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Abstract: The number of reported macrocyclic lactones (ML) resistance cases across all livestock
hosts is steadily increasing. Different studies in the parasitic nematode Haemonchus contortus assume
the participation of cytochrome P450s (Cyps) enzymes in ML resistance. Still, functional data about
their individual contribution to resistance or substrate specificity is missing. Via microinjection,
transgenic Caenorhabditis elegans expressing HCON_00141052 (transgene-Hco-cyp-13A11) from extra-
chromosomal arrays were generated. After 24 h of exposure to different concentrations of ivermectin
(IVM), ivermectin aglycone (IVMa), selamectin (SEL), doramectin (DRM), eprinomectin (EPR), and
moxidectin (MOX), motility assays were performed to determine the impact of the H. contortus Cyp
to the susceptibility of the worms against each ML. While transgene-Hco-cyp-13A11 significantly
decreased susceptibility to IVM (four-fold), IVMa (2-fold), and SEL (3-fold), a slight effect for DRM
and no effect for MOX, and EPR was observed. This substrate specificity of Hco-cyp-13A11 could
not be explained by molecular modeling and docking studies. Hco-Cyp-13A11 molecular models
were obtained for alleles from isolates with different resistance statuses. Although 14 amino acid
polymorphisms were detected, none was resistance specific. In conclusion, Hco-cyp-13A11 decreased
IVM, IVMa, and SEL susceptibility to a different extent, but its potential impact on ML resistance is
not driven by polymorphisms.

Keywords: macrocyclic lactones; drug resistance; cytochrome P450; drug metabolism; parasitology;
parasite metabolism

1. Introduction

Anthelmintic therapy remains the most important management strategy to treat para-
sitic nematode infections in humans and livestock. Due to their broad-spectrum activity
and high efficacy, macrocyclic lactones (MLs), including ivermectin (IVM), moxidectin
(MOX), selamectin (SEL), eprinomectin (EPR), and doramectin (DRM), represent the most
widely used drug class [1]. Both subfamilies of MLs, the milbemycins (MOX and milbe-
mycin oxime) and the avermectins (IVM, SEL, EPR, and DRM), share the core structure,
a 16-member macrocyclic lactone ring fused with a benzofuran and a spiroketal moiety.
Structural differences between the subfamilies relate to the presence and absence of specific
substituents [1].

The extensive and inappropriate use of these drugs has led to the worldwide emer-
gence of ML resistance [2,3]. This increasingly impairs the treatment of trichostrongyloid
parasitic nematodes, particularly Haemonchus contortus, one of the most pathogenic gas-
trointestinal nematodes infecting small ruminants [4]. Intensive research on ML resistance
revealed a multi-genic mechanism, including target-site [5–8] and non-target-site associ-
ated changes [9–12]. The latter mainly include pharmacokinetic-related defense via drug
biotransformation enzymes [12,13] and efflux transporters [11,14–17].
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Drug metabolism can generally be divided into two phases. In phase I, xenobiotics can
undergo modification via oxidation, reduction, or hydrolysis reactions to insert or uncover
hydrophilic groups. Depending on the hydrophilicity of the resulting products, phase II
can follow, which involves conjugation with endogenous compounds such as glucuronic
acid, glucose, or glutathione [18]. Although expression changes of genes encoding phase II
UDP-glycosyltransferases (UGTs) between susceptible and resistant H. contortus isolates
were reported for the benzimidazole albendazole [19], the contribution of UGTs to ML
resistance has to date not been registered. In contrast, IVM-selected Caenorhabditis elegans
strains induced the overexpression of two-phase II glutathione S-transferases [20].

The largest family of biotransformation enzymes comprises cytochrome P450 en-
zymes (Cyps). These phase I enzymes are present in almost all living organisms and
contribute to drug resistance via various catalytic reactions [21]. The human genome en-
codes 57 Cyps, with five Cyps dominating drug metabolism [22], and within this group,
Cyp-3A4 is present in the largest quantities within the human body [23]. The C. elegans
genome even encodes 80 Cyps [24]. In particular, the members of the family Cyp35 were
shown to be xenobiotically inducible [25,26]. Within the H. contortus genome, a smaller
number of 42 Cyps was identified [27] without the extensive gene duplications observed
in C. elegans [24]. A study by Yilmaz et al. further suggested differences in constitu-
tive expression of Cyps for H. contortus isolates with different resistance status since the
Cyp34/35 ortholog (HCON_00022640) was identified to be constitutively higher expressed
in the multi-resistant H. contortus White River (WR) isolate [28].

Investigating IVM metabolite formation in mammalian liver microsomes has already
elucidated the contribution of human Cyp isoforms to IVM metabolism, particularly cy-
tochrome P450 3A4 [29–31]. Inhibition of human liver-derived Cyp-3A4 with trolean-
domycin specifically diminished IVM biotransformation by >90, thereby revealing Cyp-3A4
as a critical enzyme in IVM biotransformation [30]. The importance of Cyp-3A4 in ML
metabolism was also confirmed by conducting in vitro studies analyzing MOX metabolism
by various mammalian species. Cyp-3A4 hydroxylates IVM and MOX at the alkyl side
chains of the spiroketal moiety [30,32]. Although in vitro metabolism of MOX has also
been reported in adult H. contortus, neither in vitro nor ex vivo IVM biotransformation
products were found [33,34]. Differences in oxidative metabolism between ML-susceptible
and -resistant H. contortus by measuring Cyp-mediated transformation of model substrates
were not identified [35].

Nevertheless, several studies supported the potential contribution of Cyps to ML
resistance, particularly for IVM. When inhibiting Cyp activity with the widely used inhibitor
piperonyl butoxide and simultaneous exposure to IVM, ML-susceptible and -resistant
Cooperia oncophora and Osteragia ostertagi showed complete inhibition of larval development
and a significant reduction in larval migration [36]. Furthermore, IVM- and MOX-selected C.
elegans strains showing decreased ML sensitivity displayed the constitutive overexpression
of various Cyps [20]. While overexpression of Cel-cyp-14A2 and Cel-cyp-14A5 was observed
for IVM and MOX selected strains, Cel-cyp-35A1 appeared to be specific for MOX and
Cel-cyp-37B1 specific for IVM selected strains [20]. A later study by Yilmaz et al. (2019)
excluded Cel-cyp-14A5 in ML metabolism using a loss-of-function variant of C. elegans
cyp-14A5. In addition, in adults of the drug-susceptible H. contortus isolate ISE only minorly,
and no significant IVM-inducible changes in the expression of different candidate Cyps
were observed [19].

By investigating the genetic bases of ML resistance, whole-genome analysis of a triple
resistant Teladorsagia circumcincta isolate introgressed into a susceptible background eluci-
dated various resistance-associated genes. Besides differential expression of efflux trans-
porters, the TELCIR_18530 ortholog of the C. elegans Cyp-13A subfamily was approximately
20-fold overexpressed in resistant worms (see S7 Table in [16]). The C. elegans Cyp13A
subfamily has already been demonstrated to be inducible by the xenobiotic rifampicin [37].
However, analysis of constitutive Cyp expression in different life-cycle stages of the drug-
susceptible H. contortus isolate ISE revealed the highest HCON_00141052 (orthologue of
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Cel-cyp-13A11 and Cel-cyp-13A12) expression in eggs. In contrast, low or no expression
of this Cyp has been observed in L4 and adult worms [24]. Whether Hco-cyp-13A11 can
potentially contribute to an increased ML resistance level in H. contortus remains unclear.

Therefore, the present work investigated the impact of Hco-cyp-13A11 on ML suscep-
tibility by transgenic expression in the model organism C. elegans. To examine whether
different structural features of MLs have effects on the substrate specificity of Hco-cyp-13A11,
IVM, IVMa, MOX, EPR, SEL, and DRM were tested. The exon sequence of Hco-cyp-13A11
was compared between H. contortus isolates with different resistance statuses to identify
single nucleotide polymorphisms correlating with ML resistance. Their potential impact
regarding changes in ML binding of Hco-cyp-13A11 was elucidated by molecular modeling
and docking.

2. Results
2.1. Caenorhabditis elegans Motility Assays with Ivermectin, Moxidectin, Ivermectin Aglycone,
Doramectin, Selamectin, and Eprinomectin

Haemonchus contortus cyp-13A11 was expressed in the model organism C. elegans N2
Bristol wild-type (WT) by introducing extrachromosomal transgene arrays using microin-
jection of a plasmid construct to determine the impact of Hco-cyp-13A11 on the susceptibility
towards various MLs via drug metabolism (Figure S1). The candidate gene sequence was
derived from the highly IVM and BZ resistant WR isolate. To identify transgenic worms, a
plasmid driving pharyngeal gfp expression in C. elegans was co-injected. Expression of the
Cyp was under the control of the C. elegans intestine epithelium-specific gut esterase 1 pro-
motor (ges-1p) [38], since IVM uptake was demonstrated to occur via active pharyngeal
pumping through the gut epithelium [39] and xenobiotic metabolism is primarily assumed
to take part in the gut epithelium of nematodes [40]. The WT was used as the control
line since Gerhard et al. [39] did not observe significant differences between WT and
mock-transduced nematodes using almost identical constructs.

The transgenic line showed a semi-stable transmission pattern with GFP expression
in the offspring, varying between 50 and 70%. In addition, no noticeable variability of
fluorescence intensity was observed between GFP-positive individuals (Figure 1). For
motility assays, only individuals expressing GFP in the pharynx were used. Escherichia coli
OP50 as a food source was added, with an approximate OD600 of 0.5 as recently described to
stimulate drug uptake by the pharynx [39]. The expression of the candidate Hco-cyp-13A11
was confirmed by RT-PCR, targeting the full-length sequence.
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Figure 1. Fluorescence photographs of a single transgenic line on an NGM-agar plate. (A). An
individual Hco-cyp-13A11 adult transgene C. elegans expressing GFP in the pharynx with transgenic
progeny (black arrows). (B). Population of adult GFP positive Hco-cyp-13A11 transgene C. elegans.
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A statistically significant increase (p < 0.0001) in EC50 values was observed in thrash-
ing assays investigating IVM, IVMa, and SEL for worms transgenic for Hco-cyp-13A11
(transgene-Hco-cyp-13A11) compared to the N2 wild-type control. The highest increase in
EC50 value was observed for IVM with an approximate fold-change of 4.3, followed by 2.6
for SEL and IVMa with a 1.7-fold change (Figure 2 and Table 1). In contrast, exposure to
DRM led only to a slight effect (p = 0.005), and MOX and EPR did not lead to significant
differences in concentration-response curves between the transgenic and the WT lines.

2.2. Comparison of Hco-cyp-13A11 Sequences between Susceptible and Resistant H. contortus
Isolates to Identify Potential Macrocyclic Lactone Resistance-Associated Single-Nucleotide
Polymorphisms (SNPs)

The encoded candidate gene sequence of Hco-cyp-13A11 was compared between two
susceptible (inbred-susceptible Edinburgh (ISE) and McMaster (McM)) and two ML resis-
tant (WR and Berlin-selected isolate (BSI)) isolates to identify potential resistance-associated
single nucleotide polymorphisms (SNPs). Although a reference sequence has already been
published for ISE [41], the Cyp gene for this isolate was analyzed analogously to the others
using Sanger sequencing. Genomic DNA was extracted from H. contortus third-stage larvae
to amplify sequences spanning one to multiple exons of Hco-cyp-13A11. Protein coding
sequences (CDS) were finally assembled according to the Hco-cyp-13A11 published ISE se-
quence [42] and used for analysis. Compared to the gene sequence published, the multiple
sequence alignment (Figure S3) revealed complete CDSs for all isolates. The Hco-cyp-13A11
sequences obtained for ISE, McM, and BSI corresponded to a 1555 base pair (bp) and the
WR sequence to a 1549 bp open reading frame. Comparing the sequenced and reference
ISE sequences, differences in 12 nucleotide positions were identified. The comparison of
the two ISE sequences with the sequences obtained from the other isolates revealed two
SNPs for McM, eleven for BSI, and 31 SNPs and six deletions for WR (Figure S3).

To further elucidate the impact of each SNP on potential peptide and protein structure
alterations, the translated amino acid (AA) sequences were considered. The cyp-13A11
polypeptide contains 517 residues for ISE, McM, and BSI, whereas the deletion of two
adjacent codons (nucleotide positions from 1065 to 1070) encoding codons CAA and CAG
in the genomic sequence reduced the number to 515 AAs for the WR isolate. The calculated
molecular weights ranged between 59.4–59.6 kDa and corresponding theoretical pI values
between 8.6 and 9.1 (Table 2). Post-translational modifications or functional motifs were
predicted by ExPASy–ScanProsite, revealing the same cysteine heme-iron-binding motif
FGlGPRQCIG (residues 454–463 for ISE, McM, BSI; residues 452–461 for McM) for all ana-
lyzed Cyps. This motif is identical to the orthologous C. elegans cyp-13A11 and cyp-13A12
heme-binding sites (Table 2). However, functionally or structurally validated data such
as crystal structures are currently unavailable for the C. elegans orthologous Cyps. Keller
et al. (2014) revealed that Cel-cyp-13A12 regioselectively metabolizes arachidonic acid when
expressed in insect cells, and it was proposed to act as a polyunsaturated fatty acid epoxyge-
nase. The most closely related human orthologous gene to Cel-cyp-13A12 (32% AA identity)
and Hco-cyp-13A11 (28% AA identity) based on a BLAST search represents Cyp-3A4.
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Figure 2. Modulation of macrocyclic lactone susceptibility in Caenorhabditis elegans by transgenic
expression of Hco-cyp-13A11. (A) Concentration-response curves to ivermectin, ivermectin aglycone,
selamectin, doramectin, eprinomectin, and moxidectin of the N2 wild-type and the transgene-Hco-
cyp-13A11 under control of the gut epithelium-specific promotor ges-1. The corresponding chemical
drug structure is presented below the graph and highlighted according to the structural differences
to the other macrocyclic lactones. Blue: carbohydrate moiety; purple: hydroxyl/oxime substituent;
green: alkyl-side chain; yellow: altered spiroketal function. Adult worms were incubated for 24 h
in S-medium with Escherichia coli OP-50 containing different drug concentrations. The motility of
individual worms was assessed as body bends per minute. The negative control, only containing
1% DMSO, was set to 10-20 M before log10 transformation of concentrations. Values represent the
means ± standard error of the mean of at least four biological replicates. At least 12 worms per
concentration were counted for each replicate, and the mean normalized to the DMSO mean. The
bottom and top values for four-parameter logistic regression were constrained to values between
0 and 100%. (B) Forest plot visualizing resulting EC50 values [nM], corresponding 95% confidence
interval for the N2 control (black) and the transgenic Hco-cyp-13A11 C. elegans strain (blue) from
concentration-response curves presented in (A). Hco-cyp-13A11 genotype is gutCyp-13A11Ex1 [Cel-
ges-1p::Hco-cyp-13A11::FLAG::Cel-unc-54_3′-UTR; Cel-myo-2p::gfp::Cel-unc-54_3′UTR]; control strain
is N2 Bristol wild-type; IVM: ivermectin; MOX: moxidectin; EPR: eprinomectin; IVMa: ivermectin
aglycone; SEL: selamectin; DRM: doramectin.
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Table 1. Effect of Hco-cyp-13A11 transgenic expression on macrocyclic lactone susceptibility in
Caenorhabditis elegans N2 background recorded by counting individual motility (body bends in
liquid medium).

Strain Drug EC50 (95% CI 1) [nM] R2 2 p Value Fold Change in EC50 vs N2

N2 3 Ivermectin 1.64 (1.43–1.87) 0.972
<0.0001 4.27Hco-cyp-13A11 4 Ivermectin 7.01 (5.53–8.89) 0.874

N2 Ivermectin aglycone 163.6 (152.6–175.4) 0.984
<0.0001 1.68Hco-cyp-13A11 Ivermectin aglycone 275.5 (259.7–292.2) 0.980

N2 Selamectin 156.7 (136.8–179.5) 0.983
<0.0001 2.58Hco-cyp-13A11 Selamectin 405.3 (386.1–425.3) 0.950

N2 Doramectin 7.75 (7.30–8.24) 0.987
0.0005 1.10Hco-cyp-13A11 Doramectin 8.60 (8.11–9.12) 0.986

N2 Eprinomectin 1.48 (1.17–1.86) 0.994
0.1165 1.27Hco-cyp-13A11 Eprinomectin 1.89 (1.39–2.56) 0.972

N2 Moxidectin 5.95 (5.38–6.58) 0.966
0.3212 1.07Hco-cyp-13A11 Moxidectin 6.40 (5.81–7.05) 0.955

1 95% confidence interval. 2 Coefficient of determination. 3 Genotype: wild-type. 4 Genotype: gutCyp-
13A11/12Ex1 [Cel-ges-1p::Hco-cyp-13A11::FLAG::Cel-unc-54_3′-UTR; Cel-myo-2p::gfp::Cel-unc-54_3′UTR].

Table 2. Prediction of Hco-Cyp-13A11 protein parameters for different Haemonchus contortus isolates
and the orthologous Caenorhabditis elegans cyp-13A11 and cyp-13A12.

ISE Reference a ISE b McM c WR d BSI e C. elegans
cyp-13A11 f

C. elegans
cyp-13A12 g

No AA h 517 517 517 515 517 517 518

MW [kDa] h 59.56 59.39 59.58 59.39 59.58 59.47 59.08

Theo. pI h 8.76 8.97 8.97 9.09 8.62 6.36 6.08

Cyp heme motif i 454–463 fj:
FGlGPRQCIG

454–463 j:
FGlGPRQCIG

454–463 j:
FGlGPRQCIG

452–461 j:
FGlGPRQCIG

454–463 j:
FGlGPRQCIG

454–463 j:
FGlGPRQCIG

455–464 j:
FGlGPRQCIG

a Inbred-Susceptible Edinburgh (MHco3) reference. Sequence published by Doyle et al. [42] as HCON_00141052
(Accession no. LS997566, BioProject PRJEB506). b Inbred-Susceptible Edinburgh (MHco3). c McMaster. d White
River. e Berlin-selected Isolate. f Wormbase ID: F14F7.2.1. g Wormbase ID: F14F7.3.1. h Number of amino acids
(No AA), molecular weight (MW), and theoretical pI (Theo. pI) predicted by ExPASy–ProtParam (https://web.
expasy.org/protparam/ accessed on 19 February 2021). i Cytochrome P450 cysteine heme-iron ligand (Cyp heme)
motif predicted by ExPASy–ScanProsite (https://prosite.expasy.org/scanprosite/ accessed on 19 February 2021).
j Motif position within the amino acid sequence.

The human Cyp-3A4 is the most abundant Cyp in the human liver and small intestine
and oxidizes structurally diverse substrates [41,43]. Its importance in drug metabolism and
pharmacologic drug development fostered structure elucidation by crystallography [43–47].
Using the superposition of different Cyp structures from various species, Cyps have been
described to contain 19 structurally conserved regions (SCRs), including defined secondary
structure elements such as alpha helices αA-L and beta sheets β1-4 [48]. Assignment of a
multiple sequence alignment to a crystal structure of the human Cyp-3A4 was conducted
using ESPript (Figure 3) to identify Hco-cyp-13A11 secondary structure elements. As a
PDB reference, the entry 1TQN was chosen since it is the only Cyp-3A4 structure available
that includes the cofactor protoporphyrin containing an iron(II) without binding other
substrates or inhibitors [43]. Comparing the SCRs between the Haemonchus and human
Cyp, the Hco-cyp-13A11 residues for all isolates matched 38% to the Cyp-3A4 sequence.
The highest residue coverages were observed for SCRs 2 (66%), 5 (57%), 11 (50%), 12 (53%),
15 (62%) and 16 (47%) (Figure 3). SCR11 αI and SCR16 αL belong to a conserved four-helix
bundle which forms together with the SCR11 αJ and SCR12 αK helices and the SCR15
meander the conserved core of the Cyp [49]. SCR16 comprises the CIG motif located in
the cysteine pocket serving as a ligand to the heme iron [49], which is identical between
the Haemonchus and human Cyp. The second conserved motif is ExxR, which is present
at the C-terminal end of the SCR12 αK [48,49]. While the Cyp-3A4 shows a threonine at

https://web.expasy.org/protparam/
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the second position in this motif (ETLR), Hco-cyp-13A11 encodes a serine (ESLR) (Figure 3).
The rest of the SCRs showed identities < 35%, while SCR4 and 19 share no residues with
Cyp-3A4. The meander insertion proposed to form a reductase interacting surface [50]
showed no AA identity but an identical length of six AAs for Cyp-3A4 and Hco-cyp-13A11
(Figure 3).

In total, 14 amino acid polymorphisms were observed between all analyzed isolates.
Six positions were located in the SCRs 7, 10, 14, 15, and 16 based on the multiple peptide
sequence alignment (Figure 3). The variations within the SCRs occur unspecifically without
any pattern specific for the resistant or susceptible isolates. In addition, two AA deletions
were found for the WR isolate in a non-structurally conserved region. Since one AA change
is located in the meander loop and another directly at the end of the Cys-heme binding
domain for WR and BSI, the substrate pocket or even the cofactor position inside the core
structure could be affected. To investigate the impact of the AA variations on the overall
3D protein structure or ML binding, homology modeling and ML docking for each isolate
were conducted.

2.3. Homology Models of Haemonchus contortus Cyp-13A11

To examine the impact of AA alterations on the protein structure and potential macro-
cyclic lactone binding, homology models for Hco-cyp-13A11 WR, McM, BSI, and ISE (own
sequence) were constructed. A tertiary structure homology model was identified using
BlastP with the protein data bank (PDB) as database and SwissModel Template Search
web tool (https://swissmodel.expasy.org/interactive accessed on 5 February 2022) which
identified several human Cyp-3A4 enzyme structures available in PDB. To select the best
model for molecular docking studies, only holo-protein crystal structures were further in-
vestigated containing the enzyme bound to different ligands or inhibitors expected to allow
the docking of MLs. The pre-selected reference structures (PDB: 6MA7, 5A1R, and 4D6Z)
were further examined concerning sequence identity towards all Hco-cyp-13A11 sequences,
resolution of the crystal structure, and the structure of the bound inhibitors (Table S3).
After performing a multiple sequence alignment using Modeller version 10.1 [51], the
crystal structure PDB: 6MA7 was chosen as the template for all homology models. A
pairwise alignment was conducted for each Hco-cyp-13A11 sequence with the template,
and 50 homology models were generated for each Modeller run. The homology models
were ranked according to their discrete optimized protein energy (DOPE) score. Next, the
quality of the homology models with the best DOPE score was assessed with the programs
PROCHECK [52], ProSa-web (protein structure analysis) [53,54], and QMEAN (Qualitative
Model Energy Analysis) [55,56] to execute individual model refinement.

The Ramachandran plot analysis showed that approximately 99% of all residues were
within the generously allowed regions for all homology models (Table S4). The residues
corresponding to the outlier regions and possessing sterically disallowed conformations
refer to non-conserved loops and could not be optimized via individual loop refinement.
However, no major difference between the quality scores of the four homology models
was observed.

Generally, all homology models retained the overall protein fold of the Cyp-3A4
template with predominantly α-helices, a small portion of β-sheets (Figure 4A), and a
similar solvent accessible area (ISE: 28056 Å2; McM: 26790 Å2; BSI: 28052 Å2; WR: 27721 Å2

as calculated with PyMol version 2.0 [57]). All structural elements of the SCRs predicted by
multiple sequence alignment analysis could be confirmed for the homology models.

The highest values of local structure similarities with about 65–90% to the target
sequence were computed for the structurally conserved regions between CYPs, particularly
the heme-binding core. The lowest local similarities values (5–50%) were determined for
the N-terminal tail, the BC-loop, the FG-loop, the GH-loop, and HI-loop regions, since the
Hco-cyp-13A11 peptide sequence comprises within these regions more residues than the
Cyp-3A4 template (Figure 3). In particular, the HI-loop, directed towards the surface of
the protein structure, is characterized by eleven additional residues. This causes different

https://swissmodel.expasy.org/interactive
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conformations simulated for this region between the four homology models. Furthermore,
thirteen extra AA are found at the end of the N-terminal domain compared to the human
Cyp-3A4, suggesting a functional relevance as an N-terminal anchor of this region.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW  8  of  28 
 

 

particularly  the  heme‐binding  core. The  lowest  local  similarities  values  (5–50%) were 

determined for the N‐terminal tail, the BC‐loop, the FG‐loop, the GH‐loop, and HI‐loop 

regions, since the Hco‐cyp‐13A11 peptide sequence comprises within these regions more 

residues  than  the  Cyp‐3A4  template  (Figure  3).  In  particular,  the  HI‐loop,  directed 

towards  the  surface  of  the  protein  structure,  is  characterized  by  eleven  additional 

residues. This causes different conformations simulated for this region between the four 

homology models. Furthermore, thirteen extra AA are found at the end of the N‐terminal 

domain  compared  to  the human Cyp‐3A4,  suggesting a  functional  relevance as an N‐

terminal anchor of this region. 

 

Figure 3. A multiple peptide sequence alignment of Hco-Cyp-13A11 from different
Haemonchus contortus isolates, including the ISE reference sequence (HCON_00141052) [42] and
human Cyp-3A4. The Hco-Cyp-13A11 amino acid sequence was predicted using ExPASy–Translate,
and the alignment was obtained by Clustal Omega (version 1.2.4) [58]. Secondary structure elements
were predicted with ESPript (version 3.0) [59] using the human Cyp-3A4 [43] (PDB: 1TQN), and
residues were colored according to their physicochemical properties by ESPript. The annotation of
structurally conserved regions (SCR) is indicated according to the multiple sequence alignment of
human Cyp structures [48]. Numbers above the alignment refer to positions in the human Cyp-3A4.
The cysteine heme-binding signature was predicted by ExPASy–ScanProsite. Black boxes highlight
amino acid variation between different isolates for the specific position.
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Figure 4. Homology model of Hco-Cyp-13A11. (A) Ribbon representation of the molecular model
of Haemonchus contortus Cyp-13A11/12 ISE isolate. The model was created using Modeller and the
human Cyp-3A4 (PDB: 6MA7) as a template. The protein shows the conserved overall fold of Cyps,
with a large helical domain and a smaller beta-sheet region. The structurally conserved regions (SCRs)
are highlighted in blue, whereas the variable regions are shown in gray. (B) The overview of the ISE
Hco-Cyp-13A11 homology model displays the distribution of the 16 residue positions (pink sticks)
varying between the ISE, McM, BSI, and WR isolates.

A B-factor analysis used to identify the flexibility of side chains for each homology
model revealed higher flexibility for these poorly conserved regions in comparison to
human Cyp-3A4 (Figure S4). Interestingly, the BC-loop regions for the susceptible isolates
ISE and McM (Figure S4A,B) were predicted to be more flexible compared to the resistant
BSI and WR isolates (Figure S4C,D), although this region showed no AA variation due
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to an SNP. The BC-loop region is described as an essential secondary structure within the
CYPs influencing substrate specificity and binding [48].

When comparing all models regarding the predicted AA substitutions, variation
primarily occurs randomly in domains towards the outer surface (Figure 4B). No SNP
resulting in AA variation drastically influenced the overall protein fold between the Hco-
Cyp-13A11 sequences.

However, two variable residues are directly located within the heme-core structure
and could potentially affect heme-binding (residue 464) or the recognition and binding of
potential substrates (residue 390). The position numbers refer to the ISE reference sequence
if not stated otherwise. Therefore, the coordination of the heme-cofactor, particularly the
heme propionates, was further investigated, as slight changes of the heme cofactor position
within the catalytic pocket can affect its size [60]. Regarding position 464 within the highly
conserved Cys-loop region, the isolates WR and ISE show a valine, whereas BSI and McM
exhibit a methionine equal to the Cyp-3A4 template, potentially enabling it to form a
hydrogen (H) bond and reducing the binding area. Nevertheless, the analysis of the heme-
binding site for each model revealed no participation of this specific residue in coordinating
the heme or influencing the secondary Cys-loop structure. Rather, the superimposition of
all homology models and the Cyp-3A4 template structure indicated a highly conserved Cys-
loop fold with Cys461 (ISE, McM, BSI) or Cys459 (WR) at the proximal ligand binding site
coordinating the iron heme center (Table S5). Hence, the planar heme cofactor is partially
located between the αI and αL helices with the propionates directed to the BC-loop and
β1-4 sheet.

In addition, slight differences in residues interacting with the heme propionates were
observed between all homology models based on PyMol and the Protein-Ligand Interaction
Profiler web tool (version 2.2.0) [61] analyses (Table S5). Key residues forming hydrogen
bonds with the propionates represent Arg99, Trp124, Arg128, Asn393, Arg395, Arg459
(WR: Arg99, Trp124, Arg128, Asn391, Arg393, and Arg457) (Figure 5). However, one propi-
onate residue is additionally stabilized by a hydrogen-bond, with His115 perpendicularly
located above the heme center for ISE and WR isolates (Figure 5A,C). In contrast, no inter-
action with His115 was computed for the McM and BSI models (Figure 5B). In addition,
the heme within the WR model was not predicted to interact with Phe452 as determined
for ISE, McM, and BSI (Phe454).

The second variable residue in proximity to the heme-core structure at position
390 (ISE, McM, BSI) is substituted in the WR isolate (Val388Leu) and potentially influ-
ences the substrate recognition and/or binding located within the linker region of αK and
β1-4. The larger residue side chain directly ranges into the active site pocket but without
changing the electrostatics of the cavity. The active site volume for WR with a computed
size of 916 Å3 was therefore the smallest cavity volume compared to the other homology
models (ISE: 1392 Å3; McM: 1024 Å3; BSI: 1284 Å3).

The extent to which the additional methyl group of Leu388 influences substrate
recognition remains unclear here. Interestingly, the B-factor analysis of this linker region
revealed higher flexibility for the susceptible ISE and McM isolates compared to the resistant
BSI and WR (Figure S4). In addition, determination of the electrostatic potential inside the
catalytic pocket using PyMol revealed that the pocket surface is primarily hydrophobic or
positively charged for all homology models (Figure 5D).
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Figure 5. Heme cofactor coordination within Hco-Cyp-13A11 homology models. Coordination of heme propionates and polar interaction sites for Hco-Cyp-13A11
ISE (A), McM and BSI (B), and WR (C) determined with the PyMol Plugin ShowContacts. Hydrogen bonds are presented in yellow, electrostatic clashes in red, and
further close contacts (<4 Å) in purple. (D) Representative electrostatic surface of the active site cavity. Electrostatic potentials were calculated with PyMOL. Red and
blue colors represent the negative and positive electrostatic potentials, respectively.
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2.4. Molecular Modeling of Putative Macrocyclic Lactone-Binding Sites in Hco-Cyp-13A11

To obtain insights into the impact of AA variations towards substrate binding and
understanding the observed differences for the MLs in the motility assays, in silico docking
was conducted. After generating 3D models of IVM, IVMa, SEL, DRM, EPR, and MOX, the
molecules were individually docked into every Hco-Cyp-13A11 homology model using
AutoDock Vina (version 1.1.2) [62]. The substrate position with the lowest docking score
was selected for iterative energy minimization for each ligand-protein complex. In addition,
docking was performed for the Cyp-3A4 template sequence as a reference since the human
Cyp-3A4 is known to metabolize IVM [30].

For the human Cyp-3A4, all MLs except EPR docked within the active site (Figure S5)
with the highest affinities for IVM (−10.1 kcal/mol) and IVMa (−8.6 kcal/mol). In the
case of IVM, the hydroxyl group of the disaccharide moiety was most closely located to
the heme iron (distance 3.3 Å). Ivermectin aglycone showed the closest contact with the
terminal methyl-group of the alkyl side chain at the spiroketal moiety (distance 4.8 Å).
Although SEL, DRM, and MOX also docked within the catalytic pocket, the resulting
docking energies were considerably higher (Table 3). Similar to IVM, a hydroxyl group of
the DRM disaccharide showed the shortest distance (2.9 Å) to the heme iron. In contrast,
the methyl group of the benzofuran substituent of SEL (2.9 Å) and the methyl group of the
spiroketal moiety of MOX (5.4 Å) were directed towards the heme center. Apart from SEL
and DRM, which both were calculated to interact with Ser119, no substrate formed H-bonds
with the active site residues that have been reported in the literature (Tables S5 and S6) [43].
Eprinomectin was predicted to dock at the outer surface of Cyp-3A4 (−8.4 kcal/mol) in a
location parallel to the BC-loop and the β-bulge region and lateral of the FG-loop.

Calculations for the Hco-Cyp-13A11 models demonstrated considerable differences
in docking energies compared to the human Cyp-3A4. IVM, IVMa, SEL, and MOX were
predicted to bind with generally lower energies ranging from −5.9 to −11.3 kcal/mol
within the active site for all homology models (Table 3, Figures 6 and S6–S8). In addition,
no considerable differences between the models nor a correlation between differences in
models and the resistance status were observed (Table 3). However, the MLs were predicted
to have different interaction sites (Table S6) within the four models and orientations within
the catalytic pocket for the lowest docking energy positions.

Investigating IVM, the spiroketal moiety was located towards the heme cofactor in
the ISE, BSI, and WR homology models. At the same time, the best docking position for
McM indicated IVM to be directed towards the center with the benzofuran substituent.
The analysis of IVMa predicted that this molecule could interact with the heme center via
the alkyl side chain of the spiroketal moiety while it gets potentially metabolized at the
benzofuran by the WR Hco-Cyp-13A11. In the case of SEL, the molecule was directed
with the sugar substituent to the catalytic center of McM and WR while it was flipped
within BSI and ISE. There, SEL potentially interacts via the cyclohexyl side chain with
the heme center. Moxidectin showed the fewest commonalities regarding the predicted
binding topology between the homology models. Docking for WR and McM presented the
methoxime moiety above the heme iron. For the BSI model, MOX most likely interacts with
the methyl of the spiroketal group. In contrast, MOX was directed with the benzofuran
group to the catalytic site for the ISE model. For both EPR and DRM, docking into the
active site was not feasible for the WR model. The best-fit position was predicted to occur
on the protein surface. Both molecules were simulated to bind to the FG-loop’s peripheral
site, a highly hydrophobic region that is predicted to reside within the lipid bilayer and the
N-terminal membrane anchor α-helix [63].
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Table 3. Docking characteristics of IVM, IVMa, SEL, EPR, DRM, and MOX in the human Cyp-3A4
(PDB: 6MA7) structure and Hco-Cyp-13A11 homology models. The docking energy was computed
with AutoDock Vina (version 1.1.2) tools. The docking values in bold represent docking at the surface
of the protein, as no docking into the active site could be simulated. The solvent-accessible surface
area for the best docking position was estimated using PyMol. The number of hydrogen (H) bonds
and hydrophobic interaction sites were determined with the web tool PLIP [61].

Cyp-3A4 (PDB: 6MA7)
Hco-Cyp-13A11

ISE a McM b WR c BSI d

Ivermectin
Docking energy [kcal/mol] −10.1 −10.5 −8.5 −6.5 −8.1

Solvent accessible surface Area [Å2] 993 1084 1058 962 1076
Number of H-bonds 3 2 4 8 2

Hydrophobic interactions 22 11 12 13 12

Ivermectin aglycone
Docking energy [kcal/mol] −8.6 −11.0 −11.3 −10.5 −11.2

Solvent accessible surface Area [Å2] 745 756 762 753 745
Number of H-bonds 1 3 2 1 3

Hydrophobic interactions 7 9 2 7 10

Selamectin
Docking energy [kcal/mol] −0.5 −8.2 −9.3 −9.1 −8.8

Solvent accessible surface Area [Å2] 949 953 918 918 927
Number of H-bonds 1 1 2 6 3

Hydrophobic interactions 15 11 13 11 11

Doramectin
Docking energy [kcal/mol] −4.1 −10.6 −8.6 −11.1 −9.8

Solvent accessible surface Area [Å2] 1139 1111 1134 1148 1136
Number of H-bonds 3 3 4 3 4

Hydrophobic interactions 16 13 9 10 4

Eprinomectin
Docking energy [kcal/mol] −8.4 −8.0 −7.7 −8.5 −10.8

Solvent accessible surface Area [Å2] 1057 1143 1068 1104 1155
Number of H-bonds 4 3 7 3 4

Hydrophobic interactions 5 15 15 4 7

Moxidectin
Docking energy [kcal/mol] −1.6 −11.0 −5.9 −8.9 −7.8

Solvent accessible surface Area [Å2] 875 870 881 870 876
Number of H-bonds 4 1 3 5 3

Hydrophobic interactions 13 10 7 8 6

a Inbred-susceptible isolate. b McMaster isolate. c White River isolate. d Berlin-selected isolate.

The same binding locations (Figure S8) and docking energies (Table 3) for EPR and
DRM were identified for the BSI Hco-Cyp-13A11 model. While the DRM binding site for
both WR and BSI models shared Arg209 and Arg497 (WR: Arg495) as interacting residues,
EPR showed no conformity (Figures 6 and S8, Table S6). In contrast to the WR and BSI
models, docking simulations for the ISE and McM models resulted in EPR and DRM
binding within the active site (Figures S6 and S7). Both models for the susceptible isolates
already predicted higher cavity volumes than the resistant isolate models.
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Figure 6. Molecular docking analysis for Hco-Cyp-13A11 Berlin-selected isolate (BSI). (A,B) Over-
layed structures of Hco-Cyp-13A11 BSI in complex with IVM (blue), IVMa (cyan), SEL (green),
DRM (orange), EPR (red), and MOX (yellow). The corresponding 2D ML ligand-protein interaction
diagrams of Hco-Cyp-13A11 with IVM (C), IVMa (D), SEL(E) and MOX (H) show the closest residues
within a 4 Å radius. DRM (F) docked within a channel leading to the active site. EPR (G) showed
the lowest docking energy and docked at the outer surface of the BC-loop. 2D interaction plots were
generated using Maestro Elements (version 4.6.117).
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3. Discussion

Cyps have already been reported to contribute to resistance in cancer (Rochat, 2005;
Rodriguez-Antona and Ingelman-Sundberg, 2006) and against insecticides [64,65]. Even
though the primary resistance mechanism against the broad-spectrum anthelmintics ben-
zimidazoles (BZs) is linked to SNPs of the beta-tubulin gene of nematodes [66–68], an
increased oxidation level of different BZs was observed in C. elegans, H. contortus, and
Fasciola hepatica [69–73].

In C. elegans, the ablation of cytochrome P450 activity with the widely used Cyp
inhibitor piperonyl butoxide or the use of a severely impaired strain in cytochrome re-
ductase activity resulted in slightly increased susceptibility to IVM but not MOX [74].
The authors further excluded that Cyp-14A5 contributes to changes in IVM susceptibility,
although it was previously shown to be moderately upregulated in IVM and MOX-selected
C. elegans strains [20]. The present study aimed to investigate the impact of the transgeni-
cally expressed Hco-cyp-13A11 in the intestine of C. elegans regarding the susceptibility of
different MLs.

Using extrachromosomal arrays to express transgenes represents a fast and efficient
technique for analyzing gene functions. Within this study, microinjection was performed
into the C. elegans N2 background since C. elegans Cel-cyp-13A11 and Cel-cyp-13A12 loss-
of-function strains were unavailable to perform rescue experiments. Various studies have
already demonstrated the suitability of transgene expression to investigate drug targets
against parasitic nematodes [15,39,75–77].

The analyzed Hco-cyp-13A11 was derived from the highly resistant White River isolate
and its expression in the gut epithelium has decreased susceptibility for IVM, IVMa, and
SEL. In contrast, no effect was observed for EPR, DRM, and MOX compared to the N2
wild-type control line. This study demonstrates for the first time that ML sensitivity in
C. elegans can be modulated by transgenic expression of a parasitic nematode Cyp.

Interestingly, neither a constitutive expression nor a direct link to the modulation of
ML susceptibility or xenobiotic inducibility of Hco-cyp-13A11 has been reported so far. The
introgression of two highly resistant H. contortus isolates into a susceptible background
identified a quantitative trait locus (QTL) for IVM resistance. This QTL was localized on
chromosome V ranging from 37 to 42 Mbp, and the same region was under selection using
two geographically and genetically divergent IVM resistant populations [78]. Although
Hco-cyp-13A11 is located on chromosome V (area of 14.2 Mbp) in proximity to the QTL
region (37-42 Mbp), it seems not to be part of the QTL under selection. However, there are
several possible mechanisms by which Hco-cyp-13A11 might nevertheless be involved in
modulating the susceptibility of worms to MLs. Due to the high genomic variability of
H. contortus, different genomic regions might be involved in other isolates and it might
be difficult to obtain statistical support for regions with only a small effect. The major
QTL regions might be under selection but exert its effects through effectors encoded in
other regions that might include Hco-cyp-13A11. Alternate splicing events have not been
considered here but might lead to changes in the protein structure, augmenting the gene
function or translation efficacy as reported for C. elegans [79] and potentially increasing the
resistance level. For example, Brugia malayi revealed a sex-dependent differential splicing
of the potassium channel slo-1 causing significant differences in emodepside sensitivity
between females and males [80]. Moreover, alternate splicing of the acetylcholine receptor
subunit acr-8 resulted in truncated transcripts that were found to be expressed explicitly in
levamisole resistant H. contortus, Trichostrongylus colubriformis, and T. circumcinta [81,82].

Investigations on the orthologues C. elegans Cyp cyp-13A12 co-expressed with the Cyp
reductase emb-8 in insect cells revealed its role as an epoxygenase of polyunsaturated fatty
acids [83]. Although further functional information and tissue expression levels are missing,
the miscellaneous role of this particular C. elegans Cyp does not exclude the hypothesis that
Cel-cyp-13A12 might also contribute to ML resistance. This should be investigated in the
future by creating loss-of-function alleles and examining the effects of overexpression of
Cel-cyp-13A12 but also investigating its closely related paralog Cel-cyp-13A11.
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Within this study, the transgenic expression of Hco-cyp-13A11 had the most potent
effect for IVM with a 4.3-fold increase of the EC50 value, followed by SEL with 2.6-fold
and a modest increase for IVMa with a 1.7-fold change. Different studies have compared
the interaction of IVM and MOX with recombinantly expressed Pgps, and in all cases, the
interaction of IVM was much stronger than for MOX [1,84,85]. However, only one study
compares the effects of a similar spectrum of MLs on Pgps. Kaschny et al. [86] expressed
Cylicocylus elongatus pgp-9 in Saccharomyces cerevisiae yeast cells. This data revealed a strong
interaction with IVM and EPR, a moderate interaction with MOX, and no interaction
with SEL and DRM [86]. Ivermectin aglycone was not tested in this study. Although the
different order of effect strength for the different MLs shows specific interactions with
the particular Pgp, the fact that IVM always showed the strongest effects is remarkable.
However, this needs more diverse studies since most investigations only compared IVM to
MOX [39,84,85].

Except for the milbemycin MOX, all tested drugs belonged to the class of avermectins
differing in the sugar moiety, the alkyl side chain, a methoxime function, or a functionalized
benzofuran. In particular, the sugar group was shown to strongly affect the physico-
chemical properties of these drugs, for example, the hydrophobicity results in different
logP values [1]. This further influences pharmacokinetics and pharmacodynamics, mainly
demonstrated for IVM and MOX, potentially explaining the observed differences for IVM,
SEL, and IVMa [6,20,85,87,88]. Ivermectin and MOX were shown to bind to the same
glutamate-gated chloride channel (GluCl) subunit, but with different affinities towards
the binding site [87]. The analysis of the GluCl crystal structure reinforced the previous
observations made for IVM interactions and proposed a model for the IVM binding site.
The missing disaccharide and the additional methoxime moiety for MOX suggest different
interactions for MOX within this structure [89]. A difference between IVM and MOX
can also be assumed for ML metabolism by H. contortus. While MOX was reported to
be metabolized [33], no IVM metabolites have been identified [34]. Since the latter study
by Vokral et al. (2013) used a susceptible H. contortus isolate to analyze metabolism, the
production of IVM metabolites cannot be hypothesized for resistant isolates containing
SNPs or overexpressing xenobiotic metabolizing enzymes.

The transgenic expression of Hco-cyp-13A11 did not affect the susceptibility to MOX,
EPR, and DRM, thereby confirming the fact that there are considerable pharmacokinetic
differences between different MLs. However, the sugar moiety does not seem to be the
pivotal functional group in deciding whether a ML can interact with Hco-cyp-13A11, since
IVM, EPR, and DRM all possess a disaccharide group in contrast to MOX, but Hco-cyp-13A11
expression was only protective against IVM. Further structural differences are present at
the alkyl side chain of MOX and an additional carbon-carbon double bond at the spiroketal
moiety of EPR and DRM.

To better understand why Hco-cyp-13A11 shows a substrate specificity towards the
tested MLs, comparison in the observed differences in EC50 values, molecular modeling
and docking studies were performed. Although analysis of Hco-cyp-13A11 in C. elegans
was carried out only for the sequence variant derived from the White River isolate, in
silico analyses were extended to Hco-cyp-13A11 sequences obtained from three additional
isolates differing in resistance status. Human Cyps have already been shown to exhibit
polymorphisms in multiple allelic variants associated with differences in metabolizing
drugs [88,90]. In total, the exon sequences of Hco-cyp-13A11 from four H. contortus isolates
revealed 14 polymorphic positions in the amino acid sequences. However, none of these
polymorphisms occurred explicitly in the ML-susceptible or -resistant isolates. This can
certainly be linked to the high genetic diversity of H. contortus with a mutation rate ten times
higher than in vertebrates, resulting in considerable variation within a laboratory strain
as observed for the sequences derived from the partially inbred ISE [42,91,92]. Additional
different selection pressures can affect the genes selected and how they respond to MLs,
thereby leading to different phenotypes within different ML-resistant strains [93,94].



Int. J. Mol. Sci. 2022, 23, 9155 17 of 27

Nonetheless, two AA changes were predicted in SCRs directly located towards the
active site of the Cyp and potentially influencing substrate binding. Molecular model-
ing of Hco-Cyp-13A11 calculated that the other AA variations occurred mainly towards
the protein’s surface. This may lead to slight changes in electrostatic interactions with
membrane lipids, affecting Cyp behavior as proposed for human Cyps [95]. The more
positively charged AA are located on the protein’s surface, the stronger it is attracted to
anionic membranes compared to neutral ones therefore changing the orientation of Cyp
towards the membrane and its immersion depth in the membrane. Hence the flexibility in
the membrane-immersed parts of the catalytic domain such as the FG-loop and reduction
in access for substrates to their channels [95]. However, molecular dynamic simulations
should be conducted to evaluate the impact of all AA changes on the substrate access
channel gating.

In general, the molecular models for Hco-Cyp-13A11 revealed high sequence identities
for the helices I, L, J, K, and the two sets of beta-sheets compared to the human Cyp-3A4.
Furthermore, the ExxR and the CIG sequence motifs which are known to stabilize the core,
and the heme-binding are also preserved for Hco-Cyp-13A11 [48]. This core structure was
shown to be highly conserved in Cyps of all phyla [48,96]. Although the primary sequence
forming the helices E and D showed a low sequence coverage for Hco-Cyp-13A11 among
the isolates, which were predicted to be well-conserved core structures in mammals [49],
the secondary helix structure was preserved.

Interestingly, Hco-Cyp-13A11 exhibits more residues within the G helix (6 AA) and
the HI-loop (11 AA) than Cyp-3A4. Even though the exact function of the HI-loop at the
surface of the protein remains unclear, the quantity of AA within Hco-Cyp-13A11 can affect
the opening and closing of the substrate access channels through altered flexibility and
conformational dynamic [64,97].

The short meander insertion region of Hco-Cyp-13A11 indicates that this protein can
be potentially classified as a class II Cyp. The classification refers to the electron transfer
mechanism to the catalytic site with class II Cyps only requiring a flavin adenine nucleotide
containing P450 reductase to transfer electrons. In contrast to class II, class I Cyps require
a reductase and an iron-sulfur redoxin, while class III Cyps do not require any electron
donor [50]. Together with αJ/αJ’, the meander insertion region is proposed to display a
reductase interaction face [51]. Keller et al. (2014) has already revealed the importance
for the orthologous Cel-cyp-13A12 to be co-expressed with the reductase emb-8 to build a
monooxygenase system.

The low sequence identity for the non-core regions between human Cyp-3A4 and
Hco-Cyp-13A11 is not surprising. Homologous Cyps are not necessarily expected to have
the same spectrum of specificity or affinity. It can be assumed that the nematode Cyp
metabolizes a particular drug that is no substrate to Cyp-3A4 and the other way around.

Human Cyp-3A4 metabolizes several large substrates, including erythromycin and
cyclosporin [23,98]. The present study indicated favorable docking scores for the MLs IVM,
IVMa, SEL, DRM, EPR, and MOX when in silico complexed with the human Cyp-3A4
crystal structure (PDB: 6MA7). Except for EPR, all drugs could dock to the active site cavity
within the protein. Cyp-3A4 has already been associated with cross-resistance to several
drugs [23]. Independent biotransformation studies for IVM [30] and MOX [32] conducted
with hepatic microsomes described the ability of the Cyp-3A family and particular Cyp-3A4
to metabolize these drugs. The best IVM docking score within this study was accomplished
with the disaccharide moiety directed to the heme center. Indeed, IVM metabolite analysis
showed a demethylation product at the sugar group [30,31]. The in silico calculations for
MOX exhibited the closest contact towards the heme with the methyl-group positioned
at the spiroketal function, and a corresponding hydroxylation product has also been
identified [99,100]. However, these metabolite formation studies pointed out more than
one metabolization site for IVM and MOX.

Multiple docking modes within Cyp-3A4 were also reported for erythromycin and
ketoconazole and depended on the binding of an effector molecule and the molecular size of
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the substrate [101]. It should be noted that the analysis in the present study focused only on
the best docking score for each drug. Ivermectin, MOX, IVMa, and SEL were docked with
different conformations into the Cyp-3A4 active site exhibiting differing docking scores.
Therefore, it can be assumed that Cyp-3A4 can also metabolize IVMa, SEL, and DRM. In
contrast to the other MLs, EPR showed the highest docking score on the solvent-accessible
site between the BC-loop and the beta bulge region. The BS-loop represents one of the
most flexible parts of the protein, influencing the formation of substrate access channels to
bind drugs selectively [95,97]. Thus, it currently cannot be excluded that EPR cannot bind
within the active site.

The Hco-Cyp-13A11 models generated here suggested that the protein can form
complexes with each ML, but docking scores for SEL, DRM, and MOX were considerably
higher than those obtained for human Cyp-3A4. For Hco-Cyp-13A11, no major differences
regarding drug docking scores or drug interacting residues could be observed between
the models for predicted sequences from susceptible and resistant isolates. Analyzing
predicted hydrogen-bond formation with MLs in the active site, Lys100, Arg113, and Ser394
were identified as potential hot-spot residues for substrate recognition in all Hco-Cyp-
13A11 models. Interestingly, the models for WR and BSI showed docking of DRM and EPR
at the solvent-accessible site of the FG-loop. The observed peripheral docking area has
already been described for the human Cyp-3A4 when exposed to the highly hydrophobic
bromoergocryptine and ritonavir. It is assumed that these molecules first bind outside and
are then translocated to the catalytic cavity due to conformational changes [64]. Currently,
it cannot be excluded that Hco-Cyp-13A11 WR and BSI would also allow translocation of
EPR and DRM to the active site.

In contrast, the active site of ISE and McM models was sufficient to complex both
molecules. It remains unclear if the smaller active sites of the WR and BSI models, presum-
ably caused by the long-distance effects of polymorphisms at positions outside of the active
site, are reliable or caused by artifacts in the modeling process.

The FG-loop, which has been reported to be immersed into the membrane in many
Cyps, represents, similar to the BC-loop, one of the most flexible regions in Cyps and is ca-
pable of opening and closing substrate access channels [95]. Nevertheless, the amphiphilic
character of EPR and DRM would enable them to enter the active site from the membrane
environment, which cannot be excluded since channel formation is dependent on different
environmental factors such as membrane composition or cholesterol concentration within
the membrane [23,95].

Although no IVM biotransformation products for the susceptible ISE isolate were
detected [34], the importance of Cyps increasing the ML resistance should not be underesti-
mated. This is mainly because MOX oxidation products were identified for H. contortus [33],
and the docking study revealed the ability of multiple MLs to bind to Hco-cyp-13A11.

However, the identified SNPs leading to 14 amino acid changes within Hco-cyp-13A11
between the analyzed isolates ISE, McM, WR, and BSI do not seem to contribute to spe-
cific responses of resistant and susceptible isolates towards MLs. It needs to be investi-
gated if Hco-cyp-13A11 might be differentially expressed upon ML exposure as already
shown for HCON_00038960 [19]. Hco-cyp-13A11 could be one among several players
leading to ML resistance, as several studies already support a multigenic basis for ML
resistance [42,78,102,103].

Besides Cyps, flavin-containing monooxygenases, glutathione-S-transferases or gly-
cosyltransferases contribute to drug metabolism in humans, ruminants, and nematodes
by being upregulated or reinforcing the metabolic cascade [13]. Particularly, members of
the drug transporter family P-glycoproteins such as H. contortus and Parascaris univalens
pgp-2 [17,104] Cylicocyclus elongatus, H. contortus and Parascaris univalens pgp-9 [86,104,105],
T. circumcincta pgp-10 [16], Parascaris univalens and H. contortus pgp-11 [15,19], and Hco-
pgp-13 [106], were linked to IVM resistance. A structural model analysis of Hco-pgp-13
additionally predicted a high-affinity binding site in the inner chamber of the protein for
IVM [106]. Similarly, high binding affinities were also calculated for the Cel-pgp-1, which
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was also predicted to bind EPR, DOR, SEL, MOX, IVMa, and abamectin within the same
cavity [107]. P-glycoproteins and cytochrome P450 enzymes, especially the human Cyp-3A
family, possess broad substrate specificities and were shown to overlap in substrate and
inhibitor specificity [23,108,109]. Both human Pgps and Cyps are frequently expressed in
the same cells, such as hepatocytes and enterocytes, demonstrating their functional link
within the drug detoxification cascade [23]. Hence, Pgps can alter the intracellular concen-
tration of Cyp inducers or substrates and result in changing the magnitude of inductive and
catalytic response. Though detailed data about the tissue-specific expression of Pgps and
Cyps in H. contortus are missing, similar coherent expression patterns can be deduced from
different studies. Both Hco-pgp-13 [106], Hco-pgp-2 [17], and Hco-cyp-34A5, Hco-cyp-13A10,
Hco-cyp-33C9, Hco-cyp-43A1 [24] show higher expression levels in the intestine of adult H.
contortus than in other tissues. However, inducibility upon IVM exposure was only shown
for Hco-pgp-13 so far [19].

In conclusion, this is the first report of a transgenically expressed parasitic nematode
Cyp decreasing IVM, IVMa, and SEL susceptibility. However, molecular docking studies
could not verify substrate specificity or resistance-specific mutations for Hco-cyp-13A11
resulting in different affinities towards the MLs. Therefore, Hco-cyp-13A11 is assumed to
contribute to ML resistance in H. contortus only when combined with other pathways.

4. Materials and Methods
4.1. Chemicals

Stock solutions of 10 µM IVM (Sigma-Aldrich, I8898, Taufkirchen, Germany), 10
µM MOX (Sigma-Aldrich, 33746), 100 µM IVMa (Santa Cruz, SC-202189, Heidelberg,
Germany), 10 µM EPR (Cayman, 28182, Ann Arbor, MI, USA), 100 µM SEL (Sigma-Aldrich,
32476, Darmstadt, Germany) and 10 µM DRM (Sigma-Aldrich, 33993, Germany) were
prepared in 100% DMSO. For thrashing assays with the C. elegans N2 Bristol and transgenic
strain expressing Hco-cyp-13A11, stock solutions were serially diluted to obtain final
concentrations ranging from 0.1 to 1 µM IVM, 0.25 to 2.5 µM MOX, 10 to 100 µM IVMa,
0.05 to 2 µM EPR, 20 to 200 µM SEL, and 0.5 to 2 µM DRM.

4.2. Plasmid Construction for Transgenesis

For transgenesis, a plasmid containing the 1551 bp H. contortus White River (WR)
cyp-13A11 (old designation: HCOI00827700, now: HCON_00141052, BioProject PRJEB506)
placed downstream of a 2000 bp C. elegans ges-1 promoter fragment followed by a FlagTag
and 822 bp of the C. elegans 3′-UTR of the unc-54 gene was constructed (Figure S1). To
amplify ges-1 and the unc-54 3′-UTR, genomic DNA was isolated from C. elegans Bristol N2
using NucleoSpin Tissue XS kit (Macherey Nagel) according to the manufacturer’s instruc-
tions. To amplify Hco-cyp-13A11, RNA was isolated from fourth-stage larvae and cDNA
synthesized as described previously [28]. Each fragment needed to assemble an expression
plasmid was amplified via PCR or RT-PCR. Corresponding primer sequences were de-
signed using the NEBuild-er®Assembly tool (version 2.3.1). Reactions contained 0.02 U/µL
Phusion Hot Start II High-Fidelity DNA polymerase (Thermo Scientific, Waltham, MA,
USA), 0.2 µM dNTPs, 0.5 µM of each primer in 50 µL 1 × Phusion HF buffer. Reactions
were denatured at 98 ◦C for 2 min, followed by 50 cycles of 98 ◦C for 5 s, a primer-pair
specific annealing temperature for 30 s, and 72 ◦C for 2 min. Primer sequences and specific
annealing temperatures are provided in the supporting data (Supplementay Table S1).
The purified PCR products (DNA Clean & Concentrator™-5, Macherey Nagel) were used
for assembly with the NEBuilder® HiFi DNA Assembly Master Mix and were cloned
with NEBuilder HiFi DNA Assembly Cloning Kit (New England Biolabs) according to the
manufacturer’s instructions. The pUC19 vector (New England Biolabs) was linearized with
SmaI (Thermo Scientific) before assembly. The resulting plasmid was confirmed by Sanger
sequencing (LGC Genomics, Berlin, Germany).
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4.3. Transformation of Caenorhabitis elegans

The C. elegans Bristol N2 strain obtained from Caenorhabditis Genetics Centre (CGC, Uni-
versity of Minnesota, Minneapolis, MN, USA) was used as wild-type and maintained under
standard conditions [110]. The plasmid for the expression of H. contortus cyp-13A11 was
diluted in water and injected into the germline of young adult C. elegans hermaphrodites
at a concentration of 50 ng/µL as described previously [39,75]. A plasmid carrying a
pharyngeal GFP-expression marker (pPD118.33, Addgene plasmid 1596: L3790, Pmyo2-gfp,
Fire Lab 1995 Vector Kit) was co-injected as a transformation marker at a concentration
of 12.5 ng/µL. Successfully transformed worms were identified in the F1 progeny of in-
jected worms by GFP fluorescence and isolated on new agar plates (Figure S2). RT-PCR
confirmed the expression of Hco-cyp-13A11. For this purpose, GFP positive transgenes, all
descending from the same F1 worm, were collected, homogenized with a pestle, and RNA
isolated with the NucleoSpin RNA kit (Macherey Nagel) according to the manufacturer’s
instructions. Then, cDNA was synthesized from approximately 1 µg of RNA using the
Maxima first-strand cDNA synthesis kit (Thermo Fisher) according to the manufacturer’s
instructions. PCR was conducted in a 50 µL reaction mixture containing 2 µL cDNA or
no-RT control template, 0.02 U/µL Phusion Hot Start II High Fidelity DNA polymerase
(Thermo Scientific), 0.2 mM dNTPs, 0.25 µM of each gene-specific expression plasmid
primer (Table S1) in 50 µL 1 × Phusion HF buffer. The reaction was denatured at 98 ◦C for
2 min, followed by 45 cycles of 98 ◦C for 15 s, annealing at 57.8 ◦C for 30 s and 72 ◦C for
2 min. The presence of the Hco-cyp-13A11 PCR product was verified by gel electrophoresis
and Sanger sequencing.

4.4. Synchronization of Caenorhabditis elegans Developmental Stages

For synchronization, 100 µL of pelleted worms were exposed to 2 mL of a lysis
solution consisting of distilled water, 1 M NaOH, and chlorine-based household bleach in a
1:5:4 ratio. The obtained eggs were washed four times with a 15 mL M9 buffer (3 mg/mL
KH2PO4, 6 mg/mL Na2HPO4, 5 mg/mL NaCl, 1 mM MgSO4) and centrifuged for 2.5 min
at 780 rcf. Finally, the eggs were resuspended in 2 mL M9 buffer, placed on nematode
growth medium (NGM) agar plates seeded with Escherichia coli OP50 (Brenner, 1974), and
left to hatch at 20 ◦C.

4.5. Motility Assays

A minimum of 12 young adult transgenic individuals in 100 µL M9 buffer were added
to 1880 µL S Medium (prepared by mixing 1 l S Basal (5.85 mg/mL NaCl, 6 mg/mL
K2HPO4, 0.005 mg/mL cholesterol), 10 ml trace metal solution (1.86 mg/mL disodium
EDTA, 0.69 mg/mL FeSO4·7H2O, 0.2 mg/mL MnCl2·4H2O, 0.29 mg/mL ZnSO4·7H2O,
0.025 mg/mL CuSO4), 3 ml 1M CaCl2 and 3 mL 1M MgSO4) containing E. coli OP50
(OD600 approximately 0.5) and 20 µL drug solution per concentration into a 6 well plate.
DMSO was used as vehicle control and accounted for 1% of the total volume of each well.
Assays were run, protected from light, at 20 ◦C with constant shaking at 150 rpm for 24 h.
The worms were then transferred to an NGM agar plate overlaid with M9 buffer and
allowed to adapt to light for 1 min before the movement was quantified under a stereo
microscope by counting the number of body bends for 1 min. Each concentration was
repeated at least four times independently with three worms per block (n ≥ 12 worms
for each concentration). To compare the thrashes per minute of the N2 control strain and
the transgenic Hco-cyp-13A11 C. elegans strain for the DMSO control, a Whitney Mann U
test was used (Figure S3) (GraphPad Prism 5.0.3). For the concentration-response curves,
the mean number of movements was normalized to the mean of the no-drug control of
the same strain in the same block to obtain the relative motility as a percentage. For
concentration-response curves, EC50 values were determined by four-parameter logistic
regression using GraphPad Prism 5.0.3, and statistical differences in EC50 values were
calculated using the extra sum of the squares F test. The parameters’ top and bottom were
constrained to values between 0 and 100%.
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4.6. Parasite Isolates

Four isolates of H. contortus with differing susceptibility to MLs and other anthelmintics
were used for Hco-cyp-13A11 (HCON_00141052) sequence comparison.

(i) McM (McMaster): susceptible to all anthelmintics.
(ii) ISE (Inbred-susceptible Edinburgh; MHco3): susceptible to all anthelmintics.
(iii) BSI (Berlin selected isolate): highly IVM, MOX, thiabendazole (TBZ), and levamisole

(LEV) resistant.
(iv) WR (White River; MHco4): highly IVM and BZ resistant; moderately LEV resistant.

All isolates have been maintained by the regular passage in helminth-naïve lambs at
the Institute for Parasitology and Tropical Veterinary Medicine of the Freie Universität in
Berlin for several years. The WR isolate was regularly challenged by treating the infected
animals with ivermectin and fenbendazole.

4.7. Sequence Comparison of Hco-cyp-13A11 from Different Haemonchus contortus Isolates

According to the manufacturer’s instructions, DNA was isolated from infective third-
stage larvae using the NucleoSpin Tissue kit (Macherey Nagel). To amplify exons encoding
the CYP gene, primer pairs were designed at the 5′- and 3′-ends of either single exon
sequences or approximately over-spanning three exon sequences (Table S2). All PCRs were
conducted using Phusion Hot Start II High Fidelity DNA polymerase (Thermo Scientific).
Reactions contained 0.02 U/µL polymerase, 0.2 mM dNTPs, 0.25 µM of each primer in 20 µL
1 × Phusion HF buffer. Reactions were denatured at 98 ◦C for 2 min, followed by 42 cycles
of 98 ◦C for 20 s, a primer-pair specific annealing temperature (Table S2) for 30 s, and 72 ◦C
for 1 min. Amplification products were cloned into the pSC-B-amp/kan vector (StrataClone
Blunt Cloning Kit, Agilent Technologies). Plasmids (GenUP™Plasmid Kit, biotechrabbit)
with inserts of the expected size were identified by restriction analysis, and clones with
such inserts were sequenced by primer walking at LGC Genomics (Berlin). Exon sequences
encoding Hco-cyp-13A11 have been deposited in the GenBank database under the accession
numbers OM99853 (ISE), OM995854 (McM), OM995855 (WR), OM995856 (BSI).

4.8. Initial Analysis of DNA and Deduced Protein Sequences

The multiple sequence alignments were obtained by Clustal Omega version 1.2.4
(Available online: https://www.ebi.ac.uk/Tools/msa/clustalo/ accessed on 12 February
2021). The translation of Hco-cyp-13A11 protein-coding genomic DNA fragments into a
polypeptide sequences was performed using the ExPASy–Translate tool (Available online:
https://web.expasy.org/translate/ accessed on 18 Februry 2021). The protein param-
eters (molecular weight, length, theoretical isoelectric point (pI)) were calculated with
ExPASy–ProtParam (Available online:https://web.expasy.org/protparam/ accessed on
19 February 2021) and ExPASy–ScanProsite (Available online: https://prosite.expasy.org/
scanprosite/ accessed on 19 February 2021) was used to detect functional motifs in the
sequence. The prediction of secondary structure elements was carried out by the web tool
ESPript version 3.0 (Available online: https://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi
accessed on 19 February 2021) [59] using the crystal structure of the human Cyp-3A4 (PDB:
1TQN) as a structure prediction reference [43].

4.9. Haemonchus contortus Cyp-13A11 Homology Modeling

Based on the crystal structure of Homo sapiens Cyp-3A4 (PDB: 6MA7) [111] as a
template, 3D models of Hco-Cyp-13A11 were built using Modeller version 10.1 [51]. After
pairwise alignment of each Hco-Cyp-13A11 isolate sequence with the Cyp-3A4 target
sequence, 50 homology models were calculated in each Modeller run. The homology
models were then individually improved based on the Modeller loop refining method
by calculating 50 loop-refined models to decrease the number of Ramachandran-plot
outlier residues. Subsequently, model qualities were assessed by DOPE score, the QMEAN
(qualitative Model Energy Analysis) scoring function [55,56], ProSA-web (Protein structure
analysis) [53,54], and Errat [112]. Next, an iron-oxo haem molecule was included by
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identifying the best docking position with AutoDock Vina version 1.1.2 [63]. Therefore,
the homology models were prepared using AutoDock 4 [113] by adding polar hydrogens
and Kollman charges. Furthermore, the heme ligand was processed within AutoDock 4
by keeping the structure rigid and adding polar hydrogens and Gasteiger charges. The
grid box used to dock the heme ligand was built manually within AutoDock 4 by centering
the box to the iron coordinating cysteine sulfur (ISE, McM, BSI: Cys461; WR: Cys459).
The lowest energy position calculated by AutoDock Vina was selected for each model,
and interacting residues within the protein were analyzed using PyMOL version 2.0 [57].
Finally, the iron-oxo heme was connected to the homology model by creating a covalent
bond between the heme iron and the sulfur atom of the previously mentioned cysteine
residues using PyMOL. Heme cofactor coordinating residues were analyzed using the
Pimolin plugin ShowContacts and the PLIP Protein-Ligand Interaction Profiler web tool
version 2.2.0 [62]. The determination of the active site volume was performed with the web
tool CASTp [114] (version 3.0, probe radius 1.4 Å).

4.10. Molecular Docking of Macrocyclic lactones into the Hco-Cyp-13A11 Homology Models

AutoDock Vina was used in all docking experiments with the homology models
described previously. The analyses performed were restricted to molecular docking without
performing an additional molecular dynamics simulation. Before docking, the heme-
containing receptor was prepared with AutoDock Tools by adding polar hydrogens and
Kollman charges. Thereby, AutoDock Tools automatically set the heme iron charge to zero.
In addition, water molecules present in the protein structure were removed.

The molecular structures of the MLs used for ligand docking were all downloaded
from PubChem (PubChem CID: IVM (6321424); IVMa (126455999); SEL (9578507); DRM
(9832750); EPR (6450531); and MOX (9832912)). In the case of IVM and EPR with occur-
ring mixtures of B1a and B1b, only the structure of the predominant variant B1a was
used for docking simulations. The 3D structures used for docking were generated with
ChemDraw3D (version 20.0.0.41, level: ultra), and energy conformation was minimized
performing the MMF94 (Merck molecular force field) approach. The ligands were then pro-
cessed within AutoDock 4 by keeping the structures flexible and adding polar hydrogens
and Kollman charges.

All MLs were primarily docked to the active site cavity of the models, which were iden-
tified using the PyMol APBS (Adaptive Poisson-Boltzmann Solver) [115] plugin calculating
the macromolecular electrostatics and the CAVER3 [116]plugin computing tunnels and
channels in protein structures. In the next step, the initial grid box (40 Å × 40 Å × 40 Å)
used for each ligand docking was centered on the heme cofactor of each homology model.
In the AutoDock Vina configuration files, the parameter num_modes was set to 100, the
exhaustiveness to 12, and energy range to 9. Based on the lowest docking energy resulting
from the calculation and visual evaluation with PyMol, grid boxes were iteratively im-
proved, and analysis with the same configuration files was performed again until obtaining
the lowest (most negative) docking energies possible. If docking did not result in bind-
ing to the active site, the best docking position on the molecular surface was screened.
The evaluation of interacting residues was performed by PyMol, the open-source PLIP
Protein-Ligand Interaction Profiler web tool [62], and the ligand interaction tool of Maestro
Elements version 4.6.117. The latter tool was also used to generate 2D ligand-protein
interaction diagrams.
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The P-glycoprotein repertoire of the equine parasitic nematode Parascaris univalens. Sci. Rep. 2020, 10, 13586. [CrossRef]

105. Godoy, P.; Che, H.; Beech, R.N.; Prichard, R.K. Characterisation of P-glycoprotein-9.1 in Haemonchus contortus. Parasites Vectors
2016, 9, 52. [CrossRef]

106. David, M.; Lebrun, C.; Duguet, T.; Talmont, F.; Beech, R.; Orlowski, S.; André, F.; Prichard, R.K.; Lespine, A. Structural model,
functional modulation by ivermectin and tissue localization of Haemonchus contortus P-glycoprotein-13. Int. J. Parasitol. Drugs
Drug Resist. 2018, 8, 145–157. [CrossRef] [PubMed]

107. David, M.A.; Orlowski, S.; Prichard, R.K.; Hashem, S.; André, F.; Lespine, A. In silico analysis of the binding of anthelmintics to
Caenorhabditis elegans P-glycoprotein 1. Int. J. Parasitol. Drugs Drug Resist. 2016, 6, 299–313. [CrossRef] [PubMed]

108. Kirn, R.B.; Wandel, C.; Leake, B.; Cvetkovic, M.; Fromm, M.F.; Dempsey, P.J.; Roden, M.M.; Belas, F.; Chaudhary, A.K.; Roden,
D.M.; et al. Interrelationship Between Substrates and Inhibitors of Human CYP3A and P-Glycoprotein. Pharm. Res. 1999, 16,
408–414. [CrossRef] [PubMed]

109. Kurnik, D.; Wood, A.J.J.; Wilkinson, G.R. The erythromycin breath test reflects P-glycoprotein function independently of
cytochrome P450 3A activity. Clin. Pharmacol. Ther. 2006, 80, 228–234. [CrossRef]

110. Stiernagle, T. Maintenance of C. elegans; WormBook: Minneapolis, MN, USA, 2006; pp. 1–11.
111. Sevrioukova, I. Interaction of Human Drug-Metabolizing CYP3A4 with Small Inhibitory Molecules. Biochemistry 2019, 58, 930–939.

[CrossRef] [PubMed]
112. Colovos, C.; Yeates, T.O. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci. 1993, 2,

1511–1519. [CrossRef]
113. Morris, G.M.; Ruth, H.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Software news and updates

AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791.
[CrossRef]

114. Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Res.
2018, 46, W363–W367. [CrossRef]

115. Jurrus, E.; Engel, D.; Star, K.; Monson, K.; Brandi, J.; Felberg, L.E.; Brookes, D.H.; Wilson, L.; Chen, J.; Liles, K.; et al. Improvements
to the APBS biomolecular solvation software suite. Protein Sci. 2018, 27, 112–128. [CrossRef]

116. Pavelka, A.; Sebestova, E.; Kozlikova, B.; Brezovsky, J.; Sochor, J.; Damborsky, J. CAVER: Algorithms for Analyzing Dynamics of
Tunnels in Macromolecules. IEEE/ACM Trans. Comput. Biol. Bioinform. 2016, 13, 505–517. [CrossRef]

http://doi.org/10.1021/jf960981s
http://doi.org/10.1073/pnas.0603236103
http://doi.org/10.1371/journal.ppat.1002534
http://doi.org/10.1016/j.ijpddr.2014.07.007
http://doi.org/10.1038/s41598-020-70529-6
http://doi.org/10.1186/s13071-016-1317-8
http://doi.org/10.1016/j.ijpddr.2018.02.001
http://www.ncbi.nlm.nih.gov/pubmed/29571165
http://doi.org/10.1016/j.ijpddr.2016.09.001
http://www.ncbi.nlm.nih.gov/pubmed/27746191
http://doi.org/10.1023/A:1018877803319
http://www.ncbi.nlm.nih.gov/pubmed/10213372
http://doi.org/10.1016/j.clpt.2006.06.002
http://doi.org/10.1021/acs.biochem.8b01221
http://www.ncbi.nlm.nih.gov/pubmed/30676743
http://doi.org/10.1002/pro.5560020916
http://doi.org/10.1002/jcc.21256
http://doi.org/10.1093/nar/gky473
http://doi.org/10.1002/pro.3280
http://doi.org/10.1109/TCBB.2015.2459680

	Introduction 
	Results 
	Caenorhabditis elegans Motility Assays with Ivermectin, Moxidectin, Ivermectin Aglycone, Doramectin, Selamectin, and Eprinomectin 
	Comparison of Hco-cyp-13A11 Sequences between Susceptible and Resistant H. contortus Isolates to Identify Potential Macrocyclic Lactone Resistance-Associated Single-Nucleotide Polymorphisms (SNPs) 
	Homology Models of Haemonchus contortus Cyp-13A11 
	Molecular Modeling of Putative Macrocyclic Lactone-Binding Sites in Hco-Cyp-13A11 

	Discussion 
	Materials and Methods 
	Chemicals 
	Plasmid Construction for Transgenesis 
	Transformation of Caenorhabitis elegans 
	Synchronization of Caenorhabditis elegans Developmental Stages 
	Motility Assays 
	Parasite Isolates 
	Sequence Comparison of Hco-cyp-13A11 from Different Haemonchus contortus Isolates 
	Initial Analysis of DNA and Deduced Protein Sequences 
	Haemonchus contortus Cyp-13A11 Homology Modeling 
	Molecular Docking of Macrocyclic lactones into the Hco-Cyp-13A11 Homology Models 

	References

