to capture effects of the electron-hole coherence.

The state of the system is described in terms of the Wigner transformed time-diagonal
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5.4. The drift side of the Boltzmann equation

density matrix (cf. Eq. (2.56))

poor(@.pr1) = / dr T (G (@ — 12, 1) o (@ + 7/2,1))
= /dr PTG (T —71)2,t1; @+ 1/2,t9) 1ty =t (5.6)

with the spin indices ¢ =7, .. In the absence of interactions, one possible way® to derive
the collisionless Boltzmann equation for p is to first apply the Heisenberg equation of
motion to W(t1), then identify to = ¢1, Wigner transform the result, and gradient expand
it to first order (see Chapter 2.2.5).

From the matrix elements of the distribution function p one can extract the densities
and current densities of charge and spin. The matrix elements are conveniently expressed
in the decomposition p = pg + o - p, where o = (04, 0y, 0,) is the vector of Pauli matrices.
Furthermore, we find it useful to decompose the vector p = pl;l; + pe€ + p; 2 in its

components along the basis vectors b(0), 2 and &(0) = 2 x b(A) with dpb = Né , analogous

to the general cylindrical basis vectors k(0) := k/k, 2 and 8(0) := 2 x k() with dgk = 6.
In the spin basis {| 1.),| |)} one has

p = potpgb-otpiéotp.t-o (5.7)
_ ( po+ps (p,;—ipa)e_m)
(pg +1ipe)e™’ po — p:

The charge density en and the current density e 7 in phase space are derived from en =
Tr(p0H/0¢) and ej = —Tr (p0H/0OA), yielding

n(x,k,t) = Trp = 2 po = nt4n,

: _ ~ (5.8
ji(x,k,t) = Tr(vip) = 2poOke0+2p-0pb = nﬂ)f—kn‘vi +2]]:;7bp60i( )

with ¢ = z,y. Here we introduced the velocity matrices v; := Oy, H = Oy,e0 + o - O,b. The
spin independent part of the velocity is dgeg =: vo. The band velocities are v® := Jge® =
(bs| v |bs) = v® k. The intra-band elements

nt = (b= |plbt) = pop (5.9)

give the density in each spin band s = £. The inter-band elements (b + |p|bT) =
p»=Ei pe are important for a coherent treatment of the (pseudo)spin. These are the elements
that oscillate in the occurrence of spin-precession. In the case of spin-orbit coupling the
imaginary component ps appears in the last term of the current (5.8). For the density
matrix of a single electron this term would contain the oscillatory Zitterbewegung (jittery
motion) of the free spin-orbit coupled electron. In the statistical description given by the
distribution function this oscillatory motion of the free particle states averages to zero

over time and is therefore absent in the equilibrium distribution function (p3* = p5* = 0).

3 An alternative procedure is to apply the Nonequilibrium statistical operator method, i.e., to evaluate
the left-hand side of Eq. (2.54). Also in this method the semiclassical approximation consists in a first-order
gradient expansion.
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5. Pseudospin-orbit coupling corrections in the Boltzmann conductivity of graphene

The charge component pg is completely decoupled and redundant for our problem.
The (pseudo)spin density, i.e. the polarization, is given by s* = %Tr (on f) = pu (with
i = x,y, z). There is not a unique way to define the spin current, because in the presence
of spin-orbit coupling the real space spin polarization is not a conserved quantity. When
the two band velocities coincide (v® = wvy) it is 3 = p, vo. We use the common definition

. 1
]f = ZTI“ (Uu{Vi,p}) = p#akieo—i-poakib# (5.10)

with the anticommutator {A, B} := A B + B A.
The Boltzmann equation in matrix form reads

. 1 1
Z[H,,O}+3t/)+i{Vz',amiP}+€Ei<9kip—fzijeBzi{Vi,aij} = Jlp), (5.11)

where the matrix-valued functional J = Jy+ 0, J,, is the collision integral. The left-hand
side of Eq. (5.11) is obtained by the procedure described above, and the collision integrals
on the right-hand side will be derived with various approaches in the next section. With
the definition (5.10) the Boltzmann equation (5.11) can be written in the appealing form

Oon+0g-jJ+edk-ME+3jxB) = 279,
2(8 xb)l 4+ 0kt + 0z - jH' + €0k - (SYE+ 5 xB) = J,. (5.12)

Semiclassical kinetic equations deal with densities in phase space. Real space equations
are obtained by integrating the phase space densities over momentum, e.g.,

2
j(x,t) :/((217:;2j(w,k,t). (5.13)

The Boltzmann equation is typically written for the quasiparticle distribution
foor (@, p,t) rather than for the Wigner transformed density matrix py./(x,p,t). The
electron distribution p is the quantity in terms of which the current and densities are
defined. The quasiparticles described by f, on the other hand, represent the free particles
that satisfy the Pauli principle. Therefore, the equilibrium state for f can be expressed
simply in terms of the Fermi-Dirac distribution. This is of practical relevance in the
analytical solution of the Boltzmann equation by linearizing in deviations from the equi-
librium. In this work we neglect this difference. Thus, all the above expressions including
p are assumed to apply for f.

5.5. Derivation of the Boltzmann equation including collision
terms

In this section we present the derivation of semiclassical kinetic equations including colli-
sion integrals from quantum theory in several approaches. One group of approaches deals
directly with the density matrix p(z1,x2,t) and starts from the Liouville-von Neumann
equation. The second type of approaches are Green’s function techniques which have the
Kadanoff-Baym or Keldysh equations for the double-time correlator G<(x1,t1, x2,t2) as
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5.5. Derivation of the Boltzmann equation including collision terms

their starting points. To recover a time-diagonal kinetic equation one needs to invoke some
approximation. This is the problem of ansatz. We will present several different candidates
and therefore several different collision integrals. One of them is identical to the collision
integral derived with the density matrix approaches.

5.5.1. Iterative solution of the von Liouville-von Neumann equation
Consider the Hamiltonian
H = Hy+V, (5.14)

where V' is an interaction switched on at a time ¢y in the remote past. The von Neumann
equation in the interaction picture is

iopt = V(1) '] (5.15)
with
Al(t) = eHolt=to) A(tg) emHolt=t0) = 1l (¢ 45) A(to) Un (¢, to), (5.16)

where A is a general operator in the Schréodinger picture (thus its time dependence can
only be an explicit one). This is easily integrated to give

PO = ) =i [ at Vi), (5.17)

0

which, when inserted back into (5.15), yields

0, " :—ﬂwmm%m—/dﬂwwﬂﬂw#wm

to

= =il O] - [ VI, V). o)

“i [ [, e, v e (519)

after a first and second iteration, respectively. Up to this point the equations are exact.
The Born approximation allows us to get a closed equation for p at time t to second
order in the interaction V. To this end, we remove the last term in the second row.
Alternatively, in the last term of the first row replace the full evolution with the free
evolution, i.e. let p'(¢') = p'(t), which has the appearance of a Markov approximation.
Back in the Schrédinger picture, the assumption of free evolution reads

p(t') = Uo(t',t) p(OUS (L' ) = e Pl p() e Ho (1), (5.19)
and after reorganizing evolution operators one obtains the kinetic equation
O p(t) +i[Ho, p(t)] = —i[V,e " Hotmto)p(gg)et o (1=t0)]

_ /Ot_to dr [V, [emtHom v et Hom ()], (5.20)
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5. Pseudospin-orbit coupling corrections in the Boltzmann conductivity of graphene

So far, this kinetic equation is locally time reversible (not globally though, since the
interaction was switched on at some point). In order to capture the decoherence due to
other processes (e.g. phonons) we do not want the state to depend on correlations in the
remote past. Therefore we include a factor e™77 in the integral to impose this loss of
memory. This introduces time irreversibility. This factor also regularizes the integral and
allows us to send tyg — —o0.

For the purpose of immediate comparison with the results of other formalisms, we want
to express the evolution operators in the last term in (5.20), which will become the collision
integral J[p], in terms of Green’s functions. The non-interacting retarded and advanced
Green’s function for the spin-orbit coupled Hamiltonian (1.5) are

S.
OR _ b
Gt = ) =" (5.21)
s=+ k
0A S
s==+ k
with the spin projection operator
1 ~
SBs = 5 (1 +o- Sb,;:) (5.23)

and @ = & +4i0", where @ = w — ¢ is the gauge invariant frequency variable. Let f be
a general operator with a matrix structure in spin space. Using the residue theorem, we
have

oo
/ dte—nte—intfein/t
0

oo
= / dte M et 00"t (cosbt —io - bsinbt) f (cosb t +io - b sinb't)
0
() —isbt po—isbt is'b't / r is' bt
, / +so-be e +so-be
_ dte Mt et (eo—eo’)t €
/ I DT
/OO £ i ertsba/ =) S ) 1
= dte™" e tlOTsbme SRS £S5 = SfS ————
0 ss! ss! 77+Z(€_6,)
_ /°° oy~ 5, §
o 2n Sslw—i—in—e w—in—¢€
> dw
= — GW GO, (5.24)
| et
and the collision integral takes the form
dw
T = — [ STV 6 (5.25)

Another source of irreversibility comes in with the impurity averaging. We take the
spatial average over the matrix element of the electron-impurity interaction

ka/ = Z eii(kik/) Tn Ukk! (526)

n
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5.5. Derivation of the Boltzmann equation including collision terms

assuming a uniform distribution of the impurity positions. This yields V; — nimp V5 9(q) ~
Nimp V(r = 0) and ... Vg ... Vg oo = (.. Vg ... Vo) [n?mp 3(q1) 0(q2) + nimp 0(q1 +
q2)]. For the last term we neglect the n?mp through the assumption of low impurity
concentration. Then V in the first term of (5.20) becomes just a number ~ V(r = 0),
and the commutator vanishes. For the terms that are linear in njyp one finds for example

(summation over repeated indices is implicit)

(VGRV G p)ir — Nimp 6 (k — k1 + k1 — k2) gk, G0N w1y G iy
= SP G o (5.27)

where we have introduced the retarded self-energy
YR= nimp (WG )y (5.28)
However, in a term like
(VpGOR \%4 GOA)kk/ —  Nimp 0k — k1 + ko — k‘/) Ukky Phiks Gggl Ufeo k! G%A (5.29)

the delta function seems to offer no simplification at all. At this point we can attain further
simplification if we say that in the collision integral we are not interested in contributions
that are related with non-diagonality in momentum. This amounts to saying that we are
not interested in any gradient expansion corrections to the collision integral. We then
have

VoGV G™ e — nimp upw o Gt wpr G (5.30)

and the collision integral can be written as

dw
Tlp(k,2,1)] = - /k, Wik / @n)? (pr GRX G + GU G pi,
—Pr! GgB GYA — QIR G%A Pr!) (5.31)

with the transition matrix Wy = 27 Nimp |Ugg|* for non-magnetic impurities.

An approach based on the Liouville-von Neumann equation was also used by Culcer and
Winkler [2007b], although along different lines. In that derivation the focus is from the
start only on the diagonal part fi (not to be confused with our f for the quasiparticle dis-
tribution) of pgrr = fi Okkr + grks, which closes the door to gradient expansion corrections
in the interaction terms. The analogue of the iterative solution of the Liouville-von Neu-
mann equation presented in this section is their decomposition into two coupled equations
for fr and for the purely nondiagonal part g (the integrated equation of the latter is
then inserted into the former). Until here, both approaches are equivalent. The difference
comes with the Markov approximation. Culcer and Winkler use f(¢') — f(t) as opposed
to fL(t') — fI(t). With p(t') — p(t) we find that the evolution operators cancel each other
in a different way, so that finally they sit around the entire inner commutator rather than
only around the inner V,

Tl = - [SEIV. N6, (53
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5. Pseudospin-orbit coupling corrections in the Boltzmann conductivity of graphene

This is indeed the result in Eq. (4b) in Culcer and Winkler [2007b]. We will see that the
difference between (5.25) and (5.32) matters for the leading quantum correction in the
Boltzmann conductivity of graphene. We will also understand why it does not matter
for the treatment of Culcer and Winkler [2007b]. There the recursive analysis is taken

to order (¢kr)° and therefore requires only the part that is insensitive to the differences
between (5.25) and (5.32).

5.5.2. Nonequilibrium statistical operator approach

Using the results of Chapter 2.2, in particular the expression for the collision integral
(2.55), one finds for the generic Hamiltonian (1.5) and impurity scattering that the first-
order collision term vanishes. The second-order term becomes [with Uy shorthand for
Un(t,1")]

7@l = - | ;dt’e"“’“Tr (prea(t) |tV [V, Pl )
— / g—:[GORVGOA,[V, ol (5.33)

Notice that this is different from both (5.25) and (5.32). We will see that when the collision
integral for graphene is written out explicitly in spin components the results (5.25) and
(5.33) coalesce.

5.5.3. Green’s function approach

In the Green’s function approach one starts with general dynamic equations for the two-
time correlator G<(t1,t2). Solving such equations is generally difficult and therefore some
approximation that limits the equations to the the time diagonal to = ¢ is desirable. This
is also necessary if one wants to derive a Boltzmann type equation for p(t1) = G<(t1,1).
We start with the discussion of the ansatz that incorporates such an approximation and
then turn to the derivation of semiclassical kinetic equations from the Kadanoff-Baym
equations. However, we will see that even for a given ansatz one can derive different
collision integrals.

The problem of ansatz

The first proposed ansatz was the Kadanoff-Baym (KB) ansatz [Kadanoff and Baym, 1962]
G<(.’E,p,t,W) = p(x,p,t)A(:U,p,t,w) (534)

with A = i(GR —G*) being the nonequilibrium spectral function. This is a slight nonequi-
librium modification of the equilibrium result G<(k,w) = frp (w) A(k,w) (the fluctuation-
dissipation theorem) and therefore it is expected to be a good approximation close to equi-
librium. For weak interactions one uses the quasiparticle approximation A ~ 27 (e, — w).

For nonequilibrium beyond linear response the KB ansatz fails. This was noted by
Jauho and Wilkins [1982; 1983; 1984] in Boltzmann equation treatments of transport in
strong electric fields, where their results differed from those derived with density-matrix
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5.5. Derivation of the Boltzmann equation including collision terms

methods [Levinson, 1970]. A similar discrepancy was observed in the linear conductivity
when comparing with Kubo formula calculations by Holstein [1964]. Later, Lipavsky et al.
[1986] showed that the discrepancy could be cured with the modified ansatz and coined the
generalized Kadanoff-Baym ansatz (GKBA) (see also Haug and Jauho [2008]; Lipavsky
et al. [2001])

G<(x1,t1, @2, t2) = i/dzmg (G (w1, t1, @3, t2) G= (23, b2, T2, 2)

—~G<(z1,t1, 23, 11) G (@3, 11, T2, 12) )
= iGR(ty, ta)p(ta) —ip(t1)GA(t1, t2)) (5.35)

(spatial variables suppressed in the second line) which reduces to the KB ansatz in equilib-
rium. Lipavsky et al. [1986] showed that the right-hand side is the first term in an exact
expansion, which makes it possible to address the range of validity of the ansatz. The
exact expression respects the causal structure of the Kadanoff-Baym or Keldysh equations
and also fulfills some other natural criteria (see Appendix C).

The GKB ansatz is the most common alternative in applications where the KB ansatz is
considered insufficient. Interestingly, however, in general it does not yield the same Boltz-
mann equation as the one derived with the mentioned density matrix approaches (Liouville
equation approaches). For the first quantum correction of graphene the difference matters.

However, we do find an ansatz for which the kinetic equation obtained with a density
matrix approach is also obtained from a Green’s function approach, namely if the GKBA
is replaced by the anti-ordered version (AA for “anti-ordered ansatz”)

G<(t1,ta) = iG<(t1,t1)GR(t1,t) — iGA(t1,t2)G=(ta, 12)
= ip(tl)GR(tl,tg)—iGA<t1,t2)p(t2). (5.36)

Although this ansatz violates the intuitive (with respect to causality) retarded-lesser-
advanced structure of KB equations and the Langreth-Wilkins rules [Langreth and
Wilkins, 1972], it can be derived in a similar way as the GKBA (see Appendix C). The
full result (including the omitted expansion terms) fulfills most of the criteria required by
Lipavsky et al. [1986], in particular the causality requirement. The average of GKBA and
the AA represents a third alternative, which we call here the symmetrized Kadanoff-Baym
ansatz (SKBA),

G=(t1,t2) = % (p(t1)A(t1, t2) + A(ty, t2)p(t2)) - (5.37)

This ansatz to zeroth order in gradient expansion appears, for instance, in Raimondi et al.
[2006].

Considering the importance that the issue of ansatz has for spinless electrons in nonequi-
librium beyond linear response, we believe that the issue should be even more important
for graphene calculations beyond linear response, at least when electron-hole coherent
effects have to be taken into account.
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5. Pseudospin-orbit coupling corrections in the Boltzmann conductivity of graphene

The problem of identifying the collision integral

The generalized Kadanoff-Baym equation [Kadanoff and Baym, 1962; Langreth and
Wilkins, 1972] in integral form reads (Eq. (2.63))

G< = GRY<G™ + (1 4+ GRES®)GO<(1 + 2AGH), (5.38)

where all products are to be interpreted as convolution products in real space/time and
in spin variables. The retarded and advanced components are determined by the Dyson
equations ((G)~! — ZR)GR =1 and ((G%)~! — ZA)GA = 1. The self-energies are to first
order Born approximation given by

E< = nimpVG<V,
SRA = (V4 VGORAY) =y, VGORAY, (5.39)

where we will neglect the mean field terms ~ V!, since here we are not interested in shifts
of the total energy.

The term containing G°< in (2.63) plays the role of boundary conditions and vanishes
when acting with (G®)~! from the left or (G*)~! from the right,

(GR)—1G< — Z<GA,
as(@aMt = GRe<, (5.40)

In particular, the difference of these equations gives the Kadanoff-Baym equation in dif-
ferential form, which is a double-time precursor of the time-diagonal kinetic equations to
be derived. For our discussion we write it in two different ways. The first equation, to be
called G1, reads

[i0; — H,G<] = BRG< - G<x* + <G4 - GRy<. (5.41)

It identifies all self-energy terms of order V2 with the collision integral. This is what we
think should be done for a comparison with the Liouville equation based approaches of the
previous sections, where all terms of order V2 were identified with the collision integral.
The second equation, to be called G2, is given by

[i0; — H —ReX® G<] — [, Re G}] = {Im X%, G<} —i{2<,ImGR}.  (5.42)

It is a frequently encountered starting point of Boltzmann equation approaches that con-
sider renormalizations and other quantum corrections [Langreth and Wilkins, 1972; Ma-
han, 1990; Lipavsky et al., 2001; Haug and Jauho, 2008]. Of the self-energy terms, only
those on the right-hand side are considered as the collision integral, those on the left-hand
side, in contrast, are regarded as terms renormalizing the free drift. (The term Re rR
shifts for example the zero of energy. Thereby it shifts the minimum conductivity away
from zero gate voltage. In this context, see the experiments by Tan et al. [2007] and Chen
et al. [2008].) For spinless electrons the commutators on the left-hand side vanish if one
stops at zeroth order in gradient expansion. In this case one obtains the same collision
integral to zeroth order in gradient expansion as with (5.41). In general, and in particular
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in the case of spin, the self-energy terms on the left-hand side contribute even to zeroth
order. Here, we are mainly interested in the alternative structures that might be obtained
for a collision integral from the right-hand side in (5.42).

Both equations (5.41) and (5.42) also hold for G=. Within the Keldysh formalism
analogous equations are derived for GX = i(G< — G™).

Notice that the quantum Boltzmann equation [Mahan, 1990], obtained by gradient
expanding Eq. (5.42) to first order, is a semiclassical kinetic equation in the variables
(z,p,t,w). Integrating the resulting equation over the frequency w gives a Boltzmann
equation.? In this sense, here, we solve Boltzmann equations—not quantum Boltzmann
equations.

Different collision integrals

With two different ways of writing the Kadanoff-Baym equation and three different kinds of
ansatz there are possibly six new collision integrals. One obvious question is, as to which
of them corresponds to the collision integrals of the previous section. The second and
independent question is: which one is appropriate for the problem of quantum corrections
to the conductivity in graphene?

We believe we are able to present an answer to the first question. It seems clear that
the pertinent collision integral is derived from G1, i.e. Eq. (5.41). The question remains
as to which ansatz to choose. Interestingly, it is not the GKB ansatz, but the AA that
returns the collision integral (5.25). The GKBA would give

YRGS — G2 4+ 2<GA - GRE<S = —iVGRV G — iGPRpv GOAY
+iVGRpV G +iGRVpGOAY + ...
= —i[V,GR[V, p]G* + ... (5.43)

where, in each term like SRG< = VGRVG®R)p — VGRV pGO2 | we neglected the parts
that contain two retarded or two advanced Green’s functions since such terms vanish when
one integrates over the frequency to obtain the collision integral,

7 = - [ SV G, (5.44)

We call this collision integral GIwGKBA (“w” for with). It is clearly different from (5.25).
Interestingly it coincides with (5.32).
For the collision integrals G2 derived from (5.42) note, for example, that with the GKBA
we obtain
1
SV VE™, ).
(5.45)

1 1 1
S5 - YA GSY - SIE5GH =G = —[V.GMV, ]G

4One can also integrate over the absolute value of the momentum to obtain a Boltzmann equation in
terms of the variables (x, p,t,w). This is called the quasiclassical approach, which is used for example in
Shytov et al. [2006] and Raimondi et al. [2006]. (Sometimes it is called the first quasiclassical approach
and the semiclassical approach is instead called the quasiclassical approach [Lipavsky et al., 2001].)
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Table 5.1.: Integrands of the collision integral J[p] = — [ %( ..) as derived with various
approaches in Section 5.5.

Gl GKBA | [V,GR[V, p] G°A]

LvN & G1 AA [V, [GRV G4 pl]
Gl SKBA | $[V.GR[V,p]G*Y] + L[V,[GRV G, ]|
G2 GKBA | J[V,GR[V,0]G] + 1[V,[GOAV GO%, g
G2 AA|I[V.GM VG + LIVIGMYV GO )
G2 SKBA 3 (G2wGKBA + G2wAA)

NSO [GORV GO, [V p]]

We denote this collision integral G2wGKBA. It takes the form of an average of (5.44) and
(5.25), in the latter, however, with the retarded and advanced Green’s functions swapped.
The other possible collision integrals will be presented in the next section.

5.6. Comparison of collision integrals

We summarize the different possible general collision integrals discussed in previous sec-
tion. When writing J[p] = — [ %( ..) the integrands (...) of the various candidates are
given in Table 5.1.

We do not need to solve the Boltzmann equation seven times. The first two cases
are sufficient to deduce the other ones except for the NSO case, which, however, will
turn out to coincide with the GIwAA /LvN calculation. For example, the second term of
G2wGKBA is similar to the G1wAA result with retarded and advanced Green’s functions
swapped. A closer inspection reveals that this swapping has no effect on the part of the
collision integral that contains a delta function in energy, but changes the sign of the
principal value part. Therefore, the delta function part of G2wGKBA is given by the
delta function part of (GIwGKBA +G1lwAA)/2, whereas the principal value part is given
by the principal value part of (GIlwGKBA -G1wAA)/2. One can decompose the principal
value part of GIwGKBA in two parts X and Y, where X is the part that is invariant
when one compares GlwAA with GlwGKBA, whereas Y is the part that changes sign.
Then one can construct the principal value parts J P — + 7PX £ 7PY f{or all the above
collision integrals, with the relative signs of J¥X and J'Y, respectively, determined by
the scheme

XY
Gl GKBA |+ +
Gl AA |+ —
Gl SKBA [+ 0 (5.46)
G2 GKBA |0 +
G2 AA |0 -
G2 SKBA [0 0

Note that for the collision integral G2wSKBA the principal value terms vanish completely.
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The products in (5.1) are still general convolutions. In the next step the spin structure
is left intact, but the space and time variables are Wigner transformed, and then the
products are gradient expanded in these variables. We assume that gradient corrections
in the interaction terms can be neglected. We also replace the Wigner transformed density
matrix p with the quasiparticle distribution f. These are two common approximations
which might be incorrect when calculating quantum corrections, but give the framework
within which we want to make a first step and compare with previous work. Furthermore,
we assume non-magnetic impurities, UZZ; = Opor Upgr With Wigr 1= 27 Nimp [ugper|?. After
impurity averaging the collision integrals become

GIwGKBA J[f] = - fk, Wi [ (517:32 (G%R Af G%f‘ i Gg{ Af GQA),
o IUL = = Jo Wi [ G (i G G = fir GRE GRE ), (5.47)

to second order in the interaction and to zeroth order in gradient expansion. We have
. 21/

introduced the shorthand notation [ % =: [, and Af := f(k,x,t) — f(k',2,t). The

retarded Green’s function is the non-interacting one taken to lowest order in gradient

expansion. For the spin-orbit coupled case, it is of the form

S
Git = D o (5.48)
s==+ k

with the spin projector (5.23) and @™ = & +i0", @ = w — ¢ being the gauge invariant
frequency variable. In the Wigner representation one has X* = (X®)T,

The three collision integrals in (5.47) would obviously be equivalent if G'®, G4 and
f commuted with each other, as it is the case for spinless electrons. In the general,
non-commuting case including in particular the case of spin-orbit coupling, the collision
integrals appear to be different. However, the different forms of collision integrals do
not necessarily imply differing results for physical quantities. We shall see below that
to lowest order in (£kp)~! one readily reproduces the Drude conductivity obtained with
Fermi’s Golden rule with all candidate collision integrals. To higher orders in quantum
corrections, however, an agreement is not at all obvious.

Notice that the collision integral for non-magnetic impurities should generally satisfy
the property [, J[f(k,x,t)] = 0, expressing that in real space the collisions cannot act as
a source or drain of particles of a given spin state. For all collision integrals except the
NSO integral this is manifest, since the collision integrals change sign under the renaming
of dummy variables k <+ k’. In the case of the NSO result this is not manifest at this level,
but the explicit collision integral derived for graphene will turn out to have this property.

For further comparison and to prepare a solution of the Boltzmann equation we write the
collision integrals (5.47) explicitly in terms of the components fy and f. To streamline the
lengthy expressions further shorthand notation is introduced: x’ means that the quantity
x depends on primed variables such as k’, s’ etc., whereas x correspondingly depends on k,
s. For example S’ = %(1—1—0’-3’ by). Furthermore, Az := z—a’, for example Ae = efc—ei,
and A(sb) =sb—s'b.

95



5. Pseudospin-orbit coupling corrections in the Boltzmann conductivity of graphene

Insertion of (5.48) in (5.47) yields a collision integral 7 = J% 4+ J¥ consisting of delta
function terms and of principal value terms. The principal value terms JF are given by

GIWGKBA  J"[f] = — [i Wi 3z Yo P (a0) )
X |ERE L (CAfroaf) s S A
LvN & NSO J"[f] = _fk'Wkk’;szsP(ﬁ) . (549)
> [ss’bxb’ (+Af+0’Afo) .sb—&-;’b’ > (f“rfl)} _
The delta function terms are
1 1+ss'b- & sb+ b
§
= — g A€) | ——A — A
To'f] /k,Wkk 22;5( €) 0t — fl
1+ s5s'B sb+ b
é
= ' 0(Ae) |A| ———— —A .
T°lf] W Z ) ( 5 f)+ s Aol (5:50)
with the matrix B(l::, 15’) acting on f given by
GIwGKBA B = +b(0)T+b6 ()T —b-& , B = B
LvN B = -b®)"+o(b)"+b-b , B = BT
- T T g , (5.51)
NSO B := +4b(b ’) - b)) +b- , B = B
rest B = b (b)T , B = BT

The “rest” stands for the G1wSKBA and all G2 collision integrals. As stated previously,
their delta function parts are just the sum of GIlwGKBA and G1lwAA /LvN. Taking into
account the momentum dependence of the basis vectors

b= BcosNA@—ésinNAH,

¢ = écosNAO+bsin NAG, (5.52)
one derives
| GIwGKBA |[LvN | NSO | rest |
Bb=1"¥ Bb=0 |Bb=bcosNAO+ésinNAG|Bb=b
Bbo=b |Bb=>bBb=>b B'b =b (5.53)
Bé=—¢ |Bé=c¢ |Bé=¢écosNAO—bsinNAO|Bé=0
B'¢/=-¢ |Bcd=¢|Bc=-¢ B'¢/=0

Note the particular simplicity of the approaches GIwSKBA and G2.

For studies where a spin coherent Boltzmann equation is linearized in a small b (bp < €p)
the terms ss'B are absent. Furthermore, it should be safe to neglect the principal value
terms if one is only interested in the response without quantum corrections. In that case,
the delta function part of the collision integral is the same in all formalisms [Kailasvuori,
2009]. For graphene (ep = bp) we need the full collision integral to calculate the quantum
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5.7. Conductivity with principal value terms neglected

corrections, and therefore the approaches differ. However, crucial simplifications occur
due to g = 0. With Ae = sb— s’b’ we obtain (henceforth we write P (1/z) as 1/x)

Y ser 0(A€) = 2(6(Ab)+0(b+ 1)),

S 50(Ae) =3, 85(Ae) = 0,
Y oss 88/5(Ae) = 2(5(Ab) — §(b+1V))
Z A Z / SS/AL = O’ (554)
ZSS/SAIE = 2($+b%b’) = 273_,'_7
> es S Ac = 2(z3 — pmy) = 9P,
and therefore half of the terms in (5.50) vanish, leaving us with
Tl = = [ Werr [6(AD) (cos? B2Afo + o - A(LEE£)) +
+ b+ ) (sm2 SIANfo+o- A( Bf))]
N 2 5.55
T = — [u Wi o 5 |P_V x fF=Pybx f], (5.55)
jPY[f] = _fk'Wkk' 0'% P+5Xf_7)76/><f, .
The term containing §(b+b') gives only a contribution from the point k = —k/, i.e., k =

k" = 0, which we will neglect, since at temperature zero k will be fixed to kr # 0. Thus,
the delta function part we consider is

T°lf] = —/ Wenr 6(Ab)%(f—f’+Bf—B’f’) . (5.56)
kl

For the approach G1wGKBA and for all G2 approaches we then obtain, due to Eq. (5.53),

T = - [ Wasana (50

b fb> / Wi 6(AD) S A (& o + 2 12) - (557
In next section we will see that the matrix (1 + B)/2 is responsible for the additional
chirality-induced spin-overlap factor cos?(NA#/2) occuring in the intraband transition
rates that involve only the probability densities ((b=£| f |b+) = fo+ [ of energy eigenstates.
This is how the suppression of backscattering in monolayer graphene enters the Drude
conductivity derived with Fermi’s Golden rule. The “transition amplitudes” involving the
off-diagonal components <Ej:\ f |B:F> = f.tifs (the Zitterbewegung components) are more
elusive and beyond the reach of Fermi’s Golden rule. However, for the GIwGKBA and all
G2 approaches the result (5.57) shows that the scattering of the off-diagonal components
becomes very simple since it contains no angle dependent chirality factors but only a factor

% compared to ordinary spin independent scattering.

5.7. Conductivity with principal value terms neglected

In this section we calculate the electrical conductivity of graphene for non-magnetic im-
purities with the collision integrals J° from the previous section. We neglect the principal
value part J¥. We assume low temperature so that ;| = ep. For notational compactness
we henceforth neglect the elementary charge e and restore it only in final results.
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5. Pseudospin-orbit coupling corrections in the Boltzmann conductivity of graphene

For the purpose of later comparison we first derive the Drude conductivity per valley
by considering only one band (electrons p > 0 or holes u < 0), in which case Fermi’s
Golden rule can be applied. Let us consider electrons. For monolayer graphene the one-
band Boltzmann equation linearized in the electric field (f = f4 + fF) with fe4 =
frp (vp k — p) for electrons) reads

E-0f = — [ 6(vp Ak) Wiy COSQ%A]@(E)
kl

= 1) [ e M) Wiy cos? 50 (1 —eos ), (5.58)
k/

~~
_.—1
=: TtI‘

where the transition probability W cos? % (as opposed to Wy, for ordinary electrons)
takes into account the chirality of the Dirac electrons, responsible for the suppression of
back-scattering. The real space current is given by

P /vf(E):_//kdk
K’ 9 2T

where (reintroducing e and A to the right)

vp k i Eiofrp (vpk —p) = Eog, (5.59)

|| Ter 0 kg e2
Ar Ar on (5.60)

oo

with 7, := 7t (kr), kr = |u|/vr and the mean free path ¢ := vp 7. In (5.59) we used
the shorthand notation [, := % J df. The result (5.60) is written in such a way that it
also includes the case of holes (u < 0). To get the total Drude conductivity of graphene
we multiply by a factor of four for the degeneracy in valley index and real spin.

In the next step we turn to the coherent treatment of pseudo-spin, and we shall see that
all approaches reproduce the result (5.60) to lowest order in (¢kp)~!, but yield different
quantum corrections. With

oo 1./ /
K(k,0,0) = / k;rk Wik 6(b— V'), (5.61)
0

the compact notation E-0 = E}, O+ Ej % 0Oy, the decomposition f = fy+o - (13 fo+¢€fet
2 f.) with 9pb = N & and 9pé = —N b, and using the table (5.53) we find for GlwGKBA

Booeh = 5 = - [ Koot N2 AR,
E.aka—Eé%fé = 5 = —//K<COS2N2A9AJCB—;sinNAQ(fa-i-fé/)),
E.é?kfé+E,;%f5+2bfZ = Ji = —/,K<sin2N2Aa (fe-i-fé/)—;sinNAeAfB),
E o f.—2bf. = J° = — eleinQ NMAfZ. (5.62)
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5.7. Conductivity with principal value terms neglected

Table 5.2.: Integrands of the collision integrals j05,j£,jg and jz‘s in Eq. (5.62) for the

different formalisms.

VA VA VA J?
Glwe, | 05 FRIAf | cos? FREAS snZ X0 (f, 1 f2) | sin2 SPAL,
' —3sinNAO(fi + fe) | +5sin NAO(S] — f;)
LN cos? NTMAfO cos? NTMAfE cos? NTMAfé cos? NTMAfz
—58in NAO(f; — fe) | +55in NAO(f; — f3)
NSO | o5t EREAS | cos® BREAS cos? 250 A fo cos? T30AS:
—3Sin NAO(f; + fo) | +35in NAO(f] + f;)
rest cos? NTMAfo cos? NTMA]}) %fa — % cos NAG Y, %Afz
—1sin NAGS} +3sin NAO(f] — f;)

The other collision integrals are obtained with the integrands in j/f replaced according to
Table 5.2.

Terms including the trigonometric factor sin AN are in the assumed case of symmetric
scattering K(Af#) = K(—A0) the same in all approaches, since only the part including
f' can survive, whereas the part including f vanishes trivially. Thus, the approaches
differ only in the elements Jz[fs] and J.[f.]. These, however, enter the solution only
to order ~ (£kp)~!, as we will see below. We will further see that the first quantum
correction to the conductivity depends on J,[f.]. Since the iterative solution of Culcer
and Winkler [2007b] was only taken to order (¢kr)°, the concrete implementation of the
Markov approximation and in general the choice of formalism would not have mattered.

We proceed by linearizing the equations in the electric field with f = fe4+ f(£) and by
Fourier decomposing the components of the distribution function as

;B = N et pih) (5.63)

where r =0, b, ¢, z. In equilibrium we have

P = fep (fork) = O(uF o k) + O((ksT/er)?), (5.64)
f&d = =0

Since E - O f°1 with

0 & 4+ —iGg
E- 8]2-,.](.]5‘D (ei) = E,;: 8kfFD (Ei) = % 8kfFD (ei) (5.65)

and Fg = % (e &* —e &), where £ := E, + i E,, contains only n = &1 Fourier compo-

nents, we can immediately conclude that fr(f ) —0forn = +1. It is enough to study the
equation for the n = 1 component. The n = —1 term is just the complex conjugate. We
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5. Pseudospin-orbit coupling corrections in the Boltzmann conductivity of graphene

find for the n = 1 Fourier component of the linearized Boltzmann equation

O fo* It 0 0 0 for)
el art | 0 It T 0 £ 66
2 gt | 0w Y 20 s (566)
0 0 0 -2b I¥ 1)

In terms of the integrals defined below one has 7% = Z~ for GIwGKBA and Z¥ = ZT for
G1lwAA/LvN/NSO. For the GlwSKBA approach and all G2 approaches one has Z% =
(It +Z7)/2. Likewise, T* = I for GIwGKBA, Z* = Z* for G1lwAA/LvN/NSO, and
the average of these results for the rest,

It = [y Kcos? ¥20(1 — ¢71A0) = 11 == 1 Jo K(1 — cos2A0),

It = fa, K sin TA(l +e me) (N=£1) I, (5.67)
T = fel K sin2 %(1 — i) (N=H1) i fg, K(3 —4cos Af + cos 2A0), '
iT = L[, KsinNAGsin Af N=ED 7+

where we used that K(—A#f) = K(A#). Notice that Z° is odd in N, whereas the other
integrals Z are even in V.

The equation for fy is decoupled from the other components and is solved indepen-
dently by féf) = —% E* Tiy O fo? with 7, = (Z+)~!. The other components are found by
inverting the remaining 3 X 3 matrix:

B\ (URsDTyag T
i = ~300 i (Z° O fy" +I+ N £ , (5.68)
1 126(T° O 1 fTHY 7

with the determinant |M| = 4b*Z+ + I+ 7*T" — (Z°)27". Adding up the two Fourier
components n = £1 one obtains

(4b2 +I)\IH)8kf£q+ISIH%f£q

(E)
A = —FE; .
fb k 42T+ +I+I>\IK _ (IS)QI” (5 69)
(N==£1) 1 e IH ¢ e
= gy [+ I s 1)
K S © N pe
f(E) _ B 8 (T 8kf5q+1+§f5q) (5.70)
é 0427+ +I+I>\IH_<IS)QIH} :
(N==£1) NI* eq | 1 req
=" B (0 1),
® - g 20 (T Opfy + T 5L 13 (5.71)
z - 94b21'+ +I+I)\IH_(IS)QIH '
(N=x+1) X N eq | 1 geq
a _E92b<8’“f5 +Ef6>'
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5.7. Conductivity with principal value terms neglected

The charge current j in momentum space, see Eq. (5.8), is for the graphene case (¢y = 0)
given by

; ~ A Nb (N==%1 A .
i(k) = 2k f300+20 fo N g (ke fy + N6 f2). (5.72)

With [,k E; = [,0 E; = E/2 one obtains the current in real space as

j = /j(k) = (¢l +oHE. (5.73)
k
The conductivity is given by the contributions
kdk (402 + T8I Opb+Ir 15 50
ol = —/ ( ) O LN (5.74)
21 AV2TT +IHIANTF — (I8)27% b
(N::tl 1 eq
/kdk <+2b2> 8kf5 )
o IFTS O+ IR THAL fe (5.75)
o - 4027+ + I+ TANTK — (IS)Q Tk b ’
(N=£1) _ vF I" eq
N 27 /dk 2 b2 ff’ ’
In the monolayer case N = £1 we used that 0ib = % = v for all k. Due to 7% \, = =1}
the conductivity is invariant with the sign of N.
As a part of o/ we recognize the Drude conductivity og = — [ £d% g’;b O fgq =lkp/4m.

The contributions ¢!/ and do! = o/ — oy are quantum corrections, both of the leading

order (£kp)~! (or equivalently, (Z/b)~!). For |[N| < 2 they contain also higher powers
of ((kp)~! that can be obtained explicitly by a truncated expansion in (Z/b)~! of the
integrands in Eqs. (5.74)-(5.75). Notice that there is no contribution of the order (¢kg)°.

At T' = 0 one has from Eq. (5.64) that f;* = —10(k — kp) and Opfy! = — 3 6(k — kp).
The conductivity including the leading quantum correction ~ (¢kp)~! then becomes

_ (G, NI (N=£D) £
ol = (1+ ks +4vaFkF>+0((TF) ) - (H 2bf ) (5.76)
- NTE T 00 P (N=%£1) oo K .
ol = ﬁko dk( Er ]\ib%c ) +0(( m)2) - 8%be b%.

With real spin and valley degeneracy taken into account, the conductivity of graphene is
Ographene = 4 (O'I + O'II) (577)

in terms of the quantities defined in Eqgs. (5.74)-(5.75). The leading correction is positive in
all considered approaches. Below, when we include principal value terms in the calculation,
this will no longer be the case. We further observe that the leading correction depends
on 7", but not on Z*. Thus the difference in 7%, and thereby in J:[f-], is the one that is
crucial for the discrepancies between the approaches.

For screened charged impurities with W (k, Af) = 27 nimp (2k sm| o+ kr r)~? the

integral in o’/ is convergent. For point-like impurities, K (k, Af) = 27rv W() with Wiy =
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5. Pseudospin-orbit coupling corrections in the Boltzmann conductivity of graphene

Wo = const. & nimp, it has a logarithmic divergence in the monolayer case (since Z o k/vp)
unless an ultraviolet cut-off is introduced. Let us nonetheless make the observation that
It = K/4and I~ = 3K /4. Thus, given a cut-off, the leading quantum correction is larger
by a factor of 3 with the approach GIlwGKBA (Z* = Z~) compared to the approaches
G1lwAA/LvN/NSO (Z® = Z%). The results of the other approaches lie midway between
these two.

For point-like impurities in the multilayer case |[N| > 2 all approaches coincide because
It =1K=T%*=1", henceI* =7* = I* =: Z, and furthermore 7% = 0. With b = a k"
and Z = ;K = % Wpy the zero temperature limit of the untruncated form (5.74) is
easily carried out. With e and A restored, the result reads

ol = oy, (5.78)
2 2
ot e N |N|
S A . 5.79
’ oh 4(IN|— 1) "M 2 ke (5:79)

All integrals converge without any ultraviolet cut-off. See also Trushin et al. [2010] for the
bilayer case N = 2.

For an ac field of the form E(t) = ¢!“! E one obtains with the ansatz f,iE) (t) = et f,iE)
the Boltzmann equation

et (it +ifl, (P1+ Bouf - 117)) = 0, (5.50)

from which the Drude result, Eq. (5.60), is modified to give

CLkp
471'(1 +iWTtrF) '

go(w) = (5.81)

In the pseudospin coherent formulation of the previous section, the term iw f(F) et®t

enters as the diagonal matrix iw 14 in Eq. (5.66), i.e., we obtain the ac result from the dc
result for the n = 41 Fourier components with the substitutions

It 5 It +iw, I8 5 IF +iw, T +iw, 5~ T1°. (5.82)

With this, the dc result from Eqs. (5.69)-(5.71) is changed into the ac expressions

fiEE) _ —Eku\z<[4b2+(IA+iw)(IK+iw)] 3kfgq+IS[IK+W]/1f§q>

Wiy =0 B0 %7 (5.83)
fcgE) _ —E, IJ\lﬂ (ZF +iw) <IS O fyt + [Z7 +iw] ;f§q>

Vi % oo 4();‘73(”2 ’ (5.84)
= mg (o e L)

Vi % feo 4b227bw2 , (5.85)
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5.8. Leading-order correction with principal value terms included

with the determinant |M| also shifted according to the prescription (5.82). We have
complemented the results with the pure sample limits (Wy,r — 0).

Ac terms are derived from dc terms by replacing a real quantity Z by an imaginary
quantity iw. Thus, the real part of the frequency dependent contributions to the con-
ductivity o(w) steps up or down in even powers of w/Z, whereas an odd power would be
required to obtain a (£kp)? correction in Reo(w) from the dc result opruge ~ Ckp or its
dc corrections ~ (¢kp)~!. According to this argument there are no corrections (¢kr)° to
Reo(w). This result should be contrasted with the frequency dependent corrections of
order (¢kg)? found by Culcer and Winkler (see Eqgs. (27) and (31) in Culcer and Winkler
[2007D]).

5.8. Leading-order correction with principal value terms included

In this section we include the principal value terms and recalculate the first quantum
correction to the conductivity using a recursive approach in the spirit of the derivation by
Culcer and Winkler [2007b]. The iteration is only taken to order (¢kr)° in the distribution
function, but it could in principle be reiterated to access terms of order (¢kr)~! and higher
orders.

General collision integrals derived within a quantum coherent approach typically contain
principal value terms (a.k.a. reaction terms, off-shell terms, off-pole terms) alongside with
the delta function terms (elastic terms, on-shell terms, pole terms). The delta functions
convey the sharpness in energy of the idealized semiclassical quasiparticles. The quasi-
particles are the almost free particles that obey a Fermi-Dirac distribution in equilibrium,
whereas the real electrons follow a distribution with fatter tails due to the interactions
Lipavsky et al. [2001]. The principal value terms are a reminiscence of the quantum co-
herent nature of the underlying particles and captures the deviation from the classical
point-like “billiard ball” picture conveyed by the fully semiclassical (i.e., quantum inco-
herent) Boltzmann equation. One such example are the principal value terms related to
the quickly decaying coherences stemming from the redressing of the quasiparticles within
the interaction radius [Lipavsky et al., 2001]. The corresponding decay time (the collision
time that the particles spend within the interaction radius) is in the kinetic regime by
assumption much shorter than the relaxation time (roughly 7¢;). Therefore, an electron
quickly recovers its asymptotic quasiparticle nature after a collision. In the spectral func-
tion the off-pole part is the broad background surrounding the quasiparticle peak [Bruus
and Flensberg, 2004]. For spinless electrons there are elaborate ways of separating out the
off-pole part from the quantum kinetic equation, with the remains becoming the standard
Boltzmann equation for the quasiparticles [Lipavsky et al., 2001].

The electron-hole coherence (or pseudospin-coherence), too, is a deviation from the fully
semiclassical particle picture—in this case not because of interaction effects but because
of the Zitterbewegung in the presence of (pseudo)spin-orbit coupling. It is therefore no
surprise that the spin-orbit coupling contributes with its own principal value terms adding
to those related to the quasiparticle redressing. However, this time we do not want to
separate out the principal values in deriving a Boltzmann type equation since the Zitter-
bewegung is known to be inherent in the asymptotic free particle. We want to derive a
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5. Pseudospin-orbit coupling corrections in the Boltzmann conductivity of graphene

kinetic equation while keeping track of electron-hole coherent effects. Therefore, we should
keep the corresponding principal value terms.

A technical problem connected with the principal value terms is that the two momenta
k and Kk’ in the collision integral are no longer confined to the same surface as defined by
€ = € = . In the calculation of the previous section, which has neglected the principal
value parts, this has allowed us to plug out the Fourier coefficients f,.,, (k) from the integrals,
the remains of which became matrix elements like Z+ etc. The problem of solving the
Boltzmann equation to all orders in (¢kr)~! was thus reduced to a simple matrix inversion.
With the principal value terms we have to confront difficult integro-differential equations.
Auslender and Katsnelson [2007] present an analytical solution to all orders in (¢kg)~! for
point-like impurities. Here, a solution for screened charged impurities will be addressed
within a recursive scheme, for which no simplifying assumption about the potential is
needed.

In order to obtain all the other cases we express J P in terms of JFX and JFY and
combine them according to (5.46). In particular, the case GlwAA/LvN/NSO above cor-
responds to JP = gPX — jPY where

TEX = 4 [ T P_sin NAGS.

jEPY _ _fk Wkk'P sin NAOfL,
JEX = _fk, Qﬂ (=P_cos NAOf. +Pif.),
TP = [, el (P f P cos NAGS). (5.86)
JPX = — f WQW (P [sin NAG f; + cos NAG f]
—P, [— sin NAOfé + cos NAQféD )
T = e (PSP f)

For the same reasons as before only the Fourier components n = £1 of the nonequilibrium
part f£) can be nonzero. Therefore one only needs to consider

TiX =0,
VR +1fk, 2 sin NA@sin AOf.,
T = —fk, ’“ (=P_cos NAOf.1 + Py cos AOfL,),
T = [ 2,r " (=P4fa1 + P_cos NAOcos AOfL,), (5.87)
NVAREE fk, k' (P_cos NAOfa
+ [z sin NAfsin A0 f{ + cos NA cos A@fél}) ,
T = = [y ’“ (Pyfer — P—cosOAfZ).

Both in Egs. (5.86) and in Egs. (5.87) we have left out terms that vanish due to the
assumed symmetry W (—Af) = W(A0) of the impurity potential. We will see below that
for the calculation of the first quantum correction one only needs J} [f;] and jg [f], i.e.,

Wi 1
PX[r1 _ kk
Ul Z/, P <b+b’ Ab) sin NAO smAbel,
Wik 1 1
PY . kk
T, 2] = Z/, 5 <b+ 7 Ab) sin NAG sin Af f., (5.88)
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5.8. Leading-order correction with principal value terms included

The Boltzmann equation for f(*) (we henceforth drop the the superscript (E)) can be
written as

D = S[fl+T°lf1+TTIf, (5.89)

where D is the driving term with

D; E, ?ka I‘Zq
Do |=| By |, (5.90)
D, 0

S|[f] is the spin-precession term

Splf] 0
Selfl | =1 —2bf. |, (5.91)
Sz{f] Qbf@

and the functionals 7% and J¥ are read off from Eq. (5.62), Table (5.2), and Eq. (5.86).
A more informative way of writing Eq. (5.89) is

D = S‘[fz] + jg[ff,a fé] + jé [fz] ) (5'92)
0 = Slfd + U+ T el

For notational simplicity, we now prefer to see the expansion of f in orders of (¢kp)~?
as one in powers of Wy, i.e.,

f — f(*l) + f(o) + f(l) + ... (5.93)

with (") & W™ x (¢ kp)~™. Here f (=1 & W1 is the lowest order result that yields the
Drude conductivity. Notice that the functionals J[f] increase the power in W by one,
whereas the action of S[f] is neutral in powers of W. Therefore, the two latter equations
do not allow fa and £, to have a lowest order component W1, since S[f (*1)] would return
a term of order W~ that could not be matched by any of the other terms D (~ W°) and
J|f] (~ W? and higher). The absence of Sy in the first equation (the diagonal components

do not precess) is what allows only f; to have a term of order W1, Solving Dy = Tl fé_l)]
(~ WO) yields f; ") = — B 7 O f.

The components f(©) are found by solving the system of equations

0 =0 + BUD N+ TR (v
D: = S + R+ o, (~ W) (5.94)
= S + 0 + TP (w0

where fé_l) is known. The two latter equations constitute a closed set from which we

)

can find féo) and fz(o) in a first step. Only the known component fé_l appears in the
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5. Pseudospin-orbit coupling corrections in the Boltzmann conductivity of graphene

principal value parts. The system of equation is solved as in the previous section by Fourier
decomposition and matrix inversion,

Mf?q B 0 —2b féo) ZISf( 1) 0
() = (o ) ) () TR

o ~# 751G )
() - (#Rsaw)

Notice that if we discard the principal value terms J° we find fcgo) = 0, which, together
with the first equation in (5.94), implies féo) = 0. This is exactly what the solution (5.68)
tells us: there is no W9 correction (i.e., (¢kp)® correction) to the conductivity in (5.76);
only f, acquires a contribution of the order W°. The last line of (5.95) indeed corresponds
to f, in (5.68).

Including principal value terms yields a nonzero féo). It also gives a nonzero féo) ac
cording to the first equation in (5.94),

0 = FUD N+ T = —2t £ i) + TR (5.96)

The nonzero in-plane components

Sy = g bI+ TR+ = THO),

= _%jzl[fg_ 4y (5.97)

result in a correction to the conductivity. In particular, this correction is of order (¢kp)?,
since the components in (5.97) are of order (¢kp)°.

A closer inspection shows that fg(l)) /E* is real and fé?)/é’* is imaginary, as it was the
case in (5.68). This implies (consult equations (5.69) and (5.65)) that féo) = E;2 fé(l])/é’*

and féo) =E42 fgl)) /i E*. The first quantum correction do to the conductivity is therefore
for arbitrary IV given by

Edo = 2/<I§;f£0)8kb+éféo) A;f) (5.98)
O (0)
= 2E/kdk bl b + fg*]\l/:’ o (Ckp)°.

From Egs. (5.97) one obtains the first quantum correction as a combination of the contri-

butions
kdk 1 73 Nb
X _ (=1
b7 = 2/2m5*2b< Ob + ) alf

soY — +2/kdk b j‘P[fz(O)]' (5.99)

2 ExI+Tb1
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5.8. Leading-order correction with principal value terms included

This can be written as

IS / /
50X — +i kdk( Ik g+ Nb)/k:dk 1 k:feq/

2m ) 27 \I k 2 I,
. Wik o sin ]ZQA_Q ;,ign — )
o [ L [EOE (B g )
. Wik a0 sin ]ZQA _9 ;i; AO ,

(5.100)

where we introduced the notation Wigag := Wi, It is easily seen that for point-like
impurities the angular integral vanishes trivially for |N| > 2.
At zero temperature the correction (5.100) can be written as

kp kdk [ I¢ Nb sin NAO sin A6
soX = — S ZEgb+ — /W
7 87r2IF+/ 27 <z+ Ko ) MRS Cpp?

kr I3 k;dk 1 / sin NAG sin A8
8 b | W,
S 72 I+ k kkpAO b2 _ bF2

N k: dk 1 sin NAO sin A6
8r2 ) 27 T 2oy

So¥ =

8kb/ dk’ Wik Ao (5.101)
kg 0’

and in the monolayer case N = =41 (with Oxb = % = wor and writing I,j =
ﬁ Jor Wikao sin? A#) this can be simplified to the form

_ e? fdk ﬁ fg/ Wikp o sin? A6
2mh Jor Wipkpao sin® A9 ’
? ke fp W in2 A
5oV = +-5 /d F 2f9 [N 81112 N
2mh k? — kg [, Wirao sin® A0

o0 1 f s Wik A sin? A6
dk / dx’ ERY: f9 T TN (5.102)
kg o' VVEkkAg S

doX =

Here, we reintroduced e and h. For point-like impurities these integrals are easily evalu-
ated:
2
5UX/267rh = b dk 2 k2 = *10g =T O((ﬁ) )

00" 35 = fo’“Adkkz,k%+kadkf’“Adk' L= o),

where an ultraviolet cutoff ky > kp was introduced. Notice that only 50X is ultraviolet
divergent.
The total quantum correction is

b0 = 4(60* £d0Y) (5.104)
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5. Pseudospin-orbit coupling corrections in the Boltzmann conductivity of graphene

with the relative prefactors (possibly zero) given by (5.46) for the different approaches.
Notice that here, in contrast to the situation in section 5.7, not in all approaches the
leading quantum correction is positive. For point-like impurities in particular, we find

oo %
Gl GKBA | —log it — =
LvN & NSO & G1 AA —logﬁ—/F‘—i—%Q
Gl SKBA | —log (5.105)
G2 GKBA | -T
G2 AA +
G2 SKBA |0

The leading quantum correction is ultraviolet divergent for all the G1 approaches, in-
cluding the density matrix approaches, whereas it is convergent for the G2 approaches.
Furthermore, only the approach G2wAA gives a positive correction, namely

7 e?
bo = — (G2wAA). (5.106)
4h
In the Boltzmann regime ¢kr >> 1 this is a small positive shift to the much larger Drude
2
conductivity 409 = % Lkp = % nAstVQ for a constant potential Vi = V. We mention
imp Vg

that for screened charge impurities ultraviolet divergences are absent.

To obtain a contribution of order (¢kp)~!, which should explain the initial onset of
convexity in the conductivity as one approaches the Dirac regime, one can iterate this
recursive procedure. Since again one only needs to insert known distribution functions
into the integrals containing principal values, an analytical solution is possible although
increasingly cumbersome.

The result (5.106) applies to point-like impurities. Strictly speaking, in that case the
assumption of negligible inter-valley scattering should break down. It is therefore ques-
tionable if the results can be used to discuss actual experiments on graphene. This caveat
does of course not apply to numerical simulations of graphene including only one cone,
nor to topological insulators with only one Dirac cone to start with. Our main motiva-
tion, however, is graphene with screened charged impurities and in particular monolayer
graphene with the screening parameter ¢ := krp/kp ~ 3.2 relevant for samples on SiOq
substrates. We assume that this is already long-range enough for inter-valley scattering
to be of secondary importance. In that case the two-valley results and one-valley results
should be roughly the same, and we can discuss the former relying on results for the latter.
We can now speculate that our leading quantum correction could be one of the contri-
butions to the residual conductivity observed in the experiments of Chen et al. [2008].
The value of this correction depends only on the dimensionless parameter ¢s, which, for
monolayers, is independent of kr and hence independent of the electron density. This
leads to a rigid vertical shift of the Drude conductivity as a function of electron density
as illustrated in Figure 5.1. The size of this shift depends only on natural constants and
the dielectric constant hidden in ktgp. Thus, the quantum correction could depend on the
dielectric environment of the monolayer graphene sample.
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5.8. Leading-order correction with principal value terms included

We have already given a quantitative evaluation for the correction (¢kr)® in the limit
gs — 00, since here this limit coincides with that of point-like impurities. (This was not
the case for the Drude conductivity, see Section 5.3. There the absolute scaling with kp
in the scattering times was relevant, in contrast to the case of the correction (5.102).) We
have also evaluated the shift (5.102) in the opposite limit gs = 0 < 1 of an unscreened
Coulomb interaction. We find the corrections to be ultraviolet divergent and we find the
sign of oY to be the opposite. However, since ¢s ~ 3.2 > 1, we expect the limit g — oo
to be the more relevant limit. Therefore we expect also for the realistic value ¢s = 3.2
to encounter the case that only the approach G2wAA gives a positive value and that
this value is likely to be close to (5.106). In case inter-valley scattering is negligible with
gs = 3.2 this value should then also be relevant for the two-valley situation and thus for
graphene experiments.

It is known that in real graphene samples puddle formation due to charge inhomo-
geneities leads to a variation in the Fermi level, see e.g. Das Sarma et al. [2011]. However,
the shift do derived here should be insensitive at least to small variations, as it is indepen-
dent of the Fermi level. In the case where the impurities are located at a non-negligible
average distance d from the graphene plane, this introduces a second dimensionless param-
eter kp d, which depends on the density. In this scenario, o becomes density dependent
and the shift is no more rigid. However, in the Fermi momentum range ¢~! < kp < d~1,
which is the range where the Drude conductivity should be linear, the effect on the state-
ments above should be negligible. Thus, the residual conductivity we make predictions
for should be fitted only from the “strictly” linear part of the Boltzmann conductivity.

Monolayer graphene stands out in many respects and comes with many surprises com-
pared to multilayer graphene because of the linear dispersion and the unit winding number
|IN| = 1. (See also Shytov et al. [2006] and Kailasvuori [2009] on why the case |[N| =1 is
special.) As stated already in Section 5.3, monoalyers are different from multilayers and
2DEGs with respect to how the screening depends on the electron density. Therefore, we
cannot straight away discard as unphysical the finding of finite effects of electron-hole co-
herences far away from the Dirac regime, although we expect no such effects in general and
in particular not in multilayers. In both monolayers and multilayers the Fermi surface—
and therefore the number of electrons contributing to a nonequilibrium response—grows
linearly with krp. A Kubo formula for the conductivity (see e.g. Eq. (2) in Trushin et al.
[2010]) disfavors matrix elements between states of large energy differences. The Zitterbe-
wegung contribution from each electron would therefore be suppressed by the large energy
denominators 1/[et(kr) — e (kp)] ~ e '(kp). In the case of multilayers the suppression
wins for large kp. However, in the monolayer case the two effects compensate each other,
wherefore a finite effect of Zitterbewegung at large energy splitting is not inconceivable.

One might worry about the electron-hole coherent effects being negligible compared to
weak localization corrections. However, this is not necessarily the case, as was shown
in recent calculations by Trushin et al. [2010], where the analytically found electron-hole
coherent conductivity is close to the numerically exact value, with the small and rather
constant discrepancy that is probably due to weak localization. Nor should the electron-
hole coherent shift in monolayers be negligible in the residual conductivity since we find
it to be of the order of one quantum of conductance. Further, the different leading-order
quantum corrections can be cleanly separated and can thus be treated independently.
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5. Pseudospin-orbit coupling corrections in the Boltzmann conductivity of graphene

From the kinetic equation treatment of weak localization in Rammer and Smith [1986]
we see that the weak localization correction takes only the Drude response part of the
non-equilibrium Green’s function as an input and not the full Green’s function includ-
ing contributions of higher order in (¢kg)~!. Thus, like the Drude response, the weak
localization correction should be independent of the choice of formalism. Therefore, we
believe that the weak localization correction and our (¢ kr)? correction can be considered
separately and that the issue of formalism affects only the latter.

5.9. Summary

In this chapter, we have compared several derivations of semiclassical spin coherent Boltz-
mann equations for a relevant physical problem where differences could matter: the
electron-hole coherence originated quantum corrections to the Drude conductivity for
Dirac electrons as encountered in graphene or in the surface states of 3d topological insu-
lators. We find these quantum corrections to be sensitive to the approach. The leading
quantum correction in monolayer graphene turns out to be particularly interesting as a lit-
mus test, and we suggest that a precise determination of this contribution from numerical
work or experiments might single out a unique approach as the correct one.

This discrepancy between established approaches was our motivation to search for an
ansatz that provides the link between a derivation based on the Liouville-von Neumann
equation and a Green’s function derivation. The simple structure of the collision inte-
grals in their general forms as derived here makes this search unambiguous. We find the
missing link, at least for the case of electron-impurity interactions in the lowest Born ap-
proximation, and propose a novel “anti-ordered” ansatz of a simple albeit counterintuitive
form.

The fact that the (pseudo)spin-orbit interaction is an important contribution in the
Hamiltonian is essential for the differences between formalisms to arise in the first place.
On the other hand, the specific feature of graphene that the pseudospin-orbit coupling
constitutes the entire kinetic energy simplifies the collision integral considerably and makes
an analytical solution possible. The analytical treatment becomes non-trivial due to the
presence of principal value terms. We have discussed the physical origin of these terms and
have explained why one should take them seriously in the present context. In addition, we
have shown how to deal with them on a practical level for for not too long-ranged scalar
impurity potentials. We have kept the winding number of the spin-orbit coupling general
in order to address single layer graphene as well as multilayer graphene.

The first quantum correction depends both on the chosen formalism as well as on
whether or not principal value terms are included. With principal value terms neglected
the leading-order quantum correction is of order (£ kr)~!. When they are included and do
not vanish the leading quantum correction is of order (£kr)®. An electron-hole coherence
originated quantum correction ~ (£kp)? is a counterintuitive result, as it implies that
electron-hole coherent effects remain finite even far away from the Dirac regime. We dis-
cussed why such a result in the case of monolayer graphene is not absurd, albeit surprising.
For multilayers we do not expect such a result, and indeed for point-like impurities the
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5.9. Summary

correction ~ (£ kp)? vanishes trivially.?

We argued that in monolayers the shift due to electron-hole coherences depends only
on the dielectric constant through the dimensionless parameter ¢s. The leading correc-
tion as evaluated for monolayers with point-like impurities should be closely related to
the one relevant to experiments, since for monolayers on SiOs substrates the screening
parameter g5 =~ 3.2 is larger than one, and therefore it is arguably more related to the
limit gs = oo than to the limit ¢s = 0. Such a shift could be one of the contributions in the
residual conductivity observed in recent experiments [Chen et al., 2008]. Our contribution
0o given in Egs. (5.102) depends crucially on the approach to the derivation of collision
integrals. With an accurate measurement of the residual conductivity and a precise knowl-
edge of other contributions (e.g. weak (anti-)localization) that one would need to take into
account, monolayer graphene would offer an unprecedented setting for experimentally sin-
gling out the appropriate approach among the alternatives studied in the present chapter.
In a comparison with numerics one would of course have a more controlled setting. The
observed residual conductivity is positive. If also the contribution from electron-hole co-
herences was (experimentally or numerically) determined to be positive, this would make
a case for the approach called G2wAA, which uses the “anti-ordered” ansatz proposed
here.

Historically, the more technical work on the problem of ansatz and in particular the
introduction of the Generalized Kadanoff-Baym ansatz (GKBA) [Lipavsky et al., 1986]
was prompted by the study of high-field transport for spinless electrons, see Haug and
Jauho [2008]. It would therefore be interesting to study the consequences of our ansatz
on transport beyond linear response. The two ansatzes certainly differ when electron-hole
coherent effects are important, but it is not known to us if there is a difference for spinless
electrons.

All approaches considered in our comparative study might still have to be refined in
the future in order to accurately describe (pseudo)spin coherent effects on transport. The
elaborate literature on the Boltzmann regime transport in spinless electrons offers at least
two directions for improvement that could also be relevant for the quantum corrections in
the conductivity due to (pseudo)spin-orbit interactions:

The first possible refinement consists in a proper accounting for of all terms that could
contribute to linear order in the electric field, e.g., by taking into account that also the
noninteracting response functions G} and G°* are modified by the electric field and that
in a gauge invariant formulation the first-order gradient expansion of the self-energy terms
includes electric field contributions. For electron systems with a trivial spin index these
issues have been discussed for more than two decades in the context of high-electric-field
transport [Zubarev et al., 1996; Haug and Jauho, 2008; Mahan, 1990]. In the context of
spin-orbit interactions they have been addressed recently by Kailasvuori [2009].

A second way to improve upon the presented kinetic description could lie in an accu-

S5For screened charged impurities in multilayer graphene one encounters the situation that the potential
approaches the limit of the unscreened Coulomb potential when one increases the density (opposite behavior
to monolayers). Since our kinetic description disregards renormalization effects of the free drift, our analysis
should break down when the quasiparticle spends a sizable fraction of its time within the range of the
impurities. Therefore, we do not attempt to evaluate the correction ~ (£ kr)® for multilayers with charged
impurities in the high density limit, where the screening is weak.
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5. Pseudospin-orbit coupling corrections in the Boltzmann conductivity of graphene

rate extraction of the quasiparticle part f in the kinetic equation for p (or G<) and a
proper incorporation of renormalizations of the free drift as presented by Spicka et al.
[1997]. This procedure unveils the qualitative difference between the electron distribution
function p and the quasiparticle distribution f. The difference appears as a wave function
renormalization factor and as an extra term containing principal values. The latter term is
related to the quickly decohering off-shell motion from the redressing of the quasiparticle
within the interaction radius. For single-band electrons these issues have been investigated
already for some two decades, e.g., in the context of Boltzmann equation treatments of
Fermi systems with strong two-body interactions (for an extensive review we refer to Li-
pavsky et al. [2001]). Here it becomes important to recognize that f¢4 = fpp # p®1L. Only
by properly separating out the coherences related to the quasiparticle redressing one can
in a controlled way extract a Boltzmann equation, which can then be solved by linearizing
in deviations from an equilibrium state described by the Fermi-Dirac distribution frp.
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6. Conclusions and QOutlook

In the present thesis, we have presented a semiclassical approach to relaxation and trans-
port phenomena in systems where (pseudo)spin-orbit coupling plays an important role.
We have focused on a coherent treatment of the (pseudo)spin degrees of freedom in kinetic
equations and the resulting transport equations.

In the context of spintronics, the relaxation of the persistent spin helix has been dis-
cussed. Our work is motivated by the recent realization of a long-lived helical spin wave
inside a spin-orbit tuned GaAs/GaAlAs quantum well [Koralek et al., 2009]. The obser-
vation of an intriguing temperature dependence of the lifetime of this persistent spin helix
has initiated our investigation of the influence of electron-electron interactions in combi-
nation with possible symmetry breaking mechanisms, which cause a finite lifetime in the
first place. Our main finding is that, at finite temperatures, the magnitude of this life-
time results essentially from an interplay of cubic Dresselhaus spin-orbit interaction and
electron-electron scattering. We have proposed a modified, spatially damped sinusoidal
spin profile for a transient spin grating experiment in order to enhance the lifetime. In
theory, the infinite lifetime can thus be restored even in the presence of SU(2) breaking
mechanisms as long as these appear as relaxation rates in the semiclassical spin diffusion
equation. More generally, our results can be viewed as a generalization of the Boltzmann-
equation based derivation of spin Coulomb drag for the collinear case [Flensberg et al.,
2001] to a coherent description, which is necessary to capture spin precession, e.g., in the
presence of intrinsic spin-orbit coupling.

We have furthermore investigated the influence of the Hartree-Fock mean field interac-
tion on the persistent spin helix state. This exchange field causes an additional precession
term that rotates anisotropic parts of the spin distribution function around the local spin
density. The resulting nonlinear corrections in the spin diffusion equation have important
consequences: (i) the lifetime of the persistent spin helix can be enhanced considerably
and (ii) the pattern is modified and acquires a finite third spin component. In addition,
higher spatial harmonics occur as a consequence of the Hartree-Fock term.

In the context of graphene, we have executed a comparative study of several approaches
that are used to derive pseudospin coherent Boltzmann equations. We have presented a
calculation of the resulting corrections to the Drude conductivity of graphene including
leading-order corrections due to electron-hole coherences, which could possibly constitute a
part of the residual conductivity observed in recent experiments by Chen et al. [2008]. We
have found that it is important to include the (often neglected) Principal value terms in the
collision integrals. Morover, the result has turned out to depend on the chosen formalism
for the derivation of the kinetic equation. We have proposed a modified ansatz distribution
(replacing the Generalized Kadanoff-Baym ansatz) that would restore the consistency
between a derivation of the kinetic equation based on the Liouville-von Neumann equation
and a Green’s function derivation.
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The results presented in this thesis have several avenues for future research. In con-
nection with the persistent spin helix it would be interesting to include in our semiclas-
sical theory further relevant effects that break the SU(2) symmetry. Natural candidates
are disorder in the local Rashba spin-orbit coupling [Sherman, 2003] or spin-dependent
electron-electron scattering [Glazov et al., 2010]. The description could also be extended
to drifting spin patterns [Yang et al., 2011], which are conceptually closer to (useful) spin-
tronics applications. Another prospect for future work is the investigation of the effects
of hyperfine interaction with nuclear spins on the persistent spin helix. This problem
should be accessible to an approach that is very similar to the presented treatment of the
Hartree-Fock interactions.

All approaches considered in our comparative study of the Boltzmann conductivity of
graphene might still have to be refined in the future in order to accurately (and con-
sistently) describe (pseudo)spin coherent effects on transport. One possible direction of
improvement consists in a proper accounting of all terms that could contribute to linear
order in the electric field, e.g., by taking into account that in a gauge invariant formulation
the first-order gradient expansion of self-energy terms includes electric field contributions.
For electron systems with a trivial spin index these issues have been extensively discussed
in the context of high-electric-field transport [Zubarev et al., 1996; Haug and Jauho, 2008;
Mahan, 1990]. In the context of spin-orbit interactions they have been addressed recently
by Kailasvuori [2009]. A second way to refine the kinetic description could lie in an accu-
rate extraction of the quasiparticle part in the kinetic equation for the density matrix and
a proper incorporation of renormalizations of the free drift as presented by Spicka et al.
[1997].
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A. Coarse-grained dynamics in the
D’yakonov-Perel’ regime

In Chapter 3.3.2 we argue that in order to describe the slow precession-diffusion dynamics
of the real space spin density S in the D’yakonov-Perel’ regime (bpm < 1), we can neglect
the time derivatives in the kinetic equations for the anisotropic components of the spin
density. This amounts to replacing the time derivative of the real space spin density
by a coarse-grained ome, i.e. ;S — AS/At with At =~ b;l > 7. To see this also
formally, consider a simplified version of the Boltzmann equation (3.16) with precession
about the Rashba field as the only driving term and without electron-electron interactions.
The generalization to our actual problem is then straightforward. The isotropic equation
integrated over k then reads

ds dk ,
s = /(%)2 2bp(k) X s (t). (A1)
The anisotropic equation is
dsg 1 sp1(t') Aw
- L + ey f'(er) S(t') x br(k). (A.2)

Within our coarse graining approximation we have a constant slope AS/At within every
time interval At around ¢. Thus replace in (A.2) S(t') = S(¢) + %‘?(t) (t' —t) and solve
fOl“ Sk71(t/),

djf,’l + 4% f'(ex) <S(t) + %(t) (t' - t)) x br(k).  (A.3)

Sk,l (t/) = -7

t+ 5
Plug this in (A.1) and take the temporal average, bp ft_ﬁ dt' [Eq. (A.1)], to obtain
pIy=

AAf(t) = 4% (2‘17f)2ff(ek)2bR(k) x (S(t) x br(k)) (A.4)
_bFT/(Qd:;QQbR(k) X [sp,1(t +1/2bp) ;sk71(t —1/2bp)] .

O(bpT)

Neglecting the second term, since it is of higher order in the small bp7 (the anisotropic
components of the distribution function arise only as a consequence of spin-orbit coupling),
we arrive at what we would have obtained by simply neglecting the time derivative in
Eq. (A.2), i.e., by inserting the steady state anisotropic equation in the isotropic one.
Thus, to leading order, it is sufficient to find the (quasi-)equilibrium solutions for the
anisotropic coefficients.
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B. Evaluation of the two-body collision
integrals

In this appendix we bring the expressions of the spin relaxation rates due to electron-
electron scattering, which play a key role in Chapter 3, to a form that is well suited for
numerical evaluation with standard Monte Carlo integration routines.

The winding-number-+1 electron-electron collision integrals

The electron-electron relaxation rate 7__ el ; for winding-number-+1 and liear-in-momentum
parts of the spin distribution function is obtained from Eq. (3.42) with Eq. (3.43). When

we restore i and abbreviate 3 = (kgT) ™!, we have

1 2h
= — s /dkl/dkz/dkzg O(ep, + €, — €y — €ky+ka—ks) (B.1)

Te-e,1 k‘%m (2m)4

[V (k1 — ks|)[* [1 = fer;)] [L = f(€ratha—ta)] f(€rs) f(€Ry)
[COS([93 — 91]) ]{33 — ]{31] .

The exchange part vanished due to momentum conservation. Substitute ks — ki + q,
relabel k1 — k, ko — k’ and make use of the identities

O(er + €pr — €ktrq — Ek:’—q) = / dhw (e, — €pqq — Tw) d(ery — €x'—q T hw)
and

Fle) 1= o+ ) = Lo =St )

to replace in the integrand:
O(ex + e — ehrq — ar—g) [1 — flensq] [1 — flew—g)] fler) flew)
(S(Ek — €k+q — h,(x}) 5(6k/ — €K g + hw)

00 1
- /OO e sinh?(3 hw)/2)
[f(ex) — f(ex — hw)] [f(exn) — flew + Iw)].

In the next step, translate the angular integral over 6y into one over 0,4, i.e., the angle
between k and q. Express 04 — 0 in terms of 0,:

k-(k+q) = Fkl|k+q|cos(fkrq—bk)
& k?4kqcos Org = k:\/k:2 + ¢% + 2k qcos Oy cos(Ox1q — k)
&  |k+4q|cos(Opiq—0k) = k+qcosty,. (B.2)
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B. Evaluation of the two-body collision integrals

With this, Eq. (B.1) becomes

EES hQﬁ/d V( )|2 cos2 6 /Oodwl
Teen  KZm2(2m)t | CINOVACS Ta | N2 (Bhw /2)

/ A §(eps — egr—q + ) [F(er) — flew + hw)]

[ ke = g ) [Fle) — e — )]k cos,.

Now write
m q wm
O(err — €pr hw = 1) O, — —
(Ek‘ €k’'—gq + ) th/q (COS k'q 2% + hk’lq> ’
m q wm
d(er — — hw) = 5 0 4 4 27
(ex €k+tq ) 2k g (COS kq T %k + hkq)

and substitute x = cos 0y, y = cos 0y, Exploit that the integrand is symmetric about 7
to write

2T 1 1
dOpg ... = 2 dx cee B.3
R b3)
and analogously for the )/, integral. We then have
1 h?B o0 d /d 1
= 5 T e a— [ —
Te-e,1 k%mélw o sinhQ(ﬁhw/Q) q (1+ a2q)2
1 1 q wm
K - T ) — s+ hw
/d /—1dy ﬂd(y o hk’q) [Flew) = flew + )]
1 1 q wm
= 4+ — — — k
/dk/_ldxmé<x+2k+hkq> [f(ex) — flex — hw)] kz
h?B o0 1 1
= dw—5——— [dg—F B.4
kpman ) o “smh?(ﬁnw/z)/ Ty oy (B4)
1
di’ 01 -Y?(K, qw ew) — flew + hw
Ty 00 ) ) ~ Sl )
X(k,q,w) )
dk k 01 — X°(k,qw er) — flex — hw
e O = X (k0. ) ~ (e )
with the functions
X(k,q,w) = —i—w7
2k hkq B5)
Y, quw) = L - 27" '
09 = Sy T hk g

The collision integral (B.4) is easily evaluated with, e.g., the “AdaptiveMonteCarlo”
method in mathematica.
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The winding-number-+1 electron-electron collision integrals

Next, the relaxation rate 71;6171 is obtained from Eq. (3.44) with Eq. (3.43):

1

7~—e—e,1

hp
= —W /// dkq dko dkg 6(6.% + € — €gtq — ek’fq) (BG)

k1= flewrql [1— flew—q)] fler) fler) [1— fler,)]
{21V (@)]? [cos(Or+q — Ok) [k + al* = k] + V(0) V(K" — k — q])
{k? — cos(Ok+q — Ok) |k + q|” + cos O k"> — cos(Opr_q — Ok) [K' — q|*} .

With Eq. (B.2) we have

cos(Okq — k) |k + q|? (k + qcosOry) (k* + ¢* + 2k g cos Oy,
& cos(Ogtq —Ok) |k + q?® -k = kq¢®+3k% cos Orq + q> cos Orqg +2Fk q¢? cos? Orq

In the third term of the last line we use

cos Oy = €08 0kq cOS O g+ sinOyy sin Oy . (B.7)

In the last term, express Og/_, — 0k in terms of Oy and O,

k-(k"—q) = k|k' —q|cos(Op_q—0k)

& kK cosbpr —kqcosby, = k\/k:’2 +q? —2k'qcos Oy cos(Ogr_q — Ok)
K (cos Orq cOS Okrq + sin Oy, sin Hk/q) — qcos i

& cos(Opr_q—Ok) =
\/k’2 +q? — 2K'qcos Oy,

(B.8)
& cos(O_q — k) |k — q?® = (k’2 +¢* — 2k'qcos Oyr,)
[k’ (cos Org cos Oy + sin Opq sinbrrg) — qcos O] -

For the argument of the potential in the exchange part we need

k' —q— k| = \/k’2—|—q2+k‘2 —2qk' cosOyr — 2k k' cosOp +2qk cos by
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B. Evaluation of the two-body collision integrals

with Eq. (B.7). Thus,

%6_1671 " kg Tk;fl (2n)4 /// dky dk2 dks 0(ex + €p — €krq — €1/—q)
k1~ f(ertql [1— flen—g)] fler) flew) [1 = fleny)]
{2V (@) [cos(Brrq — 0x) [k + af* — K] + V(@V(K ~ k — ql)
{k? — cos(Ok+q — Ok) |k + q|” + cos O k"> — cos(Opr_q — Ok) [K' — q|*}

;2 00 1 1
S I Jaa (B.9)
krmdn J_o sinh®(Bhw/2) q(1+ a2q>2

1

AW s O(1 = ¥ [F (e — f et + )]

b ey (1 = X%) [/ (ex) — flex — h)] e (* + 3K X +4°X +2k°X)
“tgrr | s | e

e L I COR(CE®)

b ey (1 = X%) [ er) — e~ )

1
s=+1 1+%\/k/2+q2+k2 —2qKY —2kk (XY +s/(1—-X2)(1-Y?2) +2¢kX
{—kq2 ~3K%X — 3X — 2k X2+ K3 (XY+3\/(1 —X2)(1 —Y2)>

(K4 ¢ — 2K qY) [k’ (XY+ sv/(1T— X2) (1 Y?)) - qX]}

with X = X (k,q,w) and Y =Y (¥, ¢,w) as defined in Eq. (B.5).
We used that

2 2
/ dé,, / dby f(cos Oy, cos Oy, sin Oy, sin Oy )
0 0

= 2 Zi /0 dek/o dOx f(cos Oy, cos by, s sin by, sinby) . (B.10)
s==1

The winding-number-+3 electron-electron collision integral

We proceed analogously to derive a tractable expression for 7 61’3 from Eq. (3.47) with
Eq. (3.43). We can write

7l = D+EX (B.11)

e-e,3

with D representing the direct part and FX the exchange part of the collision integral.
Both parts will be treated in the following,
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The winding-number-£3 electron-electron collision integral

Direct part

Let us first calculate the direct part:

2h
D = — 6 /dkl/dk2/dk3(5 €k, +€k2 6k1+k:27k:3) (B12)

14 (|k1 - k3! 21— flers)] 1 = f(hytha—ts)] f€ry) fleRy)
[cos3(03 — 01) k3 — k7]

h o0 )
B kf’pmf@w)‘l/dq'V(qNQ /_oodh‘*’/dk/dk S(ep — €nrq — Iw) 0(er — €gr_gq + hw)
) ~ Jlewsa)) [7lck) - J(exr-o) [cos 3(Ok+q — Ok) |k + q|* — K] .

sinh?(Bhw/2)

With Eq. (B.2), one has

cos3(Oprq —Ok) = 4cos®(Opsq — Ok) — 3c08(Okrq — Ok)
3
_ 4 k + qcos Oy, 5 k + qcos Ok,
B V% + ¢ + 2kq cos Oy, VR4 2+ 2kqcosOy, )
cos3(Opsq — k) |k +q® = 4(k+qcos qu)?’ —3(k + qcosbyy) (k2 + ¢ 4 2kq cos Okq)

= k34 kq® + 3k3gcos Orq + q¢> cos Orq + 2kq? cos® Orq
—4kq? sin® Org — 4¢3 cos Orq sin? Org -

Thus,

_ B o [Ty, L
b= k%m2(27r)4/ da|V(a)] /_oodwsinhZ(Bhw/Q)

/dkz’é(ek/ — g+ hw) [flew) — fler_q)]

[ dber = g = o) [F(er)  Flensa)
{k:q2 + 3k2q cos Orq + q3 cos Opq + 2kzq2 cos? Org — 4kq2 sin? Orq — 4q3 cos O sin? Hkq} .
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B. Evaluation of the two-body collision integrals

We then have for the direct part of the winding-number-+3 collision integral:

D =

w *
k¥mdr | o sinh?(Bhw/2) ! q(1+%%)?

! 1 1 q wm
/dk’ /—ldyﬂ(s(y_?k"thk’q) [f(ek/)—f(ﬁk/+hw)]

Jor [ ar Lo (o s 20 (1) - Slex - o

{k¢* +3k*qr+ ¢*v + 2k *2® — 4k *(1 — 2°) — 4¢Pz (1 — 2°)}
h? g o0 1 / 1
3 dw o2 a*
kimar | o sinh®(Bhw/2) q(1+ %1)2
1

dk’ i O(1 =Y?) [f(ew) — flew + hw)]

1
dkﬁ O(1 — X?) [f(er) — fex — hw)]
(k@ +3K X + X +2kPX? — 4k (1 - X?) — 43X (1 - X))

dg (B.13)

Exchange part

The exchange part of the winding-number-+3 collision integral reads explicitly:

EFX = k’%m 27[_ /dk/dk'/dq6 €L + €k — €k4+q — € /7q)

(1= Flensa)l [1 = flew—q)] £ler) flew) Vi) V(K — k — ql)
{k:3 — 08 3(Ok1q — Ok) |k + q|> + cos 30 k™ — cos 3(Op—q — O) |k — q|3}
h2
= k%mél(ﬁ /qu / dw/dk/dk: (€k — €hpq — Iw) 0(ep — €gr_q + Iw)
[f (er) = flenra)] [f(ew) = fler—g)] ,
sinh?(8hw/2) V(K =k —ql)
{k? — cos 3(O1q — Ok) |k + q|* + cos 30 k™ — cos3(0pr_y — Ok) [K —a|’} .

The first two terms are already familiar from the treatment of the direct part. They
contribute

k* —cos3(Opsq —Ok) |k +q® = —kq® —3k%qcosOry — q° cos Oy — 2k ¢° cos? Oy,
+4 k ¢? sin? Orq + 4 q> cos Orq sin? Orq -

Use Eq. (B.8) to find for the last term

cos 3(Okr_q — k) |k’ — q? = 4 [k’ (cos Orq cos Oprq + sin Oyq sinby,) — g cos qu]3
—3 [k (cos b €08 g + sin Orq sinbyrg) — q cos O]
(K? + ¢* — 2K/ q cos )
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The winding-number-£3 electron-electron collision integral

Thus, we finally obtain for the exchange part:

K2 o0 1
B dq ;

S dyg —— _
k3m 167 J_o wsinhQ(Bhw/Z)/ q(1+%%)

/ A —— 01— Y?) [f(exr) — flew + hw)

EX (B.14)

VvV1-Y?2
1
dk\/ﬁ O(1 — X?) [flex) — flex — hw)]
1

SH1+ S\ 2+ @4k - 2g kY — 2k K (XY +5y/(1 - X2) (1 Y2) +2¢k X
{~kq® -3k qX —¢*X =2k *X? +4k*(1 - X?) +4¢°X (1 - X?)

4K [XY+s\/(1—X2)(1 —YQ)F—Sk’?’ [XY+S\/(1—X2)(1 —YQ)}

4 [k/ (XY+3\/(1 X1 —Y2)) - qu

+3 [k' (XY +sy/(1— X2) (1 Y2)) _ qX} (K2 + ¢ — 2K qY)}

with, again, X = X (k,q,w) and Y = Y (¥, q,w) as defined in Eq. (B.5).
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C. Details on the anti-ordered
Kadanoff-Baym Ansatz

In Lipavsky et al. [1986], the correlator G< is divided into the auxiliary correlators

G<'(t1,ta) = O(t; —t2)G=(t1,t2),
G<%(t1,ta) = O(ta —t1)G<(t1,t2). (C.1)

By acting on G<" with (G®)™! from the left, using the generalized Kadanoff-Baym equa-
tion (2.63) and then acting on the result with G® from the left one arrives at

t1 to
G<'(t1,t2) = iGR(tl,tg)G<(t2,t2)+/t dt/ dt' G}, S G5, + G LS5 Gy,
2 —00

t1 to

G<(t1,t2) = —iG<(t1,t1)GA(t1,t2) + / dt / dt' G}, 25/Gpy, + GE L, 20 Gl
—00 t1

(C.2)

We complemented this with the corresponding result for G<* with (GA)*1 and G* instead
acting from the right. The first terms to the right sum up to the GKBA. The integrals
are correction terms that fulfill several natural criteria:

(i) On the time-diagonal ¢; = t5 they vanish, rendering the GKBA exact.

(ii) None of the integrals stretches to t = 400, i.e., the result respects the causality of
the Kadanoff-Baym equations.

(iii) One can derive the same equations for G~ i.e., particle-hole symmetry remains.
(iv) The spectral identity G< + G> = i(GR — G*) is still satisfied.

The solution can be used to determine G< iteratively to the desired precision. Thus, the
GKBA can be seen as the first term in an expansion in the interaction strength. However,
in Lipavsky et al. [1986] it is noted that, on top of that, the arguments of the self-energies
Y4 run over disjoint intervals, which makes the integrals even smaller and relates it to the
collision time 79(< 7, ), i.e. the small time that the particles spends within the interaction
radius.

For the derivation of the anti-ordered ansatz, we copy this treatment but act with the
response functions from the opposite sides (i.e., act on G<* with (G®)~! from the right,
use the generalized Kadanoff-Baym equation (2.63) and then act the result with G® again
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C. Details on the anti-ordered Kadanoff-Baym Ansatz

from the right). This gives us instead
t1
G<'(t1,t2) = iG<(t1,t1)GR(t1,12) +/ dt'(GRE< + G=2* — ¢<"2R), v Gh,, |

to
G<M(t1,t2) = —iGA(t1,t2)G=(t2,12) +/ dt G (ZRGS + Z5G* - 2AG)y, .
(C.3)

The criteria (i)-(iv) are still satisfied. Note in particular that the causality is respected.
However, the result is a bit more complicated and this time the variables ¢ and ¢’ in
the self-energies no longer run over disjoint time intervals. Our conclusion is that the
expansion can still be seen as one in the interaction strength but no longer as one in
the collision time. However, when comparing Boltzmann equations derived using Green’s
function techniques with one derived with a Liouville equation approach, it is sufficient to
be consistent to the given order of the interaction.
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Abstract

The coupling of orbital motion and spin, as derived from the relativistic Dirac equation,
plays an important role not only in the atomic spectra but as well in solid state physics.
Spin-orbit interactions are fundamental for the young research field of semiconductor spin-
tronics, which is inspired by the idea to use the electron’s spin instead of its charge for fast
and power saving information processing in the future. However, on the route towards a
functional spin transistor there is still some groundwork to be done, e.g., concerning the
detailed understanding of spin relaxation in semiconductors.

The first part of the present thesis can be placed in this context. We have investi-
gated the processes contributing to the relaxation of a particularly long-lived spin-density
wave, which can exist in semiconductor heterostructures with Dresselhaus and Rashba
spin-orbit coupling of precisely the same magnitude. We have used a semiclassical spin-
diffusion equation to study the influence of the Coulomb interaction on the lifetime of
this persistent spin heliz. We have thus established that, in the presence of perturba-
tions that violate the special symmetry of the problem, electron-electron scattering can
have an impact on the relaxation of the spin helix. The resulting temperature-dependent
lifetime reproduces the experimentally observed one in a satisfactory manner. It turns
out that cubic Dresselhaus spin-orbit coupling is the most important symmetry-breaking
element. The Coulomb interaction affects the dynamics of the persistent spin helix also
via an Hartree-Fock exchange field. As a consequence, the individual spins precess about
the vector of the surrounding local spin density, thus causing a nonlinear dynamics. We
have shown that, for an experimentally accessible degree of initial spin polarization, char-
acteristic non-linear effects such as a dramatic increase of lifetime and the appearance of
higher harmonics can be expected.

Another fascinating solid-state system in which effects of (pseudo)spin-orbit coupling
come to light is monolayer graphene. The graphene Hamiltonian entirely consists of
pseudospin-orbit coupling, yielding the peculiar Dirac-cone band structure. In the sec-
ond part of this thesis, we have calculated corrections to the electrical conductivity of
graphene in the Boltzmann regime, which are due to pseudospin coherences. We have
found that several generally well-established formalisms for the derivation of kinetic equa-
tions yield different results for this problem. We cannot resolve this discrepancy, but we
make propose an alternative ansatz for the nonequilibrium Green function, which would
resolve some contradictions. The calculated corrections could possibly explain a part of
the experimentally observed residual conductivity in graphene.
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Kurzfassung

Die auf die relativistische Dirac-Gleichung zuriickgehende Kopplung von Spin- und Trans-
lationsfreiheitsgraden spielt nicht nur in der Atomphysik eine groie Rolle, sondern sie
macht sich auch und besonders im Festkorper auf vielfaltige Weise bemerkbar. So ist die
Spin-Bahn-Kopplung eine wesentliche Grundlage des noch jungen Forschungsfeldes der
Halbleiter-Spinelektronik, welches von der Idee getragen ist, den Elektronenspin an Stelle
der Ladung zur (potenziell verlustdrmeren) Informationsverarbeitung zu nutzen. Auf dem
Weg zum Spintransistor ist jedoch noch einige Vorarbeit zu leisten, die beispielsweise das
detaillierte Verstdndnis der Spinrelaxation im Halbleiter betrifft.

Der erste Teil der vorliegenden Arbeit kann in diesen Zusammenhang gestellt wer-
den. Wir haben uns darin mit den Zerfallsprozessen einer besonders langlebigen
Spindichtewelle befasst, welche innerhalb von Halbleiter-Heterostrukturen mit exakt gle-
ich grofler Dresselhaus- und Rashba-Spin-Bahn-Kopplung existieren kann. Im Rahmen
einer semiklassischen Theorie haben wir mittels einer spin-kohéarenten Diffusionsgleichung
den Einfluss der Coulomb-Wechselwirkung auf die Lebensdauer dieser Stabilen Spinheliz
untersucht. Dabei hat sich herausgestellt, dass durch das Vorhandensein von stérenden
Wechselwirkungen, welche die spezielle Symmetrie des Problems verletzen, auch Streu-
prozesse zwischen Elektronen eine Auswirkung auf die Relaxation der Spinhelix haben
konnen. Die aus unserer Theorie resultierende temperaturabhiangige Lebensdauer repro-
duziert die experimentell beobachtete zufriedenstellende, wobei kubische Dresselhaus-Spin-
Bahn-Kopplung als wichtigstes symmetriebrechendes Element identifiziert werden kann.
Die Coulombwechselwirkung beeinflusst die Vorgéange in der Stabilen Spinhelix auch {iber
ein Austausch-Molekularfeld. Dieses bewirkt, dass die einzelnen Spins um den Vektor
der sie umgebenden Spindichte prézedieren und sorgt so fiir eine nichtlineare Dynamik
der Spindichte. Wir haben gezeigt, dass in einem experimentell zugéanglichen Parame-
terregime einschlagige nichtlineare Effekte wie eine drastische Lebensdauerverléngerung
durch hohere Spindichten und das Auftreten von héheren Harmonischen zu erwarten sind.

Ein faszinierendes Festkorpersystem, in dem Effekte von (Pseudo-)Spin-Bahn-Kopplung
in besonderem Mafle zu Tage treten, ist einlagiges Graphen, denn durch seine spezielle
Bandstruktur in Form eines Dirac-Kegels besteht der Hamiltonoperator schon in fiithren-
der Ordnung (und iiberhaupt ausschlieBlich) aus Pseudospin-Bahn-Kopplung. Im zweiten
Teil dieser Arbeit haben wir Korrekturen in der elektrische Leitfihigkeit von Graphen
im Boltzmann-Regime berechnet, die von Pseudospin-Kohéarenzen herriithren. Wir haben
festgestellt, dass verschiedene im Allgemeinen etablierte Formalismen zur Herleitung von
kinetischen Gleichungen fiir dieses Problem unterschiedliche Ergebnisse liefern. Diese
Diskrepanz kénnen wir nicht auflésen, jedoch stellen wir einen alternativen Ansatz fiir
die Nichtgleichgewichts-Greenfunktion zu Diskussion, der einige Widerspriiche beheben
wiirde. Die von uns berechneten Korrekturen machen méglicherweise einen Teil der ex-
perimentell beobachteten residuellen Leitfahigkeit von Graphen aus.
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