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a b s t r a c t 

The ability to automatically analyze large quantities of image data is a valuable tool for many biochemical assays, 

as it rapidly provides reliable data. Here, we describe a fast and robust Fiji macro for the analysis of cellular 

fluorescence microscopy images with single-cell resolution. The macro presented here was validated by successful 

reconstruction of fluorescent and non-fluorescent cell mixing ratios (for fluorescence fractions ranging between 0 

and 100%) and applied to quantify the efficiency of transfection and virus infection inhibition. It performed well 

compared with manually obtained image quantification data. Its use is not limited to the cases shown here but 

is applicable for most monolayered cellular assays with nuclei staining. We provide a detailed description of how 

the macro works and how it is applied to image data. It can be downloaded free of charge and may be used by 

and modified according to the needs of the user. 
• Rapid, simple, and reproducible segmentation of eukaryotic cells in confluent cellular assays 
• Open-source software for use without technical or computational expertise 
• Single-cell analysis allows identification and quantification of virus infected cell populations and infection 

inhibition 
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Specifications table 

Subject area; 

More specific subject area; Automatic single-cell segmentation 

Name of your method; Single-cell fluorescence quantification (SCFQ) macro 

Name and reference of original 

method; 

NA 

Resource availability; Fiji is freely available ( https://imagej.net/software/fiji/downloads ). 

The macro (S7), a tutorial video (S8) and widefield images from the cell 

mixing experiment (S9) are provided as free separate supplementary materials 

Introduction 

Cellular infection assays are a widely used laboratory method to probe the infectivity of viruses as

well as to test potential virus infection inhibitors [1] , and proved to be highly valuable especially in

times like the current SARS-CoV-2 pandemic [2] . Many infection assays can be analyzed by imaging

an infected cell culture using optical microscopy, by staining of the cell nuclei ( e.g. , using Hoechst

33342) and by using a fluorescent marker ( e.g. , GFP expression [3] ) or immunostaining of viral

proteins [4] . To show a general effect of infection or infection inhibition, the acquired images are

often examined only qualitatively. However, an image series of different experimental conditions ( e.g. ,

treatment with different inhibitor concentrations) can also provide quantitative information [5] ( e.g. ,

the inhibitor potency based on the IC 50 value) if one is able to extract this information from the

image series. In recent years, several open-source software solutions have been developed that allow 

to extract image-based fluorescence information with single-cell resolution [6–12] . Each of these 

software solutions have different analysis strategies and aim for different fluorescence readouts. For 

example, QuantIF [9] and FNMM [11] aim for the colocalization of the nucleus staining with another

fluorescence signal. FluoQ [6] and PiQSARS [12] are tailored for time-lapse-based experiments, while 

Cytokit [ 8 ] is specialized in correlating single-cell parameters with spatial information (for details see

Supplemental Materials Section S6: Image analysis software overview). However, as most software 

is highly specialized for specific tasks, the software solutions mentioned above may not necessarily 

meet the needs of all users. This is due to the high variability of experimental setups ( e.g. , the

microscopy method, magnification, cell type, and cell density used) and read-outs ( e.g. , fluorescence

source, intensity, and fraction) used by the community. To address this, we developed and validated a

versatile, easy-to-use and open-source Fiji macro [13] that is capable of quantifying transfection, viral 

infection, or inhibition of viral infection by evaluating intensity distributions at the level of individual

cells in monolayered cellular assays. The macro was optimized to perform on a wide range of cell

densities and fluorescent cell fractions for different cell lines as well as experimental and microscopy

setups. It requires only three input parameters (addressing background signal, cell density, and marker 

intensity) and allows for fast batch analysis with detailed single-cell information. Besides fluorescence, 

the position, size, and circularity of each detected cell is saved in a data table, which allows, e.g. , for

the localization of fluorescent and non-fluorescent cells within the sample. It contains an automatic 

correction of background fluorescence and provides a segmentation overlay and visualization of cell 

populations for easy manual inspection of the analysis output. 

Fig. 1 shows an overview of our approach for quantifying fluorescent cell populations. First, 

images of a cell monolayer with stained nuclei and another fluorescent marker (dependent on the

experimental setup) are acquired ( Fig. 1 A, D, G, J). The cells are automatically segmented ( Fig. 1 B, E, H,

K) and the fluorescent marker intensity is quantified for each cell individually, enabling to discriminate

between different populations (recognizable as two peaks or one peak with a tail in Fig. 1 C, F, I, L)

across the cell ensemble. 

https://imagej.net/software/fiji/downloads
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Fig. 1. Concept overview (scale bars = 50 μm) of the single-cell fluorescence quantification procedure. The raw images (A, 

D, G, J) consist of two-dimensional cell monolayers, in which the nuclei of all cells have been stained (blue), while only a 

fraction of the cells shows a fluorescent signal of a fluorescent marker (green). Individual cells are identified based on their 

nucleus (centers), segmented by a watershed algorithm (red lines, B, E, H, K), and separated from empty (cell-free) areas by 

their intrinsic autofluorescence signal. Calculating log 10 intensity histograms (C, F, I, L) of the observed single-cell fluorescence 

values typically reveals two populations, which correspond to fluorescent (red) and non-fluorescent cells (gray) observed in the 

image. 
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ell transfection and mixing 

10 4 human embryonic kidney cells (HEK293, #ACC 305, Leibnitz Institute DSMZ – German

ollection of Microorganisms and Cell Cultures GmbH) per well were seeded in full medium (DMEM

upplemented with 10% FBS (#P04-04500 and #P30-3031, PAN Biotech Germany), 0.1 g/L streptomycin

ulfate and 0.065 g/L penicillin G potassium (#1852,0100 and #A1837,0100, BioChemica Germany))

nto 96 well plates and incubated over night at 37 °C and 5% CO 2 . On the next day, transfection

omplexes were formed and added to the cells as follows: 0.1 μg plasmid DNA (pEGFP-N3, Clontech)

as diluted in 10 μL 150 mM NaCl solution (saline) and 0.1 to 0.6 μg of PEI (25 kDa branched,

408727, Sigma-Aldrich) was diluted in 10 μL of saline separately. The PEI dilutions were added to

he DNA dilutions under vigorous mixing for 5–10 s and incubated for 15 min at room temperature
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afterwards. The cell culture supernatant was replaced with 100 μL/well fresh medium and 20 μL/well

of transfection complexes were added. After incubation for 48 h at 37 °C and 5% CO 2 , cell nuclei

were stained with Hoechst 33342 (1 μg/mL in medium, #H1399, Thermo Fisher Scientific) for 10 min

at 37 °C. The cell culture supernatant was replaced with fresh medium and cells in the plates were

imaged with a 10x objective (A-plan 10x/0.25 Ph1, #441031-9910, Zeiss; FOV: 895.26 μm x 670.80 μm)

on a Zeiss Axio Observer Z1 widefield fluorescence microscope equipped with an Illuminator HXP 

120C, Colibri LED light sources 400, 530 and 625 nm, and an AxioCam MRm monochrome CCD

camera. The ZEN software was used for image acquisition with the default GFP, DAPI or phase contrast

settings using filter sets 38 (GFP: excitation 450–490 nm, emission 500–550 nm) and 49 (DAPI:

excitation 335–383 nm, emission 420–470 nm). The confocal images of Fig. 3 B were taken with a

20x objective (20x/0.75 HC PL APO CS2 Imm Corr (oil, water, glycerol) WD 0.68 mm, #11506343,

Leica Microsystems; FOV: 581.82 μm x 581.82 μm) with oil immersion on a Leica SP8 system based

on a DMI60 0 0CSB microscope, which is equipped with diode (405 and 561 nm), argon (458, 488,

and 514 nm) and a HeNe (633 nm) laser as well as two PMTs and two HyDs (high sensitivity

Hybrid Detectors). The LAS X software was used for image acquisition with the Leica presets for DAPI

(excitation 405 nm, emission 430–550 nm, HyD) and GFP (excitation 488 nm, emission 503–603 nm,

PMT). 

For the validation experiment ( Fig. 3 ), a HEK293 cell line (stably transfected with pEGFP-N3 and

showing 100% eGFP expression after clonal selection under 0.4 mg/mL geneticin) was mixed with 

non-transfected (non-fluorescent) HEK293 cells at different ratios and seeded into a μ-slide 8-well 

(#80826, ibidi; 300 μL/well at 4 × 10 5 cells/mL). After overnight incubation, cell nuclei were stained

with Hoechst 33342 and images were acquired as described above. 

Virus infection assay 

African green monkey kidney epithelial cells (Vero) were seeded in 12 well plates (#83.3921.005,

SARSTEDT AG & Co. KG, Germany) at a density of 2 × 10 5 cells per well. At 90% confluency, the

cells were first incubated with unfractionated heparin (#375095, Calbiochem, Germany) at different 

concentrations for 1 h. Then herpes simplex virus type 1 having the gene for green fluorescent

protein (GFP) integrated into its genome (HSV-1_GFP) was added at a multiplicity of infection (MOI)

of 0.1 for 48 h. Cell nuclei were labelled by Hoechst 33342 (1 μg/mL in medium, #H1399, Thermo

Fisher Scientific) for 10 min at room temperature and the cells were fixed by 1% formaldehyde

(#1039992055, Sigma-Aldrich) for 30 min. After being washed with PBS, the cells were imaged using

widefield epifluorescence microscopy as mentioned above (2.1), in which infected cells showed green 

fluorescence due to GFP expression. 

Analysis macro 

Fig. 2 shows the basic steps for using the single-cell analysis macro presented in this work. All

images to be analyzed must be collected in one input folder, which may contain several subfolders

( e.g. , different inhibitor concentrations etc.). One output folder should be prepared, which will store all

results generated by the macro. The macro is opened in Fiji [13] (which is an open-source distribution

of ImageJ [14] ) and started by pressing Run . The user then selects the input and output folder as well

as the data format (without a “.”) of the input images ( e.g. , lif, czi, tif) and defines, which channels

contain the nucleus staining and the fluorescent marker signal, respectively (additional channels will 

be ignored). Afterwards, the user choses analysis parameters that are connected to the background 

threshold (denoted by β in the following), the segmentation sensitivity ω, and the intensity cutoff

value α (for details see Supplemental Materials Section S4: Parameter optimization). These parameters 

can be optimized iteratively by repeating the analysis using revised parameters. For the initial analysis

iteration, default parameters are implemented in the macro, which can be used in most cases.

Alternatively, automatically estimated analysis parameters can also be used on demand (for details see 

Supplemental Materials Section S5: Automatic parameter estimation). The macro then automatically 

analyzes all selected images (taking approximately 1–2 s per image for a personal computer equipped

with a CPU having a clock speed of 2.5 GHz, 2 cores, and 8 GB of RAM) and saves for each analyzed
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Fig. 2. Usage flowchart of the analysis macro. All images in a user-selected input folder (and all subfolders) are automatically 

analyzed using default or automatically estimated analysis parameters (for details see Supplemental Materials Section S5: 

Automatic parameter estimation). The segmentation overlays and infection histograms are saved in a user-selected output 

folder. The analysis parameters can be adjusted after manual inspection of the analysis results in order to refine the analysis 

process until the segmentation overlay and intensity histograms show reasonable results. 
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mage the obtained segmentation overlay, the log 10 histogram of the extracted cell intensity, a data

able collecting various single-cell parameters ( e.g. , area, mean intensity, x- and y-position, circularity,

) and a summary table to the output folder. The analysis workflow is also shown and explained

urther detail in a tutorial video (see Supplemental Materials Section S8). 

To get a first impression on the validity of the parameters chosen for analysis, it is recommended to

nalyze either one image with two equally represented populations (non-fluorescent and fluorescent)

r two images, in which most cells either exhibit fluorescence or not, which serve as positive and

egative controls. A manual inspection of the segmentation overlay and the log 10 intensity histogram

f these images allows to check if analysis parameters need to be adjusted (see Supplemental

aterials Section S4 for a guide for parameter optimization). The analysis can then be revised

everal times until the outcome of the segmentation and intensity analysis is acceptable for the user.

fterwards, the summary table (which contains the image titles, total cell number, and fluorescent

ell number) can be used to quantify the property of interest, e.g. , transfection efficiencies or infection

nhibition effects (for details see Supplemental Materials Section S1: Image processing steps). 

ethod validation 

The method implemented in the macro was validated by mixing an eGFP expressing HEK293 cell

ine with non-transfected HEK293 cells at different mixing ratios. Fig. 3 A and B show representative

mages for three mixing ratios (0, 40 or 50, and 100% eGFP expressing cells; obtained using either

idefield or confocal microscopy) as well as the results of the segmentation and the corresponding

og 10 intensity histograms obtained using the macro. For both imaging modalities, we observed a

inear correlation between the determined and the input fluorescent fraction ( Fig. 3 C; widefield:

 

2 = 0.95, slope = 0.94 ± 0.06; confocal: R 2 = 0.98, slope = 0.94 ± 0.05), indicating that the

acro reliably determines the correct ratio of fluorescent and non-fluorescent cells. Only the widefield

easurements having an input fraction of 30% and 70% of eGFP expressing cells showed a statistically

ignificant deviation from the expected trend. However, these deviations were also present in the

mages and are therefore not due to a failure of the analysis macro. These deviations are attributed
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Fig. 3. Validation by cell mixing. Two HEK293 cell populations, either expressing eGFP or not, were mixed at different ratios 

and three to five images per ratio were quantified using the analysis macro. Panels A and B show three representative 

microscopic images (scale bars = 150 μm), which were obtained using either widefield (A) or confocal microscopy (B), as 

well as the result of the segmentation process (red contours in the images) and the corresponding single-cell log 10 intensity 

histograms. The fraction of fluorescent cells is indicated in the microscopy images (input values, defined by the mixing process) 

and histograms (extracted by single-cell analysis), respectively. For both imaging modalities a high correlation between input 

and determined fluorescent fraction is observed (panel C; widefield: R 2 = 0.95, slope = 0.94 ± 0.06; confocal: R 2 = 0.98, 

slope = 0.94 ± 0.05). The images of the widefield mixing series are provided in the Supplemental Materials Section (S9) so 

that the macro (with possible modifications) can be tested by the user. Sufficient analysis parameters are β = 15; ω = 5; 

α = 0.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to minor manual errors in the initial cell mixing and random fluctuations in the number of cells that

can be imaged in one field of view, as well as cells which have low expression levels [15] . 

Use cases 

Quantification of transfection efficiencies 

After successful validation, we applied the analysis macro to quantify the transfection efficiency 

of HEK293 cells, which were transiently transfected with eGFP for different transfection conditions 

( i.e. , for DNA:PEI ratios ranging from 1:1 to 1:6 and for a total amount of DNA:PEI complexes

ranging from 0.1 to 0.7 μg). Fig. 4 A shows three representative images corresponding to DNA:PEI

ratios of 1:5, 1:3 and 1:1 (0.4 μg DNA:PEI complexes) as well as the obtained segmentation and

corresponding log 10 intensity histogram. For this series, the highest fluorescent fraction was observed 

for a DNA:PEI ratio of 1:3 (51%), so that an optimal transfection efficiency could be seen at this

condition. The total number of observed cells decreased with decreasing DNA:PEI ratio, which is 

attributed to the well-known cytotoxic effect exhibited by PEI at higher concentrations (see Fig. S3

in the Supplemental Materials Section S3 - Plate reader validation) [16] . Hence, optimal transfection

requires to find a balance between the DNA:PEI ratio (transfection efficiency) and the total PEI

concentration (cytotoxicity). 

To this end, we made use of the high-throughput capability of the macro and visualized the

determined transfected cells ( Fig. 4 B) and transfected fraction for all tested conditions ( Fig. 4 C) as

heat maps. A considerable amount of transfection ( > 35%) was observed for DNA:PEI ratios ranging

between 1:2 and 1:4 at a total amount of DNA:PEI complexes ranging between 0.2 and 0.5 μg. At

lower ratios and amounts, less transfection was found, which indicates that the amounts of plasmid

DNA or transfection reagent were too low. At higher ratios and amounts, the transfection efficiency

was also reduced, which is again attributed to the cytotoxic effect of PEI at higher concentrations

[16] . The highest fraction of transfected cells (75.4%) was found at a DNA:PEI ratio of 1:2 and a total

amount of DNA:PEI complexes of 0.5 μg, which marks the optimal transfection condition in this setup

if the transfected fraction is considered the key marker for transfection efficiency. Considering also 
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Fig. 4. Quantification of transfection efficiencies of DNA:PEI complexes. HEK293 cells were transiently transfected with eGFP 

by PEI using different amounts of plasmid DNA (0.1–0.7 μg) and mixing ratios of DNA and PEI (1:1 – 1:6). Panel A shows 

three representative microscopic images of cells treated with 0.4 μg of DNA:PEI complexes (using DNA:PEI ratios of 1:5, 1:3, 

and 1:1 as indicated in the images) as well as the segmentation and corresponding single-cell log 10 intensity histograms (scale 

bars = 150 μm). Panels B and C show heat maps that visualize the total number of transfected cells (B) or fraction of transfected 

cells in% (C), respectively. The three conditions shown in Panel A are marked with white squares in the heat maps. One image 

per condition was analyzed. 
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ytotoxicity, the best balance between transfection efficiency and cytotoxic effects is observed at a

NA:PEI ratio of 1:2 and a total amount of DNA:PEI complexes of 0.4 μg. 

uantification of viral infection 

In another use case, the analysis macro was used to automatically determine the fraction of

ero cells that had been infected with a variant of the herpes simplex virus 1 (HSV-1_GFP), which

auses infected cells to exhibit green fluorescence due to GFP expression. Six images of infected

ells that vary in their cell densities (approximately 650 to 1050 cells per image) and values of the

nfected fraction (approximately 2 to 90%) were chosen and analyzed manually ( Fig. 5 A) as well as

ith the analysis macro ( Fig. 5 B), which allowed to correlate automatically and manually obtained

esults ( Fig. 5 C). Cells were manually identified and counted based on their nucleus staining and their

erinuclear space was inspected for green fluorescence to identify infected cells. 
ig. 5. Comparison of manual and automatic quantification of the fraction of Vero cells that had been infected with a GFP- 

quipped herpes simplex virus 1 (HSV-1_GFP). Panel A and B show the fractions of uninfected (gray) and infected (red) cells as 

etermined from six microscopic images. The values were derived by manual cell counting (A) or the single-cell log 10 intensity 

istograms of the automatic analysis (B), respectively. The manually and automatically determined infected fractions show a 

ery high correlation ( R 2 = 0.97, slope = 1.03). 
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Similar to the validation using transfected HEK cells, we found a linear correlation ( R 2 = 0.97,

slope = 1.03, Fig. 5 C) between the manually and automatically determined fraction of infected cells.

This indicates that both approaches give essentially identical results, with manual inspection being far 

more time-consuming than using the macro and providing no further information about fluorescence 

intensity distributions. 

Quantification of virus infection inhibition 

In addition to mere quantification of viral infection, our analysis macro can also be applied

to quantify the efficiency of virus binding inhibitors [17] . This is demonstrated in Fig. 6 , which

summarizes the results of inhibition experiments, in which Vero cells were treated with heparin as

inhibitor at different concentrations (0.01–10 0 0 μg/mL) and infected with HSV-1_GFP. Fig. 6 A shows

six representative images and the corresponding log 10 intensity histograms, in which the fluorescent 

(infected) cell fraction is indicated in red. The inhibitory effect of heparin can clearly be seen in the

images, as well as in the log 10 intensity histograms. 

Fig. 6 B shows the impact of the heparin concentration on mean value and standard deviation of

the fluorescent (infected) cell fraction, which were calculated from four image replicates done for each

concentration. This data allowed to determine the IC 50 value (8.6 ± 1.3 μg/mL ∼ 573.3 ± 86.7 nM

(M W 

∼ 15.0 0 0 ± 2.0 0 0 Da) of heparin inhibition, which was quantified by fitting the observed

inhibition curve using the Langmuir-type inhibition model: 

f in f = 

1 

1 + 

c inh 
IC 50 

(1) 

In this equation, f inf denotes the fraction of infected cells, which is observed at an inhibitor

concentration c inh , while IC 50 give the half maximal inhibitory concentration ( i.e. , the inhibitor

concentration, at which 50% of infection inhibition is observed). The determined IC 50 value is in the

range of previously reported IC 50 values obtained by plaque reduction assays performed with Vero 

cells and similar HSV-1 variants (6–10 μg/mL [18] , 240–380 nM [19] ). 

Fig. 6. Quantification of the efficiency of heparin in inhibiting HSV-1_GFP infection of Vero cells. Panel A shows six

representative images (corresponding to applied heparin concentrations of 0.01–10 0 0 μg/mL as indicated; scale bars = 150 μm)

together with the result of the segmentation and the corresponding single-cell log 10 intensity histograms. The population of

infected cells is shown in red in the histograms. The fraction of infected cells decreases with increasing heparin concentration

(B), which is well described by a Langmuir-type inhibition model (solid line; red area indicates 95% confidence interval). 

Discussion 

In this work, we described the development, validation, and application of a fast and robust

Fiji macro offering an automated fluorescence quantification with single-cell resolution. To ensure 

the versatility of the macro, it employs a watershed-based segmentation [20] , which allows for

thresholding of empty spaces without cells and avoids splitting of nuclei in cell-dense areas. This

makes the macro applicable over a wide range of cell coverage ( i.e. , for samples with low as well
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s high cell coverage). As not only the area of the nucleus is analyzed but the entire cell body

based on its autofluorescence signal), the macro can quantify fluorescence signals of the nucleus

nd the cytoplasmic area. We validated the macro for a wide range of fractions of fluorescent

ells (between 0 and 99%), which makes it applicable to a broad spectrum of fluorescence images.

e observed excellent agreement with manual image analysis when quantifying the fraction of

ransfected or virus-infected cells. Hence, the macro can be used to screen transfection efficiencies

nder different conditions as well as to quantify inhibition of virus infection of cells treated with virus

nhibitors (providing the IC 50 value of the inhibition process based on a quantification with single-cell

esolution). 

So far, the macro has been applied successfully on data derived using different cell lines

Vero, HEK293, HeLa), imaging techniques (widefield and confocal fluorescence microscopy) and

abeling strategies (GFP transfection, virus protein surface staining), which demonstrates its feasibility.

owever, the user should be aware of the limitations of the method: The data quality is highly

ependent on a sufficient segmentation based on staining of cell nuclei. If not all cell nuclei are

ufficiently stained, the macro will not be able to correctly recognize them as cells and the resulting

raction of fluorescent cells will be incorrect. If cells are not in a monolayer and therefore overlap,

he segmentation quality is reduced and nuclei in lower positions are excluded from the analysis,

hich causes a bias in the quantified populations. Also, shifts of the background intensity can

ause a shift of the non-fluorescent cellular population in the log 10 intensity histograms, which can

ead to misclassification if the intensity cutoff is not carefully adjusted. Manual verification of the

egmentation overlay and the log 10 intensity histogram for each new experiment and condition is

herefore recommended. 

onclusion 

Quantitative analysis of image data is a valuable complement to qualitative visual inspection for

btaining information about biological processes. The segmentation and analysis macro developed

n this work provides a suitable tool for rapid quantification of fluorescence at the single-cell level,

.g. , for a quantification of cellular transfection, infection, or infection inhibition. It is based entirely

n open-source components (contained in the Fiji package [13] ) and allows to obtain accurate

nformation with high throughput. The macro provided here (see Supplemental Material Section S7)

erformed well when validated by comparison with manually obtained image quantification data as

ell as in experiments, in which fluorescent and non-fluorescent cells were mixed in known ratios.

he application of the macro presented is not limited to the use cases shown here; it is intended to

e applicable for most monolayered cellular assays using nuclei staining and fluorescence as readout.

s a Fiji macro, it is freely available and can be used and modified according to the users needs. 
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