
Aus der Klinik für kardiovaskuläre Chirurgie 
der Medizinischen Fakultät Charité – Universitätsmedizin Berlin 

 
 
 

DISSERTATION 
 
 

Deep-learning basierte Echtzeit-Vorhersage von akutem 
Nierenversagen nach kardiochirurgischen Eingriffen 

 
Deep-learning based real-time prediction of acute kidney injury after 

cardiac surgery 
 
 

zur Erlangung des akademischen Grades  
Medical Doctor - Doctor of Philosophy (MD/PhD) 

 
 
 
 

vorgelegt der Medizinischen Fakultät  
Charité – Universitätsmedizin Berlin 

 
 
 

von  
 
 

Nina Rank 
 
 
 
 
 

 
Datum der Promotion:   03.03.2023  
 
  



Table of Contents 
 
Abbreviations ............................................................................................................. i 

Abstract (deutsch) .................................................................................................... ii 

Abstract (english) ..................................................................................................... iii 

1. Introduction ........................................................................................................ 1 

1.1 The importance of predicting acute kidney injury after cardiac surgery ............... 1 
1.1.1 Definition of acute kidney injury ............................................................................................ 1 
1.1.2 Acute kidney injury after cardiac surgery .............................................................................. 2 
1.1.3 Impact of acute kidney injury ................................................................................................ 2 
1.1.4 Prediction of acute kidney injury ........................................................................................... 3 

1.2 Current state of research ............................................................................................ 4 

1.3 Significance of this doctoral project for the prediction of acute kidney injury ..... 6 

2. Methodology ....................................................................................................... 7 

2.1 Ethical approval ........................................................................................................... 7 
2.2 Study population and data retrieval .......................................................................... 7 

2.3 The basic principle of machine learning ................................................................. 10 
2.4 Feature selection and data preprocessing ............................................................. 10 

2.5 Modelling .................................................................................................................... 13 

2.6 Evaluation of the RNN performance ........................................................................ 15 
2.6.1 Statistical measures ............................................................................................................ 15 
2.6.2 Adjustment of confidence intervals ..................................................................................... 16 

2.7 Comparing the RNN vs human performance .......................................................... 16 
2.7.1 Experimental design ........................................................................................................... 16 
2.7.2 Sample size calculation and statistical comparison ............................................................ 18 

3. Results .............................................................................................................. 20 

3.1 Predictive performance of the RNN ......................................................................... 20 

3.2 Comparing the RNN to human prediction ............................................................... 21 
3.2.1 Overall performance ........................................................................................................... 21 
3.2.2 Time-dependent performance ............................................................................................ 23 

4.    Clinical applications, prospective research questions, limitations and 
ethical considerations ............................................................................................ 24 

4.1 Clinical applications and prospective research questions ................................... 24 

4.2 Limitations ................................................................................................................. 25 
4.3 Ethical considerations regarding the practical application of machine learning 
models in medicine ......................................................................................................... 26 

4.3.1 Data acquisition .................................................................................................................. 26 
4.3.2 Model development ............................................................................................................. 26 



4.3.2.1 Target population and outliers ..................................................................................... 26 
4.3.2.2 Legal liability ................................................................................................................ 27 

4.3.3 Clinical deployment of the model ........................................................................................ 27 
4.3.3.1 Responsible decision making and patients’ autonomy ................................................ 27 
4.3.3.2 Critical evaluation of model predictions ....................................................................... 28 
4.3.3.3 False conclusions of true patterns ............................................................................... 28 
4.3.3.4 Fair distribution of attention ......................................................................................... 28 
4.3.3.5 Consideration of patients’ social circumstances .......................................................... 29 

5. Conclusions ..................................................................................................... 29 

6.    References ........................................................................................................ 30 

Eidesstattliche Versicherung / Anteilserklärung .................................................... I 

Auszug aus der Journal Summary List .................................................................. III 

Publikation: Rank, N., Pfahringer, B., Kempfert, J., Stamm, C., Kühne, T., 
Schoenrath, F., Falk, V., Eickhoff, C., & Meyer, A. (2020). Deep-learning-based 
real-time prediction of acute kidney injury outperforms human predictive 
performance. NPJ Digital Medicine, 3, 139. ............................................................ V 

Lebenslauf ............................................................................................................ XVII 

Publikationsliste .................................................................................................... XIX 

Danksagung ............................................................................................................ XX 
 



  

 i 

Abbreviations 
 

AI Artificial intelligence 

AKI Acute kidney injury 

AUC Area under the curve 

CABG Coronary artery bypass grafting 

CK Creatine kinase 

CKD Chronic kidney disease 

CI Confidence interval 

CPB Cardiopulmonary bypass 

CRP C-reactive protein 

CVP Central venous pressure 

ECMO Extracorporeal membrane oxygenation system 

EHR Electronic health record 

FPR False-positive rate 

GBM Gradient boosted machine 

GRU Gated recurrent unit 

ICU Intensive care unit 

KDIGO Kidney Disease: Improving Global Outcomes 

LDH Lactate dehydrogenase 

LSTM Long-short-term memory 

ML Machine learning 

MSE Mean squared error 

MSEpat Mean squared error of individual patient 

NN Neural network 

NPV Negative predictive value 

PPV Positive predictive value 

PR_AUC Precision-recall area under the curve 
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Abstract (deutsch) 
 
Die zunehmende Digitalisierung medizinischer Daten und die Fortschritte im Bereich der 

künstlichen Intelligenz ermöglichen es, die enorme Menge an Daten, die während eines 

Krankenhausaufenthalts gesammelt wird, auf viel komplexere Weise zu nutzen, als es bislang 

der Fall war. In der im Rahmen der Promotion durchgeführten Studie wurde dieser Ansatz für 

die Echtzeit-Vorhersage von postoperativem akutem Nierenversagen (ANV) verfolgt – eine 

der häufigsten Komplikationen nach kardiothorakalen Eingriffen. Anhand von 96 Parametern, 

die standardmäßig während eines Krankenhausaufenthalts aufgezeichnet werden, wurde ein 

rekurrentes neuronales Netz (RNN) entwickelt, das ANV innerhalb der ersten sieben 

postoperativen Tage vorhersagen kann. Das Modell wurde mit Daten aus n = 2224 

Aufnahmen trainiert, welche aus n = 15.564 klinischen Fällen in einem Krankenhaus der 

tertiären Versorgung für kardiothorakale Chirurgie zusammengestellt wurden. Die Leistung 

des RNN wurde anhand eines unabhängigen Testsets aus n = 350 klinischen Fällen bewertet, 

und es wurde eine area under the curve (AUC) (95 % Konfidenzintervall) von 0,893 (0,862 - 

0,924) ermittelt. Zusätzlich wurde ein direkter Vergleich der Vorhersagegüte zwischen dem 

RNN und erfahrenen ÄrztInnen durchgeführt. Das RNN übertraf die ÄrztInnen in Bezug auf 

alle ermittelten statistischen Messwerte (z.B. AUC = 0,901 vs. 0,745, p < 0,001). Im Gegensatz 

zu den Vorhersagen der ÄrztInnen, die das Risiko der Entwicklung eines ANV generell 

unterschätzten, zeigte das RNN eine gute Kalibrierung. Die Integration eines solchen Modells 

in bestehende elektronische Patientendatensysteme könnte durch frühzeitige Vorhersage von 

ANV ermöglichen, präventive Maßnahmen rechtzeitig zu ergreifen, um Komplikationen zu 

verhindern. Es könnte als Echtzeit-Überwachungssystem eingesetzt werden und die 

Entscheidungsprozesse der ÄrztInnen unterstützen. Bei der Verwendung eines solchen 

Systems sind neben seiner Vorhersagegüte aber auch ethische und rechtliche Aspekte zu 

berücksichtigen, die den Datenschutz, die Modellentwicklung und den klinischen Einsatz 

betreffen, und die in dieser Arbeit ebenfalls erörtert werden.  
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Abstract (english) 
 
The increasing digitisation of medical data and advances in artificial intelligence have enabled 

us to use the tremendous amount of data that is recorded during a hospital stay in a much 

more sophisticated way than is currently the case. In the study undertaken and published in 

the context of this doctoral project, this approach was taken for predicting postoperative acute 

kidney injury (AKI) – one of the most common and severe complications after cardiothoracic 

interventions. Using 96 parameters, standardly recorded during a hospital stay, a recurrent 

neural network (RNN) was developed that predicted AKI within the first seven postoperative 

days. The training of the model was based on n = 2224 admissions gathered from n = 15,564 

admissions at a tertiary care hospital for cardiothoracic surgery. The performance of the model 

was assessed using an independent test set of n = 350 clinical cases and an area under the 

curve (AUC) (95% confidence interval) of 0.893 (0.862 - 0.924) was obtained. Additionally, a 

head-to-head comparison of the RNN against experienced physicians was conducted. The 

RNN exceeded the physicians in terms of all determined statistical measures (e.g., 

AUC = 0.901 vs 0.745, p < 0.001). In contrast to the predictions of physicians, who generally 

underrated the risk of developing AKI, the RNN showed good calibration. The integration of 

such a model into existing digital medical record systems could allow preventive steps to be 

taken in time to prevent complications by predicting AKI well before its onset. It could be used 

as a real-time surveillance system and support physicians' decision-making process. 

However, when using such a technique, there are several ethical aspects to be considered 

concerning data protection, model development, and clinical deployment, which are also 

discussed in this work. 
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1.  Introduction 

Patients undergoing cardiac surgery are highly prone to develop various postoperative 

complications ranging from heart failure, postoperative bleeding, stroke, sepsis, complications 

of the central nervous system, the kidney and the respiratory system (Ball et al., 2016). These 

complications significantly impact patients’ outcomes in the postoperative period as well as 

their long-term survival (Pahwa et al., 2021). Early identification of patients at high risk could 

help to prevent or mitigate such complications by early intervention. The study carried out and 

published in the context of this doctoral project describes the successful development and 

evaluation of an innovative machine learning prediction tool for postoperative acute renal 

failure. 

 

In Chapter 1 of this synopsis report, the definition of acute kidney injury (AKI), its relation to 

cardiothoracic surgery, its impact on the economy and patients’ health and the opportunities 

that increasing digitisation of medical data opens up in the prediction of AKI are presented. 

Chapter 2 is dedicated to the methodology, whereas the results obtained are presented in 

Chapter 3. Under Chapter 4, possible clinical applications, further research questions and 

limitations of the study are discussed. Chapter 4 also includes a thorough assessment of 

ethical and legal considerations as regards the possible future clinical deployment of ML-

based applications. Concluding remarks form the final Chapter 5 of this synopsis. Partial 

findings of the present work, especially those related to the current state of research, the 

methods and the results, were published in “Deep-learning-based real-time prediction of acute 

kidney injury outperforms human predictive performance” by N. Rank et al., 2020, NPJ Digital 

Medicine, 3, 139. 

 
1.1 The importance of predicting acute kidney injury after cardiac surgery 
 
1.1.1 Definition of acute kidney injury  
 

AKI is characterized by a sudden deterioration of renal function that occurs within hours or 

days and is in principle reversible. Different AKI stages are distinguished according to KDIGO 

guidelines as described in Table 1 (Kidney Disease: Improving Global Outcomes (KDIGO) 

Acute Kidney Injury Work Group, 2012): 
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Table 1. Stages of acute kidney injury according to KDIGO (Kidney Disease: Improving Global Outcomes 
(KDIGO) Acute Kidney Injury Work Group, 2012).  

Stage Creatinine Criteria Urine Output Criteria 

1 Increase of ≥ 0.3 mg/dl (≥ 26.5 𝜇mol/l) within 48 hours 
OR 
Increase to 1.5 - 1.9 times baseline within 7 days 

< 0.5 ml/kg/h for 6 - 12 hours 

2 Increase to 2.0 - 2.9 times baseline < 0.5 ml/kg/h for ≥ 12 hours 

3 Increase to 3.0 times baseline 
OR  
Increase in serum creatinine to ≥ 4.0 mg/dl (≥ 353.6 𝜇mol/l) 
OR 
Initiation of renal replacement therapy 
OR 
In patients < 18 years, decrease in estimated glomerular filtration rate 
(eGFR) to < 35 ml/min per 1.73 m2 

< 0.3 ml/kg/h for ≥ 24 hours 
OR  
Anuria for ≥ 12 hours 

 
1.1.2 Acute kidney injury after cardiac surgery 
 

AKI is a common and severe complication after cardiothoracic surgery and is still not entirely 

understood (Wang & Bellomo, 2017). Multiple risk factors for AKI development are described 

and can be divided into different groups. The first group comprises general patient-related risk 

factors like high age, female gender, reduced left ventricular function, diabetes and chronic 

kidney disease (Rosner & Okusa, 2006). The second group composes cardiothoracic surgery-

associated risk factors such as type of surgery, usage, duration and flow characteristics 

(pulsatile vs non-pulsatile) of cardio-pulmonary bypass, aortic cross-clamp time or 

hemodilution. In addition, there are several postoperative factors that increase the risk of AKI, 

such as low cardiac output, hypotension, inflammation and oxidative stress due to surgical 

injury, sepsis, atheroembolism and usage of nephrotoxins (Wang & Bellomo, 2017). 

 
1.1.3 Impact of acute kidney injury 
 
It has been shown that AKI is an independent risk factor for short- and long-term 

mortality  (Glenn M. Chertow et al., 1998; C. E. Hobson et al., 2009; Mandelbaum et al., 2011; 

Ympa et al., 2005). Dasta & Kane-Gill reported that AKI in hospitalized patients increases the 

mortality rate 4- to 10-fold (Dasta & Kane-Gill, 2019). In addition, AKI leads to prolonged length 

of hospital stays and elevated treatment costs (C. Hobson et al., 2015; Silver et al., 2017; 

Silver & Chertow, 2017). Studies revealed that the costs for patients with AKI in intensive care 

units (ICUs) are about twice as high as those of patients without AKI and that the 

hospitalizations costs of AKI exceed those of gastrointestinal bleeding and myocardial 

infarction (Dasta & Kane-Gill, 2019; Silver et al., 2017). Thus, postoperative AKI leads to a 

considerable financial burden on the healthcare system. 
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In patients in whom AKI develops into end-stage renal failure with the need of life-long renal 

replacement therapy, further socioeconomic consequences must also be considered. It has 

been shown that dialysis hampers employment status (Nakayama et al., 2015) and 

considerably reduces the quality of life of the affected patients (Dąbrowska-Bender et al., 

2018). 

 
1.1.4 Prediction of acute kidney injury 
 
It is therefore desirable to prevent kidney failure by early measures whenever possible. A 

study by Balasubramanian et al. showed that early nephrologist involvement in patients with 

AKI stage 1 could prevent further deterioration of kidney function (Balasubramanian et al., 

2011). In contrast, delayed nephrologist consultation was accompanied by elevated mortality 

rates and dialysis dependence in critically ill patients with AKI (Costa e Silva et al., 2013). 

Meersch et al. revealed that the risk of cardiac surgery-associated AKI can be reduced by 

administration of an immediate postoperative “KDIGO care bundle”  including “optimization of 

volume status and hemodynamics, avoidance of nephrotoxic drugs, and preventing 

hyperglycemia in high risk patients” (Meersch et al., 2017).  
 
Due to the multifactorial etiology of AKI and the complex interactions of risk factors, the 

prediction of AKI remains, however, a difficult task. Serum creatinine is an insufficient marker 

for the early identification of high-risk patients since it only increases when the kidney function 

is already considerably impaired (Murty et al., 2013). Particularly in elderly patients, who often 

have diminished muscle mass and subsequently lower serum creatinine levels, consideration 

of serum creatinine levels alone leads to the underdiagnosis of renal failure (Swedko et al., 

2003). 
 
Several clinical risk scores for AKI are available (Aronson et al., 2007; G. M. Chertow et al., 

1997; Huen & Parikh, 2012; Mehta et al., 2006; Palomba et al., 2007; Thakar et al., 2005; 

Wijeysundera et al., 2007). However, there is no consensus recommendation as to which one 

to use. Most of these classical risk scores only implement static variables like clinical history, 

demographics and surgery type and are thus not able to adapt to sudden changes in patients' 

states. Additionally, they usually demand additional workload for clinical staff as the data 

collection is not automated.  
 
Several novel biomarkers to identify AKI have been developed and evaluated (Bennett et al., 

2008; Burke-Gaffney et al., 2014; Haase et al., 2009; Jayakumar et al., 2013; Krawczeski et 

al., 2011; McIlroy et al., 2010; Mishra et al., 2005; Parikh et al., 2011; Ramesh et al., 2010), 
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but their benefit over clinical assessment remains uncertain. Moreover, most of them are 

widely unavailable and, partly due to unclear cost-effectiveness, not part of routine diagnostics 

(Wang & Bellomo, 2017).  
 
The recent progression of digitalisation in the medical sector has created the opportunity to 

use medical information now much more sophisticated by capturing underlying information in 

the data that would otherwise be overlooked. The tremendous amount of data that 

accumulates during a hospital stay is, however, too overwhelming for clinical staff to effectively 

be processed in limited time and in the often stressful environment of ICUs (Donchin & 

Seagull, 2002; Halford et al., 2005). Latest developments in artificial intelligence (AI) could 

potentially overcome this problem by automatically analysing high dimensional data, 

predicting future outcomes and thus providing decision support for physicians.  

1.2 Current state of research 
 

The application of ML to complex medical problems like AKI is not new and has already 

achieved auspicious results (Rank et al., 2020). In 2016, Thottakkara et al. used different ML 

algorithms to predict postoperative AKI and yielded areas under the curve (AUCs) between 

0.797 and 0.858 in their internal validation set (Thottakkara et al., 2016). Bihorac et al. applied 

ML to evaluate the risk of multiple postoperative complications and observed an AUC of 0.80 

(0.79-0.80) for AKI (Bihorac et al., 2019). In both studies, however, only static, mostly 

preoperative parameters were used for prediction. 
 
In 2016, Koyner et al. conducted a multi-center ward-based study and built a discrete-time 

survival model which yielded an AUC (95% CI) of 0.76 (0.76-0.77) for AKI of stage ≥ 2 (J. L. 

Koyner et al., 2016). Another study based on electronic health record (EHR) data by Koyner 

et al. followed in 2018 in which the research group obtained an AUC (95% CI) of 0.90 (0.90–

0.90) at forecasting AKI stage 2 within the following 24 hours and 0.87 (0.87–0.87) within the 

following 48 hours (Jay L. Koyner et al., 2018). Cheng et al. used ML to predict AKI over 

multiple time spans and yielded an AUC of 0.765 for the prediction at one day before AKI 

onset (Cheng et al., 2017). These studies, however, did not incorporate the urine criterion of 

AKI (see Table 1), which may result in false-negative labelling of the AKI cases. Moreover, 

only patients with a serum creatinine of < 3mg/dl (Koyner et al., 2018) or normal serum 

creatinine and a GFR of ≥ 60ml/min/1.73m2 (Cheng et al., 2017) at admission were included 

in the studies. Especially for patients with already impeded kidney function, however, close 

postoperative monitoring and AKI risk prediction should be desired. 



  

 5 

 
Based on EHR data, Mohamadlou et al. built an ML model for AKI detection and AKI prediction 

12 to 72 hours before AKI onset, for which they yielded AUCs from 0.872 (at onset) - 0.728 

(72h before onset) (Mohamadlou et al., 2018). A particularly large study was reported in 2019 

by Tomašev et al., in which the research group developed a recurrent neural net (RNN) for 

continuous prediction of AKI (Tomašev et al., 2019). They achieved an AUC up to 0.971 24h 

before onset. However, these studies also did not integrate the urine output criterion of AKI. 

Moreover, Tomašev et al. only included patients with at least one year of available medical 

history in the EHR system. Additionally, they incorporated aggregated historical medical data 

collected over up to five years. In a real setting, however, patients are not always known prior 

to admission, and the performance of the algorithm on patients without this information 

remains unclear. The model developed in this doctoral project, however, only incorporated 

time-series data that was recorded after or directly at admission but no historical information. 
   
An RNN for the prediction of AKI requiring dialysis, mortality and postoperative bleeding after 

cardiac surgery within the 24 postoperative hours was also developed by Meyer et al., based 

on a stream of peri- and postoperative routinely collected data (Meyer et al., 2018). Their 

model performed well (positive predictive value of 0.87 and sensitivity of 0.94 for AKI) and 

surpassed classical clinical risk assessment scores.  
 
Using ML to predict AKI after cardiac surgery continues to be a highly topical issue. Since the 

publication of the study underlying this doctoral project in 2020, Penny-Dimri et al. in 2021 

compared the performance of four ML algorithms (logistic regression, K-Nearest-Neighbours, 

gradient boosted machine (GBM) and neural networks (NN)) with that of two established 

scores used to predict cardiac-surgery associated AKI (Penny-Dimri et al., 2021). Logistic 

regression, GBM and NN outperformed the latter. In addition, they managed to extract patient-

level risk profiles for their predictions from GBM and NN. This information is particularly 

valuable in clinical practice and drives personalised medicine forward. 
 
Despite these very promising results, to date, no other study apart from the one carried out for 

this doctoral project exists that compares the performance of an ML algorithm with that of 

experienced clinicians in predicting postoperative AKI on longitudinal data streams of real-

world hospital cases.  
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1.3 Significance of this doctoral project for the prediction of acute kidney injury 
 

The study underlying this doctoral project aimed to first develop a machine learning (ML) 

algorithm that predicts AKI after cardiothoracic surgery based on standardly recorded 

parameters. More specifically, the algorithm was intended to allow real-time predictions, 

meaning that it should estimate the risk of developing AKI at any point in time during a patient’s 

observation period and not only give a static preoperative prediction. Such a system requires 

constant adaptation to changes in patients' state of health. The model was intended to be 

designed in a way as to allow a potential integration into EHR systems, which could enable 

real-time monitoring of patients, early detection of imminent AKI and, thus, initiation of 

preventive measures. 
 
The algorithm was designed to forecast AKI up to the first seven postoperative days. This time 

span is much longer than that of the described studies. Usually, closer events can be predicted 

more easily than events in the far future. However, action should be taken as soon as renal 

failure is imminent and not only when the kidneys are already - and possibly irreversibly - 

damaged. Therefore a wider prediction horizon is desirable as studies revealed that timely 

intervention could avert severe AKI (Balasubramanian et al., 2011; Meersch et al., 2017). 
 
A further goal of the study was to compare the model’s performance against that of 

experienced physicians. An important criterion for the introduction of ML algorithms into the 

clinical routine is that their performance should not be substantially worse than that of human 

physicians. Thus, this head-to-head comparison was designed as a non-inferiority experiment. 
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2. Methodology 

2.1 Ethical approval 
 

Ethical approval of the study was obtained from the institutional data protection officer and 

ethics committee of Charité – Universitätsmedizin Berlin (EA2/180/17). This approval 

comprised the acquisition of data on implied consent. Only retrospective medical information 

was used, and the patients did not actively participate in the study. The Institutional Review 

Board of Charité - Universitätsmedizin Berlin waived the requirement of informed consent of 

the participating physicians as the data collection was anonymized. The description of the 

model design and its evaluation are broadly in line with the guideline in the TRIPOD statement 

(Collins et al., 2015). 

2.2 Study population and data retrieval 
 

The data employed in the study underlying this doctoral project were retrieved from the EHR 

system of Deutsches Herzzentrum Berlin and were generated between 10/2012 and 02/2018. 

The patient selection procedure is illustrated in Fig. 1 (Rank et al, 2020). Initially, all adult 

patients having received cardiothoracic surgery in this period were included. After exclusion 

of 2586 admissions (exclusion criteria: no creatinine/urine flow values available, hemodialysis 

before the end of the operation, baseline creatinine ≥ 4.0mg/dl), 1308 cases were identified 

with AKI stage 2 or 3 within seven days after surgery.  
The transfer of a patient to the ICU/recovery room denoted the starting point of the observation 

time of the respective patient. The respective endpoint was defined as soon as one of the 

following criteria apply: 

 
• at least one KDIGO criterion for AKI stage 2 or 3 was fulfilled 

• the patient was discharged 

• seven days after the end of the surgery were completed 

 
A balanced data set was then created by assigning each AKI-case a non-AKI-control. The 

pairs were matched by observation length. This data set was then randomly split into training 

(2224 admissions/2180 patients, 85%) and residual set (392 admissions/patients, 15%). 
For the 392 patients of the residual set, physicians’ notes were manually inspected to prevent 

the inclusion of falsely documented, implausible cases in the test set, which led to the 
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exclusion of 28 patients. From the revised data set, 350 patients were randomly chosen and 

composed the final test set for evaluation of the algorithm.  
The training and test sets were highly similar with respect to the baseline characteristics and 

the patients’ total observation times, which are presented in Table 2 and Fig. 2 (Rank et al., 

2020). 
 

 

Figure 1. Patient selection process. adm = admissions, pat = patients. Reprinted from Fig. 3 from “Deep-
learning-based real-time prediction of acute kidney injury outperforms human predictive performance” by N. 
Rank et al., 2020, NPJ Digital Medicine, 3, 139. Reprinted with permission under a Creative Commons Attribution 
4.0 International License, accessed http://creativecommons.org/licenses/by/4.0/.  
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Table 2. Baseline characteristics across the training and the test set. AKI = acute kidney injury, CPB = 
cardiopulmonary bypass. Reprinted from Supplementary Table 1 from “Deep-learning-based real-time prediction 
of acute kidney injury outperforms human predictive performance”  by N. Rank et al., 2020, NPJ Digital Medicine, 
3, 139. Reprinted with permission under a Creative Commons Attribution 4.0 International License, accessed 
http://creativecommons.org/licenses/by/4.0/.  
 

Training Set Test Set 

No. of admissions 2224 350 

No. of individual patients (%) 2180 (98) 350 (100) 

No. of cases with AKI (%) 1112 (50) 175 (50) 

Length of observation period in days, median (interquartile 
range) 

1.33 (0.58 - 2.36) 1.30 (0.55 - 2.13) 

Age, median (interquartile range) 72 (60 - 79) 71 (61 -79) 

Male, No. (%) 1424 (64) 233 (67) 

Baseline creatinine [mg/dl], median (interquartile range) 1.1 (0.83 - 1.4) 1.0 (1.0 - 1.0) 

Baseline urea [mg/dl], median (interquartile range) 43 (32 - 62) 41 (31 - 56) 

Time in operation theatre [minutes] 
median (interquartile range) 

308 (208 - 450) 314 (214 - 428) 

On-pump procedures, No. (%) 1134 (51) 177 (51) 

Aortic cross clamp time [minutes], 
median (interquartile range) 

81 (53 - 105) 77 (52 - 100) 

CPB time [minutes], 
median (interquartile range) 

118 (78 - 183) 122 (83 - 180) 

 

 

Figure 2. Length of observation windows of the patients in the training and in the test set. (a) density 
distribution. (b) histogram. Reprinted from Fig. 4 from “Deep-learning-based real-time prediction of acute kidney 
injury outperforms human predictive performance” by N. Rank et al., 2020, NPJ Digital Medicine, 3, 139. 
Reprinted with permission under a Creative Commons Attribution 4.0 International License, accessed 
http://creativecommons.org/licenses/by/4.0/.   
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2.3 The basic principle of machine learning 
 

Machine learning as an application of AI denotes the automated generation of knowledge from 

experience. An ML system autonomously learns patterns from examples without being 

explicitly instructed by humans on how these patterns look like. Multiple types of ML exist (e.g., 

supervised, unsupervised and reinforcement learning, see Fig. 3). In the study carried out for 

this doctoral project, supervised learning was applied. For a given set of input parameters 

(features), the algorithm produces an output (label). In supervised learning, the desired output 

is known during the training phase. Thus, the output of the algorithm can be compared with 

the correct output, i.e. the learning is “supervised”. 

In the study, the outcome of interest was the development of AKI KDIGO stage 2 or 3 within 

seven days after cardiothoracic surgery. The set of input parameters comprised the time series 

of 96 routinely measured variables that were recorded in the EHR system and are further 

described in the following section. 

 

 

Figure 3. Supervised vs unsupervised machine learning. In supervised learning, the input data is labelled 
(annotated) for the training process. The model learns the specific characteristics (e.g., shape, color) of the 
different labels (apple/banana/pear). For new data, the model predicts these labels. In unsupervised learning, 
labels are not known in advance. The algorithm tries to classify the data into groups with common characteristics 
(e.g., shape, color).  

 

2.4 Feature selection and data preprocessing 
 
As input parameters for the model, 96 routinely collected parameters from the EHR system 

were selected and are shown in Table 3 (Rank et al., 2020). Most of the input features were 

Input data

Supervised Learning

apple
apple banana

bananapear

Model
Training

?

97% apple


2% pear


1% banana


Input data
Unsupervised Learning

Model
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of dynamic nature and, thus, can change over time. The last creatinine/urea value before the 

operation - or, in the case of absence, the first postoperative value - was defined as baseline 

creatinine/urea.  

One very sensible parameter is the urine flow. First, it defines one criterion of AKI (< 0.5ml/kg/h 

for ≥ 12 hours for stage 2, see Table 1). However, on normal wards, the documentation of the 

urine flow was observed to be often insufficient - potentially with autonomous and mobile 

patients that did not report their urine output to clinical staff. To avoid the risk of false-positive 

AKI labels, the AKI urine criterion was only included in the AKI label definition while a patient 

was treated in an ICU/recovery room but not on normal wards. 

Moreover, 22 frequently administered agents were incorporated, which were reported to have 

nephrotoxic effects (Kitano et al., 2014; Koch et al., 2008; Mazer & Perrone, 2008; Naughton, 

2008; Nuis et al., 2012; Redondo-Pachon et al., 2014).  
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Table 3. Input feature overview. Adapted from Table 5 from “Deep-learning-based real-time prediction of acute 
kidney injury outperforms human predictive performance” by N. Rank et al., 2020, NPJ Digital Medicine, 3, 139. 
Adapted with permission under a Creative Commons Attribution 4.0 International License, accessed 
http://creativecommons.org/licenses/by/4.0/.  

Feature Group (no. features) Features 

Patient characteristics (4) Age, sex, weight, height 

Laboratory results (25) Phosphate, total bilirubin, baseline creatinine, creatinine, baseline 
urea, urea, GFR, creatine kinase (CK), CK-MB, red blood count, white 
blood count, platelets, C-reactive protein (CRP), gamma-
glutamyltransferase, glutamic oxaloacetic transaminase, hemoglobin, 
international normalized ratio, lactate dehydrogenase (LDH), 
magnesium, hematocrit, prothrombin time, partial thromboplastin time, 
mean corpuscular hemoglobin, mean corpuscular volume, mean 
corpuscular hemoglobin concentration 

Surgery procedure (17) Valve surgery, transcatheter aortic valve implantation (TAVI), 
endovascular TAVI, transapical TAVI, coronary artery bypass grafting 
(CABG), off-pump CABG, aortic surgery, assist device, ventricular 
assist device, extracorporeal membrane oxygenation system (ECMO), 
endovascular aortic stent implantation, transplantation, other major 
major cardiac surgery, isolated other major cardiac surgery, 
transcatheter mitral valve implantation (TMVI), endovascular TMVI, 
transapical TMVI  
(from logistic regression text model) 

Further surgery characteristics (3) Aortic cross-clamp time, cardiopulmonary bypass time, time in 
operation theatre 

Vital signs (8) Systolic, mean and diastolic arterial pressure, central venous pressure 
(CVP), heart frequency, pulse, body temperature, oxygen saturation 

Arterial blood gas values (BGA) (15) Base excess, bicarbonate, glucose, hemoglobin, oxygen saturation, 
partial pressure of carbon dioxide and oxygen, total  carbon 
dioxide,  pH level, potassium, sodium, calcium, lactate, 
carboxyhemoglobin, oxyhemoglobin 

Fluid output (2) Bleeding rate, urine flow rate 

Nephrotoxic agents (22) Allopurinol, Aminoglycosides, Amphotericin B, Antiplatelet agents 
(Clopidogrel, Ticlopidine), Benzodiazepines, Cephalosporins, 
Cyclosporine, Haloperidol, Ketamine, Nonsteroidal anti-inflammatory 
drugs, Paracetamol, Penicillines, Proton pump inhibitors, Pyrazolone 
derivatives, Quinolones, Ranitidine, Rifampin, Sulfonamides, 
Tacrolimus, Val/ganciclovir, Aciclovir, Vancomycin, red blood cell 
transfusions 

 
One variable that was assumed to have a major impact on the AKI prediction, but could not 

be used in its raw form, was the type of surgery. It was documented in the EHR partly in free 

text form and partly in predefined categories. The algorithm chosen for AKI prediction was not 

designed in a way to interpret unstructured text in the first place but demanded either 

categorical or continuous input features. Therefore, a separate set of 17 logistic regression 

models was developed beforehand. It took both types of text information (categorical and free 

text) as input and derived for 17 predefined operation types a probability that a patient 

underwent the respective surgery. These probabilities were then used as continuous features 

for the final prediction model. 
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The AKI prediction model developed in the study received 15-minute intervals of all selected 

features as input. Forward imputation was performed to fill missing values (exception: 

nephrotoxic agents). In case of the absence of a precedent value, pre-selected default values 

were imputed.  

 

The exact effect and duration of action of a drug are difficult to assess as both depend on the 

used excipients, drug-drug-interactions, dosage and a patients’ metabolism. For this reason, 

medication treatment was encoded as follows: Whenever a nephrotoxic drug was 

administered, the value for the respective drug feature was set to 1 merely at the time slice 

that followed the administration. The values for this drug at the other time slices were set to 0. 

 

To improve the speed of convergence of the algorithm, all features but the surgery types were 

scaled as follows  (LeCun et al., 2012): 

 

𝑋!"#$%& 	= 	
'()('!"#$%)
,-.('!"#$%)

           (1) 

 

with µ(Xtrain)  representing the median and IQR(Xtrain) the interquartile range of the feature X in 

the training set. 

 

The patient selection process, the feature preprocessing, and the data imputation was 

conducted with R v3.3.3 (R Core Team (2017). R: A language and environment for statistical 

computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-

project.org/) and Python v3.6.7 (The Python Software Foundation, Beaverton, OR) with 

packages IPython (Perez & Granger, 2007) (v7.5.0), Numpy (van der Walt et al., 2011) 

(v1.16.2), Pandas (McKinney & Others, 2010) (v0.24.2), Scikit-learn (Pedregosa et al., 2011) 

(v0.19.1) and Matplotlib (Hunter, 2007) (v3.1.0). 

 
2.5 Modelling 
 

There are a variety of different ML models available (e.g., Support Vector Machines, Logistic 

Regression, AdaBoost, Decision Trees). These models are suitable tools for static prediction 

but do not intrinsically assess the temporal evolution of parameters. Models with this ability 

are recurrent neural networks (RNN) which embed information about preceding time points 

and connect single timesteps (see Fig. 4 (Rank et al., 2020)). 
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Figure 4. The basic principle of a recurrent neural network (RNN). The input to the RNN at each time step 
comprises the features of the respective time step, as well as the output obtained from the preceding time slice. 
Reprinted from Fig. 5 from “Deep-learning-based real-time prediction of acute kidney injury outperforms human 
predictive performance” by N. Rank et al., 2020, NPJ Digital Medicine, 3, 139. Reprinted with permission under 
a Creative Commons Attribution 4.0 International License, accessed 
http://creativecommons.org/licenses/by/4.0/. 

 
Thus, a set of RNNs with various building blocks (e.g., a preceding convolutional layer, various 

cell types) was developed that predicted the risk of AKI every 15 minutes during a patient’s 

observation window. 

The hyperparameters were tuned by 5-fold stratified cross-validation on only the training set 

using the Adam optimizer (Kingma & Ba, 2014) and a static learning rate of 0.001. As the 

target parameter, the highest overall AUC was chosen. The final models were then evaluated 

on the unseen test set. 

The hyperparameters of an RNN are influenced by the initialization and the sequence of 

presented training samples. For this reason, ten models were developed with identical 

hyperparameters but varying initializations. A final prediction was then obtained by combining 

the predictions of the ten models.  

 

Different RNN architectures were tested, but only small differences in the AUC could be 

observed. Overall, gated recurrent unit cells (GRU) (Cho et al., 2014) tended to outperform 

long-short-term memory (LSTM) cells (Zaremba et al., 2014). A convolutional layer before the 

RNN did not increase the AUC. As the time sequences were relatively long (max. 673 time 

slices), also the phased LSTM cell was implemented, which is supposed to enhance the 

performance of a model that has to learn from very long sequences (Neil et al., 2016). It led 

to a lower AUC. Therefore, a model consisting of one layer of 100 neurons, the GRU cell and 

an output layer with softmax function was chosen as the final RNN.    
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The modelling part was performed using Python v3.6.7 (The Python Software Foundation, 

Beaverton, OR) with packages IPython (Perez & Granger, 2007) (v7.5.0), Pandas (McKinney 

& Others, 2010) (v0.24.2) and Numpy (van der Walt et al., 2011) (v1.16.2), Scikit-learn 

(Pedregosa et al., 2011) (v0.19.1), Matplotlib (Hunter, 2007) (v3.1.0) and Tensorflow (Abadi 

et al., 2016). 

 
2.6 Evaluation of the RNN performance 
 
2.6.1 Statistical measures 
 

The following statistical measures were calculated to assess the performance of the RNN 

based on the independent test set:  

• area under the curve (AUC) 

• precision-recall-AUC (PR_AUC) 

• accuracy 

• sensitivity 

• specificity 

• positive predictive value (PPV) 

• negative predictive value (NPV) 

• false-positive rate (FPR) 

• F1-score  

• mean of the Brier score (Brier, 1950) 𝑀𝑆𝐸/#0 

 

The mean squared error 𝑀𝑆𝐸/#0	, or Brier score, of a single patient j is determined as follows:  

𝑀𝑆𝐸/#0	 = 1/𝑡𝑠2 	∑ (𝑦23 − 𝑦20)4
0!&
356          (2) 

 

where tsj denotes the number of timesteps, yji the predicted value at time point i, and yjt the 

true class of patient j (AKI/non-AKI).  

 

Thus, 0 ≤ 𝑀𝑆𝐸/#0 ≤ 1, whereas 0 denotes perfect prediction and 1 the opposite classification. 

𝑀𝑆𝐸/#0 is the only of the determined statistics that is not influenced by the length of a patient's 

observation window and the number of available timesteps for the respective patient. 

 

Accuracy, sensitivity, specificity, NPV, PPV, FPR and F1-score require a threshold that divides 

the continuous prediction into positive and negative classifications. This threshold is rather 

arbitrary and was set to the value that resulted in a sensitivity of 0.85 in the training set. 
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2.6.2 Adjustment of confidence intervals 
 

Multiple predictions over time for one individual patient are in general highly correlated. These 

predictions can be considered clustered predictions. Therefore, an adjustment of the 

confidence intervals of the determined statistical measures was required. The 95% confidence 

interval of statistical measure X was determined as follows:  

 

𝑋	 + −	1.96	𝜎(𝑋) 

 

Where 𝜎(𝑋) denotes the standard error of variable X and 

 

𝜎(𝑋) 	= 	5
'(7(')
8'((

          (3) 

 

The effective sample size neff was determined by accounting for intracluster correlation as 

follows (Kalton et al.):  

 

𝑛%99 =
8
:;
=	

∑ ∑ 7)$
&*+

,
$*+

:;
           (4) 

 

k denotes the number of patients, mi the number of time steps of patient i, and DE the design 

effect or variance inflation factor  (Kerry & Bland, 2001): 

 

𝐷𝐸	 = 	 =	>
∑ )$

+-()$/+)122
,
$*+

           (5) 

 

ICC refers to the intracluster correlation coefficient, calculated by the R package ICC (Wolak 

et al., 2012) (v2.3.0). 

 

2.7 Comparing the RNN vs human performance 
 
2.7.1 Experimental design 
 
The second aim of the study underlying this doctoral project was to compare the performance 

of the RNN with that of experienced clinicians. The experimental design of this comparison is 

shown in Fig. 5 (Rank et al., 2020). For each clinical case in the test set, a ‘prediction point’ in 

the patients’ observation window was selected quasi-randomly. Quasi-random sampling is a 

method aiming at preventing cluster formations that can occur in real uniform random sampling 
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(Press et al., 1992; Weyl, 1916). Using this technique avoided the selection of prediction points 

lying in, e.g., only the second half of patients’ observation windows. 

 

 

Figure 5. Study design for the head-to-head comparison recurrent neural network (RNN) vs physicians. 
A training set and a test set were compiled from the electronic health record (EHR) data. The RNN was trained 
on the training set (orange path). The test set was used for evaluation. In each of its patient’s observation period, 
a ‘prediction point’ was selected quasi-randomly. Physicians and the RNN received the EHR data up to this 
prediction point, whereas all information collected after the prediction point (marked as X) was hidden. Both had 
to forecast postoperative AKI at the prediction point. Adapted from Fig. 1 from “Deep-learning-based real-time 
prediction of acute kidney injury outperforms human predictive performance” by N. Rank et al., 2020, NPJ Digital 
Medicine, 3, 139. Adapted with permission under a Creative Commons Attribution 4.0 International License, 
accessed http://creativecommons.org/licenses/by/4.0/. 

 
At this prediction point, a prediction of whether the respective patient would develop AKI within 

the first seven postoperative days had to be made - both by the RNN and by a physician.  

 

The physicians received all time series data up to this prediction point presented on a screen, 

similar to an electronic patient chart. In contrast to the RNN, the time series information was 

displayed in the originally detected time resolution (up to 1 minute) and the physicians were 

given information about all administered drugs - not only about the nephrotoxic agents. 

Furthermore, they received the surgery type as unstructured text that was manually derived 

from physicians’ notes, and they were informed about the 50% incidence rate of AKI in the 

test set. 

patient selection 
process (see Fig. 1, 

Methods)

Test Set
350 admissions/ 

patients

EHR data

RNN

Train RNN

X
end of OP end of full  

timeseries
prediction

point

quasi-random selection of one "prediction 
point" in time-series of each patient when 

prediction has to be made prediction 
point

length of full 
time-series

Pat A 36h 15min 85h 15min

Pat B 7h 45min 33h 0min

Pat C 110h 15min 150h 30min

Physicians

prediction 
point

risk prediction 
RNN

risk prediction 
physicians

Pat A 36h 15min 78 % 55 %

Pat B 7h 45min 33 % 65 %

Pat C 110h 15min 10 % 12 %

predict risk of AKI within the first 7 days  
after surgery at prediction point

patients' time-series 
till prediction point

Training Set
2,224 admissions/ 

2,180 patients
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For each patients’ prediction point, both the RNN and a physician made a risk prediction r 

(ranging from 0% to 100%). The physicians additionally had to give a binary classification 

(AKI/non-AKI) for the respective case.  

 

In total, seven physicians of different experience levels (from senior resident to senior 

consultant) participated in the study, each making predictions for 50 different patients. All 

participating physicians had at least one year of working experience on a cardiothoracic ICU 

and a total of at least five years of clinical experience. 

 
2.7.2 Sample size calculation and statistical comparison 
 
The head-to-head comparison was designed as a non-inferiority experiment. The goal was to 

prove that the RNN could predict AKI not significantly worse than experienced clinicians. 

A predictive quality score S for a single prediction was defined based on the predicted 

probability r as follows: 

 

𝑆 = 𝑟, in case the patient developed AKI       (6) 

𝑆 = 1 − 𝑟, in case the patient did not develop AKI      (7) 

 

S was non-normally distributed for the RNN’s predictions and was then transformed for power 

analysis and sample size calculation as follows:  

 

𝑋 = −𝑙𝑜𝑔(−𝑙𝑜𝑔(𝑆))           (8) 

 

to reach an approximately normal distribution of X. It was assumed that X would also follow a 

normal distribution for the physicians’ predictions.  

 

A significance level of α = 0.025, a power ≥ 80% and a non-inferiority margin δ = 0.3 lead to a 

sample size of n = 350 patients. The non-inferiority margin δ = 0.3 was equivalent to allowing 

sensitivity+specificity of the RNN to be a maximum of 5.5% smaller than of the physicians’ 

predictions. 

 

AUC, PR_AUC, accuracy, sensitivity, specificity, PPV, NPV, FPR, Brier score and F1-score 

were then determined for the predictions of the RNN and the physicians. Here, the threshold 

dividing between positive and negative class was set to 0.5 as this was the naturally occurring 

threshold of the physicians’ predictions that reflected the binary ‘AKI/non-AKI’-prediction. The 
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calculation of confidence intervals was identical to that described in Chapter 2.6.2. As only 

one prediction was made for each patient: neff = n = 350. 

 

For the comparison of the RNN’s and the physicians’ performance, a significance level of α = 

0.05 was set. The predictive quality score S was compared between the RNN and the 

physicians by the paired t-test. The comparison of the two receiver operating characteristics 

(ROC) curves was conducted using DeLong’s (DeLong et al., 1988) method for correlated 

receiver operating characteristics (ROC) and the R-package pROC (v1.9.1) (Robin et al., 

2011). The calibration of both predictors (RNN and physicians) was analysed with the Hosmer-

Lemeshow-Test (Jr. et al., 2013) and the R package ResourceSelection (v0.3-2) (Lele et al., 

2016).  
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3. Results 
 
3.1 Predictive performance of the RNN 
 
The performance of the final RNN assessed on the independent test set of n = 350 patients is 

presented in Table 4 (Rank et al., 2020). The RNN reached an AUC (confidence interval (CI)) 

of 0.893 (0.862 - 0.924), a PR_AUC of 0.903 (0.873 - 0.933) and an accuracy of 0.825 (0.786 

- 0.863) based on a threshold of 0.41 that led to a sensitivity of 0.85 in the training set.  
 
The model performance on an imbalanced test set (AKI incidence rate of 10%) is shown in 

Table 5 (Rank et al., 2020). The observed AUC was around five percentage points lower than 

for the test set with balanced class proportions. The training of the model was performed with 

a balanced data set. Thus, as expected, the FPR went up when testing the RNN on a set with 

only a 10% incidence of AKI. Correspondingly, the NPV surpassed 99%.  
 
Table 4. Model performance metrics for the balanced test set (n = 350 admissions/patients). Acc = 
accuracy, AUC = area under the curve, CI = confidence interval, F1 = F1-score, FPR = false-positive rate, 𝑀𝑆𝐸345  
= mean of the brier score of each patient, NPV = negative predictive value, PPV = positive predictive value, 
PR_AUC = precision-recall AUC, Sens = sensitivity, Spec = specificity. Reprinted from Table 1 from “Deep-
learning-based real-time prediction of acute kidney injury outperforms human predictive performance” by N. Rank 
et al., 2020, NPJ Digital Medicine, 3, 139. Reprinted with permission under a Creative Commons Attribution 4.0 
International License, accessed http://creativecommons.org/licenses/by/4.0/.  

Threshold-independent 
metrics  (95 % CI)  

Metrics at a fixed sensitivity of 0.85 (95 % CI) 

AUC PR_AUC 𝑀𝑆𝐸345 Acc Sens Spec F1 FPR NPV PPV 

0.893 
(0.862 - 
0.924) 

0.903 
(0.873 - 
0.933) 

0.124 
(0.090 - 
0.159) 

0.825 
(0.786 - 
0.863) 

0.853 
(0.802 - 
0.904) 

0.798 
(0.741 - 
0.855) 

0.826 
(0.776 - 
0.876) 

0.202 
(0.145 - 
0.259) 

0.851 
(0.799 - 
0.903) 

0.801 
(0.745 - 
0.857) 

 
Table 5. Model performance metrics of an imbalanced test set (n = 1945 admissions/patients). The 
incidence rate of 10% acute kidney injury in this test set with n = 1945 admissions corresponds to that of the 
original study population. Metrics that depend on a threshold that discriminates between positive and negative 
classes are presented at a fixed sensitivity of 0.85. Acc = accuracy, AUC = area under the curve, CI = confidence 
interval, F1 = F1-score, FPR = false-positive rate, 𝑀𝑆𝐸345 = mean of the Brier score of each patient, NPV = 
negative predictive value, PPV = positive predictive value, PR_AUC = precision-recall AUC, Sens = sensitivity, 
Spec = specificity. Reprinted from Table 1 from “Deep-learning-based real-time prediction of acute kidney injury 
outperforms human predictive performance” by N. Rank et al., 2020, NPJ Digital Medicine, 3, 139. Reprinted with 
permission under a Creative Commons Attribution 4.0 International License, accessed 
http://creativecommons.org/licenses/by/4.0/. 

Threshold-independent 
metrics  (95 % CI)  

Metrics at a fixed sensitivity of 0.85 (95 % CI) 

AUC PR_AUC 𝑀𝑆𝐸345 Acc Sens Spec F1 FPR NPV PPV 

0.846 
(0.831 - 
0.862) 

0.152 
(0.137 - 
0.168) 

0.153 
(0.137 - 
0.169) 

0.747 
(0.728 - 
0.765) 

0.850 
(0.768 - 
0.932) 

0.743 
(0.724 - 
0.762) 

0.191 
(0.159 - 
0.222) 

0.257 
(0.238 - 
0.276) 

0.993 
(0.988 - 
0.997) 

0.107 
(0.082 - 
0.132) 
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3.2 Comparing the RNN to human prediction 

3.2.1 Overall performance 
 

The comparison of the performance of the physicians and the RNN is displayed in Table 6 

(Rank et al., 2020). (The values of the RNN in Table 6 differ slightly from those in Table 4, as 

in this experiment, only one prediction point was tested for each patient. In contrast, in the full 

RNN evaluation in Chapter 3.1, all predictions for all time points of the observation window of 

all patients were included.) 
 
Table 6. Performance metrics of the recurrent neural network (RNN) and the physicians on the balanced 
test set (n = 350 admissions/patients). Acc = accuracy, AUC = area under the curve, Brier = Brier score, CI = 
confidence interval, F1 = F1-score, FPR = false-positive rate, NPV = negative predictive value, PPV = positive 
predictive value, PR_AUC = precision-recall AUC, Sens = sensitivity, Spec = specificity. Reprinted from Table 2 
from “Deep-learning-based real-time prediction of acute kidney injury outperforms human predictive performance” 
by N. Rank et al., 2020, NPJ Digital Medicine, 3, 139. Reprinted with permission under a Creative Commons 
Attribution 4.0 International License, accessed http://creativecommons.org/licenses/by/4.0/. 
 

Threshold-independent 
metrics (95 % CI)  

Metrics based on a threshold of 0.5 for positive/negative 
classification (95 % CI) 

 
AUC PR_AUC Brier Acc Sens Spec F1 FPR NPV PPV 

 
RNN 

0.901 
(0.870 - 
0.932) 

0.907 
(0.877 - 
0.937) 

0.122 
(0.088 - 
0.156) 

0.846 
(0.808 - 
0.884) 

0.851 
(0.798 - 
0.904) 

0.840 
(0.787 - 
0.894) 

0.847 
(0.797 - 
0.897) 

0.160 
(0.106 - 
0.214) 

0.850 
(0.797 - 
0.903) 

0.842 
(0.788 - 
0.896) 

 
Physicians 

0.745 
(0.699 - 
0.791) 

0.747 
(0.701 - 
0.793) 

0.217 
(0.174 - 
0.260) 

0.711 
(0.664 - 
0.759) 

0.594 
(0.521 - 
0.667) 

0.829 
(0.773 - 
0.884) 

0.673 
(0.609 - 
0.738) 

0.171 
(0.116 - 
0.227) 

0.671 
(0.601 - 
0.741) 

0.776 
(0.715 - 
0.838) 

 
The RNN surpassed the physicians across all performance metrics. It yielded an AUC of 0.901 

(0.870 - 0.932), whereas the physicians only reached an AUC of 0.745 (0.699 - 0.791). 

DeLong’s test for correlated ROC curves showed a significant superiority of the RNN (p < 

0.001, Z = 6.85)). Additionally, the paired t-test revealed a significantly higher mean of the 

predictive quality score S for the RNN (RNN: 0.754 vs physicians: 0.639 (0.754 vs 0.639, 

p < 0.001, t-statistic = 8.47, df = 349). Fig. 6a and 6b show the ROC curves and the precision-

recall curves.  
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Figure 6. Discrimination and calibration of the recurrent neural network (RNN) and the physicians. (a) 
receiver operating characteristics (ROC), (b) precision-recall curve, (c) calibration of the physician’s predictions, 
(d) calibration of the RNN’s predictions. AUC = area under the curve. H-L = Hosmer-Lemeshow-Test, PR_AUC 
= precision-recall AUC. Reprinted from Fig. 2 from “Deep-learning-based real-time prediction of acute kidney 
injury outperforms human predictive performance” by N. Rank et al., 2020, NPJ Digital Medicine, 3, 139. 
Reprinted with permission under a Creative Commons Attribution 4.0 International License, accessed 
http://creativecommons.org/licenses/by/4.0/. 

 
Moreover, an evaluation of the calibration of the physicians’ and the RNN’s predictions was 

performed. Calibration characterizes the agreement between the frequencies of the observed 

events and the predictions. In a calibration plot, perfect calibration would show as two points 

-  one at (0,0) and the other at (1,1), as a perfect model would always forecast 0 for negative 

and 1 for positive outcomes. In an imperfectly but well-calibrated model, all points should be 

located on the diagonal between (0,0) and (1,1). Then the observed frequencies correspond 

to the predicted frequencies of events. Fig. 6c displays the calibration of the physicians’ 

predictions. In the graph sections with high predicted risks, the predicted frequencies widely 
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agree with the observed event frequencies. However, for various AKI-cases, physicians 

predicted lower AKI risks, resulting in false-negative predictions (lower left part of the graph). 

The Hosmer-Lemeshow test indicated that the physicians’ risk assessment was not well 

calibrated (H0: The predictions fit the observed data well, H1: The predictions do not fit the 

observed data well, p < 0.001, X2 = 165.5, df = 8). In comparison, Fig. 6d illustrates that the 

RNN’s predictions were well calibrated as all points are located on or close to the diagonal (p 

= 0.37, X2 =  8.67, df = 8). This is also the case for the intervals of low predicted risks.   

 

3.2.2 Time-dependent performance 
 
Additionally, the RNN’s and physicians’ predictive performance was evaluated at various time 

points preceding the outcome of a patient (AKI vs non-AKI/discharge). The results are shown 

in Table 7 (Rank et al., 2020). In the case of a long period of time between the prediction point 

and the event, both RNN and physicians generally predicted less accurately. However, they 

also tended to perform worse if the event was very close in time (≤ 2h). As the median 

observation time in this group of patients was also quite short, it can be assumed that the 

respective AKI-patients in this group developed the AKI quickly after the operation. Most likely, 

neither the RNN nor the physicians received sufficient information to reliably forecast AKI in 

that situation. Still, even with this group, the RNN yielded a sensitivity of 0.789 (vs 0.632 for 

the physicians).  
 

 

Table 7. Performance metrics of recurrent neural network (RNN) and physicians in temporal 
dependence to the event. Acc = accuracy, AKI = number of patients with acute kidney injury, AUC = area 
under the curve, Brier = Brier score, F1 = F1-score, FPR = false-positive rate, MOL = median total observation 
length, NPV = negative predictive value, PPV = positive predictive value, PR_AUC = precision-recall AUC, 
Sens = sensitivity, Spec = specificity. Reprinted from Table 3 from “Deep-learning-based real-time prediction 
of acute kidney injury outperforms human predictive performance” by N. Rank et al., 2020, NPJ Digital Medicine, 
3, 139. Reprinted with permission under a Creative Commons Attribution 4.0 International License, accessed 
http://creativecommons.org/licenses/by/4.0/.  

 Time to event patients AKI MOL AUC PR_ 
AUC Brier Acc Sens Spec F1 FPR NPV PPV 

RNN 0h to  2h 54 19 8.3h 0.913 0.837 0.113 0.870 0.789 0.914 0.811 0.086 0.889 0.833 
Physicians 0h to  2h 54 19 8.3h 0.709 0.552 0.199 0.759 0.632 0.829 0.649 0.171 0.806 0.667 

RNN 2h to  6h 63 29 12.5h 0.881 0.88 0.13 0.825 0.862 0.794 0.820 0.206 0.871 0.781 
Physicians 2h to  6h 63 29 12.5h 0.853 0.861 0.152 0.794 0.793 0.794 0.780 0.206 0.818 0.767 

RNN 6h to 12h 63 34 17.8h 0.942 0.948 0.088 0.921 0.971 0.862 0.930 0.138 0.962 0.892 
Physicians 6h to 12h 63 34 17.8h 0.811 0.798 0.19 0.746 0.618 0.897 0.724 0.103 0.667 0.875 

RNN 12h to  24h 74 42 36.4h 0.888 0.921 0.128 0.824 0.881 0.750 0.851 0.250 0.828 0.822 
Physicians 12h to  24h 74 42 36.4h 0.693 0.706 0.257 0.689 0.667 0.719 0.709 0.281 0.622 0.757 

RNN 24h to  48h 60 31 46.4h 0.890 0.899 0.142 0.817 0.774 0.862 0.814 0.138 0.781 0.857 
Physicians 24h to  48h 60 31 46.4h 0.718 0.774 0.246 0.633 0.387 0.897 0.522 0.103 0.578 0.800 

RNN 48h to 168h 36 20 99.0h 0.875 0.929 0.132 0.806 0.750 0.875 0.811 0.125 0.737 0.882 
Physicians 48h to 168h 36 20 99.0h 0.647 0.741 0.274 0.611 0.400 0.875 0.533 0.125 0.538 0.800 
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4. Clinical applications, prospective research questions, 
limitations and ethical considerations 

 
4.1 Clinical applications and prospective research questions  
 
The model developed in this doctoral project could serve as a real-time monitoring tool that 

recognizes the risk of kidney failure and could, thus, help to improve patient care by informing 

physicians at an early stage of imminent AKI. Due to increasing digitalization, it is conceivable 

that soon every physician will be equipped with a personal mobile device (e.g., smartwatch, 

tablet). An overview chart could be displayed to each physician that shows the AKI risk for all 

their patients. Additionally, warning messages could be sent to the devices as soon as a 

certain customized risk threshold (based on a fixed value or a trend analysis) for a patient is 

surpassed. The notifications could further be extended by, e.g., diagnostic checklists to 

facilitate systematic evaluation even in stressful situations. Furthermore, alerts could 

automatically be delivered to a nephrologist to allow further investigation of the case by a 

specialist. To think even further, a transfer of the model from a risk prediction tool to an 

application suggesting further diagnostic steps or treatment options is also imaginable. These 

clinical applications show tremendous potential, but they also pose a plethora of ethical and 

legal questions, which are discussed in Chapter 4.3. 
 
The study carried out in the context of this dissertation is a retrospective study. All used 

information was drawn from the EHR of a single clinical center alone. Further studies are 

needed to confirm the performance of such an automated system on external data. 

Additionally, it should be investigated if a system similar to the one proposed here would be 

accepted and used by clinical staff. In prospective studies, it should be examined if the early 

prediction of AKI, and following interventive measures, can actually avert AKI and its 

consequences described.  
 
Currently, the model is limited to the prediction of AKI. The ability to predict other endpoints 

(e.g., pneumonia, sepsis) would represent a useful further development of the model.  
The proposed model was developed on a training cohort of only patients admitted to a 

cardiothoracic surgery unit. It should further be investigated how such a model would perform 

on other patient cohorts (e.g., patients with abdominal surgery, patients on a general ICU) as 

those patients probably have disparate risk profiles.  
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4.2 Limitations 
 

The study carried out for this doctoral project has certain limitations. The prediction window 

was limited to the first seven postoperative days, whereas its length differed largely among 

the studied patients. The majority of patients had an observation time of fewer than three days, 

and only a small number of patients were observed up to seven days. 
The implementation of the administered drugs in the developed model is highly simplistic as 

only the administration itself is assessed. No information about dosage, application length or 

route (p.o./i.v./…) was given to the model. These features could, however, be meaningful and 

ameliorate the prognostic capacity of the model. 
 
In the retrospective study, physicians did not have the possibility to assess patients physically. 

Meaningful information like full internal status or further diagnostic results (e.g., 

electrocardiogram, ultrasound) was neither given to the physicians nor to the RNN. Predicting 

a complication merely by parameters displayed on a screen does not reflect a physician’s 

normal way of working, which could be a reason for the overall low predictive performance of 

the participating physicians. 
 
Unlike simple linear models such as logistic regression models, RNNs are subject to a 

complex architecture. A high prediction accuracy often comes at the cost of the explainability 

of the model (Caruana et al., 2015). This makes it difficult to determine the exact causes of 

the imminent AKI. Patients who appear in good clinical condition are usually not automatically 

presumed to be at high risk of impending renal failure. If the model predicts high AKI risks for 

such patients, it would be essential to know the precise causes of the prediction in order to 

take the necessary preventive measures. At present, the model presented here serves as an 

early warning system. A more detailed evaluation of the causes of AKI should then be carried 

out by a specialist, i.e. a nephrologist. 
 
From a developer’s perspective, the integration of the proposed model into digital medical 

record systems is straightforward. The model only employs routinely recorded data, and all 

information is obtained and processed automatically. The actual difficulties of a real-world 

implementation, however, range from data privacy issues when patient data is transferred to 

third-party systems, technical limitations and business interests that may collide with one 

another. 
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4.3 Ethical considerations regarding the practical application of machine 
learning models in medicine 
 
The application of AI to medical questions raises various ethical concerns that can be split into 

three major categories, namely, the acquisition of data, the model development and the clinical 

application of the respective models (Vayena et al., 2018). 

 
4.3.1 Data acquisition 
 
The data employed by ML models are covered by data protection regulations. In the European 

Union, the General Data Protection Regulation (GDPR) was adopted for this purpose (2018 

Reform of EU Data Protection Rules, 2018). It states that informed consent of the concerned 

subjects is required in case their data is used and confers various rights on individuals, which 

have to be complied with by the parties who employ their data (McCall, 2018). Developers of 

ML models have to ensure that the required consents have been obtained. However, it is not 

always trivial to decide for what specific intent permission was granted (Vayena et al., 2018). 

Since ML usually requires very large amounts of data - often several thousand patient cases 

- it is hardly possible to elicit these aspects for each individual patient, let alone discuss them 

with each patient individually. Patients should therefore be made aware upon admission to the 

hospital that their collected data may also be used for ML applications and should have the 

opportunity to object to this. 

 
4.3.2 Model development 
 

Apart from data privacy issues, the development of ML models also raises ethical aspects that 

should be considered. 

 
4.3.2.1 Target population and outliers 
 
ML algorithms are usually trained and evaluated on larger sets of patients.  Thus, they are 

highly influenced by the “broad mass” of the patients in the training set. First of all, it should 

be ensured that the target population is similar to the training population (Vayena et al., 

2018). For instance, a model that was trained on mostly middle-aged men might not be 

suitable for making risk predictions for senior women. With the increasing amount of 

digitalization, we can, though, expect that most large patient groups will be covered with 

enough training samples in the near future.  



  

 27 

More difficult is the handling of “outliers”. Outlier patients in this context could be ethnic 

minorities or patients with rare diseases that might have highly different risk profiles than 

the patients in the training population. Thus, end-users (clinical staff) should be aware of 

the population on which the respective model was trained and for which cases its 

predictions must be particularly critically scrutinized.  

 
4.3.2.2 Legal liability 
 
The next question that arises is who is liable in case the model fails (Vayena et al., 2018). 

The model developers are not at the end of the decision chain, and the ultimate 

responsibility for medical decisions rests with the physician. However, the individual 

physician was not usually involved in the model development process. Therefore, it seems 

difficult to hold the physician liable in the case of technical errors in the model. In individual 

cases, it may be difficult to decide to what extent it was reasonable to rely on the prediction 

of an ML or at what point a physician should have suspected a technical error in the model. 

However, this problem also applies to other diagnostic test procedures and is not specific 

to ML algorithms. 

 
4.3.3 Clinical deployment of the model 
 
As soon as a machine learning model is firmly integrated into everyday clinical practice and is 

not only used for research purposes, further ethical aspects should be considered. 

 
4.3.3.1 Responsible decision making and patients’ autonomy 
 
First of all, it should be ensured that clinical staff have at least a fundamental understanding 

of the model logic and the pitfalls of the model so that they can make responsible clinical 

decisions. If this is not the case, and physicians are not able to explain their decisions to their 

patients, the relationship of trust between physician and patient could be disturbed. Moreover, 

the autonomy of the patient could be violated, as an informed decision presupposes that the 

respective patient has sufficient information about his/her state of health. Simply informing a 

patient about the predictive value of the ML model without its origin may not be sufficient for 

some patients (Vayena et al., 2018).       
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4.3.3.2 Critical evaluation of model predictions 
 
Introducing a prediction tool with generally high accuracy always carries the risk that end users 

will rely too much on its predictions and lose their common sense and instinct. This may be 

less the case for physicians who have already gained many years of clinical experience 

without such models and may therefore be more critical of a model’s predictions. However, if 

inexperienced physicians rely too much on computer models, this could cause them to develop 

less ability to make independent clinical assessments of patients. This is made particularly 

difficult by the fact that a physician potentially has to justify every decision “against the model”. 

Particularly with regard to a possible subsequent legal reappraisal of individual patient cases, 

this may lead to decisions against the model being avoided. The objective decision-making of 

a physician can, thus, be restricted by a prediction model. 

 
4.3.3.3 False conclusions of true patterns 
 

ML models learn patterns in the data without reviewing them for reasonableness which may 

result in making false conclusions of true patterns (Caruana et al., 2015). It is, for instance, 

possible that more intensive preventive measures are taken a priori for patients with known 

chronic kidney disease (CKD) than for patients without renal damage since CKD is a 

commonly known risk factor for AKI. These preventive measures (e.g., a priori consultation of 

a nephrologist after surgery, avoidance of nephrotoxic medication) could lead to the 

phenomenon that patients with CKD develop AKI less often than patients without CKD. An ML 

algorithm might then learn that the risk for developing AKI is lower for patients with CKD than 

for patients without CKD, which clearly does not reflect the true underlying pathophysiology of 

AKI. End-users of the product should always be aware of the possibility of such erroneous 

conclusions, and in no case should they omit the enhanced a priori preemptive measures 

because of potential low-risk predictions for obvious high-risk patient groups. Otherwise, this 

could put high-risk groups at an even greater risk of developing complications.  

 
4.3.3.4 Fair distribution of attention  
 
Furthermore, if a machine learning model is used for monitoring and too much reliance is 

placed on it, there is a risk of “forgetting” patients for whom the model does not predict a high 

complication rate. This can lead to these patients being evaluated clinically less often by 

physicians. However, many prediction models are limited to predicting one or only a few 

complications. A low prediction probability for this one/few complications does, of course, not 

exclude that the respective patients develop other complications. If patients receive less 
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attention due to low probabilities for the complication the model covers, their risk for other 

complications may increase. In addition, it should always be kept in mind that, as mentioned 

earlier, such models generally work well for the “broad mass” of patients but may fail for 

“outliers”.  

 
4.3.3.5 Consideration of patients’ social circumstances 
 
Most clinical prediction models are based primarily on physiological measures, diagnoses or 

other assessments of a patient's clinical condition. However, it is a physician’s role to also take 

into account patients’ social circumstances (e.g., home care, compliance) when making 

decisions. The use of AI in medicine should not lead to less consideration of these components 

in physicians’ decisions; for instance, due to the fear of recourse claims by health insurers 

against hospitals if patients are hospitalized longer for social reasons contrary to the low-risk 

predictions made by an ML model.  
 
To sum up, the points discussed in this section clearly show that ML models can be used as 

decision support for physicians but cannot and should not replace them. 
 
 

5. Conclusions 
 

In the context of this doctoral project, an RNN was constructed that predicted AKI within the 

first seven postoperative days with excellent accuracy. A head-to-head comparison with 

predictions by experienced physicians revealed that the RNN surpassed the latter with respect 

to all measured performance metrics. Integrating the model into existing digital medical record 

systems could help to forecast AKI before its onset and, thus, enable physicians to take 

preventive interventions at an early stage. The model employs routinely recorded medical data 

and therefore does not cause an extra burden for clinical staff. To leverage such models not 

only for research purposes but for real clinical use, further prospective studies are needed. In 

this regard, ethical aspects should be considered by both the model developers and the clinical 

staff. 
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Deep-learning-based real-time prediction of acute kidney
injury outperforms human predictive performance
Nina Rank 1, Boris Pfahringer 1, Jörg Kempfert1,2, Christof Stamm1,2, Titus Kühne 2,3,4, Felix Schoenrath1,2, Volkmar Falk 1,2,4,5,6,
Carsten Eickhoff 7 and Alexander Meyer 1,2,4✉

Acute kidney injury (AKI) is a major complication after cardiothoracic surgery. Early prediction of AKI could prompt preventive
measures, but is challenging in the clinical routine. One important reason is that the amount of postoperative data is too massive
and too high-dimensional to be effectively processed by the human operator. We therefore sought to develop a deep-learning-
based algorithm that is able to predict postoperative AKI prior to the onset of symptoms and complications. Based on 96 routinely
collected parameters we built a recurrent neural network (RNN) for real-time prediction of AKI after cardiothoracic surgery. From the
data of 15,564 admissions we constructed a balanced training set (2224 admissions) for the development of the RNN. The model
was then evaluated on an independent test set (350 admissions) and yielded an area under curve (AUC) (95% confidence interval)
of 0.893 (0.862–0.924). We compared the performance of our model against that of experienced clinicians. The RNN significantly
outperformed clinicians (AUC= 0.901 vs. 0.745, p < 0.001) and was overall well calibrated. This was not the case for the physicians,
who systematically underestimated the risk (p < 0.001). In conclusion, the RNN was superior to physicians in the prediction of AKI
after cardiothoracic surgery. It could potentially be integrated into hospitals’ electronic health records for real-time patient
monitoring and may help to detect early AKI and hence modify the treatment in perioperative care.

npj Digital Medicine ����������(2020)�3:139� ; https://doi.org/10.1038/s41746-020-00346-8

INTRODUCTION
Acute kidney injury (AKI) is a major postoperative complication
after cardiothoracic surgery. It is an independent risk factor for
early and long-term mortality1–4 and is strongly associated with
increased hospital costs and length of stay5–7.
AKI is defined as a major increase of serum creatinine or a

strong decline in urine output8. Compromised renal blood flow
and cardiopulmonary bypass play a critical role in the develop-
ment of AKI, but overall its etiology is highly multifactorial9–12.
Early detection of patients at high risk of developing AKI allows

for early therapeutic intervention prior to the onset of anuria and
its complications such as acidosis, hyperkalemia, or volume
overload as well as long-term complications such as lung injury,
sepsis and chronic kidney disease13–16. In a pilot study in 2011 it
was demonstrated that in patients with AKI stage I, early
nephrologist consultation can avert progression to higher AKI
stages17. It was also shown that delayed nephrologist involvement
(48 h after AKI onset) in critically ill patients was associated with an
increase of mortality and dependence on dialysis18. An immediate
post-operative “KDIGO care bundle” (optimization of volume
status and hemodynamics, avoidance of nephrotoxic drugs and
hyperglycemia) in high-risk patients has been shown to reduce
cardiac surgery-associated AKI19.
Although several classical clinical risk scores for the prediction

of postoperative AKI exist, none of them is specifically recom-
mended by guidelines20–26. With few exceptions they rely on
patient demographics, disease history and the type of surgery and
require time-consuming manual data collection and calculation.
Furthermore, they are usually based on static properties or single

point-in-time measurements that cannot adapt to the often rapid
and dramatic changes that occur in the postoperative setting.
Increased digitization of medical information opens up new

alternatives for early prediction of postoperative complications
that might potentially be integrated into existing electronic health
record (EHR) software. A vast amount of data with high temporal
resolution is collected during a hospital stay. Effectively processing
such high-dimensional data in a parallelized way, however, goes
far beyond the capabilities of the human brain27. Machine
learning (ML) offers a potential solution to this problem.
Previous studies investigating the performance of ML models in

predicting AKI have yielded promising results28–35. However,
studies directly comparing the predictive performance of ML
models against experienced physicians in the prediction of
postoperative AKI on time-series data of real clinical cases are
highly needed.
We therefore developed a recurrent neural network (RNN) that

allows real-time predictions of AKI within the first 7 postoperative
days following cardiothoracic surgery based on routinely collected
variables (features). This model was then compared to the
performance of experienced health-care professionals.

RESULTS
Performance of the RNN based prediction
A complete description of the study population, patient selection
process, development of the ML model, and the experimental
design of our RNN-vs-human comparison can be found in the
‘Methods’ section.
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In summary, we retrospectively analysed EHR time series data
with high temporal resolution (up to 1min) generated at a tertiary
care center for cardiovascular diseases. Based on n= 2224
admissions, we developed an RNN that continuously (every
15min) predicted the probability of developing AKI defined as
KDIGO8 stage 2 or 3 within the first 7 days after cardiothoracic
surgery.
Supplementary Tables 1–4 show a comparison of baseline

characteristics between AKI- and non-AKI cases in the training,
balanced and imbalanced test set and the whole study population
before matching AKI- and non-AKI cases.
Table 1 shows the performance metrics of our RNN evaluated

on an independent test set with n= 350 patients. The model
achieved an area under curve (AUC) (95% confidence interval (CI))
of 0.893 (0.862–0.924). In addition, we trained a model with only
serum creatinine as input and yielded an AUC of 0.805
(0.768–0.842). Thus, the addition of further parameters led to an
absolute increase of around 10 percentage points in the AUC.
However, a model using all features but creatinine and glomerular
filtration rate (GFR) (the GFR is calculated from creatinine)
performed almost as good as the full model with an AUC of
0.887 (0.855–0.919)—probably due to high correlation between
creatinine and other features, e.g., urea. For further performance
metrics of these reduced models see Supplementary Tables 5 and 6.
A table with the model performance metrics derived from an

imbalanced test set with incidence rate of 10% AKI (see
Supplementary Results 1) can be found in Supplementary Table 7.
In addition, we analysed some examples of the predictions of
individual patients including false-positive and false-negative
predictions. These can be found in Supplementary Figs. 1–3.

RNN vs. human-level performance—experimental design
We set up an experiment to compare our ML model against
experienced physicians (Fig. 1). For each of the n= 350 patients of
our balanced test set a quasi-random point in time in their
observation period was chosen, further denoted as ‘prediction
point’ (For more information about quasi-random samples see the
‘Methods’ section.).
At the chosen prediction point, seven experienced physicians

and the ML model each had to make a prediction (between 0 and
100%) of how likely the patient was to develop AKI within the first
7 days after surgery.
All time series information up to the ‘prediction point’ was

graphically displayed for the physicians to mimic the electronic
patient chart.

Performance of RNN and physicians
The performance of our RNN and the physicians’ assessment can
be found in Table 2 (Note that the metrics of the RNN are slightly
different from those in section ‘Performance of the RNN based
prediction’. The reason is that in the RNN vs. human experiment
only one prediction point per patient was evaluated, whereas for
the complete evaluation of the RNN all predictions of the whole
observation periods for all patients were evaluated.).
The median (interquartile range (IQR)) prediction value for the

physicians was 0.36 (0.15–0.70) vs. 0.51 (0.12–0.86) for the RNN.
Across all metrics, the RNN outperformed the physicians. We

obtained an AUC of 0.901 for the RNN vs. 0.745 for the physicians
(p < 0.001, Z= 6.85, DeLong’s test). The receiver operating
characteristic (ROC) curves and the precision-recall curves are
displayed in Fig. 2a and Fig. 2b, respectively.
The mean of our predictive quality score S (S= r, if the patient

developed AKI and S= 1−r, if the patient did not develop AKI)
was significantly higher for the RNN than for the experienced
physicians (0.754 vs 0.639, p < 0.001, t-statistic= 8.47, df= 349,
paired t-test).Ta
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In addition, we investigated the calibration of the RNN’s and
physicians’ predictions. Calibration describes how close the
predicted probabilities are to the observed frequencies. A
perfectly calibrated model would have one point at (0,0) and
one at (1,1) in a calibration plot (it would always predict 0 for
negatives and 1 for positives). For a well-calibrated model, the
points lie on the diagonal between (0,0) and (1,1). Figure 2c
illustrates that in the intervals of high prediction values of
physicians, the predicted frequencies of AKI largely correspond to
the observed frequencies (upper right part of the calibration
curve). However, for several patients that developed AKI,
physicians predicted low AKI probabilities (false-negative predic-
tions, lower left part of the calibration curve). This is also reflected
in the observation that the physicians’ median (IQR) prediction
value was lower than the RNN’s (Physicians: 0.36 (0.15–0.70) and
RNN: 0.51 (0.12–0.86)). Overall the physicians’ predictions were not
well calibrated (p < 0.001, Χ2= 165.5, df= 8, Hosmer-Lemeshow-
test36).
In contrast, Fig. 2d displays a very well calibration (p= 0.37, Χ2

= 8.67, df= 8, Hosmer-Lemeshow-test) for the RNN, with most of
the points lying very close to the diagonal, even in intervals of low
prediction values.
We investigated the performance of our RNN and physicians at

different points in time before the event (AKI or non-AKI/
discharge) (see Table 3). Not-surprisingly, both, humans and
RNN, performed worse when the event was further away in time.
However, low sensitivity rates could also be observed when the
event was very close (≤2 h). In this group the median total

observation length was very short, meaning that patients who
developed AKI, developed it rapidly after surgery. Thus, there was
probably not enough information available before the event to
reliably predict AKI. However, even in this interval, the RNN
reached a sensitivity of 0.789.

DISCUSSION
We developed an RNN for real-time prediction of postoperative
AKI within 7 days after cardiothoracic surgery—based on routinely
collected features during the hospital stay and then retro-
spectively validated it on an independent test set.
To test the clinical significance, we performed a side-by-side

comparison of our model against experienced physicians. Such
direct comparisons are highly needed, but hardly ever performed
in clinical ML studies. We had expected our model to perform
nearly as well as the physicians, and had designed our study as a
non-inferiority-experiment. Surprisingly, our RNN significantly
outperformed experienced clinicians in terms of the mean of
our performance metric S. (S indicates how close a prediction is to
the observed outcome). In addition, the model reached a
significantly higher AUC than the physicians (0.901 vs. 0.745, p <
0.001, DeLong’s test) and was overall well calibrated (Hosmer-
Lemeshow-Test: p= 0.37 vs. p < 0.001 for physicians).
Physicians showed an overall low sensitivity of 0.594 at AKI

prediction. They predicted lower risk probabilities in general. They
reached a maximum sensitivity of 0.793 for the 2–6 h interval
before the event and a minimum sensitivity of 0.387 for the

patient selection 
process (see Fig. 3, 

Methods)

Test Set
350 admissions/ 

patients

EHR data

RNN

Train RNN

X
end of OP end of full  

timeseries
prediction

point

quasi-random selection of one "prediction 
point" in time-series of each patient when 

prediction has to be made prediction 
point

length of full 
time-series

Pat A 36h 15min 85h 15min

Pat B 7h 45min 33h 0min

Pat C 110h 15min 150h 30min

Physicians

prediction 
point

risk prediction 
RNN

risk prediction 
physicians

Pat A 36h 15min 78 % 55 %

Pat B 7h 45min 33 % 65 %

Pat C 110h 15min 10 % 12 %

after surgery at prediction point

patients' time-series 
till prediction point

Training Set
2,224 admissions/ 

2,180 patients

Fig. 1 Experimental design for performance comparison of recurrent neural network (RNN) against physicians. The electronic health
record (EHR) data was split into a training and a test set. The training set was used for the development of the RNN (orange path). For each
patient (Pat) in the test set, a quasi-random ‘prediction point’ in the time-series was chosen (for more information about quasi-randomness
see ‘Methods’). EHR data up to this prediction point was given to physicians and RNN (the rest of the time series data, here denoted as X, was
hidden). Both physicians and RNN, had to make a prediction for postoperative AKI at this prediction point.
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24–48 h interval before the event. Thus, they systematically
underestimated the risk of AKI. This suggests that physicians
mainly recognize AKI stage 3 or dialysis and that lower AKI stages
are erroneously considered unproblematic. It has been demon-
strated, however, that even minor increases in serum creatinine
after cardiac surgery are associated with an increased mortality
risk37.
The participating physicians each had at least one year working

experience on a cardiothoracic intensive care unit (ICU), but were
no specialists in nephrology. This reflects a realistic clinical setting
on an ICU, where nephrologists are usually not available around
the clock.
In contrast to the physicians, our RNN yielded an overall high

sensitivity of 0.851 with a maximum sensitivity of 0.971 in the
2–6 h interval before the event and a minimum sensitivity of even
0.750 in the 48–168 h interval before the event. In summary, our
RNN was superior to experienced physicians in the prediction of
AKI after cardiothoracic surgery.
From a modeling point of view, our RNN could easily be

integrated into an EHR system. It does not require any additional
human input as all data transformation is implemented program-
matically. Allowing for personalized predictions, it may enable
earlier identification and intervention in high-risk patients and
thus contribute to an improvement of patient care and safety.
However, the transfer of such a retrospective model from research
to real implementation raises additional challenges. Technical
barriers, data security when exporting personal data to external
software systems, and business considerations may be diverse and
can conflict with each other.
Our model achieved highly accurate results with an overall AUC

of 0.893 in our internal validation. It outperformed existing
classical prediction models that are based on logistic regression
from static pre- and intraoperative variables, as well as a dynamic
model that predicted AKI at three points in time (pre-operative, at
ICU admittance and 24 h after ICU admittance). These models
reached AUCs ranging from 0.72–0.85 in their respective internal
validation cohorts and used slightly different definitions of AKI20–
26,38 (see Table 4). The proposed model does not create additional
workload for physicians, as it only used routinely collected data of
the EHR. As such, it only employs data that is available at the time
of prediction and all data transformations are implemented
programmatically. It is worth noting that the model performed
very well, although it was built on a relatively small sample size of
2224 admissions.
Previous studies have demonstrated the benefits of using ML

for AKI prediction. Thottakkara et al.28 applied different ML
approaches to forecast postoperative AKI and observed promising
performances in their internal validation cohort (AUC between
0.797 and 0.858). Bihorac et al.29 used an ML algorithm to assess
the risk of 8 postoperative complications including AKI and
reported an AUC of 0.80 (0.79–0.80) for AKI prediction. The
approach of both studies, however, relied exclusively on static,
mostly preoperative features.
A multi-center ward-based AKI prediction model was developed

by Koyner et al.39 using a discrete time survival model with an
AUC (95% CI) of 0.76 (0.76–0.77) for AKI of at least stage 2.
In 2018, Koyner et al.31 published another study using EHR data

for AKI risk prediction and reached an AUC (95% CI) of 0.90
(0.90–0.90) for predicting stage 2 AKI within the next 24 h and 0.87
(0.87–0.87) within the next 48 h. Cheng et al.32 built ML models to
forecast AKI over various time horizons and obtained an AUC of
0.765 (prediction one day before the event). In these studies,
however, the urine output criterion of AKI, a central component in
the KDIGO definition was not integrated, which can lead to a false-
negative classification of AKI cases. In our training and test cohort
around 30% of the AKI cases were defined by the urine criteria of
KDIGO (see Supplementary Table 8). We can assume that a
substantial proportion of the patients in the above studies wouldTa
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Table 3. Performance metrics of recurrent neural network (RNN) and physicians in temporal dependence to the event.

Predictor Time to event patients AKI MOL AUC PR_AUC Brier Acc Sens Spec F1 FPR NPV PPV

RNN 0 h to 2 h 54 19 8.3 h 0.913 0.837 0.113 0.870 0.789 0.914 0.811 0.086 0.889 0.833

Physicians 0 h to 2 h 54 19 8.3 h 0.709 0.552 0.199 0.759 0.632 0.829 0.649 0.171 0.806 0.667

RNN 2 h to 6 h 63 29 12.5 h 0.881 0.88 0.13 0.825 0.862 0.794 0.820 0.206 0.871 0.781

Physicians 2 h to 6 h 63 29 12.5 h 0.853 0.861 0.152 0.794 0.793 0.794 0.780 0.206 0.818 0.767

RNN 6 h to 12 h 63 34 17.8 h 0.942 0.948 0.088 0.921 0.971 0.862 0.930 0.138 0.962 0.892

Physicians 6 h to 12 h 63 34 17.8 h 0.811 0.798 0.19 0.746 0.618 0.897 0.724 0.103 0.667 0.875

RNN 12 h to 24 h 74 42 36.4 h 0.888 0.921 0.128 0.824 0.881 0.750 0.851 0.250 0.828 0.822

Physicians 12 h to 24 h 74 42 36.4 h 0.693 0.706 0.257 0.689 0.667 0.719 0.709 0.281 0.622 0.757

RNN 24 h to 48 h 60 31 46.4 h 0.890 0.899 0.142 0.817 0.774 0.862 0.814 0.138 0.781 0.857

Physicians 24 h to 48 h 60 31 46.4 h 0.718 0.774 0.246 0.633 0.387 0.897 0.522 0.103 0.578 0.800

RNN 48 h to 168 h 36 20 99.0 h 0.875 0.929 0.132 0.806 0.750 0.875 0.811 0.125 0.737 0.882

Physicians 48 h to 168 h 36 20 99.0 h 0.647 0.741 0.274 0.611 0.400 0.875 0.533 0.125 0.538 0.800

AKI number of patients with acute kidney injury, MOL median total observation length, AUC area under curve, PR_AUC precision-recall AUC, Brier Brier score,
Acc accuracy, Sens sensitivity, Spec specificity, F1 F1-score, FPR false-positive rate, NPV negative predictive value, PPV positive predictive value.

Fig. 2 Discrimination and calibration of the predictions of recurrent neural network (RNN) and physicians. a receiver operating
characteristics (ROC), b precision-recall curve, c calibration of physicians, d calibration of RNN. AUC area under curve. H-L Hosmer-Lemeshow-
Test36, PR_AUC precision-recall AUC. The RNN outperformed clinical physicians regarding AUC (a) and PR_AUC (b). Physicians systematically
underestimated the risk of acute kidney injury (predicted risks < observed risks, c). In contrast, the RNN was overall well calibrated (d).
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also have met the urine criteria first. Probably not all of them have
been classified as false-negative, as they might have met the
creatinine criterion at a later stage. In our population, 11% of the
AKI-cases in the training set and 12% in the test set exclusively
fulfilled the urine criterion and would have been diagnosed false-
negatively without this criterion. The median (IQR) diagnosis delay
of patients who met both criteria within 7 postoperative days was
14.0 h (6.3–27.3 h) in the training set and 13.3 h (5.3–22.4 h) in the
test set. Especially in models with short prediction horizons, there
is a high risk that the prediction of imminent AKI and
consequently initiation of preventive measurements is delayed
when not integrating the urine criterion.
In addition, these previous models were restricted to patients

with a serum creatinine of <3mg/dl (Koyner et al.) or even normal
serum creatinine level and a GFR of at least 60ml/min/1.73 m2

(Cheng et al.) at admission.
Mohamadlou et al.40 developed an ML algorithm based on EHR

data for detection of AKI at onset and prediction of AKI 12, 24, 48,
and 72 h before onset. They reported AUCs from 0.872 (onset) to
0.728 (72 h before onset).
Another study for continuous AKI prediction on a large data set

was performed by Tomasěv et al.34. The developed RNN predicted
AKI stage 2 or 3 with an AUC of 0.971 24 h before onset.
Also in these studies the urine output criterion of AKI was not

incorporated. In addition, in the study of Tomasěv et al. only

patients were included for whom at least one year of EHR data
were available before admission. They added aggregate features
of up to five years of historical information of each individual
patient. This approach requires that patients are already known in
the admitting hospital, which is often not the case. It is unclear
how their algorithm would perform on patients without any prior
medical history. In contrast, we used a real uncurated data stream
in our model that only contained information generated after
admission.
Meyer et al.35 used an RNN to predict AKI requiring dialysis,

mortality and postoperative bleeding after cardiac surgery using
routinely collected parameters within the first 24 hours after
surgery. The deep-learning model provided very accurate predic-
tions (positive predictive value (PPV)/sensitivity for AKI: 0.87/0.94)
that outperformed usual clinical risk scores.
Our model predicted AKI in a time frame up to 7 days after

cardiothoracic surgery. Compared to the observation windows of
the studies mentioned above, this is a much longer time period.
Events in the near future are usually easier to predict than those in
the more distant future. To intervene early when the kidneys are
merely at risk of injury, a longer prediction window might be
necessary. It has been shown that early intervention can prevent
AKI or its progression to higher stages17,19. Therefore, the
prediction of our model was not limited to AKI requiring dialysis,

Table 4. Comparison between classical prediction models20 based on logistic regression and our recurrent neural network (RNN).

Authors, model Sample size
derivation

Sample size
internal
validation

Validation method “Real-time”
prediction

Predicted outcome Manual
calculation

AUC on internal
validation

Chertow et al.,
CICSS21

42,773 42,773 100-sample bootstrap No 30 days post-op. AKI Yes 0.76 (AUC on
derivation
cohort)

3795 Prospective validation Not reported

Brown et al.,
NNECDSG38

8363 8363 Bootstrap validated
C-index (AUC)

No Severe post-op. AKI
(eGFR < 30ml/min)

Yes 0.72* (0.68–0.75)

Palomba et al.,
AKICS24

603 215 Prospective validation No 7 days post-op. AKI Yes 0.85 (0.8–0.9)

Aronson et al.,
MCSPI25

2381 2420 Split sample validation No Renal dysfunction or
renal failure (dialysis
or evidence of renal
failure at autopsy)

Yes 0.80

Wijeysundera et al.,
SRI26

10,751 10,751 200-sample bootstrap No Post-op. renal
replacement therapy

Yes 0.81* (0.78–0.84)

2566 Prospective validation 0.78 (0.72–0,84)

Mehta et al.,
STS (Mehta)23

simplified model

449,524 86,009 Independent sample No Post-op. dialysis Yes 0.83

Thakar et al.,
Cleveland Clinic22

15,838 15,839 Split sample validation No Post-op. dialysis Yes 0.82 (0.80–0.85)

Jiang et al., Dynamic
Predictive Score67

6081 1152 Independent sample No AKI ≥ stage 1 KDIGO Yes 0.74
preoperative,
0.75 at ICU
admission,
0.82
postoperative

This study,
RNN

2224 350 Independent
Sample (balanced,
incidence 50%)

Yes 7 days post-op. AKI
stage 2 or 3

No 0.89 (0.86–0.92)

1945 Independent sample
(imbalanced,
incidence 10%)

0.85 (0.83–0.86)

AKI acute kidney injury, AUC area under curve.
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but included the prediction of AKI stages 2 or 3 according to the
KDIGO definition.
To conclude, based on a relatively small sample size, we

developed a highly accurate model for the prediction of AKI after
cardiac surgery that significantly outperformed experienced
physicians, could potentially be integrated into EHR systems and
might prevent severe complications following AKI through real-
time patient surveillance. In a long-term perspective, an extension
of the application from a simple risk prediction model to
treatment decision support tool is also conceivable.
This study has several shortcomings. The observation periods of

the included patients varied widely in length. For most patients it
ended in <3 days while some outliers lasted for up to 7 days. We
only used the start of nephrotoxic drug administration as a feature.
Consideration of exact dose, administration route (e.g., i.v., p.o, …),
and administration length could reflect the underlying pharmaco-
dynamics better and improve the prognostic performance.
Our RNN is currently cohort specific for cardiothoracic surgery

patients that most likely have different characteristics and risk
factors than, e.g., neurosurgical patients. Implementing the same
approach on other patient cohorts could give a deeper insight
into the generalizability of our method.
Our study is retrospective. Thus, in our RNN vs. physicians head-

to-head comparison, physicians only received EHR data and could
not clinically evaluate patients. Information such as volume status
(except for weight), general condition, etc. or additional examina-
tions (e.g., ultrasound) were not available to them and to the RNN.
This deviation from the physicians’ usual workflow in clinical
practice may explain some of the observed performance deficits.
Real clinical data can be very noisy, leading to reduced
performance and greater burden of deploying completely
automated systems. This stresses once again the fact that artificial
intelligence should be utilised in support systems for physicians
and not as their replacement.
External validation trials should be performed on prospective

data. In addition, they should focus on usage and acceptance of a
system such as the one described here in a real clinical setting.

METHODS
Ethics and reporting guideline
This study was approved by the institutional data protection officer and
ethics committee of Charité – Universitätsmedizin Berlin (EA2/180/17). The
approval included the collection of data on implied consent. We only used
retrospective data and the patients were not actively involved in the study.
The requirement of informed consent of the participating physicians was
waived by the Institutional Review Board (IRB) of Charité – Universitäts-
medizin Berlin due to anonymized data acquisition. Reporting of
development and validation of the prediction model follows widely the
guideline of the TRIPOD statement41.

Patient selection process
We retrospectively analysed EHR time series data generated between
October 2012 and February 2018 at a tertiary care center for cardiovascular
diseases.
We included adult patients (18+) that were admitted at least once to the

operating theatre for cardiothoracic surgery (15,564 admissions/13,895
patients). We excluded patients without any creatinine or urine flow values,
patients receiving hemodialysis before the end of the operation or having
a baseline creatinine level ≥4.0 mg/dl (2322 admissions/1487 patients).
Within this collection of 12,978 admissions, 1308 cases were identified

with severe postoperative AKI defined as stage 2 or 3 according to KDIGO
AKI guidelines—briefly, an increase in serum creatinine to at least twice the
baseline value or a decrease in urine flow < 0.5ml/kg/h for ≥12 h.
As AKI can develop over multiple days, we defined a study period of

7 days after cardiothoracic surgery. The global AKI label of a patient was
set positive when the KDIGO criteria stage 2 or 3 was fulfilled at any point
within these 7 postoperative days.
The observation time of each patient started when the patient was

transferred to the ICU or recovery room. It ended when the patient was

either discharged, or when the KDIGO criteria for AKI stage 2 or 3 were
fulfilled, or after 7 days after the end of the first surgery.
Each AKI-case was assigned a control out of the non-AKI pool (11,670

admissions/11,046 patients). The controls were matched to the cases on

Fig. 3 Flow chart of patient selection process. adm admissions, pat
patients.
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observation length. Thus, we generated a balanced data set that we then
randomly split into a training set (85%, 2224 admissions/2180 patients)
and the remaining set (15%, 392 admissions/patients) while keeping the
cases with their respective controls.
For the 392 patients of the remaining set we manually checked

physicians’ notes in the EHR data and consequently excluded 28 patients.
Exclusion criteria were primarily insufficient documentation of the type of
surgery, false recording of surgery times or notion of end-stage kidney
disease in the patients’ history that was not detected by automated
filtering.
Out of this set, we randomly selected 350 patients that formed the final

test set for model evaluation and comparison with human-level
performance. A detailed flow chart of the patient selection process is
shown in Fig. 3.
The baseline characteristics were well balanced between the training

and the test and are summarized in Supplementary Table 8.
The density distribution and a histogram of the observation periods for

patients in the training and test sets is shown in Fig. 4. Most patients were
either discharged or diagnosed with AKI within the first 3 days after the
first surgery.

Feature selection and preprocessing
We developed our model based on 96 routinely collected clinical
parameters. Table 5 gives an overview of all considered features. They
can be grouped into static features (e.g., most patient and surgery
characteristics, 25 features) that do not change over the observation
period and frequently measured dynamic features (e.g., lab values, vital
signs, blood gas values and fluid output, 49 features). In addition, we
included a variety of widely administered agents that have been reported
to potentially cause nephrotoxic effects42–47 (22 features).
The last creatinine/urea value before surgery was used as a baseline. If

there was none available in the five days before surgery, we used the first
postoperative value.
We observed that urine output was sometimes incompletely documen-

ted on normal wards. As this could lead to false-positive AKI diagnoses we
considered urine values reliable only when they were recorded in the
operation theatre, the recovery room or the ICU. Thus, on normal wards
AKI was only defined by the creatinine criterion whereas in the recovery
room or the ICU both AKI criteria (creatinine and urine) were used.
EHR systems are often designed with billing and revision purposes in

mind, making certain retrospective therapeutic analyses difficult to
conduct due to missing information48. In our case, the type of operation
that patients underwent was available partly in unstructured textual and
partly in categorical form. To access both types of data, we developed a
separate set of bag-of-words logistic regression models that predicted the
type of operation based on unstructured text describing the operation
procedures. As explanatory variables we used all single words or
abbreviations that occurred in the pool of text information in its training
set. The probability of a specific surgery type Yi (i= 1, 2, …, 17) was
given by

PðYi ¼ 1Þ ¼ expðβ0 þ β1x1 þ β2x2 þ :::Þ
1þ expðβ0 þ β1x1 þ β2x2 þ :::Þ (1)

where xj, denotes a count variable indicating how often word/abbreviation
j occurred in a patient’s surgery procedure description (j= 1, 2, …, no.

distinct words/abbreviations). For further information see Supplementary
Note 1, Supplementary Tables 9 and 10.
Time sequences with 15-min intervals of all features served as input to

our model.
Except for the nephrotoxic agents, missing values were filled by forward

imputation. If no precedent value was available, static default values
defined by a clinical expert were imputed (one value per feature). The
same default values were used for all patients and they were imputed
programmatically. They are shown in Supplementary Table 11.
It is extremely difficult to determine the exact effect duration of a drug

due to varying excipients, dosages, drug combinations, application types
and patient conditions. Therefore, the administration of a drug was
considered as an event. For each nephrotoxic agent class in Table 5 a
binary feature was created and its value was set to 1 only at the single time
slice immediately following the administration of the drug.
Except for the operation types all continuous features were then scaled

as follows49:

Xscaled ¼ X % μðXtrainÞ
IQRðXtrainÞ

(2)

where μ(Xtrain) denotes the median and IQR(Xtrain) the IQR of the feature X
in the training set. In total, the model was built on a data matrix of
36,244,608 single data points.
For patient selection, preprocessing of features and imputation of

missing data, we used R v3.3.3 (R Core Team (2017). R: A language and
environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. URL https://www.R-project.org/) and Python
v3.6.7 (The Python Software Foundation, Beaverton, OR) with modules
IPython50 (v7.5.0), Matplotlib51 (v3.1.0), Scikit-learn52 (v0.19.1), Pandas53

(v0.24.2) and Numpy54 (v1.16.2).

Modeling
In contrast to classical prediction models such as logistic regression, RNNs
are able to capture the temporal development of features in a truly
sequential fashion as they incorporate information about preceding time
steps, links between single timesteps and a direct indicator of the current
position in the timeline (see Fig. 5).
We constructed a set of RNNs with different architectures (preceding

convolutional layer, different cell types) which allow to process dynamic
temporal information.
Hyperparameter tuning was performed on the training set using fivefold

cross-validation with balanced class proportions in each fold. We used the
Adam optimizer55 with a fixed learning rate of 0.001. The hyperparameter
configurations leading to the highest overall AUC on cross-validation folds
of the training set were chosen as final models.
As the parameters of an RNN depend on their initialization and the order

in which the training instances are presented, 10 final models with the
same hyperparameters but different initializations were trained on the
training set. Our final model comprised a uniform ensemble of the 10
constituent models.
For the modeling process we used Python v3.6.7 (The Python Software

Foundation, Beaverton, OR) with modules Tensorflow56, IPython50 (v7.5.0),
Matplotlib51 (v3.1.0), Scikit-learn52 (v0.19.1), Pandas53 (v0.24.2) and
Numpy54 (v1.16.2).

Fig. 4 Total observation period for the training and test set. a Density distribution. b Histogram. For most patients the observation period
ended within three days after surgery.
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Measuring RNN performance
We measured the performance of the RNN on an independent test set. No
instance of this test set was used for training of the final model. We
calculated AUC, precision-recall-AUC (PR_AUC), accuracy, sensitivity,
specificity, PPV, negative predictive value (NPV), false-positive rate (FPR)
and the F1-score to measure prediction correctness.
In addition, we calculated the mean of the Brier score57—or mean

squared error—of each patient (MSEpat)—a measure of accuracy of
predictions, without the need for a set threshold.
A single patient’s Brier score—or mean squared error—is calculated as

follows:

MSEpat ¼ 1=tsj
Xtsj

i¼0

ðyji # yjtÞ2 (3)

where tsj is the number of timesteps, yji the prediction at time step i and yjt
the true label of patient j.
The MSEpat ranges from 0 to 1, with value 0 meaning perfect prediction

and 1 meaning worst prediction. Random guessing (always predicting
50%) would result in a MSEpat of 0.25. In contrast to the metrics mentioned
above, the MSEpat is independent of the individual observation length of a
patient and the resulting number of predictions per patient.
We adjusted the threshold for positive class prediction until a fixed

sensitivity of 0.85 on cross-validation folds in the training set was reached
(threshold= 0.41).
Our model predicted the risk of developing AKI every 15min after the

initial surgery. The predictions of an individual patient can be regarded as a
cluster of usually highly correlated data. We therefore had to adjust the CIs
of our model’s metrics. We calculated the 95% CI of each metric X as
follows:

X þ#1:96σðXÞ

with a standard error σðXÞ of variable X of

σðXÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xð1# XÞ

neff

s
(4)

To account for intracluster correlation, our sample size n was adjusted,
resulting in an effective sample size of58,59

neff ¼
n
DE

¼
Pk

i¼1
Pmi

j¼1 1

DE
(5)

where k is the number of patients and mi the number of time steps of
patient i. DE denotes the design effect, also called variance inflation factor,
and can be calculated as follows60:

DE ¼ mk
Pk

i¼1
mi

1þðmi#1ÞICC
(6)

with ICC as the intracluster correlation coefficient. The ICC was calculated
using the R package ICC61 (v2.3.0).

Comparing RNN vs. human performance
We set up an experiment to compare the performance of our RNN against
that of experienced physicians (see Fig. 1). For each patient in the test set,
a quasi-random point in time in their observation period was chosen,
further denoted as the ‘prediction point’. In contrast to real uniform
random samples, which tend to form clusters and contain regions without
any points at all, quasi-random sequences reduce the probability of cluster
formation while still being uniformly distributed62,63. This method
prevented us from accidentally exclusively sampling prediction points
from e.g. the first half of the patients’ observation periods.

Table 5. Input feature overview.

Feature Group (no. features) Features

Patient characteristics (4) Age, sex, weight, height

Laboratory results (25) Phosphate, total bilirubin, baseline creatinine, creatinine, baseline urea, urea, glomerular filtration rate, creatine
kinase (CK), CK-MB, red blood count, white blood count, platelets, C-reactive protein, gamma-
glutamyltransferase, glutamic oxaloacetic transaminase, hemoglobin, international normalized ratio, lactate
dehydrogenase, magnesium, hematocrit, prothrombin time, partial thromboplastin time, mean corpuscular
hemoglobin, mean corpuscular volume, mean corpuscular hemoglobin concentration

Surgery characteristics (20) Aortic cross-clamp time, cardiopulmonary bypass time, time in operation theatre, surgery procedure (from
logistic regression text model, see Supplementary Note 1)

Vital signs (8) Systolic, mean and diastolic arterial pressure, central venous pressure, heart frequency, pulse, body
temperature, oxygen saturation

Arterial blood gas values (BGA) (15) Base excess, bicarbonate, glucose, hemoglobin, oxygen saturation, partial pressure of carbon dioxide and
oxygen, total carbon dioxide, pH level, potassium, sodium, calcium, lactate, carboxyhemoglobin,
oxyhemoglobin

Fluid output (2) Bleeding Rate, urine flow rate

Nephrotoxic agents (22) Allopurinol, Aminoglycosides, Amphotericin B, Antiplatelet agents (clopidogrel, ticlopidine), Benzodiazepines,
Cephalosporins, Cyclosporine, Haloperidol, Ketamine, Nonsteroidal anti-inflammatory drugs, Paracetamol,
Penicillines, Proton pump inhibitors, Pyrazolone derivatives, Quinolones, Ranitidine, Rifampin, Sulfonamides,
Tacrolimus, (Val-)/Ganciclovir, Aciclovir, Vancomycin
Red Blood Cell Transfusions

Fig. 5 Architecture of a recurrent neural network (RNN). At each
time step, the model receives the current time slice data as input as
well as the own output from the preceding time step. The features
are captured in a truly sequential fashion.
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At each prediction point, a physician and the RNN had to predict
whether a patient would develop AKI within the first 7 days after surgery.
All time series information up to the ‘prediction point’ was graphically

displayed for the physicians to mimic the electronic patient chart—
although here not in 15-min intervals but in the originally recorded time
resolution (up to 1min).
To create a realistic setting, physicians not only received information

about nephrotoxic agents, but of all administered drugs. In addition, the
surgery type was given to them as unstructured text manually extracted
from physicians’ notes. This information was not available to the RNN
model. Physicians were explicitly informed about the incidence rate of 50%
AKI in our test set.
A physician as well as the RNN made a probability prediction r of the

development of AKI for each patient at the respective prediction point. In
addition, the physicians made a binary decision (development of AKI: yes/
no).
We asked 14 physicians to participate in our study, 10 of whom agreed

(response rate= 0.71). All had to meet the selection criteria of ≥5 years of
clinical experience and ≥1 year of work experience on a cardiothoracic ICU.
From the 10 volunteers we selected seven physicians with different levels
of expertise (senior resident up to senior consultant) to create a most
realistic setting. Their working experience on a cardiothoracic ICU ranged
from at least one year up to several years. None of the participating
physicians were specialists in nephrology as nephrologists are usually not
constantly available on an ICU. Each physician made predictions for 50
different patients.

Statistical analysis
The initial aim of our study was to show that the RNN is not inferior to
experienced physicians in the prediction of AKI. For both, RNN and
physicians, the predictive quality of each probability prediction r was
measured by a score S as follows:

S ¼ r; if the patient developedAKI

S ¼ 1" r; if the patient did not developAKI

A prior investigation of the RNN’s predictions had shown that S was non-
normally distributed. Thus, for sample size calculation and power analysis
we considered the transformed score X, which was approximately normally
distributed:

X ¼ "logð"logðSÞÞ (7)

We assumed that X of the physicians’ predictions would also be normally
distributed.
Based on a significance level of α= 0.025, a power of at least 80% and a

non-inferiority margin of δ= 0.3 (this corresponds to a non-inferiority
margin of 5.5% for sensitivity+ specificity), we obtained a sample size of N
= 350.
Both, for RNN and physicians, we calculated AUC, PR_AUC, brier score,

accuracy, sensitivity, specificity, PPV, NPV, FPR and F1-score. We set the
threshold for positive class prediction to 0.5 as this was also the threshold
in the physicians’ predictions that corresponded to the ‘yes/no’-classifica-
tion. We calculated CIs for all metrics as described in Section ‘Measuring
RNN Performance’ whereas the effective sample size was neff= n= 350 as
there was no clustering.
For the statistical comparison of S between RNN and physicians we

applied a paired t-test. We used DeLong’s64 method to compare the two
correlated ROC curves using the R package pROC65 (v1.9.1). In addition, we
investigated the calibration of both, physicians’ and RNN’s predictions,
with the Hosmer-Lemeshow-Test using the R package ResourceSelection66

(v0.3-2). All three comparisons mentioned above were tested on a
significance level of α= 0.05.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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