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A B S T R A C T

RNA polymerase II (Pol II) regulation during early elongation has emerged
as a regulatory hub in the gene expression of multicellular organisms. Prior
research links the BRD4 protein to this control point, regulating the release
of paused Pol II into productive elongation. However, the exact roles and
mechanisms by which BRD4 influences this and potentially other post-initiation
regulatory processes remain unknown. This study combines rapid BRD4

protein degradation and multi-omics approaches, including nascent elongating
transcript sequencing (NET-seq), to uncover BRD4’s direct protein functions.

Applying NET-seq in comparative studies required experimental adapta-
tions. First, analyses with spiked-in mouse cells proved essential for reliable
normalization. Second, the study identified a disproportional enrichment of a
chromatin-associated RNA class as NET-seq’s major limitation. Incorporating
an additional enrichment step solved this problem and significantly increased
Pol II coverage.

The resulting high-sensitivity NET-seq method confirmed BRD4’s proposed
role in early elongation by revealing a global defect in Pol II pause release upon
BRD4 degradation. Observations from proteomics and chromatin immunopre-
cipitation followed by sequencing (ChIP-seq) experiments suggest that the failed
recruitment of Pol II-associated factors (PAF) causes an assembly defect of a
competent elongation complex.

Interestingly, the elongation defect also affected transcribed enhancers. Pol II
occupancy increased in a region proximal to the enhancer center, strikingly
similar to the impaired Pol II pause release at genes. An integrated multi-omics
analysis that included genome-wide 3D genome information revealed reduced
interactions between these enhancers and other regulatory regions.

Another unexpected result was the widespread Pol II readthrough transcrip-
tion quantified by the developed readthrough index, revealing an apparent
transcriptional termination defect. The implementation of long-read nascent
RNA-sequencing (nascONT-seq) combined with a 3’-RNA cleavage efficiency
test detected impaired 3’-RNA processing. Notably, those 3’-RNA cleavage
defects correlated with the observed termination defects. A potential explana-
tion is the BRD4-dependent recruitment of general 3’-RNA processing factors
to the 5’-control region. These observations start to establish regulatory links
between 5’ and 3’ control that require further validation. Overall, the results
indicate a general BRD4-dependent 5’ elongation control point required for
3’-RNA processing and termination.
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1
I N T R O D U C T I O N

The proteins that cover most cell functions and shape the identity of all living
organisms, including humans, are encoded by genes in the deoxyribonucleic
acid (DNA) molecules. Extracting this information is a highly regulated multi-
step process. This process, called gene expression, produces ribonucleic acid
(RNA) molecules and synthesizes them into proteins at different rates and
compositions depending on the concrete biological condition. RNA polymerase
II (Pol II) is the protein complex that transcribes the encoded gene information
in the DNA into RNA, including all protein-coding and most non-coding
RNA genes [43]. Research over the last decades focused on the first step of
transcription, transcription initiation, where different factors recruit Pol II to
the DNA. After initiation, transcription elongation and termination occur. The
fundamental assumption was that gene activity was mainly regulated during
the recruitment and initiation of Pol II [183].

With the development of sequencing-based methods revealing Pol II occu-
pancy genome-wide [160, 187, 254], transcription elongation emerged as a
rate-limiting step in gene expression control of multicellular organisms [102,
141]. This significant control point occurs after initiation when Pol II pauses
in the promoter-proximal region. This process creates an additional step to
integrate multiple regulatory signals [1], leading to Pol II pause release and
productive elongation. The bromodomain and extraterminal domain (BET) protein
family is known to regulate this step, including the most studied BRD4 protein.
Nevertheless, our knowledge of the detailed steps is still incomplete, including
the mechanistic roles of individual BET proteins family members.

Although often overlooked, a successful transcription cycle includes success-
ful termination events at 3’ ends of genes where nascent RNA is cleaved and
polyadenylated, triggering Pol II released from the DNA template. This step is
essential for creating a functional RNA transcript and avoiding transcriptional
interference between gene units [178, 214]. Because Pol II termination is the
least studied Pol II transcriptional step, the exact processes in human cells and
relevant factors remain poorly characterized.

This thesis aims to enhance the general understanding of the regulatory
processes that occur after Pol II initiation and potentially change the productive
output of a transcription unit. Furthermore, a central goal includes improving
computational and experimental methods that allow this and future studies to
investigate Pol II transcription quantitatively and with high sensitivity. Since
many factors are involved in Pol II regulation, this work will focus on the
regulatory functions of the BET proteins with a focus on BRD4.
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2 introduction

This study’s main emphasis concerns the direct protein functions using
selected high-throughput sequencing (HTS) assays that capture immediate conse-
quences of targeted protein degradation after two hours or less.

Identifying these fundamental concepts of gene transcription is critical
for understanding the complete regulatory toolbox that allows the complex
regulation of gene expression in humans. BET proteins are promising targets
for new small molecule inhibitors that are currently in clinical trials to treat
different types of cancer [5, 31, 217]. Their essential biological functions in vivo
will be of general interest to a broad audience.

Structure

Following this general introduction, Chapter 2 Biological Background and
Chapter 3 Computational Background will provide more detailed insights
into the notions of molecular biology and the computational models to study
them. Chapter 2 Biological Background describes fundamental concepts of
gene transcription and highlights the proposed functions of BRD4 and other
BET proteins. Furthermore, this chapter introduces the published experimental
techniques used in this study, including nascent elongating transcript sequencing
(NET-seq). Chapter 3 Computational Background reports established meth-
ods in bioinformatics used to analyze HTS data, focusing on normalization
and testing methods to detect quantitative changes in count data. Chapter 4

Materials and Contributions provides an overview of the materials used in
this integrative multi-omics study, including published and unpublished HTS
data, software tools, databases, cell lines, and others. Furthermore, this section
states contributions from collaborating scientists.

The three main parts summarize and discuss the results of this work. They
include individual method sections that describe specific processing steps,
analyses, indices, and tests developed for this study. The parts build upon each
other, whereas Part I and Part II provide the methodological basis for Part III.

Part I explores the composition of NET-seq data using a refined data pro-
cessing pipeline and identifies the main limitations. Different optimization
steps have led to the new high-sensitivity NET-seq (HiS-NET-seq) method. Ad-
ditionally, this part describes the related benchmark analysis that compared
Pol II features between different high-resolution Pol II profiling methods.

Part II adapts established computational methods to identify relevant
changes between NET-seq samples and highlights the challenges of detecting
them in some transcription studies. The results of the analyses led to the devel-
opment of a new NET-seq protocol variant, called spike-in NET-seq (SI-NET-seq).
Furthermore, the section shows the practical application of SI-NET-seq in two
case studies.

Part III reports the results of a multi-omics approach to identify post-
initiation regulatory functions of BRD4.
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This study reveals BRD4’s regulatory function at different stages of tran-
scription, including early elongation, 3’-RNA cleavage, Pol II termination, and
elongation regulation at enhancer regions. Presented are different computa-
tional approaches to detect 3’-RNA cleavage and termination defects.

Chapter 17 Conclusion summarizes the main implications of all three parts
of this thesis. The final Chapter 18 Other Project Contributions reports the key
results of an additional project not covered in the central part of this thesis. In
the project, the transcriptomic profiling of patient material revealed the genetic
cause for a rare type of osteogenesis imperfecta.





2
B I O L O G I C A L B A C K G R O U N D

This chapter introduces basic molecular biology concepts and techniques
used to study them in multicellular organisms. The first section describes the
organization of DNA and the encoded elements. In the context of Pol II, the
following sections explain the regulation of transcription, with a focus on
post-initiation regulatory mechanisms and the contribution of the BET protein
family members, concentratig on BRD4. Finally, this section presents essential
experimental techniques required for a general understanding of this work.

2.1 the chromatin template

The basis that holds the information for all living organisms on earth is DNA.
Two DNA strands, made of nucleotides, coil around each other and form the
double-helix structure [245]. Each nucleotide consists of

• deoxyribose,

• a phosphate group, and

• one of the nucleobases: adenine (A), cytosine (C), guanine (G), and thymine
(T).

The double-helix structure is assembled by hydrogen bonds formed between
the complementary bases G/C and A/T.

Fitting the long DNA molecule into the nucleus of eukaryotes requires a
compact and dense chromatin structure formed by DNA and proteins. The
repeating unit of the chromatin is the nucleosome [150], which consists of
146 base pairs (bp) of DNA wrapped in 1.65 turns around the histone octamer.
Heterodimers of H3, H4, H2A, and H2B proteins form the histone protein
complex that can be chemically modified, contributing to DNA accessibility
[112].

DNA is the static storage of genetic information kept in the cell nucleus
and does not produce proteins directly. Transcription is the first intermediate
step that produces RNA molecules from the DNA. Besides being primarily
single-stranded, RNA is similar to DNA but contains

• ribose with an additional hydroxyl group instead of deoxyribose and

• the demethylated form of thymine named uracil (U).

After transcription, the RNA is processed and transported from the cell nucleus
to the cytoplasm, where the second intermediate step, the translation from
RNA into proteins, occurs.

5



6 biological background

Promoter

The promoter is a DNA region recognized by factors contributing to transcrip-
tion initiation. A core promoter element that is required to initiate transcription
consists of a transcription start site (TSS), a Pol II binding site, and a general
transcription factors binding site, such as the AT-rich TATA box [127] or the
initiator element [219]. Other features, such as histone modifications of the
flanking nucleosomes and accessible chromatin, correlate with the promoter’s
activity. The histone three lysine twenty-seven acetylation (H3K27ac) relaxes the
chromatin [225] and is generally associated with actively transcribed regions,
including promoters. For the other common histone marks, such as histone
three lysine four (H3K4) mono- (H3K4me1) or trimethylation (H3K4me3), it is
unclear if they are the cause or consequence of transcription [91].

Enhancer

The enhancer is a DNA region recognized by transcription factors, contribut-
ing to transcription initiation over large genomic distances, independent of
sequence orientation. Transcription factor binding at different enhancer regions
regulates the gene expression at one or more promoters and can be highly
dynamic between cell types and states [35, 216].

Although early studies [10] discovered the first enhancer more than forty
years ago, general enhancer features and how they function remain ambiguous.
The lack of a general and easy to apply HTS functional assays forced the field
to indirect characterizations using transcription factor binding sites, cofactor
binding, or histone modifications.

Enhancers are associated with open chromatin regions flanked by histones
with H3K27ac and H3K4 methylation, whereas H3K4me1 is more common at
enhancers and H3K4me3 at promoters [44, 84].

More recently, bidirectional enhancer transcription emerged as an additional
general enhancer feature [36, 110], which correlates with enhancer activity [85].
It is, however, unclear if the unprocessed and rapidly degraded enhancer RNA
contributes to the enhancer function directly [152], indirectly by maintaining
open chromatin at the enhancer [74], or if it is an accidental by-product [222].
Overall, how enhancers achieve their enhancing function is still under debate,
including the role of spacial enhancer-promoter interactions [207] and enhancer
transcription [58]. In the last decade, their clear distinction to promoters blurred
as enhancers are likewise transcribed, share most functional chromatin features,
and some can act as promoters and vice versa [48, 154].
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Figure 2.1: Pol II Transcription Cycle. The figure shows the stages of the transcription
cycle, including initiation, elongation, termination, and re-initiation (not shown). Pol II
is recruited to the promoter and starts transcription at the TSS. Pol II pauses 20-60

nucleotides downstream of the TSS during early elongation in the promoter-proximal
region. The productive elongation phase produces nascent RNA. The polyA signal
containing nascent RNA is co-transcriptionally cleavaged at the polyA site, triggering
Pol II release from the DNA template in the termination zone. The re-initiation phase
recycles Pol II for a new transcription cycle.

2.2 regulation of rna polymerase ii transcription

Nuclear transcription in mammalian cells depends on the enzyme complexes
RNA polymerases I, II, and III [43], each catalyzes the transcription of specific
RNA species. RNA polymerase I synthesizes the highly abundant ribosomal
RNA that accounts for >85% of cellular RNA in most organisms [116]. RNA
polymerase III produces transfer RNAs, 5S ribosomal RNA, and other small non-
coding RNAs, for example, the spliceosomal U6 small nuclear RNA (snRNA)
[49]. Interestingly, a fourth RNA polymerase exists in the mitochondrion,
where the single-subunit protein is exclusively associated with the synthesis
of mitochondrial RNA [195]. However, this section focuses on the complex
regulation of the twelve subunit protein complex Pol II that transcribes all
protein-coding and most non-coding RNA genes, including enhancer RNA,
snRNA, small nucleolar RNA (snoRNA), and micro RNA.

2.2.1 Transcription Cycle

The Pol II transcription cycle divides into different stages, including initiation,
elongation, termination, and re-initiation [213] (Figure 2.1).

Transcription starts with the initiation step. Pol II does not bind the DNA
sequences of a promoter directly. Therefore, it requires general transcription
factors [121] that recognize the promoter sequence and assemble stepwise into
the pre-initiation complex [42]. This complex recruits Pol II to the promoter
region and opens the DNA duplex. The first eight or nine nucleotides of the
nascent RNA and the DNA template form a DNA-RNA hybrid known as the
transcription bubble at the core of elongating Pol II [144].
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Initiation is abortive and repeats until Pol II forms this DNA-RNA hybrid of
critical length and escapes from the promoter [121].

The elongation stage synthesizes the nascent RNA transcript from the DNA
template. In this procedure, the Pol II elongation complex unzips the double-
stranded DNA and adds a nucleotide to the growing nascent RNA. In multicel-
lular organisms, an additional step occurs during early elongation, where the
interplay of different factors regulates the pausing and release of Pol II in the
promoter-proximal region. For a detailed description of this tightly regulated
process, see Section 2.2.2. If Pol II escapes from this checkpoint and potentially
premature termination [19, 105], it is in an active form bound by elongation
factors [232] that stabilize the processive elongation [165, 262].

Pol II termination occurs downstream of the gene’s polyadenylation (polyA)
site, in a termination window or zone [211]. General 3’-RNA processing factors
bind to the nascent RNA, guided by conserved DNA signals, and cleave the
transcript at the cleavage site, corresponding to the polyA site. Cleavage of
the nascent RNA is an essential step that triggers processes removing Pol II
from the DNA template and allowing re-initiation of a new transcription cycle.
As the termination process is not fully understood, Section 2.2.3 discusses the
steps of 3’-RNA cleavage and different termination models.

2.2.2 Promoter-proximal Pausing and Release

Promoter-proximal Pol II pausing was first described in Drosophila melanogaster
(fly) at heat-shock genes [78]. The cell activates this group of genes in response
to stressful conditions, suggesting a specific purpose of Pol II pausing, for
example, to transcribe genes rapidly.

Instead, the process appeared as a general feature of early elongation in
multicellular organisms [160, 187, 254]. Following transcription initiation,
Pol II pauses in the promoter-proximal region between 20 and 60 nucleotides
downstream of the TSS [40, 168, 188].

Structurally, Pol II pausing involves tilting the DNA-RNA hybrid [234],
which impairs nucleotide addition and pause escape. The DRB sensitivity-
inducing factor (DSIF), composed of SPT4 and SPT5, and the negative elongation
factor (NELF) complex stabilize the pause [234, 236, 251]. If these factors equally
contribute to establishing the Pol II pause is unclear.

The positive transcription elongation factor b (P-TEFb) complex, formed by the
kinase CDK9 and cyclin T1, is required for Pol II pause release [173]. CDK9

triggers this process by phosphorylation of Pol II, SPT5, and NELF [142, 204].
Consequently, NELF dissociates from the complex, supporting the formation
of an activated elongation complex [232, 233], where the elongation factor
SPT6 and the Pol II-associated factors (PAF) complex bind. The PAF complex
consists of PAF1, CDC73, CTR9, WDR61, LEO1, and RTF1.
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Complex Module Factors Function

CPSF
specificity
factor

CPSF160,
CPSF30,
WDR33, FIP1

polyA signal recognition [209]
and polyA polymerase
recruitment [223]

cleavage
factor

CPSF73,
CPSF100,
symplekin

RNA cleavage [140, 202]

CstF - CstF50, CstF77,
CstF64

U/GU-rich region recognition
[22]

Cleavage
factors

Im CFIm25,
CFIm59,
CFIm68

polyA site selection [20]

IIm Pcf11, Clp1 Pol II binding, premature
termination [105, 259]

Table 2.1: 3’-RNA Processing Complexes and Associated Factors.

An activated elongation complex results in an active conformation with a
free nucleoside triphosphate binding site that can resume transcription. Pol II
pause release regulation emerged as a significant control point in most genes
[1, 40].

Close to the promoter-proximal pausing sites, a second distinct class of
pausing events occurs further downstream of the TSS associated with the
entry side of the first nucleosome, named +1 nucleosome [168]. Nucleosomal
depletion at promoters results in the positioning of the +1 nucleosome center,
named dyad, around 214 nucleotides downstream of the TSS [262]. The +1
nucleosome represents a potential obstacle during early elongation that requires
the combined function of elongation factors.

Interestingly, nucleosome-induced pausing of Pol II at the +1 nucleosome
occurs at the entry site and not directly upstream of the dyad as described for
gene-body Pol II pausing [117]. The exact reason for the additional pausing
site at the entry side and the difference between gene-body pausing is unclear.

2.2.3 3’-RNA Processing and Termination

In metazoa, co-transcriptional 3’-RNA processing links polyadenylation and
Pol II termination at messenger RNAs and long non-coding RNAs [88, 193]. Con-
served sequence elements in the nascent RNA and a large protein processing
machinery, referred to as 3’-RNA processing factors, induce these processes.
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Table 2.1 summarizes the protein complexes involved during 3’-RNA pro-
cessing, including the two sub-modules of the cleavage and polyA specificity
factor (CPSF) [257] and the cleavage stimulation factor (CstF). The first CPSF
sub-module recognizes an upstream polyA signal [179, 180, 209], whereas the
CstF complex binds to a U/GU-rich region downstream of the nascent RNA
cleavage site [22]. Following binding, the second CPSF sub-module, which con-
tains the endonuclease CPSF73, carries out the cleavage reaction [140, 202]. The
cleavage factor Im complex regulates the polyA site selection [20]. In contrast,
the cleavage factor IIm complex links the 3’-RNA processing machinery with
Pol II [259] and is associated with the regulation of premature termination
[105]. Finally, the CPSF complex recruits the polyA polymerase required for
the polyA tail synthesis [223].

Two non-mutually exclusive Pol II termination models, proposed almost
thirty-five years ago, rely on 3’-RNA processing [34, 131]. Although it is still
unclear how Pol II terminates exactly, evidence suggests a combination of both
models [53, 106, 135, 248]. According to the allosteric model, the transcription
through the polyA site leads to changes in the elongation complex, where
elongation factors dissociate, termination factors associate, or both [131].

The torpedo model depends on 3’-RNA cleavage, which creates an entry
site for the 5’-3’ exoribonuclease 2 (XRN2) at the uncapped nascent RNA. XRN2

degrades the RNA until it catches up with the continuously transcribing Pol II,
which leads to the release of Pol II from the DNA template by an unknown
mechanism [34].

2.3 bromodomain and extraterminal domain protein family

In humans, the BET protein family consists of the ubiquitously expressed
BRD2, BRD3, BRD4, and the testis-specific BRDT proteins [101]. Functionally
they are involved in many cellular processes, including cell cycle progression,
DNA replication, DNA repair, and transcriptional regulation [55]. This section
focuses on the role of BET proteins, specially BRD4, during transcription
regulation.

protein structure All BET protein family members consist of two tan-
dem bromodomains and a unique extraterminal domain at the N-terminus
[60]. BRD4 expresses a short and long protein isoform, where the latter harbors
an additional C-terminal domain that is also present in BRDT [55]. On the
one hand, the two bromodomains bind acetylated lysine residues of proteins,
such as H3K27ac histones [60, 255] or transcription factors [70]. This ability
allows BET proteins to function as "readers" of the acetylated histone code. On
the other side, the extraterminal domain binds other transcription factors and
chromatin regulators [113, 189], serving as a scaffold protein. This architecture
suggests that BET proteins link chromatin and transcriptional regulation.



2.3 bromodomain and extraterminal domain protein family 11

transcriptional regulation In 2006, Peterlin and Price proposed an
essential role of BRD4 during the regulation of early elongation [173]. In vitro
studies [98, 252] suggested that BRD4 recruits the P-TEFb complex to pausing
Pol II to influence elongation positively (Section 2.2.2). This model was later
confirmed in several studies using small molecular inhibitors that mimic lysine
acetylation [3, 133]. Upon inhibition, the BET protein bromodomains recognize
and bind the small molecules, which blocks the bromodomain-dependent
functions resulting in dissociation from the chromatin after six hours [59, 167].
However, in recent studies with a higher temporal resolution due to rapid
protein degradation (Section 2.4.4), recruitment of P-TEFb was independent of
BET proteins [249] and BRD4 [158, 260]. Therefore, it remains unclear how BET
proteins, specifically BRD4, influence elongation positively. Different models
suggest BRD4-dependent activation of P-TEFb [96, 130, 247] or independent
mechanisms [11].

enhancer BET proteins occupy beside promoters also acetylated enhancer
regions genome-wide [45, 64, 260] (Section 2.1). Furthermore, binding correlates
with the production of enhancer RNAs [107, 164]. Inhibition of the BET proteins
is associated with reduced enhancer RNA levels, which suggests that they
positively influence their synthesis [107, 164]. A recent study suggests that the
absence of the BET protein family member BRD2 is causing this observation
[260]. The same study observed no effect on enhancer transcription upon
specific BRD3 or BRD4 protein degradation experiments. However, Lee et al.,
2017 [120] detected reduced enhancer transcription in BRD4 knockout cells at
selected loci.

Furthermore, BRD4 forms transcriptional condensates, which harbor high
levels of Pol II, transcription factors, and co-activators [17, 203]. Enhancers that
form these condensates are called super-enhancers and regulate a well-defined
set of genes [89]. The disruption of the condensates reduces transcription
at the respective target genes [45, 203]. Many important regulators contain
low complexity domains, named intrinsically disordered regions, which can
undergo liquid-liquid phase separation with other proteins, DNA, and RNA. It
is unclear if these droplet-like condensates contribute, besides transcriptional
regulation, to the formation or maintenance of promoter-enhancer contacts.
The evidence argues against a structural function [45]. However, several studies
assign also architectural function to BET proteins [89], including BRD4 [128,
242].

disease-association Diseases critical genes, such as proto-oncogenes
[89] and immunoregulatory genes [241], are sensitive toward BET protein
inhibition. Therefore, BET proteins emerged as potential therapeutic targets
for diseases [31], including different cancer types [5, 217] and immune-related
disorders [241].
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2.4 experimental techniques in functional genomics

This section reports current techniques used in functional genomics. A short
introduction covers the most popular HTS assays that measure transcriptome
subsets, protein interactions with DNA, and three-dimensional DNA-DNA
interactions. Complementary approaches to HTS are new long-read sequencing
methods providing DNA sequence information of whole molecules instead of
small fragments. After a short introduction to long-read sequencing technolo-
gies, other experimental techniques, including metabolic labeling and protein
knockout strategies, are described.

2.4.1 HTS Technologies

In the twenty-first century’s first decade, new technologies revolutionized the
sequencing of short DNA fragments, allowing massive parallelization. The
new technology quickly transformed also RNA research, which requires the
translation of RNA into complementary DNA (cDNA) before being sequenced.

Machines from the Illumina, Inc. company dominate the market and produce
hundreds of millions of short sequencing reads between 50-300 bps in each
run [192]. The process involves cluster generation, sequencing-by-synthesis,
and data analysis. The essential steps are the following.

1. The DNA fragment binds to the glass flow cell and is amplified.

2. Sequencing occurs via serial rounds of fluorescently-labeled base incor-
poration, washing, and imaging. The end of each round removes the 3’
block that paused the reaction, and the process repeats.

3. The sequencing read interprets the wavelengths and signal intensities in
the images into a sequence of base pairs.

This section contains an overview of relevant methods that rely on HTS
technologies.

RNA-seq

RNA sequencing (RNA-seq) measures the gene expression present in a popu-
lation of cells using HTS. The essential steps of an RNA-seq experiment are
the

1. purification of RNA,

2. fragmentation,

3. reverse transcription into cDNA,
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4. polymerase chain reaction (PCR) amplification,

5. and HTS.

Different RNA-seq experiments vary considerably depending on the research
question and the performed RNA purification and depletion steps. This study
analyzed polyA-enriched RNA-seq, total RNA-seq, and nuclei RNA-seq data.

polya-enriched rna-seq Sequencing polyadenylated RNA is the most
common application of RNA-seq [92]. The purification step selects processed
RNA by using thymine oligonucleotide stretches. Those complementary oligo-
nucleotides bind to polyadenine stretches and separate them from the remain-
ing RNA.

total rna-seq and nuclei rna-seq Total RNA sequencing measures
the whole-cell lysates that mainly capture fully processed, stable, and more
abundant cytoplasmic RNA. Sequencing RNA fractions from the nuclei en-
riches newly produced, nascent, and unstable RNA [147]. Therefore, nuclei-
RNA-seq performs a cell fractionation to isolate the RNA from the nuclei. Both
methods require the depletion of the highly abundant ribosomal RNAs from
the libraries.

ChIP-seq and ChIP-Rx

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is a method to
study protein interactions with DNA genome-wide. Different studies started
using the method in 2007 to profile transcription factors [100, 197] and histone
modifications [12, 155] in vivo. The method combines immunoprecipitation and
HTS to extract and identify the DNA regions bound by a protein of interest.

The crosslinking step fixes protein-DNA contacts using formaldehyde. Next,
sonification leads to the fragmentation of the DNA. The immunoprecipitation
step enriches exclusively for DNA fragments that bind the protein of interest
using a protein-specific antibody. Before sequencing, reversing the crosslinking
isolates the selected DNA fragments and enables PCR amplification. The com-
putational analysis maps the resulting sequencing reads back to the reference
genome and identifies the individual binding sites.

Unspecific antibody binding and chromatin accessibility bias the experiments
considerably. For this reason, most ChIP-seq applications require a control
experiment, which lacks the enrichment with the antibody or uses an unspecific
antibody [118], referred to as matched input control.

chip-rx Chromatin immunoprecipitation with reference exogenous genome spike-
in followed by sequencing (ChIP-Rx) is a ChIP-seq variant that adds defined
quantities of an exogenous reference genome to the initial sample [9, 170].
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The sequencing reads mapping to the spiked-in reference genome are identi-
cal among samples and used for between-sample normalization (Section 3.2.6).
Previous studies used either material from fly [170] or NIH3T3 mouse cells [9]
for combined applications with human cells.

Pol II Profiling

The first requirement to study Pol II across the human genome is an effective
Pol II tracking method. A standard method to identify those protein-DNA
interactions genome-wide is ChIP-seq. Although ChIP-seq is the most popu-
lar method to track protein-DNA interactions [35], using ChIP-seq for Pol II
transcription studies fails to discriminate between different stages of the tran-
scription cycle due to the low signal-to-noise ratio and resolution [137].

More recently, sequencing-based methods track Pol II at single-nucleotide
resolution across the human genome [136, 148, 169]. All of these methods

• isolate RNA transcripts,

• ligate 3’-RNA adapters,

• produce cDNA and

• perform HTS with high sequencing depth.

As a result, 3’ ends of sequenced RNA are extracted and reveal Pol II active sites
at nucleotide resolution genome-wide. The main difference is the enrichment
strategy used to purify nascent RNA transcripts.

net-seq Human NET-seq, developed in 2015 [146, 148], isolates chromatin-
associated RNA enriched in nascent RNA fragments (Figure 2.2), as described
below.

1. Detergents, salt, and urea perform a cell fractionation that isolates the
chromatin and the stable RNA-DNA-Pol II elongation complex. The cell
fractionation step uses α-amanitin, an inhibitor of Pol II elongation [129],
to avoid transcriptional run-on of Pol II.

2. For the purification of RNA, deoxyribonuclease degrades the remaining
DNA.

3. The library preparation step ligates a DNA linker with a six nucleotides
long unique molecular identifier (UMI) to the 3’-hydroxyl group of nascent
RNA molecules.

4. The reverse transcription step generates cDNA after RNA fragmentation
and size selection (35 - 100 nucleotides). As the DNA linker adds to
the overall length, the selected RNA fragments have a size of twelve to
seventy-seven nucleotides.
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Figure 2.2: Overview of the Human NET-seq Method. 1. Chromatin isolation and
RNA purification. 2. UMI/DNA linker ligation, RNA fragmentation (not shown), and
size selection (not shown). 3. cDNA synthesis and circularization. 4. Depletion of
mature RNAs. 5. PCR amplification (not shown) and 3’ sequencing.

5. Besides nascent RNA, the listed steps co-purify chromatin-associated
mature RNA, such as snRNA, snoRNA, ribosomal RNA, and transfer RNA.
Complementary hybridization oligonucleotides deplete the cDNA frag-
ments from the twenty most abundant RNA species. This step includes
biotinylated oligonucleotides annealing to the complement 3’ ends of the
targets and streptavidin-coupled magnetic beads that remove the bound
cDNA.

6. The last steps of the protocol include PCR amplification and sequencing
using a single-end HTS technology.

mnet-seq The mammalian NET-seq (mNET-seq) method, developed in 2015

[169], is the adaption of the original yeast NET-seq protocol [27] for mammalian
cells.

Following chromatin isolation, the micrococcal nuclease digests all accessible
DNA and RNA not protected by a protein. The immunoprecipitation step uses
a Pol II-specific antibody to enrich Pol II and associated nascent RNA. Before
adapter ligation, a kinase reaction phosphorylates the 5’ ends of the nascent
RNA fragments to gain strand-specific libraries.
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The library preparation step selects RNA fragments between 35 and 100

nucleotides, ligates the 5’ and 3’ sequencing adapter, produces cDNA, amplifies
the library, and performs sequencing using a paired-end HTS technology.

The standard protocol does not include UMI sequences or control mea-
surements to enable the removal of PCR duplicates and unspecific antibody
binding bias.

pro-seq and gro-seq The precision nuclear run-on sequencing (PRO-seq)
method, developed in 2016 [136], is the successor of the global run-on sequencing
(GRO-seq) method [39] with increased resolution.

PRO-seq isolates the nuclei and prevents Pol II from continuing transcription
by washing native nucleotides away. The stepwise addition of single biotin-
labeled nucleotides allows Pol II to pursue elongation with a single or few
labeled nucleotides. Next, nascent RNA is extracted, fragmented, and several
streptavidin pull-down steps purify labeled RNA. The 5’-cap is removed and
replaced by 5’ phosphorylation. The library preparation ligates the 5’ and 3’
sequencing adapter, produces cDNA, amplifies the library, and performs HTS.

GRO-seq performs the same steps with few differences. Pol II pursues
elongation in the presence of bromouridine. In the following enrichment steps,
antibodies directed against the bromouridine analog enrich the transcripts
of interest. Because elongation continues, the resolution is in the order of
tens of bases in contrast to the single-nucleotide resolution of PRO-seq [136].
Neither PRO-seq nor GRO-seq incorporates UMI sequences into their library
preparation.

HiChIP

If completely stretched, the DNA would be 2 m long [174], but it fits into the
tiny cell nucleus of human cells. Achieving such a dense structure without
losing functionality requires a specific chromatin structure where DNA is
associated with structural proteins that eventually form chromosomes. This
3D genome organization is tightly regulated [23].

To study the 3D genome, different experimental methods [126, 229] that
measure contact frequencies between different genomic loci exist. Most meth-
ods create hybrid molecules, which contain the genetic information of regions
with physical interaction. First, the 3D chromatin structure is stabilized by in
vivo crosslinking, followed by DNA digestion with restriction enzymes. The
DNA fragments near others are re-ligated and form hybrid molecules with
the genetic information of genomic loci that were in physical proximity at the
beginning of the experiment. The computational analysis identifies a putative
long-range interaction if DNA fragments occur from non-adjacent loci of the
original linear genomic sequence.
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Figure 2.3: Overview of the HiChIP Method. 1. Crosslinking of cells using formalde-
hyde. 2. Nuclei isolation and generation of in situ Hi-C contacts. Generation of Hi-C
contacts requires two steps. First, DNA digestion with a restriction enzyme leaves a
5’ overhang. Second, the 5’ overhang is filled with a biotinylated nucleotide residue
before re-ligation. 3. Dissolving the nuclei. 4. ChIP and streptavidin beads sequentially
enrich for Hi-C contacts marked with H3K27ac and biotin. 5. Transposase-mediated
on-bead library construction (not shown). 6. PCR amplification and paired-end se-
quencing.

Hi-C [126] is the most popular and comprehensive method, quantifying
all pairwise contacts in the genome using an enrichment strategy for hybrid
molecules, known as Hi-C contacts. Hi-C contacts incorporate biotin-linked
nucleotides during re-ligation. Those biotin-linked ligation junctions have a
high affinity towards streptavidin, which is used for their enrichment, followed
by paired-end HTS. Although widely used, Hi-C requires high sequencing
depths to understand the genome’s architecture at higher resolution.

Other methods focus on factor-directed [68, 159] or locus-specific [94] in-
teractions. HiChIP [159] combines in situ Hi-C together with chromatin im-
munoprecipitation (Figure 2.3) to enrich 3D contacts that are associated with
a protein of interest, such as CTCF, cohesin, or YY1 [159, 246]. Antibodies
directed against more general factors, such as Pol II and H3K27ac, enrich con-
tacts between actively transcribed regions, including regulatory interactions
between promoters and enhancers. In contrast to Hi-C, the HiChIP method
performs the sequencing library preparation with Tn5 transposase.

2.4.2 Long-read Sequencing

The major limitation of the HTS technologies is the short sequencing read
length between 50 to 300 bp. In 2011 and 2014, the companies Pacific Biosciences
of California, Inc. and Oxford Nanopore Technologies Limited (ONT) released their
first sequencers allowing long-read sequencing [2]. Although both methods
have become increasingly popular, this section focuses on ONT applied in this
study.
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Figure 2.4: Metabolic Labeling using 4-thiouridine. (A) The structural formula
(drawn with chemfig [226]) of uracil and 4-thiouracil, which are attached to a ribose
ring (residual R, not shown), known as uridine and 4-thiouridine. (B) Metabolic
labeling incorporates 4sU instead of uridine into RNA for newly transcribed RNAs.
The thiol-specific biotinylation, followed by magnetic pull-down, separates pre-existing
RNA from the labeled newly transcribed RNA.

ONT’s flow cells contain two compartments of ionic solutions separated by
a membrane with individual nanopores [97]. The constant voltage difference
between both compartments produces an ionic current measured by a sensor.
The sensor continuously monitors the changes in the ionic current produced
by the controlled passage of DNA or RNA molecules. Advanced machine
learning algorithms characterize and translate the current changes into long
sequences of nucleotides (Figure 14.1A).

The long-read length between 500 bp and 2.3 megabases [2] can facilitate
some applications, including assemblies, structural variants, and isoform iden-
tification [230].

2.4.3 Metabolic Labeling of RNA

Metabolic labeling of RNA, first applied in 2005 [28], allows the study of RNA
metabolism rates and transient transcriptomes genome-wide [87, 211, 235].
The integration of a tag during transcription, mostly the sulfur-containing
uridine analog 4-thiouridine (4sU, Figure 2.4A), enables the differentiation
between newly transcribed and pre-existing RNAs. Labeling duration varies
and depends on the specific application.
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Figure 2.5: Protein Degradation Strategies. The target protein is ubiquitinated (purple)
and proteasomal degraded. (A) The dBET6 drug induces pan-BET protein degradation.
(B) Proteolysis-targeting chimeras compound dTAG7 induces BRD4 degradation in the
K562 dTAG-BRD4 cell line. Degron tag consists of FKBP12F36V and human influenza
hemagglutinin-tag (HA-tag).

For the isolation of 4sU-labeled RNA, the thiol group is biotinylated and
separated with magnetic beads (Figure 2.4B). Other applications [87, 194, 208]
detect point mutations caused by the chemical conversion of 4sU into a cytosine
analog.

2.4.4 Protein Knockdown Strategies

The temporal or permanent loss of a protein is enforced in functional genomics
to identify protein functions. Standard techniques are gene knockout or knock-
down experiments that affect the respective protein-coding gene. Knockout
strategies produce genetically modified ineffective gene versions at the DNA
level. In contrast, most knockdown experiments reduce the gene’s RNA expres-
sion or translation, for example, using short complementary oligonucleotides
that block the gene transcription or RNA translation into a functional protein.

Although knockdowns are perceived compared to knockouts as transient,
effective protein reductions require treatment times of many hours or days.
Cells are dynamic systems capable of reacting to different environmental
changes, leading to cell adaptation and compensation effects that can mask
the direct protein functions.

Systems that avoid the shortcomings of long treatment times act at the
protein level within hours, such as small molecular inhibitors and targeted
protein degradation strategies [181], such as proteolysis-targeting chimeras [163].
Small molecular inhibitors bind competitively to the protein’s domain and
block domain-specific functions of a protein [59].

Proteolysis-targeting chimeras induce targeted protein degradation by the
cellular ubiquitin-proteasome system. The key idea is to use small bifunctional
molecules that transiently bring the target protein and an E3 ligase into spatial
proximity.
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The proximity leads to target ubiquitination and proteasomal degradation.
The following paragraphs introduce two degrader types applied in this study.

dBET6

The dBET6 drug contains two active domains and a linker [249], inducing
pan-BET protein degradation upon treatment (Figure 2.5A). On the one hand,
the degron binds BET proteins, including BRD2, BRD3, BRD4, and BRDT,
using an active domain structurally similar to JQ1 [59]. JQ1 is a small molecule
inhibitor that binds the bromodomains of BET proteins. On the other hand,
the active domain is structurally similar to thalidomide which binds the E3

ligase cereblon [205].

dTAG7

This study applies dTAG7 treatment for BRD4-specific degradation [163] in
a K562 dTAG-BRD4 cell line (Figure 2.5B). In contrast to dBET6, the dTAG
system requires the insertion of the degron tag FKBP12F36V in-frame with
BRD4 using a clustered regularly interspaced short palindromic repeats (CRISPR)-
Cas9-mediated locus-specific knock-in. The compound binds BRD4’s degron
tag and induces specific proteasomal degradation.
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C O M P U TAT I O N A L B A C K G R O U N D

This chapter introduces basic computational methods used to analyze HTS
data. The first part focuses on mapping and standard normalization strategies
essential for quantitative comparisons within or between samples. The second
part introduces the prerequisites for differential analysis of HTS data between
biological conditions. Finally, a method used for functional interpretation of
the results is presented.

3.1 mapping hts data

Section 2.4.1 describes short-read DNA sequencing which infers a sequence
of base pairs from a DNA fragment, known as sequencing read. Mapping a
sequencing library, which consists of millions of short sequencing reads, to
the reference genome and determining their pairwise sequence alignments is
crucial for processing HTS data. For a review on sequencing alignments, see
[52].

The main task of an alignment tool is to align a large set of relatively small
sequences (sequencing reads) to one large sequence (reference genome) with
high sensitivity and manageable computational resources. Different factors
make this process computationally intense. Typical for all HTS assays are
mismatches introduced by genetic variations and sequencing errors. Further-
more, a more specific challenge exists for transcriptomic data, where most
sequencing reads map to non-contiguous genomic regions caused by splicing
of the RNA [86].

Many different alignment tools emerged in the last decade [50, 119, 123].
The essential steps of most applications are listed below.

1. Building a reference genome index.

2. Searching for substrings (seeds) of the sequencing read in the reference
genome.

3. Performing a pairwise sequence alignment.

The step that mainly distinguishes memory and runtime usage is the data
structure used to build a reference genome index. A reference genome index
allows a fast lookup to considerably reduce the list of candidate alignment
locations. Modern tools such as Bowtie2 [119] or STAR [50] use either a FM-
index [57], which is based on the Burrows-Wheeler Transform [21], or a suffix-array
[139].

21
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Figure 3.1: HTS Data Example. Schematic representation of HTS data, where N
sequencing reads map to i ∈ {1, . . . , n} transcription units. The ci value represents the
sum of sequencing reads that map to transcription unit i.

No single alignment tool fits all applications. Choosing the right software
tool depends on individual conditions such as data type, library size, memory
resources, and available time. However, a general trend shows that STAR
is commonly applied for transcriptomic data, such as RNA-seq. In contrast,
Bowtie2 is more popular for genomic data, for example, from ChIP-seq experi-
ments. Both applications are respectively applied by the ENCODE consortium
pipelines [35] and performed well in a recent benchmark study [161].

3.2 normalizing hts data

After mapping, the sequencing reads are counted for regions of interest, such
as transcription units or the binned genome. For simplicity, the following
paragraphs will primarily refer to transcription units. However, all approaches
apply to the binned genome or other regions of interest. Next, the normaliza-
tion step corrects the HTS data for biases introduced by different sequencing
depths, region lengths, or both.

As schematically depicted in Figure 3.1 for an HTS sample, N sequencing
reads are distributed across n transcription units. The raw count ci reports
the sum of the sequencing reads assigned to transcription unit i ∈ {1, . . . , n}.
Previous studies introduced strategies to correct differences between HTS
samples because the length li of the transcription unit i and the number of
sequencing reads vary substantially within or between samples. Each strategy
calculates a scaling factor to correct the raw count value of ci. This section
explains common normalization strategies used in this study and highlights
their limitations and application situations using three mock replicate mea-
surements for demonstration purposes (Figure 3.2A). The transcription units
1, 2, and 3 are equally expressed within- and between samples but different
sequencing depths, transcript lengths, and outlier measurements mask this
ground truth. The raw counts of Sample B vary in sequencing depth, whereas
Sample C contains an outlier measurement for transcription unit 4. All types of
variations are typical differences in HTS replicate measurements.
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Figure 3.2: HTS Data Normalization. (A) The example contains the three mock repli-
cate measurements labeled as Sample A, Sample B, and Sample C from four transcription
units i ∈ {1, . . . , 4} with different lengths (li in kilobases (kb)). (B-F) Normalized count
values obtained after (B) RPM, (C) RPK, (D) RPKM, (E) TPM, or (F) RLE normalization.
Counts are reported in millions (mio) or thousands (tsd).
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3.2.1 Reads per Million

The most common normalization strategy corrects a sample for different
sequencing depths as the expected raw count of a transcription unit increases
with sequencing depth. The reads per million (RPM) normalization strategy
computes a “per million” scaling factor

αRPM =
1
N
· 106, (3.1)

which depends on the number of mapped sequencing reads N = ∑n
k=1 ck.

The normalized RPM value cRPMi of transcription unit i is calculated by
cRPMi = ci· αRPM. Figure 3.2B shows that the RPM normalized values of all
transcription units across Sample A and Sample B are equal because the ob-
served differences in the raw count data (Figure 3.2A) are proportional to the
sequencing depth differences. However, this strategy neglects the high variabil-
ity between transcript lengths and is unsuited for within-sample comparisons.

3.2.2 Reads per Kilobase

During the library preparation of most HTS experiments, each transcript is
fractionated into small pieces for sequencing. As long transcripts produce
more small pieces, the number of expected sequencing reads increases with
transcript length. In order to enable comparisons between transcription units
within a sample, the reads per kilobase (RPK) normalization strategy computes a
“per kilobase” scaling factor

αRPKi =
1
li
· 103 (3.2)

for each transcription unit i ∈ {1, . . . , n}, using the transcription unit length li.
The normalized RPK value cRPKi of transcription unit i is calculated by cRPKi =
ci· αRPKi . In Figure 3.2C, the RPK normalized values of the transcription units
1, 2, and 3 within a sample are equal because the observed differences in
the raw count data were proportional to the transcript length differences.
Although this normalization strategy accounts for different lengths among the
transcription units, it neglects sequencing depth differences and is not suitable
for comparisons between samples.

3.2.3 Reads per Kilobase Million

The reads per kilobase million (RPKM) normalization [157] strategy combined
the previously discussed methods, correcting differences in sequencing depth
and transcript length.
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The scaling factor

αRPKMi =
1

li· N
· 109 (3.3)

is computed for each transcription unit i ∈ {1, . . . , n}, where li reports the
transcription unit length and N the total number of sequencing reads that
map uniquely to the reference genome. The normalized RPKM value cRPKMi

of transcription unit i is calculated by cRPKMi = ci· αRPKMi .
Previous work from Wagner et al., 2012 [237] showed that the sum of

normalized values ∑n
k=1 cRPKMk is not relative to the RNA molar concentrations.

This problem is caused by the denominator N, the total number of mapped
sequencing reads, which has no biological interpretation but characterizes a
specific sequencing run. In the example (Figure 3.2D), the sum of normalized
counts in Sample C varies considerably compared to the remaining samples,
introducing inconsistencies that could cause inflated statistical significance
values in between-sample comparisons. A closely related alternative that is not
biased in this way is presented in the following paragraph.

3.2.4 Transcripts per Kilobase Million

The transcripts per kilobase million (TPM) normalization [237] strategy computes
the scaling factor

αTPMi = αRPKi ·
1

∑n
k=1 cRPKk

· 106 (3.4)

for each transcription unit i ∈ {1, . . . , n}, using the scaling factor αRPKi (For-
mula 3.2) and the sum of all RPK normalized values. The normalized TPM
value cTPMi of transcription unit i is calculated by cTPMi = ci· αTPMi .

Like the RPKM normalization strategy, the TPM values account for differ-
ences between transcription unit lengths and sequencing depths. However,
the sum of all normalized values ∑n

k=1 cTPMk is proportional to the relative
RNA concentrations [237]. In the example (Figure 3.2E), the sum of the TPM
normalized values is constant among all samples increasing reliability for
between-sample comparisons.

Notably, as shown for Sample C, one outlier measurement influences the
RPKM and TPM values across the sample (Figures 3.2D and 3.2E). For this rea-
son, methods that specialize in detecting significant changes between samples
apply more robust normalization strategies that are less sensitive to outlier
measurements, as described in the following paragraph.

3.2.5 Median-of-ratios

The median-of-ratios method, also referred to as relative logarithmic expression
(RLE), is implemented by DEseq2 [132].
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This method performs a joint normalization, considering n transcription unit
measurements from m samples. Therefore, the Cij value reports the sum of the
sequencing reads assigned to the transcription unit i ∈ {1, . . . , n} in sample
j ∈ {1, . . . , m}. The estimated scaling factor αj, known as the size factor, is used
to correct the count value CRLEij = Cij· 1

αj
and is calculated for each sample as

described below.

1. The normalization method computes a pseudo-reference sample

Cgeom
i =

(
m

∏
j=1

Cij

)1/m

, (3.5)

which contains the geometric mean values from the raw counts Cij of
each transcription unit across all samples.

2. For each sample j, the scaling factor

αj = median
i

Cij

Cgeom
i

(3.6)

represents the median of the ratios between observed data Cij and the
pseudo-reference sample Cgeom

i for all Cgeom
i ̸= 0.

In the depicted example in Figure 3.2F, the outlier measurement has no impact
on the calculated scaling factors, leading to a more robust normalization
strategy that correctly identifies no differences between all three replicate
measurements for most transcription units. This approach is unsuitable for
within-sample comparisons as no gene length correction is applied.

3.2.6 Reference-based Normalization

All previously described methods assume that the RNA molar concentrations
are constant across all samples. In practical application, this assumption does
not always apply. For example, perturbation experiments potentially influence
the total amount of RNA produced by the cells. In these cases, no normalization
strategy can detect global changes. Some HTS assays addressed this limitation
in the past by incorporating spiked-in controls into the experimental protocol
and analysis, for example, using material from another species [9, 170] or
synthetic ERCC spike-ins [99]. This alternative reference set is likewise biased
by the sequencing depth but contains the same RNA molar concentrations in
each sample, fulfilling the assumption of the normalization strategies.

As described in Section 3.2.5, the reference-based normalization calculates
the scaling factor α′j for each sample j ∈ {1, . . . , m} considering an alternative
transcription unit set i′ ∈ {1, . . . , n′} and the corresponding count value C′

i′ j.
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The resulting normalized value for transcription unit i in sample j is calculated
by C′

RLEij
= Cij· 1

α′j
.

The DEseq2’s estimateSizeFactors function performs reference-based normal-
ization if the controlGenes parameter specifies the alternative transcription unit
set.

3.2.7 Normalization of ChIP-seq data

ChIP-seq is an HTS assay that measures protein-DNA interactions and requires
dedicated control measurements for normalization. A more detailed expla-
nation of the experimental steps is available in Section 2.4.1. This paragraph
focuses on the fold-enrichment over matched input control and the Pol II-based
normalization strategies.

For a reference genome, divided into G equally sized buckets, cg and bg
report the sum of sequencing reads that map to the bin g ∈ {1, . . . , G} in
the sample and control experiment, respectively. The scaling factors αRPM
and α

′
RPM are derived from the sample and control experiment for RPM

normalization as described in Section 3.2.1.

fold-enrichment over matched input control The experimental
immunoprecipitation step introduces the classical bias of ChIP-seq experiments.
Systematic enrichment occurs from the unspecific binding of the applied
antibody. One of the first ChIP-seq studies [100] showed that this background
noise is not uniformly distributed across the genome but accumulates locally.
Therefore, a matched control measurement (input control) using either no or an
unspecific antibody is necessary to locally normalize the data and distinguish
the signal from background noise [118].

The fold-enrichment over matched input control (FE) normalization strategy [258]
is commonly applied if an input control is available. For each bin g ∈ {1, . . . , G}
in the reference genome,

FEg =
αRPM· cg

α
′
RPM· bg

(3.7)

reports the ratio of the RPM normalized read counts from the sample and the
input control experiment. This strategy is implemented in MAC2’s bdgcmp
function [258] using the -m FE parameter.

pol ii-based normalization Another more specialized normalization
strategy is required if the studied protein of interest depends on the occurrence
of another protein that is not constant across experiments.

One example is a Pol II-associated elongation factor that binds to the Pol II
elongation complex. Significant Pol II occupancy changes between experi-
ments influence the binding profile of the Pol II-associated elongation factor
dramatically.
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Therefore, a matched control measurement using an antibody directed
against total Pol II is necessary to locally normalize the data and distinguish
the sample signal from the underlying Pol II background signal.

If the factor is Pol II-associated and a matched Pol II data set is available,
the Pol II-based normalization was applied. For each bin g ∈ {1, . . . , G} in the
reference genome and the pseudo count of pc = 1,

logFEg = log
αRPM· cg + pc
α
′
RPM· bg + pc

(3.8)

reports the logarithmic ratio of RPM normalized read counts from the sample
and the Pol II control experiment. MAC2 [258] performed the normalization
using the bdgcmp function with the parameter -m logFE -p 1.

3.3 differential analysis for hts count data

Identifying changes between two biological conditions requires suitable sta-
tistical models that approximate the underlying data, estimate parameters
robustly, and detect relevant differences. Many methods use the negative bi-
nomial distribution to approximate HTS count data. This section defines the
negative binomial distribution and provides an overview of an application that
tests for significant differences between conditions.

3.3.1 Negative Binomial Distribution

The negative binomial distribution is a discrete probability distribution that
models the number of k failures before the r-th success occurs in a number
of independent Bernoulli trials [145]. The probability of a successful event is
denoted by p and must be 0 < p < 1. For a negative binomial distributed
random variable X ∼ NB (r, p), the probability mass function is defined as

Pr (X = k) =
(

k + r − 1
r − 1

)
(1 − p)k pr (3.9)

for the non-negative integers k and r.

3.3.2 DEseq2

The differential analysis identifies significant changes in count data across
biological conditions. The simplest model compares two conditions, such
as control vs. treatment. The two most popular methods that handle small
replicate numbers are DEseq2 [132] and edgeR [199].
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Both methods assume that the observed count data Cij for transcription unit
i ∈ {1, . . . , n} and sample j ∈ {1, . . . , m} was sampled from an underlying
negative binomial distribution [73] with

Cij ∼NB(µij, δ2
i )

µij =αjqij

δ2
i =µij + dispersioni· µ2

ij. (3.10)

The mean µij depends on the sample scaling factor αj (Section 3.2.5) and
the quantity qij, which is proportional to the mean number of sequenced
fragments. The dispersion parameter dispersioni and the mean µij are modeling
the variance δ2

i . Based on these assumptions, both methods fit a generalized
linear model with a logarithmic link

log2 qij =βo + xjβT, (3.11)

using the design matrix

xj =

0 if j is a control sample

1 if j is a treated sample
(3.12)

and the coefficients β0 and βT. The coefficient β0 reports the estimated
expression strength and βT the logarithmic fold change of gene i between
conditions. The main difference between DEseq2 and edgeR are estimations of
the scaling factors and dispersion values. Although both methods show a good
performance in benchmark studies [210], this section focuses on approaches
implemented by DEseq2, which are more popular than implementations in
edgeR (DEseq2: 33,352; edgeR: 12,904; Pubmed citation February 1, 2022).

scaling factor estimation The median-of-the-ratios method is applied
to identify the scaling factor αj for each sample j as described in Section 3.2.5.

dispersion estimation Estimating of the dispersion parameter
dispersioni is often unreliable due to the small number of replicate measure-
ments for one transcription unit i. Therefore, DEseq2 shares information and
assumes that transcription units with similar mean expressions have a similar
dispersion. First, the dispersion of a gene i is estimated using the maximum
likelihood estimation. Second, the approach fits a curve to the dispersion
estimates of all transcription units, referred to as the trend curve. Finally, the
method uses an empirical Bayes approach that shrinks the dispersion values
to the trend curve. The shrinkage strength is optimized and depends on the
sample size and the distance of the dispersion value to the trend curve.
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DEseq2 fits the parametric trend curve

dispersiontr(µ) =
a1

µ
+ a0, (3.13)

depending on the parameters a0, a1, and the normalized mean counts from all
transcription units, using the formula

µi =
1
m

m

∑
j=1

Cij

αj
. (3.14)

wald test For the estimated logarithmic fold changes βT, two hypotheses
are formulated for each transcription unit:

• H0 : βT = 0 , the null hypothesis, states that the logarithmic fold change
is equal to zero.

• H1 : βT ̸= 0, the alternative hypothesis, is the alternative to the null
hypothesis.

DEseq2 performs the Wald test [238], which calculates

W =
βT

SE (βT)
(3.15)

where SE estimates the standard error of βT. The resulting z-statistics are
compared to a standard normal distribution, resulting in P values. The Wald
test’s P values that pass the independent filtering step are adjusted for multiple
testing. Both approaches are described in the following paragraphs.

multiple test correction If a calculated P value is below a statistical
significance level, the null hypothesis is rejected, and the result is statistically
significant. After rejecting or accepting the null hypothesis, two types of errors
could appear. A type I error occurs if the null hypothesis is rejected when
it is actually true (false positive), whereas the type II error accepts a wrong
null hypothesis (false negative). The probability of a type I error is equal to
the significance level. Therefore, significance levels of 5% or lower are the
standard.

Although this probability is reasonably low for one test, the probability
of observing a type I error increases with the number of tests performed.
For example, if 10,000 transcription units are tested, 500 false positives are
expected. Multiple test correction is required instead of further decreasing the
significance level, which increases the type II error. DEseq2 implements an
interpretation of the Benjamini and Hochberg procedure [16] which controls the
false discovery rate (FDR) by adjusting the calculated P values for the number
of tests performed [83].
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1. All P values from n tests are sorted in ascending order, where Pi denotes
the P value of rank i ∈ {1, . . . , n}, with i − 1 of the P values being smaller
or equal to Pi.

2. The FDR adjusted p-value (padj) is defined as

padji =
n
i

Pi.

3. The FDR threshold f dr, with padji ⩽ f dr, controls the number of ex-
pected false positive classifications to the total number of tests with a
rejected null hypothesis.

independent filtering The independent filtering step aims to decrease
the number of performed tests by excluding transcription units with low mean
sequencing read counts. Therefore, DEseq2 considers only transcription units
with a normalized mean count above an identified cutoff. First, independent
filtering estimates a function that reports the number of significant hits depend-
ing on potential cutoffs. In this approach, the quantiles of the mean sequencing
read counts. Second, the approach fits a curve to the data. Third, the cutoff is se-
lected, maximizing the number of significant hits within one residual standard
deviation [71]. This approach is valid only if the filter criterion is independent
of the actual test statistic, in this case, because the average expression over all
samples does not consider the biological conditions.

3.4 gene ontology term enrichment analysis

Typically, the differential analysis results in a list of transcription units report-
ing significant changes between conditions. The following step aims to link
the results with prior knowledge and potentially gain new insights, such as
an unknown process or function. This downstream analysis may include a
gene ontology (GO) enrichment analysis which characterizes the identified set
of transcription units. For this purpose, the GO consortium [37] developed
a comprehensive database collecting knowledge regarding the functions of
genes and their protein products. Each GO term contains a list of genes as-
sociated with the corresponding molecular function, cellular component, or
biological process. The aim is to test if the list of deregulated genes from an
omics experiment showed an over-representation for one or more of these GO
terms. Different tools exist [72, 153], where most

• build a contingency table for each GO term,

• perform a Fisher’s exact test [61], and

• correct the calculated P values for multiple testing, for example, by using
the described Benjamini and Hochberg procedure (Section 3.3.2).
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For a differential analysis that tested n genes, A + C were differentially ex-
pressed. Out of n genes, A + B are associated with the GO term of interest. D
denotes the number of tested genes that are neither differentially expressed
nor associated with the respective GO term. The corresponding contingency
table (Table 3.1) summarizes these observations.

differential not differential total

not GO term A B A + B
GO term C D C + D

total A + C B + D n = A + B + C + D

Table 3.1: Contingency Table for GO Enrichment Analysis.

The one-tailed Fisher’s exact test calculates the exact P-value to identify an
over-represented GO term, with

P =
A

∑
j=0

H (j, A + B − j, A + C − j, D − A + j) , (3.16)

using the hypergeometric distribution

H (a, b, c, d) =
(a+b

a )(c+d
c )

(a+b+c+d
a+c )

, (3.17)

for all a, b, c, d ⩾ 0 with non-negative integers.
PANTHER [153] is one of many tools performing over-representation analy-

sis. The web application curates an additional GO-slim annotation database
(GO-slim), containing only broader parent terms to facilitate the interpretabil-
ity.
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This multi-omics study analyses material obtained from public databases,
unpublished data from the Mayer laboratory, and external collaborations.
This section provides an overview of all materials used and collaborators’
contributions.

HTS Data

This study contains various published and unpublished HTS assays, planned
and conducted by

• Mirjam Arnold (MRA),

• Nicole Eischer (NE),

• Susanne Freier (SF),

• Dr. Olga Jasnovidova (OJ),

• Dr. Andreas Mayer (AM),

• and Bruno Reversade’s laboratory.

Table B.1 lists all datasets and the corresponding experimental biologist that
created the dataset using the previously listed acronym. The Max Planck
Institute for Molecular Genetics sequencing facility performed the sequencing.
Dr. Olga Jasnovidova developed the HiS-NET-seq and nascONT-seq methods.
Dr. Andreas Mayer developed SI-NET-seq with input from Mirjam Arnold.
Furthermore, the study reanalyzed published ENCODE [35] and GEO [54] data
from external laboratories, including Bernstein, Bradner, Farnham, Graveley,
Lis, Pavri, Schwalb, Shilatifard, Snyder, and Stamatoyannopoulos.

Databases and Software

Table B.2 and Table B.3 list databases and software applications used for this
work. Not listed were application dependencies. The data processing pipelines
for NET-seq and nascONT-seq were established and updated in collaboration
with Martyna Gajos.

33



34 materials and contributions

Cell Line and Degradation

This study analyzed data from different cell lines, including K562, K562 dTAG-
BRD4, NIH 3T3, MOLT4, HCT116, THP-1, mouse primary activated splenic B
lymphocytes, and primary fibroblast cells from patients.

Mirjam Arnold generated the K562 dTAG-BRD4 cell line from human K562

cells. The cell line expresses a tagged (dTAG) [163] version of BRD4 from its
endogenous locus (Section 2.4.4). A more detailed description of the CRISPR/-
Cas9 genome editing experiment is available in the corresponding publication
[7]. Members of the Reversade laboratory collected the primary fibroblasts
cells from patients.

Proteomic Data

Mirjam Arnold planned, conducted, and analyzed all mass spectrometry exper-
iments. Related figures in this study emerged from combining and visualizing
the already processed data tables from Arnold* and Bressin* et al. 2021 [7].

Western Blot

Mirjam Arnold planned, conducted, and created all western blot experiments
and corresponding figures.

Illustrations

The Figures 2.5B, 11.3A, 15.3B, 15.6A, A.5A-A.5B, 15.4A, 15.4B-A.11B, A.13A-
A.13B, A.13C, A.18, and A.19A-A.19B were used from the Molecular Cell
Arnold* and Bressin* et al. 2021 [7] publication with minimal re-arrangements,
font type and size adaptations. The Figures A.24A-A.24C and A.25A-A.25B
were used from the EMBO Molecular Medicine Nabavizadeh* and Bressin* et
al. 2023 [162] publication with minimal re-arrangements, font type and size
adaptations.

* equal contribution
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M O T I VAT I O N

The human NET-seq approach is a high-resolution Pol II profiling method
that purifies nascent RNA transcripts and performs ultra-deep sequencing of
3’ ends with 100-200 million sequencing reads [146]. However, the published
Pol II profile [148], investigating lowly transcribed regions, was derived from a
library with approximately 766 million sequencing reads. Studying these lowly
transcribed regions is of increasing interest for some research questions, but
the required sequencing depth is unsuitable for most potential applications in
functional genomics.

Example analyses that would benefit from an improved Pol II coverage are
listed below.

1. Sample intense comparative studies with several replicate measurements
between different conditions.

2. Identification, description, and comparison of lowly transcribed regions,
such as enhancers and 3’ ends of active genes.

3. Elongation rate calculations of Pol II at individual genes.

These studies demand adjustments to the human NET-seq method that en-
riches nascent RNA more effectively and results in higher Pol II coverage.
Therefore, a systematic investigation of NET-seq library compositions is re-
quired. Identifying potential limitations helps the collaborating scientists in the
laboratory to implement the necessary steps required to improve the protocol.

HTS assays, including NET-seq, contain multiple experimental steps that sys-
tematically enrich or deplete library fragments for technical reasons, referred
to as biases. These biases, if unrecognized, skew the analysis and interpretation
of the data. Previous publications started to identify biases introduced during
the library preparation steps of the human NET-seq method [69, 148] (Section
2.4.1). Establishing a data processing pipeline that systematically removes
all potential biases and summarizes our current knowledge is essential for
studying Pol II transcription reliably.

Independent of optimization efforts in data processing, less obvious biases
could escape detection. For NET-seq, where no suitable control experiments
exist, the systematic comparison with other high-resolution Pol II profiling
methods potentially enables additional insights. Distinguishing between gen-
eral Pol II features and NET-seq-specific observations allows the identification
of potential artifacts that require caution when being interpreted.
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Additionally, the systematic comparisons between those approaches require
suitable methods. Because the Pol II distribution across genes is not uniform,
previous studies developed Pol II-describing indices that compare Pol II occu-
pancy during different elongation stages. However, new indices are needed to
investigate and characterize less studied transcriptional stages, such as Pol II
termination.

Complying with these specifications requires appropriate adjustments in the
experimental NET-seq protocol, processing steps, and the development of com-
plementary approaches to describe Pol II distributions. This part summarizes
the corresponding methods and results derived from this motivation.
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M E T H O D S

This chapter describes how this study defines basic genome features such
as actively transcribed genes and enhancer regions. Furthermore, the section
presents the newly implemented and improved human NET-seq data process-
ing pipeline to extract Pol II occupancy profiles. Finally, indices that describe
Pol II occupancy are characterized.

6.1 identifying active transcription units

6.1.1 Active Genes

Actively transcribed genes were identified for each cell type and represented
a subset of all genes from either human v28 or mouse M18 GENCODE an-
notations [67]. A gene was classified as active if transcript levels appeared in
the corresponding RNA-seq experiments above a defined threshold. Table B.4
summarized the analyzed cell types and their corresponding RNA-seq data.
The following steps describe the approach in more detail.

1. RSEM v1.3.1 [122] quantified the number of transcripts produced by
each gene and isoform in single-end or paired-end mode using the STAR
v2.5.3a [50] alignment tool.

2. The genes with a TPM ≥ 1 (Section 3.2.4) were selected.

3. The last step refines GENCODE’s annotation based on active gene iso-
forms by identifying the first and last active TSS and polyA site. An
active gene isoform contributed at least 10% to the overall gene activity.

Gene Types

GENCODE’s v28 biotype annotation classifies the protein-coding, micro RNA,
snRNA, and snoRNA gene classes for human genes. Genes with lincRNA
or antisense biotype annotation were merged and renamed long non-coding
RNAs (lncRNAs). Genes coding for histone proteins were defined as a subset
of protein-coding genes and identified using the HUGO Gene Nomenclature
(ID: 864) [177].
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6.1.2 Active Enhancers

Actively transcribed enhancer units were identified for the K562 and MOLT4

cell lines from annotated FANTOM5 enhancers [36]. Data sets were extracted
from the HACER [239] database, which reported cell-type-specific FANTOM5

enhancer units and initiation sites identified by NRSA [240]. Because FAN-
TOM5 did not list the MOLT4 cell line, a similar cell type Jurkat was selected
instead. Both cell lines are from immortalized human T lymphocyte cells to study
acute T cell leukemia.

6.2 processing his-/net-seq data

The human NET-seq method captures chromatin-associated RNA and requires
computational steps to derive a genome-wide quantitative Pol II occupancy
track. For a detailed description of the corresponding experimental steps,
see Section 2.4.1. This section focuses on a new implementation and refined
pipeline version [7, 69] to obtain Pol II occupancy tracks from human NET-seq
data, which was first described in Mayer et al., 2015 [148].

If not stated otherwise, data processing steps were implemented in Python
using Snakemake v6.8.0 [156], Biopython v1.78 [32], pysam v0.16.0.1 [77] and
NumPy v1.20.2 [82]. Table B.5 reports the parameter settings of the applied
tools.

After sequencing, the obtained sequencing reads consisted of the UMI
sequence (six or ten nucleotides) followed by the RNA fragment (Figure 6.1A).
The first nucleotide after the UMI corresponded to the 3’ end of the purified
RNA. For small RNA fragments, sequencing reads may harbor segments of
the reverse transcriptase primer, which were identified and trimmed using
cutadapt v3.4 [143].

Starcode v1.1 [261] collapsed identical fragments sharing the same UMI
sequence to one consensus read, removing PCR amplified sequencing reads.
Next, the 5’ read ends, corresponding to the UMI sequence, were trimmed,
but the sequence information remained associated with the sequencing read.
The obtained sequencing read fragments were aligned to the human reference
genome (GRCh38.p12) [67] using the STAR aligner v2.7.3a [50] (Figure 6.1B).

Potential artifacts occur if the reverse transcriptase primer binds to a com-
plementary DNA region instead of the DNA linker (Figure 6.1C). The received
reverse transcriptase artifacts contained no DNA linker, and, hence, no random
UMI was sequenced. The custom python script identified and removed a se-
quencing read when the UMI corresponded to the genomic sequence adjacent
to the aligned sequencing read.

As NET-seq purifies all chromatin-associated RNAs with a 3’-hydroxyl
group, computational data processing includes in silico masking of loci from
abundant non-nascent RNA species.
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Figure 6.1: Scheme of NET-seq Data Processing.
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Systematic bias occurred at active splice sites where sequencing reads
mapped to the 3’ most nucleotide position of annotated introns and exons
(GENCODE v28 [67], Figure 6.1D). Therefore, the next step masked these
regions to exclude RNA intermediates produced during RNA splicing, such as
the intron lariat, a by-product of splicing [86].

Furthermore, Bedtools v2.29.2 [185] was applied to mask suspect regions
originating from other sources than Pol II (Figure 6.1E), including:

• transcribed regions of RNA polymerase I and RNA Polymerase III,

• chromatin-associated RNA species (Table B.6), and

• blacklisted regions from ENCODE [35].

Finally, the pipeline records the positions corresponding to the 3’ ends of
purified RNA fragments for uniquely mapped sequencing reads (Figure 6.1F).
The 3’ end mapping position is associated with the occupancy of one Pol II
molecule because the enzyme’s active center was catalyzing transcription at
the corresponding nucleotide before transcription was interrupted.

A NET-seq experiment results in genomic tracks covering the positive and
negative strands of the entire genome. The orientation of the mapped sequenc-
ing read determines if Pol II originates from the positive or negative strand
(Figure 6.1F). Each genomic track reports a series of count data correspond-
ing to the number of polymerases observed at a nucleotide position for a
certain number of cells. Because transcription initiation occurs at different
rates and elongation is a discontinuous process, Pol II occupancy signals vary
substantially among nucleotides. The highest signals are observable at nu-
cleotide positions where Pol II spends more time on average. These nucleotide
positions are also known as Pol II pausing sites.

6.3 pol ii indices

This section defines indices and approaches to compare Pol II occupancy
systematically at specific transcriptional stages measured between conditions or
different high-resolution Pol II profiling methods. The indices provide region-
specific information simplifying the interpretation of potentially observed
variations between measurements compared to standard correlation analyses.
The promoter-proximal maximum pausing position and pausing index characterize
features of promoter-proximal pausing, whereas the termination zone length
and the average transcription termination distance describe the Pol II termination
process (Figures 6.2A-6.2D).

These indices are defined based on an exemplary transcription unit, with
the genomic coordinates of the transcription start site tss and the polyA site pa.
The transcription unit localizes on the positive strand for notation simplicity,
with tss < pa.
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Figure 6.2: Definition of Pol II Indices. Visual representation of the (A) promoter-
proximal maximum pausing position, (B) pausing index, (C) termination zone length, and
(D) average transcription termination distance.

However, indices are likewise calculated for transcription units on the neg-
ative strand with few adaptations. Furthermore, each score depends on the
Pol II occupancy track Occ generated in Section 6.2 for human NET-seq. The
Occg value reports the Pol II occupancy measurement from the positive strand
at the genomic position g, defined for all reference genome positions.

6.3.1 Promoter-proximal Maximum Pausing Position

Section 2.2.2 of this thesis introduces the concept of Pol II promoter-proximal
pausing. Localization of the maximum Pol II signal in the promoter-proximal
region can be used with other measurements to compare the properties of
promoter-proximal pausing between samples. Therefore, the promoter-proximal
maximum pausing position (MP) is defined as

MP = arg max {Occtss+1, Occtss+2, . . . , Occtss+a0} , (6.1)

where arg max reports the position with maximum signal in the region of size
a0 = 500, resulting in a score between 1 ⩽ MP ⩽ a0 (Figure 6.2A).



44 methods

6.3.2 Pausing Index

Various indices were introduced in previous publications [160, 191, 254] to
describe the ratio of Pol II in the promoter-proximal and gene-body regions.
This study defines the pausing index (PI) as

PI =
∑tss+a1

k=tss Occk · 1000
a1

∑
pa
k=tss+a1

Occk · 1000
pa−tss−a1

, (6.2)

with a promoter-proximal region length of a1 = 300 (Figure 6.2B).
The numerator and denominator report the RPK (Section 3.2.2) normalized

Pol II occupancy in promoter-proximal and gene-body regions. Transcription
units with PI > 1 harbored more Pol II per nucleotide in the promoter-
proximal compared to the gene-body region. Therefore, a high PI index indi-
cated distinct promoter-proximal pausing.

6.3.3 Termination Zone Length

The termination zone of a transcription unit, also known as the termination
window [211], informs about the region where Pol II termination likely occurs.
This study defines the termination zone as the genomic region between the
polyA site pa and the termination end site (TES) tes = pa + TZ, which depends
on the termination zone length (TZ). The termination zone length is calculated by

TZ = v · w, (6.3)

using the bin size w = 1, 000 and bin number v, which is derived from the
number of consecutive bins downstream of the pa with RPM normalized
Pol II occupancy above the threshold thr = 0.2 (Figure 6.2C). In other words,
the length of the termination zone describes the distance between the polyA
site and the genomic coordinate where the Pol II signal dropped below the
threshold for the first time. The maximum value of v is selected, with

zw

∑
k=(z−1)·w

Occpa+k· αRPM ⩾ thr, ∀z ∈ {1, . . . , v} , (6.4)

using the calculated scaling factor αRPM (Section 3.2.1). In order to avoid
spillover effects, the termination zone could not span other transcription units
and ended at least 1.5 kb upstream of the following active TSS.

6.3.4 Average Termination Distance

The termination zone length gives only limited insights into the distribution of
Pol II in this region.
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Figure 6.3: Calculation of Meta-gene Profiles and Heatmaps. The scheme shows
heatmap visualization of RPM normalized Pol II occupancy measurements at n regions
of length l. Each row reports measurements of one region. In contrast, each column
reports the signals at one position across all regions. The profile represents the average
measurements across all regions at the individual positions.

An additional score is required to summarize Pol II occupancy between the
polyA site and the TES. The average transcription termination distance (ATD)
calculates the weighted distance of Pol II to the polyA site, with

ATD =
∑TZ

k=0 αRPM·Occpa+k · k

∑TZ
k=0 αRPM·Occpa+k

, (6.5)

using the scaling factor αRPM (Section 3.2.1) and the previously defined ter-
mination zone length TZ (Figures 6.2C and 6.2D). However, the score was only
calculated if no other transcription unit overlapped the region up to 5 kb
downstream of the polyA site.

6.4 meta-gene profiles and heatmaps

Alternative to the previously defined indices, a popular method to study
Pol II occupancy in regions of interest are meta-gene profiles and heatmaps
[15, 105, 227]. The meta-gene profile is computed for a set of n regions with
constant regions length l = endi − sti and the genomic start (sti) and end (endi)
coordinates, where sti < endi for all i ∈ {1, . . . , n}. For this set,

Mip = Occsti+p· αRPM (6.6)

reports the RPM normalized Pol II occupancy at position p ∈ {1, . . . , l} in
region i. The meta-gene profile at position p reports with

hp =
1
n

n

∑
i=1

Mip (6.7)

the average signal of all regions.
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In this work, the regions are derived from actively transcribed genes of
the human GENCODE annotation (v28) [67] as described in Section 6.1.1.
DeepTools2 [190] calculated and visualized the values of hp and Mip as meta-
gene profiles and heatmaps, as shown in Figure 6.3.

As outliers skewed the calculated value of hp considerably, deepTools2

removed all regions i that showed

Mip ⩾ maxThr (6.8)

for one or more p ∈ {1, . . . , l} using the parameter --maxThreshold maxThr. The
outlier threshold (maxThr) was calculated for each sample and represented
the 99.99-th percentile value of the signals in Occ in most analyses.
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7.1 extracting reliable pol ii occupancy data

Human NET-seq requires different computational data processing steps to
extract a genome-wide Pol II occupancy track. This study implemented an ad-
vanced version of the data processing pipeline based on previous publications
[146, 148]. First, the pipeline mapped the sequenced reads of a NET-seq experi-
ment to the human reference genome. The mapping followed the sequential
removal of PCR duplicates, reverse transcription artifacts, and splicing inter-
mediates (Figure 6.1 and Section 6.2). To correct the presence of the sequencing
reads from RNA polymerase I, RNA polymerase III, and abundant RNA in the
sample, the pipeline excluded sequencing reads mapped to loci transcribed
by other RNA polymerases or chromatin-associated RNAs (Table B.6). Then,
the genomic coordinate of each sequencing read’s last 3’ end nucleotide was
extracted and summed up in a Pol II occupancy profile.

This work tested the NET-seq processing pipeline using published NET-seq
data from a human cell line, HeLa S3 (GSE123980 [148]). The resulting tracks
(Figure 7.1A) showed strand-specific Pol II coverage over the whole genome
at single-nucleotide resolution. The stringent removal of PCR duplicates (8%),
splicing intermediates (<1%), and reverse transcriptase artifacts (not shown <
1%) reduced the number of informative Pol II sequencing reads only marginally
(Figure 7.1B). A high fraction of sequencing reads were not aligned to the
human reference genome (17%) or originated from sn/snoRNA genes (35%).
The fraction of sequenced sn/snoRNAs increased by 16% after changing to
another human cell line, K562 (OJ01, unpublished, Figure 7.1B). A critical
step in removing the abundant sn/snoRNAs from NET-seq libraries was
the subtractive hybridization performed during library preparations (Section
2.4.1). These observations indicated a less effective depletion of sn/snoRNAs
without cell line-specific design of hybridization oligonucleotides and hence
less effective enrichment of nascent RNAs.

7.2 optimizing pol ii enrichment efficiency

The Pol II enrichment efficiency describes the fraction of sequencing reads with
a unique mapping position at Pol II transcribed loci. Previous observations
reported a low Pol II enrichment efficiency of 7-8% in HeLa S3 and 3% in K562

(Figure 7.1B). The limited enrichment efficiency decreased the measured Pol II
coverage and forced deep sequencing of target samples.

47
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Figure 7.1: Adaptation of Human NET-seq in the K562 Cell Line. The figure shows
the human NET-seq method in the HeLa S3 cell line for two biological replicates
(R1 and R2). (A) Visual representation of sense (purple) and antisense (red) Pol II
occupancy at single-gene examples. Data is RPM normalized (Section 3.2.1). (B)
Fraction of sequencing reads mapping to Pol II transcribed regions (chromosomal and
not listed in Table B.6), sn/snoRNA genes, or no locus (unmapped). Sequencing reads
are, if possible, further classified into uniquely mapped (red), PCR duplicates (dark
gray), splicing intermediates (gray), or without unique mapping position (light gray).
The statistics show data from HeLa S3 and K562.
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Comparative studies that require several replicates for different biological
conditions would lack coverage under these circumstances.

Different optimizations improved the enrichment efficiency sequentially.
The analysis showed no unique mapping position in the human reference
genome for most small sequencing read fragments (Figure A.1A). Future
experiments adjusted the size selection steps of the NET-seq protocol, and only
RNA fragments with a minimum size of twenty nucleotides were selected for
sequencing to decrease the number of unmapped sequencing reads.

Furthermore, short UMI sequence lengths could lead to collisions, where
two RNA fragments obtain the same UMI sequence by chance despite be-
ing independent observations. AmpUMI [29], a software that calculates the
expected number of UMI collisions, reported an expected 1-2% loss of in-
formative Pol II sequencing reads due to the insufficient six nucleotide UMI
sequence length (Figure A.1B). Implementation of a more extended ten nu-
cleotide UMI sequence decreased the number of expected collisions to < 0.6%
among informative Pol II sequencing reads.

New NET-seq data (OJ08 and OJ26, unpublished), which implemented these
optimizations, reduced unmapped sequencing reads fractions from 18% to 5%
(Figure A.1C). PCR duplicates decreased overall by 21% and among the Pol II
sequencing reads by 4%. Although the optimizations doubled informative Pol II
sequencing reads in K562 cells from 3% to 6%, the overall Pol II enrichment
efficiency remained low. A possible explanation was the increased sequencing
of sn/snoRNA transcripts by 8%. This analysis identified extensive sequencing
of sn/snoRNA as the primary challenge for efficient Pol II enrichment in the
human NET-seq protocol.

7.3 increasing coverage with the his-net-seq method

Neither cell line-specific subtractive hybridization strategies in HeLa S3 nor
their implementations in K562 removed chromatin-bound sn/snoRNAs ef-
fectively. For this reason, a new NET-seq method incorporated an additional
enrichment step that combined the original cell fractionation approach with
metabolic labeling. This new high-sensitivity NET-seq approach, named HiS-
NET-seq, was based on the original NET-seq protocol [146].

First, HiS-NET-seq (Figure 7.2A) labeled newly synthesized RNAs using
the uridine analog 4sU (Section 2.4.3). Next, two RNA purification steps were
performed, including cell fractionation and enrichment of 4sU-labeled RNAs.
The cell fractionation isolates chromatin and associated RNA, whereas 4sU-
labeled RNA enrichment excluded unlabeled mature RNAs. The 4sU labeling
approach replaced the subtractive hybridization step of the original protocol.
Finally, the method performs library preparation and 3’-end sequencing.



50 results

Figure 7.2: Overview of the HiS-NET-seq Method. (A) The uridine analog, 4-
thiouridine (4sU), labels newly synthesized RNAs for 10 minutes. Rapid chromatin
isolation and 4sU selection purify engaged Pol II and the associated RNAs. The 3’
ends are ligated to a DNA linker containing a mixed random sequence (10 nucleotides,
blue) which serves as a UMI. (B-C) Pairwise comparisons of Pearsons’s correlation
between NET-seq, HiS-NET-seq, and the corresponding control experiment without
4sU labeling calculated for Pol II occupancy across (B) actively transcribed genes
(n=11,149) and at (C) individual nucleotides (n=98,208,993). Data is median-of-ratios
normalized (Section 3.2.5).
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Figure 7.3: Pol II Coverage Gain using 4sU Labeling. Depicted are optimized NET-
seq, HiS-NET-seq, and the respective control experiments without 4sU labeling in the
human cell line K562. (A) Fraction of sequencing reads mapping to Pol II transcribed
regions (chromosomal and not listed in Table B.6), sn/snoRNA genes, or no locus in
the human reference genome (unmapped). Sequencing reads are, if possible, further
classified into uniquely mapped (red), PCR duplicates (dark gray), splicing intermedi-
ates (gray), or without unique mapping position (light gray). (B) Visual representation
of RPM normalized (Section 3.2.1) sense (purple) and antisense (red) Pol II occupancy
at single-gene examples.
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HiS-NET-seq used adjusted reverse transcriptase and PCR primers [75] to
avoid PCR amplification of reverse transcriptase artifacts during the library
preparation as tested and described in a previous NET-seq protocol variant
[69].

The new method was tested in K562, comparing HiS-NET-seq experiments
with 10 minutes of 4sU labeling and purification with control experiments
without metabolic labeling (0 min: OJ90, OJ91; 10 min: OJ92, OJ93, unpub-
lished). Compared to standard NET-seq, the 4sU labeling replaced the step of
subtractive hybridization. The Pol II signal intensities measured at active genes
and single-nucleotides across biological replicates were highly reproducible, as
indicated by Pearson’s correlation coefficients of at least 0.95 (Figures 7.2B and
7.2C). Notably, the correlation analysis revealed high correlations between stan-
dard NET-seq (OJ26) and HiS-NET-seq at actively transcribed genes (Pearson’s
correlation coefficient: r=0.85-0.86, Figure 7.2B). However, the Pol II distribu-
tion at the individual nucleotides was more distinct in HiS-NET-seq compared
to NET-seq approaches without metabolic labeling (Figure 7.2C). A possible
explanation was the 19-fold increase of nucleotides, covered by at least one
Pol II molecule.

After 10 minutes of 4sU labeling, enrichment efficiency increased from
4% to 37%, mainly due to pronounced reductions of sequenced transcripts
from sn/snoRNAs by 45% (Figure 7.3A). Pol II occupancy coverage gain
was observable at single-gene examples such as PRPF38B and MYC (Figure
7.3B). HiS-NET-seq purified Pol II-related nascent RNA more effectively than
previous NET-seq protocols. Improved enrichment led to a better signal-to-
noise ratio and, depending on the sequencing depth, resulted in better Pol II
coverage, decreased sequencing costs, or both.

4sU Selection Bias

Which biases were introduced by 4sU labeling and enrichment? The number of
unique sequenced fragments, known as library complexity, increased by 1.7%
(Figure A.2A), and the median length of mapped RNA fragments decreased
by two nucleotides (Figure A.2B). 4sU selection led to a slight decrease in the
uracil frequency of 1% (Figure A.2C). A potential explanation for a decline
in sequenced uracil nucleotides was an increased conversion rate of uracil to
cytosine (Figure A.2D), likely caused during PCR amplification by the 4sU
analog. The high conversion rate (A>G and T>C) of 14% was similar to another
study [87]. Labeling and purification of RNA with 4sU had only minor impacts
on overall RNA library features.

7.4 identifying method independent pol ii occupancy features

Pol II tracking at high resolution across the human genome has been a central
objective for decades to study Pol II transcription and regulation.
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However, the mostly applied ChIP-seq method fails to identify the fine struc-
ture of Pol II genome transcription due to limited resolution, low coverage,
and a low signal-to-noise ratio. Furthermore, ChIP-seq does not differentiate
between sense and antisense transcription. New methods addressed these prob-
lems and provided strand-specific and high-resolution genome-wide Pol II
data. The critical differences between methods were enrichment strategies,
bias control, and resolution (Table B.7). This section compares Pol II ChIP-
Rx (GSE158965 [7]) with the more recently developed Pol II tracking meth-
ods, including HiS-NET-seq (OJ92, OJ93), human NET-seq (OJ26), PRO-seq
(GSM1480327 [38], Section 2.4.1), and mNETseq (GSE123980 [80], Section 2.4.1).

New methods, such as qPRO-seq [103] and SNU-seq [151], were excluded
from the benchmark because the preprints were neither complete nor peer-
reviewed. Other methods, such as GRO-seq [39] and TT-seq [211], were not
considered for the following reasons. GRO-seq is the precursor of PRO-seq
but does not provide single-nucleotide resolution. TT-seq [211] performed no
3’ end sequencing but measured transcripts produced in a given time. The
resulting data does not correspond to Pol II occupancy. This section compares
the similarities and differences of Pol II distribution measured by different
methods, focusing on HiS-NET-seq.

Correlation

Pol II occupancy at actively transcribed genes showed high Person’s correlation
coefficients among PRO-seq, HiS-NET-seq, and human NET-seq (r ⩾ 0.81,
Figure 7.4A). For those methods, the measured transcriptional activity of Pol II
was comparable and reproducible. Pol II ChIP-Rx signal likewise correlates
with the previously listed methods, although correlation coefficients were lower
(r ⩾ 0.6, Figure 7.4A). Surprisingly, mNET-seq data sets were distinct, showing
low correlation with other high-resolution methods (r = 0.42-0.57) and Pol II
ChIP-Rx (r < 0.18). All methods showed strikingly low correlations between
methods considering individual nucleotides (Figure 7.4B). Notably, mNET-
seq correlation values were additionally low among replicate measurements
(r = 0.42). The results imply method-dependent differences in measured Pol II
occupancy at single-nucleotide resolution.

Pol II Distribution

What are the systematic differences between the discussed methods? To an-
swer the question and identify features of Pol II transcription, several Pol II-
describing indices were applied or developed (Section 6.3), including promoter-
proximal maximum pausing position, pausing index, termination zone length, and
average termination distance.

A pronounced property of Pol II transcription during early elongation is
promoter-proximal pausing (Section 2.2.2).
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Figure 7.4: Correlation Between Pol II Profiling Methods. Pairwise comparisons of
Pearson’s correlation between ChIP-Rx, PRO-seq, HiS-NET-seq, NET-seq, and mNET-
seq, calculated for Pol II occupancy across (A) actively transcribed genes (n=11,149)
and at (B) individual nucleotides (n=98,208,993). ChIP-Rx data was measured using a
Pol II subunit 2 (RPB2) antibody and excluded for the single-nucleotide analysis. Data
is median-of-ratios normalized (Section 3.2.5).
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One feature describing this stage is the promoter-proximal maximum pausing
position (MP), revealing the distance between TSS and the strongest Pol II
signal in the promoter-proximal region. The median maximum signal occurred
80-81 (HiS-NET-seq), 87 (NET-seq), 106 (PRO-seq), and 151-166 (mNET-seq)
nucleotides downstream of the annotated TSS (Figure 7.5A). Notably, mea-
surements by mNET-seq are not consistent with the trend observed by other
methods (Figure 7.5A).

The pausing index (PI) measured the transition from early to productive
elongation [160, 191, 254], which describes the proportion of Pol II in the
promoter-proximal vs. gene-body region. A high pausing index indicates pro-
portionally stronger signals in the promoter-proximal areas. HiS-NET-seq and
human NET-seq report higher median indices for active genes than PRO-seq
and mNET-seq (Figure 7.5A, PI: 9-13 (HiS-NET-seq), 11 (NET-seq), 5 (PRO-seq),
and 6-9 (mNET-seq)). The same trend was observable in meta-gene visualiza-
tions where average profiles summarize the Pol II occupancy over thousands
of genes (Figure 7.5B and Section 6.4). Interestingly, PRO-seq, which does
not measure stalled or arrested Pol II [136], showed the weakest promoter-
proximal signal indicated by a comparably low median pausing index and Pol II
occupancy in the respective area (Figures 7.5A and 7.5B).

The average Pol II occupancy around exon splice sites in gene-body regions
was also method-dependent. HiS-NET-seq and NET-seq identified pausing
around 5’ and 3’ splice sites. In contrast, PRO-seq shows no such pausing
patterns (Figure 7.5B). The most intense signal occurred at 5’ splice sites
detected by mNET-seq.

This study developed two new indices for the identification of termination
features. Both the termination zone length (TZ) and average termination distance
(ATD) described Pol II occupancy downstream of the polyA site. The TZ
describes the region length with Pol II coverage where termination potentially
occurs, in contrast to the ATD, which considers the distribution of Pol II in
the respective region relative to the polyA site. All methods showed variable
TZ with a median length of 4.8-4.9 (HiS-NET-seq), 3.8 (NET-seq), 7 (PRO-seq),
and 3.9 kb (Figure 7.5A). A previous study identified a similar termination
window with a median length of 3.3 kb using TT-seq [211]. However, the
average distance between Pol II and the polyA site was considerably closer
(Figure 7.5A, ATD: 1.7-1.9 (HiS-NET-seq), 1.6 (NET-seq), 2.3 (PRO-seq), and
1.4 kb (mNET-seq)).

Finally, all methods show bidirectional transcription at K562 enhancers
annotated by FANTOM5 [36] (Figure 7.5B and Section 6.1.2).

Overall, most Pol II profiling methods show similar trends and features
of Pol II transcription. However, this analysis also identified considerable
discrepancies at single-nucleotide positions, including pausing site positions.
These differences are highly relevant and should be considered in models and
interpretations that concern, for example, pausing positions.
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Figure 7.5: Comparison of Pol II Profiling Methods. Considered are actively tran-
scribed non-overlapping (TSS to pA + 5 kb) protein-coding/lncRNA genes (n=8,124)
with a minimum gene length of 1 kb and FANTOM5 [36] annotated enhancers
(n=6,313) in human K562 cells. (A) Distributions of several indices describing Pol II
transcription at genes (Section 6.3). (B) Mean Pol II occupancy for individual nu-
cleotides at indicated regions, including exon regions (n=53,575). Excluded were exons
that appeared first or last in a transcript and regions with signal outliers above the
99.99-quantile. Data is RPM normalized (Section 3.2.1). Masked were TSS, 3’ splice site
(SS), 5’ SS, and polyA sites for HiS-NET-seq and NET-seq.
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The human NET-seq method belongs to a group of experimental procedures
that emerged over the last decade to track Pol II occupancy with high resolution
across the human genome. These methods revealed new insights into Pol II
distribution and regulation at different transcriptional stages [250].

The results presented in this part summarized the computational data pro-
cessing steps and identified the advantages and limitations of human NET-seq.
Investigation and optimization efforts resulted in HiS-NET-seq, a new method
that resolved NET-seq’s limitations by combining metabolic labeling and
cell fractionation. Furthermore, a comprehensive benchmark analysis system-
atically compared Pol II distribution across established methods, revealing
HiS-NET-seq as an alternative to standard NET-seq and other high-resolution
Pol II profiling methods.

Confirming earlier findings [148, 249], the updated human NET-seq data
processing pipeline identified and removed potential biases introduced during
library preparation, including PCR duplicates, splicing intermediates, and
reverse transcriptase artifacts. A new data processing step masks chromatin-
associated RNAs and exposes to which extent NET-seq purifies these RNAs,
especially sn/snoRNAs (Figure 7.1B). Previous work [148, 249] classified most
of these transcripts as PCR duplicates and masked their source of origin. This
observation emerged as a critical finding, provoking adjustments and changes
in the experimental procedures.

The resulting HiS-NET-seq approach offers higher Pol II coverage by en-
riching recently synthesized 4sU-tagged RNAs, increasing Pol II-associated
nascent RNA levels obtained after cell fractionation (Figure 7.3A). Sequenced
libraries showed no composition or characteristic differences from standard
NET-seq libraries (Figure A.2). The new method shared most Pol II occupancy
features with NET-seq, PRO-seq, and mNET-seq (Figures 7.5A and 7.5B).

In a preprint [151], another research group recently described a similar
method named SNU-seq, which combines 3’-RNA sequencing and 4sU labeling.
In contrast to HiS-NET-seq, SNU-seq does not perform cell fractionation,
limiting the purification of nascent RNA. Instead, SNU-seq enriches for polyA
sites of mature RNAs, which will be of interest to other types of studies.

57
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Furthermore, a direct comparison of HiS-NET-seq and other Pol II profiling
methods revealed three advantages.

1. Computational processing steps and library preparation prevent or re-
move biases more effectively than other methods. The improved library
preparation, described in Gajos et al. [69], reduced the number of se-
quenced artifacts produced by reverse transcriptase. Consistent with
the results from published simulations [29], extending UMI sequences
from six to ten nucleotides improved in silico depletion of the remaining
artifacts (Figure A.1C). Most of the currently available and analyzed high-
resolution Pol II data sets [39, 136, 169] incorporate no UMI sequences for
bias correction, limiting their application in quantitative studies (Table
B.7). Furthermore, HiS-NET-seq lacks artifacts introduced by unspecific
antibody binding during immunoprecipitation, which is often present
but overlooked by other Pol II profiling methods [27, 169, 182].

2. HiS-NET-seq showed the best reproducibility at single-nucleotide resolu-
tion for methods providing replicate measurements (Figure 7.4B). Low
variability among replicates is advantageous for comparative studies,
improving sensitivity and decreasing the demand for many replicate
measurements [210].

3. The improvement of Pol II coverage reveals transcription at lowly tran-
scribed loci. For example, HiS-NET-seq data revealed more pronounced
bidirectional transcription at enhancers (Figure 7.5B) than the other meth-
ods, despite its 5-10 times lower sequencing depth.

Together, the listed advantages present HiS-NET-seq as a quantitative, repro-
ducible, and sensitive method that will serve as a promising complementary
approach to measure Pol II occupancy in the future.

The main difference between the considered methods was the Pol II pausing
signal intensity and position in the promoter-proximal region and near splice
sites.

Notably, the promoter-proximal maximum pausing position varied for most
methods between 80-106 nucleotides downstream of the TSS (Figure 7.5A),
which was further downstream than the initially observed 30-60 nucleotides
in fly cells [117] or the 20-60 nucleotides observed in K562 [228]. Interestingly,
the latter performed single-molecule nascent RNA sequencing, allowing the
estimation of the individual distance to the transcription initiation site for each
molecule. In contrast, the analysis presented in this study used a constant
reference point for each gene defined as the first annotated TSS above a thresh-
old (Section 6.1.1). Therefore, this study applied the index for comparisons
between the methods but likely overestimated the actual pausing position
distances to the initiation sites.
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The Pol II pausing signal around intron and exon boundaries was absent in
PRO-seq data but observable for HiS-NET-seq, NET-seq, and mNET-seq (Figure
7.5B) as likewise described in the respective publications [148, 169]. mNET-seq
initially reported these trends in datasets where the C-terminal domain of
Pol II was serine five phosphorylated but not for the total population of Pol II.
Further investigations revealed that the applied antibody was biased towards
specific modifications, including Pol II with serine five phosphorylation [6].
Therefore it remained unclear whether pausing at splice sites was a technical
artifact of the NET-seq approaches or a natural biological phenomenon. Further
experiments and analyses are necessary to address this question.

HiS-NET-seq successfully addressed the main limitations of the original
protocol and maintained the initially observed Pol II transcription features of
NET-seq. Nevertheless, the labeling and selection of 4sU added additional steps
to the NET-seq protocol, which increased the time investment and material
costs. Additionally, it remains questionable if the HiS-NET-seq method captures
arrested Pol II. Following up on this question could be of interest for future
studies.
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M O T I VAT I O N

One central aim of functional genomics is to identify transcription factors and
their regulatory impact on gene regulation. The regulatory function can be
revealed when the system is challenged, for example, by an induced pertur-
bation from a knockout, knockdown, mutation, treatment, or disease model.
Combined with HTS methods, such as human NET-seq, the comparative anal-
ysis identifies the relevant biological differences between the measurements of
a control experiment and the perturbation.

Most studies identify Pol II deregulation by comparing meta-gene profiles
and Pol II describing parameters across experimental conditions [15, 105,
227, 249]. However, these methods are unsuitable for systematic comparisons,
which require robust statistical methods to differentiate between technical and
biological differences.

For extensively studied HTS assays, such as RNA-seq [132, 199] or ChIP-seq
[221], robust and broadly tested methods emerged that are commonly applied
in differential studies [210]. Applying these methods to other HTS assays
requires careful adaptation considering method-specific characteristics and
potential limitations. Essential for a successful and reliable differential analysis
is to compare the data with the underlying model and test if assumptions used
for normalizations and parameter estimations can be transferred or require
adaptations. The following part introduces two NET-seq case studies to test
comparative approaches, intending to identify a suitable strategy for NET-seq.

Recently, increasing attention was drawn to approaches that allow, in con-
trast to standard HTS methods, the detection of genome-wide uniform changes
between conditions [26, 99, 134, 170]. The importance of detecting these uni-
form changes further emerged with newly developed protein degradation
systems that rapidly degrade essential proteins of cells (Section 2.4.4), likely
violating the normalization assumptions of most comparative analyses.

New RNA-seq protocols incorporate commercially available references that
can be used for normalization to address this limitation [99]. However, the
company explicitly developed the references for RNA-seq experiments and did
not recommend their adaption for other HTS assays. The following part demon-
strates the limitations of comparative analyses and investigates strategies that
enable NET-seq to detect global changes between conditions.

63
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The NET-seq method was applied in two studies to measure Pol II occupancy
changes between different conditions. The first study was a collaboration with
the laboratory of Bruno Reversade, director of the A*STARs Genome Institute
of Singapore and the Institute of Molecular and Cell Biology. The second study
evolved from collaborating with Georg Winter, principal investigator at the
Research Center for Molecular Medicine of the Austrian Academy of Sciences. This
chapter introduces the datasets and the respective projects briefly.

The NET-seq measurements for both studies were variations of the original
NET-seq method, named spike-in NET-seq (SI-NET-seq), used explicitly for
quantitative comparisons between samples. Section 11.2.2 describes the new
variant in detail. However, to highlight the difference between NET-seq and SI-
NET-seq, this section keeps referring to the method as NET-seq if the spiked-in
references were not considered for data normalization.

osteogenesis imperfecta The clinical case study investigates five chil-
dren from two distantly related families in Jordan with a congenital syndrome
of osteogenesis imperfecta (OI), severe developmental delay, and neonatal proge-
ria. OI affects one in 15,000-20,000 births, caused by a collagen protein type I
mutation in 85-90% of all cases [66]. Other genetic causes involve proteins that
interact with collagen and affect post-translational modification or folding [65].
Collagen proteins of type I are the most abundant proteins in bones, skin, and
extracellular matrices [66]. The five severely-affected children suffered from
a complex phenotype, with growth retardation, short stature, multiple bone
deformities, and lipodystrophy. Lipodystrophy is a disorder in which the body
cannot produce and maintain healthy fat tissue.

Furthermore, the patient displayed neonatal progeria with translucent and
wrinkled skin. Other symptoms were acrogeria, premature depigmentation of
sparse hair, and pediatric cataract. The genetic cause of the severe syndrome
was unknown. The study performed polyA-enriched RNA-seq and SI-NET-seq
(GSE197118 and GSE197119, unpublished) to gain insights into the functional
consequences of the unknown genetic variant. For this study, the collaborating
laboratory extracted primary fibroblast cells from two homozygous patients
(V1, V5), one heterozygous healthy parent (IV2), and unrelated healthy individ-
uals (polyA-enriched RNA-seq: WT1 and WT2; NET-seq: WT). The cells from
each individual were processed according to the respective experimental pro-
tocol, with one and two replicate measurements for RNA-seq and SI-NET-seq,
respectively.

65
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pan-bet protein degradation The second data set evolved from a
previous study [249] which investigated the regulatory function of BET proteins
in the MOLT4 cell line, a human T cell line from a 19-year-old man with
acute lymphoblastic leukemia. The study developed the drug dBET6 (Section
2.4.4), an optimized chemical degrader that rapidly eliminates BET proteins
in two hours or less, used for potential clinical applications. Furthermore,
the degrader allows studying the regulatory role of BET proteins on Pol II
genome transcription. Different HTS assays suggested that BET proteins act
as master regulators of productive transcription elongation. Published data
show global reductions in mRNA levels and serine-2 phosphorylated Pol II
over gene-body regions. The result of the NET-seq assay was ambiguous as
the increased pausing index suggested either increased pausing in promoter-
proximal areas, the reduction of productive elongation at gene-body regions,
or both. To investigate quantitative changes in these regions, Pol II changes
between control (DMSO) and pan-BET protein degradation (dBET6) samples
were compared after two hours of treatment using two replicate measurements
of SI-NET-seq, respectively (GSE158963, [7]).
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11.1 identifying genome-wide pol ii deregulation

The statistical comparison of NET-seq data measured at different genomic
regions needs to account for the characteristics of the count data and the low
number of replicate measurements. NET-seq count data at actively transcribed
genes (Section 6.1.1) showed classical overdispersion where variance exceeds
the mean values (Figures 11.1A and A.3A) in the two example datasets intro-
duced in the last section. Previous studies showed that the negative binomial
distribution (Section 3.3.1), which allows the variance of a gene to depend on
the mean and the dispersion parameter, performs well with HTS count data
[73]. Established tools for the differential analysis of count data build negative
binomial generalized linear models with a logarithmic link (Equation 3.11) to
identify logarithmic fold changes between conditions. DEseq2 [132], the most
popular tool, applies such a model to count data, in this case to NET-seq Pol II
counts from gene regions. A considerable advantage of using this tool was
the more robust estimation of scaling factors and gene-wise dispersion values
to solve the generalized linear models. The combined application of DEseq2

and NET-seq data with the proposed adaptations discussed in this section is
referenced as differential Pol II occupancy (DPO) analysis.

Normalization

Independent of the underlying biology, sequencing depths vary between NET-
seq samples, making a direct comparison impossible. Different normalization
strategies (Section 3.2) exist to remove sequencing depth bias. All normalization
strategies assume that the absolute amount of total fragments in each cell was
similar across the conditions [132, 157, 199, 237]. The simple RPM library size
normalization was unsuited for NET-seq data (Figures 11.1B and A.3B) as few
highly abundant genes biased the normalization factor considerably (Figures
11.1C and A.3C). DEseq2 computes scaling factors for each sample, referred
to as median-of-ratios (Section 3.2.5), which were more robust towards outliers.
This approach successfully removed bias introduced by different sequencing
depths from the OI data set (Figure A.3D). However, the degrader treatment of
the second data set violates the normalization assumption of DEseq2 as pan-
BET protein degradation potentially influences the overall amount of nascent
RNA produced in the cell. Hence, the normalization did not have the desired
effect (Figure 11.1D) and potentially led to unreliable results, as discussed and
shown later.
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Dispersion Estimation

The generalized linear model assumes that the measured count value of a gene
was sampled from a negative binomial distribution, modeled by the mean
and variance parameters. However, reliable estimation of both parameters
requires more than two replicate measurements for each condition. DEseq2

shares information across genes with similar mean expressions to estimate the
dispersion parameter directly related to the variance. As described in Section
3.3.2, a curve representing the trend of the estimated dispersion values to the
mean expression was fitted to the data. The shrinkage step fitted the estimated
dispersion values to the trend curve. DEseq2 uses a parametric approach for
the estimation, which results in a good fit from the observed dispersion values
in the OI NET-seq study (Figure A.3E). The trend curve overestimates the dis-
persion for many genes in the pan-BET protein degradation experiment (Figure
11.1E). However, the more flexible local regression [30] visually improved the
trend curve calculated for the pan-BET protein degradation experiment (Figure
11.1F). Besides the visual inspection, the median absolute deviation [200]

MAD = median
[∣∣Xi − X̃

∣∣] (11.1)

quantifies the performance between the estimated dispersion values Xi and
the trend curve X̃, which should be close to zero. The local regression method
decreased the MAD by 38% for the pan-BET protein degradation experiment
(Figure 11.1F). However, it had only marginal effects in the OI study (Figure
A.3F). This result suggests that the parametric approach was unsuitable for
some NET-seq data sets where local regression performed better, as shown for
the pan-BET protein degradation data that favored the local regression methods
to estimate the trend curve. Adjusting the method for dispersion estimation
was a critical optimization step that positively influenced the sensitivity of the
differential analysis as shown in Section 11.3.

log2FC and p-values

The remaining steps of the differential analysis, including estimating the
generalized linear model coefficients, hypothesis testing using the Wald test,
independent filtering, and multiple test correction, were performed as recom-
mended and described in Section 3.3.2. Finally, this analysis considered genes
with padj below 0.05 as significantly deregulated.

The number of genes with Pol II occupancy changes varied from 3.5%
in the OI patients to 37.1% after pan-BET protein degradation (Table 11.1).
For pan-BET protein degradation, the observed results were unexpected and
questioned. Previous work [249] observed a global reduction of transcription
levels in the same cell line and identified BET proteins as major transcriptional
regulators.
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Figure 11.1: Parameter Estimation for Differential Analysis using Pan-BET Protein
Degradation Data. Considered are non-overlapping genes (n=11,799, TPM > 1). The
experimental design includes the control experiment (DMSO) and two hours of BET
proteins degradation (dBET6) measured by NET-seq with two replicate measure-
ments in MOLT4 cells. (A) Scatter-plot shows the log10 transformed dependency
between variance and gene average. The diagonal is marked in red. (B, D) Hierarchical
clustering of Euclidean distance measured between (B) RPM and (D) median-of-ratios
normalized samples. (C) RPM normalized Pol II occupancy at genes. Marked are
the top 5 expressed genes. (E, F) Scatter-plot shows the dependency of the estimated
log-transformed dispersion and the normalized mean expression (black). Marked are
the trend curve (red) and final dispersion parameters after shrinkage (blue), using (E)
the parametric or (F) local regression method.



70 results

Osteogenesis
imperfecta (OI)

pan-BET
protein

degradation

Genes* 11,185 11,112

Up-regulated 147 (1.3%) 2,290 (20.6%)
Down-regulated 239 (2.1%) 1,833 (16.5%)

total 386 (3.5%) 4,123 (37.1%)

Table 11.1: Differential Analysis with Default Normalization. * Includes all genes
that pass the independent filtering step of DEseq2.

The observed trend with NET-seq, where most genes showed no or raised
Pol II occupancy changes, did not align with prior knowledge. A potential
explanation was the applied normalization of DEseq2. The scaling factors were
potentially not meaningful because the experiment violated the normalization
assumption. As described in Section 3.2.6, DEseq2’s normalization strategy
assumes that each cell’s absolute amount of total fragments was similar across
the conditions. Therefore, DEseq2 generally provides no reliable default nor-
malization in disease models or treatments that potentially influence global
levels of genome transcription.

11.2 using reference cells for new net-seq variants

Are global changes detectable with genome-wide approaches? In practice,
uniform changes can be detected in RNA-seq [134, 249] or ChIP-seq data [9,
26, 170], if experimental designs incorporate external controls, also known as
spike-ins. For RNA-seq, synthetic ERCC RNA spike-ins [99] create standard
baseline measurements with identical concentrations across samples. Due
to a lack of reliability and complexity, these baseline measurements are not
optimal for normalization [196]. However, only spike-in controls detect global
changes if they are precisely incorporated and considered in the computational
analysis [26, 134]. Unfortunately, the ERCC spike-ins were unsuited for NET-
seq experiments, which perform 3’-end sequencing.

ChIP-Rx [170] solved this problem by incorporating an exogenous refer-
ence genome from fly cells into each sample for normalization. The ratios of
untreated fly cells in each sample were identical, which allowed the reference-
based normalization on fly observations exclusively. As humans and flies are
distant evolutionary species, cross-mapping was low. However, processing
cells from two distantly related species in parallel is challenging. Experimental
conditions optimized for one species, here human cells, are often unsuitable
for other species, here fly. For example, antibodies with ChIP quality rarely
recognize proteins in human and fly cells, except for highly conserved proteins,
such as histones.
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Adapting the human NET-seq protocol to a generalized NET-seq protocol,
suitable for human and fly cells, would be challenging due to significant
experimental differences, such as cell culture conditions, media, temperature,
cell fractionation, and other steps. In contrast, the NET-seq protocol can process
cells from humans and Mus musculus (mouse) in parallel without protocol
adaptations. This section discusses the advantages and disadvantages of the
NET-seq adaptation, SI-NET-seq, which applies whole-cell spike-ins from the
mouse for data normalization.

11.2.1 Studying a Joint Reference Genome from Human and Mouse

Is a differentiation between sequencing reads from mouse and human cells
possible? The last common ancestor of humans and mice lived approximately
90 million years ago. Since then, independent genetic changes (mutations) have
accumulated, resulting in about 60% nucleotide divergence [244]. However,
protein-coding regions share higher similarities of 36-100%, with an average
value of 85% [138]. A valid question that emerged from these numbers was
if applications that map sequencing reads to genomic loci could separate the
pooled transcripts from human and mouse cells after sequencing.

Most important for an independent reference normalization was low cross-
contamination of sequenced reads from human cells, mapping to the mouse
genome. To quantify these events, available NET-seq (OJ26) and HiS-NET-seq
(OJ92, OJ93) datasets from human K562 cells were sequentially mapped to
different references. First, to the human reference genome, and second, to
a joint reference genome which consists of the human and mouse reference
genomes (changed chromosome names, Figure 11.2A). On average, 0.6% of
all sequenced human sequencing reads were incorrectly assigned to a unique
mapping position in the mouse genome using the joint reference genome
(Table B.8 and Figure 11.2A). This number decreased on average to 0.38%
after the NET-seq pipeline performed standard filter processing steps. Data
normalization accounts for observations within actively transcribed regions
which excluded sequencing reads mapping to the extragenic regions. These
steps resulted in 0.07% and 0.2% incorrectly assigned human sequencing reads
to the mouse genome using NET-seq and HiS-NET-seq data, respectively (Table
B.8).

Furthermore, ambiguous sequencing reads, defined as reads with more than
one potential mapping position, likely increase due to the high similarity of
orthologous sequence regions. Between 29-47% of sequencing reads mapped
uniquely to the human reference genome contained at least one valid map-
ping position in the mouse genome (Figure 11.2B). The alignment tool, STAR
(v2.7.3a) [50], correctly assigned most sequencing reads to the human genome
using a joint reference genome with a negligible fraction wrongly assigned to
the mouse genome (Figures 11.2A and 11.2C).
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Figure 11.2: Cross-contamination of a Joint Reference Genome from Human and
Mouse. The figure shows sample statistics for NET-seq (purple) and HiS-NET-seq
(green) measured in the human cell line K562. (A) The fraction of uniquely mapped
sequencing reads for the human reference genome and the combined human and
mouse reference genomes. Colors indicate the fractions mapping to mouse (orange) or
human (gray). (B) Set of sequencing reads with unique mapping positions in humans
and at least one valid mapping position in the mouse genome. (C) The alignment
tool assigned ambiguous sequencing reads to the mouse (orange) or human (gray)
reference genome. Unassigned sequencing reads (white) have no unique mapping
position due to the similarity of the two genomes. (D) Number (#) of mismatches in
alignments of ambiguous sequencing reads mapping to human (gray) and mouse
(orange). (E) Mapping position of unassigned ambiguous sequencing reads.
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Although the alignment tool mapped many sequencing reads to both species,
the average sequence alignment with the human reference genome contained
2.7 mismatches less compared to the mean mouse alignment (Figure 11.2D).
This difference made a correct assignment feasible for most sequencing reads.
Overall, only a fraction (17.5%) of potentially ambiguous sequencing reads
did not map to a unique position, resulting in an average loss of 3.3% from
all sequenced reads (Figure 11.2C). Most of these sequencing reads originated
from sn/snoRNA transcripts (Figure 11.2E), an evolutionarily ancient group of
non-coding RNAs with conserved functions [111]. Sn/snoRNA transcripts were
highly abundant at the chromatin and excluded during processing steps of the
HiS-/NET-seq pipeline. Subsequently, the joint reference genome decreased
the number of informative sequencing reads marginally by 0.24% and 0.76% for
NET-seq and HiS-NET-seq, respectively. The respective analyses suggest low
cross-contamination from human to mouse or ambiguity effects introduced by
the combined processing of sequenced reads from both species.

11.2.2 SI-NET-seq

For comparative analyses where uniform changes are possible or likely, a
new NET-seq variant with mouse cell spike-ins was developed, referred to
as SI-NET-seq (Figure 11.3A). This method added NIH 3T3 mouse cells in
a specific ratio to the samples (6:1) before continuing with cell fractionation.
Adding the exact proportion of cells was critical for normalization and required
precision. The method assumes that Pol II occupancy at spiked-in mouse cells
was identical across samples. Next, the new protocol variant processed the
cell mixes from both species according to the initial NET-seq protocol [146],
including cell fractionation, 3’ adapter ligation, production of cDNA, PCR
amplification, and sequencing. Hence, data normalization using observations
from spike-in controls does not only correct for different sequencing depths
and global RNA composition changes but potentially for more complicated
technical variations that may occur during the library preparation.

Processing Data with Spike-In Controls

Section 6.2 describes the data processing pipeline of NET-seq that was likewise
used for SI-NET-seq with a few adjustments that consider the mouse genome.
The mapping step uses a joint reference from the human (GRCh38.p12) and
mouse (GRCm38.p6) [67] genomes. Furthermore, the adaptation removes splic-
ing intermediates from both species using the GENCODE v28 and M18 [67]
annotations. Next, contaminating RNA species from Table B.6 and blacklisted
regions from ENCODE [35] were masked in the human and mouse genomes.
Eventually, the human and mouse observations are separated, resulting in a
human and mouse Pol II occupancy data set for each sample.
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Figure 11.3: Results of DPO Analysis using SI-NET-seq Data. (A) Schematic view of
SI-NET-seq. *: The y axis shows the Pol II occupancy before (dashed) and after (solid)
normalization. (B) Hierarchical clustering of Euclidean distance measured between
non-overlapping spike-in normalized genes (n=11,799) for the control experiment
(DMSO) and after two hours of pan-BET protein degradation (dBET6) in MOLT4

cells. The scaling factors were calculated from mouse gene observations (n=12,997).
(C, D) Pol II occupancy changes (log2) identified with SI-NET-seq in (C) OI data
from primary fibroblast cells of patients (n=9,807) and (D) after two hours of pan-BET
protein degradation in MOLT4 cells (n=11,095). Significant occupancy changes (padj
< 0.05) are depicted in blue and red. (E) Integrated analysis of significant (p-value <
0.05 ) REACTOME pathways [76] identified by deregulated genes of OI patients from
polyA-enriched RNA-seq and SI-NET-seq data sets.
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The Pol II occupancy in untreated mouse cells should be similar across all
samples and was used for data normalization.

adaptations to his-net-seq The HiS-NET-seq protocol implemented
the same adaptations to allow comparative studies between conditions. Due
to handling difficulties with whole-cell spike-ins, the new protocol variation
pools the samples after cell fractionation with labeled nascent RNA from NIH
3T3 mouse cells (8:1). For this reason, HiS-NET-seq with spiked-in mouse
material can not correct for different efficiencies in cell fractionation.

The following part of this study analyzed HiS-NET-seq data with spiked-in
mouse material. If not stated otherwise, this protocol variant, incorporating
mouse material for normalization, is the default.

11.3 detecting global changes with reference-based

normalization

With one substantial modification, both SI-NET-seq data sets were re-analyzed
with the DPO analysis, as described in Section 11.1. The DPO analysis cal-
culated the scaling factors based on gene count measurements from mouse
observations for each sample as described in Section 3.2.6. This approach led
to a correct clustering of normalized count data for both data sets, which was
not observed with other normalization strategies considering human genes
in the pan-BET protein degradation experiment (Figures 11.3B, 11.1B, and
11.1D). Active mouse genes had roughly the same complexity as human genes,
including many actively transcribed genes with variations in gene length and
nucleotide composition. This complexity was a considerable advantage for nor-
malization over synthetic ERCC spike-ins that lack complexity and variation
used in RNA-seq experiments.

With an padj of 0.05 or less, deregulated genes slightly decreased to 3.2% for
OI data (n=312, Figures 11.3C and A.4A) but increased to 73.2% after pan-BET
protein degradation (n=8,124, Figures 11.3D and A.4B). Interestingly, the local
regression strategy for dispersion estimation improved the number of detected
genes by 5.4%. The quality check showed only a few genes in the mouse
genome with significant changes, which revealed an average specificity of
99.8% (Figures A.4C and A.4D). Therefore, the reference-based normalization
strategy improved the test considerably for the pan-BET protein degradation
experiment.

The number of significant genes identified with traditional normalization
and spike-in controls did not change remarkably for OI data. This observation
implies that the unknown disease-causing mutation did not affect global Pol II
distribution but a specific set of genes.
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The high fraction of genes identified with both normalization methods (54%)
and high correlation of estimated fold changes (r=0.998) suggested that spike-
in normalization can be applied in different situations, including the standard
application without an underlying uniform change. In this case, the spike-in
normalization was more conservative than the standard normalization.

The next step compared the SI-NET-seq results with differentially expressed
genes measured by polyA-enriched RNA-seq data. Surprisingly, the two meth-
ods identified only a small number of twenty-one genes in both differential
analyses. Although different deregulated gene sets were detected, both meth-
ods detected similar biological pathways affected by the syndrome. Deregu-
lated genes affected pathways of the extracellular matrix and collagen synthesis
significantly (Figure 11.3E). This result explained the similarities of the pa-
tient’s phenotype with the described OI syndrome caused by a direct collagen
mutation.

For pan-BET protein degradation, the identified global reduction of Pol II
gene transcription (Figures 11.3D and A.4B) was consistent with the results
from the previous study [249] and confirmed the essential regulatory role of
BET proteins on Pol II transcription. Although pan-BET protein degradation
showed a general genome-wide reduction of Pol II, different features such as
gene length or gene classes were associated with a more pronounced response
(Figures A.4E and A.4F).

Overall, the proposed method provides a practical approach for compar-
ing high-resolution Pol II data across conditions concerning individual gene
regions or changes in other regions of interest.
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D I S C U S S I O N

Several comparative genome-wide transcription studies investigating protein
functions, such as BET proteins [45, 249], failed in the past because they did
not integrate experimental procedures that allow reliable and quantitative data
analyses.

In order to avoid the same problems, this part implemented computational
and experimental steps to perform comparisons between Pol II occupancy data.
The DPO analysis enables the robust and quantitative analyses of NET-seq
data and reports significant changes at individual genomic regions genome-
wide. Two new protocol variants, SI-NET-seq and HiS-NET-seq, used spike-ins
from mouse cells, which proved essential for comparative studies that violated
traditional normalization assumptions. The spike-in controls and the adjusted
testing strategy were successfully applied in two studies and revealed new
insights into a disease mechanism and Pol II elongation control.

The application of human NET-seq in Winter et al., 2017 showed that pre-
vious optimization efforts to gain quantitative data, such as incorporating
UMI sequences [148], remained ineffective when a biological condition caused
global amplification or depletion of Pol II transcription. The underlying as-
sumption of most commonly applied normalization strategies [132, 157, 199,
237] requires that most observations do not change between conditions. In
practice, missing potential uniform changes is a considerable limitation of
most transcription studies [26, 170] that requires adjusting the experimental
design and the computational analysis of the respective methods.

Previous publications solved this problem by using cross-species references
for normalization but avoided cells from closely related species [170, 262]. This
study shows that despite a high genetic similarity between the human and
mouse genome, cross-mapping from one to the other species was neglectable
(Section 11.2.1). Baluapuri et al., 2017 [9] came to a similar conclusion and used
mouse cells for cross-species normalization in an adjusted ChIP-Rx protocol.

Unfortunately, this study could only assess cross-contamination from human
to mouse but not vice versa due to missing NET-seq data originating from
mouse cells. However, bias potentially introduced from mouse transcripts did
not change between conditions and had no impact on the results or conclusions
from comparative analyses of this work. As a result, the spike-in approach
identified global changes between conditions, which was essential to avoid
misinterpretation in one of the two case studies.
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The similar behaviors of mouse NIH 3T3 and human K562 cells during
lysis allowed parallel processing without intense optimizations of the NET-seq
protocol. Overall, this study highlights the benefits of this approach, justifying
the increased computational and experimental complexity introduced by the
spiked-in mouse cells.

Next, changes in Pol II occupancy were identified at individual gene regions
using the DEseq2-based DPO analysis. Previous studies performed similar tests
with other Pol II profiling methods but not NET-seq [18, 262]. Adaptation of
dispersion and normalization estimation were essential to achieve meaningful
results and improve test sensitivity.

Why was the region-wise comparison between conditions beneficial? Most
studies with high-resolution Pol II occupancy data and different treatment
conditions report their results with meta-gene profiles of samples at the regions
of interest [15, 105, 227]. Although this approach has several advantages, meta-
gene plots fail to identify specific deregulated genes. This lack of resolution
challenges the data interpretation if no global changes occur, as shown in
Figure A.4A vs. Figure A.4B. In contrast, the DPO analysis considered each
gene separately and allowed downstream enrichment- or correlation analyses.
Many developed methods and databases that interpret these types of results
and identify enrichments prove the effectiveness of this general approach
(Section 3.4) [72, 76, 153].

Furthermore, meta-gene profiles can be disproportionally biased by outliers.
The DPO analysis avoided this by performing robust variable estimations
implemented by DEseq2 (Section 3.3.2).

In the clinical case study, DPO identified deregulated genes and the affected
pathways (Figures 11.3C and 11.3E). The study investigated the molecular
genetic cause of a rare osteogenesis imperfecta syndrome. Deregulated Pol II
genes of OI patients affected extracellular matrix and collagen-related path-
ways, which led to a comparable phenotype of patients with a mutation in one
of the collagen genes.

For pan-BET protein degradation, the reference-based normalization strategy
identified a gene-class and gene-length specific productive elongation collapse
(Figures A.4E and A.4F).

As shown in the two case study examples, DPO analysis successfully used
spiked-in mouse cells for the comparative analysis of high-resolution Pol II
data. This approach allowed downstream investigation of affected gene sets
which improved the interpretability of the results.



Part III

B R D 4 E M E R G E S A S G L O B A L R E G U L AT O R O F
P O L I I T R A N S C R I P T I O N
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M O T I VAT I O N

The Pol II transcription cycle is a highly regulated multi-step process involving
many regulators to produce functional RNA transcripts translated into proteins
in living cells. Although this process is essential, several regulatory steps are
still insufficiently understood, especially steps after Pol II initiation.

One example is the Pol II early elongation stage, which emerged as an
essential regulatory step in multicellular organisms. After a successful tran-
scription initiation event, Pol II pauses proximal to the promoter and requires
the active P-TEFb complex to pursue transcription (Section 2.2.2). BET proteins
positively influence Pol II elongation [3, 13, 133], where BRD4, the most promi-
nent protein family member, was proposed to recruit P-TEFb [173]. However,
recent studies showed that P-TEFb recruitment is independent of BET proteins
[158, 249, 260], leaving the open question of the underlying mechanism of
BET-dependent Pol II elongation.

Furthermore, it is unclear which BET protein regulates productive Pol II
elongation as current treatments are not selective. Recent developments of new
degradation technologies allow the selective degradation of target proteins
in a few hours (Section 2.4.4), including BRD4 in the human dTAG-BRD4

K562 cell line. Although most studies ascribed the regulatory functions of
BET proteins to BRD4, this claim was rarely supported by BRD4-specific
perturbation experiments when this project started. The specific degradation
of BRD4 can validate this longstanding claim. In the meantime, other studies
investigated BRD4-specific functions likewise [7, 158, 260].

Because BET proteins are proposed master regulators of Pol II transcription,
loss of BRD4 could potentially influence transcription levels globally. Apply-
ing suitable experimental and computational methods is essential to avoid
misinterpretation and reveal actual protein functions. Part II of this study
developed new NET-seq versions allowing the detection of global changes
between conditions.

Of particular interest are potential changes in less studied lowly transcribed
regions, for example, during Pol II termination or enhancer regions. Part I of
this study implements a new high-resolution NET-seq method with genome-
wide Pol II occupancy coverage improvement. The optimized methods poten-
tially reveal additional insights into these lowly transcribed and less studied
transcriptional processes upon BRD4 loss.
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Emerging evidence links BRD4 to transcriptional condensates and phase
separation (Section 2.3), which opens the question of BRD4’s role in estab-
lishing functional promoter-enhancer contacts. Several studies showed BET
protein-dependent reductions of transcriptional activity at enhancers [107, 164].
Nevertheless, it remains unclear which BET proteins are involved, including
their underlying function. Surprisingly, a recent study did not detect any
changes in enhancer transcription upon BRD4 degradation [260]. However,
more studies are required to validate these findings and to characterize the
function of BRD4 further. Finally, the BRD4-specific degradation system could
reveal new insights into the role of BRD4 in the formation of promoter-enhancer
3D contacts.

The following sections investigate the phenotype observed upon BRD4 loss
using multi-omics approaches. Furthermore, the corresponding analyses re-
quired the development of novel computational approaches that quantified the
impact of the treatment on Pol II genome transcription. Detailed explanations
of these approaches are available in the following methods section.
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M E T H O D S

The following section describes data processing and analysis of HTS methods,
including RNA-seq, ChIP-Rx, long-read nascent RNA-sequencing (nascONT-
seq), and Hi-ChIP. Next, different approaches are proposed to study RNA
splicing, 3’-RNA processing, and Pol II termination, using the transcriptional
readthrough index, the RNA splicing analysis, and a 3’-RNA cleavage efficiency
test.

14.1 analyzing hts data

The FastQC software [4] tested all sequenced HTS data sets to ensure high
sequencing quality before applying method-specific processing steps.

14.1.1 RNA-seq

RNA-seq data processing steps followed general literature recommendations
[33]. Sequencing reads were aligned to the GRCh38.p12 human reference
genome using STAR aligner v2.7.3a [50] with default parameters in paired-end
or single-end mode. HTSeq v0.13.5 [184] quantified annotated genes from
GENCODE v28 [67] in union mode. Sections 3.2.5 and 3.3 describe the steps of
normalization and differential gene expression analysis.

A combined reference genome that contained additional sequences from
synthetic ERCC spike-ins [99] was used for some experiments to reveal global
changes between conditions. The adjusted normalization strategy is described
in Section 3.2.6.

14.1.2 ChIP-seq and ChIP-Rx

The following section describes steps for data processing and differential
binding site analysis using ChIP-seq and ChIP-Rx data. An overview of the
ChIP-seq approach and the applied normalization strategies are reported in
Sections 2.4.1 and 3.2.7.

Data Processing

chip-seq from encode and geo ChIP-seq extracted from the ENCODE
project [35] was already pre-processed and normalized.
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For individual replicates and pooled data, the alignment and FE-normalized
files (Section 3.2.7) were downloaded and used in downstream analysis.

For the re-analysis of publicly available ChIP-seq data [253] from GEO,
Bowtie2 v2.3.5.1 [119] aligned the sequenced reads to the human reference
genome (GRCh38.p12) and reported one sequence alignment for each se-
quencing read using the single-end mode and the parameter -k 1. Section 3.2.7
describes the steps for FE data normalization.

chip-rx For the ChIP-Rx analysis, the following steps were performed.

1. Bowtie2 v2.3.5.1 [119] aligned the sequencing reads to a joint refer-
ence genome which consisted of the human (GRCh38.p12) and mouse
(GRCm38.p6) reference genomes using the paired-end mode with the
parameter -k 1.

2. PCR duplicates were marked with PICARD’s v2.24.2 [95] markDuplicates
function.

3. Next, MACS2 v2.2.7.1 [258] identified binding sites on the separated
human and mouse tracks with an enriched sample signal compared to
the matched input control. This step, called peak calling, was performed
separately for human and mouse tracks.

Section 3.2.7 describes how the data was FE normalized.

Differential Binding Site Analysis

DiffBind v3.0.15 [221] performed data normalization and comparisons between
binding sites from ChIP-Rx data between conditions. The approach aims to
identify differentially-bound binding sites. Table B.9 lists the applied parameter
settings and the corresponding functions.

First, DiffBind’s dba.blacklist function removed the signal from blacklisted
regions of the human and mouse reference genomes. Second, peaks from all
samples were summarized in consensus peaks if they appeared in at least two
samples. The dba.count function identified the consensus peaks by detecting the
highest sequencing read coverage region (+/- 300 nucleotides). Furthermore,
the function quantified the binding strength of each consensus peak in all
samples, excluding sequencing read counts from PCR duplicates and the
input control experiment. Third, DiffBind’s dba.normalize function adjusted
the human consensus peaks based on the observed mouse data using the
median-of-ratios normalization strategy (Section 3.2.5). Notably, normalization
uses the whole binned mouse genome. Finally, the dba.contrast and dba.analyze
functions performed the differential binding site analysis using the DEseq2

package [132] (Section 3.3.2).
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14.1.3 nascONT-seq

In the context of this study, the nascONT-seq method was developed. The
method quantitatively captures full-length nascent RNA molecules and per-
forms nanopore sequencing. Section 15.2.3 explains the motivation for devel-
oping this method, including a description of the library preparation. This part
focuses on the computational steps applied to process long-reads from ONT
(Section 2.4.2). All software tools and applied parameters are listed in Table
B.10.

Figure 14.1A schematically shows ONT sequencing, which relies on the
controlled passage of one strand of the cDNA molecule through the nanopore,
causing electric current changes recorded in fast5 format files. ONT’s corporate
software Guppy v3.2.4 interpreted these raw files into nucleotide sequences
using the kit and flow cell-specific parameters. After this base-calling step, stan-
dard processing includes a filtering step to remove reads harboring incomplete
sequences of the nascent RNA molecules. The following section describes the
standard approach to identify if a sequencing read is complete, the challenge
that emerged with the presented data, and an alternative method applied in
this study.

Identification of Full-Length Transcripts

Library preparation introduces the strand-switching primer (SSP) and VN
primer (VNP) at the cDNA molecule’s 5’ and 3’ ends, which ONT sequences al-
together. As depicted in Figure 14.1B, a sequencing read is considered complete
or full-length only if the primers flank the fragment in the proper orientation.
The only publicly available software application that identifies the full-length
transcripts is ONT’s Pychopper software [218]. Pychopper detects and re-
moves the primers, reporting only fragments considered full-length molecules.
However, this standard approach was not suitable for this study’s obtained
long-read sequencing data.

The main reason was the usage of the direct cDNA sequencing kit. This kit’s
library preparation steps do not perform PCR amplification, allowing quanti-
tative comparisons between samples. However, PCR amplification is a crucial
step for enriching correctly assembled fragments with both primers. Data
received without this step contain considerably fewer full-length transcripts.

The developers do not recommend applying the Pychopper software with
direct cDNA sequencing kit data. Consistent with Pychopper’s recommendation,
the tool performed poorly and discarded most sequencing reads.

For this reason, this study developed a custom approach to identify full-
length transcripts for the direct cDNA sequencing kit. Closer inspection of the
libraries revealed different read types. Besides full-length transcripts (Figure
14.1B), mainly sequencing reads with only one primer (5’ and 3’ truncated), no
primer or fused reads occurred (Figure 14.1C).
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Figure 14.1: Read Types from ONT Data. (A) The schematic shows long-read sequenc-
ing with nanopores, creating electric current changes that are monitored and translated
into nucleotide sequences (base calling). The mapping step aligns the sequence to the
reference genome. (B-C) Schematic overview of sequencing reads that contain SSP and
VNP primer sequences. The insert represents the nascent RNA molecule and maps to
the reference genome. (B) Only sequencing reads containing both flanking primers
with correct orientation are considered full-length transcripts. (C) The remaining read
types, including 5’-truncated, 3’-truncated, no primer, or fused read, are defined as
depicted. (D) Visualization of all valid state combinations from Table B.11 encoded in
the matrix T.
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Fused sequencing reads, also known as chimeric reads, are hybrids that
contain sequence information from two nascent RNA molecules sequenced
sequentially. The presented approach is less conservative and classifies each
sequencing read into one of the read types, rescuing fused or incomplete reads
for downstream analysis, such as the 3’-RNA cleavage efficiency test (Section
14.4).

The following three steps were applied to classify each sequencing read into
one read type.

1. Determining the primer positions and orientations.

2. Identifying mapping regions of the sequencing read.

3. Classifying each read into a sequencing read type.

determining primer position and orientation Two Hidden Mar-
kov Models [114] were built from the primer sequences to identify the SSP and
VNP primers. The data-driven approach improved the models by including
hits from the long-read sequencing data. HMMER v3.3 [176] identified high
confidence primer sequences with an E-value < 0.1 and added those to the
Hidden Markov Models in two iterations using the HMMER functions (Table
B.10). The optimized models were applied for the final primer search, reporting
all hits with an E-value < 10.

identifying mapping regions of the read Minimap2 v2.17 [124]
aligned the sequencing reads to the human reference genome (GRCh38.p12)
using the parameters listed in Table B.10. Integration of prior knowledge
from the human gene annotation (GENCODE v28) improved the mapping.
Minimap2 is a splice-aware long-read mapping tool that handles higher error
rates in the sequencing reads and reports unique sequencing alignments with
the applied parameter settings. Furthermore, to detect fused reads (Figure
14.1C), a read could be broken into pieces and mapped to different loci, referred
to as a supplementary mapping position.

classifying each read into a read type Each sequencing read with
at least one valid mapping position in the human reference genome was classi-
fied into a read type, including full-length, 5’-truncated, 3’-truncated, no primer,
or fused read. The classification depended on the identified primers relative
to the mapping position visualized in Figures 14.1B and 14.1C. The following
states describe the occurrence of the respective feature in the sequencing read,
namely

• beginning or end of the read (Start/End),

• sense or antisense VNP primer (VNP+/VNP−),

• sense or antisense SSP primer (SSP+/SSP−),



88 methods

• mapping position (MAPP), or

• a supplementary mapping position (MAPS).

A sequencing read contains nS feature states sequentially ordered by their
occurrence from the 5’ to 3’ end. For the classification of the sequencing read,
the subset of feature states was considered that

1. preserved the sequential order of feature states in the sequencing read,

2. occurred in Table B.11, and

3. maximized the scoring function (described below).

For a selected subset with nS′ elements that preserved the sequential order of
feature states, f si ∈ {Start, VNP+, VNP−, SSP+, SSP−, MAPP, MAPS, End}
reports the i-th occurring feature state with i ∈ {1, . . . , nS′}, where f s1 = Start,
f snS′ = End, and 3 ⩽ nS′ ⩽ nS. Each feature state of f si is associated with
aSi, assigning the calculated alignment score from HMMER or minimap2 to
the respective state. The score ranges between 0 ⩽ aSi ⩽ 100 and reports zero
for the Start and End states, aS1, aSnS′ = 0. Furthermore, the d f si, f si+1

value is
defined for the states f si and f si+1, reporting the distance between both states
in percent of the sequencing read length.

Figure 14.1D visualizes the valid state combinations listed in Table B.11 that
are encoded in the matrix

T =



Start VNP+ VNP− SSP+ SSP− MAPP MAPS End
Start 0 1 0 1 0 1 1 0
VNP+ 0 0 0 0 0 1 0 0
VNP− 0 0 0 0 0 0 0 1
SSP+ 0 0 0 0 0 0 1 0
SSP− 0 0 0 1 0 0 0 1
MAPP 0 0 0 0 1 0 0 1
MAPS 0 0 1 0 0 0 0 1
End 0 0 0 0 0 0 0 0


.

(14.1)

The value t f si, f si+1
∈ {0, 1} reports the entry of T in row f si and column

f si+1. All valid state transitions depicted in Figure 14.1D are set to 1, whereas
invalid transitions report 0 entries.
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For a subset of state features, the scoring function was defined as

score =

(
nS′

∑
i=1

weight ( f si) · aSi −
nS′−1

∑
i=1

0.1· d f si, f si+1

)
·

nS′−1

∏
i=1

t f si, f si+1
, (14.2)

using the weight function

weight ( f si) =

0.5 , i f f si ∈ {MAPP, MAPS}

0.4 , otherwise
, (14.3)

the alignment scores aSi, the distance measurements d f si, f si+1
, and state transi-

tion values t f si, f si+1
. Finally, the subset with the maximum score specifies the

read type listed in the Table B.11. Figure 14.2 shows the approach with an
example sequencing read for further clarification.

Most analyses used all sequencing read types, except for the transcript
length analysis depicted in Figure 15.4D, which was calculated for full-length
transcripts and rescued fused reads.

14.1.4 HiChIP

The following section describes data processing steps and the approach per-
formed for differential analyses of contact frequencies using HiChIP data.
Section 2.4.1 contains a general description of the HiChIP method, and Table
B.12 provides an overview of the applied software and the selected parameters.

Data Processing

HiChIP data processing was based on the HiC-Pro v3.0.0 [212] pipeline and
implementation. Briefly, HiC-Pro performed a two-step approach to map
the sequencing reads to the human reference genome (GRCh38.p12) [67].
First, paired-end sequencing reads were separately aligned using Bowtie2

v2.3.5.1 [119]. The fraction of reads without a unique mapping position likely
spanned the sequenced hybrid molecule created during library preparation
described in Section 2.4.1. Next, the tool divided the sequencing reads without
unique mapping positions at the putative ligation site, marked by the cut
site of the applied restriction enzyme (MboI: ^GATC). HiC-Pro performed a
second mapping iteration with slightly changed parameter settings to identify
unique mapping positions for the remaining reads. The quality assessment
step discarded interaction pairs without unique mapping positions or low
mapping quality. As a valid interaction required the ligation of two restriction
fragments, this step discarded interaction pairs assigned to a single restriction
fragment. Finally, HiC-Pro removed PCR duplicates and generated a binned
interaction matrix with 10 kb resolution. The matrix reports the pairwise
interaction frequencies between all bins in the genome.



90 methods

Figure 14.2: Read Type Classification Example. The schematic depicts the classification
process of an example sequencing read with the identified feature states Start, VNP+,
MAPP, SSP−, and End (nS = 5). Furthermore, the example depicts the alignment
scores (aS) and distances (d) in percent. 1. All valid subsets are identified, preserving
the sequential occurrence of the feature states in the sequencing read, containing at
least nS′ = 3 feature states, with f s1 = Start and f snS′ = End. Next, Equation 14.2
calculates the score for each subset. The visualization depicts the score calculation
for two subsets in greater detail. 2. The subset with the highest score is used for
classification.
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Normalization and Comparison

HiCcompare [220] performed data normalization and comparison between two
pooled HiChIP samples. First, QDNAseq’s [206] build-in get_CNV function
identified copy number variations in the K562 dTAG-BRD4 cell line and
excluded the respective regions. Second, blacklisted regions from ENCODE [35]
were excluded. Third, HiCcompare’s hic_loess function corrected all interactions
using locally estimated scatterplot smoothing (loess) normalization [30] on the
MD-plot for each chromosome. The MD plot showed the logarithmic changes
of the interaction frequencies between two samples on the y-axis and the
distances between the interactions on the x-axis. The loess procedure fits a
local regression model and jointly removes biases between both datasets.

Finally, the hic_compare function converted approximately normally dis-
tributed logarithmic changes of the interaction frequencies [206] into z-scores
and p-values, followed by multiple test correction (Section 3.3.2). Furthermore,
the tool removed interactions with an average expression below nine. Interac-
tions with a minimum distance of 10 kb and a padj value of 0.05 were identified
as significant changes between conditions.

Interpretation

HiCcompare reported significant interaction frequency changes at a resolution
of 10 kb. The generation of a human genome annotation at the same resolution
was required to enable interpretation of the results. Therefore, chromHMM [56]
was applied to K562-specific chromatin marks from ENCODE [35], including

• H3K27ac,

• H3K4me1,

• H3K4me3,

• histone three lysine twenty-seven trimethylation (H3K27me3),

• histone three lysine thirty-six trimethylation (H3K36me3), and

• histone three lysine seventy-nine dimethylation (H3K79me2).

The corresponding ENCODE identifiers are listed in the Table B.1.
In the first step, the chromHMM [56] application divided the human

genome into 10 kb bins using the BinarizeBam function. In the second step,
chromHMM’s LearnModel function trained a multivariate Hidden Markov
Model with ten states and reported the most likely states for each bin. In
the last step, the resulting states were manually annotated (Figure A.23B)
into promoter, enhancer (repressed, intra-, and extragenic), 3’ end, repressed, and
low-signal states.
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14.2 transcriptional readthrough index

Experimental conditions, such as treatments, knockouts, infections, or mu-
tations, potentially influence Pol II termination efficiency, resulting in Pol II
readthrough transcription. Pol II readthrough transcription describes a situa-
tion where Pol II occurs downstream of the observed termination zone from
the control experiment. In mammals, the termination zone occurs in a region
downstream of the polyA site and is highly variable for each transcription
unit [211]. However, previous studies [8, 14, 18, 109] introducing termination-
related indices only considered changes in fixed regions relative to annotated
polyA sites. Therefore, this study developed the transcriptional readthrough
index to quantify Pol II occupancy changes in the individual termination zones
calculated for each transcription unit (Figure 15.3B).

The index is defined based on an exemplary transcription unit, with the
genomic coordinates of the transcription start site tss and the polyA site pa. For
simplicity, the transcription unit localizes on the positive strand with tss < pa.
However, indices are likewise calculated for transcription units on the negative
strand with few adaptations. Furthermore, the index depends on the Pol II
occupancy track of the control experiment OccC and upon treatment OccT. The
following steps describe the multi-step procedure.

1. The Pol II occupancy tracks OccC and OccT were pooled into a pseudo-
sample OccCT.

2. The extended termination zone length (TZ) is calculated as described in
Section 6.3.3, using the pooled pseudo-sample OccCT and a bin size of
w = 5, 000. The resulting parameter TZ indicates the length of the zone
where RPM normalized Pol II occupancy occurs above the threshold
of thr = 0.2 in the pooled experiments. However, each sample had to
have a calculated RPKM value (Section 3.2.3) of > 0.01 in the extended
termination zone, avoiding outliers from influencing the next step dis-
proportionately.

3. Next, the ATDC and ATDT values were calculated as described in Section
6.3.4 for both samples OccC and OccT separately, using the previously
identified parameter TZ. The respective value is considerably higher in
samples where Pol II readthrough transcription occurs than in the control
experiment.

4. Finally, the transcriptional readthrough index (RTI) is defined as

RTI =ATDT − ATDC. (14.4)

This study calculated RTI values from NET-seq, HiS-NET-seq, and GRO-seq
data.
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Figure 14.3: Splicing Analysis Example. The schematic depicts the calculation of
SpliceP for an example gene. The percent of spliced RNA molecules is obtained by the
ratio of spliced reads (red) vs. all reads that span the gene and at least one splice site.

Readthrough Index for Antisense Transcription

Antisense transcription systematically occurred on the opposite strand up-
stream of the TSS (Figures 7.1A, 7.3B, and 7.5B). The calculation of the TZ′

and RTI′ values for antisense transcription was similar to the calculation of
TZ and RTI values for sense transcription with few adjustments. First, the
Occ′C and Occ′T values report the Pol II occupancy measurements from the
negative strand in reverse order for a reference genome of size genomeSize.
Next, a new pseudo transcript was generated, where tss′ = genomeSize − pa
and pa′ = genomeSize − tss. Subsequently, the steps in the previous section
were performed using tss′, pa′, Occ′C, and Occ′T.

14.3 splicing analysis

Many different approaches exist for alternative splicing analysis [33]. For the
context of this study, the definition of a simple splicing score was sufficient.

Let mR be the number of sequencing reads mapping to a gene of interest
and overlapping at least one of the annotated splice sites from GENCODE [67].
The value splicedi ∈ {0, 1} is defined for each sequencing read i ∈ {1, . . . , mR},
reporting 1 if the corresponding sequencing read is spliced and 0 otherwise.
The percent of spliced RNA molecules (SpliceP) of the gene is defined by

SpliceP =
∑mR

i=1 splicedi

mR
· 100. (14.5)

This study calculated SpliceP from processed RNA-seq data (Section 14.1.1)
without PCR duplicates. PCR duplicates were marked and removed using
PICARD’s v2.24.2 [95] markDuplicates function.

14.4 3’-rna cleavage efficiency test

Cleavage of nascent RNA at the 3’ end of transcription units is an essential
step for Pol II termination and is described in Section 2.2.3.
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Figure 14.4: 3’-RNA Cleavage Efficiency Test Example. The schematic depicts the
3’-RNA cleavage efficiency test for an example polyA site. Non-cleaved sequencing reads
(red) spanning the polyA site region (blue) increased compared to cleaved sequencing
reads (grey) that map with their 3’ ends to the polyA site region upon treatment.

This study developed a 3’-RNA cleavage efficiency test for nascONT-seq data
(Section 14.1.3) to identify significant changes in the number of sequencing
reads that span a polyA site between a control and treatment experiment.
Briefly, the approach identified active polyA sites, quantified the amount of
cleaved and non-cleaved sequencing reads, and performed a Fisher’s exact test.
A changing ratio of non-cleaved vs. cleaved sequencing reads at a polyA site
indicates significant deregulation upon treatment.

1. The approach defined up to two active polyA sites per active gene (Section
6.1.1), showing the highest polyA_DB v3.2 [243] database score or the
most number of cleaved sequencing reads in the control experiment. The
latter is identified by extracting all annotated human polyA sites from
the database and identifying the number of cleaved sequencing reads for
each polyA site. The corresponding sequencing reads mapped precisely
with their 3’ end to the annotated polyA site nucleotide position.

2. Next, the number of cleaved and non-cleaved sequencing reads was
quantified for both conditions at each active polyA site in a region
+/- w nucleotides upstream and downstream, where w = 20. Cleaved
sequencing reads mapped with their 3’ ends to the polyA site region,
whereas non-cleaved reads spanned the polyA site region. Each polyA
site was summarized in a contingency table, as shown in Table 14.1.

treatment control total

cleaved A B A + B
non-cleaved C D C + D

total A + C B + D A + B + C + D

Table 14.1: 3’-RNA Cleavage Efficiency Table.
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3. The Fisher’s exact test was performed as described in Section 3.4. The
one-tailed Fisher’s exact test calculated a P-value from the contingency
table, using Equation 3.16. Cleavage efficiency is significantly reduced at
the polyA site if P ⩽ 0.05.

Figure 14.4 schematically visualizes steps two and three of the test, identifying
a significant reduction of cleavage efficiency in the example.
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15.1 the brd4-mediated 5’ elongation checkpoint

15.1.1 Global Decrease of Nascent RNA Transcription

This study used the targeted protein degradation system to investigate BRD4’s
protein function in the K562 dTAG-BRD4 cell line (Section 2.4.4). The western
blot and mass spectrometry experiments revealed a robust degradation of
both BRD4 isoforms after two hours of dTAG7 treatment (Figures A.5A and
A.5B). First, the gold standard experiment for transcription studies, total RNA-
seq (Section 2.4.1), was performed (MRA101-MRA102, MRA105-MRA106,
unpublished). Total RNA-seq experiments measure changes in RNA levels,
primarily from mature RNA in the cytoplasm. Surprisingly, the differential
gene expression analysis identified a significant change in expression levels
for 26% of all genes (Figures A.5C and A.5D). The number of identified genes
was unexpectedly low compared to the dramatic reductions of transcript
levels measured in previous work upon pan-BET protein degradation [249].
A possible explanation for the weak response was the limited treatment time
of two hours. Instead of increasing the treatment time and introducing cell
compensation and adaptation effects, the more sensitive nuclei-RNA-seq was
used (NE04-NE09, unpublished). The approach measures recently produced
RNA in the nuclei. Nuclei-RNA-seq revealed a more global decrease of RNA
transcripts with significant reductions at 51% of genes (Figures A.6A and
A.6B).

Next, different NET-seq protocols with whole-cell mouse spike-ins were
applied to gain insights into deregulated Pol II transcription mechanisms. The
spike-in strategy, introduced in Section 11.2.2, was successfully applied to HiS-
NET-seq upon 40 and 120 minutes of BRD4-specific degradation (OJ94-OJ97,
MRA125-MRA128, MRA144-MRA147, unpublished, Figure A.6C). HiS-NET-
seq reported significant reductions at 29% and 89% of actively transcribed
genes after 40 and 120 minutes, respectively (Figures 15.1A and 15.1B). Upon
40 minutes of treatment, the absence of BRD4 led to a reduction of Pol II at
short genes. After 120 min, longer genes were also affected (Figure 15.1C).
BRD4-resistant genes without a significant Pol II occupancy change were
short and encoded mainly for histone and ribosomal proteins (PANTHER
Protein Class [153]; FDR: 2.98E-10 and 1.95E-02). Measurements of SI-NET-seq
(GSE158963 [7]) upon 120 minutes of BRD4 loss revealed similar trends.
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Figure 15.1: BRD4-specific Degradation Decreases Nascent RNA Transcription.
Considered are non-overlapping actively transcribed genes from human K562 dTAG-
BRD4 cells. (A-B) Pol II occupancy changes (log2) identified with HiS-NET-seq upon
(A) 40 minutes (n=9,358) and (B) 120 minutes (n=10,058) of treatment. (C) Gene length
distribution at BRD4 sensitive and resistant genes after indicated treatment times.
BRD4 sensitive genes show significant reduction of Pol II (padj < 0.05, n=2,724 and
n=8,912), whereas BRD4 resistant genes show no change (padj > 0.05, n=6,634 and
n=1,146). (D) Pol II occupancy changes (log2) identified with SI-NET-seq upon 120

minutes of BRD4 degradation (n=9,199). (A, B, D) Significant occupancy changes (padj
< 0.05) are labeled in blue and red.
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However, the method identified a significant Pol II reduction for 32% of the
genes, considerably less than 89% determined by HiS-NET-seq (Figures 15.1D
and A.6D). This difference demonstrates the considerable sensitivity gain of
the HiS-NET-seq method.

Overall, depending on their sensitivity, different transcriptional assays iden-
tified a significant role of BRD4 for productive Pol II gene transcription.

15.1.2 BRD4-degradation Impairs Pol II Pause Release

Gene transcription and regulation are divided into different stages (Section
2.2.1), which can be resolved by high-resolution Pol II profiling methods,
such as NET-seq and protocol variants. The following analysis focused on
differences in the regions associated with promoter-proximal pausing and
productive elongation. Early elongation, the transcriptional stage where Pol II
promoter-proximal pausing and release occurs, spans a few hundred nu-
cleotides downstream of the TSS (Figure 15.2A).

The gene-body region is associated with the productive elongation stage,
which starts after the promoter-proximal region and ends at the polyA site
(Figure 15.2A). Visual inspections of HiS-NET-seq data indicated, on the one
hand, increased Pol II occupancy levels at promoter-proximal regions. On the
other hand, the trend shows decreased coverage across gene-body regions
after 120 minutes of treatment (Figures 15.2B). Likewise, these trends were
observable for individual gene examples (Figures 15.2C and A.7A).

The DPO analysis was applied to the respective regions and summarized in
pausing matrices to confirm these changes at the individual gene level (Figures
15.2D-15.2E and A.7B-A.7C). After 40 minutes of BRD4-specific degradation,
Pol II occupancy increased in the promoter-proximal region and decreased
in gene-body regions (Figure 15.2D). The changes occurred equally in the
respective regions, which suggested a dysfunctional release from promoter-
proximal pausing.

With an increased treatment time of 120 minutes, the reduction of productive
elongation intensified, affecting almost all genes (94%). In contrast, signals in
the promoter-proximal regions did not increase further (Figure 15.2E). SI-NET-
seq confirmed the results (Figures A.8A-A.8C), however, identified fewer genes
with significant gene-body reduction (padj < 0.05, 42%). The results suggested
that rapid BRD4-specific degradation impairs the Pol II pause release.

15.1.3 Distinct Role of Other BET Proteins

Previous studies using pan-BET degradation in MOLT4 cells [249], and this
study, which removes specifically BRD4 in K562 dTAG-BRD4 cells, revealed
extensive transcriptional defects.
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Figure 15.2: Disruption of Pol II Pause Release by BRD4. The figure depicts com-
parisons between Pol II data at actively transcribed non-overlapping genes from the
control experiment (DMSO) and two hours of BRD4-protein degradation (dTAG7)
with two HiS-NET-seq replicates measurements in human K562 dTAG-BRD4 cells.
(A) Definition of promoter-proximal and gene-body regions. (B) Meta-gene profile of
reference normalized Pol II (n=9,255, Section 3.2.6). Excluded were regions with signal
outliers above the 99.90-quantile and the TSS. (C) Reference-normalized (Section 3.2.6)
Pol II occupancy at an example gene. (D, E) Pol II occupancy changes at promoter-
proximal (y-axis) and gene-body regions (x-axis) upon (D) 40 minutes (n=7,303, four
replicate measurements) and (E) 120 minutes (n=7,641) of BRD4-specific degradation.
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The investigations focused next on a direct comparison of pan-BET and
BRD4-specific protein degradation to dissolve the roles of BRD4 and other BET
proteins, namely BRD2 and BRD3. Experiments had comparable conditions,
such as treatment time, cell line, and method. HiS-NET-seq was still under
development when experiments were performed. For this reason, Pol II changes
upon pan-BET degradation were measured in K562 dTAG-BRD4 cells with
SI-NET-seq (GSE158963 [7]; Figure A.8A). The comparison identified two main
differences after two hours of treatment. First, BRD4-specific degradation
results in enhanced promoter-proximal pausing, whereas the removal of pan-
BET proteins revealed a contrary trend (Figures A.8B-A.8E). Second, pan-BET
protein degradation induced a more vigorous response, which reduced Pol II
levels by 62% in gene-body regions. The median reduction after BRD4 loss was
with 33% smaller. The results ascribe a considerable role in Pol II regulation to
other BET proteins, BRD2, BRD3, or both.

15.2 bet proteins regulate 3’-rna processing

15.2.1 Widespread Pol II Readthrough Transcription

Next, the study explored whether BRD4 serves additional roles in Pol II
transcription using HiS-NET-seq. Strikingly, this analysis uncovered that acute
loss of BRD4 proteins induced Pol II readthrough transcription at the 3’ ends
of genes (Figures 15.3A). The already introduced average termination distance
was applied to quantify the impact of treatments on Pol II termination (ATD,
Section 6.3.4). The ATD difference of a gene between conditions, referred to
as the transcriptional readthrough index (RTI, Figure 15.3B and Section 14.2),
describes the average changes of the Pol II distribution in the termination zone
relative to the pA site. Hence, a positive RTI reveals a downstream shift of Pol II
distribution away from the pA site and indicates readthrough transcription.

BRD4 loss induced a downstream shift of Pol II occupancy with a median
RTI of 1.7 kb after 120 minutes of treatment. In contrast, the short degradation
time showed no increase (Figure 15.3C). A similar shift of 1.4 kb was observed
with SI-NET-seq (Figure A.9A). The most apparent termination defects were
observed for protein-coding and lncRNA genes (Figure 15.3D). Both gene
classes rely on a polyA signal-dependent termination pathway. No readthrough
was observed for gene classes with non-canonical 3’-RNA processing, including

• antisense transcription units (Figures A.9B),

• histone genes,

• sn/snoRNA, and

• micro RNA genes (Figure 15.3D).

Together, these analyses indicate that BRD4 is required for transcription termi-
nation at a group of protein-coding and lncRNA genes.
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Figure 15.3: BRD4-specific Degradation Induces Pol II Readthrough Transcription.
Pol II comparison at actively transcribed genes from human K562 dTAG-BRD4 cells
measured by HiS-NET-seq upon 120 minutes of BRD4 loss. (A, D) Replicates are
pooled for visualization. (A) RPM normalized Pol II occupancy at two example genes.
(B) Schematic view of the RTI calculation based on the ATD (Section 14.2). (C-E)
Boxplot quantification of RTI values for the indicated (C) treatment times (40 minutes:
n=9,581-9,619; 120 minutes: n=9,608-9,646), (D) gene-classes (polyA-signal: protein-
coding (n=8,652), lncRNA (n=549); non-canonical: histone (n=47), sn/snoRNA (n=94),
micro RNA (n=7)), and (E) between pan-BET (dBET6) and BRD4-specific degradation
(dTAG7) using SI-NET-seq (DMSO: n=9,446; dTAG7: n=9,418-9,439; dBET6: n=9,114-
9,292; one tailed Wilcoxon rank sum test ****: p < 2.2e-16).
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pan-bet degradation amplifies termination defects The level of
deregulation on termination caused by BRD4 was compared to pan-BET degra-
dation using comparable SI-NET-seq data. Total loss of BET proteins, which
removes BRD2, BRD3, and BRD4, intensified the observed termination defects,
with a median RTI of 3.4 kb compared to 1.4 kb for BRD4-specific degradation
(Figures 15.3E). Although pan-BET loss results in more pronounced termina-
tion defects, the correlation of RTI values was high between both treatments
(r = 0.79; Figure A.9C). In the following, genes with a RTI of 5 kb or higher are
referred to as readthrough genes. This conservative threshold is required due
to the high variance of RTI values calculated between control measurements
(Figure A.9D). With this threshold, 37% and 14% of genes were classified as
readthrough genes upon pan-BET and BRD4-specific degradation, respectively.
Overall, 90% of BRD4-related readthrough genes overlapped with those identi-
fied upon pan-BET degradation (Figure A.9E). These results suggest that BRD4

acts together with other BET proteins to regulate Pol II termination.

15.2.2 Functional Consequences of Termination Defects

The observed termination defects with uncontrolled Pol II transcription sug-
gested potential consequences, such as increased transcription downstream
of readthrough genes. Because transcriptional defects of BRD4 degradation
after two hours were less pronounced at mature RNA levels (Figure A.5D),
this part focused on published total RNA-seq data obtained upon two and
six hours of pan-BET protein degradation in the MOLT4 cell line (GSE79253,
[249]). Besides the global reduction of mature RNA levels, which the authors
highlighted, further inspections of the differential gene expression results re-
vealed a sub-group of genes with increased transcript levels. Overall, 596 (3%)
and 1,689 (7%) genes were up-regulated upon two and six hours of pan-BET
degradation.

Most of those genes were located within or downstream of readthrough
genes (81%, TSS to TES + 100 kb). However, it was unclear if the increase in
transcription at readthrough-associated genes produced functional RNA tran-
scripts that could be translated. Therefore, the analysis focused on up-regulated
genes activated by readthrough transcription to investigate if transcripts were
spliced. For this group of genes, no RNA products were measured in the
respective control experiments (TPM < 1).

The two example genes TRIM72 and ITGAM, located downstream of the
readthrough gene FUS (RTI = 17.7 kb), were activated after six hours of
treatment (Figure A.10A).

Interestingly, transcript levels did not increase uniformly across the genes
but specifically at exon regions. Visualization of spliced reads in this region
confirmed that novel splice events appeared (Figure A.10B). The same trend
was observed globally for activated genes, showing increased spliced RNA
molecules with treatment time (Figure A.10C, Section 14.3).
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Although the results suggest de novo activation and processing of genes by
readthrough transcription, these experiments and analyses could not answer
finally whether the produced transcripts were functional. Together, these data
show that the transcriptional readthrough correlated with the enhanced and
activated expression state of neighboring genes.

15.2.3 3’-RNA Cleavage Defects

Since Pol II readthrough transcription was primarily observed at polyA signal-
containing genes, subsequent analyses addressed whether pan-BET or BRD4

protein degradation affected 3’-RNA cleavage. However, the available RNA-seq
data sets, collected after short treatment times, were unsuitable for this analysis.
Most measured transcripts were produced when no termination defect was
observed (Figure 15.3C). Furthermore, only few sequencing reads overlap with
active cleavage sites.

The limitations could be addressed by tracking newly produced whole
nascent RNA transcripts with long-read nanopore sequencing [97]. This com-
bination led to the new method nascONT-seq, which combined metabolic
labeling (4sU), chromatin fractionation to enrich nascent RNA transcripts, and
ONT’s long-read sequencing (Figure 15.4A). However, the ONT technology
was not designed for sequencing nascent RNA transcripts that lack polyA
tails. Therefore, nascONT-seq adapted a recently published approach [51] that
adds polyA tails to nascent RNA transcripts, enabling the sequencing through
nanopores.

As transcription termination defects were more pronounced after pan-BET
degradation, the new method was tested in human K562 cells after two hours of
pan-BET protein degradation (GSE158964, [7], Figure A.11A). The new method
confirmed Pol II readthrough transcription at selected genes (Figure 15.4B)
and genome-wide (Figure A.11B). Next, the 3’-RNA cleavage efficiency test was
developed to investigate whether 3’-RNA cleavage defects directly caused the
observed readthrough transcription (Section 14.4). In the first step, sequencing
reads at individual polyA sites were classified into cleaved and non-cleaved.
Cleaved sequencing reads mapped to the respective polyA site, whereas non-
cleaved reads spanned the region. This classification, combined with the one-
tailed Fisher’s exact test, identified deregulated 3’-RNA cleavage sites between
conditions (p-value < 0.05). 3’-RNA cleavage efficiency significantly decreased
at 296 (14%) polyA sites when replicate measurements were pooled. Genes
with 3’-RNA cleavage defect showed considerably higher RTI values than
genes without 3’-RNA cleavage efficiency changes (Figure 15.4C).
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Figure 15.4: BET Proteins are Required for 3’-RNA Cleavage. The figure shows
nascONT-seq data upon two hours of pan-BET degradation (dBET6) and the respective
controls (DMSO) in human K562 cells. (A) Scheme of nascONT-seq. (B) Gene track
of nascent RNA levels and of individual transcripts. The y-axis depicts the nascent
RNA level (reads/bp). Biological replicates were pooled for visualization. (C) Boxplot
quantification for RTI values at genes with no change or decreased 3’-RNA cleavage
efficiency (pooled: n = 1,766, n = 284; rep 1: n = 2,006, n = 85; rep 2: n = 1,867, n = 207;
Wilcoxon rank sum test ****: p < 3.8e-05). (D) Length distribution of nascent transcripts
for DMSO (n = 627,995, n = 1,482,187) and treatment (n = 579,228, n = 1,441,147). Only
full-length transcripts are depicted (Section 14.1.3).
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Finally, nascONT-seq revealed extended transcripts upon treatment with an
increased median transcript length of 938 bp compared to 689 in the control
experiment (Figure 15.4D, Section 14.1.3). These findings suggest that BET
proteins are required for 3’-RNA processing of polyA signal-containing genes.

15.2.4 BRD4 Binds 5’ Regions of Readthrough Genes

Transcription defects at the 3’ ends of genes were unexpected because neither
BRD4 nor other BET proteins are known to bind near this region [260]. For
clarification, BRD4 binding was tested in K562 dTAG-BRD4 cells using ChIP-
Rx [170] (MRA111-MRA112, MRA115-MRA116, unpublished). The resulting
profiles show BRD4 binding primarily at the 5’ region of non-overlapping
genes (Figure 15.5A). Overall, 85% and 4% of non-overlapping genes had at
least one BRD4 peak in the 5’ and 3’ regions. These observations excluded the
possibility that BRD4 acts directly at polyA sites to regulate 3’-RNA cleavage
and prevent Pol II readthrough transcription.

Next, other potential features were investigated that could characterize af-
fected genes. Readthrough genes were significantly longer and revealed higher
steady-state gene expression levels (Figure A.12A). Additionally, readthrough
genes had a higher AT content, defined as the percentage of A and T down-
stream of the polyA site. In this region, genes without transcriptional read-
through had a higher GC content, defined as the percentage of G and C (Figure
A.12B). Although BRD4 does not bind polyA sites, readthrough genes had
significantly more BRD4 bound at 5’ gene regions (Figure 15.5B) and showed
more pronounced elongation defects (Figure 15.5C). This observation leads
to the hypothesis that BRD4 binding at 5’ ends of genes impacts 3’-RNA
processing and termination.

Next, BRD4 reduction across the genome was tracked at readthrough genes
upon 40 and 120 minutes of BRD4 degradation with ChIP-Rx (MRA109-
MRA110, MRA113-MRA114, unpublished; Figure A.12C). ChIP-Rx [170] is a
ChIP-seq variant, including an exogenous reference genome for each sample.
Like SI-NET-seq, this additional step allows genome-wide and quantitative
comparisons between conditions. The results confirmed previous western blot
and mass spectrometry experiments (Figures A.5A and A.5B) and revealed a
global reduction of BRD4 (Figure 15.5D). Notably, the comprehensive BRD4

loss was already pronounced after 40 minutes of treatment (Figure A.12D) and
was most potent at readthrough genes (Figure 15.5C). The data shows that the
termination defect correlated with elongation defects and BRD4 binding in 5’
gene regions.
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Figure 15.5: Features of BRD4 Binding and Readthrough Genes. Figure presents FE
normalized (Section 3.2.7) BRD4 ChIP-Rx data for the control experiment and upon
two hours of BRD4 degradation. Considered are actively transcribed non-overlapping
genes (TSS to pA site + 5 kb) and BRD4 peaks in human K562 dTAG-BRD4 cells.
(A) Meta-gene profile of BRD4 occupancy at genes (DMSO, n=7,332, minimum gene
length 6 kb). (B) BRD4 occupancy at 5’ (TSS +/- 1 kb) and 3’ regions (pA site +/-
1 kb) of readthrough (red, n=1,824) and non-readthrough genes (gray; n=6,618, n.s:
p-value = 1, ****: p < 7.7e-12) (C) Comparison of of readthrough and non-readthrough
genes. Depicted are Pol II occupancy changes (log2) at gene-body regions identified
by HiS-NET-seq upon two hours of BRD4-protein degradation (n=1,789, n=6,284; ****:
p = 3.9e-09). Furthermore, BRD4 ChIP-Rx occupancy changes (log2) are identified
with DiffBind [221] as described in Section 14.1.4. Depicted are changes for peaks that
overlapped 5’ gene regions (TSS +/- 1 kb, n=1,589, n=5,361; ****: p = 3.8e-08) and (D)
all detected BRD4 peaks (n=16,233). Significant occupancy changes (FDR < 0.05) are
labeled in blue and red. (B, C) One tailed Wilcoxon rank sum tests were performed.
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15.3 brd4-dependent recruitment of the 3’-rna processing

machinery

15.3.1 Recruitment Defects of 3’-Processing Factors

It is known that the disruption of 3’-RNA processing and termination factors
can cause 3’-RNA cleavage defects and readthrough transcription [175, 193].
However, a direct regulatory function of BRD4 on 3’-RNA cleavage was un-
likely due to its localization at the 5’ ends of genes (Figure 15.5A). At this
point, the experiments investigated whether BRD4 loss indirectly perturbed
the chromatin localization of relevant 3’-RNA processing factors. Chromatin
mass spectrometry (chromatin-MS, [7]), which measures protein composition
changes at the chromatin upon treatment, identified 76 proteins that were
immediately displaced from the chromatin upon acute loss of BRD4 (p-value <
0.05; Figures A.13A). Corresponding to the observed phenotype, the GO term
analysis identified dysfunctional biological processes related to 3’-RNA pro-
cessing and transcription elongation (Figure 15.6A). Overall, ten factors were
implicated in 3’-RNA processing, most were CPSF and CstF sub-units (Figure
A.13C). Another identified class consisted of elongation factors (Figure A.13A).
Similar results were obtained upon pan-BET degradation (Figure A.13B).

To investigate whether the recruitment of the 3’-RNA processing machinery
was perturbed at readthrough genes, different 3’-RNA processing factors from
the CPSF (FIP1 and CPSF73) and CstF (CstF64) complex were selected for ChIP-
Rx experiments (GSE158965, [7]). The mean binding profile of these factors
revealed peak occupancy levels at 5’ and 3’ ends of active genes (Figure 15.6B).
The abundance of these factors at 5’ gene regions varied. In total, 24% (FIP1),
4% (CPSF73), and 15% (CstF64) of all binding sites overlapped with at least one
active TSS (+/- 300 bp). The results suggested that some 3’-RNA processing
factors could be recruited during an early transcription phase, presumably
during Pol II initiation or early elongation.

BRD4 loss reduced the occupancy of these factors at both 5’ and 3’ regions
of genes (Figures 15.6C, A.14A, and A.14B). Additional Pol II ChIP-Rx ex-
periments were performed (GSE158965, [7]) to exclude the possibility that
the observed trends were a result of an overall reduced Pol II level at the
chromatin (Figure 15.1B). The Pol II-normalized data (Section 3.2.7) revealed
that fewer 3’-RNA processing factors were recruited to Pol II in the 5’ regions
of genes upon BRD4 degradation (Figures A.15-A.17). This BRD4-dependent
recruitment defect was more pronounced for gene regions with perturbed
3’-RNA cleavage than unaffected (Figures A.15-A.17). These findings present
impaired recruitment of 3’-RNA processing factors as a plausible cause for the
3’-RNA cleavage defect and the transcriptional readthrough.
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Figure 15.6: BRD4 Recruits 3’-RNA Processing Factors. (A) Significant (FDR < 0.01)
GO terms for proteins that were depleted from the chromatin after two hours of BRD4

degradation (n=76, p-value < 0.05). Excluded were GO sub-terms for visualization.
(B-C) Meta-gene profiles of occupancy levels measured by ChIP-Rx for 3’-RNA pro-
cessing factors at non-overlapping actively transcribed genes (n=7,331; gene length
> 6 kb). Depicted are FE-normalized occupancy values of the respective protein of
interest (Section 3.2.7) in the (B) control experiment and (C) upon two hours of BRD4

degradation (dTAG7).
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15.3.2 Core-Interactome of BRD4 Reveals 5’ and 3’ Regulators

Potential BRD4 interaction partners were identified using BRD4 immunoprecipi-
tation followed by mass spectrometry (IP-MS, [7]) to understand the underlying
mechanism that caused the BRD4-dependent elongation and termination de-
fects. The experiment provided a comprehensive list of 379 significant BRD4

interactors (FDR < 0.05, Figure A.18). An integrated analysis of the two pro-
teomic data sets provided insights into the BRD4 core-interactome. This concept
summarizes the 29 significant interactors with immediate displacement from
the chromatin upon BRD4 loss (p < 0.05). The respective GO term analysis
reported the enrichment of 5’ elongation and 3’-RNA processing factors (Figure
15.7A). Among the top-ranking candidates were factors of the CPSF (CPSF160,
FIP1), cleavage factor Im (CFIm25), CstF (CstF77), DSIF (SPT5), and PAF (PAF1,
CDC73) complexes (Figure 15.7B). The DSIF and PAF complexes are known
regulators of Pol II elongation [232, 233].

These observations lead to the hypothesis that BRD4 underlies a general 5’
elongation control point that primes transcribing Pol II for 3’-RNA processing
and termination. Subsequently, ChIP-Rx was performed for some detected
elongation factors, namely PAF1 and SPT5 (GSE158965, [7]). As a result, BRD4

interestingly co-localized with the 3’-RNA processing (CPSF and CstF) and
the elongation factor PAF1 downstream of the TSS in the promoter-proximal
region (Figure 15.7C). In contrast, SPT5 occupancy accumulated 90 nucleotides
upstream of the identified control point. These data suggest that BRD4 regu-
lates 5’-elongation and 3’-RNA processing through functional interactions at a
5’ control point.

15.3.3 Contribution of Other Elongation Factors on 3’-RNA Processing Defects

Examining the PAF1 and SPT5 binding profiles at TSSs revealed co-localization
with BRD4 and 3’-RNA processing factors. Their presence at 5’ active gene
regions was expected because both factors are described elongation factors.

However, the binding profile of PAF1 at active genes revealed a more unex-
pected profile with a substantial accumulation at active 3’ gene regions (Figure
15.8A). Although SPT5 was present in the 3’ regions, the overall binding of
PAF1 was more similar to the CstF complex (CstF64) than the elongation factor
SPT5 (Figure 15.8A). The re-analysis of other PAF sub-units in an acute mono-
cytic leukemia cell line (THP-1) confirmed this finding (GSE62171, [253], Figure
A.19A). The co-localization of PAF and 3’-RNA processing factors suggested
potential interactions verified in native immunoprecipitation experiments for
several PAF sub-units (Figure A.19B).

Further investigations focused on the relative changes of these factors com-
pared to Pol II occupancy upon BRD4 loss using ChIP-Rx (GSE158965, [7]).
Interestingly, Pol II-normalized PAF1 data showed similar trends as 3’-RNA
processing factors.
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Figure 15.7: Functional Interactions of BRD4. (A-B) Depicted are factors of the core-
interactome (n=29) which consists of significant BRD4 interactors (MS-IP, fold change
(log2) > 0, FDR > 0.05) that were immediately displaced from the chromatin upon BRD4

degradation (chromatin-MS, fold change (log2) < 0, p-value < 0.05). (A) Significant
(FDR < 0.05) GO terms of the core-interactome. GO sub-terms were excluded for
visualization. (B) Scatter-plot highlights top-ranking BRD4 core interactors. The x-
axis shows fold changes (log2) from IP-MS experiments, and the y-axis depicts the
fold changes (log2) measured by chromatin-MS. Highlighted are 3’-RNA processing
factors (red), PAF (blue), and DSIF (green). (C) Meta-gene profiles of FE (Section
3.2.7) normalized ChIP-Rx profiles. Presented are occupancy levels for BRD4, CPSF
(FIP1, CSTF73), CstF (CstF64), DSIF (SPT5) and PAF (PAF1) at 5’ regions of actively
transcribed genes (TSS +/- 1 kb). A gray box marks the peak occupancy location of
BRD4 between 170-180 nucleotides downstream of the TSS.
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Figure 15.8: PAF1 Recruitment Defect. The figure presents ChIP-Rx data at actively
transcribed non-overlapping genes (TSS to pA site + 5 kb, minimum gene length 6 kb)
in human K562 dTAG-BRD4 cells. Meta-gene profiles of (A) FE-normalized (Section
3.2.7) PAF1, CstF-64, and SPT5 at genes (DMSO, n=7,331), and (B) Pol II-normalized
SPT5 and PAF1 occupancy levels at genes after two hours of BRD4 degradation
(dTAG7) and for the control (DMSO).
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Figure 15.9: BRD4 Interactors Contribute to Transcriptional Defects. Boxplot quan-
tification of RTI values calculated for indicated Pol II profiling methods and treat-
ments using two replicates if not stated otherwise (four replicates 40 min dTAG7:
n=9,581-9,619; 120 min dTAG7: n=9,608-9,646; PAF1 KO: n=3,782-4,723; SPT5 KO:
n=9,085-9,269). Performed were PAF1 [24] and SPT5 [62] depletions in human HCT116

and mouse primary activated splenic B lymphocytes.

PAF1 was depleted from the proposed 5’ control region, suggesting that the
recruitment was perturbed (Figure 15.8B and A.19C). In contrast, a relative
increase was detected for SPT5 at the 5’ control region (Figure 15.8B and
A.19D). SPT5 and PAF1 were slightly depleted from the 3’ region (Figure 15.8B,
A.19C and A.19D).

Concerning the collected evidence, the question arose whether PAF1 and
SPT5 could induce readthrough transcription, independent of BRD4 perturba-
tions. Published Pol II occupancy data for PAF1 or SPT5 knockdown experi-
ments were collected and reanalyzed to address this question (GSE70408 [24]
and GSE132029 [62]). Strikingly, the RTI value calculations for both knockout
data sets revealed Pol II readthrough transcription that escaped detection in the
original publications (Figure 15.9). Pol II readthrough transcription induced
by the PAF1 knockout (median RTI = 1.2 kb) was more pronounced than
readthrough transcription induced by SPT5 loss (median RTI = 0.5 kb). The
findings suggest that the 3’ defects were partially mediated through the BRD4

interactors PAF1 and SPT5.

15.4 pol ii regulation at enhancer regions

15.4.1 BRD4 Binds Transcribed Enhancer Regions

BRD4 binding was a general feature of actively transcribed genes with peak
occupancy profiles at promoter-proximal regions (Figures 15.7C and 15.5A).
However, only 59% of all detected BRD4 binding sites overlapped with a
promoter or promoter-proximal region (Figure 15.10A).
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Figure 15.10: BRD4-associated Enhancer Regions. (A) The pie chart shows BRD4

consensus peaks (Section 14.1.2). Classification considers annotated GENCODE [67]
promoter and FANTOM5 [36] enhancer regions. BRD4 binding sites at RNA Poly-
merase I (1.77%), sn/snoRNAs (0.4%), and micro RNAs (0.64%) are not labeled. (B)
Two putative extragenic BRD4 enhancers (chr1:31,171,044 and chr6:37,187,434) over-
lap H3K27ac, H3K4me1, and bi-directional Pol II transcription but no FANTOM5

enhancer annotation. (C) The schematic visualizes the definition of putative BRD4

enhancers, including a BRD4 peak co-localizing with H3K27ac and H3K4me1 or a
FANTOM5 annotated enhancer region (Section 6.1.2). (D) Heatmaps show bidirec-
tional Pol II occupancy measured by two replicate measurements of HiS-NET-seq at
putative BRD4 enhancers. The enhancer center selects the position that maximizes the
Pol II signal downstream on the positive strand and upstream on the negative strand.
(E) Correlation between mean TPM values (log10) of two replicate measurements
from HiS-NET-seq and BRD4 (Pearson’s correlation coefficient: r=0.5). Depicted are
FANTOM5 enhancer (n=6,313, grey) and putative BRD4 enhancer (n=3,404, purple).
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The tandem bromodomains of BET proteins bind to acetylated histones, such
as H3K27ac [60, 255]. The correlation between BRD4 binding and H3K27ac at
BRD4 binding sites confirmed this general presumption (r = 0.57-0.6, Figure
A.20A). Additionally, BRD4 binds acetylated regulatory regions known to
enhance gene expression of target genes, referred to as enhancers [45, 64, 260]
(Section 2.1). For this reason, the remaining BRD4 binding sites were compared
to annotated enhancer regions listed by FANTOM5 in the K562 cell line [36].
Although BRD4 overlapped to a certain extent with those regions (5.6%, Figure
15.10A), a considerable fraction of BRD4 binding sites remained undefined.
Visual inspections of those regions revealed bidirectionally transcribed loci
that harbored classical features of enhancers, such as H3K27ac, H3K4me1, and
a lack of H3K4me3 (Figure 15.10B). H3K4me3 is a marker associated with
promoter regions [44, 84]. Due to the conservative annotation of FANTOM5,
a data-driven approach was applied to identify putative enhancer regions in
human K562 cells. In this study, putative BRD4-associated enhancers were
defined as genomic loci with BRD4 binding sites that co-localized with

• H3K27ac and H3K4me1 peaks or

• FANTOM5 annotated enhancer regions (Figure 15.10C).

BRD4 binding sites near annotated active or inactive promoter regions (+/-
100 kb) were excluded. This approach identified 4,308 putative BRD4 enhancer
regions with high H3K27ac and H3K4me1 levels (Figure A.20B). Consistent
with the current knowledge, these regions lack H3K4me3 compared to BRD4

binding sites at promoter regions (Figure A.20B). The BRD4 abundance was
similar between enhancers localized within genes and those in the extragenic
areas but less pronounced than promoter-associated binding sites (Figure
A.20C). Furthermore, a prominent feature of the putative enhancer regions
was the bi-directionally transcribed Pol II (Figure 15.10D and Figure A.20D),
which generally correlated with BRD4 binding (Figure 15.10E). The presented
results highlight that BRD4 binding correlates with the transcriptional activity
of putative enhancer regions.

15.4.2 Pol II Elongation Control at Enhancer Regions

The next question was whether BRD4 loss impacted the transcriptional activity
at enhancer regions considering the profound effect of BRD4 degradation
on productive gene transcription. The investigations focused on changes at
previously defined putative BRD4 enhancers measured by HiS-NET-seq. A
region 2 kb upstream and downstream of the enhancer center was considered
for the corresponding DPO analysis. HiS-NET-seq identified significant Pol II
reductions at 15% and 69% of the enhancers upon 40 and 120 minutes of
treatment.
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Figure 15.11: Disruption of Productive Enhancer Transcription. The figure presents
analyses upon BRD4 degradation in human K562 dTAG-BRD4 cells measured by
HiS-NET-seq (A) Pol II occupancy changes (log2) upon indicated treatment times
(40 min: n=1,983, n=1,361; 120 min: n=2,814, n=1,478). Significant occupancy changes
(padj < 0.05) are labeled in blue and red. (B) Schematic view of proximal and distal
enhancer regions. (C-D) Pol II occupancy changes at enhancer proximal (y-axis) and
distal regions (x-axis) upon (C) 40 minutes (n=793, four replicate measurements) and
(D) 120 minutes (n=3,751) of BRD4-specific degradation.
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Interestingly, the reduction was similar in intra- and extragenic enhancer
regions (Figure 15.11A) and was visible for individual examples (Figure A.21A).
This observation at extragenic enhancer regions proved that Pol II reductions
at gene-body regions did not indirectly cause the observed decreases. The less
sensitive SI-NET-seq method did not detect these changes (Figure A.21B).

What caused the Pol II occupancy reduction at enhancers? Different publica-
tions suggest remarkable similarities between transcription at enhancers and
protein-coding genes [36, 58, 85, 110], which opened the question of whether
BRD4 might regulate Pol II elongation control at genes and enhancers. En-
hancer regions were segmented into proximal and distal areas based on this
idea. Proximal regions started at the enhancer center and covered the regions
300 bp upstream and downstream at the corresponding strand (Figure 15.11B).
The distal enhancer region covered the area between 300 bp and 2 kb away
from the enhancer center. Pol II occupancy increased in the proximal enhancer
region but decreased in the distal region after 40 minutes of BRD4 loss (Figure
15.11C). This trend was similar to initial observations at transcription units
from genes (Figure 15.2D). After 120 minutes of treatment, the reduction cov-
ered proximal and distal regions of enhancers. However, the decrease was
more pronounced in distal enhancer regions (Figure 15.11D).

In contrast to, for example, the transcription initiation factors TBP (ENCSR-
000EHA [35]), the peak occupancy of BRD4 co-localized downstream of the
transcription initiation site together with Pol II and the elongation factor PAF1

in the promoter-proximal and enhancer-proximal regions (Figure A.22). The
results suggest a regulatory role of BRD4 in elongation control at some actively
transcribed enhancers.

15.4.3 Loss of BRD4 Disrupts Regulatory Interactions

The time-dependent reduction of Pol II at enhancers opened the question of
whether the loss of BRD4 also perturbed transcription initiation at enhancers
after two hours of treatment. A high abundance near promoter and enhancer re-
gions (Figure A.20C) suggests a potential stabilizing role of BRD4 at regulatory
contacts.

Therefore, HiChIP [159] experiments upon 120 minutes of BRD4 degradation
were performed (MRA10-MRA15, unpublished). HiChIP is a protein-centric
chromatin conformation method, similar to ChIA-PET [68]. Those methods
enrich DNA-DNA contacts associated with a specific protein or modification
of interest. This experiment investigated regulatory contacts between DNA
regions with H3K27ac. The software packages HiC-Pro [212] and HiCcompare
[220] were applied for data processing, quality checks, and comparative analy-
sis between conditions at 10 kb resolution (Figure A.23A). In the corresponding
analysis, significant reduction in the interaction frequency of 1,537 contacts
were identified (padj < 0.05, Figure 15.12A).
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Figure 15.12: Reduction of Regulatory Contacts upon BRD4 Loss. Presentation of
measurements from human K562 dTAG-BRD4 cells upon 120 minutes of BRD4 degra-
dation. (A) Interaction frequency changes (log2) at contacts with reduced (disrupted),
increased or without changes (unchanged). Comparison was performed by HiCcom-
pare [220] as described in Section 14.1.4. (B-C) Heatmaps show mean values from
disrupted (n=2,959), increased (n=3,825) and unchanged (n=241,897) contact anchor
regions. (B) Occupancy changes (log2) of BRD4 and (C) FE of indicated chromatin
marks. (D) Mean interaction frequency changes (log2) at pairwise contacts between
all indicated regions. (E) Pol II occupancy changes (log2) measured by HiS-NET-seq at
disrupted (n=2959), increased (n=3825) and unchanged (n=241,897) contact anchor
regions (one tailed Wilcoxon rank sum test *: p = 0.03; ****: p = 1.9e-10).
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These contact losses occurred in regions with the highest reductions of
BRD4 after 40 and 120 minutes of treatment (Figure 15.12B). Different pub-
licly available epigenomic datasets for K562 cells were analyzed from EN-
CODE [35] (ENCSR000AKP, ENCSR000EWB, ENCSR000AKR, ENCSR000APD,
ENCSR000EWC, ENCSR000EWA) to gain a deeper understanding which types
of contacts were affected. Disrupted contacts were highly enriched in chro-
matin marks associated with actively transcribed genes and enhancers (Figure
15.12C). Next, the epigenomic datasets and chromHMM [56] were applied to
gain a genome segmentation with comparable resolution to HiChIP results.
The software, which implements an unsupervised Hidden Markov Model, as-
signs a state to each genome segment associated with a different combination
of chromatin marks. For this purpose, the genome was divided into ten states
that were manually annotated as

• promoter,

• enhancer (intragenic, extragenic, and repressed),

• 3’ gene ends,

• gene-body,

• repressed, or

• low-signal states (Figure A.23B and Section 14.1.4).

In contrast to contacts with increased interaction frequency, disrupted contacts
were enriched in regulatory interactions between promoter-promoter, enhancer-
promoter, and enhancer-enhancer regions (Figure A.23C). The global trend
also showed a general loss of interactions among these regulatory interactions
(Figure 15.12D). Furthermore, Pol II occupancy loss in regions with significantly
fewer interactions exceeded the global trend (Figure 15.12E). However, the
resolution of the applied method does not distinguish between the promoter
and promoter-proximal regions. In conclusion, the integrated analysis revealed
the disruption of regulatory interaction upon BRD4 loss, which correlated with
Pol II occupancy reductions.
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Research over the last decades primarily focused on Pol II initiation mecha-
nisms which occurred at the first step of transcription [183]. In recent years,
the methods to study Pol II occupancy improved and revealed regulatory steps
during early elongation [160, 187, 254]. These regulatory steps emerged as
general [1] and rate-limiting in the expression of genes [102, 141]. This study
investigated post-initiation regulatory mechanisms of Pol II that emerged upon
rapid BRD4 and pan-BET protein degradation using an integrated multi-omics
approach. Results show that BRD4 underlies a general 5’-regulatory hub that
controls productive transcription elongation and primes the Pol II elongation
complex for 3’-RNA processing and termination. Furthermore, this work sug-
gests that BRD4 actively regulates enhancer transcription with a potentially
similar mechanism as observed in promoter-proximal gene regions.

Rapid protein degradation within two hours or less enables the identification
of direct protein functions independent of widespread cellular compensation
and adaptation effects. The challenge with short-time treatments is the selec-
tion of appropriate methods which detect transcriptional changes that occurred
in the respective periods. Efforts to identify the consequences of BRD4 loss on
mature RNA levels revealed only limited insights into the overall impact of this
treatment after two hours (Figure A.5D). Changing the focus to newly synthe-
sized or nascent RNAs, using nuclei-RNA-seq and HiS-NET-seq, revealed the
widespread consequences of BRD4 degradation. Both assays showed a global
reduction of transcript levels using reference-based normalization strategies
(Figure A.6B, 15.1A and 15.1B). These observations were consistent with results
from Muhar et al., 2018 [158], showing minor changes at total RNA levels after
90 minutes of BRD4 degradation, in contrast to global reductions revealed
using specialized methods that capture newly synthesized RNAs.

The region-specific analysis revealed an impaired pause release where Pol II
accumulated in the promoter-proximal regions, with inefficient release into
productive elongation over gene-body regions (Figures 15.2D and 15.2E). This
observation suggested an essential function of BRD4 during Pol II pause
release, which was recently also verified by other BRD4-specific degradation
experiments [158, 260].

Interestingly, Pol II accumulation and reduction in both regions were initially
balanced, consistent with the deregulated Pol II pausing release hypothesis
(Figure 15.2D).
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After two hours of BRD4 loss, Pol II remained at the same levels at promoter-
proximal regions, whereas elongating Pol II further decreased (Figure 15.2E).
This observation suggested that BRD4 potentially affected directly or indirectly
other aspects of Pol II transcription, such as initiation, premature termination,
elongation rate, or processivity, which could explain the imbalance of changes
between both regions.

Pan-BET ablation compared to BRD4-selective degradation showed a general
decrease of Pol II independent of the respective region (Figures A.8D and
A.8E). However, reduction of Pol II was not uniformly distributed but had a
more substantial impact on productive elongation than promoter-proximal
pausing. More evident than for BRD4-specific degradation, these results imply
a distinct role of BRD2 and BRD3 in the 5’ control region. This hypothesis is
consistent with the substantial Pol II depletion at 5’ gene regions upon BRD2

and BRD3 specific degradation experiments observed in another study [260].
Clarifying the protein-specific functions could be an interesting subject for
future investigations. In this context, the next step could be an integrated
analysis of HiS-NET-seq and TT-seq data to identify potential changes in
elongation rates and Pol II processivity [262]. However, new methods are
required to identify genome-wide initiation or premature termination defects.

The proposed mechanism for the BRD4-dependent release of promoter-
proximal paused Pol II was the recruitment of P-TEFb [98, 173, 252]. Although
sub-units of this complex (CDK9 and cyclin T1) interacted with BRD4 (Fig-
ure A.18), neither pan-BET nor BRD4-specific degradation decreased their
abundance at the chromatin (Figure A.13A and A.13B). This observation was
consistent with other studies using either pan-BET [249] or BRD4-specific
degradation strategies [158, 260], excluding the BRD4-dependent recruitment
hypothesis of P-TEFb.

The integrative analysis of proteomic datasets identified other potential
candidates. This study focused on candidates from the BRD4 core-interactome,
which consisted of BRD4 interactors immediately displaced from the chro-
matin upon BRD4 loss (Figure 15.7B). The DSIF (SPT5) and PAF complexes
(PAF1, CDC73) were top-ranking candidates. Interactions were validated in
co-precipitation experiments either in this study (Figure A.19B) or by others
[249, 253]. Another interesting candidate, SPT6, was depleted from the chro-
matin (Figures A.13A and A.13B) and co-precipitated with BRD4 [7] but was
not detected as interactor in the mass spectrometry experiment (Figure A.18).

All these factors are components of the transcription elongation complex
[232, 233] with different putative roles during transcription. Briefly, the PAF
complex is associated with Pol II pause release efficiency [253] and velocity [90,
262], whereas SPT5 [62, 93] and SPT6 [165, 262] are primarily important for
Pol II processivity. ChIP-Rx experiments investigated the abundance of these
factors upon BRD4 loss.
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However, their strong association with Pol II required normalization to
remove changes mirroring the general Pol II occupancy trend. The following
observations likely contributed to the observed BRD4 phenotype.

1. PAF1 co-localized with BRD4 in the promoter-proximal region (Figure
15.7C). This 5’ control region failed to recruit PAF1 to the Pol II elongation
complex upon BRD4 loss (Figure 15.8B). The failed recruitment of the PAF
complex could explain increased Pol II levels in the promoter-proximal
region due to PAF’s function in Pol II pause release [253, 262]. However,
a previously observed decrease in Pol II velocity [90, 262] would increase
gene-body Pol II occupancy levels. Therefore, loss of the PAF complex
can not explain the observed Pol II reduction in the gene-body regions
observed upon BRD4 loss.

2. SPT5 peak occupancy was located upstream of the 5’ control region and
showed no recruitment defect in this region (Figures 15.8B and 15.7C).
The depletion of SPT5 in the regions downstream of the 5’ control point
(Figures 15.8B and A.19D) potentially decreased Pol II processivity, which
could contribute to the observed reduction of Pol II in the gene-body
region [62, 93].

3. SPT6 did not appear in the BRD4 core-interactome. Therefore, subse-
quent experiments did not consider SPT6. However, recent publications
showing SPT6’s role during Pol II processivity [262] and the observed
interactions between SPT6 and BRD4 [7] hint toward a potential link. If
SPT6 recruitment is BRD4-dependent is currently unknown.

Overall, these findings suggested that BRD4 was required to assemble a
functional Pol II complex capable of productive elongation.

Unexpectedly, pan-BET and BRD4 degradation directly impacted 3’-RNA
processing and termination. The main consequence of this defect was the
widespread Pol II readthrough transcription downstream of the termination
zone that led to uncontrolled activation and RNA processing of some tran-
scription units (Figures 15.3E, A.10A and A.10C). It was unclear if those newly
activated units were functional transcripts that could undergo translation.

The transcriptional readthrough index, developed in this study, identified
termination defects genome-wide for individual genes (Figure 15.3B). How-
ever, the index systematically underestimates the impact on lowly expressed
genes and in gene hubs where many actively transcribed genes occurred
with limited distance to each other [7]. Despite these limitations, termination
defects occurred primarily at polyA signal-containing genes (Figure 15.3D).
Notable, degradation of pan-BET proteins increased the impact on termina-
tion significantly (Figure 15.3E), which suggests a collaborating role of BET
proteins.



124 discussion

The proposed index successfully identified and compared readthrough genes
between different treatments and can be applied in future studies to study
HiS-NET-seq or other Pol II profiling data, including PRO-seq and mNET-seq.

Next, 3’-RNA cleavage defects and extended transcripts were identified
upon pan-BET protein degradation using long-read sequencing of nascent
RNA units (Figures 15.4C and 15.4D). Consistent with previous studies and
models [53, 169], the results verified 3’-RNA cleavage as an essential step
required to trigger processes that release Pol II from the DNA template, such
as allosteric changes, an entry side for the XRN2-dependent termination, or
both.

Nanopore sequencing was a powerful approach to identify 3’-RNA cleav-
age defects and extended transcripts. However, the low enrichment of valid
full-length transcripts (Section 14.1.3) was an explicit limitation. To obtain
quantitative data for the comparisons, libraries were not PCR amplified. PCR
amplification is essential for enriching full-length transcripts with correct
primer orientation. Addressing this problem in future experiments requires
alternative approaches, such as direct RNA sequencing [51] or PCR amplified li-
braries combined with UMI sequences. The latter is challenging due to the high
error rates of the nanopore sequencing technology [2] but was applied recently
in a pioneer study [108]. This study performed no additional nascONT-seq
experiments due to the listed problems, including no BRD4-specific degrada-
tion experiment. Whether BRD4 specific degradation affected 3’-RNA cleavage
globally remained unaddressed. However, at individual genes [7], 3’-RNA
cleavage defects were verified upon BRD4 loss using an RT-qPCR-based assay.

A potential underlying mechanism was the perturbed recruitment of some
CPSF and CstF factors to the 5’ control region. There were several lines of
evidence that supported this hypothesis. First, 3’-RNA processing factors
accumulate in 5’ regions and co-localize with BRD4 (Figures 15.6B and 15.7C).
Other studies also observed the early recruitment of these factors [47, 79,
105]. Second, CPSF and CstF factors interacted with BRD4 (Figure A.18) and
dissociated from the chromatin upon BRD4 loss (Figure A.13A and 15.6C).
Finally, the deprivation of 3’-RNA processing factors at the 5’ control region
was more pronounced than the general BRD4 induced reduction of Pol II
(Figure A.15-A.17). These results suggested BRD4-dependent recruitment of
CPSF and CstF factors during an early Pol II elongation phase.

Furthermore, the BRD4 interactors SPT5 [41, 93, 149, 172] and SPT6 [165]
are associated with termination defects and potentially contributed to the
observed defect.

Of particular interest for this study was the contribution of the PAF complex,
which showed significant recruitment defects to the 5’ control point upon
BRD4 loss (Figure 15.8B). Interestingly, PAF1 interacted and co-localized with
3’-RNA processing factors across transcription units with peak occupancy at 3’
regions (Figure 15.8A, A.19A and A.19B).
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PAF1 loss induced readthrough transcription in another cellular system
(Figure 15.9) and appears essential for the recruitment of CPSF and CstF
factors at individual gene examples [201]. However, the exact role of the PAF
complex in 3’ end processing remains unclear and requires further genome-
wide studies.

Additionally, this study described BRD4-binding at transcribed enhancer
regions (Figures 15.10A and 15.10B) as presented in many previous studies
[45, 64, 260]. Subsequently, putative BRD4 enhancers were defined and used
for analyses (Figure 15.10C and A.20B). The most prominent feature of these
BRD4-associated enhancers was the high transcriptional activity compared to
FANTOM5 enhancers (Figure 15.10E).

Unexpectedly, BRD4 loss significantly reduced enhancer transcription at
most putative BRD4 enhancers (Figure 15.11A). SI-NET-seq, which signifi-
cantly lacked Pol II coverage in this region, detected no significant changes
(Figure A.21B). Previous studies showed that BET proteins regulate enhancer
transcription [45, 249, 260]. However, Zheng et al., 2021 [260] ascribed the
regulatory function of BET proteins to BRD2 and did not detect changes upon
BRD4 degradation. Interestingly, their degradation strategy had no impact on
BRD4’s short protein isoform, which was the main difference compared to
BRD4 loss in this study. Differences between both studies suggested isoform-
specific functions of the short BRD4 isoform, as also suggested by others [81].
Of particular interest would be a direct comparison of enhancer transcription
between pan-BET degradation, BRD4-specific degradation, and the specific
loss of BRD4’s short protein isoform.

How does BRD4 regulate enhancer transcription? Some studies in recent
years suggested that elongation control at enhancers might be similar to
promoters, implied by Pol II enhancer pausing [39, 40, 63, 85]. Different
observations supported this idea. First, Pol II accumulated at the sense and
antisense strand close to the enhancer center, similar to promoter-proximal
paused Pol II at genes (Figure 15.10D and 7.5B). Second, BRD4 loss impaired
Pol II pause release at enhancer regions (Figure 15.11C). A short treatment
time of 40 minutes revealed increased levels of Pol II proximal to the initiation
site of actively transcribed enhancers. At the same time, elongation in distal
enhancer regions decreased to a similar extent. Third, BRD4 co-localized with
PAF1 and Pol II at enhancer control regions (Figure A.22). Unfortunately, the
signal coverage of Pol II and PAF ChIP-Rx data was insufficient at enhancers
to reliably answer whether BRD4 degradation caused an assembly defect of a
competent elongation complex, similar to observations at promoter-proximal
regions.

In contrast, two hours of BRD4 loss revealed Pol II reduction at proximal
and distal enhancer sub-regions. However, the distal enhancer regions were
more substantially impacted (Figure 15.11D).
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The overall reduction at enhancer regions suggested that BRD4 had an addi-
tional function in Pol II initiation at enhancers besides elongation control. The
observed interaction frequency changes of 3D regulatory contacts among pro-
moters and enhancers supported this hypothesis (Figure 15.12D). Interestingly,
the Pol II reduction in the identified regions was more potent than the global
trend (Figure 15.12E), which was not observed in a previous BRD4 knockout
experiment [128].

Overall the results remain correlative, as the selected methods could not
answer whether

• reduced 3D interactions caused the reduction of Pol II transcription, or

• reduced Pol II transcription caused the reduction of 3D interactions.

The results generally argued against a global function of BRD4 in stabilizing
enhancer-promoter interactions, which decreased at a subset of 1,537 interac-
tions and not genome-wide. Furthermore, the selective response potentially
explained why previous studies did not detect changes in enhancer-promoter
interactions upon BRD4 loss at selected loci [45]. BRD4’s proposed function
to form liquid-like condensates [17, 81, 203], which conjunct the transcrip-
tion apparatus, could mechanistically explain the loss of 3D interactions and
transcription. Future experiments could address if and how the formation of
liquid-like condensates contributed to the observed defects, for example, using
complementary microscopy techniques.
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C O N C L U S I O N

This study aimed to improve the general understanding of Pol II post-initiation
regulatory mechanisms and develop new approaches to uncover them. In this
context, this work primarily focused on BRD4-dependent regulatory steps
by combining multi-omics technologies and rapid BRD4 protein degradation.
Strikingly, the obtained results validated the proposed protein function during
early Pol II elongation and discovered unknown BRD4-dependent regula-
tory steps essential for Pol II transcription during termination and enhancer
transcription.

New computational and experimental approaches were co-developed to
study Pol II and nascent RNA transcripts quantitatively between conditions,
which was essential in uncovering the diverse roles of BRD4. The following
paragraphs summarize the significant discoveries of this study.

First, this work strengthened the evidence of a 5’ elongation control point
that occurs after initiation and assembles the Pol II elongation complex by
recruiting elongation factors to this region. BRD4-dependent regulation of Pol II
pause release was identified by the global collapse of productive elongation,
which co-occurred with the global increase in promoter-proximal paused Pol II
upon BRD4 loss.

New NET-seq-based protocol variants identified the global changes by
adding mouse control cells for normalization. This work showed that se-
quencing data from human and mouse cells with similar genomes could
be computationally distinguished, allowing reference-based normalization to
identify uniform changes between conditions. The integration of mouse con-
trol cells and the adjustment of computational processing and normalization
steps allowed the discovery of uniform changes in different gene regions upon
treatment.

Second, the study revealed an unexpected role of BRD4 in 3’-RNA processing
and termination. BET proteins, specifically BRD4, were linked to termination
control for the first time despite being widely studied.

Often transcription studies neglect potential effects on transcription termina-
tion. Screenings for initiation or elongation defects focus on well-annotated
gene regions, starting at the TSS and ending at the polyA site. Standard refer-
ence annotations provide no information on Pol II transcription termination
zones. In the past, most studies using termination-related indices considered
changes only in fixed regions relative to annotated polyA sites [8, 14, 18, 109].
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However, this and other studies showed that Pol II termination occurs in
highly variable gene-specific termination zones in humans, which could be
distant from the last annotated polyA site.

For this reason, the newly designed readthrough index identifies Pol II
distribution changes at variable gene-specific termination zones. The applica-
tion of the index successfully identified genome-wide termination defects that
escaped detection in previous studies caused by knockdowns of BET proteins,
BRD4, SPT5, and PAF1.

Third, the data suggest the failed recruitment of 3’-RNA processing factors
to the BRD4-dependent 5’ control region. This recruitment defect is a possi-
ble explanation for 3’-RNA cleavage defects, extended transcripts, and Pol II
readthrough transcription. The defects were identified using the developed
3’-RNA cleavage efficiency test and the nascONT-seq approach. The latter per-
formed ONT’s long-read sequencing. Combining both approaches identified
significant reductions of cleavage efficiency upon pan-BET loss and extended
transcripts.

Unfortunately, the quantitative but amplification-free ONT-seq technology
used for nascONT-seq provided only insufficient coverage of full-length tran-
scripts. Future experiments should consider other published methods [51] that
avoid these problems. However, the 3’-RNA cleavage efficiency test can be uni-
versally applied to all transcriptomic HTS assays. Furthermore, the identified
link between 5’ elongation control and the recruitment of 3’-RNA processing
factors established an exciting concept to study in the future. More follow-up
studies could help identify the implications of early 3’-RNA processing factor
recruitment on co-transcriptional processing and polyA site selection.

Fourth, this study proposes an elongation control region at actively tran-
scribed enhancers similar to promoter-proximal pausing and release at genes.
The Pol II pause release defect at enhancer regions was identified immediately
after BRD4 loss. The reduction of Po II in distal enhancer regions co-occurred
with the increase in enhancer proximal regions. An essential step to reveal this
elongation control point at enhancers was the significant improvement of Pol II
coverage by the HiS-NET-seq method. This study identified critical limitations
of the human NET-seq approach that were addressed in optimization efforts
leading to this new experimental approach.

How and if enhancer RNAs contribute to increased target gene expression
remains unclear, but the Pol II elongation regulation by BRD4 suggested a
direct biological function. This study adds to a few publications that propose
post-initiation Pol II regulation at enhancers similar to gene regions. The
proposed elongation control at enhancers raises fundamental questions about
the general enhancer transcription function. Additional studies are required to
understand the potential role of pausing at enhancers and their contribution
to gene regulation.
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Overall, this study optimized existing and developed new methods to study
BRD4-dependent post-initiation regulatory mechanisms of Pol II. The general
steps and methods applied in this work can be transferred to other projects
and contribute to identifying Pol II deregulation in other cellular systems or
experimental designs. This study proposed new exciting concepts of post-
initiation regulatory Pol II mechanisms at genes and enhancers, opening many
new questions for future studies.
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O T H E R P R O J E C T C O N T R I B U T I O N S

Part II of this study introduced the collaboration with the laboratory of Bruno
Reversade, director of the A*STARs Genome Institute of Singapore and the Insti-
tute of Molecular and Cell Biology. His group investigates the genetic cause of
a congenital syndrome of osteogenesis imperfecta. Section 10 describes the pa-
tient’s phenotype and material collection resulting in polyA-enriched RNA-seq
and SI-NET-seq data (GSE197118 and GSE197119, unpublished). Section 11.3
showed as a proof-of-concept the successful application of SI-NET-seq in this
clinical case study and identified deregulated genes in patients (Figure 11.3C).
The integrated analysis showed the deregulated pathways of the patients
identified by both assays (Figure 11.3E), which corresponded to the general dis-
ease phenotype and mainly affected extracellular matrix and collagen-related
pathways.

However, the genetic founder mutation that caused the syndrome remained
unknown despite the following investigations. Homozygosity mapping from
single nucleotide polymorphism genotyping data identified the Identical-by-
Descent region that harbored the potential founder mutation. The area spanned
8.4 megabases on chromosome four with 39 possible candidate genes. Whole-
exome sequencing reported no compelling recessive mutation in the coding
regions of the respective regions, suggesting a mutation in the non-coding
DNA.

Interestingly, the RNA-seq analysis uncovered one differentially expressed
gene in the Identical-by-Descent region, the transmembrane anterior posterior
transformation 1 (TAPT1) gene (Figure A.24A). A previous study [224] reported
homozygous mutations in TAPT1 that caused a complex osteochondrodysplasia
with clinical overlap to the patient’s syndrome. Western blot experiments
confirmed a complete loss of the TAPT1 protein in the patient’s homozygous
fibroblast cells (data not shown).

Because the SI-NET-seq analysis showed no significant Pol II occupancy
change in this gene region, the mutation likely affected the processing of the
RNA transcript or translation of the protein. Strikingly, the rMATS v3.1.0
[215] splicing analysis on polyA-enriched RNA-seq data revealed a significant
alternative splice event in patients, leading to the exclusion of exon twelve in
the TAPT1 gene (Figure A.24B). Skipping of exon twelve led to a frameshift
that created a premature stop codon, which likely resulted in nonsense-mediated
decay (Figure A.24C).
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Based on this observation, our collaborator identified the founder mutation
segregating with the disease in the family. The disease-causing point mutation
replaced guanine with an adenine, twenty-two nucleotides upstream of the 3’
splice site of exon twelve (c.1237-52 G>A, Figure A.25A).

The critical question remained: How could a deep intronic mutation cause
an exon skipping event? A plausible hypothesis was that the mutation affected
the recognition of the branchpoint, which is essential for the splicing process.
Different prediction tools, including RNABPS [166], LaBranchoR [171], and
BPP [256], were applied to the corresponding locus to address this hypothe-
sis. Surprisingly, the in silico mutation experiment created a new competing
branchpoint position seven nucleotides downstream of the predicted wildtype
branchpoint (Figure A.25B). The spacial proximity suggested that the mutation
either directly created a non-functional competing branchpoint or disrupted
the branchpoint recognition by changing the DNA context. Unfortunately,
this model derives exclusively from in silico tests. If the mutation disrupts the
sensing of the branchpoint in vivo remains unclear. Future experiments could
perform crosslinking and immunoprecipitation followed by HTS experiments to see
if branchpoint-recognizing factors, for example, the branchpoint bridging protein,
bind differentially to nascent RNA transcripts of patients.



A
S U P P L E M E N TA RY F I G U R E S

Figure A.1: Optimization of Human NET-seq. Related to Section 7.2. (A-B) Three
human NET-seq samples derived from HeLa S3 and K562 show (A) the fraction of
short sequencing reads aligned to the human reference genome (mapped) compared to
reads without unique sequence alignment (unmapped) and (B) the expected number
of UMI collisions among sequencing reads mapping to Pol II transcribed regions. (C)
Fraction of sequencing reads mapping to Pol II transcribed regions (chromosomal
and not listed in Table B.6), sn/snoRNA genes, or no locus in the human reference
genome (unmapped). Sequencing reads are, if possible, further classified into uniquely
mapped (red), PCR duplicates (dark grey), splicing intermediates (grey), or without
unique mapping position (light grey).
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Figure A.2: Impact of 4sU Labeling on Purified RNA Libraries. Related to Section
7.3. The analysis includes HiS-NET-seq libraries with 10 minutes of 4sU labeling
and the respective control experiment without metabolic labeling in K562. The com-
parison includes (A) library complexity, (B) length (excluding barcode length), (C)
uracil frequency, and (D) conversion rates of sequenced reads. The conversion rate
is calculated based on the reference annotation (GRCh38.p12) in humans without
considering reported single-nucleotide polymorphism or PCR duplicates.
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Figure A.3: Parameter Estimation for Differential Analysis using Osteogenesis
Imperfecta Data. Related to Section 11.1. Considered are active genes (n=11,424)
from patient-derived fibroblast cells, including two homozygous patients (-/-; V1, V5),
one heterozygous (+/-; IV2) parent, and one unrelated healthy individual (++; WT)
measured by NET-seq with two replicate measurements, respectively. (A) Scatter-plot
shows the log10 transformed dependency between variance and means for genes.
The diagonal is marked in red. (B, D) Hierarchical clustering of Euclidean distance
measured between (B) RPM and (D) median-of-ratios normalized samples. (C) RPM
normalized Pol II occupancy at genes. The top five expressed genes are marked in red.
(E, F) Scatter-plot shows the dependency of the estimated log-transformed dispersion
and the normalized mean expression (black). Marked are the trend curve (red) and
final dispersion parameters after shrinkage (blue), using (E) the parametric or (F) local
regression method.
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Figure A.4: Data Visualization and Interpretation. Related to Section 11.3. Meta-gene
profiles of reference normalized Pol II (Section 3.2.6) at actively transcribed genes
in (A) primary fibroblast cells (n=13,049) from patients with OI (V1, V5) and (B)
MOLT4 cells (n=10,171) upon two hours of pan-BET protein degradation (dBET6).
Both analyses were compared to the respective controls, DMSO or wild-type (WT).
Nucleotides at the TSSs or signal outliers above the 99.90-quantile were excluded. (C,
D) Pol II occupancy changes (log2) were identified with SI-NET-seq in the reference
mouse cells (NIH 3T3) from the (C) OI (n=5,794) and (D) pan-BET protein degradation
(n=11,554) data sets. Significant occupancy changes (padj < 0.05) are labeled in blue
and red. (E, F) Data were obtained with SI-NET-seq after 2h of pan-BET protein
degradation in MOLT4. (E) Pol II occupancy changes (log2) for different gene classes
(protein-coding: n=9,729, lncRNA: n=911, histone: n=55). (F) Gene length distributions
at sensitive (padj < 0.05, n=7,799) and resistant (padj > 0.05, n=2,896) genes.
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Figure A.5: BRD4-dependent Deregulation of Mature RNA Levels. Related to
Section 15.1.1. If not stated otherwise, the experimental designs include control
experiments (DMSO) and two hours of BRD4-protein degradation (dTAG7) in human
K562 dTAG-BRD4 cells. (A) Immunoblot after treatment for the indicated time points.
Arrows indicate the expressed long and short BRD4 isoforms. H2B served as a
loading control. (B) Mass spectrometry quantifies protein levels (n=2,882, four replicate
measurements) from SILAC-labelled whole-cell lysates. (C) Principal component
analysis for batch corrected and ERCC spike-in normalized genes (n=32,136) measured
by total RNA-seq with two replicates for each condition. (D) Changes of total RNA
levels (log2, n=10,296) identified with total RNA-seq using ERCC spike-in controls.
Differentially expressed genes (padj < 0.05) are labeled in blue and red.
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Figure A.6: BRD4-dependent Deregulation of Nascent Transcription. Related to
Section 15.1.1. The experimental designs include control experiments (DMSO) and
two hours of BRD4-protein degradation (dTAG7) in human K562 dTAG-BRD4 cells.
(A) Hierarchical clustering of Euclidean distance measured by nuclei-RNA-seq between
ERCC spike-in normalized genes (n=32,972) for three replicate measurements. (B)
Changes of RNA levels (log2, n=24,660) identified with nuclei-RNA-seq using ERCC
spike-in controls. Differentially expressed genes (padj < 0.05) are labeled in blue and
red. (C) Principal component analysis for batch corrected and spike-in normalized
genes (n=39,617) measured by HiS-NET-seq for indicated time points (40 minutes:
four replicates; 120 minutes: two replicates). (D) Hierarchical clustering of Euclidean
distance measured by SI-NET-seq between spike-in normalized genes (n=10,069) for
two replicate measurements for each condition.
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Figure A.7: Regulation of Pol II Pause Release by BRD4. Related to Section 15.1.2
and 15.1.3. The experimental design includes non-overlapping actively transcribed
genes from human K562 dTAG-BRD4 cells in the control experiment (DMSO) and two
hours of BRD4-protein degradation (dTAG7) with two HiS-NET-seq replicate mea-
surements. (A) Pol II occupancy at PGGT1B gene. Data is reference-based normalized
(Section 3.2.6). (B, C) Principal component analysis for batch corrected and reference
normalized (B) promoter-proximal (n=24,872) and (C) gene-body regions (n=34,541)
for indicated time points (40 minutes: four replicates).
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Figure A.8: Elongation Defects Compared Across Treatments. Related to Section
15.1.2 and 15.1.3. SI-NET-seq data for two replicate measurements of controls (DMSO),
two hours of (B, C) BRD4-specific degradation (dTAG7), and (D, E) pan-BET protein
degradation (dBET6) in human K562 dTAG-BRD4 cells. (A) Hierarchical clustering of
Euclidean distance between non-overlapping spike-in normalized genes (n=10,099). (B,
D) Meta-gene profiles of reference -based normalized (Section 3.2.6) Pol II occupancy
(dTAG7: n=10,976; dBET6: n=11,014). Regions with signal outliers above the 99.90-
quantile and TSSs were masked. (C, E) Pol II occupancy changes at promoter-proximal
(y-axis) and gene-body regions (x-axis) (dTAG7: n=8,265; dBET6: n=4,293).
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Figure A.9: RTI Comparison Across Treatments. Related to Section 15.2.1. The
Figure depicts readthrough transcription at actively transcribed genes upon indicated
treatments in human K562 dTAG-BRD4 cells, with two replicate measurements each.
(A-C) Boxplot quantifications of RTI calculations upon BRD4 degradation (dTAG7) for
(A) HiS-NET-seq and SI-NET-seq (HiS-NET-seq: n=9608-9,646; SI-NET-seq: n=9,418-
9,446; one sided Wilcoxon rank sum test ****: p-value < 2.2e-16) and (B) antisense
transcription units (antisense: n=4,251-4,344; one sided Wilcoxon rank sum test n.s:
p-value = 1, ****: p <2.2e-16) measured by HiS-NET-seq. (C-E) Comparison of pan-
BET protein degradation (dBET6) and BRD4 degradation (dTAG7). (C) Scatterplot
comparison of the computed RTI values (Pearson’s correlation, r = 0.79). (D) Histogram
of the RTI distribution between two control measurements. (E) Venn diagram of
transcriptional readthrough genes (RTI > 5 kb).
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Figure A.10: Readthrough-induced Gene Activation. Related to Section 15.2.2. The
figure depicts total RNA-seq data upon two and six hours of pan-BET degradation
(dBET6) and the control experiment (DMSO) in MOLT4 for three replicate measure-
ments. (A) Gene track of RPM normalized total RNA levels upon indicated treatments.
(B) Sashimi plot highlights new splicing events downstream of FUS (>1 read). (C)
Distribution heatmap and boxplot of spliced RNA molecules per gene (Section 14.3)
across all active genes (n=12,581, DMSO 2h) and at readthrough activated genes
(dBET6 2h: n=472; dBET6 6h: n=875) upon indicated treatments.
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Figure A.11: Nascent RNA Sequencing using ONT. Related to Section 15.2.3. (A)
Pairwise comparisons of Pearsons’s correlation between median-of-ratios normalized
nascONT-seq samples at actively transcribed genes (n=9,610). FeatureCounts v2.0.0
[125] identified the abundance of transcripts at active genes (Section 6.1.1) using the
long-read mode -L. (B) Mean nascent RNA levels downstream of active genes after
120 minutes dBET6 treatment and DMSO using nascONT-seq data.
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Figure A.12: Features of Readthrough Transcription. Related to Section 15.2.4. Box-
plot quantification of (A) gene lengths (****: p < 2.2e-16), steady state RNA levels
(****: p = 1.9e-14), and (B) nucleotide frequencies (****: p < 1.5e-15) at non-overlapping
readthrough (n=1,824) and non-readthrough genes (n=6,618) from human K562 dTAG-
BRD4 cells. One tailed Wilcoxon rank sum tests were performed. (C) Hierarchical
clustering of cross-correlation between spike-in normalized BRD4 ChIP-Rx samples.
(D) BRD4 ChIP-Rx occupancy changes (log2) at BRD4 peaks (n=16,233) upon 40

minutes of BRD4-protein degradation. Data was analyzed with DiffBind [221] using
spike-in normalization. Significant occupancy changes (FDR < 0.05) are labeled in blue
and red.
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Figure A.13: Depletion of Elongation and 3’-RNA Processing Factors from the
Chromatin. Related to Section 15.3.1. If not stated otherwise, data was collected upon
120 minutes of BRD4 degradation in K562 dTAG-BRD4 cells. (A, B) Changes in protein
chromatin composition upon 120 minutes of (A) BRD4 (n=964) and (B) BET protein
(n=1,563) degradation as determined by quantitative chromatin-MS. Processed data
was extracted from [7]. (C) Heatmap of 3’-RNA processing and termination factors
detected by chromatin-MS upon treatment ranked by p-value.
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Figure A.14: Recruitment Defect of 3’-RNA Processing Factors to 5’ Gene Regions.
Related to Section 15.3.1. Data was collected upon 120 minutes of BRD4 degradation
in K562 dTAG-BRD4 cells. Box plot quantification of FE of 3’-RNA-processing factors
(CPSF73, FIP1, CstF64) upon treatment and for the DMSO around gene’s (n=7,331) (A)
5’ (TSS +/- 1 kb) and (B) 3’ ends (pA site -1 kb to pA site +5 kb). One tailed Wilcoxon
signed-rank tests were performed (****: p < 1.72e-12). Two replicate measurements
show no enrichment at the 5’ end (No signal).
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Figure A.15: Recruitment Defects of CPSF73. Related to Section 15.3.1. Meta-gene
profiles and heatmaps of Pol II-normalized occupancy levels for CPSF73 upon 120

minutes of BRD4 degradation in K562 dTAG-BRD4 cells at gene regions (TSS +/- 2 kb)
of different gene sets (active genes: n=12,364; decreased cleavage efficiency (dBET6):
n=282, unchanged cleavage efficiency (dBET6): n=1,794).
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Figure A.16: Recruitment Defects of FIP1. Related to Section 15.3.1. Meta-gene
profiles and heatmaps of Pol II-normalized occupancy levels for FIP1 upon 120

minutes of BRD4 degradation in K562 dTAG-BRD4 cells at gene regions (TSS +/- 2 kb)
of different gene sets (active genes: n=12,364; decreased cleavage efficiency (dBET6):
n=282, unchanged cleavage efficiency (dBET6): n=1,794).
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Figure A.17: Recruitment Defects of CstF64. Related to Section 15.3.1. Meta-gene
profiles and heatmaps of Pol II-normalized occupancy levels for CstF64 upon 120

minutes of BRD4 degradation in K562 dTAG-BRD4 cells at gene regions (TSS +/- 2 kb)
of different gene sets (active genes: n=12,364; decreased cleavage efficiency (dBET6):
n=282, unchanged cleavage efficiency (dBET6): n=1,794).
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Figure A.18: BRD4 Interactors. Related to Section 15.3.2. Interactome of BRD4 as iden-
tified by IP-MS in K562 dTAG-BRD4 cells. The dashed line indicates the significance
threshold (FDR < 0.05). Processed data was extracted from [7].
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Figure A.19: Contribution of PAF1 to 3’-RNA Processing. Related to Section 15.3.3.
(A) Meta-gene profiles of FE-normalized PAF subunits in human THP1 cells (GSE62171

[253]) at actively transcribed genes (TSS -1 kb to pA site +5 kb). (B) Immunoblot for
HA-tagged BRD4 (Section 2.4.4) and several subunits of the CPSF and CstF after native
immunoprecipitation of the PAF subunits PAF1, CDC73, and RTF1 in K562 dTAG-
BRD4 cells. IgG was included to estimate the specificity of the immunoprecipitation.
Input shows the general detectability of the proteins in the lysate. (C-D) Box plot
quantification of Pol II-normalized (C) PAF1 and (D) SPT5 upon 120 minutes of dTAG7

treatment and for the DMSO control around gene’s (n=12,386) 5’ (TSS +/- 300 kb) and
3’ ends (pA site +3 kb) in K562 dTAG-BRD4 cells. One tailed Wilcoxon signed-rank
tests were performed (****: p < 2.2e-16; n.s.: p = 0.94).
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Figure A.20: Putative BRD4 Enhancer Regions. Related to Section 15.4.1. (A) Correla-
tion between TPM values (log10) of H3K27ac and BRD4 occupancy at BRD4 consensus
peaks (n=16,184, Pearson’s correlation coefficient: r=0.56 and r=0.6) for two BRD4 ChIP-
Rx replicate measurements. A pooled H3K27ac data set from ENCODE was used.
(B-D) Heatmaps visualize FE-normalized signals at BRD4 binding sites for indicated
proteins or modifications of interest. Depicted are (B) putative enhancers (n=4,308),
promoter (n=9,504) and undefined (n=1,917) regions, (C) promoter (n=9,504), putative
extragenic (n=2,829) and intragenic enhancer (n=1,479) regions, and (D) putative
enhancer regions (n=3,408).
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Figure A.21: Elongation Control at Enhancer Regions. Related to Section 15.4.2. The
figure depicts Pol II occupancy changes after two hours of BRD4-specific degradation
(dTAG7) and the control experiment (DMSO) measured by HiS-NET-seq. (A) Reference-
normalized (Section 3.2.6) Pol II occupancy at the MYC gene and associated annotated
FANTOM5 enhancers. (B) Pol II occupancy changes (log2) at extragenic and intragenic
enhancer regions using SI-NET-seq (n=2,824, n=1,478). Significant occupancy changes
(padj < 0.05) are labeled blue and red.
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Figure A.22: Protein-binding Landscape at Enhancer Regions. Related to Section
15.4.2. Meta-gene profiles and heatmaps of FE normalized (Section 3.2.7) ChIP-Rx
profiles. Presented are occupancy levels for BRD4, TBP (ENCSR000EHA [35]), Pol II,
and PAF1 at 5’ regions of actively transcribed genes (n=12,374) and putative BRD4-
enhancer centers (n=4,308) for two replicate measurements. A gray box marks the
peak occupancy locations of BRD4.
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Figure A.23: Characterization of Changed Interactions. Related to Section 15.4.3.
Presentation of measurements from human K562 dTAG-BRD4 cells upon 120 minutes
of BRD4 degradation. (A) Hierarchical clustering of Euclidean distance between pair-
wise normalized MD interaction frequencies for controls (DMSO) and two hours of
BRD4-specific degradation (dTAG7) for three replicate measurements. (B) Emission
probability of chromatin marks in different states of the chromHMM [56] model.
Annotations were assigned manually. (C) Enrichment of pairwise interactions between
different genomic regions among contacts with disrupted and increased interaction
frequency changes. Enrichment was calculated as the logarithmic ratio of observed
contacts (O) and expected (E). Expected counts were derived from all pairwise contacts
in the genome.
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Figure A.24: Intronic TAPT1 Mutation Leads to Exon Twelve Skipping. Related to
Section 18. The figure compares data derived from WT (WT1 and WT2) and patient
(V.1 (F1), V.5 (F1)) primary dermal fibroblasts cells measured by polyA-enriched RNA-seq.
(A) The volcano plot shows differentially expressed transcript levels (n=17,675). (B) The
figure summarizes the results of the alternative splicing analysis showing differences
in exon usage (x-axis) between patients identified by rMATs [215] (n=19,128). (A, B)
Significant changes with a FDR adjusted p-value (y-axis) below 0.05 are labeled in
blue and red. TAPT1 is in both analyses among the top-ranking deregulated genes.
(C) Schematic representation of exon twelve loss in the TAPT1 transcript.
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Figure A.25: Mutation Creates New Putative Branchpoint Position. Related to
Section 18. The figure compares data derived from WT (WT1 and WT2) and patient
(V.1 (F1), V.5 (F1)) primary dermal fibroblasts cells measured by polyA-enriched RNA-
seq. (A) Transcript fragments from patients at the TAPT1 gene skip the exon twelve
compared to WT. The chromatogram shows the intronic mutation (c.1237-52 G>A) of
the targeted Sanger sequencing in WT, IV.3 (F1), and V.5 (F1). (B) Predicted branchpoint
scores seventy nucleotides upstream of the 3’ splice site of exon twelve in the TAPT1
gene for WT and patient ( mutation of G>A). In this region, the mutation shifts the
predicted branchpoint position from fifty-nine nucleotides to fifty-two nucleotides
downstream of the respective 3’ splice site.
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Table B.1: High Throughput Sequencing Data Overview. Replicate - Rep

Resource Cell line Replicate Source Identifier

ChIP-Rx and ChIP-seq

ChIP-Rx BRD4

- 120 min DMSO
- 120 min dTAG7

- 40 min dTAG7

- input

K562

dTAG-
BRD4 +
NIH 3T3

(5:1)

1, 2 MRA, un-
published

MRA109-MRA116

ChIP-Rx CPSF73,
120 min
- DMSO
- dTAG7

- input

K562

dTAG-
BRD4 +
NIH 3T3

(5:1)

1, 2 MRA [7] GEO: GSE158965

ChIP-Rx CstF64,
120 min- DMSO-
dTAG7

- input

K562

dTAG-
BRD4 +
NIH 3T3

(5:1)

1, 2 MRA [7] GEO: GSE158965

ChIP-Rx FIP, 120

min- DMSO-
dTAG7

- input

K562

dTAG-
BRD4 +
NIH 3T3

(5:1)

1, 2 MRA [7] GEO: GSE158965

ChIP-Rx Pol II
Subunit 2,
- 120 min DMSO
- input

K562

dTAG-
BRD4 +
NIH 3T3

(5:1)

1, 2 MRA [7] GEO:
GSE158965input:
MRA47, MRA67

(unpublished)

159
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High Throughput Sequencing Data. Replicate - Rep

Resource Cell line Replicate Source Identifier

ChIP-seq K562

- H3K27ac
- H3K36me3

- H3K79me2

K562 1, 2 ENCODE,
Bernstein
laboratory
[35]

ENCSR000AKP,
ENCSR000AKR,
ENCSR000APD

ChIP-seq K562

- H3K27me3

- H3K4me1

- H3K4me3

K562 1, 2 ENCODE,
Farnham
laboratory
[35]

ENCSR000EWB,
ENCSR000EWC,
ENCSR000EWA

ChIP-seq K562

- TBP
K562 1, 2 ENCODE,

Snyder
laboratory
[35]

ENCSR000EHA

ChIP-seq THP-1
- LEO1

- CDC73

- PAF1

- CTR9

THP-1 1 Roeader
laboratory
[253]

GEO: GSE62171

GRO-seq

GRO-seq HCT116

- shSCR
- shPAF1

HCT116 1, 2 Shilatifard
laboratory
[24]

GEO: GSE70408

GRO-seq primary
activated splenic B
lymphocytes
- SPT5 WT
- SPT5 KO

primary
activated
splenic B
lympho-
cytes

1, 2 Pavri
laboratory
[62]

GEO: GSE132029

HiChIP

HiChIP, H3K27ac,
120 min
- DMSO
- dTAG7

K562 1-3 MRA, un-
published

MRA10- MRA15
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High Throughput Sequencing Data. Replicate - Rep

Resource Cell line Replicate Source Identifier

HiS-NET-seq

HiS-NET-seq
- 0 min 4sU
(control)
- 10 min 4sU

K562 1, 2 OJ, un-
published

OJ90, OJ91OJ92,
OJ93

HiS-NET-seq, 120

min
- DMSO
- dTAG7

K562

dTAG-
BRD4 +
NIH 3T3

(8:1)

1, 2 OJ, un-
published

OJ94-OJ97

HiS-NET-seq, 40

min
- DMSO
- dTAG7

K562

dTAG-
BRD4 +
NIH 3T3

(8:1)

1-4 MRA, un-
published

MRA125-MRA147

mNET-seq

mNET-seq K562 1, 2 Schwalb
laboratory
[80]

GEO: GSE123980

nascONT-seq

nascONT-seq, 120

min
- DMSO
- dTAG7

K562

dTAG-
BRD4

1, 2 OJ [7] GEO: GSE158965

NET-seq

NET-seq HeLa HeLa S3 1, 2 AM [148] GEO: GSE123980

NET-seq K562

(standard)
K562 1 OJ, un-

published
OJ01

NET-seq K562 (size
selection)

K562 1 OJ, un-
published

OJ08

NET-seq K562

(optimized)
K562 1 OJ, un-

published
OJ26
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High Throughput Sequencing Data. Replicate - Rep

Resource Cell line Replicate Source Identifier

PRO-seq

PRO-seq K562 1 Lis
laboratory
[38]

GEO: GSM1480327

RNA-seq

RNA-seq, nuclei,
K562 dTAG-BRD4,
120 min
- DMSO
- dTAG7

K562

dTAG-
BRD4 +
ERCC

1-3 NE, un-
published

NE04-NE09

RNA-seq, polyA,
mouse primary
activated splenic B
lymphocytes

primary
activated
splenic B
lympho-
cytes

1-3 Pavri
laboratory
[62]

GEO: GSE132029

RNA-seq, polyA,
NIH 3T3

NIH 3T3 1, 2 ENCODE,
Stamatoy-
annopou-
los
laboratory
[35]

ENCSR000CLW

RNA-seq, polyA,
primary cutaneous
fibroblasts
- WT 1/2

- HMZ 1/2

- HTZ

primary
fibroblasts

1 Reversade
laboratory,
un-
published

GEO: GSE197120

RNA-seq, total,
HCT116

HCT116 1-4 Shilatifard
laboratory
[25]

GEO: GSE97527

RNA-seq, total,
K562

K562 1, 2 ENCODE,
Graveley
laboratory
[35]

ENCSR109IQO
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High Throughput Sequencing Data. Replicate - Rep

Resource Cell line Replicate Source Identifier

RNA-seq, total,
K562 dTAG-BRD4,
120 min
- DMSO
- dTAG7

K562

dTAG-
BRD4 +
ERCC

1, 2 MRA, un-
published

MRA101,
MRA102,MRA105,
MRA106

RNA-seq, total,
MOLT4, 120 min
- DMSO
- dBET6

MOLT4 +
ERCC

1-3 Bradner
laboratory
[249]

GEO: GSE79253

RNA-seq, total,
MOLT4, 360 min
- DMSO
- dBET6

MOLT4 +
ERCC

1-3 Bradner
laboratory
[249]

GEO: GSE79253

RNA-seq, total,
THP-1

THP-1 1, 2 Roeader
laboratory
[253]

GEO: GSE62171

SI-NET-seq

SI-NET-seq K562

dTAG-BRD4, 120

min
- DMSO
- dBET6

- dTAG7

K562

dTAG-
BRD4 +
NIH 3T3

(6:1)

1, 2 MRA [7] GEO: GSE158963

SI-NET-seq
MOLT4, 120 min
- DMSO
- dBET6

MOLT4 +
NIH 3T3

(6:1)

1, 2 AM [7] GEO: GSE158963

SI-NET-seq
primary fibroblasts,
- WT
- HMZ 1/2

- HTZ

primary
fibroblasts
+ NIH 3T3

(6:1)

1, 2 SF, un-
published

GEO: GSE197120
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Resource Identifier/
Version

Source URL

FANTOM5 v5 [36] https://fantom.gsc.riken.jp/

GENCODE v28,
v29,
M18,
M22

[67] https://www.gencodegenes.org/

GENCODE GRCh38.p12,
GRCm38.p6

[67] https://www.gencodegenes.org/

HUGO Gene
Nomenclature

864 [177] https://www.genenames.org/

polyA_DB v3.2 [243] http://exon.umdnj.edu/

Table B.2: Annotation Databases Overview.

Table B.3: Software and Algorithms Overview.

Resource Version Source Identifier/URL

chemfig 1.6b [226] https://ctan.org/pkg/chemfig?lang=en

chromHMM 1.19 [56] http://compbio.mit.edu/ChromHMM/

bedtools 2.29.2 [185] https://bedtools.readthedocs.io/en/
latest/

Biopython 1.78 [32] https://biopython.org/

Bowtie2 2.3.5.1 [119] http://bowtie-bio.sourceforge.net/
bowtie2/index.shtml

cutadapt 3.4 [143] https://cutadapt.readthedocs.io/en/
stable/

deepTools2 3.2.1 [190] https://deeptools.readthedocs.io/en/
develop/index.html

DEseq2 1.25.4 [132] http://www.bioconductor.org/
packages/release/bioc/html/
DESeq2.html

DiffBind 3.0.15 [221] https://bioconductor.org/packages/
release/bioc/html/DiffBind.html
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Software and Algorithms Overview.

Resource Version Source Identifier/URL

FastQC 0.11.5 [4] https://github.com/s-
andrews/FastQC

grammarly - - https://www.grammarly.com/

Guppy 3.2.4 ONT https://community.nanoporetech.com

HiC-Pro 3.0.0 [212] https://github.com/nservant/HiC-
Pro

HiCcompare 1.8.0 [220] https://www.bioconductor.org/
packages/release/bioc/html/
HiCcompare.html

HMMER 3.3 [176] http://hmmer.org/

HTSeq 0.13.5 [184] https://htseq.readthedocs.io/en/
master/

IGV 2.8.0 [198] https://software.broadinstitute.org/
software/igv/

MACS2 2.2.7.1 [258] https://github.com/jsh58/MACS

miRBase v22.1 [115] https://www.mirbase.org/

minimap2 2.17 [124] https://github.com/lh3/minimap2

NumPy 1.20.2 [82] https://numpy.org/

pysam 0.16.0.1 [77] https://pandas.pydata.org/

PANTHER 15 [153] http://geneontology.org/

PICARD 2.24.2 [95] https://broadinstitute.github.io/
picard/

Python 2.7.16

and
3.8.9

[231] https://www.python.org/

QDNAseq 1.22.0 [206] https://www.bioconductor.org/
packages/release/bioc/html/
QDNAseq.html

R 3.6.3 [186] https://www.r-project.org/
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Software and Algorithms Overview.

Resource Version Source Identifier/URL

reactome 75 [76] https://reactome.org/

RepeatMasker
(UCSC)

human
(1/3/19)
and
mouse
(3/7/12)

[104] http://repeatmasker.org/
human: https://genome.ucsc.edu/
cgi-bin/hgTrackUi?g=rmsk
mouse: https://genome.ucsc.edu/
cgi-bin/hg-
TrackUi?db=mm39&c=chr12&g=rmsk

rMATS 3.1.0 [215] http://rnaseq-mats.sourceforge.net/

RSEM 1.3.1 [122] https://github.com/deweylab/RSEM

SAMtools 1.13 [46] https://www.htslib.org/

Snakemake 6.8.0 [156] https://snakemake.readthedocs.io/
en/stable/

STAR 2.7.3a [50] https://github.com/alexdobin/STAR

Starcode 1.1 [261] https://github.com/gui11aume/
starcode

subreads 2.0.0 [125] http://subread.sourceforge.net/
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Cell line or cell type Source ID

HCT116 Shilatifard
laboratory [25]

GSE97527

K562 ENCODE,
Graveley
laboratory[35]

ENCSR109IQO

K562 dTAG-BRD4 ENCODE,
Graveley
laboratory [35]

ENCSR109IQO

MOLT4 Bradner
laboratory
[249]

GSE79253

NIH 3T3 ENCODE [35] ENCSR000CLW

primary activated
splenic B lymphocytes

Pavri
laboratory [62]

GSE132029

primary fibrobast cells
from patients

Reversade
laboratory,
unpublished

GSE197120

THP-1 Roeader
laboratory
[253]

GEO: GSE62171

Table B.4: RNA-seq Data Defining Actively Transcribed Genes in Cell Lines.
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Software Parameters

cutadapt -a ATCTCGTATGCCGTCTTCTGCTTG -a
AAAAAAAAAAGGGGGGGGGGGGGG -a

GGGGGGGGGGGGGGGGGGGGGGG -e 0.2 -q 5

--max-n 0.9

Starcode -d 0

STAR -clip3pAdapterSeq
ATCTCGTATGCCGTCTTCTGCTTG

-clip3pAdapterMMp 0.21 -clip3pAfterAdapterNbases 1

-outFilterMultimapNmax 1 -outSJfilterOverhangMin 3

1 1 1- outSJfilterDistToOtherSJmin 0 0 0 0

-alignIntronMin 11 -alignEndsType EndToEnd

Table B.5: NET-seq Pipeline: Software and Parameters.

Type Source Keyword RNA Poly-
merase

microRNA
[115] miRNA,

miRNA_primary_transcript
II

[67] miRNA

miscellaneous
RNA

[67] misc_RNA Unknown

ribosomal RNA
[104] SSU-rRNA_Hsa,

LSU-rRNA_Hsa, 5S (III)
I

[67] rRNA, rRNA_pseudogene

sn/snoRNA
[104] U1, U2, U3, U4, U5, U6, U7, U8,

U13, U14, U17, 7SK
II and III

[67] sRNA, snRNA, snoRNA,
scaRNA

transfer RNA [104] tRNA III

vault RNA [67] vaultRNA III

Y RNA [104] HY1, HY3, HY4, HY5 III

Table B.6: In silico Masking of Chromatin-associated Mature RNA
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Method
Enrichment Bias control Single-

nucleotid
resolution

Chromatin
isolation

Pol II
- IP

Run-
on

Metabolic
labeling

PCR IP

GRO-seq [39] - - X - - N/A -

HiS-NET-seq X - - X X N/A X

mNET-seq
[169]

X X - - - - X

NET-seq [148] X - - - X N/A X

Pol II ChIP-seq
[12, 100]

- X - - - X -

PRO-seq [136] - - X - - N/A X

qPRO-seq [103] - - - - X N/A X

SNU-seq [151] - - - X - N/A X

TT-seq * [211] - - - X - N/A -

Table B.7: Comparison of Pol II Profiling Methods. (X) Feature applies for the
respective method, (N/A) is not available or (-) not. * TT-seq does not perform 3’-end
sequencing, and hence provides no Pol II occupancy information.

NET-seq HiS-NET-seq
% sequenced reads R1 R1 R2

uniquely mapped to mouse 0.43% 0.8% 0.7%
PCR duplicates

splicing intermediates,
reverse transcriptase mispriming

- 0.13% - 0.09% - 0.08%

masked regions - 0.14% - 0.17% - 0.18%
extragenic regions - 0.09% - 0.32% - 0.26%

cross-contamination bias 0.07% 0.22% 0.18%

Table B.8: Cross-Mapping of Human Reads to the Mouse Genome. Sample statistics
for NET-seq (R1) and HiS-NET-seq (R1 and R2) measured in the human cell line K562.
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Function Parameters

dba.blacklist blacklist=DBA_BLACKLIST_HG38

blacklist=DBA_BLACKLIST_MM10

dba.count minOverlap=2 summits=300

bRemoveDuplicates=true
bSubControl=true

dba.normalize parameters spikein=true
normalize=DBA_NORM_RLE

dba.contrast -

dba.analyze -

Table B.9: Differential Binding Analysis: Functions and Parameters.

Software Parameters

Guppy –flowcell FLO-MIN106–kit
SQK-DCS109

HMMER
hmmbuild,
hmmpress

-

HMMER
hmmalign

--trim

HMMER
nhmmscan
(iteration 1)

--noali --notextw -max -E 0.1

HMMER
nhmmscan
(iteration 2)

--notextw -max -E 10

minimap2 -ax splice -ub -k14–secondary = no -O
12,32–junc-bonus = 19 --junc-bed

Table B.10: NascONT-seq Pipeline: Software and Parameters.
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Read type Valid state combinations

full-length (Start, VNP+, MAPP, SSP−, End)
(Start, SSP+, MAPP, VNP−, End)
(Start, VNP+, MAPS, SSP−, End)
(Start, SSP+, MAPS, VNP−, End)

5’-truncated (Start, SSP+, MAPP, End)
(Start, MAPP, SSP−, End)
(Start, SSP+, MAPS, End)
(Start, MAPS, SSP−, End)

3’-truncated (Start, VNP+, MAPP, End)
(Start, MAPP, VNP−, End)
(Start, VNP+, MAPS, End)
(Start, MAPS, VNP−, End)

no primer (Start, MAPP, End)
(Start, MAPS, End)

fused (Start, VNP+, MAPP, SSP−, SSP+, MAPS, VNP−, End)
(Start, VNP+, MAPP, SSP−, SSP+, MAPS, End)

(Start, VNP+, MAPS, SSP−, SSP+, MAPP, VNP−, End)
(Start, VNP+, MAPS, SSP−, SSP+, MAPP, End)

Table B.11: Read Classification of ONT Data. Primary mapping position - MAPS;
Supplementary mapping position -MAPS; VNP primer sense - VNP+; VNP primer
antisense - VNP−; SSP primer sense - SSP+; SSP primer antisense - SSP−
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Software Parameters

bowtie2

(iteration 1)
--sensitive -L 30 --score-min L,-0.6,-0.2 --end-to-end

bowtie2

(iteration 2)
-sensitive -L 20 --score-min L,-0.6,-0.2 --end-to-end

QDNAseq CNV.level = 2 bin.size = 10,000

HiCcompare
hic_loess

min.A = 9

chromHMM
BinarizeBam

-b 10000

chromHMM
LearnModel

-s 0 -b 10000

Table B.12: HiChIP Pipeline: Software and Parameters.
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Z U S A M M E N FA S S U N G

In der Genexpression mehrzelliger Organismen hat sich die frühe Elongations-
phase als ein Kontrollpunkt für die RNA-Polymerase II (Pol II) herausgestellt.
Frühere Studien bringen den Kontrollpunkt, der den Übergang von pausieren-
der zu produktiver Pol II reguliert, mit dem BRD4 Protein in Verbindung. Die
genaue Rolle und der Mechanismus, durch den BRD4 diesen und andere regu-
latorische Prozesse nach der Initiation beeinflusst, bleiben jedoch unbekannt.
In dieser Studie werden die unmittelbaren Proteinfunktionen von BRD4 durch
schnellen Proteinabbau und den Einsatz verschiedener Omik-Ansätze ermit-
telt. Dies schließt die hochauflösende NET-seq-Methode ein, welche die Pol
II-Verteilung misst.

Zunächst wird die NET-seq-Methode angepasst um quantitative Vergle-
iche zwischen einzelnen Proben zu ermöglichen. Mit der Hinzugabe von
Referenzproben aus Mauszellen wird eine zuverlässige Normalisierung der
Signalstärke sichergestellt. Ein zusätzlicher experimenteller Anreicherungss-
chritt entfernt darüber hinaus unerwünschte Chromatin-assoziierte RNA von
der Probe was zu einer deutlichen Verbesserung der Signalabdeckung führt.

Nach dem schnellen Abbau von BRD4 identifizieren die verbesserten Meth-
oden einen globalen Defekt bei der Freisetzung von pausierender Pol II und
bestätigen damit die Rolle von BRD4 während der frühen Elongationsphase.
Verschiedene Beobachtungen zeigen eine fehlgeschlagene Rekrutierung von
Pol II-assoziierten Faktoren, die zu einer fehlerhaften Zusammensetzung des
aktiven Elongationskomplexes führen. Interessanterweise treten Elongations-
defekte nicht nur an Genregionen, sondern auch an transkribierten Enhancer-
Regionen auf.

Ein unerwartetes Ergebnis ist die beobachtete Transkriptionsaktivität, welche
weit über das eigentliche Genende hinausreicht und auf einen Terminationsde-
fekt hinweist. Dieser Defekt lässt sich mit Hilfe eines neu eingeführten Index
erfassen, der die relative Terminationsaktivität zwischen zwei Proben bestimmt.
Die Studie entwickelt weitere Methoden zur Identifizierung naszierender RNA-
Produkte und deren Effizienz bei der Spaltung der RNA am Genende. Die
Ergebnisse weisen auf fehlerhafte Verarbeitungen an einigen Genen hin, welche
mit dem Terminationsdefekt korrelierten. Eine mögliche mechanistische Erk-
lärung ist eine BRD4-abhängige und am Genanfang stattfindende Rekrutierung
von Faktoren, die für die Spaltung von RNA am Genende benötigt werden.
Diese Beobachtung zeigt eine regulatorische Verbindung zwischen Prozessen
am Anfang und am Ende von Genen und erfordert weiterer Validierung in
zukünftigen Studien. Insgesamt deuten die Ergebnisse auf einen allgemeinen
von BRD4 abhängigen Kontrollpunkt hin, der für die erfolgreiche Elongation
und Termination der Pol II von Bedeutung ist.
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