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Abstract

Local sequential Bayesian data assimilation introduces physical imbalances that pose a challenge

for geophysical flows with implications for robust numerical weather prediction. The presence of

fast-mode imbalances of the order of the relevant slower dynamics deteriorates solution quality.

To negate this effect, dynamics-driven methods that suppress imbalances arising from data as-

similation are introduced in this thesis. Specifically, a blended numerical model for the rotating

compressible fluid flow equations under gravity is employed and equipped with access to sound-

proof and hydrostatic dynamics. The blended numerical model is formally extended to support

seamless transition between the shallow water equations and lake equations. Through careful

numerical and asymptotic analysis, one-step blending strategies that enable seamless switching

between model regimes within a simulation run are developed. Upon assimilation of data, the

model configuration is switched for one time step to the limit regime. After that, the model

configuration is switched back to the compressible or shallow water regime for the duration of

the assimilation window. This switching between the model regimes is repeated for each sub-

sequent assimilation window to eliminate the imbalances arising from the assimilation of data.

Idealised experiments involving the travelling vortex, buoyancy-driven rising thermals, and in-

ertia gravity waves demonstrate that the blending strategies successfully eliminate unphysical

imbalances, yielding up to two orders-of-magnitude improvements in the error scores. This novel

dynamics-conforming method of achieving balanced data assimilation can be extended to elim-

inate other forms of imbalances, and it has the potential to reduce data assimilation-generated

spurious signals in numerical weather prediction simulations.
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1 Introduction

The dynamics of the atmosphere evolve on a vast range of spatial and temporal scales, and

various mathematical models have been developed to simulate these dynamics. The compressible

Euler equations provide the most comprehensive description of atmospheric processes, including

the effects of sound waves. Yet the effects of sound waves may not be of physical and meteoro-

logical interest in the simulation of small- to mesoscale phenomena. Moreover, in the low-Mach

regime, phenomena of interest evolve much slower than the speed of sound, and resolving sound

waves may introduce stiffness into the numerical scheme, limiting the time-step size of the sim-

ulation.

Limit models have been derived from the full compressible equations by means of scale analysis

or asymptotic analysis. The limit soundproof pseudo-incompressible model suppresses the effects

of sound waves and is suitable for investigating small- to mesoscale phenomena (Durran, 1989).

The hydrostatic primitive equations suppress the effects of vertically propagating acoustic waves,

and this model is best used to describe phenomena occurring over a large horizontal scale and

a relatively small vertical scale, i.e., in the limit where the aspect ratio of the domain is large

(White et al., 2005). More details on these models can be found in Klein (2010), Pedlosky (2013),

and Vallis (2017).

Separate numerical discretisation schemes can be developed and implemented for the full

compressible model and its limit models. However, discrepancies in the solutions arising from

different discretisation schemes of the same equation set can be larger than the discrepancies

in the solutions of different equation sets that have been discretised with the same numerical

scheme (Smolarkiewicz and Dörnbrack, 2008; Klein, 2009). This justifies the development of a

single numerical scheme that discretises the full compressible model and its limit models.

The discretisation and implementation of the full compressible and pseudo-incompressible

equations within a single numerical framework were realised by Benacchio et al. (2014); Klein

et al. (2014) and separately by Smolarkiewicz et al. (2014). In the numerical framework by

Benacchio et al. (2014), continuously or discontinuously tuning an appropriate blending parameter

switches the solution between the two model regimes, and results from acoustically balanced

simulations with both model regimes are essentially identical. The authors further demonstrated

that by solving the first time steps in the pseudo-incompressible regime before switching the

solution to the compressible regime, acoustically balanced solutions can be obtained despite

the initially acoustically imbalanced data. This indicates that, when accessible within a single

numerical scheme, the dynamics of a limit model can be exploited to achieve balanced data

initialisation.
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1 Introduction

The blended numerical model by Benacchio et al. (2014) was conceptually extended by Klein

and Benacchio (2016) to support an additional blending parameter that tunes between the com-

pressible nonhydrostatic equations and a variant of the hydrostatic primitive equations, and an-

other blending parameter to tune between the full compressible model and the unified Arakawa

and Konor (2009) model. Benacchio and Klein (2019) then developed a numerical scheme that

supports blending between the hydrostatic and nonhydrostatic dynamics as well as between the

pseudo-incompressible and compressible dynamics. Furthermore, they showed that for balanced

initial data, simulation results between the full and the limit regimes are essentially identical.

1.1 Motivation

The blended numerical models in Benacchio et al. (2014) and Benacchio and Klein (2019) achieve

the switching of model regimes by the tuning of an appropriate blending parameter. While this

changes the equation set that is simulated, additional consideration must be taken to account for

the differences in the numerical schemes and in the physical meaning of the quantities in the limit

regimes. Therefore in addition to parameter tuning, blending strategies between different model

regimes can be developed through careful numerical and asymptotic analysis. Such blending

strategies drastically reduce the computational overhead of the blending process and the error

induced by the blending procedure.

Aside from the computational efficiency gained, blending strategies that are based on dy-

namical and numerical considerations avoid the necessity of continuously tuning the blending

parameter over multiple time steps. Such a continuous tuning was, for example, required to

achieve the best blended solution in Benacchio et al. (2014). Analytically, the physics simulated

by the intermediate model regimes accessed by a continuous tuning of the blending parameter is

not well understood for the Euler equations. Development of dynamics-driven one-step blending

strategies sidesteps this issue entirely, and only the full and the limit regimes are accessed by the

blending procedure.

A first application of the improved blending method is in achieving balanced data initialisation.

By employing the blending strategies developed in this thesis, one time step spent in the limit

regime is shown to be sufficient to remove imbalances in the initial data. A strong reduction

of the initial imbalances for simulations involving balanced data initialisation will establish the

effectiveness of the blending strategies introduced. These are also the first results of blending

between model regimes within a single simulation run for the numerical scheme developed by

Benacchio and Klein (2019).

Extended with the improved blending strategies, the blended numerical model is then used

to investigate the effectiveness of blending in achieving balanced data assimilation. Spatial lo-

calisation is usually applied to a data assimilation method, as it prevents spurious correlation

of the observations, and the assimilation of observations may be computationally more efficient

2



1.1 Motivation

(Kirchgessner et al., 2014; Hunt et al., 2007). Localisation is achieved either by considering only

observations in the vicinity of the location where data is assimilated, or by applying a distance-

dependent function that reduces the influence of the observations to zero beyond a certain dis-

tance from the location where data is assimilated, or by a combination of these two methods.

Local data assimilation methods may introduce imbalances especially when the localisation is

severe (Lorenc, 2003; Cohn et al., 1998; Mitchell et al., 2002). As the assimilation procedure does

not take into account the physical dynamics of the flow processes, e.g. the conservation of mass,

momentum, and energy, or of the structure and smoothness of the solution, initially balanced

states may be destroyed by the assimilation procedure. The effects of localisation on balanced

analysis fields are discussed in, e.g., Neef et al. (2006), Greybush et al. (2011), and Bannister

(2015).

The fast-mode imbalances introduced through the data assimilation procedure may be of the

same order of magnitude as the slower dynamics of interest and may potentially deteriorate the

solution quality (Hohenegger and Schär, 2007). As with achieving balanced data initialisation,

the blending procedure may suppress the imbalances by exploiting the dynamics of the appropri-

ate limit model. After the assimilation of data, the solution is projected from the full model onto

the limit model. For example, the suppression of acoustic imbalances is achieved by switching the

numerical model from the compressible regime to the soundproof pseudo-incompressible regime.

The solution is then solved for one time step in the limit regime and the numerical model is

then switched back to simulate the full dynamics. The rest of the time steps in the assimilation

window until the next assimilation time are solved with the full model.

The blending strategies developed here ensure that the solution from this method of switching

between model regimes to suppress imbalances is dynamically consistent with the underlying

model at each step of the process. Therefore, being dynamics-driven, this method of achieving

balanced data assimilation is fundamentally different from existing methods to achieve balanced

solutions after the assimilation of data. The digital filter initialisation (DFI, Lynch and Huang,

1992) and the incremental analysis update (IAU, Bloom et al., 1996) act as low pass filters, and

the repeated application of these filters may have a detrimental effect on the slower dynamics

that are of interest (Houtekamer and Zhang, 2016; Polavarapu et al., 2004).

Apart from the IAU and DFI, balance can be improved by the choice of localisation space

(Kepert, 2009b), or by allowing observations outside of a localisation radius to relax to a certain

climatological mean (Flowerdew, 2015). A study comparing the effectiveness of the blending

method with parameter tuning against the effectiveness of a post-analysis penalty method in

achieving balanced analysis fields for oscillatory system was done by Hastermann et al. (2021).

Reviews on balanced data assimilation can be found in Zupanski (2009) and Houtekamer and

Zhang (2016). Results presented in this thesis seek to establish the feasibility and effectiveness

of blending as a means of achieving balanced data assimilation, and comparisons with existing

balancing methods are deferred to future work.
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1 Introduction

1.2 Contributions

The main innovations and advances to existing methods in this thesis are listed below:

• The transition between all four combinations of the compressible / pseudo-incompressible,

and nonhydrostatic / hydrostatic models within a single numerical scheme by the tuning

of appropriate blending parameters was realised by Benacchio and Klein (2019). In this

thesis, the blended numerical framework is formally extended to support solution of the

horizontal rotating shallow water equations and the lake equations. This is done by careful

identification of the parameters in the blended numerical framework with those of the

shallow water equations and the lake equations. As with the other models accessible by

the blended numerical model, the transition between the shallow water equations and the

lake equations is also realised by an appropriate blending parameter.

• A one-step blending strategy is developed for the pseudo-incompressible and compressible

model pair that enables the instantaneous switching between model regimes. This blending

strategy is based on three innovations: 1) by accounting for the time-level difference in the

pressure field between the full flow model and the limit model; 2) by judicious conversion

of the pressure-related quantities at the blending interface, taking into consideration their

multi-scale nature; and 3) by a careful choice of the perturbation variables in the conversion

from the limit model to the full model. This leads to a substantial improvement over

Benacchio et al. (2014), who needed additional time steps in the limit regime, in the ability

of the blended model in suppressing unwanted signals.

• A one-step blending procedure is derived for the hydrostatic and nonhydrostatic model pair.

This blending strategy is based on three innovations: 1) the realisation that the solution

of a second-order time update requires a balanced vertical momentum field as its input for

the solution to remain balanced; 2) by judiciously applying two first-order time updates,

a vertical momentum field that is balanced with respect to the other quantities can be

recovered; and 3) the choice of a second-order time update for the pressure perturbation

variable leads to an improvement to the blended solution. This is a first study into the

principal capability of hydrostatic and nonhydrostatic blending.

• The novel blending strategies are used to achieve balanced data assimilation in a com-

pressible model, and the effects of data assimilation and blending on balanced solutions

are investigated. Numerical results featuring blending as a means to achieve balanced local

data assimilation are presented. Scale analysis shows that the error introduced by the

assimilation of data quantifies the imbalances introduced.

Balanced data initialisation and balanced data assimilation are investigated in idealised two-

dimensional numerical experiments. The travelling vortex test case on a horizontal plane (Ka-

dioglu et al., 2008) is investigated for the shallow water / lake blending and the compressible

4



1.3 Thesis structure

/ pseudo-incompressible blending. A warm rising bubble in a vertical slice is also investigated

for the compressible / pseudo-incompressible blending (Mendez-Nunez and Carroll, 1994; Klein,

2009). For the nonhydrostatic / hydrostatic blending, vertical slice numerical experiments on the

inertia-gravity wave in a channel by Skamarock and Klemp (1994) are conducted. For each of

these test cases, employing an untuned and unbalanced data assimilation method alone destroys

the solution quality, while data assimilation together with blending successfully suppresses im-

balances. This establishes the feasibility of employing the blended numerical model in achieving

balanced data assimilation that is consistent with the underlying dynamics.

The numerical experiments are conducted with a modular Python code that was implemented

from the ground up. The code consists of four major components: a flow solver for the blended

numerical model, a data assimilation engine, a blending module that interfaces the first two

components, and a suite of tools to analyse, debug, and visualise the results of the simulations.

The blended numerical flow solver component is based on a refactoring of the C code by Benacchio

and Klein (2019). Due to extensive use of vectorisation and run-time compilation, the Python

code is reasonably fast, and benchmarks involving an early optimised version of the Python code

demonstrated that for simulations on a (64 × 64) grid, the Python code is about as fast as the

C code.

1.3 Thesis structure

Chapter 1 is this chapter and serves as an introduction to the thesis. Chapter 2 describes the

mathematical models accessible by the blended numerical framework, and the blended numerical

model of Benacchio and Klein (2019) is also formally extended to support simulations of the

shallow water equations and the lake equations. Chapter 3 elaborates on the discretisation and

implementation details of the blended numerical framework, and chapter 4 develops the blending

strategies for the compressible / pseudo-incompressible, the nonhydrostatic / hydrostatic, and the

shallow water / lake model pairs. Chapter 5 presents a brief discussion on data assimilation and

the ensemble data assimilation method used in the numerical experiments. The implementation

details of the data assimilation algorithm are also elaborated upon. Finally, details are given

on combining blending with data assimilation. Numerical results presented in chapter 6 are

divided into four sections: 1) the configurations and setup of the idealised test cases used;

2) the effectiveness of the blending strategies in achieving balanced data initialisation; 3) the

blended ensemble data assimilation setup; followed by 4) studies on the capabilities of blending

in removing imbalances arising from the assimilation of data. Chapter 7 concludes this thesis.

Parts of the content in chapters 4, 5, and 6 can be found in the preprint Chew et al. (2021)

that is currently under review.
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2 The analytical models

The mathematical models accessible by the blended numerical model are briefly discussed in

this chapter. The limit soundproof pseudo-incompressible and hydrostatic models are accessible

by the toggling of the appropriate switches and further details can be found in Klein and Be-

nacchio (2016); Benacchio and Klein (2019), while an extension of the blending framework to

the shallow water equations and the lake equations is formally derived. An overview relating the

models to one another can be found at the end of this chapter.

2.1 Compressible flow equations

The compressible nonhydrostatic Euler equations present a description of the dynamical pro-

cesses in the atmosphere (Pedlosky, 2013; Vallis, 2017). The equations in a rotating Cartesian

coordinate system with gravity are,

ρt +∇‖ · (ρu) + (ρw)z = 0, (2.1a)

(ρu)t +∇‖ · (ρu ◦ u) + (ρwu)z = −
(
cpP∇‖π + fk× ρu

)
, (2.1b)

αw
[
(ρw)t +∇‖ · (ρuw) + (ρw2)z

]
= − (cpPπz + ρg) , (2.1c)

αPPt +∇‖ · (Pu) + (Pw)z = 0. (2.1d)

In (2.1), ρ is the density, u = (u, v) the vector of horizontal velocities, and w the vertical velocity.

The variable P is the mass-weighted potential temperature and π is the Exner pressure. The

quantity f is the Coriolis parameter on the horizontal (x, y)-plane, k a unit vector in the vertical

direction and × the cross product. The quantity g is the acceleration of gravity acting in the

direction of k. The symbol ◦ denotes the tensor product, ∇‖ denotes the horizontal gradient

while the subscripts t and z denote the partial derivatives with respect to time t and the vertical

coordinate z. The variables P and π are related to the thermodynamic pressure p by the equations

of state,

π =
(

p

pref

)R/cp
, P = pref

R

(
p

pref

)cv/cp
= ρθ, (2.2)

where pref is a reference pressure, cp and cv are the heat capacities at constant pressure and

constant volume, R = cp−cv is the ideal gas constant, and θ is the potential temperature. αP and

αw are the blending parameters. αP switches between the compressible model and the pseudo-

incompressible model, and αw switches between the hydrostatic model and the nonhydrostatic

model (Klein and Benacchio, 2016).

7



2 The analytical models

Identifying χ with the inverse potential temperature

χ = 1
θ
, (2.3)

the Exner pressure and inverse potential temperature can be decomposed as

π(t, x, y, z) = π̄(z) + π′(t, x, y, z) and (2.4a)

χ(t, x, y, z) = χ̄(z) + χ′(t, x, y, z), (2.4b)

where the bar denotes a hydrostatic background state, which depends only on the vertical coor-

dinate, and the prime denotes the perturbation. From (2.2), P is solely a function of π,

P (π) = pref
R
π

1
γ−1 , (2.5)

where γ = cp/cv is the isentropic exponent. With (2.5), (2.1d) can be written as

∂P

∂π
πt = −∇ · (Pv). (2.6)

2.2 Pseudo-incompressible equations

The pseudo-incompressible set of equations was first derived by Durran (1989) and the formula-

tion used in the blended numerical framework is discussed below.

Expression (2.4a) separates the background Exner pressure from its perturbation. For the low

Mach number regime Ma � 1, where Ma = uref/cref for reference velocity uref and speed of

sound cref , an alternative formulation is the asymptotic expansion

π(t, x, y, z) = π(0)(z) + Ma2 π(1)(t, x, y, z) + . . . , (2.7)

with the superscript (0) representing the leading order expansion of π and (1) the next-to-leading

order expansion. Substituting this expansion into (2.6),

(
∂P

∂π

)
Ma2π

(1)
t = −∇ · (Pv) , (2.8)

and in the soundproof limit of Ma→ 0, the left-hand side tends to zero. This implies that Pt = 0

in (2.1d), and P takes the role of the leading order time-independent background quantity P (0),

with P (0) =
(
π(0))1/(γ−1). The quantity π comprises a time-dependent component corresponding

to the next-to-leading order π(1). Putting together these insights, the pseudo-incompressible set

of equations becomes
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2.3 Hydrostatic primitive equations

ρt +∇‖ · (ρu) + (ρw)z = 0, (2.9a)

(ρu)t +∇‖ · (ρu ◦ u) + (ρwu)z = −
[
cpP

(0)∇π + fk× ρu
]
, (2.9b)

(ρw)t +∇‖ · (ρuw) + (ρw2)z = −
[
cpP

(0)πz + ρg
]
, (2.9c)

∇‖ · (P (0)u) + (P (0)w)z = 0, (2.9d)

where (2.9d) enforces the soundproof divergence constraint. We note the similarity between (2.1)

and (2.9), with αP = 0 in (2.1d) and P replaced with the leading order P (0) in the latter. These

differences have to be taken into account in a blending strategy between the compressible model

and the pseudo-incompressible model.

As is evident from its name, the soundproof pseudo-incompressible model suppresses acoustic

effects, and sound waves are absent in simulations with this equation set. More details on this

formulation of the pseudo-incompressible equations can be found in Klein (2009), Klein and

Pauluis (2012), Benacchio et al. (2014), and Klein and Benacchio (2016).

2.3 Hydrostatic primitive equations

The hydrostatic balance

cpPh(πh)z = −ρhg (2.10)

is achieved by setting the left-hand side of (2.1c) to zero. Here, the subscript h denotes the

hydrostatically balanced quantities, specifically

Ph = π
1

γ−1
h , Ph = ρhθ. (2.11)

The hydrostatic primitive equations are as follows (Vallis, 2017; Klein and Benacchio, 2016),

(ρh)t +∇‖ · (ρhu) + (ρhw)z = 0, (2.12a)

(ρhu)t +∇‖ · (ρhu ◦ u) + (ρhwu)z = −
[
cpPh∇‖πh + fk× ρhu

]
, (2.12b)

cpPh(πh)z = −ρhg, (2.12c)

(Ph)t +∇‖ · (Phu) + (Phw)z = 0. (2.12d)

Note that this is akin to setting αw = 0 in (2.1d) and ensuring that the quantities ρh, Ph, and

πh are hydrostatically balanced by the constraint in (2.12c). Again, a blending between the

nonhydrostatic model and the hydrostatic model has to account for these differences, and such

a blending strategy is developed later in this thesis. The hydrostatic model suppresses vertically

propagating acoustic waves, and horizontally propagating acoustic waves, e.g. the Lamb waves,

are left unaffected.

9



2 The analytical models

2.4 Shallow water equations

The horizontal rotating shallow water equations with no orography are

ht +∇ · (hu) = 0, (2.13a)

(hu)t +∇ · (hu ◦ u) = −
[g

2∇h
2 + fk× hu

]
, (2.13b)

where h is the total water depth. From here on, the horizontal subscript ‖ in the nabla symbols

is implied. More details on the shallow water equations can be found in Bresch (2009). In order

to obtain a formulation for the blended numerical model, we non-dimensionalise the variables in

(2.13) with

h = href h
∗, ∇ = 1

lref
∇∗ t = tref t

∗,

u = lref
tref

u∗, g = href
t2ref

g∗, f = 1
tref

f∗, (2.14)

where both lref and href have the units of length. Rewriting (2.13) with (2.14),

href
tref

h∗t∗ + href
tref
∇∗ · (h∗u∗) = 0, (2.15a)

hreflref
t2ref

[(h∗u∗)t∗ +∇∗ · (h∗u∗ ◦ u∗)] = −
[
h3

ref
lreft2ref

g∗

2 ∇
∗(h∗)2 + hreflref

t2ref
f∗k× h∗u∗

]
. (2.15b)

Multiplying (2.15b) by t2ref/(href lref) and identifying the Froude number squared

Fr2 = l2ref
h2

ref

1
g∗

= u2
ref

ghref
, (2.16)

equation (2.15) in non-dimensionalised form is

ht +∇ · (hu) = 0, (2.17a)

(hu)t +∇ · (hu ◦ u) = −
[

1
2 Fr2∇h

2 + fk× hu
]
, (2.17b)

where the superscript ∗ denoting the non-dimensionalised quantities is dropped.

Let us now turn our attention to the compressible Euler equations in (2.1) and derive a form

similar to (2.17). Rewriting the horizontal components of the compressible set of equations in

(2.1) with the equations of state in (2.2), we obtain a set of equations in terms of the physical

pressure p,

ρt +∇ · (ρu) = 0, (2.18a)

(ρu)t +∇ · (ρu ◦ u) = − [∇p+ fk× ρu] , (2.18b)

αP (ρθ)t +∇ · (ρθu) = 0. (2.18c)
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2.4 Shallow water equations

With Γ = γ − 1/γ and pref/ρref = c2ref, with cref being the speed of sound, we introduce the

following reference quantities,

ρ = ρref ρ
∗, ∇ = 1

lref
∇∗, t = tref t

∗, u = lref
tref

u∗,

p = pref p
∗, f = 1

tref
f∗, θ = pΓ

ref
ρrefR

θ∗. (2.19)

Rewriting (2.18) with (2.19),

ρref
tref

[ρ∗t∗ +∇∗ · (ρ∗u∗)] = 0, (2.20a)

ρreflref
t2ref

[(ρ∗u)t∗ +∇∗ · (ρ∗u∗ ◦ u∗)] = −
[
pref
lref
∇∗p∗ + ρreflref

t2ref
f∗k× ρ∗u∗

]
, (2.20b)

pΓ
ref

Rtref
[(ρ∗θ∗)t∗ +∇∗ · (ρ∗θ∗u∗)] = 0. (2.20c)

Multiplying (2.20b) by t2ref/(ρreflref), (2.20) in non-dimensionalised form is

ρt +∇ · (ρu) = 0, (2.21a)

(ρu)t +∇ · (ρu ◦ u) = −
[

1
Ma2∇p+ fk× ρu

]
, (2.21b)

αP (ρθ)t +∇ · (ρθu) = 0, (2.21c)

where

Ma2 = l2ref
t2ref

ρref
pref

= u2
ref
c2ref

(2.22)

is the Mach number squared. In order to relate (2.17) to (2.21), we make the following identifi-

cations,

p = gh2

2 , γ = 2, pref = h3
ref
t2ref

. (2.23)

Indeed, inserting the identifications in (2.23) into the equations of state in (2.2),

π =
(

1
pref

) 1
2 (g

2h
2
) 1

2 =

√
t2ref
h3

ref

(√
g

2h
)
, (2.24a)

P = p
1
2
ref
R

(g
2h

2
) 1

2 = 1
R

√
h3

ref
t2ref

(√
g

2h
)
, (2.24b)

and setting the expansions in (2.24) into the first term on the right-hand side of the compressible

horizontal momentum subequation (2.1b),

−cpP∇π = −cp
R

g

2h∇h = −gh∇h = −g2∇h
2, (2.25)

11



2 The analytical models

which is the first term on the right-hand side of non-dimensionalised shallow water momentum

subequation (2.17b) with g subsumed under the Froude number squared. Therefore, the shallow

water equations can be solved by the blended numerical model with the identifications in (2.23)

and

ρ→ h, Ma2 → 2 Fr2, (2.26)

giving the governing non-dimensionalised rotating horizontal shallow water equations

αhht +∇ · (hu) = 0, (2.27a)

(hu)t +∇ · (hu ◦ u) = −
[

1
2 Fr2∇h

2 + fk× hu
]
. (2.27b)

Here, αh is the blending parameter that switches between the shallow water equations and the

lake equations. Analogous to the αP = 0 switch to the pseudo-incompressible equations, αh = 0

toggles access to the lake equations.

2.5 Lake equations

The lake equation is derived from the vanishing Froude number limit of the governing non-

dimensionalised shallow water equations in (2.27). Identifying 2 Fr2 with a small parameter

ε� 1, we assume the following asymptotic expansions,

h = h(0) + εh(1) + . . . , (2.28a)

u = u(0) + εu(1) + . . . . (2.28b)

Substituting the expansions in (2.28) into the non-dimensionalised shallow water equations in

(2.27) and sorting by the order of expansion, the leading order expansion for the water depth

equation (2.27a) is

O(ε0) : h
(0)
t +∇ · (h(0)u(0)) = 0. (2.29)

For the momentum equation (2.27b), the leading order expansion is

O(ε−1) : h(0)∇h(0) = 0. (2.30)

For the non-trivial case where h(0) 6= 0, the leading order momentum equation (2.30) implies that

h(0) is solely time-dependent. The next-to-leading order expansion of the momentum equation
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2.5 Lake equations

is

O(ε0) : (h(0)u(0))t +∇ · (h(0)u(0) ◦ u(0)) = −
[
h(0)∇h(1) + h(1)∇h(0) + fk× h(0)u(0)

]
.

(2.31)

As h(0)(t) depends only on time, the second term on the right is zero. Furthermore, integrating

the leading order water depth equation (2.29) over the domain Ω and applying the divergence

theorem,

h
(0)
t = − 1

|Ω|

∫
Ω
h(0)u(0) · n dσ = 0, (2.32)

where dσ is an infinitesimal segment of the domain boundary and n is the corresponding outward-

facing normal. The second equation to zero is due to the conservation of momentum in a doubly

periodic domain.

Putting together the leading order water depth equation (2.29) and the next-to-leading order

momentum equation (2.31) along with the boundary condition in (2.32) yields the horizontal

rotating lake equations,

∇ · (h(0)u(0)) = 0, (2.33a)

(h(0)u(0))t +∇ · (h(0)u(0) ◦ u(0)) = −
[
h(0)∇h(1) + fk× h(0)u(0)

]
. (2.33b)

This is akin to setting

ρ→ h(0), u→ u(0), P → h(0), π → h(1), (2.34)

in the pseudo-incompressible equations (2.9), or αh = 0 in the governing shallow water equations

(2.27). Similar derivations of the lake equations by means of formal asymptotics can be found in

Bresch (2009) and Bresch et al. (2011). Details on the lake equations as a particular formulation

of the pseudo-incompressible equation can be found in Lannes (2013).

This section and the preceding section extend the blended numerical model to support the

switching between the shallow water and lake equations model pair. The aim here is to show

that, as long as the appropriate switches and blending strategy are identified, the blending

between model regimes may be employed to achieve balanced solutions. Therefore, the choice

of this fairly simple model pair serves an illustrative purpose. Models that may be dynamically

more interesting, such as the quasi- and semi-geostrophic equations, may be explored in future

work.
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2 The analytical models

2.6 Overview of the analytical models

Compressible /
nonhydrostatic

equations (§ 2.1)

Hydrostatic
equations (§ 2.3)

αw = 1

αw = 0

Shallow water
equations (§ 2.4)

(2.23) and
(2.26)

Pseudo-incompressible
equations (§ 2.2)

αP = 1αP = 0

Lake equations
(§ 2.5)

αh = 1αh = 0

(2.34)

Figure 2.1: Overview of the analytical models and their relations within the blended numerical
framework. Equation numbers are in brackets and sections are denoted with §.

Figure 2.1 gives an overview of how the models discussed in this chapter are related to one

another within the blended numerical framework, summarising the content of this chapter. We

note that this figure is incomplete. In order to enable accurate switching between model regimes

within one simulation run, Figure 2.1 will be extended in chapter 4 to outline an optimal one-step

blending strategy between the model regimes.
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3 The blended numerical model

This chapter summarises the details of the blended numerical model from Benacchio and Klein

(2019) along with elaborations on the discretisation and implementation details.

3.1 Summary of the numerical scheme

Rewriting the governing compressible equations (2.1) with χ as the inverse potential temperature

in (2.3),

ρt +∇‖ · (Puχ) + (Pwχ)z = 0, (3.1a)

(ρu)t +∇‖ · (Pu ◦ χu) + (Pwχu)z = −
[
cpP∇‖π + fk× ρu

]
, (3.1b)

αw
[
(ρw)t +∇‖ · (Puχw) + (Pwχw)z

]
= − (cpPπz + ρg) , (3.1c)

αPPt +∇‖ · (Pu) + (Pw)z = 0. (3.1d)

We note that expanding the density subequation (3.1a) with the background χ̄ and perturbation

χ′ in (2.4b) yields the evolution equation of χ′, specifically

(Pχ′)t +∇‖ · (Puχ′) + (Pwχ′)z = −Pwχ̄z. (3.2)

Introducing the notations by Smolarkiewicz et al. (2014) and Benacchio and Klein (2019),

Ψ = (χ, χu, χw, χ′), (3.3)

equations (3.1a)–(3.1c) may be written compactly alongside (3.1d) as

(PΨ)t +A(Ψ;Pv) = Q(Ψ;P ), (3.4a)

αPPt +∇ · (Pv) = 0, (3.4b)

where v = (u, v, w) subsumes the three-dimensional velocity fields, A(Ψ;Pv) denotes the advec-

tion of the quantity Ψ under the advective fluxes Pv, while Q(Ψ;P ) describes the effect on the

right-hand side of (3.1) on Ψ given P .

The time update for (3.1d) is solved with an implicit midpoint method,

αPP
n+1 = αPP

n −∆t ∇ · (Pv)n+1/2. (3.5)

We notice from (3.5) that for us to make a time integration of size ∆t for the mass-weighted

potential temperature P , we first have to determine the (Pv)-fields at the half-time level n+1/2
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3 The blended numerical model

before making the full time-step update. Therefore, to determine the advective fluxes at the half-

time level, the time update for equations (3.4) is split into advective and non-advective terms.

The advection terms on the left are updated by

(PΨ)# = A∆t/2
1st [Ψn; (Pvn)] , (3.6a)

αPP
# = αPP

n − ∆t
2 ∇̃ · (Pv)n, (3.6b)

where ∇̃ is the discrete nabla and A1st is an advection scheme that is used in the half time

predictor update. The terms on the right are then solved by an implicit Euler method,

(PΨ)n+1/2 = (PΨ)# + ∆t
2 Q(Ψn+1/2;Pn+1/2), (3.7a)

αPP
n+1/2 = αPP

n − ∆t
2 ∇̃ · (Pv)n+1/2. (3.7b)

The time updates (3.6) and (3.7) yield the advective fluxes at the half time level. As the implicit

midpoint update for a given time step is equivalent to an implicit Euler method of half the time

step followed by an explicit Euler update for the other half of the time step (Hairer et al., 2006),

(3.7) completes the implicit half time step update required for the update of P in (3.5) and for

the density ρ = P/χ.

Having obtained the (Pv)-fields at the half-time level as required by the right-hand side of

(3.5), we now update the quantities in Ψ by a full ∆t time step. This is done by an explicit Euler

half step, a full advection step, followed by an implicit Euler half step,

(PΨ)∗ = (PΨ)n + ∆t
2 Q(Ψn;Pn), (3.8a)

(PΨ)∗∗ = A∆t
2nd

[
Ψ∗; (Pvn+1/2)

]
, (3.8b)

(PΨ)n+1 = (PΨ)∗∗ + ∆t
2 Q(Ψn+1;Pn+1), (3.8c)

αPP
n+1 = αPP

n −∆t∇̃ · (Pv)n+1/2. (3.8d)

The second-order midpoint updates for ρ and P are completed with the explicit advection in

(3.8b) and (3.8d). The other quantities are updated with a second-order trapezoidal rule for the

right-hand side, comprising the explicit substep in (3.8a) and the implicit update in (3.8c), and

the left-hand side is updated with the second-order advection substep in (3.8b). The interleaving

of a second-order advection scheme by a first-order explicit and implicit Euler step in (3.8) yields

an overall second-order accuracy for the full time update. More details are in section 2 of

Smolarkiewicz (1991) and Smolarkiewicz and Margolin (1993).

We note that in the blended numerical scheme, the shallow water equations are analogous to

the compressible flow equations given the identifications (2.23) and (2.26), and the lake equations

are analogous to the pseudo-incompressible equations given the identifications (2.34).
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3.2 Discretisation details

3.2 Discretisation details

The time updates in (3.6), (3.8b), and (3.8d) involve an explicit advection routine that requires

fluxes (Pv)n or (Pv)n+1/2. (3.8a) is an explicit Euler update, and (3.7) and (3.8c) are im-

plicit Euler updates. Furthermore, the quantities (PΨ) are stored as cell-centred values and the

Exner pressure perturbation π′ is stored on the nodes. The staggering of the pressure-related

leading-order P and next-to-leading order π′ on the cell and nodal grids ensures that the blended

numerical solver works in the low-Mach limit. See, e.g., § 8 in Schneider et al. (1999) for more

details.

The two-dimensional discretisation of the time-update methods is elaborated upon in this

section. From here on, we assume that the spatial domain is discretised by an equidistant

Cartesian mesh.

3.2.1 Obtaining the numerical fluxes

The numerical fluxes on the cell interfaces are obtained by a cell-to-node averaging,

(Pu)i+1/2,j+1/2 = 1
4 [(Pu)i,j + (Pu)i+1,j + (Pu)i,j+1 + (Pu)i+1,j+1] , (3.9a)

(Pu)i−1/2,j+1/2 = 1
4 [(Pu)i,j + (Pu)i−1,j + (Pu)i,j+1 + (Pu)i−1,j+1] , (3.9b)

followed by a node-to-face averaging,

(Pu)i,j+1/2 = 1
2
[
(Pu)i−1/2,j+1/2 + (Pu)i+1/2,j+1/2

]
. (3.10)

Fluxes on the cell interfaces for the other velocity components (v, w) are obtained in a similar

fashion. Figure 3.1 depicts the cells and nodes involved in the cell-to-face averaging for the flux

at (i, j + 1/2) (left) and for the flux at (i+ 1/2, j) (right).

3.2.2 The advection routine

Recall that the quantities advected under the fluxes (Pv) are written with the compact form Ψ

in (3.3). For the explicit full time step advection in equation (3.8b), assume that (Pv)n+1/2 has

been obtained from the half time predictor step, i.e. after the implicit Euler update in (3.7), and

that Ψn is available.

Let us consider the cells with indices i − 1, i, and i + 1. An application of the advection

operator A∆t is akin to

A∆t
x Ui = Ui −

∆t
∆x

[
(Pu)n+1/2

i+1/2 Ψi+1/2 − (Pu)n+1/2
i−1/2 Ψi−1/2

]
, (3.11)
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i− 1 i i+ 1

j

j + 1

i i+ 1

j − 1

j

j + 1

Figure 3.1: Cell-to-face averaging in the calculation of the numerical fluxes on the cell interface
(i, j + 1/2) (left) and (i+ 1/2, j) (right) represented by cross markers. Dot markers
represent the cell-centres and square markers represent the nodes involved in the
process. Dashed arrows represent the cell-to-node averaging, and the solid arrows
represent the node-to-face averaging.

where

Ui := {ρ, ρu, ρw, P, Pχ′}i (3.12)

is the conserved quantity advected under the flux (Pu)n+1/2, and Ψi−1/2 is the value of Ψ on

the interface between the i-th and (i− 1)-th cells. In the limit as ∆t→ 0, (3.11) can be written

as a time update

A∆t
x Ui = Ui −

1
∆x

[∫ t+∆t

t

F(Ui,Ui+1)−F(Ui−1,Ui) dt
]
, (3.13)

where F(· , ·) is the flux across the cell interface of the respective quantity in U . With the appro-

priate reconstruction for F(· , ·), (3.13) is a Monotonic Upstream-centred Scheme for Conserva-

tion Laws (MUSCL) scheme that is second-order accurate in space. The method was developed

by van Leer through a series of papers (Van Leer, 1973, 1974, 1977a,b, 1979).

Now let us consider a general advection equation,

Ui + Fx(U) = 0, (3.14)

where U is the quantity advected, and F is a general flux function. Discretising the above with

the quantity in (3.12) yields

Un+1 − Un

∆t = − 1
∆x [F(Ui,Ui+1)−F(Ui−1,Ui)] , (3.15)

where the right-hand side is a central difference scheme evaluated at the cell edges. Rewriting

this,

Un+1 = Un − ∆t
∆x [F(Ui,Ui+1)−F(Ui−1,Ui)] , (3.16)
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3.2 Discretisation details

the first term in the square brackets on the right-hand side can be identified with (Pu)n+1/2
i+1/2 Ψi+1/2

and the second term with (Pu)n+1/2
i−1/2 Ψi−1/2 in (3.11). The quantities (Pu)n+1/2

i±1/2 are available at

the onset of the advection routine as a cell-to-face averaging of the solutions from the half time

predictor step. The missing pieces are then only the values Ψn+1/2
i±1/2 .

To obtain second-order accuracy in space of the MUSCL scheme in (3.13), we could use a slope

limiter to approximate the cell averages instead of piecewise constant cell averages in a first-order

Godunov’s method. This also ensures that the scheme is total variation diminishing (Harten,

1997). More details can be found in the textbooks by LeVeque (1992) and LeVeque (2002).

Reconstruction

x

i− 1 i i+ 1
i− 1

2 i+ 1
2

Si−1/2

Si+1/2

Si

Figure 3.2: Construction of the slope in the i-th cell, Si (dotted line). The vertical solid lines
represent the cell interfaces. See text for the explanation of this figure.

We apply the following steps to obtain the missing piece Ψn+1/2
i+1/2 . First, the slopes between

adjacent cells are constructed, e.g. for the slope between the i-th and (i+ 1)-th cells,

Si+1/2 = Ψi+1 −Ψi, (3.17)

where Ψi is the cell-centred value of Ψ in the i-th cell. Si−1/2 and Si+1/2 are represented by

the solid slopes in Figure 3.2. The piecewise constant cell value Ψ is represented by a horizontal

dashed line and the cell-centred value by the black dot. The slope in the i-th cell, Si (dotted

line in Figure 3.2), is the average of the slopes constructed from the cell averages of the adjacent

cells,

Si = 1
2(Si−1/2 + Si+1/2). (3.18)

We note that (3.18) is not a slope limiter in the i-th cell: in the limit of a discontinuity across

the cell interfaces, Si →∞. However, unlike the slope limiters, the averaging in (3.18) does not

induce numerical dissipation, and this method of computing the slope is used in the numerical

experiments of this thesis.
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x

t

xi+1/2xi

tn+1/2

tn

u = dx
dt

∆t
2

∆t
2 u

Figure 3.3: Backward tracing of the characteristic of Ψ from (tn+1/2, xi+1/2).

The characteristic of Ψ can be traced backwards in time as follows,

Ψ(tn+1/2, xi+1/2) = Ψ
(
tn, xi+1/2 −

∆t
2 u

n+1/2
i+1/2

)
, (3.19)

and Figure 3.3 provides a graphical illustration of the idea behind the backward tracing. The

quantity un+1/2
i+1/2 is obtained as follows,

u
n+1/2
i+1/2 =

(Pu)n+1/2
i+1/2

(Pi + Pi+1)/2 . (3.20)

Having obtained the slope in the cell, the value for Ψ anywhere in the cell can be obtained by

linear interpolation,

Ψ(tn, x) = Ψn
i + (x− xni )Sni . (3.21)

Using (3.21) together with the insight from the backward tracing of Ψn+1/2
i+1/2 in (3.19),

Ψ(tn+1/2, xi+1/2) = Ψn
i +

(
xni+1/2 −

∆t
2 u

n+1/2
i+1/2 − x

n
i

)
Sni

= Ψn
i + ∆x

2

(
1− ∆t

∆xu
n+1/2
i+1/2

)
Sni

=: Ψ−i+1/2, (3.22)

where xi+1/2 − xi = ∆x/2 is used. Ψ−i+1/2 is the solution of Ψ on the left of the cell interface at

i+ 1/2 originating from the i-th cell.

The Riemann problem and the Harten-Lax-van Leer (HLL) solver

The derivation of Ψ−i+1/2 obtained in (3.22) supposes that the characteristic for Ψn+1/2
i+1/2 is traced

from the i-th cell. Another possibility is the solution on the right of the (i+1/2)-th cell interface
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3.2 Discretisation details

x

i i+ 1
i+ 1

2

Si

Si+1

Ψ−i+1/2

Ψ+
i+1/2

Figure 3.4: Discontinuity at the cell interface (i+ 1/2) arising from the recovery of Ψn+1/2
i+1/2 from

the i-th and (i+ 1)-th cells. The slopes in the respective cell are represented by S.

originating from the (i+ 1)-th cell,

Ψ(tn+1/2, xi+1/2) = Ψn
i+1 −

∆x
2

(
1 + ∆t

∆xu
n+1/2
i+1/2

)
Sni+1

=: Ψ+
i+1/2. (3.23)

This leads to a discontinuity at the (i+1/2) cell interface, with Ψ−i+1/2 on the left of the interface

and Ψ+
i+1/2 on the right. Figure 3.4 illustrates this. The MUSCL-type time update in (3.16)

along with the values of Ψn+1/2 recovered on the left and right of the interfaces in (3.22) and

(3.23) constitute the Riemann problem (LeVeque, 1992). This is solved with the HLL solver by

selecting the choice of (3.22) or (3.23) based on the direction of the advecting flux (Harten et al.,

1983),

Ψi+1/2 = σΨ−i+1/2 + (1− σ)Ψ+
i+1/2, (3.24)

where

σ = sign
[
(Pu)n+1/2

i+1/2

]
. (3.25)

With this selection of Ψ based on the upstream flux in (3.24), the missing pieces Ψn+1/2
i±1/2 may

be acquired, and the MUSCL scheme in (3.16) is updated, yielding the solution to our advection

problem in (3.11).

Advection update

The advection problem in (3.11) represents an advection substep in the direction of the flux

(Pu). The full advection step consists of applying the advection substep for each coordinate

direction. For example, a first-order Runge-Kutta update is used in the first advection routine
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3 The blended numerical model

of the predictor half step, i.e.,

A∆t/2
1st Ui,j = Ui,j −

∆t
2

[
(Pu)ni+1/2Ψi+1/2 − (Pu)ni−1/2Ψi−1/2

∆x

+
(Pv)nj+1/2Ψj+1/2 − (Pv)nj−1/2Ψj−1/2

∆y

]
, (3.26)

for a horizontal slice problem in the (x, y)-coordinate direction.

For the full time update, the advection operator A∆t
2nd is split dimension-wise, and this leads

to the second-order Strang splitting,

A∆t
2nd Ui,j = A∆t/2

x A∆t/2
y A∆t/2

y A∆t/2
x Ui,j . (3.27)

Apart from Benacchio and Klein (2019), more details on the Strang splitting can be found in,

e.g., MacNamara and Strang (2016).

3.2.3 Explicit Euler update

Equation (23) in Benacchio and Klein (2019), reproduced in (3.28) below, describes the time

update of the right-hand side source terms in the implicit substep of the predictor step in (3.7),

the explicit substep of the full time update in (3.8a), and the implicit substep of the full time

update in (3.8c).

Ut = −cp(Pθ)◦π′x + fV, (3.28a)

Vt = −cp(Pθ)◦π′y − fU, (3.28b)

αwWt = −cp(Pθ)◦π′z − g
χ̃

χ◦
, (3.28c)

χ̃t = −W dχ̄

dz
, (3.28d)

αP

(
∂P

∂π

)◦
π′t = −Ux − Vy −Wz, (3.28e)

where (U,W,W, χ̃) = (Pu, Pv, Pw, Pχ′), and the values (Pθ)◦, χ◦, and (∂P/∂π)◦ are fixed from

the solution of the preceding advection substep in the case of an implicit time update, and from

the solution of the preceding time step in the case of the explicit time update. We note that the

time update of ρ and P in (3.1a) and (3.1d) do not involve right-hand side source terms. The

left-hand side of (3.28e) results from (2.5), i.e. P is dependent on π only. We also note that the

second term on the right-hand side of the vertical momentum update (3.28c) is obtained from

the right-hand side of (3.1c) as follows,
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3.2 Discretisation details

−cp(Pθ)◦πz − P ◦g = −cp(Pθ)◦π̄z − cp(Pθ)◦π′z − P ◦g

= (Pθ)◦gχ̄− cp(Pθ)◦π′z − P ◦g

= P ◦g

(
χ̄

χ◦
− 1
)
− cp(Pθ)◦π′z

= −g
(
P ◦χ′

χ◦

)
− cp(Pθ)◦π′z

= −g χ̃
χ◦
− cp(Pθ)◦π′z, (3.29)

where we have used the hydrostatic background relation

dπ̄

dz
= − g

cp
χ̄, π̄(0) = 1, (3.30)

the fact that θ◦ = 1/χ◦, and from the expansion of χ in (2.4b), (χ̄/χ◦ − 1) = (χ′/χ◦).

Now, the explicit Euler substep in (3.8a) may be written as follows,

Un+1/2 = Un − ∆t
2 [cp(Pθ)◦π′nx − fV n] , (3.31a)

V n+1/2 = V n − ∆t
2
[
cp(Pθ)◦π′ny + fUn

]
, (3.31b)

αwW
n+1/2 = Wn − ∆t

2

[
cp(Pθ)◦π′nz + g

χ̃n

χ◦

]
, (3.31c)

χ̃n+1/2 = χ̃n − ∆t
2

[
Wn dχ̄

dz

]
, (3.31d)

αP

(
∂P

∂π

)◦
π′n+1/2 = αP

(
∂P

∂π

)◦
π′n − ∆t

2
[
Unx + V ny +Wn

z

]
. (3.31e)

The terms on the right of (3.31) are available at the onset of the n-th time step, although a

node-to-cell differencing is required to obtain π′nx , π′ny , and π′nz , and a cell-to-node differencing

for Unx , V ny , and Wn
z . Finally, because χ′ is updated redundantly alongside χ, the value of χ̃n in

(3.31d) is reevaluated at every time step as

χ̃n = ρn
(
ρn

Pn
− χ̄

)
(3.32)

to eliminate any discrepancy between χ′ and χ. Details of the node-to-cell differencing and the

cell-to-node differencing are presented below.

Node-to-cell differencing

In two dimensions and for a particular Cartesian direction, the finite differences over the nodes

are taken and the resulting discrete differences on the face centres are averaged to obtain values on

the cell centres. In particular, and referring to Figure 3.5a, a node-to-cell differencing along the

Cartesian x-direction is as follows: the finite differences of the nodal π′ values (square markers)
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3 The blended numerical model

i

j

(a) Node-to-cell differencing
i i+ 1

j

j + 1

(b) Cell-to-node differencing

Figure 3.5: Computation of differentials on the cells and nodes. Square markers represent nodal
values and dot markers cell-centred values.

are taken along the horizontal cell interfaces,

(
∂π′

∂x

)
i,j−1/2

≈ 1
∆x [π′i+1/2,j−1/2 − π

′
i−1/2,j−1/2], (3.33a)(

∂π′

∂x

)
i,j+1/2

≈ 1
∆x [π′i+1/2,j+1/2 − π

′
i−1/2,j+1/2]. (3.33b)

Equation (3.33) yields the face-centred differences denoted by the cross markers. The averages

of (∂π′/∂x)i,j+1/2 and (∂π′/∂x)i,j−1/2 are then taken along the arrows,

(
∂π′

∂x

)
i,j

= 1
2

[(
∂π′

∂x

)
i,j+1/2

+
(
∂π′

∂x

)
i,j−1/2

]
, (3.34)

giving us the cell-centred (∂π′/∂x)i,j (the dot marker).

Cell-to-node differencing

An approach similar to the node-to-cell differencing is taken for the cell-to-node differencing.

Differences of the cell-centred values are taken and the resulting discrete differences on the face

centres are averaged to obtain nodal values. In particular, and referring to Figure 3.5b, finite

differences of the cell-centred (Pu) values (dot markers) are taken along the dashed lines,

[
∂(Pu)
∂x

]
i+1/2,j

= 1
∆x [(Pu)i+1,j − (Pu)i,j ], (3.35a)[

∂(Pu)
∂x

]
i+1/2,j+1

= 1
∆x [(Pu)i+1,j+1 − (Pu)i,j+1]. (3.35b)

Equation (3.35) gives us the face-centred differences (cross markers), and the averages of these

values are taken along the vertical cell interfaces between the two cross markers (denoted by the

arrows), [
∂(Pu)
∂x

]
i+1/2,j+1/2

= 1
2

{[
∂(Pu)
∂x

]
i+1/2,j

+
[
∂(Pu)
∂x

]
i+1/2,j+1

}
. (3.36)

This yields the nodal (∂(Pu)/∂x)i+1/2,j+1/2 value (the square marker) in Figure 3.5b.
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3.2 Discretisation details

3.2.4 Implicit Euler update

Consider the implicit substep in the full time update in (3.8c). An implicit discretisation of

equation (3.28) yields

Un+1 = U∗∗ − ∆t
2
[
cp(Pθ)◦π′n+1

x − fV n+1] , (3.37a)

V n+1 = V ∗∗ − ∆t
2
[
cp(Pθ)◦π′n+1

y + fUn+1] , (3.37b)

αwW
n+1 = W ∗∗ − ∆t

2

[
cp(Pθ)◦π′n+1

z + g
χ̃n+1

χ◦

]
, (3.37c)

χ̃n+1 = χ̃∗∗ − ∆t
2

[
Wn+1 dχ̄

dz

]
, (3.37d)

αP

(
∂P

∂π

)◦
π′n+1 = αP

(
∂P

∂π

)◦
π′n+1/2 − ∆t

2
[
Un+1
x + V n+1

y +Wn+1
z

]
, (3.37e)

where we recall that the superscript ∗∗ denotes the values obtained after the advection substep

in (3.8b). We also note that while the explicit advection substep in (3.8b) completes the implicit

midpoint update for P in (3.5), (3.37e) completes the synchronisation of the time levels of P and

π.

Substituting the quantities at the new time level n + 1 with the appropriate equations and

rearranging, (3.37a)–(3.37c) become

Un+1 = 1
1 + (∆t

2 f)2

[
U∗∗ + ∆t

2 fV ∗∗ − ∆t
2 cp(Pθ)◦

(
π′n+1
x + ∆t

2 fπ′n+1
y

)]
, (3.38a)

V n+1 = 1
1 + (∆t

2 f)2

[
V ∗∗ − ∆t

2 fU∗∗ − ∆t
2 cp(Pθ)◦

(
π′n+1
y − ∆t

2 fπ′n+1
x

)]
, (3.38b)

Wn+1 = 1
αw + (∆t

2 N)2

[
αwW

∗∗ − ∆t
2 g

χ̃∗∗

χ◦
− ∆t

2 cp(Pθ)◦π′n+1
z

]
, (3.38c)

where

N =

√
−g 1

χ◦
dχ̄

dz
(3.39)

is the local buoyancy frequency. Now, the time updates in (3.38) are explicit in (U, V,W ) and

implicit in π.

Inserting (3.38) into the right-hand side of (3.37e) and rearranging,

αP

(
∂P

∂π

)◦
π′n+1 −

(
∆t
2

)2
cp(Pθ)◦

1 + (∆t
2 f)2

[(
π′n+1
xx + ∆t

2 fπ′n+1
yx

)
+
(
π′n+1
yy − ∆t

2 fπ′n+1
xy

)]
−
(

∆t
2

)2
cp(Pθ)◦

αw + (∆t
2 N)2π

′n+1
zz

= αP

(
∂P

∂π

)◦
π′n − ∆t

2
1

1 + (∆t
2 f)2

[(
U∗∗x + ∆t

2 fV ∗∗x

)
+
(
V ∗∗y −

∆t
2 fU∗∗y

)]
− ∆t

2
1

αw + (∆t
2 N)2

[
αwW

∗∗
z −

∆t
2 g

χ̃∗∗z
χ◦

]
. (3.40)
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3 The blended numerical model

The expression (3.40) yields a Helmholtz problem. The derivatives of (U, V,W )∗∗ on the right-

hand side are prepared with the cell-to-node differencing illustrated in Figure 3.5b, while the

left-hand side is updated with a 9-point stencil in two dimensions and a 27-point stencil in three

dimensions.

27-point stencil

The implementation of the three-dimensional 27-point stencil is elaborated here. The 27 points

involved in the stencil for the update of the nodal point (̄i, j̄, k̄) are shown in Figure 3.6a. To

keep the notations concise, the bar is introduced to index the nodal points.

ī− 1 ī ī+ 1
k̄ − 1

k̄

k̄ + 1

j̄ − 1

j̄

j̄ + 1

(a) Square markers represent the nodal points
involved in the 27-point stencil.

ī ī+ 1

k̄

k̄ + 1

j̄ − 1

j̄

(b) Computation of the cell-centred
(∂π′/∂x)i,j−1,k by a finite differenc-
ing followed by an averaging.

i− 1 i
k − 1

k

j − 1

j

(c) With the cell-centred (∂π′/∂x) values, the
node-centred (∂2π′/∂x∂y) is obtained by fi-
nite differencing followed by an averaging.

Figure 3.6: Method to compute the second-order derivative for π′ with a 27-point stencil. This
sets up a linear operator to solve (3.40).

Figures 3.6b and 3.6c illustrate the computation of π′xy. Specifically, the cell-centred π′x is

obtained in Figure 3.6b by first applying a finite difference to the nodal values (square markers)

along the cell interfaces in the x-direction (represented by the horizontal solid lines),
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(
∂π′

∂x

)
ī+1/2,j̄−1,k̄

≈ 1
∆x

[
π′
ī+1,j̄−1,k̄ − π

′
ī,j̄−1,k̄

]
, (3.41a)(

∂π′

∂x

)
ī+1/2,j̄,k̄

≈ 1
∆x

[
π′
ī+1,j̄,k̄ − π

′
ī,j̄,k̄

]
, (3.41b)(

∂π′

∂x

)
ī+1/2,j̄−1,k̄+1

≈ 1
∆x

[
π′
ī+1,j̄−1,k̄+1 − π

′
ī,j̄−1,k̄+1

]
, (3.41c)(

∂π′

∂x

)
ī+1/2,j̄,k̄+1

≈ 1
∆x

[
π′
ī+1,j̄,k̄+1 − π

′
ī,j̄,k̄+1

]
. (3.41d)

The cell-centred (∂π′/∂x)i,j−1,k (dot marker) is then obtained by averaging the face-centred

finite differences (cross markers),

(
∂π′

∂x

)
i,j−1,k

= 1
4

[(
∂π′

∂x

)
ī+1/2,j̄−1,k̄

+
(
∂π′

∂x

)
ī+1/2,j̄,k̄

+
(
∂π′

∂x

)
ī+1/2,j̄−1,k̄+1

+
(
∂π′

∂x

)
ī+1/2,j̄,k̄+1

]
. (3.42)

This averaging is represented by the arrows from the cross markers to the dot marker. Repeating

(3.41) and (3.42) to obtain the cell-centred (∂π′/∂x) at (i − 1, j − 1, k − 1), (i, j − 1, k − 1),

(i−1, j, k−1), (i, j, k−1), (i−1, j−1, k), (i−1, j, k), and (i, j, k) brings us to Figure 3.6c. Note

that the bar has been dropped for the indices of cell-centred values.

Referring to Figure 3.6c, finite differences are applied to the cell-centred (∂π′/∂x) values

(square markers) along the y-direction (represented by the solid diagonal lines in the y-direction).

The face-centred (∂2π′/∂x∂y) (cross markers) are averaged to obtain the nodal (∂2π′/∂x∂y)ī,j̄,k̄
(square marker). This averaging is represented by the solid arrows. As the workings for these

steps are similar to (3.41) and (3.42), the workings are not shown here.

The same principle applies to obtaining the second-order derivative for π′ in the other Cartesian

directions at (̄i, j̄, k̄). By multiplying the stencil with the appropriate time-dependent coefficients

present on the left-hand side of (3.40), we can set up a linear operator for the iterative method

which solves for π′n+1 up to a given tolerance.

Correction terms

Having obtained π′n+1, the time update for Un+1, V n+1, and Wn+1 in (3.38) can be completed

by applying a correction corresponding to the last term in the square brackets on the right-hand

side of (3.38). Here, a node-to-cell differencing is applied (see Figure 3.5a for more details). This

completes the implicit Euler update.
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3.3 Implementation details

The cell-to-face averaging depicted in Figure 3.1 and the differencing between the cells and the

nodes depicted in Figure 3.5 are akin to sliding window operations with overlaps. These opera-

tions are realised by convolution using the fast Fourier transform method with the appropriately

chosen kernels. Specifically, the fftconvolve function from the scipy (Virtanen et al., 2020)

signal toolbox is used in the Python code.

The advection routine in section 3.2.2 makes extensive use of numpy (Harris et al., 2020)

vectorisation. The recovery of the fluxes at the cell interfaces and the solution from the HLL

solver are computed by array-wide operations involving only the adjacent indices of the elements

in the array that are along the direction of the advection. Combined with dimensional splitting,

the advection routine implemented is dimensionally agnostic.

The Helmholtz problem in (3.40) is solved with a biconjugate gradient stabilised (BiCGStab)

iterative method (Van der Vorst, 1992) that is available as part of the scipy linear algebra library.

The linear operator is pre-initialised and compiled with the numba (Lam et al., 2015) Python run-

time compiler. To update the time-dependent coefficients in run time, an anonymous function

is used to interface the scipy BiCGStab solver with the precompiled operator. A 9-points 2D

stencil and the 27-points 3D stencil from section 3.2.4 have been implemented.

Other components of the code include: a module that handles the boundary conditions in the

ghost cells based on the user input; a class that outputs the simulation results into the HDF5

(The HDF Group, 1997) scientific data format; a module that generates an initial hydrostatic

background state; and a class to instantiate the data structure for the solution arrays with

methods to handle common operations on the solutions.

This chapter included a discussion on the blended numerical model introduced by Benacchio

and Klein (2019). An overview of the numerical model was provided along with the discretisation

and implementation details.
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4 Blending strategies

Chapter 3 discussed the semi-implicit blended numerical model by Benacchio and Klein (2019).

The model allows seamless transition between the full compressible and limit soundproof pseudo-

incompressible models, and between the nonhydrostatic and limit hydrostatic models within a

single numerical scheme.

In Benacchio et al. (2014), the blending between fully compressible and pseudo-incompressible

dynamics is achieved by continuously adjusting the model parameter αP in time. This chapter

shows that in addition to parameter adjustment, careful accounting of the dynamical and the

numerical differences in the models simulated by the blended numerical scheme provides sub-

stantial improvement to the blended solutions. Blending to a single time step in the limit regime

is sufficient to recover a balanced state in the full model.

4.1 Compressible–soundproof blending

Apart from a plain parameter adjustment, accounting for the time level of the Exner pressure π

and applying a conversion of the pressure-related quantities prior to the model transitions leads

to an improvement of the compressible–soundproof blending. Parts of this section have appeared

in Chew et al. (2021).

4.1.1 Time level of the pressure-related variables

Consider the simpler case without gravity and Coriolis forces, i.e. g, f = 0. Then (3.7a) and

(3.8c) corresponding to the implicit time update of the right-hand side of the momentum equation

at the half and full time stepping respectively can be written generally as

(Pv)t = −cp(Pθ)adv∇π, (4.1)

where the superscript adv denotes the quantity that becomes available after the advection sub-

steps (3.6a) and (3.8b). Equation (4.1) is multiplied by the potential temperature θ, in line with

the discretisation details elaborated in section (4) of Benacchio and Klein (2019) and the general

equations (3.28) for the time update of the right-hand side terms. Applying an implicit Euler

discretisation to (4.1), we obtain

(Pv)out = (Pv)in − δt cp(Pθ)adv∇̃πout, (4.2)

where the superscript in denotes the quantities at the time level corresponding to the start of

the time step and out at the end. Furthermore, δt ≤ ∆t is an arbitrary time step size.
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The compressible predictor step

For the case αP = 1, a discretisation of the left-hand side of (2.6) yields

Pn+1 − Pn =
(
∂̃P

∂̃π

)adv

(πn+1 − πn), (4.3)

recalling from (2.5) that P is a function of π only. At the half time level, (4.3) is

Pn+1/2 − Pn =
(
∂̃P

∂̃π

)#

(πn+1/2 − πn), (4.4)

where (∂P/∂π)# is obtained from P and π after the advection scheme at the half time level in

(3.6). Substituting (4.4) into the implicit midpoint update (3.7b) gives

(
∂̃P

∂̃π

)#

(πn+1/2 − πn) = −∆t
2 ∇̃ · (Pv)n+1/2. (4.5)

Here, (Pv)in in (4.2) is the solution of the advection terms in (3.6), i.e.,

(Pv)in = (Pv)n − ∆t
2 ∇̃ · (Pv ◦ v)n, (4.6)

with δt = ∆t/2. Setting out to n+ 1/2, inserting (Pv)in from (4.6) into (4.2), and inserting the

result into (4.5), we obtain

(
∂̃P

∂̃π

)#

πn+1/2 −
(

∆t
2

)2
∇̃ ·
[
cp(Pθ)#∇̃πn+1/2

]
=(

∂̃P

∂̃π

)#

πn − ∆t
2 ∇̃ · (Pv)n +

(
∆t
2

)2
∇̃ ·
[
∇̃ · (Pv ◦ v)n

]
, (4.7)

which fixes the time level of π after the half time predictor step in (3.6) and (3.7) at n+ 1/2.

The compressible full time update

For the full time stepping of (3.8), the time update of P in (3.8d) may be written as

(
∂̃P

∂̃π

)#

(πn+1 − πn) = −∆t∇̃ · (Pv)n+1/2

= −∆t
2 ∇̃ · (Pv)n+1 − ∆t

2 ∇̃ · (Pv)n, (4.8)

with

(Pv)n+1 = (Pv)in − ∆t
2 [cp(Pθ)∗∗∇̃πn+1], (4.9)

and

(Pv)in = (Pv)n − ∆t
2 [cp(Pθ)n∇̃πn]−∆t∇̃ · (Pv ◦ v)n+1/2, (4.10)
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where the second term on the right arises from the explicit Euler substep in (3.8a) and the

superscript ∗∗ denotes the solution to the advection substep in (3.8b). Inserting (4.10) into

(4.9), and (4.9) into (4.8), we obtain

(Pv)n+1 = (Pv)n − ∆t
2 [cp(Pθ)∗∗∇̃πn+1]− ∆t

2 [cp(Pθ)n∇̃πn]−∆t∇̃ · (Pv ◦ v)n+1/2. (4.11)

Substituting (4.11) into (4.8) yields the following,

(
∂̃P

∂̃π

)#

(πn+1 − πn) = −∆t ∇̃ · (Pv)n + (∆t)2

2 ∇̃ ·
[
cp(Pθ)n∇̃πn + cp(Pθ)∗∗∇̃πn+1

2

+ ∇̃ · (Pv ◦ v)n+1/2
]
. (4.12)

From (4.7), π is at time level n+ 1/2 after the half time predictor step (3.7) while (4.12) starts

with π at time level n for the full time stepping (3.8). Therefore, the time level of π has to

be reset from n + 1/2 to n after the half time step (3.7) and before the full time step (3.8).

Furthermore, the time level of π after the full time step (3.8) is n+ 1, as expected.

The pseudo-incompressible predictor step

For αP = 0, the coupling between P and π in (2.6) no longer holds and the two variables

decouple, leading to

−∇ · (Pv) = 0, (4.13)

which takes the role of a divergence constraint. Identifying (4.13) with the left-hand side of (4.2),

∇̃ · (Pv)in = ∇̃ ·
(
δt cp(Pθ)adv∇̃πout) . (4.14)

At the half time level, (Pv)in is the solution of (3.6) comprising the half time advection.

Therefore,

∇̃ · (Pv)in = ∇̃ ·
[
(Pv)n + ∆t

2 ∂̃t(Pv)#
]
, (4.15)

where ∂̃t is the discrete partial time derivative. As the second term is the solution to (3.6)

starting at time level n, i.e. the left-hand side advection in the momentum equations (3.1b) and

(3.1c) multiplied with θ, the following equation holds,

∂̃t(Pv)# +∇ · (Pv ◦ v)n = 0, (4.16)

and (4.15) is

∇̃ · (Pv)in = ∇̃ · (Pv)n − ∆t
2 ∇̃ ·

[
∇̃ · (Pv ◦ v)n

]
. (4.17)
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Inserting (4.17) back into (4.14), with δt = ∆t/2, the result is

∇̃ ·
(

∆t
2 cp(Pθ)n∇̃πn

)
= ∇̃ · (Pv)n − ∆t

2 ∇̃ ·
[
∇̃ · (Pv ◦ v)n

]
, (4.18)

where adv and πout in the right-hand side of (4.14) have been fixed at time level n for (4.18) to

be consistent.

On the unbalanced to balanced projection step

Equations (4.18) and (4.2) constitute a projection step that yields a divergence-free (Pv)n+1/2.

However, the πn solution in (4.18) is a compromise between controlling the divergence in ∇̃·(Pv)n

and making a time step of size ∆t/2 to find a reasonable approximation of a pressure field obeying

the nonlinear acoustic balance relation. Such a compromise would fail to achieve balanced

solutions if the magnitude of the first term on the right-hand side of (4.18) is larger than that of

the second term. An improvement that avoids this compromise at the expense of an additional

projection step is provided below.

By setting Φn = ∆t/2 ∇̃πn and taking the limit of ∆t → 0, the classical unbalanced to

balanced projection is recovered,

∇̃ ·
[
cp(Pθ)n∇̃Φn

]
= ∇̃ · (Pv)n, (4.19a)

(Pv)n∗ = (Pv)n − cp(Pθ)n∇̃Φn. (4.19b)

The (Pv)n∗ solution from (4.19) is then the divergence-free (Pv)-field closest to (Pv)n in a suit-

ably weighted L2-norm which may then be used as the input to the projection step comprising

(4.18) and (4.2). When (4.18) is then invoked on the basis of ∇̃ · (Pv)n∗, it is ensured that

∇̃ · (Pv)n∗ = 0, and the πn∗ solution is a physically relevant pressure field that fully satisfies

the nonlinear acoustic balance relation (which is also called the hidden constraint obtained by

taking the time derivative of the primary constraint ∇̃ · (Pv) = 0 and inserting into the mo-

mentum equation). Similar projection methods to achieve balanced solutions can be found in

Hundertmark and Reich (2007) and Hundertmark and Reich (2011).

Experiments in this thesis are simulated with the projection step comprising (4.18) and (4.2)

only, and studies with the double projection method involving (4.19) is deferred to future work.

The pseudo-incompressible full time update

For the full time stepping, (Pv)in is the solution of (3.8b) and so (4.14) is

∇̃ · (Pv)∗∗ = ∇̃ ·
(

∆t
2 cp(Pθ)∗∗∇̃πout

)
, (4.20)
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with

∇̃ · (Pv)∗∗ = ∇̃ ·
[
(Pv)n − ∆t

2 cp(Pθ)n∇̃πn + ∆t∂̃t(Pv)∗∗
]
, (4.21)

where the second term in the square brackets arises from the explicit Euler substep in (3.8a),

and the third term is the solution of the advection substep at the full time level. Substituting

(4.18) into (4.21), we obtain

∇̃ · (Pv)∗∗ = ∇̃ ·
[

∆t
2 ∇̃ · (Pv ◦ v)n + ∆t∂̃t(Pv)∗∗

]
, (4.22)

and noting again that advection substep (3.8b) solves the left hand side of the momentum

equations (3.1b) and (3.1c) multiplied with θ, i.e, the following equation holds,

∂̃t(Pv)∗∗ + ∇̃ · (Pv ◦ v)n+1/2 = 0, (4.23)

where the half time level on the right-hand side emerges from the solution of substep (3.8a) and

(3.8b) under the advecting fluxes (Pv)n+1/2. Putting (4.22) and (4.23) together,

∇̃ · (Pv)∗∗ = ∆t
2 ∇̃ · ∇̃ · (Pv ◦ v)n −∆t∇̃ · ∇̃ · (Pv ◦ v)n+1/2

= −∆t
2 ∇̃ · ∇̃ · (Pv ◦ v)n+1/2 − ∆t

2

[
∇̃ · ∇̃ · (Pv ◦ v)n+1/2 − ∇̃ · ∇̃ · (Pv ◦ v)n

]
= −∆t

2 ∇̃ · ∇̃ · (Pv ◦ v)n+1/2 −
(

∆t
2

)2 [∇̃ · ∇̃ · (Pv ◦ v)n+1/2 − ∇̃ · ∇̃ · (Pv ◦ v)n

∆t/2

]
= −∆t

2 ∇̃ · ∇̃ · (Pv ◦ v)n+1/2 −
(

∆t
2

)2
∂̃t

(
∇̃ · ∇̃ · (Pv ◦ v)n+1/2

)
= −∆t

2

[
1 + ∆t

2 ∂̃t

]
∇̃ · ∇̃ · (Pv ◦ v)n+1/2. (4.24)

Inserting (4.24) back into (4.20) fixes the time level of πout at n+ 1,

∇̃ ·
(
cp(Pθ)∗∗∇̃πn+1) = −

(
1 + ∆t

2 ∂̃t

)
∇̃ ·
[
∇̃ · (Pv ◦ v)n+1/2

]
, (4.25)

since the terms on the right is equivalent to making half a time step from the n+ 1/2 time level.

Unlike in the compressible case, the results (4.18) and (4.25) imply that the solution of π after

the half time predictor steps (3.6) and (3.7) is at the time level n, and could be used as the input

to (3.8). Here, it is not necessary to reset π to the time level n for the pseudo-incompressible

solve after the predictor step. After the full time update, the solution for π is at time level n+ 1.

Figure 4.1 summarises the time level analysis for π. As the solution of π depends nonlinearly on

the other prognostic quantities, (4.18) and (4.25) constitute two separate elliptic equations that

have to be solved for each time-step.
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4.1.2 Conversion of the pressure-related variables

At the transition time interface between the compressible and pseudo-incompressible models

and vice versa, judicious conversion of the pressure-related variables, accounting for the relevant

scales, leads to improved blending results. The same applies for the shallow water and lake

equations.

Equation (2.4a) separates the background Exner pressure from its perturbation. For the low

Mach number regime Ma� 1, an alternative formulation is the asymptotic expansion

π = π(0) + Ma2π(1) + . . . . (4.26)

Substituting this expansion into the time update for π in (2.6), the equation becomes

αP

(
∂P

∂π

)
Ma2π

(1)
t = −∇ · (Pv) . (4.27)

In order to account for the P ↔ π coupling in (4.27) for the compressible case of αP = 1, the

P solution has to take the role of the full pressure-related quantity while the π solution is the

next-to-leading order π(1) that has to be scaled by Ma2. The quantity π therefore takes the role

of the Exner pressure perturbation, π′. On the other hand, for αP = 0, P and π decouple, leading

to P taking on the role of the leading order pressure and π′ remaining as the next-to-leading

order term.

These insights motivate the following conversion strategy. To obtain the compressible Pcomp,

we use the relationship (2.5) between P and π and arrive at

Pcomp =
(
P γ−1

psinc + Ma2π′psinc

) 1
γ−1

. (4.28)

The subscript comp denotes quantities in the compressible regime and psinc in the pseudo-

incompressible regime.

The pseudo-incompressible Ppsinc is obtained from its compressible counterparts by inverting

(4.28),

Ppsinc =
(
P γ−1

comp −Ma2π′comp
) 1
γ−1 . (4.29)

Therefore, at the blending interfaces, (4.28) or (4.29) is applied depending on the direction of the

transition. Upon obtaining a converted P , and since P = ρθ, either ρ or θ and their respective

conservative quantities have to be updated for consistency.

4.1.3 Choice of the perturbation variables

Time level analysis of π in subsection 4.1.1 demonstrated that, in a pseudo-incompressible solve,

the solutions after the full time stepping and after the subsequent half time stepping are both
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pseudo-
incompressible

compressible

n n+ 1 n+ 1 n+ 2

0 1
2∆t ∆t 3

2∆t 2∆t

n n+ 1/2 n+ 1

Figure 4.1: Summary of the time levels of π for the pseudo-incompressible (top) and the com-
pressible (bottom) solutions in the numerical scheme. The dashed lines relate the π’s
at the same time level between the two models.

at the same time level. This presents a choice of π′ in the conversion (4.28) and similarly for

the shallow water–lake blending, the choice of h′ in (4.63). While this subsection deals with

the compressible–pseudo-incompressible blending, the following discussion is analogous for the

shallow water–lake case.

Consider the compressible to pseudo-incompressible blending at time n + 1. The quantity

Pn+1
psinc is obtained by inserting π′n+1

comp into the right-hand side of (4.29). On the other hand, there

are two valid choices for π′ in a pseudo-incompressible to compressible transition:

(1) π′ after the full time stepping from n to n+ 1, abbreviated as π′full, or

(2) π′ after the half time stepping from n+ 1 to n+ 2, abbreviated as π′half.

Both π′full and π′half are at time level n+ 1. See Figure 4.1 for more details.

While both choices (1) and (2) are valid, choice (2) yields blended solutions that are slightly

closer to the balanced solution compared to choice (1). π′half is obtained from the solution of

the implicit time update of the predictor step in (3.7) with the solution of (3.6) as its input.

The input to (3.6) are Ψn and (Pv)n, and this means that π′half is recovered from the other

quantities. π′half is independent of π at the previous time level, and so errors in the initialisation

of π are not propagated. On the other hand, the quantity π′full is obtained from the solution of

(3.8). The explicit Euler update in (3.8a) has π′ as an input to the right-hand side, Q(Ψn;Pn).

Therefore, π′full propagates errors in the initialisation of π. While (2) results as a better choice

than (1) in that it is more conforming to the underlying dynamics, it also entails solving, at

the blending time interfaces, an additional half time step in the pseudo-incompressible regime

in order to obtain π′half. Apart from a comparison of simulation results with π′full, the choice of

π′half will be used hereon.

4.2 Nonhydrostatic–hydrostatic blending

This section describes the development of the blending strategy between the compressible nonhy-

drostatic model and the hydrostatic model. A parameter adjustment, i.e. toggling αw between

0 and 1, is used to switch between the nonhydrostatic regime and the hydrostatic regime. Aside
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from applying a parameter adjustment, two innovations lead to a suppression of the vertically

propagating acoustic mode in nonhydrostatic–hydrostatic blending results: 1) ensuring that the

vertical momentum is balanced with respect to the other quantities at the onset of the full

time update; while 2) employing a second-order update for the pressure perturbation variable.

Through careful consideration of the hydrostatic balance relation, point 1) is achieved by ap-

plying two implicit time steps which yields a hydrostatically balanced solution regardless of the

balancedness of the input. Point 2) arises from the observation that we have two options of π as

an input to the full time update.

The following subsections develop this blending strategy. Specifically, subsection 4.2.1 derives

the discrete implicit pressure update for the predictor step, and a similar derivation is given

in subsection 4.2.2 for the full time update. Following the results from these two subsections,

subsection 4.2.3 develops innovation point 1) above, and subsection 4.2.4 develops point 2). These

innovations constitute a strategy for the hydrostatic-to-nonhydrostatic blending. To complete

the nonhydrostatic-hydrostatic blending strategy, a brief discussion on the nonhydrostatic-to-

hydrostatic blending direction is provided in subsection 4.2.5.

4.2.1 Half time predictor step

The difference between the hydrostatic and the nonhydrostatic solutions arises from the time

update of the vertical momentum (Pw). The time update for the right-hand side of the vertical

momentum equation in (3.37c) can be discretised as follows,

αw(Pw)n+1/2 = αw(Pw)in − ∆t
2
[
cp(Pθ)#∂̃zπ

out]− g

χ◦
∆t
2 (Pχ)out, (4.30)

where we have

(Pw)in = (Pw)n + ∆t
2 ∂̃t(Pw)#, (4.31a)

(Pχ)out = (Pχ)in − ∆t
2

dχ̄
dz (Pw)out, (4.31b)

(Pχ)in = (Pχ)n + ∆t
2 ∂̃t(Pχ)#. (4.31c)

(4.31a) and (4.31c) are the solutions of the advection terms on the left-hand side of the govern-

ing equations in (3.6), and (4.31b) is the implicit time update of the right-hand side of (Pχ)

corresponding to (3.37d). Substituting (4.31) into (4.30), we obtain

αw(Pw)n+1/2 = αw(Pw)in − ∆t
2
[
cp(Pθ)#∂̃zπ

out]− g

χ◦
∆t
2

[
(Pχ)in − ∆t

2
dχ̄
dz (Pw)out

]
= αw(Pw)n + αw

∆t
2 ∂̃t(Pw)# − ∆t

2
[
cp(Pθ)#∂̃zπ

out]
− g

χ◦
∆t
2

[
(Pχ)n + ∆t

2 ∂̃t(Pχ)# − ∆t
2

dχ̄
dz (Pw)out

]
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= αw(Pw)n + αw
∆t
2 ∂̃t(Pw)# − ∆t

2
[
cp(Pθ)#∂̃zπ

out]
− g

χ◦
∆t
2 (Pχ)n − g

χ◦

(
∆t
2

)2
∂̃t(Pχ)# + g

χ◦

(
∆t
2

)2 dχ̄
dz (Pw)out. (4.32)

Writing out the advection terms in (4.31a) and (4.31c) gives us,

∂̃t(Pw)# = −∇̃‖ · (Puw)n − ∂̃z(Pw2)n, (4.33a)

∂̃t(Pχ)# = −∇̃‖ · (Puχ)n − ∂̃z(Pwχ)n. (4.33b)

Then rewriting (4.32) with (4.33), we have

αw(Pw)n+1/2 = αw(Pw)n − αw
∆t
2 ∇̃‖ · (Puw)n − αw

∆t
2 ∂̃z(Pw2)n − ∆t

2
[
cp(Pθ)#∂̃zπ

out]
− g

χ◦
∆t
2 (Pχ)n + g

χ◦

(
∆t
2

)2
∇̃‖ · (Puχ)n + g

χ◦

(
∆t
2

)2
∂̃z(Pwχ)n

+ g

χ◦

(
∆t
2

)2 dχ̄
dz (Pw)out. (4.34)

Equation (4.34) comprises all the terms involved in the half time predictor step update of the

vertical momentum (Pw).

The hydrostatic (αw = 0) case

For the hydrostatic case, setting αw = 0 and rearranging (4.34), we obtain

∆t
2
[
cp(Pθ)#∂̃zπ

out] = − g

χ◦
∆t
2

[
(Pχ)n − ∆t

2 ∇̃ · (Pvχ)n − ∆t
2

dχ̄
dz (Pw)out

]
, (4.35)

which gives us the hydrostatic balance relation. The second term on the right requires (Pw)n as

an input in the advection of χ while the third term on the right returns (Pw)out which satisfies

the hydrostatic balance relation. The terms in the square brackets on the right correspond to the

time update for (Pχ). Note that, unlike in the compressible–soundproof blending, determining

the actual time level of out is not crucial here. It suffices that (Pw)out satisfies the hydrostatic

balance.

Next, we consider the time update of P at the half time predictor step, i.e.,

(
∂̃P

∂̃π

)#

(πn+1/2 − πn) = −∆t
2 ∇̃ · (Pv)n+1/2

= −∆t
2 ∇̃‖ · (Pu)n+1/2 − ∆t

2 ∂̃z(Pw)n+1/2. (4.36)

We know what (Pu)n+1/2 is from the time analysis of the compressible–soundproof blending,

−∆t
2 ∇̃‖ · (Pu)n+1/2 = −∆t

2 ∇̃‖ · (Pu)n +
(

∆t
2

)2
∇̃‖ · ∇̃ · (Pv ◦ u)n
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+
(

∆t
2

)2
∇̃‖ ·

[
cp(Pθ)#∇̃‖πn+1/2

]
, (4.37)

and we obtain (Pw)n+1/2 from the hydrostatic balance. Expanding and rearranging (4.35),

∆t
2
[
cp(Pθ)#∂̃zπ

out] = − g

χ◦
∆t
2 (Pχ)n + g

χ◦

(
∆t
2

)2
∇̃ · (Pvχ)n + g

χ◦

(
∆t
2

)2 dχ̄
dz (Pw)out,

− g

χ◦

(
∆t
2

)2 dχ̄
dz (Pw)out = −∆t

2
[
cp(Pθ)#∂̃zπ

out]− g

χ◦
∆t
2 (Pχ)n + g

χ◦

(
∆t
2

)2
∇̃ · (Pvχ)n,

(Pw)out = 1
− g
χ◦

(∆t
2
)2 dχ̄

dz

{
−∆t

2
[
cp(Pθ)#∂̃zπ

out]− g

χ◦
∆t
2 (Pχ)n

+ g

χ◦

(
∆t
2

)2
∇̃ · (Pvχ)n

}
. (4.38)

To substitute (4.38) into (4.36), take out to be n + 1/2, multiply (4.38) by −∆t/2, and take

derivative with respect to z,

−∆t
2 ∂̃z(Pw)n+1/2 =

(
∆t
2

)2
∂̃z

cp(Pθ)#∂̃zπ
n+1/2

− g
χ◦

(∆t
2
)2 dχ̄

dz

+ g

χ◦

(
∆t
2

)2
∂̃z

 (Pχ)n

− g
χ◦

(∆t
2
)2 dχ̄

dz


− g

χ◦

(
∆t
2

)3
∂̃z

 ∇̃ · (Pvχ)n

− g
χ◦

(∆t
2
)2 dχ̄

dz

 . (4.39)

Substituting (4.37) and (4.39) into (4.36),

(
∂̃P

∂̃π

)#

(πn+1/2 − πn) = ∆t
2 ∇̃‖ ·

{
−(Pu)n + ∆t

2 ∇̃ · (Pv ◦ u)n
}

+
(

∆t
2

)2
∇̃‖ ·

[
cp(Pθ)#∇̃‖πn+1/2

]
+
(

∆t
2

)2
∂̃z

cp(Pθ)#∂̃zπ
n+1/2

− g
χ◦

(∆t
2
)2 dχ̄

dz


− g

χ◦

(
∆t
2

)2
∂̃z

−(Pχ)n + ∆t
2 ∇̃ · (Pvχ)n

− g
χ◦

(∆t
2
)2 dχ̄

dz

 , (4.40)

which is the half time predictor update for P in the case of αw = 0.

The nonhydrostatic (αw = 1) case

Setting αw = 1 in (4.34) and multiplying it by −∆t/2, taking the derivative w.r.t. z and taking

out to be n+ 1/2, and finally rearranging,

−∆t
2 ∂̃z(Pw)n+1/2 = ∆t

2 ∂̃z

−(Pw)n + ∆t
2 ∇̃ · (Pvw)n

1− g
χ◦

(∆t
2
)2 dχ̄

dz

+
(

∆t
2

)2
∂̃z

cp(Pθ)#∂̃zπ
n+1/2

1− g
χ◦

(∆t
2
)2 dχ̄

dz


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− g

χ◦

(
∆t
2

)2
∂̃z

−(Pχ)n + ∆t
2 ∇̃ · (Pvχ)n

1− g
χ◦

(∆t
2
)2 dχ̄

dz

 . (4.41)

Substituting (4.37) and (4.41) into (4.36),

(
∂̃P

∂̃π

)#

(πn+1/2 − πn) = ∆t
2 ∇̃‖ ·

{
−(Pu)n + ∆t

2 ∇̃ · (Pv ◦ u)n
}

+
(

∆t
2

)2
∇̃‖ ·

[
cp(Pθ)#∇̃‖πn+1/2

]
+ ∆t

2 ∂̃z

−(Pw)n + ∆t
2 ∇̃ · (Pvw)n

1− g
χ◦

(∆t
2
)2 dχ̄

dz


+
(

∆t
2

)2
∂̃z

cp(Pθ)#∂̃zπ
n+1/2

1− g
χ◦

(∆t
2
)2 dχ̄

dz


− g

χ◦

(
∆t
2

)2
∂̃z

−(Pχ)n + ∆t
2 ∇̃ · (Pvχ)n

1− g
χ◦

(∆t
2
)2 dχ̄

dz

 , (4.42)

which is the time update for π with αw = 1. We note that in the absence of gravity, i.e. g = 0,

(4.42) reduces to (4.7).

4.2.2 Full time update

Again, the difference between the hydrostatic solution and the nonhydrostatic solution comes

from the update of the vertical momentum (Pw),

αw(Pw)n+1 = αw(Pw)in − ∆t
2
[
cp(Pθ)∗∗∂̃zπout]− g

χ◦
∆t
2 (Pχ)out, (4.43)

where

(Pw)in = (Pw)n − ∆t
2
[
cp(Pθ)#∂̃zπ

n
]

+ ∆t ∂̃t(Pw)∗∗, (4.44a)

(Pχ)out = (Pχ)in − ∆t
2

dχ̄
dz (Pw)out, (4.44b)

(Pχ)in = (Pχ)n − ∆t
2 (Pw)n dχ̄

dz + ∆t ∂̃t(Pχ)∗∗, (4.44c)

as in the half time predictor step. The additional terms that are in (4.44a) and (4.44c) but are

not in 4.31a and (4.31c) respectively come from the explicit Euler substep in (3.8a). Substituting

(4.44) into (4.43),

αw(Pw)n+1 = αw(Pw)in − ∆t
2
[
cp(Pθ)∗∗∂̃zπout]− g

χ◦
∆t
2

[
(Pχ)in − ∆t

2
dχ̄
dz (Pw)out

]
= αw(Pw)n + αw∆t ∂̃t(Pw)∗∗ − αw

∆t
2
[
cp(Pθ)#∂̃zπ

n
]
− ∆t

2
[
cp(Pθ)∗∗∂̃zπout]
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− g

χ◦
∆t
2

[
(Pχ)n + ∆t ∂̃t(Pχ)∗∗ − ∆t

2
dχ̄
dz (Pw)n − ∆t

2
dχ̄
dz (Pw)out

]
= αw(Pw)n + αw∆t ∂̃t(Pw)∗∗ − αw

∆t
2
[
cp(Pθ)#∂̃zπ

n
]
− ∆t

2
[
cp(Pθ)∗∗∂̃zπout]

− g

χ◦
∆t
2 (Pχ)n − g

χ◦
(∆t)2

2 ∂̃t(Pχ)∗∗ + g

χ◦

(
∆t
2

)2 dχ̄
dz (Pw)n

+ g

χ◦

(
∆t
2

)2 dχ̄
dz (Pw)out. (4.45)

Writing out the advection terms,

∂̃t(Pw)∗∗ = −∇̃‖ · (Puw)n+1/2 − ∂̃z(Pw2)n+1/2, (4.46a)

∂̃t(Pχ)∗∗ = −∇̃‖ · (Puχ)n+1/2 − ∂̃z(Pwχ)n+1/2. (4.46b)

Inserting (4.46) into (4.45),

αw(Pw)n+1 = αw(Pw)n − αw∆t ∇̃‖ · (Puw)n+1/2 − αw∆t ∂̃z(Pw2)n+1/2

− αw
∆t
2
[
cp(Pθ)#∂̃zπ

n
]
− ∆t

2
[
cp(Pθ)∗∗∂̃zπout]− g

χ◦
∆t
2 (Pχ)n

+ g

χ◦
(∆t)2

2 ∇̃‖ · (Puχ)n+1/2 + g

χ◦
(∆t)2

2 ∂̃z(Pwχ)n+1/2

+ g

χ◦

(
∆t
2

)2 dχ̄
dz (Pw)n + g

χ◦

(
∆t
2

)2 dχ̄
dz (Pw)out. (4.47)

Equation (4.47) is the general full time update for (Pw).

The hydrostatic (αw = 0) case

For the hydrostatic case (αw = 0), rearranging (4.47) yields

∆t
2
[
cp(Pθ)∗∗∂̃zπout] = − g

χ◦
∆t
2

[
(Pχ)n −∆t ∇̃ · (Pvχ)n+1/2 −∆t

(dχ̄
dz (Pw)n + dχ̄

dz (Pw)out)
2

]
,

(4.48)

which gives us the hydrostatic balance relation for the full time update. Note that the (Pw)out

update on the right is dependent on (Pw)n.

Again, we consider the time update of P ,

(
∂̃P

∂̃π

)∗∗
(πn+1 − πn) = −∆t

2 ∇̃ · (Pv)n+1 − ∆t
2 ∇̃ · (Pv)n

= −∆t
2 ∇̃‖ · (Pu)n+1 − ∆t

2 ∇̃‖ · (Pu)n − ∆t
2 ∂̃z(Pw)n+1 − ∆t

2 ∂̃z(Pw)n.

(4.49)

And again, we know what (Pu)n+1 is from the time-level analysis of the pseudo-incompressible–
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compressible blending (4.11),

−∆t
2 ∇̃‖ · (Pu)n+1 = −∆t

2 ∇̃‖ · (Pu)n + (∆t)2

2 ∇̃‖ · ∇̃ · (Pv ◦ u)n+1/2

+
(

∆t
2

)2
∇̃‖ ·

[
cp(Pθ)#∇̃‖πn

]
+
(

∆t
2

)2
∇̃‖ ·

[
cp(Pθ)∗∗∇̃‖πn+1] ,

(4.50)

and we obtain (Pw)n+1 from the hydrostatic balance. Expanding and rearranging (4.48),

∆t
2
[
cp(Pθ)∗∗∂̃zπout] = − g

χ◦
∆t
2 (Pχ)n + g

χ◦
(∆t)2

2 ∇̃ · (Pvχ)n+1/2 + g

χ◦

(
∆t
2

)2 dχ̄
dz (Pw)n

+ g

χ◦

(
∆t
2

)2 dχ̄
dz (Pw)out,

− g

χ◦

(
∆t
2

)2 dχ̄
dz (Pw)out = −∆t

2
[
cp(Pθ)∗∗∂̃zπout]− g

χ◦
∆t
2 (Pχ)n + g

χ◦
(∆t)2

2 ∇̃ · (Pvχ)n+1/2

+ g

χ◦

(
∆t
2

)2 dχ̄
dz (Pw)n,

(Pw)out = 1
− g
χ◦

(∆t
2
)2 dχ̄

dz

{
−∆t

2
[
cp(Pθ)∗∗∂̃zπout]− g

χ◦
∆t
2 (Pχ)n

+ g

χ◦
(∆t)2

2 ∇̃ · (Pvχ)n+1/2 + g

χ◦

(
∆t
2

)2 dχ̄
dz (Pw)n

}
. (4.51)

To substitute (4.51) into (4.49), take out to be n+ 1, multiply (4.51) by −∆t/2 and take the

derivative w.r.t. z,

−∆t
2 ∂̃z(Pw)n+1 =

(
∆t
2

)2
∂̃z

cp(Pθ)∗∗∂̃zπn+1

− g
χ◦

(∆t
2
)2 dχ̄

dz

+ g

χ◦

(
∆t
2

)2
∂̃z

 (Pχ)n

− g
χ◦

(∆t
2
)2 dχ̄

dz


− g

χ◦
∆t
(

∆t
2

)2
∂̃z

∇̃ · (Pvχ)n+1/2

− g
χ◦

(∆t
2
)2 dχ̄

dz

− g

χ◦

(
∆t
2

)3
∂̃z

 (Pw)n dχ̄
dz

− g
χ◦

(∆t
2
)2 dχ̄

dz

 .

(4.52)

Substituting (4.50) and (4.52) into (4.49),

(
∂̃P

∂̃π

)∗∗
(πn+1 − πn) = ∆t ∇̃‖ ·

{
−(Pu)n + ∆t

2 ∇̃ · (Pv ◦ u)n+1/2
}

+
(

∆t
2

)2
∇̃‖ ·

[
cp(Pθ)#∇̃‖πn

]
+
(

∆t
2

)2
∇̃‖ ·

[
cp(Pθ)∗∗∇̃‖πn+1]

+
(

∆t
2

)2
∂̃z

cp(Pθ)∗∗∂̃zπn+1

− g
χ◦

(∆t
2
)2 dχ̄

dz


− g

χ◦

(
∆t
2

)2
∂̃z

−(Pχ)n + ∆t ∇̃ · (Pvχ)n+1/2

− g
χ◦

(∆t
2
)2 dχ̄

dz


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− g

χ◦

(
∆t
2

)3
∂̃z

 (Pw)n dχ̄
dz

− g
χ◦

(∆t
2
)2 dχ̄

dz

− ∆t
2 ∂̃z(Pw)n. (4.53)

And since the last two terms on the right of (4.53) cancel out,

(
∂̃P

∂̃π

)∗∗
(πn+1 − πn) = ∆t ∇̃‖ ·

{
−(Pu)n + ∆t

2 ∇̃ · (Pv ◦ u)n+1/2
}

+ (∆t)2

2 ∇̃‖ ·

{
cp(Pθ)#∇̃‖πn + cp(Pθ)∗∗∇̃‖πn+1

2

}

+
(

∆t
2

)2
∂̃z

cp(Pθ)∗∗∂̃zπn+1

− g
χ◦

(∆t
2
)2 dχ̄

dz


− g

χ◦

(
∆t
2

)2
∂̃z

−(Pχ)n + ∆t ∇̃ · (Pvχ)n+1/2

− g
χ◦

(∆t
2
)2 dχ̄

dz

 , (4.54)

which is the time update of P for the hydrostatic αw = 0 case.

The nonhydrostatic (αw = 1) case

For the nonhydrostatic case (αw = 1), using equation (4.47) and identifying out with n+ 1 gives

us the following,

(Pw)n+1 =

 (Pw)n −∆t ∇̃ · (Pvw)n+1/2

1− g
χ◦

(∆t
2
)2 dχ̄

dz

− ∆t
2

cp(Pθ)#∂̃zπ
n + cp(Pθ)∗∗∂̃zπn+1

1− g
χ◦

(∆t
2
)2 dχ̄

dz


− g

χ◦
∆t
2

 (Pχ)n −∆t ∇̃ · (Pvχ)n+1/2 − ∆t
2

dχ̄
dz (Pw)n

1− g
χ◦

(∆t
2
)2 dχ̄

dz

 . (4.55)

Multiplying (4.55) with −∆t/2 and taking the derivative w.r.t. z yields

−∆t
2 ∂̃z(Pw)n+1 = −∆t

2 ∂̃z

 (Pw)n −∆t ∇̃ · (Pvw)n+1/2

1− g
χ◦

(∆t
2
)2 dχ̄

dz


+
(

∆t
2

)2
∂̃z

cp(Pθ)#∂̃zπ
n + cp(Pθ)∗∗∂̃zπn+1

1− g
χ◦

(∆t
2
)2 dχ̄

dz


+ g

χ◦

(
∆t
2

)2
∂̃z

 (Pχ)n −∆t ∇̃ · (Pvχ)n+1/2 − ∆t
2

dχ̄
dz (Pw)n

1− g
χ◦

(∆t
2
)2 dχ̄

dz

 . (4.56)

Substituting (4.50) and (4.56) into (4.49),

(
∂̃P

∂̃π

)∗∗
(πn+1 − πn) = ∆t ∇̃‖ ·

{
−(Pu)n + ∆t

2 ∇̃ · (Pv ◦ u)n+1/2
}

+ (∆t)2

2 ∇̃‖ ·

{
cp(Pθ)#∇̃‖πn + cp(Pθ)∗∗∇̃‖πn+1

2

}
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− ∆t
2 ∂̃z

 (Pw)n −∆t ∇̃ · (Pvw)n+1/2

1− g
χ◦

(∆t
2
)2 dχ̄

dz

+ (Pw)n
 (∗)

+
(

∆t
2

)2
∂̃z

cp(Pθ)#∂̃zπ
n + cp(Pθ)∗∗∂̃zπn+1

1− g
χ◦

(∆t
2
)2 dχ̄

dz


− g

χ◦

(
∆t
2

)2
∂̃z

−(Pχ)n + ∆t ∇̃ · (Pvχ)n+1/2 + ∆t
2

dχ̄
dz (Pw)n

1− g
χ◦

(∆t
2
)2 dχ̄

dz

 ,

(4.57)

where

(∗) = −∆t
2 ∂̃z

2 (Pw)n −∆t ∇̃ · (Pvw)n+1/2 − g
χ◦

(∆t
2
)2 dχ̄

dz (Pw)n

1− g
χ◦

(∆t
2
)2 dχ̄

dz


= −∆t ∂̃z

 (Pw)n − ∆t
2 ∇̃ · (Pvw)n+1/2

1− g
χ◦

(∆t
2
)2 dχ̄

dz

− g

χ◦

(
∆t
2

)2
∂̃z

 −∆t
2

dχ̄
dz (Pw)n

1− g
χ◦

(∆t
2
)2 dχ̄

dz

 . (4.58)

Since the last term of (4.58) cancels with the last term in the last curly bracket of (4.57),

(
∂̃P

∂̃π

)∗∗
(πn+1 − πn) = ∆t ∇̃‖ ·

{
−(Pu)n + ∆t

2 ∇̃ · (Pv ◦ u)n+1/2
}

+ (∆t)2

2 ∇̃‖ ·

{
cp(Pθ)#∇̃‖πn + cp(Pθ)∗∗∇̃‖πn+1

2

}

−∆t ∂̃z

 (Pw)n − ∆t
2 ∇̃ · (Pvw)n+1/2

1− g
χ◦

(∆t
2
)2 dχ̄

dz


+
(

∆t
2

)2
∂̃z

cp(Pθ)#∂̃zπ
n + cp(Pθ)∗∗∂̃zπn+1

1− g
χ◦

(∆t
2
)2 dχ̄

dz


− g

χ◦

(
∆t
2

)2
∂̃z

−(Pχ)n + ∆t ∇̃ · (Pvχ)n+1/2

1− g
χ◦

(∆t
2
)2 dχ̄

dz

 . (4.59)

We note that in the absence of gravity, i.e. g = 0, (4.59) reduces to (4.12), the compressible

π-update obtained in the compressible–pseudo-incompressible blending strategy.

4.2.3 Enforcing the hydrostatic balance

A comparison of the implicit time update for the pressure variables in the hydrostatic discretisa-

tion, i.e. equations (4.40) and (4.54), to those of the nonhydrostatic discretisation, i.e. equations

(4.42) and (4.59), show that, with regards to the hydrostatic balance, the updates of the pres-

sure variables are in line with expectations. This observation allows us to take the search for a

discrepancy between the discretisation scheme for the compressible equations and that for the

hydrostatic equations elsewhere. Below, we will focus our attention on the hydrostatic balance
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relations in (4.35) and its nonhydrostatic counterpart in (4.48).

The hydrostatic balance relations in the predictor step (4.35) recover a quantity (Pw)out that

satisfies the hydrostatic balance relation. Starting with an imbalanced (Pw)n as the input, the

first-order predictor time stepping yields a (Pw)n+1 that satisfies the relation in (4.35) given

(Pχ)n+1 and πn+1. As the input (Pw)n is not balanced, the hydrostatic balance relation is not

yet satisfied at time level n+ 1. However, as (Pw)n+1 is recovered from (Pχ)n+1 and πn+1, we

can now use this as a balanced input to (4.35) again to obtain a hydrostatically balanced relation

involving (Pw)n+2, (Pχ)n+2, and πn+2.

In the full time update, the hydrostatic balance is enforced by (4.48). In this equation, a

balanced input for (Pw)in is required in the advection of χ and in the second-order update to

obtain (Pw)out. The hydrostatically balanced quantities at time level n+ 2 can then be used as

the input (Pw)in to the full time update in (4.48). This ensures that the second order solution

remains hydrostatically balanced.

Summarising these insights, a hydrostatically balanced solution can be obtained from imbal-

anced initial conditions by two first-order time updates corresponding to (4.35) followed by a

single second-order time update corresponding to (4.48). To achieve a one-step blending strat-

egy, one could do a first-order time update from n to n + 1/4, another first-order time update

from n+ 1/4 to n+ 1/2, and finally a second-order time update from n+ 1/2 to n+ 1. This is

summarised in Figure 4.2.

4.2.4 Second-order pressure update

In the predictor hydrostatic update of π in (4.40), the time update of π does not involve πn,

and πout is recovered from the update of the other quantities, namely (Pv)n and (Pχ)n. In the

full time hydrostatic update of π in (4.54), the time update of π is second-order and involves

πn. This difference in how the quantity π is updated suggests that we have a choice in π as an

input to the full time update. Empirically, the π-input to the full time update at n+ 1/2 is best

chosen as the solution of a second-order time update from n to n + 1/2 and this is depicted as

the dotted arrow in Figure 4.2. An analytical argument for this observation is left for future

work. Note that this additional second-order π update does not increase the computational effort

substantially, as the predictor step from time n to n + 1/4 (the leftmost solid arrow in Figure

4.2) already prepares the input required by this full time update.

4.2.5 Nonhydrostatic-to-hydrostatic blending

The preceding subsections were concerned with deriving an optimal blending strategy in the

hydrostatic-to-nonhydrostatic direction. At the blending time interface from the nonhydrostatic

regime to the hydrostatic regime, αw is set to zero. This freezes the time evolution of (Pw),

whereupon (Pw) takes on the role of enforcing the hydrostatic balance. Furthermore, as detailed
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n n+ 1
4 n+ 1

2 n+ 1 n+ 3
2 n+ 2

t

second-order
π update

hydrostatic nonhydrostatic

Figure 4.2: Summary of the nonhydrostatic–hydrostatic blending strategy. The solid arrows
signify first-order time updates to obtain a balanced (Pw)n+1/2, and the dashed
arrows signify second-order time updates. The dotted arrow represents a second-
order time update to obtain πn+1/2. After the first-order predictor steps from time
n to n + 1/2 and the second-order full time update from n + 1/2 to n + 1 in the
hydrostatic regime, the rest of the time steps are solved in the nonhydrostatic regime
with a second-order update.

in section 4.2.3, the nonhydrostatic vertical momentum field is essentially discarded in the hy-

drostatic regime. In its place, a hydrostatically balanced vertical momentum field is recovered

through the other quantities by means of the two first-order time steps. Therefore, a nonhydro-

static solution can be blended to the hydrostatic regime without any additional conversion.

4.2.6 Future work

In the experiments involving balanced data initialisation of section 6.2.3, the nonhydrostatic-

hydrostatic blending strategy developed in this section successfully suppresses vertically propa-

gating acoustics. However, in experiments involving data assimilation, the ensemble data assim-

ilation run with the blending strategy developed here is unable to obtain an error score lower

than that of a plain ensemble data assimilation run for the density field despite successfully

suppressing the vertically propagating acoustic mode. More details will be provided in section

6.4.3. Further work may therefore be required to develop a robust nonhydrostatic-hydrostatic

blending strategy.

4.3 Shallow water–lake blending

The switch that toggles between the shallow water and lake equations, αh, is analogous to αP for

the compressible–soundproof model pair. Apart from this parameter switching, a conversion of

the full water depth in the shallow water to the leading order water depth in the lake model further

improves quality of the blended solution. This section provides the details of this conversion.

Inserting the asymptotic expansion for the water depth (2.28a) into (2.6) with P = π = h, we

obtain

αh 2 Fr2h
(1)
t = −∇ · (hu) . (4.60)
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For the shallow water case of αh = 1, P takes the role of the full water depth h while π takes

the role of the next-to-leading order h(1) scaled by 2 Fr2, i.e. the water depth perturbation. For

the lake equations arising from αh = 0, the right-hand side of (4.60) is (2.33a),

∇ · (h(0)u(0)) = 0, (4.61)

and therefore P is identified with the leading order h(0) and π remains as in the shallow water

case, i.e., the next-to-leading order h(1). Therefore, the shallow water (SWE) to lake conversion

is

h
(0)
lake = h̄SWE, (4.62)

where h̄ is the mean water depth. Conversely,

hSWE = h
(0)
lake + 2 Fr2 h

(1)
lake. (4.63)

A conversion of the water depth h following (4.62) or (4.63) entails updating the other conser-

vative quantities accordingly.

The choice of (4.62) is motivated by ∇h(0) = 0 from (2.30). The more natural choice of

h
(0)
lake = hSWE − 2 Fr2δh̄

(1)
SWE (4.64)

does not guarantee the constraint in general. Furthermore, while (2.33b) suggests that a conver-

sion from the full velocity u to the leading order u(0) is necessary, this is not done in practice.

Section 6.2 on the effectiveness of the blending scheme shows that the conversion of water depth

h alone is sufficient to achieve blended results close to the balanced solution.

Finally, as in the compressible–soundproof blending case, we have the choices of h′nhalf and h′nfull

for a lake-to-shallow water blending at time level n, with h′nhalf being the solution of the predictor

half step from time level n to n+ 1/2. See section 4.1.3 for more details.
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4.4 Overview of the blending strategies

Compressible /
nonhydrostatic

equations (§ 2.1)

Hydrostatic
equations (§ 2.3)

αw = 1

αw = 0,
(§ 4.2.3, § 4.2.4)

Shallow water
equations (§ 2.4)

(2.23) and
(2.26)

Pseudo-incompressible
equations (§ 2.2)

αP = 1,
(4.28)

αP = 0,
(4.29),

choice of π′

Lake equations
(§ 2.5)

αh = 1,
(4.63)

αh = 0,
(4.62),

choice of h′

(2.34)

Figure 4.3: Overview of the blending strategies and how they relate the models within the blended
numerical framework to one another. Equation numbers are in brackets and sections
are denoted with §.

We now update Figure 2.1 with the blending strategies developed in this chapter. This is

shown in Figure 4.3. The strategies summarised in Figure 4.3 ensure optimal blending for, e.g.,

the switching between different model regimes within a single simulation run. The blending

strategies developed in this chapter require only one time step in the limit regime to obtain a

balanced solution.

4.5 Implementation details

Switches were built into the blended numerical flow solver part of the Python code (more details

in section 3.3), and based on user-defined parameters provided in an input file, the switches

toggle the corresponding blending strategy. Furthermore, two blending scenarios are provided:

blending for the first time step to enable balanced data initialisation, and blending after the

assimilation of data to enable balanced data assimilation.

The blending strategies involve making additional time steps during a simulation without

actually advancing the simulation in time, e.g. to recover π′half in section 4.1.3. This is done by

making recursive calls to the time stepping routine wherein the solution data containers are not

updated and only the relevant quantities are returned.

This chapter included the development of the following blending strategies: between the com-

pressible regime and the pseudo-incompressible regime, between the nonhydrostatic regime and

the hydrostatic regime, and between the shallow water regime and the lake regime. Figure 4.3

summarised the blending strategies.
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This chapter provides a brief discussion on the ideas behind data assimilation followed by

an elaboration on the local ensemble transform Kalman filter algorithm used in the numerical

experiments of this thesis. The chapter then ends with a description of how the data assimilation

method is interfaced with the blended numerical model. Some parts of this chapter can be found

in Chew et al. (2021) in a similar form.

5.1 A short primer

Data assimilation is used in numerical weather prediction to improve forecasting by combining

prior data from a numerical model with real-world observations. Suppose that the prior model

data is represented by a prior probability density function (pdf) Πprior. Then for a model state x

at a fixed time or over a time window, we are able to obtain a posterior probability density function

Πpost that best combines the information encoded in Πprior(x) and the information encoded in

the probability density function of the observations Π(yobs) by means of Bayes’ theorem,

Πpost(x) = Π(x|yobs) = Π(yobs|x)
Π(yobs)

Πprior(x). (5.1)

Here, Π(x|yobs) represents the conditional probability of the state x given the observations

yobs and Π(yobs|x) is the probability of the observation yobs given the state x. More details

on Bayesian data assimilation can be found in, e.g., Wikle and Berliner (2007) and Reich and

Cotter (2013).

Before discussing some data assimilation methods, an elaboration on the notion of the truth

and observations along with their associated errors is provided below. Consider xntruth ∈ Rm, a

state vector at time t = tn = t0 + n∆t describing the true state of the atmosphere projected

onto the numerical degrees of freedom, with m being the dimension of the discrete model state.

We denote the forward-in-time numerical integration of the state vector x as F(x), so that

xn+1 = xn + ∆t F(xn) (5.2)

describes our numerical time stepping procedure, with xn ∈ Rm a numerical approximation of x

at time tn. A time-increment of xtruth then reads as

xn+1
truth = xntruth + ∆t F(xntruth) + ηn + ξn =:M[xntruth], (5.3)

where ηn is the error associated with the imperfect model description of the true state and ξn is

the truncation error due to the numerical discretisation. In reality, an exact description of the
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true atmospheric state is impossible. Therefore,

xn = xntruth + δn, (5.4)

where δn is the total deviation from the true state xntruth comprising the accumulation of ξq and

ηq for (q = 1, ..., n) as well as uncertainties in the initial data.

Observations ynobs ∈ Rl are obtained by applying an approximate observation operator H :

Rm → Rl to xntruth,

ynobs = H(xntruth) + εn, (5.5)

where l is the dimension of the observation space, and εn encompasses the errors incurred through

(i) the discrete approximation of the observation process and (ii) the mapping of the true state

of the atmosphere onto the numerical degrees of freedom. Applying the observation operator to

xn yields yn ∈ Rl, the state vector in observation space, i.e.

yn = H(xn). (5.6)

With yn and ynobs, the distance between the forecast from the numerical model and observations

of the true atmospheric state can then be quantified.

With some notion of what truth and observation mean, we move on to the two broad classes

of Bayesian data assimilation methods. These are the variational methods and the sequential

methods, and a short discussion on these methods is provided in the following subsections.

5.1.1 Variational data assimilation methods

Variational data assimilation methods include the 3D- and 4D-Var, with the latter taking into

account the three spatial and one temporal dimensions, hence the “4D”. Identifying the prior with

the term forecast (f), and the posterior with the term analysis (a), the idea behind variational

methods is to find the most probable analysis state xa given the observations yobs. This is akin

to finding the mode of Πpost(x),

xa = arg max
x

Πpost(x) = arg max
x

Π(x|yobs). (5.7)

By assuming Gaussian shape for the probability density functions and a perfect model scenario,

we can write Π(x|yobs) ≈ exp[−J(x)] with the cost function

J(x) = 1
2(x− xf )TBBB−1(x− xf ) + 1

2(H(x)− yobs)TRRR−1(H(x)− yobs), (5.8)

where xf is the forecast model state, BBB the error covariance matrix associated with the forecast,

and RRR the error covariance matrix associated with the observations. The maximisation problem
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(5.7) can be solved by minimising (5.8). Taking the gradient of (5.8), we obtain

∇xJ(x) = BBB−1(x− xf ) +HHHRRR−1(H(x)− yobs), (5.9)

where HHH is the Jacobian of H, i.e. ∂Hi/∂xj . The local zeroes of (5.9) can be found with an

iterative algorithm, e.g. the gradient descent method.

Equation (5.8) can be extended to include the time dimension. Assume that we now have

a time series of observations (y0
obs, . . . , ynobs) since the last available forecast xf , then the cost

function of the 4D-Var is as follows,

J(x) = 1
2(x−xf )TBBB−1(x−xf ) + 1

2

n∑
q=0

(Hq(Mq[x])−yqobs)
T (RRRq)−1(Hq(Mq[x])−yqobs), (5.10)

where we note thatHq andRRRq are now time-dependent. Mq[x] represents q repeated applications

of (5.3), i.e. it evolves the model state x to a model state at an observation time q.

While the 4D-Var is widely used in numerical weather prediction (Bannister, 2001), it has a

few drawbacks. Solving (5.10) with an iterative gradient descent method requires computing the

adjoint of the Jacobian of Hq andMq, and the implementation of these terms can be technically

challenging. Moreover, the probability density functions are assumed to be Gaussian-shaped,

although this assumption may not hold in real-world applications. In the preceding discussion,

the model is assumed to be perfect. In the imperfect model scenario, an additional term is

needed in (5.10) to account for the model error, adding to the difficulty of minimising the cost

function. Finally, gradient descent methods may not be guaranteed to find global minima and

may instead be stuck in local minima.

More details on variational data assimilation techniques can be found in Kepert (2009a), Blayo

et al. (2011), and Reich and Cotter (2015).

5.1.2 The Kalman filters

Some sequential data assimilation methods are the particle filters and the Kalman filters. This

subsection focuses on the latter while an introduction to particle filters can be found in Fearnhead

and Künsch (2018) and Reich and Cotter (2015).

Assume Gaussian shape for the probability density functions for the forecast and observations

such that the pdfs can be described by their respective mean and covariance matrices, and assume

linearity of the approximate observation operator H such that H(x) = HHHx. Then, the Kalman

filter is

xa = xf + BBBHHHT (HHHBBBHHHT + RRR)−1(yobs −HHHxf )

= xf + KKK(yobs −HHHxf ), (5.11)

51



5 Bayesian data assimilation

where BBB ∈ Rm×m and RRR ∈ Rl×l are the covariance matrices associated with the forecast and

observations, respectively. KKK is the Kalman gain that rewards the forecast if ‖BBB‖F � ‖RRR‖F and

penalises it if ‖RRR‖F � ‖BBB‖F, where ‖ · ‖F is the Frobenius norm. A drawback of the Kalman

filter is the problem of high-dimensionality, e.g. in the representation of the forecast covariance

matrix BBB.

The ensemble Kalman filter overcomes the problem of high dimensionality by representing the

pdf of the forecast as an ensemble of particles. The ensemble comprises the set of possible model

states, and as the ensemble size K is typically much smaller than the dimension of the model

state, K � m, ensemble-based methods are computationally more tractable (Katzfuss et al.,

2016). Specifically, for an ensemble forecast {xf1 , . . . ,x
f
K}, the ensemble mean and variance are

updated by

x̄a = x̄f + KKKens(yobs −HHHx̄f ), (5.12a)

PPPaK = PPPfK −KKKensHHHPPPfK , (5.12b)

KKKens = PPPfKHHH
T (HHHPPPfKHHH

T + RRR)
−1
, (5.12c)

where x̄a/f is the (analysis / forecast) ensemble mean and PPPa/fK ∈ RK×K is the (analysis /

forecast) covariance associated with the ensemble.

The covariance PPPK is spanned by the spread of the ensemble, and it is systematically underes-

timated for an ensemble Kalman filter scheme (Whitaker and Hamill, 2002). Ensemble inflation

may be applied to increase the spread of the ensemble. A simple method to achieve this is to

multiply the forecast ensemble covariance by a constant factor larger than 1, thereby increasing

the covariance in the direction of the ensemble spread (Anderson, 2007; Van Leeuwen et al.,

2015).

Spatial localisation may be applied alongside ensemble Kalman filter techniques to improve

the quality of the analysis. Localisation prevents spurious correlations with faraway observations

by limiting the influence of observations outside of a prescribed correlation radius, and it has

the positive side-effect that the observation covariance becomes more diagonal, reducing the

computational complexity of the data assimilation problem (Hamill et al., 2001; Houtekamer

and Mitchell, 1998). Furthermore, the analysis within each of the local regions is determined by

a different linear (local) combination of the ensemble members. Localisation, therefore, allows

the distribution represented by the ensemble to describe a higher-dimensional space than a space

constrained by the ensemble size alone (Fukumori, 2002; Mitchell et al., 2002).

Two methods of achieving spatial localisation are domain localisation and observation local-

isation. Domain localisation (DL) is achieved by decomposing the global domain into smaller

overlapping local domains so that only observations inside the local domains are considered in

the data assimilation procedure, see Figure 5.1a for more details. Observation localisation (OL)

is achieved by applying a weighting function which reduces the weight of observations that are
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further away from the analysis grid point. Figure 5.1b depicts an example of observation locali-

sation with the truncated Gaussian weighting function. See also Kirchgessner et al. (2014) for a

study on the choice for an optimal localisation radius for the ensemble Kalman filter. Both DL

and OL are used in this thesis.

(a) Domain localisation: for a grid point under
analysis (cross marker), an example local region
is given by the dashed square. Only observa-
tions (black circles) within the local region are
considered in the data assimilation procedure.
Observations outside of the local region (grey
circles) are ignored.

0
distance

weight

DL
OL

(b) Weighting functions: for a grid point under
analysis at the origin, domain localisation (DL)
acts as a Heaviside weighting function that se-
lects for observations within a given distance
to the analysis grid point. The observation
localisation (OL) depicted here is a truncated
Gaussian function that smoothly decreases the
weight of observations that are further away
while abruptly cutting off to zero outside of the
prescribed DL region.

Figure 5.1: Illustration of the different localisation methods. (A similar figure appears in
Kirchgessner et al. (2012).)

Assimilation of data may potentially introduce imbalances. The ensemble Kalman filter update

in (5.12) assumes Gaussian-shaped probability density functions. On the other hand, processes

modelled by the Euler equations in (2.1) are nonlinear. As the analysis ensemble is constructed

from a linear combination of the forecast ensemble, nonlinear balance relations will not be fully

preserved by the assimilation of data. Moreover, even if the dynamics are linear, a local data

assimilation method may introduce imbalances. Within each of the local regions, the analysis

is balanced. However, the global analysis solution is recovered by combining the local analysis

solutions. This combination may result in non-physical discontinuities in the global analysis

solution, and the linear balance relations are destroyed.

A very brief overview of some of the existing methods to suppress such imbalances was pre-

sented in chapter 1. The end of this chapter will introduce a novel dynamics-driven method that

suppresses imbalances arising from sequential ensemble data assimilation. Imbalances are re-

moved by a judicious projection of the imbalanced solution fields to reduced dynamics by means

of the blending strategies developed in chapter 4.
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5.2 The local ensemble transform Kalman filter (LETKF)

The ensemble Kalman filter update (5.12) in the previous subsection yields the analysis ensemble

mean and covariance. However, the transformation to obtain the analysis ensemble from the

forecast ensemble and the analysis ensemble mean is not unique (Reich and Cotter, 2015), and

this gives rise to different flavours of the ensemble Kalman filter. A popular variation of the

ensemble Kalman filter is the local ensemble transform Kalman filter (LETKF) introduced by

Hunt et al. (2007), and this variation is used to conduct the data assimilation experiments in this

thesis. The algorithm is adapted to work with the blended numerical framework from chapter

3, and the details are elaborated in Algorithm 1 below. More information on other variations of

the ensemble Kalman filter can be found in the review by Houtekamer and Zhang (2016), and

more theoretical background to the LETKF along with the original algorithm can be found in

the publication by Hunt et al. (2007).

Algorithm 1 Local ensemble transform Kalman filter

Assume that we are given an ensemble of K state vectors, {xfk,[g]} ∈ Rm[g] for k = 1, . . . ,K.
Furthermore, we also assume that a set of observations yobs,[g] ∈ Rl[g] with a known covariance
RRR[g] ∈ Rl[g]×l[g] is available. The quantities m and l represent the dimension of the state and
observation spaces, and the subscript [g] represents the global state space before the application
of a domain localisation method.

1. Apply the forward operator H to obtain the state vectors in observation space,

H(xfk,[g]) = yfk,[g] ∈ Rl[g] . (5.13)

2. Stack the anomaly of the state and observation vectors to form the matrices,

XXXf[g] =
[
xf1,[g] − x̄[g] | . . . |xfK,[g] − x̄[g]

]
∈ Rm[g]×K , (5.14)

YYYf
[g] =

[
yf1,[g] − ȳ[g] | . . . |yfK,[g] − ȳ[g]

]
∈ Rl[g]×K . (5.15)

Here, x̄[g] (ȳ[g]) is the mean of the state vectors (in observation space) over the ensemble,
e.g.,

x̄[g] = 1
K

K∑
k=1

xfk,[g] ∈ Rm[g] . (5.16)

3. From XXXf[g] and YYYf[g], select the local XXXf and YYYf . This selection depends on the choice of the
domain localisation method, see § 3 of Hunt et al. (2007) for more details.

4. From the global observations yobs,[g] and observation covariance RRR[g], select the correspond-
ing local counterparts yobs and RRR. The subscript [g] is dropped when representing the local
counterparts.

5. Solve the linear system RRRCCCT = YYYf for CCC ∈ RK×l.

6. Optionally, apply a localisation function to CCC to modify the influence of the surrounding
observations. This step corresponds to an application of an observation localisation method.
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Algorithm 1 Local ensemble transform Kalman filter (continued)

7. Compute the K ×K gain matrix,

KKK =
[
(K − 1) III

b
+ CCCYYYf

]−1
, (5.17)

where b > 1 is an optional ensemble inflation factor.

8. Compute the K ×K analysis weight matrix,

WWWa = [(K − 1) KKK]1/2 . (5.18)

9. Compute the K-dimension vector encoding the distance of the observations from the fore-
cast ensemble

w̄a = KKKCCC
(
yobs − ȳf

)
, (5.19)

and add w̄a to each column of WWWa to get a set of K weight vectors {wa
k} with k = 1, . . . ,K.

10. From the set of weight vectors, compute the analysis for each ensemble member,

xak = XXXfwa
k + x̄f , for k = 1, . . . ,K. (5.20)

11. Finally, we recover the global analysis ensemble {xak,[g]}, k = 1, . . . ,K. This recovery
depends on the domain localisation method applied in step 3.

5.3 Data assimilation and blending

This subsection goes into more details on how the LETKF data assimilation procedure is adapted

to the blended numerical framework. Referring to Algorithm 1, we assume that, at time tn, we

have an ensemble forecast described by the state vector {xfk} for k = 1, . . . ,K. Specifically, for

the two-dimensional idealised experiments conducted with the Euler equations in this thesis, the

ensemble state vector is

{xf1 , . . . ,x
f
k}
n = {ρ, ρu, ρw, P, π′}nk=1,...,K ∈ Rm×K , (5.21)

where the choice of momenta ρu and ρw implies a vertical slice simulation. For an experimental

setup with a two-dimensional grid of size (Nx × Nz), the state space of the problem becomes

m = (5 × Nx × Nz). Note that π′ here is taken to be on the same underlying grid as the

other quantities for simplicity. Recall from chapter 3 that for the blended numerical scheme,

π′ is solved on the dual node-based grid while the other quantities are solved on the primary

cell-based grid.

We also assume that we have a set of observations ynobs. Say we are only observing the

momentum fields, then

ynobs = {(ρu)obs, (ρw)obs}n ∈ Rl, (5.22)

where the subscript obs indicates that the momenta observed are obtained from external sources.
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These observations are sparse and noisy, and so l = (2 ×Nobs(tn)), where Nobs(tn) is the time-

dependent dimension of the sparse observation space. The observation covariance RRRn is deter-

mined by the observation noise which may or may not be time-dependent. In this thesis, the

sparse and noisy observations are artificially generated and more details will be given in chapter 6.

Proceeding to step 1 of the algorithm, we apply the forward observation operatorHHH by selecting

for each {xfk} in (5.21) the momentum fields (ρu)n and (ρw)n on the grid points for which there is

an observation. This selection process maps xf,nk from the state space Rm to the observation space

Rl, and it furthermore assumes that, where there are observations, the observations spatially

coincide with the grid points, and is therefore an idealised situation.

Steps 2–7 of the algorithm yield a Kalman gain similar to the Kalman gain update in (5.12c)

while step 9 computes the distance of the ensemble forecast mean in observation space from the

observations, similar to the right-hand side of (5.12a). Finally, step 10 along with the weight

vectors obtained from steps 8–9 allow us to compute the analysis ensemble from the forecast

ensemble.

Once this data assimilation procedure is completed, the full model regime is instantaneously

switched to the limit regime according to the appropriate blending strategy developed in chapter

4 and summarised in Figure 4.3. The solution is then advanced for one time step in the limit

regime before it is instantaneously switched back to the full model regime, again according

to the appropriate blending strategy. Here, instantaneous means the switch occurs without a

corresponding forward integration in time. The solution is computed with the full model up until

the next assimilation time, upon which the process of data assimilation and blending is repeated.

This method of switching between the full model and its limit regime uses the blended numerical

model to remove imbalances arising from the data assimilation procedure and is hereon referred

to as blended data assimilation.

In particular, if data is assimilated into the full compressible regime at time tn, then a switching

to the soundproof pseudo-incompressible regime involves setting the blending parameter αP to

0 and converting the quantity Pcomp to its pseudo-incompressible counterpart. The solution is

then advanced for a single time step in the pseudo-incompressible regime and after that, αP is set

back to 1, and the quantity Ppsinc is converted back to Pcomp by using either π′half or π′full. The

simulation then continues in the compressible regime for the duration of the assimilation window.

This procedure for the compressible–pseudo-incompressible blending is summarised in Figure 5.2.

We also recall from the time-level analysis in chapter 4 that unlike in the compressible solve, we

do not reset π′ after the half time predictor step in the soundproof pseudo-incompressible solve.

An overview of the components involved in achieving blended data assimilation and their

respective locations in this thesis is given in Figure 5.3.

In the subsequent experiments involving blended data assimilation, the data assimilation pa-

rameters are not optimised or tuned in any way. While tuning the data assimilation parameters

may lead to improved analysis scores and balance, the aim here is to establish the principal

56



5.3 Data assimilation and blending

t

n− 1 n n+ 1 n+ 2

• Conversion (4.29)

• αP = 0, (2.1d)
• Data assimilated

• Conversion (4.28)

• Choice of π′ (§ 4.1.3)

• αP = 1, (2.1d)

Pseudo-incompressibleCompressible Compressible

Figure 5.2: Blended data assimilation schematic at time tn. Blending time interfaces where
the model regime is switched instantaneously, i.e. at a fixed time, are represented
with thick vertical lines. The time step spent in the pseudo-incompressible regime is
shaded. See main text for more details.

capability of blended data assimilation to remove imbalances arising from sequential Bayesian

data assimilation. As such, the effectiveness of blended data assimilation is evaluated with the

additional challenge of an untuned data assimilation procedure. Demonstrating that the blending

strategies work despite an untuned data assimilation system is advantageous in two regards: 1)

it shows that measures of balancing the flow states can be separated from the data assimilation

system, allowing for more control over the balancing mechanisms, and 2) the tuning of the data

assimilation system can be used to achieve additional goals aside from suppressing imbalances,

e.g. in the pursuit of better analysis scores that are not achievable by a plain data assimilation

system alone.

Data assimilation:
Chapter 5 and § 6.3, 6.4

Observations / data:
§ 5.3 and § 6.3

Blended numerical model:
Chapter 3 and § 6.2

Initial conditions:
Chapter 2 and § 6.1

Analysis:
§ 6.4

Forecast:
§ 6.1, 6.3

Balancing:
Chapter 4 and § 6.3, 6.4

Figure 5.3: A summary overview linking the theoretical and algorithmic components required in
achieving blended data assimilation and their corresponding chapters and sections
(§) in this thesis.
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5.4 Implementation details

A sketch of the LETKF implementation is provided in this section. For step 1 of the algorithm,

masked arrays selecting for the grid points where an observation is available are applied to

the ensemble of solution arrays. In steps 3 and 4, the local counterparts are generated by a

sliding window view into the arrays with the numpy.lib.stride_tricks.sliding_window_view

function. The boundary conditions are accounted for in this step. Although such a sliding window

view operation may be slow, it is only done once for each data assimilation procedure. These

local counterparts are then stored as chunks of dask arrays (Dask Development Team, 2016).

Each chunk of local arrays is loaded sequentially into the memory, and the chunk size is chosen

so as to avoid out-of-memory issues. For each local array in the chunk, steps 5–10 are computed

in parallel using the dask.delayed function.

The linear system in step 5 is solved with the spsolve function available as part of the

scipy sparse linear algebra submodule, and step 6 is computed with a straightforward matrix

multiplication. An eigenvalue decomposition is used to compute the matrix inversion and square-

root in steps 7 and 8, and specifically, the eigh function of the scipy linear algebra library is

used. Vector and matrix multiplications are used to recover the weight vectors in step 9 and the

analysis in step 10. Finally, the analysis ensemble in step 11 is obtained as follows: the analysis

computed at each grid point of each ensemble member is directly reinserted into the ensemble

of solution arrays.

This chapter included a brief discussion on data assimilation and the algorithm for the LETKF

data assimilation method was reproduced here with some elaboration on the implementation

details. Specifics on combining data assimilation with the blending strategies from chapter 4 was

also provided.
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In this chapter, results of numerical experiments with the one-step blending strategies for

balanced initialisation and data assimilation are reported. In section 6.1, the description and

experimental setup for the idealised test cases are provided; in section 6.2, the effectiveness of

the balancing strategies developed in chapter 4 is established in the context of balancing initially

imbalanced data; section 6.3 details the ensemble data assimilation setups; and in section 6.4,

the blending strategies are applied to achieve balanced data assimilation.

The simulations were performed on a personal laptop with Intel® Core™ i7-8565U CPU @

8× 1.80GHz with 7.5 GB RAM in double machine precision. The results were visualised with a

custom wrapper around the matplotlib APIs (Hunter, 2007), and Jupyter notebooks (Kluyver

et al., 2016) are used to store and reproduce the workflows for visualisation and analysis. The

Python code used to generate the results in this chapter, the HDF5 output of the results, and

the notebooks are available upon request1.

6.1 The idealised test cases

Idealised experiments are conducted to demonstrate the principal capability of the one-step

blending strategies in achieving balanced solutions. The characteristics of the dynamics-driven

balancing methods can be easier understood through experiments in such an idealised framework,

and the use of relatively simple idealised tests also allows for the analysis of the sources of errors

and imbalances.

6.1.1 The travelling vortices

A vortex test case with constant background velocity field is investigated for the shallow water

equations (2.27) and the compressible flow equations (3.1). For brevity, the two setups will be

referred to as the SWE vortex and Euler vortex respectively. Descriptions of the setups are given

below.

SWE vortex

Starting with the gradient wind equation, we have

∂p

∂r
=
ρu2

φ

r
+ fρuφ, (6.1)

1mailto:ray.chew@fu-berlin.de
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where uφ is the tangential velocity and r is the radial distance. Using identifications (2.23) and

(2.26) to convert the gradient wind equation (6.1) to the shallow water context,

∂

∂r

(
gh2

2

)
=
hu2

φ

r
,

∂h

∂r
= 1
g

u2
φ

r
, (6.2)

for the case f = 0. Non-dimensionalising (6.2) with (2.14),

href
lref

∂h∗

∂r∗
= t2ref
href

l2ref
t2ref

1ref
lref

1
g∗

(u∗φ)2

r∗
,

∂h∗

∂r∗
= l2ref
h2

ref

1
g∗

(u∗φ)2

r∗

= Fr2 (u∗φ)2

r∗
, (6.3)

where the definition of Fr2 in (2.16) is used. Having obtained the dimensionless gradient wind

equation for the shallow water vortex, the dimensionless expression for u∗φ, following Kadioglu

et al. (2008) for the Euler vortex, is used. Dropping the superscript ∗, this is given by

uφ(r) = 1024(1− r6)r6, (6.4)

and

r =
√

(x− xc)2 + (y − yc)2/R, (6.5)

with R the scaling factor for the radius of the vortex and (xc, yc) the initial centre position of

the vortex. The initial velocities are given by

u(x, y, t) =

u0 − uφ(r), if r < 1,

u0, otherwise,
v(x, y, t) =

v0 + uφ(r), if r < 1,

v0, otherwise,
(6.6)

with u0 = 1.0 and v0 = 1.0 being the dimensionless horizontal background velocity. Integrating

(6.3) with respect to r and inserting (6.4) into the result, the balanced distribution of the water

height within the vortex structure is given by

H(r) = Fr2
{
r24

24 −
12r23

23 + 3r22 − 220r21

21 + 99r20

4 − 792r19

19 + 154r18

3 − 792r17

17

+495r16

16 − 44r15

3 + 33r14

7 − 12r13

13 + r12

12 ,
}

(6.7)
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6.1 The idealised test cases

and for a dimensionless background water height H0 = 1.0, the distribution of the water height

over the entire domain is computed as follows,

h(x, y, t) =

H0 + [H(r)−max(H(r))] , if r < 1,

H0, otherwise.
(6.8)

Note that (6.8) leads to a stable vortex configuration wherein the centre of the vortex structure

corresponds to a minimum in the water depth. The initial balanced state of the SWE vortex is

depicted in Figure 6.1, and the lower right panel emphasises that the initial potential temperature

θ is set to a constant of 1.0 everywhere such that P ≡ h following the derivation of the shallow

water equations in section 2.4. The SWE vortex is non-dimensionalised with

lref = 100.0 m, href = 1.0 m, tref = 100.0 s, (6.9)

and this choice of reference units yields a Froude number Fr ≈ 0.319. Within the compact vortex

structure, however, the vortex attains a maximum velocity of 0.25 m s−1, with Frvort ≈ 0.080,

and therefore the low Froude number analysis in section 4.3 is justified.
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Figure 6.1: SWE vortex initial balanced states on a (64×64) grid: distribution of the water height
h; contours in the range [99.65, 99.95]×10−2 m with an interval of 0.05×10−2 m (top
left), horizontal velocity u; contours in the range [0.72, 1.28] m s−1 with a 0.08 m s−1

interval (top right), vorticity; contours in the range [−2.2, 2.8] × 10−2 s−1 with a
10−2 s−1 interval (bottom left), and the equivalent of the potential temperature θ in
the shallow water context that is set to a constant of 1.0 everywhere (bottom right).
Negative contours dashed.
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Experiments with the stationary steady-state shallow water vortex can be found in, for exam-

ple, Michel-Dansac et al. (2016) and Bauer and Gay-Balmaz (2019), albeit with slightly different

initial conditions.

Euler vortex

The setup for the cyclostrophic Euler vortex is similar to the SWE vortex. The initial distribu-

tions of the velocity fields follow equations (6.4) and (6.6). Furthermore, the initial stable vortex

configuration is given as follows. For a vortex with radius R, the initial non-dimensionalised

density distribution is

ρ(x, y, t) =

1− 1
2 (1− r2)6 if r < R,

1 otherwise,
(6.10)

where r is the radial distance given in (6.5). Integrating the gradient wind equation (6.1) with

respect to r, the initial non-dimensionalised pressure distribution is as follows,

p(x, y, t) =

p(r) if r < R,

0 otherwise,
(6.11)

where

p(r) = −r
36

72 + 6r35

35 −
15r34

17 + 74r33

33 − 57r32

32 − 174r31

31 + 269r30

15 − 450r29

29 − 153r28

8

+ 1564r27

27 − 510r26

13 − 204r25

5 + 737r24

8 − 1032r23

23 − 477r22

11 + 64r21 − 81r20

40

− 1242r19

19 + 731r18

9 − 966r17

17 + 219r16

8 − 146r15

15 + 18r14

7 − 6r13

13 + r12

24 . (6.12)

Note that this is a slight modification of the initial vortex setup in Kadioglu et al. (2008), and

the vortex setup presented here is of a stable configuration, i.e. the centre of the balanced vortex

structure corresponds to the minimum of the density field. Figure 6.2 depicts the initial balanced

Euler vortex structure.

The Euler vortex is non-dimensionalised as follows,

lref = href = 10.0 km, tref = 100.0 s, pref = 100.0 kPa, ρref = pref/c
2
ref ≈ 1.16 kg m−2,

(6.13)

and this yields a Mach number Ma ≈ 0.341. However inside the compact vortex structure, the

vortex attains a maximum velocity of 25.0 m s−1 which corresponds to Mavort ≈ 0.085, and

therefore the low Mach analysis in section 4.1.2 is justified. Experiments involving the Euler

vortex have appeared in Chew et al. (2021).

In all the SWE and Euler vortex experiments, the time step size is constrained by CFL = 0.45
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Figure 6.2: Euler vortex initial balanced states on a (64× 64) grid: Exner pressure perturbation
π′; dimensionless contours in the range [−9, 0] × 10−4 with an interval of 10−4 (top
left), horizontal velocity u; contours in the range [72, 128] m s−1 with a 8 m s−1

interval (top right), vorticity; contours in the range [−2.2, 2.8] × 10−2 s−1 with a
10−2 s−1 interval (bottom left), and potential temperature θ; contours in the range
[330, 570] K with a 30 K interval (bottom right). Negative contours dashed.

on a (64×64) grid. The dimensionless extent of the domain is x = [−0.5, 0.5] and y = [−0.5, 0.5]

with doubly periodic boundary conditions. Furthermore, unless otherwise stated, R = 0.4 and

(xc, yc) = (0.0, 0.0).

6.1.2 Rising bubble

The rising bubble test case is a gravity-driven thermal flow with f = 0.0. The bubble is initialised

as a positive perturbation of the background potential temperature θ0. For θ0 = 300 K, the

dimensionless perturbation δθ is defined by

δθ = θ′0
θ0

cos
(π

2 rB
)
, (6.14)

where

rB = 1
r0

√
x2 + (z − z0)2, (6.15)

and θ′0 = 2.0 K is the initial magnitude of the potential temperature perturbation, r0 = 2.0 km

is the initial radius of the bubble, and z0 = 2.0 km is the initial vertical displacement of the

bubble. The dimensionless perturbation in the density field is initialised with ρ = P/(1 + δθ).

The extent of the domain is x = [−10.0, 10.0] km and z = [0.0, 10.0] km with periodic bound-
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Figure 6.3: Rising bubble on a (160 × 80) grid: potential temperature at initial time, t =
0.0 s (top), and final time, tend = 1000.0 s (bottom); contours in the range
[300.25, 301.75] K with a 0.25 K interval.

aries in x and no-flux in z (Mendez-Nunez and Carroll, 1994; Klein, 2009; Benacchio et al.,

2014). Note that unlike the travelling vortex test cases which are defined on the horizontal xy-

plane, the rising bubble is a vertical slice test defined on the vertical xz-plane. This test case is

non-dimensionalised with the following reference units,

lref = href = 10.0 km, tref = 1000.0 s, Tref = 300.0 K,

pref = 86.1 kPa, ρref = pref/c
2
ref ≈ 1.0 kg m−2, (6.16)

yielding Ma ≈ 0.0341. Unless otherwise stated, all the rising bubble experiments in this thesis

are simulated with a time step that is constrained by CFL = 0.5 on a (160× 80) grid.

The initial pressure fields are balanced with respect to a homogeneous hydrostatic pressure

field p̄(z) based on θ0, with p̄(0) = 86.1 kPa and π′ = 0.0 everywhere. However, this initial

pressure field is not balanced with respect to the initial potential temperature field θ0 + δθ.

Figure 6.3 depicts the potential temperature perturbation of the rising bubble at the initial time

and at the simulation end time. Experiments involving the rising bubble have appeared in Chew

et al. (2021).

6.1.3 Inertia-gravity wave

The balanced inertia-gravity wave test case consists of an internal wave pulse spreading hori-

zontally from its origin in a channel. This wave is generated by an initial perturbation of the
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potential temperature δθ, and its dimensionless form is given by

δθ = θ′0
θ0

sin(πz/H)
1 + [(x− xc)/a]2 , (6.17)

where θ0 = 300 K is the reference background potential temperature at z = 0.0 km and θ′0 =

0.01 K is the magnitude of the initial potential temperature perturbation. Note that due to the

stratification of θ = θ0 + δθ, the dynamics of the inertia-gravity waves differ from those of the

previous test cases. Furthermore, H = 10.0 km, xc = 0.0 km, and a = 100.0 km. The stably

stratified isothermal background has a constant Brunt-Väisälä frequency of N = 0.01 s−1, and

there is no background flow.

The extent of the domain is x = [−3000.0, 3000.0] km and z = [0.0, 10.0] km with periodic

boundary conditions in x and no-flux in z (Skamarock and Klemp, 1994; Benacchio and Klein,

2019). Experiments involving similar inertia-gravity wave tests can be found in Baldauf and

Brdar (2013). To ensure that the initial potential temperature perturbation is horizontally

bounded within the domain, a mollification function m(x) is applied to x in (6.17), where

m(x) = 1
2 min (1− cos(π ΞL(x)), 1− cos(π ΞR(x))) , (6.18)

and

ΞL(x) = min
(

1.0, x− xmin
0.25L

)
, (6.19a)

ΞR(x) = min
(

1.0, xmax − x
0.25L

)
, (6.19b)

with L = xmax − xmin = 6000.0 km being the total horizontal extension of the domain. As with

the rising bubble test, this test develops on a vertical slice defined in the xz-plane. The test case

is non-dimensionalised with the following reference units,

lref = href = 10.0 km, tref = 100.0 s, Tref = 300.0 K,

pref = 100.0 kPa, ρref = pref/c
2
ref ≈ 1.16 kg m−2, (6.20)

yielding Ma ≈ 0.341. However, the velocity of the inertia-gravity wave pulse is approximately

upulse ≈ 30.33 m s−1, with Mapulse ≈ 0.10. This justifies the use of the low Mach analysis in

section 4.1.3 for the compressible–soundproof blending. Unless otherwise stated, a constant time

step of size ∆t = 100.0 s is used with a (300 × 10) grid for all inertia-gravity wave experiments

in this thesis. The aspect ratio of the domain corresponds to the hydrostatic configuration in

Skamarock and Klemp (1994). Figure 6.4 depicts the potential temperature perturbation of the

balanced inertia-gravity wave at initial time and at the simulation end time.
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Figure 6.4: Hydrostatic inertia-gravity wave on a (300 × 10) grid: potential temperature per-
turbation at initial time, t = 0.0 s (top); contours in the range [0.0, 0.01] K with
a 0.001 K interval and final time tend = 60 000.0 s (bottom); contours in the range
[0.0, 0.005] K with a 0.001 K interval.

6.2 Effectiveness of the blending schemes

In this section, dynamically imbalanced initial data are used for compressible simulations of the

idealised test cases. The one-step blending strategy from chapter 4 is applied for the first time

step, and the solution of such a blended run is evaluated against the solution from the limit

model.

Specifically, the performance of the one-step blending strategy is evaluated by taking probe

measurements of the full pressure time-increment δp, where

δpn = pn+1 − pn, (6.21)

with n indexing the time level. The first increment δp0 is omitted as it corresponds to a spinup

adjustment.

Having obtained a time series of δp, the distance of the pressure time-increment computed for

a given compressible run from the reference run is evaluated by means of a relative error Eν ,

Eν = ‖δpν − δpref‖2
‖δpref‖2

, (6.22)

where ν = b for the blended run and ν = c for the imbalanced compressible run. ‖ · ‖2 is the

2-norm taken over the probe-measured time series of δp.

The example above on the relative error computation concerns a blending between the com-
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pressible and pseudo-incompressible regimes, but this example can be straightforwardly extended

to the blending between the shallow water and lake regimes as well as between the hydrostatic

and nonhydrostatic regimes.

6.2.1 Travelling vortex results

SWE vortex

Recall from section 2.4 that in deriving the shallow water equations from the Euler equations,

three quantities in the Euler equations were identified with a quantity related to the water height

h, namely,

ρ→ h, P → h, π′ → h′. (6.23)

An artificial imbalanced initial state is created by setting the water depth at the initial time to

a constant everywhere in the domain, i.e. h(t = 0) = 1.0 m and h′(t = 0) = 0.0 m. In this

scenario, the water depth field is imbalanced with respect to the initial velocity fields, and this

introduces fast mode imbalances in the form of shallow water waves. A probe measurement of

the water depth h is taken at the centre of the domain at (0, 0) km. Here, a probe measurement

means taking a measurement of the values of the flow variables at a fixed location in the domain

and at selected time instances (Benacchio et al., 2014).
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Figure 6.5: SWE vortex: effect of one-step blending for imbalanced initial states on the time
series of temporal increments of the full water depth field δh at location (x, y) =
(0, 0) km. Left: comparison between a blended run using h′half (orange dots, SW-
B(H)), an imbalanced shallow water run without blending (solid blue line, SW), and
the reference solution from the lake model (dashed black line, LK). Right: comparison
of blended runs using h′half (orange dots, SW-B(H)) and h′full (purple crosses, SW-
B(F)), and the shallow water solution with balanced initial states (solid green line,
SWB).

The left panel of Figure 6.5 compares the time-increment of the water depth field h for three

runs with this imbalanced initial state. Imbalances of the order of the slower vortex dynamics can

be seen for the imbalanced shallow water solution (solid blue curve) and the solution quality is

effectively destroyed. On the other hand, the solution of the blended run is close to the reference

solution computed with the lake equations (compare the orange dot markers with the dashed

67



6 Numerical results

black line). This implies that the blending strategy for the shallow water and lake equations

successfully removes the imbalances, and the method is able to recover the dynamics of the

balanced state.

The right panel of Figure 6.5 depicts a close-up of the blended runs with the choices of h′half

and h′full from section 4.3. These runs are compared against a run with the balanced initial

state obtained from the known exact solution of the SWE vortex. Both the blended runs are

almost indistinguishable from the reference balanced solution, although the h′half run is slightly

closer to the balanced solution. The relative error of the blended run with respect to the reference

balanced run, Eb, is 0.0269 for the h′half run and 0.0335 for the h′full run. This result corroborates

the insight from sections 4.1.3 and 4.3 that h′half is a better choice. The relative error of the

imbalanced compressible run with respect to the reference balanced run, Ec, is 2.42. Using the

h′half blending strategy improves the error score by approximately two orders of magnitude.

Euler vortex

For the Euler vortex, an imbalanced initial state is created by setting P = 347.95 kg m−2 K and

π′ = 0.0 over the whole domain. Investigations similar to the ones presented for the SWE vortex

are in Figure 6.6 for the probe measurement of the time-increment of the full pressure field.
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Figure 6.6: Euler vortex: effect of one-step blending for imbalanced initial states on the time
series of temporal increments of the full pressure δp at location (x, y) = (0, 0) km.
Left: comparison between a blended run using π′half (orange dots, CI-B(H)), a run
without blending (solid blue line, CI), and the reference solution from the pseudo-
incompressible model (dashed black line, PI). Right: comparison of blended runs
using π′half (orange dots, CI-B(H)) and π′full (purple crosses, CI-B(F)), and the com-
pressible solution with balanced initial states (green solid line, CB).

In the left panel of Figure 6.6, without blending, the solution quality of the imbalanced com-

pressible run (solid blue curve) is destroyed as the model is unable to trace the dynamics of the

vortex trajectory. On the other hand, the blended run recovers the balanced dynamics and is

almost indistinguishable from the reference solution computed with the pseudo-incompressible

model (compare the orange markers and the dashed black line). This result implies that the

blending strategy between the compressible and pseudo-incompressible models is effective, and
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the method is able to recover the balanced dynamics.

The right panel of Figure 6.6 depicts a close-up of the blended runs with π′half and π′full from

section 4.1.3. Results of these blended runs are compared against a compressible run with the

balanced initial state obtained from the known exact compressible solution of the Euler vortex.

Both the blended runs are close to the reference balanced solution, with the π′half run being

slightly closer. The relative errors of the blended runs, Eb, are 0.0367 and 0.0467 for the π′half

and π′full runs respectively. As with the SWE vortex case, this result corroborates the insight

from section 4.1.3 that π′half is a better choice. From here on, the choice of π′half is used for all

experiments. The relative error of the imbalanced compressible run, Ec, is 3.06, and therefore

using the π′half blended run improves the error score by approximately two orders of magnitude.

6.2.2 Rising bubble results

From the rising bubble setup in section 6.1.2, the initial pressure field is imbalanced with respect

to the potential temperature field. Starting with this initial imbalanced state, the left panel of

Figure 6.7 shows the propagation of acoustic pressure waves in the compressible solution, and

this imbalance can be seen in the time series of the pressure perturbation increment δp′ (blue

line in the right panel of Figure 6.7). The probe measurement is taken at (x, z) = (−7.5, 5.0) km,

and the location of this probe is indicated by the orange cross in the left panel. Here, p′ = p− p̄.

As with the travelling vortex cases, the blended run (orange markers in the right panel) is able

to recover a dynamics that is close to the acoustics-free reference pseudo-incompressible solution

(dashed black line). A constant small time step ∆tAC = 1.9 s is used to generate these results.

The results presented here aim to reproduce the results in Benacchio et al. (2014) within the

Benacchio and Klein (2019) numerical framework.
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Figure 6.7: Left: δp′ value after the 14th time step (t = 26.6 s) for the compressible model;
contours in the range [−2.8, 2.8] Pa with an interval of 0.8 Pa, negative con-
tours dashed. The orange cross marks (x, z) = (−7.5, 5.0) km and the red cross
(x, z) = (0.0, 5.0) km. Right: history of δp′ over the first 350.0 s measured at
(x, z) = (−7.5, 5.0) km for the compressible model (solid blue line, CI), the pseudo-
incompressible model (dashed black line, PI), and the blended model with one pseudo-
incompressible time step (orange dots, CI-B).
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Figure 6.8 shows the result of a blended run with probe measurements taken at two different

locations. The blended run has a time step size of ∆tAC . Away from the trajectory of the

rising bubble (left panel), the amplitude of the remnant imbalances from the blended run is

significant, and it is comparable to the increment in the pressure perturbation induced by the

dynamics of the rising bubble. On the bubble trajectory (right panel), the pressure perturbation

increment due to the rising bubble dominates, and the remnant acoustic imbalances are relatively

small. Here, the solution of the blended run is almost identical to the solution of the reference

pseudo-incompressible run.
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Figure 6.8: History of δp′ over the first 350.0 s measured at (x, z) = (−7.5, 5.0) km (left) and
at (x, z) = (0.0, 5.0) km (right). A constant small time step ∆tAC = 1.9 s is used.
Pseudo-incompressible solution (dashed black line, PI) and blended solution with
one time step spent in the pseudo-incompressible regime (CI-B, solid orange or solid
red corresponding to the probe marker in the left panel of Figure 6.7). The time-
increment involving the first time step is omitted.

Figure 6.9 shows another two blended runs, but these runs are with a larger advective CFL-

constrained time step, ∆tADV . Specifically, ∆tADV is constrained by CFL = 0.5 with ∆t =

21.69 s for the first two time steps. The results are similar to the ones presented in Figure

6.8, although the amplitude of the remnant acoustic imbalances is slightly larger due to the

larger time steps used. However when compared to imbalanced compressible solution without

blending (blue line in the right panel of Figure 6.7), the amplitude is still relatively small: note

the difference in the scale of the vertical axis between this panel and the panels of Figure 6.9.

The relative errors for the blended runs in Figures 6.8 and 6.9 are computed and presented in

Table 6.1 as Eb, where the reference run is the pseudo-incompressible solution. Furthermore, Ec

is computed as the relative error of the imbalanced compressible runs relative to the reference

pseudo-incompressible run. Results for these imbalanced compressible runs are not shown in

Figures 6.8 and 6.9, but the result of this run for ∆tAC can be found in Figure 6.7 (solid blue

line in the right panel). Note that these relative errors are computed over the full simulation run,

i.e. for δp′ over [0.0, 1000.0] s. For the small time step ∆tAC run, the blending strategy outlined

in chapter 4 is able to improve the solution quality by more than two orders of magnitude when

compared to the relative error of the imbalanced compressible solution, and by a factor of ∼ 28
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Figure 6.9: History of δp′ over the first 350.0 s measured at (x, z) = (−7.5, 5.0) km (left) and at
(x, z) = (0.0, 5.0) km (right). A CFL-constrained time step, ∆tADV , is used, where
∆t = 21.69 s for the first two time steps and ∆t is then determined by an advective
CFL = 0.5. Pseudo-incompressible solution (dashed black line, PI) and blended
solution with one time step spent in the pseudo-incompressible regime (CI-B, solid
orange or solid red corresponding to the probe marker in the left panel of Figure 6.7).
The time-increments involving the first two time steps are omitted in the plots.

Table 6.1: Errors Ec and Eb (see equation (6.22) and the related text for the definitions) of the
time series of δp′ in [0.0, 1000.0] s relative to the reference pseudo-incompressible run
(dashed black lines in Figures 6.8 and 6.9). The acoustic time step size is ∆tAC = 1.9 s,
while ∆tADV is determined by advective CFL = 0.5 and ∆tADV = 21.69 s for the
first two time steps. Probe location (−7.5, 5.0) km corresponds to the orange marker
in Figure 6.7 and orange lines in Figures 6.8 and 6.9, and probe location (0.0, 5.0) km
to the red marker and red lines in the respective Figures.

∆t probe location Ec Eb Ec/Eb

∆tAC

(−7.5, 5.0) km 413.1849 1.4743 280.26

(0.0, 5.0) km 10.1787 0.0363 280.40

∆tADV

(−7.5, 5.0) km 108.9313 3.8897 28.01

(0.0, 5.0) km 2.6447 0.0943 28.05

for the run with the larger CFL-constrained time step, ∆tADV , see the Ec/Eb column in Table

6.1.

For the rising bubble test case, the full pressure time-increment δp differs slightly between the

pseudo-incompressible solution and the solution of the blended runs. This difference is depicted

in the left panel of Figure 6.10, and it is due to the time-dependence of the hydrostatically

balanced background pressure p̄ in the blended run while p̄ is constant in time for the pseudo-

incompressible run. However, the pressure perturbation time-increments δp′ are very similar

between the two runs (see the right panel of Figure 6.10), and this suggests that the blend-

ing strategy is able to recover balanced dynamics regardless of small compressibility-induced

variations in the background pressure p̄.
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Figure 6.10: Probe measurement over [0.0, 1000.0] s of the full pressure increment δp (left) and
pressure perturbation increment δp′ (right). Pseudo-incompressible solution (black
dashed line, PI) and the blended solution (solid red line, CI-B). The runs are with a
time step size of ∆tAC and the probe is located at (x, z) = (0.0, 5.0) km (indicated
by the red marker in the left panel of Figure 6.7).

6.2.3 Inertia-gravity wave results

An artificial initially imbalanced state is created for the inertia-gravity wave by setting the Exner

pressure perturbation π′ = 0.0 everywhere in the domain. The imbalanced nonhydrostatic

solution features an additional acoustic-gravity wave pulse alongside the inertia-gravity wave

pulses. In this section, the blending between the compressible nonhydrostatic regime and the

hydrostatic regime is investigated.

The long-time characteristic of the acoustic-gravity and inertia-gravity wave pulses are depicted

in Figure 6.11. The acoustic-gravity wave pulse does not propagate, and it remains oscillating

vertically in the centre of the domain (compare the dashed blue lines in the left and right panels).

On the other hand, the inertia-gravity wave splits and propagates away from its initial location

(black lines in both panels). Markers representing two additional blended runs, between the

compressible and hydrostatic regimes (orange dots) and between the compressible and pseudo-

incompressible regimes (green crosses), are depicted for comparison.

Probe measurements of the vertical velocity are taken, and the time series of such a measure-

ment is documented in Figure 6.12. The probe is located at (0.0, 5.0) km, and its location is

indicated by the red cross in Figure 6.11. Measurements of the vertical velocity are taken as,

empirically, this quantity best captures the features of the oscillating acoustic-gravity wave.

The results from Figure 6.12 show that blending for a single time step to the hydrostatic regime

(orange dots) or to the pseudo-incompressible regime (green crosses) is sufficient in removing the

dominant vertically propagating acoustic mode present in the imbalanced initial conditions (solid

blue line in the left panel). The right panel is a close-up of the left panel without the imbalanced

compressible solution, and in this panel, we see that the solutions of the blended runs are almost

identical to the balanced compressible solution.

Finally, the errors relative to the balanced compressible solution over the full simulation time,
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Figure 6.11: Inertia-gravity wave: slices of the vertical velocity w at z = 5.0 km after the 550th
time step, i.e. at t = 55 000.0 s, (left) and after the 551st time step, i.e. at t =
55 100.0 s (right). Balanced compressible solution (solid black line, CB), imbalanced
compressible solution (dashed blue line, CI), blended solution with one time step
spent in the hydrostatic regime (orange dots, CI-HY), and blended solution with
one time step spent in the pseudo-incompressible regime (green crosses, CI-PI). The
red cross marks the location of the probe measurement in Figure 6.12.
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Figure 6.12: History of the probe measurement of the vertical velocity w over the first 10 000 s at
(x, z) = (0.0, 5.0) km. (left) Balanced compressible solution (black solid line, CB),
imbalanced compressible solution (blue dashed line, CI), blended solution with one
time step spent in the hydrostatic regime (orange dots, CI-HY), and blended solution
with one time step spent in the pseudo-incompressible regime (green crosses, CI-PI).
(right) A close-up of the left panel without the CI solution.

i.e. over [0.0, 60 000.0] s, are computed for the runs depicted in Figure 6.12. The relative

errors are: 11.65 for the imbalanced compressible run; 0.02365 for the hydrostatic blended run;

and 0.005527 for the pseudo-incompressible blended run. When compared with the relative

error of the imbalanced compressible run, the hydrostatic blended run yields over two orders

of magnitude improvement, and the pseudo-incompressible run is an improvement of over three

orders of magnitude.

That both the blended runs work well in this configuration of the inertia-gravity wave test

corroborates the results by Benacchio and Klein (2019). The authors demonstrated that for the

hydrostatic configuration of the inertia-gravity wave test case used here, the solutions of both

the pseudo-incompressible and the hydrostatic limit models are very close to that of the balanced
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compressible run (cf. the bottom row of their Fig. 6). This promising result suggests that the

blending strategy works for balanced gravity mode initialisation.

6.3 Ensemble data assimilation and blending (DAB): setup

Balanced data assimilation poses two additional challenges for the blending strategies. Unlike the

artificially imbalanced initial states in section 6.2, the parameters chosen for the data assimilation

procedure significantly affect the imbalances introduced. Furthermore, the balancing procedure

via blending occurs after each point in time when data is assimilated, and any residual error

that is not removed by the balancing procedure will accumulate and destroy the quality of the

balanced solution over time. As a result, an effective dynamics-driven blending strategy must be

capable of removing the imbalances regardless of the data assimilation parameters chosen.

Computationally, all the random processes mentioned in this section are seeded to ensure

reproducibility of the experimental results.

6.3.1 The travelling vortices

To combine blending with data assimilation as detailed in section 5.3, an ensemble is gener-

ated by perturbing the initial vortex centre position (xc, yc) within the open half interval of

[−0.1 lref, 0.1 lref) for both xc and yc. Recall that lref differs between the SWE and Euler vortices,

see equations (6.9) and (6.13) for more details. The vortex is then generated around this centre

position such that the full vortex structure is translated. Ten such samples are drawn, and they

constitute the ensemble members. An additional sample is drawn and solved with the full model

for the balanced initial condition. This run, denoted by obs, is used to generate the artificial

observations. Another run with a setup identical to this additional obs sample is made. This

time, blending for the first time step is applied, and it is used as the truth, i.e. the reference

solution. The initial blended time step is to correct for any errors in the initialisation of π, as

discussed in section 4.1.3.

This choice of generating the truth and obs through a perturbation of the initial condition is

such that the ensemble mean does not coincide with the truth. Otherwise, ensemble deflation

alone is sufficient to converge the ensemble towards the truth. A similar method of generating

the truth and observation has been used in Lang et al. (2017). Note that although the vortex

structure is translationally invariant, the setup presented here is not trivial for the experiments in

this thesis, as the assimilation of data will destroy the compact vortex structure of the individual

ensemble members and introduce imbalances.

The observations are taken from obs every 0.25 tref. Only a tenth of the grid points are

observed, and these are randomly drawn. The sparse observations are drawn as follows: a

Boolean mask selecting for a tenth of the grid points is shuffled by the Fisher and Yates (1953)
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algorithm and applied to the observed quantities in obs. This deviates from a more realistic

situation where observations and grid points do not coincide. To simulate measurement noise,

Gaussian noise is added independently to each observation grid point. The variances used in

generating the zero-mean Gaussian noise and a short elaboration on how the observation noise is

modelled are provided in Appendix A. A similar method of generating artificial noisy observations

by addition of zero-mean Gaussian noise was used in, for example, Bocquet (2011) and Harlim

and Hunt (2005) for the Lorenz-63 and Lorenz-96 models.

For the domain localisation, the local regions are of size (11×11) grid points and only observa-

tions within this radius are considered for analysis. For the observation localisation, a localisation

function corresponding to a Gaussian bell is applied such that observations further from the grid

point under analysis have less influence. This influence decays smoothly towards zero at the

radius edge, and it is then abruptly truncated to zero at the edge. Finally, no ensemble inflation

is applied.
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Figure 6.13: SWE vortex: sparse noisy observations (left panel) and truth (right panel) at
t = 300.0 s. Horizontal momentum hv; for the right panel, contours in the range
[0.78, 1.26] m2 s−1 with a 0.06 m2 s−1 interval. The red square illustrates, for an
example grid point (in red), the observations considered in the local (11× 11) grid
points region.

Examples of the observations and truths used in the experiments with data assimilation are in

Figures 6.13 for the SWE vortex and Figure 6.14 for the Euler vortex. Note that for the SWE

vortex, only one experiment with observations drawn from the momentum fields is conducted,

and for the Euler vortex, two sets of experiments are conducted: one with the observations

drawn from the momentum fields only, and another with observations drawn from the full set of

variables.

The ten ensemble members are initialised with balanced states and blending is applied for the

first time step. This ensures that any imbalance present in the solution is the result of the data

assimilation process only. The ensemble is then solved forward in time with the full model for

three revolutions of the vortex across the domain, i.e. up to 3.0 tref . Every 0.25 tref, data from the

observations generated are assimilated. The immediate time step after the assimilation procedure

is solved with the limit model while the rest of the time steps in the assimilation window are

solved with the full model. Conversions according to the blending strategies in chapter 4 are
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Figure 6.14: Euler vortex: sparse noisy observations (left panels) and truths (right panels) at
t = 300.0 s. Top: horizontal momentum ρu; for the right panel, contours in the
range [50.0, 140.0] kg m−1 s−1 with a 10.0 kg m−1 s−1 interval. Bottom: Exner
pressure perturbation π′; for the right panel, dimensionless contours in the range
[−90.0, 15.0]× 10−5 with an interval of 15.0× 10−5. Negative contours are dashed.
The red squares illustrate, for an example grid point (in red), the observations
considered in the local (11× 11) grid points region.

used to switch back and forth between the full and limit models. Furthermore, the choice of π′half

(or h′half) is used, see sections 4.1.3 and 4.3 for more details. This ensemble solved with both

data assimilation and blending is abbreviated as EnDAB.

The setup is repeated for two other ensembles: one ensemble where data is still assimilated but

no blending is performed, and another ensemble where neither data assimilation nor blending is

performed. The former is abbreviated as EnDA and the latter as EnNoDA. These two ensembles

constitute an identical twin experiment, through which the effects of data assimilation can be

evaluated. EnDA along with EnDAB constitute yet another identical twin experiment that

evaluates the performance of blending. Table 6.2 summarises the details of the data assimilation

experimental setup.

6.3.2 Rising bubble: DAB setup

The rising bubble ensemble spread is generated by drawing δθ′0 in the half-open interval of

[2.0 K, 12.0 K) uniformly at random and then applied to equation (6.14). While the initial

temperature perturbation is seemingly large, the ensemble spread of the bubble position at the

end time of the simulation, tend = 1000.0 s, is only moderate. More details will be provided in

section 6.4.2.
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Figure 6.15: Rising bubble: horizontal momentum field ρu at t = 1000.0 s. Sparse and noisy
observations (top) and truth (bottom); for the bottom panel, contours in range
[−8.0, 8.0] kg m−1 s−1 with a 2.0 kg m−1 s−1 interval, negative contours dashed.

Unlike the vortex experiments where the observations are drawn from an obs run, and the

reference solution is from a separate truth run, the observations for the rising bubble data

assimilation experiments are drawn from the truth run. As such, the obs and the truth for this

experiment are obtained from an identical run. Blending is applied to the first time step of this

combined obs/truth run, obtaining a balanced solution. After t = 500.0 s, observations are taken

from obs every 50.0 s for the momentum fields only, and these observations are assimilated. As

the dynamics of the rising bubble evolve slowly in the beginning, data is only assimilated after

the bubble has been rising for half the simulation duration. As with the vortex experiments,

only a tenth of the grid points are randomly observed, zero-mean Gaussian noise is added and

localisation within a (11 × 11) grid points region is applied. More details on the observation

noise are given in Appendix A. A truncated Gaussian localisation function corresponding to

the Gaussian bell is applied and the ensemble is not inflated. Examples of the observations

and the truth are given in Figure 6.15, and the data assimilation experimental parameters are

summarised in Table 6.2.

As with the vortex experiments, three ensembles corresponding to the EnNoDA, EnDA, and

EnDAB configurations, with balanced initial conditions and with 10 members each, are generated.

For the rising bubble experiments, only the momentum fields are assimilated. Note that as the

ensembles and the observations are generated with balanced initial conditions, any imbalance

present in the simulation results has to be introduced by the data assimilation procedure.
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6.3.3 Inertia-gravity wave: DAB setup

The ensemble for the inertia-gravity wave experiments is generated by randomly modifying the

potential temperature perturbation in (6.17), specifically by drawing θ′0 uniformly from the open

half interval of [0.005, 0.015) K. Similar to the rising bubble experiment, the truth and the obs

are drawn from an identical run which in this case is a compressible run with balanced initial

conditions and no blending is applied for the first time step. As the solutions from the blended

runs are almost identical to balanced compressible solutions (cf. section 6.2.3), the ensemble data

assimilation results obtained in the subsequent section do not differ much even if an additional

initial blended time step is applied to this combined obs/truth run.
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Figure 6.16: Inertia-gravity wave: sparse noisy observations (left panels) and truths (right panels)
at t = 60 000.0 s. Top: vertical momentum ρw; for the right panel, contours in the
range [−2.4, 4.0]×10−4 kg m−1 s−1 with a 0.8×10−4 kg m−1 s−1 interval. Bottom:
Exner pressure perturbation π′; for the right panel, dimensionless contours in the
range [−0.20, 0.25] × 10−5 with an interval of 0.05 × 10−5. Negative contours are
dashed.

To allow for the initial inertia-gravity wave pulse to separate and propagate in opposing di-

rections, data is only assimilated after a simulation time of t = 20 000.0 s, and subsequently,

all the primary quantities are observed and assimilated every 5 000.0 s. As with the previous

experiments, only a tenth of the grid points are randomly observed, and zero-mean Gaussian

noise is used to model the observation error, see Table A.2 for the variances used. A trun-

cated Gaussian localisation function is applied, whereby the influence of the observations decays

smoothly towards zero within the localisation region, and the influence is abruptly truncated to

zero at the edge. Unlike the previous experiments, the size of the localisation region is (9 × 9)

grid points, since the inertia-gravity wave experiments are run on a (300×10) grid. Examples of

the observations and truths are provided in Figure 6.16, and the data assimilation experimental

parameters are summarised in Table 6.2.
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As before, three ensembles corresponding to the EnNoDA, EnDA, and EnDAB configurations

are generated with balanced initial conditions and with 10 members each. Note that for the

EnDAB ensemble, the solution is switched to the hydrostatic limit regime for one time step after

each assimilation procedure.

Table 6.2: Summary of the assimilation-related experimental parameters. K is the ensemble size,
b the ensemble inflation factor, tfirst the first assimilation time, ∆tobs the observation
interval, ψassimilated the set of quantities assimilated, (N ×N)local the size of the local
region, flocal the type of localisation function, ηobs the observation noise, obssparse the
sparsity of the observations, and Nblending the number of time steps spent in the limit
model regime after the assimilation of data. π′ choice is used in the initialisation of
Nblending, more details in section 4.1.3

Test case Vortex Bubble IGWave

Ensemble
K 10 members

b 1.0

Observations

tfirst [s] 25.0 500.0 20 000.0

∆tobs [s] 25.0 50.0 5 000.0

ψassimilated
{hu, hv} and {ρu, ρv}
or {ρ, ρu, ρv, P, π′}

{ρu, ρw} {ρ, ρu, ρw, P, π′}

(N ×N)local (11× 11) grid points (9× 9)
grid points

flocal Truncated Gaussian

ηobs
Gaussian with zero mean
and variance in Table A.2

obssparse One in 10 grid points, randomly drawn

Blending
Nblending A single blended time step

π′ choice π′half (or h′half) –

6.3.4 Evaluation of data assimilation

The quality of data assimilation is evaluated by a spatially- and ensemble-averaged root mean

square error (RMSE) from the truth. For the evaluation of a horizontal slice data assimilation

experiment, the spatially- and ensemble-averaged RMSE is given by

RMSE(ψ) =

√√√√ 1
K

1
NI ×NJ

K∑
k=1

NI ,NJ∑
i,j=1

[
ψensemble
k (xi, yj)− ψtruth(xi, yj)

]2
, (6.24)

where k = 1, . . . ,K indexes the ensemble members and i = 1, . . . , NI and j = 1, . . . , NJ the

number of grid points in the (x, y)-coordinates. Here, ψ is the set of quantities {ρ, ρu, ρv, P, π′}

for the compressible flow equations and {h, hu, hv, h′} for the shallow water equations. For

the vertical slice experiments, the grid points are in the (x, z)-coordinates, and the vertical

momentum ρw is evaluated instead of the horizontal ρv.
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6.4 Ensemble data assimilation and blending: results

The ensemble data assimilation results for the setups in sections 6.3.1, 6.3.2, and 6.3.3 are

provided below. Further investigations supporting the results in this section are provided in the

appendices at the end of the thesis. See section 7.1 for an overview of these appendices.

6.4.1 The travelling vortices: DAB results

The SWE vortex results

Figure 6.17 depicts snapshots of the water depth for two ensemble members alongside the en-

semble mean at the simulation end time tend = 300.0 s. The vortex structure in the EnNoDA

ensemble are perturbed around the origin x, y = (0.0, 0.0) km, and the mean is centred around

the origin. These results show that the EnNoDA ensemble is indeed in line with how the en-

semble is generated. As the vortices are initialised with balanced data, the vortex structures

remain compact and balanced through the simulation run. As we are interested in recovering

the balanced solution, the EnNoDA ensemble takes on the role of the control ensemble.

Results of the EnDA ensemble show that by the end of the simulation, the vortices in the

ensemble become imbalanced and the structure of the solution is destroyed. Plain local ensemble

data assimilation alone is unable to retain the balanced structure of the solution. However, by

switching to the lake equations for one time step after each assimilation process, the shallow water

waves are suppressed, and the EnDAB result successfully recovers the balanced vortex structure.

Moreover, the effects of data assimilation become obvious: the vortices in the ensemble no longer

centre around the origin as in the EnNoDA case, but they have been nudged to the lower right

quadrant, and this corresponds to the position of the observations and the truth, cf. Figure 6.14.

Data assimilation is successful is nudging the ensemble towards the observation, while blending

recovers the balanced solutions.

The results obtained by applying the spatial- and ensemble-averaged RMSE from (6.24) are

depicted in Figure 6.18. The errors of the assimilated momentum fields decrease with each

assimilation step, and the errors converge eventually to approximately 1.0. For the assimilated

quantities, the errors of the EnDA and EnDAB experiments are substantially smaller than that

of the EnNoDA experiment, and this suggests that the data assimilation procedure is effective.

The effect of blending has a profound impact on the quantities that are not assimilated. For

the water depth and the water depth perturbation, the error of the EnDA ensemble jumps after

the first assimilation procedure at t = 25.0 s, and the error remains roughly of the same order

of magnitude for the rest of the simulation. For these quantities, the error score of the EnDA

ensemble after the jump is higher than that of the EnNoDA ensemble, and this is due to the

imbalances introduced (compare the top and middle rows of Figure 6.17). Appendix B quantifies

the error jump as arising from the imbalances introduced by the data assimilation procedure.
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Figure 6.17: SWE vortex: snapshots of the water depth h. Ensemble members with index 3 (first
column), 7 (second column), and ensemble mean (third column) at t = 300.0 s with
the momentum fields {hu, hv} assimilated. Top row: EnNoDA run; contours in
range [0.9965, 1.0005] m with a 0.0005 m interval. Middle row: EnDA run; contours
in range [0.992, 1.006] m with a 0.002 m interval. Bottom row: EnDAB run; contours
in range [0.9965, 1.0005] m with a 0.0005 m interval. Negative contours are dashed.

For the ensemble run with blending (EnDAB), the error scores for the quantities not assimilated

drop after the first assimilation time and remain consistently below that of the control EnNoDA

ensemble. The error jump corresponding to the imbalances introduced is absent, and this suggests

that blending is an effective method to achieve balanced data assimilation for the shallow water

equations.

These promising results also suggest that the one-step blending strategy developed in chapter 4

for the shallow water and the lake equations allows us to seamlessly switch back and forth between

model regimes within a single simulation run without a buildup of any residual errors.

An additional encouraging detail is also present in Figure 6.18. In the blended numerical

model, the water depth h and water depth perturbation h′ are evolved as separate variables and

yet, as we ought to expect from a physics-informed perspective, the errors depicted here are
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Figure 6.18: SWE vortex: EnNoDA run (dots, solid black), EnDA run (solid orange), EnDAB
run (crosses, dashed green). Assimilated quantities are hu and hv. Spatially- and
ensemble-averaged RMSE from t = 0.0 s to 300.0 s for the water depth h (top left,
[m]), water depth perturbation h′ (top right, [m]), and momenta hu, hv (bottom
left and right, [m2 s−1]). The RMSE of the initial ensemble is omitted.

almost identical for both the quantities. This implies that the implementation of the blended

numerical model works as intended.

The Euler vortex results

Unlike with the shallow water equations, the dynamics of the Euler equations is also dependent

on the potential temperature θ. From section 6.1.1, we recall that this quantity is equivalent to

unity in the shallow water context.

Figure 6.19 depicts the snapshots of the pressure perturbation for two ensemble members

alongside the ensemble mean at the simulation end time tend = 300.0 s with all quantities

assimilated. As with the SWE vortex test case, the EnNoDA ensemble reflects the configuration

by which the ensemble is generated: the vortex structures of the individual ensemble members

are perturbed around the origin, while the ensemble mean is centred around the origin. The

EnNoDA ensemble acts as the control ensemble with balanced solutions.

Without a balancing procedure, the solution structure of the EnDA ensemble with only plain

local ensemble data assimilation becomes imbalanced and the compact vortex structure is de-

stroyed. Recall that as the ensemble is generated with balanced initial conditions, any imbalance

introduced may be attributed to the data assimilation process. On the other hand, application

of blending as a balancing procedure recovers the balanced solution, and the compact vortex
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structure is preserved for the EnDAB solutions. Furthermore, the effect of data assimilation is

obvious with the vortex structure of the individual ensemble members and the ensemble mean

being predominantly in the lower right quadrant, in line with the observations and the truth

presented in section 6.3.1, Figure 6.14.
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Figure 6.19: Euler vortex: snapshots of pressure perturbation p′. Ensemble members with index
3 (first column), 7 (second column), and ensemble mean (third column) at t = 300.0 s
with all quantities {ρ, ρu, ρv, P, π′} assimilated. Top row: EnNoDA run; contours
in range [−300.0, 0.0] Pa with a 50.0 Pa interval. Middle row: EnDA run; contours
in range [−2500.0, 2000.0] Pa with a 500.0 Pa interval. Bottom row: EnDAB run;
contours in range [−300.0, 0.0] Pa with a 50.0 Pa interval. Negative contours are
dashed.

Figure 6.20 shows the spatial- and ensemble-averaged RMSE scores of the different ensemble

configurations. The assimilation of the momentum field alone is insufficient for the Euler vortex

test case (solid orange and solid green lines). For these ensemble runs, the errors of the quantities

not assimilated, ρ, P , and π, increase after the first assimilation time at t = 25.0 s and remain

consistently above that of the control EnNoDA run. For the quantities assimilated, ρu and ρv,

the errors increase over time and are comparable to the EnNoDA run after three revolutions
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of the vortex across the domain at t = 300.0 s. The poor performance of the data assimilation

system is traced to the issue of controllability (Jazwinski, 1970): the dynamics of the Euler vortex

involve a strong axisymmetric variation of the potential temperature field (cf. the lower right

panel of Figure 6.14) that is not corrected by the assimilation of the momentum fields alone.

Therefore, the correlation of the velocity and the potential temperature fields is destroyed as data

is assimilated, and the solution becomes increasingly imbalanced. Nevertheless, the EnDAB run

(solid green) presents an improvement over the plain EnDA run (solid orange), e.g. in the lower

error scores in the P variable and in the smoother error profile over time for the assimilated

momentum fields.
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Figure 6.20: Euler vortex: EnNoDA run (dots, solid black), EnDA run (orange), EnDAB run
(crosses, green). Assimilated quantities are ρu and ρv (solid lines) and ρ, ρu, ρv, P, π′
(dashed lines). Spatially- and ensemble-averaged RMSE from t = 0.0 s to 300.0 s
for density ρ (top left, [kg m−2]), mass-weighted potential temperature P (top right
log-linear scale, [kg m−2 K]), and momenta ρu, ρv (bottom left and right, [kg m−1

s−1]). The RMSE of the initial ensemble is omitted.

The assimilation of all quantities circumvents the controllability issue. For the EnDA run

(dashed orange line), the errors of the quantities ρ, ρu, and ρv decrease drastically after the

first assimilation time and then increase gradually, but they remain below that of the control

EnNoDA run. For the pressure-related P variable, the error jumps after the first assimilation

time, and this corresponds to the imbalances introduced by the assimilation of data. This effect

is quantified in Appendix B. The imbalances introduced do not increase or decrease over time,

and this is reflected in the plateauing of the error in P .

The blended EnDAB run (dashed green line) recovers the balanced solution. After a drastic
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decrease in the error after the first assimilation time that is visible for all quantities, the error

either remains approximately of the same order of magnitude, e.g. in ρ and P , or decreases over

time, e.g. in ρu and ρv. Note that this EnDAB run is the only run in which the error scores

of the P variable are smaller than those of the control EnNoDA run with balanced solutions.

Therefore, we not only obtain balanced solutions with the EnDAB run, but we also obtain an

ensemble that is closer to the truth than that of the EnNoDA run. This corroborates the results

depicted in the last row of Figure 6.19.

This set of results for the Euler vortex shows that the blending strategy is suitable to recover

balanced solutions despite an untuned and suboptimal data assimilation scheme. However, the

issue of controllability presents an additional problem for balanced data assimilation that is

beyond the scope of the blending strategies developed in this thesis, and is therefore left for

future work.

6.4.2 Rising bubble: DAB results

Snapshots of the pressure perturbation for two rising bubble ensemble members at the simulation

end time tend = 1000.0 s along with the ensemble mean are depicted in Figure 6.21. Recall that

the ensemble is generated by randomly perturbing the initial potential temperature variation

inside the bubble. As a result, the EnNoDA ensemble (top row) consists of bubbles that have risen

to various heights at the simulation end time (bubbles with an initial temperature perturbation

that is relatively warmer will rise faster).

The EnDA ensemble (second row from top) shows the presence of acoustic imbalances, and

the features of the bubble rotors, captured by the regions of low pressure perturbation, are less

distinct. Data assimilation appears effective in nudging the bubbles in the ensemble towards the

truth, as the bubble rotors in the ensemble mean are not as spread out as in the EnNoDA case.

The blended run, EnDAB (third row from top), recovers the balanced solutions and the acoustic

imbalances have been eliminated. Furthermore, the bubble rotors in the ensemble mean is less

diffused, which again points towards the effectiveness of data assimilation, and the ensemble

converges. Finally, a difference is taken between the EnDA and the EnDAB results (bottom-

most row), and this shows that the difference between these two solutions stems largely from

the presence of acoustic imbalances. Data assimilation is just as effective in nudging the bubbles

in both the ensembles, and this can be seen by the absence of the bubble rotor imprints in the

difference of the ensemble means (bottom-most row, rightmost panel).

The results depicted in the snapshots of the ensemble members are corroborated by the RMSE

profiles over time in Figure 6.22. That the data assimilation is effective in correcting the position

of the bubbles in both the EnDA ensemble (solid orange line) and the EnDAB ensemble (dashed

green line) can be seen in the RMSE plots for ρ, ρu, and ρw. With the first application of data

assimilation at t = 500.0 s, the error scores drop below that of the control EnNoDA ensemble, and

85



6 Numerical results

-10 -5 0.0 5 10
0.0

5.0

10.0
z [

×1
0 

km
]

member index 3

-10 -5 0.0 5 10
0.0

5.0

10.0 member index 7

-10 -5 0.0 5 10
0.0

5.0

10.0 ensemble mean

-10 -5 0.0 5 10
0.0

5.0

10.0

z [
×1

0 
km

]

-10 -5 0.0 5 10
0.0

5.0

10.0

-10 -5 0.0 5 10
0.0

5.0

10.0

-10 -5 0.0 5 10
0.0

5.0

10.0

z [
×1

0 
km

]

-10 -5 0.0 5 10
0.0

5.0

10.0

-10 -5 0.0 5 10
0.0

5.0

10.0

-10 -5 0.0 5 10
x [×10 km]

0.0

5.0

10.0

z [
×1

0 
km

]

-10 -5 0.0 5 10
x [×10 km]

0.0

5.0

10.0

-10 -5 0.0 5 10
x [×10 km]

0.0

5.0

10.0

×10

10
8
6
4
2

0
2
4

×10

10
8
6
4
2

0
2
4

×10

10
8
6
4
2

0
2
4

×10

16
12
8
4

0
4
8

×10

16
12
8
4

0
4
8

×10

16
12
8
4

0
4
8

×10

10
8
6
4
2

0
2
4

×10

10
8
6
4
2

0
2
4

×10

10
8
6
4
2

0
2
4

×10

8
5
2

1
4
7
10

×10

8
5
2

1
4
7
10

×10

8
5
2

1
4
7
10

EnNoDA

EnDA

EnDAB

difference between EnDA and EnDAB

Figure 6.21: Rising bubble: snapshots of pressure perturbation p′. Quantities assimilated are
ρu and ρw. Ensemble members with index 3 (first column) and 7 (second column)
at t = 1000.0 s with the ensemble mean (third column). Row-wise: EnNoDA run,
contours in range [−100.0, 40.0] Pa with a 20.0 Pa interval (first row); EnDA run,
contours in range [−160.0, 80.0] Pa with a 40.0 Pa interval (second row); EnDAB
run, contours in range [−100.0, 40.0] Pa with a 20.0 Pa interval (third row); and
difference between EnDA and EnDAB, contours in range [−80.0, 100.0] Pa with a
30.0 Pa interval (fourth row). Negative contours are dashed.

the error in ρ continues to decrease over time. The effect of the imbalances present in the EnDA

run can be seen in the slightly higher error in ρ and in the bumpy error profile over time when

compared to the EnDAB run. The effect of the acoustic imbalances can be most drastically

seen in the pressure-related quantity P . Here, the error of the EnDA ensemble jumps above

that of the EnNoDA control run after the first assimilation time, and it remains of the same

order of magnitude over time. As with the experiments before, this error jump characterises the

imbalances introduced by data assimilation, and the effect is quantified in Appendix B. Finally,

the balanced EnDAB run achieves an error score that is significantly lower than that of the

EnNoDA run for all the quantities depicted in Figure 6.22.
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Figure 6.22: Rising bubble: EnNoDA run (dots, solid black), EnDA run (solid orange), EnDAB
run (dashed green). Assimilated quantities are ρu and ρw. Spatially- and ensemble-
averaged RMSE from t = 100.0 s to 1000.0 s for density ρ (top left, [kg m−2]),
mass-weighted potential temperature P (top right log-linear scale, [kg m−2 K]), and
momenta ρu, ρw (bottom left and right, [kg m−1 s−1]).

6.4.3 Inertia-gravity wave: DAB results

The ensemble snapshots of the vertical momentum field for two ensemble members of the inertia-

gravity wave ensemble along with the ensemble mean are depicted in Figure 6.23. The snapshots

are taken at the simulation end time, tend = 60 000 s, with all quantities assimilated. The

ensemble spread can be seen in the amplitudes of the inertia-gravity wave pulses of the EnNoDA

run (top row). For example, the amplitude of inertia-gravity wave pulses for ensemble member

index 3 is larger than that of ensemble member index 7.

For the EnDA run (second row), the final amplitudes of the inertia-gravity wave pulses attain

a value that is closer to the truth than those of the EnNoDA run (compare the amplitudes

depicted in the colour bars to the one in the top right panel of Figure 6.16). On the other hand,

presence of background noise is visible in the EnDA run, and the smooth and regular features in

the background of the EnNoDA run are not retained here. The amplitudes of the inertia-gravity

wave pulses for the EnDAB run (third row) attain a convergence similar to the EnDA run. Yet

the background noise is successfully suppressed to an extent, and the background recovers, to a

degree, the smooth and regular pattern seen in the background of the balanced EnNoDA run.

Finally, as in the rising bubble case, the difference between the EnDA and the EnDAB results

is taken (bottom-most row). The absence of the imprints of the inertia-gravity wave pulses

implies that data assimilation is as effective in nudging the ensemble towards the truth in both
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Figure 6.23: Inertia-gravity wave: snapshots of the vertical momentum ρw. Ensemble members
with index 3 (first column) and 7 (second column) at t = 60 000.0 s with the ensemble
mean (third column). Row-wise: EnNoDA run (first row); EnDA run (second row);
EnDAB run (third row); and the difference between the EnDA and EnDAB runs
(fourth row). For all rows, contours in range [−2.4, 4.0] × 10−4 kg m−1 s−1 with a
0.8× 10−4 kg m−1 s−1 interval. Negative contours are dashed.

cases. The difference in the solutions is largely in the background, and this suggests that the

application of blending affects only the background noise, and blending does not alter the slower

dynamics.

We note two further observations: 1) the full amplitude of the inertia-gravity pulses in the

EnDA and the EnDAB ensembles slightly underestimates the amplitude of the truth, i.e., the

minimum of the ensemble mean for the two ensembles is larger than that of the truth, and the

maximum is smaller. 2) data assimilation introduces imbalances that are one order of magnitude

smaller than the imbalance investigated in section 6.2.3. Here, the imbalances in the background

are of the order ∼ 10−4 kgm−1 s−1, but the artificial imbalances presented in Figure 6.12 are of

order ∼ 10−3 kgm−1 s−1.

From section 6.2.3, we saw that the imbalances for the inertia-gravity wave take the form of a

vertically propagating acoustic-gravity wave pulse in the centre of the domain. This is reflected

in the RMSE profile of the vertical momentum in Figure 6.24. The error profile oscillates over
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Figure 6.24: Inertia-gravity wave: EnNoDA run (dots, solid black), EnDA run (dashed orange),
EnDAB run (crosses, dashed green). Assimilated quantities are {ρ, ρu, ρw, P, π′}.
Spatially- and ensemble-averaged RMSE from t = 0.0 s to 60 000.0 s for density ρ
(top left, [kg m−2]), Exner pressure perturbation π′ (top right, dimensionless), and
momenta ρu, ρw (bottom left and right, [kg m−1 s−1]).

time for the EnDA run (dashed orange line) due to the imbalances introduced, although the

error score ultimately decreases to below that of the EnNoDA run (dots, solid black line) as

the inertia-gravity wave pulses are nudged towards the truth by the assimilation of data. This

corroborates the results depicted in Figure 6.23. The imbalances introduced in the EnDA run

have an effect on the density ρ and the Exner pressure perturbation π′, and the error profiles

for these quantities exhibit a few kinks over time. We note that, by the end of the simulation,

the error scores of the EnDA run are lower than those of the control EnNoDA run for all the

quantities depicted.

The EnDAB run (dashed green line) successfully suppresses the vertically propagating acoustic,

and this is visible in the smooth error profile for the vertical momentum ρw, with the error score of

the EnDAB being the best of all three runs. The more balanced solutions of the EnDAB ensemble

appear to have an effect on the density and Exner pressure perturbation. The error profiles of

the EnDAB run for these quantities are smoother than those of the EnDA run. However, the

error score of the density field is higher for the EnDAB run than that of the EnDA run.

These results suggest that the blending strategy for the hydrostatic and nonhydrostatic blend-

ing is rather successful in eliminating the imbalances introduced via data assimilation. However,

further investigation is warranted on the cause of the error in the density field for the blended

run. Such an investigation will be the subject of future work.
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7 Conclusion

The blending strategies developed in this thesis present a novel dynamics-driven method to

achieve balanced data initialisation and balanced data assimilation with a blended numerical

model. The idea behind the blending strategy is conceptually rather simple, and it answers the

following question: given a blended numerical model with seamless access to the compressible

Euler equations and its limit regimes, how can we best ensure that the solution stays true to

the underlying dynamics when switching between model regimes within a single simulation run?

Yet, as we have seen in chapter 4 on deriving the blending strategies, understanding and then

overcoming the subtle differences in the models, the dynamics, and the numerics can be a difficult

and challenging task.

To fully appreciate and test the capabilities of the blending strategies, we started in chapter 2

with a discussion of the various dynamical models, and with a derivation of the shallow water

and lake equations from the compressible flow equations. Having acquired intuition behind

the physics of the models, chapter 3 introduced the blended numerical model. Each full time

update invokes a finite volume solver and an elliptic solver for problems with non-constant

coefficients, and the solution of each substep is carefully tied together by the midpoint and the

trapezoidal updates to ensure an overall second-order scheme. To develop the one-step blending

strategies in chapter 4, numerical and asymptotic analyses were applied to the blended numerical

model, and strategies to convert the solutions between model regimes were derived. Strategies

to blend between the Euler equations and the limit soundproof and hydrostatic regimes, as well

as between the shallow water equations and the lake equations, have been introduced in this

thesis. The blending strategies ensure that, when converted from one model configuration to

another, the solutions obey the dynamics of the respective model regime. Bayesian ensemble

data assimilation, and in particular the LETKF algorithm, was discussed in chapter 5. Finally,

the principal capabilities of the one-step blending strategies were tested in chapter 6.

Firstly, the blending strategies were applied to obtain balanced data initialisation in idealised

tests. The results presented in chapter 6 on the principal capabilities of the blending strategies are

encouraging. To achieve balanced data initialisation, blending was applied to the first time step.

For the SWE and Euler vortex tests, the runs with blending achieved two orders of magnitude

improvement in the error score compared to a run without balancing. For the rising bubble test,

the blended run with a large advective CFL-constrained time step achieved more than one order of

magnitude improvement in the error score compared to a run without balancing, and the blended

run with a small time step achieved more than two orders of magnitude improvement. These

scores for the rising bubble test are a significant improvement over the scores of the balanced

data initialisation experiments in Benacchio et al. (2014) who, in addition, needed several time
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steps in a hybrid compressible–soundproof configuration with non-integer values of the blending

parameter to achieve their best reduction in the noise level. Moreover, the strategy of blending

via multiple time steps in the hybrid compressible-soundproof regime is not discussed in this

thesis for two reasons. First, Hastermann et al. (2021) showed that the intermediate model

regimes in the context of highly oscillatory Hamiltonian ODE systems judiciously dissipate the

unwanted fast-mode noise, but the role of such intermediate models is still not well understood

for the Euler equations. The application of this method would therefore not be dynamics-driven.

Second, the blended numerical model does not feature numerical dissipation, and this strategy

of dissipating the fast-mode noise by intermediate models is less efficient in achieving balanced

solutions.

Secondly, a novel nonhydrostatic–hydrostatic blending strategy was derived, and the effective-

ness of this blending strategy was investigated with the inertia-gravity wave test case. In the

balanced data initialisation experiments, the compressible–soundproof blended run achieved a

three orders-of-magnitude improvement in the error scores over the imbalanced solution, and

the nonhydrostatic–hydrostatic blended run achieved a two orders-of-magnitude improvement.

These encouraging results demonstrated that in the presence of vertically propagating acoustic

wave and for a setup in which both the pseudo-incompressible and the hydrostatic limit regimes

work reasonably well, the two blending strategies were effective in suppressing imbalances arising

from the initial data.

Thirdly, the one-step blending strategies were used to achieve balanced data assimilation.

In the experiments with blending and data assimilation, the blending strategies successfully

suppressed imbalances arising from the assimilation procedure in the shallow water vortex and

the rising bubble test cases. For these two test cases, the application of the balancing method

yielded the best error scores for all the quantities investigated. The characteristic error jump in

the pressure-related variables, arising from the imbalances introduced by data assimilation and

quantified in Appendix B, was also not present for these blended runs. Furthermore, the results

demonstrated that, in line with the theory, the relevant slower dynamics of the rising bubble

were not affected by the application of the blending strategy. Only the fast-mode imbalances

were eliminated.

In experiments with the Euler vortex, when the potential temperature field was not assimilated,

the issue of controllability dominated (see section 6.4.1 for more details), and the data assimilation

system failed to correctly reproduce the dynamics of the vortex. In this scenario, the application

of blending as a balancing method was insufficient to recover the balanced dynamics. However, by

assimilating all the quantities, data assimilation with blending recovered the balanced solution.

Furthermore and in agreement with these Euler vortex results, blended data assimilation with

the momentum fields alone is sufficient to recover the balanced solution for the shallow water

vortex case where the potential temperature distribution is a constant.

Nonhydrostatic–hydrostatic blending was investigated with data assimilation for the inertia-
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gravity wave test, and promising results were visible in the error scores of the Exner pressure

perturbation and the vertical momentum fields. For these two quantities, the run with blending

yielded the lowest error scores, and the error profile was largely free of kinks or oscillations. These

results suggest that the solution is indeed balanced for these two fields. However for the density

field, the blended run had a larger error score than that of the run with a plain data assimilation

scheme, and further studies are warranted to explain this observation. Nevertheless, by the end

of the simulation, both runs with data assimilation were able to attain lower error scores than

those of the control ensemble without data assimilation for all quantities investigated.

In all the data assimilation experiments above, no effort has been made to tune the data

assimilation scheme. It is a testimony of the blending strategies’ effectiveness that they work

in spite of an untuned data assimilation scheme. More details on what happens in the scenario

of more-optimal data assimilation schemes are provided in the appendices at the end of this

thesis. In particular, results from appendices A, D, and E suggest that combining a tuned data

assimilation scheme with the blending balancing method yields the best error scores that are not

achieved by the tuning of the data assimilation parameters alone.

7.1 Overview of the appendices

Chapter 6 established the principal capabilities of the blending strategies. The appendices at the

end of this thesis answer additional questions regarding the setup and consider several ‘what-if’

scenarios. The list below provides a summary of the content for each of the appendices.

Appendix A: The computation detail behind the variances used in generating the observation

noise is elaborated upon, and the variances are listed in Table A.1 and A.2. A study of

the effect of different variance choices on the error scores is then provided for the Euler

vortex, and the results show that because the observations are close to the truth, strong

assimilation of data is favoured for this test case.

Appendix B: A scale analysis argument is used to quantify the imbalances introduced by the data

assimilation procedure for the shallow water-lake blending and the compressible-soundproof

blending. Results from scale analysis reproduce the error jump visible in the water depth

perturbation field for the shallow water vortex and in the mass-weighted potential temper-

ature field for the Euler vortex and the rising bubble.

Appendix C: In a data assimilation experiment, the RMSE should be comparable to the ensem-

ble spread (Fortin et al., 2014). Therefore, the ensemble spread of the travelling vortices

and the rising bubble are provided here for comparison. In the case where all quantities

are assimilated for the Euler vortex, the RMSE and the ensemble spread are not compa-

rable, and an argument is provided to explain this observation which further supports the

motivation behind developing the balancing techniques in this thesis.
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Appendix D: Longer simulations are provided for the Euler vortex data assimilation experiment

with all quantities assimilated. Notions behind the convergence of the data assimilation

system are explored for these simulations, and three conclusions can be drawn. First, the

error scores of a compressible run with data assimilation and blending is comparable to a

pseudo-incompressible run with plain data assimilation alone; second, the data assimilation

system converges when compared to a control ensemble run with imbalanced solutions;

third, with a more favourable or optimal data assimilation setup, the data assimilation

system converges when compared to a control ensemble run with balanced solutions.

Appendix E: Localisation is a source of imbalances arising from the data assimilation proce-

dure. Here, the effect of the localisation region size on the balancedness of the solution

is explored. For the idealised Euler vortex test, data assimilation runs without blending

favour a moderate localisation region of approximately a quarter to half of the vortex di-

ameter, and data assimilation runs with blending favour a relatively smaller localisation

region.

7.2 Outlook and future work

Unphysical acoustic imbalances are a problem in numerical weather prediction, and various

methods have been explored to damp or remove these imbalances (e.g. Daley, 1988; Skamarock

and Klemp, 1992; Dudhia, 1995; Klemp et al., 2018). More generally, the assimilation of data

in the compressible flow equations may excite all fast-mode oscillations, and various filtering

techniques have been developed to eliminate unphysical imbalances (Ha et al., 2017). As such,

the blending strategies developed in this thesis are a substantial improvement in this direction.

The results demonstrated that the blending strategies were able to eliminate acoustic imbalances

and recover balanced analysis fields for the idealised test cases studied here. Furthermore, the

blending strategies developed here appear to be the first balancing method for the compressible

Euler equations that is cleanly dynamics-conforming.

The research developed in this thesis suggests several avenues for improvement, further inves-

tigation, and new development. A few of the possibilities are listed as follows.

First, the choice of an untuned data assimilation method used in this thesis has been substan-

tiated, although admittedly, the quality of the data assimilation method can be improved by

tuning its parameters. Therefore, a prudent next step will be a study along the lines of Popov

and Sandu (2019) on the multivariate tuning of the LETKF and the localisation parameters.

Such a study should also include the comparison of the blending method with established meth-

ods of achieving balanced data assimilation, e.g. by extending the comparison study between

the DFI and IAU in Polavarapu et al. (2004). Optimisation of the IAU, e.g. following Lei and

Whitaker (2016) and He et al. (2020), may also have to be carried out. Finally, as the DFI and
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IAU act as low-pass filters (Houtekamer and Zhang, 2016; Polavarapu et al., 2004), a detailed

investigation of the impact of the various balancing methods on the slow dynamics will be of par-

ticular interest, and this investigation will establish the necessity of a dynamics-driven balancing

method.

Second, future work may focus on a more comprehensive and careful treatment of the ar-

guments and investigations presented in this thesis. In particular, the blending strategies in

Chapter 4 are rather numerically focused and are based heavily on the discretisations detailed

in Chapter 3. However, the underlying mathematical structure of the continuum formulations

may be better explicated via the index of an algebraic differential equation or bounded derivative

principles. These mathematical concepts would help link the blending strategies to existing work

such as Hastermann et al. (2021). Furthermore, an in-depth study exploring the effects of data

assimilation on the Euler travelling vortex dynamics may be conducted. Of interest may be the

travelling vortex with non-zero Coriolis force, e.g. with the β-plane approximation, and in the

presence of Rossby and Lamb wave.

Third, in order to progress beyond the idealised test cases explored in this thesis, the function-

ality of the blended numerical model implemented in the Python code has to be extended substan-

tially. A natural extension of the existing code will be towards support for three-dimensional

moist dynamics with bottom topography (Durran and Klemp, 1983; O’Neill and Klein, 2014;

Duarte et al., 2015). Furthermore, the Python code could be better refactored, optimised,

and documented in line with good scientific programming practices (Wilson et al., 2014, 2017).

Full parallelisation of the code will be a worthy endeavour especially for the simulation of three-

dimensional problems, and an easy next step will be to tackle the embarrassingly parallel problem

of the ensemble simulation.

In addition, more complex idealised test cases may be constructed to further test the fidelity

of the blending strategies to the underlying dynamics. An example would be the superposition

of a Lamb wave with the imbalanced inertia-gravity wave. Blending to the hydrostatic regime

should balance the inertia-gravity wave pulses without affecting the dynamics of the Lamb wave,

and blending to the soundproof regime should eliminate the Lamb wave without affecting the

dynamics of the superimposed inertia-gravity wave. Such a test would establish blending as an

effective method to selectively eliminate unphysical dynamical phenomena.

Beyond the blending strategies developed here, the theoretical framework developed in Klein

and Benacchio (2016) included the unified model by Arakawa and Konor (2009) as one of the

reduced models. Therefore, with the appropriate extension to the blended numerical model, a

blending strategy between the compressible equations and the Arakawa-Konor limit model may

be developed. Such a blending strategy will allow for the filtering of smaller-scale acoustic noise

while leaving the Lamb wave components dynamically unaffected. Recent development in this

area can be found in Qaddouri et al. (2021) who introduced a numerical model that switches

between a variant of the compressible Euler equations and the Arakawa-Konor unified model.
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Furthermore, with an extension of the blended numerical model to support the appropriate limit

regimes, blending strategies can be developed to filter other unphysical noises, e.g., topographic

gravity wave noise (Zarzycki and Jablonowski, 2015) with an appropriate small Strouhal number

limit regime.

An open question arising from the extension of the ideas presented in this thesis towards real-

world numerical weather prediction is whether there will be a significant benefit in using the

compressible equations for making predictions between observations. Suppose we can (a) formu-

late appropriate limit regimes that selectively eliminate undesired components of our solution

while keeping the physically significant components, and (b) we can build the corresponding

blending switches and strategies. Then the results in this thesis demonstrate that we can control

which components of the solution to eliminate or keep through blending between the full and

limit regimes. Verifying this for complicated real-world applications will be a crucial next step.

As mentioned above, the compressible equations are currently our best description of the under-

lying dynamics. Therefore, the ability to judiciously select for physically relevant components of

the simulation solution may provide substantial advantages.

Apart from extending the blended numerical model towards real-world applications relevant to

numerical weather prediction, similar blending strategies may be developed for existing dynam-

ical cores. The blending strategies rely upon a semi-implicit discretisation of the compressible

Euler equations, and such a discretisation is used in various dynamical cores by weather centres

worldwide, e.g. the operational hydrostatic IFS spectral transform model in use at the European

Centre for Medium Range Weather Forecasts (ECMWF, Wedi et al., 2013), and the Met Office’s

Unified Model (Davies et al., 2005; Wood et al., 2014), which has a hydrostatic / nonhydrostatic

switch.

Of particular interest is the nonhydrostatic compressible IFS-FVM dynamical core at the

ECMWF (Kühnlein et al., 2019). The numerical discretisation behind this dynamical core is

similar to the blended numerical model used in this thesis, and therefore the IFS-FVM would be

an ideal candidate for the implementation of the blending strategies in a next-generation semi-

operational model. The blending strategies developed here may also be of particular relevance

to operational compressible models that are able to selectively employ the dynamics of a limit

model (Wood et al., 2014; Melvin et al., 2019; Voitus et al., 2019; Qaddouri et al., 2021).

The positive results presented in this thesis provide promising insights into the potential of

blending strategies that make use of multimodel numerics to switch between model regimes. The

impact will be considerable if these results can be replicated for real-world numerical weather

predictions.
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Appendix A

Modelling the observation error

For the data assimilation experiments in section 6.3, the observation noise is drawn from a

zero-mean Gaussian distribution. The variance is computed as 5% of the variance of the sparsely

observed field averaged over all observation time. Specifically, details on the computation of the

variances are provided below.

For a sparsely observed quantity without measurement noise Ynobs at observation time tnobs, we

compute the variance

(σnyobs
)2 = 1

Nobs

Nobs∑
s=1

(Ynobs(x, y)s − Ȳnobs)2, (A.1)

where s indexes the number of sparse observations Nobs, and (x, y)s represents the (x, y) spatial

point for the s-th sparse observation. Here, Ȳnobs is the mean of the sparsely observed field Yobs

at observation time tnobs,

Ȳnobs = 1
Nobs

Nobs∑
s=1
Ynobs(x, y)s. (A.2)

This gives us the variance (σnyobs
)2 for each sparsely observed quantity at each observation time

{t1obs, t
2
obs, . . . , t

N
obs}. Finally, the time-average of 5% of the variance for each of the observed

quantities is taken, i.e.,

σ̄2
yobs

= 1
N

N∑
n=1

0.05 (σnyobs
)2. (A.3)

The variances computed via the method outlined above are displayed in Table A.1 for the SWE

vortex test case and in A.2 for the rest of the experiments with the Euler equations.

For the rest of this appendix, we investigate the effect of the observation error covariance on

the results of the Euler travelling vortex experiment with data assimilation. This is done by

Table A.1: Values of the error variance in the observations of the SWE vortex test case, computed
as 5% of the variance of the sparsely observed fields averaged over all observation time.

Quantity
Variance

SWE Vortex

Water depth h [m] -

Horizontal momentum (hu) [m2 s−1] 1.9 ×10−2

Horizontal momentum (hv) [m2 s−1] 1.8 ×10−2

Water depth perturbation (h′) [m] -
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Table A.2: Values of the error variance in the observations of the test cases involving the Euler
equations, computed as 5% of the variance of the sparsely observed fields averaged
over all observation time.

Quantity
Variance

Vortex Bubble IGWave

Density (ρ) [kg m−2] 4.5× 10−4 - 2.0× 10−3

Horizontal momentum (ρu) [kg m−1 s−1] 0.064 0.022 2.1× 10−9

Horizontal momentum (ρv) [kg m−1 s−1] 0.064 - -

Vertical momentum (ρw) [kg m−1 s−1] - 0.032 9.3× 10−13

Mass-weight potential temperature (P ) [kg m−2 K] 6.7× 10−6 - 0.52

Exner pressure perturbation (π′) [dimensionless] 2.4 ×10−7 - 3.6 ×10−13

varying the choice of the variances used to generate the observation noise, and three sets of such

variances are investigated below.

The deterministic method of modelling the variance for the observation noise detailed above as-

sumes no prior knowledge of the observed dynamics. The idealised experiments in the manuscript

have a relatively small region where interesting dynamics is happening, e.g., within the vortex

structure or the rising bubble, and a larger constant background region. As such, the mean of

an observed field is close to the background state in the experiments, and observations of the

background are inadvertently close to this mean. This skews the computed variance towards

a value that is smaller than a variance computed by considering only the dynamics within the

regions of interest. We label this set of variances computed by the deterministic method outlined

above as DET.

Another choice of the set of variances could be guided by the dynamics of the observed field.

Considering the structure of the travelling Euler vortex, we empirically choose variances that are

approximately 10% of the typical values in the centre of the vortex. We label this empirical set

of variances as EMP.

Finally, as the difference between the variances in DET and EMP is large, we compute a

third set of variances by taking the logarithmic middle point between the DET and EMP sets

of variances. Specifically, for a variance σDET or σEMP in the set of variances DET or EMP

respectively, we compute the logarithmic middle point

log(σMID) = 1
2 [log(σDET) + log(σEMP)] , (A.4)

and σMID is recovered. We label this set of variances, obtained as the logarithmic middle point

between DET and EMP, as MID. The three set of variances, DET, MID, and EMP, are listed in

Table A.3.

Repeating the experiments in Figure 6.20 for all the quantities assimilated (i.e., the dashed
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Table A.3: Variances in DET, MID, and EMP.

Quantity
Variance

DET MID EMP

Density (ρ) [kg m−2] 4.5× 10−4 5.1× 10−3 5.8× 10−2

Horizontal momentum (ρu) [kg m−1 s−1] 6.4× 10−2 6.9× 10−1 7.5

Horizontal momentum (ρv) [kg m−1 s−1] 6.4× 10−2 6.9× 10−1 7.5

Mass-weight potential temperature (P ) [kg m−2 K] 6.7× 10−6 1.1× 10−3 1.7× 10−1

Exner pressure perturbation (π′) [dimensionless] 2.4× 10−7 1.4× 10−5 8.0× 10−4

curves) with these sets of variances yields the results in Figure A.1. We note that the DET

results (blue lines with square markers) correspond to the dashed curves in Figure 6.20.
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Figure A.1: Euler vortex: EnNoDA run (solid dotted, black), runs with observation error covari-
ances DET (blue squares), MID (green diamonds), and EMP (red stars) given in
Table A.3; EnDA runs (solid curves) and EnDAB runs (dashed curves). Assimilated
quantities are ρ, ρu, ρv, P, π′. RMSE from t = 0.0 s to 300.0 s for density ρ (top left,
[kg m−2]), mass-weighted potential temperature P (top right log-linear scale, [kg
m−2 K]), and momenta ρu, ρv (bottom left and right, [kg m−1 s−1]). The RMSE of
the initial ensemble is omitted.

After the first assimilation time at t = 25.0 s, runs with smaller observation error covariance

experience more severe nudging of the vortex structure towards the truth. This can be seen in

the magnitude of the initial decrease in the RMSE. However, as the observations assimilated

are sparse and noisy, a drastic nudging of the ensemble towards the observations destroys the

balanced vortex structure. This is exhibited in the DET EnDA run (solid blue curve), where
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the error increases after the initial assimilation step. On the other hand, the DET EnDAB run

(dashed blue curve) is able to cope with the drastic assimilation of data, and this run yields the

best error scores of all runs.

For the more moderate nudging of the vortex due to comparatively larger observation error

covariances, the RMSEs of the MID EnDA (solid green) and EMP EnDA (solid red) runs do not

increase significantly after the first assimilation time. In each of these cases, the corresponding

EnDAB run (dashed green and dashed red curves) performs better, albeit only marginally for

the quantities ρ, ρu, and ρv in the EMP case.

In all cases, runs with blending (EnDAB) are able to remove the imbalances in the pressure-

related P variable, and the error jump quantified in Appendix B is absent for these runs. Fur-

thermore, the RMSE of all the EnDAB runs remain below that of the control EnNoDA ensemble.

The results suggest the following for the experiments with idealised tests. In the scenario that

the observations are close to the truth, drastic assimilation of the observations may be beneficial

in that it nudges the ensemble closer towards the truth. However, too drastic an assimilation

can also be detrimental in that the procedure destroys the solution quality through imbalances

introduced. Application of the blending method developed here allows us to circumvent this

issue. With blending, the data assimilation procedure is more robust with regards to strong

assimilation of data.

The DET case has been consciously employed in the data assimilation experiments of this

thesis to highlight the effectiveness of the balancing strategies even when the results may be

sub-optimal with a plain data assimilation setup alone.
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Scale analysis of the data assimilation

error in the pressure-related fields

Figures 6.18, 6.20, and 6.22 show that data assimilation introduces an error jump in the water

depth perturbation h′ or in the pressure-related P variable. This increase in the error occurs

after the first assimilation time and remains of the same order of magnitude for the duration of

the simulation. It quantifies the imbalance introduced by data assimilation. The following scale

analysis corroborates this, and it is based on a similar scale analysis by Klein et al. (2001).

The assimilation of the momentum fields results in a change in the divergence of the velocity

fields,

∇ · (δv) = ∂δu

∂x
+ ∂δv

∂y
, (B.1)

where (δu, δv) are the changes in the velocity fields due to the assimilation of the horizontal

momentum fields. Equation (B.1) has the units [s−1]. The workings here can easily be adapted

for the vertical slice rising bubble experiment involving the momentum fields ρu and ρw.

On the other hand, observe from the plots of the ensemble members and mean in Figures 6.17,

6.19, and 6.21 that the imbalances introduced are fast-mode acoustic or shallow water waves.

These fast-mode imbalances are modelled as waves oscillating with peak amplitude right after

the assimilation of data at the grid point under analysis. Introducing the acoustic timescale as

tac, assume that the amplitude approaches zero after time tac. If the magnitude of the resulting

acoustic waves is due to these oscillating waves, the maximum possible contribution to the

magnitude from this setup corresponds to the period of the wave with positive amplitude.

Specifically, for an oscillating wave with amplitude arising from∇·(δv)(i,j), where the subscript

(i,j) denotes the grid point at (xi, yj) under analysis,

(∇ · δv)(i,j)

∫ tac

0
cos
(
π

2
t

tac

)
dt = 2tac

π
(∇ · δv)(i,j)

[∫ π/2

0
cos(ξ) dξ

]

= 2tac
π

(∇ · δv)(i,j) [sin(ξ)]π/20

= 2tac
π

(∇ · δv)(i,j), (B.2)

where ξ = (πt)/(2tac) is a change of variable. This yields the maximum possible magnitude of

the fast-mode acoustic wave that characterises the imbalance.

To avoid underestimation, the acoustic timescale tac is chosen as the timescale of the largest
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Appendix B Scale analysis of the data assimilation error in the pressure-related fields

perturbations introduced. In the experiments, this corresponds to the (11 × 11) localisation

region. As the analysis grid point is at the centre of this local region, a factor of 1/2 is introduced,

tac = 11
2

dx
cref

, (B.3)

where cref is the speed of sound, and dx is the grid-size which is a constant for the equidistant

grids used in the travelling vortex and the rising bubble experiments. Equation (B.3) has units

[s] and (B.2) is dimensionless.

In order to obtain an estimate for the contribution to the pressure from ∇ · (δv)(i,j), recall

that p = ρc2ref. Multiplying this with (B.2),

2tac
π
∇ · (δv)(i,j)ρ(i,j)c

2
ref ∼ p̂(i,j), (B.4)

which has the units of [Pa]. The hat ˆ signifies that the quantity is obtained from the scale

analysis of ∇ · (δv). Finally, we use the equation of state (2.2) to obtain an estimate for P̂ , the

mass-weighted potential temperature computed via scale analysis.

Applying a similar argument for the shallow water equations, we arrive at

2tac
π
∇ · (δv)(i,j)h(i,j) ∼ ĥ′(i,j), (B.5)

where

tac = 11
2

dx√
ghref

, (B.6)

with
√
ghref being the shallow water speed.

The scale analysis is applied to each ensemble member and over the whole domain. In order

to obtain a quantity that is comparable to the RMSEs in Figures 6.18, 6.20, and 6.22, the norm

is taken for ψ̂, where ψ̂ = P̂ for the experiments with the Euler equations, and ψ̂ = ĥ′ for the

shallow water vortex test. The norm is given by

∣∣∣ψ̂∣∣∣ = 1
K

K∑
k


√√√√ 1
Nx ×Ny

Nx,Ny∑
i,j

(
ψ̂(i,j)

) 
k

, (B.7)

where k indexes the K ensemble members and Nx and Ny are the number of grid-points in the

x and y coordinates (or (x, z) for the rising bubble test case).

Figure B.1 shows the results of the scale analysis for the SWE vortex test case and Figure

B.2 for the Euler vortex and the rising bubble test cases. Note that only contributions to h′ or

P from ∇ · (δv) to the flow fields are shown, i.e. outputs right after the assimilation of data

and before the solution of the flow fields are omitted. Comparing the figures to the h′ or P

RMSE plot of the respective test cases, scale analysis yields results for ĥ′ and P̂ that are of the

same order of magnitude as the jumps in the RMSE plots with a similar profile over time. The
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Figure B.1: Scale analysis of the contribution to water depth perturbation h′ from the divergence
of the velocity fields for the SWE vortex ensemble. The first assimilation time is
marked with a solid vertical black line.
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Figure B.2: Scale analysis of the contribution to the mass-weighted potential temperature P
from the divergence of the velocity fields for the Euler vortex ensemble (left) and the
rising bubble ensemble (right). A semi-logarithmic scale is used here. In the legend,
(all) represents the Euler vortex ensembles with all quantities, {ρ, ρu, ρw, P, π′},
assimilated. The first assimilation time is marked with a vertical solid black line.

quantities ĥ′ and P̂ obtained from the scale analysis marginally overestimate the increase in the

RMSEs. This is in line with the largest magnitude estimate used in (B.2) and with the largest

choice of tac in (B.3). The results from scale analysis show that the error jumps seen in the

pressure-related plots quantify the fast-mode imbalances introduced through the assimilation of

data.
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Appendix C

Ensemble spread of the data assimilation

experiments

The RMSE and the ensemble spread should be comparable (Fortin et al., 2014), and we

examine this statement here. The ensemble spread is calculated by

Ens. spread(ψ) =

√√√√ 1
K

1
Nx ×Ny

K∑
k=1

Nx,Ny∑
i,j=1

[
ψensemble
k (xi, yj)− ψ̄ensemble(xi, yj)

]2
, (C.1)

where k = 1, . . . ,K indexes the ensemble members and i = 1, . . . , Nx and j = 1, . . . , Ny the

number of grid points in the (x, y) coordinates. Here, ψ is the set of quantities {ρ, ρu, ρv, P, π},

and ψ̄ensemble(xi, yj) is the ensemble mean at grid point (xi, yj). For the vertical slice experiments,

equation (C.1) has to be modified with the z coordinate direction instead of y and ρw instead

of ρv.

The ensemble spread computed for the SWE vortex, Euler vortex, and the rising bubble

experiments are provided in Figures C.1, C.2, and C.3 respectively. The results show that

the data assimilation does what is to be expected. The data assimilation experiments do not

experience catastrophic filter divergence and there is no ensemble collapse (Harlim and Majda,

2010). However, the filter diverges under certain circumstances, and being able to account for

the filter divergence is at the core of the experiments with idealised tests in this thesis.

For ensemble data assimilation runs with only the momentum fields assimilated, the RMSE

and the ensemble spread are qualitatively comparable. For Euler vortex run with only the

momentum fields assimilated, i.e. the solid orange and green curves in in Figure 6.20, neither

the plain data assimilation nor data assimilation with the blending strategy is able to track the

vortex system. This is due to the dynamically relevant potential temperature field that is not

corrected by the assimilation of the velocity fields alone. Indications of the failure of the data

assimilation scheme to track the system can also be seen in the ensemble spread results (see the

solid orange and solid green lines in Figure C.2). Note, however, that assimilation of all variables

does allow the ensemble to closely track the reference vortex.

For the sparse observation of all quantities in the Euler vortex test case, the ensemble spreads

for both the EnDA and EnDAB runs (dashed lines in Figure C.2) decrease substantially. Yet

in the RMSE plots of Figure 6.20, the EnDA run is unable to recover the balanced state of the

system while the EnDAB run is able to do so quite well (compare the dashed orange and green
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Figure C.1: Ensemble spread of the SWE vortex: EnNoDA run (dots, solid black), EnDA run
(solid orange), EnDAB run (crosses, solid green). Assimilated quantities are hu and
hv. The water depth h (top left, [m]), water depth perturbation h′ (top right, [m]),
and momenta hu, hv (bottom left and right, [m2 s−1]). The spread of the initial
ensemble is omitted.
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Figure C.2: Ensemble spread of the Euler vortex: EnNoDA run (dots, solid black), EnDA run
(orange), EnDAB run (crosses, green). Assimilated quantities are ρu and ρv (solid
lines) and ρ, ρu, ρv, P, π′ (dashed lines). Density ρ (top left, [kg m−2]), mass-weighted
potential temperature P (top right log-linear scale, [kg m−2 K]), and momenta ρu, ρv
(bottom left and right, [kg m−1 s−1]). The spread of the initial ensemble is omitted.

lines in Figure 6.20). As shown in the snapshots of the ensemble members in Figure 6.19, the

reason for this disparity between the RMSE and the ensemble spread becomes apparent. Data

assimilation is effective, and the ensembles converge in both the EnDA and EnDAB experiments.

As to be expected, this convergence is reflected in the ensemble spread. However, the EnDA run

converges to an imbalanced state while the EnDAB converges to a balanced state. The former
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Figure C.3: Rising bubble ensemble spread: EnNoDA run (dots, solid black), EnDA run (solid
orange), EnDAB run (dashed green). Assimilated quantities are ρu and ρw. Density
ρ (top left, [kg m−2]), mass-weighted potential temperature P (top right log-linear
scale, [kg m−2 K]), and momenta ρu, ρw (bottom left and right, [kg m−1 s−1]).

leads to a large error score and the latter to a relatively lower error score. Furthermore, this

discrepancy implies the following. The ensemble spread as a metric alone is insufficient as an

indication of the balance of the analysis ensemble.

Assimilation of the momentum fields alone with the plain data assimilation scheme is insuf-

ficient to recover balanced solutions for the SWE vortex test (solid orange line in Figure 6.18)

and for the rising bubble test (solid orange line in Figure 6.22). The ensemble spread for these

experiments exhibit a similar jump after the first assimilation time, and this can be seen in solid

orange line in the top panels of Figure C.1 and in the top right panel of Figure C.3). In contrast,

by applying the blending strategies as a balancing method on top of the plain data assimilation

scheme, the balanced solutions were recovered for all the quantities in both the test cases (see the

dashed green curves in Figures 6.18 and 6.22). The corresponding ensemble spread also decreases

substantially for all quantities (dashed green curves in Figures C.1 and C.3).

In summary, the RMSE and the ensemble spread are comparable for all results investigated

here except for the Euler vortex run with all quantities assimilated. Nevertheless, this discrepancy

can be explained by considering the balance of the solution. A similar ensemble spread study

for the nonhydrostatic-hydrostatic blending is left for future work.
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Appendix D

On the convergence of the data

assimilation system

The convergence of the data assimilation experiments over a longer simulation time is studied in

this appendix. From experience and for the compressible-soundproof blending, the Euler vortex

test case is the most sensitive to the assimilation of data. As such, we restrict our attention

solely to the study of this test case here.

In Figure 6.20, the errors in the quantities ρ, ρu, and ρv for the ensemble simulation run with

data assimilation only (EnDA, {ρ, ρu, ρv, P, π′} observed, dashed orange curve) remain below

that of the control EnNoDA ensemble. The data assimilation system converges, and the vortex

structure remains compact for these quantities. The pressure-related quantities, P and π, in

contrast, are rendered out of balance in the first assimilation step as indicated by a sudden

increase of the error. This imbalance is analysed and quantified in Appendix B on the scale

analysis. The compact vortex structure in the pressure field is also destroyed, see the second

row of Figure 6.19. In summary, these results show that, over the simulation time horizon of

300.0 s, the data assimilation system evolves with an error that is lower than that of the control

ensemble for (ρ, ρu, ρv) while maintaining an error higher than that of the control ensemble for

the pressure variables P and π.

However, as long as acoustic imbalances are introduced by the assimilation procedure, the

error scores of the EnDA ensemble for the variables P and π will always be above those of

the control EnNoDA ensemble as the latter consists of balanced solutions only. The reason

is that acoustically balanced flows come with pressure variations of O(Ma2), whereas acoustic

perturbations come with much larger pressure fluctuations of O(Ma) for low Mach number flows.

Such acoustic fluctuations are triggered by the data assimilation procedure without balancing

while they are absent from the EnNoDA ensemble.

Over longer simulation times, the imbalances introduced into the pressure-related fields by

the data assimilation procedure cumulatively affect the balance of the other quantities, and the

RMSE of the quantities ρ, ρu, and ρv is bound to increase eventually. Three additional results

are provided below to demonstrate this effect, and an argument that the data assimilation system

nevertheless converges will be made.

In Figure D.1, the EnDA and EnNoDA experiments from Figure 6.20 are repeated in the

pseudo-incompressible regime. These runs are labelled as EnNoDA (psinc) and EnDA (psinc) in
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Figure D.1: Travelling vortex: pseudo-incompressible EnNoDA run (solid dotted, black), com-
pressible EnDA run (dashed orange), and pseudo-incompressible EnDA run (solid
orange, crosses). Assimilated quantities are ρ, ρu, ρv, P, π′. Spatially and ensemble
averaged RMSE from t = 0.0 s to 1000.0 s for density ρ (top left, [kg m−2]), dimen-
sionless Exner pressure perturbation π′ (top right, log-linear scale), and momenta
ρu, ρv (bottom left and right, [kg m−1 s−1]). The RMSE of the initial ensemble is
omitted.

the Figure. Acoustic imbalances are not present in the pseudo-incompressible solution, and as

seen in Figure D.1, the error jump characterised by the acoustic imbalances and introduced by

the data assimilation procedure is indeed not present in the Exner pressure perturbation π′ for

the EnDA (psinc) run. Thus, in the absence of acoustic imbalances, the data assimilation system

converges for all quantities assimilated over ten periods of the travelling vortex cycle (1000.0 s).

This conclusion supports the use of the blending strategies, as this balancing method is able to

dynamically remove acoustic imbalances. A longer simulation of the compressible EnDA result

with all quantities assimilated (dashed orange graph from Figure 6.20), labelled EnDA (comp)

here, is provided for comparison.

Figure D.1 shows that the error of the EnDA (comp) does not actually converge below that of

the EnNoDA control ensemble over a longer simulation time. This is due to the feedback from the

imbalances in the pressure-related fields, as mentioned above. Figure D.2 includes results from

an additional EnOneDA run alongside the compressible EnNoDA, EnDA (comp), and EnDAB

runs. The pseudo-incompressible EnDA run from Figure D.1, labelled EnDA (psinc), is included

for comparison. The EnOneDA run comprises the travelling vortex ensemble with only one

assimilation procedure at time t = 25.0 s. This data assimilation step introduces an imbalance

similar in magnitude to that in the EnDA run, so that the subsequent forward simulations create

a new ensemble without data assimilation and with imbalanced initial data.

Figure D.2 reveals that over a longer simulation period, the errors of the EnDA run converge
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Figure D.2: Travelling vortex: EnNoDA run (solid black, dots), EnOneDA run (dashed black,
triangles; see text for run details), pseudo-incompressible EnDA run (solid orange,
crosses), compressible EnDA run (dashed orange), and EnDAB run (dashed green,
crosses). Assimilated quantities are ρ, ρu, ρv, P, π′. Spatially and ensemble averaged
RMSE from t = 0.0 s to 1000.0 s for density ρ (top left, [kg m−2]), Exner pres-
sure perturbation π′ (top right log-linear scale, dimensionless), and momenta ρu, ρv
(bottom left and right, [kg m−1 s−1]). The RMSE of the initial ensemble is omitted.

below those of the EnOneDA run for all quantities. Therefore, if the control ensemble is chosen

such that it consists of vortices with imbalanced initial data, then the error of the EnDA run

converges below that of the imbalanced ensemble run for all the quantities assimilated, albeit

over a longer simulation time. In the experiments of chapter 6, however, we are interested in a

more challenging scenario: we wish to demonstrate that a data assimilation ensemble balanced

by the blending strategies is able to beat the scores of a freely evolving ensemble with balanced

solutions in all variables, including the pressure variables in particular. This is why an ensemble

with balanced solutions, EnNoDA, was chosen as the control ensemble. Moreover, comparison

of the EnDA (psinc) and EnDAB results demonstrates that the blending strategy achieves error

scores of comparable magnitude to those obtained with the pseudo-incompressible model which

suppresses fast acoustic degrees of freedom entirely, even though the EnDAB run is solved with

the compressible model that does allow for fast dynamics.

For Figure D.3, the EnDA setup from Figure 6.20 is modified such that 90% of the grid points

are observed (as opposed to 10%). Moreover from t = 25.0 s onward, observations are assimilated

every 5 s (as opposed to every 25.0 s), and a moderate localisation region size of (21× 21) grid

points is used (as opposed to a (11 × 11) localisation region). With these settings, the RMSE

of the quantities ρ, ρu, and ρv for the EnDA run converge below the RMSE of the EnNoDA

ensemble with balanced solutions. The imbalance introduced in the pressure-related quantities P

and π is mitigated by the larger localisation region and the large number of grid points observed,
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Figure D.3: Compressible travelling vortex: EnNoDA run (solid black, dots), EnOneDA run
(dashed black, triangles), EnDA run (dashed orange), and EnDAB run (dashed
green, crosses). Quantities ρ, ρu, ρv, P, π′ are assimilated every 5s, 90% of the grid
points are observed, and a localisation region of (21 × 21) grid points is applied.
Spatially and ensemble averaged RMSE from t = 0.0 s to 1000.0 s for density ρ (top
left, [kg m−2]), mass-weighted potential temperature P (top right log-linear scale,
[kg m−2 K]), and momenta ρu, ρv (bottom left and right, [kg m−1 s−1]). The RMSE
of the initial ensemble is omitted.

and the corresponding increase in the RMSE in P is smaller in comparison to that of Figure 6.20.

An EnOneDA run similar to the one in Figure D.2, but with the modified data assimilation setup

detailed in this paragraph, is depicted for comparison. It is seen that if the data assimilation

setup is tuned so as to largely mitigate the imbalances, the data assimilation system would

converge for the quantities ρ, ρu, and ρv. The RMSE scores of the EnDA run for P are also

lower than those for the EnOneDA run, which is the “fair” comparison. As explained above by

the Mach number scaling argument, however, even with the tuned parameters the EnDA run

is unlikely to beat scores of the EnNoDA run (with balanced solutions) due to the imbalances

introduced by the data assimilation procedure.

In the longer simulation runs above, the truth and observations are obtained from the analytical

solution of the stable travelling vortex.
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Appendix E

Localisation region and imbalances

In this appendix, the effect of the localisation region on the imbalances introduced is investi-

gated, specifically for the Euler vortex test case. Similar results can be seen for the SWE vortex

and the rising bubble tests, but these results are not shown nor discussed here. Note that this

study appeared in Chew et al. (2021).

Varying localisation radii for the EnDA and EnDAB ensembles are investigated, and the goal

of this study is not to obtain the optimal choice of the localisation radius but to illustrate its

effect on the imbalances. All the quantities are assimilated for the Euler vortex test case, and

localisation regions of (5× 5), (11× 11), (21× 21) and (41× 41) grid points are used in addition

to a run without localisation (EnNoLoc). Otherwise, the setup follows the parameters laid out

in section 6.3.1 and Table 6.2.

For the EnDA experiments in Figure E.1, the balanced vortex structure is preserved for the

quantities ρ, ρu, and ρv, and here, the size of the localisation region used plays an important

role in the quality of the data assimilation.

For small localisation regions, fewer observations are assimilated for each grid point under

analysis, and the effect of data assimilation is less severe. This leads to a more gradual nudging

of the ensemble towards the truth, and the drop in the RMSE after the first assimilation time

at t = 25.0 s is less drastic. This can be seen in the top left and the bottom panels of Figure

E.1 where the run with a (5 × 5) localisation region (solid magenta with square markers) has

the least drastic decrease in the RMSE at t = 25.0 s of all the runs, and the RMSEs continue to

decrease gradually over the subsequent assimilation steps. However, the small localisation region

also leads to severe imbalances, and this can be seen in the pressure-related quantity P where

the run with a (5× 5) localisation region exhibits the largest error jump after t = 25.0 s.

For moderately small localisation regions, e.g. (11×11) (solid orange line with triangle markers

in Figure E.1), more observations are assimilated for each grid point under analysis and the effect

of data assimilation becomes more pronounced. This leads to a drastic decrease in the RMSE

of the quantities ρ, ρu, and ρv after the first assimilation time at the expense of destroying

the balanced compact vortex structure. At the same time, the imbalances introduced by the

localisation remains severe, and the jump in the error of the P variable is large. In such a case,

contributions from these two sources of errors overlap, and the increase in the RMSE over time

becomes large. As a result, the run with a (11× 11) localisation region has the largest error at

the simulation end time among all the runs with data assimilation.
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Figure E.1: Travelling vortex: EnNoDA (black dots) and EnDA experiments corresponding to
localisation regions with (5×5) (magenta squares), (11×11) (orange triangles), (21×
21) (yellow diamonds), and (41×41) (cyan stars) grid points, and EnNoLoc without
localisation (brown crosses). Assimilated quantities are ρ, ρu, ρv, P, π′. Spatially and
ensemble averaged RMSE from t = 0.0 s to 300.0 s for density ρ (top left, [kg m−2]),
mass-weighted potential temperature P (top right log-linear scale, [kg m−2 K]), and
momenta ρu, ρv (bottom left and right, [kg m−1 s−1]). The RMSE of the initial
ensemble is omitted.

In comparison, a small localisation region does not exhibit such an overlapping of the two error

sources, as the gentle nudging of the ensemble towards the truth better preserves the compact

vortex structure. As such, the run with a (5× 5) localisation region has only moderate increase

in the RMSE towards the end of the simulation, and its error scores for the quantities ρ, ρu, and

ρv are significantly below that of the run with a (11× 11) localisation region.

For large localisation regions, e.g. (21× 21) (solid yellow line with diamond markers in Figure

E.1) and (41× 41) (solid cyan line with star markers), the imbalances introduced by local data

assimilation is less severe, and this can be seen in the moderate error jumps in the P variable

after t = 25.0 s. For the run without localisation (EnNoLoc, solid brown line with cross markers),

the error jump in P is almost non-existent, although a residual imbalance is introduced, and this

is seen in the fluctuation of the error profile over time when compared to the smoother error

profile of the balanced EnNoDA run (solid black dotted line). As expected, EnDA runs with

larger localisation regions tend to have a lower error score.

However, a localisation region that is too large leads to an oversampling of the dynamics. Grid

points under analysis inside of the compact vortex structure are influenced by observations of the

background and vice versa. As a result, the vortex becomes more diffused or spread out as the
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assimilation procedure is repeated. The effect of this oversampling can be seen in, for example,

the EnNoLoc run in Figure E.1, and the (41× 41) and the EnNoLoc runs in Figure E.2, where

the error scores towards the end of the simulation are higher than that of a run with only a

moderate localisation region.
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Figure E.2: Travelling vortex: EnNoDA (black dots) and EnDAB experiments corresponding to
localisation regions with (5 × 5) (magenta squares), (11 × 11), (orange triangles),
(21 × 21) (yellow diamonds), and (41 × 41) (cyan stars) grid points, and EnNoLoc
without localisation (brown crosses). See Figure E.1 for the details of the panels.

Application of the blending strategies to data assimilation as a balancing mechanism eliminates

the imbalances from a local data assimilation procedure. As a result, smaller localisation regions

may be used with fewer detrimental effects, and the best error scores are achieved by an EnDAB

run with a localisation region of (11×11) grid points (dashed orange line with triangle markers in

Figure E.2). The higher RMSE in the (5×5) run (dashed magenta line with square markers) may

be due to the undersampling of the vortex dynamics. This is the opposite of the oversampling

effect described above.

As the run with a localisation region of size (11× 11) grid points best highlights the positive

benefits of the blending strategy, this choice of the localisation region is used for Euler vortex

experiments in chapter 6.
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Zusammenfassung

Die lokale sequentielle Bayes’sche Datenassimilation verursacht unphysikalische Imbalancen.

Dies stellt eine Herausforderung für die Modellierung geophysikalischer Strömungen dar und

hat Auswirkungen auf robuste numerische Wettervorhersagen. Das Auftreten sich schnell aus-

breitender Imbalancen von der Größenordnung der betreffenden langsameren Dynamik vermin-

dert die Lösungsqualität. Diese Arbeit führt dynamikgesteuerte Methoden ein, die Imbalancen

aus der Datenassimilation unterdrücken und so dem oben beschriebenen Effekt entgegenwirken.

Konkret wird für die kompressiblen Strömungsgleichungen mit Schwer- und Corioliskraft ein

numerisches Modell in gemischter Form verwendet, welches auf schalldichte und hydrostatische

Dynamik zurückgreifen kann. Dieses Modell wird dann formal erweitert, um einen nahtlosen

Übergang zwischen den Flachwassergleichungen und deren inkompressiblem Analogon, den so-

genannten “lake-equations”, zu ermöglichen. Durch sorgfältige numerische und asymptotische

Analysen werden ferner einstufige Blending-Strategien entwickelt, die einen nahtlosen Wechsel

zwischen den Modellregimen während des Simulationslaufs ermöglichen. Nach der Assimilation

der Daten wird die Modellkonfiguration für einen Zeitschritt in das Grenzregime überführt. An-

schließend wird die Modellkonfiguration für die Dauer des Assimilationsfensters wieder auf das

Flachwasser- oder das kompressible Modell eingestellt. Dieser Wechsel zwischen den Modellreg-

imen wird für jedes weitere Assimilationsfenster wiederholt, um die durch die Assimilation der

Daten entstehenden Imbalancen zu beseitigen. Idealisierte Experimente mit dem wandernden

Wirbel, der auftriebsgetriebenen aufsteigenden atmosphärischen Blase und den Trägheitsschw-

erewellen zeigen, dass die Blending-Strategien unphysikalische Imbalancen erfolgreich beseitigen

und Abweichungen um bis zu zwei Größenordnungen verkleinern. Diese neuartige dynamikkon-

forme Methode zur Erlangung einer balancierten Datenassimilation kann erweitert werden, um

andere Formen von Imbalancen zu eliminieren. Sie hat das Potenzial, durch Datenassimilation

erzeugte Störsignale in numerischen Wettervorhersagesimulationen zu reduzieren.
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