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Abstract

In recent years, the advances of Machine Learning (ML) have led to its increased
application within critical applications and on highly sensitive data. This drew
attention to the aspects of ML security and privacy. ML models should operate
correctly and not reveal sensitive data that they were trained on. However, assessing
and implementing ML security and privacy is a challenging task. This is, first of
all, because the effects of current ML practices on these aspects are not yet fully
understood. Consequently, the array of known risks still contains a multitude of
blind spots. In a similar vein, the implicit assumptions under which ML security and
privacy can be achieved in a given practical application often remain unexplored.

In this work, we present a study on security and privacy in ML that contributes
to overcoming the existing limitations. Therefore, we first provide insights into
the current state of security and privacy of ML in practice by surveying ML
practitioners. We find that ML practitioners exhibit a particularly low awareness
when it comes to ML privacy and that they trust third-party frameworks and
services for its implementation. These insights motivate the necessity to investigate
ML privacy more in depth. We do so with a focus on Federated Learning (FL) since
FL is a commonly used framework for real-world applications that affect hundreds
of thousands of users and their private data. In this setup, we study privacy
leakage from ML models and show that model gradients can directly leak private
information on large fractions of their sensitive training data. Building on these
findings, we extend existing research on maliciously attacking the privacy of this
training data by proposing a novel attack vector, namely adversarial initialization
of the model weights. By thoroughly exploring this attack vector, we assess the
assumptions on trust required to obtain meaningful privacy guarantees in FL.
In particular, we focus on trust assumptions regarding the central server in FL.
Finally, to explore the intersection of ML security and privacy, we investigate what
impact the implementation of privacy guarantees has on ML models’ robustness.
Eventually, through this work, we aim to advocate the importance of a secure and
privacy-preserving design of ML methods—in particular when these are applied in
real-world scenarios.
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Chapter1
Introduction

Secure and private Machine Learning (ML) represents a subfield of the broad field
of general ML. It addresses the questions of maliciously attacking ML models or
their behavior and disclosing information about the models’ private training data,
respectively. Given that ML models are widely applied in numerous sensitive tasks
and within a broad range of domains, unsurprisingly, both the security and the
privacy of these models have become lucrative targets for attackers: Targeting the
models and their behavior can allow such attackers to subvert the learning system
in order to gain profit of any kind, or to simply cause severe damage to the services
relying on the models. Disclosing privacy of the models’ training data, in contrast,
can result in severe implications for the individuals to whom this data belongs
to. As a consequence, studying and assuring both the security and privacy of ML
models is an important concern when deploying ML models.

This work, first, provides insights into the current state of secure and private ML in
practice. Second, it extends existing research on maliciously attacking the privacy
of ML models’ training data. Therefore, it investigates a novel attack vector that
allows for high-fidelity data reconstruction from ML model gradients. Third, this
work studies the trust assumptions that underlie theoretical privacy guarantees
and explores the implications for ML privacy when these trust assumptions are not
held in practice. Forth, it analyzes what impact the implementation of such privacy
guarantees has on the models’ robustness against adversarial examples. Finally, this
work aims at advocating the importance of a secure and privacy-preserving design
of ML methods—in particular when these are applied in real-world scenarios.

1.1 Motivation

ML is a rapidly growing field. Since 2012, in universities, the average rate of
students being enrolled in ML-related courses has more than tripled [18, p. 49].
In parallel, several countries have put strategies into place that aim at training a
given percentage of their population in the topic [18]. Unsurprisingly, this growth
goes hand in hand with the increased application of ML models in a broad variety

1



1. Introduction

of domains. In particular, ML becomes more widely applied to sensitive data in
critical use-cases such as health care [84, 151], smart metering [71, 192], or the
internet of things [103, 134]. Therefore, it suggests itself that the security of the
models and the privacy of their sensitive training data need to be protected.

Since the early 2000s, several governments have put regulations into place to
provide legal frameworks around the privacy and security of ML applications.
Prominent examples of regulations that aim at protecting the privacy of individuals
whose data is being collected include the Canadian Personal Information Protection
and Electronic Documents Act (PIPEDA) [39], the European General Data Protec-
tion Regulation (GDPR) [188], and California’s Consumer Privacy Act (CCPA) [173].
In recent years, these regulations have been complemented by, for example, the Eu-
ropean AI regulation [83], or the Government of Canada’s Directive on Automated
Decision-making [164] that also specify, among others, the requirement to ensure
that ML systems operate accurately, i.e., they should be safe and secure.

There exist several possible ways to characterize what it means for an ML model
to be secure and private. One possible way of defining the secure operation of
ML models is by their robustness against adversarial examples, i.e., manipulations
of the data that the ML models are supposed to predict on [179]. Take as an
illustrative example an ML model that is trained to recognize road signs. This
model is supposed to still recognize a stop sign correctly even if an adversary has
performed some small targeted manipulations on it. When it comes to privacy, we
require the ML model not to leak too much information about its training data.
Thereby, we make sure that an attacker cannot confidently rely on the ML model
to disclose potentially sensitive properties of this data. For instance, in the case
of an ML model that is used to predict treatment for cancer patients, preserving
privacy ensures that an attacker with access to this model is not able to confidently
reconstruct (parts of) the training data, or to confidently determine which concrete
patients’ data the model was trained on.

Correctly implementing the regulations and ensuring that ML models provide
protection against the described risks is a challenging task. This is due to an
incomplete understanding of the risks and worst-case scenarios, to the closely
connected uncertainties about how protective theoretical guarantees are in practice,
and to the lacking guidelines on correctly implementing security and privacy
in ML models. As a consequence, it is not only important to study the current
state of affairs in secure and private ML. Additionally, we have to deepen our
understanding of how ML models can be attacked in order to provide adequate
protection. Further, we have to investigate how much trust in the ML services
and their providers is required for this protection to be adequate. We also need
to provide realistic estimates of worst-case vulnerabilities of the ML models to
specify our requirements correctly. And finally, we need to understand how we can
implement the two goals of security and privacy at the same time.

2



1.2. Problem Statement

1.2 Problem Statement

In this dissertation, we seek to provide answers to the following research questions
that are relevant when jointly studying secure and private ML.

1. What is the current state of secure and private ML in practice?
Given that the field of secure and private ML is a rather young one, it is of
high importance to gain an overview on its state in practice. This does not
only serve as a survey of the current condition in the field, but instead it
helps to uncover shortcomings, open questions, and hidden problems. It also
informs the formulation of relevant future research questions.

2. Where and why can privacy in ML applications be attacked?
There exist some known attacks that target the privacy of ML models’ poten-
tially sensitive training data. However, to date, our understanding of where
and why privacy leakage in ML occurs is far from being exhaustive. Therefore,
it is crucial to further explore the attack vector against privacy in ML and
to properly characterize the trust assumptions that underlie our theoretical
privacy guarantees. Only then will we be able to meet the theoretical privacy
guarantees in practice.

3. Do ML security and privacy go hand in hand?
At last, given that ML models are increasingly applied in highly sensitive
domains, we require these models to provide both security and privacy for
their training data. This raises the question if the goal of security and the
one of privacy in ML are well aligned, and how potential trade-offs between
these goals can be characterized. This characterization can form the basis for
choosing optimal trade-offs. Finally, it can also contribute to the development
of methods that jointly, and by design, optimize for the implementation of
both goals.

We believe that providing answers to these research questions is essential for the
study of secure and private ML, to strengthen the field, and to shape its future
development. Even though, in the scope of this work, it is not possible to address
every aspect of security and privacy in ML, we show that our answers to the
above-mentioned questions represent a valuable and indispensable contribution to
advance research in the field.

1.3 Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we briefly
introduce preliminary knowledge on ML and Federated Learning (FL), then we
provide the background on secure and private ML that is required for the scope of
this work. Afterwards, in Chapter 3, we present a survey conducted to capture the
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current state of affairs in secure and private ML in practice and the awareness of
ML practitioners about the field. The findings of this survey motivate the necessity
to study ML privacy more in depth, which we do at the example of FL in Chapter 4

and Chapter 5. Chapter 4, therefore, first presents our observation on inherent
data leakage from Neural Networks (NNs). Based on this observation, we propose
a novel highly efficient data extraction attack. Our attack relies on adversarially
manipulating the model weights and architecture and then extracting the data from
the model gradients. After introducing the attack, we show that it represents a
novel attack vector in FL protocols by enabling the server to break the privacy of the
clients. Finally, we evaluate our attack’s effectiveness in this scenario. In Chapter 5,
by building up on our novel attack vector, we study the trust assumptions of
FL with a focus on the trust required in the server. Therefore, we do not only
examine standard vanilla FL but also several of its extensions. In Chapter 6, we
then study how implementing theoretical privacy guarantees impacts the model’s
security. Therefore, we investigate private models’ robustness under the presence
of adversarial manipulations against the data that the model is supposed to predict
on. To conclude this dissertation, in Chapter 7, we provide a brief summary of the
work, highlight our contributions in the area, and present future research directions
of secure and private ML.
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Chapter2
Background

This chapter introduces concepts and background knowledge required within the
course of this work. It starts by providing an overview of centralized Machine
Learning (ML) and Federated Learning (FL). Afterwards, it presents an introduction
to the security and privacy of ML. Therefore, it first describes the general threat
space against ML models and the systems within which they are deployed. Then,
it briefly outlines attacks that can be conducted to target ML security and privacy.
Moreover, it gives a brief overview of possible defenses. Finally, a more thorough
introduction to the topic of Differential Privacy (DP) [57] is provided due to its
relevance for this work. The chapter concludes by presenting the datasets that are
used for experimental evaluation throughout this work.

Note: The chapter is not intended to provide a complete survey on the wide field of
security and privacy in ML. Instead, it serves as a general overview and reference
material for the scope of this work, containing pointers to further literature for
interested readers.

2.1 Introduction to Machine Learning

ML is applied for automated discovery of knowledge [112] or regularities, i.e.,
pattern, [25] in large datasets. Thereby, it enables for automated analyses on those
datasets [129]. The following section aims at providing a brief overview on ML,
introducing the terms and concepts required for the scope of this work. For a more
thorough introduction into the field, see, for example, [25, 129].

2.1.1 Terms and Notation

The following definitions are adapted from [25].

Training. In ML, the process of learning some properties of a dataset Dtrain is
referred to as training. The result of the training is a parameterized function fW
whose internal parametersW are adapted to fit the given training data. The training
process is therefore also called fitting.
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Training Data. The dataset Dtrain used for training is called training data. It repre-
sents a subset of data distribution D, i.e., Dtrain ⊂ D.

Features. The variables characterizing each training data point xi ∈ Rm are called
features. Each data point has m ∈N such features {xi,1, . . . , xi,m}.

Model. The learned function fW can be referred to as the ML model.

Validation Data. The validation dataset Dval ⊂ D is a separate dataset from the
training dataset which is used to optimize the training process via hyperparameters,
i.e., internal parameters that control the learning of fW .

Test Data. The test dataset Dtest ⊂ D is another separate dataset consisting of data
points not used for the training of fW . Dtest serves to evaluate the final performance
of the model fW after training.

Generalization. The trained model fW should not only fit the training data well, but
it should perform similarly well on the test data, which is known as generalization.

Overfitting. The opposite of good generalization is called overfitting. It describes the
effect when fW performs well on the training data but exhibits a poor performance
on the test data.

2.1.2 Supervised Machine Learning and Neural Networks

There exist three broad classes of ML algorithms, namely supervised, unsupervised
and reinforcement learning [25]. This work focuses primarily on supervised ML
where the training data consists of data points X = {xi}n

i=1,= xi ∈ Rm and their
corresponding target labels Y = {yi}n

i=1, such that Dtrain = {(X, Y)}. The respective
target labels can belong to a finite number of discrete categories (classification) or to
one or more continuous variables (regression).

This work focuses on ML models, more precisely Neural Networks (NNs) for
classification, hence yi ∈N. We denote an NN classifier by a function fW : Rm →
{1, · · · , k} where k ∈N is the number of different classes encountered in the target
labels. The parameters W in an NN are often referred to as weights and they are
updated during training.

Training. Training NNs is done via greedily traversing the weight space towards
the direction that minimizes an error metric on the training examples, usually
called the loss L. For a given point in the weight space, and for a given collection
of training examples, this direction is given by the model’s weight gradient G—the
vector that points to the steepest loss slope.

One popular training algorithm for traversing the weight space is the mini-batch
Stochastic Gradient Descent (SGD). In mini-batch SGD, instead of processing the
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whole potentially large dataset {(X, Y)} at once, smaller data mini-batches of
a fixed size B are sampled from the dataset. Then, training is conducted using
the following steps: (1) sample a mini-batch of size B from the training data
{(X, Y)b}B

b=1, (2) take a forward pass through the model to obtain its predictions on
the mini-batch, (3) compute the difference between predictions and ground-truth
labels, which yields the loss value L, (4) compute the gradient of L w.r.t. the weights
to obtain the weight gradient G = ∇WL((X, Y)b). Then update the model weights
according to this weight gradient and a specified learning rate η asW ←W − ηG.
Executing mini-batch SGD over all B mini-batches, i.e., the whole dataset, is often
denoted as an epoch, and can be iteratively repeated for T epochs.

Weight Initialization. Before training can begin, model weightsW have to be ini-
tialized. Typically, a randomized initialization is used, e.g., a Gaussian distribution
with zero mean, i.e., µ = 0.0 [74], or a distribution specifically tailored for this
purpose, e.g. the Xavier [75] or He [89] initialization. Initialization methods have a
dramatic effect on learning success [54]. Sub-optimal initialization can lead to van-
ishing or exploding gradients, or other poor convergence properties. Manipulated
model weight initialization controlled by an attacker can cause longer training and
reduce the final model utility [81].

Neural Network Architecture and Layer Types. An NN classifier fW is usually
implemented as a sequence of l layers li with i ∈ {1, . . . l}, each of which has
a weight matrix Wli and a non-linear activation function F. A popular activation
function is ReLU, given by ReLU(a):= max(0, a). Each layer processes its input
Ili ∈ Rm by calculating the weighted sum Wli · Ili of the input, where Wli · Ili
denotes matrix multiplication1. The activation function is then applied as F(Wli · Ili).
A fully-connected layer li consists of oli neurons. The layer receives input with oli
features, multiplies them with a two dimensional weight Wli matrix of shape
(oli , oli+1), and applies the activation function element-wise. A convolutional layer
consists of multiple two dimensional weight matrices, called filters. The input to a
convolutional layer is a set of spatially-adjacent features that are multiplied with
the filters and put through an activation function to produce the layer’s output,
called a feature map. We refer to NN classifiers that solely consist of fully-connected
layers as Fully-Connected Neural Networks (FC-NNs), and NN classifiers that also
contain convolutional layers as Convolutional Neural Networks (CNNs).

At the output of a NN classifier both for FC-NNs and CNNs, there is usually a
fully connected output layer with a softmax activation function which produces a
probability distribution over the k possible classes [25].
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Training

(a) Centralized Learning.

Training

(b) Federated Learning.

Figure 2.1.: Centralized vs. Federated ML. In centralized ML, the model’s training
data is first collected at a central location where the training is con-
ducted. In FL, the data remains distributed locally over different clients.
A server sends out a shared model to the clients during the iterative
training procedure. The clients calculate model gradients locally, and
then send their local gradients to the server. The server aggregates all
gradients and applies them to the shared model before sending it out
to the clients again.

2.2 Introduction to Federated Learning

Federated Learning (FL) [120] is a communication protocol for training a shared ML
model fW on decentralized data {(Xi, Yi)}N

i=1 owned by N different clients {ui}N
i=1.

Informally speaking, FL implements a decentralized version of the mini-batch SGD
algorithm where the data mini-batches are distributed over the different clients.
It, thereby, reduces the communication and central storing costs from centralized
learning since the training data does need to be sent to the server. See Figure 2.1
for a visualization of centralized vs. federated ML.

For jointly training fW over the distributed data, in FL, a server C coordinates the
training as follows: Let t ∈ {1, . . . T} be the current iteration of the FL protocol. An
iteration in FL conceptually corresponds to an epoch in centralized ML. At iteration
t = 0, fW is initialized (at random) by the server C. Usually, the server also specifies
the architecture and the learning objective of fW . Let f [t]W be the model with its
weights W [t] at iteration t. At every iteration t, M out of the N (M ≪ N) clients
are selected to contribute to the learning. Then, each of the selected M clients ui

obtains f [t]W from C and calculates the gradients G[t]
i for f [t]W based on one mini-batch

b sampled from their local dataset (Xi, Yi)b. In other words, the client computes
the gradient G[t]

i = ∇WL((Xi, Yi)b). Each ui uploads their gradients to C, who
then aggregates all of these gradients to update the shared model’s parameters as

1We omit bias terms for simplicity; this does not affect correctness of the analysis.
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follows:

G[t] =
1
M

M

∑
i=1

G[t]
i , W [t+1] =W [t] − ηG[t]. (2.1)

Note that sharing model gradients is not the only way to perform FL. Other forms
of collaboration exist, for example, through sharing model outputs, e.g. [48].

2.3 Security and Privacy in Machine Learning

In both centralized and federated ML, recent work highlights that the training
process and the final trained ML models are vulnerable to different kinds of attacks.
These attacks can target the general security of the model and its predictions,
e.g. [179, 180], or the privacy of the model’s potentially sensitive training data,
e.g. [64, 168]. This section aims at providing an overview of the different aspects of
ML security and privacy required for the scope of this work. It does not intend to
provide a complete survey on ML security and privacy. For this purpose, we refer
the reader to existing and more comprehensive work, e.g. [14, 142, 158]. Several
concepts that represent the main focus of this work are introduced more in detail
in their respective sections.

2.3.1 Characterizing the General Threat Space

Analyzing the threat surface of ML and characterizing attackers and their attacks is
crucial to reason about ML security and privacy and to propose adequate potential
defenses. Therefore, the following section provides an overview of several aspects
of the threat surface.

Security Goals. The security goals formulated for traditional Information Technol-
ogy (IT) security can be adapted to ML as follows [14, 137, 141]:

• Integrity: Within an attack to model integrity, an attacker aims at having
harmful data points mistaken as benign ones [14]. This induces a model
behavior chosen by the attacker [142]. A popular example of these kind of
attack is for an attacker to design spam emails such that they bypass a given
ML classifier used as a spam filter and are classified as benign emails [14].

• Availability: When targeting model availability, an attacker causes the ML
system to deny benign data points [14]. With such an attack, the attacker
attempts to reduce prediction quality, model performance, or access to the
model. If the output of the ML model is involved in the functioning of
the system, this can be considered as denial of service attack [142]. In the
example of the spam filter, an attack against availability aims at having
benign emails incorrectly classified as spam—potentially resulting in them
not being accessible [14].
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• Confidentiality: This type of attack can either target confidentiality of the
trained ML model or its training data. The former one enables an attacker
to obtain sensitive and confidential information, such as model properties,
structure, and parameters. Thereby, the attacker may be able to steal the
intellectual property represented in the model [142, 180]. The latter one can
result in privacy violations if the training data is sensitive.

• Privacy: When attacking privacy in ML, an attacker is mainly concerned with
disclosing information about the potentially sensitive training data [142].

Integrity and availability are closely related security goals, similar as privacy and
confidentiality. Attacks on integrity and availability both operate with respect to
model outputs and often rely on introducing unwanted model behavior [142].
Attacks on confidentiality and privacy, on the other hand, operate with respect to
the model and the underlying potentially sensitive training data. In particular, a
breach of confidentiality can have an impact on data privacy.

Note. A distinction between attacks against confidentiality and against privacy is
not necessary if considering the disclosure of information about training data as
another aspect of confidentiality-violation. However, semantically the distinction
between the two is vital since it enables a more fine-grained specification of the
trust model. Whereas attacks against confidentiality threaten the model owner and
their intellectual property (an external attacker might steal the model [180]), attacks
against privacy threaten the data owners, or users and their privacy [142].

Attacker Knowledge. When attacking ML models, an attacker can have full, partial
(to any possible extend), or no knowledge about the following aspects [14, 23]:

1. Training data
2. Training algorithm
3. Trained model and its parameters

An attacker who knows everything about the targeted system is called to have
perfect knowledge [23]. This setting permits to run the worst-case evaluation of the
target model’s security [128]. A more realistic setting considers an attacker with
limited knowledge [23]. Therein, the attacker can be, for example, assumed to know
the feature representation of the learning model, but not the concrete training data,
or to know the training data, but not the learning algorithm [128].

Attacker Capabilities. The attacker’s capabilities can be defined based on the
influence that the attacker has on the input data and the training procedure [128].
If the attacker can influence the training data or the model training, the attack
influence is called causative, if they can only exploit existing weaknesses after
training, e.g. by manipulating the test data [179], it is called to be exploitative [14].
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Model Access. Tightly connected to the attacker’s capabilities is the type of access
they have to the ML model under attack. Black-box attacks assume that an attacker
has no access to the model internals or the training data, but can only interact with
the model over a given interface, e.g. an Application Programming Interface (API).
Through these interfaces, the attacker might use the model as an oracle that provides
them with outputs for the carefully crafted inputs they provide. In the setting of
white-box attacks, the attacker disposes of knowledge about the model (algorithm
and/or parameters) and/or the training data. The attacker can use the information
to identify vulnerabilities in the model and exploit them for attacks [142]. In the
real-world, black-box attacks represent a more realistic scenario [142].

Attack Strategies. Barreno et al. proposes to group attack strategies depending on
their capabilities along the following three axes [14]:

1. Influence: Does the attack target the training time (causative) or the testing
time (exploratory)?

2. Security violation: Which security goal(s) are targeted (integrity, availability,
confidentiality, or privacy)?

3. Specificity: Is the attack directed against a particular instance (targeted) or of a
broader class of instances (indiscriminate)?

These axes are independent from each other [14], therefore, there exist 2 · 4 · 2 = 16
different classes among which attacks and defenses can be grouped. In contrast to
viewing the security through the three axes and classification of attacks, one could
also look at it with respect to the entire pipeline of ML applications and identify
adversarial goals and means at each phase [142].

2.3.2 Machine Learning Security

Based on the definition of attack strategies in the previous section, it is possible to
group concrete attacks against ML models. The following provides an overview
intended to serve as a high-level orientation. Concrete attacks targeting the privacy
of the training data are presented in the following Section 2.3.3.

Training Time Attacks. The most prominent attack against ML models at train-
ing time is the so-called poisoning attack [24]. In a poisoning attack, an attacker
deliberately influences and alters the training data to manipulate predictions of
the resulting ML model [142]. This can either be used to reduce general prediction
accuracy or to introduce more specific vulnerabilities [112].

Test Time Attacks. At test time, the most prominent type of attacks are evasion
attacks, during which an attacker aims at causing incorrect model predictions [23].
Therefore, these attacks rely on so-called adversarial examples [179]. An adversarial
example is a data point that results from perturbing a test data point with a
carefully crafted amount of statistical noise before presenting it to an ML model for
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Figure 2.2.: Adversarial Example. An adversarial example results from adding
a carefully crafted perturbation to a given data point. The resulting
difference is nearly invisible, yet it causes the ML model to misclassify
the data point.

prediction. Even though the perturbation is hardly noticeable by a human-observer,
it causes the ML model to output an incorrect class label. See Figure 2.2 for a
visualization of the concept. Adversarial examples can, for example, be used by
an attacker to obtain unauthorized access to a system or to slip data through
some filters, such as passing spam email through a spam filter [14]. A particular
type of evasion attacks is the so-called impersonation attack. Impersonation attacks
are targeted evasion attacks in which an attacker aims at imitating data points
of a specific victim. Thereby, the attacker might, among others, gain the victim’s
authority in an access control system [112].

Another type of attack against ML models at test time is model extraction, also
referred to as model stealing [180]. An attacker with black-box access to a target
model (e.g. through an API) can perform model extraction by querying the model
with some data points and obtaining labels for this data. With the data and and the
received labels, the attacker can then locally train an ML model which reproduces
the target model’s functionality [180]. The advantage of model extraction over train-
ing a different ML model with the same functionality from scratch lies in reduced
costs, since the attacker, for example, can skip the expensive manual labelling
process of their data [28]. Additionally, model extraction can serve as a basis for
further attacks against the security and privacy of the target ML model [180].

2.3.3 Machine Learning Privacy

The topic of ML privacy is mainly concerned with privacy of the potentially
sensitive training data of ML models. There exist multiple attacks that aim at
disclosing different types and amounts of information about this data. In the
following, when presenting the most common types of privacy attacks, we will not
distinguish between training and test time attacks as done for the security attacks.
This is because, to date, most privacy attacks in centralized ML target the trained
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Figure 2.3.: Privacy Attacks against ML Models. Overview on different attacks
targeting the privacy of an ML model’s sensitive training data.

ML models at test time to disclose privacy of the potentially sensitive training data.
Only a few instantiations of the attack types described in the following extract
private information from gradients during a continuous training process [161],
manipulate the training itself [117], or poison the training data [116] for improved
privacy disclosure at test time. We visualize the concepts of the privacy attacks
introduced in the following in Figure 2.3.

Membership Inference. Membership inference attacks were first introduced in
the area of ML in [168]. Given a trained ML model and a data point, they aim
at disclosing whether the data point was part of the model’s training data. This
information can be privacy-disclosing when membership itself represents a private
information. A practical example of such a scenario could be an ML classifier that
predicts treatments for cancer patients. Such a classifier necessarily needs to be
trained on data that belongs to individuals who have cancer. The information that
an individual is a member of the model’s training data, therefore, equal to the
information that this individual has cancer.

Model Inversion. Another form of privacy leakage can occur due to model in-
version attacks introduced by [64]. These attacks reconstruct average per-class
representations of the model’s training data. This becomes a privacy leakage when
each class corresponds to exactly one individual, such as in face classifier [64], or in
speaker recognition systems. In such cases, model inversion discloses the identity
of the individuals that the model was trained on.
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Attribute Inference. The term attribute inference is sometimes used to refer to an
attack aiming at the disclosure of some properties of the training dataset, such
as the distribution of a sensitive feature among the training data points [8]. In
this work, however, we follow the naming introduced in [64] and use the term
attribute inference to describe an attack where the attacker uses knowledge on some
public attributes of a training data point and access to the trained ML model with
the aim of disclosing some sensitive and secret attribute of that data point. In the
example of the cancer treatment classifier mentioned above, an attacker could use
an individual’s age, gender, weight, and height, to disclose a sensitive biometric
attribute, such as this individual’s blood group.

Data Reconstruction. A particularly severe form of attacks against privacy of an
ML model’s training data is data reconstruction [70, 148, 161, 193, 200, 205, 207].
The attack aims at reconstructing individual training data points from a trained
ML model or from model gradients by performing some reconstruction procedure.
A specific form data reconstruction is data extraction [30, 63], where the individual
training data points can be extracted directly and without any error from the ML
model or its gradients.

2.3.4 Defending Machine Learning

The following section provides a high-level overview on possible defenses against
security and privacy risks in ML. It does not aim at providing a comprehensive
survey nor at presenting a thorough analysis of and comparison between different
defenses for different attacks. Instead, it briefly introduces the concepts relevant for
the scope of this work.

Generally speaking, defense strategies in ML aim at preventing successful attacks
against the models or the systems that surround them. Most defenses are specific
to a particular class or type of attack. In the following, we provide an overview
on two broad types of defenses, namely those defenses that aim at protecting the
system around an ML model, and those that mainly aim at protecting the model
itself. Of course, it is also possible to combine multiple of the defenses described in
the following.

2.3.4.1 Defending Machine Learning Systems

Data. Since ML operates on data, the first possibility of protecting the security of an
ML system is to ensure integrity of its training data. This can be done, for example,
by implementing data provenance [36, 47]. Data provenance allows to track where a
data point in a given dataset stems from and how it was processed [36]. This is of
high importance since the characteristics of an ML model’s training dataset have a
substantial impact on the model’s behavior [69]. Yet, modern ML systems do not
necessarily operate on carefully and centrally curated training datasets anymore

14



2.3. Security and Privacy in Machine Learning

but rather on large amounts of data constantly generated by many users. With
the lack of a centralized instance controlling data integrity, the quality of data can
vary widely, and therefore, tracking data provenance and additional contextual
information can help judging whether a data point is trustworthy [47]. This can, for
example, be beneficial for protecting against data poisoning attacks. Additionally,
data provenance can also contribute in the mitigation of the risks resulting from
biases, hidden underlying assumptions in the data, or mismatches between the
training and test data distribution [69].

When it comes to privacy protection, a popular protection approach within the ML
system is data sanitization [136]. Data sanitization describes the process of trans-
forming an original dataset into a sanitized one [136]. Within the transformation,
sensitive information inside the dataset is removed or hidden while preserving the
statistical properties of the dataset. This allows for balancing out the need privacy
protection and the ability of performing meaningful analyses [136]. Another way
for protecting privacy is to store only the data required for a particular analyses,
and—in case that data from different analyses needs to be combined—rely on tech-
niques such as privacy preserving record linkage [85, 186]. Privacy preserving record
linkage allows to combine data concerning the same individual held by different
parties without these parties having to reveal additional information to each other,
in particular informaion about other individuals whose data they hold [85].

System. When it comes to defending the system itself, both in terms of security and
privacy, methods from traditional information security and system security [172] can
be applied. For example, access control [163] to the data and ML models can protect
against malicious manipulations that target system’s integrity. At the same time,
access control can prevent disclosing sensitive information or sensitive training data
to unauthorized parties. Closely related is the concept of separation of privileges, or
least privileges [3] which specifies that each party can solely access and alter parts of
the system required for the fulfillment of their specific tasks. These concepts around
privileges are not necessarily restricted to human parties involved in the ML system.
Instead, it is also possible to extend them to system components, e.g. by denying
an ML model access to its training data, once its training is completed [137].

However, not all insights from traditionan information security are applicable
directly to ML [137]. For example, in traditional information security, combining
different computer systems with various architectures introduces complexity and
additional risks. In ML systems, in contrast, Papernot et al. [137] point out that com-
bining different models, for example through ensemble learning [55], i.e., combining
the predictions of multiple (heterogeneous) ML models [160], can be beneficial for
security. This is because even if a subset of these models is successfully attacked,
the models’ combined prediction can still be correct and of integrity.
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Test Time. At test time, i.e., after training when the ML model is exposed to
perform predictions on new and unseen test data, there exist additional defenses.
One possible defense relies on observing the model input (and output) [15]. This allows
to identify anomalies or potential deviations in the input or output distributions,
and thereby, to detect attacks against the ML model. To limit the success of attacks
such as model stealing, another possible defense relies on introducing delay [167]
in the model responses to queries. Thereby, the knowledge on the model and its
private training data that an attacker can extract in a given amount of time can be
limited. A technique that increase ML models’ security against adversarial examples
is smoothing [50]. Therefore, the input data at test time is perturbed with statistical
noise and the ML model’s prediction on the perturbed data is returned [50].

2.3.4.2 Defending Machine Learning Models

Another protection method which secures the ML models directly against the im-
pact of adversarial examples is the so-called adversarial (re-)training [78]. Therefore,
the ML model’s training data is extended by adversarial examples and the model
is trained on the resulting combined dataset.

When it comes to protecting ML models against stealing attacks, one popular
approach consists in watermarking [184]. Within this form of intellectual property
protection, a model owner introduces some unusual characteristics to the model
parameters [184] or the model’s prediction behavior [203] which allow the owner
to detect potentially stolen copies of their model. For a systematic review on ML
model watermarking, we refer the reader to [28].

When it comes to protecting confidentiality and privacy of the ML model’s poten-
tially sensitive training data, the most popular approaches include Homomorphic
Encryption (HE) [79], Secure Multiparty Computation (SMPC) [111], and Differential
Privacy (DP) [57]. HE allows to perform mathematical operations on encrypted
data such that the decrypted result corresponds to the result that is obtained when
performing the same mathematical operation on the unencrypted data. In ML, HE
provides building blocks to perform training [6] and predictions [154] on encrypted
data while preserving data confidentiality [79]. SMPC is a cryptographic primitive
that allows distributed parties to jointly compute an arbitrary functionality without
revealing their private inputs or outputs to other parties [206]. In ML, SMPC has
two main applications: first, it enables training on data which is distributed across
several data sources, usually by providing a data aggregation scheme for encrypted
data. Second, it allows to implement confidentiality for both model and data when
the trained ML model and data at test time are owned by different parties. There-
fore, it provides primitives to perform predictions such that the party holding the
model does not learn anything about the other party’s data, and the party owning
the data learns as little as possible about the models [206]. DP is a framework that
allows to learn some statistical properties of a dataset without disclosing sensitive
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information about the individual data points within the dataset [57]. Therefore,
statistical noise is added to the algorithm processing the dataset. In ML, the noise
is usually introduced during the model training to preserve privacy of the training
data [2, 138]. The following section introduces the concept of DP more formally
due to its relevance for the remainder of this work.

2.3.5 Differential Privacy

The framework of DP [57] formalizes the intuition that no single data point should
have a significant influence on the results of an analysis conducted on a whole
dataset. This enables learning properties of the dataset and the data population
represented within this dataset while preserving privacy of individual data points.
To achieve this goal, an analysis under DP should yield roughly the same results
whether or not a particular data point is included in the dataset that the analysis
is performed on. For a more thorough introduction to DP, we refer the interested
reader to [58].

2.3.5.1 General Differential Privacy

Formally, the concept of (ε, δ)-DP can be expressed by the following definition.

Definition 2.1 ((ε, δ)-Differential Privacy). Let A : D∗ → R a randomized algorithm.
A satisfies (ε, δ)-DP with ε ∈ R+ and δ ∈ [0, 1] if for all neighboring datasets
D ∼ D′, i.e., datasets that differ in only one data point, and for all possible subsets
R ⊆ R of the result space

P [A(D) ∈ R] ≤ eε ·P
[
M(D′) ∈ R

]
+ δ . (2.2)

The parameter ε which is often referred to as privacy budget, or privacy level bounds
the maximal difference between the analysis results on the neighboring datasets [57].
Smaller values for ε correspond to higher levels of privacy, whereas larger values
imply lower levels of privacy. The second parameter δ represents a relaxation of
the bound by allowing the results to vary more than the factor eε. Hence, the total
privacy loss is bounded by ε with a probability of at least 1− δ [58].

2.3.5.2 Differential Privacy in Machine Learning

While there also exist other forms to integrate DP into ML, e.g. [138], in the scope of
this work, we will focus on the de-facto standard algorithm, namely Differentially
Private Stochastic Gradient Descent (DPSGD) [2]. Similar to general DP, the DPSGD
implements the intuition that no single training data point can significantly impact
the resulting ML model. Therefore, DPSGD alters the standard SGD-based training
process for ML models to introduce DP guarantees into the weight updates. This is
done through two subsequent steps. In the first step within DPSGD, the gradients
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are computed for each data point or, to make training more efficient, each mini-
batch of data points. The gradients are then clipped such that their ℓ2-norm does
not exceed a pre-defined clipping parameter c. More precisely, the clipping of the
gradient G = ∇WL((X, Y)b) for mini-batch b of some data (X, Y) is clipped by
replacing G with Ḡ = G/ max(1, ||G||2c ). Thereby, if ||G||2 ≤ c, the gradient will not
be altered, whereas if ||G||2 > c, the gradient will get scaled down to norm c. In the
second step, Gaussian noise with scale σ is applied to the clipped gradients Ḡ of
each mini-batch before performing the model updates. This results in the gradient
update being performed with Ḡ +N (0, σ2c2I) [2]. The matrix I is the identity
matrix with dimensions respective to the gradient dimensions. In the following, we
are going to suppress this matrix when referring to the noise added under DP.

2.3.5.3 Differential Privacy in Federated Learning

There exist three main ways of integrating DP in the FL protocol.

1. Centralized Differential Privacy (CDP) assumes a trusted server that implements
the privacy mechanism, for example, through an adaptation of the DPSGD [2].
Therefore, the clients clip their gradients locally and the server performs the
addition of noise [152]. To improve utility and leverage privacy amplifica-
tions in the CDP setup in FL, techniques, such as random check-ins [13], or
the DP-FTRL mechanism [100] where clients are sampled at random were
introduced. However, as we will argue in Chapter 5, CDP cannot provide
DP guarantees when assuming a malicious server that does not perform the
privacy operations, or extracts data before adding noise.

2. Local Differential Privacy (LDP) was proposed to resolve the need for trust in
the server. In LDP, every client locally adds noise to their gradients according
to their privacy requirements [182]. Independent of other clients, the noise is
drawn from N (0, σ2c2). However, previous work has shown that this setup
leads to poor privacy-utility trade-offs, such that LDP is not popular in
practical applications [103].

3. Distributed Differential Privacy (DDP) is supposed to combine the advan-
tages of CDP and LDP. In DDP, before aggregation, each client locally adds
some (small) amount of noise to their gradients [181]. The noise distribu-
tion depends on the number M of other selected clients. It is specified by
N

(
0, σ2

M−1 c2
)

[181]. While the individual noise levels don’t offer sufficient
protection, the aggregates provide rigorous privacy guarantees. There exist
different forms of performing the aggregation. One of the most popular
approaches is an SMPC protocol called Secure Aggregation (SA) [33].

Secure Aggregation. SA was developed to protect the individual G[t]
i from inspec-

tion by the server [33]. In SA, instead of sharing the individual gradients with the
server, an aggregate over all M clients’ gradients is computed, and only the final
outcome G[t] of the computation is shared with the server. Extensions of SA, among
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others, allow the server to prove the correctness of the aggregate computation [197],
increase robustness against malicious updates [37], and improve communication
efficiency [17, 82].

Note that the application of SA increases the computational, storage, and communi-
cation costs in FL—several costs grow quadratically with the number of clients [32,
33]. This limits the maximum number of clients that can participate in each round
of the protocol. Furthermore, SA protocols rely on integer inputs. However, usually
the gradients calculated, as well as the noise added to implement DP guarantees,
are real-scaled values. Therefore, standard gradient calculation and DP-mechanisms
cannot be applied. Instead novel mechanism to perform gradient aggregation and
noise addition with integer values were developed e.g. [5, 99]. Even though there
exist extensions to make such mechanisms more communication efficient [46], their
practical applicability remains, as of now, limited.

2.4 Datasets

To perform extensive experimental evaluation of the methods proposed in this
work, we rely on several vision and one text-based datasets. These datasets are
described in the following.

MNIST

The MNIST [110] dataset is a vision dataset consisting of 70,000 gray-scale images
and corresponding labels for ten classes. The images are of size 28x28 pixels and
depict the hand-written digits zero to nine. The dataset is divided into a training
set consisting of 60,000 images and a test set consisting of 10,000 images.

CIFAR

CIFAR [106] datasets consist 32x32 color images that depict different objects or
animals. The CIFAR-10 dataset in total holds 60,000 images, 50,000 for training and
10,000 for testing. The images belong to ten different classes with 6,000 images per
class. The larger CIFAR-100 dataset, as suggested by its name, contains 100 classes
with 600 images per class, 500 of which for training and 100 for testing.
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ImageNet

ImageNet [53] is a large and complex vision dataset containing color images
organized according to the WordNet hierarchy.2 Within the scope of this work, we
use the ImageNet Large Scale Visual Recognition Challenge-subset. It contains 1,281,167

training, 50,000 validation, and 100,000 test images. The complexity of this dataset
is mainly due to its high dimensionality and the large number of classes.

Internet Movie Database

"A wonderful little production. [...]", (positive)
"An awful film! [...]", (negative)

The text-based Internet Movie Database (IMDb) [114] dataset is used for binary
sentiment analysis. It contains 50,000 reviews from the IMDb and corresponding
labels ’positive’ and ’negative’.

2https://www.image-net.org/about.php, last accessed on July 16, 2022.
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Chapter3
Surveying Secure and Private Ma-
chine Learning in Practice

With Machine Learning (ML) components being increasingly applied within sen-
sitive applications, such as health care [84, 151], smart grids [71, 192], and hiring
processes [43], ensuring security and privacy of the systems rapidly gains im-
portance. Yet, Section 2.3.2, and Section 2.3.3 in the previous chapter highlight
that there exists a myriad of attacks targeting different aspects of the ML security
and privacy. Luckily, there also exist corresponding defenses, as discussed in Sec-
tion 2.3.4. However, the pure existence of defenses does not result in protected
systems since these defenses need to be actually (and correctly) implemented.

The gap between theoretical existence and practical implementation of secure
and private ML motivates the necessity of studying the state of affairs in secure
and private ML in practice. By studying the security and privacy risk-awareness,
the practical prevalence of defense methods, and the difficulties encountered
when implementing them, we can inform future development of novel protection
methods and tools. Such a study, furthermore, helps advancing the field of secure
and private ML by providing an enhanced understanding of the risks and their
practical implications, current shortcomings in defenses, and improvements that
future research will have to provide.

To address this important topic, and to gain insights into current secure and private
ML in practice, we set out conduct a study among ML practitioners, i.e., individuals
implementing ML systems. Our aim was to learn about their awareness on risks
and defenses, and about their current practices.

In this chapter, we present our study which is based on an online survey conducted
in two phases among ML practitioners from different countries. Studying ML
practitioners is of particular importance since they are the individuals in charge of
putting theoretical advancements in research and regulatory requirements formu-
lated by governmental agencies around security and privacy in ML into practice.
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Yet, in prior research, neither these individuals nor the practical state of affairs in
secure and private ML have received a lot of attention.

Our study aims at closing this gap and attaining the following three goals:

• Understanding the current state of awareness;
• Identifying factors that influence awareness among ML practitioners;
• Exploring the actual use of existing tools and methods for secure and private

ML in practice.

In this chapter, we, therefore, first introduce our study’s research questions. We then
provide an overview on related work in the area of studying security and privacy
practices. Afterwards, we present in detail our research methods and results. We
conclude with a short summary, a discussion of our findings, and an outlook on
relevant future work in improving security and privacy in ML. The work presented
in this chapter has been published in [29].

3.1 Motivation and Research Questions

Recent research highlights that the topics of security and privacy, in general, as well
as in ML-related workflows, are no significant driving factors when designing new
products [108]. Instead, the design of such new products is functionality-driven [132,
133]. Similarly, most research in the field of ML still focuses on proposing novel
algorithms with higher performance and extended functionality. Only in recent
years has the field of private and secure ML seen an upsurge with the introduction
of several techniques that allow for secure and privacy-preserving analyses [29].

In practice, however, the security and privacy of an ML system do not solely rely on
the existence of secure and privacy-preserving ML methods. Instead, they largely
depend on the actual implementation of these methods. The entire ML system,
from the data pipeline and model architecture, up to the concrete implementation
and deployment of the final trained ML model are largely determined by the ML
practitioners in charge of implementing the systems. Hence, these practitioners
and their awareness of existing risks and defenses play a vital role when it comes to
actual security and privacy in ML. According to [86], there are several definitions of
the term awareness in the context of information security. These include but are not
limited to an individual’s knowledge about risks and defenses, and the importance
given to the topic [86]. More concretely, if the ML practitioners are not aware of
risks or defenses or do not consider the topic important, the resulting ML systems
might lack security or privacy even though adequate defense methods exist.

To the best of our knowledge, this work, published as [29], is the first to study the
individual awareness and practices of ML practitioners concerning ML security
and privacy. Thereby, it identifies challenges and shortcomings and helps to inform
the design and extension of current tools and existing methods.
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Within our study, we formulate two Research Questions (RQs):

1. RQ1: How is ML security and privacy awareness built, and which condi-
tions contribute to the degree of knowledge with respect to threats and
corresponding defenses?

2. RQ2: What is the current state of affairs concerning ML security and privacy
among ML practitioners?

For RQ1, we set out to study different aspects of awareness and knowledge acquisi-
tion among ML practitioners. To answer RQ2, we study the prevalence of different
attacks and defenses against ML security and privacy. We, furthermore, survey the
practitioners’ practices and experience with selected standard libraries for secure
and private ML. Finally, based on the example of the European General Data
Protection Regulation (GDPR), we also investigate the influence of the introduction
of juridical regulations on the practitioners’ practices. Our research is supposed to
close a critical gap on the way towards bringing theoretical research on secure and
private ML into practice.

3.2 Background and Related Work

Studying security and privacy practices in ML separately from practices in standard
software applications is of high importance. This is, first of all, because ML exhibits
a different threat space and therefore has different requirements for defenses
than standard software applications [137]. Second, well-established practices from
standard software security, such as static code analysis or code coverage, are not
directly applicable to ML models. This is due to the fact that the behavior of an
ML model does not solely depend on the code used to train or deploy it. Rather,
it is largely influenced by the model’s training data. As outlined in Chapter 2,
the data, thereby, has a large influence on the model’s functionality and can even
introduce vulnerabilities, for example, through poisoning attacks. Despite the
topic’s high importance, there exists very limited work on studying the security
and privacy practices in ML, in particular with a focus on the individuals in charge
of implementing the systems.

This chapter provides some background on studying security and privacy practice
among software developers. Additionally, it presents relevant studies in the field—
with and without a focus on ML—to put our work into context. For background on
the security and privacy attacks in ML and the corresponding defenses that served
as a guide to developing the survey questionnaire for our study, we refer the reader
to Chapter 2.

Studying Developers. Studying developers, i.e., individuals in charge of designing,
implementing, or maintaining program code, is a challenging and, so far, not well
established task. Therefore, studies about developers usually have small sample
sizes or rely on university computer science students [4]. Current research [21,
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91, 162, 178] suggests that it is valid to rely on students within the scope of such
studies. Salman et al. [162], to name an example, compared students and developers
for (non-security-related) tasks. Their findings show that in case students and
developers have roughly the same level of experience, the quality of the code they
produce is comparable.

Studying Developers’ Security and Privacy Practices. Within the research field
of studying developers in general, there is a small body of literature related to
explicitly studying developers’ security and privacy practices.

Acar et al. [4] studied Python developers in form of an online study. They aimed at
investigating the impact of applying security Application Programming Interfaces
(APIs) on the security level of the resulting code. Therefore, the authors had the
developers perform specified coding tasks and fill in an online questionnaire.
The results of the study showed that years of experience are an influential factor
in the functionality and security of the code whereas the self-reported status
(professional or student) is not. With each year of experience, the authors measured
a 10% increase in the likelihood of the developers’ code being functional and a
5% increase in the likelihood of the code being secure. Yet, for both students and
developers, the general observed security level of the code was low.

Naiakshina et al. performed a coding task study with 20 [132], and a survey
with 40 [133] computer science students, respectively. The authors concluded
that participants usually consider functionality before security. Additionally, the
resulting security level of the code only increases when the security requirements
are explicitly stated to the participants. Furthermore, the authors showed that
knowledge of security practices does not necessarily lead to their implementation
in practice. Finally, the results suggest that the existence of security features within
APIs is not sufficient to guarantee the security of the resulting code if these features
are activated in an opt-in fashion. Therefore, the authors argue that the security
features in such APIs should be the default option.

Additional research in the area of security and privacy practices of developers
specifically targets app development.

Balebako et al. [12] conducted a survey about privacy practices and awareness
among 200 app developers. Their main findings highlight that, in general, develop-
ers find privacy policies hard to read. Additionally, the developers express criticism
about such policies mainly being created without input from individuals working
in development. Moreover, the majority of developers states that they have learned
about privacy practices only once being confronted with tasks requiring their imple-
mentation. Then, the developers rely on social networks and experts around them
for help on the implementation and application of such practices. Most developers
also never received formal training on privacy practices. Another finding of the
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authors suggests that also in app development, functionality is considered before
privacy. Finally, the individual developers’ awareness of privacy does not seem
to be a good indicator of the quality of their practical implementation of privacy
practices.

Such findings have motivated the emergence of an area of research called developer-
centered security. Research in this field suggests that writing security related code
is not something the average software developer deals with on a regular basis,
nor is security education a strong focus at many universities teaching computer
science [4]. Therefore, when putting usable security into place, it should not be
focused purely on end users, but also on developers (i.e., end users of security APIs
or libraries) [40, 80, 149, 174, 196].

In this vein, Nadi et al. [130] studied Java developers and their use of crypto APIs.
They found that through good documentation within the API, the developers’ code
security could be significantly improved. Similarly, Jain and Lindqvist [94] were
able to show that by providing appropriate APIs, developers can be nudged into
choosing more privacy-preserving coding choices.

Studying ML Practitioners’ Security and Privacy Practices. While the previously
mentioned related work focuses on studying security and privacy practices among
the general group of developers, our study focuses on ML practitioners. A definition
of the term ML practitioner and its delimitation to the term of developer used
within related work are provided in Section 3.3.3. Since the field of secure and
private ML is highly specific, the pool of ML practitioners is even smaller than
the pool of general developers. This makes studying their practices a challenging
task. To the best of our knowledge, this work, published as [29], is the first and
only one studying individual ML practitioners’ security and privacy awareness
and practices.

Studying ML Security and Privacy within Companies. In the work that is closest
to our study, Kumar et al. [108] studied ML security and privacy in practice
by surveying companies that rely on ML. More precisely, the authors conducted
interviews with two employees responsible for creating ML models and the security
personnel responsible for securing the company’s infrastructure from 28 different
companies. Their work, thereby, differs from ours in terms of study focus. While
we focus on the individuals in charge of implementing ML systems, and their
awareness and perception concerning the importance of the issue, [108] considers
the topic from a higher level, namely an institutional one with a particular emphasis
on the workflows. Their results highlight that most companies still rather put an
emphasis on traditional IT security. In general, the companies do not seem to
have the tools or knowledge to protect their ML systems. Furthermore, the study
reveals that privacy attacks are considered particularly threatening by companies.
While [108] work is mainly concerned with revealing gaps in the security of
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technical workflows, our work focuses on reasons and influential factors leading to
these gaps among the individuals in charge of the ML systems’ implementation.

3.3 Method

We conducted our study of awareness and practices in secure and private ML
among ML practitioners from all over the world. Therefore, we relied on an online
questionnaire containing questions about their perception and practices of ML
security and privacy along with questions on our participants’ demographics.

We split our study into two separate phases, a preliminary pilot and the full study.
The pilot study was intended as a validation instrument for the survey and to
identify potentially missing aspects that could then be added to the final study.

To host our online questionnaire, we used LimeSurvey [76]. Participants were
not compensated for their participation. Each participant was informed about the
handling of the data collected throughout the participation, and about the fact that
participation is voluntary and can be discontinued at any point. Solely the partici-
pants consenting to data collection were forwarded to the online questionnaire.

3.3.1 Pilot Study

For our pilot study that was limited to participants in Europe, we sent out a link to
our online questionnaire via email to 531 AI-related companies in Europe. In total,
41 ML practitioners from eleven different countries completed our questionnaire.
Additionally, the questionnaire was given out to 40 students enrolled in an ML-
related course at Free University Berlin. 32 out of the 40 students completed the
questionnaire. For detailed demographics on both developers and students who
completed the questionnaire, see Section A.2.1.1 in Appendix A.2.

The developer questionnaire consisted of 39 questions and took 16 min. 58 sec.
on average to fill out. For the student questionnaire, we left out the last section
about the GDPR and changed the questions in the demography group. The student
questionnaire consisted of 26 questions and took 7 min. 37 sec. on average.

We relied on the pilot study to obtain an accurate impression of the current state of
affairs in secure and private ML in practice. This can be considered an evidence-
based-design approach: instead of including solely information from existing
research papers, we heavily relied on quantitative elements in our pilot study in
form of free-text fields to inform the design of our full study. Relying on free-text
fields allowed us to gain qualitative insights into the ML practitioners’ perception,
experience, and practices around secure and private ML and privacy regulations at
the example of GDPR. Such aspects and details about individual perception would
not be fully captured through closed questions.
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Additionally, using free-text fields can help to mitigate biased answers, such as,
when a participant is aware of an attack or defense against ML security or privacy
but does not know the name used to refer to it within the questionnaire. There-
fore, we asked participants to describe, using their own words, what risks and
protective measures around the security and privacy of ML models there were
aware of. For the selection of ML libraries, we proceeded in the same way. Through
additional free-text fields, we collected further comments from our participants, for
example, on the question of whether our answer options were understandable and
complete.

To evaluate the free-text answers, two researchers separately identified code books
for different question groups. After an agreement on the final code books was
reached, both researchers independently applied these to the participants’ answers.
By using Cohen’s Kappa for inter-rater reliability [49], the agreement of the two
raters was calculated. This resulted in a Kappa value of 0.93, indicating strong
agreement on codes and labels in the data [62]. Finally, each case of disagreement
was resolved independently by discussion.

In addition to the free-text fields, our study also contained quantitative elements
such as multiple choice questions. These aimed at finding patterns in the data and
drawing conclusions on relationships between participants’ demographics, security
and privacy awareness in ML, and their resulting practices. Both our student and
developer questionnaire, as well as the code books, can be found in Section A.2.1.2
in Appendix A.2.

3.3.2 Structure of the Final Questionnaire

Informed by the pilot study, we adapted the questionnaire for our full study. In total,
the final questionnaire consisted of six main question groups. Their description is
taken from [29]:

1. Demographics: This section captures the demographic background of the
participants, i.e., their education, the country they were working in, their
daily ML-related tasks, and their present working situation. Participants
who indicated that they were currently employed were asked additional
questions about their employing company, e.g. number of employees, how
ML is applied, and the sector in which the company operates.

2. Data and Sensitivity: The practitioners were asked, among other things, what
type of data they were dealing with, whether this data is (directly) related to
individuals, as well as which domain it stems from.

3. ML security: The questions cover how important the participants judged
securing their ML models, how they built their knowledge on ML security
and privacy, and who in their working environment is responsible for securing
the ML models.
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4. Attacks: In this question group, four attacks (inversion [65], impersonation [7,
112], poisoning[24] and evasion attack[22]) on the security and privacy of ML
models were presented. For each of the attacks, the participants were asked
to indicate whether they were familiar with this attack and whether they had
already implemented preventive measures to defend against the respective
attack. To avoid participants mistakenly marking an attack as unknown just
because they were unfamiliar with the particular keyword, a short explanation
of the attack was provided together with its name.

5. ML privacy and security practices: Within this section, first, eight ML privacy
and security libraries were presented and the participants were asked whether
they were familiar with these libraries and whether they had used them. Fur-
thermore, 14 security and privacy practices identified within the participants’
answers in the pilot study were presented, along with an explanation for each
of them. Again, the practitioners were asked to specify per method, whether
they were familiar with it, and whether they had already implemented it.

6. GDPR: The last section contained questions regarding participants’ familiarity
with the GDPR and the changes in their ML-related privacy practices caused
by its adoption.

In total, the questionnaire contained 25 questions and took participants, on av-
erage, 11 min. 18 sec. to fill out. The full study’s questionnaire can be found in
Section A.2.2.1 in Appendix A.2.

3.3.3 Participants

The full study was conducted between July 2020 and October 2020 with ML
practitioners world-wide. Participant recruiting was performed by promoting the
questionnaire over official social media channels and websites of Fraunhofer AISEC,
Fraunhofer SIT, and Free University Berlin. Additionally, to reach more international
participants, the link to the questionnaire along with a brief description of the
research project was posted in ML-specific groups on Reddit and LinkedIn. While
the questionnaire was online, in total 1471 individuals clicked the link and opened
the survey. Of these, 94 completed the full questionnaire. For the full study, all
participants who indicated being a student were filtered out from the dataset, in
order to report solely data about actual ML practitioners. This resulted in a dataset
consisting of 83 fully completed questionnaires.

The majority of participants held high educational degrees. 80 out of 83 (96%)
participants had at least a bachelor’s degree. This is consistent with findings of a
survey among data scientists conducted by Kaggle (91% ) [98].

Out of our 83 participants, 73 (88%) were currently employed, 49 (59%) of which
at an early stage of their career measured in years of working experience with
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ML. Similar trends were also observed in the Kaggle study [98] where 55% of the
participants were reported to have less than three years of experience in the field.

Furthermore, most of our participants reported working for larger companies (54,
65% in companies of over 200 employees). The others worked in medium-sized
companies (18, 22% in companies with 11-200 employees), or smaller ones (5, 6%,
companies with ten or fewer employees).

Our participants specified working mainly in domains related to customers and
users or smart environments and connected devices. Most of them, furthermore, stated
working with the data types images, sensor, tabular, or text data. Some participants
used the possibility to specify ’other’ data types and specified working with
industrial and manufacturing data, publicly available datasets, or education-related data.

More than half of the participants indicated ML being the main component of
products developed within their department (47, 56.7%). In contrast, one-third
declared ML being included in the products but not as a key element (28, 33.7%).

The participants’ answers show that using standard ML libraries such as TensorFlow
[118] and Scikit-learn [145] is part of the daily tasks of 59 (71%) of them. 54 (65%)
participants indicated performing data analyses. For roughly half of the participants,
their daily tasks include data evaluation (47, 56.6%), data cleansing and preparation
(45, 54%), coordinating ML projects and workflows (44, 53%), as well as developing
custom ML applications, e.g. designing custom Neural Networks (NNs) for given
tasks (36, 43.4%). Note that questions on daily tasks were posed in a multiple choice
fashion such that participants could choose all applicable answers.

For a complete overview on participants’ demography, background, and working
environment, see Section A.2.2.2 in Appendix A.2.

Developers vs. Practitioners. While related work uses term of developers, this work
considers the slightly broader group of ML practitioners. The term practitioner,
thereby, refers to all individuals that conduct daily tasks around ML. From our par-
ticipants’ answers regarding their daily tasks, we were able to define the subgroup
of ’ML developers’ ex post. We consider an ML practitioner to be an ML developer
if their activities include ’develop custom ML applications (e.g. designing custom
NNs for a given task)’ or ’develop ML tools or libraries from scratch’. We chose this
approach of an ex post definition to counteract the fact that some ML practitioners
might not consider themselves a developer when being asked in the questionnaire.
This is because there exists no clear definition of the term ’developer’.

3.3.4 Data Analysis Methods

We implemented the data export, preprocessing and analysis in Python [185], using
the Python-libraries scipy.stats [187] and factor_analyzer [165].
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Correlation Analysis. To identify correlations within the data, we relied on the
Spearman’s rank correlation coefficient. To identify significant relationships between
two categorical variables, we employed the χ2 test of independence [119] We per-
formed group comparisons to identify whether particular response variables and
the differences between them can be associated with the membership of a practi-
tioner in a specific group. To compare three or more groups, we used the Kruskal-
Wallis H test [107]. To compare two groups, or when significant differences between
multiple groups were encountered, we performed (additional) pairwise compar-
isons with the Mann-Whitney U-test [60].

Corrections. We relied on the Benjamini and Hochberg correction [20] to counter
the problem arising from performing multiple comparisons on a single data set.
The correction was applied within individual hypothesis families. See the two
hypothesis families used during the analysis in Section A.2.2.3. In the following
section, when presenting the results of our study, the corrected p–value, p∗ instead
of the original uncorrected p–value p is indicated along with the corrected test
statistic.

Exploratory Factor Analysis. To investigate how ML practitioners built their aware-
ness around secure and private ML, we performed an exploratory factor analysis
to estimate the latent construct of awareness. During the pilot study, participants
described in their own words which risks of ML and defenses they were aware
of. This yielded four attacks against ML security and privacy and 14 possible
defenses. Following [86] which states that awareness corresponds to an individ-
ual’s knowledge about risks, protection, and prevention methods, the resulting
18 items were expected to correlate with the concept of awareness. Therefore, we
used them as a proxy for estimating awareness. For an overview on the factors see
Table A.7 in Section A.2.2.3. We validated our factor analysis by using Bartlett’s
test of sphericity [16] (χ2

(2) = 383.91, p < 0.001). Additionally, we performed the
Kaiser-Meyer-Olkin test [101, 102] (KMO = 0.84). Both criteria indicate the suitability
of our factor analysis. The number of selected factors was determined based on a
scree-plot highlighting that a solution based on one factor is sufficient by explaining
34% of variance in the data.

Calculating Awareness Scores. Furthermore, we performed a varimax rotation
assuming that the factors are uncorrelated. We only considered items with loadings
> 0.45 as correlating strongly enough with our factor. Thereby, five items were
excluded from further analyses as shown in Table A.7 in Section A.2.2.3.

We used Cronbach’s Alpha [51] to test the reliability of our constructed scale. With a
value of α = 0.86, the scale, consisting of 13 items, can be characterized as ’good’
by statistic’s definition.
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Finally, to derive a single variable characterizing the level of a participant’s aware-
ness, we calculated factor scores. Note that these scores can only serve as an
estimate of the unobservable concept of awareness, i.e., the hypothetical value that
a participant would exhibit if awareness was measurable. The resulting scores had
a range of [−1.55, 2.21] and were normalized to [0, 1] for better interpretability. We
refer to these normalized scores as Awareness Scores. Please note that due to the
normalization, the endpoints of the scale, 0 (no awareness) to 1 (high awareness),
are relative values rather than absolute ones. This is because normalization was
performed by the factor scores of the survey participants. As a consequence, even
if an individual exhibits a score of 1, this does not mean that this individual has
perfect awareness of secure and private ML. Instead, it indicates that the individ-
ual has the highest awareness among all participants concerning the concept of
awareness as defined for this study.

3.3.5 Limitations and Biases

Finally, we present possible limitations and biases of this work.

Note that studying ML practitioners is a challenging task due to the difficulty
of recruiting such a specialized population. As a consequence, our sample of
participants contains some demographic biases. The first bias is a sampling bias
regarding geographic location. Even though the great effort was taken to reach ML
practitioners from all over the world, the majority of our participants indicated
currently working in Europe. The second bias results from the application fields in
ML among our participants. See Table A.3 in Section A.2.2.2 for a detailed overview
on occupation fields. Another imbalance concerns the years that our participants
indicated working with ML. The largest groups of participants indicated working
with ML for 1-3 years (49, 59%). As mentioned above, this observation is congruent
to the Kaggle survey (55%) [98]. Hence, it does not necessarily reflect a bias. Instead,
the observation can be caused by the current developments in the field of ML and
the large number of ML-related positions being created in recent years. Yet, as a
consequence, our results might not be representative of all ML practitioners in all
fields and at all levels of experience.

Furthermore, our difficulties in recruitment were aggravated by the fact that we
did not offer monetary compensation for participation in our study. Note that
the decision to not offer such compensation was a deliberate one with the aim of
preventing dishonest participants who just click through the study to obtain their
reward. Hence, our ML practitioners’ decision to participate was voluntary and,
therefore, depends to a large degree on individual motivation and interest in the
topic. Based on the pros and cons, we decided to accept the risk of sampling too
many ML practitioners who are already more interested in the topic.
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Figure 3.1.: Awareness Scores. Count plot of the participants’ normalized aware-

ness scores. 0 indicates no awareness and 1 high awareness. Figure
adapted from [29].

As a consequence of the above-mentioned limitations, we are aware that the
conclusions based on this survey might not generalize to all ML practitioners.
Instead, this work can be considered as a starting point to assess ML practitioners’
awareness and the state of affairs in secure and private ML. This can inform the
improvement of existing and the design of new and better tools and standards in
the field. Also, note that in particular the qualitative results from the study are
independent of the sample size and provide valuable insights into the field.

3.4 Results

The four main findings of our study can be summarized as follows:

• The average awareness of security and privacy threats and protection mea-
sures among the surveyed ML practitioners is comparatively low.

• Academic education seems to have no significant impact on awareness of
secure and private ML.

• ML protection methods put into place, especially for improving privacy, are
less well-known than traditional and ML-specific security measures.

• The introduction of the GDPR appears to have no far-reaching impact on ML
workflows in particular, and leaves the studied ML practitioners with several
uncertainties.

This summary is taken from [29]. In the following, we depict the results more in
detail to answer our two research questions.

3.4.1 RQ1: Machine Learning Practitioners’ Awareness

When evaluating the practitioners’ individual perceptions of the importance of
securing their ML models, we found that 54 participants (65%) consider this
task ’important’ or even ’very important’. However, at the same time, our results
suggest that our surveyed participants exhibit, in general, relatively low awareness
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(a) Study methods used by ML practition-
ers to build awareness. A: ’University’,
B: ’Workshops’, C: ’Practice’, D: ’Self-
Study’, E: ’Other’.
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(b) Distribution of ML practitioners’
awareness scores for the four most
frequently mentioned combinations
of learning methods used by the
participants.

Figure 3.2.: Study Methods for Secure and Private ML. The binary arrays in
(b) decode whether the following methods were applied (1) or not
(0): [University, Workshops, Practice, Self-Study]. The box plots in (b)
correspond, from left to right, to 15, 14, 15, and 13 mentions respectively.
Figures adapted from [29].

regarding security and privacy in ML. Figure 3.1 depicts the awareness scores
over all survey participants. The quantiles of the normalized awareness score can
be reported as q0.25 = .173, q0.5 = .389, q0.75 = .522, with scores between 0 (no
awareness) to 1 (high awareness). In particular, our results do not show a correlation
between the ML practitioners’ perceived importance of securing their ML models
and their respective awareness (r(81) = .073, p∗ = .62). We, therefore, suspect
that our results regarding the practitioners’ perceived importance might contain a
desirability bias, based on the survey’s introductory text mentioning researching
security and privacy awareness as the goal of our study.

Building Awareness. We tested the hypothesis that an ML practitioner’s education
level has no influence on their awareness in the field. Our results suggest that,
indeed, the education is no suitable indicator for awareness (χ2

(4) = 0.89, p∗ = .827).
We hypothesize that this is due to universities having only recently started to
extend their study programs around artificial intelligence and ML [19]. This would
explain why the impact of education in the field does not yet translate into the
working environments, and hence, to our study participants.

Furthermore, secure and private ML are very specific sub-fields of ML, and there-
fore, they might not be taught extensively in universities. This hypothesis is backed
up by our results suggesting that only 25 (30%) of our ML practitioners specified
having acquired their knowledge around secure and private ML in university. Most
of our participants stated that they have built their awareness through ’practice’ (61,
73.5%) and ’self-study’ (56, 67.5%). These findings are congruent with the findings
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Figure 3.3.: ML Practitioners’ Working Environment. Number of participants per
working environment and the average awareness value with its stan-
dard deviation. A: ’Industry’, B: ’Academic Research’, C: ’Industrial
Research’, D: ’Hobby’. The bars do not add up to the sample size of
83 due to the possibility of giving multiple answers. Figure adapted
from [29].

of Balebako et al. [12]. Figure 3.2a presents a compact overview on our participants’
study methods for building awareness. Note that the question on methods used
to build awareness allowed for multiple answers, asking the participants to select
all applicable options. Therefore, the total count in the figure does not correspond
to the number of participants n = 83. Due to the possibility for the participants
to specify more than one study method, our results do not allow us to individu-
ally assess which study method has the largest influence on the ML practitioners’
awareness. However, the results support the general assumption that the more
sources for learning an individual relies on, the higher their respective awareness.
Figure 3.2b shows the four most frequently reported combinations of learning
methods and the respective awareness scores.

Apart from their answers to the closed questions in our pilot and full study, several
participants also used free-text fields to add comments, such as “I didn’t yet work
with sensitive data, so I didn’t yet have to build that knowledge“, or “I never thought
about securing my machine learning systems, mainly because they are research oriented
rather than production oriented systems“. These answers motivated us to study the ML
practitioners’ working environment to gain insights into what factors contribute to
determining their awareness.

Working Environment. Our strongest finding when it comes to the impact of their
work on the practitioners’ awareness highlights that the number of years that an
individual works with ML, professionally or as a hobby, has the largest effect on
their individual levels of awareness (r(81) = .36, p∗ = .005).

We furthermore investigated whether the concrete environment where an individ-
ual works with ML has an impact on their awareness. Therefore, we considered
’industry’, ’industrial research’, ’academia’, and ’hobby’ as possible working envi-
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(a) Data Type. A: ’Audio’, B: ’Location’,
C: ’Tabular’, D: ’Images’, E: ’Text’, F:
’Video’, G: ’Metadata’, H: ’Sensor’.
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(b) Data Domain. A: ’Financial’, B: ’Smart
Env. and IOT’, C: ’Public Security’,
D: ’Customers and Users’, E: ’Trans-
port and Traffic’, F: ’Social Media’,
G: ’Medical and Health’, H: ’Weather
and Environment’.

Figure 3.4.: Data vs. Awareness. Influence of data on ML security and privacy
awareness with the respective average awareness score and its standard
deviation. Figures adapted from [29].

ronments. Since these environments differ significantly regarding their workflows
and goals, a difference in the individuals’ awareness could be expected. Due to the
possibility of an individual working with ML in several of these environments at
the same time, we asked our survey participants to select all options that apply
to them. As a consequence, neither group-wise comparisons nor Friedman tests
are applicable for analyses. Therefore, we visually depict in Figure 3.3 the absolute
numbers of participants who indicated to work in a specific environment together
with their average normalized awareness scores. The figure indicates that individ-
uals working in the industry have a slightly higher awareness than individuals
working in other environments. Yet, the differences are not significant. This result
is not surprising since the fact that individuals can work in several environments
at the same time can cause spillover effects.

Building on Pieczu et al. [149], we investigated whether the size of an organization
in terms of employees that an ML practitioner works in has an impact on their
security and privacy awareness. Such awareness can, for example, be built, through
organizational security policies and guidelines. However, our results do not show
a correlation between the size of their organization and the ML practitioners’
awareness (χ2

(8) = 15.26, p∗ = .109).

Data. As another aspect of an individual’s working environment, we studied the
impact of the data that ML practitioners work with on their individual awareness.
For example, the type of data might have an impact on awareness. This is because,
e.g., individuals who work with medical patient data or portrait images might
have a higher awareness than individuals who work with industrial sensor or with
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Figure 3.5.: Awareness among (Non-)Developers. Distribution of the ML prac-
titioners’ normalized awareness score grouped by whether they are
considered to be ML developers or not. Figure adapted from [29].

weather data. Figure 3.4a provides an overview on the eight groups of different
data types (image, video, audio, text, location, meta, sensor, and tabular data)
and the respective practitioners’ average awareness. The figure shows only slight
differences across the different data types. Note that some data types, such as
audio (.50) and location data (.48), lead to a higher score than, for example, images
(.41). This might be explained by the fact that this data is particularly sensitive,
and thereby, has a positive influence on the respective ML practitioners’ awareness.
However, this could be the same for video or metadata, which, in our study, led to
the lowest awareness score (.39 and .39) apart from sensor data. Figure 3.4b shows a
similar analysis regarding the domain of the data that our survey participants work
with. It can be seen that there are only slight differences in awareness between
awareness of ML practitioners depending on the domain of data that they work
with.

The small differences in average awareness between different data types and data
domains can be caused by the fact that, most likely, practitioners in their working
environment, have to deal with different kinds of data, which can cause spillover
effects in our results again. Additionally, it can be due to the fact that all kinds of
data can contain both sensitive and non-sensitive information. Therefore, we also
explicitly surveyed whether an ML practitioner was working with sensitive data, i.e.,
data that is directly or indirectly related to human beings. It might be expected that
individuals working with data that is directly related to human beings exhibit the
highest awareness. However, our results show the highest average awareness among
ML practitioners who work with data that is only indirectly related to individual
human beings (.44). The average awareness of ML practitioners working with data
that is directly related to individuals or not related to them at all is lower (.35

and .32, respectively). A Kruskal-Wallis test did not discover significant differences
among individuals from the three groups of data (χ2

(2) = 4.09, p∗ = .194). This
indicates that even working with data that is directly related to individual human
beings has no significant effect on our ML practitioners’ awareness.
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Figure 3.6.: GDPR and Workflow Changes. Changes in ML related workflows due
to the introduction of the GDPR are grouped by whether the data that
the ML practitioners are working with is directly related to individuals,
indirectly or not related at all. Degree of changes: A: ’Not at all’, B:
’Very little’, C: ’Somewhat’, D: ’Very much’, E: ’To a great extent’. Figure
adapted from [29].

Tasks. Moreover, we studied if ML practitioners’ daily tasks have an impact on their
awareness of security and privacy in ML. In particular, we distinguish between
individuals who perform high-level tasks, such as applying ML libraries, and the
ones who perform more low-level tasks, such as developing libraries. As introduced
in Section 3.3.3, we created the group of ’ML developers’ post hoc, based on the
participants’ daily tasks. Our analysis shows that ML practitioners who belong to
the group of ML developers have a significantly higher average awareness than non-
developers (U(41,42) = 584.0, p∗ = .018). We visualize these results in Figure 3.5. The
observed effect can, most likely, be explained by the fact that developers require a
deeper understanding of ML than individuals performing more high-level tasks.

GDPR. As the last factor that can potentially influence ML practitioners’ awareness
of security and privacy, we considered legal requirements at the example of the
GDPR. Since the GDPR might not apply to study participants from outside the
European Union, we excluded these participants from the analysis. Therefore, the
following results reported regarding the GDPR only refer to 64 ML practitioners
who indicated working within the European Union.

When studying what group of ML practitioners experienced the largest changes in
their ML-related workflows due to the introduction of the GDPR, we relied on their
self-assessment. Figure 3.6 presents this self-assessment, grouped by whether the
data an ML practitioner works with is directly related to individuals, indirectly or
not related. Surprisingly, the majority of ML practitioners in our study reported that
they did not experience any changes in their workflow. Unsurprisingly, among these
individuals, most reported dealing with data that is not person-related. However,
the opposite effect could not be confirmed through the data: individuals working
with data that is directly related to human-beings did not report significant changes
in their workflows, either. Instead, their reported changes are similar to the changes
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reported by the ML practitioners who work with data that is indirectly related
to individuals. We assume that this similarity is due to the GDPR also requiring
data that is only indirectly related to persons to be protected in order to prevent
re-identification. An additional Kruskal-Wallis test (χ2

(2) = 12.39, p∗ = .005) and a
pairwise comparisons between the different degrees of data-sensitivity support the
findings visualized in Figure 3.6. Indeed, the group of ML practitioners working
with non-human related data differs significantly from the other two groups when
it comes to changes in the ML-related workflows (U(23,17) = 97.0, p∗ = .005),
(U(23,23) = 130.0, p∗ = .003). No statistically significant changes can be observed
between the two groups of individuals working with indirectly or directly human
related data (U(17,23) = 171.5, p∗ = .38).

In addition to the closed questions, we also included several free-text questions
concerning the introduction of the GDPR in our questionnaire. The participants’
answers highlighted that changes implemented after the introduction of the GDPR
mainly affect the general workflows and not the specific ML-related ones. The
changes that were reported include the reduced collection of data, data handling
(e.g. anonymization and documentation), and data storage (e.g. location and secu-
rity measures of the servers, access control, and encryption). One participant, in
particular, stated “It [the GDPR] is more important when it comes to data collection than
the training phase or ML model development“. The few changes that were reported
specifically for the ML-related workflows include, according to, for example, one
participant’s statement, “I can not [sic] use a lot of features that I used before and so, the
strategy to solve some problems has changed“. However, several ML practitioners stated
that they were insecure when it comes to the changes that the GDPR requires for
their ML workflows. These insecurities included, above all, the Right to be Forgotten.1

Most practitioners stated that they lack knowledge on the implementation of this
requirement, as can be illustrated by the statement of one participant who specified:
“Since GDPR requires the “right to be forgotten“, we would need to artificially keep a
correlation in order to be able to forget a specific individual, which, however, violates the
GDPRs requirement to only store information that is required to operate a system“.

As the last aspect concerning GDPR-related changes in ML workflows, it seems
that third-party infrastructure and service providers have a lot of influence on the
security and privacy of ML. Several participants stated in our survey that they rely
on these parties without questioning them. For example, one participant stated that
to implement the GDPR-related changes in their ML workflows, they “checked some
boxes in AWS“. Another participant explained more in detail: “I heavily rely on third
party services to train and store my data, such as google cloud platform and AWS. Thereby,
I hope their default security support is enough to protect my models and data“.

1The Right to be Forgotten (Article 17, GDPR [188]) states: “The data subject shall have the right
to obtain from the controller the erasure of personal data concerning him or her without undue
delay and the controller shall have the obligation to erase personal data without undue delay”
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Figure 3.7.: Distribution of Responsibility for Securing the ML Models. (Who
takes care of the security of the machine learning (ML) models in your working
environment?) by company size. Figure adapted from [29].

3.4.2 RQ2: State in Secure and Private Machine Learning

After studying the individual ML practitioners’ awareness, we turned to answer
RQ2 by assessing the state of secure and private ML in practice.

Responsibilities. As a first insight into the state of secure and private ML in
practice, we investigated who in the ML practitioners’ working environment carries
the responsibility to secure the ML models. The results are visualized in Figure 3.7.
We could not reject the null hypothesis that the question of who is responsible for
ML security is stochastically independent of the organization size (χ2

(32) = 43.11,
p∗ = .182). It seems that independent of the size of the organization, most of
the time, the ML models’ security is taken care of—either by an individual, a
collective, or a designated expert. However, across organizations of all sizes, there
seem to be cases where nobody is responsible for ML security. Through our
participants’ additional free-text answers regarding responsibilities for ML security,
it, furthermore, seems that, in some cases, ML security is taken care of by a
process implemented by the organization, or by each individual in charge of
model deployment. Several participants also specified that their organization’s IT
department or security or data science teams implement ML security. Our results
also indicate that there is no correlation between an individual’s educational degree
and their individual responsibility for securing their organization’s ML models
(U(47,35) = 774.5, p∗= .395). The same holds for the years that a participant is
already working in ML (U(48,35) = 728.5, p∗ = .212). This finding is surprising since
our results reported in the previous section show a significant positive correlation
between the years that an individual works with ML and their awareness. Therefore,
one might have expected individuals with longer working experience to be in charge
of securing the ML models.

Attacks. Moreover, we investigated the ML practitioners’ awareness of attacks and
threats against their ML models. Our findings highlight that 24% of our partici-
pants have never heard of any of the four attacks mentioned in our questionnaire
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Figure 3.8.: ML Practitioners’ Familiarity with Attacks and Defenses. Overview
of the participants’ awareness of the attack and defense methods men-
tioned in the questionnaire. For attacks, the question was if the partic-
ipants had already implemented measures to defend against it, or if
they were familiar, or unfamiliar with it. 1: Inversion Attacks, 2: Imper-
sonation Attacks, 3: Poisoning Attacks, 4: Evasion Attacks. For defenses,
the participants were asked if they had implemented this defense, or if
they were familiar, or unfamiliar with it. Cluster 1 (A: Data Sanitization
[136], B: Access Control [163], C: System Security [172], D: Ensemble
Learning [55], E: Data Provenance [36], F: Observing Model Input at
Inference Time [15]), Cluster 2 (G: Differential Privacy [58], H: Homo-
morphic Encryption [79], I: Watermarking [131], J: Privacy Preserving
Record Linkage [186]), Cluster 3 (K: Smoothing [50], L: Introducing
Delay [167], M: Adversarial Training [78], N: Federated Learning [105]).
Figure adapted from [29].

(inversion, impersonation, poisoning and evasion attack). This aligns with find-
ings reported by Kumar et al. [108]. The participants familiarity across the four
attacks was rather uniformly distributed and did not exhibit significant differences
(χ2

(3) = 1.12, p∗ = .772) as also depicted in Figure 3.8a. More than half of the sur-
veyed participants have at least heard of the attacks. However, only 10-20% of them
have actually implemented measures to defend against the respective attacks.

Defenses. When it comes to defense methods to protect ML models’ security and
privacy, the ML practitioners’ familiarity is less equally distributed. In fact, vi-
sual and statistical evaluation of the familiarity with defense methods highlights
significant differences over different defense methods (χ2

(13) = 93.19, p∗ < .001).
Figure 3.8b depicts the defense methods clustered according to the participants’ fa-
miliarity with them. The clustering was obtained using the K-Means algorithm [96],
while the number of clusters was obtained by the elbow method [104]. This resulted
in the generation of three clusters that, interestingly, map to semantic units.
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Figure 3.9.: ML Practitioners’ Familiarity with Libraries. Libraries to support
security and privacy in workflows: A: TensorFlow Privacy [122], B:
Cleverhans [139], C: PySyft [159], D: Googles Differential-Privacy [195],
E: Uber SQl Differential-Privacy [97], F: AdverTorch [56], G: Foolbox
[153], H: ART Toolbox [135]. Figure adapted from [29].

The first cluster contains methods that up to half of the ML practitioners reported
having implemented already (data sanitization [136], access control [163], system
security [172], ensemble learning [55], data provenance [36], and observing model input
at inference time [15]). All these methods implement rather classic than specific
ML security, which can serve as an explanation of why these defenses are so
prevalent.

In the second cluster, we find methods used for privacy and confidentiality protec-
tion of ML models (differential privacy [58], homomorphic encryption [79], watermarking
[131], and privacy preserving record linkage [186]). For most of these methods, our
study participants indicated being unfamiliar with them. However, only a minority
of ML practitioners have already implemented them.

The third cluster contains methods that can be applied to ensure security of ML
models (smoothing [50], introducing a delay for model interaction [167], and adversarial
training [78]), or to protect the training data (federated learning [120]). Similar to the
second cluster, most participants have not implemented these methods. However,
the participants’ theoretical familiarity with these methods seems to be higher than
in the second cluster.

Libraries. Apart from their familiarity with attacks and defenses, we also surveyed
ML practitioners concerning their familiarity with selected libraries to support
the implementation of security and privacy in ML. As stated in Section 3.3.1, we
selected the libraries according to the participants’ answers in the pilot study. All
the resulting libraries are Python libraries which can be explained by the popularity
of this language in building ML applications [189]. Additionally, also Kumar et
al. [108] reported that 16 of 28 organizations included in their survey use Python
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frameworks, e.g. Keras, TensorFlow, or PyTorch while ten rely on ML-as-a-service
providers, and only two build their ML systems from scratch. In Figure 3.9, we
display our participants’ familiarity with the given libraries. The figure highlights
that across all libraries, the percentage of ML practitioners who have actually used
them is comparably low. The most popular library seems to be TensorFlow Privacy
with roughly 50% of all practitioners being familiar with it.

3.5 Discussion of the Findings and Outlook

This section discusses the findings of our study and gives an outlook on further
research required in the area, structured according to our two research questions.

3.5.1 RQ1: How is ML security and privacy awareness built, and which
conditions contribute to the degree of knowledge with respect to
threats and corresponding defenses?

Concerning the first research question RQ1, our study yielded three main results.

1) The surveyed ML practitioners’ awareness of attacks or threats, as well as
of security and privacy practices in ML is relatively low. Similar findings were
reported by Kumar et al. [108] for ML and by the studies presented in Section 3.2
for general security and privacy practices among developers. The finding might
be explained through the fact that in both ML and standard IT applications, the
security and privacy requirements are usually kept separate from the requirements
that concern functionally [61]. Additionally, functionality is usually taken care
of before implementing the security and privacy requirements [132]. This might
lead to these being fully neglected when deadlines approach. Another possible
explanation could be given by the fact that many companies nowadays are still in
the early stages of adopting ML. Therefore, security and privacy might not yet be
driving factors. Instead, the products are still rather experimental and proofs of
concepts [113].

2) Most ML practitioners did not receive academic training on ML security and
privacy. Similar to the results reported for general security practices [12], our study
highlights that most of ML practitioners did not receive any formal academic
training regarding ML security and privacy. As shown in Figure 3.2b on page 33 in
the previous section, only roughly one third of our participants reported having
learned about ML security and privacy in university. This result is not surprising
given that ML security and privacy is an even more specific field than general
security and privacy, and that only in recent years, there has been a significant
increase in ML-related programs in universities. The latter might, in the upcoming
years, lead to an increase in the overall literacy on the topic. However, the results of
this study also suggest that formal education degrees do not significantly correlate
with practitioners’ awareness of ML security and privacy. Instead, the years of
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work experience in ML exhibit a significant positive correlation with individual
awareness. Similar results were also reported by Acar et al. [4]. This suggests
that improving academic education on the topics might just be one possible step
towards raising ML practitioners’ awareness. This intuition is supported by the
finding of our study showing a positive correlation between the extent of different
educational resources used and awareness of security and privacy in ML.

3) Our study showed no correlation between the size of the organization where
the surveyed ML practitioners work in and their personal awareness. In general,
one might expect ML practitioners in larger organizations to exhibit a higher aware-
ness. This is due to such larger organizations often implementing organization-wide
coding and security guidelines, peer-review processes, and internal training. How-
ever, it is also possible that awareness in smaller organizations, such as start-ups, is
at a similar level because the ML practitioners there need to deal with security and
privacy by themselves whereas practitioners in larger organizations might have
dedicated experts whom they can rely on to implement them, instead.

3.5.2 RQ2: What is the current state of affairs concerning ML security
and privacy among ML practitioners?

We report four main findings concerning the state of affairs in ML security and
privacy in practice.

1) The participants’ familiarity with protection strategies for their ML models is
very unevenly distributed. Interestingly, we observed that the clusters regarding
familiarity with the defense methods correspond well to semantic units. The
cluster that exhibits the highest familiarity contains methods from general security.
Defenses from the cluster containing methods for (partly) ML-related security
are less well known and implemented. The cluster with the lowest familiarity
among the ML practitioners contains methods for protecting ML privacy and
confidentiality. This suggests that, so far, these methods have received the least
attention. However, the finding leaves open the question if this leads to privacy
in ML models being less protected than security. Alternatively, one could assume
that privacy is mainly considered in other parts of the workflows around the ML
models as suggested by several participants’ free-text answers.

2) Over all organization sizes, there are cases where nobody is responsible for the
model security and privacy. Independent of the practitioners’ awareness, within
organizations of all sizes, there exist cases where nobody is in charge to ensure
the ML models’ security and privacy. This finding is aligned with results reported
by Flechais et al. [61] who conducted a case study in the area of application
development. They showed that often, no developer was explicitly responsible for
the security of the project.
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3) The introduction of the GDPR had comparatively little impact on ML work-
flows in particular. In general, when it comes to the GDPR, several of our survey
participants mentioned uncertainties about the formulation of the GDPR and its
technical applicability for ML in particular. By inviting more ML practitioners to
join in the policy-making processes around data protection, such issues could be
mitigated in the future [11]. This could be complemented by the provision of precise
guidelines on how to implement the regulations for ML, similar to guidelines that
exist already, for example, in the area of secure app development [10, 38]. However,
to date, this represents a difficult task since research on secure and private ML
is still at a stage where concrete recommendations are only possible for some
well-defined issues and not in general.

4) The surveyed practitioners’ familiarity with the presented security and privacy
libraries for ML is low. Integration of security and privacy can be facilitated by the
use of the right tools and libraries. Research by Wurster and van Oorschot [196]
suggests that tools that include security should be more usable than tools that
do not in order to encourage developers to use them. This suggestion is also
formulated by other research work [94, 174]. In a similar vein, the low popularity
of libraries supporting secure and private ML might be explained by their limited
usability, their applicability to very specific scenarios, and their lack of expressive
documentation. As a consequence, to increase the application of libraries for secure
and private ML, in the future, it might be valuable to investigate ML practitioners’
working practices further beyond the scope of this work, study their functional
needs thoroughly, and adapt existing libraries according to these findings [170].
In the adaptation of the libraries and tools, also human factors should be taken
into account, such as the practitioners’ expectations of the libraries’ functionalities,
behaviors, and interfaces [40]. Moreover, an improvement of existing documentation
and the provision of secure and private code examples could be helpful [108, 130,
149]. The latter ones are shown to improve security and privacy in general-purpose
code since developers follow such examples very closely [94].

As an additional factor, the inherent support and integration of security and privacy
protections into third-party software should be implemented. Our survey’s results,
similar to the results of Kumar et al. [108], highlight that ML practitioners rely on
third-party services heavily for both functionality but also for the integration of
security and privacy. To prove the third-parties’ correct integration of the methods,
some certificates could be issued by a trusted certifying authority. Such assessments
are already widely available for different software products, e.g. cryptographic
modules, database servers, or operation systems [35]. We assume that by employing
adequate libraries, tools, and third-party software, and by relying on automated
detection of attacks and application of defenses, ML practitioners can be supported
in implementing ML security and privacy. The question of individual awareness on
the topic would then shift to awareness on choosing the right tools and employing
them correctly rather than being aware of each individual threat and defense.
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3.6 Conclusion

Our study investigated awareness of security and privacy among ML practitioners,
their practices with regard to the field, and the impact of the introduction of
the GDPR on their workflows. Our results highlight that our survey participants’
awareness of ML security and privacy in general, and ML-specific privacy measures
in particular, is comparably low. Furthermore, we observed a low familiarity with
existing libraries to support secure and private ML development. Finally, third-
party services seem to play an important role in ensuring ML security and privacy
since ML practitioners trust them to provide sufficient protection.
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Chapter4
Data Reconstruction Attacks in Fed-
erated Learning

The previous chapter highlighted the important role of third-party services and
their providers in implementing privacy protection in Machine Learning (ML).
One service or protocol that was, for a long time, promoted as a solution for
implementing privacy-preserving ML is Federated Learning (FL). As depicted in
more in detail in Section 2.2, FL allows to use the private data of its clients to
jointly train an ML model without this data ever having to leave the clients’ devices.
Instead, each device computes model updates and sends them to a server which
aggregates the updates to produce a shared model. If we were to assume that the
model updates do not reveal the clients’ data, FL would, indeed, preserve a notion
of privacy. However, this assumption has already been contested by prior work
several times: model updates sent to the server do not only leak training data
membership [125], and thereby allow an attacker to tell if a given data point was
used in training. At the same time, they reveal properties of the training data [68,
125] and even allow to partially reconstruct clients’ training data [70, 193, 200, 205,
207]. Such data reconstruction represents the most severe form of privacy disclosure
for the clients in an FL protocol.

In this chapter, we present adversarial weight initialization as a novel attack vector
against privacy in FL. The idea of adversarially initializing model weights was,
so far, solely explored for producing ML models with decreased training perfor-
mance [81]. We introduce two types of adversarial weight initializations to attack
privacy. The first one allows to extract client-data directly from model updates, i.e.,
the gradients sent from clients to the server. The second one enables to forward
clients’ input data unaltered over fully-connected and convolutional model layers
and, thereby, allows to extend our data extraction attack to a broader range of
model architectures. The attack vector of adversarial weight initialization natu-
rally integrates in the FL protocol where the server holds full control over the
shared model. See Figure 4.1 for an overview on the course of our novel active data
extraction attack.
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Figure 4.1.: Course of our Novel Active Data Extraction Attack. 1 The server
adversarially initializes the weights of the shared model. 2 The server
sends the manipulated model out to the clients. 3 Clients calculate
model gradients on their local private data and 4 send these gradients
to the server. 5 The server then extracts the private client-data directly
and perfectly, i.e. with zero error, from the received gradients.

In the following, in Section 4.1, we first present prior data reconstruction attacks
against FL and highlight their limitations. In Section 4.2, we go a step beyond these
attacks and introduce our novel observation that gradients sent from clients to the
server include full, memorized training data points. Afterwards, in Section 4.3, we
propose an adversarial weight initialization that builds on this observation and
can significantly increase the proportion of perfectly reconstructable client data
points. Thereby, this adversarial weight initialization can be used to perform a data
extraction attack in FL. Remember from Section 2.3 that data extraction is a specific
form of data reconstruction where data can be extracted directly and without any
error from the ML model. We then present our second type of adversarial weight
initialization in Section 4.4 which allows to forward ML models’ input data unal-
tered over fully-connected and convolutional model layers. Thereby, it makes the
data extraction attack applicable to a broader range of ML model architectures Fur-
thermore, we propose methods on making the manipulations of the model weights
inconspicuous. In Section 4.5, we experimentally evaluate our novel adversarial
weight initializations. We show that our data reconstruction attack is even effective
when the model gradients are computed over large mini-batches of complex data,
even when this data belongs to the same class—scenarios in which previous attacks
usually fail to obtain high-fidelity reconstructions [190]. Additionally, we depict
that while previous reconstruction attacks rely on solving complex optimization
problems that require tens of thousands of back-propagation iterations over the
model, our attack extracts individual training inputs by simply projecting the
appropriate portions of the clients’ gradients onto the input domain. We thereby
reduce the computational time needed to restore individual training data points
from several hours to a few milliseconds. Finally, in Section 4.6, we conclude with

48



4.1. Related Work on Data Reconstruction Attacks

a brief summary of our findings and give an outlook on the implications of our
work for privacy in FL.

A preprint with the results presented in this chapter has been made available
online [30] prior to composing this dissertation. Therefore, main parts of this
chapter contain content directly taken from [30].

4.1 Related Work on Data Reconstruction Attacks

This section, adapted from [30], introduces prior work on data reconstruction at-
tacks and discusses limitations of attacks that are based on iterative optimization.

4.1.1 Prior Data Reconstruction Attacks

Phong et al. [148] were the first to show how gradients leak information that can be
used to recover training data from single neurons or linear layers. Recent work [70,
148, 193, 200, 205, 207] proposed that the server or clients involved in FL training can
launch data reconstruction attacks based on either training a Generative Adversarial
Network (GAN) [77] or solving a second order optimization problem.

Class-wise Representation Reconstruction Attacks. Hitaj et al. [90] were the first to
propose a GAN-based data reconstruction attack, called DMU-GAN. The attacker
must know the dataset’s classes, and the reconstructed data points are generic
representations of class-wise properties rather than individual client data points
or classes. Wang et al. [193] suggested mGAN-AI, which extends DMU-GAN’s
reconstruction attack to per-client class-wise representations, but still does not
extract individual data points. Additionally, both methods require access to data
from the same distribution as the clients’ training data. [176] observes that class-
wise representations are embedded in model updates even without the need to
reconstruct them using a GAN, and suggest defenses.

Optimization-based Instance Reconstruction Attacks. Several attacks aim to re-
construct individual client data points while also relaxing the assumption that data
labels are available to the attacker. Zhu et al. [207] proposed Deep Leakage from
Gradients (DLG), where a data reconstruction attack is formulated as a joint opti-
mization problem on the labels and input data. In follow-up work, iDLG [205] sped
up the convergence rate of DLG [207] by analytically computing the labels based on
the clients’ gradients of the last layer. These works, and other optimization-based
ones [70], are limited to a setting where mini-batches only contain a single example,
i.e., B = 1. In subsequent work, GradInversion [200] regularizes DLG’s objective to
improve the extraction fidelity, attaining some success in extraction for mini-batches
of size B > 1.
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Algorithm 1: Optimization-Based Data Reconstruction [207]. Algorithm taken
from [30].

Input: Gradients, G[t]
i , received from victim client ui at iteration t, Shared

model f [t]W (·) at iteration t.
Output: Reconstructed training data, (x∗i , y∗i )

1: (x̂
[1]

, ŷ
[1]
)← (N (0, 1),N (0, 1)) ▷ Initialize

2: for t̂ ∈ [1, T̂] do
3: Ĝ[t̂] = ∇WL( f [t]W (x̂t̂), ŷt̂) ▷ Dummy gradients

4: D
ˆ[t]
= ∥G[t]

i − Ĝ[t̂]∥2 ▷ Dummy vs client gradients

5: x̂
[t̂+1] ← x̂

[t̂] − α∇
x̂[t̂]

D
ˆ[t] ,

6: ŷ
[t̂+1] ← ŷ

[t̂] − α∇
ŷ[t̂]

D
ˆ[t]

7: end for
8: (x∗i , y∗i )← (x̂

[T̂+1]
, ŷ

[T̂+1]
)

Data Extraction Attacks. As presented in Section 2.3.3, data extraction attacks can
be considered a specific form of data reconstruction attacks where the individual
training data points can be extracted directly and without any error from the ML
model or its gradients. In concurrent work, Fowl et al. [63] consider a threat model
in which the server also manipulates the shared model, similar to our setup. This
attack relies on the existence of a fully-connected layer early within the network
(otherwise, the attack adds it). Since this layer’s weights have to contain many
weight rows with the exact same weight values, this layer is inherently detectable.1

Additionally, they do not discuss passive analytical-extraction attacks. Finally, our
work generalizes their setup and performs successful extraction at arbitrary model
layers, also for textual data.

4.1.2 Limitations of Optimization-Based Attacks

We hereby provide a brief exposition to Zhu et al. [207]’s DLG, as a representa-
tive case study of an optimization-based attack. Their approach, characteristic of
optimization-based data reconstruction attacks, is given in Algorithm 1. It firstly
randomly initializes a “dummy data point and corresponding label” (x̂, ŷ) and
computes the resulting “dummy gradients” as Ĝ = ∇W tL( fW t(x̂), ŷ). Then, they
iteratively optimize the dummy data to produce gradients that are close to the
original gradients G[t]

i by solving:

1This is inherent to the attack because the method relies on each row computing the exact same
function on the data and binning its result by varying only the bias term, such that it becomes
likely that a bin contains only one input. Conversely, our adversarial weights are initialized such
that it is likely that an output neuron is only activated for a single input in a mini-batch while
avoiding imposing a highly regular structure on the weight matrix.

50



4.2. Data Leakage from Model Gradients

x∗i = arg min
x̂
∥G[t]

i − Ĝ∥2, y∗i = arg min
ŷ
∥G[t]

i − Ĝ∥2. (4.1)

DLG often fails to reconstruct high-fidelity data points and discover the ground-
truth labels consistently because of a lack of convergence in the optimization. While
other methods offer improvements (e.g., iDLG [205] sped up the convergence by
simplifying the objective in Equation (4.1) by first extracting the data labels from the
gradients, and then optimizing only over the data points; and GradInversion [200]
adds useful regularization), they suffer from the same pathology.

We identify several reasons for this. First, the gradient of the loss is non-injective
i.e., is not invertible everywhere: different mini-batches may yield nearly identical
gradients [169]. This holds whether the client samples mini-batches that contain
multiple data points or a single data point only, i.e., B = 1. Second, optimization-
based attacks converge to different minima due to the underlying randomness (see
step 1 in Algorithm 1). These minima correspond to different possible reconstruc-
tions of the input that often differ from the original training points [200]. Third,
optimization-based attacks are computationally expensive: they either need to train
a GAN or solve a second-order gradient optimization problem. Instead, our attack
extracts exact data points from the gradients without any optimization and without
training a GAN.

4.2 Data Leakage from Model Gradients

This section contains a slight adaptation of our results presented in [30]. It highlights
how and why the gradients of an Fully-Connected Neural Network (FC-NN)
directly leak the individual training points they are computed on. In Section 4.2.1,
we mathematically show that for a single training data point, i.e., a mini-batch
size of B = 1, perfect extraction from the network gradients is possible. Then,
in Section 4.2.2, we motivate why it is also possible to perfectly extract a small
number of individual data points from gradients, even when working with larger
mini-batches of size B > 1.

4.2.1 Single-Input Gradients Directly Leak Input

It has been shown by Geiping et al. [70] that a single input data point x can be
reconstructed from the gradients of any fully-connected layer which is preceded
only by fully-connected layers and contains a bias b. This holds if the gradient of
the loss w.r.t. the layer’s output y = ReLU(Wx + b) = max(0, Wx + b) contains at
least one non-zero entry. For detailed proof of the above see Proposition D.1 in [70].
In particular, when considering the first model layer, reconstructing its input data
directly corresponds to obtaining the original input data point x. Let yi denote the
output of the ith neuron of the first and fully-connected layer of a model, and let wT

i
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be the corresponding row in the weight matrix and bi the corresponding component
in the bias vector. Assume wT

i x+ bi > 0, and therefore, ReLU(wT
i x+ bi) = wT

i x+ bi.
The reconstruction of the input x is done by calculating the gradients of the loss
w.r.t. the bias and the weights as follows:

∂L
∂bi

=
∂L
∂yi

∂yi

∂bi
=

∂L
∂yi

(4.2)

since ∂yi
∂bi

= 1, where yi = wT
i x + bi. Furthermore,

∂L
∂wT

i
=

∂L
∂yi

∂yi

∂wT
i
=

∂L
∂bi

xT. (4.3)

Thus, if any ∂L
∂bi
̸= 0, perfect reconstruction is given by:

xT = (
∂L
∂bi

)−1 ∂L
∂wT

i
. (4.4)

According to Equation (4.3), the gradient of the loss w.r.t. the weights directly
contains a scaled version of the input data. The exact scaling factor is ( ∂L

∂bi
), which

is the gradient of the loss w.r.t. the bias. This gradient is computed in the regular
backward pass together with the gradient of the weights. Therefore, obtaining the
scaling factor by just reading it from the gradients of the bias and inverting it to
( ∂L

∂bi
)−1 comes at zero costs. The resulting factor can be directly applied to rescale

the gradient of the weights and obtain the input data point x, see Equation (4.4).
Intuitively, the reason why there is a rescaled version of the input data in the
gradients and why this would be beneficial for learning can be motivated by
revisiting the simple perceptron algorithm [67]. When an input is misclassified, the
weight update in the perceptron algorithm consists simply in adding this input to
the weights, which makes the algorithm learn.

4.2.2 Mini-Batch Gradients Directly Leak Some Individual Inputs

It turns out that individual data point leakage is not limited to gradients computed
over a mini-batch of size B = 1: we observe that gradients computed over larger
mini-batches also sometimes leak individual training points. To forge an intuition
for this phenomenon, Figure 4.2 visualizes the gradients of the first fully-connected
layer’s weight matrix of an FC-NN. We see that we are able to clearly distinguish
some of the training data points within the rescaled gradients. This is despite
the fact that these gradients were computed over a mini-batch of B = 100 inputs
sampled from the CIFAR-10 dataset.
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Figure 4.2.: Passive Data Leakage from Model Gradients. Data from the CIFAR-10

dataset, extracted from the gradients of the first 30 weight rows at the
first fully-connected layer of a randomly initialized FC-NN [30].

Why do some gradients contain individual training data points? We denote
a training data mini-batch by Xb = {x1, x2, · · · , xB} ∈ R(m×B) with B > 1. The
gradient of this mini-batch Xb is equal to the average of all gradients computed for
each of the data points {x1, x2, · · · , xB} that make up the mini-batch. Let yi denote
again the output of the ith neuron of the fully-connected layer, and let wi and bi
be the corresponding row in the weight matrix and the component in the bias
vector, respectively. Then the gradient GwT

i
and Gbi of wi and bi can be computed

as follows:

GwT
i
=

1
B

B

∑
j=1

∂L
∂y(i,j)

∂y(i,j)
∂wT

i

Gbi =
1
B

B

∑
j=1

∂L
∂y(i,j)

∂y(i,j)
∂bi

(4.5)

with y(i,j) = ReLU(wT
i xj + bi). These equations illustrate that the gradient GwT

i
over the data mini-batch X contains a weighted overlay of all the input data points
xj from the mini-batch. The weighting, therein, depends on the contribution of each
data point to the model loss L.

We observe that, in some cases, all but one training data point x∗ from the data mini-
batch have zero gradients. This is due to the max operation in ReLU(wT

i x + bi):=
max(wT

i x + bi, 0). When wT
i x + bi is negative, the ReLU outputs zero, which results

in zero gradients for the corresponding data point. When the gradients are zero
for all data points but for the one data point x∗, the weight gradient GwT

i
from

Equation (4.5) becomes GwT
i
= 1

B
∂L

∂y(i,∗)

∂y(i,∗)
∂wT

i
with y(i,∗) = ReLU(wT

i x∗ + bi). This
reduces the data extraction from the case of B > 1 to the case of B = 1, for which
we saw in Section 4.2.1 that the data point x∗ can be perfectly extracted. In other
words, wT

i x + bi being negative for all data points but one results in accidental
leakage of that data point—enabling its perfect reconstruction, i.e., extraction by
any passive attacker that can observe model gradients.
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4.3 Adversarial Weight Initialization for Data Extraction

In this section, we show that the proportion of data points that can be perfectly
extracted from the model gradients can be significantly increased by adversarially
initializing the model weights. Note that for this type of attack, the attacker does not
only require access to the model gradients but also needs the ability to manipulate
the model weights. In FL, the server is in charge of the shared model, and therefore
holds this exact ability which makes our data extraction attack very well suited for
FL scenarios. The approach presented in this section is again taken from [30].

The previous section illustrates under which conditions model gradients leak data
points to a passive attacker capable of observing these gradients. In the following,
we show how an active attacker can amplify previously-accidental leakage during
the passive attack by controlling the weights wi and biases bi. As we will elaborate
more in detail in Section 4.5, while a passive attacker can extract roughly 20% of
arbitrary data points from a batch size B = 100 for 1000 neurons (i.e., weight rows
in the fully-connected layer) on ImageNet, the active attack can more than double
the number of extracted data points to 45%.

4.3.1 If-Else Logics over Relationships Between Data Features

Without loss of generality, we will suppress the bias term in the following con-
siderations. The multiplication of a single weight row wi corresponding to the ith

neuron at the fully-connected layer with some input data point x can be expressed
as a weighted sum of all of the features in x as follows

yi = wT
i x =

m

∑
j=1

w(j)
i xj. (4.6)

In wi, let N and P denote the sets of indices that hold the negative and positive
weight components, respectively. Given ReLU activation, the ith neuron is only
activated on x if the sum of the features weighted by the negative components is
smaller than the sum of the features weighted by the positive components:

∑
n∈N
|w(n)

i xn| < ∑
p∈P

w(p)
i xp. (4.7)

Therefore, x will yield non-zero gradients at the ith neuron if and only if this
particular relationship, expressed by Equation (4.7), between the features holds.
When the inequality holds only for a single data point in a mini-batch, this data
point can be individually extracted from the gradients, as described in Section 4.2.2.
The idea behind our adversarial weight initialization is to set the components within
each weight row corresponding to each neuron of the first fully-connected layer,
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Algorithm 2: Adversarial Initialization of a Weight Row [30].
Input: Weight row wi of length L, Gaussian distribution N (µ, σ) with mean µ

and std σ, Scaling factor s < 1, Discrete uniform distribution U (·, ·)
Output: Adversarially initialised weight row wi

1: N = {i|i ∼ U (1, L)} where |N| = 1
2 L ▷ Select randomly indices for negative weights

2: P← {i /∈ N|i ∈ [L]} ▷ Select indices for positive weights

3: z− ∼ N (µ, σ)|z− ∈ R−
1
2 L

▷ Negative samples

4: z+ = −s · z− ▷ Positive samples

5: wi[N]← Shuffle(z−) ▷ Initialize negative weights

6: wi[P]← Shuffle(z+) ▷ Initialize positive weights

such that this relationship only holds relatively rarely in inputs, and is therefore
likely to only hold for a single data point within a mini-batch.

4.3.2 Manipulating Weights for Data Extraction

Intuitively, our approach adversarially initializes each row of the weight matrix to
increase the likelihood that only one data point in a given mini-batch will activate
the neuron corresponding to that row. To achieve this, we initialize a randomly
chosen half of the components of the weight row to negative values, and the other
half to the corresponding positive values, by sampling from a Gaussian normal
distribution. Negative weights are sampled with slightly larger absolute values
than the positive weights to decrease the likelihood of multiple training points
activating the corresponding neuron. See Algorithm 2 for a formalization of our
adversarial weight initialization.

We use a relatively large standard deviation, such as σ = 0.5, so sampled points
span widely across the weight range. This causes some features to be multiplied
with relatively large positive or large negative values, and thereby increases the
variability of the sums in Equation (4.7) across data points, ensuring that the
inequality holds only for a few of them—in the best case only one—which allows
for perfect extraction.

We use the scaling factor s to specify how much larger the absolute values of the
negative weight components should be than the positive values. This determines
how "aggressively" our activation causes weighted inputs to individual neurons
to be negative, thereby to be filtered out by the ReLU function and to have zero
gradients for most input data points. The ideal value of s when it comes to attack
effectiveness is dataset dependent; it could be fine-tuned by an attacker through
access to one mini-batch of data, or over time by evaluating the attack success on
the gradients received from the users. However, to set s, the attacker does not rely
on knowledge about the actual values of the input data features and how they
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relate. In fact, the only assumptions we need to make is that our attacker knows
the dimensionality of the data, i.e., the number of data features, and that features
are scaled in the range [0, 1], which is a standard pre-processing step. Additionally,
note that our data extraction can only be applied to Neural Networks (NNs) that
contain at least one fully-connected layer.

Our adversarial initialization causes the ReLU function for many neurons at the
fully-connected layer to activate only for one input data point per mini-batch.
Due to the randomness in the initialization of each weight row corresponding
to a neuron, different neurons are likely to be activated by different input data
points. Thereby, the gradients of different weight rows allow for the extraction of
different individual data points. However, there are also cases where the same
data point can activate different neurons. We experimentally demonstrate the
success of this method in Section 4.5 by showing that our adversarial weight
initialization increase the proportion of neurons that only activate on one random
individual data point in a mini-batch by more than factor 10, and thus we are able
to extract more than double the number of individual training data points. E.g. our
adversarial initialization causes 51.4% of active neurons out of 1000 to by activated
by individual data points from the ImageNet dataset while random model weights
with a Gaussian normal initialization with σ = 0.5 only yield 4.4%. This allows for
an individual extraction of 45.7% of the data points in a mini-batch of size B = 100
for our adversarial initialization versus 21.8% with random model weights.

We expect that an attacker with more precise background knowledge on the
distribution of the training data will be able to craft even more targeted weight
initializations for more effective individual data extraction. Such background knowl-
edge may include the distribution of feature values and their relation to each other
for the data to be extracted.

4.4 Adversarial Weight Initialization for Data Forwarding

So far, both the passive and active attacks we described are tailored to extracting
data from the gradients computed to update the first and fully-connected layer
within an ML model. However, modern NN architectures often rely on convolu-
tional layers to model image and text data alike. It is difficult to directly apply
our attack strategy to these convolutional layers because they rely on the weight
sharing principle: to decrease the effective number of parameters that need to be
trained, the same weight values are applied to multiple locations of the image
to extract patterns regardless of their location in the image. In this section, we
thus propose a second type of adversarial initialization that generalizes extraction
attacks to Convolutional Neural Networks (CNNs) by forwarding the ML model’s
input data unaltered over convolutional layers. This allows to perform extraction
from subsequent fully-connected layers as described in Section 4.3.2. Furthermore,
we introduce an adversarial initialization to forward input data also unaltered
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Figure 4.3.: Size-Preserving Adversarially Initialized Convolutional Filters. Ad-
versarially initialized convolutional filters that transmit their input to
the next layer. The numbers indicated in the input and feature map
represent the features, the numbers in the filter represent the weight
initialization. Grey layers indicate random weight values while white
fields indicate zero weights [30].

over fully-connected layers. This enables to perform data extraction at different
fully-connected layers than the first one. For both our adversarial initializations,
we also discuss ways to make them more inconspicuous. The results presented in
this section, apart from Section 4.4.1.2 and the detailed discussion on hiding the
adversarial initialization in Section 4.4.2 are taken from [30].

4.4.1 Forwarding over Convolutional Layers

Our solution reduces NNs with convolutional layers to the setting we previously
considered with FC-NNs. To do so, we observe that a CNN typically composes a
few convolutional layers with fully-connected layers. We thus initialize the weights
of the convolutional layers such that they transmit the model input unaltered up to
the fully-connected layers of the model architecture. We then extract the input from
gradients computed for the first fully-connected layer that follows convolutional
layers, using the attack strategy described in Section 4.3.

There are two important requirements for our approach to transmitting, or forward-
ing, model inputs through convolutional layers. The first is to make sure that no
feature of the input data is lost. This requires having at least as many parameters
at every convolutional layer as the number of input features. The second is to make
sure that different features do not get overlaid. We explain how to ensure this in
the following. Therefore, we consider two scenarios, first a forwarding over convo-
lutional layers that preserve the size of the input data and second, convolutional
layers that reduce size. The latter one can be used to make the intermediate outputs
of our adversarially initialized CNNs match standard architectures more closely.
At the same time, they can replace model layers for dimensionality reduction, such
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as pooling layers, which would reduce the fidelity of our extraction as we show in
the following Section 4.5.

4.4.1.1 Preserving Input-Size

Two Dimensional Input. In general, preserving input size over a convolutional
layer can be achieved through an adequate combination of padding, stride, and filter
sizes. Specifically, we use stride one and an adequate zero-padding to preserve
the size of the layer input. In order to transmit the input features, we create
a filter with uneven dimensions (w, h), where w = h, and we initialize it with
zero everywhere apart from the element in the middle which we set to one. For
a two dimensional input (e.g. a grey-scale image), the described filter perfectly
transmits the information to the next layer and creates a feature map that exactly
replicates the input. See Figure 4.3a for this adversarially initialized filter.

Three Dimensional Input. Some input data to CNNs is distributed over several
input channels, such as color images, that consist of three channels. At every layer,
we, therefore need three adversarially initialized convolutional filters to "transmit a
copy" of the input channels. A standard architecture can have many more filters per
layer, which can, in the case of our attack be randomly initialized since they will be
ignored by the attacker. Assume now that the original input features at the current
layer li are distributed over ali of the total bli−1many feature maps. For example,
in the first model layer, ali = bli−1 corresponds to the number of color channels
required to encode the image. In subsequent layers, the remaining bli−1 − ali many
feature maps contain random noise, introduced by random filters that do not
transmit the input features (e.g. upper and lower filter in Figure 4.3b). We denote
the indices of the feature maps where the input features are located by α⃗li . We then
need ali many filters, initialized as described above to transmit the information to
the next layer. The filters differ from each other only by the placement of the matrix
that contains the one element. This placement must correspond to different indices
in α⃗li . See Figure 4.3b for a visualization of this setting. Note that the placement
of the feature-transmitting filters at layer li will determine the indices ⃗αli+1 of the
feature maps that are input to the next layer.

In the last convolutional layer before the fully-connected layer that we want to
transmit the input to, the filters containing noise should be initialized such that
they yield negative input to the ReLU function. Thereby, the output of the last
convolutional layer becomes zero everywhere apart from the feature maps produced
by the filters transmitting input data features. The flattened output then serves as
input to the fully-connected layer, where extraction can be conducted.
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Figure 4.4.: Size-Reducing Adversarially Initialized Convolutional Filters. Ad-
versarially initialized convolutional filters that transmit their input to
the next layer. The numbers indicated in the input and feature map
represent the features, the numbers in the filter represent the weight
initialization. Grey layers indicate random weight values while white
fields indicate zero weights. Feature maps in the 3D example that only
contain noise are suppressed for improved visualization.

4.4.1.2 Reducing Input-Size

Two Dimensional Input. The reduction of size in convolutional layers can be
achieved by increasing the stride. However, thereby, the number of features in
the next feature map is reduced such that this feature map cannot accommodate
all features from the previous layer. To overcome this, we propose distributing
the features of one input feature map over several feature maps in the following
layer. Figure 4.4a depicts this approach for two-dimensional inputs. Note that the
stride is set to the dimensions of the convolutional filters (w, h) to prevent features
from overlapping in the following layer. Additionally, to transmit all the features,
the dimensions of the filters w and h (w = h) need to be integer dividers of the
previous feature map’s dimensions. Finally, in total, for each layer that reduces the
size of the input by a factor 1

w , we require w2 many filters to transmit every feature
from one input feature map. Hence, assuming that at layer li the original features
are distributed over ali many input feature maps, we require ali · w2 many filters to
transmit all original input features.

Three Dimensional Input. The same approach as for the two dimensional input can
be extended to the case with three input dimensions. The approach is visualized
in Figure 4.4b. For improved visualization, we do not present the feature maps
in the layer’s output which contain only noise. Again, in both the two and three
dimensional case, in the last convolutional layer before flattening, the noise filters
should produce negative input to the ReLU function. This enables only extracting
the original input features and no noise from the following fully-connected layer.
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4.4.1.3 Reducing Detectability

In principle, our adversarial weight initialization for CNNs only requires the num-
ber of filters per layer that actually transmit the features. However, using only a
small number of filters, e.g. one as in the case of the size-preserving adversarial con-
volutional filters, leads to models architectures that deviate strongly from standard
architectures. Therefore, we propose using a standard number of convolutional
filters in every layer and initializing the filters that are not used to transmit features
at random. Additionally, to prevent the simple detection strategy which relies on
probing after every convolutional layer whether its input is equal to its output, one
can replace the ones in the adversarially initialized convolutional filters by other
positive constants. Data extraction at the fully-connected layer then yields data
points where features of the original input data are scaled by (multiple different)
factors. By applying the inverse of the factors encoded in the model weights this
scaling can then be reverted. As a consequence, the rescaled extracted data points
still perfectly correspond to the input data. Yet, the manipulations remain detectable
for clients who are aware of the attack.

4.4.2 Forwarding over Fully-Connected Layers

In this section, we show how to initialize a fully-connected model layer adversarially,
such that it transmits its input data to the next layer without altering the it. This can
be useful, for example, if a later layer in the NN has more neurons, which allows
for extracting more data, as we will show in the next section. We then describe how
to make such an adversarial weight initialization more inconspicuous.

Assuming that the fully-connected model layer has at least as many neurons as
there are input data features, a very simple initialization would be the following: Set
all components in the weight matrix at that layer to zero, apart from one component
per input data feature, which is set to one in order to transmit the corresponding
feature to the next layer. Thereby, model input could potentially be transmitted all
the way from the model’s input layer to the output layer. This setup is visualized in
Figure 4.5a. In the resulting model, all neurons that do not carry an input feature
would have a zero in- and output, and, thereby act as dead neurons.

4.4.2.1 Reducing Detectability

A layer that is initialized like the described prototype of our adversarial initialization
would be detectable by a client aware of the method. It is, however, possible to hide
the adversarial initialization and make it more indistinguishable from a random
model initialization. Therefore, we implement the following ideas:

1. The first feature does not need to always be transmitted to the first neuron in
the subsequent layer, instead, each feature can be transmitted to a random
separate neuron. When extracting the original input data, an attacker only
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(a) Prototype of an adversarial initializa-
tion forwarding input data over fully-
connected layers.
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(b) Different types of model weights for
a more inconspicuous adversarial ini-
tialization.

Figure 4.5.: Forwarding over Fully-Connected Layers. Adversarial weight initializa-
tions that enable to forward an ML model’s input data unaltered over
fully-connected layers. Types of neurons: Oin f o, Onoise Odead.
Types of weights: (a) one and zero (b) pos, zero, neg, and random.

requires knowledge on the indices where each input data feature is located at
the current fully-connected layer.

2. The weights that transmit features do not need to be set to one, but can be set
to any random positive value. Thereby, at the layer where the input should be
transmitted to, this input arrives scaled feature-wise by a factor depending
on all the positive values that the feature was multiplied with on the way.
Hence, after extracting the input data from the gradients at that layer, it is
only necessary to rescale it feature-wise according to the inverse of the factors.

3. The model weights do not need to be all set to zero and one elements. Instead,
it is possible to reorder existing model weights that were initialized with
values from, for example, a Gaussian normal distribution and just replace a
few of them by zero elements.

In the following, we explain the last point more in detail. Therefore, we denote
neurons that transmits an input feature as Informative Neurons Oin f o, neurons that
do not carry features as Noisy Neurons Onoise, inactive neurons, i.e., neurons that
always output zero as Dead Neurons Odead. Additionally, we introduce four different
categories of model weights:

Feature Transmitting Weights (pos) are the weights that connect the Oin f o at layer

li carrying feature x(j)
i with the respective Oin f o at layer li+1. These weights need to

be set to positive values to yield a positive input into the ReLU activation function.
Thereby, the a scaled version of feature x(j)

i is transmitted over the layer.

Feature Separating Weights (zero) are the weights that connect the Oin f o at layer li
carrying feature x(j)

i with all the Oin f o carrying information about any other feature
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x(g)
i , g ̸= j at layer li+1. These weights need to be set to zero. Otherwise, information

of several features would overlay, and the data points could not be clearly extracted
anymore from the gradients.

Feature Deactivating Weights (neg) are weights that connect any Oin f o at layer li
with any Onoise at layer li+1. By setting these weight to negative random values, we
can convert the Onoise at layer li+1 into Odead which always output zero, independent
of their input data.

Random Weights (random) are weights that connect any Odead at layer li with any
Oin f o or Onoise at layer li+1. Since dead neurons always output zero, the product of
the weights and their output will be zero independent of the input data. Thereby,
these weights cannot cause an overlay of any information. Hence, the random
weights can be set to any positive or negative value from the random weight
initialization.

See Figure 4.5b for a visualization of how the four types of model weights can
be applied to yield a more inconspicuous adversarial weight initialization for
forwarding over fully-connected layers.

We now analyze how many weights of each of the four types we need. To transmit
m features, we need at least #pos = m positive weight components. To prevent
features from overlaying, we need #zero = m · (m− 1) zero weight components.
The number of negative weight components needed at layer li depends on the
number of Onoise at layer li+1 which we denote here by o. At most, we need #neg
= m · o. Note that, in practice, it is sufficient to only set the majority of the Feature
Deactivating Weights to negative components. The remaining can be set to random
values as long as the weighted input to the ReLU function of the Onoise neurons at
layer li+1 is still negative, and thereby yields dead neurons. The number of random
weights at layer li with a total of oli neurons is then determined by #random = oli−
#pos − #zero − #neg.

When we assign the positive, negative, and random weight components in our
adversarial weight initialization with values from a standard random weight ini-
tialization, our manipulation becomes less detectable. The only elements that are
still detectable are the zero weights which do not naturally occur in a standard
random initialization. Additionally, if there are many Onoise at a given layer, we
might need a large number of negative weights. This can increase detectability of
our adversarial weight initialization since standard random weight initializations
are zero-centered and hence contain roughly the same number of positive and
negative components. However, if the attacker can control the model architecture,
they can prevent such disbalance by choosing the number of neurons per model
layer adequately.
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Layer: 0 Layer: 1 Layer: 2 Layer: 3 Layer: 4 (0, 0.5)

Figure 4.6.: Adversarially Initialized Model Weights. 100x100 pixel cutouts of the
weight matrices of an FC-NN initialized with our adversarial weight
initialization in comparison to a standard Gaussian normal initialization.
The FC-NN consists of six layers with 1000, 3000, 3000, 2000, 1000, and
10 neurons, respectively. The adversarially initialized weights of the
first five layers are depicted. The input data holds 784 features.

Figure 4.6 visualizes the weight matrices of an FC-NN initialized with our adver-
sarial weight initialization for forwarding in comparison to a standard Gaussian
normal initialization. The considered FC-NN consists of six layers with 1000, 3000,
3000, 2000, 1000, and 10 neurons. We assume 784 input features which corresponds
to data from, for example, the MNIST dataset. The model is adversarially initialized
to forward its input data to its penultimate layer. Hence, the last layer can be
initialized completely at random, and therefore, we do not depict it in the figure.
The first model layer uses only zero, pos, and neg but no random elements to trans-
mit features and deactivate all Onoise in the next layer. Due to the proportionally
large number of zero weight components, the changes at this first layer are most
perceptible. In the following layers they are less detectable since we can assign
more random weight components due to the Odead neurons from their previous
layers. Within all layers, the figure shows some columns containing constant values.
These are the Feature Separating Weights, i.e., the zero elements that are required
in order to prevent that features spread over more than one Oin f o and therefore
overlay.

l

4.5 Experimental Evaluation

In this section, we present the experimental evaluation of our adversarial weight
initializations. Therefore, we use three different image datasets, namely MNIST,
CIFAR-10, and ImageNet and the text-based Internet Movie Database (IMDb)
dataset for sentiment analysis. For a thorough description of these datasets, see
Section 2.4. The results presented in this section are taken from [30].

Because our approach is applicable to FC-NNs and CNNs, we test it against both
of these architectures. We instantiate our attack against an FC-NN for the MNIST
dataset, and against a CNN for CIFAR-10 and ImageNet. For the IMDb dataset,
we use a model whose input is 250-token sentences, and consists of an embedding
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FC-NN Architecture VGG-inspired CNN Architecture

Dense(n=1000, act=relu) Conv(f=128, k=(3,3), s=1, p=same, act=relu)
Dense(n=3000, act=relu) Conv(f=256, k=(3,3), s=1, p=same, act=relu)
Dense(n=3000, act=relu) Conv(f=512, k=(3,3), s=1, p=same, act=relu)
Dense(n=2000, act=relu) Flatten
Dense(n=1000, act=relu) Dense(n=1000, act=relu)

Dense(n=#classes, act=None) Dense(n=#classes, act=None)

Table 4.1.: Model Architectures for Experimental Evaluation of Vision Datasets.
Architectures of models used in the experiments on image data. f: num-
ber of filters, k: kernel size, s: stride, p: padding act: activation function,
n: number of neurons [30].

layer, which maps each token in a 10,000-word vocabulary to a 250-dimensional
floating-point vectors, and inputs these to a fully-connected layer. The specifics
of our model architectures for image and text data are described in Table 4.1 and
Table 4.2, respectively. We implemented our adversarial initializations and the
experiments in TensorFlow [1] version 2.4.

Attack Instantiation. Because the server has access to the gradients of all model
layers uploaded by users, it is able to choose which layer to instantiate the attack on.
For the FC-NN, we adversarially initialize the first layer and extract training data
points from its gradients. Through our initialization that allows for transmission of
input data over fully-connected layers (see Section 4.4.2), we could also forward the
input data to a later layer and perform extraction there. As stated in the previous
section, forwarding to a later fully-connected layer might be useful when this layer
consists of more neurons than the first fully-connected layer: The experimental
results in Table 4.7 show that the more neurons, the more data points can be
extracted individually.

In the CNNs, we first initialize the convolutional layers to transmit the input data
to the first fully-connected layer of the architecture. Then, we adversarially initialize
this layer’s weights for extraction.

For the text classifier, we initialize the weights of the embedding layer with a
random uniform distribution (min=0., max=1.) to create the inputs for the fully-
connected layer. We then adversarially initialize this fully-connected-layer’s weights
to perform extraction of the embeddings there. Finally, after extracting the input’s
embeddings from then fully-connected layer (like they would extract an image), we
map them back to the corresponding text. To reconstruct the original text tokens
from a sequence of extracted embeddings, the attacker creates a lookup dictionary,
mapping its initialized embeddings back to their corresponding tokens (this is the
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IMDb-Model Architecture

Embedding(feat=10000, dim=250)
Dense(n=1000, act=relu) )

Dense(n=1, act=None)

Table 4.2.: Model Architecture for Experimental Evaluation of Text Dataset. Ar-
chitecture of models used in the experiments on the IMDb dataset. feat:
vocabulary size, dim: embedding size, act: activation function, n: number
of neurons [30].

inverse mapping to the embedding layer). To avoid vector-comparisons for each
lookup, we use hash values for vector embeddings as keys.

4.5.1 Extraction Success Metrics

We introduce three novel metrics to measure the success of individual data point
extraction from model gradients.

Active Neurons. By measuring the number of active neurons (A) we can determine
for how many neurons their respective weighted inputs are positive. This is impor-
tant because data extraction for both overlaying and individual data points is only
possible with activated neurons. If a neuron is not activated by any data point, no
information can be transmitted over this neuron and, hence, the gradients will all
be zero.

Extraction-Precision. Our second metric, which we call extraction-precision, captures
the percentage of non-zero gradient rows at the given layer’s weight matrix from
which we can extract any input data point individually. This metric enables us to
quantify how well the adversarial weight initialization manages to generate weights
that cause activation for exactly one single data point. Extraction-Precision can be
calculated as follows:

P =
G1

A
, (4.8)

with A denoting the active neurons, and G1 denoting the number of gradient rows
from which we can extract a data point individually and with an ℓ2-distance of
zero to any of the input data points.

However, the extraction-precision metric alone would not be expressive enough since
a high extraction-precision could be achieved despite the exact same individual
training input being reconstructed from all gradient rows. Therefore, we defined
another metric that we call extraction-recall.
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MNIST CIFAR-10 ImageNet
Weights Initializer A P R A P R A P R

Xavier Normal .998 .004 .037 .810 .039 .190 .942 .046 .213

Xavier Uniform .998 .005 .048 .808 .040 .192 .945 .040 .201

Gaussian (σ=0.01) .997 .005 .048 .807 .042 .193 .940 .041 .203

Gaussian (σ=0.1) .997 .005 .049 .807 .042 .195 .940 .043 .209

Gaussian (σ=0.5) .997 .006 .050 .807 .046 .203 .940 .044 .218
Gaussian (σ=1) .997 .006 .059 .807 .047 .206 .940 .045 .218
Gaussian (σ=2) .997 .007 .061 .806 .047 .206 .000 .000 .000

Table 4.3.: Extractability with Random Initializations. Impact of random initial-
ization functions on the extraction-precision (P) and extraction-recall (R) of
individual training data points from the model gradients. The displayed
numbers refer to a mini-batch of 100 data points and 1000 neurons for
extraction in the first model layer (FC-NN architecture from Table 4.2). Re-
sults are averaged over 10 runs with different random initializations [30].

Extraction-Recall. The extraction-recall measures the percentage of input data points
that can be perfectly extracted from any gradient row. We define it by

R =
B0

B
, (4.9)

where B is the number of data points in the given mini-batch and B0 is the number
of these data points that we can extract with an ℓ2-error of zero from the rescaled
gradients.

Interpretation of Success Metrics. Note that our attack seeks to find an adversarial
initialization that balances setting enough neurons’ outputs to zero (such that a
gradient is more likely to isolate individual points from large mini-batches) with, at
the same time, having enough neuron outputs’ that are non-zero (otherwise, in the
limit, no points would be extracted). Thus, active neurons provide additional context
for the extraction-precision: with few active neurons, even a high extraction-precision
might not be able to extract many individual training data points, simply because
there are very few gradients to perform data extraction from. However, with
many active neurons, the extraction-recall might become small, due to each neuron
being most likely activated by several input data points, preventing individual
extraction.

4.5.2 Evaluating Passive Data Extraction

Recall from Section 4.2 that extraction of training data from gradients is possible
even when model weights are initialized randomly. We evaluate this passive ex-
tractability to obtain a baseline for our adversarial weight initialization strategies.
To evaluate the passive extractability, i.e., the passive attack, we measure the ex-
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Passive Attack Our Active Attack
B A P R A P R

20 .842 .072 .900 .519 .610 1.000
50 .885 .050 .552 .776 .376 .962
100 .909 .036 .254 .910 .192 .654
200 .927 .030 .128 .978 .070 .255

Table 4.4.: Data Extraction on IMDb Dataset. The extraction success depends on
the size B of the mini-batches for passive attack and active attack with
adversarial initialization. The results depict the percentage of active neu-
rons (A), extraction-precision (P), and extraction-recall (R). All numbers are
averaged over 10 runs with different random and adversarial initializa-
tion of the model from Table 4.2, respectively [30].

traction success of individual training data points from the gradients of randomly
initialized models.

Table 4.3 reports the results of training data point extraction from the gradients of
randomly initialized models. These gradients are computed over a mini-batch of 100

data points for 1000 neurons (i.e., 1000 weight rows’ gradients for extraction) in the
first fully-connected layer. We later study the impact of these two parameters (mini-
batch size and number of neurons) on the success of reconstruction attacks. Even if
this data extraction can be considered as a passive attack without any model weight
manipulations, training data extraction is often successful: for the MNIST dataset,
around 6% of individual training data points can be directly extracted from the
model gradients, whereas for CIFAR-10 and ImageNet, roughly 21% and 22% of the
training data points can be perfectly extracted, respectively. The passive attack for
extracting embeddings from the IMDb dataset yields roughly 25% extraction-recall
for 1000 neurons and mini-batches of 100 data points, see Table 4.4.

The results from Table 4.3 also suggest that using a normal distribution, instead of a
uniform one, and setting higher standard deviations in random weight distributions
alone can already significantly increase the extraction-recall of individual data points
from the model gradients. This is, most likely, due to the larger span within the
weight values.

Additionally, we also set out to investigate how as training progresses, and the
model’s weights converge, the extraction’ success evolves. We initialized the FC-
NN from Table 4.1 with a Xavier Uniform distribution and trained the model on
MNIST and CIFAR-10 for 30 epochs. Table 4.5 depicts the results. We observe
that the extraction-recall increases slightly over the training epochs. Analyzing
the distribution of the model weights in Figure A.1 in Appendix A.3 shows that
over training, the uniformly initialized weight values resemble more a normal
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MNIST CIFAR-10
Epoch Loss L A P R Loss L A P R

0 .526 .998 .005 .050 1.857 .907 .053 .232

5 .067 .997 .044 .137 1.352 .900 .044 .195

10 .021 .997 .116 .154 1.088 .913 .041 .196

15 .006 .997 .131 .165 .768 .923 .043 .206

20 .002 .997 .136 .167 .472 .931 .050 .232

25 .001 .997 .140 .169 .282 .935 .058 .241

30 .001 .997 .142 .168 .200 .936 .062 .267

Table 4.5.: Data Extractability from Converging Models. Results depict the success
of passive data extraction based on the training stage of the correspond-
ing models. We show the percentage of active neurons (A), extraction-
precision (P), and extraction-recall (R) for extraction with a mini-batch size
of 100 data points from the first layer of the fully-connected network
from Table 4.1. All numbers are averaged over 10 runs with different
random initializations [30].

distribution and obtain a wider spread, which might be the reason for the increased
extraction success.

4.5.3 Evaluating Active Adversarial Weight Initialization

We now turn to our active attack, which adversarially modifies the weight initializa-
tion to amplify the vulnerability exploited by passive attacks. This amplification is
controlled by the scaling factor s. We first evaluate its impact on the reconstruction
quality of individual training data points over a mini-batch of 100 data points and
1000 neurons.

For all our results, we report the active neurons, extraction-precision, and extraction-
recall. Table 4.6 depicts the results, averaged over ten different adversarial initial-
izations. We can see that the best scaling factor for MNIST, when it comes to the
extraction-recall, is s = 0.7. With this scaling factor, we are able to extract on average
54.0% of the individual training data points which were involved in the clients’
gradient computations. This is an improvement by around factor nine to the passive
attack. For CIFAR-10 and ImageNet, the best scaling factors concerning extraction-
recall are s = 0.95, and s = 0.99, which allow for a perfect reconstruction of 54.0%,
and 45.7% of the individual training data points, respectively, for 1000 neurons and
a mini-batch size of 100 data points. Thereby, the active attack is more than twice
as successful as the passive attack for extracting individual training data points in
these datasets. Figure A.2, Figure A.3, and Figure A.4 in the Appendix A.3 show
the visual reconstruction results of the best runs for all three image datasets and
the respective hyperparameters. Similar improvements of performance could be
achieved for the IMDb dataset. The best extraction was achieved also with s = 0.99,

68



4.5. Experimental Evaluation

MNIST CIFAR-10 ImageNet
s A P R A P R A P R

.400 .022 .803 .114 0. 0. 0. .0. 0. 0.

.500 .149 .636 .354 0. 0. 0. 0. 0. 0.

.600 .462 .408 .526 0. 0. 0. 0. 0. 0.

.700 .796 .203 .540 0. 0. 0. 0. 0. 0.

.800 .959 .062 .334 0. 0. 0. 0. 0. 0.

.900 .996 .010 .089 .034 .946 .077 0. 0. 0.

.950 .999 .003 .029 .729 .412 .540 0. 0. 0.

.960 .999 .003 .027 .925 .175 .522 0. 0. 0.

.970 1. .002 .020 .993 .025 .198 .002 .900 .013

.980 1. .002 .021 1. .001 .008 .043 .986 .049

.990 1. .002 .020 1. 0. 0. .655 .514 .457

.995 1. .002 .018 1. 0. 0. .999 .007 .055

.999 1. .002 .017 1. 0. 0. 1. 0. 0.

Table 4.6.: Impact of Hyperparameter s. Success of our adversarial weight ini-
tialization dependent on the hyperparameter s, which downscales the
positive weights. The results depict the percentage of active neurons (A),
extraction-precision (P), and extraction-recall (R) with a mini-batch size
of 100 data points from the first fully-connected layer of the respective
architectures from Table 4.1. All numbers are averaged over 10 runs with
different adversarial initializations [30].

for which, with 1000 neurons and mini-batches of 100 data points, we obtained an
extraction-recall of 65.4%, which is around 2.5 time as high as the passive attack, see
Table 4.4 on page 67.

As hypothesized above, we furthermore confirm that the extraction-recall of our
attack is related to the percentage of active neurons: When very few neurons are
activated, it is not possible to extract large numbers of individual data points due
to the lack of gradients to extract them from. However, when the percentage of
active neurons is high, the extraction-recall also becomes very small, which is due to
the fact that each neuron gets activated by several input data points, and thereby,
individual extraction is impossible.

Impact of Data Labels. Additionally, we investigated whether this high recon-
struction success could also be achieved when all data points in the mini-batch
belong to the same class. This is a particularly challenging setting for prior work on
optimization-based attacks that end up reconstructing average points rather than
individual points exactly. Instead, Figure A.3b in the Appendix A.3 shows how,
on CIFAR-10, our method remains able to perfectly extract individual data points
from the gradients even when all points stem from the same class.
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MNIST CIFAR-10 ImageNet
(B, N) A P R A P R A P R

(200, 20) .522 .436 .720 .454 .670 .695 .090 .948 .355
(200,50) .690 .302 .428 .662 .494 .452 .381 .763 .304

(200,100) .782 .196 .218 .846 .280 .269 .653 .500 .240

(200,200) .859 .121 .086 .954 .124 .096 .886 .233 .113

(500,20) .535 .451 .915 .452 .689 .870 .096 .939 .490
(500,50) .697 .301 .624 .653 .505 .614 .387 .767 .426

(500,100) .792 .205 .397 .845 .290 .422 .646 .508 .358

(500,200) .871 .129 .185 .950 .119 .177 .892 .240 .199

(1000,20) .539 .444 .950 .441 .703 .915 .102 .942 .595
(1000,50) .705 .300 .760 .648 .504 .724 .388 .770 .516

(1000,100) .796 .203 .540 .844 .297 .556 .655 .514 .457

(1000,200) .871 .124 .293 .951 .120 .256 .892 .238 .288

(3000,20) .541 .442 1. .441 .696 .945 .101 .934 .640
(3000,50) .704 .299 .888 .646 .503 .812 .386 .764 .586

(3000,100) .797 .203 .746 .840 .286 .711 .649 .518 .579

(3000,200) .873 .129 .504 .951 .122 .414 .889 .243 .404

Table 4.7.: Effect of Mini-Batch Size and Number of Neurons on Data Extraction.
Success of our adversarial weight initialization dependent on the mini-
batch size B and the number of neurons N that corresponds to the
number of weights rows. The results depict the percentage of active
neurons (A), extraction-precision (P), and extraction-recall (R). All numbers
are averaged over 10 runs with different adversarial initializations.

Impact of Mini-Batch Sizes. We also set out to investigate the impact of the mini-
batch size B and the number of weight rows that we can use for extraction. Table 4.7
depicts the resulting metrics. The metrics show that the smaller the mini-batch sizes
are, and the more weight rows there are for extraction, the more individual training
data points can be individually reconstructed. For 3000 weight rows, even up to
50% of the individual training data points for mini-batch sizes as large as 200 in the
MNIST dataset can be perfectly extracted. Small mini-batches of 20 training data
points are entirely extractable without any loss in this setting. Also for the IMDb
dataset, smaller batch-sizes for the same number of neurons yield much higher
extraction-recall, and embeddings of data from small mini-batches of 20 training
data points are perfectly extractable, see Table 4.4. This suggests that in practice,
the success of the extraction attack can be significantly increased by the server
demanding smaller mini-batch sizes from the clients or initializing larger models.

Impact of Mini-Batch-Averaging. Additionally, we looked into the effect of local
averaging over the gradients of multiple mini-batches before extraction. The results
in Table 4.8 show that through averaging, the attack success is significantly reduced.
Already when averaging over 20 mini-batches of size B = 100 in the MNIST dataset,

70



4.5. Experimental Evaluation

B, Num A P R

(20,1) .496 .486 .950

(20,5) .787 .213 .572

(20,10) .851 .157 .412

(20,20) .898 .116 .251

(50,1) .687 .307 .790

(50,5) .901 .107 .230

(50,10) .928 .080 .138

(50,20) .953 .053 .067

(100,1) .800 .200 .562

(100,5) .936 .066 .116

(100,10) .966 .046 .054

(100,20) .982 .028 .020

Table 4.8.: Effect of Mini-Batch Averaging. Success of our adversarial weight ini-
tialization on MNIST under averaging over multiple mini-batches on
the same model parameters. The number of mini-batches is denoted by
Num and their respective size by B. The results depict the percentage
of active neurons (A), extraction-precision (P), and extraction-recall (R) for
extracting from 1000 neurons at the first layer of the FC-NN depicted
in Table 4.1. All numbers are averaged over 10 runs with different adver-
sarial initializations [30].

the average extraction-recall drops from 54.0% to 2.6% because multiple data points
overlay in the gradients.

Impact of Lossy Layers. We also studied the effect of "lossy" layers, such as dropout
and pooling on our data extraction success. Therefore, we relied on a dedicated
architecture proposed by [5] for FL, see Table 4.9. We evaluated the effect of dropout

CNN Architecture by [5]

Conv(f=32, k=(3,3), s=1, p=same, act=relu)
MaxPool()

Conv(f=64, k=(3,3), s=1, p=same, act=relu)
Dropout()

Flatten
Dense(n=1000, act=relu)

Dropout()
Dense(n=#classes, act=None)

Table 4.9.: CNN Architecture with Lossy Layers. CNN Architecture by [5] used
to evaluate the data extraction attack under the impact of dropout and
pooling. f: number of filters, k: kernel size, s: stride, p: padding act:
activation function, n: number of neurons.
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#=0 #=0 #=0 #=0 #=3 #=0 #=0 #=0 #=0 #=1

#=0 #=2 #=1 #=7 #=0 #=0 #=0 #=0 #=0 #=0

#=0 #=1 #=0 #=0 #=0 #=0 #=0 #=1 #=0 #=0

#=0 #=1 #=2 #=0 #=0 #=1 #=0 #=0 #=0 #=0

#=0 #=0 #=0 #=0 #=0 #=0 #=1 #=0 #=0 #=0

#=0 #=0 #=0 #=0 #=0 #=0 #=1 #=0 #=0 #=4

#=2 #=0 #=0 #=0 #=0 #=0 #=0 #=0 #=1 #=0

#=0 #=4 #=1 #=0 #=0 #=0 #=0 #=0 #=1 #=1

#=0 #=0 #=0 #=1 #=0 #=6 #=0 #=0 #=0 #=0

#=0 #=1 #=0 #=1 #=0 #=0 #=1 #=0 #=0 #=1

(a) Randomly Initialized Weights.

#=2 #=1 #=3 #=0 #=3 #=4 #=2 #=1 #=1 #=19

#=0 #=1 #=1 #=32 #=5 #=0 #=0 #=3 #=1 #=0

#=0 #=16 #=2 #=0 #=1 #=0 #=2 #=4 #=0 #=6

#=0 #=3 #=8 #=0 #=0 #=0 #=0 #=2 #=0 #=0

#=2 #=0 #=0 #=0 #=0 #=8 #=6 #=0 #=0 #=0

#=1 #=2 #=1 #=0 #=3 #=0 #=7 #=0 #=0 #=3

#=7 #=0 #=0 #=9 #=4 #=0 #=0 #=0 #=10 #=0

#=0 #=22 #=4 #=4 #=0 #=0 #=1 #=2 #=2 #=0

#=0 #=3 #=0 #=1 #=4 #=33 #=0 #=2 #=3 #=0

#=0 #=0 #=0 #=0 #=0 #=0 #=7 #=1 #=0 #=19

(b) Adversarially Initialized Weights.

Figure 4.7.: Individually Extracted Data Points and Occurrences from CIFAR-10.
Number of individual occurrences in the rescaled gradients over a
mini-batch of 100 data points, extracted at the first fully-connected layer
of the CNN from Table 4.1 in Section 4.5. To provide insights into what
data points could not be individually extracted, we plot data points
with zero occurrences with low saturation.

and pooling layers for mini-batch sizes of one and 20. The dropout rates were
chosen from p ∈ {0.0, 0.1, 0.3, 0.5, 0.7, 0.9}. Figures A.5 and A.6 and Figures A.7
and A.8 in Appendix A.3 show individual effects of dropout and pooling layers
on a reconstructions for mini-batches of size 1 and 20, respectively. Note that the
second dropout layer does not have a significant impact on the success of our
reconstruction since we extract from the first fully-connected model layer before
information can get lost due to the second dropout. To evaluate dropout without
pooling, we removed the MaxPool layer, and to evaluate pooling without dropout,
we set the dropout rate to p = 0.0. The reconstructed images show that although the
existence of non-invertible "lossy" components compromises overall reconstruction
fidelity, it is often still possible to recognize individual data points.

Insights into Individual Extractability and Adversarial Initialization. To conclude
the experimental evaluation of our adversarial weight initialization and to give an
outlook on potential future improvements of our method, we present additional
insights into the individual extractability of training data points. Therefore, we
first studied how often each data point is individually extractable from the rescaled
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(b) Adversarially Initialized Weights.

Figure 4.8.: Number of Neurons Activated by CIFAR-10 Data Points. The results
depict the number of neurons that each of the 100 data points in a
mini-batch activates. Results are averaged over five different random
and adversarial model initializations.

gradients. Figure 4.7 shows data points from a training mini-batch with 100 data
points from the CIFAR-10 dataset and their respective individual occurrences in
the rescaled gradients. Results are depicted for both randomly initialized model
weights and our adversarial weight initialization. The results suggest that our
adversarial weight initialization, first of all, make more data points individually
extractable, but also cause the same data points to be individually extractable from
many more different weight rows’ gradients (up to 33 times over the 1000 neurons
and their respective weight rows). Also note that except from very few exceptions,
all data points that are individually extractable from randomly initialized weights
are also extractable with our adversarial weight initialization. This highlights that
our method builds up on natural leakage from gradients, increases it, and extends
it to a broader range of data points.

Furthermore, to showcase the effectiveness of our adversarial weight initialization,
we evaluate how many neurons each data point activates (i.e., for how many neurons
the weighted input of this data point is positive). Remember that we want to reduce
the number of neurons that each input data point naturally activates to prevent
overlaying data points in the rescaled gradients. Figure 4.8 highlights that while for
random weights, most of the data points activate around 500 of the 1000 neurons
in the fully-connected layer, with our adversarial weight initialization, most data
points activate less than 25 neurons, confirming the effectiveness of our method.

Finally, we studied by how many data points each neuron gets activated. The
results in Figure 4.9 suggest that our adversarial weight initialization is highly
effective in causing individual activation of neurons, i.e., making neurons activated
by only one input data point. Potential room for improvement lies in adapting the
initialization of neurons that are not activated by any data point. These neurons’
potential for individual data point extractability is currently wasted. What an
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Figure 4.9.: Number of CIFAR-10 Data Points that Activate Each Neuron. Number
of data points that activate each one of the 1000 neurons. Results are av-
eraged over five different random and adversarial model initializations.

attacker in possession of a small number of data points from the data distribution
could, for example, do to overcome this limitation is to initialize the model with
adversarial weights, evaluate activation of the neurons on this data, and then
replace the weight rows that do not cause activation of their respective neurons
with different adversarially initialized weight rows that do lead to activation on
any input data point.

4.6 Conclusion

In this chapter, we presented adversarial weight initialization as a novel attack vector
against privacy in ML. Therefore, we first formalized our original observation that
in NNs starting with a fully-connected layer, even gradients of very large training
data mini-batches contain individual training data points. Based on this observation,
we showed how to use adversarial weight initializations to amplify the leakage
of individual training data points and extend it to other model architectures. To
experimentally evaluate the success of our novel attack vector, we performed data
reconstruction on image and text data with both FC-NN and CNN models. Our
evaluation highlights that our attack is able to extract large fractions of training
data points perfectly, i.e., with zero-error from the model gradients. In contrast
to previous data reconstruction attacks that rely on computationally expensive
operations, our attack enables the extraction of individual training data points in a
single-step computation and is, thereby, highly efficient.

We also showed that our novel attack vector integrates naturally with model training
performed through the protocol of FL (see Figure 4.1 on Page 48). Thereby, it allows
the server who is in charge of the shared model and receives the client-gradients to
disclose the clients’ privacy and directly extract their sensitive training data. Since
FL was, for a long time, promoted as a privacy-preserving solution for ML, our
discovery of this novel attack vector is highly relevant and valuable. It does not
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only contribute to improving our understanding of privacy leakage in ML, but
it also helps to raise awareness of existing privacy threats in this widely applied
framework. Furthermore, it can inform the study on trust assumptions around
privacy, and the development of adequate protection measures as we will show in
the following chapter.
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Chapter5
Studying Trust Assumptions in Fed-
erated Learning

Third-party services and their providers are of high relevance when it comes to
ensuring the privacy of Machine Learning (ML) models as we concluded from
the results of our survey in Chapter 3. This is because ML practitioners trust the
service providers to implement adequate privacy protection for their sensitive
data and learning tasks. Yet, the previous Chapter 4 highlighted that Federated
Learning (FL), which was, for a long time promoted by its provider as a privacy-
preserving ML protocol, leaks private client-data. We showed that this data leakage
can even be increased when the server acts maliciously and manipulates the shared
model weights. These findings motivate us to perform an in-depth study of trust
assumptions underlying the FL protocol in the scope of this chapter. In particular,
we aim at investigating under which trust assumptions FL can meet the promised
privacy protection in practice.

In this work, we focus on trust put in the server. Building on our results from the
previous chapter, we start by assessing privacy guarantees of the standard vanilla
FL protocol—i.e., an FL protocol that does not implement additional measures to
protect its clients’ privacy—in presence of an untrusted server. In this scope, we
discuss both a passive honest-but-curious server who simply analyses the received
client-gradients, and an actively malicious server who exhausts its abilities within
the protocol to deliberately target the clients’ privacy. We then move on to study the
requirement for trust in the server within FL protocols that implement dedicated
privacy-protection. In particular, we consider FL protocols that implement Secure
Aggregation (SA) [33] and Distributed Differential Privacy (DDP) [181], currently
considered the most private instantiation of the protocol. We do not consider a
specific protocol variant, nor a specific proprietary system (because the details of
these are usually unknown). Instead, we view the landscape of known solutions
and ask what guarantees can be obtained.
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Based on our assessment of different trust assumptions, we then set out to discuss
the requirements for building a variant of FL that practically prevents attacks by a
malicious server. We find that one promising direction for future research is to add
adequate amounts of noise to clients’ gradients via a cryptographic protocol such
as Secure Multiparty Computation (SMPC). However as of yet, due to the gradients’
high dimensionality, the communication costs are prohibitive. We thus conclude
that privacy-preserving FL, in the presence of an untrusted server, is not yet practical.
However, our assessment enables us to formulate some practical guidelines for
reducing the trust required in the server by making data extraction attacks more
difficult. These guidelines can serve clients who participate in an FL protocol and
ML practitioners who are in charge of implementing it as behavioral guidance
towards improved privacy for sensitive data in ML.

In this chapter, we first provide a description of the real-world FL deployments and
the types of attackers that we base our study of trust assumptions on. Afterwards,
we study privacy, first in vanilla FL, and then in hardened FL with DDP and SA.
Based on the insights gained from assessing trust in both scenarios, we discuss
different options to improve FL privacy in the presence of untrusted servers. Finally,
we conclude with a summary of our findings and their implications on privacy in
current FL deployments.

5.1 System Design and Threat Model

We begin this section with an overview of the real-world FL systems that underlie
our assessment in this chapter, both, a standard vanilla deployment and a hardened
deployment that explicitly integrates privacy-preservation. Moreover, we character-
ize the two broad types of attackers that we consider to study the trust assumptions
in FL.

5.1.1 Real-World Federated Learning Deployment

This section describes the real-world FL deployments on which we base our eval-
uation of trust assumptions. To revisit the theoretical background of FL, see Sec-
tion 2.2.

Standard Vanilla FL. We perform our assessment of trust assumptions based on
practically deployed FL systems, such as the one described in [32]. These systems
rely on synchronous large mini-batch training on the client side. For each training
round of the FL protocol, a fraction of all participating clients announces their
availability to the server during a certain time window. Then, the server selects a
subset of typically a few hundred clients for participation. Since “ensuring [that]
devices are subsampled precisely and uniformly at random from a large population would be
complex and hard to verify.” [121], we can assume that a malicious server can freely
select the clients, in particular, some target client to attack in combination with
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maliciously controlled clients. We assume encrypted network traffic to prevent
eavesdropping and we follow [32] concerning anonymity: “We want devices to
participate in FL anonymously, which excludes the possibility of authenticating them via a
user identity”.

Hardened FL. To study hardened deployments of FL, i.e., instantiations of the
protocol that implement dedicated privacy-protection, we focus on FL that is
extended with a combination of DDP and SA, see Section 2.3.5.3. We do so because
it is the combination of published techniques that holds the most promise in the
presence of an untrusted central party. Thus, our work conservatively characterizes
the risk of privacy leakage from many instantiations of FL. Thereby, our goal
in studying this particular instantiation of FL is to show that, even if servers
(e.g., companies) adopted currently available best practices from the academic
community, end-users might not get the promised privacy protection from FL.

Keeping these considerations in mind, please also note that FL with DDP and SA is
not as widely deployed as vanilla FL. This is mainly due to increased computation
and communication costs, and the resulting decreased number of clients who can
participate per round.1

5.1.2 Types of Attackers

Additionally, we introduce the different types of attackers considered in this chapter.
In all scenarios, our attacker is the server in FL, and their goal is to infer individual
clients’ local sensitive training data points.

Honest-but-Curious. Honest-but-curious servers are passive attackers. They can
observe the natural course of FL training but not corrupt its inputs. Thereby, their
power when it comes to attacking clients’ privacy in FL is limited. However, in
the following section, we will show under which assumptions even an honest-
but-curious attacker can extract significant fractions of the clients’ training data in
vanilla FL.

Malicious. Malicious servers are attackers who actively try to disclose the clients’
privacy. Note that the background on FL in Section 2.2 implies that the server
can—whenever they choose to—(1) control the weights of the shared model, (2)
select which of the N clients participate in each round, and (3) provision new clients
into the pool (including sybils controlled by the server). We have shown the attack
vector that results from (1) in the previous chapter. Capabilities (2) and (3) have
even been demonstrated in the real-world as Google researchers introduced 189

sybils devices into the Gboard FL system and made them participate in the protocol

1“Several costs for SA grow quadratically with the number of users, most notably the computational cost for
the server. In practice, this limits the maximum size of a SA to hundreds of users.” [32]. With reduced
numbers of clients, also the convergence speed of the joint model training with FL decreases,
e.g. [201].
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along with real clients [152]. Given the large-scale deployment of FL protocols, one
can, however, assume that the total fraction of sybils out of the N clients is small.

We, furthermore, assume the server is Occasionally Malicious (OM), meaning they
behave maliciously in only a few rounds of the protocol. When this happens, they
can exert the above capabilities (1-3) maliciously. Do note that the server here does
not deviate from the protocol and restricts itself to only using valid operations
(1-3) in the FL protocol adversarially. An OM server ensures the attack remains
stealthy and also allows the server to train a model that has high utility over the
non-malicious rounds, which is an expected product of FL. This is because due to
its OM nature, the server can simply go back to the normal and benign training
procedure after one or a few attack round(s).

5.2 Assessing Vanilla Federated Learning

We start by assessing the trust assumptions required to provide practical privacy
guarantees in vanilla FL. Therefore, we begin with considering a passive honest-
but-curious server, and then continue to evaluate an actively malicious one.

5.2.1 Honest-but-Curious Servers

First of all, note that nothing in the design of vanilla FL guards against leakage of
private information from the clients’ data. This is because the protocol is designed
to provide confidentiality (data does not leave user devices) rather than privacy
(outputs of the computation do not leak sensitive attributes from the clients’ input).
Without additional privacy measures, FL is not designed to protect clients from the
server reconstructing their data.

However, as discussed in Section 4.1.2, the fidelity of prior methods’ reconstructions
is comparably low, in particular for more complex data. This made recent work [190]
argue that privacy for vanilla FL might not be broken because these attacks have
too specific assumptions on small mini-batch sizes and on the underlying data
distribution.

However, our novel observation that model gradients directly leak individual train-
ing data points, even for large mini-batches of complex training data—which we
formalized in Section 4.2—shows that prior work has dramatically underestimated
the vulnerability of FL to attacks on privacy. This is because the data leakage can
be exploited directly by an untrusted server to conduct high-fidelity data extraction
attacks. This even holds when the server only passively observes the gradients,
given that the shared model starts with a fully-connected layer. We thus conclude
that previous privacy assessments of FL have been overly optimistic.
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5.2.2 Malicious Servers

With the introduction of our adversarial weight initializations as a novel attack
vector against privacy—which we presented in Section 4.3—we showed that an
untrusted malicious server even has an upper hand over how much data the model
gradients will leak. By adversarially manipulating the weights of the shared model,
the server can extract significantly larger fractions of the clients’ training data.
Additionally, with the help of data forwarding (see Section 4.4) data extraction
becomes feasible with a wider range of architectures, such as CNNs. This reduces
the dependence on potentially limiting assumptions, such as the presence of a
fully-connected layer at the input of the model.

5.2.3 Conclusion

To conclude the assessment of trust assumptions and resulting practical privacy
guarantees in vanilla FL, we observe that without trust in the server, vanilla FL
cannot provide privacy against both accidental and malicious leakage.

5.3 Assessing Hardened Federated Learning

In this section, we consider hardened versions of FL that aim at implementing
privacy guarantees for the clients. Since these extensions were designed to protect
against passive attackers, in the following, we start our assessment directly by
assuming a malicious server. We, thereby, aim at understanding how much privacy
can still be leaked by an attacker, even under the most protective privacy practices.

5.3.1 Differential Privacy and Trust in Federated Learning

To counteract privacy leakage, the vanilla FL protocol can be extended to implement
Differential Privacy (DP) [57] guarantees. As presented in Section 2.3.5.3, there exist
several ways of integrating DP in FL.

First and foremost, if clients do trust the server, a relatively cost-effective mitigation
against privacy leakage in FL exists: the server can add noise to the model updates
and, thereby, implement Centralized Differential Privacy (CDP) [152] (see Sec-
tion 2.3.5.3). Therefore, the clients solely have to clip their gradients, and then the
server can add noise during the aggregation [123]. This degrades the performance
of learned models but adds strong privacy guarantees. However, without trust in
the server, central solutions like CDP cannot provide practical privacy guarantees.
This is because the server could either extract the client data before adding the
noise or do not perform the noise addition, at all.

As alternative privacy protection against untrusted servers, the clients could imple-
ment Local Differential Privacy (LDP) [182] and add noise to their local gradients
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before sending them out to the server. This would prevent any untrusted server
from performing data extraction. Unfortunately, LDP generally results in poor
model utility due to the addition of large amounts of noise to every client’s up-
date [103], and, therefore, does not represent a practical solution for FL privacy.

To overcome the shortcomings of LDP, DDP was introduced. Since it allows clients
to add less noise locally but still obtain meaningful privacy guarantees through
aggregation with other clients, it promises practical privacy for FL. However, in the
next section, we will describe an attack that circumvents DDP and SA and allows a
malicious server to still reconstruct private information from the clients. We also
forge an intuition of what factors contribute most to the leakage.

5.3.2 Attacking Differential Privacy and Secure Aggregation

For successful data reconstruction under DDP and SA, the server has to make use
of the following three capabilities which it naturally holds in FL:

1. Introducing sybil devices: The server needs to be able to introduce a fraction
of manipulated devices in the FL protocol. These devices can return arbi-
trary gradients, chosen by the server. In particular, they can contribute zero
gradients to the SA. By aggregating a target client’s gradients with all zero
gradients even within the SA protocol, this client’s gradients are still perfectly
extractable.

2. Controlling the client sampling: To ensure that the sybil devices are sampled for
SA together with a chosen target client, the server needs to control the client
sampling.

3. Manipulating the model weights: For improved data reconstruction performance,
the server can manipulate the shared model’s weights, for example, relying
on our adversarial weight initialization method from Section 4.3.

While the first two capabilities enable the server to circumvent SA and to leave
the gradients of a target client with an insufficient amount of noise for privacy
protection under DDP, the third capability increases the number of individual
training data points that can be reconstructed and extends the attack to other
model architecture types as described in the previous chapter.

5.3.2.1 Attack Flow

The flow of our attack against FL with DDP and SA is depicted in Figure 5.1. It
aims at reconstructing the private data of one target client per malicious round in
the FL training. To do so, the attack needs to (1) circumvent the SA, then (2) exploit
the weak privacy guarantees of DDP from a user’s perspective, and (3) finally
reconstruct the target client’s individual training data points.
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Figure 5.1.: Attack Flow to Circumvent DDP and SA in FL. We present the steps
of our attack against FL protected by DDP and SA. 1 The server
introduces a small fraction of sybil clients into the FL application. 2

The server selects M clients for participation in training round t: one
target client and M− 1 sybils. 3 The server manipulates the shared
model with our adversarial weight initialization and sends it out to the
selected clients. 4 The target client locally calculates its gradients on
the manipulated model while the sybil clients return zero-gradients.
5 Only the target client locally applies a small amount of noise to

its gradients to implement DDP. 6 The target client’s local noised
gradients are aggregated with the sybil clients’ zero-gradients. 7 The
resulting aggregate which solely contains the target client’s gradients
is sent to the server. 8 The server extracts the target client’s training
data from the received gradients.

(1) Circumventing SA. In our attack, the server circumvents SA by sampling the
target client together with maliciously controlled sybil devices for the given training
round. Since for each round, M clients are sampled for participation, the server
needs to control at least M− 1 sybil devices. SA limits M to several hundred clients
due to the additional costs introduced by the protocol [32]. Hence, inserting M− 1
sybil devices into an FL deployment is a practically feasible setup, as shown in
previous work [152].

Since SA-protocols provide their guarantees under the assumption that a certain
fraction of clients is honest, it follows naturally that in the presence of the sybil
devices, no guarantees can be provided to the target client. This is because when
the gradients are aggregated over multiple clients, and all but the target client con-
tribute zero gradients, the aggregate solely contains this target client’s gradients.

Pasquini et al. [144] describe a different way to circumvent SA based on the server
sending out different models to different clients. While the models for non-target
clients produce zero-gradients, the target client’s model produces non-zero gradi-
ents which can be exploited for data reconstruction. An advantage of this method
is that it does not require the server to control the client sampling or to manipulate
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a fraction of clients. Note however that in their scenario, DDP can still be efficiently
applied if every client adds some noise to their (potentially zero) gradients. As a
consequence, the total amount of noise can be sufficient to protect the gradients of
the target client. Therefore, in our attack, we rely on the controlled sybil devices to
circumvent the SA.

Note also that alternative mechanisms exist to aggregate client-gradients for DDP,
such as shuffling [26, 59]. However, these mechanisms can be circumvented by the
exact same sybil devise-based approach.

(2) Exploiting DDP Guarantees. If DDP is in place, the gradients of the target client
will be slightly noisy—even with successful circumvention of SA. However, by the
design of DDP, the amount of noise added by each client is typically insufficient
to provide a meaningful privacy guarantee from the client’s perspective [99]. By
meaningful privacy guarantees we mean, guarantees equivalent to what one would
obtain in the LDP definition. This is in fact how DDP obtains a utility gain over LDP,
which would have inserted sufficient noise to obtain per-client privacy guarantees
that are independent of other clients: DDP assumes all clients will add enough
noise so that the aggregate is sufficiently noised whereas LDP assumes each client
adds enough noise to obtain privacy in isolation. As a consequence, in DDP, each
client can add less noise locally than required for the desired total privacy level,
resulting in more utility. In contrast, the guarantee provided by LDP allows the
client to not trust the server or other clients. However, it comes at the expense of
lower utility for the model obtained by the server.

Concretely, in an LDP version of FL, the noise added by each client depends
solely on the noise scale σ and the clipping parameter c of the application. As a
consequence, the local noise is sampled from a Gaussian distribution by

N (0, σ2c2). (5.1)

In contrast, in DDP, the amount of noise added by each individual client addition-
ally takes the number of clients who participate in the round into account [181].
Assuming that M clients are sampled for participation, this results in a local addition
of Gaussian noise sampled from

N
(

0,
σ2

M− 1
c2
)

[181]. (5.2)

In Figure 5.2, we present the privacy-utility trade-offs resulting from training
models on the CIFAR-10 [106] dataset as a function of the total noise scale σ and
the resulting models’ accuracy on a test set. We train the private models with
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Figure 5.2.: Privacy vs. Utility Trade-Offs under DDP. Each point on the blue line
corresponds to a model trained on CIFAR-10 with a clipping parameter
c = 1, and a total noise scale σ. The training was conducted over 100

epochs, the resulting privacy guarantees ϵ are reported. For the non-
private baseline ϵ = ∞. The images depicted below the line plot display
the rescaled noisy gradients of one data point of an individual client
with noise calculated according to Equation (5.2) as a function of the σ,
c, and the number of other clients that participate in the training round.
The more clients participate, the less noise every client needs to add
because, during aggregation, the total noise is determined by the sum
of the individual noises. If, however, other clients do not add noise,
the locally added noise is the only privacy protection every individual
client has. This protection might not be sufficient. Note that the results
(accuracy and reconstructed gradients) would differ if a different clip
norm was used.

a state-of-the-art framework for DP-training2 in which all hyperparameters and
model architecture are tuned for the task.

Figure 5.2 provides two main insights. First and unsurprisingly, given the privacy-
utility trade-offs mentioned above, the model utility decreases when the total
noise scale σ increases. Second, the figure shows that the more clients participate
in a given training round, the less noise each client needs to add locally. This
results from Equation (5.2) which relies on the total noise being aggregated over all
participating clients before sharing the aggregated gradients with the server.

2https://github.com/ftramer/Handcrafted-DP. Note, however, that our reported accuracy and
achieved privacy levels ϵ cannot directly be compared with the values reported in the repository.
This is because we use different noise scales than they do and train the model for 100 epochs
while they only train for 30 epochs.
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DDP assumes that each client is honest and adds the required noise to their gradients.
However, if even one of the clients adds less than the amount of noise it should
add, the desired total privacy guarantees cannot be reached. Even worse, if, as we
assume for the course of our attack, a target client in FL is sampled for participation
solely with controlled sybil devices that do not provide any noise for aggregation,
the local noise added by the target client represents the only protection for this
target client’s gradients.

These results mean that there is a tension between (1) the guarantee claimed by
the server (and other clients) in DDP and (2) the guarantee that a client who does
not trust this server can rely on. This will lead the server optimizing for the model
utility to request that clients add less noise to their gradients than what is needed
for individual clients to protect their data from leaking to an untrusted server.

(3) Reconstructing Data under Noise Addition. Deciding at which point, i.e., under
the influence of how much noise, the reconstruction of a data point is sufficiently
close to the original data point is orthogonal to this work. In particular, it will
depend on the specific domain, task, and client-preference. However, due to the
passive data leakage from gradients described in Section 4.2, and the increase of
leakage due to our adversarial weight initialization, clients should assume that the
server can extract individual data points such as the ones depicted in Figure 5.2
from their gradients. In particular, in the following experiments, we show that
noise added to the client gradients is not necessarily an obstacle to the successful
reconstruction of important semantics of the input.

5.3.2.2 Improving Data Reconstructing under Distributed Differential Privacy

The previous section highlights that DDP reduces to LDP with weak privacy
guarantees from an individual client’s perspective when other clients are untrusted
with their noise addition. In this section, we show how we can even improve data
reconstruction in this setup, further amplifying the small signal in the extracted
gradients. We evaluate improvements for data reconstruction from noisy gradients
computed under DDP on image and textual data. Whenever we report the DDP
setup, we specify the respective clipping parameter c, the noise multiplier σ, and the
number of participants M for the given round of the protocol. These three numbers
specify how much noise each client locally adds based on Equation (5.2). The
extraction of data points under FL with DDP and SA works exactly the same way
as for vanilla FL (see Section 4.3). The following improvements in reconstruction
solely rely on post-processing steps to reduce the effect of the noise.

Improving Image Data Reconstruction. Due to the local clipping and noise ad-
dition by the clients, the data points extracted from the gradients are not perfect
reconstructions of the original data points. However, we can improve reconstruction
quality by leveraging redundancy in the gradients to average out the added noise.
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Figure 5.3.: Effect of Redundancy for Noisy Data Reconstruction. Mean value
over #-many noisy reconstructions of the same data point (left); corre-
sponding mean image’s SNR (right). DDP setup: c = 1, σ = 0.1, and
M = 100. Over an increasing number of reconstructions, the local noise
averages out, yielding higher-fidelity images and increased SNR.

Figure 5.3 shows an example of the positive effect that results from averaging
multiple noisy instances of the same data point: the more instances the average is
calculated on, the higher the Signal-to-Noise Ratio (SNR), and the more the result
resembles the original data point.

Recall from Figure 4.7 on Page 72 that our adversarial weight initialization increases
natural leakage also to the point that the same data points can even individually
activate more than one neuron. In this case, the data points are individually
extractable from these neurons’ respective gradients. As shown in Figure 4.7, we
find, for example, that within a mini-batch of 100 data points from the CIFAR-10

dataset, some data points can individually activate up to 33 out of 1000 neurons.

By averaging extracted individual noisy data points and noisy overlays, the server
can improve the data reconstruction fidelity and turn extracted noisy gradients,
such as the ones depicted in Figure 5.4 to higher-fidelity reconstructions of the
training data, for example, shown in Figure 5.5.

The server in our attack, however, without knowledge of the clients’ data, has
no means of determining which data points activate which neurons a priori.
Therefore, it is unclear which rescaled gradients need to be averaged to improve
reconstruction fidelity. To overcome this limitation, we employ similarity clustering.
In this approach, the server first filters out extracted data points with a SNR below 1.
This prevents too noisy instances from degrading performance. In Section 5.3.3.1
we discuss why different extracted data points have different SNRs. Then, the
server runs a simple K-Means clustering on the extracted data, and finally averages
all per-cluster data points. We evaluate this approach with different noise scales
and mini-batch sizes B. Note that the number K of clusters has to be chosen in
accordance with the mini-batch size if we want to be able to reconstruct every data
point. Our evaluation suggests that clustering works best when K ≥ 2B.
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Figure 5.4.: Rescaled Clipped and Noised Gradients. Data extracted from a mini-
batch with 20 data points from CIFAR-10 dataset, from an FC-NN with
architecture specified in Table 4.1 and initialized with our adversarial
weight initialization. DDP setup: c = 1, σ = 0.1, and M = 100.

In Figure 5.5, we depict the results of our clustering on data points from the CIFAR-
10 dataset with a DDP setup with c = 1, σ = 0.1 and M = 100. The top row depicts
10 original data points, and the mid and bottom rows show the closest averaged
clusters for mini-batches of size 10, and 20 respectively. The more instances are
available for averaging, the better the resulting per-cluster averages. Please note that
even when the maximum number of repetitions of an individually extractable data
point was reported as 33, we average over clusters with more elements. This is due
to the fact that to belong to a cluster, we do not require points to be individually
extractable. The cluster can also contain extracted gradients where a few number
of data points overlay but still contain semantics of the individual points.

Improving Textual Data Reconstruction. For the text classifier on IMDb, we ini-
tialize the weights of the embedding layer with a random uniform distribution
(min=0.,max=1.) to create the inputs for the fully-connected layer. We then adversar-
ially initialize this fully-connected-layer’s weights with our adversarial initialization
to perform extraction of the embeddings. Finally, after extracting the input’s embed-
dings from the fully-connected layer (like they would extract an image), we map
them back to the corresponding text. To reconstruct the original text tokens from
a sequence of extracted embeddings, in vanilla FL, the attacker creates a lookup
dictionary, mapping its initialized embeddings back to their corresponding tokens
(this is the inverse mapping to the embedding layer). To avoid vector-comparisons
for each lookup, we use hash values for vector embeddings as keys.

In the presence of noise introduced for DDP, the extracted embeddings are slightly
noisy. To overcome this, in presence of noise we perform the lookup by searching for
the token with the closest embedding measured through the ℓ2 distance. Figure 5.6
shows the performance of a single mini-batch language extraction in presence of
noise. Just as with image data, here an attacker is capable of extracting the original
sentence of the clients, despite the applied noise. We do observe however that
there is stochasticity involved—when parametrization does well on the data point
by default, extraction gets low performance since the received gradient has an
extremely low magnitude and the corresponding signal gets dominated by the

88



5.3. Assessing Hardened Federated Learning

Figure 5.5.: Original Data Points and Average Noisy Clusters. Clusters obtained
from the rescaled gradients depicted in Figure 5.4. First 10 original
training data points from the CIFAR-10 dataset (top row). Averaged
clusters of 10 data points reconstructed from the gradients for mini-
batch size B = 10 (mid row), and B = 20 with the first 10 examples
depicted (bottom row). The numbers above the images indicate how
many noisy reconstructions were averaged to obtain that image.

noise. We turn to this phenomenon in the next section.

To summarize the results on image and textual data, we find that:

• Our adversarial weight initialization cause input data-diversity and redun-
dancy in resulting gradients, which can be used to cancel out some of the
applied noise.

Figure 5.6.: Extracting Text Data under DDP. Extraction performance under noise
for DDP from language model on the IMDb dataset with architecture
depicted in Table 4.2. Extraction remains successful, even in presence
of noise. Occasional drops in performance occur because of near-zero
gradients resulting from correct data classification, i.e., data points with
very low loss. Error bars correspond to a single standard deviation.
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Figure 5.7.: Gradient Norm vs. SNR in Extracted Data. Norm of the clipped and
noised gradients of 1000 weight rows against SNR in corresponding
extracted data point, i.e., the rescaled gradients. With higher gradient
norms, the SNR in the extracted data increases. DDP setup: c = 1,
σ = 0.1, and M = 100.

• NLP is not safe from attacks described in this paper, despite a more sophisti-
cated input-embeddings mapping.

• Despite using DDP, an attacker often can reconstruct semantic information on
the individual client data points. This is because, in the presence of untrusted
other clients, DDP reduces to LDP with weak privacy guarantees from the
perspective of an individual client.

• As shown in Figure 5.2, having clients add more noise locally comes with a
significant decrease in utility which makes the solution less practical.

5.3.3 Adversarial Model Manipulations for Data Extraction under Dis-
tributed Differential Privacy

Throughout our experiments, we observe that with the exact same scale of noise
added to all gradients, some extracted data points have a significantly higher SNR
than others. This effect translates into different levels of semantic similarity in the
extracted data with respect to the to original data as we show in Figure 5.4. In this
section, we explain this observation and sketch how it can be leveraged to better
extract data in the presence of noise.

5.3.3.1 Influence of the Gradient Norm on Extraction Success

We find that the SNR of an extracted data point is tightly bound to the magnitude,
i.e., the norm, of the respective gradients. In Figure 5.7, we depict the SNR in
rescaled clipped and noised gradients, i.e., the extracted data points, against their
respective gradient norms. It shows that with higher magnitude gradients, the same
amount of noise has less impact on the signal, whereas, with smaller magnitude
gradients, the same amount of noise largely dominates the signal. Therefore, the
increased magnitude of model gradients results in increased data leakage.
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Figure 5.8.: Extraction Success under Model Manipulations to Circumvent DDP.
Under adversarial weight initialization only, gradients at different
weight rows have varying SNRs under the same amount of added
noise, depending on their magnitudes (top). When the shared model is
further manipulated and all weight rows contribute equally to a high
loss, their gradients will be clipped, which results in equal information
loss for all of them (middle). When only a few weight rows contribute
to a high loss, theirrespective gradients can keep a high magnitude
over clipping (and subsequent noise addition), which allows for higher
fidelity extraction. DDP setup: c = 1, σ = 0.1, and M = 10.

The norm of a weight row’s gradients in the model depends on the model’s loss.
In general, higher loss results in higher magnitude gradients, in particular for the
weight rows that most contribute to the loss. Intuitively, to increase data leakage
from noisy gradients, the server could, therefore, manipulate the shared model
to produce a higher loss. In the best case, the loss would be caused by all weight
rows in the fully-connected layer used for extraction. This ensures high-magnitude
gradients at all weight rows for enhanced extraction at all of them.

However, in DDP, before noise addition, clients perform a clipping step, bounding
the maximum signal in a gradient update. Clipping limits the total norm of a model
layer’s gradients to the clipping parameter c. If all weight rows have high gradients,
their joint norm will exceed c, and therefore, all of them will have to be clipped.
This results in a loss of semantic information in all the rescaled gradients, i.e., the
extracted data points, see the middle row in Figure 5.8.

5.3.3.2 Adversarial Model Manipulation for Improved Data Extraction

As a solution to overcoming the loss of semantic information induced by the
clipping, we propose a novel adversarial model manipulation.
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Our construction has the two following effects:

1. It causes a high loss in the model to increase the gradients’ magnitude.
2. It "attributes" this loss to only a few weight rows, such that only their gradients

obtain a high magnitude. This circumvents the negative effect of clipping
for them because the overall norm of the layer’s gradients will stay below
the clipping parameter c. As a consequence, the high magnitude gradients
of the weight rows with attributed loss can be used for higher fidelity data
extraction, see the bottom row in Figure 5.8.

We sketch the intuition on how to design this adversarial model manipulation for
an FC-NN with two layers: the first layer is initialized with our adversarial weight
initialization for extraction, the second, i.e. the classification layer, is modified to
obtain the desired effect of the loss. To cause a high loss in the model without any
knowledge on the client data, we add an additional neuron to the classification
layer, i.e., an additional class that does not occur in the data distribution. Then, we
set most of the weights that connect the output from the previous layers’ neurons
to this additional class to very small values, e.g. zero, and the weights for a few
neurons’ output to high values, e.g. one. Note that the first fully-connected layer
uses a ReLU activation function. Hence, all its output values will be either zero or
positive. By multiplying them with high positive values for the added class in the
second fully-connected layer, we cause the data points to be misclassified into this
class with a relatively high loss even without knowledge on the concrete training
data by the server.

Figure 5.9 visualizes this idea. In the figure, the gradients for adversarial weight
row 2 will be large, whereas the gradients at adversarial weight row 1 and n will
be zero. As a consequence, the rescaled gradients of these latter two rows consist
purely of noise. However, the overall gradient magnitude will be below c, and
therefore, the gradients at adversarial weight row 2 enable high-fidelity extraction,
see the bottom row in Figure 5.8.

We experimented with different fractions of weight rows that contribute a lot to the
high loss by setting different amounts of weights that connect to the added class to
one while setting the rest of the weights to zero. The resulting SNRs are depicted in
Figure 5.10. It shows that when all weight rows contribute equally to the high loss,
see Figure 5.10 (d), their rescaled gradients have a similar SNR. This is due to all
of them being equally affected by the clipping. However, when fewer weight rows
contribute to the high loss, their respective rescaled gradients, i.e., a few extracted
data points, have a higher SNR, and thereby allow for higher fidelity extraction.

This two-layer construction naturally integrates with other architectures starting
with convolutional and embedding layers described in this work. We leave fine-
tuning and the extension of our construction to architectures that end with more
than two fully-connected layers for future work. However, the approach highlights
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Figure 5.9.: Adversarial Model Manipulation for Extraction under DDP. A sketch
of an adversarial model manipulation that circumvents the negative ef-
fect of the clipping in Differentially Private Stochastic Gradient Descent
(DPSGD) on data reconstruction fidelity.

that even when DDP is in place, an untrusted server can maliciously initialize a
model to increase the likelihood of reconstructing points with high-fidelity.

5.3.4 Conclusion

In summary, the assessment of trust assumptions and privacy in hardened FL
highlights that even when implementing the so-far, known as most protective
extensions of FL, the server still holds an upper hand on information leakage in the
protocol. Therefore, even these hardened extensions of FL cannot provide privacy
against an untrusted server.

5.4 Towards Relieving Trust for Privacy-Preserving Feder-
ated Learning

Based on our study of attack vectors, trust assumptions, and their respective
impact on practical privacy guarantees, in this section, we give recommendations
to guide future research and implementation towards private FL. Therefore, we
first distill sources of privacy leakage in the current practical FL deployment. Then,
we propose strategies to mitigate privacy risks and provide recommendations for
clients participating in the protocol.

5.4.1 Identifying Privacy Problems in Federated Learning

Our investigation of different FL deployments and their respective attack vec-
tors highlights the following sources of vulnerability to privacy leakage in the
protocol:

1. The server’s ability to control a fraction of clients.
2. The server’s ability to sample clients for participation in each protocol-round.
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(d) 1000.

Figure 5.10.: SNRs of Rescaled Clipped and Noised Gradients, i.e., the extracted
data points. The first fully-connected layer used for extraction consists
of 1000 neurons. The respective weight rows are initialized with our
adversarial weight initialization. The second layer is manipulated by
adding an additional class neuron and setting {100, 300, 500, 1000}
of the 1000 weights that are connected to this neuron to one. The
remaining weights that go to this neuron are set to zero. The original
baseline consists of randomly initialized weights for the second fully-
connected model layer. c = 1, σ = 0.001, and M = 1.

3. The difficulties of integrating DP for the right trust assumptions and with
reasonable privacy-utility trade-offs.

4. The server’s ability to manipulate the model.
5. The clients’ inability to verify each other’s correctness.
6. The clients’ inability to verify and validate model updates.

While points (1) and (2) enable the server to circumvent SA, point (3)—in com-
bination with (1) and (2)—enables to extract private information even if DDP
is implemented. Point (4) enables the server to choose model architectures that
facilitate data extraction and to adversarially (re-)initialize the model weights to
increase the percentage of extractable data or extract from a wider range of model
architectures. The points (5) and (6) highlight that clients have to either trust the
server, or rely on cryptographic protocols that take responsibility away from it.
In particular (5) represents an issue for the correct execution of DDP, while (6)
impedes clients in detecting active attacks against the model weights.
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In the following sections, we elaborate on these points and discuss methods to
reduce the associated vulnerabilities.

5.4.2 Detection of Client Manipulation

For this aspect, it comes down to the question: Can a client detect if another client
is manipulated? This question is of high importance since a client should not
participate in the SA for DDP if other clients are manipulated. This is due to DDP
only providing meaningful privacy guarantees by aggregating all clients’ noisy
gradients. As a consequence, even if only a small fraction of clients is manipulated
and does not contribute noise, the privacy of all participating clients degrades.

The issue of detecting manipulated clients addresses points (1) and (5), since, if
clients were able to verify the correctness of other clients’ gradients, the server
could no longer exploit its ability to control a fraction of clients to circumvent
SA and DDP. The main issue for verification is that in FL, clients usually do not
have direct communication channels with each other, but rely on the server [144].
Therefore, when the server is untrusted, clients cannot verify that other clients are
not manipulated.

There exist, however, several methods that are, in principle, adaptable to detect
manipulated client gradients. Weng et al. [194] propose to use Zero Knowledge
(ZK) proofs to verify private benchmarks. In their scenario, a public ML model is
evaluated on private data. Therefore, the owner of the private data publicly commits
to the data and then locally evaluates the accuracy of a public model. The data
owner can use the ZK protocol to prove that the public model was executed on the
committed data. In FL, the shared model is known to all the clients, however, their
local data has to remain private. As an adaptation, instead of proving the accuracy
of the shared model on private data, a given client could prove that a gradient was
computed for the shared model on the local private data. This approach limits the
attack space to only the first step of the protocol when a malicious client can commit
to manipulated data. The drawback of this method lies in its high computational
cost: The verification of accuracy requires fewer operations than the verification of
gradients, yet, already the reported execution time of accuracy verification in [194]
on 100 test images is 8.2 minutes for LeNet5, 4.4 hours for ResNet50, and 7.3 hours
for ResNet101.

Biscotti [166] is a block-chain based FL system that also includes the verification
of clients’ updates via Krum [27]. This verification approach is strictly weaker in
terms of guarantees than via ZK proofs but more practical. First, Biscotti selects
clients as verifiers in a randomized way to ensure that malicious clients cannot
deterministically choose themselves to verify a victim’s gradient. Second, pre-
committed noise for DP is added to the clients gradients, thus masking them
before they are sent to a verifier. Finally, the Biscotti system opts for aggregation of
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unnoised model updates since by aggregating differentially private updates, the
final model has lower utility. This design choice makes the system vulnerable to
privacy leakage from clients’ gradients.

Yet, at least in the FL deployment targeted in this work, clients cannot freely decide
on their participation in FL training iterations. Instead, the server controls the client
sampling, and once a client is selected for participation, it is assumed to contribute
to the training. Hence, even if the clients were able to identify manipulated other
clients, in this deployment, they could still not refrain from participation.

5.4.3 Control on the Client Sampling Mechanism

The previous section highlights the importance of the sampling mechanism to client
privacy, see point (2). To address this point, mechanisms where the clients perform
a self-sampling, such as [73], have been put forward. These allow clients to decide
about their participation and, thereby, reduce the power of the server.

Other adaptations of FL, such as anarchic FL [198] go even further. Not only do
they allow clients to decide in which iterations of the FL protocol they want to
participate, they also allow the clients to perform training with parameters fully
according to their preferences. In this setup, the server can only sample from
clients that agree to participate in a given iteration. Therefore, the shared model is
published and clients pull it at a given state with an associated time-stamp. Then,
clients perform the local training and share the resulting model updates together
with their time stamp of the shared model.

Also in Biscotti [166], no server is in charge of the client sampling, instead, clients
are weighed by the value, or stake, that they provide to the system. Then, Biscotti
uses consistent hashing in combination with verifiable random functions to select
key roles for clients who coordinate the privacy and security of model updates.
Such adaptations allow to mitigate risks that stem from the server’s control on the
client sampling mechanism.

5.4.4 Implementations of Differential Privacy

As we described in Section 2.3.5.3, next to DDP, there are LDP and CDP which
allow to integrate DP into FL. When it comes to LDP, related work agrees that the
amount of noise that is introduced through it, yields poor model utility, e.g. [46].
When it comes to CDP, assuming an untrusted server, the approach cannot yield
meaningful privacy guarantees since the server could simply skip noise addition
or extract the data before adding noise.3

3Yet, standard systems, such as the one described in [121] seem to be implemented that way and
state: "We can provide accurate estimates of cumulative sums with a strong DP guarantee by
utilizing negatively correlated noise, added by the aggregating server".
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Note: For a secure aggregation of sensitive statistics (instead of ML model gradients),
there exist solutions of CDP without a trusted aggregator [156, 157]. Such improved
aggregation protocols that achieve a correct joint noise addition would also solve
the point (3), given that sampling is not manipulated. This joint noise addition
could theoretically be implemented by full SMPC.

5.4.5 Secure Aggregation and Secure Multiparty Computation

SA in FL can be eluded [144], or circumvented as described in Section 5.3.2, even
though the cryptographic protocol is correct. This does not only override the
advantages of aggregation, such as the protection of provenance of the respective
gradients, but also degrades the privacy guarantees of mechanisms that are built
on top of it, such as DDP. A strategy to implement meaningful privacy guarantees
to address point (3) would lie in replacing SA with a full SMCP protocol between
the clients inside of which a sufficient amount of noise is always added.

However, both SA, as well as other SMPC protocols introduce communication,
computation, and storage costs in FL. The assessment of costs incurred for clients
though SA, highlights (1) communication and computation costs for key agreement
between clients, (2) communication costs of exchanging the actual messages, and
(3) additional storage [33]. For (1), cost complexity is O(n2 + nm), with n indicating
the number of clients, and m the length of input they hold. For (2), the costs can
be assessed by O(n + m), with possible improvements [45]. Since clients require to
store each others’ keys and secret shares, their storage requirements can be assessed
as O(n + m) [33]. Note also that the SA protocol [33] is based on two strong
assumptions, namely the availability of a Public Key Infrastructure (otherwise,
clients have to trust the server to honestly forward their public keys to all other
clients for verification), and on the availability of a shared seed for a pseudorandom
generator. Without this seed—-usually computed through a key agreement by the
users—the communication costs for the clients increase significantly. Also note that
SA operates over finite fields which requires different computations than the ones
on the original client gradients, which are usually floating point values. For the
server, the respective costs are (1) O(mn2), (2) O(n2 + mn), and (3) O(n2 + m) [33].
Notably, several costs in SA grow quadratically with the number of clients, which
limits the number of clients that can participate in the protocol without significant
losses in efficiency.

To the best of our knowledge, so far, no protocol for jointly adding sufficient
amounts of noise to client gradients in SMPC exists. Hence, we cannot provide
a concrete cost assessment here similar to the one for SA. Given, however, the
gradients’ high-dimensionality, the communication costs of any such approach are
expected to exceed the costs of SA by far, and thereby, seem to be prohibitive for
practical application.
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What is more are the implicit costs of introducing SA and SMPC into FL: given their
communication costs, both approaches effectively reduce the number of clients
per training iteration of the protocol to several hundreds [32]. Therefore, positive
effects such as the linear speedup (e.g. [201]), i.e., the fact that the convergence time
in FL decreases linearly as the number of clients increases, cannot be leveraged.

5.4.6 Control on the Shared Model

To address points (4) and (6), we focus on the shared model. There are two
approaches how clients can protect their sensitive data against model manipulation.
The first approach relies on detecting these manipulations and then refraining
from participation in the protocol (assuming that clients have this possibility, see
Section 5.4.3). The second relies on preventing model manipulations in the first
place.

Detectability of our Adversarial Initialization. Our adversarial weight initializa-
tion contains a few characteristic elements, e.g. slightly larger negative than positive
weights. A difficulty in detection of our adversarial initialization lies in distinguish-
ing whether they are the product of our adversarial weight initialization, or of the
previous training. Also, access to several model weights over time does not ease
detection since it is impossible for a client to decide whether the newly received
model weights are the result of a legitimate optimization step from their previously
received ones. This is due to several reasons: (1) The clients have no insights into the
data of other clients. (2) Even if they had, ML training algorithms rely on stochastic
elements. These combined with the non-determinism of modern hardware, make it
difficult to reproduce training runs [95]. (3) This is aggravated by the fact that in
large-scale FL applications with control flow mechanisms, such as Pace Steering [32]
clients are not sampled at every round of the protocol [152]. Hence, their new
model weights usually result from several optimization steps.

In addition, a client can also observe the model functionality for detection of
our adversarial weight initialization. Note that our OM server only sends out
adversarially initialized models during short periods of time, and the benign model
otherwise. When clients receive an adversarially initialized model before the benign
model, they cannot tell whether the high loss values are due to the model being in
an early stage of training. Even when clients first receive the benign model and then
an adversarially initialized one, they still are lacking insights into the other clients’
data and possible distribution shifts within them which can lead to decreases in
model utility for their own data. Also, research has shown that for clients whose
data stems from the tails of the data distribution, FL does not necessarily lead to
an improvement of the model on their data [202]. Hence, clients cannot, with high
fidelity, attribute the increased loss to our adversarial initialization.
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Finally, we would like to highlight that all possible detection mechanisms assume
that clients have access to the shared model and the gradients computed on their
data. Latest FL applications are encapsulated in dedicated software partitions [191]
and it is unspecified what the clients can explicitly access. Hence, the server de-
ploying these FL applications on the clients’ end should be in charge to implement
such detection mechanisms to prevent privacy breaches that can occur due to, for
example, malicious employees. However, then again the clients have to trust the
server to do that correctly.

Secure Deployment of the Shared Model. Given the difficulty for clients to detect
manipulations in the shared model, preventing these manipulations in the first
place presents itself as a promising solution.

First of all, we note that the chosen model architecture has an impact on the number
of required manipulations from the server. While architectures that start with a
fully-connected layer allow for direct data extraction, in architectures that start with
convolutional layers, additional manipulations are required to forward the client
data to the first fully-connected layer for extraction, see Section 4.4. Additionally,
we show that lossy layers, such as pooling and dropout, at least reduce the quality
of extracted client data as shown in Section 4.5. Therefore, architectures containing
this type of layers should be preferred when specifying the shared model.

Once the architecture is determined, when it comes to deployment, the shared
model can be deployed in a Trusted Execution Environment (TEE), such that one can
obtain attestations that the model was initialized with a standard initialization (in
contrast to being initialized, for example, with our adversarial weight initialization).
Furthermore, applying model updates in the TEE can prevent subsequent model
manipulations, such as malicious re-initialization of the model weights. To make
sure that clients always receive this well-controlled and not manipulated model,
we, furthermore, suggest releasing the shared model publicly, for example, in a
block-chain. This makes it impossible to manipulate and change a shared model
after release. A drawback of this solution is that it offers outside attackers access to
several intermediate model states. We argue that this is not too restricting, though,
since the shared model is also sent out to a few hundreds or thousands of clients
during each round. Hence, there exists the possibility of the internal model states
being leaked, anyways.

5.4.7 Recommendations for Clients

Finally, we also want to briefly address the question of What can each individual client
do to limit data leakage from its shared gradients in presence of an untrusted server? Based
on studying the factors that influence the success of our attack, we can give the
two following main recommendations: (1) Clients should, if they are able to specify
within the FL protocol, calculate their gradients over large mini-batches of data
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since this decreases the extraction success of our adversarial weight initialization. If
possible, they should average their gradients locally or perform several iterations of
local updates for increased protection. (2) Clients should add enough noise to their
local gradients to benefit from meaningful DP-guarantees. They should not rely on
other clients to provide additional protection, as we have shown in Section 5.3.2.
Yet, this latter point might come at intolerable utility loss for the server.

5.5 Conclusion

Truly privacy-preserving ML must defend itself from attackers that are malicious.
In this chapter, we analyzed the question of the minimum trust model that is
required to obtain meaningful privacy guarantees for clients in FL. We showed
that existing FL deployments, even the hardened ones that implement dedicated
privacy-protection can only provide privacy guarantees if the clients trust the server.
Otherwise, the protocol requires adequate additional protection methods, such as
the application of cryptographic protocols that perform the noise addition without
relying on trust in other clients or the server. Indeed, most of the methods for
protection aim at shifting power from the server to the conglomerate of clients
and come with significant costs or overhead. Therefore, such systems are not yet
practically in place. As a consequence, as of yet, we recommend clients to only
participate in FL protocols that are orchestrated by a trusted server.
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Chapter6
Impact of Differentially Private Train-
ing on Model Robustness

While the previous two chapters have mainly approached the question of how
attacks can be used to target the privacy of Machine Learning (ML) models, this
chapter aims at studying the effect of attacks on models trained with privacy
guarantees. More concretely, it presents a study on the effect of training ML models
with Differentially Private Stochastic Gradient Descent (DPSGD) on the resulting
models’ vulnerability against adversarial examples [78, 92, 115].

Adversarial examples are data points that contain small and human-imperceptible
perturbations, forcing the attacked ML models into misclassifications. Such mis-
classification can have a high impact on the security of the application that the ML
model is applied for as we have already briefly discussed in Section 2.3.2.

Even though the creation of models that are both private and secure at the same
time poses a desirable goal, the majority of previous work focused on either one
of the tasks. Only recently has the intersection of the different research branches
received more attention [93, 146, 147, 150]. The interrelation between security
and privacy can be approached from two sides: either by evaluating the privacy
implications of making a model more robust or by studying how private training
impacts model robustness. So far, the former, namely the question of the influence
of adversarial retraining—a common method for increasing model robustness—on
model privacy, has been investigated more thoroughly [72, 88]. It was shown that
adversarial retraining decreases the membership privacy of an ML model’s training
data points. I.e., through adversarial retraining, for an attacker, it becomes easier to
determine whether a specific data point was used during training [87, 124, 171].
Regarding the latter perspective, first, results [183] suggest that applying DPSGD
to train an ML model has negative impacts on the model’s robustness, even though
there might potentially be privacy parameter combinations that are beneficial for
both goals. However, the experiments conducted to evaluate robustness in [183] are
limited to one specific kind of method to generate adversarial examples, namely
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methods that rely on the model gradients (called gradient-based attacks [78, 115]).
Furthermore, their study only considers one type of model. Hence, it remains
unclear whether their findings on the effect of training with privacy on model
robustness can be generalized.

However, since ML models increasingly operate in sensitive areas, such as health
care, these models must implement both privacy for their training data and robust-
ness against targeted attacks. By thoroughly studying the effects of training with
DPSGD on model robustness, we hope to better characterize existing trade-offs
between both goals and to inform the choice of parameters that help implement
both at the same time.

Therefore, to further shed light on the intersection between ML models’ robustness
and their privacy, this chapter presents a comprehensive study building upon
current findings. We start by a more thorough introduction on adversarial exam-
ples to extend the brief overview in Section 2.3.2. In particular, we describe the
methods used to generate adversarial examples in the context of this work. We then
introduce our experimental setup and resulting findings on the impact of DPSGD
training on robustness. We evaluate gradient-based [78, 115], gradient-free [34]
and optimization-based methods [42] for adversarial example generation. See the
following sections for a more thorough introduction to the different methods. Fur-
thermore, we study adversarial transferability [78] among models with different
privacy settings, and between private and non-private models. Our experiments
confirm prior findings [183] that training with privacy guarantees impacts model
robustness. We end this chapter with a discussion of possible reasons for this
impact and an outlook on how to optimize for security and privacy at the same
time.

The results presented in this chapter have been made available online as a pre-
print [31] prior to writing this dissertation. As a consequence, this chapter contains
material adapted from [31].

6.1 Background and Related Work

This section first formally introduces the concept of adversarial examples, presents
methods to generate them, and discusses the principle of adversarial transferability.
Finally, it provides an overview of related work studying the intersection between
privacy and ML model robustness.

6.1.1 Adversarial Examples

According to Szegedy et al. [179], adversarial examples can be characterized as
follows: Given an original data point x, the point x′ is an adversarial example if

1. x′ = x + r for a small perturbation r with ||r|| ≤ β, and
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2. fW (x) ̸= fW (x′), with fW being the ML classifier under attack.

Hence, while x′ differs only slightly from x, the attacked model wrongly predicts
the target class of x′. See Figure 2.2 on page 12 for a visualization of the concept.
Note that in literature, what we refer to as β is often denoted by ε. Since we already
use ε to refer to the privacy budget in Differential Privacy (DP) (see Section 2.3.5),
we deviate from this naming convention to avoid confusion.

Using the notation introduced in Section 2.1, we can formalize the generation
of adversarial examples as a constrained optimization problem [179]: We aim at
minimizing the distance dp(x, x′) with x′ = x + r, such that fW (x′) = t for a chosen
target class t (constraint 1) with x′ ∈ [0, 1]m (constraint 2). While constraint 1 makes
sure that the produced adversarial example is indeed misclassified, constraint 2

ensures that x′ is a valid data point, i.e., it has the normalized dimensions of x.

Measuring Adversarial Robustness. The distance between a benign data point x
and its adversarial counterpart x′ is usually measured using an ℓp-norm. This
distance is important to judge an ML model’s robustness. A model that already
misclassifies data points under the presence of smaller adversarial perturbations
is considered less robust than a model which only misclassifies data points under
the presence of larger perturbations. In addition to the amount of perturbations,
for methods that create adversarial examples using multiple optimization steps,
also the number of steps required until the model starts misclassifying the data
point is used to evaluate model robustness. A model for which successful adver-
sarial example generation with a given maximum level of perturbation β requires
fewer optimization steps is considered less robust than a model for which more
optimization steps are required.

Generating Adversarial Examples. In literature, several methods have been pro-
posed to generate adversarial examples, which can be divided in gradient, opti-
mization, and decision-based methods [204]. A summary of current attack methods
can be found in the survey by Ren et al. [155]. In the following, four widely
used methods that were included in the experiments of this work are introduced.
Other important methods worth mentioning are DeepFool [127] and the One-Pixel-
Attack [175]. The former method explores and approximates the decision boundary
of the attacked model by iteratively perturbing the inputs. For the latter one which
operates on vision data, solely one pixel of a benign image is changed to generate
the adversarial example.

6.1.1.1 Fast Gradient Sign Method

The Fast Gradient Sign Method (FGSM) [78] is a single-step, gradient-based method
that relies on backpropagation to find adversarial examples. More in detail, the
method takes an input data point x, obtains the ML model’s prediction on the
data point, and then calculates the loss w.r.t. to correct target class y. Based on the
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loss, the gradients are calculated and the sign of these gradients is determined.
Finally, based on these signed gradients, the adversarial example is calculated.
For the model parametersW , input x, target y, and loss function L(W , x, y), x′ is
calculated as follows

x′ = x + β sign(∇xL(W , x, y)). (6.1)

Multiplying the result with a small value β aims at making the perturbation imper-
ceptible by a human-observer but large enough to cause the model to misclassify
the example. However, the method does not offer a guarantee that, after adding the
calculated perturbation to x, the resulting x′ will look similar, instead it is a trade-off
between making the model misclassify the instances and creating non-noticeable
perturbations [78].

6.1.1.2 Projected Gradient Descent

The Projected Gradient Descent (PGD) method [115] represents a multi-step variant
of FGSM. It serves to find better adversarial examples, i.e., adversarial examples
that are less detectable by a human-observer. Given a distance norm p, an input
x′0 is initialized within an β ball in ℓp around the original data point. This means
that the distance between x and x′0 does not exceed a threshold value β in ℓp. The
adversarial example x′0 is then iteratively adapted with FGSM, and if necessary,
the perturbation is projected back into the β ball around x to make sure, x′ stays
close enough to x. Starting with x′0, a small step size α, and projection Πℓp , the
adversarial example x′t at iteration t is constructed as follows

x′t = Πℓp(x′t−1 + α sign(∇xL(W , x′t−1, y)). (6.2)

6.1.1.3 Carlini and Wagner

The optimization-based Carlini and Wagner (CW2) method [42] specifies a loss
function based on how close the model prediction is to the target class t. The
authors found that the best loss function to be used for optimization is given by

L(W , x′, t) = max(max{Z(x′)i : i ̸= t} − Z(x′)t,−d). (6.3)

The variable Z represents the logits of the target model fW , i.e., the non-normalized
prediction probability vectors over all output classes of fW . Then, max{Z(x′)i :
i ̸= t} is the highest prediction probability over all classes that are not the target
class t. Z(x′)t represents the prediction probability for the target class t, and
max{Z(x′)i : i ̸= t} − Z(x′)t, therefore, is the difference between the current
model’s highest class prediction and what we want the model to predict. The term
−d within the outer max value specifies a lower limit on the loss. As a consequence,
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d controls the confidence which we require from the model in the prediction of the
adversarial example.

Based on this loss function, the constraint for the adversarial example generation
in the CW2 method can be formulated by

min ∥ x′ − x ∥2
2 +c · L(W , x′, t), (6.4)

such that x′ ∈ [0, 1]m. The constant c > 0 is determined by binary search to find
the smallest c for which misclassification occurs. Moving the difficult part of the
optimization problem into the min-function, as done in this method, is an approach
used to make optimization problems easier to calculate, which the CW2 method
then does to determine adversarial examples over multiple computation steps.

6.1.1.4 Boundary Attack

The Boundary Attack (BA2) [34] is a multi-step gradient-free method that relies
solely on the model’s decision to generate adversarial examples. Therefore, x′ is
initialized as an adversarial example, such that, f (x) ̸= f (x′). Afterwards, a random
walk on the boundary between the adversarial and the non-adversarial region is
performed in order to minimize the distance between x and x′, while keeping x′

adversarial. With the BA2 method, adversaries are able to craft adversarial examples
even if the gradients of the attacked Neural Network (NN) are not available.

6.1.2 Adversarial Transferability

It has been shown that adversarial examples transfer between models [78], i.e.,
adversarial examples that are generated on one model are often successful in
fooling other similar models. The degree of success depends on several factors,
among which the complexity of the model that the adversarial examples are crafted
on, and the similarity between both models [52].

6.1.3 Protecting Against Adversarial Examples

Currently, adversarial training is considered the most effective method to protect
against such attacks [155]. During this computationally expensive process, adversar-
ial examples are included in the ML model training procedure, using their original
labels [115]. Thereby, the model learns to still predict the perturbed data points
into their correct original class.

6.1.4 Related Work on Privacy vs. Robustness

Research suggests that the goals of achieving privacy and robustness in ML models
are not always in line. It was found that adversarial training, i.e., training an ML
model with adversarial examples, increases membership privacy risks [124, 171].
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LeNet architecture Custom architecture

Conv(f=6, k=(3,3), s=1, p=valid, act=relu) Conv(f=16, k=(8,8), s=2, p=same, act=relu)
2D Average Pooling(pool size=(2,2), s=1, p=valid) 2D Max Pooling(pool size=(2,2), s=1, p=valid)

Conv(f=16, k=(3,3), s=1, p=valid, act=relu) Conv(f=32, k=(4,4), s=2, p=valid, act=relu)
2D Average Pooling(pool size=(2,2), s=1, p=valid) 2D Max Pooling(pool size=(2,2), s=1, p=valid)

Flatten Flatten
Dense(n=120, act=relu) Dense(n=32, act=relu)
Dense(n=84, act=relu) Dense(n=10, act=None)

Dense(n=10, act=None)

Table 6.1.: ML Model Architectures. Architectures of the models used in the ex-
periments. f: number of filters, k: kernel size, s: stride, p: padding act:
activation function, n: number of neurons [31].

With decreased membership privacy, it might be easier for an attacker to determine
whether a specific data point has been used for model training [168]. This negative
impact of adversarial training on models’ privacy can be explained by overfitting
since the training can enforce the training data points more strongly to the model
[87]. Thereby, their membership becomes more easily determinable [199].

Examined from the opposite perspective, it was shown that the noise of DP training
can be exploited to craft adversarial examples more successfully [72]. In the work
that is closest to this one, Tursynbek et al. [183] observed that DP training can have
a negative influence on adversarial robustness. Yet, the authors identified some DP
parameters that give the impression of improved robustness against gradient-based
adversarial example crafting methods.

Some research has already been dedicated to aligning model privacy and robust-
ness. Pinot et al. [150] showed that model robustness and DP share similarities in
their goals. Furthermore, several mechanisms to integrate (provable) adversarial
robustness into DP training have been proposed [93, 146, 147].

6.2 Experimental Evaluation

This section describes our robustness evaluation for models trained with different
DPSGD parameters. We start by introducing our method and experimental setup.
We then move on to evaluating different types of attacks. Finally, we analyze
adversarial transferability.

6.2.1 Method and Experimental Setup

We aim to explore the intersection between privacy and security in NNs. Therefore,
more specifically, we trained ML models using the DPSGD with different sets of
parameters and then measured the resulting models’ robustness against adversarial
examples. We varied both the noise scale σ, and the clipping parameter c for

106



6.2. Experimental Evaluation

the DPSGD training. In accordance to [183], the value ranges were set to σ ∈
{0, 1.3, 2, 3} and c ∈ {1, 3, 5, 10}.

To evaluate robustness, we relied on adversarial examples generated by three
different attack methods. The PGD∞, CW2, and BA2 were used as examples of a
multi-step gradient-based, multi-step optimization-based, and a multi-step gradient-
free attack, respectively. The experiments in this paper were conducted using the
MNIST dataset, and the respective adversarial examples were generated using the
Foolbox framework [153]. For every experiment, 1000 adversarial examples were
generated based on 1000 random test data points that were predicted correctly by
the model under attack.

As can be seen in previous guidelines on the evaluation of adversarial robustness [9,
41], the selection of attack methods heavily influences the perception of robustness.
Therefore, to obtain more general results, for our experimental evaluation, we used
two different ML model architectures, an adaptation of the LeNet architecture [109]
(1), and a custom conv-net architecture (2), depicted in Table 6.1. The ML models are
implemented using TensorFlow [1] version 2.4.1 and trained for 50 epochs using
a learning rate of 0.05, and a mini-batch size of 250. Stochastic Gradient Descent
(SGD) and TensorFlow Privacy’s [66] implementation of the DPSGD were used as
optimizers to train the models without and with privacy, respectively.

6.2.2 Robustness Evaluation with the PGD∞ Attack

Perturbation-based Analysis. In the first experiment, both the custom and the
LeNet model were attacked using adversarial examples generated by PGD∞. The
robustness was quantified using the adversarial success rate, i.e., the percentage
of generated adversarial examples that successfully cause misclassification of
the model. As PGD∞ creates bounded adversarial examples, we evaluated the
success rate for different maximum magnitudes of adversarial perturbations β, i.e.,
maximum distances between the original data point and the resulting adversarial
example. The perturbation budget β was increased successively from 0.0 to 0.5 in
steps of size 0.025 for a fixed number of 40 attack iterations. At every perturbation
value, the adversarial success rate was measured. Higher success rates for the same
perturbation budget suggest lower model robustness. See Figure 6.1 for the results.
For both model architectures and all privacy parameter combinations, an increase
of the perturbation budget β resulted in an increase in the success rate.

For the custom architecture, the DP models with noise σ = 1.3 and clip norm
c = 1 or c = 3 achieve higher or similar levels of robustness compared to the non-
private baseline model. In contrast, models with higher clip norms can be attacked
more successfully (see Figure 6.1a). The observation that some DP parameter
combinations might be beneficial for robustness is in line with the findings by
Tursynbek et al. [183] on their custom architecture. Yet, this behavior cannot be

107



6. Impact of Differentially Private Training on Model Robustness

0.0 0.2 0.4 0.60.0

0.2

0.4

0.6

0.8

1.0

SGD
n=1.3, C=1
n=1.3, C=3
n=1.3, C=5
n=1.3, C=10

0.0 0.2 0.4 0.6

SGD
n=0.0, C=1
n=1.3, C=1
n=2.0, C=1
n=3.0, C=1

0.0 0.2 0.4 0.6

SGD
n=0.0, C=10
n=1.3, C=10
n=2.0, C=10
n=3.0, C=10Su

cc
es

s R
at

e

Epsilon(a) Custom architecture.

0.0 0.2 0.4 0.60.0

0.2

0.4

0.6

0.8

1.0

SGD
n=1.3, C=1
n=1.3, C=3
n=1.3, C=5
n=1.3, C=10

0.0 0.2 0.4 0.6

SGD
n=0.0, C=1
n=1.3, C=1
n=2.0, C=1
n=3.0, C=1

0.0 0.2 0.4 0.6

SGD
n=0.0, C=10
n=1.3, C=10
n=2.0, C=10
n=3.0, C=10Su

cc
es

s R
at

e

Epsilon(b) LeNet architecture.

Figure 6.1.: PGD∞ Success Rate vs. Adversarial Perturbation. Results are plotted
for 40 attack iterations [31].

observed for the LeNet model (see Figure 6.1b). For the LeNet model, the adversarial
success rate when attacking the non-private baseline model was lower than the
success rate observed for every DP parameter combination.

Similar to Tursynbek et al. [183], a plateau-like stagnation of the success rate for
combinations with higher noise of σ = 2 or σ = 3 in combination with a high clip
norm of c = 10 can be observed for the custom model. This might be interpreted
as a robustness improvement using these settings. However, in the LeNet model,
no similar behavior can be observed. Figure 6.1b (right) instead suggests that for
c = 10, the higher the amount of noise, the lower the model robustness. Possible
reasons for the difference between the two models might lie in their convergence.
We observe that the custom model has larger gradient norms that the LeNet
model, indicating worst convergence, which makes them more perceptible to input
perturbations.

For both model architectures, the success rates of different noise values in com-
bination with a small clip norm of c = 1 are very similar. While for the custom
architecture, the attacks achieve a higher success rate for the non-DP model, for the
LeNet models, the opposite applies.

Step-based Analysis. In the second experiment, the success rate of PGD∞ when
attacking both architectures were evaluated depending on the number of iterations
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Figure 6.2.: PGD∞ Success Rate vs. Number of Attack Iterations. Results are
plotted for β = 0.3 [31].

or so-called steps for a fixed β of 0.3. The results suggest that, in general, the success
rate increases with increasing numbers of iterations and finally reaches 100% (see
Figure 6.2). However, in the custom model, with σ = 2, σ = 3, and c = 10, the
success rate reaches a plateau after ˜10 iterations and does not reach 100%. In
contrast, for the LeNet architecture, no plateaus are reached. For the non-DP model
highest robustness is reached with a sufficient amount of performed attack steps.

In summary, the experiments presented above confirm the findings by Tursynbek
et al. [183]. Adversaries using PGD∞ cannot successfully attack all their custom
and privately trained model with a success rate of 100%. Based on this finding
Tursynbek et al. concluded, that using the DPSGD optimizer during training simul-
taneously improves privacy, as well as robustness. Yet, the experiments presented
in this section using the LeNet model already suggest, that this finding does not
generalize to other architectures. Furthermore, in the next section, additional evi-
dence will be presented showing that the evaluated private models do not show an
increased level of robustness compared to their normally trained counterparts.

6.2.3 Robustness Evaluation with the BA2 Attack

To further investigate the impact of DPSGD training on model robustness, the
gradient-free BA2 was used to attack the DP models. Table 6.2 depicts the results
for adversarial perturbations of β = 1, and β = 2 against the custom and LeNet
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Parameters LeNet Custom
β = 1 β = 2 β = 1 β = 2

SGD 27.5% 79.4% 19.1% 83.2%

σ = 1.3, C = 1 38.5% 75.7% 21.6% 70.9%
σ = 1.3, C = 3 41.3% 81.3% 26.6% 77.6%
σ = 1.3, C = 5 49.7% 82.1% 51.3% 94.2%
σ = 1.3, C = 10 57.2% 89.3% 86.9% 99.9%

σ = 0, C = 1 38.0% 71.3% 19.5% 65.2%
σ = 1.3, C = 1 38.5% 75.7% 21.6% 70.9%
σ = 2, C = 1 36.3% 76.7% 22.6% 72.4%
σ = 3, C = 1 40.9% 76.3% 26.0% 74.1%

σ = 0, C = 10 41.2% 77.9% 17.0% 71.7%
σ = 1.3, C = 10 57.2% 89.3% 86.9% 99.9%
σ = 2, C = 10 65.2% 94.7% 98.3% 100.0%
σ = 3, C = 10 91.5% 91.8% 93.6% 100.0%

Table 6.2.: Success Rates of BA2. Displayed for different perturbation values β on
both model architectures [31].

architectures. The attack was executed with 25,000 iterations. For more iterations,
no increase in success rates could be observed.

For both model architectures, the results suggest that increasing the clip value or
the amount of noise for a high clip value leads to increased adversarial vulnerability.
The custom models with σ = 2 or σ = 3 and c = 10, that reached a plateau in the
adversarial success rate for PGD∞, are most vulnerable to BA2 among all settings
and for both model architectures. Solely for the parameter combinations of c = 1
or σ = 0 the BA2 attack with perturbation β = 2 reaches a lower success rate than
for the non-DP baselines. However, in general, the success rates of the DP models
are higher than that of the non-DP ones.

In accordance with the findings of the previous section, the experiments here again
show, that DP models are generally not more robust than their normally trained
counterparts. The experiments even show that for certain parameter combinations
the DP models are attacked even more easily using the BA2 method.

6.2.4 Robustness Evaluation with CW2 Attack

In the final experiment, the optimization-based CW2 attack was used. This method
generates adversarial examples in an unbounded manner. Hence, to determine
the robustness towards CW2, the adversarial perturbation magnitude β needed to
achieve a 100% adversarial success rate is measured. Table 6.3 depicts the results of
the experiments after 10,000 attack iterations.
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Parameters LeNet Custom

SGD β = 1.21 β = 1.20

σ = 1.3, C = 1 β = 1.06 β = 1.37
σ = 1.3, C = 3 β = 1.03 β = 1.17
σ = 1.3, C = 5 β = 0.93 β = 0.80
σ = 1.3, C = 10 β = 0.83 β = 0.45

σ = 0, C = 1 β = 1.11 β = 1.41
σ = 1.3, C = 1 β = 1.06 β = 1.37
σ = 2, C = 1 β = 1.04 β = 1.31
σ = 3, C = 1 β = 1.01 β = 1.24

σ = 0, C = 10 β = 1.12 β = 1.38
σ = 1.3, C = 10 β = 0.83 β = 0.45
σ = 2, C = 10 β = 0.63 β = 0.29
σ = 3, C = 10 β = 0.15 β = 0.50

Table 6.3.: Success of CW2. Adversarial perturbation β required to achieve a 100%
adversarial success rate within 10,000 iterations of CW2 attack, rounded
to two decimal points [31].

The values suggest that with increasing noise, or with increasing clip norm, the
amount of perturbation needed to achieve a 100% success rate decreases. This
indicates decreased adversarial robustness. For the LeNet architecture, the CW2
attack requires smaller magnitude of perturbations on all DP models than on
the non-private baseline models. The required perturbation budget decreases
monotonically when increasing the clip value or noise. Interestingly, in the custom
architecture with c = 1, or σ = 0, c = 10, a higher perturbation than in the non-
private setting is required. Also, when setting the clip value to c = 10, and varying
the amount of noise, σ = 3 requires higher perturbation than σ = 2, or σ = 1.3,
hence, no monotonic decrease could be observed.

This experiment again underlines that DP models do not generally exhibit a higher
level of robustness. First, the CW2 attack is capable of generating adversarial
examples with a success rate of 100%. Second, the required perturbation budget
to generate the adversarial examples is in the majority of cases smaller for the DP
models, than for the normally trained ones, indicating lower robustness.

6.3 Differential Privacy and Transferability

In addition to evaluating the success of directly attacking the models in a white-
box setting, transferability attacks were conducted. Thereby, the possibility of
transferring adversarial examples between DP models with different parameters,
or between private and non-private models was quantified (see Figure 6.4).
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CW2

pred: 0 pred: 6 pred: 8 pred: 6

BA2

pred: 1 pred: 8 pred: 8 pred: 3

PGD

pred: 0 pred: 6 pred: 8 pred: 5

Figure 6.3.: Adversarial Examples. Generated with CW2, BA2, and PGD∞ on the
custom architecture models with different privacy settings (from left to
right): SGD; σ = 1.3, c = 1; σ = 3, c = 1; σ = 3, c = 10 [31].

CW2-Transferability In the first part of the experiment, the transferability of adver-
sarial examples generated with the CW2 attack was evaluated. For this purpose, for
each of the models under attack, first, 1000 correctly classified test samples were
chosen randomly. Then, the CW2 attack was used to craft adversarial examples
with 100% success rate on the respective surrogate models, i.e. models from which
we want to transfer the adversarial examples to the original model under attack.
Finally, the original model’s accuracy on the generated adversarial examples was
measured to determine the success rate of the attack. Figure 6.4a depicts the results
for the custom model. Results for the LeNet models look similar.

The transferability of adversarial examples created with the CW2 attack might
be influenced by the different levels of applied perturbations: The perturbation
budgets that lead to a 100% success rate in the CW2 attack vary between models
and tend to be lower for DP models (see Table 6.3).

PGD∞-Transferability Therefore, in the second experiment, the transferability of
adversarial examples generated with PGD∞ and a constant perturbation of β = 0.3
was assessed. The procedure for determining the success rates was the same as
for the CW2 attack. Figure 6.4b summarizes the results of this test on the custom
models. Again, results on LeNet models were similar.

The experiments suggest that for PGD∞, the adversarial examples transfer sig-
nificantly better than for CW2. Still, the same trends can be observed for both
scenarios: Adversarial examples seem to transfer less well from DP to non-DP
models than the other way round. Additionally, adversarial examples generated
on models with higher clip norms seem to transfer less well to other models than
adversarial examples generated on models with lower clip norms. The adversarial
examples generated on DP models with smaller clip norms (c = 1 and c = 3)
transfer better to other DP models than the adversarial examples generated on the
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Figure 6.4.: Adversarial Transferability. Transferability of generated adversarial
examples between custom models. Adversarial examples were gen-
erated on models with settings depicted in the rows and evaluated
against models with settings depicted in the columns. High success
rates indicate that the adversarial examples transfer well, low success
rates indicate low transferability [31].

non-private baseline models. Also, models trained with higher clip norms exhibit
an increased vulnerability to transferability attacks compared to models with lower
clip norms.

These results suggest that transfer attacks between models with different privacy
settings are indeed successful. Again, the models that caused plateaus in the success
rate when directly executing PGD∞ against them seem to be the most vulnerable
ones, according to this experiment. Another interesting observation is the fact that
adversarial examples tend to transfer better between different DP models than from
non-DP to DP models.

To investigate this effect further, adversarial examples created with the three con-
sidered attack methods on models with different privacy settings were visually
examined (see Figure 6.3). The first column of the figures shows adversarial ex-
amples generated for the non-private baseline model. The results of the previous
section and a visual inspection of the generated samples by CW2 and BA2 sug-
gest that the more private the models are, the smaller the perturbation budget is
required to fool the model with a 100% success rate.

The adversarial examples displayed for the PGD∞ method all have the same per-
turbation budget of β = 0.3. Interestingly, the generated samples look significantly
different between DP and non-DP models. Whereas in the non-DP model, the
artifacts introduced into the images are grouped into regions, the higher the pri-
vacy gets, the more they resemble random noise and are not grouped into regions
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anymore. The finding of this visual inspection is also reflected in the evaluation of
the transferability experiments.

6.4 Discussion

This section discusses the findings of the experimental evaluation, their implications,
possible underlying reasons, and provides an outlook on future research.

Influence of the DP Parameters. The experiments in this chapter have shown that,
in general, DP models exhibit an increased adversarial vulnerability in comparison
to non-DP models. In particular, the CW2 and BA2 attacks show clear trends: DP
models with the same noise scale σ become less robust the higher the clip norm
c is set. For relatively small clip norms, e.g. c = 1, an increase in the noise scale
does not necessarily decrease model robustness, however, for larger clip norms,
e.g. c = 10, this is the case. This suggests that in particular, the clip norm has a
high influence on the resulting model’s robustness. In particular, the aim of privacy
protection and model robustness does not necessarily seem to align for all sets of
parameters.

Gradient Masking. The principle of gradient masking [140] refers to methods that
intentionally or unintentionally reduce the usefulness of an ML model’s gradients
for the generation of adversarial examples. As a consequence, gradient-based
adversarial example generation performs less successfully. Since the models are
often still vulnerable to non-gradient-based attacks, gradient masking results in a
false sense of robustness.

When it comes to the success of adversarial examples, the following properties
indicate sane and non-masked gradients [9, 41]. Violation(s) of these criteria can be
an indicator for masked gradients.

1. Iterative attacks perform better than one-step attacks.
2. White-box attacks perform better than black-box attacks.
3. Gradient-based attacks perform better than gradient-free attacks.
4. Unbounded attacks should reach a 100% adversarial success rate.
5. Increasing the iterations within an attack should increase the adversarial

success rate.
6. Increasing the distortion bound on the adversarial examples should increase

the adversarial success rate.
7. White-box attacks perform better than transferability attacks using a similar

substitute model.

Our experiments evaluate the adversarial success rate for the PGD∞ with varying
numbers of iterations (see Figure 6.2 on page 109) bringing the topic of gradient
masking into focus. In the figure, we see that for some models with high clip norms
and noise scales, increasing the number of iterations in the adversarial example
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generation, at some point, does not increase the adversarial success rate anymore.
This violates property 5. As a consequence, we observe that the adversarial success
rate plateaus and never reaches 100%. A similar observation was reported by
Tursynbek et al. [183]. The authors concluded from their findings that the respective
models exhibit high robustness. However, we see that for the gradient-free BA2
attack, the vulnerability of the plateauing models is much higher than that of the
models that reach a 100% adversarial success rate. This rather indicates some form
of gradient masking. As a consequence, we reason that the robustness estimation
by prior work [183] might have been overly optimistic.

Differences between DP and non-DP Models. There are several possible explana-
tions for the differences in robustness between DP and the baseline non-DP models.
According to Demontis et al. [52], the larger the gradients in a target model, the
larger the impact of attacks with adversarial examples. And indeed, we observe
that the DP models’ gradients are larger than normal models’ gradients. This may
be due to the use of DPSGD, in which Gaussian noise with a variance of σ2c2

is added to the model gradients before the update. Hence, larger noise or clip
norm parameters result in higher gradient magnitudes—potentially explaining the
models’ increased vulnerability. To counteract this factor, it might be helpful to
regularize the gradients in DP model training.

Another factor for the increased vulnerability of DP models might be their decision
boundaries. Tursynbek et al. [183] show that training with DPSGD affects the un-
derlying geometry of the decision boundaries. In their example, it becomes visible
that the DPSGD training results in more fragmented and smaller decision regions.
This increases the chances of successfully generating an adversarial example with
less perturbation.

In a similar vein, Demontis et al. [52] suggest that the loss surface of a model has
an influence on the robustness against adversarial examples. They state that if
the landscape of a model is very variable, it is much likely that slight changes
to data points will encourage a change in the local optima of the corresponding
optimization problem. As a consequence, the authors conclude that attack points
might not transfer correctly to another model with a potentially more stable
landscape. The experiments of this work depict that adversarial examples generated
on DP models transfer less to normal models than the other way round and that
adversarial examples crafted on models with higher clip norms transfer less than
the ones from models with lower clip norms. This might also be due to the models’
loss landscapes. Future work could, therefore, investigate the loss surface of the
DP models more thoroughly.

Previous results by Papernot et al. [143] suggest that applying DP in combination
with standard ReLU functions might lead to exploding activations in the resulting
models. The authors suggest using sigmoid activation functions to counteract this
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effect and, thereby, to improve the training process and achieve higher accuracy
scores. In future work, it would be interesting to investigate whether this replace-
ment of the activation functions might also be beneficial for the model’s robustness.
The authors also conclude that the models’ activation functions have the largest
influence on the success of DP training. However, the experiments in this work sug-
gest, that the LeNet architecture might be more robust. Hence, when considering
privacy in combination with security, the model architecture might be an important
factor to consider as well.

Outlook on the Intersection between Privacy and Robustness. The results of this
work raise the question of whether training ML models with DP does necessarily
cause an increase in model vulnerability against adversarial examples. For the
current state, the experiments suggest that achieving privacy can have a negative
impact on model robustness. At the same time, this work also highlights a direction
of research that might be worth pursuing in the future, namely controlling the
gradients in DP model training. Pinot et al. [150] show that, in principle, Renyi-
DP [126], which is used in the DPSGD, and adversarial robustness share equivalent
goals. Therefore, future work could investigate how DP training can be adapted to
simultaneously improve robustness and which factors, apart from the gradients,
cause the current DP model’s vulnerability.

6.5 Conclusion

Making NNs more private and more robust are important tasks that have long
been considered separately. However, to solve both problems at the same time,
it is beneficial to understand which impact they have on each other. This chap-
ter addressed this question from a privacy perspective, evaluating how training
ML models with DPSGD affects the robustness of the models. The experiments
demonstrated that DPSGD training with certain parameters can cause a decrease
in model robustness. By conducting a broad range of attacks against DP models
with adversarial examples generated through different methods, we showed that
the positive effects of DPSGD observed in previous work might be largely due to
gradient masking, and therefore, provide a wrong sense of security. As a conse-
quence, future work may further investigate the influence of DP training on the
models. This could serve as a basis during parameter and architecture selection
such that private training does not oppose the goal of security and can, hence, be
applied also in critical scenarios.
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Chapter7
Conclusion

This chapter concludes our work. Therefore, it first presents a brief summary of
the main results presented in previous chapters. Then, it highlights explicitly our
contributions and the importance of this work. Moreover, it contains a suggestion
of open problems around secure and private Machine Learning (ML) that future
research could investigate. The chapter ends with a few final words on secure and
private ML and an outlook on their importance in the broader scope of general
trustworthy ML.

7.1 A Brief Summary

ML is applied in an ever increasing number of domains, dealing with critical tasks
and highly sensitive data. This turns the ML models’ security and the privacy of its
training data into valuable targets for attackers. Therefore, it is of high importance
to study these aspects as we did in this work.

In Chapter 2, we first introduced the concept of ML. Then, we described the protocol
of Federated Learning (FL) in a formal language. Finally, we presented an overview
of security and privacy threats against ML models relevant to the scope of this
work. We also, on a high-level, introduced some defenses that can be applied to
increase ML model security and privacy. More in depth, we formalized the concept
of Differential Privacy (DP) and described its application in ML and FL. At the
end of the chapter, we outlined the datasets used for experimental evaluations
throughout this work.

Then, in Chapter 3, we presented a survey on the awareness in the field of secure
and private ML that we conducted among ML practitioners to capture the current
state of affairs. The results of this survey highlight a comparably low awareness
among our participants, in particular when it comes to ML privacy. Additionally,
the results show that ML practitioners face insecurities when implementing privacy
regulations and, therefore, sometimes blindly trust in third-party services. These
findings motivated our further research around privacy in ML, in particular with
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a focus on raising awareness of existing privacy threats and studying the trust
assumptions around third-party service providers. A better understanding of risks
and trust assumptions in the field can inform the formulation of guidelines that
then help ML practitioners in the implementation of security and privacy in ML.

Therefore, in Chapter 4 and Chapter 5, we studied privacy threats and trust
assumptions in ML at the concrete example of FL. In Chapter 4, we first presented
our observation on the inherent data leakage from the gradients of Neural Networks
(NNs), even when these gradients are calculated over large mini-batches of data.
Based on this observation, we developed a novel data extraction attack that relies
on subtle manipulations of the model weights and architecture to increase the
inherent data leakage from gradients. We applied this attack in the scenario of FL
and showed that it enables the server to perform highly efficient data extraction
attacks against the clients of the protocol. In Chapter 5, we then set out to study
the trust assumptions in FL by analyzing the trust required in the central server
to meet the theoretical privacy guarantees in practice. Our analysis showed that
current FL protocols necessarily require trust in the server to provide practical
privacy for the clients. It also suggested that the costs of implementing extensions
for FL that provide privacy without trust in the server are, as of yet, prohibitive.

In Chapter 6, we investigated the impact of implementing theoretical privacy
guarantees on the resulting ML models’ security. Therefore, we trained NN models,
using the Differentially Private Stochastic Gradient Descent (DPSGD) with varying
parameters and measured the adversarial robustness of the models using different
types of attacks. Our results highlight that some parameter combinations of the
DPSGD training have a negative impact on model robustness. Additionally, the ML
models’ architecture and the resulting gradients play an important role in model
robustness under privacy-preserving training.

7.2 Contributions

Secure and private ML is a highly relevant subfield of the general field of ML.
Research around this topic, as well as this dissertation, aims at gaining a better
understanding of the state of art and potential risks in order to design and extend
existing defenses. In this work, we studied both the practical state of affairs as well
as risks, trust assumptions, and potential defenses. Thereby, we made the following
contributions.

The State of Secure and Private ML in Practice

First of all, we conducted a survey among ML practitioners to investigate their
awareness and current practices in the field. Through our study, we distilled rele-
vant research questions for this dissertation, such as studying existing tools and
frameworks, which we did in Chapter 4 at the example of FL. In particular, we
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aimed at raising awareness of privacy concerns and protection measures, the top-
ics that ML practitioners in our survey were least familiar with. Our study also
highlighted the trust that ML practitioners put into third-party services for imple-
menting, in particular, ML privacy. This motivated our study on trust assumptions
required to obtain privacy guarantees in FL that we presented in Chapter 5. Finally,
through our study, we were able to provide valuable recommendations for future
directions in making ML more secure and private by providing better guidance for
ML practitioners.

Data Leakage from Model Gradients

In this work, we presented our novel observation that ML model gradients leak
individual data points, even when the gradients are calculated over large mini-
batches and on high dimensional data. We provided the theoretical background
explaining this observation and performed an extensive experimental evaluation
on the resulting practical data leakage.

Adversarial Weight Initialization and Data Extraction Attacks

Based on our observation on data leakage, we identified a novel attack vector
against privacy in NNs, namely adversarial initializations of the model weights.
We examined the potential of this attack vector by introducing different types of
adversarial weights initializations. First and foremost, we introduced our adver-
sarial weight initialization for fully-connected layers, which significantly increases
the inherent data leakage from model gradients. Thereby, our adversarial weight
initialization allows an attacker with access to the model gradients to perform
highly efficient data extraction attacks. We showed how this attack vector can be
used successfully in FL by the server to break the clients’ privacy. Second, we
proposed another adversarial weight initializations that cause unaltered forwarding
of data points over fully-connected and convolutional model layers. They, thereby,
make our data extraction attack applicable to a broader range of model architec-
tures where they would otherwise not yield perfect data extractability. We also
proposed measures for making such adversarial weight initializations for data
forwarding more inconspicuous. Third, we sketched adversarial manipulations of
model weights and architecture that enable higher-fidelity data extraction under
the presence of privacy protection implemented by Distributed Differential Privacy
(DDP) and Secure Aggregation (SA).

Studying Trust Assumptions in FL

We thoroughly studied the trust assumptions required in FL to achieve the theoreti-
cal privacy guarantees in practice. Therefore, we focused on the trust in the server
and considered several extensions of the standard vanilla FL protocol which aim at
providing increased levels of privacy. In particular, we were able to show that an
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untrusted server can still disclose the clients’ privacy, even when FL is protected
by SA and DDP, currently considered the strongest deployment of the protocol.
Based on our observations, we discussed protective measures that future work
will have to provide to reduce the levels of trust required in the server. However,
our investigation also suggested that, as of yet, the computational costs of such
measures are prohibitive. As a consequence, we formulated recommendations for
clients of FL protocols. These highlight how clients might be able to reduce data
leakage, but also stress that they should not participate in FL at all if they mistrust
the server orchestrating the protocol.

Impact of Differential Private Model Training on Robustness

Finally, we conducted a thorough study investigating the impact of training with
DPSGD on the adversarial robustness of the resulting ML models. This comple-
ments prior work at the intersection of secure and private ML which primarily
focused on the privacy implications of making ML models more robust. Our inves-
tigation showed that training with privacy guarantees can decrease the robustness
of the resulting model. We believe that uncovering and understanding these kinds
of trade-offs is of high importance. It will contribute to finding sweet spots between
the different protection goals and also inform the design of ML methods that jointly
optimize for both goals, security and privacy, at the same time.

7.3 Future Work

Based on the fruitful results of this work, we are able to derive promising future
research directions. In the following, we enumerate them starting with directions
that directly connect to our work and concluding with a broader outlook.

1. Studying ML practitioners’ workflows;
Such studies will help to gain a deeper understanding of the practitioners’
coding practices and trust assumptions. This contributes in discovering what
functionality, interfaces, and practices ML practitioners really rely on, which
assumptions they hold, and which options they prefer. This can inform the
(re-)design of libraries and tools to better implement security and privacy
features for ML and to make the tools more usable. Thereby, in turn, general
levels of ML security and privacy in practice can be elevated.

2. Extending work on adversarial weight initializations;
In this work, we introduced adversarial weight initializations as a novel and
versatile attack vector against privacy in NNs. Future work could build on
our findings to refine this attack vector in order to extract more data, to
reconstruct data with higher fidelity under the presence of noise, or to target
specific data points or groups of data points with specific features.
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3. Extending adversarial weight initializations to black-box scenarios;
Our current adversarial weight initializations require an attacker with direct
access to the model weights and the resulting gradients during training. It
would be interesting for future work to investigate how the attack could be
transformed into a black-box scenario. This could potentially be done by
crafting specific training data points that poison the model weights in the
same manner as an adversarial weight initialization. To reduce dependence
on the model gradients for disclosing data privacy, the adversarial model
weights could then encode private information directly into the model output.

4. Improving privacy extensions for FL;
As shown in this work, current FL protocols require trust in the server to
meet the theoretical privacy guarantees in practice. The computational costs
of implementing existing privacy methods that forgo the need of trust seem
to be prohibitive. Future work could, therefore, tend to develop privacy ex-
tensions for FL that require less computational and communication costs.

5. Introducing model governance in FL;
ML Model governance [44] is concerned with the overall process to control ac-
cess to the models, creating the right documentation, and monitoring models
and their results. This allows to closely control model inputs and understand
all the variables that might affect the corresponding outputs and thereby, of
course, also privacy. However, without knowing which clients participate how
often, and with what data in the protocol, it is hard to implement meaningful
governance. In particular, it is difficult to implement some form of auditing,
for example, in the sense of keeping track of the clients’ final privacy guaran-
tees. Future work could extend the concept of model governance into FL and
develop meaningful methods to implement it.

6. Extending research on trade-offs between privacy and robustness;
While our work shows that model training with DP has an impact on the
model robustness, there is still room to explore the reasons behind this obser-
vation. Building on these insights, future work could develop methods that
implement good trade-offs between both goals or jointly optimize for them
by design.

7. Considering security and privacy in the broader scope of trustworthy ML;
There exists a body of work that considers the intersection of different aspects
that contribute to more trustworthy ML models. One example is the trade-off
between privacy and fairness in ML, e.g. [177]. Future work could extend
into considering not only trade-offs between two aspects, but multiple at
the same time, such as the interplay between utility, privacy, fairness, and
security. By jointly optimizing for several desirable properties at the same
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time, this research would contribute to increasing the overall trustworthiness
of ML models and applications relying on them.

7.4 Final Words

To conclude the entire work, we again want to stress the importance of securing ML
models and protecting the privacy of their training data. Nowadays, ML is applied
in a myriad of critical domains and the amount of sensitive data collected about
each and every individual keeps on increasing. At the same time, the behavior of
ML models and their decisions exhibit a large influence on our daily lives both as
individuals and as a society. Therefore, the correct functioning of the ML models,
even under concrete manipulations that target security and privacy needs to be
ensured. But, as we mention during the outlook on future research directions, there
are many more aspects of a desirable and trustworthy ML beyond security and
privacy that need to be accounted for. In particular, the more diverse the tasks of
our ML models become, the more the interplay between these different aspects
gains importance. Therefore, we do not only need to implement ML security and
privacy as isolated aspects, but we have to account for their impact on other aspects.
This will help to implement ML such that it shapes our daily life and our society in
a desirable way. We hope that our contributions within the field can raise attention
among ML practitioners but also related researchers to take security and privacy
into account when designing their ML systems.
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A.1. Zusammenfassung der Dissertation

A.1 Zusammenfassung der Dissertation

In den letzten Jahren haben die Fortschritte im Bereich des Maschinellen Lernens
(ML) dazu geführt, dass ML zunehmend in kritischen Anwendungen und auf
hoch-sensiblen Daten eingesetzt wird. Dies rückt die Aspekte der Sicherheit und
Privatheit in ML in den Fokus: ML-Modelle sollen korrekt funktionieren und
nicht zu viele Informationen über ihre sensiblen Trainingsdaten preisgeben. Die
Evaluierung und Umsetzung von ML-Sicherheit und Privatheit ist jedoch eine
anspruchsvolle Aufgabe. Dies liegt in erster Linie daran, dass die Auswirkungen der
derzeitigen ML-Praktiken auf ML-Sicherheit und Privatheit noch nicht vollständig
verstanden sind. Folglich enthält die Palette der bekannten Risiken immer noch
eine Vielzahl von Lücken. Ebenso bleiben die impliziten Annahmen unter denen
ML-Sicherheit und Privatheit in einer bestimmten praktischen Anwendung erreicht
werden können, oft unerforscht.

In dieser Arbeit stellen wir eine Studie über Sicherheit und Privatheit in ML vor,
die dazu beiträgt, die bestehenden Limitierungen zu überwinden. Dafür geben wir
zunächst einen Einblick in den aktuellen Stand der Sicherheit und Privatheit von
ML in der Praxis, indem wir eine Umfrage unter ML-Entwicklern durchführen. Wir
stellen fest, dass ML-Entwickler ein besonders geringes Bewusstsein für Privatheit
in ML haben und bei deren Implementierung auf Dienste von Drittanbietern ver-
trauen. Diese Erkenntnis verdeutlicht die Notwendigkeit, das Thema Privatheit in
ML eingehender zu untersuchen. Wir tun dies am Beispiel von Federated Learning
(FL), da es sich bei FL um ein weit verbreitetes Protokoll handelt, das in Szenarien
mit hunderttausenden Nutzern angewendet wird. In diesem Rahmen untersuchen
wir Informationsleaks in ML-Modellen und zeigen, dass Modellgradienten direkt
private Informationen über große Teile ihrer sensiblen Trainingsdaten preisgeben.
Aufbauend auf diesen Erkenntnissen erweitern wir die bestehende Forschung zu
Angriffen auf die Privatsphäre dieser Trainingsdaten, indem wir einen neuartigen
Angriffsvektor vorschlagen: eine Manipulation der Initialisierung der Modellge-
wichte. Durch eine gründliche Untersuchung dieses Angriffsvektors, bewerten wir
die Annahmen über das erforderliche Vertrauen, um sinnvolle Privatsphäregaranti-
en in FL zu erhalten. Insbesondere konzentrieren wir uns auf Vertrauensannahmen
bezüglich des Servers in FL. Um die Schnittstelle von ML-Sicherheit und Privatheit
zu erkunden untersuchen wir schließlich, wie sich die Implementierung von Pri-
vatsphäregarantien auf die Robustheit der Modelle auswirkt. Zusammenfassend
ist das Ziel dieser Arbeit Aufmerksamkeit auf die Bedeutung eines sicheren und
Privatsphäre-freundlichen Designs von ML-Methoden lenken – insbesondere wenn
diese Methoden in realen Anwendungsfällen eingesetzt werden.
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A.2 Machine Learning Survey

This section provides additional material for Chapter 3.

A.2.1 Pilot Study

This section contains additional information on the participant demographics for
the pilot study,the developer and student questionnaire for the pilot study, as well
as the code books used to analyze free-text fields.

A.2.1.1 Participant Demography

Table A.1 and Table A.2 depict developer and student demographics, respectively.

Table A.1.: Developer Demographics in Pilot Study. Table depicts the country
where the developers are currently working in, the time they have
already been working in ML development, and their highest educational
degree.

Austria Estonia France Germany Ireland Italy Poland Slovenia Spain Switzerland UK

2 2 3 25 1 2 2 1 1 1 1

1-3 years 4-6 years 7-9 years 10 years or more Still planning career

22 10 3 4 2

High school or
secondary school degree Bachelor’s degree

Master’s degree
or diploma Doctorate

1 1 30 9

Table A.2.: Student Demographics in Pilot Study. Student demographics depicting
the students’ major, main area where they apply ML, and the time they
have already been involved in ML grouped by their degrees.

Bachelor degree Master degree

Computer Science 11 18

Other 2 1

University 11 16

Job 1 2

Hobby 1 1

1 semester 8 6

1 semester-1 year 4 6

1-2 years 1 7
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A.2.1.2 Questionnaire and Code Books

This section lists the developer and student questionnaire, as well as the code books
used for free text analyses. Open Questions with free text fields are marked with
an asterisk, question with single choice are indicated by the answer symbols # and
question with multiple answer possibilities are represented by the answer symbols
□. The [opt] questions only appeared optional based on the answer to the previous
question.

Developer Questionnaire

1. DEM1: How long have you been working as a developer for machine learning
(ML) applications?
# I have no experience in ML development.
# 1-3 years
# 4-6 years
# 7-9 years
# 10 years or more
# I am still planning my career as a ML developer.
# I have never worked as a ML developer
# ML development is a hobby

2. DEM2: Which country are you currently working in?
# Albania
# ...
# Zimbabwe

3. DEM3: What is the highest educational degree you have obtained?
# Less than high school or secondary school degree (i.e. Abitur, baccalau-

réat, A levels etc.)
# High school or secondary school degree
# Bachelor’s degree
# Master’s degree or diploma
# Doctorate

4. IMP1: How important or unimportant do you think it is to ensure the security
of the machine learning models that you work with?
# Unimportant
# Of little importance
# Moderately important
# Important
# Very important

5. AWA1: In comparison to other machine learning developers, how aware
would you say you are about possible attacks on machine learning systems?
I believe, that my awareness is...
# Much lower than on average.
# A bit lower than on average.
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# Average.
# A bit higher than on average.
# Much higher than on average.

6. AWA2: How did you build your machine learning security awareness?
□ Through studies in university or other educational institution.
□ Through workshops and tutorials.
□ Learned through practice.
□ Through self-study.

7. AWA3: Are you, or is someone else in your working environment responsible
of taking care of security of machine learning (ML) solutions?
# I am solely responsible for ML security.
# I am responsible for ML security, together with some others.
# Someone else is responsible for ML security.
# Nobody is responsible for ML security, but it is taken care of.
# Nobody is responsible for ML security, and it is not taken care of.

8. *AWA4: What general risks in machine learning are you aware of? Please
describe in a few words or sentences.

9. *AWA5: For which possible security risks in machine learning systems have
you ever implemented preventive solutions?

10. IMP2: How sensitive or non-sensitive is the most sensitive type of data that
you use in your machine learning models?
# Very non-sensitive
# Somewhat non-sensitive
# Somewhat sensitive
# Very sensitive

11. IMP3: What kind of data do you deal with in your machine learning models?
Please feel free to also leave a comment if you feel that further clarification is
needed!
□ Images, video or audio
□ Text
□ Financial
□ Medical and health
□ Transportation and traffic
□ Customers and users
□ Weather and environment
□ Smart environment
□ Society

12. IMP4: Do your machine learning models deal with data of individiuals?
I work with data that is...
# ...not related with humans.
# ...indirectly related with humans.
# ...directly related with humans.

13. IMP5: For what purpose(s) do you develop machine learning solutions? Please
list your project types based on how often you engage in them. Please rank
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the items from most often to least often, only including the ones you at least
occasionally engage in. Your highest ranking item should be on the top right

• Industry
• Research
• Hobby

14. SOL1: Have you ever implemented solutions or taken other measures to
prevent poisoning attacks in your ML models? Poisoning attack: an attacker is
able to inject their own data records to your training data. Your model might
thereby learn things that is not supposed to, as for example due to the shift
of classification boundaries. This could in the prediction phase be exploited
by the attacker to obtain certain labels for their input to the model.
# Yes, I have implemented solutions to prevent a poisoning attack.
# I am familiar with the poisoning attack, but have not implemented

solutions to prevent it.
# No, I am not familiar with the poisoning attack.

*opt What kind of solutions have you implemented to prevent poisoning attacks?
Please describe shortly the measures taken.

15. SOL2: Have you ever implemented solutions or taken other measures to pre-
vent evasion attacks in your ML models? Evasion attack: an attacker modifies a
data record in such a minimal way, that the record would probably still seem
normal to a human observer. The completely from the one on the original
input. We call such examples adversarial. An attacker could exploit this to
fool your model to make a wrong prediction.modification however causes
your ML model to make a prediction that differs An example of an evasion
attack: a ML system was fooled to categorize a 3D-printed turtle as a gun by
a particular pattern printed on it.
# Yes, I have implemented solutions to prevent an evasion attack.
# I am familiar with the evasion attack, but have not implemented solutions

to prevent it.
# No, I am not familiar with the evasion attack.

*opt What kind of solutions have you implemented to prevent evasion attacks?
Please describe shortly the measures taken.

16. SOL3: Have you ever implemented solutions or taken other measures to
prevent impersonation attacks in your ML models? Impersonation attack: To
impersonate an individual from your dataset, an attacker tries to imitate data
records of their victim. They can use this to get unauthorized access, or to
generate specific adversarial examples for that victim. Thereby, they could
harm the victim with wrong predictions about them.
# Yes, I have implemented solutions to prevent an impersonation attack.
# I am familiar with the impersonation attack, but have not implemented

solutions to prevent it.
# No, I am not familiar with the impersonation attack.

*opt What kind of solutions have you implemented to prevent impersonation
attacks? Please describe shortly the measures taken.
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17. SOL4: Have you ever implemented solutions or taken other measures to
prevent inversion attacks in your ML models? Inversion attack: The aim of an
inversion attack is to extract personal information from your ML model. An
attacker could query your model to obtain knowledge about your underlying
training data. They could use this knowledge to build their own model and
harm you financially, or to breach the privacy of the users represented by
your training dataset.
# Yes, I have implemented solutions to prevent an inversion attack.
# I am familiar with the inversion attack, but have not implemented

solutions to prevent it.
# No, I am not familiar with the inversion attack.

*opt What kind of solutions have you implemented to prevent inversion attacks?
Please describe shortly the measures taken.

opt Have you taken some other measures to prevent attacks against ML systems?
# Yes
# No

18. PRA1a: Have you implemented any solutions or taken other measures to
prevent attacks against machine learning systems?
# Yes
# No

19. *PRA1b: Please describe shortly the measures you have taken to prevent
attacks against machine learning systems.

20. PRAtableA: Have you ever implemented a method for data sanitization? Data
sanitizition: All your training data is cleaned from potentially malicious data
points. Samples that have a negative impact on the model’s prediction output
might be discarded.
# Yes, I have implemented this method.
# I am familiar with this method, but have not implemented it.
# No, I am not familiar with this method.

21. PRAtableB: Have you ever implemented a method for data provenance? Data
provenance: For all your training data, the provenance is clear and traceable.
Your data pipeline and data storages are well documented and protected
against intrusions.
# Yes, I have implemented this method.
# I am familiar with this method, but have not implemented it.
# No, I am not familiar with this method.

22. PRAtableC: Have you ever implemented a method for adversarial training?
Adversarial training: Your model is trained partly on adversarial samples
with corresponding labels to detect them as such and react adequately.
# Yes, I have implemented this method.
# I am familiar with this method, but have not implemented it.
# No, I am not familiar with this method.

23. PRAtableD: Have you ever implemented a method for ensemble learning?
Ensemble learning: You are using several ML models as an ensemble for your
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predictions. Hereby, different classifiers or different techniques for defence
can be combined to mitigate adversarial samples.
# Yes, I have implemented this method.
# I am familiar with this method, but have not implemented it.
# No, I am not familiar with this method.

24. PRAtableE: Have you ever implemented a method for observing model input at
inference time? Observing model input at inference time: You are observing
the data that is presented to your model when it is deployed. ML models are
most likely to fail when the data distribution at test time differs from the one
at training time. By observing the input to your model, you can prevent an
attacker using this fact to his advantage.
# Yes, I have implemented this method.
# I am familiar with this method, but have not implemented it.
# No, I am not familiar with this method.

25. PRAtableE: Have you ever implemented a method for smoothing prediction
output? Smoothing prediction output: By changing the prediction output
slightly before handing it to the user, or preventing sensitive outputs, you
make it more difficult for an attacker to exploit your model. This is because it
is more difficult for the attacker to reconstruct the model or to invert it.
# Yes, I have implemented this method.
# I am familiar with this method, but have not implemented it.
# No, I am not familiar with this method.

26. PRAtable2A: Have you ever implemented a method for introducing delay for
model interaction? Introducing delay for model interacton: You do not allow
unlimitedly many and unlimitedly frequent queries to your model by e.g.
introducing a delay in your responses. Thereby, it gets more difficult for the
attacker to build his own copy of your model that he can exploit or alter in
order to harm you.
# Yes, I have implemented this method.
# I am familiar with this method, but have not implemented it.
# No, I am not familiar with this method.

27. PRAtable2B: Have you ever implemented a method for. access control? Access
control: You ensure that each instance that interacts with your model only
has the necessary access to perform its tasks. This can also include not giving
the learned model access to the training data, once that training is completed.
# Yes, I have implemented this method.
# I am familiar with this method, but have not implemented it.
# No, I am not familiar with this method.

28. PRAtable2C: Have you ever implemented a method for system security? Sys-
tem security: You deploy your ML models on secure servers and protect
(dedicated) hardware, like GPUs, TPUs etc. against attacks.
# Yes, I have implemented this method.
# I am familiar with this method, but have not implemented it.
# No, I am not familiar with this method.

152



A.2. Machine Learning Survey

29. PRAtable2D: Have you ever implemented a method for differential privacy (DP)?
Differential privacy: DP gives strong mathematical guarantees on the privacy
of the data that you are using. It assumes an attacker with maximal knowledge
and provides an upper bound on possible privacy breaches. Privacy plays an
important part in the security of your model against, e.g. inversion.
# Yes, I have implemented this method.
# I am familiar with this method, but have not implemented it.
# No, I am not familiar with this method.

30. PRAtable2E: Have you ever implemented a method for homomorphic encryp-
tion? Homomorphic encryption: Homomorphic encryption allows to perform
operations on encrypted data without having to decrypt it. After all trans-
formation, when data is decrypted, the result should be the same as if the
operations were performed on the raw data.
# Yes, I have implemented this method.
# I am familiar with this method, but have not implemented it.
# No, I am not familiar with this method.

31. PRAtable2F: Have you ever implemented a method for watermarking? Water-
marking: You poison the training data of your model yourself in order to have
your model react to certain (secret) triggers. This can, amongst others, help to
identify stolen copies of your model and protect your intellectual property.
# Yes, I have implemented this method.
# I am familiar with this method, but have not implemented it.
# No, I am not familiar with this method.

32. *PRAfinal: Is there something else that you would like to mention about your
work and security in machine learning?

33. GDPR1: How familiar are you with the requirements that the EU’s General
Data Privacy Regulation (GDPR) has on handling of personal data?
# Not at all familiar
# Slightly familiar
# Moderately familiar
# Very familiar
# Extremely familiar

34. GDPR2: Have you been dealing with fulfilling the requirements of GDPR in
your machine learning development?
# Yes
# No

35. GDPR3: Have you experienced any issues with fulfilling the requirements of
GDPR?
# Yes
# No

opt What kind of issues have you experienced with fulfilling GDPR requirements?
Please describe in a few words or sentences.

36. GDPR4: To what extent has the GDPR caused a change in your machine
learning security practices?
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# Not at all
# Very little
# Somewhat
# To a great extent

37. *GDPR4a: What kind of changes has the GDPR prompted in your machine
learning security practices? Please describe in a few words or sentences.

38. GDPR6: To what extent has the GDPR caused a change in your security
practices in general?
# Not at all
# Very little
# Somewhat
# To a great extent

39. *GDPR6a: What kind of changes has the GDPR prompted in your security
practices in general? Please describe in a few words or sentences.

40. *GDPR7: Is there something else that you would like to mention about GDPR
in the context of security of machine learning?

Student Questionnaire

1. DEM4: What degree are you currently studying?
# Bachelor degree
# Master degree
# PhD degree
# *Other:

2. DEM5: What program are you studying?
# Computer Science
# Mathematics
# Statistics
# *Other:

3. DEM2s: Which country are you currently studying in?
# Albania
# ...
# Zimbabwe

4. DEM6: For how long have you been involved with ML?
# This is my 1st semester
# 1 semester - 1 year
# 1 - 2 years
# Longer than 2 years

5. DEM7: Do you hope to work with ML after your graduation?
# Yes
# No
# Not sure

6. *AWA4: What general risks in machine learning are you aware of? Please
describe in a few words or sentences.
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7. *AWA5: For which possible security risks in machine learning systems have
you ever implemented preventive solutions?

8. IMP5s: For what purpose(s) do you develop machine learning solutions?
Please list your project types based on how often you engage in them. Please
rank the items from most often to least often, only including the ones you at
least occasionally engage in. Your highest ranking item should be on the top
right.

• University related projects and class work
• Hobby
• Job next to studies

9. AWA6: Have you heard about security risks for ML already?
# Yes
# No

Afterwards, question SOL1 to PRAfinal have been the same as for the developers.

Code books

1. AWA4
• Bad quality data, training bias
• Interpretation bias, ethics
• Data/Model security
• Robustness
• Attacks

– Attacks on privacy
– Attacks on model availability
– Attacks of model integrity

• Unexplainable models
• Other

2. AWA5
• Issues with data quality
• Interpretation bias, ethics
• Data/Model security
• Issues with robustness
• Leakage or attack on privacy
• Issues with model availability
• Issues with model integrity
• Other
• None

3. GDPR467
• New policies or workflows
• Security (e.g. access control)
• Data anonymization and sanitization
• Difficulties
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• Training and awareness
• Critique and shortcomings
• Other

A.2.2 Full Study

This section contains additional material for the full study of the work described in
Chapter 3.

A.2.2.1 Questionnaire

The final questionnaire of the full study is depicted in the following pages.
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Security and Privacy in Machine Learning 

This survey aims to analyze the state of the art in implementation of security measures to 

protect machine learning (ML) systems. We want to investigate to what extent machine 

learning practitioners are aware of the different types of attacks (from inside and outside) 

that their models are exposed to. We also want to learn which types of protective measures 

are used. Finally, we are interested in learning what kind of experiences developers have 

had with fulfilling the requirements of the European General Data Protection Regulation 

(GDPR). 

We kindly ask all respondents to stick to the truth as best as they can and avoid 

exaggerating their statements in any direction, as this ensures the validity of the results. This 

survey will take approximately 10-15 minutes to fill out and consists of a maximum of 25 

questions. 

The survey is conducted by  is conducted by the Fraunhofer Institute for Applied and 

Integrated Security (AISEC)  in cooperation with the Fraunhofer Institute for Secure 

Information Technology (SIT) and the Freie Universität Berlin (FU). 

 

 Indicate questions that allow for multiple answers. 

o Indicate questions that allow for exactly one answer. 

 

 

Data security and consent note: 

Participation in this study is voluntary. You can discontinue your participation at any time 

with no negative consequences, but information gathered from you up until the point of 

cessation of your participation may be used in the study. The data collected within this study 

include questionnaire items regarding your experience, awareness, and knowledge. These 

data can not be linked to your person. The research data are collected purely for scientific 

purposes. The research data are only available to the researchers of the research group. 

The research team deploys appropriate technical and organizational security precautions to 

protect personal data against disappearance, misuse, unlawful use, change, or destruction. 

The data collected of you within this survey are retained as long as is necessary for the 

purpose it should fulfil, or as long as the legislation requires. Any contact information we 

might collect of you is separated from other questionnaire data, including demographic 

information. Upon request you are provided with additional details of the general principles of 

this study and its progress, or of the results concerning yourself. 

o Agree 

o Disagree 

 

[Only participants who gave their consent were forwarded to the questionnaire.] 

 

 



Demographics 

1 Which country are you currently working in? 

o Afghanistan 
... 

o Zimbabwe 

 

2 What is the highest educational degree you have obtained? 

o Less than high school or secondary school degree (i.e. Abitur, baccalauréat, A levels 

etc.)  
o High school or secondary school degree 
o Bachelor's degree 
o Master's degree or diploma 
o Doctorate 
o Other: [   ] 

 

3 What is your current working situation? 

o I am a student. (If you are also working in a machine learning related position at the same time, please check 

employee or self-employed, according to what applies to you!) 
o I am an employee. 
o I am self-employed. 
o I am unemployed. 

4 How long have you been working with machine learning (ML) - either 

professionally or as a hobby? 

o I have never worked with ML 
o 1-3 years 
o 4-6 years 
o 7-9 years 
o 10 years or more 

 

5 What are your daily machine learning (ML)-related tasks? 

 Coordinating ML projects and workflows 

 Applying ML libraries (tensorflow, scikit learn, ...) 

 Developing custom ML applications (e.g. design custom neural networks for given 

tasks) 

 Developing ML tools or libraries from scratch 

 Data cleansing and preparation 

 Data analysis 

 Data collection 

 Evaluation 

 Deployment and maintenance 

 Other: [   ] 



 

6 For what field(s) do you apply machine learning? 

 Industry 

 Industrial research 

 Academic research 

 Hobby 

 Other: [   ] 

 

7 What is the size of the company you are working for? 

* This question was not displayed for participants who had indicated being a student. 

o Self-employed 

o 1-10 employees 

o 11-50 employees 

o 51-200 employees 

o 201-500 employees 

o 501-1000 employees 

o 1001-5000 employees 

o 5001-10,000 employees 

o 10,001+ employees 

 

8 How are the product(s) that your division develops concerned with machine 

learning (ML)? 

* This question was not displayed for participants who had indicated being a student. 

o ML is key part of the product. 

o ML is included in the product but not key part. 

o ML is only used internally for marketing. 

o ML is only used internally for other purposes than marketing (e.g. to improve the 

product, finance, ...). 

 

Data and Sensitivity 

 

9 Is any of the data you work with sensitive? 

Sensitive data means information that has to be be protected against unwarranted 

disclosure (e.g. private or confidential data). 

o No 

o Yes 

 

10 Do your machine learning models deal with data of individiuals? 

I work with data that is... 



o ...not related to humans (any of my data). 

o ...indirectly related to humans (at least some data that I work with). 

o ...directly related to humans (at least some data that I work with). 

 

11 What type of data do you deal with in your machine learning models? 

 Images 

 Video 

 Audio/Sound 

 Text 

 Location data 

 Metadata 

 Sensor data 

 Tabular data 

 Other: [   ] 

 

12 What domain does the data you are working with stem from? 

 Financial 

 Medical and health 

 Transportation and traffic 

 Customers and users 

 Weather and environment 

 Smart environment and IoT 

 Social media 

 Public security 

 Other: [   ] 

 

ML Security 

 

13 In your opinion, how important or unimportant is it to ensure the security of your 

machine learning models? 

o Unimportant 

o Of little importance 

o Moderately important 

o Important 

o Very important 

 

14 How did you build your current knowledge about machine learning security? 

 Through courses at university 

 Through workshops and tutorials 

 Through practice 

 Through self-study (e.g. online tutorials, webinars, literature) 



 Other: [   ] 

 

15 Who takes care of the security of the machine learning (ML) models in your 

working environment? (If you are unemployed, please check the answer that applies to your previous job.) 

* This question was not displayed for participants who had indicated being a student. 

o I take care of my ML projects' security. 

o I solely take care of all ML security. 

o I take care of all ML security, together with some others. 

o A designated expert takes care of ML security. 

o Nobody takes care of ML security. 

o Make a comment on your choice here: [   ] 

 

Attacks on ML 

 

16 For the following attacks against machine learning (ML), please check what 

applies to you. 

 Yes, I have 
implemented 
solutions to 

prevent this type 
of attack. 

 

I am familiar with 
this type of attack, 

but have not 
implemented 

solutions against it, 
yet. 

No, I am not 
familiar with this 
type of attack. 

 

Inversion attacks 
 

Inversion attack: The aim of an 
inversion attack is to extract 
information from your ML model. 
An attacker could query your 
model to obtain knowledge about 
the underlying training data. 

 
o 

 
o 

 
o 

Impersonation attacks 
 

Impersonation attack: To 
impersonate an individual from 
your dataset, attackers try to 
imitate data records of their 
victims. They can use those 
records to get unauthorized 
access, or to develop specially 
tailored attacks against that 
victim. 

 
o 

 
o 

 
o 

Poisoning attacks 
 

Poisoning attack: During training, 
an attacker is able to inject their 
own data records into your 
training data. Your model might 
thereby learn things it is not 
supposed to, due to the shift of 

 
o 

 
o 

 
o 



classification boundaries. This 
could be exploited by the attacker 
in the prediction phase. 

Evasion attacks 
 

Evasion attack: At test time, an 
attacker modifies a data record in 
such a minimal way, that the 
record still seems normal to a 
human observer. The 
modification however causes 
your ML model to make a 
prediction that differs completely 
from the one on the original input. 
Adversarial examples are an 
instance of evasion attacks. 

 
o 

 
o 

 
o 

 

 

ML Security Practices 

 

17 For the following libraries, related to private and secure machine learning (ML), 

please select what applies to you. 

 I have already 
worked with this 

library. 

I have heard about 
this library but have 

not used it, yet. 

I have never 
heard about this 
library before. 

Tensorflow Privacy o 
 

o o 

Cleverhans o 
 

o o 

PySyft o 
 

o o 

Google's Differential Privacy o 
 

o o 

Uber SQL Differential 
Privacy 

o o o 

AdverTorch o 
 

o o 

Foolbox o 
 

o o 

Adversarial Robustness 
Toolbox (ART) 

o o o 

 

18 Have you ever implemented a method for... 

 Yes, I have 
implemented this 

method. 
 

I am familiar with 
this method, but 

have not 
implemented it, yet. 

No, I am not 
familiar with this 

method. 
 

...data sanitization? 
 

 
o 

 
o 

 
o 



Data sanitizition: All your training 
data is cleaned from potentially 
malicious data points. Samples 
that have a negative impact on 
the model’s prediction output 
might be discarded. 

...data provenance? 
 

Data provenance: For all your 
training data, the provenance is 
clear and traceable. Your data 
pipeline and data storages are 
well documented and protected 
against intrusions. 

 
o 

 
o 

 
o 

...adversarial training? 
 

Adversarial training: Your model 
is trained partly on adversarial 
samples with corresponding 
labels to detect them as such and 
react adequately. 

 
o 

 
o 

 
o 

...ensemble learning to make 
your ML models more 

secure? 
 

Ensemble learning: You group 
several ML models into an 
assembly for your predictions. 
Hereby, different classifiers or 
different techniques for defence 
can be combined to mitigate the 
success of attacks and to make 
the model more robust. 

 
o 

 
o 

 
o 

...observing model input at 
inference time? 

 
Observing model input at 
inference time: You are 
observing the data that is 
presented to your model when it 
is deployed. ML models are most 
likely to fail when the data 
distribution at test time differs 
from the one at training time. By 
observing the input to your 
model, you can prevent an 
attacker using this fact to his 
advantage. 

 
o 

 
o 

 
o 

...smoothing prediction 
output? 

 
Smoothing prediction output: By 
rounding or truncating the 
prediction output slightly, or 
preventing sensitive outputs, you 
make it more difficult for an 
attacker to reconstruct the model 
or to invert it. 

 
o 

 
o 

 
o 

...federated learning (FL)? 
 

 
o 

 
o 

 
o 



Federated Learning: FL is an ML 
technique in which the model is 
trained across multiple 
decentralized devices or parties 
on their local data samples. In 
contrast to traditional ML 
techniques, where all data 
samples are uploaded to one 
central server for training. In FL, 
no data samples are exchanged. 

 

19 Have you ever implemented a method for... 

 Yes, I have 
implemented this 

method. 
 

I am familiar with 
this method, but 

have not 
implemented it, yet. 

No, I am not 
familiar with this 

method. 
 

…introducing delay for model 
interaction? 

 
Introducing delay for model 
interacton: You do not allow 
unlimitedly many and unlimitedly 
frequent queries to your model by 
e.g. introducing a delay in your 
responses. Thereby, it gets more 
difficult for the attacker to build his 
own copy of your model that he 
can exploit or alter in order to 
harm you. 

 
o 

 
o 

 
o 

…access control to protect 
your ML models? 

 
Access control: You ensure that 
each instance that interacts with 
your model has only the access 
necessary to perform its tasks. 
This can also include not giving 
the learned model access to the 
training data, once that training is 
completed. 

 
o 

 
o 

 
o 

…system security to protect 
your ML models? 

 
System security: You deploy your 
ML models on secure servers and 
protect certain hardware 
components, such as GPUs, 
TPUs etc., against attacks. 

 
o 

 
o 

 
o 

...differential privacy (DP)? 
  

Differential privacy: DP gives 
strong mathematical guarantees 
on the privacy of the data that you 
are using. It assumes an attacker 
with maximal knowledge and 
provides an upper bound on 

possible privacy breaches. 

 
o 

 
o 

 
o 



...homomorphic encryption 
(HE)?  

 
Homomorphic encryption: HE 
allows to perform arithmetic 
operations directly on the 
encrypted data without having to 
convert it into plain text first. Each 
operation provides an encrypted 
result, which, when decrypted, 
corresponds to the result that 
would have been obtained if the 
operation had been performed on 
the unencrypted data. 

 
o 

 
o 

 
o 

...watermarking? 
 

Watermarking: You poison the 
training data of your model 
yourself in order to have your 
model react to certain (secret) 
triggers. This can, amongst 
others, help to identify stolen 
copies of your model and protect 
your intellectual property. 

 
o 

 
o 

 
o 

...privacy preserving record 
linkage? 

 
Privacy Preserving Record 
Linkage: Some attributes of your 
data, that individually do not seem 
too sensitive, can act as pseudo-
identifier for a data point, when 
considered together. Privacy 
preserving record linkage 
transforms this weaknes into a 
strength, by calculating hash 
values over those values, so that 
data across multiple datasets can 
be shared by different parties 
without disclosing the sensitive 
attributes. 

 
o 

 
o 

 
o 

 

GDPR 

 

20 How familiar are you with the requirements that the EU’s General Data Privacy 

Regulation (GDPR) places on the handling of personal data? 

o Not at all familiar 

o Slightly familiar 

o Moderately familiar 

o Familiar 

o Extremely familiar 

 



21 In your work with machine learning, have you been dealing with the fulfilment of 

GDPR requirements? 

o Yes 

o I don't know 

o No 

 

22 To what extent has the GDPR caused a change in your machine learning security 

practices? 

o Not at all 

o Very little 

o Somewhat 

o Very much 

o To a great extent 

 

23 What kind of changes has the GDPR prompted in your machine learning security 

practises? Please describe in a few words or sentences. 

Please write your answer here: [   ] 

 

Final 

 

24 If you would like to participate in a potential follow-up study, please enter your 

email address. 

Please write your answer here: [   ] 

 

25 If you would like to be informed about any publications resulting from this survey, 

please enter your email address. 

Please write your answer here: [   ] 

 

We highly appreciate the time you took to fill out this questionnaire. Your contribution 

supports the research community in advancing the field of security for machine 

learning! 

Sincerely, your Fraunhofer AISEC, SIT and FU Berlin team.  

For any further questions, please do not hesitate to contact us via: 

securemachinelearning[at]aisec.fraunhofer.de. Your answers have been transmitted, 

you can close this window now. 

 



A.2. Machine Learning Survey

A.2.2.2 Participant Demography

The following Table A.3 and Table A.4 provide additional insights into the partic-
ipants’ demography, their working environment, and the data they are working
with.

A.2.2.3 Hypotheses and Factor Analysis

The hypotheses we evaluated within our full study are grouped into two different
families, represented in Table A.5 and Table A.6, respectively. Table A.7 presents
the factors for the factor analysis used to estimate the latent construct awareness.
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Table A.7.: Items for Factor Analysis. List of selected items for the factor analysis
to be applied on. Only items with loadings > 0.45 were considered
to correlate strong enough with the latent construct resulting in five
variables being excluded from further analysis — namely Adversarial
Training, Observing model input at inference time, Smoothing prediction
output, Federated Learning and System Security — for which respective
loadings are not reported.

Item Factor 1

Inversion Attack .669

Impersonation Attack .588

Poisoning Attack .663

Evasion Attack .654

Data Sanitization .623

Data Provenance .543

Adversarial Training
Ensemble Learning .481

Observing model input at inference time
Smoothing prediction output
Federated Learning
Introducing delay for model interaction .543

Access Control .532

System Security
Differential Privacy .548

Homomorphic Encryption .539

Watermarking .503

Privacy-preserving Record Linkage .644

% of total variance 33.94

Cronbach’s Alpha 0.86
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Table A.3.: Survey Participants’ Demographics. Summary of participants’ back-
ground information. Demographics marked with an * allowed for mul-
tiple answers. Table taken from [29].

Area
Europe 64

North America 9

South America 2

Asia 5

Australia 3

Education
High school / Secondary school degree 2

Bachelor’s degree 12

Master’s degree 55

Doctorate 13

Other 1

Employment
Employed 73

Self-employed 6

Unemployed 4

ML Application*
Industry 38

Industrial Research 39

Academic Research 48

Hobby 17

Working experience in ML
1-3 years 49

4-6 years 18

7-9 years 5

10 years or more 11

Company size (# of employees)
Self-employed 6

1-10 5

11-50 8

51-200 10

201-500 12

501-1000 8

1001-5000 15

5001-10 000 7

More than 10 000 12
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Table A.4.: Summary of participants’ ML working environment. Demographics
marked with an * allowed for multiple answers and, therefore, do not
add up to the sample size of 83. Table taken from [29].

Domain(s) of the ML data*
Customers and users 32

Smart environment and IoT 22

Medical and health 20

Transportation and traffic 19

Financial 19

Public security 11

Weather and environment 8

Social media 7

Other 22

Type(s) of data handled*
Images 44

Sensor data 39

Tabular data 38

Text 37

Metadata 30

Location data 24

Video 17

Audio/Sound 15

Other 4

Daily ML Task(s)*
Applying ML libraries 59

Data analysis 54

Evaluation 47

Data cleansing and preparation 45

Coordinating ML projects and workflows 44

Developing custom ML applications 36

Data collection 31

Deployment and maintenance 27

Developing ML tools / libraries from scratch 16

Role of ML in product development
Key part of the product 47

Included in the product but not key part 28

Used internally for other than marketing 6

Used internally only for marketing 2
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Table A.5.: Hypotheses for RQ1. Set of hypotheses to answer the research question
RQ1. All hypotheses in this table form a hypothesis family and are
considered as such in the process of correction for multiple comparisons.
Table taken from [29].

No. Hypotheses Test statistic p-value p∗

H.1.1 H0: Awareness does not correlate with the individ-
ual’s perception of how important ML security is.

r(81) = .073 .514 .62

H.1.2 H0: Educational degree has no effect on the partic-
ipants’ level of awareness.

χ2
(4) = .89 .827 .827

H.1.3 H0: Awareness does not correlate with years of
working experience in ML.

r(81) = .36 < .001 .005

H.1.4 H0: Company size has no effect on the participants’
level of awareness.

χ2
(8) = 15.26 .054 .109

H.1.5 H0: Participants who build their own ML applica-
tions do not have a higher awareness than those
who don’t.

U(41,42) = 584.0 .006 .018

H.1.6 H0: There is no difference in the level of awareness
between participants working with directly human-
related data, indirectly or data that is not human-
related at all.

χ2
(2) = 4.09 .129 .194

171



A. Appendix

Table A.6.: Hypotheses for RQ2. Set of hypotheses to answer the research question
RQ2. All hypotheses in this table form a hypothesis family and are
considered as such in the process of correction for multiple comparisons.
Table taken from [29]

.
No. Hypotheses Test statistic p-value p∗

H.2.1 H0: Years of working experience do not correlate
with the individual’s perception of how important
ML security is.

r(81) = .635 .57 .685

H.2.2 H0: Company size has no effect on who is respon-
sible for securing ML models in the respective
working environment.

χ2
(32) = 43.11 .091 .182

H.2.3 H0: Educational degree has no effect on whether
someone is responsible for implementing security
solutions.

U(47,35) = 774.5 .296 .395

H.2.4 H0: The number of years of working experience
with ML has no effect on whether someone is re-
sponsible for implementing security solutions.

U(48,35) = 728.5 .124 .212

H.2.5 H0: The introduction of the GDPR had no effect on
the individuals’ ML security practices - grouped
by how human-related the data used is.

χ2
(2) = 12.39 .002 .005

H.2.5.1 H0: The introduction of the GDPR had no effect on
the individuals’ ML security practices with respect
to those working with non-human related data and
those who work with indirectly related data.

U(23,17) = 97.0 .002 .005

H.2.5.2 H0: The introduction of the GDPR had no effect on
the individuals’ ML security practices with respect
to those working with non-human related data and
those who work with directly related data.

U(23,23) = 130.0 < .001 .003

H.2.5.3 H0: The introduction of the GDPR had no effect on
the individuals’ ML security practices with respect
to those working with indirectly related data and
those who work with directly related data.

U(17,23) = 171.5 .254 .38

H.2.6 H0: The four attacks described are all equally well
known.

χ2
(3) = 1.12 .772 .772

H.2.7 H0: The four attacks described are all equally often
implemented.

χ2
(3) = 1.31 .727 .772

H.2.8 H0: The 14 methods described are all equally well
known.

χ2
(13) = 93.19 < .001 < .001

H.2.9 H0: The 14 methods described are all equally often
implemented.

χ2
(13) = 209.0 < .001 < .001
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A.3 Privacy in Federated Learning

This section presents additional material for Chapter 4.

A.3.1 Visual Results for Data Extraction
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Figure A.1.: Model Weight Distribution after Training. Distribution of the first
layer’s weights of the FC-NN from Table 4.1 in Section 4.5 over training
on the MNIST dataset. Weights at epoch zero were initialized with a
random uniform distribution [30].

(a) Reconstructed data points. (b) Original data points.

Figure A.2.: Extracted Data from MNIST. Reconstruction success of our adversar-
ial initialization: first 30 images from a mini-batch of 100 data points,
extracted at the first fully-connected layer of the FC-NN from Table 4.1
in Section 4.5. Gray images indicate that the corresponding original
data point could not be extracted individually from the model gradi-
ents [30].

A.3.2 Data Extraction under Lossy Layers

173



A. Appendix

(a) Reconstructed data points from differ-
ent classes.

(b) Reconstructed data points from class
"dog".

(c) Original data points from different
classes. (d) Original data points from class "dog".

Figure A.3.: Extracted Data from CIFAR-10. Reconstruction success of our adver-
sarial initialization: first 30 images from a mini-batch of 100 data points,
extracted at the first fully-connected layer of the CNN from Table 4.1.
Gray images indicate that the corresponding original data point could
not be extracted individually from the model gradients [30].

(a) Reconstructed data points. (b) Original data points.

Figure A.4.: Extracted Data from ImageNet. Reconstruction success of our adver-
sarial initialization: all reconstructed data points from a mini-batch
of 100 data points, extracted at the first fully-connected layer of the
CNN from Table 4.1. Gray images indicate that the corresponding
original data point could not be extracted individually from the model
gradients [30].
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(a) Dropout with p = 0.0. (b) Dropout with p = 0.1.

(c) Dropout with p = 0.3. (d) Dropout with p = 0.5.

(e) Dropout with p = 0.7. (f) Dropout with p = 0.9.

Figure A.5.: Effect of Dropout for Mini-Batch Size 1.

(a) Dropout with p = 0.0 and pooling. (b) Dropout with p = 0.1 and pooling.

(c) Dropout with p = 0.3 and pooling. (d) Dropout with p = 0.5 and pooling.

(e) Dropout with p = 0.7 and pooling. (f) Dropout with p = 0.9 and pooling.

Figure A.6.: Effect of Dropout+Pooling for Mini-Batch Size 1.
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(a) Dropout with p = 0.0. (b) Dropout with p = 0.1.

(c) Dropout with p = 0.3. (d) Dropout with p = 0.5.

(e) Dropout with p = 0.7. (f) Dropout with p = 0.9.

Figure A.7.: Effect of Dropout for Mini-Batch Size 20.

(a) Dropout with p = 0.0 and pooling. (b) Dropout with p = 0.1 and pooling.

(c) Dropout with p = 0.3 and pooling. (d) Dropout with p = 0.5 and pooling.

(e) Dropout with p = 0.7 and pooling. (f) Dropout with p = 0.9 and pooling.

Figure A.8.: Effect of Dropout+Pooling for Mini-Batch Size 20.
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