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Gyroscope

This admirable gadget, when it is
Wound on a string and spun with steady force,

Maintains its balance on most any smooth
Surface, pleasantly humming as it goes.

It is whirled not on a constant course, but still
Stands in unshivering integrity

For quite some time, meaning nothing perhaps
But being something agreeable to watch,

A silver nearly silence gleaning a still-
ness out of speed, composing unity

From spin, so that its hollow spaces seem
Solids of light, until it wobbles and

Begins to whine, and then with an odd lunge
Eccentric and reckless, it skids away

And drops dead into its own skeleton.

Howard Nemerov
(1920-1991)
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1. Introduction

The poem by Howard Nemerov prefixed to this thesis describes what is familiar to everyone
who, as a child, has played with a humming top. The elementary yet charming physics
of such a classical gyroscope balancing on a “smooth surface” is based on the (of course
imperfect) conservation of its angular momentum. In the realms of quantum mechanics,
this phenomenon finds its approximate counterpart—although not a strict analog—in
the spin, discovered and formalized as an intrinsic angular momentum of the electron in
seminal works by Pauli [1925], Uhlenbeck and Goudsmit [1925], and Dirac [1928a;b]. Being
actually much more than only some “admirable gadget” of quantum theorists, the electron
spin influences many properties of the matter that surrounds us every day: through the
spin-statistics theorem [Fierz, 1939; Pauli, 1940] and Pauli’s exclusion principle [Pauli,
1925] it provides the very basis for large-scale stability of many-electron systems and
determines in part the structure of the periodic table of elements.

Recently, the electron spin has indeed become a favorite toy of many condensed matter
physicists, and even a whole new research field, dubbed spintronics, has emerged [Wolf
et al., 2001; Awschalom et al., 2002; Zuti¢ et al., 2004; Awschalom and Flatté, 2007]. From
an—admittedly somewhat constricted—spintronics perspective, one could argue that Ne-
merov’s poem is a description of what in a sober scientific language would be called a spin
relazation process. In this picture, the “quite some time, meaning nothing perhaps” until
the gyroscope “drops dead into its own skeleton” represents the spin’s lifetime (proving
that physicists’ jargon is not that prosaic after all). A central challenge of spintronics
is precisely that this relaxation time during which one can control a localized or itiner-
ant spin means actually a lot: it can decide about the feasibility of efficient spin-based
(quantum) information storage and processing in the future.

Another, even younger area of research that offers bright prospects for technological
applications and at the same time provides a test bed for fundamental physics hitherto
unaccessible in the laboratory is graphene [Geim and Novoselov, 2007]. Concerning the
dichotomy of application-oriented versus fundamental scientific interest, it is certainly
justifiable to say that, while in spintronics the practical aspect prevails, in the graphene
research both kinds of motivation are rather equilibrated—on a very high level. Materials
scientists attempt to exploit the unique mechanical properties and the huge thermal and
electrical conductivities of the two-dimensional carbon allotrope, and theorists are thrilled
by the possibility to investigate numerous effects connected with the relativistic nature of
the electrons in graphene, which behave like massless, chiral Dirac fermions.

As postmodern as the introductory poem by Nemerov are, in a sense, the methods em-
ployed in todays condensed matter theory. Concepts and techniques have been borrowed
from different branches and eras of physics and developed further (e.g., quantum field theo-
retical tools such as the Feynman diagrams from quantum electrodynamics). For instance,
the semiclassical description of nonequilibrium phenomena, which we will make abundant
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use of in this thesis, combines the Boltzmann equation dating back to the 19th century
with several quantum mechanical features (notably spin and Fermi statistics) from the
“classical modern” period of physics in the 20th century. The general goal is to describe
concrete observable phenonema rather than to find grand unified theories, which allows
for a (most of the time) tolerant coexistence of alternative (or sometimes complementary)
formal approaches. Nevertheless, the plurality of approaches raises the question for their
equivalence in certain contexts.

The present thesis is concerned with problems belonging to two seemingly distinct global
topics—spintronics and graphene. However, as will become clear in the remainder of this
introductory chapter, these two fields have more in common than the fact that both have
been in the spotlight of condensed matter physics over the past years, with two very recent
Nobel Prizes in Physics! being an expression and, obviously, a reinforcement of this focus.

1.1. Spintronics

The 2007 Nobel Prize in Physics was awarded to Peter Griinberg and Albert Fert for their
independent discovery of the Giant magnetoresistance [Griinberg et al., 1986; Baibich
et al., 1988; Binasch et al., 1989]. This effect is observed in layered metallic structures
composed of alternating ferromagnetic and nonmagnetic films. The presence of a mag-
netic field causes a significant decrease in the electrical resistance of these compounds.
Apart from having a tremendous technological impact through the use of the Giant mag-
netoresistance and of the related Tunnel magnetoresistance [Julliere, 1975] in read heads
for commercial data storage devices, the experimental achievements of Griinberg and Fert
are generally considered the “birth of spintronics”.

Yet, the present activities in this research field are based on pioneering work that dates
back much earlier (see D’yakonov [2008]): at a time when spin as a concept was still
unknown, Wood and Ellett [1924] observed that polarization-resolved fluorescence mea-
surements on mercury vapor were influenced by the magnetic field of the earth. This
effect was thoroughly investigated and given a physical interpretation by Hanle [1924],
with whose name it is connected to date. The subject was taken up again by Brossel and
Kastler [1949] in their studies of optical pumping in atoms, which included three basic
steps that later became programmatic for spintronics: optical excitation of a nonequilib-
rium distribution of angular momentum, its subsequent manipulation with magnetic fields
and, finally, detection of the resulting distribution via the polarization of its luminescence.
Lampel [1968] developed analogous techniques for the optical orientation of the carrier
spins in semiconductors (see also Meier and Zakharchenya [1984]). In the sequel, a lot of
experimental and theoretical effort was devoted to these kinds of problems. An important
result by D’yakonov and Perel’ [1971] was their prediction of spin currents that flow trans-
versely to charge currents in semiconductors with spin-orbit coupling. This phenomenon
was later named spin Hall effect [Hirsch, 1999]. The recent experimental observation [Kato
et al., 2004; Wunderlich et al., 2005; Sih et al., 2005] of the resulting spin accumulation

1Speaking of highly rated awards, it is fair to mention that the little piece of “spin relaxation literature”
that we chose as an epigraph for this thesis has played its part in earning Howard Nemerov the Pulitzer
Prize for poetry in 1978.
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at the sample boundaries of electron as well as hole systems has prompted a vivid the-
oretical debate about the underlying mechanisms (see, e.g., Sinova et al. [2004]; Engel
et al. [2007]). Unlike the Giant magnetoresistance, which can be understood within a
two-channel picture (“spin-up” and “spin-down” with respect to some quantization axis),
the theoretical description of the spin Hall effect (and of other phenomena relevant to
spintronics such as the current-induced spin torque [Ralph and Stiles, 2008]), requires a
coherent treatment of the spin.

In a broad sense, spintronics deals with spin-related effects in solids, including equilib-
rium phenomena (with respect to the spin degree of freedom) such as the aforementioned
Giant magnetoresistance. D’yakonov [2004] narrows the subject as follows:

“What most people apparently mean by spintronics is the fabrication of some
useful devices using a) creation of a non-equilibrium spin density in a semicon-
ductor, b) manipulation of the spins by external fields, and c) detection of the
resulting spin state.”

This sketches the program of what has since become established as semiconductor spin-
tronics [Fabian et al., 2007; D’yakonov, 2008].

Research in this field is largely fueled by the technological interest to improve on the per-
formance of conventional semiconductor microelectronics. To date the chip industry has
kept up with the pace described by “Moore’s law” [Moore, 1965], an empirical observation
saying that the number of transistors on an integrated circuit doubles approximately in ev-
ery 18 to 24 months. Recently, the Intel Corporation announced a new three-dimensional
“Tri-Gate” structure with a 22 nm scale, as opposed to 32 nm in the present transistor
generation [Cartwright, 2011]. However, even with such ingenious exploits within conven-
tional technology as the extension of the transistor architecture to the third dimension,
further improvements in terms of, e.g., reduction of power consumption will become in-
creasingly difficult to achieve in the future. Here, semiconductor spintronics offers new
vistas through a radical change in paradigm: the idea is to largely stick to the highly
developed semiconductor structures of existing microelectronics (including the elaborate
lithographical fabrication techniques), but to exploit the conduction electrons’ spin degree
of freedom in addition to their charge for information storage (as already done in MRAMs
and hard drives) and processing. Possible advantages lie in a better integration of the two
functionalities—processing and storage of information—as well as in increased operation
speeds and higher energy efficiency. The latter expectation is based on the fact that, being
time reversal symmetric by definition, spin currents can, in principle, flow dissipationless
[Murakami et al., 2003]. This is a particularly important point, since Joule heating is a
key limiting factor for further miniaturization.

1.1.1. Spin-orbit interactions and spin relaxation

A great asset of using semiconductor structures as spintronics devices is that therein
spin polarization can be generated and coherently manipulated without ferromagnetism
or external magnetic fields [Awschalom and Samarth, 2009] via spin-orbit coupling.

In atomic physics, spin-orbit interactions reveal themselves as corrections in the spectra,
which can be modeled by including in the Hamiltonian describing electrons with mass m
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and momentum p the Thomas term

eh
4m?2c?
It is derived as a relativistic correction to the Pauli equation. Here, V' is the atomic
potential and o denotes the vector of Pauli matrices.? In general, the spin-orbit coupling
is small due to its relativistic origin (the huge energy gap between electrons and positrons
2mc? appears in the denominator).

In semiconductor structures, however, the effects of spin-orbit interaction can be mag-
nified considerably, depending on band structure parameters and confining potentials. In
the absence of magnetic fields (i.e., if time-reversal symmetry is granted) and if, in addi-
tion, the potential in which the electrons move is space-inversion symmetric, the electronic
states for given wave vector k are two-fold degenerate, e1(k) = €| (k). This spin-degeneracy
can be lifted if the space inversion asymmetry is broken either by the crystal structure
(bulk inversion asymmetry, e.g., in materials of the zinc-blende type [Dresselhaus, 1955])
or as a consequence of the structure inversion asymmetry due to a confining potential as
frequently encountered in semiconductor heterostructures [Bychkov and Rashba, 1984].3

Using k-p theory [Moss, 1980] and the envelope function approximation one can describe
the physics of structures that are based on direct semiconductors within the 8 x 8 Kane
Model [Winkler, 2003]. The band structure is depicted in Figure 1.1: besides the spin-
degenerate s-type conduction band this model takes into account the light and heavy hole
bands and the spin-orbit split-off band (all of them p-type and also spin degenerate). We
recall that the famous two-band Pauli equation is obtained in the nonrelativistic limit of
the Lorentz invariant four-band Dirac equation (electrons coupled to positrons). The spin-
orbit interaction Hamiltonian (1.1) is a leading-order relativistic correction. Analogously,
using quasi-degenerate perturbation theory (Léwdin partitioning*), one derives from the
coupled equations for the eight bands of the Kane model an effective 2 x 2 Hamiltonian
for the conduction band electrons [Winkler, 2003]. The result is an energy eigenvalue
equation for the envelope function spinor of the conduction band electrons that resembles
the Pauli equation with relativistic corrections. As constituents of the Hamiltonian one
finds, in addition to the kinetic energy (with an effective mass expressed in terms of the
band structure parameters), a Zeeman term (with an effective g-factor), a Darwin term
and, in particular, as the analog of the Thomas term (1.1), the effective spin-orbit coupling

P2

Hsoi = 3|:

Hrhomas o (VV xp). (1.1)

1 1

Here, Fy and A are the fundamental band gap and the spin-orbit split-off energy, re-
spectively (see Figure 1.1), and P parametrizes the strength of the coupling between

2The Pauli matrices read

_ (01 _ (0 —i 4o =(1 0
Uz_lo,O'y_iO arn O'Z_O_l,

3Further contributions, which are not considered in this thesis, can arise from strain or from the lack
of microscopic symmetry of the atoms at the interface.

“In the context of the derivation of the Pauli equation with relativistic corrections, this technique is
also known as Foldy- Wouthuysen transformation.
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Figure 1.1.: Band structure of the 8 x 8 Kane model: conduction band (c), heavy hole
band (hh), light hole band (lh) and spin-orbit split-off band (so) All bands
are two-fold spin-degenerate. Indicated are further the fundamental band gap
Ey and the spin-orbit splitting Ag. This figure is adopted from Fabian et al.
[2007].

conduction and valence band.

In Eq. (1.2) V can, for instance, represent the Coulomb potential of charged impurities.
As a result of this extrinsic spin-orbit coupling the spin of an electron that scatters from
impurities precesses during the collision processes. Thus, impurity scattering contributes
to the decay of spin polarization—a mechanism called Elliot- Yafet spin relaxation [Elliott,
1954; Yafet, 1963].

Next we consider the Rashba spin-orbit interaction [Bychkov and Rashba, 1984] arising
from structure inversion asymmetry, e.g., in a two-dimensional electron gas (2DEG) real-
ized inside a GaAs/AlGaAs heterostructure with an imbalance of doping on both sides of
the quantum well. Then the relevant potential gradient in Eq. (1.2) is the average elec-
tric field in z-direction that is due to this asymmetric confining potential. By integrating
out the (out-of-plane) motion in z-direction one obtains a Zeeman-like term, but with an
effective magnetic field br(k) that depends on the in-plane wave vector k = (ks, ky). Its
magnitude increases linearly with the one of the momentum argument k. The directional
dependence is shown in Figure 1.2 b). It is characterized by a winding number N = 1.
For a momentum-dependent in-plane field b(k), N is defined by the relation

by +ib, = ePtiNY (1.3)

Here, 6 is the polar angle of k and 6y is a constant phase (6p = 7 for b = bp).

In order to also account for effects of bulk inversion asymmetry of the crystal lattice
one has to resort to the extended Kane model [Winkler, 2003], which includes another six
energetically higher p-type conduction bands. This yields the Dresselhaus spin-orbit cou-
pling field [Dresselhaus, 1955] bp(k), which is a priori cubic in k. However, taking again
the mean value of the momentum component in the growth direction of the quantum well,
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(b)

Figure 1.2.: Sketch of the two kinds of linear-in-momentum spin-orbit fields in semicon-
ductor devices with bulk inversion asymmetry (BIA) or structure inversion
asymmetry (SIA): a) the linear Dresselhaus field bp (k) has a negative winding
sense (winding number -1); b) the Rashba field br(k) has a positive winding
sense (winding number +1). This figure is taken from Winkler [2006].

k2 — (k?), one can split off a linear contribution with winding number N = —1, see
Figure 1.2 a). Since (k?) ~ (7/d)? where d is the quantum well width, the linear Dressel-
haus spin-orbit coupling is dominant over the cubic contributions for thin quantum wells,
where d < k;l (with kr denoting the Fermi momentum). Nevertheless, cubic Dressel-
haus interactions can become important, in particular in the special situation considered
in Chapters 3 and 4 of this thesis where the effects of the two linear contributions cancel
each other (see also Section 1.1.2 below).

Both kinds of intrinsic spin-orbit interaction discussed above cause D’yakonov-Perel’
spin relazation [D’yakonov and Perel’, 1972], which, unlike the extrinsic Elliot-Yafet re-
laxation, occurs between the scattering events: the spin precesses about the spin-orbit field
b(k), which changes with every momentum scattering event, see Figure 1.3. If the preces-
sion frequency is of the order of (or larger than) the scattering rate the spin is completely
randomized already after a few scattering processes. In the opposite limit of weak spin-
orbit coupling or strong scattering, the precession angle between two collisions is small.
Then the spin is subject to a diffusion process where the scattering actually stabilizes the
spin: the more scattering, the larger the spin lifetime.> The D’yakonov-Perel’ mechanism
is typically the dominant source of spin relaxation in semiconductor quantum wells.

1.1.2. Towards maximizing spin lifetimes and coherence lengths

A paradigmatic (yet in its pure form so far not realized) device of semiconductor spin-
tronics that relies on the manipulation of the spin via intrinsic spin-orbit fields is the
spin field-effect transistor proposed by Datta and Das [1990]. The idea is to inject a spin
current® from a spin-polarized source lead (e.g., a semi-metal or ferromagnetic semicon-

5This phenomenon is often referred to as “motional narrowing” in analogy with the reduction of line
widths in NMR spectroscopy due to disorder in local magnetic fields.
SFor a survey on spin-injection, see Fabian et al. [2007].
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b(k")

Figure 1.3.: Schematic D’yakonov-Perel’ spin relaxation: The black line is the trajectory
of an electron; the blue arrows mark the electron spin, which precesses about
the momentary spin-orbit field b(k) (green). The frequent change of the pre-
cession axis results in a random walk behavior with the scattering effectively
stabilizing the spin.

ductor) into a two-dimensional semiconductor structure with Rashba spin-orbit coupling
that is tunable via an electrostatic gate. Depending on the magnitude of the spin-orbit
interaction, which determines the precession period, the itinerant spin will, at the moment
when it arrives at the other end of the sample, more or less match the polarization of the
drain lead, thus making it easy or hard to flow off (see Figure 1.4). As a result, the per-
meability of the device for spin currents can be controlled all-electrically. Obviously, this
principle requires that the spins remain coherent during their passage through the device.
Therefore, the original proposal was for a ballistic situation, where spin dephasing due to,
e.g., D’yakonov-Perel’ relaxation, does not play a role. In order to lift this strict and exper-
imentally demanding requirement Schliemann et al. [2003] came up with the idea to use a
sample where linear Dresselhaus spin-orbit interaction in addition to the Rashba coupling
is present. Then, under certain conditions, which include in particular that both kinds
of linear spin-orbit coupling have to be of equal magnitude, the D’yakonov-Perel’ spin
relaxation mechanism is effectively suppressed. Conceptually this allows the construction
of a Datta-Das-type spin field effect transistor even in the presence of (spin-independent)
scattering.

A closer investigation of the Hamiltonian describing such a spin-orbit tuned semiconduc-
tor system with equal Rasbha and Dresselhaus spin-orbit coupling lead to the discovery of
an exact SU(2) symmetry and the prediction of the persistent spin heliz by Bernevig et al.
[2006]. The actual realization of such a long-lived spin density wave was achieved recently
by means of optical orientation of electron spins in an n-type GaAs/AlGaAs quantum well
[Koralek et al., 2009]. This experiment confirms the prediction of the persistent spin helix,
but it also raises new questions, e.g., for an explanation of the observed temperature de-
pendence of the spin helix lifetime. In Chapter 3 of this thesis we are able to present results
on that topic, which are based on the solution of a semiclassical spin diffusion equation
(cf. Burkov et al. [2004]; Mishchenko et al. [2004]; Stanescu and Galitski [2007]; Weng et al.
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Figure 1.4.: Sketch of the Datta-Das spin transistor: the Rashba spin-orbit interaction
(acting as an effective magnetic field perpendicular to the plane) is tunable
via the gate voltage. For zero Rashba field (upper panel) the spin polarization
injected from the left source lead passes through unchanged; for finite Rashba
field (lower panel) the itinerant spins precess, and the spin conductance varies
depending on the strength of the spin-orbit coupling. In the situation depicted
in the lower panel no spin current flows because in the drain (right lead) there
are no states available for electron with a spin that points to the right.

[2008]). In particular, we show that electron-electron interactions (which have no effect
in the perfectly SU(2) symmetric situation, see also Section 1.1.3) come into play when
the special symmetry underlying the persistent spin helix is broken by cubic Dresselhaus
interactions, explaining the temperature-dependent lifetime [Liiffe et al., 2011].

The physics of the persistent spin helix appears also in other contexts, such as the ac
driven spin helix proposed by Duckheim et al. [2009] and the Spin Hall Effect Transistor
experiment by Wunderlich et al. [2010], which realizes an analog of the persistent spin
helix in single-particle transport.

1.1.3. Effects of Coulomb interaction

The Coulomb interaction, being per se SU(2) invariant, does not directly couple to the
electron spin. However, it is well known that electron-electron interactions can affect spin
transport and spin diffusion by relaxing spin currents via the spin Coulomb drag [D’Amico
and Vignale, 2000; 2001; 2002; Flensberg et al., 2001; D’Amico and Vignale, 2003]. Let
us imagine a situation where the center of mass of a population of spin-up electrons has a
finite velocity relative to the one of spin-down electrons, i.e., a spin current flows. In that
case, as depicted in Figure 1.1.3 for a single scattering event, electron-electron collisions
exchange momentum between the two populations and tend to equalize the center-of-mass
motion of spin-up electrons and spin-down electrons. As a result, the spin current decays
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Figure 1.5.: Schematic representation of the non-conservation of spin currents in a
Coulomb scattering process: before the scattering event both electron spins
contribute to the up-spin current. After the collision the total momentum is
unchanged, but the sign of the spin current has flipped. This figure is taken
from Winkler [2006].

due to Coulomb interaction.” D’Amico and Vignale [2000] showed that this mechanism
inhibits spin diffusion. The predicted temperature-dependent reduction of the diffusion
constant was readily observed by Weber et al. [2005].

Since Coulomb interactions provide a mechanism of momentum scattering, they tend to
increase spin lifetimes in situations where the D’yakonov-Perel’ spin relaxation is operative
[Wu and Ning, 2000; Weng and Wu, 2003; Glazov and Ivchenko, 2003]. In clean samples at
not too low temperatures, electron-electron scattering can even dominate the D’yakonov
Perel’ dynamics. For a review on spin Coulomb drag effects in semiconductor spintronics,
see D’Amico and Ulrich [2010]. In Chapter 3 of the present thesis we incorporate electron-
electron scattering in the spin diffusion equations that describe the persistent spin helix,
thus generalizing the Boltzmann equation based derivation of the spin Coulomb drag by
Flensberg et al. [2001] to a spin coherent treatment.

Besides two-particle scattering, there is a second way in which Coulomb interaction
influence the spin dynamics in semiconductors: as is well known from the spin diffusion in
spin-polarized liquid 3He [Leggett and Rice, 1968; Leggett, 1970], in a three-dimensional
Fermi liquid the individual spins precess about the molecular field (as obtained within
a Hartree-Fock mean field approach) caused by a local average spin polarization. The
exchange field thus exerts a torque on spin currents, which influences the drift-diffusion
dynamics of the spin density (rendering it nonlinear, in particular). Takahashi et al. [1999]
showed that this anomalous spin diffusion occurs also in a degenerate two-dimensional
electron gas at low temperatures. In measurements by Stich et al. [2007], a nonlinear
behavior of the spin relaxation was observed, which can be attributed to the Hartree-Fock
precession [Weng and Wu, 2003].

In Chapter 4 of this thesis we study the consequences of the Hartree-Fock interaction
on the dynamics of the persistent spin helix. The nonlinear precession term that enters
the spin diffusion equation brings about changes in the lifetime of the persistent spin helix

"In analogy with hydrodynamics one can understand the spin Coulomb drag as corresponding to the
laminar friction between two neighboring layers of a liquid that have a relative velocity.
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Figure 1.6.: The energy bands for electrons and holes in graphene as derived from a tight-
binding Hamiltonian [Wallace, 1947] touch at the Dirac points. In their vicin-
ity the dispersion is linear, with a slope given by the group velocity, which
is approximately 300 times smaller than the velocity of light. This figure is
taken from Castro Neto et al. [2009].

and affects its shape. We estimate quantitatively that a realization of the regime where
these effects are observable should be within reach of current experimental techniques.

1.2. Graphene

The 2010 Nobel Prize in Physics was awarded to Andre Geim and Konstantin Novoselov in
recognition of their experimental achievement to isolate the two-dimensional allotrope of
carbon known as graphene [Novoselov et al., 2004]. In the sequel of this first ever realization
of a two-dimensional crystal, graphene has attracted extensive attention for its promising
material properties (high mechanical stability and stiffness, extraordinary thermal and
electrical mobility) and for a variety of theoretically intriguing phenomena such as the
Klein tunneling (for an overview see Calogeracos and Dombay [1999]), a stunning minimal
conductivity at seemingly zero carrier density, an anomalous integer quantum Hall effect
at room temperature [Schakel, 1991; Novoselov et al., 2005] and, most recently, a giant
spin Hall effect [Abananin et al., 2011]. The experimental and applied aspects have been
reviewed by Geim and Novoselov [2007]. In particular, a lot of work has been devoted
to the study of the electrical conductivity of graphene. For a review on the electronic
peculiarities of graphene, see Castro Neto et al. [2009] and Das Sarma et al. [2011].

For neutral monolayer graphene the low-lying electronic excitations are, within a tight-
binding model, well described as massless, chiral Dirac fermions in two dimensions [Wal-
lace, 1947; Semenoff, 1984; Castro Neto et al., 2009]. The characteristic Dirac cones in
the dispersion express pseudospin-orbit coupling, where the pseudospin derives from a
sublattice index (the honeycomb lattice being bipartite). The conical electron and hole
bands touch at the two inequivalent Dirac points K and K’ in the Brillouin zone, see Fig-

10
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ure 1.6. In the low energy theory this introduces a valley index in addition to the indices
for peudospin and real spin. Neglecting the real spin index (or keeping it implicit) and
introducing the four-spinor (u4,up, vy, us), where the lower indices (A,B) represent the
sublattice and the prime (no prime) indicates the Dirac cone K’ (K), one can write the
effective Hamiltonian as

H = hopll.®o-k. (1.4)

Here, 11, and o, are Pauli matrices in the space of Dirac points and sublattices, re-
spectively, and vp &~ 1/300¢ is the constant group velocity. If the scattering between
the two Dirac cones is negligible it is enough to consider a single Dirac cone, which corre-
sponds indeed to the physics of massless Dirac particles. A comparison of the Hamiltonian
H = hvpo - k for the cone K and the dispersion ¢, = +hvpk shows that the spinor
(uag,up) is also an eigenvector of the chirality operator o - k/|k|, with eigenvalues +1.

We mention that also the surface states of three-dimensional topological insulators such
as Bi;_,Sb,, BisTes, SboTes and BisSes, which have recently attracted a lot of attention,
are governed by Dirac cone physics (with only one cone to start with) [Fu et al., 2007;
Moore and Balents, 2007; Roy, 2009; Hsieh et al., 2008; Zhang et al., 2009; Xia et al.,
2009], see also Hasan and Kane [2010].

Like in conventional semiconductors, one can change the chemical potential of a
graphene sheet via doping or external electrostatic gates. This makes it possible to study
transport of electrons as well as holes. Furthermore, the tuning of the Fermi wave number
kr with respect to the mean free path £ given by, e.g., impurity scattering, allows to access
two qualitatively different transport regimes: the (almost) undoped case with (kp < 1
corresponds to the Dirac regime, where quantum coherences are most important, produc-
ing the bigger part of the striking phenomenology that graphene is famous for. At higher
doping one enters the Boltzmann regime where £ kr > 1. Here, an approximate treatment
with a semiclassical kinetic equations becomes meaningful, and the leading-order results
for, e.g., the electrical conductivity are rather intuitive. However, effects of electron-hole
coherence (i.e., pseudospin-orbit coupling) can find their expression in next-to-leading or-
der corrections in the transport quantities. This is discussed in detail in Chapter 5 of this
thesis, where we calculate the first-order quantum correction to the Drude conductivity
of graphene (cf. Auslender and Katsnelson [2007]; Trushin and Schliemann [2007]; Culcer
and Winkler [2007b]; Liu et al. [2008]). We find that the result is sensitive to the choice
of formalism that one uses to derive collision terms and we observe that the discrepancies
can be removed to some extent by using an unconventional ansatz distribution function.
We further find that for the problem at hand it is important to include principal value
parts, which are often neglected, in the calculation (see also Auslender and Katsnelson
[2007]).

1.3. Generic Hamiltonian
A common feature of the different systems considered in this thesis is the prominent role of

(pseudo)spin-orbit coupling. One should, however, keep in mind that the microscopic ori-
gins of, on the one hand, the spin-orbit coupling in GaAs/AlGaAs quantum wells and, on
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1. Introduction

the other hand, the pseudospin-orbit coupling in monolayer graphene are of a fundamen-
tally different nature: the former case is a reminiscence of genuinely relativistic physics (in
the sense of a Lorentz invariant formulation of quantum mechanics), whereas the latter is
a consequence of the bipartite honeycomb lattice whose band structure happens to exhibit
Dirac cones.?

On a practical level, when it comes to setting up a semiclassical but (pseudo)spin-
coherent description of either the spin relaxation in semiconductor quantum wells or the
electrical conductivity of graphene, one is confronted with a nonequilibrium problem where
the undisturbed? Hamiltonian has the generic form

H() = EO(k) +o- b(ki) . (15)

Here, ¢y(k) = h; :12 for semiconductors (m being the effective mass) as opposed €p(k) = 0

in the case of graphene. The general isotropic (pseudo)spin-orbit coupling
b = b(k)b(0) (1.6)

is characterized by the winding number N as defined in Eq. (1.3). This includes, in
particular, Rashba and linear Dresselhaus spin-orbit coupling with b(k) o< k and N = +1
as well as cubic Dresselhaus spin-orbit interaction with b(k) oc k% and N = £3. (The
total spin-orbit coupling in quantum wells with a bulk inversion asymmetric material is
then the sum of the three contributions.) For electrons close to the Dirac point K in
monolayer graphene the pseudospin-orbit coupling (1.6) is given by b = hvp k (with the
constant vp ~ 1/300c¢) and b =k, i.e., N =1. For the Dirac cone K’, one has again
b = vpk, but now b = (cosf,—sinf), i.e., N = —1. Note that also the Hamiltonian
commonmly studied in the context of bilayer graphene (with b = h?k?/2m and N = 2) as
well as similar Hamiltonians for multilayer graphene [McCann and Fal’ko, 2006; Guinea
et al., 2006; Koshino and Ando, 2007; Min and MacDonald, 2008] belong to the class of
Hamiltonians given in Eq. (1.5).

An important difference between semiconductors and monolayer graphene lies in the
fact that the quasiparticles in the latter are massless Dirac fermions. As a consequence,
one has ¢y(k) = 0, and all kinetic energy is in the pseudospin-orbit coupling. This makes
an expansion as in the semiconductor case, where spin-orbit coupling terms are small
corrections to a large leading-order term determined by €y (k), impossible (see Chapter 5).

1.4. Outline of this thesis

In Chapter 2 we recall some useful tools and concepts of nonequilibrium theory. This
lays the basis for the derivation of semiclassical kinetic equations in the context of con-
crete realizations of the generic spin-orbit coupled Hamiltonian (1.5) in the subsequent
chapters. Using such a semiclassical approach we investigate in Chapter 3 the lifetime

8Spin-orbit interaction of genuine relativistic origin is of course also present in graphene, but due to
its smallness it can be safely neglected in our considerations of transport in the Boltzmann regime.

9As a perturbation in the nonequilibrium problem we will add electron-impurity interactions or
electron-electron interactions. In the case of graphene we will further include an electromagnetic potential,
since we will be interested in the electrical conductivity.

12



1.4. Outline of this thesis

of the persistent helix in the presence of symmetry breaking mechanisms and Coulomb
scattering. Chapter 4 is devoted to the study of effects of the Coulomb exchange interac-
tion on the persistent spin helix state. We focus on the influence on the lifetime as well
as on qualitative changes in the shape of the spin density wave. Finally, in Chapter 5,
we apply the methods introduced in Chapter 2 as a comparative study to the problem
of pseudospin-orbit coupling corrections in the electrical conductivity of graphene in the
Boltzmann regime. The concluding Chapter 6 summarizes the results and gives an outlook
on potential future avenues of research related to the content of this thesis.

13






2. Methods of quantum kinetic theory

The rich phenomenology of nonequilibrium systems reflects the diversity of the physical
objects involved and of their mutual microscopic interactions. In general, details of this
kind elude a macroscopic thermodynamic description. In order to capture these at least to
some extent one often resorts to a description based on the kinetic theory. This approach
deals to some level of precision, i.e., down to certain length- and timescales, with the
microscopic processes in nonequilibrium systems.

Historically the first and arguably the simplest playground for the kinetic theory is the
classical ideal gas. This theoretical model was scrutinized by Clausius, Maxwell, Boltz-
mann and others in the second half of the 19th century. The underlying assumption
is that point-like particles move along classical trajectories and occasionally undergo in-
stantaneous collisions with other particles. This picture allows for a description with the
famous classical Boltzmann equation [Boltzmann, 1872] for the one-particle distribution
function in phase space.

By complementing the Boltzmann equation ad hoc with some basic quantum mechanical
features (such as the Fermi statistics for degenerate electrons) a semiclassical Boltzmann
equation can be obtained on heuristic grounds. This will be concretized in the first section
of the present chapter. In the remaining sections we will give a basic introduction to several
established approaches of nonequilibrium quantum theory, which will serve as the basis for
a systematic derivation of spin coherent semiclassical kinetic equations in later chapters:
the Nonequilibrium statistical operator formalism (NSO) as presented in Section 2.2 is
the starting point for our derivation of kinetic equations and, in a second step, coupled
diffusion equations for the three components of the spin density in Chapter 3. Here, the
collision integral for two-particle scattering will play a particularly important in explaining
experimental observations on the persistent spin helix. Also in Chapter 5 we will use the
Nonequilibrium statistical operator—this time with a focus on the collision terms for
electron-impurity scattering in graphene, where we keep corrections from electron-hole
(i.e. pseudospin) coherences. For comparison we will also apply the Green’s function
approach (see Section 2.3) to this problem in Chapter 5.

2.1. The semiclassical Boltzmann equation

We follow Smith and Jensen [1989] in presenting the fundamentals of the Boltzmann
equation. Let us first consider an ensemble of classical particles that is described by the
single-particle distribution function in phase space f(r,p,t). This function fulfills the
equation

af @ of

o= U 2.1
ot " am, D = | 1)
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Figure 2.1.: Schematic phase space trajectory of a particle that is part of an ensemble
described by the Boltzmann equation: The smooth drift (or streaming) due
to moderate potential gradients is interrupted by collisions that change the
momentum abruptly.

with 0/0x, = (0/0r,0/0p) and the six-dimensional generalized velocity v = (#*,p). The
left-hand side of this equation expresses that the number of particles in a differential
phase space volume changes depending on the (phase space) currents of particles flowing
in or out, which can be written as a six-dimensional divergence of the phase space density
analogously to the continuity equation in hydrodynamics. On the right-hand side, we
have a source term due to instantaneous momentum scattering. If we follow the phase
space trajectory of a single particle, the left-hand side represents its drift under the action
of smooth gradients, whereas the collision term on the right-hand side takes into account
abrupt changes of its momentum due to scattering, see Figure 2.1. Exploiting the Hamilton
equations, 7 = 0H/0p and p = —0H/Or, we see that the second term in the divergence
v, Of /0x, + f Ov,/0x, vanishes, and thus Eq. (2.1) takes the form

of of of _ of

A~

a PP e T | (2:2)

coll

We want to keep the freedom to describe charged particles under the action of a magnetic
field B = V x A with the vector potential A. Therefore, it is preferable to write the
distribution function and the Boltzmann equation (2.2) in terms of the kinetic momentum

k(r,p,t) = p—eA(r,t) (2.3)

rather than the canonical momentum p. The distribution function is unchanged, since the
relation

fe(r,t)drdk = f(r,p,t)drdp (2.4)

holds, and from Eq. (2.3) one has dk = dp. Thus, Eq. (2.2) can be rewritten with p
replaced by k and with the last term on the left-hand side containing the force F' = k.
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2.1. The semiclassical Boltzmann equation

Let us next introduce some quantum mechanics by giving the phase space distribution
function a discrete spin index o =1,/ (having Fermions in mind). Then the Boltzmann
equation for fg (7, t) reads

afka+v aka+F 8fk0 _ afka

ot or ok Ot

One might immediately object that in quantum mechanics, due to Heisenberg’s uncer-
tainty principle, the concept of a phase space distribution fails. However, if one considers
Wigner’s quasi-probability distribution (see e.g. Rammer [1998])

feo(r,t) = /dwe’kw@ﬁ —x/2,t) V(T +x/2,1)), (2.6)

(2.5)

coll

where 15(r,t) (¥, (r,t)) is a field operator that creates (annihilates) an electron with
spin projection! o at time ¢ and position r, one can deal with it quite analogously to the
classical phase space distribution function. This includes, in particular, the applicability
of a semiclassical Boltzmann equation of the form (2.5). An important condition for
this to work is that the mean free path ¢ of the Fermions is much larger than the Fermi
wavelength, i.e., kpf > 1, where kp is the Fermi momentum.? In addition, the Boltzmann
equation in the form (2.5) is only valid if the potentials yielding the force term vary only
little on the scale of the Fermi wavelength.

The right-hand side of the semiclassical Boltzmann equation contains the collision inte-
grals for, e.g., electron-impurity scattering and electron-electron scattering,

8fk0
ot

The rate of change in fr, due to elastic, spin conserving scattering off non-magnetic

impurities is given by

jlmp = Z Wik 0(eko — €' o) [frr o — frol - (2.8)

kl

Jime 4 ge—e. (2.7)

coll

The interpretation of this equation is rather intuitive: the density fx, gains from scattering
processes with probability (per unit time) Wy 0(€xo — €x7) that change momentum k’
into k to the extent that particles with momentum k’ are available (hence the term
X fro). Conversely, it is decreased by processes changing k into k/ (term o fg,), for
which we assumed the same probability, Wy, = Wi Quantum mechanics enters also
here if the transition probability for the process |k o) — |k’ o) and vice versa is calculated
with Fermi’s golden rule (see e.g. Sakurai [1994]).

The relaxation of the distribution function fr, due to electron-electron collisions is
taken into account via the additional collision integral

Tet = 2w Y W g, K —k—q|)(eno + €k o — Ehigo — r—qor) (2.9)
k’qo’

X [(1 - fkcr) (1 - fk'a’) fk:—i—qa fk’—qa’ - (1 - fk+qcr) (1 - fk’—qa’) Jeo fk’a’]

1'With respect to some fixed quantization axis.

2Strictly speaking this so-called Landau criterion is in low dimensions d < 3 not sufficient to justify
a Boltzmann-equation treatment. However, in this work this point is of no importance, since we are not
interested in effects of, e.g., weak localization. For details, see e.g. Rammer [1998].
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Figure 2.2.: Momentum conserving scattering of two electrons characterized by the states
|ko) and |k’ o’). The wiggled line represents the Coulomb interaction. If
o' = o, the final states of the processes (a) and (b) are indistinguishable,
and therefore their transition amplitudes need to be summed up coherently,

yielding the rate (2.10).

with a transition rate due to two-particle scattering
We (g, |k —k—4q|) = V(@) =50 V(Q) V(K —k —ql), (2.10)

where V(q) denotes the matrix element of the Coulomb potential in momentum space.
The transition amplitudes for indistinguishable scattering processes (see Figure 2.1) are
summed up coherently, i.e., before taking the absolute square of the matrix element in
Fermi’s golden rule. This explains the form of the transition rate (2.10), which has addi-
tional exchange contribution for scattering events between electrons with the same spin
projection o = o’.

The structure of the distribution function factors in two-body collision integral (2.9)
reflects the fact that, according to Pauli’s exclusion principle, only a single electron can
occupy each state. Thus, for the scattering process depicted in Figure 2.1 (a) to occur,
it is not enough that both initial states |ko) and |k’ o’) are occupied, but it is also
required that the final states |k 4+ q o) and |k’ — q 0’) are unoccupied. This translates into
the characteristic Pauli blocking factors, e.g. (1 — fk+qa)-3 In equilibrium the electron-
electron collision integral must be zero. In fact, this is one way to derive the famous
Fermi-Dirac distribution, which has precisely the property that it makes the integrand of
Eq. (2.9) vanish.

Note that the semiclassical Boltzmann equation (2.9) is not spin coherent, i.e., it does
not describe the evolution of all three spin (density) components, but only of the spin
projections on a pre-defined quantization axis. Therefore, it is not possible to capture
phenomena that are related to, e.g., spin precession about a magnetic (or spin-orbit) field.
Below we will see how spin coherent semiclassical kinetic equations can be derived from the
Liouville-von Neumann equation for the density matrix (see Chapter 5.5.1) or using other
nonequilibrium formalisms as introduced in Sections 2.2 and 2.3 of the present Chapter.

3In general, also the electron-impurity collision integral contains Pauli blocking factors. However, for
Wyt = Wy they drop out, yielding the simple structure of Eq. (2.8).
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2.2. Zubarev's Nonequilibrium statistical operator method

2.2. Zubarev’s Nonequilibrium statistical operator method

The Nonequilibrium statistical operator (NSO) approach as presented in detail in the
book by Zubarev et al. [1996] is a fully-fledged, second-quantized formalism describing the
irreversible evolution of nonequilibrium (quantum) systems. In the context of topics that
the present thesis is concerned with, it was recently used by Auslender and Katsnelson
[2007] for the derivation of a pseudospin coherent collision integral for graphene. We have
chosen to present the NSO formalism in a rather detailed manner here, because it appears
to be less standard than, e.g., the Kadanoff-Baym or Keldysh methods (see Section 2.3).
In outlining the NSO approach to the derivation of quantum kinetic equations for systems
with weak interactions we closely follow Zubarev et al. [1996].

2.2.1. Reduced description of nonequillibrium problems

The theoretical description of nonequilibrium processes in quantum systems poses a seem-
ingly paradoxical challenge: on the one hand, one wants to take into account the mi-
croscopic evolution according to the Liouville-von Neumann equation of motion for the
density matrix, which is time reversible; on the other hand, one has to fulfill, as a ba-
sic principle of thermodynamics, the macroscopic demand to maximize the information
entropy, which necessarily introduces time irreversibility. One way out of this dilemma
consists in a reduced description relying on restricted information about the system. For
instance, one can work with a coarse-grained density matrix that is averaged over small
volumes in momentum space or over small time intervals.

In the NSO formalism the reduced description is based on the assumption that the state
of the system is fully characterized by a set of macroscopic observables (P,)!, which are
time-dependent mean values of the relevant operators P,,

(Pa)' = Tt [5(t) Pul. (2.11)

Here, p is the usual quantum mechanical statistical operator and m is a general index,
which is possibly composite (e.g., for momentum and spin). The relevant operators are
chosen according to the timescale on which the description is meant to be accurate. To
illustrate this point it is instructive to recall the hierarchy of different relaxation times
in the classical dilute gas. In this model, each particle moves along smooth classical
trajectories until, after an average free time 7y, it enters the small interaction radius of
another particle. The interaction occurs quickly during the collision time 7.. The third
timescale, 7., characterizes the relaxation into a local equilibrium within a volume that
is macroscipically small but still large enough to contain many particles. Finally, 7eq is
the time it takes the system to reach its global equilibrium state. Clearly, we have the
relations (see Fig. 2.2.1)

Te L Tp L Tp K Teq - (2.12)

If one wishes to capture the dynamics down to time intervals At < 7., there is no chance
for a reduced description, and thus one has to solve the full many body problem. For time
intervals 7. <« At < 7, a kinetic description in terms of the single-particle distribution
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Figure 2.3.: Hierarchy of timescales in the classical dilute gas, c¢f. Eq. (2.12). Note that
not all of these timescales are necessarily meaningful in all systems: e.g., in a
very dilute gas one has 7 < Teq, rendering the hydrodynamic stage obsolete.

function f(r,p,t) as the relevant operator is meaningful. The next level is the hydrody-
namic one. It applies in the regime 7, < At < 7o, where a local equilibrium is already
established and the local densities of particle number, momentum, and energy play the
role of relevant observables. The state of global equilibrium that is established for times
At 2 Teq is completely characterized by the particle number density and temperature.

In the following we will be interested in the kinetic regime of a quantum gas of weakly
interacting fermionic or bosonic quasiparticles. The relevant operator is

Pll’ = C;rcl/, (2.13)
where clT (¢;) are creation (annihilation) operators for single particle states |I). In this re-

duced description the relevant observables are the mean values of single-particle operators
A, which are obtained from the single-particle density matrix

fwr®) = (Pn)t = Tr[pt)ce) (2.14)

as

(A = ToAf@®)] = Y Aw fu(t). (2.15)

N

2.2.2. Relevant statistical operator

For given (Py;)t, Eq. (2.14) does not unambiguously fix the statistical operator p(t). In
equilibrium thermodynamics the valid distribution is the one that maximizes the infor-
mation entropy. This leads to the famous Gibbsian ensembles. Analogously, for nonequi-
librium problems one introduces as an auxiliary quantity the relevant statistical operator
Pre1(t), which among all statistical operators p/(t) yielding the correct expectation values
(Py)t guarantees a maximum of entropy S’ = —Tr [p/(¢t) Inp'(t))]. In order to find the
absolute extremum of entropy under the constraints (Py;)t = Tr [§/(t) P] and Tr p/(t) = 1,
the Lagrange parameters Fyy(t) and A(t) are introduced. With the functional

§ = —Te[f() mFO)] - S () [0 Pu] - MO Trp(t)  (2.16)
i
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2.2. Zubarev's Nonequilibrium statistical operator method

the extremal distribution is then determined from the vanishing of its first variation,
05’ = 0. This procedure yields

prai(t) = eXP( ZFll’ Pw) (2.17)

w
The normalization condition for py(t) fixes A(¢), which then relates to the distribution

function

Z(t) = Tr (2.18)

eXP( ZFw Pl’l>

w

according to
1+A(t) = InZ(t). (2.19)

The Lagrange multipliers Fj(t) are determined by the self-consistency relation
(cf. Eq. (2.14))

fll'(t) = <C;cl>r017 (220)

where the lower index is to say that the average must be taken with respect to prei(t).
Averages of the form (C1 Cy...Cs)rel, where C; stands for either a creation operator
T

¢; or an annihilation operator c;, allow for Wick decomposition. For a proof we refer

to Zubarev et al. [1996]. Here, we only state the important and advantageous practical

| —
implications. To this end, the pairing of two operators is introduced as C; Cj = (C; Cj)rel
When permuting the operators and then pairing the first with the second the thlrd with

the fourth and so on, we obtain a complete system of pairings C“ C’Z2 . C’Zk1 Cs The
content of Wick’s theorem is that the average (C1 Cy...Cs)pe is the sum of all complete
systems of pairings, each of which, in the case of fermions, obtains the sign (—1)” with P
indicating the parity of the permutation. Since the relevant statistical operator connects
only states with the same number of particles, only pairings of the form

(cheva = fur, (2.21)

(crelhwe = Ow F fu (2.22)
contribute to the sum (“—”
example, one has

stands for fermions and “+” for bosons in Eq. (2.22)). For

(a1 C; Cg carel = (C1 C£>rel <C£ Ca)rel F (€1 C‘;t,>re1 (Cg C4)rel
= (012 F fi2) fa3 F (613 F f13) fa2. (2.23)

2.2.3. Liouville-von Neumann equation with broken time-reversal symmetry

It is important to note that the relevant distribution (2.17) is not yet the solution to a
given quantum kinetic problem, since it is determined only implicitly by the macroscopic
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observables (Py;)! that determine the Lagrange parameters F(t). In general, it does not
satisfy the microscopic Liouville-von Neumann equation (b = 1)

O pt)+iLpt) = 0, (2.24)
with the Liouville operator
Lp = [Hiot,pl, (2.25)

where Hiq is the full Hamiltonian in second quantization. Nevertheless, with the help of
the relevant statistical operator one can construct a solution of a time irreversible Liouville-
von Neumann equation to be derived in the following, which fulfills both the microscopic
and macroscopic demands.

Let us start from Eq. (2.24) and assume that at an initial point in time ¢; in the past
the system was described by the relevant distribution,

pti) = prati)- (2.26)

Thus, initially the statistical operator satisfies Eq. (2.14) as well as the Liouville-von
Neumann equation (2.24). However, this is not the case for later times, because p(t)
evolves according to Eq. (2.24), whereas the temporal evolution of pe(t) is determined
by the one of the observables via the self-consistency relation (2.20). Let us for notational
simplicity first consider a time-independent Hamiltonian. (The generalization to problems
with an explicit time dependence will become clear below when the time-ordering operator
is introduced.) We then have, from Eq. (2.24) with (2.26),

pt) = e (t). (2:27)

In order to reflect that a macroscopic system loses the detailed memory of its initial
state after some microscopic time and assuming that all times between a certain ¢y in the
remote past and ¢ are equally probable as the starting point for the evolution according
to Eq. (2.27), we take its average over t;,

1

t .
O /t dt; e~ (1. (2.28)
0

The interval t — ¢y over which the average is performed has to be large enough to allow for
all relevant physical correlations to build up (eventually let t) — —oc). Taking the time
derivative we see that the averaged distribution (2.28) satisfies a modified Liouville-von
Neumann equation with a source term,

ﬁ(t) — ﬁrel(t)

0Pt +iLple) = (2.29)

In Eq. (2.28) we take the limit ¢t — tqg =  — oo by introducing t; = t; — t and using
1 0 0
lim = [ dtf(t) = lim 77/ dt f(t) e (2.30)

isoot J_ g n—0t  J_o
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to obtain

0 .
p(t) = lim 7 / dty €M L (ty +1). (2.31)

n—0% —00

Before the limit process is performed, the statistical operator (2.31) obeys the Liouville-von
Neumann equation with an infinitesimal source term (n — 07),

@ +iL)p(t) = —n[p(t) = pra(t)] (2.32)

The source term introduces time irreversibility by picking the retarded solution when the
average of an observable A is calculated from a statistical operator p(t) satisfying (2.32)
according to

(A = lim  lim  Tr[p(t) A (2.33)
7]4)0+ N/\?/: const.
—00

It is important to take the thermodynamic limit first, see Zubarev et al. [1996].

2.2.4. Perturbation theory for weak interactions

Consider the total Hamiltonian
Hyw = H)+V, (2.34)

which contains, in addition to the part HY (where we now allow for an explicit time depen-
dence) describing non-interacting (quasi-)particles, a weak interaction V. It is assumed
that the former has the property

chen HY = > i Qe () € - (2.35)

mm/’

1
7l

(In this section we display #/ explicitly.) In particular, when writing the second-quantized
single-particle Hamiltionian as

o = > (L) e (2.36)
124

in terms of the matrix element h°(I’,1;t) of the first-quantized Hamiltonian, one has

Qll’mm’ (t) = % [5lm ho(m’, l/; t) — 5l’m’ ho(l, m; t)] . (2.37)
If it were not for the interaction V', one could, by virtue of relation (2.35), obtain a closed
system of equations for the single-particle density matrix (2.14) simply by multiplying
the Liouville-von Neumann equation (2.32) by cj,cl and taking the trace. In the presence
of interactions this is in general not possible because the commutator with V' does not
necessarily take the form (2.35). However, as will be shown in the following, it is possible
to approximately construct the nonequilibrium statistical operator to a given order in the
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interaction, which then allows to derive a closed set of equations, i.e., a kinetic equation
describing the nonequilibrium problem at hand.
For the Hamiltonian (2.34) the retarded Liouville-von Neumann equation (2.32) becomes

. 1. . 1.
(O +m) p(t) + = [p(#), HY] = nprar(t) — = [6(1), V], (2.38)
which is (as can be easily verified by insertion) equivalent to the integral equation
t

pt) = / dt' e Uy (t,4) prar (E) UG (¢, 1) (2.39)

| t / 1
‘/ dt' e Uy (1, 8') = [p(t), VIUS (L)

—oo ih

with the time-ordered evolution operator
Up(t,t) = Te #lrdrH?, (2.40)

Here, the time-ordering operator T positions the factors of an arbitrary product of oper-
ators according to their time arguments (the one with the earliest time argument goes to
the very right and so on). Partial integration of the first term on the right-hand side of
Eq. (2.39) yields

ﬁ(t) = ﬁrel(t) (2.41)

t : 1 1

- / dt, e (t=t) Z/[O (ta t,) {at’ﬁrel(t/) + 71 [ﬁrel(t,)v Htg] + 71 [[)(t/), V} } Z/{(J]r (t7 t/)'
7 1

— 00

Let us next multiply Eq. (2.38) by c;r/cl and take the trace. This gives

O fur(t) — i Z Qurmm (t) frme (1) = T (t) (2.42)
with on the right-hand side what will become the collision term,
1 .
Jw(t) = —=T{[V, chel pt)}. (2.43)

In order to write a perturbation expansion in the interaction V starting vom Eq. (2.42)
with Eq. (2.41), we need to relate the time derivative Oy pre(t') in Eq. (2.41) to V. Using
Eq. (2.42) we can write

dprel(t)
upalt) = 3 e { D Qum (¢ fmm«)mlf(t)}. (244)
2

It can be shown? that

Z Z Opral(?) Qurmmy (8) frme (t) = % [ﬁrel(t)7HP] (2.45)

T =, 0 fu(t)

4Apply to the ﬁrelgt) on the left-hand side and the right-hand side of Eq. (2.45), respectively, the
relation O,e(® = fo dz e 49, Aet—04 — fol dzel=®49,Ae** and the Kubo identity [B,eA} =
fol dz 4 [B, A] e 4 e?. Here, A, B are operators and « is a general parameter. Further make use of
Egs. (2.17) and (2.35).
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2.2. Zubarev's Nonequilibrium statistical operator method

Thus, Eq. (2.44) takes the form

X 1 O prel(t)
O prat(t) + - [prei(t) S m/l 3 Twt) (2.46)
L

and upon insertion in Eq. (2.41) the nonequilibrium statistical operator is given as
ﬁ(t) = ﬁrel(t)

! _ dprer(t 1.
- dt' e 1(t=1) re —[p"), V] Sul(t,¢). (2.47
/_Oo e {%;W T (t') + = [p(t) ]} 3t 1) (2.47)

With this, Eqgs. (2.42)-(2.43) provide an ezact kinetic equation for the density matrix,

1 I o (t—t
00 S (®) =1 3 Dt t) ot (0) = i VD= | vt

Tr {M(J)r(t,t/) [CZ,CZ,V] Uy (t, 1) <Z M

~ 0 frrum (t') T (¢) + % [p(t'), V]) } . (2.48)

Next we apply the Born approximation in order to write a tractable kinetic equation
accurate to second order in the interaction. To this end, assuming that the nonequilibrium
problem is analytic in the interaction strength, we write the statistical operator and the
collision integral as a series in V/,

P = pra® + 3P, T ) = YT (2), (2.49)

k=1 k=1

where terms marked with a superscript (k) are proportional to V*. By inserting (2.49)
n (2.48), neglecting terms of third or higher order in the interaction and exploiting the
cyclic invariance of the trace, one obtains

1 1 [t o
O fir () =1 D, D (€) frome (8) = = (lcher, Vi — 53 / dt’ e x

(5j (t,t)
A T Y AR
xTr {prel(t') <[V [(cha)(t, ), V(t, )] } + ih Z ey m,cm> } , (2.50)
where the double time dependence of the operators is according to the Heisenberg picture,

At t) = ULt t) AU(t, 1), (2.51)
and the first order (mean field) term is

1 1
T = e Via- (2.52)

Notice that the averages in Egs. (2.52) and (2.50) are taken with respect to the relevant
statistical distribution, which allows for Wick decomposition. However, there is still one
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2. Methods of quantum kinetic theory

practical obstacle to overcome: the time dependence of the relevant statistical operator
on the integration variable ' means that memory effects are contained. The Markov
approzimation allows us to get rid of those. In the present context it actually amounts to
a consistent implementation of the Born approximation, since the time dependence of the
statistical operator prei(t’) in Eq. (2.50) is only needed to first order in the interaction,
i.e., without the right-hand side of Eq. (2.46). Thus, the full evolution is replaced by the
free evolution,

ﬁrel(t/) = u(;r (t? t/) ﬁrel(w Z/lg(t, t/) + O(V) ) (253)

leading to®

O fur(8) =i Qs () frnme (1) = T (6) + T (1) + O(VP)  (2.54)

with Eq. (2.37) jlg,l)(t) as defined in Eq. (2.52) and the second-order collision term in
Markovian form,

t (1) t
S p— / nt=t) r_ i 5N 0w ()
TP = / e V(' — 1), V.che +zhm§m:/ 57 e )

rel

(2.55)

2.2.5. Gradient expansion and semiclassical approximation

As yet, Eq. (2.54) does not quite resemble the Boltzmann equation (2.5). In particular,
the force term and the velocity term do not appear explicitely. These drift terms arise
ultimately from the second term on the left-hand side of Eq. (2.54) upon Wigner trans-
formation and first-order gradient expansion. This will be explained in the remainder of
the present subsection.

We introduced the Wigner transformed density matrix already in Eq. (2.6). Note,
however, that the general form of Eq. (2.54) with its abstract and possibly composed
indices gives us the freedom to keep the matrix structure in spin space while treating
the spatial coordinates semiclassically, i.e., going over to slowly varying center-of-mass
coordinates and integrating out the fast oscillating relative coordinates. In the following
we will therefore work with the semiclassical density matrix

fk: ao’(rv t) = /dm eik:-m <1/)3;/(T - m/27 t) %(7‘ + 217/2, t)> (2'56)

instead of the spin-diagonal version Eq. (2.6). We can easily rewrite Eq. (2.54) for field
operators in real space, ¥, (r) (Q[):;(T’)) instead of the creation (annihilation) operator ¢
(clT), i.e., understand the composed index [ as space coordinate and spin. In order to
obtain an equation for 0y fg ./ (7,t) we apply the Wigner transformation to Eq. (2.54).

5Use that, with Eq. (2.53), 7\ (t,t') =~ J\1 (t)
5.7 570
and Y, 76fjll/,<(2)cjn/cm DD 75fjlll,((i?) (Cjn/Cm)(t, t'), see Zubarev et al. [1996].
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2.3. Green's function approaches

The second term on the left-hand side is a convolution product in real space of single-
particle Hamiltonian and density matrix. Upon Wigner transformation the convolution of
two operators X and Y is translated according to®

r.t;k,w) — r. bt k,w e% r.t;k,w), .
XY k X k Dy k 2.57

where the matrix product in spin remains, but the convolution of time and real space
variables is replaced by a Moyal product with a Poisson-bracket-like gradient D.

The semiclassical approximation consists in taking the gradient expansion of this expo-
nential operator only to first order. The underlying assumption is that external perturba-
tions, such as electromagnetic potentials, change negligibly on length and time scales of
the de Broglie wavelength Ap and the time 75 = Ag/vp. In a gauge invariant formulation
applicable to situations where the electromagnetic fields are weak and vary “slowly” (see
e.g. Zubarev et al. [1996]), one introduces the kinetic momentum k(p,r,t) = p—e A(r,t)
(¢f. Eq. (2.3)) and the renormalized frequency @(w,r,t) = w—e¢(r,t) and lets {r, k,t, o}
become the new set of independent variables (i.e., 0,k = 0). This changes the gradient
into

D = %ng}% — %klgn + g@ﬁt — gtgg, + El(%a,gkz - %]ﬁg@) + Eilei%kj 3]61
(2.58)

with the notation X 9Y := (9X)Y and X dY := X(9Y).

Operating this gradient on the single-particle Hamiltonian and the density matrix in
the second term of Eq. (2.54) yields the familiar velocity term (c¢f. Eq. (2.2)), a driving
term containing the electric field E and, in the presence of a magnetic field B, the Lorentz
force and the spin precession term. For the generic Hamiltonian (1.5) one further obtains
a term for the spin precession about the spin-orbit field (see already Eq. (3.16)), which
will play an important role in the following chapters.

2.3. Green’s function approaches

Green’s functions are a widely used tool for the description of equilibrium as well as
nonequilibrium physics. In this section we briefly summarize the key elements of the
Kadanoff-Baym approach to nonequilibrium phenomena, which is for the kind of problems
addressed in the remainder of this thesis (in particular Chapter 5) equivalent to the Keldysh
formalism.” Since the involved concepts (e.g. the self-energy) and basic equations are more
established than the Nonequilibrium statistical operator method presented in Section 2.2
and extensive literature on the subject is available, we refrain from presenting explicit
derivations. For details of this kind consult, e.g., Haug and Jauho [2008] on the Kadanoff-
Baym formalism and Rammer [2007] on the Keldysh method.

SHere we consider the general case where also the time variable is Wigner transformed.

"In general, Kadanoff-Baym is more powerful than Keldysh because it can deal with interaction terms
in the equilibrium Hamiltonian and incorporates effects of initial correlations, thus making the study of
transient phenomena possible6.
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2. Methods of quantum kinetic theory

1:0 t1 t1'

t,- iB

Figure 2.4.: Contour C'. The integration starts from ¢y and then goes slightly above the
real axis (C7) towards max(t1,t1/), then it goes back to tg slightly below the
real axis (Cy) and finally to tg—i 8, where § = kgT'. In the depicted situation,
t1 is located on Cf.

The central quantity is the contour ordered Green’s function

G(1,1) = —i{Tc)wia), (2.59)

where we abbreviated the arguments of the field operators, e.g., (1) = (7r1,t1). The
contour ordering operator Te arranges the operators according to the position of their time
arguments on the Kadanoff-Baym contour depicted in Figure 2.3. The time dependence
of the field operators is according to the Heisenberg picture.

Depending on the position of the time arguments, the contour ordered Green’s function
can be one of the four

Gc(l,ll) t1,t17 € Cl
G>(1 1/) t1 € 02 tyy € Cl
/ o 9 9
GLY) = ) G<(1.1) ety e (2.60)
G&(1,17) t1,t1r € Cy

where G.(1,1') (Ge(1,1")) is called the (anti)causal Green’s function and G~ (1,1')
(G=(1,1")) the greater (lesser) Green’s function. Furthermore, it is useful to introduce
the retarded and advanced Green’s functions

G'(1,1) = 6(t —tv) [G7(1,1) - G=(1,1)], (2.61)
GY1,1) = 0ty —t1) [G=(1,1) - G~ (1,1)]. (2.62)

The ultimate goal is to derive tractable kinetic equations based on the equation of motion
for the nonequilibrium Green’s function. Using a transformation that involves S-Matrices
defined along the contour C and along a simpler contour without an excursion into along
the imaginary axis at the end, one can bring the contour ordered Green’s function to a
form that has a perturbation expansion based on Wick’s theorem (see Section 2.2.2). For
details we refer to Haug and Jauho [2008].

Introducing a self-energy 3 to resum effects of the interaction one can writing the Dyson
equation for the contour-ordered Green’s function (see e.g. Rammer [2007]). An analytical
continuation from the complex arguments to real times is most conveniently achieved by
using Langreth’s rules [Haug and Jauho, 2008]. This yields the generalized Kadanoff-Baym
equation [Kadanoff and Baym, 1962; Langreth and Wilkins, 1972] in its integral form,

G< = GRE<GM+ (1+GRER)GO< (1 +24GY), (2.63)
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2.3. Green's function approaches

where all products are to be interpreted as convolution products in real space/time and
in spin variables. The retarded and advanced components are determined by the Dyson
equations ((G%)~! — ¥R)GR =1 and ((GO)~! — ¥4)GA = 1.

In Chapter 5.5.3 we will see with the concrete example of electron-impurity interactions
how this equation is further transformed into the differential form of the Kadanoff-Baym
equation and ultimately into a kinetic equation with drift terms and a collision integral.
We will further discuss the issue of an appropriate ansatz for the solution of such equations.
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3. Relaxation of the persistent spin helix —
the role of electron-electron scattering

In this chapter we study the dynamics of an unusually (a priori infinitely) long-lived he-
lical wave of spin polarization that can exist in semiconductor quantum wells where the
Rashba and linear Dresselhaus spin-orbit interactions are precisely of equal magnitude.
The relaxation of this persistent spin heliz [Bernevig et al., 2006] displays, according to
recent measurements by Koralek et al. [2009], an intriguing temperature dependence with,
notably, a so far unexplained maximum. In order to address the temperature-dependent
lifetime of this peculiar excitation we derive and solve a semiclassical spin diffusion equa-
tion, taking into account spin-dependent impurity scattering, cubic Dresselhaus spin-orbit
interactions and, in particular, electron-electron interactions in addition to the basic in-
gredients (i.e., Rashba and linear Dresselhaus spin-orbit coupling and spin-independent
impurity scattering). By comparison with data of Koralek et al. we establish that in
the experimentally relevant regime the lifetime of the persistent spin helix is mainly de-
termined by the interplay of cubic Dresselhaus spin-orbit coupling and electron-electron
scattering. We propose that a spatially damped spin profile can have even larger lifetimes
than the genuine persistent spin helix state. Most of the results presented here have been
published in Liiffe et al. [2011].

3.1. Motivation and experiment

Semiconductor devices with important spin-orbit interactions have attracted extensive
attention over the past years (for a survey, see Awschalom et al. [2002]; Zutié¢ et al.
[2004]; Awschalom and Flatté [2007]). The coupling between the orbital motion of the
charge carriers and their spin allows for an electric generation and manipulation of spin
polarization in the absence of ferromagnetism or external magnetic fields. This opens up
the perspective of adding the spin degree of freedom to the existing semiconductor logic
in information technology while circumventing the challenge to artificially integrate local
magnetic fields in devices [Awschalom and Samarth, 2009]. On the other hand, spin-orbit
interactions inevitably contribute to spin dephasing and spin relaxation. In general, this
is an unwelcome effect, since, from the point of view of technological applications, it is
obviously desirable to maximize the spin lifetimes and spin coherence lengths.

A promising candidate setting where spin-orbit coupling could be exploited for spin
manipulation, but at the same time the unwanted spin-orbit coupling induced spin relax-
ation is absent (or minimal) is a two-dimensional electron systems with Rashba and linear
Dresselhaus spin-orbit interactions of equal magnitude. Schliemann et al. [2003] were the
first to notice that the case of equal Rashba and Dresselhaus spin-orbit coupling is spe-
cial and they used this insight to propose a nonballistic version of the famous Datta-Das
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3. Relaxation of the persistent spin helix — the role of electron-electron scattering

Figure 3.1.: Blue arrows mark the spin-orbit field b(k) = —2 a« vp k; § in momentum space
for Rashba and linear Dresselhaus spin-orbit interactions of equal strength a.
The dashed circle is the Fermi circle. Two electron spins that are initially
oriented in z-direction and travel with the Fermi velocity vp along paths
a and o (in real space), respectively, precess about ¢ by the same angle
w = 2bt =2t = —4dakpa. The larger traveling time t' = ¢/cos¢ is
exactly made up for by the smaller precession frequency b’ = b cos¢. For
a = 2m/qp, with the “magic” wave number gy = 4 kr o, both spins perform a
full precession by w = 27. Thus, within a helical spin density profile of wave
vector qg &, it does not matter how exactly the individual spins of the ensemble
diffuse and precess back and forth due to spin-independent scattering—they
will always match the orientation of this profile, thus rendering it persistent.

spin field effect transistor [Datta and Das, 1990]. Later, Bernevig et al. [2006] uncovered
a novel SU(2) symmetry in the corresponding Hamiltonian. This symmetry implies the
perfect conservation of a helical spin density wave with a “magic” wave vector whose mag-
nitude depends on the spin-orbit coupling strength. They named this peculiar excitation
the persistent spin heliz (PSH). Its characteristic shape is depicted in the lower panel of
Figure 3.3.

As put forward by Bernevig et al. [2006] and shown explicitly by Chen and Chang
[2008], an alternative way of deriving the persistent spin helix is to see the spin-orbit
interaction as a non-Abelian SU(2) gauge potential [Jin et al., 2006] and to apply a gauge
transformation (acting as a local spin rotation) that, under the PSH conditions, maps the
Hamiltonian on the one of the free electron gas. The transformed PSH profile, which is
simply a uniform spin polarization, is then obviously conserved. In this context, see also
Yang et al. [2008], Tokatly and Sherman [2010] and Geifller [2010].

On a less abstract level the PSH can also be understood as arising from the combination
of spin diffusion and spin precession: as depicted in Figure 3.1, the momentum-dependent
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Figure 3.2.: Schematic creation of a spin grating in a GaAs quantum well: a pair of co-
herent near-bandgap laser beams with perpendicular linear polarizations are
brought to interfere at the semiconductor surface, producing a pattern of
photon helicity as shown in panel a). Since, via the optical orientation ef-
fect (see Meier and Zakharchenya [1984]), the photon helicity couples directly
to the spin of the excited carriers, a sinusoidal profile of out-of-plane spin
polarization is created [panel b)], which in turn translates into a grating of
different diffraction indices for photons of different helicity, allowing for the
time-resolved detection of the spin grating with polarized probe pulses. This
figure is adopted from Cameron et al. [1996].

spin-orbit field is aligned in the y-direction with its magnitude increasing linearly with the
projection of the momentum argument on the x-axis. If an itinerant spin-up electron from
within the PSH starts, for instance, at the crest of z-spin polarization and travels with the
Fermi velocity along the PSH wave vector (here the z-direction), its spin precesses precisely
by a full angle 27 during the time it takes to cover the distance of one PSH wavelength,
i.e., to reach the neighboring crest. If the electron propagates off direction, the spin will
still match the phase of the surrounding spin density (the initial PSH profile) everywhere
because the larger traveling time to the neighboring crest is exactly compensated by the
smaller precession frequency.

A remarkable progress on the experimental side was the recent realization of the per-
sistent spin helix in a GaAs/AlGaAs quantum well by Koralek et al. [2009]. They applied
the technique of transient spin grating (TSG) spectroscopy [Cameron et al., 1996] in order
to optically excite a sinusoidal pattern of out-of-plane spin polarization with the “magic”
PSH wave vector (see Figure 3.2 and upper panel of Figure 3.3). Due to the presence of
symmetry breaking effects in a real quantum well no state of infinite lifetime was observed,
but instead two exponentially decaying modes (see Figure 3.4a), which Koralek et al. la-
beled the spin-orbit reduced and enhanced mode—the latter being the actual PSH (see
lower panel of Figure 3.3). Although the lifetime of the observed PSH mode is not infinite
it is still of the order of 100 ps, exceeding typical transient spin grating lifetimes by two
orders of magnitude. Interestingly, as can be seen in Figure 3.5, the observed temperature
dependence of the PSH lifetime displays a maximum close to 100 K.

In order to enhance the stability of the PSH it is necessary to figure out what the
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3. Relaxation of the persistent spin helix — the role of electron-electron scattering

Figure 3.3.: Schematic representation of the transient spin grating experiment by Koralek

34

et al.: initially, a sinusoidal profile of z-spin density with the “magic” wave
number ¢ is excited in the GaAs quantum well (upper panel) using the optical
orientation effect. This initial condition is a superposition of two helical modes
with opposite winding sense. The backward winding mode decays quickly on
the timescale g, leaving only the forward winding persistent spin helix mode
(lower panel) with the much longer lifetime 75.
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Figure 3.4.: a. Temporal evolution of the z-spin density for different wave numbers ¢ as
monitored by analyzing the intensities of transmitted and reflected polarized
probe pulses (for details of the detection scheme see Weber [2005]). The
decay follows a double-exponential function, from which the lifetimes of the

spin-orbit enhanced and
approaching the “magic”

reduced modes, 7 and Tg, are deduced. b. When
wave number gy, 7g increases by nearly two orders

of magnitude. This figure is taken from Koralek et al. [2009].
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Figure 3.5.: Temperature-dependent lifetimes of each helix mode for the wave number gg
(as determined by maximizing 75 at fixed temperature T' = 75 K). This figure
is taken from Koralek et al. [2009)].
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3. Relaxation of the persistent spin helix — the role of electron-electron scattering

dominant relaxation mechanisms are. The temperature dependence of the PSH lifetime
suggests the involvement of electron-electron interactions [Koralek et al., 2009], which are
known to relax spin currents via the spin Coulomb drag effect [D’Amico and Vignale, 2000;
Flensberg et al., 2001; D’Amico and Vignale, 2003; Weber et al., 2005]. However, since
electron-electron interactions per se respect the SU(2) symmetry of the PSH state, they
cannot be the sole reason for a finite lifetime, but other symmetry breaking mechanisms
must be present as well.

It is the purpose of the present chapter to develop a theoretical understanding of the
PSH lifetime and of possible ways to improve upon this lifetime. In particular, we con-
sider the effect of Coulomb scattering in the diffusive D’yakonov-Perel’ regime. Regarding
symmetry breaking mechanisms, our model (Section 3.2) takes into account the effect of
extrinsic spin-orbit coupling (see e.g. Raimondi and Schwab [2009]), which results from the
interaction of the conduction electron spins with the impurities, as well as cubic Dressel-
haus spin-orbit interaction, which is known to be present in the experimental quantum well
to a non-negligible amount [Koralek et al., 2009]. In Section 3.3, we show in which ways
these effects enter the spin diffusion equation (c¢f. Burkov et al. [2004]; Mishchenko et al.
[2004]; Stanescu and Galitski [2007]; Weng et al. [2008]) that describes the dynamics of the
spin density. In Section 3.4 we discuss the resulting PSH lifetime. The symmetry-breaking
mechanisms of our model are at first considered separately and under the simplifying as-
sumption that the renormalization of the linear Dresselhaus spin-orbit coupling due to
cubic one is negligible. We propose a spatially damped initial spin profile in order to
enhance the TSG lifetime in presence of symmetry breaking mechanisms. For the experi-
mental parameters of Koralek et al. [2009] it turns out that electron-electron interactions
in combination with cubic Dresselhaus spin-orbit interactions are the key ingredients to
qualitatively explain the temperature dependence of the PSH lifetime (Section 3.5). We
also find reasonable quantitative agreement in the (temperature) range of validity of our
theory. A summary and outlook on possible extensions of the theory are given in the
concluding Section 3.6.

3.2. Model

As discussed in the introductory Chapter 1.1.1, in the standard envelope-function descrip-
tion (see e.g. Winkler [2003]), the spin-orbit interaction of conduction band electrons in a
semiconductor quantum well takes the form of a momentum-dependent, in-plane effective
magnetic field. The two dominant contributions to this field are linear in the in-plane
momentum: The Rashba field [Bychkov and Rashba, 1984], which has winding number
1 in momentum space (c¢f. Eq. (1.3)), is caused by structure inversion asymmetry and
can be tuned by changing the doping imbalance on both sides of the quantum well. The
linear Dresselhaus contribution [Dresselhaus, 1955], in contrast, has winding number —1.
Its physical origin is the bulk inversion asymmetry of the zinc-blende type quantum well
material. It is proportional to the kinetic energy of the electron’s out-of-plane motion and
therefore decreases quadratically with increasing well width. In addition, a small cubic
Dresselhaus spin-orbit interaction is present as well.

We write the Hamiltonian for conduction band electrons in the (001) grown quantum
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well as
H = Hy+ Himp + He.. (31)

The first term represents a two-dimensional electron gas (2DEG) with a quadratic disper-
sion and intrinsic spin-orbit interaction,

Hy = Z d}]tsl Hos's Vs (32)

s,s';k
where the 2 x 2 matrix in spin space

Ho = e, +b(k)-o (3.3)

exhibits the form of our generic single-particle Hamiltonian (1.5). The symbols 1/),1 s (Vrs)
are creation (annihilation) operators for electrons with momentum k and spin projection
s. Within the envelope function approximation [Winkler, 2003] one finds ¢ = % where
m is the effective mass. The vector of Pauli matrices is denoted by o. The in-plane

spin-orbit field
b(k) = br(k)+bp(k) (3.4)

contains Rashba as well as linear and cubic Dresselhaus spin-orbit interactions of the form
(henceforth we set A= 1)

br(k) = avp ( _’“]g) (3.5)

— K3
botk) = spemza [ () 15 (000)]

k3 i
+ vpsin 2¢ [6/ <Zz> + Ly <SZ;S§9>} (3.6)

(see e.g. Weng et al. [2008]). Here, vy is the Fermi velocity, the angle 6 gives the direction of
k with respect to the x axis and ¢ denotes the angle between the latter and the (100) crystal
axis. The strength of the Rashba spin-orbit field is controlled by a and the coefficient for
linear Dresselhaus coupling 3’ contains a momentum-dependent renormalization due to
the presence of cubic Dresselhaus coupling,

B = B—vk*/4, (3.7)

where the “bare” linear Dresselhaus coefficient (5 is related to the one for cubic Dresselhaus
v via B = y(k2) =~ (7/d)* (d being the quantum well width). We assume in the following
that the spin-orbit interaction is small compared to the Fermi energy Ep, i.e., bp/Epr < 1,
where bp = b(kp) with kp denoting the Fermi momentum.

Furthermore, we have included in Eq. (3.1) electron-impurity interactions,

1
Himp = V Z w;;/s/Uk’ks’swks (38)
s,s":k,k’!
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(henceforth we set the volume V' = 1). The impurity potential is a matrix in spin space,
Uy = Vit? ({R;}) (1 + 02003 /4 [k x K] ), (3.9)

where the spin-dependent part arises from extrinsic spin-orbit interaction of the conduction
electrons with the impurity potential, ¢f. Raimondi and Schwab [2009]. In real space the
matrix operator for electron-impurity interactions reads

Ux) = V() +iN/4[o x VV™(z)] . ¥ (3.10)

with VP (z) = 3. v(z— R;), where v(x) denotes the potential of each single impurity, and
{R;} are the impurity positions (eventually to be averaged over). The material parameter
Ao = 4.6 x 10719m, obtained from band structure calculations for GaAs (cf. Eq. (1.2)),
characterizes the spin-orbit coupling for conduction band electron spins in the presence
of electric fields. It is also hidden in the Rashba spin-orbit coupling constant, where
the electric field is not caused by impurity potentials but by the confining quantum well
potential. Eq. (3.9) with V,.)" ({R;}) = > v(k' — k) e "K' =K)'B; is then obtained by
Fourier transformation.
Finally, the Hamiltonian (3.1) contains electron-electron interactions

1
He—e = 5 Z Vk3,k47k1,k2 ¢L452¢L351¢k131¢k232 (311)

k1...ka
51,82

with the Thomas-Fermi screened Coulomb potential (see e.g. Akkermans and Montambaux
[2007])

v(lks — kal)
Vi kakiks = Okyths—ks—ka0 (ks —Fa|) (3.12)
where v(q) = 1?:(]2;1 is the Fourier-transformed Coulomb potential in 2d and e(q) ~ 1+ qi*

denotes the polarizability. Here, a* = % is the effective Bohr radius. For the GaAs
dielectric constant we will take the typical value €, = 12.9 [Blakemore, 1987] in numerical
evaluations.

3.3. Derivation of the spin diffusion equation

In this section, starting with the semiclassical kinetic equation (3.16) for the spin den-
sity, we derive the general spin diffusion equation (3.48). This derivation is based on the
expansion of the momentum space spin density in terms of winding numbers (Eqgs. (3.22)-
(3.25)) and uses the separation of time scales in the D’yakonov-Perel’ regime [D’yakonov
and Perel’; 1972]. More precisely, by momentum integration of the kinetic equation, we
derive continuity equations (3.31)-(3.33) for the isotropic spin components and the gener-
alized Ohm'’s laws, Egs. (3.38) and (3.45), for the anisotropic spin components. Plugging
the steady state solutions for the anisotropic spin components into the isotropic equations
we arrive at the general spin diffusion equation (3.48). It is valid for general initial and
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boundary conditions and takes into account all SU(2) breaking elements of our model as
presented in the previous section. Eq. (3.48) is the basis of our investigation of the PSH
lifetime in the following Sections 3.4 and 3.5, where the choice of a definite initial condi-
tion similar to the experiment by Koralek et al. [2009] reduces the problem to the 2 x 2
diffusion equations (3.59) and (3.74), respectively.

3.3.1. Semiclassical kinetic equation

Our goal is to describe the dynamics of the spin density in real space. Using the Nonequi-
librium statistical operator method! (see Chapter 2 and Zubarev et al. [1996]) we derive
kinetic equations for the charge and spin components of the Wigner transformed density
matrix

pr(xz,t) = ng(z,t) + sk(x,t) - o, (3.13)
where (cf. Eq. (2.56))

Priss' (T, 1) = /dr eik'r(wi,(az —7/2,t)Ys(x+7/2,1)). (3.14)

If we restrict our calculation to the zeroth order in b/Er and furthermore neglect terms
that are nonlinear in the spin density sg(x,t),2 the equations for charge and spin read

Opng+v-Opri, = T+ T, (3.15)
25k X b(k)+ 0 sk +v-0z 8k = Ji,;anrJZ'e (3.16)

with v; = k;/m, where the index ¢ = z,y labels the in-plane spatial directions. Note that
the spin and charge equations decouple in this approximation because the gradient terms
containing O, b(k), which would connect them, are of higher order in b/ Er. Moreover, in
the diffusive limit bp7 < 1 (where 7 is the momentum relaxation time), they would yield
terms of higher order in the small parameter bgp7, see Burkov et al. [2004] and Stanescu
and Galitski [2007]. On the right-hand side of Egs. (3.15)-(3.16), we have the collision
integrals for impurity scattering,

im )\4
T == Wi 8(Ac) An {1 i 17(3) [(k x k,)Z]Q} ’ S
kl
. 22 —sy, A\ , (5= + s,
TP = =" Wi 6(Ae) { As + S x K| si |+ g e x ED | sy +s§, 7
K’ 0 Sz — S,
(3.18)

! Alternative derivations with the Keldysh formalism or standard density matrix approaches yield, to
the desired zeroth order in br/EF, the same equations. Note, however, that to general orders in br/FEr,
important differences between the formalisms may arise, see Chapter 5 and Kailasvuori and Liiffe [2010].

2In principle, an additional Hartree-Fock precession term (of second order in sy and first order in the
electron-electron interaction V) in Eq. (3.16) could become important (see Chapter 4), as well as quadratic
in s terms in the electron-electron collision integrals (3.19)-(3.20). However, for small polarization these
effects can be neglected. The clean (double-)exponential decay of the transient spin grating as documented
in Fig. 1a in Koralek et al. [2009] is a strong hint that in this particular experiment nonlinear effects are
irrelevant.
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3. Relaxation of the persistent spin helix — the role of electron-electron scattering

with the transition rate Wy = 27 n; |v (k' — k) |2, where n; is the impurity concentration,
Ae =€, — e, An =ng — n and As = s, — sy, as well as electron-electron scattering,

Ty = 27 Z (2/Vi234]® — Vi34 Vizaz) 6(AE) (3.19)
2,34
[(1 — nl)(l — TLQ) n3ng — (1 <~ 3, 2+ 4)] R
b= 21y 048 {(1—m)(1 —n2)ngna (3.20)
2,34

S3 31 83 S4 S1 82
2| Vagaal® | = — —ViogaVigaz | — + — — -
ns 1—711 ns Ny 1—711 1—712

—(1+3,2+4)}.

Here, we abbreviated j = k; (where j = 1,2,3,4 labels initial and final states of the two
collision partners) and A€ = €x, + €k, — €kg — €ky-

In our approximation the charge kinetic equation (3.15) decouples from the spin kinetic
equation (3.16) and is independently solved by the Fermi-Dirac distribution ng(x,t) =

fler) =1+ e(ek*EF)/kBT] 717 where kp is the Boltzmann constant and 7" the temperature.
Since we are not interested in charge transport or local charge excitations, we assume that
the charge distribution is given by this spatially uniform solution. In the next subsection
we use the spin kinetic equation (3.16) to derive a drift-diffusion equation for the spin
density in real space [Burkov et al., 2004; Mishchenko et al., 2004; Stanescu and Galitski,
2007; Weng et al., 2008].

3.3.2. Spin diffusion equation in the D’yakonov-Perel’ regime

In the following, we consider the D’yakonov-Perel’ regime of strong scattering or weak
spin-orbit interaction [D’yakonov and Perel’, 1972], i.e.,

bpr < 1. (3.21)

During the average time interval 7 between collisions that alter the momentum of an
electron—and thereby the effective spin-orbit field b(k)—its spin precesses about this
field by the small angle bp7, see Figure 1.3. This results in a random walk behavior of the
spin (in the context of the PSH, see Yang and Orenstein [2010]). The spin polarization
is actually stabilized by the momentum scattering: the stronger the scattering, the slower
the D’yakonov-Perel’ spin relaxation.

In the spirit of the original derivation by D’yakonov and Perel’ [1972] we exploit the
separation of the timescales that govern the evolution of isotropic (in momentum space)
and anisotropic parts of the spin distribution function. Since we deal with a spatially
inhomogeneous spin density we make the additional assumption that the timescale con-
nected with the gradient term in Eq. (3.16) is large as compared to the transport time,
i.e. vpqT < 1, where ¢ is a typical wave vector of the Fourier transformed spin density.
Thus, when speaking of “orders in bp7” in the following, we actually have in mind “orders
in max{bp1, vpqT}”.
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3.3. Derivation of the spin diffusion equation

In order to solve the spin kinetic equation (3.16) we split off an isotropic component
S(x,t) from the spin density s; and expand the remaining anisotropic component in
winding numbers and powers of momentum £,

2
su(z,t) = _% Fex) S+ spa(x,t) + 8z, t) + sps(x,t) (3.22)
with
k .
Spi(z,t) = fl(ﬁk)% Z Ok (z,t) €', (3.23)
n==+1
~ / kg 1. in6
Sri(@t) = fler) 1 > Skp(w,t) e, (3.24)
rm n==+1
/ kg in@
ska(e,t) = f'er) 15— > bkn(z,t) e, (3.25)
an::t3

The anisotropic components of the distribution function arise due to the gradient term
in the Boltzmann equation and due to precession about the spin-orbit field. Since the
spin-orbit fields (3.5), (3.6) contain terms with winding numbers +1 and £3, only these
winding numbers need to be considered for the anisotropic part of the spin density to
lowest order in bp7. This point will become clear in the course of the derivation of
diffusion equations (see discussion below (3.38)). The same applies for the powers of k:
we need to include in our ansatz only those powers that are contained in the driving terms
resulting from the Hamiltonian (3.3). We therefore consider a k-term and a k3-term in the
ansatz for the winding-number-+1 terms of the spin density (3.23) and (3.24), because the
winding-number-+1 driving terms of the kinetic equation (3.16) are the gradient term, the
linear Rashba and Dresselhaus spin-orbit fields as well as the renormalization of the linear
Dresselhaus term due to cubic Dresselhaus spin-orbit interaction. The winding-number-
+3 component of the spin density (3.25), on the other hand, contains only a k3-term, since
only the cubic Dresselhaus spin-orbit field contributes to windin number +3 in the kinetic
equation (3.16).
In the following we consider point-like impurities, i.e., isotropic scattering with a rate

1 = mn;v(0)2. (3.26)

Furthermore, we assume low temperature T' < Tp = Er/kp and perform a Sommerfeld
expansion up to order (T/Tr)? in all momentum integrations of distribution functions:

from the standard Sommerfeld technique in the theory of the Fermi gas it is well known
that the approximation
[e%¢] Er 7T2
| deg@r 0 = [ degto + T (eat g (Br) s 0T (320)
0 0

holds, where f(e€) is the Fermi distribution and g(e) is a function of the energy that varies
slowly for € &~ Er. In the derivation of the spin diffusion equation we have to deal with
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3. Relaxation of the persistent spin helix — the role of electron-electron scattering

powers of momentum k2, k3, k%, k5, k8. Since the dispersion is quadratic, and the 2d DOS

is constant, the problem reduces to (n =1, 3,2, 3,4)

dee™ f'(e) = — dene™ ! f(e
/o fie) /0 f(e)
1+n(n—1) 5 <k >

Thus, the powers k2, k%, k® and k® are not simply replaced by —k%, - — k:% upon momen-
tum integration, but acquire corrections according to the prescription

= —(Ep)" +O(T*)T%). (3.28)

/ dey f'(ex) k" = —kp 2,(T) (3.29)
0
with 2o(7") = 1 and the Sommerfeld functions

»(T) = 1+ 2T2+O( ) all) = 1+5 5,

z%(T) = 1+ w(T) = 1+2n2 L T2 +O( ) (3.30)

T27

With the goal of obtaining diffusion equations for the real space spin density we start
by momentum integration of the kinetic equation, ﬁ J dk [Eq. (3.16)], using the ansatz
(3.22). This yields the isotropic equation for the isotropic component of the spin density,

2
9,5, — kF { 1 (a Shey + 0 5ksx> + qupbha, — ﬁvF(smqu&;%CZ +c0s2¢5ksz)}
271 | 2m ’ ’ ’
— %4 ey Sz, (3'31)
k% (1 -
0S8y = 5= { (020keyy + y8hsy ) + avihs,. + Bup (sin26 8k, — cos 26 6k)}
— 24 Yey Sy , (3.32)
k% (1
oS, = & {2 (a She.s + 0 5/<;8Z) — qwp(Skep + 0y )
+Bur [sin26 (ke — iy ) + 0526 (S + 0Fsa) |} (3.33)
with
akc(s) = 6kc(s) + Z4akc(s) )
dﬁc(s) = 5kc(s)_<(z45kc(s) + zﬁékc(s) + zgdkcg(&g)) , (3.34)
akc(s) = 6kc(s) _C(Z45kc(s) + 2651{70(5) - 265kc3(s3)) :
Here,
_ kR
¢ = 13 (3.35)
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3.3. Derivation of the spin diffusion equation

represents the ratio of cubic and linear Dresselhaus coupling strengths and we have intro-

duced

5kc(03) = 2Re 6k1(3)7 5’:30 = 2Re 5’:51,

Okysz) = —2Im Okyz), Ok, = —2Im oky. (3.36)

Eqs.(3.31)-(3.33) can be seen as continuity equations for the spin density where the
anisotropic components 6k, (,), dk.(5)3 and 6150(5) play the role of (generalized) spin cur-
rents. The impurity collision integral (3.18) contains a spin-dependent part due to ex-
trinsic spin-orbit interaction, which acts as a sink for in-plane spin-polarization with the
Elliot-Yafet relaxation rate [Raimondi and Schwab, 2009]

Mokr\*1
Yoy = < 02F) = (3.37)

This relaxation mechanism can be understood as the net effect of the electron spins pre-
cessing by a small angle about the extrinsic spin-orbit field during the collision with an
impurity. Since this field is perpendicular to the electronic motion, i.e., it points in z-
direction, the z component of the isotropic spin density is unaffected by the Elliot-Yafet
mechanism.

The anisotropic components k), 61::0( s) and 8k, 3(3) can in turn be expressed in terms
of the isotropic spin density S; by integrating the kinetic equation (3.16) multiplied with
the velocity over momentum, where, this time, we omit the time derivative. The jus-
tification is that, in order to capture the slow precession-diffusion dynamics of the real
space spin density, it is sufficient to interpret the time derivative as a coarse-grained one,
i.e. 0y S — AS/At with At ~ b.' > 7. Then the fast relaxation of the anisotropic com-
ponents into the steady state at the beginning of each At contributes to the average over
this time interval only with terms of higher order in bp7. For an explicit demonstration we
refer to Appendix A. Another way of seeing this is in analogy with the Born-Oppenheimer
approximation: similarly to the fast moving electrons in a molecule, which almost instan-
taneously find their equilibrium positions with respect to the slowly vibrating nuclei, the
anisotropic parts of the spin distribution quickly adjust to the momentary isotropic spin
density. The backaction of the anisotropic parts on the isotropic spin density is then well
described using their steady state solution.

By integrating ﬁ J dk vy, [Eq. (3.16)], equating terms of the same order in k and
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3. Relaxation of the persistent spin helix — the role of electron-electron scattering

solving for the coefficients, we obtain the following anisotropic equations:

Okey = 4Amjovp(1 + 2aYswT1) — BUF sin 2¢(1 — 2475w T1)] 7152

2
+ ETI (8$Sx + Z4’st7_18y8y) )
27
Okey = —4mBvpTicos2¢ (1 — z4YswT1) S: + gl (0 Sy — z4YswT10y Sz) ,

2
Oke. = 4w (—avp + Bupsin2¢) 7S, + 4 wPvp T cos2¢ Sy + —Wﬁﬁz S,
m

27
5ks,x = —4 7"-BUF"Tl COS 2¢ (1 - Z4rst7—1) SZ + ETl (81/ Sa: - Z4'YSW7—1830 Sy) ,

Oksy = 4Amjowp(l 4 24vswTi) + Bvp sin 2¢(1 — z4vswT1)] 7152

27
+ ETl (8y Sy + Z4'st7—18x Sa?) s

(3.38)

2
Oks . = AmPupTicos2¢ Sy — 4 [awp + fopsin2¢] 715, + —Wn(‘)y S,
™m
Skey = —0ksy = 4mBupCsin 207 (1 — Sy )Ss |
24
Skey = 0ksy = AmBuRCcos 207 (1 — Sy #)S, |
Z4

Oke, = —4mBup(Fi(sin2¢ Sy + cos26 Sy)
5];35@ = —47 Pvp(Ti(cos2¢ S, —sin2¢ Sy).

The spin densities .S; act as sinks and sources in the equations for the anisotropic coeffi-
cients 0k+1 43, 61?&172-. Since the spin densities S;(t = 0) are determined by the initial con-
ditions, they are of zeroth order in bp7, whereas the anisotropic coefficients 6k 41 +3., 5l~€:|:1’i
are already of first order in bp7. If we had included parts with higher winding numbers
+2,4+4,+5,... in our ansatz, these would have been generated only indirectly via the
0k 41 43,4, 512&171- (all of which are already of first order in bp7) and would therefore be of
even higher order in bpT.

In the Egs. (3.38) we have defined the rate of “swapping of the spin currents” [Lifshits
and D’yakonov, 2009] as

 (Mokr)?1
Tsw = < 9 > ;7 (339)

which is due to extrinsic spin-orbit interaction like the Elliot-Yafet rate vey (Eq. (3.37)),
but of lower order in Ag. It leads to a “swapping of spin currents” because a finite Vg
generates, e.g., a S, spin current in response to a gradient of the S, spin density in x
direction. Egs. (3.38) are valid to linear order in 7 gy < 1.

Since the anisotropic components dk+; and 0k~ are related to (generalized) spin cur-
rents, the anisotropic equations (3.38) express generalized Ohm’s laws. In accordance with
Matthiessen’s rule (see e.g. Smith and Jensen [1989]), the effective relaxation times for
the anisotropic parts of the spin distribution function are obtained as the inverse sum of
the collision integrals for normal impurity scattering, spin-dependent impurity scattering
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3.3. Derivation of the spin diffusion equation

and electron-electron scattering,

1 1 \*!

T = <+’yey26+ > , (3.40)
T e-e,1

5 1 2 1 -1

P <+%y8+ L ) , (3.41)
T 24 24 Te-e,1

Here, the rates Teels %e-e,l account for the decay of the respective component (sg, 1 or 5k 1)

of the spin distribution due to two-particle Coulomb scattering. The rate at which winding-
number-+1 and linear-in-k components of the spin distribution relax due to electron-
electron interaction is

TTI = F(TL = 1ap = 171 = 1)7 (342)

where

o k;::’m P / / dky dks dks 8(AE) (3.43)
ki [1 - f(ek:s)] [1 - f(€k1+k2—k3)] f(€k1)f(€k2)
{2V (|k1 — ks|)|* [cos(n[03 — 61]) K; — KT
+V(|k1 — k3|)V ([k2 — ks|)
[k} + cos(n[fy — 61]) k5 — cos(n[fs — 61])kL
—cos(n[f142-3 — 01]) |k1 + k2 — ks|"]} .

I'(n,p,l) =

The rate (3.42) is related to the spin Coulomb drag conductivity [D’Amico and Vignale,
2000; Flensberg et al., 2001; D’Amico and Vignale, 2003] via the Drude formula. The
analogous expression for the winding-number-+1 but cubic-in-k components is

e-e,1

with I'(n, p, 1) from Eq. (3.43).
In order to find the anisotropic equations for dki3 we follow a similar procedure as
before and integrate ﬁ [ dk e*39 [Eq. (3.16)]. This results in

sin2¢ S,
Ok.s = yup ]{7%71’7'3 —cos2¢ S, ,
cos 2¢ Sy —sin2¢ S,
cos2¢ S,
Okss = yurp ]{7%71’7'3 sin2¢ S,
—sin2¢ Sy — cos2¢ S,

(3.45)

with

1 28 1 \!
T3 = <7_ T Yey — + ) . (3.46)
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3. Relaxation of the persistent spin helix — the role of electron-electron scattering

The electron-electron scattering rate that enters the effective relaxation time (3.46) for
the winding-number-+3 parts of the spin distribution is given by Eq. (3.43) as

Teas = (n=3,p=3,1=0). (3.47)

e-

Finally we insert the steady-state solutions for the anisotropic coefficients, Eqgs. (3.38)
and (3.45), into the isotropic equations (3.31)-(3.33) and thus obtain a closed set of coupled
diffusion equations for the three vector components of the spin density,

O Sy = (DV? =Ty — 7eD 26 — Yey 24) Sz + L Sy + (K. 0y — M 9y) S-,

Sy = (DV? =Ty — YD 26 — Yey 24) Sy + L Sy + (K. 0y — M 0;) S,

S.=(DV? =T, —Ty =279 26 — Dsw) S» — (Ko 0p — M. 0y) Sy
— (K,y 8y — M, 0y) Sy .

(3.48)

On its diagonal, the diffusion operator that corresponds to Egs. (3.48) (when writing them
in matrix form) contains the genuine diffusion terms with V2 = 8%—#85 and the Elliot-Yafet
relaxation rate 7., due to extrinsic spin-orbit interaction. Also on the diagonal, we have
the D’yakonov’-Perel’ relaxation rates I';(,) and ~v.p which reflect the randomization of
the spin orientation due to precession (between the collisions) about the winding-number-
+1 and winding-number-+3 spin-orbit fields, respectively. The S, component suffers
relaxation as a consequence of precession about the y component of the spin-orbit field
only, and wvice versa. In contrast, the S, component is relaxed by the precession about
the full spin-orbit field. Thus the relaxation rate of S, due to precession is the sum of the
ones for S, and Sy, plus a correction I'sy, for processes that involve the swapping of the
spin currents due to extrinsic spin-orbit interaction. Due to precession there are also off-
diagonal rates L, which couple the in-plane spin components, as well as several off-diagonal
mixed diffusion-precession rates, which are accompanied by partial derivatives.

In terms of the parameters of our model and previously defined quantities the coefficients
in the spin diffusion equation (3.48) are given by:

1
YeD = gv% v kg3, (3.49)

) g ~7
Ty = 7% DﬂFa[2D—CZ4(D+D)} sin 2¢ (3.50)

2 ~ , -
+5 [D—<z4<D+D>+<z6DD,

L 2 Cx M = 2, 27 %

FSW:QQU’YSW DT124—$ D7'124—<DT1Z6—CD7'12’4+< DTIZZ , (351)
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3.4. Persistent spin helix in the presence of symmetry breaking mechanisms

Koz(y2) = o (D F g [D - %Cn (D + D)} sin 2¢> (3.52)

1 .
+§75qu <7'1Dz4:|:5 {71D24—C7~'1D26} sin2¢),
e

K o(zy) = Q0 <D F g [D - %Cm (D + D)} sin 2¢> (3.53)
+%7sw7_1quZ4 |:12|Z§(1—CZ4>SH12¢:| ,
M = cos2¢q0§ [D — %sz; (D—i—f))] (3.54)
—%Wswqo COS2¢é [71D24_C7~'1DZ6]»
(6%
M, = cos 2¢)q0§ [D — %ga (D + f))] (3.55)
*%vswﬁqODzz; cos2¢>§(1*624),
L(¢) = coquﬁ%ng {D - %ga (D + [))] (3.56)

with the PSH wave vector
g = 4dvpma (3.57)
and the effective diffusion constants

1 -
D:§v%71, D= % 7. (3.58)

| =

At T = 0, we have z, = 1, and the electron-electron scattering is suppressed due to the
lack of phase space for final states, such that D = D. Then, the spin diffusion equation
(3.48) agrees (except for the sign of L) with the one presented in Weng et al. [2008] if
we leave extrinsic spin-orbit interactions aside. If we further omit cubic Dresselhaus spin-
orbit interaction in our diffusion equation, it also concurs with the one of Bernevig et al.
[2006] provided that the spin-charge coupling is negligible.

3.4. Persistent spin helix in the presence of symmetry breaking
mechanisms

In this section, we use the spin diffusion equation (3.48) to calculate the lifetime of the
persistent spin helix. We consider extrinsic spin-orbit interaction, cubic Dresselhaus spin-
orbit interaction, and simple spin-flip scattering as possible symmetry breaking mecha-
nisms. In order to allow for simple analytical solutions we discuss each of the candidate
mechanisms separately. In the case of cubic Dresselhaus spin-orbit interaction we neglect
at first the renormalization of the linear Dresselhaus spin-orbit interaction (see Eq. (3.7)).
This is formally achieved by setting ¢ = 0 in Eqgs. (3.50)-(3.56) while keeping the ~.p
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3. Relaxation of the persistent spin helix — the role of electron-electron scattering

Table 3.1.: Specification of the rate X and the integer N in Eq. (3.59)

Simple spin flips Extr. spin-orbit int. Cubic Dress.

X 1/7et Vey VeD %6
N 1 0 2

term in Eq. (3.48). However, we will include the renormalization of the linear Dresselhaus
spin-orbit interaction when we discuss a possible stationary solution in the present section
and also when we compare to the experimental results in a GaAs/AlGaAs quantum well
[Koralek et al., 2009] in Section 3.5.

We choose our coordinate system such that the z axis points in the (110)-crystal di-

s

rection, corresponding to ¢ = 7§ in Eqgs. (3.50)-(3.56). Then, considering an initial spin
polarization that is uniform in z-direction, due to L(%) = M(%) = 0 the S, component
decouples from the Sy and S, components and we can set S; = 0. Since a = (3, Eq. (3.48)

reduces for the remaining S, and S, components to

DO —-¢@D-X 2qoD O
S = Yy 0 Yy S
o ( —2¢qyD9, DO —-q3D—-N X> ’ (8.59)

where the relaxation rates due to the respective symmetry-breaking mechanism are rep-
resented by X and an integer N according to Table 3.1.

For the SU(2) symmetric situation (X = 0) there exists a steady state solution with the
wave vector gg. This is the persistent spin helix state. More precisely, for an initial spin
polarization of the form

S(x,t=0) = S| 0 |, (3.60)
Cos qoy

similar to the experimental set-up of Koralek et al., one finds that the time-dependent
solution to Eq. (3.59) is

- So (e~ Pt — 1] sinqoy
SX=0(y, 1) = =2 . 3.61
(1) 2 ([64 % Dt 1] cos qoy (3.61)

In the stationary limit ¢ — oo this reduces to the persistent spin helix state. The solu-
tion (3.61) can, for instance, be constructed by applying the Laplace transformation in
order to eliminate the time variable. Then the spatial part reduces to an eigenvalue prob-
lem. After solving the eigenvalue problem Eq. (3.61) is obtained by an inverse Laplace
transformation.

In the presence of symmetry breaking mechanisms, i.e., for X # 0, one can still find a
steady state solution of the form

Syly) = —% e ¥ Oy singyy,

So _ .
Si(y) = 5 e ¥/ (Cy singxy + cosqxy)

(3.62)
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3.4. Persistent spin helix in the presence of symmetry breaking mechanisms

This solution is a spatially damped persistent spin helix state with the coefficients

7 = qﬁ\/25+ (N+1)é—2, (3.63)
qx = qo\/2~ 1)€+2,

4,2E—(1+N) §+2[4+(3N+ ){—N(N—1)§2—(4+(N—1)§)E]
@ = F8V -1 1 (N - 1% |
0, _ S-(N-1P€-4pE- (V119

(N=1)&VB(N+1)E— (N —1)2¢

where ¢ = X/(g2D) and E = /(1 +&)(1+ NE). For £ — 0 the t — oo asymptotics
of Eq. (3.61), i.e., the truly persistent spin helix state in the absence of SU(2) breaking
mechanisms, is readily recovered. The spatially damped persistent spin helix state (3.62)
can in principle be excited with the initial spin polarization profile

0
S(x,t =0) = Spe ¥/x 0 : (3.64)
CoS gxy

Although the spatially damped persistent spin helix is clearly a valid steady state so-
lution when the symmetry breaking is caused by simple spin flips or extrinsic spin orbit
interaction, it is not obvious that this applies also to the case of cubic Dresselhaus spin
orbit interaction, since we have neglected the renormalization of the linear Dresselhaus
spin orbit interaction (¢ # 0), which might lead to a finite lifetime of the spatially damped
state. Nevertheless, even when the renormalization of the linear Dresselhaus spin orbit
interaction is taken into account one can still find a steady state solution of the form (3.62)
when the ratio of the linear Rashba and Dresselhaus spin orbit interactions is given by

B D

a  D-l¢z(D+D) (3.65)

It should generally be possible to fulfill this relation for realistic experimental parameters
upon appropriate tuning of the spin-orbit interaction or the temperature. According to
Egs. (3.52)-(3.53), we then have K .(}) = K.,(7) = 2qo D, as in Eq. (3.59). Furthermore,

T,(r/4) = qé D1+ F(T)], (3.66)
I.(r/4) = ¢ D1 +2F ()],
with
AT = %( D?— (2 D(D+ D)+ (?2DD _1>, (3.67)

—(z2D(D + D) + 1¢223(D + D)2

Thus, the spin diffusion equation can still be cast into the form of Eq. (3.59) when the
symmetry breaking rate X is redefined as X = X +¢3D F(T). For this symmetry breaking
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3. Relaxation of the persistent spin helix — the role of electron-electron scattering

rate X and spin orbit couplings satisfying (3.65) the spatially damped spin profile of the
form (3.62)-(3.63) is, again, infinitely long-lived.

This stationary state should in principle be realizable in the GaAs/AlGaAs quantum
well of Koralek et al., because there the ratio of /o almost fulfills relation (3.65) at a
temperature of 7' = 100 K. For the parameters of the GaAs/AlGaAs quantum well used
by Koralek et al. the steady state solution is characterized by a wavevector ¢3 ~ qo and
a damping length of hardly more than one PSH wavelength, [ ~ 1.06 2(1—(?. Although a
spin grating with such a strong spatial damping might be difficult to realize in practice,
it should be noted that the required damping length is o< (~!, so that one can expect
much longer damping lengths for thinner quantum wells, where the importance of cubic
Dresselhaus spin-orbit coupling (as compared to the linear one) is reduced.

We now want to consider the conventional PSH solution. If we stick to an initial spin
polarization with the form of a plane wave (3.60) similar to the experimental set-up, the
time-dependent solution of Eq. (3.59) is characterized by a double-exponential decay,

_t
So 4q D (e TR — ¢ TE)
Sy(y,t) = — sin , 3.68
y(y, 1) B) q0Y JAZDP + (N-12 X (3.68)
S — 5 .. (N-1DX (6*5 _ e*i) )
,t) = — cos e "R +e "E + .
R VA@DP T (V1P X
with the spin-orbit-enhanced and -reduced lifetimes

Tom = 260D+ 5 SN XF \/4q0 24 (N —1)2X2. (3.70)

In the absence of any symmetry-breaking relaxation mechanism, i.e., for X = 0, the
proper persistent spin helix state (7p = 00) is recovered. Expanding Eq. (3.70) for small
X/(4¢3 D) < 1 we obtain

2 N-1\% 1
~ 2 x! 3.71
Y +<N+1> 1D’ (37

1 (N+1)X
4q(2)D 2(4q§D)2

Q

TR (3.72)

The reduced lifetime 75 is not very sensitive to details of the (weak) symmetry-breaking
mechanism. Correspondingly, the temperature dependence of the reduced lifetime 7p
is almost independent of the precise mechanism (and is essentially determined by the
electron-electron relaxation rate 711 contained in D via 71, see Eq. (3.40)). The tem-
perature dependence of the enhanced lifetime 7z, by contrast, depends crucially on the
symmetry breaking mechanism under consideration and thus offers a way to discriminate
between the different mechanisms. For small symmetry breaking terms the enhanced life-
time 7 is proportional to the inverse of the respective scattering rate X ~!. Therefore also
the temperature dependence of 75 is determined by the one of the scattering rate. For
simple spin-flip scattering X = ngl we expect a temperature-independent lifetime 75 due
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3.5. Persistent spin helix in GaAs/AlGaAs quantum wells
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Figure 3.6.: (a) Temperature-dependent relaxation rates due to electron-electron interac-
tions: 7__ el,l (solid curve), 7 el,l (dot-dashed curve) and 7 el 5 (dashed curve) as
computed numerically from Eq. (3.42) using the experimental parameters of

Koralek et al. [2009]. For comparison: the inverse transport time at 7' = 100K

is 771 =1 ps~'. (b) The resulting effective relaxation rates: 7; * (solid), 75 *

(dashed) and 7; ! (dot-dashed), cf. Egs. (3.40)-(3.41) and (3.46).

to a constant 7. For extrinsic spin-orbit interactions with X = .y, the only temperature
dependence to leading order in X/(4 g3 D) comes from the Sommerfeld corrections. Thus
T decreases quadratically with temperature. For cubic Dresselhaus spin-orbit interaction
one finds

2
B A~ g%Dlzﬁl (3.73)

and therefore 7 is proportional to 75 ' (see Eq. (3.49)). Since 73 decreases with temper-
ature as a consequence of the enhanced electron-electron scattering Tefel 5 (see Eq. (3.46))
the lifetime 7g increases initially with temperature due to the motional narrowing effect
in the D’yakonov-Perel’ regime. The presence of the Sommerfeld function zg, on the other
hand, leads to a decrease of 7 with increasing temperature. Thus for cubic Dresselhaus
spin-orbit interaction we find that the temperature dependence is governed by a compe-
tition between increasing and decreasing contributions. We will compare this theoretical
interpretation with experimental results for the persistent spin helix in GaAs/AlGaAs
quantum wells [Koralek et al., 2009] in the next section.

3.5. Persistent spin helix in GaAs/AlGaAs quantum wells

In order to address the lifetime of the PSH observed experimentally in GaAs/AlGaAs
quantum wells we consider cubic Dresselhaus spin-orbit coupling alongside with extrinsic
spin-orbit interaction as possible symmetry breaking mechanisms in our model. We fur-
ther include the renormalization of the linear Dresselhaus coupling constant due to cubic
Dresselhaus spin-orbit interaction (¢ # 0 in Egs. (3.50)-(3.56)). Analogously to the pre-
vious section we can set S; = 0. Then the spin diffusion equation (3.48) reduces for the
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3. Relaxation of the persistent spin helix — the role of electron-electron scattering

remaining components Sy and S, to

Dd?-Y K (”)8)
oS = v vz.4779) 8 3.74
t (-sz(4)ay Do —Z (3.74)

with

Y = Ty(n/4) + YD 26 + Yey 24,

3.75
Z = Typ(n/4)+Ty(n/4) + 27D 26 + Tsw - (3.75)

For an initial spin polarization of the form S(z,t = 0) = Sy (0, 0, cosqoy) the time-
dependent solution is a double-exponential function,

Sy(y,t) = %sinqoy 2Kyzqole e 7¢) , (3.76)
VKR Ky (D @+ (Z - Y )2
_t _t
So .t (Z-Y) (6 R —e TE)
S:(y,t) = - cosqoy e TR e T A+ , (3.77)
VAKR (D) Ky (D @ +(Z - Y )2

where the spin-orbit-enhanced relaxation rate 7 L and a spin-orbit-reduced relaxation rate

1

Trp are now given as

. 1 |
ot = 3 Y+ D)+ DF 5 VO = 2)2 4 463 Kyol(/4) Koy (/4). (3.78)

It may be instructive to expand the relaxation rate of the enhanced mode up to linear
order in the small rate v.p (assuming that v.p/g3 D < 1 is the smallest parameter of the
problem) and to subsequently expand the zeroth order terms of this expansion up to the
quadratic order in deviations from 3/a =1 and ¢ = 0. This procedure yields

Z3C2+<§—1>2—22 (1+g)<<§—1)]. (3.79)

_ 3 3
TR §’YcDZG+§CJ§D

The zero temperature limit 77" = 3 Yen(T = 0) + %Dqg (¢— g + 1)2 is minimal (and
equal to the zero-temperature limit of the simplified result (3.73) in the previous section,
where we have neglected the renormalization of linear due to cubic Dresselhaus coupling)
for /a =1+¢(, i.e., a = 3 instead of @ = § (¢f. Stanescu and Galitski [2007]).

In order to quantitatively compare our theory with the experimental findings of Koralek
et al. we need to calculate the coefficients that occur in Eq. (3.78)—in particular the
temperature-dependent rates for electron-electron scattering. Fig. 3.6 (a) shows numerical
results for 7__ 6171, T 6171 and 7, 6173 (for intermediate steps, see Appendix B) for the parameters
of Koralek et al. For the practical purpose of obtaining continuous curves for the lifetimes
we have interpolated the discrete set of points we obtained by Monte Carlo integration of
Egs. (3.42)-(3.47) with a fit to the functional form AT? + BT?InT. This form has been

shown to describe the low-temperature behavior of the spin Coulomb drag conductivity in
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Figure 3.7.: Temperature-dependent lifetimes of the enhanced (red) and reduced (blue)
PSH modes. The points are experimental data from Koralek et al. [2009].
Solid lines are our theoretical results in different approximations: (a) including
only extrinsic spin-orbit interactions (no cubic Dresselhaus spin-orbit inter-
actions and electron-electron interactions); (b) including extrinsic and cubic
Dresselhaus spin-orbit interaction, but no electron-electron interaction; (c)
including extrinsic and cubic Dresselhaus spin-orbit interactions as well as
electron-electron interactions; here, the thin dashed line shows for compari-
son the simplified result (3.73).

D’Amico and Vignale [2003]. With these electron-electron scattering rates we find for the
effective scattering rates in Eqgs. (3.40)-(3.41) and (3.46) the values depicted in Fig. 3.6(b).
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3. Relaxation of the persistent spin helix — the role of electron-electron scattering
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Figure 3.8.: (a) Linear plot of the enhanced lifetime 75 as measured by Koralek et al.
[2009] (points) and calculated theoretically (solid line) taking into account
linear and cubic Dresselhaus spin-orbit interactions as well as electron-electron
scattering. (b) Zoom into the maximum of of the theoretical curve for 7. The
dashed line is the result without extrinsic spin-orbit interaction.

In Fig. 3.7, we show the numerical results for the temperature dependence of the spin-
orbit-enhanced and -reduced lifetimes 75(g) where we use the experimental parameters of
Koralek et al.> In particular, we take Tr = 400 K as the Fermi temperature, o = 0.0013
for the Rashba spin-orbit interaction and yvp = 5.0 eV A? for the cubic Dresselhaus spin-
orbit interaction. We assume ¢ = 0.2 for the ratio of cubic-to-linear Dresselhaus spin-orbit
coupling and adjust the linear Dresselhaus spin-orbit interaction to f = 1.29 « in order
to maximize 7 for T = 75 K—the temperature at which also in the experiment the
spin-orbit interaction was tuned to maximize 7g.

Note that over the whole temperature range depicted in Fig. 3.7 we use for the transport
relaxation time the value 7 = 1 ps, which is correct for T = 100 K.* Since the experi-
mental 7 exhibits a neat decrease with increasing temperature—roughly by one order of
magnitude between 5 and 100 K—due to mechanisms that are not included in our model,
we cannot expect our results to accurately match the experimental data for very low and
high temperatures. At intermediate temperatures around 100 K, i.e., in the temperature
range where our theory should be most applicable, we find good agreement between our
theory and the experimental lifetimes, see Fig. 3.7 (c). We observe a maximum in 75 close
to where the experimental data points exhibit one, see also the non-logarithmic plot in
Figure 3.8 (a). Also the size of 7 as well as of 7 is very close to the experimental val-
ues. Since the scattering rates due to extrinsic spin-orbit interaction are very small in the
GaAs/AlGaAs quantum well under consideration (Yey/vep ~ 107% and 7 g ~ 3 x 1073),
effects of extrinsic spin-orbit interaction turn out to be negligible, see Fig. 3.8 (b). A
calculation which includes extrinsic spin-orbit interactions and electron-electron interac-
tions but excludes cubic Dresselhaus spin-orbit interaction (Figure 3.7 (a)) yields enhanced
lifetimes that exceed the experimental ones by a factor ~ 10?2 — 103.

Interestingly, the simple result (3.73) for the enhanced lifetime, where we neglected the

3These parameters are in turn partly obtained from fits to the theory of Stanescu and Galitski [2007].
4J. D. Koralek, private communication.
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3.6. Summary

renormalization of the linear Dresselhaus spin-orbit interaction due to cubic Dresselhaus
spin-orbit interaction, is a fairly good approximation (see dashed curve in Fig. 3.7 (c)).
Thus the simple interpretation of the temperature dependence of 75 can also be extended
to the present situation. The formation of the maximum in 75 at intermediate tempera-
tures around 100 K is caused by the competition between two effects: on the one hand, 75
increases with temperature due to increasing electron-electron scattering, which leads in
the presence of symmetry breaking cubic Dresselhaus interaction to the usual motional-
narrowing effect in the D’yakonov-Perel’ regime (cf. Glazov and Ivchenko [2003]). On the
other hand, the magnitude of Sommerfeld corrections increases with temperature reducing
the lifetime 75 in two ways: (i) by increasing the effective cubic Dresselhaus scattering
rate 7.4 26 and (ii) by increasing the linear renormalization of the Dresselhaus spin-orbit
interaction, which leads to a detuning of the Rashba and the effective linear Dresselhaus
spin-orbit interactions.

The important effect of electron-electron scattering for the temperature dependence of
the lifetimes 75 and 7 can also be deduced from Fig. 3.7 (b), where we show the lifetimes
excluding the effect of electron-electron interactions. Obviously, the initial increase of the
lifetimes with temperature is absent for both 75 and 7 in the absence of electron-electron
interaction.

Deviations between our theory and the experimentally observed lifetimes are more pro-
nounced for very low temperatures and for high temperatures. We suppose that at high
temperatures symmetry breaking mechanisms that are not captured by our model (e.g.,
effects involving phonons) can become important. Furthermore, since the Fermi temper-
ature in the GaAs/AlGaAs quantum well under consideration is only Tp = 400 K we
cannot expect our calculation, which is based on a low-order Sommerfeld expansion, to
be as accurate in the high temperature range above 200 K. The disagreement at low tem-
peratures, on the other hand, results most likely from the fact that we do not take into
account the temperature dependence of the transport lifetime but rather use the experi-
mental 100 K-transport lifetime 7(100 K) = 1 ps at all temperatures. In reality, however,
the transport lifetime increases with decreasing temperature such that bpr 2 1 for low
temperatures, i.e., the system is outside the D’yakonov-Perel’ regime and our theory is
no longer applicable. In this low temperature regime other approaches, which account for
strong spin-orbit interaction, should be used [Bernevig and Hu, 2008; Liu et al., 2011].

3.6. Summary

Using a Boltzmann-type approach we have derived semiclassical spin-diffusion equations
for a 2DEG with Rashba and linear Dresselhaus spin-orbit interactions that also take
into account the cubic Dresselhaus spin-orbit interaction, extrinsic spin-orbit interaction
and electron-electron scattering. Our results for the temperature-dependent lifetime of
the persistent spin helix are, within the range of validity of our diffusive low-temperature
theory, in qualitative and reasonable quantitative agreement with recent measurements by
Koralek et al. [2009].

It turns out that the influence of extrinsic spin-orbit interaction is negligible for the
parameters of the experiment. The lifetime of the PSH at finite temperatures is mainly
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3. Relaxation of the persistent spin helix — the role of electron-electron scattering

a result of the interplay of cubic Dresselhaus spin-orbit interaction and electron-electron
scattering: due to the latter, the relaxation rate of winding-number-4+3 components of
the spin distributions function in momentum space grows with increasing temperature.
Since, in the D’yakonov-Perel’ regime, the inverse of this rate enters the effective relax-
ation rate due to cubic Dresselhaus spin-orbit interaction, electron-electron interactions
tend to increase the PSH lifetime with increasing temperature. However, at some point
the competition with positive finite-temperature corrections in the expression of the re-
laxation rate is won by the latter, which explains the formation of a maximum. Another
contribution to the reduction of the lifetime are temperature-induced deviations from the
symmetry point due to a momentum-dependent renormalization of the linear Dresselhaus
coupling constant in the presence of cubic Dresselhaus spin-orbit interaction.

Note that, qualitatively, the mechanism described above would as well work with extrin-
sic spin-orbit interaction as the only SU(2) violating ingredient in the model. In that case,
ordinary spin Coulomb drag would be responsible for the PSH lifetime to increase with
temperature, whereas, again, Sommerfeld expansion corrections would tend to decrease
the lifetime. Thus, apart from the issue of the PSH lifetime and leaving cubic Dresselhaus
spin-orbit interaction and extrinsic spin-orbit interaction aside, we have presented the gen-
eralization of the Boltzmann-equation derivation of spin Coulomb drag for the collinear
case (only spin-up and spin-down) by Flensberg et al. [2001] to a coherent description,
which is necessary to capture a spin precession term. In order to respond to the cubic
Dresselhaus spin-orbit interaction in our problem we have extended the calculation to
distribution functions which contain winding-number-+3 components.

We propose a spatially damped sinusoidal spin profile as initial condition for a TSG
experiment in order to further enhance the PSH lifetime. In theory, the infinite lifetime
can thus be restored in presence of symmetry breaking mechanisms as long as these appear
as relaxation rates in the spin diffusion equation.

In order to further refine the theory for general situations where the cubic Dresselhaus
spin-orbit interaction might be less dominant, it would be interesting for future work to
include disorder in the local Rashba spin-orbit coupling or spin-dependent electron-electron
scattering (a variant of the Elliot-Yafet mechanism, but based on two-particle Coulomb
scattering). These relaxation mechanisms are currently discussed in the context of spin
relaxation in (110) grown GaAs quantum wells [Sherman, 2003; Glazov et al., 2010].
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4. Effects of Coulomb exchange interaction
on the persistent spin helix

In this chapter we investigate how the persistent spin helix is affected by the mean field
(Hartree-Fock) contribution of the electron-electron interactions, which we have neglected
all along in Chapter 3. As a consequence of the nonlinear nature of this extended problem,
the lifetime of the spin-density wave becomes dependent on the degree of initial spin-
polarization. We find that for large initial spin polarizations in the percentage range
a considerable increase in the relaxation time is to be expected. Furthermore, we find
qualitative changes in the shape of the spin helix with, in particular, the so far inactive
third component of the spin polarization vector (i.e., S, when coordinates are chosen as
in Chapter 3) and higher harmonics coming into play.

4.1. Introduction

The persistent spin helix has been introduced in Chapter 3 as a peculiar spin-density wave
of infinite lifetime that exists in two-dimensional electron systems with Rashba and linear
Dresselhaus spin-orbit interactions of equal magnitude [Bernevig et al., 2006]. We have
seen that in real systems the lifetime of the persistent spin helix is no longer infinite due to
the presence of additional terms that break the SU(2) symmetry of the Hamiltonian. For
the particular experimental realization of a spin helix in a GaAs/AlGaAs quantum well
by Koralek et al. [2009], cubic Dresselhaus spin-orbit interaction has been proposed as the
primary suspect among other candidate symmetry breaking mechanisms that can cause
a finite lifetime of the persistent spin helix state [Koralek et al., 2009; Liiffe et al., 2011].
As pointed out by Koralek et al., the observed temperature dependence of the lifetime of
the persistent spin helix suggests that also electron-electron interactions strongly affect
the relaxation process. Developing this idea to the stage of a quantitative theory, we
have found in Chapter 3 that the inclusion of Coulomb scattering, in combination with
cubic Dresselhaus spin-orbit interaction as the required symmetry breaking mechanism,
can fairly well account for the observed temperature dependent PSH lifetime [Liiffe et al.,
2011].

Regarding the influence of Coulomb interactions, in our previous treatment we have only
considered electron-electron collisions, which are of second order in the electron-electron
interaction, but we have neglected the mean field Hartree-Fock term, which arises in first
order. This approximation is valid when the initial spin polarization is small and it appears
to be appropriate for the description of the experiment by Koralek et al. However, it is
also possible to realize large initial spin polarizations experimentally [Stich et al., 2007].
The Hartree-Fock term then acts as an effective magnetic field pointing along the local
spin polarization, which can enhance the spin lifetime considerably [Weng and Wu, 2003;
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4. Effects of Coulomb exchange interaction on the persistent spin helix

Stich et al., 2007]. As put forward by Takahashi et al. [1999], the influence of the molecular
field produced by an average spin polarization in a degenerate two-dimensional electron
gas is analogous to the spin diffusion dynamics in liquid *He in 3d, where the exchange
field of the average spin exerts a torque on spin currents [Leggett and Rice, 1968; Leggett,
1970].

In the present chapter it is our goal to analyze the effect of the Hartree-Fock term on
the persistent spin helix in the diffusive D’yakonov Perel’ regime. In particular, we want
to answer the following questions:

(i) what effect does the Hartree-Fock field have on the lifetime of the persistent spin
helix and

(ii) does it qualitatively modify the pattern of the persistent spin helix?

We restrict our calculation to zero temperature in order to avoid formal complications
due to, e.g., the renormalization of linear Dresselhaus spin-orbit coupling by the cubic one
(¢f. Chapter 3). This approximation seems acceptable also for quantitative evaluations
and predictions, since the temperature dependence of the Hartree-Fock interaction turns
out to be weak.

The structure of this chapter is the following: in Section 4.2 we derive the Hartree-Fock
contribution to the kinetic equation for the spin density within the Nonequilibrium statis-
tical operator method. In Section 4.3 we obtain the spin diffusion equations valid in the
diffusive D’yakonov Perel’ regime including the effect of the Hartree-Fock field. Then we
analyze in Section 4.4 the effect of the Hartree-Fock interaction on the lifetime (Subsec-
tion 4.4.2) and the pattern (Subsection 4.4.3) of the persistent spin helix for small cubic
Dresselhaus spin-orbit interactions—a regime that can also be addressed perturbatively.
Finally, in Subsection Section 4.4.4, we consider the influence of the Hartree-Fock field in
a situation where the cubic Dresselhaus spin-orbit interaction is of similar order of mag-
nitude as the linear Rashba and Dresselhaus spin-orbit interactions. In this parameter
regime nonlinear effect turn out to be quite pronounced.

4.2. Derivation of the Hartree-Fock term

In this section, we derive the Hartree-Fock mean field term due to electron-electron inter-
actions. Its consequences for the persistent spin helix will be studied in the following. Our
considerations are based on the model Hamiltonian of a GaAs quantum well as presented
in Chapter 3.2, which includes Rashba as well as linear and cubic Dresselhaus spin-orbit
coupling and, in addition, electron-impurity and electron-electron interactions.

In a first step we go back to the general expressions from Chapter 2.2, which have
served us in Chapter 3 as a starting point for the derivation of the kinetic equation for the
spin density (3.16) including the collision integrals for electron-impurity scattering and
electron-electron scattering. We recall that for a general nonequilibrium problem, where
the system Hamiltonian H = Hy 4+ V contains an exactly solvable single-particle part Hy
and an interaction V', the Nonequilibrium statistical operator formalism (see Chapter 2.2)
permits to derive a closed set of equations describing the irreversible temporal evolution
of the density matrix fiy(t) = <1/1;r,z/1l>t = Tr[p(t) 1/1;,1/)1}. For our purpose, [ is a composed
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4.2. Derivation of the Hartree-Fock term

index for both momentum and spin. The kinetic equation in Born approximation (i.e., up
to quadratic order in V') reads (cf. Eq. (2.54))

B ()t — i ([Ho, i)t = T3 (6) + T2 (8) . (4.1)

The commutator becomes a simple linear combination of density matrix entries, resulting
for the particular Hamiltonian under consideration in the gradient term and the precession
term on the left-hand side of Eq. (3.16). On the right-hand side of Eq. (4.1), we have the

second-order (in the interaction V') collision term Jl(ﬁ) (t), ¢f. Eq. (2.55), and the first-order
mean field term (2.52)

(4.2)

t
rel '

10 = + (W)

Here, the average is with respect to the relevant statistical operator (see Chapter 2.2.2),
thus allowing for a decomposition according to Wick’s theorem.

Taking for Hg the spin-orbit coupled Hamiltonian from Chapter 3.2 with Rashba as well
as linear and cubic Dresselhaus spin-orbit interaction and identifying V' = Hiyp+ Hee with
the Hamiltonians for the electron-impurity interactions and electron-electron interactions,
one obtains, upon Wigner transformation and first-order gradient expansion of the left-
hand side, kinetic equations for the charge and spin parts of the density matrix with the
corresponding second-order collision integrals (see Chapter 3.3). In the case of electron-
impurity interaction the mean field contribution (4.2) vanishes. This is, however, not the
case for electron-electron interactions.

In Chapter 3 we neglected the mean field term (4.2) because in the particular experiment
by Koralek et al. [2009] the initial polarization Sy was supposedly so small that nonlinear
effects of the Hartree-Fock precession term were negliglible. The fact that no dependence
of the persistent spin helix lifetime on the magnitude of the initial polarization Sy could be
observed! fosters this view. However, it would be beneficial to understand the smallness
of the term from a calculation with the parameters of this very experiment (and thus
possibly find an upper boundary for the polarization that was actually reached). Apart
from that, it is interesting to study the consequences of the mean field term for general
parameter regimes.

We evaluate the mean field term (4.2) for electron-electron interactions (cf. Eq. (3.11))

1
He—e = 5 Z Vk353,k454,k151,k282 ¢L434¢2333¢k151¢k252 (43)

k1...ka
51,52,53,54

with the Thomas-Fermi screened Coulomb potential
Vk353,k454,k151,k252 = 5k3+k4—k1—k2,0 581,83 582,84 6(|k3 - k1|) ) (4'4)

where 0(k) = Z((’,:)) with the Fourier transform of the Coulomb potential in 2d, v(q) =
h22 7w

€gmaqa*’

denotes the effective Bohr radius.

and the polarizability ¢, =~ 1+ q%. We recall from Chapter 3.2 that a* = RAmeger

me?

1J. D. Koralek, private communication.
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4. Effects of Coulomb exchange interaction on the persistent spin helix

In the following we will occasionally shorten the expressions by writing, e.g., Y1 = Yk, s, -
Evaluation of the commutator in (4.2) yields in this notation

T = 2 ([Heerwln])
_ ! Z Vargras (513' <¢I/¢; (05 ¢3> — 013 <¢;¢; (0 ¢1> ) (4.5)

ih 93793 rel rel

rel

Upon Wick decomposition of the averages

<1/}I¢; 1/}3 1/}4>re1 - <¢]1L ng>re1 <w$ w4>rel + <¢1L w4>rel <”¢J2r w3>rel (46)
— _(5k1 ks 6k2 ka fslsg (kl) f8254 (kZ) + 6](:1 ka 6k2 ks f5154 (kl) f$253 (kz)
and by exploiting the Kronecker symbols we obtain a mean field term that is diagonal in
momentum but remains a matrix in spin space,

TEO®) = SR~ KD [(FK) FR),, — (FR)TRD) ). (47)

k:l
By decomposing the spin space matrices according to

A

fk) = np+o-s,, JEO = g4 g ge® (4.8)

one finds that the mean field term does not affect the charge density ng (since Jze(l) =0),
but has an influence on the spin density s, with the additional term

ee(1 2 dq ~
Jk() = hSkX/WU(q)Sk+q (49)

entering on the right-hand side of the kinetic equation for the spin density (cf. Eq. (3.16))

O sk + 28 X b(k) +v-Ops = JP 4 g (4.10)

4.3. Spin diffusion equation with Hartree-Fock precession

The goal of the present section is to derive from the kinetic equation (4.10) a spin diffusion
equation (c¢f. Chapter 3.3.2) that enables us to discuss the effect of the Hartree-Fock
interaction on the persistent spin helix. In the presence of cubic Dresselhaus spin-orbit
interaction this state is characterized by the vector components

2
_t _t
S = 0, Sy = —Spe TEsinquy, S, = Spe TE( 1+7§2D—7;D cos QoY -

(4.11)
These are obtained from our result for the transient spin grating experiment, Eqs. (3.68)-
(3.69), in the limit of large times (use that 7z < 7). We recall that the PSH lifetime 75
is given as (¢f. Eq. (3.70))

1 1
- = <I‘+3%D—\/F2+702D), (4.12)
TE 2
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4.3. Spin diffusion equation with Hartree-Fock precession

where I' = 4q(2)D with the PSH wave vector qo = 4mwvpa and the ordinary diffusion
constant D = %v%ﬁ. The relaxation rate vy.p = %0%7216%7'3 results from cubic Dres-
selhaus scattering, cf. Eq. (3.49). Here, 7y(3) is the effective relaxation time for the
winding-number-+1(+£3) parts of the phase-space spin distribution function. Although
in our model (with spin-independent, isotropic scattering from point-like impurities and
no electron-electron scattering, since 7' = 0) we have 71 = 73 = 7, this is not true in gen-
eral, cf. Egs. (3.40) and (3.46). Therefore we use the more general 73y in all expressions
in order to make an extension to including, e.g., second-order electron-electron interaction
at finite temperatures straightforward.

We follow the approach used already in Chapter 3.3.2 to set up a diffusion equation for
the spin density sg, which is valid in the diffusive D’yakonov-Perel’ regime, i.e., in the
case bpT < 1, where the spin polarization is stabilized due to strong scattering. In order
to solve Eq. (4.10) for the real-space spin density S(x,t) we expand the spin density into
k-space winding numbers (cf. Eq. (3.22)),

sp(x,t) = spo(x,t)+ ski(x,t) + sk3(x,t). (4.13)
We include in this ansatz distribution the isotropic component

2 e S(at) (4.14)

sk70(az, t) =

and anisotropic components with winding numbers +1 and +3 of the form (n =1, 3)
/ k™ i 10
Skm(®,t) = f'(er) T > Sky(x,t) e’ (4.15)
JA Ly

As discussed in Chapter 3.3.2, all contributions with other winding numbers would be
of higher order in bp7 and therefore they can be safely neglected in the diffusive regime
considered in the following. Note, however, that in Eq. (4.13) we do not include a term like
the 8p 1 from Eq. (3.22), i.e., we do not consider the effects of cubic Dresselhaus spin-orbit
coupling renormalizing the linear one (which is consistent with a strict zero temperature
calculation).

Inserting the ansatz distribution (4.13) into the Hartree-Fock interaction term (4.9) and
anticipating that we will, as in Chapter 3.3.2, consider the kinetic equations for different
winding numbers (I = 0, £1, £3) by integrating ﬁ [ dk ¢'9 [Eq. (4.10)], we find that the
Hartree-Fock term can be written in the compact form

T = 8 x (k) s + xa(k) si) (4.16)

with (n = 1,3)
B o= =0 [ Y g— ki) e (1 L costno 4.17
) = =[S ba— k) ) (1= 1 costnta) ). (D)

At zero temperature we thus have

27 n
Xn (k) =0 % ; doo <\/k2 + k% — 2kpk c059> <1 - % cos(n 0)) . (4.18)
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4. Effects of Coulomb exchange interaction on the persistent spin helix

Since in a T' = 0 calculation the momentum arguments of all terms in the Boltzmann
equation (when integrated over momentum) are fixed at kp, we need to calculate

T=0 i 21 1

dé -
m Jo 1+0£Fm

Plugging the Hartree-Fock precession term (4.16) back into the kinetic equation for the
spin density Eq. (4.10) one finds for the isotropic (in k-space) part of the spin density

Xn(kF)

(1 —cos(nb)). (4.19)

Orsg = —g@xsc - %(%35 — 8. X by — 85 X bg — 8.3 X beg — 853 X bss (4.20)
with
S¢ = 81+ 8-1, S¢3 = 83+ 5_3,
. . 4.21
Ss = i(s1—s-1), Ss3 = i(83—s_3) ( )
and the spin-orbit fields
b. = vpk(—a+5)é,, bs = vpk(a+ B)é,,
K s W - (4.22)
bes = —yur = €y bss = YVF €z

In order to obtain a closed equation for sy one needs to determine s, S, Sc3 and Sg3
from the anisotropic components of the Boltzmann equation. In the diffusive regime it is
sufficient to find the (quasi-)equilibrium solutions for the anisotropic coefficients, which are
obtained by omitting the time derivative of the anisotropic components (c¢f. Chapter 3.3.2
and Appendix app:coarsegraining). Using this approximation one finds for the winding-
number-+1 components:

Sc
— 00,80 + 2b, 2B X s., 4.2
(k) v0; S0 + X 89 +2B1 X s (4.23)
Ss
= — 2b, 2B s
Tl(k‘) UayS()—l- X 8o + 1 X8

where B1 = x1.5 is the Hartree-Fock field experienced by winding-number-£1 spins. The
transport relaxation times due to impurity scattering that we need here and below are

(cf. Eq. (3.18))

(k)N = D Wi 6(ex — e) (1 — cosnb) , (4.24)
o

where n = 1 refers to winding-number-+1 spins and n = 3 refers to winding-number-
43 spins. Note that, within our model of isotropic impurity scattering, the cosine term
vanishes and one has 7 = 73 = 7. One should, however, keep in mind that in the case
of scattering from, e.g., charged impurities, differences between 71 and 73 arise due to the
angular dependence of Wy, in Eq. (4.24). Solving Egs. eq:ScSs one finds

S = —7_'1(]{3) {v@wso —2b. x sg + QTl(kZ)U(le @cso) (425)
*47’1(]43)Bl>< (bCX 80) + 4T1(k)2UB1(Bl . 89380)} ,
Ss = —f‘l(k) {Uaysl) — 2bs X 8¢ + 27 (k)U(le 8y80)

—4T1(]€)B1>< (bs XS()) + 47’1(]{:)21131(31 : 8y80)} s
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4.3. Spin diffusion equation with Hartree-Fock precession

where we have used that Bj||sp and a renormalized relaxation time

’7‘1(]{})

k) = T RBn )

(4.26)

has been introduced. Similarly, the steady state of the winding-number-+3 anisotropic
components of the spin density is governed by the equations

S
- (Z) = 2bes X 8o+ 2 B3 X Se3, (4.27)
553 = 2bs3 X 5o+ 2Bj3 X 843,
3(k)

where Bs = x3S is the Hartree-Fock field acting on winding-number-43 spins. Solving
these equations for s.3 and sg3 one finds

Sc3 = 27_'3(]{3) {bc3 X 80 + 27’3(]{3)33 X (bcg X 80)}, (4.28)
ss3 = 2T73(k) {bs3 x 80+ 273(k) B3 x (bs3 X S0)}

where we have used that Bgs||sg and defined

o n)
50 = TG RnmE

(4.29)

Plugging the solutions for the anisotropic components Eq. (4.25) and Eq. (4.28) back
into the equation for the isotropic spin density Eq. (4.20) and using the condition for the
persistent spin helix, &« = £, one finds that the spin density S = [ %so obeys the
diffusion equation

%S = DS+HS. (4.30)
Here, the matrix
. D 85 _'70D 3 0 0_
D = 0 D(@~a3)~%p  2¢D, (4.31)
0 —2qo D8, D (9} —q3)—27p

corresponds to the usual spin diffusion matrix in the absence of Hartree-Fock fields
(¢f. Eq. (3.59)), but with a renormalized diffusion constant D and a renormalized cu-
bic Dresselhaus scattering rate 4.p given by

D YcD

D= —— " Hp =D
T T T (xa7s S)2

s 4.32
T an 572 (4.32)
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4. Effects of Coulomb exchange interaction on the persistent spin helix

The matrix H arises only in the presence of fields and is given by

HypSy = 471 DO,(B,0,S:), (4.33)
HyyS, = —2mDB1.0,S, — 211q0D0y(B1ySy)
+477 DOy(B12B1y0ySy)
H,.S. = 2mDB1,0,5.—271q0D9y(B1.S:)— 27390 B3y S-
+472 D0, (B1,B1.0,S.),
HyoS: = 211 DB1.9.S, — 2110 DB1y0, S,

+477D [0y(B1oB1y0ySa) + qoB1aB120y Sy |
Hy,,S, = 21190D(8yB1:Sy + 2B1:0,Sy)

+477 D(0y(B},0ySy) + q0B1yB1:0,Sy) ,
H,.S, = 2739 B3sS: + 21 DB1,(¢5S: — 3§5z)

+47{ D[0y(B1yB1:9,5-) + q0Bi.9,5:]

H..S; = 213%.pB3ySz — 27’11_7(313,355} + qoB1.0yS:)
+472 D[, (B12B1.0ySz) — qoB1:B1,0,5:] ,
H.ySy = —273%pBs:Sy + 211 DB1,(0;8, — ¢3.5,)
+4712D[8y(BlyBlzaySy) - qoB%yaySy] )
H..S. = 27¢oD(9yB1.S- + 2B1,9,5.)

+4712D(8y(sz8ySz) - qoBlyBlzaySZ) .

Due to the renormalized coefficients (4.32) in the D-matrix and the presence of the H-
matrix the spin diffusion equation Eq. (4.30) becomes a nonlinear partial differential equa-
tion, because the coefficients By, and Bs, (o = z,y,2) depend on the solution for the
spin density via Bi, = X154 and B, = x3S.. Thus, only for small Hartree-Fock fields
By 3713y < 1 a perturbative solution can be found (see Section 4.4.3) whereas for large
Hartree-Fock fields, as realized for large initial spin polarizations, the spin diffusion equa-
tion (4.30) needs to be solved numerically.

4.4. Effect of the Hartree-Fock field on the PSH state

In this Section we will discuss the effect of the Hartree-Fock fields on the PSH state. Our
main findings are: (i) the lifetime of the PSH state can be enhanced considerably, be-
cause the Hartree Fock field effectively reduces the symmetry breaking effect of the cubic
Dresselhaus spin-orbit interaction (see Subsection 4.4.2); (ii) although the Hartree-Fock
field is always parallel to the local mean spin polarization, somewhat counterintuitively,
its presence slightly rotates the PSH out of the yz-plane and introduces a small but finite
Sz-component (see Subsection 4.4.3). Since the spin diffusion equation becomes nonlin-
ear in the presence of Hartree-Fock fields, typical nonlinear effects like the appearance of
higher harmonics are expected to modify the PSH state. Indeed, we find that this non-
linear regime can be accessed easily for small linear Rashba and Dresselhaus spin-orbit
interactions, where v.p/I' & 1 (see Subsection 4.4.4).
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4.4. Effect of the Hartree-Fock field on the PSH state

In order to investigate the effect of the Hartree-Fock field on the PSH state, we start by
considering the PSH in the presence of cubic Dresselhaus spin-orbit interaction but in the
absence of the Hartree-Fock term as described by Eq. (4.11) as an initial state. Then we
imagine to turn on the Hartree-Fock field at time t = 0 and study the time evolution of the
PSH state under the Hartree-Fock field by solving the spin diffusion equation Eq. (4.30).
Since this is a nonlinear partial differential equation, a simple analytical solution is out
of reach. Therefore, Eq. (4.30) has to be solved perturbatively or numerically. In Sub-
section 4.4.3 we will perform a perturbation expansion in the Hartree-Fock fields valid for
By (3)Ti(3) < 1, otherwise the spin diffusion equation (4.30) will be solved numerically.

4.4.1. Parameters

In order to describe the evolution of the PSH state for realistic situations, we use the
parameters of a typical quantum well such as the one used for the experimental observa-
tion of the PSH by Koralek et al. [2009]. Unless specified otherwise we assume a Fermi
temperature of Tp = 400 K, an effective electronic mass of m = 0.067 m., where m, is
the mass of an electron, and a dielectric constant of ¢, = 12.9. Evaluating Eq. (4.19) with
these parameters and for T' = 0, we obtain

x1 = 34.7cm?/s,  x3 = 43.2cm?/s. (4.34)

We further assume a charge density of n = 8 x 10" cm™2. We take the linear Rashba and
Dresselhaus spin-orbit coupling to be a = 5 = 0.0013 and the cubic Dresselhaus spin-orbit
interaction to be yvp = 5.0 eV A®. Since the linear spin-orbit interactions can be tuned
(by changing the doping asymmetry and the width of the quantum well), in contrast
to the magnitude of the cubic Dresselhaus spin-orbit interaction, which is fixed by the
crystal symmetry, we will also allow for variations of the magnitude of linear spin-orbit
interactions in order to access the nonlinear regime (Subsection 4.4.4). For the electronic
relaxation time we use as a default value 7 = 1 ps—the lifetime extracted at 7' = 100 K
for the quantum well used by Koralek et al. [2009].

Strictly speaking, our theory applies only to the zero temperature case, where the re-
laxation time should be correspondingly longer than 1 ps. However, one can argue either
that we expect our theory to apply (without major modifications) also to higher tempera-
tures or that we describe a dirtier quantum well where 7 = 1 ps is the accurate electronic
relaxation time at 7= 0 K. Since 7 can be varied to some extent by making a quantum
well either dirtier or cleaner, we will also allow for some variation of 7. The initial spin
polarization, finally, is the main parameter to be varied, because it directly controls the
strength of the Hartree-Fock fields. It will be given in percentage fractions of the full spin
polarization which corresponds to the carrier density given above.

4.4.2. Enhancement of the PSH lifetime

One of the main effects of the Hartree-Fock term is to enhance the lifetime of a spin
polarization injected into a quantum well. This has been observed experimentally by
Stich et al. [2007] using time-resolved Faraday rotation on a high-mobility GaAsAl/GaAs
quantum well. So far, the spin lifetime enhancement due to electron-electron interaction in
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4. Effects of Coulomb exchange interaction on the persistent spin helix

a quantum well with spin-orbit interactions has only been analyzed by numerical solutions
of the Boltzmann equation [Takahashi et al., 1999; Weng and Wu, 2003; Weng et al.,
2004]. Here, we are able to analyze the effect of the Hartree-Fock field in a somewhat
more analytical fashion at least in the diffusive strong scattering regime, where the spin
diffusion equation Eq. (4.30) is valid.

Since the Hartree-Fock field is always parallel to the local spin polarization, it re-
duces the effect of rotations around the transversal spin-orbit fields and in this way
it enhances the lifetime of a spin polarization. More formally, this works in our ap-
proach as follows: the size of the anisotropic spin components, which are perpendicu-
lar to the local spin-orbit field is reduced by rotations around the local Hartree-Fock
field according to Eqs. eq:ScSs, eq:Sc3Ss3. This effect is captured by the reduction
of the effective relaxation times 71 = 7/(1 + (x1719)%) and 75 = 7/(1 + (x3735)?)
in the equations for the anisotropic components of the spin density s./, and s.3/.3 in
Egs. eq:SolutionWindingNumberl, eq:SolutionWindingNumber3. Smaller anisotropic spin
components reduce the time derivative of the isotropic spin component d;sp in Eq. (4.20)
and thus increase the lifetime of the isotropic spin density sg. In the spin diffusion equation
(4.30) the reduced lifetimes 7; and 73 are absorbed in a reduced effective spin diffusion
constant D and a reduced effective cubic Dresselhaus scattering rate 4.p (see Eq. (4.32)).

In principle we have now three mechanisms at hand, which could modify the lifetime of
the PSH in the presence of Hartree-Fock fields: (i) the reduced effective diffusion constant
D, (ii) the reduced effective cubic Dresselhaus scattering rate J.p and (iii) the additional
H-matrix. Since in our model cubic Dresselhaus spin-orbit interaction is the symmetry
breaking mechanism, i.e., the lifetime of the PSH would be infinite in the absence of cubic
Dresselhaus spin-orbit interaction, it seems plausible to assume that a reduction of the
effective cubic Dresselhaus spin-orbit interaction provides the strongest contribution to
the lifetime enhancement of the PSH state.

This hypothesis can be checked by solving the spin diffusion equation (4.30) for the spin
density by setting D = D and by neglecting the effect of the H-matrix and thus effectively
considering only the effect of a reduced effective cubic Dresselhaus spin-orbit interaction
ep- We use the PSH pattern (4.11) as an initial condition and solve the spin diffusion
equation (4.30) numerically. In Figure 4.1 we show the resulting time evolution of the
S, spin polarization for various degrees of initial spin polarizations and for the remaining
parameters as given in Subsection 4.4.1. The PSH state without Hartree-Fock field is
also shown for comparison. For realistic quantum well parameters the lifetime of the PSH
state can easily be enhanced by factors 10 to 20 when the initial spin polarization is in
the percentage range. For large initial spin polarization the nonlinearity of the problem
becomes obvious and the spin-polarization does no longer decay exponentially. On the
scale of Figure 4.1 no difference is visible between the full solution of the spin diffusion
equation (4.30) and the solution, where only the effective reduction of the cubic Dressel-
haus spin-orbit interaction 4.p is taken into account. Thus, considering only the reduction
of the effective cubic Dresselhaus spin-orbit scattering rate 4.p is a good approximation
to the full solution, at least for v.p/T" < 1.

In principle one could imagine to enhance the PSH lifetime by increasing the lifetime 7
instead of the initial spin polarization, since both quantities appear in the denominator of
Aed = Yed /(14 (x3735)?) as a product. However, increasing 7 also increases the bare cubic

66



4.4. Effect of the Hartree-Fock field on the PSH state
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Figure 4.1.: Time dependence of the S,-amplitude of the PSH in the presence of Hartree-
Fock fields for several degrees of initial spin polarization. For comparison the
result without Hartree-Fock field (cyan) is shown. On the scale of this plot,
no difference is visible between the full solution of the spin diffusion equation
(4.30) depicted here and the solution, where only the effective reduction of
the cubic Dresselhaus spin-orbit interaction 74.p is taken into account.

Dresselhaus spin-orbit scattering rate y.p o< 7 (see definition of v.p below Eq. (4.12)).
Thus, whether increasing the lifetime 7 will decrease or rather increase the effective cubic
Dresselhaus spin-orbit scattering rate 4.p depends on the ratio of 7 over the Hartree-Fock
field x3S. Only for x375 > 1 will an increase in 7 indeed reduce #4.p and thus enhance
the lifetime of the PSH state.

Although a simple analytical solution of the spin diffusion equation cannot be con-
structed, because 7.p(t) is a function of the time dependent solution for the spin density
S(t), it is still instructive to compare the numerical solution with simple limits where
an analytical solution is possible. For a constant (i.e., time independent) effective cu-
bic Dresselhaus scattering rate J.p(t) = Fp the solution of the spin diffusion equa-
tion is the PSH pattern given in Eq. (4.11) with a lifetime of 75 &~ (34.p)~! for small
vep/T < 1 (see Eq. (4.12)). Since at ¢ = 0 the reduced effective cubic Dresselhaus rate
is Jep(t = 0) =~ vep/(1 + 2(x37350)?) for small y.p/I", the solution of the spin diffusion

3 YeD

. - U 75 s W . .
equation starts off as e 2 1+2(x37350)*) " for small times. For lagge times, on the other hand,
where 7.p(t — 00) = Y.p the solution approaches zero as e~ 27P¢,

4.4.3. PSH pattern

Up to this point we have only considered the first part of the spin diffusion equation
(4.30), i.e., the D-matrix, which corresponds to the ordinary spin diffusion equation with
renormalized parameters. In addition the spin diffusion equation contains the H-matrix
with terms arising due to the Hartree-Fock fields. The presence of these new terms can
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4. Effects of Coulomb exchange interaction on the persistent spin helix

rotate the spin helix out of the yz-plane and introduce a small but finite S;-compontent.
This seems counterintuitive at first sight, because the Hartree-Fock field is always parallel
to the local mean spin polarization.

This effect can be analyzed best by calculating the spin density in a perturbation ex-
pansion in the Hartree-Fock fields as

s = s0O e g2 4 ... (4.35)

where S denotes the nth order in the Hartree Fock fields x17150 and x373S5g9. The
zeroth order S is simply the PSH without Hartree-Fock fields (Eq. (4.11)). The first-
order correction to the spin density S can be obtained by solving the equation resulting
from the spin diffusion equation (4.30) when only terms of first order in the Hartree Fock
terms are kept:

8,8 = DO L FMgO) (4.36)

Here, S is the zeroth order persistent spin helix of (4.11), D© is the matrix of the
ordinary spin diffusion equation, i.e., the D matrix in Eq. (4.31) with D replaced by D and
7.p replaced by vep. H® is the H-matrix expanded to first order in x1715y and in x373.50.
It is obtained by plugging Bgl) = x15 ©) and Bgl) = x38 ) into the linear-in-B terms
of the H-matrix (the terms quadratic in B are at least second-order in the Hartree-Fock
fields and therefore do not contribute to S (1)). In the first-order approximation (4.36)
to the spin diffusion equation only the ordinary diffusion constant D and the ordinary
cubic Dresselhaus rate v.p enter, since differences between D and D (and between ~.p
and 7.p) are already of second order. With ﬁzsll,) = ﬁé? - H z(gl,) - H éi) = 0 one finds

Sz,(,l) = Sgl) = 0, whereas the S,-component, which vanishes in zeroth order, becomes

52 _ __t
53(51) _ b ban X323) ’YcD2 (e—(F—&-%D)t_ e TE) sin 2qoy . (4.37)
[(1— 224 /1432 — T

Thus, to leading order in v.p/I" one has

YeD
r

S~ 82 (x171 — x373) (e_rt — e_%%Dt) sin 2qoy - (4.38)

T

This shows that Sgg;l) contains a term that decays on the long time scale 7p, implying
that Sél) really contributes to the PSH. Thus the PSH also acquires an S,-component,
which oscillates with double wave vector 2qq in real space but is smaller than the S,- and
S.-components by a factor of v.p/T" (for 4.p/T" < 1). In first order in the Hartree-Fock
fields the S,-component vanishes for 171 = x373. This is, however, not true for the full
solution as can be seen from the numerical evaluation.

At first sight it might be a surprising result, that the presence of Hartree-Fock fields
parallel to the local spin polarization modifies the pattern of the spin polarization. Naively,
one would expect that a parallel magnetic field simply strengthens the parallel spin orien-
tation. In the presence of spin-orbit fields, however, the spin density consists of parts with
different winding numbers, where only the winding number zero contributes to the local
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4.4. Effect of the Hartree-Fock field on the PSH state

spin polarization, since the other winding numbers (+1, +3) average out to become zero.
Since the anisotropic components of the spin density arise from rotations of the isotropic
spin density (winding number zero) around the respective spin-orbit fields (see Eqgs. (4.23)
and (4.27)), they are not parallel to the local spin density and therefore not parallel to the
Hartree-Fock field. Consequently, these anisotropic components of the spin density can
precess about the Hartree-Fock field and in this way modify the local spin polarization,
which is affected by rotations of the anisotropic components of the spin density around
their respective spin-orbit fields (see Eq. (4.20)). Thus, the orientation of the isotropic
spin density can indeed be changed by parallel fields due to the presence of anisotropic
components of the spin density.

In order to see how this mechanism causes the PSH to rotate out of the xy-plane and
induces a finite S;-component, we will now analyze the equations for the spin density
derived in Section 4.3 in more detail. The perturbative result in Eq. (4.37) suggests that
both winding number one and winding number three spins contribute to the generation
of a finite S;-polarization.

Regarding winding number one spins, it follows from Eq. (4.20) for the isotropic spin
density sg, that winding number one spins can generate a finite S,-component only via the
diffusion term $0y,s. (since b, = 0 for o = 3, b,||é and 9,509 = 0). Plugging the solution
for s, of Eq. (4.25) into the the equation for the isotropic spin density sg, one finds that
the only term generating a finite S;-component is proportional to dy,(sg % (bs x s¢)) =
bsays% ~ b, 253 Qo V%D sin 2qoy, where we have used that the difference in the initial .S,
and S, amplitudes of the PSH state is approximately given by So*2. This contribution
corresponds to a process, where the isotropic spin polarization sy precesses at first about
the spin-orbit field by and then about the local Hartree-Fock field By, which is parallel
to sg. Although this double rotation results in a polarization along the x-direction, this
effect would cancel after integration over k because electrons with momenta £k rotate
into opposite directions. Only due to the derivative d, in the diffusion term a finite S,-
polarization remains after k-integration, because +k and —k travel into opposite directions
and rotate around Hartree-Fock fields at y + Ay, which differ in magnitude due to the
elliptical profile of the initial PSH pattern, see Figure 4.2. This explains the presence of the
factor %2 in the contribution of the winding-number-41 spins to S;E;l). When the isotropic
spin polarization is parallel to one of the symmetry axes of the ellipse, i.e., for Sy, = 0
or S, = 0, the Hartree-Fock fields for the +k-states are of equal magnitude resulting in

S, = 0. This explains the oscillation of Sg(cl) with double wavevector 2¢g.

Winding number three spins, on the other hand, can create a finite S,-component
directly by rotation around the cubic Dresselhaus spin-orbit field b.3. Plugging the solution
for s.3 of Eq. (4.28) into the equation for the isotropic spin density s one finds that
the only term, which generates a finite S, polarization, is proportional to bes X (sg X
(bes x 80)) = —(bez % 80)(bes - 80). Since bes||éy and sg lies within the zy-plane for the
undisturbed PSH, a finite S,-component is generated only unless sg||é, and unless sg||é.
This explains, why the winding number three contribution to Sg(gl) oscillates with double
wavevector 2qq.

In Figures 4.3 and 4.4 we show the results for the S;-component at its first maximum
= m/(4qo) obtained by numerical solution of the spin diffusion equation (4.30) (red)
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@
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Figure 4.2.: Due to the elliptic profile of the PSH pattern there is a net creation of S,
polarization at position “2”: here (unlike situation “1”), contributions from
precessing spins coming in from right an left with momentum =+ do not cancel
each other.

in comparison to the analytical first-order expression Sg(gl) of Eq. (4.37) (green). For

the small initial spin polarization of 0.5% used in Figure 4.3, the analytical first-order
result agrees quite well with the full numerical solution. The S;-component increases
quickly on the timescale 1/T" and then decays slowly on the timescale 75 ~ (%%D)*l.
For larger initial spin polarizations, however, the analytical first-order result no longer
describes so accurately the time evolution of the S,-polarization. Instead of a sharp
initial increase on the timescale of 1/T" the S,-component now displays an oscillatory
behavior that is damped on the larger timescale 1/T, see Figure 4.4. The overall lifetime
of the S,-component is enhanced by a large factor in comparison to the lifetime 75 of
the perturbative result analogous to the lifetime enhancement of the PSH discussed in
Subsection 4.4.2. Interestingly, the magnitude of the S;-component remains well below
the maximum of perturbative result.

4.4.4. Large cubic Dresselhaus SOl (y.p = T)

So far we have focused on the regime, where the cubic spin-orbit interaction is small
(vep < T'), because there one expects the largest PSH lifetimes. The quantum wells,
in which the PSH has been observed experimentally by Koralek et al. [2009], are in this
regime. Nevertheless, it should be possible to also realize quantum wells where the magni-
tude of the cubic Dresselhaus spin-orbit interaction is comparable to the linear spin-orbit
interactions. The magnitude of the cubic Dresselhaus spin-orbit interaction is given by the
crystal structure, whereas the magnitude of the linear Rashba and Dresselhaus spin-orbit
interactions a and 3 can be varied in experiments by changing the doping asymmetry and
the width of the quantum well. Thus, in our calculations we will access the y.p ~ I'-
regime by reducing the magnitude of the linear spin-orbit interactions while keeping the
magnitude of the cubic Dresselhaus spin-orbit interaction fixed. Interestingly, the lifetime
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Figure 4.3.: Time dependence of S;-amplitude for an initial spin polarization of 0.5%.
Red shows the full numerical solution of Eq. (4.30) and green is the first-order
analytical result Eq. (4.37). The right panel is a zoom into small times.
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Figure 4.4.: Same as Figure 4.3 (red: full numerical solution of Eq. (4.30) vs. green:
first-order analytical solution from Eq. (4.37)) but with a larger initial spin
polarization of 10%.

of the PSH does not change dramatically when the magnitude of the cubic Dresselhaus
spin-orbit interaction is kept fixed. For 7.p < I' one finds from Eq. (4.12) 7 LS %%D
and in the opposite limit, i.e., for v.p > I', one finds Tgl /A Y.D, t.e., the PSH lifetime
depends rather on the absolute value of 