
  
 

 

 

Towards the rational use of antibiotics: 

Utilising pharmacometric approaches to 

improve meropenem and piperacillin 

treatment in critically ill patients 

 

 

 
Inaugural-Dissertation  

to obtain the academic degree 

Doctor rerum naturalium (Dr. rer. nat) 

 

submitted to the Department of Biology, Chemistry, Pharmacy 

of Freie Universität Berlin 

 

 

by  

Ferdinand Anton Weinelt 

from Ellwangen (Jagst) 

 

 

2022 



i 
 

  



ii 
 

  



iii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The present thesis was conducted from 2018 to 2022 under the 

supervision of Prof. Dr. Charlotte Kloft at the Institute of Pharmacy, Freie 

Universität Berlin. 

 

 1. Reviewer: _Prof. Dr. Charlotte Kloft_____ 

 2. Reviewer: _Prof. Dr. Sebastian Wicha____  

 

Date of disputation: ___09.12.2022________  

 

 

 



iv 
 

  



v 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my parents for unconditional and limitless support  



vi 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hierdurch versichere ich, dass ich meine Dissertation selbstständig verfasst 

und keine anderen als die von mir angegeben Quellen und Hilfsmittel verwendet habe. Die 

Dissertation ist in keinem früheren Promotionsverfahren angenommen oder abgelehnt worden. 

  



vii 
 

Abstract 
 

In 1909 the discovery of the antibiotic arsphenamin marked the beginning of a new era in treating 

potentially deadly bacterial infections. In the following decades, the discovery of various new 

antibiotic drugs substantially contributed to a rise in life expectancy from 47.0 to 78.8 years in the 

United States of America. Despite this considerable progress in treating infectious diseases, bacterial 

infections remain a major threat to public health. Especially vulnerable patient populations, like 

critically ill patients, continued to suffer under mortality rates up to 60%. Worryingly, the described 

achievements are threatened by two alarming developments: While no truly novel antibiotic classes 

have been discovered and developed in the last three decades, the emergence and spread of 

antimicrobial resistance -accelerated by the inappropriate use of antibiotic drugs - steadily reduces 

the efficacy of currently available drugs. As a response to this new challenge, several national and 

international action plans call not only for a determined search for new antimicrobial drugs, but also 

for a more rational use of existing antibiotics. One vital component of rational antibiotic drug therapy 

is an adequate drug exposure at the site of infection, facilitated by the selection of suitable antibiotic 

drug(s) in combination with an appropriate dosing regimen. The antibiotic drug administered to the 

patient should be selected based on its efficacy against the pathogen causing the infection. 

Unfortunately, the pathogen causing the infection is often unknown at the start of antibiotic therapy. 

As a consequence, broad spectrum antibiotics – like meropenem and piperacillin/tazobactam -  are 

frequently administered to increase the likelihood of an effective therapy. The selection of an 

appropriate dosing regimen can be complicated and is especially challenging in critically ill patients: 

The broad range of pathophysiological changes observed in this patient population leads to high 

pharmacokinetic (PK) variability, which results in substantial differences in drug exposures between 

patients receiving the same antibiotic drug and dosing regimen. Under the concept of model-

informed precision dosing (MIPD), population pharmacokinetic/pharmacodynamic models and 

patient-specific data (e.g. patient characteristics, drug measurement(s)) can be leveraged to inform 

and improve dosing decisions in this vulnerable patient population.  

The objective of the presented thesis was the development, implementation and evaluation of MIPD 

tools for antibiotic drugs in critically ill patients. To enable the successful integration of MIPD into 

clinical practice an iterative, integrative and translational approach was followed. The initial and 

central question ’Is the current antibiotic dosing appropriate?’, was iteratively addressed integrating 

expertise from a diverse interprofessional team of healthcare professionals and can be segmented 

into four intermediate steps, all vital to the main objective. First, and as a prerequisite both for model 

development/evaluation and dosing adaptation, the establishment of a reliable and frequent antibiotic 

concentration measurement program was required. Second, the collected data was analysed 

employing pharmacometric and statistical methodology to characterise population 
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PK/pharmacodynamics (PD) and local factors influencing antibiotic therapy (e.g. local pathogen 

susceptibility). Third, the gained scientific knowledge was translated into easy-to-use, model-

informed dosing tools and comprehensive dosing strategies optimised for clinical practice. And 

fourth, the developed model-informed dosing tools were implemented into clinical routine and 

subsequently evaluated and optimised. This thesis focused on meropenem and the fixed drug 

combination piperacillin/tazobactam and addressed individual or multiple of these four steps in three 

different projects.  

In Project I, a possible adsorption of the antibiotic meropenem at the cytokine adsorber CytoSorb®, 

its effect on meropenem exposure and possible consequences for an adequate meropenem dosing 

were investigated. Despite the absence of clear evidence for a beneficial effect on patients outcomes, 

the CytoSorb® filter is increasingly used to reduce circulating cytokines in patients experiencing 

sepsis. Due to its unspecific binding and therefore elimination of molecules up to a molar mass of 55 

kDa, concerns have been raised that the CytoSorb® filter unintentionally adsorbs various drugs 

including meropenem. To investigate if meropenem dosing needs to be increased during CytoSorb® 

treatment, a nonlinear mixed-effects (NLME) modelling and simulation approach was employed: A 

population pharmacokinetic model was developed and three distinct approaches to assess if 

meropenem clearance differed without or during CytoSorb® treatment were applied: (i) 

quantification of a possible proportional increase in clearance during CytoSorb® treatment (ii) 

investigation of (non)saturable adsorption at the CytoSorb® filter using different adsorption 

submodels and (iii) model parameter re-estimation excluding samples collected during CytoSorb® 

treatment and evaluating the predictive performance for meropenem concentrations during 

CytoSorb® treatment. In contrast to the expectation of meropenem being adsorped at the CytoSorb® 

filter, no significant (p<0.05) or relevant effect of CytoSorb® treatment on meropenem exposure was 

observed. Consequently, neither additional dosing nor a more frequent drug concentration 

monitoring of meropenem is necessary during the application of CytoSorb® therapy.  

Project II focused on improving meropenem and piperacillin/tazobactam treatment for critically ill 

patients at the Charité-Universitätsmedizin Berlin. For this purpose, a 3-staged clinical study was 

initiated as a coordinated intervention. In stage I, a frequent and reliable concentrations measurement 

program was implemented to evaluate the current antibiotic therapy. The assessment of the current 

antibiotic therapy provided insights about local pathogen susceptibility, while highlighting the need 

for dose individualisation based on patient characteristics: The majority (>90%) of observed 

pathogens were susceptible to the two administered antibiotic drugs, but target range attainment 

(minimum antibiotic drug concentrations between 1 and 5 times minimum inhibitory concentration 

(MIC) of the pathogen) was low for the observed drug concentrations (meropenem: 35.7%, 

piperacillin: 50.5%) and highly variable between patients with different renal functions. To improve 

initial meropenem dosing (i.e. prior to the first concentration measurement) and to exploit the newly 
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gained information about the local pathogen susceptibility, a tabular model-informed dosing tool was 

developed and implemented in stage II of the study. For the development of the tool, an appropriate 

meropenem PK model was selected from literature and successfully evaluated using the local clinical 

data. The PK model was then used to conduct stochastic simulations investigating clinically relevant 

dosing regimens, possible clinical scenarios and the probability of the dosing regimens to achieve 

adequate drug exposures. To inform dosing prior to pathogen identification, the local pathogen-

independent mean fraction of response (LPIFR) was introduced: The LPIFR characterises the 

probability of a dosing regimen to reach a defined target, e.g. time above the MIC, if only the 

underlying MIC distribution at a hospital and not the individual MIC of the pathogen causing the 

infection is known. To inform dosing after MIC value determination, probability of target attainment 

analyses (PTA) were performed. Dosing recommendations achieving PTA>90% or LPIFR>90% for 

patients with different creatinine clearances (10.0-300 mL/min) were derived and summarised in one 

concise and clear table. To assess the potential of the newly developed model-informed dosing tool 

prior to implementation, the total daily dose of the dosing regimens recommended by the dosing tool 

for the local study population was compared to the total daily dose of the actually administered dosing 

regimens. For 77% of the patients with meropenem concentrations outside the target range, the 

dosing tool suggested a change in daily dose, highlighting the potential of the tool to optimise dosing 

regimens. To integrate patient individual antibiotic drug measurements and allow for more user 

flexibility, an interactive model-informed dosing software termed ‘DoseCalculator’ was developed 

for stage III of the study. In addition to the meropenem PK model already evaluated for stage II of 

the study, different piperacillin/tazobactam models were extracted from literature, evaluated using 

the local clinical data collected in stage I of the study and the best performing model implemented 

into the tool. Based on available knowledge about the infection, three possibilities to calculate the 

probability of a dosing regimen to reach adequate antibiotic exposures were integrated into the tool: 

(i) the LPIFR if neither the pathogen nor the MIC is available, (ii) the cumulative fraction of response 

(CFR) based on the MIC distribution of a specific pathogen if the pathogen is available and (iii) the 

PTA if the MIC is available. Furthermore, employing a maximum a-posterior (MAP) estimation 

approach the observed antibiotic drug measurement(s) of a patient can be used in the DoseCalculator 

to derive patient individual parameter estimates. If drug measurement(s) of a patient are supplied, all 

analyses and the resulting recommended dosing regimen are based on the individual parameter 

estimates of the patient. Compared to the observed dosing in stage I, the recommendations of the 

DoseCalculator led to a substantial relative increase in predicted target attainment (322% 

meropenem, 505% piperacillin) while reducing the daily dose (median reduction: 77.8% meropenem, 

83.4% piperacillin).  

In Project III the MeroRisk Calculator, an easy-to-use Excel tool to determine the risk of meropenem 

target non-attainment after standard dosing previously developed at our department, was evaluated 

using clinical routine data. Since the direct evaluation of the MeroRisk Calculator was not feasible 
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with the available retrospective clinical dataset, a two-step data- and model-based evaluation was 

conducted: In step one, a meropenem PK model was successfully evaluated using the clinical data. 

In step two, the evaluated PK model was used as a benchmark for the drug concentration and risk 

predictions of the MeroRisk Calculator. Compared to the successfully evaluated compartmental PK 

model, the MeroRisk Calculator provided an equally good and reliable risk assessment (Lin’s 

concordance correlation coefficient = 0.99) for patients with maintained renal function (creatinine 

clearance > 50 mL/min). However, for patients with creatinine clearances below 50 mL/min 

significant deviations were observed. As a consequence, the MeroRisk Calculator should not be used 

in patients with (severe) renal impairment. In addition to the successful evaluation, the functionality 

of the MeroRisk Calculator was extended. Based on CFR analysis and EUCAST reported MIC value 

distributions, risk of target non-attainment can now be assessed depending on the infecting pathogen 

informing dosing decisions prior to MIC value determination.  

To conclude, the presented thesis contributed to an individualised and more rational antibiotic drug 

therapy in critically ill patients. While PK modelling was employed in Project I to exclude a clinically 

relevant adsorption of meropenem at the CytoSorb® filter, Project II and Project III represent a 

successful example on development, implementation and evaluation of MIPD tools. As a next step, 

both the tabular model-informed dosing tool and the DoseCalculator should be prospectively 

evaluated at Charité-Universitätsmedizin Berlin. The results from this evaluation in particular and 

this thesis demonstrate the potential of MIPD using comprehensive examples on how to develop, 

implement and evaluate model-informed dosing tools and contribute to the accelerating 

implementation of MIPD into clinical practice.  
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Zusammenfassung 
 

Die Entdeckung des Antibiotikums Arsphenamin im Jahr 1909 markierte den Beginn einer neuen 

Ära in der Behandlung potenziell tödlicher bakterieller Infektionen. In den folgenden Jahrzehnten 

trug die Entdeckung verschiedener neuer Antibiotika wesentlich zu einem Anstieg der 

Lebenserwartung in den Vereinigten Staaten von Amerika von 47,0 auf 78,8 Jahre bei. Trotz dieser 

beträchtlichen Fortschritte bei der Behandlung von Infektionskrankheiten stellen bakterielle 

Infektionen nach wie vor eine große Gefahr für die öffentliche Gesundheit dar. Besonders gefährdete 

Patientengruppen, wie z. B. Intensivpatienten, leiden weiterhin unter Sterblichkeitsraten von bis zu 

60%. Besorgniserregend ist, dass die beschriebenen Fortschritte in der Behandlung von 

Infektionskrankheiten durch zwei alarmierende Entwicklungen gefährdet sind: Während in den 

letzten drei Jahrzehnten keine neuen Antibiotikaklassen entdeckt und entwickelt wurden, verringert 

die Entstehung und Ausbreitung antimikrobieller Resistenzen, unter anderem beschleunigt durch den 

unsachgemäßen Einsatz von Antibiotika, die Wirksamkeit der derzeit verfügbaren Medikamente. Als 

Reaktion auf diese neue Herausforderung wird in nationalen und internationalen Aktionsplänen nicht 

nur eine entschlossene Suche nach neuen antimikrobiellen Medikamenten, sondern auch ein 

rationalerer Einsatz der vorhandenen Antibiotika gefordert. Ein wesentlicher Bestandteil einer 

rationalen Antibiotikatherapie ist eine angemessene Medikamentenexposition am Ort der Infektion, 

die durch die Auswahl eines geeigneten Antibiotikums in Kombination mit einem geeigneten 

Dosierungsschema erreicht wird. Das dem Patienten verabreichte Antibiotikum sollte auf der 

Grundlage seiner Wirksamkeit gegen den Erreger der Infektion ausgewählt werden. Leider ist der 

Erreger der Infektion zu Beginn der Antibiotikatherapie oft nicht bekannt. Daher werden häufig 

Breitbandantibiotika - wie Meropenem und Piperacillin/Tazobactam - verabreicht, um die 

Wahrscheinlichkeit einer wirksamen Therapie zu erhöhen. Die Auswahl eines geeigneten 

Dosierungsschemas kann kompliziert sein und ist besonders bei schwerkranken Patienten eine 

Herausforderung. Das breite Spektrum an pathophysiologischen Veränderungen, das bei dieser 

Patientenpopulation zu beobachten ist, führt zu einer hohen pharmakokinetischen (PK) Variabilität. 

Diese Variabilität führt wiederum zu erheblichen Unterschieden in der Arzneimittelexposition 

zwischen Patienten, die das gleiche Dosierungsschema erhalten. Im Rahmen des Konzepts der 

modellgestützten Präzisionsdosierung (model-informed precision dosing, MIPD) können 

populationspharmakokinetische Modelle und patientenspezifische Daten (z. B. 

Patientencharakteristika, Konzentrationsmessung(en)) genutzt werden, um 

Dosierungsentscheidungen in dieser vulnerablen Patientengruppe zu verbessern.  

Das Ziel der vorliegenden Arbeit war die Entwicklung, Implementierung und Evaluierung von MIPD 

Tools um die Antibiotikatherapie bei kritisch kranken Patienten zu verbessern. Um die erfolgreiche 

Integration von MIPD in die klinische Praxis zu ermöglichen, wurde ein iterativer, integrativer und 
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translationaler Ansatz verfolgt. Die anfängliche und zentrale Frage "Ist die derzeitige 

Antibiotikadosierung angemessen?" wurde iterativ unter Integration des Fachwissens eines 

vielfältigen interprofessionellen Teams adressiert und kann in vier Zwischenschritte unterteilt 

werden: Erstens, die Einrichtung eines zuverlässigen und regelmäßigen 

Konzentrationsmessprogramms als Voraussetzung für die Modellentwicklung/-bewertung und die 

Dosisanpassung während der Therapie. Zweitens, die Analyse der gesammelten Daten mit Hilfe 

pharmakometrischer und statistischer Methoden. Fokus hierbei war es die PK/Pharmakodynamik 

(PD) der Population und lokale Faktoren, die die Antibiotikatherapie beeinflussen (z. B. 

Empfindlichkeit der Erreger gegenüber einzelner Antibiotika) zu charakterisieren. Drittens, die 

Anwendung der gewonnenen wissenschaftlichen Erkenntnisse durch einfache, modellgestützte 

Dosierungsinstrumente und umfassende, für die klinische Praxis optimierte Dosierungsstrategien. 

Und viertens die Implementierung, Evaluierung und Optimierung der entwickelten modellgestützten 

Dosierungsinstrumente. Die vorgelegte Arbeit konzentrierte sich auf Meropenem und die 

Wirkstoffkombination Piperacillin/Tazobactam und behandelte einzelne oder mehrere dieser vier 

Schritte in drei verschiedenen Projekten.  

In Projekt I wurde eine mögliche Adsorption des Antibiotikums Meropenem an den Zytokinadsorber 

CytoSorb® und die daraus folgenden Konsequenzen auf die Meropenemexposition und adequate 

Dosierungsschemata untersucht. Obwohl es bis heute keine verlässlichen Belege für eine positive 

Auswirkung auf den Krankheitsverlauf gibt, wird der CytoSorb®-Filter häufig zur Reduzierung der 

zirkulierenden Zytokine bei Patienten mit Sepsis eingesetzt. Da der CytoSorb®-Filter Moleküle bis 

zu einer molaren Masse von 55 kDa unspezifisch bindet und eliminiert, könnte der CytoSorb®-Filter 

unbeabsichtigt auch verschiedene Arzneimittel, darunter Meropenem, adsorbieren. Um zu 

untersuchen, ob die Meropenem-Dosierung während der CytoSorb®-Behandlung erhöht werden 

muss, wurde ein NLME-Modellierungs- und Simulationsansatz verwendet: Bei der Entwicklung des 

populationspharmakokinetisches Modells wurden drei verschiedene Ansätze angewandt, um 

festzustellen, ob sich die Meropenem-Clearance während der CytoSorb®-Behandlung verändert: (i) 

Quantifizierung eines möglichen proportionalen Anstiegs der Clearance während der CytoSorb®-

Behandlung, (ii) Untersuchung der (nicht) sättigbaren Adsorption am CytoSorb®-Filter unter 

Verwendung verschiedener Adsorptions-Submodelle und (iii) erneute Schätzung der 

Modellparameter unter Ausschluss der während der CytoSorb®-Behandlung gesammelten Proben 

und Bewertung der Vorhersageleistung für die Konzentrationen während der CytoSorb®-

Behandlung. Es wurde jedoch kein signifikanter (p<0,05) oder relevanter Effekt der CytoSorb®-

Behandlung auf die Meropenem-Exposition festgestellt. Folglich ist während der Anwendung der 

CytoSorb®-Therapie weder eine zusätzliche Dosierung noch eine häufigere Überwachung der 

Meropenem-Konzentration erforderlich. 
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Projekt II konzentrierte sich auf die Verbesserung der Meropenem- und Piperacillin/Tazobactam-

Behandlung von kritisch kranken Patienten an der Charité-Universitätsmedizin Berlin. Zu diesem 

Zweck wurde eine 3-stufige klinische Studie initiiert. In Stufe 1 wurde ein Programm zur 

regelmäßigen und zuverlässigen Konzentrationsmessung von Antibiotika eingeführt und die aktuelle 

Antibiotikatherapie bewertet. Die Bewertung der aktuellen Antibiotikatherapie lieferte Erkenntnisse 

über die Empfindlichkeit der lokalen Erreger und machte gleichzeitig deutlich, dass die Dosierung 

auf der Grundlage individueller Patientenmerkmale angepasst werden sollte: Die Mehrheit (>90 %) 

der beobachteten Erreger war empfindlich gegenüber den beiden verabreichten Antibiotika, 

gleichzeitig wurde der Zielbereich bei den beobachteten Wirkstoffkonzentrationen nur selten erreicht 

(Meropenem: 35,7 %, Piperacillin: 50,5 %). Der Anteil der Konzentrationsmessungen im Zielbereich 

variierte stark zwischen Patienten mit unterschiedlichen Nierenfunktionen. Um die 

Meropenemdosierung bei Therapiestart und damit vor der ersten Konzentrationsmessung zu 

verbessern und um neu gewonnenen Informationen über die lokale Erregerempfindlichkeit zu 

nutzen, wurde ein tabellarisches, modellgestütztes Dosierungstool entwickelt und in Stufe 2 der 

Studie eingesetzt. Für dieses Tool wurde ein Meropenem PK-Modell aus der Literatur ausgewählt 

und mit Hilfe der lokalen klinischen Daten von Stufe 1 erfolgreich evaluiert. Im nächsten Schritt 

wurde das PK-Modell verwendet, um mit Hilfe von stochastischen Simulationen klinisch relevante 

Dosierungsschemata, Szenarien und die Wahrscheinlichkeit adäquate Antibiotikakonzentrationen zu 

erreichen zu untersuchen. Um die beste Dosierung vor der Identifizierung des Erregers auszuwählen, 

wurde die “local pathogen-independent mean fraction of response“ (LPIFR) eingeführt. Die LPIFR 

beschreibt die Wahrscheinlichkeit eines Dosierungsschemas, ein definiertes Ziel z. B. eine Zeit 

oberhalb der MIC, zu erreichen wenn nur die zugrunde liegende MIC-Verteilung in einem 

Krankenhaus und nicht die individuelle MIC des Erregers bekannt ist. Für den Fall, dass die MIC 

des Erregers bekannt ist, wurden „proabiltiy of target attainment“ Analysen (PTA) durchgeführt. 

Dosierungen die eine PTA oder LPIFR >90% erreichten, wurden geordnet nach Kreatinin-Clearance 

(10,0-300 ml/min) in einer prägnanten und übersichtlichen Tabelle zusammengefasst. Um das 

Potenzial der neu entwickelten modellgestützten Dosierungstabellen zu bewerten, wurde die tägliche 

Gesamtdosis der von den Dosierungstabellen empfohlenen Dosierungsschemata mit der täglichen 

Gesamtdosis der tatsächlich verabreichten Dosierungsschemata für die lokale Studienpopulation 

verglichen. Bei 77% der Patienten mit Proben außerhalb des Zielbereichs schlug das Dosierungstool 

eine Änderung der Tagesdosis vor. Dieses Ergebnis unterstreicht das Potenzial des Tools zur 

Optimierung der Dosierungsschemata. Um individuelle Konzentrationsnmessungen der Patienten zu 

integrieren und dem Benutzer mehr Flexibilität zu bieten, wurde für Stufe 3 der Studie eine 

interaktive, modellgestützte Dosierungsanwendung, der 'DoseCalculator', entwickelt. Zusätzlich zu 

dem bereits in Stufe 2 der Studie evaluierten Meropenem PK Modell, wurden verschiedene 

Piperacillin/Tazobactam-Modelle in der Literatur identifiziert, anhand der lokalen klinischen Daten 

evaluiert und das Modell mit der besten Leistung in das Tool implementiert. Abhängig von den 
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verfügbaren Informationen über den Pathogen der die Infektion verursacht, wurden drei 

Möglichkeiten zur Berechnung der Wahrscheinlichkeit, mit der ein Dosierungsschema das 

pharmakokinetische/pharmakodynamische Ziel erreicht, in das Tool integriert: (i) die LPIFR, wenn 

weder der Erreger noch die MIC verfügbar sind, (ii) die “cummulative fraction of response“ (CFR), 

wenn der Erreger verfügbar ist und (iii) die PTA, wenn die MIC verfügbar ist. Darüber hinaus können 

die beobachteten Antibiotikamessungen eines Patienten im DoseCalculator unter Verwendung eines 

MAP-Ansatzes (Maximum a-posterior estimation) verwendet werden, um patientenindividuelle 

Parameterschätzwerte abzuleiten. Wenn die Medikamentenmessung(en) eines Patienten 

vorliegt/vorliegen, basieren alle Analysen und die daraus resultierenden empfohlenen 

Dosierungsschemata auf den individuellen Parameterschätzungen des Patienten. Im Vergleich zur 

beobachteten Dosierung in Stufe 1 führten die Empfehlungen des DoseCalculators zu einer 

erheblichen Erhöhung der vorhergesagten Zielerreichung (222% Meropenem, 405% Piperacillin) bei 

gleichzeitiger Reduzierung der Tagesdosis (mediane Reduzierung: 77,8% Meropenem, 83,4% 

Piperacillin).  

In Projekt III wurde der MeroRisk Calculator, ein einfach zu bedienendes Excel-Tool zur 

Risikobestimmung für eine zu niedrige Meropenemkonzentration nach Standarddosierung, anhand 

klinischer Routinedaten evaluiert. Da die direkte Bewertung des MeroRisk Calculators mit dem 

verfügbaren retrospektiven klinischen Datensatz nicht möglich war, wurde eine zweistufige daten- 

und modellbasierte Evaluierung durchgeführt. In der ersten Stufe wurde ein Meropenem PK Modell 

mit den klinischen Daten erfolgreich evaluiert. Im zweiten Schritt wurde das evaluierte PK Modell 

als Vergleichsstandard für die Medikamentenkonzentration- und Risikovorhersagen des MeroRisk 

Calculators verwendet. Im Vergleich zum erfolgreich evaluierten kompartimentellen PK Modell 

lieferte der MeroRisk Calculator eine ebenso gute und zuverlässige Risikobewertung (Lin's 

Konkordanzkorrelationskoeffizient = 0,99) für Patienten mit erhaltener Nierenfunktion (Kreatinin-

Clearance > 50 mL/min). Bei Patienten mit einer Kreatinin-Clearance unter 50 mL/min wurden 

jedoch erhebliche Abweichungen beobachtet. Folglich sollte der MeroRisk Calculator nicht bei 

Patienten mit (schwerer) Nierenfunktionseinschränkung eingesetzt werden. Zusätzlich zur 

erfolgreichen Evaluation wurde die Funktionalität des MeroRisk Calculators erweitert. Basierend auf 

der CFR-Analyse und den von EUCAST gemeldeten MIC Verteilungen kann nun das Risiko einer 

Zielverfehlung in Abhängigkeit vom infektiösen Erreger abgeschätzt werden. Dies wird helfen 

Dosierungsentscheidungen vor der MIC Bestimmung zu treffen.  

Zusammenfassend lässt sich sagen, dass die vorliegende Arbeit zu einer individualisierten und 

rationaleren Antibiotikatherapie bei kritisch kranken Patienten beigetragen hat. Während die PK-

Modellierung in Projekt I zum Ausschluss einer klinisch relevanten Adsorption von Meropenem am 

CytoSorb®-Filter eingesetzt wurde, stellen Projekt II und Projekt III erfolgreiche Beispiele für die 

Entwicklung, Implementierung und Evaluierung von MIPD-Tools dar. In einem nächsten Schritt 
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werden sowohl das tabellarische modellgestützte Dosierungstool als auch der DoseCalculator an der 

Charité-Universitätsmedizin Berlin prospektiv evaluiert. Die Ergebnisse dieser Arbeit zeigen das 

Potential von MIPD anhand von umfassenden Beispielen zur Entwicklung, Implementierung und 

Evaluation von modellinformierten Dosierungswerkzeugen und tragen dazu bei, die 

Implementierung von MIPD in die klinische Praxis zu beschleunigen.   
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1 Introduction 
 

Since the dawn of time humankind has been plagued by infectious diseases [1]. Pathogens like 

Yersinia pestis regularly ravaged through the population killing hundreds of millions and for a long 

time a simple wound infection could be considered equivalent to a death sentence [2–4]. As recently 

as 1900, contagious diseases were the most common cause of death in the United States of America 

[5]. But in 1909 the discovery of arsphenamin during a systematic, large-scale screening process by 

Paul Ehrlich, Alfred Bertheim and Sahachiro Hata marked the beginning of the new antibiotic era 

and enabled the effective treatment of syphilis, a sexually transmitted disease caused by Treponema 

palladium [6,7]. In the following decades and especially during the ‘golden age’ of antibiotic drug 

discovery between 1950 and 1970, systematic investigations led to the discovery of various antibiotic 

drug classes [5,6,8]. It became possible to effectively treat a wide range of infectious diseases. As a 

consequence, non-contagious diseases replaced infections as the most common cause of death and 

the life expectancy rose from 47 to 78.8 years in the United States of America [9]. But even during 

the height of the antibiotic era bacterial infections remained a major threat to public health: 

vulnerable patient populations like critically ill patients suffering from severe infections still had 

mortality rates of up to 60% [10–13]. The ‘golden age’ of antibiotic drug discovery is long over: no 

truly novel antibiotic was found in the last three decades [14,15]. Furthermore, the emergence and 

spread of antimicrobial resistance, accelerated by the inappropriate use of antibiotic drugs, leads to 

a constant reduction in effective antibiotic drugs [16–18]. As a response to this new challenge, 

different international and national action plans call not only for a determined search of new 

antimicrobial drugs but also for a more rational use of existing antibiotic drugs [19,20].  
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1.1 The rational use of antibiotic drugs  
 

The aim of a rational antibiotic drug therapy is to treat the bacterial infection with (i) the highest 

possible efficacy, (ii) the lowest possible rate of occurrence and severity of adverse events and (iii) 

the lowest possible risk for the emergence and spread of antimicrobial resistance. To achieve this 

aim, efficacious and safe drug exposures in each individual patient are needed [21]. Four vital 

components need to be considered to ensure adequate exposure during antibiotic drug therapy and 

form the basis of the rational use of antibiotics (Figure 1.1):  

1. Appropriate indication: an evidence-based prescription of antibiotics should be the 

standard of care. Antibiotic drug therapy should only be initiated based on evidence or clear 

indication of bacterial infection [22–24]. 

2. Appropriate choice of antibiotic: the antibiotic drug administered to the patient should be 

selected based on its efficacy against the pathogen causing the infection. Prior knowledge 

about local epidemiological data and susceptibility pattern and microbiological diagnostics 

during treatment can support the selection of an appropriate antibiotic drug [22–24].  

3. Appropriate timing: antibiotic drug therapy should be initiated as soon as possible after the 

diagnosis to increase the likelihood of an effective therapy [22–24]. In critically ill patients 

diagnosed with sepsis or septic shock each hour of delay was associated with an increased 

mortality [25–27].  

4. Appropriate dosing: a suitable dosing regimen should be selected to achieve an adequate 

exposure at the site of infection in the patient [22,28]. Even if an appropriate antibiotic drug 

is administered early after diagnosis, an inappropriate dosing regimen disregarding 

influential drug-, patient- and infection-specific characteristics can lead to therapy failure.  

While all four components are important for rational antibiotic drug therapy, the research presented 

in this thesis focused on the selection of an appropriate dosing regimen. In the subsequent chapters, 

drug- (see 1.2) and patient-specific (see 1.3) characteristics affecting the selection of such an 

appropriate dosing regimen will be introduced.  
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Figure 1.1: The four components needed to ensure effective and safe antibiotic exposure thereby 

increasing efficacy while reducing the rate of resistance and adverse drug reactions. 
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1.2 Antibiotic drugs  
 

To achieve adequate drug exposure at the site of infection, drug-specific characteristics need to be 

considered. While the PK properties of the administered antibiotic drug in combination with patient-

, disease- and pathogen-specific characteristics determine the drug exposure, the drug-specific 

PK/PD relationship determines the efficacy of the drug exposure. Before introducing the two 

investigated antibiotic drugs and their specific PK and PK/PD characteristics, the minimum 

inhibitory concentration (MIC, see 1.2.1) and common PK/PD indices such as the time period the 

unbound antibiotic drug concentration exceeds the MIC value (see 1.2.2) will be introduced.  

 

 The minimum inhibitory concentration  
 

The MIC is a standard measure to quantify the antibacterial activity of a drug for a specific pathogen 

in vitro [29,30]. It determines the minimum drug concentration needed to inhibit visual bacterial 

growth in defined experimental conditions [31,32]. The more potent the antibiotic drug against the 

investigated pathogen, the lower the concentration to inhibit the visual growth and therefore the lower 

the measured MIC. The relatively simple and standardised determination of the MIC is both an 

advantage and disadvantage at the same time. It is an advantage because it (i) can easily be automated 

and integrated into clinical routine, (ii) enables the straightforward comparison between different 

drugs for a given specific bacterium and (iii) is easy to interpret for health care professionals. It is a 

disadvantage because – in contrast to static/dynamic time-kill curve experiments [33] - no 

information about the time-dependent growth-kill behaviour is included [34]. Furthermore, the 

commonly used two-fold dilution series to determine the MIC can lead to inaccurate measurements 

for high MIC values [29,35].  

MIC determinations are still rare in clinical practice and, unfortunately, in many cases it is not 

possible to determine the pathogen causing the infection [36]. In addition, even if the pathogen is 

identified and the MIC successfully determined, the information usually becomes available to the 

healthcare personnel after therapy start [37]. Depending on the level of knowledge already available, 

healthcare professionals use information collected by organisations like the European Committee on 

Antimicrobial Susceptibility Testing (EUCAST). If no information about the pathogen causing the 

infection is available yet, non-species related and drug-specific PK/PD breakpoints can be used [38]. 

If the pathogen but not its individual MIC is known, species-specific MIC breakpoints based on the 

distribution of MIC values of a specific pathogen can be employed. In both cases, the breakpoints 

are separating three susceptibility categories: (i) susceptible at standard dosing (S), (ii) susceptible at 

increased exposure (I) and (iii) resistant (R) [38,39].   
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 Pharmacokinetic/pharmacodynamic indices and their targets  
 

Drug-specific PK/PD indices describe the relationship between PK measures of an antibiotic drug 

(e.g. the area under the curve (AUC), the maximum concentration (Cmax)) and a PD measure 

describing the susceptibility of a pathogen (e.g. the MIC value). Three major PK/PD indices have 

been derived based on in vitro and/or in vivo studies investigating the antibacterial activity of 

different antibiotic drugs (Figure 1.2) [40–43] PK/PD indices are usually determined for - and 

therefore apply to – unbound i.e. “free” drug concentrations:  

1. fT>MIC: The time period in precent the unbound antibiotic drug concentration exceeds the 

MIC value within 24 hours 

2. fCmax/MIC: The ratio of the unbound maximum drug concentration and the MIC value 

3. fAUC/MIC: The ratio of the area under the unbound concentration-time profile over 24 

hours and the MIC value 

The exposure in relation to the MIC needed (e.g. 100% fT>MIC) to achieve bacterial eradication, 

clinical cure or survival is described by the PK/PD target and based on further in vitro and in vivo 

studies [40]. Those PK/PD targets often form the foundation to select the appropriate dosing regimen 

in clinical practice.  
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Figure 1.2: Illustration of different antibiotic pharmacokinetic (PK)/pharmacodynamic (PD) indices 

in a drug concentration-time profile.  
Abbreviations: MIC: Minimum inhibitory concentration, fCmax: Maximum unbound i.e. “free” drug concentration, fAUC: 

Area under the unbound drug concentration-time curve, fT>MIC: Time period of the free drug concentration exceeding the 

MIC 
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 Investigated antibiotic drugs  
 

In this chapter, the antibiotic drug meropenem and the drug combination piperacillin/tazobactam, 

investigated in the presented thesis will be introduced.  

 

1.2.3.1 Piperacillin/Tazobactam 

 

Indication and spectrum of activity 

The fixed drug combination piperacillin and tazobactam is commonly administered as empirical 

therapy (the pathogen causing the infection is not yet identified) and as targeted therapy (the pathogen 

has been identified) to treat severe infections in the hospital [44–46]. Piperacillin is a broad spectrum 

ureidopenicillin antibiotic while tazobactam is a β-lactamase inhibitor preventing the enzymatic 

degradation of piperacillin by bacterial β-lactamases [47,48]. As a combination the two drugs exhibit 

a broad antimicrobial activity against many gram-negative and gram-positive aerobic and anaerobic 

pathogens [44,47]. The daily dose in adults with non-impaired kidney function ranges between 12-

16 g piperacillin and 1.5-2 g tazobactam depending on type and severity of infection, the pathogen 

and patient condition and is administered with a fixed piperacillin/tazobactam ratio of 8/1. The doses 

are usually administered as short-term (1-30 min) infusions [49], but recent pharmacokinetic 

investigations led to a shift towards prolonged and continuous infusions [50–53]  

Pharmacokinetics  

Piperacillin and tazobactam can be classified as small molecule drugs due to their low molar mass 

(517.6 g/mol and 300.3 g/mol, respectively) and are orally not absorbed [44,48]. The distribution of 

the two drugs into different tissues is fast (<30 minutes after end of infusion) and exposures similar 

to plasma (>50% of plasma concentrations) are reached in multiple tissues including intestines, lung 

and skin [48]. Both drugs are primarily excreted via the kidney by passive glomerular filtration and 

active tubular secretion via the organic anion transporters 1 and 3 [44,47]. The saturation of the active 

tubular secretion is assumed to be the reason for the observed non-linear clearance and competitive 

inhibition between the two co-administered drugs [44,47,54,55]. To a small extent both drugs 

degrade into inactive metabolites by cleavage of the β-lactam ring: 70% - 80% of piperacillin can be 

recovered as parent compound while up to 26% of tazobactam is metabolised [44,47].  

PK/PD target values 

β-lactam antibiotics like piperacillin/tazobactam show time-dependent antimicrobial activity: their 

efficacy is linked to the time the unbound drug concentration is above the MIC value of the targeted 

pathogen (fT>MIC) [44,47,56]. The determination of a defined PK/PD target for different β-lactam 

antibiotics, infections and patient populations was the aim of various in vitro and in vivo 
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investigations. For gram-negative pathogens the maximum activity is obtained with 60-70% fT>MIC 

while 40-50% fT>MIC is sufficient for gram-positive pathogens [44,47]. In a joint extensive review of 

β-lactams in critically ill patients, the French Society of Pharmacology and Therapeutics and the 

French Society of Anaesthesia and Intensive Care Medicine suggest a PK/PD target of 100% fT4-

8xMIC in critically ill patients [57].  

Safety 

Overall piperacillin/tazobactam is well tolerated by patients [44,47,49]. The most common adverse 

events observed during piperacillin/tazobactam therapy are diarrhoea, infused vain complication, 

rash and nausea [44,47,49]. Furthermore, piperacillin minimum concentrations above 360 mg/L and 

452.65 mg/L have been linked to an increased risk of neuro- and nephrotoxicity, respectively [57,58].  

  



9 
 

1.2.3.2 Meropenem  

 

Indication and spectrum of activity 

Meropenem is broad-spectrum carbapenem β-lactam antibiotic. The bactericidal activity of 

meropenem originates from the inactivation of penicillin binding proteins and the resulting inhibition 

of the bacterial cell wall synthesis [59]. It is frequently used for empirical therapy, i.e. before 

identification of the infection pathogen, in critically ill patients due to the activity against both gram-

negative and gram-positive pathogens, including commonly less susceptible pathogens like 

Pseudomonas aeruginosa and Acinetobacter spp. [59,60]. Meropenem is administered to treat 

various infections including nosocomial pneumonia, febrile neutropenia, bacterial meningitis and 

complicated urinary tract infections [59]. The daily dose in adults ranges between 1.5-6.0 g 

depending on type and severity of infection, the pathogen and patient condition. Doses were usually 

administered as short-term (15-30 min) infusion [59], but based on various pharmacokinetic studies 

a shift towards prolonged and continuous infusions is observable [61–65]  

Pharmacokinetics  

Meropenem can be classified as a small molecule drug due to its low molar mass (383 g/mol), is 

orally not absorbed and rapidly penetrates most body fluids and tissues [66,67]. As a hydrophilic 

molecule (logDpH7.4=4.36 [68]), meropenem and its metabolite are primarily excreted via the kidney 

both by passive glomerular filtration and active tubular secretion via the organic anion transporters 

1 and 3 [66,69]. The majority of the administered dose (~70%) is excreted unchanged as parent 

compound, while roughly 28% is excreted as inactivated metabolite [3]. The metabolite is most likely 

formed via opening of the beta-lactam ring by the renal dehydropeptidase-1 [59].  

PK/PD target values 

Like piperacillin, meropenem shows time-dependent antimicrobial activity: the efficacy is linked to 

the time the unbound drug concentration is above the MIC value of the targeted pathogen (fT>MIC) 

[56]. The determination of a defined PK/PD target for different β-lactam antibiotics, infections and 

patient populations was the aim of various in vitro and in vivo investigations. Based on their 

investigations of Escherichia coli and P. aeruginosa in a mouse thigh infection model, Drusano et 

al. linked the maximum bacterial kill activity to 40% fT>MIC [70,71]. A clinical study reported by 

Crandon et al. associated 19.2% and 47.9% of fT>MIC with clinical success and survival respectively 

in patients with ventilator-associated pneumonia and Pseudomonas aeruginosa infections [72]. 

Ariano et al. observed a clinical response rate of 80% for febrile neutropenic patients with 

bacteraemia and a fT>MIC greater than 76% [73]. Further investigations suggested an improved 

antibiotic efficacy for meropenem if minimum drug concentrations achieved 5 times [74] or 6.2 times 

the MIC [75]. In an joint extensive review of β-lactams in critically ill patients, the French Society 

of Pharmacology and Therapeutics and the French Society of Anaesthesia and Intensive Care 
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Medicine suggest a PK/PD target of 100% fT4—8xMIC, based on multiple in vitro and in vivo studies 

reporting efficacy and adverse events  [57].  

Safety 

The most common adverse events observed during meropenem therapy are diarrhoea, rash and 

nausea [76,77]. Furthermore, meropenem minimum concentrations above 64.2 mg/L and 44.5 mg/L 

have been linked to an increased risk of neuro- and nephrotoxicity, respectively [57,58]. Overall, 

meropenem is considered to be a relatively safe drug [77].  
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1.3 Critically ill patients  
 

The selection of an appropriate dosing regimen depends on the individual patient. Physiological 

factors (e.g. weight), pathophysiological factors (e.g. renal impairment), genetic factors (e.g. CYP 

genotype), comedications (e.g. possible drug-drug interactions) or environmental factors can all have 

an impact on the PK of the administered drug and hence need to be considered for dosing decisions 

[78–84]. The research presented in this thesis focused on antibiotic drug therapy in critically ill 

patients and critically ill patients receiving CytoSorb® treatment. Therefore the special characteristics 

of these patient populations are further elucidated in the following. 

Effective antibiotic treatment of critically ill patients is both particularly important and challenging. 

Adequate antibiotic treatment is important due to the high vulnerability of this patient population 

characterised by severe and life-threatening illnesses: critically ill patients require specialised care, 

aggressive medical intervention and intensive monitoring on their long way of recovery [10–

12,85,86]. They often face severe infections (prevalence ~50% [85]) and, due to their vulnerable 

conditions, have particularly high mortality rates reaching up to 60% during sepsis or septic shock 

[10–12,85,86]. Effective antibiotic treatment is mandatory, yet challenging due to several 

heterogeneous changes in PK processes based on the pathophysiology of their severe illnesses 

(Figure 1.3) [79]. One frequently observed alteration concerns the haemodynamics of critically ill 

patients [87]. The systematic inflammatory response syndrome (SIRS) – caused by e.g. sepsis, burns 

or major surgeries – can lead to decreased vascular resistance and increased cardiac output 

[84,87,88]. Together with treatment interventions like vasopressors, a hyperdynamic state can be 

caused, leading to an increased blood flow through eliminating organs (i.e. kidney) and potentially 

to a higher drug clearance [79]. Furthermore, critically ill patients often display altered fluid balances. 

Increased vascular permeability and endothelial cell damage can lead to extravasation of fluid into 

tissues or interstitial space [79,83]. This so-called ‘third spacing’ can be further amplified by fluid 

resuscitation frequently administered to avoid hypotension in critically ill patients. In addition to the 

extravasation and also due to the increased permeability, albumin can leak into the interstitial space 

fluid and cause hypoalbuminemia [89,90]. Both phenomena can have an impact on the PK of an 

antibiotic drug: the altered fluid balance might affect the drug distribution (especially for hydrophilic, 

nonionised drugs) and the decrease in serum albumin might affect the unbound fraction of a drug 

[79,91,92]. As a consequence of an altered fraction unbound, both the drug clearance and its 

distribution might deviate [89,90]. Another major contribution to the uncertainty in the expected PK 

of a drug and common in critically ill patients are organ dysfunctions and the extracorporeal organ 

support the affected patients might receive [93]. The dysfunction of drug eliminating organs can lead 

to a gradual or rapid decrease in drug clearance [79], while extracorporeal organ support might 

increase drug clearance [94–96]. In both cases, the impact is highly variable, dependent on various 
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factors and hard to predict. Patient-specific characteristics (e.g. remaining organ function), 

extracorporeal organ support characteristics (in the case of renal replacement therapy e.g. mode, filter 

type, different flow rates) and drug-specific characteristics (e.g. lipophilicity, protein binding) all 

play an important and interconnected role [96,97].  

 

 

Figure 1.3: Possible impact of critical illness on physiology, pharmacokinetics and drug exposure.  
Modified from Roberts et al. [79].  

Abbreviations: RRT: Renal replacement therapy, ECMO: Extracorporeal membrane oxygenation   
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A new therapeutic option to regain “immune homeostasis” in the dysregulated inflammatory state of 

septic shock with a potentially impact on drug pharmacokinetics - the haemadsorption of cytokines 

– has recently been promoted [98]. In this context, the CytoSorb® filter (CytoSorbents Corporation, 

NJ, USA) is licensed for extracorporeal cytokine elimination in hyperinflammatory conditions within 

the European Union [99]. CytoSorb® cartridges can be easily installed within ordinary 

haemodialysis-, haemofiltration-, extracorporeal membrane oxygenation- and heart-lung-machines. 

The mode of action is based on the adsorption of cytokines by highly porous high-tech polymer beads 

with a large surface area of about 45.000 m2. Molecules up to a molar mass of 55 kDa are potentially 

adsorbed by the filter (molar mass range of cytokines 6-70 kDa) due to hydrophobic interactions and 

therefore eliminated from the patient [100]. In addition to its utility in sepsis therapy, the CytoSorb® 

filter is also employed to rapidly reduce drug concentrations in case of intoxications [101–103]. Up 

to now, the CytoSorb® filter has been installed 121.000 times worldwide [19]. 

The ability of the CytoSorb® filter to adsorb drugs implies that this might also happen unintentionally. 

Particularly feared in this context is the adsorption of antibiotics, which play the key role in the causal 

therapy of septic shock. Indeed, previously published in vitro and in vivo data indicated significant 

adsorption of antibiotics by the CytoSorb® filter [104–106]. 
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1.4 Pharmacometrics  
 

Pharmacometric research amalgamates and extends methods and knowledge from diverse disciplines 

such as medicine, clinical pharmacy, pharmacology, mathematics, statistics and computational 

science with the aim to quantitatively characterise the relationship between a system and an drug 

intervention [107–109]. Most commonly the investigated system is a patient and the observed 

intervention the administration of a drug. The focus of the analysis is to mathematically model the 

concentration-time profile of the drug in the patient after administration (PK), the drug effect-time 

profile (PD) in relationship to the PK (PK/PD) and/or the therapeutic outcome [108]. After 

development, a pharmacometric model can be used to explore and visualise the relationship between 

system and intervention, including the prediction of not observed events (e.g. different dosing 

regimen, data points outside the observation period) [107,110].  

In pharmaceutical industry, pharmacometric modelling and simulation approaches are routinely 

employed to optimally utilise and combine data collected during different phases of drug 

development [111–113]. This so called ‘model-informed drug discovery and development’ strategy 

is encouraged by regulatory agencies such as the European Medicines Agency (EMA) or the Food 

and Drug Administration (FDA) in the United States of America [113,114] and supports decision 

making during drug discovery and development (e.g. biomarker or dose selection), extrapolation of 

knowledge to other diseases or populations and provides evidence needed for regulatory submissions 

[115–117]. Furthermore, pharmacometric analyses enable a separation and therapy optimisation for 

subpopulations of patients, thereby increasing the probability of therapeutic and regulatory success 

[118]. However, the detection and separation of special patient subgroups is often restricted by the 

design of clinical phase III studies: Strict inclusion/exclusion criteria usually exclude special patient 

populations (e.g. critically ill patients) with patient characteristics that might alter PK and/or PD of 

the investigated drug [119]. As a result, thorough PK/PD analyses of special patient populations often 

are only conducted after regulatory approval.  

In addition to their frequent use in pharmaceutical industry, pharmacometic modelling and simulation 

approaches are slowly integrated into clinical practice [118,120–122]. Under the concept of ‘model-

informed precision dosing’ (MIPD) drug therapy is individualised based on pharmacometric models 

and patient-specific characteristics [118,122–125]. Prior to the initiation of drug therapy patient 

characteristics can be used to predict the PK of that specific patient and the dosing regimen most 

likely to reach an adequate drug exposure can be selected. The uncertainty of this prediction can be 

further reduced by the integration of patient-specific drug measurement(s): Based on the patients 

characteristics and the measured drug concentration(s) the most likely model parameters are 

calculated and the prediction of the individual PK updated [126]. To enable their implementation 

into clinical practice the results of pharmacometric analyses can be integrated into user-friendly 
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model-informed dosing tools such as dosing algorithms or software [124,127–131]. Unfortunately, 

in many hospitals reliable and frequent concentration measurements of antibiotic drugs other than 

aminoglycosides, are not implemented and the use of model-informed dosing tools to inform dosing 

is rare [132,133]. The lack of specialised expertise, costs (e.g. software, drug measurement service), 

missing structured processes and indistinct global, national and local regulations (e.g. concerning 

liability) currently impede the widespread implementation of model-informed dosing tools 

[121,122]. To overcome these obstacles local initiatives are needed to build up the missing structures 

and to develop, implement and evaluate model-informed dosing tools according to local needs and 

possibilities. 

While pharmacometrics has already demonstrated its potential in supporting drug development and 

dosing optimisation in the clinic in the last decades, the use and development of pharmacometric 

approaches is expected to further advance in the future [134].  
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1.5 Objectives  
 

As introduced in the last chapters (see 1.1 - 1.3), realizing an appropriate antibiotic therapy for 

critically ill patients constitutes a major challenge, crucial not only for the individual patient but also 

for the fight against antimicrobial resistance. One key element of an appropriate antibiotic therapy - 

the selection of an adequate dosing regimen for each individual patient – could substantially benefit 

from the routine use of pharmacometric approaches under the concept of MIPD. Unfortunately, the 

implementation of MIPD into real world clinical application is still far from being complete. In many 

hospitals reliable and frequent concentration measurements of antibiotic drugs are not available. 

Even for some commonly administered and supposedly ‘well-known’ drugs, the PK is not fully 

characterised in special populations and the translation of accumulated knowledge into clinical 

application remains unsatisfactory: The growing repertoire of published PK models is seldom 

integrated into user-friendly tools or comprehensive dosing strategies and therefore remains 

inaccessible for most healthcare professionals. In addition to this, a majority of available tools has 

not been evaluated in a real-world scenario, which lowers trust in the reliability of their predictions 

and further hinders implementation.  

Therefore, the overall objective of the presented thesis was to accelerate the implementation of MIPD 

into clinical practice following an iterative, integrative and translational approach (Figure 1.4). The 

initial and reoccurring central question in this iterative approach ’Is the current antibiotic dosing 

appropriate?’, was addressed integrating expertise from a diverse interprofessional team of 

healthcare professionals and can be segmented into four intermediate steps, all vital to the main 

objective:  

(i) PK/PD data collection: Establish reliable and frequent antibiotic drug concentration 

measurements and pathogen susceptibility determinations in clinical routine  

(ii) Pharmacometric data analysis: Elucidate the PK/PD of antibiotic drugs in critically ill 

patients and assess local factors influencing antibiotic therapy (e.g. local pathogen 

susceptibility) 

(iii) Tailored improvement strategy: Develop easy-to-use, model-informed dosing tools fit 

for clinical practice 

(iv) Clinical implementation + Evaluation: Implement, evaluate and optimise existing 

model-informed dosing tools  

The detailed objectives for each of the four projects presented in this thesis are introduced in the 

following. Furthermore, a short outline of the research strategy is provided.  
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Figure 1.4 Graphical overview of the iterative, integrative and translational approach employed to 

accelerate the implementation of model-informed precision dosing in order to improve antibiotic 

therapy in critically ill patients.   
Figures next to each step indicate the responsible healthcare professionals: PK/PD data collection: Physicians, pharmacists 

and clinical laboratory; Pharmacometric data analysis: Pharmacometrician; Tailored improvement strategy: Physicians, 

pharmacists and pharmacometrican; Clinical implementation + Evaluation: Physicians, pharmacists, pharmacometrican 

and clinical laboratory.  
Figures representing healthcare professionals from smart.servier.com. 
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Project I: Characterising meropenem adsorption abilities at the cytokine adsorber CytoSorb® 

Step: Pharmacometric data analysis  

Objectives: The objective of this project was to (i) quantify a potential meropenem adsorption at the 

CytoSorb® filter and (ii) evaluate if meropenem dosing needs to be intensified during CytoSorb® 

therapy. 

Research strategy: For this project a NLME modelling and simulation approach was chosen. A 

population pharmacokinetic model was developed leveraging therapeutic drug monitoring data in 

critically ill patients undergoing continuous veno-venous haemodialysis with and without 

CytoSorb® treatment and three distinct approaches to assess if clearance differed without or during 

CytoSorb® treatment were applied: (i) quantification of a possible proportional increase in clearance 

during CytoSorb® treatment (ii) investigation of (non)saturable adsorption at the CytoSorb® filter 

using different adsorption submodels and (iii) evaluating the predictive performance for 

concentrations during CytoSorb® treatment by a PK model developed excluding samples collected 

during CytoSorb® treatment. 

 

Project II: Utilising pharmacokinetic models to improve meropenem and 

piperacillin/tazobactam dosing  

Steps: PK/PD data collection, Pharmacometric data analysis, Tailored improvement strategy, 

Clinical implementation + Evaluation 

Objectives: The objectives of this project were to (i) assess and evaluate the current 

piperacillin/tazobactam and meropenem dosing decisions at the Charité-Universitätzmedizin Berlin, 

to (ii) develop model-informed dosing tools optimised for integration into clinical practices at 

Charitè-Universitätsmedizin Berlin and to (iii) integrate and assess the developed dosing tools in 

clinical routine use. 

Research strategy: In 2019 a clinical study for piperacillin/tazobactam and meropenem was initiated 

as a coordinated intervention of the antimicrobial stewardship (AMS) team at Charité-

Universitätsmedizin Berlin. The study was separated into 3 stages. In stage I, current antibiotic 

dosing practices in two intensive care units were assessed. Furthermore, the data collected in stage I 

was used to select and evaluate published NLME models. A model-informed tabular dosing tool for 

initial antibiotic therapy and an interactive dosing software were developed based on the evaluated 

NLME models and assessed during clinical practice in stage II and stage III of the study, respectively.  
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Project III: Evaluation and extension of the MeroRisk Calculator  

Classification: Implementation + Evaluation 

Objectives: The objectives of this project were (i) to evaluate the performance of the MeroRisk 

Calculator, a previously developed user-friendly tool to predict the risk of meropenem target non-

attainment in critically ill patients, using routine clinical data and (ii) to extend the risk predictions 

of the MeroRisk Calculator to include pathogen sensitivity information in case no individual MIC 

value is available.  

Research strategy: A direct data-based evaluation of the MeroRisk Calculator was not feasible using 

the available clinical routine dataset without censoring most of the available data: While the 

MeroRisk Calculator uses the provided creatinine clearance to predict the meropenem concentration 

8 h after standard dosing (1 g, 0.5 h infusion, q8h), i.e., at one specific time point, a large proportion 

of the concentration measurements of the retrospective dataset, were taken at different time points 

(not exactly 8 h after dose). Therefore, a two-step approach was chosen: In step 1, the potential of a 

population pharmacokinetic model to predict the clinical routine dataset was evaluated. In step 2, the 

PK model was used for a model-based evaluation of the MeroRisk Calculator. Furthermore, a method 

to calculate the risk of target non-attainment based on causative pathogens prior to MIC 

determination was developed employing susceptibility patterns reported by EUCAST.  
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2 Methods 
 

To achieve the objectives of the projects introduced in section 1.5, different pharmacometric 

modelling and simulation techniques were employed. The first part of the methods section will focus 

on the general principles and methods of pharmacometric modelling shared by all presented projects. 

In the second part of the methods section, project-specific methodology and the clinical data 

underlying the respective analyses will be introduced.  

 

2.1 Pharmacometric modelling and simulation 

approaches  
 

Pharmacometric approaches are often categorised either as bottom-up or as top-down (Figure 2.1). 

Bottom-up approaches typically rely on and combine prior knowledge of the investigated system 

(e.g. human or animal physiology) and information about an agent interacting with the system (e.g. 

physicochemical properties of a drug) to predict reciprocal effects [135]. Top-down approaches on 

the other hand are based on (non-)clinical data.  

In the context of the PK analyses described in this thesis, the clinical data are plasma drug 

concentrations determined over time, the corresponding dosing regimens and the characteristics of 

the associated patients. 

Within the classification of top-down approaches, methodologies are further divided into (i) non-

compartmental or compartmental and (ii) individual or population approaches.  

The compartmental approach for analysing PK data is based on the assumption that a body consists 

of kinetically homogenous regions that can be represented by distinct ‘compartments’ in a 

mathematical model [107,136]. For example, a two-compartment model describes a body to consist 

of two kinetically distinct compartments. The central compartment of a two-compartment model 

typically includes blood and highly perfused regions of the body, while the peripheral compartment 

comprises less perfused regions. 

Whereas individual approaches focus on the analysis of the available data on an individual patient 

level, population approaches include the information of all individuals in a joint analysis [137,138]. 

The naïve pooling approach pools the data of all patients in a population prior to the analysis. 

Consequently, the information which data originates from which patient is lost and interpatient 

variability cannot be quantified. One way of quantifying the observed interpatient variability in a 

population is using the two-stage approach [139]. In the first stage, the data of each patient is analysed 
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individually. In the second stage, descriptive summary statistics of the individual parameter estimates 

from stage I are computed to describe central tendencies and interpatient variability for the whole 

population. A serious limitation of the two-stage approach is the prerequisite of a rich and balanced 

dataset for each patient [139]. Furthermore, only accounting for one level of variability will lead to 

an overestimation of interpatient variability. The nonlinear mixed-effects (NLME) modelling 

approach does not have the these limitations [139]. It analyses the data of all individuals 

simultaneously and describes the central tendencies within a population while quantifying different 

levels of variability (e.g. residual unexplained variability, interpatient variability, intrapatient 

variability). Therefore, even unbalanced datasets including sparse data for some patients can be used 

for model development. Patient-specific characteristics that explain some of the observed variability 

can be integrated into NLME models as so-called ‘covariates’. The integration of covariates enables 

the model to predict typical concentrations for subgroups of patients with specific patient 

characteristics and forms the foundation for subsequent simulation-based investigations e.g. dosing 

optimisations [140,141].  

Because of the described advantages, the NLME approach was used primarily in the presented work 

and is further explained in detail in section 2.3. 

 

 

Figure 2.1: Overview of pharmacometric methods categorised into ‘top-down’ and ‘bottom-up’ 

approaches.  

Abbreviations: PBPK: Physiologically based pharmacokinetics.  
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2.2 Data management and exploratory data 

analysis  
 

The basis of every pharmacometric analysis is the underlying data set. It can originate from different 

sources (e.g clinical studies, clinical routine) and include different types of information (e.g. drug 

measurements in different matrices, patient-specific data). Data management and the exploratory 

data analysis are crucial steps in a successful pharmacometric analysis providing reliable results.  

 

 Dataset generation  
 

For pharmacometric analyses, different software can be used, all of them requiring a specific 

structure of the investigated dataset. NONMEM was the main software used for modelling in the 

presented thesis and therefore the dataset requirements described in the following were applied to be 

compatible with using this software. The data of each individual patient included in the analysis 

needed to be combined in one dataset [142,143]. Within this dataset, data originating form one patient 

needed to be contiguous and arranged chronologically. Furthermore, NONMEM-specific data items 

had to be used (e.g. required data items: ID= individual identifier, DV=dependent variable) and non-

numerical entries were not supported [142,143]. Datasets corresponding to the required dataset 

structure were generated from clinical study data received as Microsoft Excel files using the 

R/RStudio software environment. Missing data for planned covariate observations was imputed 

following different strategies depending on the availability of data before and after the missing 

information [144–146]: 

1. Data values available both before and after the missing time point:  

a. Last observation carried forward: Imputation of the last available data point 

b. Next observation carried backwards: Imputation of the next available data point 

c. Linear interpolation: Imputation of the value derived from linear interpolation 

(Formula: see 5.3) 

2. Data values only available before the missing time point:  

a. Last observation carried forward: Imputation of the last available data point 

3. Data values only available after the missing time point:  

a. Next observation carried backwards: Imputation of the next available data point 

Patient characteristics that might have an influence on the PK of a drug had been collected less 

frequently (e.g. once per day) than the dependent variable. Consequently, to include patient 

characteristics as time-dependent continuous covariates (e.g. creatinine clearance), additional time 
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points between the planned observations needed to be calculated. For this interpolation, the same 

methods were used than for missing planned observations.  

 

 Dataset checkout  
 

Both during data collection and dataset generation errors may occur and negatively affect the quality 

of the data and every subsequent analysis. Therefore, a detailed examination of the dataset prior to 

model development is necessary. To evaluate the dataset for plausibility and completeness, different 

dataset quality check procedures were performed [143]. In ‘index plots’ each data item was plotted 

versus the ID, not only revealing missing and implausible data but also giving a first impression of 

the characteristics of the dataset. ‘Cross column checks’ were used to confirm plausible combinations 

of dataset items.  

 

 Exploratory data analysis  
 

To get a first impression of the patient population in the dataset and to inform the model development 

strategy, an extensive exploratory data analysis was carried out prior to model development [143]. 

The numerical and graphical output (e.g. histograms) of statistical analyses were used to describe 

distributional characteristics of the data and to identify possible trends and relationships (Section 

5.3). The focus of an additional graphical analysis was twofold. First, by visualising the 

concentration-time profiles in a semi-logarithmic plot, the number of disposition phases were 

identifiable and helped to select potential model structures. Second, possible trends between the 

dependent variable (e.g. drug concentration) and independent variables (e.g. patient characteristics) 

could be detected and marked for further analysis during the (covariate) model development.   
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2.3  Nonlinear mixed-effects modelling 
 

As described in section 2.1, the NLME modelling approach allows a simultaneous analysis of data 

from all individuals in a population. ‘Nonlinear’ refers to the nonlinear functions characterising the 

relationships between the dependent variable (e.g. drug concentration) and the independent variables 

(e.g. time, dose) via the model structure and the estimated model parameters (e.g. volume of 

distribution). The term ‘mixed-effects’ is indicating the simultaneous estimation of two different 

types of parameters. Random-effect parameters quantify the variability observed in the data, while 

fixed-effect parameters are assumed to be constant in the population. In the following section, the 

components of NLME models, the parameter estimation process and evaluation of and discrimination 

between NLME models will be introduced.  

 

 Model components  
 

A full NLME model consists of two components: the base model comprising (i) the structural 

submodel and (ii) the statistical submodel and the covariate submodel (Figure 2.2). In this section, a 

general overview of the submodels is provided. 

 

 

Figure 2.2: The two elements (base model and covariate model) of a full nonlinear mixed-effects 

model.  
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2.3.1.1 Structural submodel  

 

The structural submodel described the general link and ‘central tendency’ between the dependent 

and independent variable of the model. In the case of PK data, the change in drug concentration 

(dependent variable) was characterised over time (independent variable) using a compartmental 

approach and a system of ordinary differential equations (ODEs). Exemplified for a one-

compartment model (first-order elimination) and a i.v. dose the amount (A) of drug over time (t) can 

be described based on the two fixed-effects parameters clearance (CL) and volume of distribution 

(V) using the following ODE (Eq. 2.1).  

 
𝑑𝐴(𝑡)

𝑑𝑡
= −

𝐶𝐿

𝑉
∙ 𝐴(𝑡)  (Eq.2.1) 

 

The drug concentration (C) over time (t) is:  

 𝐶(𝑡) =
𝐴(𝑡)

𝑉
 (Eq.2.2) 

 

For the simple case of a one-compartment model and a single i.v. bolus dose the ODE system can be 

solved and expressed as an exponential equation (Eq. 2.3):  

 𝐶(𝑡) =
𝐷

𝑉
∙ 𝑒

−
𝜃𝐶𝐿
𝜃𝑉

∙𝑡
 (Eq.2.3) 

 

In this case, the drug concentration (C) is a function of time (t), the two fixed effects PK parameters 

volume of distribution (𝜃𝑉) and clearance (𝜃𝐶𝐿) and dose (D).  

Assuming there is no discrepancy between model predictions and observations, the structural model 

can be mathematically represented in a more general way (Eq 2.4).  

 𝑌𝑖𝑗 = 𝑓(∅𝑖, 𝑥𝑖𝑗) (Eq.2.4) 

 

The nonlinear function (𝑓) represents the structural model describing the dependent variable (𝑌) of 

the 𝑖𝑡ℎ individual and 𝑗𝑡ℎ observation. It depends on the vector of structural model parameters of the 

𝑖𝑡ℎ individual ∅𝑖 (e.g. volume of distribution, clearance) and the known study design variables 𝑥𝑖𝑗 

(e.g. sampling time, dose, infusion duration).  
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2.3.1.2 Statistical submodel  

 

Different levels of variability observed in the data were described and quantified by the statistical 

submodel. Depending on the available data, interindividual and interoccasion variability in model 

parameters and residual unexplained variability in the dependent variable were included. In 

combination with the structural model, the statistical model allowed the description of the individual 

behaviour of the dependent variable.  

 

Interindividual variability  

Unexplained deviations of the individual parameter value (Empirical Bayes estimate, EBE) from the 

population parameter value were quantified by the interindividual variability (IIV). To prevent 

negative and therefore physiologically implausible parameter values the IIV in PK models was 

implemented using an exponential relationship (Eq. 2.5.)  

 ∅𝑖𝑘 = ∅𝑘 ∙ 𝑒𝜂𝑖𝑘             𝜂𝑘~𝑁(0, 𝜔𝑘
2) (Eq.2.5) 

 

The structural model parameter of the 𝑖𝑡ℎ individual and the 𝑘𝑡ℎ parameter (∅𝑖𝑘) was characterised 

by the population value for the 𝑘𝑡ℎ parameter and the influence of the individual patient (𝑒𝜂𝑖𝑘). The 

random effects parameters of all individuals (𝜂𝑘) were assumed to follow a normal distribution with 

a mean of zero and the estimated random-effects parameter 𝜔𝑘
2 as variance. Due to the assumed 

normal distribution of the random-effects parameters and their exponential implementation in the 

model, model parameters were log-normal distributed.  

In addition to the variance of the random-effect parameters, the covariance between random-effect 

parameters on different structural parameters was estimated. In the omega matrix (Ω) (Eq. 2.6. 

example with three IIV parameters), the variances (𝜔𝑘
2) of the parameters 𝑘 = 1,2,3 are displayed as 

diagonal elements while the off-diagonal elements represent the covariances between the 

corresponding variances. 

 Ω =  [

𝜔1,1
2

𝜔1,2 𝜔2,2
2

𝜔1,3 𝜔2,3 𝜔3,3
2

]  (Eq.2.6) 

 

For easier interpretation of random-effect parameters, the variance was converted to the coefficient 

of variation (CV). In the case of log-normally distributed parameters, the CV was computed 

according to Eq. 2.7.  
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 𝐶𝑉, % =  √𝑒𝜔𝑘
2

− 1 ∙ 100 (Eq.2.7) 

 

The covariance was reported as correlation coefficient 𝜌:  

 
𝜌1,2, % =  

𝑐𝑜𝑣(𝜔1,1
2 , 𝜔2,2

2 )

√𝜔1,1
2 ∙ √𝜔2,2

2

∙ 100 =
𝜔1,2

√𝜔1,1
2 ∙ √𝜔2,2

2

∙ 100 
(Eq.2.8) 

 

Interoccasion variability  

As an additional level of variability, interoccasion variability (IOV) was included in the model if 

observations of the dependent variable were available for multiple occasions (e.g. separate dosing 

events). By including IOV, unexplained deviations of individual parameter values from the typical 

individual model parameter values could be quantified at each occasion. To prevent negative 

parameter values, the IOV was implemented on the model parameters using an exponential model 

(Eq 2.9.):  

 ∅𝑖𝑘𝑞 = ∅𝑘 ∙ 𝑒𝜂𝑖𝑘+𝜅𝑖𝑘𝑞             𝜂𝑘~𝑁(0, 𝜔𝑘
2)     𝜅𝑘~𝑁(0, 𝜋𝑘

2)  (Eq.2.9) 

 

The structural model parameter of the 𝑖𝑡ℎ individual, the 𝑞𝑡ℎ occasion and the 𝑘𝑡ℎ parameter (∅𝑖𝑘𝑞) 

is characterised by the population value for the 𝑘𝑡ℎ parameter, the influence of the individual patient 

(𝑒𝜂𝑖𝑘) and the impact of the occasion (𝑒𝜅𝑖𝑘𝑞). The random effects parameters of all individuals  (𝜂𝑘) 

and the random effects parameters of all individuals at all occasions (𝜅𝑘) were assumed to follow a 

normal distribution with a mean of zero and the estimated random-effects parameters 𝜔𝑘
2 and 𝜋𝑘

2 as 

respective variances. Like the IIV, the IOV is usually reported as CV. Eq. 2.7 can be used to convert 

𝜋𝑘
2.  

 

Residual unexplained variability  

Imprecision in the bioanalytical method used to measure the dependent variable (e.g. drug 

concentration), erroneous documentation, model misspecification or other factors can be sources of 

variability on the level of the dependent variable. To quantify the discrepancy between the predicted 

to the observed dependent variable, a residual unexplained variability (RUV) model was used (Eq 

2.10).  

 𝑌𝑖𝑗 =  𝑓(∅𝑖, 𝑥𝑖𝑗) +  𝜀𝑖𝑗             𝜀~𝑁(0, 𝜎2)   (Eq.2.10) 
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The deviation between the 𝑗𝑡ℎ observation of the 𝑖𝑡ℎ individual (𝑌𝑖𝑗) and the model prediction 

(𝑓(∅𝑖, 𝑥𝑖𝑗)) is described by 𝜀𝑖𝑗. The random effects parameters 𝜀𝑖𝑗 of all individuals 𝑖 and at all 

observations 𝑗 (𝜀) were assumed to follow a normal distribution with a mean of zero and the estimated 

random-effects parameter 𝜎2 as variance.  

In NLME models, RUV is typically implemented as one out of three distinct models: 

 

1. The additive RUV model (Eq.2.10) assumes the variance to be constant and independent of 

model predictions.  

2. The proportional RUV model (Eq.2.11) assumes a proportional increase of the variance with 

increasing model predictions. 

3. The ‘combined RUV model’ combines the additive and the proportional RUV models (Eq. 

2.12). At lower predictions, the additive component and at higher predictions the 

proportional component has a higher impact on the overall combined RUV model.  

 

 𝑌𝑖𝑗 =  𝑓(∅𝑖, 𝑥𝑖𝑗) ∙ (1 + 𝜀𝑖𝑗)             𝜀~𝑁(0, 𝜎2)   (Eq.2.11) 

 

 

𝑌𝑖𝑗 =  𝑓(∅𝑖, 𝑥𝑖𝑗) ∙ (1 + 𝜀𝑝𝑟𝑜𝑝,𝑖𝑗) + 𝜀𝑎𝑑𝑑,𝑖𝑗        

     𝜀𝑝𝑟𝑜𝑝,𝑖𝑗~𝑁(0, 𝜎𝑝𝑟𝑜𝑝
2 ) 

   𝜀𝑎𝑑𝑑,𝑖𝑗~𝑁(0, 𝜎𝑎𝑑𝑑
2 )   

(Eq.2.12) 
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2.3.1.3 Covariate submodel 

 

One key objective of pharmacometric modelling is to elucidate the observed and quantified 

variability using patient- and/or occasion-specific covariates. The implementation of covariates into 

the PK model is important to inform clinical relevant decisions for individual patients and is 

described by the following equation (Eq.2.13): 

 𝜙𝑖 = 𝑔(Θ, 𝑍𝑖) (Eq.2.13) 

 

For the 𝑖𝑡ℎ individual the vector of the fixed-effects model parameters (𝜙𝑖) is defined by the covariate 

function 𝑔 describing the relationship between the vector of the fixed parameters of the population 

(Θ) and the observed covariate values of the 𝑖𝑡ℎ individual (𝑍𝑖). Potential covariates are pre-selected 

based on prior knowledge and graphical evaluation. For the graphical evaluation, potential covariates 

are typically plotted vs. the structural model parameters of each individual.  

Covariates are either characterised as categorical (e.g. sex) or continuous (e.g. creatinine clearance) 

and can be based on a single or multiple time-varying measurements per patient. Depending on the 

type of covariate different ways of implementation into the PK model are possible. The different 

options used to implement the effect of one covariate on the structural parameter 𝜃𝑘 are described 

for both categorical and continuous covariates.  

Categorical covariates can be implemented using a fractional change model or by estimating 

separate parameters for each category. In Eq 2.14 a fractional change model with two categories 

(COV = 1,2) is presented:  

 
𝐼𝐹 (𝐶𝑂𝑉 = 1):  𝜃𝑘,𝐶𝑂𝑉=1 = 𝜃𝑘  

𝐸𝐿𝑆𝐸: 𝜃𝑘,𝐶𝑂𝑉=2 = 𝜃𝑘 ∙  (1 + 𝜃𝑍)   
(Eq.2.14) 

 

The structural parameter in case of the - typically more frequently occurring - first covariate category 

(COV=1) is defined as 𝜃𝑘. The fractional change of 𝜃𝑘 observed for the second category is quantified 

by 𝜃𝑍.  

The effect of continuous covariates on structural parameters can for example be implemented as a 

linear or power relationship. Typically the effect is centred to the median covariate value or 

normalised to a reference value to enhance interpretability. In the presented examples, the covariate 

effect is centred to the median covariate value of the population (𝑍𝑚𝑒𝑑𝑖𝑎𝑛).  

In a linear covariate model (Eq.2.15), the structural model parameter is linearly modified with 

increasing or decreasing covariate values: 
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 𝑔(𝜃𝑖𝑘 , 𝑍) =  𝜃𝑘 ∙ (1 + 𝜃𝑍 ∙ (𝑍 − 𝑍𝑚𝑒𝑑𝑖𝑎𝑛)) (Eq.2.15) 

 

For the the specific covariate value 𝑍 the 𝑘𝑡ℎ fixed-effects parameter (𝜃𝑘) is defined by the 𝑘𝑡ℎ fixed-

effects parameter for the median covariate value in the population (𝑍𝑚𝑒𝑑𝑖𝑎𝑛) and the covariate effect 

𝜃𝑍 quantifying the change of 𝜃𝑘 for the deviation between the specific (𝑍) and the median covariate 

value (𝑍𝑚𝑒𝑑𝑖𝑎𝑛).   

In a power covariate model (Eq.2.16) 𝜃𝑖𝑘 is defined by the ratio between the individual (𝑍𝑖) and the 

median covariate value (𝑍𝑚𝑒𝑑𝑖𝑎𝑛) and the estimated coefficient parameter 𝜃𝑍:  

 𝑔(𝜃𝑖𝑘 , 𝑍𝑖) =  𝜃𝑘 ∙ (
𝑍𝑖

𝑍𝑚𝑒𝑑𝑖𝑎𝑛
)

𝜃𝑍

 (Eq.2.16) 

 

If the principle of allometry is applied in a PK model, body weight is implemented as a power 

covariate model and 𝜃𝑍 is set to 0.75 for clearance parameters and to 1 for volume of distribution 

parameters [147,148]. 

The general mathematical equation for NLME models combines the three submodels (Eq 2.17):  

 𝑌𝑖𝑗 = 𝑓(𝑔(Θ𝑖, 𝑍𝑖), 𝜂𝑖 , 𝜅𝑖, 𝑥𝑖𝑗 , 𝜀𝑖𝑗) (Eq.2.17) 
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 Parameter estimation  
 

To identify the NLME model parameter estimates best describing the observed data, a maximum 

likelihood estimation approach was chosen (Eq. 2.18): 

 ∑ ℒ𝑖(𝜃, 𝜔2, 𝜎2|𝑌𝑖) = ∑ 𝑝(𝑌𝑖|𝜃, 𝜔2, 𝜎2) = ∏ ℒ(𝜃, 𝜔2, 𝜎2|𝑌𝑖𝑗)

𝑛

𝑗=1

 (Eq.2.18) 

 

Given the parameters 𝜃, 𝜔2, 𝜎2, the individual contribution to the likelihood of observing the data 𝑌𝑖 

for the 𝑖𝑡ℎ individual is ℒ𝑖. The corresponding probability density function is denoted by the variable 

𝑝.  

Due to the advantages of sums over products in maximisation or minimisation problems, the log of 

likelihoods ℒℒ was used to compute maximum likelihood estimates. In NONMEM –the software 

used for all parameter estimations presented in this thesis- the ‘objective function value (OFV)’ is 

defined as minus twice the natural logarithm of the likelihood (Eq. 2.19.). During parameter 

estimation, the OFV is minimised and therefore the model parameters with the lowest OFV are the 

maximum likelihood estimates.  

𝑂𝐹𝑉 =  −2ℒℒ = −2 ∙ 𝑙𝑜𝑔(ℒ(𝜃, 𝜔2, 𝜎2|𝑌)) =  ∑ −2 ∙ 𝑙𝑜𝑔(ℒ𝑖(𝜃, 𝜔2, 𝜎2|𝑌𝑖))

𝑛

𝑖=1

 (Eq.2.19) 

 

For more complex NLME models, the likelihood cannot be computed analytically and consequently 

needs to be approximated numerically. In the projects presented in this thesis, the first-order 

conditional expectation method including interaction (FOCE+I) was used for the approximation in 

NONMEM.  

In general, the maximum likelihood estimates are determined employing an iterative process. The 

selected algorithm starts by evaluating the OFV for the provided initial parameter estimates. Then, 

the model parameters are updated in the direction of decreasing OFV values until certain 

convergence criteria are met and the minimum OFV, i.e. the maximum likelihood, is found. The 

FOCE method is based on a gradient linearisation algorithm applying Laplace transformation and 

Taylor series expansion and the additional interaction method allows interaction between 

interindividual random-effects (𝜂) and residual random-effects (𝜀) parameters.  

In addition to the population parameters provided by the estimation method, individual parameter 

estimates (EBEs) are calculated in a second post-hoc estimation. If the FOCE method is used, EBEs 
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are estimated after each iteration based on the minimisation of the Bayes objective function (Eq. 

2.20):  

 𝑂𝐹𝑉𝐵𝑎𝑦𝑒𝑠 =  ∑
(𝜃𝑘,𝐸𝐵𝐸 − 𝜃𝑘,𝑝𝑜𝑝)

2

𝜔𝑘
2 + ∑

(𝑌𝑖𝑗 − 𝑌̂𝑙𝑗)
2

𝜎2

𝑛

𝑗=1

𝑚

𝑘=1

 (Eq.2.20) 

 

The Bayes objective function (𝑂𝐹𝑉𝐵𝑎𝑦𝑒𝑠) is determined by the sum of the squared deviations of the 

𝑘𝑡ℎ individual parameter (𝜃𝑘,𝐸𝐵𝐸) from the 𝑘𝑡ℎ population parameter (𝜃𝑘,𝑝𝑜𝑝) weighted by the 𝑘𝑡ℎ 

interindividual random-effects parameter (𝜔𝑘
2) and the sum of the squared deviations of the observed 

data for the 𝑖𝑡ℎ individual on the 𝑗𝑡ℎ observation from the respective predicted data (𝑌̂𝑙𝑗) weighted 

by the residual random-effects parameter (𝜎2). 

 

 Model evaluation and discrimination  
 

The aim of PK model development is to ultimately obtain a model that adequately describes the 

observed data and can be used to gain information about the research question (e.g. investigate 

different dosing regimens and their probability of target attainment in a specific patient). To obtain 

the model best fitting, i.e. predicting, the data, a thorough model evaluation employing various 

evaluation techniques throughout the model development process is necessary. Based on their 

characteristics, model evaluation techniques can be classified into different categories: 

• Dataset: ‘External’ evaluation techniques are based on a dataset independent of the dataset 

used in model development while ‘internal’ evaluation techniques rely on the dataset used 

during model development. 

• Representation: ‘Numerical’ evaluation techniques quantify the model fit (e.g. precision of 

parameter estimates) as numerical values while ‘graphical’ evaluation techniques help to 

assess model (mis)specifications based on graphical outputs.  

 

Evaluation techniques important in the context of this thesis are presented and discussed in more 

detailed in the following.  
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2.3.3.1 Goodness-of-fit plots 

 

Goodness of fit (GOF) plots are graphical evaluation plots that were used to assess the 

appropriateness of a NLME model. Both on the population and the individual level the observed 

dependent variable (observations e.g. drug concentrations), the predicted dependent variable 

(prediction) and their deviation (residuals) were examined. Furthermore, the distributions of random 

effects parameters and EBEs were explored.  

Observations vs. predictions  

Both predictions based on the estimated population parameters (PRED) and on the estimated 

individual parameters (IPRED) were plotted against observations for the population, subgroups of 

the population and single individuals. Data points symmetrically scattered around the line of identity 

without systematic deviations indicated an appropriate structural submodel and the spread around 

the line of identity provided further information to assess the statistical submodel. For PRED vs. 

observation, a spread around the line of identity were expected while the data points in the IPRED 

vs. observation plot should be more narrowly distributed around the line of identity.  

Residuals  

For their graphical evaluation, residuals were weighted to enable interpretation independent of the 

absolute magnitude of the observations. All projects presented in this thesis employed the FOCE 

algorithm in NONMEM and therefore conditional weighted residuals (CWRES) were evaluated. The 

distribution of CWRES was assessed against both the independent variable (e.g. time) and the 

dependent variable (e.g. drug concentrations). Model misspecifications can be detected by an uneven 

distribution around zero and a high number of data points outside ± 2 standard deviations (∼ 2.5th -

97.5th percentiles in a normal distribution).  

Individually predicted concentration-time profiles  

To identify inadequately described individuals and possible measurement errors on a sample level, 

the observations of each individual were plotted against the independent variable and overlayed with 

a continuous prediction, i.e. full concentration-time profile, based on both the population and the 

individual parameter estimates. The observations of the individual should be narrowly and evenly 

distributed around the individual prediction line while the population prediction will give an 

impression on how much the individual deviates from the central tendency of the model.  

Distribution of random-effects  

Histograms or density plots were used to investigate if the distribution of the individual-/occasion-

specific random-effect parameters 𝜂 and 𝜅 follow the assumed normal distribution. The mean of the 

distribution should not significantly differ from 0 and the width of the distribution indicated the 
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magnitude of the variability. Deviations from a normal distribution (like a binormal distribution) 

could indicate distinct subgroups in the population and need to be further investigated. 

 

2.3.3.2 Parameter precision, accuracy and identifiability  

 

Different methods were used to assess parameter precision, accuracy and identifiability. Imprecise, 

inaccurate and unidentifiable parameter estimates are a strong indication for model misspecification 

or overparametrisation (e.g. the observed data is not able to inform all model parameters).  

 

Parameter precision based on the variance-covariance matrix  

Parameter precision can be calculated and assessed based on the variance-covariance matrix of the 

parameter estimation. In this case the standard errors (SE) of the model parameters are derived by 

taking the square root of the diagonal elements of the variance-covariance matrix. SE were reported 

as relative standard errors (RSE, Eq. 2.21 and Eq.2.22) to facilitate comparability and an easier 

interpretation. Random effects parameters were not reported as the estimated variance but as %CV. 

As a consequence, the RSE were also transformed into the approximate standard deviation scale (Eq. 

2.23).  

 𝑅𝑆𝐸𝜃, % =  
𝑆𝐸

𝜃
∙ 100 (Eq.2.21) 

 

 𝑅𝑆𝐸𝜔𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑠𝑐𝑎𝑙𝑒
2 , % =  

𝑆𝐸𝜔2

𝜔2
∙ 100 (Eq.2.22) 

 

 𝑅𝑆𝐸𝜔𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑎𝑙𝑒
2 , % =  

𝑆𝐸𝜔2

2 ∙ 𝜔2
∙ 100 (Eq.2.23) 

 

Complementary formulas were used for other levels of random-effects parameters and all RSE 

reported in this thesis are on standard deviation scale.  
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Based on the SE of the 𝑘𝑡ℎ fixed effects-parameter 𝑆𝐸𝜃𝑘
 and assuming a normal distribution, the 

95% CI can be calculated:  

 𝐿𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 𝑜𝑓 95% 𝐶𝐼 =  𝜃𝑘 − (𝑆𝐸𝜃𝑘
∙ 1.96) (Eq.2.24) 

 

 𝑈𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 𝑜𝑓 95% 𝐶𝐼 =  𝜃𝑘 + (𝑆𝐸𝜃𝑘
∙ 1.96) (Eq.2.25) 

 

Parameter precision and accuracy based on a bootstrap  

A bootstrap is an advanced evaluation technique used to assess parameter precision and accuracy 

without assuming an underlying distribution. In a non-parametric bootstrap, replicate datasets with 

the same number of individuals as the original dataset were created by repeated random sampling 

with replacement on the individual level. The number of replicates used in a bootstrap analysis to 

derive the CI for the parameter estimates is recommended to be >1000 [149]. For each of the replicate 

datasets the model parameters were estimated. The median of the new parameter estimates of the 𝑘𝑡ℎ 

fixed effects-parameter (𝑃𝑏𝑠,𝑘) were used to assess the accuracy (bias) of the original parameter 

estimate (𝑃𝑜𝑟𝑖𝑔,𝑘) (Eq. 2.26) while the precision of the parameters was evaluated by computing their 

95% CI, i.e. the range between the 2.5th and 97.5th percentile of the new parameter estimates.  

 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑏𝑖𝑎𝑠, % =  
𝑃𝑜𝑟𝑖𝑔,𝑘 − 𝑃𝑏𝑠,𝑘

𝑃𝑜𝑟𝑖𝑔,𝑘
∙ 100 (Eq.2.26) 

 

In addition to precision and accuracy a bootstrap also provides information about the robustness of 

a model: the convergence rate was calculated as the percentage of successful parameter estimations 

in the replicated datasets. 

 

Parameter stability and model robustness based on case deletion diagnostics  

Case deletion diagnostics (also jackknife, leave-one-out technique or leverage analysis) is an 

advanced evaluation technique to assess parameter stability and model robustness. In PK modelling 

case deletion diagnostics were performed on an individual level to detect individuals with a 

substantial influence on parameter estimates. One-by-one each individual was excluded from the 

dataset and model parameters were estimated. If the exclusion of an individual lead to parameter 

estimates outside the 95% CI of the original parameter estimates, that individual was considered 

influential and a further investigation of the individual and its characteristics was performed. 
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Assessment of parameters based on shrinkage 

Individual parameters (i.e. EBEs) tend to shrink towards the typical fixed-effects parameter values, 

if insufficient individual information is available. This behaviour is called shrinkage and elevated 

shrinkage values (>20%-30%) can lead to a misinterpretation of diagnostic plots based on EBEs. 

Shrinkage is quantified based on the standard deviation of the individual values of EBEs of 𝜂 

(𝑆𝐷𝐸𝐵𝐸𝜂
) and the estimated variance of 𝜂 (𝜔2):  

 𝜂 − 𝑠ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒 = 1 −
𝑆𝐷𝐸𝐵𝐸𝜂

√𝜔2
∙ 100 (Eq.2.27) 

Similarly the distribution of individual weighted residuals (IWRES) can shrink in the case of a sparse 

data situation. This so called ε-shrinkage is quantified based on the standard deviation of the IWRES:  

 ε − 𝑠ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒 = 1 − 𝑆𝐷𝐼𝑊𝑅𝐸𝑆 (Eq.2.28) 

 

2.3.3.3 Visual predictive checks  

 

Visual predictive checks (VPCs) were used to assess the ability of the model to predict the central 

tendency and variability of the observed data. For a VPC, a large number of stochastic simulations 

(typically n=1000) were performed and the 5th, 50th and 95th percentiles were calculated for both the 

simulated and the observed values. Next, the median and 95% CI of the percentiles of the simulated 

values were evaluated based on the percentiles of the observed values. VPCs can be stratified by e.g. 

specific patient characteristics to assess the predictive performance of the model in a patient 

subgroup. Furthermore, VPCs can be presented using a covariate as independent value to investigate 

the predictive performance across its range.  

 

2.3.3.4 Prediction errors  

 

The predictive performance of a model can numerically be assessed based on prediction errors (PE). 

Prediction errors were calculated as the difference between observed (𝑌𝑖𝑗) and predicted dependent 

variable (𝑌̂𝑖𝑗) of the 𝑖𝑡ℎ individual at time point 𝑗 (Eq. 2.29) and were reported either as absolute or 

relative values. The accuracy (bias) of the predicted dependent variable was evaluated using the mean 

or median of the prediction errors while the mean or median of the absolute prediction errors (APE; 

Eq. 2.30) was used as a measure of the observed model precision.  

 𝑃𝐸𝑖𝑗 = 𝑌̂𝑖𝑗 − 𝑌𝑖𝑗  (Eq.2.29) 
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 𝐴𝑃𝐸𝑖𝑗 = |𝑃𝐸𝑖𝑗| (Eq.2.30) 

 

PE and APE can be calculated for a specific subset of individuals to investigate the model 

performance in this group.  

 

2.3.3.5 Objective function value and Akaike information criterion  

 

During the model development process it is necessary to discriminate between different models and 

select the model best describing/predicting the observed data. The likelihood ratio test (LRT) was 

used to statistically compare two competing nested models. Two models were considered nested if 

one model (M1) is a subset of the other model (M2), i.e. if it is possible to reduce M2 to M1 by setting 

one or more parameters to the null hypotheses value(s). For the LRT the difference between the OFV 

values of two nested models was calculated, since the OFV is defined as minus twice the logarithm 

of the likelihood (see 2.3.2):  

 𝐿𝑅 =  𝑂𝐹𝑉𝑀2 − 𝑂𝐹𝑉𝑀1             𝐿𝑅~𝑋2(𝑑𝑓 = ∆𝑛𝑝) (Eq.2.31) 

 

The likelihood ratio (LR) was assumed to be chi-squared (𝑥2) distributed. The degrees of freedom 

(𝑑𝑓) are equal to the difference in number of parameters between the two nested models (∆𝑛𝑝). To 

conclude if one of the two models provided a significantly improved description of the data the LR 

was compared to the defined test statistic. The defined test statistic (Table 2.1) was dependent on the 

significance level 𝛼 and the degrees of freedom 𝑑𝑓.  

 

Table 2.1: Chi-squared (𝑥2) value for selected degrees of freedom (𝑑𝑓) and significant levels (𝛼). 

df 
𝒙𝟐 value (=test statistic) 

𝛼 = 0.1 𝛼 = 0.05 𝛼 = 0.01 

1 2.71 3.84 6.64 

2 4.60 5.99 9.21 

3 6.25 7.82 11.3 
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The Akaike information criterion (AIC) can also be used to compare non-nested models. The AIC is 

defined as minus twice the logarithm of the likelihood (−2𝐿𝐿) plus two times the total number of 

model parameters (𝑛𝑝) (Eq. 2.32):  

 𝐴𝐼𝐶 =  −2𝐿𝐿 + 2 ∙  𝑛𝑝 (Eq.2.32) 

 

The addition of two times the total number of model parameters to the OFV can be considered as a 

penalising term for additional parameters. The model with a lower AIC value was deemed to better 

describe/predict the observed data.  

 

 Model application  
 

2.3.4.1 Simulations  

 

Simulations based on the developed NLME model are a major strength of this quantitative approach: 

simulations allowed to explore and visualise the relationship between patient, disease and drug and 

to address specific research questions [107]. Questions relevant for therapeutic decision making like 

‘Which dosing regimen results in adequate drug exposure for a patient with a creatinine clearance 

of 60 mL/min?’ were answered and potentially will help to improve drug therapy. Simulations are 

classified as deterministic (non-stochastic) or stochastic based on the inclusion of random-effects 

parameters in the simulation [143].  

 

Deterministic simulations  

In deterministic simulations, random-effects parameters were not considered and therefore only the 

typical behaviour of the dependent variable was predicted. Deterministic simulations of PK models 

predicted the typical concentration-time profile for a given dosing regimen and covariate 

combination. They were used for a first exploratory analysis on the effect of changing covariates or 

dosing regimen, since they are (i) easy to visualise and (ii) need less computational power and 

consequently are faster than stochastic simulations.  

 

Stochastic simulations  

For stochastic simulations (in the context of this thesis Monte Carlo (MC) simulations), all or some 

random-effects parameters of the model were considered and therefore the behaviour of the 

dependent variable for a population of individuals could be predicted. Which random-effects 

parameters (i.e. IIV, IOV and/or RUV) were included in the stochastic simulations varied depending 
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on the research question that was addressed. By sampling from the respective variability 

distributions, a large population of virtual patients (e.g. n = 1000) was generated and used for the 

simulation. If IOV was included on a parameter, the individual parameter of a virtual patient varied 

between each simulated occasion and the inclusion of RUV added variability on the sample level. 

Stochastic simulations were used to assess and visualize the variability in drug exposure following 

the same dosing regimen in a population.  

 

2.3.4.2 Probability of target attainment and cumulative fraction of response analysis  

 

A powerful tool to assess the adequacy of dosing regimens is the probability of target attainment 

(PTA) analysis. For a PTA analysis, stochastic simulations were used to generate individual 

concentration-time predictions for a virtual population of patients (typically n = 1000). The patient 

individual concentration-time predictions were then evaluated with regards to a predefined PK/PD 

target (e.g. in the case of time-dependent antibiotic drugs 100%fT>MIC) and the PTA of the population 

was calculated based on the percentage of patients achieving the investigated target [150]. A PTA 

analysis cannot only help to identify patient subgroups at risk of suboptimal drug exposure after 

receiving the standard dosing regimen, but also facilitates the systematic investigation of alternative 

dosing regimens to ultimately identify the most suitable dosing regimen. For the selection of an 

appropriate antibiotic dosing regimen, a PTA of 90% was considered as adequate therapy by the 

EMA [151]. The PK/PD target for antibiotic drugs usually include the pathogen-specific MIC. 

Therefore the PTA of antibiotic drugs was assessed over a range of clinically relevant MIC values.  

If the MIC of an individual pathogen was unknown, the cumulative fraction of response (CFR) could 

be calculated based on the PTA of a dosing regimen for different MIC values and the MIC 

distribution of the species (Eq.2.33)[43,152]:  

 𝐶𝐹𝑅 = ∑ 𝑃𝑇𝐴𝑖 ∙ 𝑓𝑖

𝑛

𝑖=1

 (Eq.2.33) 

 

The index of MIC values of a population of pathogens is represented by 𝑖, the PTA for each MIC 

value by 𝑃𝑇𝐴𝑖 and the fraction of the respective MIC value in the MIC distribution by 𝑓𝑖. For the 

CFR calculation, commonly MIC distributions collected in cross-national databases (e.g. EUCAST) 

were used but locally observed distributions can be used as well.  
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2.3.4.3 Bayesian forecasting: Maximum a-posteriori estimates and normal 

approximation 

 

The Bayesian approach can be used to derive the individual parameter estimates (posterior) based on 

a population model (prior) and patient specific observations of the dependent variable [153,154]. In 

the case of PK modelling, the Bayesian approach enabled both the assessment of drug exposure (e.g. 

area under the concentration-time profile, time of the drug concentration above a threshold) for 

already administered and planned dosing regimens. It therefore is a powerful tool to improve drug 

therapy on an individual patient level. The maximum a-posteriori (MAP) estimates for each 

individual are the mode of the posterior parameter distributions and computed by minimising the 

Bayes objective function (𝑂𝐹𝑉𝐵𝑎𝑦𝑒𝑠, see 2.3.2, Eq. 2.20)[126]. 

As point estimates, the MAP parameter estimates do not contain any information about the 

uncertainty included in the estimation. To overcome this limitation, the posterior parameter 

distribution (𝑝(∙ |𝑦1:𝑛)) can be approximated by a normal distribution centred at the MAP estimate 

[126]. The variance of the normal distribution is approximated by the curvature of the mode: 

 

 𝑝(∙ |𝑦1:𝑛) ≈ 𝒩 (𝜃𝑛
𝑀𝐴𝑃

,  𝐼−1  (𝜃𝑛
𝑀𝐴𝑃

)  ) (Eq.2.33) 

 

Here 𝐼 denotes the observed Fisher Information Matrix.  
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2.4 Software 
 

The software and key functionalities used in the presented thesis are summarised in Table 2.2 and 

Table 2.3, respectively. 

Table 2.2 Software used in the presented projects. 

Software Version Reference Project 

NONMEM® 7.4.1 
Icon Development Solutions, Ellicott City, MD, USA. 

(www.iconplc.com/innovation/nonmem) 
I, II, III 

PsN 4.7.0 
Uppsala University, Uppsala, Sweden. 

(uupharmacometrics.github.io/PsN)[155] 
I, II, III 

Pirana 
2.9.6-

2.9.9 

Pirana Software & Consulting BV 

(www.pirana-software.com)[156] 
I, II, III 

R 
3.6.3-

3.5.0 

The project for statistical computing. Vienna, Austria. 

(www.CRAN.R-project.org) 
I, II, III 

RStudio 
1.1.447-

1.3.959 

Integrated development environment for R, Boston, MA. 

(www.rstudio.org) 
I, II, III 

Microsoft 

Office Excel® 
2109 Microsoft Corporation, Redmond, Washington, USA. III 

Abbreviations: PsN: Pearl speaks NONMEM. 

 

Table 2.3 Key functionalities and packages. 

Software Functionalities, packages Project 

PsN vpc functionality  I, II, III 

 Bootstrap functionality I, II, III 

 sse functionality II 

R ggplot2 package I, II, III 

 Xpose4 package I, II, III 

 mrgsolve package I, II, III 

 shiny package II 

 TDMxR package [157] II 

 npde package [158] III 

Microsoft 

Office Excel® 
Visual basics for application  III 

Abbreviations: vpc: visual predictive check, sse: stochastic simulation and estimation 

 

For computationally intensive activities the high performance computing cluster ‘Curta’ of the Freie 

Universität Berlin was employed (https://www.fu-berlin.de/sites/high-performance-

computing/index.html) [159].   
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2.5 Project I: Characterising meropenem 

adsorption abilities at the cytokine adsorber 

CytoSorb® 
 

 Objectives and research strategy 
 

The objective of this project was to (i) quantify a potential meropenem adsorption at the CytoSorb® 

filter and (ii) evaluate if meropenem dosing needs to be intensified during CytoSorb® therapy. 

To achieve this objective a NLME modelling and simulation approach was chosen. A population 

pharmacokinetic model was developed leveraging therapeutic drug monitoring data in critically ill 

patients undergoing continuous veno-venous haemodialysis with and without CytoSorb® treatment 

and three distinct approaches to assess if clearance differed without or during CytoSorb® treatment 

were applied: (i) quantification of a possible proportional increase in clearance during CytoSorb® 

treatment (ii) investigation of (non)saturable adsorption at the CytoSorb® filter using different 

adsorption submodels and (iii) evaluating the predictive performance for concentrations during 

CytoSorb® treatment by a PK model developed excluding samples collected during CytoSorb® 

treatment. 
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 Database 
 

This analysis was based on a subset of critically ill patients from two prospective observational 

studies conducted at University Hospital, Ludwigs-Maximilian-University (LMU) Munich, 

Germany (ClinicalTrials.gov identifiers NCT01793012 and NCT03985605). Both study protocols 

were approved by the Institutional Review Board of the Medical Faculty of the LMU Munich 

(registration number NCT01793012: 428-12 and NCT03985605: 18-578). All patients on continuous 

veno-venous haemodialysis (CVVHD) or haemodiafiltration (CVVHDF) with at least two serum 

meropenem samples (n=25) in the same dosing interval were included. CytoSorb® and dialysis 

treatment was initiated and controlled by the responsible physician and the CytoSorb® cartridge was 

installed in predialyser position. In both studies meropenem was administered as infusion according 

to the assessment of the responsible physician. During NCT01793012, serum samples were collected 

in a dense-sampling scheme without predefined schedule, but only 1 of the 6 patients included in this 

analysis received CytoSorb® treatment. NCT03985605 included 19 patients receiving CytoSorb® 

treatments, but a sparse-sampling scheme was performed. Blood samples were immediately sent to 

the laboratory (< 30 min) and centrifuged at 2000 g for 10 min. During NCT01793012, serum 

samples were then stored at -80°C until total meropenem serum concentrations were quantified 

within 4 weeks. During NCT03985605, samples were frozen overnight at -20°C and analysed once 

a day. In both studies meropenem serum concentrations were quantified according to validated LC-

MS/MS methods [160,161]. Demographic patient data (sex, age, weight) and laboratory data (serum 

albumin concentration, serum creatinine concentration) were collected daily.  
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 Population pharmacokinetic modelling  
 

To accurately quantify the potential effect of CytoSorb® treatment on meropenem concentrations, 

the model development strategy was divided into two stages: First, a basis PK model was developed, 

characterising the pharmacokinetic variability and investigating the effect of patient and dialysis 

characteristics — other than CytoSorb® treatment — on meropenem PK. Second, the effect of 

CytoSorb® treatment on meropenem exposure was investigated using three distinct approaches. Data 

from all patients of both studies were analysed collectively to ensure precise PK parameter estimates 

in the absence of CytoSorb® treatment (major contribution by NCT01793012) and an adequate 

number of meropenem concentrations during CytoSorb® treatment (major contribution by 

NCT03985605). 

 

2.5.3.1 Basis PK model development  

 

Based on the graphical analysis 1- and 2-compartmental PK disposition models with zero-order input 

and first-order elimination were investigated. Interindividual variability was implemented in a 

stepwise process using exponential models. Different residual variability models (additive, 

proportional and combined) were considered. Models were evaluated and discriminated based on the 

OFV, precision of the parameter estimates, GOF plots and VPCs (see 2.3.3). Due to the large 

variability in dosing regimens, prediction-corrected VPCs were used to account for the variability in 

observed concentrations [162]. Patient and dialysis characteristics —  other than CytoSorb® 

treatment —  potentially influencing meropenem PK were investigated as possible covariates on the 

volume of distribution and clearance parameters. Candidates for the covariate analysis were pre-

selected based on graphical exploration and literature information. Covariate selection was based on 

statistical significance (alpha level < 0.05, i.e. ∆OFV < -3.84 for the integration of a single covariate), 

the reduction in unexplained and interindividual variability, higher precision of parameter estimates 

and biological plausibility (see 2.3.1.3).  
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2.5.3.2 Effect of CytoSorb® treatment on meropenem exposure 

 

Three distinct approaches were chosen to investigate the effect of CytoSorb® treatment on 

meropenem exposure.  

Approach 1: CytoSorb® treatment as categorical covariate on clearance 

The potential effect of CytoSorb® treatment on clearance was investigated by means of a categorical 

covariate (i.e. meropenem concentrations while on or off CytoSorb® treatment) implemented as 

proportional clearance increase during CytoSorb® treatment (see 2.3.1.3). A statistically significant 

drop in objective function value (∆OFV < -3.84, df=1) and a precise and plausible parameter estimate 

for the parameter characterising the covariate effect would indicate an change in clearance and thus 

adsorption of meropenem at the CytoSorb® filter. Furthermore, an increase of clearance >10% during 

CytoSorb® treatment was defined as clinically relevant adsorption. 

 

Approach 2: Adsorption submodels 

Three possible adsorption models of meropenem at the CytoSorb® filter were examined by 

implementing an additional elimination pathway associated with the CytoSorb® filter: A constant 

adsorption, a linear decrease in adsorption and a hyperbolic decrease in adsorption. In the constant 

adsorption model (Eq.2.46) the meropenem clearance via adsorption by the CytoSorb® filter 

(𝐶𝐿𝐶𝑦𝑡𝑜𝑠𝑜𝑟𝑏) was dependent on the central volume of distribution (𝑉1) and the adsorption rate 

constant (𝑘𝐶𝑦𝑡𝑜𝑠𝑜𝑟𝑏). In the linear decrease (Eq.2.47) and the hyperbolic decrease models (Eq.2.48), 

the adsorption was linked to the maximum adsorption rate constant (𝑘𝑚𝑎𝑥), the drug amount already 

adsorbed at the filter (𝐴𝐶𝑦𝑡𝑜𝑠𝑜𝑟𝑏(𝑡)) and either the maximum drug amount that can be adsorbed 

(𝐴𝑚𝑎𝑥) or the drug amount linked to the half of the maximum adsorption capacity (𝐴50) for an 

assumed maximum reduction in adsorption rate of 100%. In Figure 2.3 the impact of the three 

adsorption models on the total clearance of a patient is illustrated.  

 

 𝐶𝐿𝐶𝑦𝑡𝑜𝑠𝑜𝑟𝑏 =  𝑉1  ∙  𝑘𝐶𝑦𝑡𝑜𝑠𝑜𝑟𝑏 (Eq.2.46) 

 

 𝐶𝐿𝐶𝑦𝑡𝑜𝑠𝑜𝑟𝑏 (𝑡) =  𝑉1  ∙  𝑘𝑚𝑎𝑥 ∙  (1 −
𝐴𝐶𝑦𝑡𝑜𝑠𝑜𝑟𝑏(𝑡)

𝐴𝑚𝑎𝑥
)     (Eq.2.47) 

 

  𝐶𝐿𝐶𝑦𝑡𝑜𝑠𝑜𝑟𝑏 (𝑡) =  𝑉1  ∙ 𝑘𝑚𝑎𝑥 ∙  (1 −
𝐴𝐶𝑦𝑡𝑜𝑠𝑜𝑟𝑏(𝑡)

𝐴𝐶𝑦𝑡𝑜𝑠𝑜𝑟𝑏(𝑡) +  𝐴50
) (Eq.2.48) 
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A statistically significant drop in objective function value (i.e. ∆OFV < -3.84 for the constant 

adsorption and ∆OFV < -5.99 for the linear and hyperbolic decrease of adsorption) and precise and 

plausible parameter estimates would indicate an adsorption of meropenem at the CytoSorb® filter. 

Furthermore, a fraction of > 10% of the total meropenem clearance by the maximum  𝐶𝐿𝐶𝑦𝑡𝑜𝑠𝑜𝑟𝑏  was 

defined as clinically relevant adsorption. 

 

 

Figure 2.3: Graphical illustration of the different possible adsorption kinetics of meropenem at the 

CytoSorb® filter investigated using the three different adsorption models.  
In the illustration a clearance of 5 L/h prior to CytoSorb® treatment is assumed. During implementation of the CytoSorb® 

filter the constant adsorption model describes a constant increase of the clearance to 10 L/h (red line) and both the linear 

(blue line) and hyperbolic (green line) adsorption models describe a temporary increase in clearance falling with increasing 

amounts of meropenem adsoprt at the filter.  
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Approach 3: Re-estimation of the model parameters excluding samples during CytoSorb® 

treatment 

The parameters of the final basis PK model (not yet including any parameters describing the effect 

of CytoSorb® therapy) were re-estimated excluding drug measurements during CytoSorb® treatment. 

The resulting EBEs (individual parameter estimates, see 2.3.2) and their uncertainty for each patient 

were used to stochastically simulate (n=1000) the observed meropenem concentrations during 

CytoSorb® therapy. Per patient, the median predicted concentration-time profile and the 50% 

prediction intervals were plotted together with all individual observed concentrations to assess for 

systematic deviations between samples collected during and outside of CytoSorb® treatment. 

Furthermore, the median prediction error was calculated to assess the bias of the predictions. A 

substantial bias (> 5%) in predictions using the re-estimated model (i.e. that was based on non-

CytoSorb® concentrations) to overpredict the concentrations during CytoSorb® therapy on the patient 

or population level was considered to indicate a clinically relevant adsorption of meropenem.  
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2.6 Project II: Utilising pharmacokinetic models to 

improve meropenem and piperacillin dosing 
 

 Objectives and research strategy 
 

The objectives of this project were to (i) assess and evaluate the current meropenem and 

piperacillin/tazobactam dosing decisions at the Charité-Universitätzmedizin Berlin, to (ii) develop 

model-informed dosing tools optimised for integration into clinical practices at Charitè-

Universitätsmedizin Berlin and to (iii) integrate and assess the developed dosing tools in clinical 

routine use. 

To achieve this objective a clinical study for piperacillin/tazobactam and meropenem was initiated 

as a coordinated intervention of the antimicrobial stewardship (AMS) team at Charité-

Universitätsmedizin Berlin. The study was separated into 3 stages. In stage I, current antibiotic 

dosing practices in two intensive care units were assessed. Furthermore, the data collected in stage I 

was used to select and evaluate published NLME models. A model-informed tabular dosing tool for 

initial antibiotic therapy and an interactive dosing software were developed based on the evaluated 

NLME models and assessed during clinical practice in stage II and stage III of the study, respectively.  
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 Clinical study design  
 

This study was developed as a monocentric, prospective, observational study planned and carried out 

in two intensive care units (Department of Infectious Diseases and Respiratory Medicine; 

Department of Surgery) at Charité-Universitätsmedizin Berlin. The study protocol was approved by 

the local institutional review board (Charité Ethics Committee, application number: EA4/053/19). 

Patients diagnosed with severe infections susceptible for antibiotic therapy either with meropenem 

or the drug combination piperacillin/tazobactam were included in the study. For both treatment 

options the study was separated into distinct stages assessing antibiotic treatment prior to and after 

the implementation of model-informed dosing tools (Figure 2.4). . For both drugs, ‘stage I’ focused 

on the assessment of ‘standard practice’, i.e. the current antibiotic treatment (see 2.6.5). In ‘stage II’ 

a model-informed tabular dosing tool providing individual dosing suggestions for initial meropenem 

therapy was to be developed and applied (see 2.6.6). For piperacillin/tazobactam treatment no 

changes compared to ‘stage I’ were made during ‘stage II’. For ‘stage III’ of the study, an interactive 

web application was to be developed deriving the optimal individual initial dose for both drugs and 

integrating individual concentration measurements to update subsequent dosing suggestions (see 

2.6.7). Overall, while one model informed-dosing tool was developed, implemented and its effect 

investigated for piperacillin/tazobactam treatment, two different model-informed dosing tools were 

developed, implemented and investigated for meropenem treatment  

Throughout the study antibiotic drug concentrations were measured by Labor Berlin (Labor Berlin – 

Charité Vivantes GmbH, Berlin) using high-performance liquid chromatography coupled with 

tandem mass spectrometry. Within 1 hour after blood sample collection samples were sent to the 

laboratory, centrifuged and serum stored at −20 °C until drug concentrations were determined. The 

validation of the bioanalytical method revealed good analytical performance (Meropenem: 

inaccuracy < ± 5.9% relative error, imprecision ≤ 6.3% coefficient of variation, calibration range 2-

30 µg/mL; Piperacillin: inaccuracy < ± 5.3% relative error, imprecision ≤ 5.0% coefficient of 

variation, calibration range 20-120 µg/mL). Serum concentrations outside the calibration range were 

diluted and re-evaluated. The results of the concentration measurement were available to the 

attending physician within 24 hours after sampling. 
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Figure 2.4: Stages of the clinical study at Charitè-Universitätsmedizin Berlin.  
For meropenem two interventions (model-informed tabular dosing tool and interactive web application) were planned 

while only one intervention (interactive web application) was planned for piperacillin/tazobactam. 
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 Pharmacokinetic/pharmacodynamic targets  
 

Based on current literature evidence [57,73,74] and after discussion with the antimicrobial 

stewardship team, the PK/PD target for critically ill patients receiving short-time or prolonged 

infusions was defined as 100%fT>MIC whereas for patients receiving continuous infusions it was 

defined as 100%fT>4*MIC to prevent steady state antibiotic concentrations within the mutant selection 

window [163,164]. Given the non-achievability of 100%T>MIC on the first day of therapy, attainment 

of 98%T> MIC/98%T>4*MIC was assessed in all simulation-based analysis. Due to the low (~2%) protein 

binding of meropenem total concentrations were evaluated for meropenem [66,165], while unbound 

piperacillin concentrations were calculated based on a literature reported fraction unbound (fu) of 

91% in critically ill patients [166]. To assess target attainment based on a single observed minimum 

drug concentration and to limit toxicities arising from high minimum drug concentrations an 

additional target was introduced for the evaluation of the collected data: If a MIC value can be 

determined the target range for minimum plasma concentrations was defined to be 1-5 x MIC for 

short-time or prolonged infusions (Figure 2.5) and 4-8 x MIC for continuous infusions. For 

meropenem, MIC values below 1 mg/L were treated as 1 mg/L while for piperacillin, MIC values 

below 4 mg/L were treated as 4 mg/L.  

If no MIC value can be determined (i.e. empirical therapy), the target range for minimum plasma 

concentrations was defined to be the highest MIC value still susceptible to either of the two 

antimicrobial drugs to account for the less susceptible pathogens expected at ICUs [167,168]. Based 

on anti-pseudomonal activity (i.e. the least susceptible pathogen still treated using the two 

investigated antibiotics) the target range for meropenem was therefore 8-40 mg/L (EUCAST 

breakpoint 8 mg/L [38]) and 16-80 mg/L for piperacillin/tazobactam (EUCAST breakpoint 16 mg/L 

[38]) for critically ill patients without an identified pathogen and MIC. 
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Figure 2.5 Illustration of the pharmacokinetic/pharmacodynamic (PK/PD) target range for minimum 

antibiotic drug concentrations after short-time or prolonged infusion of meropenem or 

piperacillin/tazobactam.   
Black point: Observed minimum antibiotic concentration, dotted blue line: Expected concentration-time profile, red dotted 

lines and red area: PK/PD target range for minimum plasma concentrations; green line: Time period of the unbound drug 

concentration exceeding the MIC; black arrows: antibiotic dosing.  

Abbreviations: MIC: Minimum inhibitory concentration, , fT>MIC: Time period of the free drug concentration exceeding 

the MIC 
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 Data management and exploratory data analysis  
 

2.6.4.1 Dataset generation  

 

The original datasets (overview of included data items: Table S1) received form the AMS and ICU 

teams at Charité-Universitätsmedizin Berlin were transferred into R readable datasets (see 2.2.1). As 

additional patient characteristic, creatinine clearance was estimated based on Cockcroft-Gault 

formula [169]. Missing covariate values were imputed using the last observation carried forward 

approach or next observation carried backwards approach if only data values after the missing time 

point were available (see 2.2.1). 

 

2.6.4.2 Dataset checkout 

 

A comprehensive dataset checkout (see 2.2.2) was performed for all datasets received from the AMS 

and ICU teams at Charité-Universitätsmedizin Berlin.  

 

2.6.4.3 Statistical analysis  

 

Statistical measures used to characterise the central tendency and dispersion of distributions (see 

5.3.1) were calculated for continuous data. Furthermore, different statistical tests were used to 

address specific research questions.  
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 Stage I: Evaluating the ‘Status quo’ of meropenem and 

piperacillin/tazobactam therapy  
 

2.6.5.1 Antibiotic treatment in ‘stage I’ 

 

Antibiotic dosing prior to and dosing adjustments after concentration measurements were determined 

by the attending physician based on the patient’s clinical condition. No structured procedure for dose 

adjustments following concentration measurements outside the target range was pre-specified. For 

all prolonged or continuous infusions, a loading dose (0.5 h infusion) of 1 g meropenem or 4 g 

piperacillin/0.5 g tazobactam was recommended by the AMS team. 

Pathogens with determined MIC values above the EUCAST breakpoint for anti-pseudomonal 

activity of the investigated drugs (meropenem: 8 mg/L, piperacillin/tazobactam: 16 mg/L) were 

defined as resistant and a change of antibiotic was recommended to the attending physician. 

 

2.6.5.2 Data collection in ‘stage I’ 

 

‘Stage I’ of the study was initiated in January 2019 and completed in August 2020. Blood samples 

for drug concentration determination were taken based on the decision of the treating intensive care 

physician. Diagnosis, antibiotic dosing history prior to sampling and clinical parameters including 

scores to assess the extent of organ function (e.g. SOFA score, creatinine clearance) were recorded. 

The available MIC values of relevant isolated pathogens were documented. To enable the selection 

of and an extensive PK model evaluation for the PK models underlying the model-informed dosing 

tools, the full dosing history was recorded for a subset of 66 meropenem and 101 piperacillin samples.  
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2.6.5.3 Target attainment assessment 

 

Overall target attainment assessment 

The proportion of measured concentrations in the target range was determined for both drugs 

depending on the availability of microbiological data (i.e. the target range either 1-5xMIC or in 

empirical therapy if no MIC was available 8-40 mg/L for meropenem and 16-80 mg/L for 

piperacillin/tazobactam (see 2.6.3)). Furthermore, the proportion of drug concentrations below the 

toxicity thresholds (64 mg/L meropenem, 157 mg/L piperacillin [57]) was calculated.  

Target attainment assessment in different renal function groups  

To assess if target attainment (TA) was independent of patients’ renal function, target attainment was 

stratified by renal function (assessed by creatinine clearance estimated based on the Cockcroft-Gault 

formula [169]: severe renal impairment (RI) 0-30 mL/min, moderate RI >30-60 mL/min, mild RI 

>60-90 mL/min, normal renal function (RF) >90-130 mL/min, augmented RF: >130 mL/min) [170] 

and subjected to a chi-squared test of independence. A significant difference in target attainment 

between renal function groups (p-value < 0.01) would indicate lack of evidence for adequately 

adjusted dosing based on renal function.  

Drug concentration assessment between different target range groups  

If higher individual MIC values and therefore higher antibiotic concentrations to be targeted were 

adequately incorporated into dosing decisions, samples with higher targets should display higher 

drug concentrations. The Kruskal-Wallis test was used to assess if measured antibiotic drug 

concentrations were significantly higher for patients with higher targets. A non-significant difference 

between different targeted concentrations (p-value > 0.01) would indicate lack of evidence for 

adequately adjusted dosing based on the targeted concentration range of the individual patient. 

 

2.6.5.4 Dosing adaptations 

 

The frequency and nature of dosing adaptations after measured concentrations below, in and above 

the target range was assessed. To investigate if dosing adaptations after measured concentrations 

outside the target range were more frequent than dose adaptations after measured concentrations 

inside the target range, the Kruskal-Wallis test was used. 
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 Stage II: Developing and implementing a model-informed tabular 

meropenem dosing decision tool  
 

2.6.6.1 Pharmacokinetic model selection and evaluation  

 

In ‘stage I’ of the clinical study exclusively minimum meropenem concentrations and only 66 

samples including the full dosing history were collected. As a consequence, the PK data was 

unsuitable for model development. Instead, a published PK model needed to be selected, evaluated 

for its appropriateness to predict the observed concentrations and applied for the development of the 

dosing decision tool. The selection of the PK model was based on a high similarity of relevant patient 

characteristics between the local study population and the model-underlying population.  

To ensure the adequacy of the selected PK model an extensive external model evaluation was 

conducted: Bias and precision were assessed based on median prediction errors (see 2.3.3.4) and 

normalized prediction distribution errors (NPDEs) [171,172]. For this purpose model-predicted 

concentrations were stochastically simulated (n=500) based on the design and patient characteristics 

in the subdataset with the full dosing history collected during ‘stage I’ of the study. To include 

parameter uncertainty, stochastic simulations were repeated for 1000 PK parameter sets obtained by 

bootstrapping of the dataset and re-estimation of the PK model (see 2.3.3.2). Possible deviations of 

the NPDEs from the standard normal distribution were assessed by the Wilcoxon signed-rank test 

(mean≠0), Fisher ratio test (variance≠1) and Shapiro-Wilks test (normality assumption) [158].  

 

2.6.6.2  Development of the tabular dosing decision tool for meropenem 

 

Selection and evaluation of dosing regimens 

Based on their ease of integration into clinical routine, possible dosing regimens were preselected by 

the AMS and ICU teams. To reduce the number of eligible dosing regimen emerging from the 

possible combinations of the four variables (loading dose, infusion dose, infusion duration, dosing 

interval) prior to the comprehensive probability of target attainment analysis, deterministic 

simulations were performed. First, concentration-time profiles of four virtual patients with different 

creatinine clearance values (45, 90, 135, 180 mL/min) were simulated for potential loading doses 

(1000 mg and 2000 mg), infusion durations (0.5 h and 4 h), a fixed infusion dose (2000 mg) and a 

fixed dosing interval (8 h). The dosing regimens achieving higher predicted minimum meropenem 

concentrations and lower predicted maximum meropenem concentrations were included for the PTA 

analysis (see 2.3.4.2). PTA (selected targets see 2.6.3) was computed for treatment days 1 and 2 for 

creatinine clearance values estimated according to Cockcroft and Gault (CLCRCG) ranging from 10-
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300 mL/min (between 10-150 mL/min in steps of 10 mL/min, above in steps of 50 mL/min) and 

across MIC values ranging from 1 to 32 mg/L. PK model parameter uncertainty was incorporated by 

repeating each Monte Carlo simulation and the respective PTA analysis 1000 times using the PK 

parameter sets obtained from a non-parametric bootstrap. A dosing regimen leading to a PTA≥90% 

for the median of the 1000 computed PTA values was considered adequate [151]. All dosing 

regimens considered adequate based on the PTA analysis were further ranked according to higher 

probability of minimum concentrations being in the defined target range (1–5xMIC) and 

subsequently to lower total daily dose. Thus, for each MIC value and CRCLCG group one dosing 

recommendation was derived. 

 

Integration of locally available pathogen information 

As a high number of antibiotic therapies need to be initiated prior to pathogen detection, dosing 

recommendations accounting for this situation were developed. Based on the PTA results for MIC 

values ranging from 0.25 mg/L – 512 mg/L and the pathogen-independent MIC distribution observed 

at Charité-Universitätsmedizin Berlin during ‘stage I’ of the study (see 2.6.2 and 3.2.1.3), the local 

pathogen-independent mean fraction of response (LPIFR) was introduced as a metric for each dosing 

regimen: To determine the LPIFR for a dosing regimen (𝐿𝑃𝐼𝐹𝑅𝐷𝑅), first the PTA for each 

investigated MIC level (PTAMIC,DR) was multiplied by the relative MIC frequency at this level in the 

distribution of MIC values. Next, the resulting MIC frequency-weighted PTA values were 

summarised per dosing regimen (Eq.2.49):  

 LPIFRDR = ∑ (PTAMIC,DR × 
𝑛MIC

𝑁𝑀𝐼𝐶,𝑡𝑜𝑡𝑎𝑙
)

MIC

 (Eq.2.49) 

 

In the equation, DR represents the investigated dosing, 𝑛MIC  the number of observed MIC values 

per MIC level and 𝑁𝑀𝐼𝐶,𝑡𝑜𝑡𝑎𝑙 the total number of observed MIC values. Dosing regimen with a LPIFR 

≥ 90% were considered adequate. For each CRCLCG group all dosing regimens considered adequate 

based on the LPIFR analysis were selected and subsequently ranked by lower total daily dose. Thus, 

for each CRCLCG group, one dosing recommendation was derived if the pathogen and its 

susceptibility was unknown.  
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2.6.6.3 Evaluation of the tabular dosing decision tool 

 

To ensure patient safety and assess the potential benefit of the developed model-informed dosing 

decision tool, it was evaluated prior to implementation into clinical practice: The total daily doses of 

the dosing regimens recommended by the dosing decision tool were compared to the total daily doses 

of the actually administered dosing regimens in ‘stage I’ of the clinical study. For this purpose, the 

‘stage I’ dataset was stratified based on target attainment (above, below and in defined target range 

of 1–5xMIC) and the administered and recommended daily doses were compared. 

‘Stage II’ of the study was initiated in December 2020 with the aim of evaluating the tubular dosing 

decision tool in clinical practice at Charité-Universitätsmedizin Berlin. Healthcare personal in the 

participating ICU wards were trained in the use of the tool by members of the AMS team on multiple 

occasions. In addition to the training, a simple step-by-step flow-chart explaining the use of the 

dosing tool was provided to be displayed in the wards (Figure S5). Samples collected during a 4 

weeks long transition period were flagged. Like in ‘stage I’ of the study, dosing information 

immediately prior to sampling and patient-specific data were collected (Table S1). Furthermore, to 

be able to retrace and to evaluate the correct use of the developed tool, the target selected by the 

intensive care physician was recorded on the sample collection sheet (Figure S6). 
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 Stage III: Developing and implementing an interactive model-

informed dosing software  
 

2.6.7.1 Pharmacokinetic model selection and evaluation  

 

For meropenem the evaluated PK model (see 3.2.2.1) underlying the tabular model-informed dosing 

decision tool developed in ‘stage II’ was selected. To identify a suitable PK model for piperacillin, 

possible candidates were identified from scientific literature and evaluated using the piperacillin 

subdataset with full dosing history collected in ‘stage I’ of the clinical study (see 2.6.2). First a 

PubMed search with the term ‘piperacillin’ in combination with one or multiple of the 25 selected 

terms (Table S11) indicating the development/use of a pharmacokinetic model was conducted. 

Subsequently, the pre-selected publications from the PubMed search were individually examined 

focusing on (i) patient population characteristics, (ii) modelling approach and (iii) the availability of 

all information needed to reconstruct the PK model. Only parametric PK models of critically ill 

patients or patients during sepsis were selected for model evaluation.  

Next, to select the most appropriate of the preselected piperacillin PK models for the integration into 

the model-informed dosing software external model evaluations were conducted. Model-predicted 

concentrations were stochastically simulated (n=500) using the administered dosing regimens and 

patient characteristics observed in the subdataset with full dosing history (see 2.6.5.2). To assess bias 

and precision, median prediction errors and absolute median prediction errors were calculated (see 

2.3.3.4). If the literature-identified PK models incorporated patient characteristics not available in 

the dataset, the respective characteristics were fixed to the median patient characteristic observed in 

the model development datasets. The PK model with the lowest bias and highest precision was 

selected as best performing model and subjected to further evaluation. 

To evaluate the predictive performance of the best performing PK model in the context of intended 

use (i.e. updating the predictions for each induvial patient with every new antibiotic concentration 

becoming available), a step-wise maximum a-posteriori likelihood (MAP, see 2.3.4.3) estimation 

was conducted: for each patient the concentration at the sampling time point was predicted using 

stochastic simulations (500 virtual patients) based on the prior distribution of PK model parameter 

estimates and every subsequent concentration was predicted using stochastic simulations based on 

the posterior parameter distribution. The posterior parameter distribution was estimated using the 

MAP and normal approximation approach (see 2.3.4.3) and the preceding samples of an individual 

patient. As for the evaluation of the a-priori predictive performance (i.e. without MAP estimation), 

median prediction errors were calculated based on the simulations and used to assess bias and 

precision.   
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2.6.7.2 Simulation framework including maximum a-posteriori parameter estimation  

 

The model-informed dosing software was developed as a web application utilising TDMxR and shiny 

in R/RStudio. To predict the concentration-time profile for an individual patient the two selected and 

evaluated PK models for meropenem and piperacillin (see 3.2.2.1 and 3.2.3.1) were incorporated in 

the software. To calculate the probability of a dosing regimen to attain the defined PK/PD target, 

stochastic simulations (n = 250) were implemented integrating the selected antibiotic drug, the 

provided patient characteristics and the chosen dosing regimen. To incorporate an individual 

patient’s drug measurement(s) that become(s) available in the course of antibiotic treatment, 

maximum a-posteriori (MAP) parameter estimation and the estimation of the individual posterior 

parameter distribution based on the normal approximation approach was integrated using the 

estimate.map function in TDMxR. 

 

2.6.7.3 Assessment of the potential of the dosing decision software using real patient 

data 

 

The developed model-informed dosing software was evaluated prior to implementation into clinical 

practice. For patients with complete dosing history in ‘stage I’ of the study and determined MIC 

value (63 meropenem and 90 piperacillin samples), the DoseCalculator was used to select the most 

suitable dosing regimens integrating the available information throughout a typical clinical treatment 

period: Prior to the first concentration measurement the dosing regimen for each individual patient 

was selected based on stochastic simulations of the PK model integrating the patient’s characteristics. 

After each subsequent antibiotic concentration measurement, MAP parameter estimation was 

conducted and the selected dosing regimen updated incorporating the individual PK of the patient. 

Next, the model-predicted target attainment (target: minimum antibiotic concentration 1-5xMIC) 

was calculated for the dosing regimens selected by the DoseCalculator and compared to the model-

predicted target attainment for the dosing regimens administered to the ICU patients.  
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2.7 Project III: Evaluation and extension of the 

MeroRisk Calculator  
 

 Objectives and research strategy 
 

The objectives of this project were (i) to evaluate the performance of the MeroRisk Calculator, a 

previously developed user-friendly tool to predict the risk of meropenem target non-attainment in 

critically ill patients, using routine clinical data and (ii) to extend the risk predictions of the MeroRisk 

Calculator to include pathogen sensitivity information in case no individual MIC value is available.  

A direct data-based evaluation of the MeroRisk Calculator was not feasible using the available 

clinical routine dataset without censoring most of the available data: While the MeroRisk Calculator 

uses the provided creatinine clearance to predict the meropenem concentration 8 h after standard 

dosing (1 g, 0.5 h infusion, q8h), i.e., at one specific time point, a large proportion of the 

concentration measurements of the retrospective dataset, were taken at different time points (not 

exactly 8 h after dose). Therefore, a two-step approach was chosen: In step 1, the potential of a 

population pharmacokinetic model to predict the clinical routine dataset was evaluated. In step 2, the 

PK model was used for a model-based evaluation of the MeroRisk Calculator. Furthermore, a method 

to calculate the risk of target non-attainment based on causative pathogens prior to MIC 

determination was developed employing susceptibility patterns reported by EUCAST.  
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 Database 
 

This analysis was based on a monocentric, observational study at two anaesthesiological intensive 

care units (ICU) of the University Hospital, LMU Munich, Germany (ClinicalTrials.gov identifier: 

NCT03985605). The study protocol was approved by the local Institutional Review Board 

(registration number 18-578). Patients diagnosed with severe infections susceptible for antibiotic 

therapy with meropenem were included in the study and received meropenem treatment according 

to clinical need assessed by the responsible physician. Once-daily blood samples were collected to 

quantified meropenem according to a validated LC-MS/MS method [160]. Furthermore, the available 

demographic patient data (e.g. sex, age, weight) and laboratory data (e.g. serum albumin 

concentration, serum creatinine concentration) were collected from the hospital information system. 

Creatinine clearance was estimated as marker for renal function based on Cockcroft and Gault 

equation [169]. Patients undergoing renal replacement therapy and patients with creatinine 

clearances outside the current range of application of the MeroRisk Calculator (25 – 255 mL/min) 

[131] were excluded from the analysis. PK, laboratory and demographic data were analysed using 

the exploratory analysis methods introduced in section 2.2.3.  
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 Evaluation of the MeroRisk Calculator  
 

2.7.3.1 Evaluation strategy  

 

The dataset used for the evaluation of the MeroRisk Calculator was collected during clinical routine 

and not in a controlled clinical trial with a fixed and accurate sampling schedule. As a consequence, 

it consisted of concentration measurements at various timepoints and after administration of different 

dosing regimens. The MeroRisk Calculator links the creatinine clearance estimated according to 

Cockcroft and Gault (CLCRCG) to meropenem concentrations 8 hours after standard meropenem 

dosing (1 g, 0.5 h infusion, q8h) i.e. to one specific timepoint. Therefore, a direct evaluation based 

on the comparison of measured meropenem concentrations with concentrations predicted by the 

MeroRisk Calculator was not feasible. In contrast to the MeroRisk Calculator, compartmental PK 

models are able to predict the expected drug concentration-time profile, i.e. the meropenem 

concentration at any timepoint including the 8 hour timepoint, following every conceivable dosing 

regimen. To enable an evaluation based on the available clinical dataset, a two-step evaluation 

strategy was employed (Figure 2.6):  

• Step 1: Data-based evaluation of a published NLME meropenem population PK model using 

the clinical dataset.  

• Step 2: PK model-based evaluation of the MeroRisk Calculator by comparing the 

meropenem and risk of target nonattainment predictions of the evaluated PK model (Step 1) 

to the predictions of the MeroRisk Calculator.  
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Figure 2.6: Work-flow for the stepwise evaluation strategy of the MeroRisk Calculator using a 

clinical routine dataset [173].   
A direct, data-based evaluation of the MeroRisk Calculator (bottom right) employing the clinical dataset (bottom left) was 

not feasible due to the time variable sampling time points under routine conditions in the dataset. Therefore, a population 

pharmacokinetic (PK) model (top) was evaluated for its potential to predict the concentrations observed at variable time 

points (Step 1) and the predictions by the evaluated PK model were then used as a benchmark for the predictions of the 

MeroRisk Calculator (Step 2) 

  

PK model 
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2.7.3.2 Evaluation step 1: Data-based evaluation of the two-compartment PK model 

 

The two-compartment meropenem PK model selected for the evaluation included three covariates: 

CLCRCG as covariate on meropenem clearance, total body weight on the central volume of 

distribution and serum albumin concentration on the peripheral volume of distribution, implemented 

as piecewise linear, power and linear relationship, respectively [129].  

For the external model evaluation of the PK model, patients with characteristics outside of the 90% 

range of patient characteristics observed in the model development dataset were excluded (n=28 

(15.3%)). Stochastic simulations (n=2000) of the clinical dataset were performed and prediction 

errors were calculated and used to assess bias and precision of the PK model (see 2.3.3.4). 

 

2.7.3.3 Evaluation step 2: PK model-based evaluation of the MeroRisk Calculator  

 

For the evaluation of the MeroRisk Calculator, both predicted meropenem concentrations and 

predicted risks of target non-attainment by the MeroRisk Calculator were compared to predictions 

by the evaluated PK model of step 1.First, the conformity of predictions for the patients included in 

the clinical dataset was examined. Second, virtual patients were generated to investigated possible 

deviations between the predictions of the PK model and the MeroRisk Calculator for patient 

characteristics with a high impact on meropenem pharmacokinetics.  

Conformity between the predictions for real patients 

To assess the conformity of meropenem predictions between the MeroRisk Calculator and the PK 

model for a real patient population, concentrations 8 hours after standard dosing were simulated for 

the 155 patients included in the clinical dataset using stochastic simulations (n = 2000) for the PK 

model and classic theory of linear models and standardised residuals [131] for the model underlying 

the MeroRisk Calculator. Median predictions were calculated for each patient and method and 

compared visually.  

To assess the conformity of risk predictions between the MeroRisk Calculator and the PK model a 

target of 100% T>MIC, MIC values ranging from 0.125 – 16 mg/L and the characteristics of the 155 

patients of the evaluation dataset were chosen. Due to the low protein binding of meropenem (~2%) 

[66] total meropenem concentrations were evaluated. The risk predictions of the PK model were 

calculated based on stochastically simulated (n=2000) meropenem concentrations 8 hours after 

standard dosing, while risk predictions of the MeroRisk Calculator were derived using classic theory 

of linear models and standardised residuals [131]. Lin’s concordance correlation coefficient (CCC) 

[174] - a common way to assess the agreement of a new test or measurement (here: the MeroRisk 
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Calculator) to an established test or measurement (here evaluated PK model) -was chosen to 

quantitatively examine the conformity of both risk predictions. Based on the strength-of-agreement 

criteria for CCC defined by McBride (Table 2.4) [174] the evaluation of the MeroRisk Calculator 

was considered successful, if the lower one-sided 95% confidence limit of the calculated CCC value 

was ≥0.95 for the combined analysis of all investigated MIC values (0.125 – 16 mg/L).  

 

Table 2.4: Strength of agreement criteria defined by McBride for Lin’s concordance correlation 

coefficient [174]. 

Strength of agreement  Continuous variable 

Almost perfect >0.99 

Substantial  0.95-0.99 

Moderate  0.90-0.95 

Poor <0.90 

 

Conformity between the predictions for virtual patients 

To assess the impact of varying patient characteristics on the meropenem predictions and to identify 

possible characteristic-dependent deviations between the predictions of the MeroRisk Calculator and 

the PK model, three virtual patient populations of 50 individuals each were generated. In each of the 

virtual populations two of the three covariates implemented in the PK model were fixed to the median 

value of the model development dataset (weight: 70 kg, serum albumin concentrations: 2.8 g/dL, 

serum creatinine concentrations: 1.24 mg/dL) [129] while the third ranged in equally sized steps from 

the 5th to 95th percentile of the respective distributions. Based on the weight and serum creatinine 

concentration of each virtual patient, a fixed age of 53.9 years and male sex, creatinine clearance was 

estimated according to Cockcroft-Gault formula [169]. Meropenem concentrations 8 hours after 

standard dosing of meropenem were predicted for the three virtual populations using both the linear 

model underlying the MeroRisk Calculator and the evaluated PK model of step 1. For the PK model, 

stochastic simulations (n=2000) were performed, and the median prediction and 95% prediction 

interval calculated. The same metrics (median prediction and 95% prediction interval) were derived 

for the model underlying the MeroRisk Calculator using classic theory of linear models and 

standardised residuals [131]. The median predictions and 95% prediction intervals were graphically 

analysed over the range of investigated patient characteristics.  
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 Integration of a new feature in the MeroRisk Calculator: Risk 

assessment based on pathogen specific MIC distribution  
 

The previous version of the MeroRisk Calculator allowed a user-friendly way to predict the risk of 

meropenem target non-attainment in critically ill patients, if the pathogen causing the infection and 

its susceptible (i.e. MIC) are known. To extend the applicability of the tool to clinical situations in 

which the pathogen but not its susceptibility are known, the risk assessment for target non-attainment 

of an individual patient (characterised by the CLCRCG) and a specific pathogen (characterised by 

the MIC distribution) was implemented into the MeroRisk Calculator using Excel. The risk 

calculation was based on CFR analysis (see 2.3.4.2) for the 74 pathogens included in the current 

report of meropenem MIC value distributions by EUCAST [38]. To assess the appropriateness of 

standard dosing for a real patient population and all clinically relevant pathogens, the extended 

MeroRisk Calculator was used to determine the risk of target non-attainment for the 155 critically ill 

patients in the evaluation dataset and all 74 currently in the EUCAST database available pathogens. 
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3 Results  
 

3.1 Project I: Characterising meropenem 

adsorption abilities at the cytokine adsorber 

CytoSorb® 
 

 Database 
 

A total of 333 meropenem serum samples from 25 patients were included in the analysis (Table 3.1). 

One third of the samples (n = 114; 34.2%) were collected during CytoSorb®-treatment. The 

investigated patient population covered a broad range of age (19 - 97 years), was severely ill (median 

APACHE II score on study day 1: 34, range 11 - 43) and typically had a low residual diuresis (median 

240 mL/day, range 0 – 3900 mL/day). Patients received meropenem either as a continuous (19%), 

prolonged (> 0.5 h - < 4 h) (14%) or short-term (≤ 0.5 h) (67%) infusion. The median daily dose was 

5 g (range: 1 - 7 g) of meropenem. The CytoSorb® filter was installed after a median time of 3.26 

hours (range: 0.08 – 8.5 hours) post dose for patients with short or prolonged infusion was. Since 

there was no fixed sampling schedule, there were no missing values for meropenem concentrations. 

All relevant patient characteristics were comparable between the two studies (Table 3.1), justifying 

to pool the data for the subsequent PK analysis. A first graphical evaluation of meropenem 

concentrations after short-term (0.5 h) infusion of 2000 mg meropenem did not indicate clear 

deviations between meropenem samples taken during renal replacement therapy, during renal 

replacement therapy including the CytoSorb® filter and outside of renal replacement therapy (Figure 

3.1). 



69 
 

 

Figure 3.1: Observed meropenem concentrations (n=186) following a short-term infusions (0.5 h) of 

2000 mg meropenem stratified by type of renal replacement therapy (RRT).   
Meropenem samples taken during periods without RRT (red dots), during RRT (green dots) or during RRT including 

CytoSorb® filter (blue dots). 
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Table 3.1: Overview of patient characteristics also stratified by study. 

Patient 

characteristic 

Total dataset NCT01793012  NCT03985605  

Categorical variables n (%) 

No. of patients 

No. of male patients 

25 (100) 

20 (80) 

6 (100) 

2 (33) 

19 (100) 

18 (95) 

No. of samples 333 (100) 117 (100) 216 (100) 

Patients with 

CytoSorb® 

20 (80) 1 (17) 19 (100) 

Total no. of 

CytoSorb® treatments 

44 2 42 

No. of samples during 

CytoSorb® 

114 (34.2) 17 (15) 97 (45) 

No. of patients with 

CRRT 

25 (100) 6 (100) 19 (100) 

CVVHD/CVVHDF 19 (76)/12 (48)a 3 (50)/3 (50) 16 (84)/9 (47)a 

Continuous variables 

[unit] 

Median (range) 

CytoSorb® treatment 

duration [h] 

9.3 (1.7 - 27.4) 22.8 (18.3 – 27.4) 9.23 (1.7 – 26.8) 

Median daily dose [g] 5 (1 – 7) 3 (1 – 5) 6 (2 - 7) 

Continuous variables 

on study day 1 [unit]  

Median (range) 

Age [years] 54 (19 - 97) 53.5 (40 – 56) 56 (19 – 57) 

Weight [kg]  80 (52 - 140) 75.5 (52 – 120) 87 (56 – 140) 

Serum albumin 

concentration [g/dL]  

2.6 (1.6 – 3.5) 2.8 (2.2 – 3.3) 2.5 (1.6 – 3.5) 

APACHE II 34 (11 – 43) 34 (11 – 38) 35 (23 – 43) 

Bilirubin [mg/dL] 2.6 (0.2 – 33.2) 8.2 (1.0 – 24.9) 1.5 (0.2 – 33.2) 

IL-6 concentration 

[pg/mL] 

1945 (0.2 – 370000) 1956 (82 – 197000) 1945 (2.6 – 370000) 

CRP concentration 

[mg/dL] 

15.4 (0.5 – 48.6) 2.5 (1.9 – 24.7) 16.9 (0.5 – 48.6) 

Residual Diuresis 

[mL/day] 

240 (0 – 3900) 650 (0 – 1700) 240 (0 – 3900) 

Dialysate flow [L/h] 2.0 (1.0 – 4.8) 1.5 (1.0 – 3) 2.0 (1.2 - 4.8) 

Replacement fluid 

[L/h]b 

2.0 (1.0 – 3.5) 1.0 (1.0 – 1.5) 2.2 (1.2 – 3.5) 

Blood flow [L/h] 6.0 (4.8 – 24) 6.0 (4.8 – 12) 6.0 (6.0 -24) 

Abbreviations: APACHE II: Acute Physiology And Chronic Health Evaluation II, CRP: C-reactive protein, CRRT: 

Continuous renal replacement therapy, CVVHD: Continuous veno-venous haemodialysis, CVVHDF: Continuous veno-

venous haemodiafiltration, IL-6: Interleukin 6.  
a in 6 patients the dialysis-type was switched  
b when CVVHDF on. 
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 Population pharmacokinetic modelling 
 

3.1.2.1 Basis model development  

 

A two-compartment PK disposition model with zero-order input and first-order elimination best 

described the data. IIV was included on clearance (CL) and both volumes of distribution (V1, V2) 

and residual variability was described using a proportional model (Table 3.2). None of the examined 

covariates fulfilled the criteria for inclusion in the model. Both goodness-of-fit plots and a visual 

predictive check demonstrated an adequate representation of the observed data by the developed PK 

model (Figure 3.2). The slight overprediction of the observed variability (identifiable in the VPC) 

can be attributed to a few outliers in the dataset.  

 

 

 

Figure 3.2. Prediction-corrected visual predictive check (n=1000 simulations, left) and goodness-of-

fit plots (right) for the population pharmacokinetic model of meropenem in critically ill patients 

undergoing renal replacement therapy.   

a): Points: Observations, Lines: 10th, 90th percentile (dashed), 50th percentile (solid) of the observed (red) and simulated 

(black) data. Shaded areas: 95% confidence interval around 10th, 50th and 90th percentile of simulated data. b-d): Points: 

Observations with (blue) and without (red) CytoSorb® b, c): Lines: Line of unity. d): Horizontal line: Reference line at y=0. 

  

a) 
b) c) 

d) 
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3.1.2.2 Effect of CytoSorb®-treatment on meropenem concentrations 

 

Approach 1: CytoSorb®-treatment as categorical covariate on clearance  

Implementing CytoSorb® as a categorical covariate on clearance did neither result in a statistically 

significant drop in objective function value (∆OFV: -0.018) nor in a reduction of unexplained 

variability (30.0 %CV vs. 30.8 %CV, Table 3.2). Furthermore, the estimated increase in clearance 

during CytoSorb® treatment was not clinically relevant (0.73%) and the parameter was estimate 

imprecisely, i.e., the relative standard error (RSE) for the parameter estimate was 627% and therefore 

the 95% confidence interval of the parameter estimate included 0 (i.e. no-effect).  

Approach 2: Adsorption submodels 

None of the three investigated adsorption submodels for meropenem during CytoSorb® therapy led 

to a significant drop in OFV (∆OFV: -0.024, -0.78, -0.78 for constant adsorption model, linear 

decrease adsorption model and hyperbolic decrease adsorption model, respectively). The precision 

of the parameter estimates was low for all three models (ranging from 110% RSE to 1557% RSE) 

and the maximum CytoSorb® clearance was not clinically relevant (Table 3.2). Directly after 

implementation of the CytoSorb® filter when no meropenem is yet adsorpt at the filter and therefore 

the adsorption in all three adsorption models is at the maximum, the adsorption clearance was 

equivalent to 0.75%, 3.7% and 3.84% of total clearance for the constant adsorption model, the linear 

decrease adsorption model and the hyperbolic decrease in adsorption model, respectively.  

Approach 3: Re-estimation of the model parameters excluding samples during CytoSorb® 

treatment 

Re-estimation of the parameters of the final basis model without samples of meropenem 

concentrations collected during CytoSorb® treatment, did not substantially change parameter 

estimates (Table 3.2): CL even increased slightly while still remaining within the 95% CI of the 

original parameter estimates. In Figure 3.3 the individual median meropenem concentration predicted 

by the re-estimated model and the 50% prediction interval are plotted against the observed 

concentrations during CytoSorb® therapy (n=114). The re-estimated model showed a tendency to 

predict concentrations lower than those measured during CytoSorb® therapy: The median bias of the 

predictions was -0.42 mg/L (2.6%) and for the majority (81.7%) of samples the 50% prediction 

interval included the line of identity. For 61 (53.5%) of the samples the median predicted 

concentration was below the observed concentration. In Figure 3.4 the predicted concentration-time 

profile and all observed concentrations from one individual patient from study NCT01793012 are 

displayed as an example, while the individual concentration-time profiles of all other patients are 

presented in the supplementary data (Figure S1): Both the meropenem concentrations with and 

without CytoSorb® therapy were randomly scattered around the individual median predicted 
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concentration. Hence, a difference between samples taken with and without CytoSorb® therapy could 

not be detected across all patients with very different dosing regimens and numbers of meropenem 

samples taken.  
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Table 3.2: Parameter estimates (RSE %) [shrinkage %] for the pharmacokinetic models investigating the effect of CytoSorb® treatment on meropenem 

concentrations. 

Abbreviations: CL: Clearance,  V1: Volume of  central compartment, V2: Volume of the peripheral compartment, Q: Clearance between V1and V2, COV CL: proportional increase of clearance during 

CytoSorb® therapy, kmax: maximum adsorption rate, Amax: maximum drug amount adsorbed at the CytoSorb® filter, A50: absorbed drug amount connected to a the half maximum adsorption rate, CV: 

Coefficient of variation, Prop.: Proportional, RSE: relative standard error, ω: Random-effects parameters for interindividual variability, σ: Random-effects parameters for residual variability 

 

Parameter [unit] 
Basis model Model with 

CytoSorb® as 

categorical covariate 

Adsorption submodels CytoSorb® 

excluded  

(nremaining=219) Constant Linear decrease   Hyperbolic decrease 

Fixed-effects parameter  

CL [L/h] 6.39 (6) 6.38 (6) 6.37 (7) 6.31 (5) 6.31 (24) 6.63 (5) 

V1 [L] 11.6 (21) 12.0 (17) 12.0 (23) 11.6 (77) 11.6 (259) 10.8 (36) 

V2 [L] 29.8 (25) 29.8 (20) 29.8 (26) 30.1 (45) 31.1 (20) 28.6 (23) 

Q [L/h] 11.4 (39) 11.0 (36) 11.0 (38) 11.0 (59) 11.0 (274) 21.2 (40) 

COV CL  0.007 (627)     

kmax [1/h]   0.004 (248) 0.02 (110) 0.02 (686)  

Amax[mg]    3*107 (1557)   

A50 [mg]     4*108 (711)  

Interindividual variability  

ω CL, CV % 20.2 (19) [9] 20.6 (19) [9] 20.5 (19) [9] 20.5 (20.0) [9] 20.5 (64) [9] 20 (18) [14] 

ω V1, CV % 69.5 (33) [28] 72.4 (33) [28] 64.9 (32) [28] 73.9 (56) [28] 73.9 (166) [28] 57.2 (31) [41] 

ω V2, CV % 69.9 (27) [27] 79.6 (27) [27] 70.1 (25) [27] 80.5 (32) [27] 80.4 (118) [27] 51.7 (122) [40] 

Residual variability  

σ Prop. CV % 30.0 (11) 30.8 (11) 30.8 (11) 30.7 (10) 30.7 (84)  30.2 (11) 
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Figure 3.3: Predicted meropenem concentrations based on pharmacokinetic model excluding 

CytoSorb® samples vs. meropenem concentrations observed during CytoSorb® therapy (n=114).  
Dots: Median predictions, Error bars: 50% prediction interval, Black line: Line of identity. Red line: Loess smoother  
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Figure 3.4: Observed meropenem concentrations and predicted meropenem concentration-time 

profile based on a pharmacokinetic model excluding CytoSorb® samples for one individual patient 

of the dataset.  

Black line: Median prediction, Grey shade: 50% prediction interval, Symbols: Meropenem samples with (points) and 

without (stars) CytoSorb®-treatment. 
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3.2 Project II: Utilising pharmacokinetic models to 

improve piperacillin/tazobactam and 

meropenem dosing 
 

 Stage I: Evaluating the ‘status quo’ of meropenem and 

piperacillin/tazobactam therapy  

 

3.2.1.1 Database 

 

In ‘stage I’ of the clinical study 375 meropenem samples and 230 piperacillin blood samples were 

collected from 108 and 96 ICU patients, respectively. For 19 (5%) blood samples taken for 

meropenem measurements and 14 (6%) blood samples taken for piperacillin measurements, the drug 

concentrations could not be determined by the laboratory due to delays in sample transportation 

resulting in the disbarment of the affected samples. For both drugs the patients included in the study 

were predominantly male (meropenem: 64.8%, piperacillin/tazobactam: 63.5%), aged over 60 years 

(median: meropenem 62.0 years, piperacillin/tazobactam 65.0 years) and had a median weight of 

76.0 kg. Creatinine clearance estimated based on the Cockcroft-Gault equation [169], serum albumin 

concentrations and location of infection were similar for patients receiving meropenem and 

piperacillin/tazobactam (Table 3.3). Patients receiving meropenem were found to be more severely 

ill, with increased SOFA and APACHE scores (median score for meropenem vs. 

piperacillin/tazobactam: SOFA: 8 vs. 6, APACHE: 23 vs. 20) and a higher proportion of 

extracorporeal organ support (percentage of samples during organ support for meropenem vs. 

piperacillin/tazobactam: renal replacement therapy (RRT): 38.1% vs. 23.0%, extracorporeal 

membrane oxygenation (ECMO): 8.80% vs 5.22%). All other patient characteristics where found to 

be highly similar between the two groups (Table 3.3 and Figure S2). 
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Table 3.3: Overview of patient and blood sampling characteristics 

Characteristic Meropenem Piperacillin/tazobactam 

 Patient level 

Categorical  n (%) n (%) 

Patients 108 96 

Male  70 (64.8) 61 (63.5) 

Continuous [unit] Median (5th-95th percentile) Median (5th-95th percentile) 

Age [years]  62.0 (36.0-80.0) 65.0 (36.0-81.0) 

Weight [kg]  76.0 (49.0-126) 76.0 (49.6-128) 

 Sample level 

Categorical  n (%) n (%) 

Blood samples  375 230 

• Samples during 

RRT 
143 (38.1) 53 (23.0) 

• Samples during 

ECMO 
33 (8.80) 12 (5.22) 

Location of infection    

• Intraabdominal 166 (44.6) 101 (43.9) 

• Pneumonia 131 (35.2) 102 (44.3) 

• Blood stream 60 (16.1) 18 (7.83) 

• Skin-/soft tissue 15 (4.00) 4 (1.74) 

• Other 0 (0) 5 (2.17) 

• Unknown 3 (0.80) 0 (0) 

Continuous [unit] Median (5th-95th percentile) Median (5th-95th percentile) 

Blood samples per patient 2 (1-10) 2 (1-5) 

Creatinine clearance# 

[mL/min] 
76.6 (24.8-241) 71.1 (17.8-171) 

Serum albumin 

concentration [g/dL]  
2.68 (1.99-3.58) 2.70 (2.00-3.50) 

SOFA score 8.00 (1.90-17.0) 6.00 (1.00-14.0) 

APACHE score 23.0 (12.0 – 37.0) 20.0 (11.0-34.0) 
#estiamted according to Cockcroft-Gault formula [169].  

Abbreviations: n: number, RRT: renal replacement therapy, ECMO: extracorporeal membrane oxygenation, SOFA: 

Sepsis-related Organ Failure Assessment, APACHE: Acute Physiology and Chronic Health Evaluation  
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3.2.1.2 Antibiotic treatment  

 

The monitored meropenem dosing regimens prior to the concentration measurements were diverse: 

In most cases (63.5%), 2 g meropenem were administered as loading dose, while in the remaining 

cases, it was 1 g meropenem. Administered meropenem maintenance doses included 0.5, 1, 2, 3, 6 

and 8 g, with 1 g (50.2%) and 2 g (40.7%) being the two most frequently administered doses. The 

majority of doses (92.7%) was administered as prolonged infusions over 3 hours (31.2%) or 4 hours 

(61.5%) and a further 7.26% as continuous infusion. The most common dosing interval for 

meropenem was 8 hours (77.0%), followed by 6 hours (11.0%), 24 hours (8.52%) and 12 hours 

(3.15%). 

Piperacillin/tazobactam dosing regimens monitored during the study did not substantially vary 

between patients regarding to the administered dose, infusion duration and dosing interval. For 

piperacillin, almost all administered doses (98.6% of loading and 99.5% of maintenance doses) 

consisted of 4 g in combination with 0.5 g tazobactam (others: 1 g piperacillin/0.125 g tazobactam 

and 2 g piperacillin/0.25 g tazobactam). The majority (98.0%) of doses was administered as 

prolonged infusion over 3 hours (34.3%) or 4 hours (63.7%); the others were prolonged infusions 

over 2 h (1.50%) or short infusions over 0.5 h (0.50%). The most common dosing interval was 8 

hours (72.4%), followed by 6 hours (18.6%), 12 hours (8.54%) and 24 hours (0.50%). 

 

3.2.1.3 Pathogen susceptibility  

 

For 49.1% of patients receiving meropenem and 34.4% of patients receiving piperacillin/tazobactam, 

the MIC value of the pathogen causing the infection could be determined and was available for the 

attending physician approximately two days after therapy start (median time (range) after therapy 

start: meropenem 2.1 days (0-120 days), piperacillin 2.3 days (0-103 days)). The majority of 

observed pathogens was susceptible to the administered antibiotics (meropenem: 93.3%, piperacillin: 

97.0%) and most observed MIC values (meropenem: 90.0%, piperacillin: 93.9%) were found to be 

lower than 8 mg/L for meropenem and 16 mg/L for piperacillin, which represented the lower 

threshold of the target range set by the AMS team for empirical antibiotic therapy (see 2.6.3). For 

meropenem, 75% of the pathogens with a determined MIC value had a MIC value 32 times smaller 

than the lower threshold of the defined empirical target range. For piperacillin, more than one fifth 

(21.2%) of the determined MIC values were within a 2-fold deviation and 93.9% within a 4-fold 

deviation from the selected empirical target. An overview of the observed MIC values independent 

of their pathogen is presented in Table 3.4 and a detailed overview of the detected pathogens and 

MIC values can be found in the supplementary (Table S2 and Table S3). 
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Table 3.4: Observed minimum inhibitory concentration (MIC) values independent of pathogen. 

 Meropenem Piperacillin/Tazobactam 

 n (%) n (%) 

Patients with determined MIC 53 (49.1) 33 (34.4) 

Unique# MIC determinations 60 33 

MIC [mg/L]:    

<0.25 45 (75.0*) 2 (6.06 *) 

0.5 2 (3.33*) - 

1 2 (3.33 *) - 

2 2 (3.33*) - 

4 3 (5.00*) 24 (72.7*) 

8 2 (3.33*) 5 (15.2*) 

16 4 (6.67*) 1 (3.03*) 

32 - 1 (3.03 *) 

#if a second MIC determination in the same patient was equal to the first determination it was not considered in this table. 

*in relation to the number of unique MIC determinations (n=60 for meropenem, n=33 for piperacillin) 

Abbreviations: MIC: minimum inhibitory concentration, n: number of samples.  

 

 

3.2.1.4 Target attainment assessment 

 

Of the 356 meropenem samples with a reported antibiotic drug concentration, 127 (35.7%) were 

within the targeted concentration range, while 49 (13.8%) were below and 180 (50.6%) above. One 

in forty (2.5%) meropenem concentration measurements exceeded concentrations linked to an 

increased risk for neurotoxicity. For piperacillin, 109 of 216 (50.5%) measured drug concentrations 

were in the targeted concentration range, 32 (14.8%) below and 75 (34.7%) above. One in ten 

(10.2%) piperacillin concentrations exceeded the toxicity threshold.  

For both drugs, concentration measurements from patients without a determined MIC value for the 

causative pathogen (i.e. empirical therapy) had a higher but yet unsatisfying proportion of target 

attainment (meropenem 56.8%, piperacillin 57.0%) than measurements with a determined MIC value 

(meropenem 20.6%, piperacillin 33.9%; Figure 3.5).  
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Figure 3.5: Target range attainment of minimum meropenem or piperacillin concentrations stratified 

by the availability of susceptibility data (MIC value) for the pathogen causing the infection.   
Target range for the minimum drug concentration defined as 1-5xMIC. If no MIC values was determined an empirical 

target of 8-40 mg/L and 16-80 mg/L was used for meropenem and piperacillin, respectively.  

Abbreviations: MIC: minimum inhibitory concentration  
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3.2.1.5 Target attainment assessment in different renal function groups 

 

Target attainment (considering both samples with and without determined MIC value) significantly 

differed between patients with different renal functions (p-value < 0.01 for both drugs). Patients with 

severe renal impairment had a higher proportion of samples above the target (target attainment 

meropenem: 2.78% below, 13.9% in target, 83.3% above; target attainment piperacillin: 4.17% 

below, 29.2% in target, 66.7% above) compared to patients with augmented renal clearance (target 

attainment meropenem: 36.9% below, 44.0% in target, 19.0% above; target attainment piperacillin: 

25.0% below, 47.2% in target, 27.8% above). The highest frequency of target attainment for both 

drugs was found in patients with ‘normal’ RF (49.2% for meropenem, 58.8% for piperacillin; Figure 

3.6). 

 

3.2.1.6 Drug concentrations in different target range groups 

 

Neither for meropenem (p-value = 0.4) nor for piperacillin (p-value = 0.5) the measured drug 

concentrations stratified by their targeted concentration range differed significantly. A boxplot of the 

observed drug concentrations per targeted concentration range and drug can be found in the 

supplementary (Figure S3 and Figure S4). 
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Figure 3.6: Target range attainment of minimum meropenem or piperacillin concentrations stratified 

by renal function.   
Target range for the minimum drug concentration defined as 1-5xMIC. If no MIC values was determined an empirical 

target of 8-40 mg/L and 16-80 mg/L was used for meropenem and piperacillin/tazobactam, respectively.  

Abbreviations: MIC: Minimum inhibitory concentration 
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3.2.1.7 Dosing adaptations 

 

Dosing was adjusted in 6.18% and 4.63% of monitored drug concentrations for meropenem and 

piperacillin, respectively. While the majority of meropenem dosing adaptations were realised via a 

change in the administered dose (68.2%), piperacillin dosing was predominantly adjusted by 

modifying the dosing interval (90.0%) (Table 3.5). Dosing was not adapted for piperacillin after 

samples in the target range. The overall proportion of dosing adaptations following samples outside 

versus in the target range did not significantly differ for meropenem (p-value = 0.8) but differed for 

piperacillin (p-value = 0.005). 

Table 3.5: Overview of dosing adaptations for meropenem and piperacillin. 

*in relation to the number of determined drug concentrations per column and antibiotic (see 3.2.1.4),   
#in relation to the total number of dose adaptations.  

Abbreviations: n: Number of samples. 

  

Samples  Dosing adaptations, n (%) 

 All Below target  

range 
In target 

range 

Above target 

range 

Meropenem 

Total 22 (6.18*) 3 (6.12*) 7 (5.51*) 12 (6.67*) 

Dose reduction 7 (31.8#) 0 (0#) 0 (0#) 7 (58.0#) 

Dose increase 8 (36.4#) 3 (100#) 3 (43.0#) 2 (17.0#) 

Dosing interval reduction 2 (9.09#) 0 (0#) 1 (14.0#) 1 (8.3#) 

Dosing interval increase 2 (9.09#) 0 (0#) 1 (14.0#) 1 (8.3#) 

Infusion duration 

reduction 

2 (9.09#) 0 (0#) 1 (14.0#) 1 (8.3#) 

Infusion duration increase 1 (4.54#) 0 (0#) 1 (14.0#) 0 (0#) 

Piperacillin     

Total 10 (4.63*) 4 (12.5*) 0 (0*) 6 (8.00*) 

Dose reduction 0 (0#) 0 (0#) 0 (0#) 0 (0#) 

Dose increase 0 (0#) 0 (0#) 0 (0#) 0 (0#) 

Interval reduction 4 (40.0#) 3 (75.0#) 0 (0#) 1 (17.0#) 

Interval increase 5 (50.0#) 0 (0#) 0 (0#) 5 (83.0#) 

Infusion duration 

reduction 

1 (10.0#) 1 (25.0#) 0 (0#) 0 (0#) 

Infusion duration increase 0 (0#) 0 (0#) 0 (0#) 0 (0#) 
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 Stage II: Developing and implementing a model-informed tabular 

meropenem dosing decision tool 
 

3.2.2.1 Pharmacokinetic model selection and evaluation 

 

Based on the high similarity of patient characteristics between the local study population (data 

collection up to September 2019) and the patient population underlying the PK model development 

(Table 3.6 and Figure 3.7) the PK model by Ehmann et al. was selected for further evaluation [129]. 

This two-compartment model with first-order elimination, a combined residual variability model, 

interindividual variability on clearance (CL) and both volumes of distribution and interoccasion 

variability on CL included a piecewise linear relation between CLCRCG and clearance (CL), a power 

relation between body weight and the central volume of distribution (V1), and a linear relation 

between serum albumin concentration and the peripheral volume of distribution (V2). Of these three 

covariates, Ehmann et al. demonstrated that only CLCRCG had a clinically relevant impact on PTA 

[129]. Therefore, for the development of the dosing tool the effect of CLCRCG on clearance was kept 

as the only covariate in the model and PK parameters were re-estimated for the new reduced PK 

model using the underlying dataset of the original full model [129].  
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Table 3.6: Comparison of relevant patient characteristics between the local study population and the 

population investigated by Ehmann et al. [129].  

Patient characteristic 
Charité-

Universitätsmedizin Berlin 
Ehmann et al. 

Categorical  n (%) n (%) 

No. of patients 

No. of meropenem samples 

Male  

81 

306 

55 (67.9) 

42 

1376 

27 (56.3) 

No. of patients with extracorporeal 

membrane oxygenation  

8 (9.88) 6 (12.5) 

Continuous [unit] Median (5th-95th percentile) Median (5th-95th percentile) 

Age [years]  64.0 (40.0-81.0) 55.5 (32.0-69.9) 

Weight [kg]  75.0 (48.0-116) 70.5 (47.4-121) 

Creatinine clearance#,* [mL/min]  74.4 (24.7.-253) 80.8 (24.8-191) 

Serum albumin concentration* 

[g/dL]  

2.68 (2.00-3.60) 2.80 (2.20-3.56) 

#Calculated using Cockcroft-Gault formula [169]. *Creatinine clearance and serum albumin concentration determined on 

sample level, all other characteristics on patient level.  



87 
 

 

Figure 3.7: Comparison of relevant patient characteristics between the local study population labelled 

“Charite Berlin” and the population investigated by Ehmann et al [129].  
Numbers in brackets represent the available number of data points.  

 

 

 

Sex 
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The new reduced PK model was a two-compartment model with first-order elimination, interindividual 

variability on CL, V1 and V2, inter-occasion variability on CL and a combined proportional and additive 

residual variability model. CL was shown to linearly increase with increasing CLCRCG up to an 

inflection point of 154 mL/min where the maximum clearance was reached (Table 3.7). After parameter 

re-estimation an extensive internal model evaluation was conducted: Standard goodness-of-fit plots (see 

2.3.3.1) indicated adequate model predictions and the VPC (see 2.3.3.3) revealed good predictive 

performance both for the typical trend and variability of the meropenem concentration-time profiles 

(Figure 3.8). Furthermore, the nonparametric bootstrap confirmed model robustness (convergence 

rate=90.4%) and narrow 95% confidence intervals for the parameter estimates (Table 3.7).  

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Visual predictive check (a) (n=1000 simulations) and goodness-of-fit plots (b)-e)) for the 

final reduced population pharmacokinetic model of meropenem.  
a): Circles: Observations, Lines: 5th, 95th percentile (dashed), 50th percentile (solid) of the observed data. Shaded areas: 95% 

confidence interval around 5th, 50th and 95th percentile of simulated data. b, c: Lines: Line of unity. d, e: Horizontal lines: 

Reference lines at y=0. 
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Table 3.7: Parameter estimates for the reduced pharmacokinetic model of meropenem. 

Parameter [unit] 

Final model Bootstrap2 

Estimate  

(RSE, %) 

95% CI1 Median 95% CI 

Fixed-effects     

CL3 [L/h] 9.25 (4.5) 8.43-10.1 9.29 8.39-10.2 

V1 [L] 8.22 (11.8) 6.32–10.1 8.14 6.27-11.8 

V2 [L] 28.3 (15.8) 19.5–37.1 28.7 11.4-37.6 

Q [L/h] 16.3 (7.40) 13.9-18.6 16.2 12.3-18.7 

CLCRCG_CL4 0.00984 (9.10) 0.00808-0.0116 0.00993 0.00725-0.0113 

CLCRCG_INF 

[mL/min] 

154 (7.20) 132-176 154 113-173 

Interindividual variability    

ω CL, CV % 27.1 (19.5) 16.7-37.5 26.6  17.3-38.0 

ω V1, CV % 41.5 (12.1) 31.7-51.3 40.7 27.1-53.0 

ω V2, CV % 20.2 (15.0) 14.3 -26.1 20.1 12.1-28.9 

Interoccasion variability5    

К CL, CV % 12.7 (12.4) 9.61-15.8 12.4 9.27-15.4 

Residual variability      

σ Prop. (CV %) 16.5 (6.30) 14.5-18.5 16.4 14.2-18.6 

Additive, SD [mg/L] 0.251 (26.1) 0.122-0.379 0.243 0.110-0.343 
1Limits of 95% confidence intervals computed as: parameter estimate ± 1.96∙SE; 2Non-parametric bootstrap (n=1000) with a 

convergence rate of 90.4%; 3CL for a patient with CLCRCG of 80,8 mL/min; 4Change in CL in linear CLCRCG-CL relationship 

for every mL/min change in CLCRCG, centred to median in overall population (80.8 mL/min); 5Occasion was defined as 

intensively monitored dosing interval. 

Abbreviations: CL: Clearance; V1: Volume of  central compartment; V2: Volume of the first peripheral compartment; Q: 

Intercompartmental clearance between V1and V2; CLCRCG: Creatinine clearance estimated according to Cockcroft-Gault; 

CCLCRCG_CL: CLCRCG effect on CL; CLCRCG_INF: CLCRCG value serving as inflection point from which clearance is not 

longer increasing with increasing CLCRCG values; CV: Coefficient of variation; Add.: Additive; Prop.: Proportional; SD: 

standard deviation; RSE: relative standard error; ω: Random-effects parameters for interindivual variability; К: Random-effects 

parameter for interocassion variability, σ: Random-effects parameters for residual variability. 



90 
 

In Figure 3.9, prediction errors for 66 samples with drug concentrations were plotted against observed 

meropenem concentrations in the 34 ICU patients with full dosing history. The median prediction error 

across all observations was -1.2 mg/L, indicating a slight bias towards underprediction. The 50% 

prediction error interval ranging from -3.5 to +2.5 mg/L indicated acceptable precision for the ICU 

patient population the model was applied to with a single sample deviating by more then 50 mg/L 

(Figure 3.9). Other samples of the same patient showed acceptable prediction errors and therefore this 

suspected outlier sample was excluded from the subsequent NPDE analysis. While the overall NPDE 

distribution did not significantly differ from the standard normal distribution (global adjusted p-value: 

0.0976, Fisher ratio test: 0.283 and Shapiro-Wilks test: 0.784, Table S4), the Wilcoxon signed-rank test 

revealed a significant (p-value 0.0325) deviation from a mean of 0 and therefore confirmed a small bias 

(NPDE mean: 0.296; Table S5) The graphical results of the NPDE analysis in the supplementary 

showed a random distribution of NPDEs versus time after therapy start and over the range of predicted 

concentrations (Figure S7). 
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Figure 3.9: Absolute prediction error (mg/L) plotted against observed meropenem concentrations 

(n=66) when predicting concentration based on the reduced pharmacokinetic model for the patients 

from ‘stage I’ of the study with complete dosing history.   
Points: median prediction error per sample. Colors: individual patients (i=34). Error bar: 90% prediction interval of prediction 

error per sample. Solid horizontal line: Median prediction error. Dashed line: 50% prediction interval of median prediction 

error. Dotted line: 90% prediction interval of median prediction error.   
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3.2.2.2 Development of the tabular dosing decision tool for meropenem 

 

Selection and evaluation of dosing regimens 

Based on their ease of integration into clinical routine, dosing regimens with infusion durations of 0.5, 

4 and 24 hours, dosing intervals of 6, 8, 12 and 24 hours and meropenem doses as a multiple of 1000 

mg were preselected. Deterministic simulations demonstrated that 2000 mg loading doses provided 

little further benefit over 1000 mg loading doses, the latter being sufficient to reach minimum 

meropenem concentrations above minimum meropenem concentrations at steady state (Figure 3.10A). 

Furthermore, short-term (0.5 h) infusions were inferior to prolonged infusions (4 h) with short-term 

infusions generally having unfavourable higher maximum and lower minimum concentrations for the 

same daily dose (Figure 3.10B). Consequently, dosing regimens with a 2000 mg loading dose and short-

term infusions were not further considered for PTA analysis (Table 3.8). PTA analysis of the 15 

remaining dosing regimens (Table 3.8) showed that for the same daily dose, prolonged (4 h) infusions 

reached higher PTA than continuous infusions due to higher targets for continuous infusions (Table 

S6). As illustrated, a patient with a CLCRCG=120 mL/min, a pathogen with MIC=8 mg/L and a daily 

dose of 8 g meropenem had a PTA of 75.0% receiving prolonged infusions and a PTA of 1.80% 

receiving continuous infusions. Furthermore, four-times-daily dosing was superior to three-times-daily-

dosing (Table S6). As illustrated, a patient with a CLCRCG=120 mL/min, a pathogen with MIC=8 

mg/L and a daily dose of 12 g meropenem achieved a PTA of 91.7% receiving four-times-daily dosing 

or versus a PTA of 58.0% receiving three-times-daily-dosing. For pathogens with MIC≥8 mg/L in 

patients with augmented renal clearance (≥150 mL/min) none of the investigated dosing regimens 

reached a PTA≥90%. 

After the analysis, dosing recommendations stratified by patient’s CLCRCG and determined MIC were 

summarized in a simple tabular model-informed dosing tool (Figure 3.11). Detailed results (PTA, 

probability of minimum meropenem concentration in target range, distribution of minimum 

concentrations) for each investigated dosing regimen and one exemplary MIC value (8 mg/L) can be 

found in the supplementary Table S6. 
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Figure 3.10: Predicted meropenem concentration-time profiles based on deterministic simulations using 

the reduced population pharmacokinetic model for a patient with a creatinine clearance of 80.8 mL/min. 
A) After either a 1000 (solid line) or a 2000 mg (dashed line) loading dose followed by prolonged (4 h) 1000 mg meropenem 

infusions with a dosing interval of 8 h. B) After either a short-term (0.5 h; dashed line) or a prolonged (4 h; solid line) 1000 mg 

meropenem infusions administered every 8 h. 

  

A) 

B) 
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Table 3.8. Meropenem dosing regimens investigated in probability of target attainment analysis for 

potential inclusion in the tabular dosing decision tool. 

Dosing 

regimen 

Dose per infusion 

[mg] 

Infusion duration [h] Dosing Interval 

[h] 

Total daily dose 

[mg] 

1 1000 4 6 4000 

2 1000 4 8 3000 

3 1000 4 12 2000 

4 2000 4 6 8000 

5 2000 4 8 6000 

6 2000 4 12 4000 

7 3000 4 6 12000 

8 3000 4 8 9000 

9 3000 4 12 6000 

10 4000 4 6 16000 

11 4000 4 8 12000 

12 4000 4 12 8000 

13 4000 24 24 4000 

14 6000 24 24 6000 

15 8000 24 24 8000 

Grey shading: Dosing regimen ultimately implemented in the developed tabular dosing tool.  
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Integration of locally available pathogen information 

If the pathogen and its MIC value are not known at the time of dosing selection, two options are 

implemented in the dosing tool: An empirical dosing regimen based on non-species related EUCAST 

breakpoints for meropenem or a dosing regimen based on the LPIFR metric and pathogen-independent 

MIC distribution data from ‘stage I’ of the study. A short summary of both options was added on the 

backside of the dosing decision table (Figure 3.12). Compared to targeting the pathogen independent 

‘susceptible/susceptible at increased exposure’ (2 mg/L) or the ‘susceptible at increased 

exposure/resistant’ (8 mg/L) EUCAST breakpoints, the LPIFR substantially reduced the drug exposure 

in patients, while still assuring a desired percentage of 90% of patients being above the PK/PD target 

of 98%T> MIC. Based on the LPIFR the daily dose for a patient with unknown pathogen and MIC and a 

creatinine clearance of 120 mL/min was 4000 mg whereas there was a three-fold higher dose of 12000 

mg when the current recommendation at Charité-Universitätsmedizin Berlin (see 2.6.3) was followed 

and a meropenem concentration above the EUCAST susceptible at increased exposure/resistant 

breakpoint (8 mg/L) was targeted. 
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Figure 3.11: Front page of the developed tabular dosing decision tool for initial meropenem dosing in intensive care patients.   
Dosing recommendations are stratified for creatinine clearance according to Cockcroft and Gault and target (Local pathogen-independent mean fraction of response (LPIFR, see 2.6.6.2) in column 

“No MIC determined” or minimal meropenem concentration in columns “1” to “32”)   

Abbreviations: MERO: Meropenem; q6h: Every 6 h dosing ; q8h; Every 8 h dosing; q12h: Every 12 h dosing; PTA: Probability of target attainment; MIC: Minimum inhibitory concentration.  
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Figure 3.12: Back page of the developed dosing decision tool for initial meropenem dosing in intensive care patients.   
Abbreviations: MIC: Minimum inhibitory concentration. 
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3.2.2.3 Retrospective evaluation of the dosing decision tool 

 

Out of 306 meropenem samples collected during ‘stage I’ of the study, 46 (15.0%) were found to be 

below and 160 (52.3%) to be above the defined target range. The retrospective application of the 

developed tool recommended a change in dosing for the majority (77%) of patients with concentrations 

observed outside the target range (Figure 3.13). For 72% of the patients with minimum meropenem 

concentration below the target range the developed dosing tool recommended an increased daily dose, 

while for 78% of the patients with samples above the target range a lower daily dose was recommended.  

 

 

Figure 3.13: Frequency of daily meropenem dose adjustments by comparing the recommended daily 

dose to the actual administered daily dose at Charité-Universitätsmedizin Berlin, stratified by non-

attainment of the target range of the administered dosing regimen.  
Out of 306 samples 46 were below and 160 above the target range.  
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 Stage III: Developing and implementing an interactive model-

informed dosing software 
 

3.2.3.1 Pharmacokinetic model selection and evaluation 

 

For meropenem the evaluated PK model (see 3.2.2.1) underlying the tabular model-informed dosing 

decision tool developed in ‘stage II’ was selected for integration into the interactive model-informed 

dosing software. 

For piperacillin five PK models were identified by the literature research for further evaluation (Table 

3.9) [50,175–178]. Mean arterial blood pressure (MABP) implemented as a linear covariate on 

clearance in the PK model by Sukarnjanaset et al. was not available in the dataset and as a consequence 

MABP was fixed to the median value reported by Sukarnjanaset et al. The first evaluation step revealed 

a widely varying predictive performance between the five PK models: the observed bias, i.e. the median 

prediction errors, ranged between -32.0 mg/L and +15.3 mg/L (median relative prediction error -87.5% 

and +51.4%, respectively) and the imprecision, i.e. absolute median prediction errors, between 18.0 

mg/L and 48.9 mg/L (absolute median relative prediction error 65.0% and 97.6%, respectively) (Table 

3.10). The two-compartment PK model integrating creatinine clearance and mean arterial blood 

pressure as influential covariates on clearance and adjusted body weight on the central volume of 

distribution by Sukarnjanaset et al. [50] showed the best predictive performance (bias: -2.73 mg/L (-

10.9%), imprecision: 20.2 mg/L (60.3%)) but a bias to underpredict high (>100 mg/L, 16.7% of 

documented concentrations) piperacillin concentrations (Figure 3.14, all other PK models Figure S8-

Figure S11). The individual piperacillin concentration-time profile predicted by the PK model by 

Sukarnjanaset et al. [50] overlaid by the observed piperacillin concentrations for every patient 

(supplementary Figure S12) revealed well predicted individual concentrations with 82.2% of 

concentration measurements within the 90% prediction intervals. As best performing of the five models 

it was selected for the second evaluation step.  
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Table 3.9: Overview of identified published piperacillin pharmacokinetic models included in the model 

evaluation and compared to the local patient population at Charité-Universitätsmedizin Berlin.[50,175–

178]. 

 Sukarnjanaset 

et al.  

Andersen 

et al.  

Öbrink-

Hansen et 

al.  

Roberts et 

al.  

Li et al.  Charité 

Berlin 

Clinical study characteristics  

No. of patients  48 22 15 16 56 46 

Type of 

infusion  

Intermittent Intermittent Intermittent Intermittent/ 

continuous 

Intermittent/ 

continuous 

Intermittent 

No. of PK 

samples/day 

5 2-3 8 10-17 5 1 

Patient characteristics  

Disease Critically ill with 

septic shock 

Sepsis Critically ill 

with septic 

shock 

Critically ill 

with sepsis 

Complicated 

intra-

abdominal 

infection 

Intensive 

care unit 

patients 

CREA [mg/dL] 1.1 (0.7-1.5)1 1.09 (0.74-

1.49)1 

1.92 (1.34-

3.19)1 

- II: 0.9  

(0.5-2)2 

CI: 1  

(0.5-1.8)2 

0.98 (0.71-

1.50) 

CLCR 

[mL/min] 

54.9 (41.6-86.5)1 83.9 (46-

152) 1 

- II: 88.3 

(53.3-101)1 

CI: 96.7 

(31.7-148.3)1 

II: 84  

(36-136)2 

CI: 93  

(22-150)2 

71.1 (46.2-

109.5) 

TBW [kg] 56.6 (49.6-69.5)1 76 (64-82)1 80 (70.2-95)1 II: 80  

(74-86)1 

CI: 73  

(64-83)1 

II: 82.6  

(55-136)2 

CI: 80 

 (55.5-115)2 

76.0 (49.6-

128.3) 

ABW [kg] 56.0 (48.1-65.0)1 - - - - - 

MABP 

[mmHg] 

68 (61-75)1 - - - - - 

Pharmacokinetic model characteristics/parameters  

No. of 

compartments 

2 2 2 2 1  

CL [L/h] 5.37* 8.58* 3.6* 17.1# 14.8*  

V1 [L] 9.35* 12.4 7.3* 7.2 22.3*  

V2 [L] 7.77 3.48 3.9 17.8 -  

Q [L/h] 21.3 3.54 6.58 52 -  

Covariate 

relations 

CLCR and MABP 

as linear function 

on CL, ABW as 

linear function on 

V1 

CLCR as 

linear 

function on 

CL 

CREA as 

linear 

function on 

CL 

TBW as 

linear 

function on 

CL 

CLCR as 

linear 

function on 

CL, TBW as 

linear 

function on 

V1 

 

Interindividual 

variability 

model 

CL, V1 CL CL, V1 CL, V1, Q, 

V2 

CL, V1  

Residual 

variability 

model  

Proportional Proportional Proportional Additive + 

proportional  

Additive + 

proportional 

 

Abbreviations: CL: Clearance; Q: Intercompartmental clearance; V1: Central volume of distribution; V2: Peripheral volume 

of distribution, CREA: Serum creatinine concentration, CLCR: Creatinine clearance, TBW: Total body weight, MABP: Mean 

arterial blood pressure, ABW: Adjusted body weight, II: Intermittent infusion, CI: Continuous infusion 
1Patient characteristics reported as median (IQR), 2Patient characteristics reported as median (range)  

*Population parameter reported for the median patient characteristics of the model development dataset, #Population parameter 

reported for a weight of 70 kg  
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 Table 3.10: Predictive performance of the literature-identified piperacillin pharmacokinetic models 

applied to the local patient population [50,175–178]. 

*Bias calculated as median prediction error (see 2.3.3.4 ).  
#Precision calculated as median absolute prediction error (see 2.3.3.4). 

 

 

 

Figure 3.14: Absolute difference between predicted and observed concentrations (prediction error) 

(mg/L) plotted against observed piperacillin concentrations (n=90) when predicting concentration 

employing the pharmacokinetic model by Sukarnjanaset et al. [50]  
Points: median prediction error per observed concentration. Colours: individual patients (i=46). Error bar: 90% prediction 

interval of prediction error per sample. Solid horizontal line: median prediction error. Dashed line: 50% prediction interval of 

median prediction error. Dotted line: 90% prediction interval of median prediction error.  

  

 
Sukarnjanaset 

et al. 

Andersen et 

al. 

Öbring-

Hansen et al. 
Roberts et al. Li et al. 

Bias* 

[mg/L] (%) 
-2.73 (-10.9) -12.9 (-52.1) +15.3 (51.4) -26.0 (-82.6) -32.0 (-87.5) 

Precision# 

[mg/L] (%) 
20.2 (60.3) 18.0 (65.0) 48.9 (97.6) 27.7 (86.0) 34.0 (91.5) 
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The step-wise MAP estimation improved the predictive performance of the selected model: The 

observed bias was reduced by 78.8% from -2.73 mg/L to -0.58 mg/L while the precision was reduced 

by 21.8% from 20.2 mg/L to 16.0 mg/L. In Figure 3.15 the deviation of the median prediction based on 

the prior (star) and on the posterior (point) and their respective 90% prediction interval (error bars) from 

the observed concentrations are displayed. After MAP estimation the model was still biased to 

underpredict high observed concentrations (>100 mg/L) and the spread around no prediction error was 

not noticeably reduced compared to Figure 3.14 highlighting the small increase in precision.  
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Figure 3.15: Absolute difference between predicted and observed concentrations (prediction error) 

(mg/L) plotted against observed piperacillin concentrations (n=90) when predicting concentrations 

employing the pharmacokinetic model by Sukarnjanaset et al. [50] and maximum a-posteriori 

estimation of preceding samples for the data in the subdataset.   

Stars: median prediction error per observed concentration based on prior distribution, Points: median prediction error per 

observed concentration based on posterior distribution. Colors: individual patients (i=46). Error bar: 90% prediction interval 

of prediction error per sample. Solid horizontal line: median prediction error. Dashed line: 50% prediction interval of median 

prediction error. Dotted line: 90% prediction interval of median prediction error.  
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3.2.3.2 The DoseCalculator  

 

Within the interprofessional collaboration two major features were identified for a successful MIPD 

software software in clinical routine: First, a clear, intuitive user interface including a comprehensible 

and informative ranking output of the investigated dosing regimens. Second, the ability to select the 

appropriate dosing regimen for each patient based on (i) a patient’s characteristics and if available prior 

antibiotic concentration measurements and (ii) the current level of knowledge about the infecting 

pathogen. 

 

(i) Developed user interface and visualisation of analysis results  

In Figure 3.16 a screenshot of the developed dosing software, the DoseCalculator, is displayed. The 

user interface of the DoseCalculator is separated into 2 main sections: 

1) Input module: On the left side of the interface is an input module for entering information about the 

selected antibiotic agent, the infecting pathogen, the PK/PD target and the patient by the user 

(highlighted here by the green box in Figure 3.16). The input module also includes buttons to start and 

reset the analysis and to download (as .csv file) and re-upload the entered data for further analyses to 

enable a quick and easy follow-up for each individual patient over multiple dosing cycles. After 

entering/uploading the required information and clicking the “Start analysis”-button, a pop-up window 

with commonly used dosing regimens appears (Table S12). The user can select dosing regimens from 

the pop-up window and/or add additional dosing regimens to be included in the analysis. 

2) The results of the PK/PD target attainment analysis are displayed in three output sections in the 

main window: 

1. Dosing recommendation: In a brightly coloured box on the top of the interface (highlighted here by 

the orange box in Figure 3.16), the highest ranked dosing regimen for a specific patient and PK/PD 

target is prominently presented. 

2. Detailed analysis results: Below graphical illustrations of the results are displayed (highlighted here 

by the blue box in Figure 3.16 for a patient with known pathogen but unknown MIC value, and without 

antibiotic drug measurements). By default, the predicted concentration-time profile (median and 90%, 

95% and 99% prediction intervals, left plot in the highlighted blue box) and the distribution of predicted 

minimum drug concentration (including the median prediction, right plot in the highlighted blue box) 

are shown for the recommended dosing regimen and the individual patient. Furthermore, both plots 

displayed in the default setting (i.e. the predicted concentration-time profile and the predicted 

distribution of minimum concentrations), the EUCAST distribution of MIC values for the selected 

pathogen and the results of the MAP analysis can be selected and displayed separately by selecting the 
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tabs highlighted by the black box in Figure 3.16. If the analysis is conducted based on the results of the 

MAP estimation both the stochastic simulations based on the prior and the posterior are displayed in all 

graphical illustrations. 

3. A ranking table of all dosing regimens included in the analysis and their numeric results (i.e. 

probability to reach the PK/PD target, daily dose and, if selected, probability to exceed the toxicity 

threshold) can be found below the graphical results. Dosing regimens attaining the PK/PD target in 

≥90% of simulations are considered adequate and are further ranked according to lower probability of 

minimum concentrations exceeding a user-defined toxicity threshold (if selected by the user) and 

subsequently by lower total daily dose. By selecting an alternative dosing regimen in the ranking table 

the box on the top displaying the selected dosing regimen and the graphical output are updated to show 

the results of the dosing regimen now selected by the user. 

 

(ii) Integration of patient characteristics and concentration measurements 

All analyses and subsequent dosing recommendations are adapted to patient-specific factors: Patient 

characteristics with a high impact on the pharmacokinetics of the selected antibiotic drug (e.g. 

CLCRCG), and if available, observed drug concentrations and the preceding dosing history, are included 

in the analysis. If antibiotic concentration measurements are supplied, the subsequent analysis is 

conducted based on MAP estimation and stochastic simulation of the posterior PK parameter 

distribution. To ensure that very high or very low concentration measurements potentially associated 

with non-patient related inaccuracies do not result in inadequate and potentially dangerous dosing 

recommendations, a warning was integrated and is displayed if the observed concentration is outside 

the 95% prediction interval of the observed dosing. 

 

(iii) Integration of currently available knowledge about the infecting pathogen 

For each of the three knowledge levels about the pathogen identified (pathogen un-/known, MIC 

determined/not determined), an appropriate method to calculate the probability of a dosing regimen to 

reach the user-defined PK/PD target was implemented. 

Knowledge level 1 - pathogen unknown and thus MIC unknown: a local pathogen-independent mean 

fraction of response (LPIFR, see 3.2.2.2) analysis was included based on the local MIC distribution, i.e. 

at the Charité-Universitätsmedizin Berlin (see 3.2.2.2).  

Knowledge level 2 - pathogen known but MIC unknown: the EUCAST-reported MIC value distribution 

of the selected pathogen was used for a cumulative fraction of response (CFR) analysis (see 2.3.4.2). 

To reduce the risk of erroneously treating a pathogen unsuitable for meropenem or 
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piperacillin/tazobactam therapy instead of changing the antibiotic drug, only pathogens with a clear 

recommendation of meropenem or piperacillin/tazobactam treatment by the local AMS team were 

included in the DoseCalculator.  

Knowledge level 3- pathogen and MIC known: If the MIC value had been determined, it was considered 

to be the most informative indicator of the susceptibility of a pathogen and becomes the preselected 

target antibiotic concentration for a probability of target attainment (PTA) analysis (see 2.3.4.2). 

Additionally, the target antibiotic concentration can be increased or decreased by the user to account 

for particular circumstances of a patient (e.g. site of infection, severity of illness). For all three scenarios, 

the preselected PK/PD target value of 99%fT>MIC can be adjusted without restriction between 0% and 

99%. 
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Figure 3.16: Display of graphical user interface of the DoseCalculator after performing cumulative fraction of response analysis for a specific patient. 
Green box: Input module for Patient and treatment information, Orange box: Recommended dosing regimen , Blue box: Detailed illustration of results: predicted concentration-time profile (left figure) 

and distribution of predicted minimum concentrations at steady state (right figure) for the recommended dosing regimen in the specific patient; Black box: Tabs to individually display the result of the 

MAP estimation, the MIC distribution of a pathogen, the concentration-time profile or the distribution of minimum concentrations.Example for illustration: Antibiotic: Meropenem, Patient and 

microbiological data: Creatinine clearance = 70 mL/min, infected with Pseudomonas aeruginosa and MIC value not determined, PK/PD target:99% fT>MIC 
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3.2.3.3 Assessment of the potential of the DoseCalculator using real patient data 
 

For knowledge level 3, i.e. pathogen and MIC known, the dosing regimens recommended by the 

DoseCalculator for meropenem therapy, led to a >3 times increase (28.6% vs. 92.0%) in predicted target 

attainment compared to the documented dosing at Charité-Universitätsmedizin Berlin (Table 3.11) 

while reducing the daily dose by a median of 77.8%. For piperacillin, a smaller increase in predicted 

target attainment (16.7% vs. 23.3%) was observed if the DoseCalculator was restricted to select only 

from the dosing regimens currently available at Charité-Universitätsmedizin Berlin implemented in the 

software (supplementary Table S12). However, including further dosing regimens (supplementary 

Table S13) into the DoseCalculator increased the predicted target attainment >5 times (16.7% vs. 

84.4%) compared to the documented dosing (Table 3.11) and reduced the daily dose by a median of 

83.4%. The target-normalised (i.e. MIC-normalised) predicted antibiotic concentrations including the 

90% prediction interval for the observed and recommended dosing regimens (Figure 3.17-Figure 3.19) 

demonstrated that samples outside the target range were closer to the target range for the dosing regimen 

recommended by the DoseCalculator compared to the documented dosing. 
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Table 3.11: Predicted median antibiotic concentrations in relation to target range either by the dosing 

regimen selected/recommended by the DoseCalculator or documented meropenem and piperacillin 

dosing regimens. 

Based on:  Predicted median antibiotic concentrations in relation to 

target range  

 Below In Above Below In Above 

 Meropenem, % (n) Piperacillin, % (n) 

Documented dosing regimens 
27.0 

(17) 

28.6 

(18) 

44.4 

(28) 

8.89 

(8) 

16.7 

(15) 

74.4 

(67) 

DoseCalculator selected dosing 

regimens* 0 (0) 
92.0. 

(58) 

7.90 

(5) 
0 (0) 

23.3 

(21) 

76.7 

(69) 

DoseCalculator selected dosing 

regimens including additional dosing 

regimens currently not available at 

Charité-Universitätsmedizin Berlin#  

- - - 0 (0) 
84.4 

(76) 

15.6 

(14) 

*Included dosing regimens in Table S12.  
#Included dosing regimens in Table S13.  
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Figure 3.17: MIC-normalised predicted meropenem concentrations for the dosing regimens 

documented at Charité-Universitätsmedizin Berlin (a) and recommended by the DoseCalculator (b).  
Stars: median prediction based on prior distribution, Points: median prediction based on posterior distribution.. Colors: 

individual patients (i=34). Error bar: 90% prediction interval. Green shaded box: target range, i.e. 1-5x minimum inhibitory 

concentration of the pathogen..  

 

a) b) 
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 Figure 3.18: MIC-normalised predicted piperacillin concentrations for the dosing regimens 

documented at Charité-Universitätsmedizin Berlin (a) and recommended by the DoseCalculator for 

currently available dosing regimens at Charité-Universitätsmedizin Berlin (b).  

Stars: median prediction based on prior distribution, Points: median prediction based on posterior distribution. Colors: 

individual patients (i=46). Error bar: 90% prediction interval. Green shaded box: target range, i.e. 1-5x minimum inhibitory 

concentration of the pathogen.  

 

a) b) 
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Figure 3.19: MIC-normalised predicted piperacillin concentrations for the dosing regimens documented 

at Charité-Universitätsmedizin Berlin (a) and recommended by the DoseCalculator after implementing 

currently not available formulations (2 g piperacillin/0.25 g tazobactam) (b). 
Stars: median prediction based on prior distribution, Points: median prediction based on posterior distribution. Colors: 

individual patients (i=46). Error bar: 90% prediction interval. Green shaded box: target range, i.e. 1-5x minimum inhibitory 

concentration of the pathogen.  

 

  

a) b) 
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3.3 Project III: Evaluation and extension of the 

MeroRisk Calculator  
 

 Database 
 

891 meropenem TDM samples from 155 patients were included in the evaluation. Meropenem was 

administered as short-term infusion (0.5 h) at doses of 1000 mg, 1500 mg or 2000 mg (67.9%, 1.8% 

and 30.3% of administered doses, respectively) .In Table 3.12, a summary of patient and sample 

characteristics is displayed. The patients included in the study were predominantly male (65.2%) and 

had a median creatinine clearance estimated based on Cockcroft-Gault formula of 86.4 mL/min, i.e. 

mild renal impairment [170]. However, the renal function observed in the study ranged from moderate 

renal impairment (>30-60 mL/min [170]) to augmented renal function (>130 mL/min [170]). 

Furthermore, most patients in the dataset experienced hypoalbuminemia (serum albumin <3.5 g/dL). 

The dataset had sparse and variable sampling data: For each monitored dosing regimen only one PK 

sample was collected and sampling timepoints deviated from the planned sampling timepoint 8 hours 

after dose (median time after last dose: 6.2 h, 5th-95th percentile: 3.72-8.13 h). In Figure 3.20 the 

measured meropenem concentrations are plotted against the time after last dose for the three different 

administered doses of meropenem (1000 mg, 1500 mg and 2000 mg) observed in the dataset.  
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Table 3.12: Comparison of relevant patient characteristics between the clinical dataset used for the 

evaluation and dataset used for model development by Ehmann et al. 

Patient characteristic Clinical dataset Ehmann et al. [129] 

Categorical  n (%) 

No. of patients 

No. of male patients 

No. of meropenem samples 

155 

101 (65.2) 

891 

42 

27 (56.3) 

1376 

No. of meropenem samples collected 

during extracorporeal membrane 

oxygenation 

64 (7.18) - 

Continuous [unit] Median (5th-95th percentile) 

Meropenem concentration [mg/L] 9.05 (1.09-36.5) - 

Age [years] 57.0 (33.7-79.0) 55.5 (32.0-69.9) 

Weight [kg] 73.0 (50.0-97.3) 70.5 (47.4-121) 

Creatinine clearance# [mL/min] 86.4 (35.4-161) 80.8 (24.8-191) 

Serum albumin concentration [g/dL] 2.5 (2.3-3.2) 2.80 (2.20-3.56) 

#Calculated using Cockcroft-Gault formula [169]. Meropenem concentration, creatinine clearance and serum albumin 

concentration determined on sample level, all other continuous characteristics on patient level. 
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Figure 3.20: Observed meropenem concentrations vs. time after last dose (n=891) following a short-

term infusions (0.5 h) of 1000 mg (red dots), 1500 mg (green dots) or 2000 mg (blue dots) of 

meropenem.   
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 Evaluation of the MeroRisk Calculator 
 

3.3.2.1 Step 1: Data-based evaluation of the two-compartment PK model 

 

The comparison of the measured meropenem concentrations (clinical dataset) with the concentrations 

predicted by the PK model revealed a median prediction error and therefore bias of -0.84 mg/L (-16%), 

i.e. the PK model slightly underpredicted the observed concentrations. In Figure 3.21 a Bland-Altman 

plot is used to visualise the deviations between observations and predictions, i.e. the prediction errors. 

The prediction errors seem to be randomly distributed around 0 which is equivalent to no deviation 

between observations and predictions. However, the median prediction error included in the figure 

shows the prediction errors are in fact distributed around -0.84 mg/L. Furthermore, the 50% and 90% 

prediction error interval are not equally spaced around the median prediction error revealing that the 

prediction errors are not normally distributed. Nevertheless, the 50% prediction error interval ranged 

from -5.0 mg/L (-59%) to +1.2 mg/L (+32%) proving acceptable precision for a critically ill patient 

population and routine clinical data. The PK model evaluation was therefore considered successful and 

the model was subsequently used to predict the meropenem concentrations 8 hours after standard dose 

for every patient, enabling the evaluation of the MeroRisk Calculator in step 2 of the evaluation process. 
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Figure 3.21: Bland-Altman plot for observed and predicted meropenem concentrations. 
Predictions are based on deterministic simulations of the investigated pharmacokinetic model. Solid Line: Median of deviations 

between observed and median predicted concentrations. Dashed Lines: 50% prediction error interval, Dotted Line: 

90%prediction error interval.  
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3.3.2.2 Step 2: PK-model-based evaluation of the MeroRisk calculator  

 

Conformity between the predictions for real patients 

The comparison of median predicted concentrations 8 hours after dosing for a real patient population 

(Figure 3.22) confirmed a high level of agreement for patients with a CLCRCG above 50 mL/min (green 

squares) while the patients below 50 mL/min (red triangles) displayed increasing deviations with the 

MeroRisk Calculator predicting higher concentrations compared to the PK model.  

 

  

Figure 3.22 :Median meropenem concentrations 8 h after dose predicted by pharmacokinetic model and 

MeroRisk Calculator [173].   
Median predictions (PK model: stochastic simulations (n = 2000), MeroRisk Calculator: classic theory of linear models [11]) 

for patients (n = 124) with creatinine clearance calculated using Cockcroft–Gault Equation (CLCRCG) > 50 mL/min (green 

triangles) and patients (n = 31) with CLCRCG ≤ 50 mL/min (red points) 8 h after standard dose (1 g meropenem, 0.5 h infusion). 

Line: Line of identity 
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The risk of target non-attainment (i.e. the risk of meropenem concentrations 8 hours after standard dose 

being below the MIC) for 8 MIC levels ranging from 0.125 mg/L to 16 mg/L and the 155 critically ill 

patients predicted by the MeroRisk Calculator and the PK model evaluated in step 1 is displayed in 

Figure 3.23. The graphical comparison showed an overall good agreement between the two investigated 

methods. The risk predictions by the MeroRisk Calculator for MIC values of 8 mg/L and 16 mg/L are 

biased towards lower risks compared to the PK model. However, for these two high MIC values the 

risk of target non-attainment for most patients was predicted to be very high (patients with PK model 

predicted risk above 95%: 65.8% (MIC=8 mg/L), 100% (MIC=16 mg/L)). As a consequence most data 

points in the figure are clustered in the upper right corner near the line of identity for both predictions 

and only a small fraction of patients with an estimated creatinine clearance below 50 mL/min (n=31, 

red triangles in Figure 3.23) led to the strong deviation observed in the graphical analysis.  

 

 

Figure 3.23: Risk of target non-attainment predicted by the MeroRisk Calculator and by the 

pharmacokinetic (PK) model for different minimum inhibitory concentrations (MIC).  

The risk of target non-attainment (i.e. drug concentration below the MIC) 8 h after standard dose (1 g meropenem, 0.5 h 

infusion)) was assessed for 155 critically ill patients. Solid line: Line of identity, Green points: Risk predictions for patients 

with creatinine clearance calculated using Cockcroft-Gault equation (CLCRCG) > 50 mL/min, Red triangles: Risk predictions 

for patients with CLCRCG < 50 mL/min. 
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The numerical analysis using Lin’s concordance correlation coefficient (CCC) confirmed the 

conclusion based on the graphical analysis. The lower one-sided 95% confidence limit of the calculated 

CCC value for all investigated MIC values and all patients was 0.98 and therefore, according to the 

interpretation by McBride, the agreement between the predictions was substantial (Table 2.4). Overall 

agreement between the risk predictions of the PK model and the MeroRisk Calculator improved 

considerably (shown by an increasing CCC value), if patients with a CLCRCG below 50 mL/min were 

excluded from the analysis. A full overview of the CCC values for the investigated MIC values is 

displayed in Table 3.13. 

 

Table 3.13: Lin’s concordance correlation coefficient for risk predictions by the pharmacokinetic model 

and the MeroRisk Calculator. 

MIC [mg/L] Lin’s concordance correlation coefficient# (95% CI) 

All Patients CLCRCG > 50 mL/min 

0.125 – 16 0.983 (0.981-0.984)*** 0.990 (0.988-0.991)*** 

0.125 0.791 (0.746-0.830)* 0.999 (0.998-0.999)**** 

0.25 0.845 (0.811-0.872)* 0.997 (0.996-0.998)**** 

0.5 0.894 (0.869-0.914)* 0.992 (0.991-0.994)**** 

1 0.921 (0.899-0.938)* 0.930 (0.910-0.946)** 

2 0.957 (0.942-0.967)** 0.919 (0.893-0.938)* 

4 0.979 (0.972-0.984)*** 0.954 (0.938-0.967)** 

8 0.857 (0.834-0.877)* 0.978 (0.970-0.984)*** 

16 0.087 (0.077-0.097)* 0.945 (0.925-0.960)** 

Abbreviations: MIC: Minimum inhibitory concentration; CLCRCG: Creatinine clearance estimated using Cockcroft-Gault 

equation;   
#Strength of agreement criteria defined by McBride [174]: poor:*, moderate**, substantial***, almost perfect**** 
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Conformity between the predictions for virtual patients 

The predicted minimum meropenem concentrations for the three virtual patient populations with one 

varying patient characteristic (out of three implemented as covariates in the PK model) showed an 

overall good agreement between the MeroRisk Calculator and the PK model (Figure 3.24 and Figure 

3.25). Nevertheless, two differences can be observed in Figure 3.25: First, the 95% prediction interval 

of the MeroRisk calculator was considerably broader than the 95% prediction interval of the PK model. 

This was most evident for patients with fixed weight and serum creatinine concentrations (70 kg and 

1.24 mg/dL, respectively) and varying serum albumin concentrations (Figure 3.25d). Second, for an 

estimated creatinine clearance below 50 mL/min the MeroRisk Calculator predicted median minimum 

meropenem concentrations up to 3 times above the PK model: The median predicted minimum 

meropenem concentration for a patient with a CLCRCG of 25 mL/min was 10.4 mg/L for the PK model 

and 27.0 mg/L for the MeroRisk Calculator (Figure 3.25a). This deviation in meropenem predictions is 

linked to the deviations in risk predictions for patients with low CLCRCG. Compared to the evaluated 

PK model, the MeroRisk Calculator overpredicts meropenem concentrations and as direct consequence 

underestimates the risk of target non-attainment.  

 

 

Figure 3.24: Boxplot of the median predicted meropenem concentrations 8 hours after standard dose (1 

g meropenem, 0.5-hour infusion) by the pharmacokinetic (PK) model and the model underlying the 

MeroRisk Calculator for varying patient characteristics.  
Serum albumin concentrations ranging from 2.20 to 3.56 g/dL , serum creatinine concentrations ranging from 0.44 to 

3.35 mg/dL and weight ranging from 40 to 120 kg. Median derived based on 50 virtual patients using stochastic simulations 

(n = 2000) for the PK model (green) and classic theory of linear models and standardised residual [131] for the model 

underlying the MeroRisk Calculator (red).  
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Figure 3.25: Comparison of the influence of patient characteristics (creatinine clearance, body weight 

and albumin serum concentrations) on meropenem concentrations 8 hours after standard dose (1 g 

meropenem, 0.5-hour infusion) predicted by the pharmacokinetic (PK) model and the model underlying 

the MeroRisk Calculator.   
Solid and dashed lines: Median and 95% prediction interval of predicted meropenem concentrations derived based on 50 

virtual patients using stochastic simulations (n = 2000) for the PK model (green) and classic theory of linear models and 

standardised residual [131] for the model underlying the MeroRisk Calculator (red).  

  

a) 

c) 

b) 

d) 
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 Integration of a new feature in the MeroRisk Calculator: risk 

assessment based on pathogen  
 

In the new extended version of the MeroRisk Calculator the intuitive user interface remained largely 

unchanged by the addition of the new feature but now all information about the pathogen becoming 

available over the course of antibiotic treatment can be used to calculate the risk of target non-attainment 

(Figure 3.26). If at the beginning of the antibiotic therapy no information about the pathogen and its 

MIC value is available, and the pathogen entry remains “unknown” and the MIC entry blank. Risk 

calculations are then based on pathogen unspecific EUCAST breakpoints chosen by the user. If the 

pathogen is known to the user, but the MIC value of the pathogen is unknown the MIC entry remains 

empty and the pathogen is selected from the dropdown list of implemented pathogens. The risk of target 

non-attainment for the patient is then calculated based on CFR analysis and the EUCAST MIC 

distribution of the selected pathogen. If both the pathogen and its MIC value are known, the information 

is entered into the MeroRisk Calculator and risk calculation is based on the pathogen’s MIC value. For 

all risk assessments, either the CLCRCG of a patient or its determinants (sex, age, total body weight, 

serum creatinine concentration) need to be provided by the user. As in the first version of the MeroRisk 

Calculator, the result of the risk assessment for target non-attainment are displayed in the original colour 

coded box (green <10%, orange >10% to <50%, red >50%). Furthermore, a graphical illustration of the 

relationship between CLCRCG and minimum meropenem concentration 8 hours after standard dosing 

including the 95% prediction interval is provided for the user.  

The extended version of the MeroRisk Calculator containing the new feature to assess the risk of target 

non-attainment based on a selected pathogen is publicly available as additional file in the article by 

Liebchen et al. [173]. Additionally, and due to changing MIC distributions an up-to-date version of the 

MeroRisk Calculator based on the latest reported MIC distributions can be found online 

(https://www.bcp.fu-

berlin.de/en/pharmazie/faecher/klinische_pharmazie/arbeitsgruppe_kloft/forschung/MRc/index.html). 

The tool is compatible with all Windows operating systems and different Excel versions (2010 and 

onwards). 
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Figure 3.26: Graphical user interface of the extended MeroRisk Calculator after risk calculation.  
Example for illustration: Patient-related and microbiological data (left): Female, aged 60 years, body weight 65 kg, serum 

creatinine concentration 0.6 mg/dL (Step 1), infected with Pseudomonas aeruginosa and no MIC value available (Step 2). The 

predicted risk of target non-attainment of 25% is displayed in the colour coded box (Step 3) and the typical meropenem 

prediction 8 hours after dose including the 95% prediction interval is visualised on the right.    

Abbreviations: CLCRCG Creatinine clearance estimated according to Cockcroft and Gault equation [24], CRRT Continuous 

renal replacement therapy, C8h Meropenem serum concentration 8 h after infusion start, MIC Minimum inhibitory 

concentration. 

  



125 
 

To illustrate the impact of the pathogen on the risk of target non-attainment, the risk predictions by the 

MeroRisk Calculator for six selected clinically relevant pathogens and the investigated 155 critically ill 

patients are displayed in Figure 3.27. For all pathogens patients with higher creatinine clearance 

experienced a higher risk of target non-attainment after standard dosing of meropenem. For susceptible 

pathogens like Escherichia coli or Streptococcus pneumoniae, the risk of target non-attainment after 

standard dose was found to be low in all investigated patients. More resistant pathogens like 

Pseudomonas aeruginosa or Acinetobacter baumannii displayed increased risks of target non-

attainment after standard meropenem dosing for the majority of the investigated patients. The results 

for all 74 pathogens in the EUCAST database can be found in the supplementary (Figure S13). Overall 

the risk of target non-attainment predicted by the MeroRisk Calculator was found to be low for the 

majority of pathogens and the investigated 155 critically ill patients: 73.0 % of pathogens revealed 

median risks below 10%, 18.9 % between 10% and 50% and 8.1 % above 50%.  

 

 

Figure 3.27: MeroRisk Calculator predicted risk of target non-attainment for critically ill patients (n = 

155) and six clinically relevant pathogens (modified from [173]).   
The risk of target non-attainment (unbound drug concentration being above the minimum inhibitory concentration (MIC) for 

100% of the time) was assessed using EUCAST MIC distributions of the investigated pathogens and cumulative fraction of 

response analysis. Risk predictions for patients with creatinine clearance calculated using Cockcroft-Gault equation (CLCRCG) 

> 50 mL/min (points) and for patients with CLCRCG < 50 mL/min (x). Risk predictions <10% (green), >10% to < 50% (orange) 

and >50% (red). 
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4 Discussion  
 

In the presented thesis, quantitative analyses were employed to assess and improve antibiotic dosing in 

critically ill patients following an iterative, integrative and translational approach (Figure 4.1). Using 

nonlinear mixed-effects modelling and simulation, a possible adsorption of meropenem at the cytokine 

adsorber CytoSorb® was investigated. By analysing current antibiotic dosing strategies, pathogen 

susceptibility and target attainment in intensive care wards patients at risk of subtherapeutic or toxic 

concentrations were identified. In close collaboration with the AMS and ICU teams, easy-to-use model-

informed dosing tools were developed to specifically address the needs of local ICUs and improve 

antibiotic dosing for patients at risk. Furthermore, the MeroRisk Calculator, an previously at our 

department developed tool, was extended to include risk assessment based on a pathogens genus and 

evaluated using new data to improve trust in its predictions. 

In the following section, the key results of each of the presented projects will be summarised and 

discussed in light of currently available scientific literature. In the subsequent and final chapter of this 

thesis, an overall conclusion and outlook will be provided.  

 

 

Figure 4.1: Graphical representation of the iterative, integrative and translational approach employed to 

accelerate the implementation of model-informed precision dosing highlighting steps which were 

addressed in each of the presented projects.  
Figures next to each step indicate the responsible healthcare professionals: PK/PD data collection: Physicians, pharmacists 

and clinical laboratory; Pharmacometric data analysis: Pharmacometrician; Tailored improvement strategy: Physicians, 

pharmacists and pharmacometrican; Clinical implementation + Evaluation: Physicians, pharmacists, pharmacometrican and 

clinical laboratory.  

Figures representing healthcare professionals from smart.servier.com.  
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4.1 Project I: Investigation of possible meropenem 

adsorption at the cytokine adsorber CytoSorb® 
 

Project I focused on the quantification of a possible meropenem adsorption at the cytokine filter 

CytoSorb® and its effect on meropenem exposure in critically ill patients. No clinically relevant 

adsorption of meropenem by the cytokine adsorber CytoSorb® was observed in the investigated 

critically ill patient population. Therefore the hypothesis (based on in vitro experiments) that each 

CytoSorb® filter adsorbs approximately 400 mg of meropenem [105] was rejected.  

The presented analysis included 333 meropenem concentrations from 25 critically ill patients collected 

during two prospective observational studies at the same study centre. All patients suffered from sepsis 

or septic shock and were undergoing continuous veno-venous haemodialysis or haemodiafiltration. 

Overall, the dataset represented a large population (20 patients with concomitant CytoSorb®-treatment) 

for the research question. So far, previous clinical/in vivo investigations addressing the potential 

adsorption of antibiotics by the CytoSorb® filter were either case reports or case series (n<3) [179,180]. 

Therefore, to the best of our knowledge, this analysis represents the most comprehensive analysis of 

meropenem adsorption at the CytoSorb® filter to date. The dosing regimens covering typical dosing 

regimens for this patient population and the sampling timepoints of the dataset (collected during clinical 

routine) were overall heterogeneous and therefore the sole comparison of measured concentrations 

would not have allowed a valid conclusion. As clearly illustrated in this project, NLME modelling 

approaches can successfully be employed to quantitatively investigate such a heterogeneous dataset.  

In a first step, a two-compartment structural model with first-order elimination was developed and 

adequately described the measured meropenem concentrations. Neither the type nor the intensity of 

dialysis proved to be an influencing covariate in the graphical or statistical analysis. Even if this result 

is counterintuitively at first, it is in agreement with previous studies that also did not demonstrate any 

effect of dialysis characteristics on drug concentrations [181,182]. Ulldemolins et al. hypothesised that 

already at the lowest dialysis intensity the meropenem clearance by the dialysis filter is at its maximum, 

explaining the repeated finding that dialysis intensity is not a determinant of meropenem clearance 

[181].  

In a second step, the influence of CytoSorb®-treatment on meropenem concentrations was examined 

using three distinct approaches and all three approaches supported the same conclusion: No clinically 

relevant amount of meropenem is adsorbed by the cytokine adsorber CytoSorb®. Both the proportional 

increase of clearance during CytoSorb® treatment in the covariate model and the maximum adsorption 

in the adsorption submodels were negligibly small (<3.84% of the total clearance) and therefore 

clinically irrelevant. Moreover, neither the integration of CytoSorb® treatment as a proportional 

categorial covariate on clearance nor the inclusion of different adsorption submodels at the CytoSorb® 
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filter showed a significant improvement in the model fit (i.e. a non-significant reduction in OFV). 

Furthermore, all parameters characterising the adsorption at the CytoSorb® filter and thus an additional 

elimination pathway in the different models (covariate effect, adsorption and maximum adsorption 

capacities) could not be estimated precisely and for each of the adsorption parameters the 90% 

confidence interval included zero. A low adsorption clearance and the resulting negligible meropenem 

amount adsorpt are supported by recent in vivo data from pigs reported by Schneider et al. [106] 

reporting an increase in clearance during CytoSorb® use of 6.3%. The parameters representing the 

maximum adsorption capacity in the adsorption submodels were found to be implausibly high (Amax = 

33 kg, A50 = 400 kg, administered daily doses ranging from 1 g – 7 g), reducing both the linear decrease 

and the hyperbolic decrease models to the constant adsorption model and suggesting an nonsaturable 

adsorption process. However, a nonsaturable adsorption process is both physically improbable and 

contradicting the available in vivo pig data for meropenem and other antibiotics: for all investigated 

drugs Schneider et al. observed a decrease in adsorption clearance over time [106]. However, this 

contradiction can be explained by the available dataset: Most likely the collection timepoints during 

CytoSorb® therapy in the investigated study were not dense enough to adequately quantify the low 

saturable adsorption process. To adequately characterise the saturation of the adsorption process, a 

denser sampling scheme after installation of the CytoSorb® filter, in the best case with pre- and post- 

CytoSorb® filter samples, would be required and should be implemented in future trials investigating 

drug adsorption at the CytoSorb® filter. Furthermore, to measure the exact drug amount adsorbed, future 

trials could also include an examination of the CytoSorb® cartridge after use.  

The findings of this project contradict the conclusions previously drawn based on in vitro data. König 

et al. investigated the adsorption capacity in an in vitro experiment perfusing the CytoSorb® cartridge 

with NaCl (0.9%), human albumin (5%) solution or reconstituted blood and suspected a saturable 

adsorption of 400 mg meropenem occurring mainly in the first 200 minutes after installation of the 

CytoSorb® filter [105]. The presented analyses did not confirm such a substantial adsorption. One 

possible explanation could be that even reconstituted blood obtained from healthy blood donors does 

not represent the composition of blood from critically ill patients. The latter contains multiple drugs as 

well as numerous endogenous compounds in higher concentrations than in healthy donors (e.g. 

bilirubin, cytokines, platelets) that could potentially interact with the adsorption capacity of meropenem 

by the CytoSorb® filter. In addition, the results of the in vitro study by König et al. have been questioned 

due to possible stability issues during the experiment [183] and are in conflict with the in vivo 

experiments in pigs conducted by Schneider et al. investigating the adsorption and elimination of 17 

different drugs by the CytoSorb® filter in pigs [106]. While Schneider et al. found an insignificant 

adsorption and insignificant increase in clearance (+6.3%) for meropenem (logP=-0.6), more lipophilic 

drugs (e.g. fluconazole (logP=0.4), linezolid (logP=0.23)) revealed a major increase (>100%) in total 

drug clearance. Even if the results of an animal study cannot be easily transferred to critically ill human 
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patients, the results reported by Schneider et al. support the conclusion drawn from our clinical 

investigation. Furthermore, the larger number of patients included in our analyses provided a robust 

clinical result compared to previously published data and excluded clinically relevant adsorption of 

meropenem. Consequently, no additional meropenem dosing is required during or after CytoSorb®-

treatment.  

It needs to be emphasised that the findings of this project most likely do not translate to other drugs and 

antibiotics and therefore highlighted that every drug needs to be investigated separately. Especially for 

more lipophilic and larger drugs than meropenem (logP=-0.6, 383,464 g/mol), clinical studies 

investigating adsorption at the CytoSorb® filter should be conducted, to rule out or quantify possible 

adsorption. The knowledge gained by these studies can then serve as basis for dosing decisions of 

antibiotics after CytoSorb® treatment in critically ill patients. The proposed adsorption models and the 

work-flow presented in this project presents a framework for future trials and analyses.  

Conclusion 

Using NLME modelling, a clinically significant adsorption of meropenem at the CytoSorb® filter and 

thus additional elimination in critically ill patients with sepsis or septic shock was ruled out. 

Consequently, neither additional dosing nor a more frequent drug measurement routine is necessary 

during simultaneous application of meropenem and CytoSorb®-treatment. 
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4.2 Project II: Utilising pharmacokinetic models to 

improve meropenem and piperacillin/tazobactam 

dosing 
 

Project II focused on improving meropenem and piperacillin/tazobactam treatment for critically ill 

patients at the Charité-Universitätsmedizin Berlin. For this purpose, a 3-staged clinical study was 

initiated as a coordinated intervention (Figure 4.2). In ‘stage I’, frequent and reliable concentrations 

measurements were implemented and the current antibiotic therapy was assessed. In ‘stage II’, a tabular 

model-informed dosing tool was developed and implemented for meropenem therapy and for ‘stage III’ 

an interactive model-informed dosing software termed ‘DoseCalculator’ was developed for both drugs.  

First, the key results of the 3 individual stages of the study will be summarised and discussed separately 

followed by a general conclusion and outlook for the project.  

 

Figure 4.2: Stages of the clinical study at Charitè-Universitätsmedizin Berlin.  
For meropenem two interventions (model-informed tabular dosing tool and interactive web application) were planned while 

only one intervention (interactive web application) was planned for piperacillin/tazobactam. 
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 Stage I: Evaluating the ‘status quo’ of meropenem and 

piperacillin/tazobactam therapy 
 

The antibiotic monitoring program conducted during stage I of the study provided two key insights into 

current dosing practice for the two frequently used antibiotics meropenem and piperacillin: Currently, 

neither the local pathogen susceptibility data was comprehensively exploited for PK/PD target selection 

nor was the relationship between renal function and antibiotic clearance for dosing decisions. This lead 

to poor target attainment (only 4 out of 10 meropenem samples and 5 out of 10 piperacillin samples 

were found to be in the target range, see 3.2.1.4). Hence, the regular assessment of PK targets and easy-

to-use dosing decision tools are warranted. 

Observed antibiotic dosing 

Both meropenem and piperacillin/tazobactam were found to be most commonly administered as 

prolonged infusion (92.7% and 98%, respectively) at Charité-Universitätsmedizin Berlin. The 

prolonged infusion of both drugs was corresponding to the latest dosing recommendations, but not yet 

standard in every major German hospital. For example, at the university hospital Munich, short-term 

(0.5 h) infusions were found to be the most frequent way of administration for both meropenem (see 

3.3.1) and piperacillin/tazobactam. The variations in infusion time (3 h and 4 h) for the prolonged 

infusions observed were attributable to the two different intensive care wards included in the study and 

point to non-standardised dosing regimens among different ICUs across the hospital prior to the study.  

Even though most patients received either 1 g or 2 g of meropenem (50.2% and 40.7%, respectively), a 

wide range of doses from 0.5 g to 8 g was observed. Compared to meropenem, piperacillin/tazobactam 

dosing regimens observed during the study did not substantially vary between patients in regards to the 

administered dose, infusion duration and dosing interval. The overwhelming majority of administered 

doses (99.5% of maintenance doses) were 4 g piperacillin and 0.5 g tazobactam administered as a 

prolonged infusion. The only way piperacillin/tazobactam dosing was adjusted to the individual patient 

was via the length of the dosing interval. Nevertheless, the majority of patients (72.4%) received 

piperacillin/tazobactam every 8 hours. Most probable this was due to the non-availability of other doses 

than the standard preparation of 4 g piperacillin and 0.5 g tazobactam. Introducing a new combination 

in the hospital would simplify adjusting piperacillin/tazobactam dosing.  

Pathogen susceptibility  

At the two ICUs at Charité-Universitätsmedizin Berlin, the MIC of a causative pathogen was 

determined for only 49.1% of patients receiving meropenem and 34.4% of patients receiving 

piperacillin/tazobactam. The value was available to the attending intensive care physician 

approximately two days after the initiation of antimicrobial therapy. This finding corresponded well 
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with those reported by Esteve-Pitarch et al. [184] and once again highlights the need for safe and 

effective dosing strategies prior to pathogen and MIC detection. To determine if an antibiotic drug is 

the right choice for a safe and effective therapy, it is important to closely monitor the local susceptibility 

to the antibiotic. Fortunately, in our analysis the high number of pathogens susceptible to the 

investigated drugs confirmed that both drugs were suitable for empirical antimicrobial therapy. 

However, the question arises if the selected targets for empirical therapy were appropriate. For both 

drugs, more than 90% of the determined MIC values were found to be lower than the lower threshold 

of the selected empirical target range. Nevertheless, the conclusion based on the assessment of the 

selected empirical targets differed between meropenem and piperacillin/tazobactam due to two 

considerations: (i) the percentage of samples without determined MIC values and (ii) the fold difference 

between the observed MIC values and the selected empirical targets. First, for patients treated with 

meropenem the corresponding MIC value of the pathogen was available more often compared to 

piperacillin (49.1% vs. 34.4%). As a consequence, the reliability that the collected susceptibility data 

represented the underlying MIC value distribution at the two intensive care wards was higher for 

meropenem. Second, for meropenem the lower threshold of the empirical target range was 32-times 

higher then 75% of MIC values observed, while for piperacillin more than a fifth (21.3%) of the 

determined MIC values were within a 2-fold deviation and 93.9% within a 4-fold deviation from the 

selected empirical target. Given the high uncertainty in MIC value determination [185], this deviation 

of the observed susceptibility to piperacillin from the selected empirical target was judged to be too low 

to justify a target reduction for piperacillin. Detecting more causative pathogens, including a 

concomitant MIC determination, would help to further elucidate the local piperacillin susceptibility and 

will hopefully increase the reliability of the selected empirical target in future. For meropenem adjusting 

(i.e. reducing) the empirical target from 8-40 mg/L to 4-20 mg/L was recommended by the AMS team 

based on the analysis. Furthermore, the local pathogen-independent mean fraction of response (LPIFR) 

was introduced and integrated in the dosing decision tools developed for stage II and III of the clinical 

study to provide dosing recommendations based on the observed pathogen susceptibility pattern at the 

two ICU wards (see 2.6.6.2). 

Target attainment and dose adjustments  

Corresponding to multiple other studies [131,186,187], the observed TA was found to be low. However, 

in our analysis the majority of samples (meropenem: 87.2%, piperacillin: 85.2%) was above the lower 

limit of the defined target range. At the same time the observed TA strongly varied between patients 

with different renal functions for both drugs: The highest proportion of TA was observed for patients 

with a normal renal function, while TA decreased both for worsening and elevated renal functions. This 

clearly indicated that the well-known impact of a patient’s individual renal function on the clearance of 

both antibiotics [50,131,188–191] had not been adequately taken into account for dosing decisions. 

Furthermore, the susceptibility of the causative pathogen or the empirical target (if the MIC was not 
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determined) did not impact measured concentrations. Neither for meropenem nor for piperacillin, the 

observed drug concentrations differed significantly between patients with different targeted 

concentrations, indicating that the individual target range was not adequately considered during dosing 

decisions. In addition, the proportion of dosing adaptations after drug concentration measurement was 

found to be low (<10%) and the frequency of dosing adaptations after samples below the target range 

was not notably higher than after samples above the target range. For meropenem the proportion of 

dosing adjustments was found to be completely independent from TA, suggesting that the observed 

dosing adaptations might not be due to the measured concentrations. 

Conclusion 

Overall, the real-word assessment revealed the need for actions on multiple levels to enable an optimal 

meropenem and piperacillin/tazobactam therapy: First, the empirical targets should regularly be 

assessed based on the local susceptibility pattern to ensure drug concentration targets sufficiently high 

to effectively treat local pathogens while at the same time avoiding unnecessary high drug burdens, 

[192]. Second, the renal function of the patient should be adequately taken into account [79,129,131]. 

And third, once additional information - i.e. MIC values or antibiotic concentration measurements - 

becomes available these should be thoroughly analysed and if required lead to dosing adjustments [79]. 

As exemplified by the analysis of two intensive care units at Charité-Universitätsmedizin Berlin, current 

dosing was not adjusted based on the well-known link between the clearance of both drugs and the renal 

function of the individual patient. The observed data furthermore highlighted the difficulty of 

integrating target information (e.g. infecting pathogen, MIC value) into individual initial dosing 

decisions. Adjusting dosing based on updated target information or individual drug measurements 

appeared to be an additional challenge. Evidently the availability of information alone was not sufficient 

to encourage dose individualisation at the bedside. As seen in other antibiotics [193,194] and indications 

[195,196], meropenem and piperacillin dosing decisions need to be supported by clear and 

comprehensive dosing strategies developed and evaluated by e.g. the local AMS team. Dosing 

algorithms for initial antibiotic therapy integrating patient characteristics and target information will 

help to increase target attainment while standardising dosing. Clear guidelines on when and how to 

adjust dosing if new information becomes available, might increase the impact and benefit of a 

concentration monitoring program: De Waele et al. reported a substantial increase of target attainment 

when implementing a simple algorithm to adjust dosing after concentration measurements outside the 

target range [197]. A more structured and standardised approach to individualise antibiotic dosing at 

the bedside is needed to fully utilise all available information.  
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 Stage II: Developing and implementing a model-informed tabular 

dosing decision tool for meropenem 
  

After identifying an elevated risk of inadequate antibiotic drug exposure in the local ICU patient 

population (see 3.2.1.4) a strategy was developed in collaboration with the AMS and ICU teams to 

improve antibiotic dosing. As a first step model-informed tabular dosing tables for initial meropenem 

dosing were developed and integrated into clinical routine. 

Pharmacokinetic model selection, reduction and evaluation 

The PK model developed by Ehmann et al. was selected for further model evaluation based on the high 

similarity of patient characteristics between the local patient population at Charité-Universitätsmedizin 

Berlin and the patient population used for model development (see 3.2.2.1). In the two-compartment 

model three covariates were included (CLCRCG on clearance, body weight on the central volume of 

distribution, and serum albumin concentration on the peripheral volume of distribution as piecewise 

linear, power and linear relationship, respectively), but only CLCRCG proved to have a clinical relevant 

impact on PTA [129]. To enable dosing recommendations depending only on the single patient 

characteristic with clinically relevant impact on PTA (CLCRCG), the two clinically less relevant patient 

characteristics (serum albumin concentration and weight) were removed from the model and all PK 

parameters were re-estimated using the original dataset.  

The subsequent external PK model evaluation using data collected during ‘stage I’ of the study (Section 

3.2.2.1) confirmed a good predictive performance of the selected model for the local patient population. 

A slight bias to underpredict the observed meropenem concentrations (-1.2 mg/L) was identified and 

accepted as an additional safety margin since it led to slightly lower PTA values for each investigated 

dosing regimen. The 50% prediction error interval (-3.5 mg/L to 2.5 mg/L) observed was considered to 

be satisfactory for the data situation and the patient population: The inaccuracies (e.g. sampling and 

dosing time) often observed in data from clinical routine can inflate the observed imprecision [198] and 

the high PK variability observed in critically ill patients [79,199–202] can also contribute to higher 

imprecisions during external model evaluation. The 90% prediction interval of most samples included 

the observed concentration (Figure 3.9), confirming that the observed imprecision was in line with the 

unexplained variability characterised in the PK model. To conclude, the selected PK model adequately 

represented the observed data and it could therefore be used to derive optimal initial antibiotic dosing 

for the critically ill patients at Charité-Universitätsmedizin Berlin.  
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Development of the tabular dosing tool for meropenem  

The dosing regimen included in the investigation were preselected by the AMS and ICU teams to 

guarantee a good integrability into local clinical routine. To ensure sufficiently high meropenem 

concentrations at the start of antibiotic therapy [57,73,74], while at the same time avoiding unnecessary 

high drug exposures [57], the effect of different loading doses on target attainment was analysed. 

Regardless of the loading dose used (1000 mg vs 2000 mg) the minimum meropenem concentration 

after the first maintenance dose was higher than or equal to minimum concentrations in steady state (see 

3.2.2.2). Therefore, a 2000 mg loading dose had no additional benefit compared to a 1000 mg loading 

dose and consequently all dosing regimens recommended by the dosing tool included a 1000 mg loading 

dose.  

For continuous infusions a higher PK/PD target (T>4MIC) was chosen to exclude the possibility of 

antibiotic concentrations being inside a pathogens mutant selection window over an extended period of 

time. Drug concentrations inside the mutant selection window supress the growth of susceptible strains 

of a pathogen, thereby giving a growth advantage to already available resistant strains in the pathogen 

population [163,164]. Over a longer period of time, drug concentrations within the mutant selection 

window increase the proportion of resistant pathogens and the risk for resistant mutations to prevail 

[163,164]. Due to the higher target, the PTA for continuous infusions was found to be lower compared 

to the PTA of prolonged infusions with the same daily dose. As a consequence, continuous infusions 

were not included in the dosing recommendations of the dosing tool.  

To inform dosing selection prior to pathogen identification, local, hospital specific and pathogen-

independent MIC values were integrated into the dosing decision tool (see 2.6.6.2). While this approach 

is a good opportunity to reduce unnecessary high meropenem dosing, it also carries some risks and 

should be applied with care. First, dosing suggestions based on LPIFR need to be updated regularly 

since local MIC distributions vary over time [203]. Second, in the rare event of a pathogen with low 

susceptibility (MIC values >8-32 mg/L), the risk of target non-attainment will be underestimated until 

the susceptibility of the pathogen is determined. Therefore, it is vital to communicate those limitations 

to the decision-making team and encourage a dose increase or change of antibiotic if higher MIC values 

are expected. In general, the dosing regimen recommended based on the LPIFR metric should only be 

administered as long as there is no further information about the pathogen (e.g. MIC) available.  

For each individual creatinine clearance and target, only the best performing dosing regimen was 

included as a dosing recommendation into the dosing decision tool. As a result, the dosing decision tool 

has a simple, explicit and clear structure. This structure allows to provide the initial dose 

individualisation needed to optimise dosing in critically ill patients while maintaining a level of 

standardisation that will help to avoid complication of ICU ward process.  
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Patients receiving renal replacement therapy (RRT) were not included in the development of the dosing 

tool. Consequently, the derived dosing recommendations do not apply to the roughly 20% of patients 

receiving RRT. 

Retrospective evaluation of the dosing tool  

Prior to implementation the dosing decision tool was evaluated using data collected during stage I of 

the clinical trial. For 72% of the samples found to be below the target range, the dosing decision tool 

suggested an increase in daily dose, while suggesting a decrease in the daily dose for 78% of the samples 

above the target range. The suggested reduction of daily dose for 23% of samples below the target can 

be explained by the transition towards four-times-daily dosing: The more frequent administration of 

meropenem provided higher PTAs, while reducing daily dose compared to three-times-daily dosing. At 

the same time the suggested increase in daily dose for 10% of the samples above the target range is 

mostly likely due to sampling prior to the minimum drug concentration: While the median meropenem 

sample was collected 20 minutes before the planed end of the dosing interval, the median sample that 

was both above the target range and had a recommendation to increase the daily dose was collected 60 

minutes before the planned end of the dosing interval. The positive results obtained by this evaluation 

strengthened the case to integrate the tool into the clinical practice without delay.  

Conclusion  

After observing the low target attainment rooted in the difficulty of integrating target and relevant 

patient information into individual dosing decisions, a concise dosing tool for initial meropenem dosing 

was developed. Based on the observed local susceptibility pattern (MIC distribution) or if available the 

susceptibility (MIC value) of the pathogen causing the infection and the renal function (assessed by 

creatinine clearance estimated using Cockcroft-Gault formula) of an individual patient, a single dosing 

regimen for initial meropenem therapy is recommended by the dosing tool. The retrospective evaluation 

using data collected during stage I of the clinical trial, suggested a high potential for the tool to increase 

target attainment.   
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 Stage III: Developing and implementing an interactive model-

informed dosing software 
 

To allow for more flexibility, such as the integration of patient-individual antibiotic drug concentration 

measurements, various levels of prior knowledge on the pathogen and individually-to-chose PK/PD 

targets a model-informed, interactive dosing tool was developed in stage III of project II. 

Selection and evaluation of the pharmacokinetic models 

The software was designed to easily integrate additional antibiotics and patient populations. The current 

version supports dosing decisions in critically ill patients receiving either meropenem or 

piperacillin/tazobactam therapy. For meropenem the previously evaluated (see 3.2.2.1) PK model 

underlying the model-informed dosing tables developed for stage II was implemented in the dosing 

software. For piperacillin/tazobactam the five potentially suitable PK models [50,175–178] identified 

in a literature research showed a widely varying predictive performance for the data collected in stage 

I of the clinical study. While observed bias, i.e. the median prediction errors, ranged between – 32.0 

mg/L and 15.3 mg/L and the imprecision, i.e. absolute median prediction errors, between 18.0 mg/L 

and 48.9 mg/L, the graphical evaluation of the absolute prediction errors clearly demonstrated some of 

the models to be inadequate to describe the pharmacokinetics of piperacillin in our local patient 

population: The PK models by Andersen et al. [178] (Figure S8), Roberts et al. [175] (Figure S10) and 

by Li et al. [177] (Figure S11) all demonstrated a strong bias to underpredict high meropenem 

concentrations and the PK model by Öbrink-Hansen et al. [176] displayed an extremely high variability 

in predicted concentrations (Figure S9). Only the two-compartment model by Sukarnjanaset et al. [50] 

showed an acceptable predictive performance (Bias: -2.73 mg/L (-10.9%), imprecision: 20.2 mg/L 

(60.3%)) even if a bias to underpredict high (> 100 mg/L) piperacillin concentrations (Figure 3.14) was 

detected. The wide prediction interval determined during model evaluation can be attributed to the 

typical high unexplained variability in a ICU patient population and is therefore expected [79,204,205]. 

While the slight bias of the PK model to underpredict observed piperacillin concentrations can be 

considered as an additional safety margin lowering the probability of each dosing regimen to achieve 

the PK/PD target and leading to slightly higher dose recommendations, the observed underprediction 

for piperacillin concentrations above 100 mg/L might indicate an inadequate predictive performance of 

the PK model for a subset of patients. However, inspecting the individual concentration-time course 

predictions and the documented piperacillin concentrations and observing the high deviations for some 

patients and concentration measurements (e.g. ID7, 2nd concentration measurement, Figure S12), the 

question arose if these high deviations between predicted and observed concentrations were not in fact 

due to inaccuracies during documentation of sampling or dosing time. For example, an additional dose 

not documented in the patient record or a concentration measurement taken during instead of prior to 

the drug infusion would lead to large discrepancies between predicted and observed concentrations. 
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Although such inaccuracies have been observed in clinical practice and are known to impact model-

informed precision dosing [206,207], this hypothesis could neither be confirmed nor rejected with 

reasonable confidence for the concentration measurements in question. However, the origin of the 

observed deviation has no relevance for the warning system implemented in the software. To identify 

both erroneous measurements/sample data and individual patients not well predicted by the PK model, 

the user will be warned if documented antibiotic concentration(s) are found to be outside the 95% 

prediction interval for the administered dosing regimen and the characteristics of the patient. As a 

consequence, patients and samples not well predicted by the PK model are identified and can be further 

scrutinised after the first drug measurement. Due to possible inaccuracies in documentation and the 

high PK variability in ICU patients the implementation of similar warning systems in future MIPD 

software was recommend. Additionally, prior to the first measurement, the direction of the bias of the 

piperacillin model implemented in the DoseCalculator ensures concentrations exceeding the selected 

PK/PD targets. Therefore, the predictive performance of the PK model was judged to be acceptable. 

The insufficient predictive performance of the other four PK models once more highlights the necessity 

and importance of a thorough model evaluation prior to implementation and application of a PK model.  

To assess the predictive performance of the PK model by Sukarnjanaset et al. if prior piperacillin 

concentration measurements are available, a step-wise MAP estimation and prediction of the next 

observed concentration was conducted. This second evaluation step provided two important insights: 

Frist, as expected, the additional patient-specific PK information overall improved the predictive 

performance which was illustrated by a 78.8% reduction in bias (-2.73 mg/L to -0.58 mg/L). Second, 

the graphical analysis of the MAP and population predicted concentration-time profiles and the 

observed concentrations for each patient repeatedly revealed single measurements outside the 90% 

prediction interval, while other observed concentration of the same patient were found to be well 

predicted. That individual measurements of otherwise well predicted patients were found to be far 

outside the prediction interval, supported the hypothesis of inaccuracies in data documentation. This 

uncertainty in the reported data needs to be taken into account when working with clinical routine data.  

Development of the dosing tool  

The DoseCalculator was designed to select the best dosing regimen for the three identified (different) 

levels of pathogen knowledge faced during the course of an antimicrobial therapy: In ICU patients, 

antibiotic therapy needs to be initiated at the first signs of infection [204] and as a consequence, typically 

neither the pathogen nor its MIC value are known at the start of antibiotic treatment. In this case, the 

user of the DoseCalculator can choose from three different targets: either the pathogen-unspecific 

breakpoints reported by EUCAST, the LPIFR based on the local pathogen-unspecific MIC distribution 

(in our case at the Charité-Universitätsmedizin Berlin) or a user-specified drug concentration. In stage 

I of the study, the defined empirical targets (based on EUCAST breakpoints for the least susceptible 
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pathogens) were found to be considerably higher than the observed susceptibility (see 3.2.1.3) [208]. 

For this situation, the LPIFR is therefore a valuable opportunity to reduce unnecessary high antibiotic 

dosing. However, since local MIC distributions might vary over time they need to be monitored and the 

MIC distribution implemented in the DoseCalculator updated regularly. Furthermore, in the rare event 

of a pathogen with high MIC values, the risk of target non-attainment could be underestimated until the 

MIC is determined. Therefore, it is vital to communicate those limitations to the decision-making team 

and encourage a dosing increase or change of antibiotic if higher MIC values are expected. In general, 

the dosing regimen recommendations based on the LPIFR metric should only be used as long as there 

is no further knowledge about the pathogen (e.g. MIC) available [209]. If the genus of the pathogen 

becomes available and is entered in the DoseCalculator, the EUCAST reported MIC value distribution 

for the selected pathogen will be used for a CFR analysis as default. To prevent the treatment of 

pathogens without a clear indication for meropenem or piperacillin/tazobactam, only pathogens with an 

explicit treatment recommendation by the AMS team were included in the MIPD software. During the 

initial introduction and training with the DoseCalculator, it needs to be emphasised that the non-

availability of a pathogen in the DoseCalculator is equivalent to a recommendation by the AMS team 

to change the antibiotic drug. In this case, the responsible AMS team should be consulted to jointly 

decide on an appropriate antimicrobial therapy. Once the MIC value of the infection pathogen becomes 

available (approximately two days after treatment see 3.2.1.3 [208]) and is entered in the software, a 

PTA analysis will be conducted. By default, the MIC value will be chosen as target, but to allow for a 

more flexible target selection in case of severe infections, the user can adjust the targeted antibiotic 

concentration without restrictions. For all three possible levels of pathogen knowledge, a toxicity 

threshold for the minimum drug concentration can be entered to further discriminate between the dosing 

regimens included in the analysis based on their probability to reach toxic concentrations. Although the 

safety profile of both meropenem and piperacillin/tazobactam was overall considered to be favourable 

[47,77], adverse events (e.g. neurotoxicity, nephrotoxicity) have been linked to high minimum 

concentrations [57,58]. Since no additional benefit was expected once the drug exposure exceeds 

conservative PK/PD targets such as 100%T>MIC [57], even a low unnecessary risk of adverse events 

should be avoided. Both the optional toxicity threshold and the ranking based on lower daily dose for 

dosing regimen reaching the PK/PD target, will help to ensure effective and safe dosing 

recommendations.  

The routine drug concentration measurement in ICU patients is an important tool to ensure adequate 

antibiotic drug exposure and can further improve the dosing recommendations by the DoseCalculator. 

If both a drug concentration measurement and the preceding dosing history is available for a patient it 

can be entered into the DoseCalculator. Based on the provided patient characteristics, the dosing history 

and the drug concentration(s), a MAP estimation will be conducted and the subsequent analyses will be 

based on the patient’s individual posterior parameter distribution. Especially in the ICU population with 
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its high intra- and intererindividual variability [79,204,205,210,211], including individual PK 

information will help to provide more precise predictions and consequently better dosing 

recommendations for each patient. 

Retrospective evaluation of the dosing tool 

The first evaluation of the DoseCalculator using the data from stage I (i.e. patients with full dosing 

history and determined MIC value) suggested a substantial potential to improve target attainment while 

at the same time reducing the total daily dose. For meropenem, the median prediction of the dosing 

regimens suggested by the tool was inside the target range (1-5xMIC) in the majority of cases (92.0%). 

This constituted a >3 times increase (28.6% to 92.0%) in median meropenem samples predicted to be 

in the target range compared to the actually administered dosing regimen, while at the same time 

reducing the median daily dose by 77.8%.  

For piperacillin, the dosing regimens suggested by the software led to a convergence of the median 

predicted piperacillin concentration towards the target range, but the percentage of samples within the 

target range was only increased by 139% (from a low 16.7% for the observed dosing regimens to 

23.3%). Even if the median MIC-normalised piperacillin concentration decreased by 36.3% (6.5 vs. 

10.2 mg/L), most of the samples were still predicted to be above the target range. By integrating an 

additional piperacillin formulation of 2 g into the DoseCalculator the predicted target attainment was 

increased by 405% to 84.4%, clearly highlighting the need of this additional formulation at Charité-

Universitätsmedizin Berlin.  

Conclusion  

Compared to the tabular dosing tool developed for stage II, the newly developed dosing software allows 

for more flexibility and the integration of additional data like drug concentration(s) into the analyses 

forming the foundation for the dosing recommendations. Furthermore, the developed platform can be 

easily expanded to include other antibiotic drugs or patient populations like intensive care patients 

receiving renal replacement therapy. The retrospective application of the DoseCalculator for the 

patients included in stage I of the study, did not only suggest a high potential to increase target 

attainment and reduce daily doses, but also highlighted the need for additional piperacillin/tazobactam 

formulations.  
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 Conclusion and outlook project II  
 

Project II is not only a powerful illustration of the possibilities of model-informed precision dosing but 

first and foremost an example on the importance of interprofessional collaboration to achieve optimal 

patient care. As introduced in chapter 1.1, a rational antibiotic drug therapy entails the four vital 

components appropriate indication, appropriate choice of antibiotic, appropriate timing and appropriate 

dosing. To derive the optimal antibiotic dosing for an individual patient based on those four components 

is already a challenging endeavour in a hypothetical research setting focused only on antibiotic therapy. 

However, in clinical practice the focus is rarely on antibiotic therapy alone. Intensive care patients 

commonly receive treatment for multiple diseases in parallel and the infection is demoted to be just 

another complication the attending healthcare professional has to take care of. As a consequence, the 

antibiotic therapy of each individual patient is in constant competition for resources and attention, not 

only with other patients but other therapies for the same patient as well. Even if there are enough 

monetary resources and heath care personal available, other treatments, diagnostic measures and 

transfers between wards will always limit the possible options for the antibiotic therapy. To sustainably 

improve antibiotic therapy in intensive care patients, the reality in clinical routine needs to be taken into 

account and every intervention needs to be designed to account for local conditions. Similar to antibiotic 

therapy itself, a “one intervention fits all” approach covering multiple institutions with different 

prerequisites is unlikely to produce the best results. With this knowledge in mind, project II was planned 

and conducted as a close interprofessional collaboration between the local AMS team, infectious disease 

specialists, critical care specialists, hospital pharmacists, the clinical laboratory and 

pharmacometricians. From the design of the study and the target definition, to the development of the 

model-informed dosing tools and their implementation into clinical practices, bi-weekly meetings of 

the whole study team enabled continuous discussions and feedback and guaranteed the inclusion of all 

stakeholders. Although such an approach improves the chance of a successful intervention, unforeseen 

developments can still hinder their timely implementation. In the spring of 2020, the COVID-19 

pandemic reached Germany. A surge of COVID-19 cases and the associated increase in intensive care 

patients suspended the study for multiple months and complicated the implementation of the developed 

dosing tools throughout 2021 and 2022.  

The study was designed to not only integrate locally available expertise but also to incorporate local 

information collected during the study itself. While the main objective of stage I was to assess current 

clinical practices and target attainment, both the pharmacokinetic data and the observed local pathogen 

susceptibility pattern were utilised to inform dosing recommendations in stage II and III. Based on the 

observed antibiotic concentrations, dosing histories and patient characteristics, piperacillin and 

meropenem PK models were evaluated and the best performing models selected. The wide variation in 

predictive performance observed during the study (see 3.2.3.1), illustrated the importance of an 
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extensive model evaluation in the targeted population prior to implementation into a model-informed 

dosing tool. Based on the observed local pathogen susceptibility pattern the local pathogen-independent 

mean fraction of response was introduced, allowing a more targeted therapy prior to pathogen detection 

at the start of antibiotic therapy.  

Both the retrospective evaluation of the tabular dosing decision tool for initial meropenem dosing and 

the DoseCalculator software initial and follow-up dosing revealed a high potential to increase target 

attainment, while at the same time reducing the daily dose for the individual patient. While these results 

give hope for the future of antibiotic therapy, the predicted target attainment for the suggested dosing 

regimens needs to be realistically interpreted as close to the best possible outcome. During the 

simulation study for the retrospective evaluation both the application rate of the tools and the adherence 

to their dose suggestions was assumed to be 100%. Even if it is impossible to estimate the real 

application rate and/or adherence, it is rather unlikely that even one of them will be close to 100%. As 

a consequence, the target attainment for the whole population will probably not rise as steep as predicted 

in the simulated best case scenario. Furthermore, even for the patients whose antibiotic dosing was 

informed by the developed dosing tools, the target attainment will probably not be as good as predicted: 

In addition to possible non adherence to the dosing suggestion, applying the tools only to inform dosing 

decisions for the most vulnerable and pharmacokinetically complicated patients might decrease the 

predictive performance of the PK models and therefore the quality of the dosing suggestions. Still, even 

if an >3-times increase in target attainment might not be achieved, a considerable increase in target 

attainment is still expected. How big this increase will be in a real world clinical setting can only be 

determined by prospective evaluations for both the tabular dosing decision tool and the DoseCalculator 

software.  
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4.3 Project III: Evaluation and extension of the 

MeroRisk Calculator  
 

In Project III the MeroRisk Calculator, a dosing assessment tool for meropenem therapy in critically ill 

patients prior to the initiation of treatment, was evaluated and extended to integrate risk assessment for 

target non-attainment based on general pathogen sensitivity data.  

Evaluation of the MeroRisk Calculator 

Due to the high variability in sampling times observed in the real-world clinical dataset and the few 

samples included 8 hours after standard dose a direct evaluation of the MeroRisk Calculator was not 

feasible. Instead, the MeroRisk Calculator was evaluated using a two-step data- and model-based 

evaluation strategy allowing the inclusion of a large number of patients (n=155) and samples (n=891).  

The evaluation of the selected PK model [129] revealed a small bias (-0.84 mg/L) to underpredict 

observed meropenem concentrations and a 50% prediction error interval ranging from -5.0 mg/L (-

59%) to 1.2 mg/L (32%). Due to the small size of bias compared to the observed concentrations (mean 

meropenem concentration 13.0 mg/L) the bias was considered to be acceptable. Furthermore, the 

tendency to underpredict observed concentrations leads to more conservative risk predictions and thus 

adds a safety margin to the risk assessment. The precision, assessed based on the 50% prediction error 

interval, was judged to be acceptable for a critically ill patient population and the nature of the 

retrospective data collected during clinical routine. The imprecision observed during model evaluation 

using a dataset from clinical routine might be inflated by the higher degree of uncertainty (in e.g. 

sampling or dosing times) compared to a prospective dataset collected in a controlled clinical trial [198]. 

In a previously published evaluation of eight meropenem NLME PK models for critically ill patients, 

the observed bias ranged from -8.76 to +7.06 mg/L (mean meropenem concentration in the dataset: 16.3 

mg/L) with +2.07 mg/L as the lowest observed bias [212]. The imprecision assessed based on root mean 

squared prediction errors was higher for all models investigated in the mentioned publication than for 

the model used to evaluate the MeroRisk Calculator (9.9 – 42.1 mg/L vs. 6.2 mg/L) [212]. To conclude, 

the selected PK model adequately represented the observed data and its predictions could therefore be 

used as a benchmark for the evaluation of the MeroRisk Calculator.  

For patients with a creatinine clearance equal to or greater than 50 mL/min, the PK model and the 

MeroRisk Calculator predicted highly similar meropenem concentrations. For patients with a creatinine 

clearance below 50 mL/min however, the MeroRisk Calculator predicted higher concentrations than 

the PK model. This discrepancy can be explained by the different mathematical approaches underlying 

the NLME PK model and the model integrated in the MeroRisk Calculator. The MeroRisk Calculator 

has been based on a linear regression model on double natural logarithmic scale linking meropenem 
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concentrations 8 hours after standard dose to a patient’s creatinine clearance. Therefore, the linear 

model of the MeroRisk Calculator cannot separate between renal and non-renal elimination (the latter 

accounting for up to 27% of meropenem clearance [213]) and with decreasing creatinine clearances, 

the renal and non-renal clearance is reduced at the same rate. As a consequence, the concentration 8 

hours after standard dose of a patient with a creatinine clearance approaching zero would be wrongly 

predicted by the MeroRisk Calculator infinite. For the same patient, the NLME PK model would predict 

a clearance of roughly 20% of the median clearance, which corresponds well to the expected extent of 

non-renal clearance.  

Differences in risk predictions between the NLME PK model and the MeroRisk Calculator were small 

for all patients and MIC values below 8 mg/L. The difference in concentration predictions had only a 

minor impact due to very low risk predictions for patients with creatinine clearance below 50 mL/min. 

However, for MIC values greater or equal to 8 mg/L, the risk of target non-attainment for patients with 

a creatinine clearance below 50 mL/min was substantially underestimated by the MeroRisk Calculator 

compared to the PK model. MIC values of 8 mg/L or higher are rare and would lead to a change in 

antibiotic in most cases. Nevertheless, the MeroRisk Calculator should not be used for patients with 

impaired renal function and high MIC values (>8 mg/L). The disclaimer of the MeroRisk Calculator 

was updated to integrate the knowledge gained from the evaluation and to exclude patients with a 

creatinine clearance below 50 mL/min.  

For all other patients, the very good agreement between the risk predictions of the MeroRisk Calculator 

and the NLME PK model (see section 3.3.2.2) supports interchangeability. Therefore, the intuitive and 

easy-to-use MeroRisk Calculator can be utilised to assess the risk of target non-attainment of a patient 

prior to therapy start with the same confidence as the successfully evaluated NLME PK model.  

Extension of the MeroRisk Calculator 

The newly added possibility to assess the risk of target non-attainment based on the infecting pathogen 

if the MIC value is unknown considerably extends the applicability of the tool. This is especially helpful 

for all the hospitals not determining MIC values on a regular basis (in a recent survey of ICU physicians 

in Germany over half of the respondents reported not to receive any MIC values [36]) and early during 

antibiotic therapy when the MIC values is not yet available (in Project II the median time until the MIC 

value was reported to the attending physician was 2.1 days). To accommodate changing MIC 

distributions, an up-to-date version of the MeroRisk Calculator integrating the latest EUCAST MIC 

distributions is provided online (https://www.bcp.fu-

berlin.de/en/pharmazie/faecher/klinische_pharmazie/arbeitsgruppe_kloft/forschung/MRc). 

The elevated (>10%) median risk of target non-attainment for 27% out of the 74 pathogens included in 

the EUCAST database and the investigated critically ill patient population, highlights the need for an 

individual risk assessment prior to therapy start. In the evaluation of all pathogens, especially pathogens 
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of the genus Acinetobacter, Pseudomonas and Staphylococcus were identified as high-risk pathogens 

for standard dosing (Figure S13). For infections caused by pathogens of these genera alternative 

antibiotic drugs or intensified dosing is especially crucial even for patients with low renal function. 

Conclusion and outlook 

The MeroRisk-Calculator was successfully evaluated using a clinical routine dataset and a two-step 

data- and model-based evaluation approach. For patients with creatinine clearances equal to or greater 

than 50 mL/min, the user-friendly MeroRisk Calculator allows an equally good and reliable risk 

assessment as the successfully evaluated NLME PK model. For patients with creatinine clearance below 

50 mL/min, the MeroRisk Calculator should not be used due to the observed tendency to underpredict 

the risk of target non-attainment. By including risk assessment based on general pathogen sensitivity 

data, the range of possible application of the MeroRisk Calculator was substantially extended to include 

situations where MIC values are not (yet) available. While the developed two-step evaluation approach 

allowed to exploit an already available large dataset from clinical routine and thereby increased the 

robustness of the results without the need for an expensive prospective study, a prospective clinical 

study remains the “gold standard” of evaluation and should follow next. A prospective study of the 

MeroRisk Calculator could also investigate the effect of the tool on treatment outcomet. Even if a 

prospective study is not possible, to ensure transferability to other intensive care wards, the results of 

this evaluation need to be verified using clinical data from the respective ICUs prior to the 

implementation of the MeroRisk Calculator.  
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Overall conclusion and perspective  
 

The objective of this thesis was the development, implementation and evaluation of MIPD tools to 

ultimately improve antibiotic dosing in critically ill patients. To achieve this objective, the presented 

projects employed pharmacometric modelling and simulation techniques to (i) characterise antibiotic 

drug pharmacokinetics in critically ill patients, (ii) assess current antibiotic dosing in the intensive care 

wards, (iii) develop MIPD tools and (iv) implement and evaluate developed MIPD tools.  

The presented research was focused on antibiotic therapy in critically ill patients for several reasons. 

Due to the frequent and sometimes inadequate antibiotic therapy in ICUs, the emergence and spread of 

antimicrobial resistance is especially prominent and dangerous in highly vulnerable ICU patients 

[214,215]. Reducing or even inverting the spread of antimicrobial resistances in ICUs, might therefore 

contribute disproportionately to the global fight against antimicrobial resistance. Meropenem and the 

drug combination piperacillin/tazobactam were chosen as investigated antibiotic drugs, due to their 

widespread use and their broad antimicrobial activity. While the widespread use of the two drugs 

improves the transferability and therefore expands the benefit of our research, improvements in the 

rational therapy of the two drugs will hopefully protect their broad antimicrobial activity and hold 

emerging antimicrobial resistances at bay. Besides the higher rates of resistance in ICUs, the presented 

research focused on ICU patients for two equally important additional reasons. First, ICU patients are 

especially vulnerable to bacterial infections: Due to their critical illness they often face mortality rates 

up to 60% during sepsis or septic shock [10–12,85,86]. Second, an effective antibiotic treatment of ICU 

patients is challenging due to several heterogeneous changes in PK processes, based on the 

pathophysiology of their severe illnesses [79]. As observed in stage I of the clinical trial presented in 

Project II, those changes in PK processes complicate the selection of a suitable dosing regimen and 

often lead to suboptimal target attainment.  

Pharmacometric modelling and simulation approaches in general and MIPD in particular, can improve 

antibiotic treatment considerably by characterising the PK/PD of antibiotic drugs and supporting dosing 

decisions in the clinic [199,209,216–218]. However, while there are promising examples of model-

informed tools improving drug therapy [219,220], implementation into real world clinical settings is 

still lagging behind for various reasons [221].  

Even for some commonly administered and supposedly ‘well-known’ drugs, the PK is not fully 

characterised in special populations like ICU patients or patients receiving extracorporeal organ support 

(e.g. renal replacement therapy, extracorporeal membrane oxygenation, cytokine adsorber therapy). PK 

studies and subsequent NLME analyses are still needed to assess the effect of extracorporeal organ 

support on drug exposure and to determine if dose adaptations are needed. One crucial challenge often 

faced during model development in special populations is the data situation. To develop sophisticated 
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pharmacometric models, high quality data is needed. Depending on the research question the 

requirements can vary, but for population pharmacokinetic modelling the datasets ideally contain 

multiple patients, different dosing regimens, multiple concentration measurements per patient and 

dosing regimen, and a wide range of patient characteristics. If an investigation is focused on the 

elimination processes of a drug -like Project I-, additional drug measurements in urine and faeces are 

especially valuable. Unfortunately, the availability of accurate high quality data is rather limited. This 

is partly due to the smaller number of patients in special populations, and mainly due to the high effort 

and costs involved in conducting largescale clinical trials. In order to establish MIPD for a broad range 

of diseases and drugs in the future, it is therefore necessary to first enable the funding and conduct of 

clinical trials. In addition to this, the accessibility and use of available data in hospitals needs to be 

improved. Routine drug measurements and pathogen susceptibility data cannot only be used to monitor 

current antibiotic treatment, but can and should further be utilised –as illustrated in Project II- to 

evaluate the predictive performance of a PK model for the local population or to inform future dosing 

decisions based on local pathogen susceptibility. Unfortunately, so far extracting routine data from the 

electronic healthcare records is often tedious work, due to inconsistent data structures and incompatible 

software. At the same time, clinical routine data is often associated with a higher degree of uncertainty 

compared to prospective clinical trials, mostly due to less precise documentation [198]. To realise the 

full potential of the available clinical routine data in the future, a standardised data structure and good 

data management procedures should be implemented and the extractability of data from electronic 

healthcare records should be improved.  

Closing the remaining knowledge gaps is a particularly important, but at the same time only the first 

step in enhancing the rational use of antibiotics. To improve antibiotic therapy, the knowledge gained 

during scientific research needs to find its way into individual dosing decisions at the bedside. Currently, 

the translation of accumulated knowledge into clinical application remains unsatisfactory: The growing 

repertoire of published PK models is seldom integrated into user-friendly tools and therefore remains 

inaccessible for most healthcare professionals [79,121]. Furthermore, the available tools often do not 

match local conditions, objectives or, in the case of commercial Bayesian dosing software, the available 

budget. This problem was also faced before Project II presented in this thesis. The dosing regimens 

frequently used at Charité-Universitätzmedizin Berlin were either not included in the available tools or 

part of a multitude of dosing regimen recommendations complicating the daily use of the tool 

[129,131,173,222]. All freely available Bayesian dosing software [223] did either not include the 

investigated drugs and patient population, or did not provide the envisaged user-friendliness and 

compatibility with the local clinical routine. Furthermore, the risk of reaching toxic minimum 

concentrations was not considered in the examined other tools and an evaluation of the underlying PK 

models would have been necessary. Most likely, this situation is similar for a wide range of drugs, 

model-based tools and hospitals. Even when model-based tools or PK models are available for a specific 
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drug in a specific patient population, the selected target or the clinical setting might hinder 

implementation and use. In those situations, local initiatives are needed to develop dosing decision tools 

fit for the situation on-site. The approach described in this thesis may serve as a blueprint to a wide 

range of hospitals, patient populations and drugs to develop sophisticated dosing decision tools 

providing optimised dosing adapted for local conditions and objectives. 

In many hospitals reliable and frequent drug measurements are not yet available [132]. Since drug 

measurements are a prerequisite for MIPD software, such software cannot be implemented without a 

routine drug measurement program. As an alternative, tabular dosing decision tools integrating an 

evaluated PK model can be used for initial dose adaptation -as illustrated in stage II of Project II- based 

on individual patient characteristics. Furthermore, these tabular dosing decision tools can provide 

dosing recommendations prior to the first drug measurement, improving dosing in this especially crucial 

time window of antibiotic drug therapy [224].  

If drug measurements are available, MIPD software has clear advantages over tabular model-based 

dosing algorithms. Both during the development of model-based dosing algorithms and during the 

application of MIPD software, stochastic simulations of PK models are employed to determine the 

probability of a selected dosing regimen to attain a defined target given specific patient characteristics 

(i.e. probability of target attainment (PTA)). By analysing each patient individually during the 

application of the MIPD software, it is more flexible in adapting to the individual situation of each 

patient compared to static dosing algorithms relying on analyses finalised during development and 

therefore prior to use: Multiple continuous patient characteristics (e.g., creatinine clearance) can be 

integrated into MIPD software simultaneously without categorisation, which is often applied to keep 

dosing algorithms concise and easy to use. As a consequence, dosing recommendations from MIPD 

software can be calculated based on the concrete individual patient characteristics. Furthermore, the 

PK/PD target can be flexibly adjusted in MIPD software to account for particular circumstances of 

individual patients: A higher PK/PD target in plasma might for example be warranted to treat an 

infection suspected to be located at a poorly perfused site of the body. In addition to this higher 

flexibility, the regular concentration measurements that are often performed in combination with MIPD 

software do not only detect inadequate drug exposures, but also provide valuable information about the 

PK of the individual patient. Especially in patient populations with high inter- and intraindividual 

variability, such as ICU patients, the additional PK information can be useful to subsequently adapt 

dosing for an individual patient. The complex task of deriving the subsequent most adequate dosing 

regimen based on drug concentration measurements of the individual patient, can then be supported by 

the MIPD software and is carried out based on clear quantitative metrics, e.g. the PTA [198]. In contrast 

to MIPD software, the integration of newly gained PK information in static dosing algorithms is not 

possible.  
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The constraint in the choice of MIPD tool (tabular vs. interactive MIPD software) due to the availability 

of a concentration measurement program, highlights the key factor in developing and implementing 

MIPD dosing tools: the local conditions. It is often not feasible to rearrange the complex processes 

during clinical routine to provide the necessary conditions needed for an already developed tool. 

Instead, new tools should be designed or already developed tools adapted specifically for local 

objectives, the local clinical routine and local conditions. To ensure the best possible adaptation to 

clinical processes and to integrate the broad expertise of different healthcare professions, the projects 

presented in this thesis were all conducted within a close interprofessional collaboration between local 

AMS teams, infectious disease specialists, critical care specialists, pharmacists, the clinical laboratory 

and pharmacometricans. In project I, the collaboration ensured the physiologically sound model 

development strategy and interpretation of the results. In project II and III, continuous discussions 

ranging from the choice of the optimal PK/PD targets to the user-friendliness of the developed tools 

guaranteed an optimal adaptation to local objectives and clinical routine. In all three projects, the 

straightforward and direct communication with the scientists responsible for data collection and 

bioanalysis was crucial to spot and interpret irregularities in the datasets.  

In addition to the already mentioned challenges, a majority of available PK models and tools have not 

been evaluated, undermining trust in the reliability of their predictions and further hindering 

implementation. To illustrate the accuracy and potential of MIPD tools, a clinical routine dataset was 

used in Project III to evaluate an already developed tool and simulation studies were used in Project II 

to demonstrate the possible improvements in antibiotic dosing when using the developed tools. The 

prospective evaluation of the tools during clinical routine planned as next step, should asses the 

promising results of the simulation studies and further enhance trust in the tools and their potential.  

MIPD is a powerful approach with the potential to improve drug therapy for a range of diseases and 

patient populations. It is one important tool to improve antibiotic drug therapy in ICU patients and will 

hopefully contribute to lower mortality rates and a reduction in antibiotic resistance in the near future. 

To accomplish these goals, first MIPD needs to be widely implemented into clinical routine. In this 

thesis potential challenges and opportunities for the implementation were presented and discussed in 

detail. The scientific findings and the dosing tools developed in this thesis will not only improve dosing 

at Charité Universitätsmedizin Berlin, but also serve as a blueprint for other institutions and drugs.  
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5 Appendix  

 

5.1 Supplementary tables  
 

Table S1: Overview of patient-specific characteristics collected during stage I of the clinical study at 

Charité-Universitätsmedizin Berlin. 

*Possible treatment outcomes: free of pathogen, change of medication, death due to infection, death or transfer to different 

ward.   

Abbreviations: RRT: Renal replacement therapy, ECMO: Extracorporeal membrane oxygenation, MIC: Minimum inhibitory 

concentration, SOFA: Sepsis-related Organ Failure Assessment, APACHE-II: Acute Physiology And Chronic Health 

Evaluation. 

 

  

Determined once Determined once per study day 

Categorical Continuous Continuous 

• Sex • Age • SOFA score  

• Location of 

Infection 

• Height • APACHE-II score  

• General Diagnosis  • Weight  • Serum creatinine 

concentration 

• RRT  • MIC • Dosing change 

• ECMO   

• Pathogen   

• Immunosuppression 

status 

  

• Treatment outcome*   
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Table S2: Overview of determined Pathogens and minimum inhibitory concentrations for patients 

treated with meropenem. 

Pathogen Pathogens 

determined, 

n (%) 

MIC,  

n (%) 

Minimum inhibitory concentration [mg/L], n (%) 

0.25 0.5 1 2 4 8 16 

All Pathogens 244 (100) 217 (88.9) 176 (81.1) 
8 

(3.69) 

3 

(1.38) 

4 

(1.84) 

11 

(5.07) 

7 

(3.23) 

8 

(3.69) 

Enterobacter 

cloacae 
50 (20.5) 48 (96.0) 43 (89.6) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

5 

(10.4) 

0  

(0) 

Pseudomonas 

aeruginosa 
41 (16.8) 39 (95.1) 

16  

(41) 

7 

(17.9) 

3 

(7.69) 

2 

(5.13) 

3 

(7.69) 

0  

(0) 

8 

(20.5) 

Escherichia 

coli 
36 (14.8) 32 (88.9) 30 (93.8) 

0  

(0) 

0  

(0) 

2 

(6.25) 

0  

(0) 

0  

(0) 

0  

(0) 

Klebsiella 

pneumonia 
36 (14.8) 30 (83.3) 28 (93.3) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

2 

(6.67) 

0  

(0) 

Serratia 

marcescens 
25 (10.2) 24 (96.0) 24 (100) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

Citrobacter 

freundii 
14 (5.74) 14 (100) 6 (42.9) 

0  

(0) 

0  

(0) 

0  

(0) 

8 

(57.1) 

0  

(0) 

0  

(0) 

Hafnia alvei 12 (4.91) 10 (83.3) 10 (100) 
0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

Klebsiella 

oxytoca 
8 (3.28) 8 (100) 8 (100) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

Pseudomonas 

stutzeri 
5 (2.05) 5 (100) 5 (100) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

Staphylococcus 

aureus 
7 (2.87) 3 (42.9) 3 (100) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

Proteus 

mirabilis 
3 (1.23) 3 (100) 3 (100) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

Providencia 

stuartii 
1 (0.41) 1 (100) 

0  

(0) 

1  

(100) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

Enterococcus 

faecalis 
1 (0.41) 0 (0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

Streptococcus 

salivarius 
1 (0.41) 0 (0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

Achromobacter 

xylosoxidans 
1 (0.41) 0 (0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

Streptococcus 

agalactiae 
1 (0.41) 0 (0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

Abbreviations: MIC: minimum inhibitory concentration, n: number of samples.  
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Table S3: Overview of determined Pathogens and minimum inhibitory concentrations for patients 

treated with piperacillin/tazobactam. 

Pathogen Pathogens 

determined, 

n (%) 

MIC, 

 n (%) 

Minimum inhibitory concentration [mg/L], n (%) 

0.25 0.5 1 2 4 8 16 32 

All Pathogens 78 (100) 
60  

(76.9) 

3  

(5) 

0  

(0) 

0  

(0) 

0  

(0) 

41 

(68.3) 

10 

(16.7) 

2 

(3.33) 

4 

(6.67) 

Pseudomonas 

aeruginosa 
15 (19.2) 

14  

(93.3) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

1 

(7.14) 

7  

(50) 

2 

(14.3) 

4 

(28.6) 

Escherichia 

coli 
13 (16.7) 

13  

(100) 

1 

(7.69) 

0  

(0) 

0  

(0) 

0  

(0) 

12 

(92.3) 

0  

(0) 

0  

(0) 

0  

(0) 

Enterococcus 

faecalis 
13 (16.7) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

Serratia 

marcescens 
9 (11.5) 

9  

(100) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

9 

(100) 

0  

(0) 

0  

(0) 

0  

(0) 

Achromobacter 

sp. 
6 (7.70) 

6  

(100) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

6 

(100) 

0  

(0) 

0  

(0) 

0  

(0) 

Klebsiella 

pneumoniae 
5 (6.41) 

4  

(80.0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

2  

(50) 

2  

(50) 

0  

(0) 

0  

(0) 

Citrobacter 

freundii 
4 (5.12) 

4  

(100) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

4 

(100) 

0  

(0) 

0  

(0) 

0  

(0) 

Enterobacter 

cloacae 
2 (2.56) 

2  

(100) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

1  

(50) 

1  

(50) 

0  

(0) 

0  

(0) 

Staphylococcus 

aureus 
2 (2.56) 

2  

(100) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

2 

(100) 

0  

(0) 

0  

(0) 

0  

(0) 

Streptococcus 

agalactiae 
2 (2.56) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

Proteus 

mirabilis 
2 (2.56) 

2  

(100) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

2 

(100) 

0  

(0) 

0  

(0) 

0  

(0) 

Acinetobacter 

baumannii 
2 (2.56) 

2  

(100) 

2 

(100) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

Achromobacter 

xylosoxidans 
2 (2.56) 

2  

(100) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

2 

(100) 

0  

(0) 

0  

(0) 

0  

(0) 

Abbreviations: MIC: minimum inhibitory concentration, n: number of samples.  
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Table S4: Statistical tests to assess the normality assumption in the NPDE analysis. 

Statistical test p-value  

Wilcoxon signed-rank test 0.0325 

Fisher ratio test 0.283 

Shapiro-Wilks test 0.784  

Global adjusted p-value 0.0976 

Abbreviations: NPDE: Normalised prediction distribution errors.  

 

Table S5: Distribution of normalised prediction distribution errors. 

Distribution of NPDEs  

Mean  0.2958 (se=0.14) 

Variance  1.19 (se=0.21) 

Skewness  -0.0491 

Kurtosis -0.4235 

Abbreviations: NPDE: Normalised prediction distribution errors, se: Standard error.  
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Table S6: Probability to achieve predefined targets (98% T>MIC and Cmin>MIC-<5xMIC) and distribution of predicted minimum concentrations based on the re-

estimated meropenem PK model, a MIC value of 8 mg/L and for selected dosing regimens according to Table 3.8. 

Colour coding probabilities: Green: >90 PTA, Yellow:  >50-<90 PTA, Red: 0 - <50 PTA; Colour coding Cmin distribution: Red: >64 mg/L, Light red: >16-<64 mg/L, White:<16 mg/L .   

Abbreviations: MIC: Minimum inhibitory concentration, T>MIC : Time above the MIC, Cmin: Minimum meropenem concentration, P0.05: 5th percentile, P0.95: 95th percentile.  

 

  1 g meropenem, 4 h infusion, 6 h dosing interval 
(Dosing regimen 1) 

1 g meropenem, 4 h infusion, 8 h dosing interval  
(Dosing regimen 2) 

1 g meropenem, 4 h infusion, 12 h dosing interval  
(Dosing regimen 3)   

Creatinine 
clearance 
[mL/min] 

(Cockcroft-Gault) 

Probability of  Cmin [mg/L] Probability of  Cmin [mg/L] Probability of  Cmin [mg/L] 

98% 
T>MIC 

Cmin>MIC-<5xMIC  P0.05 Median (P0.5) P0.95 
98% 
T>MIC 

Cmin>MIC-<5xMIC  P0.05 Median (P0.5) P0.95 
98% 
T>MIC 

Cmin>MIC-<5xMIC  P0.05 Median (P0.5) P0.95 

10 100.0 22.9 23.9 51.1 90.9 100.0 68.0 14.0 34.1 64.5 93.2 88.0 5.5 17.8 38.6 

20 100.0 61.6 17.7 36.1 63.3 98.6 90.6 9.7 23.0 43.6 69.9 71.2 3.2 10.9 24.5 

30 99.8 86.0 13.3 27.3 48.4 92.4 91.6 6.8 16.6 32.4 40.4 43.4 1.9 7.2 17.2 

40 98.8 94.7 10.3 21.4 39.0 78.8 80.8 4.9 12.5 25.5 19.2 21.4 1.2 4.9 12.8 

50 95.6 94.4 8.1 17.4 32.4 61.0 64.6 3.5 9.7 20.6 7.8 9.4 0.7 3.4 9.8 

60 89.0 89.6 6.5 14.3 27.6 42.4 47.0 2.6 7.6 17.1 3.2 3.8 0.4 2.5 7.8 

70 79.2 81.0 5.3 12.1 23.9 27.6 32.0 2.0 6.2 14.5 1.2 1.4 0.3 1.8 6.2 

80 67.2 70.2 4.3 10.3 20.9 16.8 20.4 1.5 5.0 12.4 0.4 0.6 0.2 1.3 5.0 

90 54.2 58.4 3.6 8.8 18.5 9.8 12.8 1.2 4.1 10.7 0.2 0.2 0.1 1.0 4.1 

100 42.2 46.8 3.0 7.7 16.5 5.8 7.8 0.9 3.4 9.3 0.0 0.0 0.1 0.7 3.4 

110 31.4 36.6 2.6 6.7 14.9 3.0 4.6 0.7 2.9 8.2 0.0 0.0 0.1 0.6 2.9 

120 23.5 28.2 2.2 5.9 13.5 1.8 2.6 0.6 2.4 7.3 0.0 0.0 0.0 0.4 2.4 

130 17.4 21.6 1.9 5.3 12.4 1.0 1.6 0.5 2.1 6.5 0.0 0.0 0.0 0.4 2.1 

140 12.8 16.7 1.7 4.8 11.6 0.6 1.0 0.4 1.9 6.0 0.0 0.0 0.0 0.3 1.8 

150 9.4 12.7 1.5 4.4 10.9 0.4 0.6 0.3 1.7 5.6 0.0 0.0 0.0 0.2 1.6 

175 7.5 10.3 1.4 4.2 10.4 0.2 0.6 0.3 1.5 5.3 0.0 0.0 0.0 0.2 1.5 

200 7.4 10.6 1.4 4.2 10.4 0.2 0.4 0.3 1.5 5.2 0.0 0.0 0.0 0.2 1.5 

250 7.4 10.4 1.4 4.2 10.4 0.2 0.4 0.3 1.5 5.2 0.0 0.0 0.0 0.2 1.5 

300 7.2 10.4 1.4 4.2 10.4 0.2 0.4 0.3 1.5 5.3 0.0 0.0 0.0 0.2 1.5 
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Table S7 (continued): Probability to achieve predefined targets (98% T>MIC and Cmin>MIC-<5xMIC) and distribution of predicted minimum concentrations based on 

the re-estimated meropenem PK model, a MIC value of 8 mg/L and for selected dosing regimens according to Table 3.8. 

  2 g meropenem, 4 h infusion, 6 h dosing interval  
(Dosing regimen 4) 

2 g meropenem, 4 h infusion, 8 h dosing interval  
(Dosing regimen 5) 

2 g meropenem, 4 h infusion, 12 h dosing interval  
(Dosing regimen 6)   

Creatinine 
clearance 
[mL/min] 

(Cockcroft-Gault) 

Probability of  Cmin [mg/L] Probability of  Cmin [mg/L] Probability of  Cmin [mg/L] 

98% 
T>MIC 

Cmin>MIC-<5xMIC  P0.05 Median (P0.5) P0.95 
98% 
T>MIC 

Cmin>MIC-

<5xMIC  
P0.05 

Median 
(P0.5) 

P0.95 
98% 
T>MIC 

Cmin>MIC-<5xMIC  P0.05 Median (P0.5) P0.95 

10 100.0 0.0 47.6 101.9 179.8 100.0 0.0 28.1 68.0 127.1 100.0 0.0 11.0 35.5 75.1 

20 100.0 0.0 35.3 72.2 125.9 100.0 0.0 19.3 46.1 86.6 100.0 1.4 6.4 21.8 48.2 

30 100.0 0.0 26.7 54.5 96.6 100.0 0.0 13.6 33.2 64.5 100.0 6.8 3.8 14.3 34.1 

40 100.0 0.0 20.6 42.8 77.9 100.0 0.4 9.7 25.0 50.8 99.4 17.6 2.3 9.7 25.5 

50 100.0 0.0 16.2 34.7 64.9 100.0 1.4 7.1 19.4 41.3 97.6 31.4 1.4 6.8 19.7 

60 100.0 0.0 13.0 28.7 55.2 100.0 4.0 5.2 15.3 34.2 94.2 44.8 0.9 4.9 15.5 

70 100.0 0.2 10.6 24.1 47.7 100.0 8.4 3.9 12.3 28.9 88.6 53.8 0.6 3.6 12.4 

80 100.0 0.4 8.7 20.5 41.8 99.8 14.6 3.0 10.0 24.7 81.2 58.2 0.4 2.6 10.1 

90 100.0 1.2 7.2 17.6 37.1 99.6 22.6 2.3 8.3 21.4 72.2 57.6 0.2 2.0 8.3 

100 100.0 2.4 6.0 15.3 33.0 99.0 31.2 1.8 6.9 18.6 62.4 53.2 0.2 1.5 6.8 

110 100.0 4.4 5.1 13.4 29.7 98.0 39.6 1.4 5.7 16.4 53.2 47.6 0.1 1.1 5.7 

120 100.0 6.8 4.4 11.9 27.0 96.8 46.7 1.2 4.9 14.5 44.2 41.8 0.1 0.9 4.9 

130 100.0 10.0 3.9 10.6 24.7 95.0 53.4 1.0 4.2 13.0 36.8 36.2 0.1 0.7 4.2 

140 100.0 13.2 3.4 9.7 23.1 93.2 57.6 0.8 3.7 12.0 30.6 31.0 0.0 0.6 3.7 

150 100.0 17.4 3.0 8.9 21.7 90.6 60.4 0.7 3.3 11.1 25.4 26.2 0.0 0.5 3.3 

175 100.0 20.8 2.8 8.4 20.7 88.2 61.9 0.6 3.1 10.5 21.8 22.9 0.0 0.4 3.0 

200 100.0 20.8 2.8 8.4 20.8 88.2 62.0 0.6 3.1 10.4 22.0 23.0 0.0 0.4 3.0 

250 100.0 20.8 2.8 8.4 20.8 88.4 61.8 0.6 3.1 10.5 21.7 22.9 0.0 0.4 3.0 

300 100.0 21.0 2.8 8.4 20.8 88.5 62.0 0.6 3.1 10.5 22.0 23.0 0.0 0.4 3.0 

Colour coding probabilities: Green: >90 PTA, Yellow:  >50-<90 PTA, Red: 0 - <50 PTA, Colour coding Cmin distribution: Red: >64 mg/L, Light red: >16-<64 mg/L, White:<16 mg/L .   

Abbreviations: MIC: Minimum inhibitory concentration, T>MIC : Time above the MIC, Cmin: Minimum meropenem concentration, P0.05: 5th percentile, P0.95: 95th percentile.  
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Table S8 (continued): Probability to achieve predefined targets (98% T>MIC and Cmin>MIC-<5xMIC) and distribution of predicted minimum concentrations based on 

the re-estimated meropenem PK model, a MIC value of 8 mg/L and for selected dosing regimens according to Table 3.8. 

  3 g meropenem, 4 h infusion, 6 h dosing interval  
(Dosing regimen 7) 

3 g meropenem, 4 h infusion, 8 h dosing interval 
(Dosing regimen 8)  

3 g meropenem, 4 h infusion, 12 h dosing interval  
(Dosing regimen 9)   

Creatinine 
clearance 
[mL/min] 

(Cockcroft-Gault) 

Probability of  Cmin [mg/L] Probability of  Cmin [mg/L] Probability of  Cmin [mg/L] 

98% 
T>MIC 

Cmin>MIC-<5xMIC  P0.05 Median (P0.5) P0.95 
98% 
T>MIC 

Cmin>MIC-

<5xMIC  
P0.05 

Median 
(P0.5) 

P0.95 
98% 
T>MIC 

Cmin>MIC-<5xMIC  P0.05 
Median 

(P0.5) 
P0.95 

10 100.0 0.4 47.6 101.9 179.8 100.0 9.0 28.1 68.0 127.1 99.4 59.9 11.0 35.5 75.1 

20 100.0 5.2 35.3 72.2 125.9 100.0 36.0 19.3 46.1 86.6 94.2 81.8 6.4 21.8 48.2 

30 100.0 20.0 26.7 54.5 96.6 99.6 65.4 13.6 33.2 64.5 79.8 78.2 3.8 14.3 34.1 

40 100.0 42.4 20.6 42.8 77.9 97.8 83.4 9.7 25.0 50.8 59.6 61.0 2.3 9.7 25.5 

50 100.0 63.6 16.2 34.7 64.9 93.2 87.8 7.1 19.4 41.3 38.8 41.8 1.4 6.8 19.7 

60 99.6 79.0 13.0 28.7 55.2 84.8 83.6 5.2 15.3 34.2 23.2 25.8 0.9 4.9 15.5 

70 98.6 87.2 10.6 24.1 47.7 73.4 74.8 3.9 12.3 28.9 13.0 15.2 0.6 3.6 12.4 

80 96.6 90.8 8.7 20.5 41.8 60.6 63.6 3.0 10.0 24.7 7.0 8.4 0.4 2.6 10.1 

90 93.2 90.2 7.2 17.6 37.1 48.4 52.2 2.3 8.3 21.4 3.8 4.8 0.2 2.0 8.3 

100 88.2 86.9 6.0 15.3 33.0 36.8 41.2 1.8 6.9 18.6 1.8 2.6 0.2 1.5 6.8 

110 81.8 81.7 5.1 13.4 29.7 27.0 31.2 1.4 5.7 16.4 1.0 1.4 0.1 1.1 5.7 

120 75.0 75.8 4.4 11.9 27.0 20.0 24.1 1.2 4.9 14.5 0.4 0.8 0.1 0.9 4.9 

130 67.2 69.4 3.9 10.6 24.7 14.6 18.0 1.0 4.2 13.0 0.2 0.4 0.1 0.7 4.2 

140 60.4 62.9 3.4 9.7 23.1 10.8 13.7 0.8 3.7 12.0 0.2 0.2 0.0 0.6 3.7 

150 53.6 56.6 3.0 8.9 21.7 7.8 10.6 0.7 3.3 11.1 0.0 0.2 0.0 0.5 3.3 

175 47.8 51.6 2.8 8.4 20.7 6.2 8.6 0.6 3.1 10.5 0.0 0.0 0.0 0.4 3.0 

200 47.6 51.4 2.8 8.4 20.8 6.3 8.6 0.6 3.1 10.4 0.0 0.0 0.0 0.4 3.0 

250 48.0 51.6 2.8 8.4 20.8 6.0 8.4 0.6 3.1 10.5 0.0 0.0 0.0 0.4 3.0 

300 47.6 51.0 2.8 8.4 20.8 6.2 8.4 0.6 3.1 10.5 0.0 0.0 0.0 0.4 3.0 

Colour coding probabilities: Green: >90 PTA, Yellow:  >50-<90 PTA, Red: 0 - <50 PTA, Colour coding Cmin distribution: Red: >64 mg/L, Light red: >16-<64 mg/L, White:<16 mg/L .   

Abbreviations: MIC: Minimum inhibitory concentration, T>MIC : Time above the MIC, Cmin: Minimum meropenem concentration, P0.05: 5th percentile, P0.95: 95th percentile.  
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Table S9 (continued): Probability to achieve predefined targets (98% T>MIC and Cmin>MIC-<5xMIC) and distribution of predicted minimum concentrations based on 

the re-estimated meropenem PK model, a MIC value of 8 mg/L and for selected dosing regimens according to Table 3.8. 

  4 g meropenem, 4 h infusion, 6 h dosing interval  
(Dosing regimen 10) 

4 g meropenem, 4 h infusion, 8 h dosing interval  
(Dosing regimen 11) 

4 g meropenem, 4 h infusion, 12 h dosing interval 
(Dosing regimen 12)   

Creatinine 
clearance 
[mL/min] 

(Cockcroft-Gault) 

Probability of  Cmin [mg/L] Probability of  Cmin [mg/L] Probability of  Cmin [mg/L] 

98% 
T>MIC 

Cmin>MIC-<5xMIC  P0.05 Median (P0.5) P0.95 
98% 
T>MIC 

Cmin>MIC-

<5xMIC  
P0.05 

Median 
(P0.5) 

P0.95 
98% 
T>MIC 

Cmin>MIC-<5xMIC  P0.05 
Median 

(P0.5) 
P0.95 

10 100.0 0.0 71.5 152.7 269.1 100.0 1.2 42.1 101.8 189.5 99.8 27.0 16.5 53.1 111.8 

20 100.0 0.4 52.8 108.2 188.8 100.0 10.4 29.0 69.1 129.7 98.2 62.5 9.7 32.7 72.2 

30 100.0 3.6 39.9 81.7 144.7 100.0 30.8 20.3 49.8 96.6 91.4 78.0 5.7 21.4 51.1 

40 100.0 12.1 31.0 64.4 116.7 99.6 54.4 14.5 37.5 76.3 78.0 74.8 3.5 14.6 38.1 

50 100.0 25.6 24.4 52.1 97.2 98.2 72.6 10.7 29.1 61.8 60.8 61.4 2.1 10.3 29.4 

60 100.0 42.6 19.5 43.1 82.8 95.0 81.6 7.9 23.0 51.5 43.2 45.4 1.3 7.3 23.2 

70 99.8 58.7 15.9 36.2 71.5 89.4 83.0 5.9 18.4 43.4 28.8 31.4 0.9 5.3 18.6 

80 99.4 71.0 13.0 30.8 62.8 81.6 79.2 4.5 15.0 37.1 18.4 20.8 0.6 4.0 15.1 

90 98.6 80.0 10.7 26.5 55.5 72.0 71.9 3.5 12.4 32.0 11.6 13.4 0.4 3.0 12.4 

100 97.2 85.0 9.1 23.0 49.7 61.6 63.4 2.7 10.3 27.9 6.8 8.4 0.2 2.2 10.2 

110 94.8 87.2 7.7 20.1 44.5 51.0 53.8 2.2 8.6 24.6 4.0 5.0 0.2 1.7 8.5 

120 91.7 86.4 6.6 17.8 40.5 41.6 45.4 1.8 7.3 21.8 2.4 3.0 0.1 1.3 7.3 

130 88.0 84.4 5.7 16.0 37.2 33.8 37.6 1.4 6.3 19.6 1.4 2.0 0.1 1.1 6.2 

140 83.6 81.2 5.1 14.5 34.6 27.6 31.4 1.2 5.6 18.0 0.8 1.2 0.1 0.9 5.5 

150 79.1 77.6 4.5 13.4 32.7 22.4 26.2 1.0 5.0 16.7 0.6 0.8 0.1 0.7 4.9 

175 74.8 74.2 4.2 12.6 31.3 18.7 22.6 0.9 4.6 15.8 0.4 0.6 0.0 0.6 4.5 

200 74.9 74.4 4.1 12.6 31.2 18.7 22.4 0.9 4.6 15.7 0.4 0.6 0.0 0.6 4.6 

250 75.2 74.6 4.1 12.6 31.2 18.8 22.3 0.9 4.6 15.7 0.4 0.6 0.0 0.6 4.5 

300 75.0 74.3 4.1 12.6 31.2 18.6 22.2 0.9 4.6 15.8 0.4 0.6 0.0 0.6 4.5 

Colour coding probabilities: Green: >90 PTA, Yellow:  >50-<90 PTA, Red: 0 - <50 PTA, Colour coding Cmin distribution: Red: >64 mg/L, Light red: >16-<64 mg/L, White:<16 mg/L .   

Abbreviations: MIC: Minimum inhibitory concentration, T>MIC : Time above the MIC, Cmin: Minimum meropenem concentration, P0.05: 5th percentile, P0.95: 95th percentile.  
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Table S10 (continued): Probability to achieve predefined targets (98% T>MIC and Cmin>MIC-<5xMIC) and distribution of predicted minimum concentrations based on 

the re-estimated meropenem PK model, a MIC value of 8 mg/L and for selected dosing regimens according to Table 3.8. 

  4 g meropenem, 24 h infusion, 24 h dosing interval  
(Dosing regimen 13) 

6 g meropenem, 24 h infusion, 24 h dosing interval  
(Dosing regimen 14) 

8 g meropenem, 24 h infusion, 24 h dosing interval 
(Dosing regimen 15)   

Creatinine 
clearance 
[mL/min] 

(Cockroft-Gault) 

Probability of  Cmin [mg/L] Probability of  Cmin [mg/L] Probability of  Cmin [mg/L] 

98% 
T>MIC 

Cmin>MIC-<5xMIC  P0.05 Median (P0.5) P0.95 
98% 
T>MIC 

Cmin>MIC-

<5xMIC  
P0.05 

Median 
(P0.5) 

P0.95 
98% 
T>MIC 

Cmin>MIC-<5xMIC  P0.05 
Median 

(P0.5) 
P0.95 

10 91.2 56.0 32.2 60.1 102.1 97.8 11.9 48.3 90.1 152.3 97.8 8.8 50.0 99.1 174.5 

20 75.1 73.6 25.8 45.0 74.2 95.2 41.6 38.8 67.5 111.0 95.2 34.2 39.4 72.1 124.6 

30 50.0 63.1 21.4 36.0 59.0 88.2 66.8 32.0 53.9 88.3 88.2 60.3 32.3 56.3 97.0 

40 27.2 41.2 18.1 30.0 49.0 75.3 75.8 27.2 44.9 73.5 75.4 72.4 27.3 46.3 79.4 

50 12.4 22.2 15.7 25.7 42.1 57.8 69.0 23.5 38.5 63.2 58.5 68.0 23.6 39.3 67.1 

60 5.4 11.0 13.8 22.5 36.9 40.4 55.4 20.7 33.7 55.4 41.1 56.0 20.8 34.2 58.1 

70 2.2 5.2 12.3 20.0 33.0 26.2 41.0 18.5 30.0 49.5 26.4 41.8 18.5 30.3 51.3 

80 1.0 2.4 11.1 18.0 29.8 16.2 28.0 16.7 27.0 44.7 16.4 29.2 16.7 27.2 46.0 

90 0.4 1.0 10.1 16.4 27.2 9.3 18.2 15.2 24.6 40.7 9.8 19.6 15.2 24.7 41.7 

100 0.2 0.4 9.3 15.0 25.0 5.4 11.6 13.9 22.6 37.4 5.6 12.4 13.9 22.6 38.2 

110 0.0 0.2 8.6 13.9 23.2 3.0 7.2 12.9 20.9 34.7 3.2 8.0 12.9 20.9 35.3 

120 0.0 0.0 8.0 13.0 21.6 1.8 4.4 12.0 19.5 32.5 1.8 4.8 12.0 19.5 32.9 

130 0.0 0.0 7.6 12.2 20.4 1.0 2.8 11.3 18.3 30.6 1.0 3.0 11.3 18.3 30.9 

140 0.0 0.0 7.2 11.6 19.5 0.6 1.8 10.7 17.4 29.2 0.6 2.0 10.8 17.4 29.5 

150 0.0 0.0 6.8 11.1 18.7 0.4 1.2 10.2 16.6 28.0 0.4 1.2 10.2 16.7 28.3 

175 0.0 0.0 6.6 10.8 18.2 0.2 0.8 9.8 16.1 27.3 0.2 1.0 9.8 16.1 27.4 

200 0.0 0.0 6.6 10.7 18.1 0.2 0.8 9.8 16.1 27.3 0.2 1.0 9.8 16.1 27.4 

250 0.0 0.0 6.5 10.7 18.2 0.2 0.8 9.8 16.1 27.2 0.2 1.0 9.8 16.1 27.4 

300 0.0 0.0 6.6 10.7 18.2 0.2 0.8 9.8 16.1 27.2 0.2 1.0 9.8 16.1 27.4 

Colour coding probabilities: Green: >90 PTA, Yellow:  >50-<90 PTA, Red: 0 - <50 PTA, Colour coding Cmin distribution: Red: >64 mg/L, Light red: >16-<64 mg/L, White:<16 mg/L .   

Abbreviations: MIC: Minimum inhibitory concentration, T>MIC : Time above the MIC, Cmin: Minimum meropenem concentration, P0.05: 5th percentile, P0.95: 95th percentile.  
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Table S11: Terms included in the PubMed literature search (https://pubmed.ncbi.nlm.nih.gov/) for 

suitable pharmacokinetic models for piperacillin. 

Main search term In combination with one or 

multiple search terms 

(and/or) 

Last access 

Piperacillin • population 

pharmacokinetics 

• population 

pharmacokinetic 

• pharmacokinetic models 

• pharmacokinetic model 

• individualization 

• individualizing 

• dosing software 

• dosing scheme 

• dosage optimization 

• dose optimization 

• pharmacometrics 

• pharmacometric 

• population model 

• precision dosing 

• NLME 

• nonmem 

• PK model 

• one-compartment 

• one compartment 

• two compartment 

• two-compartment 

• three compartment 

• three-compartment 

• Monte Carlo 

19.08.2019 
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Table S12. Dosing regimens integrated in the model-informed dosing software DoseCalculator. 

 Dose [mg] Infusion duration 

[h] 

Dosing interval 

[h] 

Meropenem 

Short-term infusion    

 1000 0.5 6 

 1000 0.5 8 

 1000 0.5 12 

 2000 0.5 6 

 2000 0.5 8 

 2000 0.5 12 

Prolonged infusion    

 1000 4 6 

 1000 4 8 

 1000 4 12 

 2000 4 6 

 2000 4 8 

 2000 4 12 

Continuous infusion     

 1000 24 24 

 2000 24 24 

 4000 24 24 

 6000 24 24 

Piperacillin1 

Short-term infusion    

 4000 0.5 6 

 4000 0.5 8 

 4000 0.5 12 

Prolonged infusion    

 4000 4 6 

 4000 4 8 

 4000 4 12 

Continuous infusion     

 4000 24 24 

 8000 24 24 
1In combination with tazobactam in a ratio of 8:1.  
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Table S13: Additional dosing regimen integrated for piperacillin during the evaluation of the 

DoseCalculator . 

 Dose [mg] Infusion duration 

[h] 

Dosing interval 

[h] 

Short-term infusion    

 2000 0.5 6 

 2000 0.5 8 

 2000 0.5 12 

Prolonged infusion    

 2000 4 6 

 2000 4 8 

 2000 4 12 

Continuous infusion     

 2000 24 24 
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5.2 Supplementary figures  
 

 

 

Figure S1: Observed meropenem concentrations and meropenem concentration-time profile predicted 

based on a pharmacokinetic model excluding CytoSorb® samples for patients 1 to 25.  
Black line: Median prediction, Grey shade: 50% prediction interval, Points: Meropenem samples with (points) and without 

(stars) CytoSorb®-treatment. 
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Figure S1 (continued): Observed meropenem concentrations and meropenem concentration-time profile 

predicted based on a pharmacokinetic model excluding CytoSorb® samples for patients 1 to 25.  
Black line: Median prediction, Grey shade: 50% prediction interval, Points: Meropenem samples with (points) and without 

(stars) CytoSorb®-treatment. 
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Figure S1 (continued): Observed meropenem concentrations and meropenem concentration-time profile 

predicted based on a pharmacokinetic model excluding CytoSorb® samples for patients 1 to 25.  
Black line: Median prediction, Grey shade: 50% prediction interval, Points: Meropenem samples with (points) and without 

(stars) CytoSorb®-treatment. 
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Figure S1 (continued): Observed meropenem concentrations and meropenem concentration-time profile 

predicted based on a pharmacokinetic model excluding CytoSorb® samples for patients 1 to 25.  
Black line: Median prediction, Grey shade: 50% prediction interval, Points: Meropenem samples with (points) and without 

(stars) CytoSorb®-treatment. 
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Figure S1 (continued): Observed meropenem concentrations and meropenem concentration-time profile 

predicted based on a pharmacokinetic model excluding CytoSorb® samples for patients 1 to 25.  
Black line: Median prediction, Grey shade: 50% prediction interval, Points: Meropenem samples with (points) and without 

(stars) CytoSorb®-treatment. 
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Figure S1 (continued): Observed meropenem concentrations and meropenem concentration-time profile 

predicted based on a pharmacokinetic model excluding CytoSorb® samples for patients 1 to 25.  
Black line: Median prediction, Grey shade: 50% prediction interval, Points: Meropenem samples with (points) and without 

(stars) CytoSorb®-treatment. 
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Figure S2: Density distributions for selected patient characteristics of the patients included in ‘stage I’ 

of the study separated by administered antibioitc.   
Red: Patients receiving meropenem, Blue: Patients receiving piperacillin/tazobactam, Shaded areas: Density distribution, 

Dotted lines: Median of the patient characteristic in respective color.  

Abbreviations: CLCRCockroaf-Gault: Creatinine clearance calculated based Cockcroft-Gault formula, SOFA: Sepsis-related Organ 

Failure Assessment, APACHE II: Acute Physiology And Chronic Health Evaluation II, BMI: Body mass index. 
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Figure S3: Boxplot of measured meropenem concentrations stratified by targeted drug concentration 

range.   
Target range for the minimum drug concentration (Cmin) defined as 1-5xMIC. If no MIC values could be determined an 

empirical target of 8-40 mg/L was used. Points: Measured meropenem concentrations; Green shaded areas: Targeted 

concentration range.  

Abbreviations: n: Number, MIC: Minimum inhibitory concentration.  
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Figure S4: Boxplot of measured piperacillin concentrations stratified by targeted drug concentration 

range.   
Target range for the minimum drug concentration (Cmin) defined as 1-5xMIC. If no MIC values could be determined an 

empirical target of 16-80 mg/L was used. Unbound piperacillin concentrations were calculated based on a literature reported 

fraction unbound of 91% in critically ill patients [166]. Points: Measured piperacillin concentrations; Green shaded areas: 

Targeted concentration range.  

Abbreviations: n: Number, MIC: Minimum inhibitory concentration. 
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Figure S5: Simple step-by-step flowchart summarising the appropriate use of the tabular meropenem dosing tool developed for ‘stage II’ of the study.  

The flowchart was provided to the healthcare professionals after detailed explanation of the tool and displayed in the participating wards. 
Abbreviations: CVVHD: Continuous veno-venous haemodiafiltration; MHK: Minimale Hemmkonzentration; MRE: Multiresistenter Erreger; TDM: Therpeutisches Drug Monitoring. 
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Figure S6: Blood sample collection sheet used during ‘stage II’ of the study. 
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Figure S7: Graphical output of the normalized prediction distribution error (NPDE) analysis for 

meropenem.   
Upper left: Quantile-quantile plot of NPDE versus the expected standard normal distribution. Upper right: Histogram of NPDE 

with the density of the standard normal distribution overlaid. Lower left: Scatterplot of NPDE versus time after therapy start. 

Lower right: Scatterplot of NPDE versus predicted concentration. Pink area: Prediction interval for the median, Blue area: 

95% prediction interval. 

  

Predicted concentration [mg/L] Time after therapy start [h] 
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Figure S8: Absolute difference between predicted and observed concentrations (prediction error) 

(mg/L) plotted against observed piperacillin concentrations (n=90) when predicting concentration 

employing the pharmacokinetic model by Andersen et al. [178]  
Points: median prediction error per observed concentration. Colours: individual patients (i=46). Error bar: 90% prediction 

interval of prediction error per sample. Solid horizontal line: median prediction error. Dashed line: 50% prediction interval of 

median prediction error. Dotted line: 90% prediction interval of median prediction error. 
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Figure S9: Absolute difference between predicted and observed concentrations (prediction error) 

(mg/L) plotted against observed piperacillin concentrations (n=90) when predicting concentration 

employing the pharmacokinetic model by Öbrink-Hansen et al. [176]   
Points: median prediction error per observed concentration. Colours: individual patients (i=46). Error bar: 90% prediction 

interval of prediction error per sample. Solid horizontal line: median prediction error. Dashed line: 50% prediction interval of 

median prediction error. Dotted line: 90% prediction interval of median prediction error. 
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Figure S10: Absolute difference between predicted and observed concentrations (prediction error) 

(mg/L) plotted against observed piperacillin concentrations (n=90) when predicting concentration 

employing the pharmacokinetic model by Roberts et al. [175]  
Points: median prediction error per observed concentration. Colours: individual patients (i=46). Error bar: 90% prediction 

interval of prediction error per sample. Solid horizontal line: median prediction error. Dashed line: 50% prediction interval of 

median prediction error. Dotted line: 90% prediction interval of median prediction error. 
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Figure S11: Absolute difference between predicted and observed concentrations (prediction error) 

(mg/L) plotted against observed piperacillin concentrations (n=90) when predicting concentration 

employing the pharmacokinetic model by Li et al. [177]  
Points: median prediction error per observed concentration. Colours: individual patients (i=46). Error bar: 90% prediction 

interval of prediction error per sample. Solid horizontal line: median prediction error. Dashed line: 50% prediction interval of 

median prediction error. Dotted line: 90% prediction interval of median prediction error. 
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Figure S12: Model-predicted piperacillin concentration-time profiles employing the piperacillin 

pharmacokinetic model by Sukarnjanaset et al. [50] and observerd piperacillin concentrations. 
Blue dashed line: median piperacillin prediction; Blue shaded areas: 90%, 95% and 99% prediciton intervall; Red points: 

observerd piperacillin concentrations. 
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Figure S12 (continued): Model-predicted piperacillin concentration-time profiles employing the 

piperacillin pharmacokinetic model by Sukarnjanaset et al. [50] and observerd piperacillin 

concentrations. 
Blue dashed line: median piperacillin prediction; Blue shaded areas: 90%, 95% and 99% prediciton intervall; Red points: 

observerd piperacillin concentrations. 
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Figure S12 (continued): Model-predicted piperacillin concentration-time profiles employing the 

piperacillin pharmacokinetic model by Sukarnjanaset et al. [50] and observerd piperacillin 

concentrations. 
Blue dashed line: median piperacillin prediction; Blue shaded areas: 90%, 95% and 99% prediciton intervall; Red points: 

observerd piperacillin concentrations. 
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Figure S12 (continued): Model-predicted piperacillin concentration-time profiles employing the 

piperacillin pharmacokinetic model by Sukarnjanaset et al. [50] and observerd piperacillin 

concentrations. 
Blue dashed line: median piperacillin prediction; Blue shaded areas: 90%, 95% and 99% prediciton intervall; Red points: 

observerd piperacillin concentrations. 
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Figure S12 (continued): Model-predicted piperacillin concentration-time profiles employing the 

piperacillin pharmacokinetic model by Sukarnjanaset et al. [50] and observerd piperacillin 

concentrations. 
Blue dashed line: median piperacillin prediction; Blue shaded areas: 90%, 95% and 99% prediciton intervall; Red points: 

observerd piperacillin concentrations. 
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Figure S12 (continued): Model-predicted piperacillin concentration-time profiles employing the 

piperacillin pharmacokinetic model by Sukarnjanaset et al. [50] and observerd piperacillin 

concentrations. 
Blue dashed line: median piperacillin prediction; Blue shaded areas: 90%, 95% and 99% prediciton intervall; Red points: 

observerd piperacillin concentrations. 
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Figure S12 (continued): Model-predicted piperacillin concentration-time profiles employing the 

piperacillin pharmacokinetic model by Sukarnjanaset et al. [50] and observerd piperacillin 

concentrations. 
Blue dashed line: median piperacillin prediction; Blue shaded areas: 90%, 95% and 99% prediciton intervall; Red points: 

observerd piperacillin concentration. 
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Figure S12 (continued): Model-predicted piperacillin concentration-time profiles employing the 

piperacillin pharmacokinetic model by Sukarnjanaset et al. [50] and observerd piperacillin 

concentrations. 
Blue dashed line: median piperacillin prediction; Blue shaded areas: 90%, 95% and 99% prediciton intervall; Red points: 

observerd piperacillin concentration. 
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Figure S12 (continued): Model-predicted piperacillin concentration-time profiles employing the 

piperacillin pharmacokinetic model by Sukarnjanaset et al. [50] and observerd piperacillin 

concentrations. 
Blue dashed line: median piperacillin prediction; Blue shaded areas: 90%, 95% and 99% prediciton intervall; Red points: 

observerd piperacillin concentration. 
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Figure S12 (continued): Model-predicted piperacillin concentration-time profiles employing the 

piperacillin pharmacokinetic model by Sukarnjanaset et al. [50] and observerd piperacillin 

concentrations. 
Blue dashed line: median piperacillin prediction; Blue shaded areas: 90%, 95% and 99% prediciton intervall; Red points: 

observerd piperacillin concentration. 
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Figure S12 (continued): Model-predicted piperacillin concentration-time profiles employing the 

piperacillin pharmacokinetic model by Sukarnjanaset et al. [50] and observerd piperacillin 

concentrations. 
Blue dashed line: median piperacillin prediction; Blue shaded areas: 90%, 95% and 99% prediciton intervall; Red points: 

observerd piperacillin concentration. 
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Figure S12 (continued): Model-predicted piperacillin concentration-time profiles employing the 

piperacillin pharmacokinetic model by Sukarnjanaset et al. [50] and observerd piperacillin 

concentrations. 
Blue dashed line: median piperacillin prediction; Blue shaded areas: 90%, 95% and 99% prediciton intervall; Red points: 

observerd piperacillin concentration. 
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Figure S12 (continued): Model-predicted piperacillin concentration-time profiles employing the 

piperacillin pharmacokinetic model by Sukarnjanaset et al. [50] and observerd piperacillin 

concentrations. 
Blue dashed line: median piperacillin prediction; Blue shaded areas: 90%, 95% and 99% prediciton intervall; Red points: 

observerd piperacillin concentration. 
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Figure S12 (continued): Model-predicted piperacillin concentration-time profiles employing the 

piperacillin pharmacokinetic model by Sukarnjanaset et al. [50] and observerd piperacillin 

concentrations. 
Blue dashed line: median piperacillin prediction; Blue shaded areas: 90%, 95% and 99% prediciton intervall; Red points: 

observerd piperacillin concentration. 
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Figure S12 (continued): Model-predicted piperacillin concentration-time profiles employing the 

piperacillin pharmacokinetic model by Sukarnjanaset et al. [50] and observerd piperacillin 

concentrations. 
Blue dashed line: median piperacillin prediction; Blue shaded areas: 90%, 95% and 99% prediciton intervall; Red points: 

observerd piperacillin concentration. 
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Figure S12 (continued): Model-predicted piperacillin concentration-time profiles employing the 

piperacillin pharmacokinetic model by Sukarnjanaset et al. [50] and observerd piperacillin 

concentrations. 
Blue dashed line: median piperacillin prediction; Blue shaded areas: 90%, 95% and 99% prediciton intervall; Red points: 

observerd piperacillin concentration. 
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Figure S13: MeroRisk Calculator predicted risk of target non-attainment for critically ill patents (n = 

155) and alphabetically ordered pathogens from Acinetobacter baumannii to Haemophilus infuenzae 

(modified from [173]).  
The risk of target non-attainment (unbound drug concentration being above the minimum inhibitory concentration (MIC) for 

100% of the time) was assessed using EUCAST MIC distributions of the investigated pathogens and cumulative fraction of 

response analysis. Risk predictions for patients with creatinine clearance calculated using Cockcroft-Gault equation 

(CLCRCG) > 50 mL/min (points) and for patients with CLCRCG < 50 mL/min (x). Risk predictions <10% (green), >10% to < 

50% (orange) and >50% (red).  
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Figure S13 (continued): MeroRisk Calculator predicted risk of target non-attainment for critically ill 

patents (n = 155) and alphabetically ordered pathogens from Kingella kingae to Staphylococcus capitis 

(modified from [173]).  
The risk of target non-attainment (unbound drug concentration being above the minimum inhibitory concentration (MIC) for 

100% of the time) was assessed using EUCAST MIC distributions of the investigated pathogens and cumulative fraction of 

response analysis. Risk predictions for patients with creatinine clearance calculated using Cockcroft-Gault equation (CLCRCG) 

> 50 mL/min (points) and for patients with CLCRCG < 50 mL/min (x). Risk predictions <10% (green), >10% to < 50% (orange) 

and >50% (red).  
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Figure S13 (continued): MeroRisk Calculator predicted risk of target non-attainment for critically ill 

patents (n = 155) and alphabetically ordered pathogens from Staphylococcus coagulase negative to 

Streptococcus, viridans group (modified from [173]).  
The risk of target non-attainment (unbound drug concentration being above the minimum inhibitory concentration (MIC) for 

100% of the time) was assessed using EUCAST MIC distributions of the investigated pathogens and cumulative fraction of 

response analysis. Risk predictions for patients with creatinine clearance calculated using Cockcroft-Gault equation (CLCRCG) 

> 50 mL/min (points) and for patients with CLCRCG < 50 mL/min (x). Risk predictions <10% (green), >10% to < 50% (orange) 

and >50% (red). 

  



213 
 

5.3  Supplementary formulae  
 

 General statistics  
 

General statistical measures used to characterise the central tendency and the dispersion of distributions 

are summarised in Table S14 and Table S15, respectively.  

 
Table S14: Statistical measures describing the tendency of a distribution. 

Mean 
𝑥̅ =  

∑ 𝑥𝑖
𝑛
𝑖=1

𝑛
 

(Eq.5.1) 

Median If n is odd:                     𝑥̃ =  𝑥𝑛+1

2

 

If n is even:                   𝑥̃ =  0.5 ∗ (𝑥𝑛

2
+ 𝑥𝑛+1

2

)  

(Eq.5.2) 

Geometric mean                                        𝑥̅𝑔𝑒𝑜𝑚 =  √∏ 𝑥𝑖
𝑛
𝑖=1

𝑛   (Eq.5.3) 

 

 

Table S15: Statistical measures describing the dispersion of a distribution. 

Range 𝑅 =  𝑥𝑚𝑖𝑛 −  𝑥𝑚𝑎𝑥 (Eq.5.4) 

Percentile If n is odd:               𝑃 =  𝑥𝑛∗𝑝 

If n is even:             𝑃 =  0.5 ∗ ( 𝑥𝑛∗𝑝 +  𝑥𝑛∗𝑝+1) 

(Eq.5.5) 

Variance 
𝜎2 =  

1

𝑛 − 1
∗ ∑(𝑥𝑖 − 𝑥̅)2

𝑛

𝑖=1

 
(Eq.5.6) 

Standard deviation 𝜎 =  √𝜎2 (Eq.5.7) 

Coefficient of 

variation  

𝐶𝑉, % =  
𝜎

𝑥̅
∗ 100 (Eq.5.8) 
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Geometric 

standard deviation 𝜎𝑔𝑒𝑜𝑚 = 𝑒𝑥𝑝 (√
1

𝑛
∗ ∑ [𝑙𝑛 (

𝑥𝑖

 𝑥̅𝑔𝑒𝑜𝑚
)]

2𝑛

𝑖=1

) 

(Eq.5.9) 

 

 

 Renal function markers  
 

Creatinine clearance (CLCR) is a commonly used renal function marker. It can be determined in 

different ways. In this thesis CLCR determined by 24h urine collection and by estimation based on 

Cockcroft and Gault formula was used (Table S16).  

 

Table S16: Methods used to calculate creatinine clearance. 

CLCR24h-urine 

𝐶𝐿𝐶𝑅𝑈𝐶 [
𝑚𝐿

𝑚𝑖𝑛
] =  

𝐶𝑐𝑟𝑒𝑎,𝑢𝑟𝑖𝑛𝑒 [
𝑚𝑔
𝑑𝐿

] . 𝑉𝑢𝑟𝑖𝑛𝑒[𝑚𝐿]

𝐶𝑐𝑟𝑒𝑎,𝑠𝑒𝑟𝑢𝑚 [
𝑚𝑔
𝑑𝐿

] . Δ𝑡 [𝑚𝑖𝑛]
 

(Eq.5.10) 

CLCRCG 
𝐶𝐿𝐶𝐺𝐶𝐺 =

(140 − 𝑎𝑔𝑒 [𝑦𝑒𝑎𝑟𝑠]) ∗ 𝑤𝑒𝑖𝑔ℎ𝑡 [𝑘𝑔]

72 ∗ 𝐶𝑐𝑟𝑒𝑎,𝑠𝑒𝑟𝑢𝑚 [
𝑚𝑔
𝑑𝐿 ]

  
(Eq.5.11) 

Abbreviations: CLCR24h-urine: Creatinine clearance calculated based on 24 h urine collection, CLCRCG: Creatinine clearance 

calculated based on Cockcroft-Gault formula.  
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