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Abstract
With the advances in high-throughput data acquisition technologies, the amount

of heterogeneous and complex data is constantly increasing. The application of in-
telligent algorithms such as deep neural networks (DNNs), which learn a hierarchy
of increasingly complex features from the data, is emerging as an effective paradigm
for analyzing complex datasets. In medical research, however, deep learning (DL)
may suffer from overfitting due to the high dimensionality of the data. The scarcity
of good quality labeled data also intensifies this issue due to the expensive and time-
consuming process of providing labels and metadata by the human expert. Besides,
despite the simple linear operation of core building blocks of DNNs, the hierarch-
ical combination of these blocks may result in over-parameterization, which makes
it challenging to explain their behavior. The black-box nature of these models raises
a severe issue regarding the trustworthiness and reliability of deployed models, espe-
cially in high-stakes prediction applications. Therefore, to analyze high-dimensional
medical data using DL models in medical settings, we need to address two important
questions: 1) How to deal with the curse of dimensionality and limitation of annot-
ated data? 2) How to improve the transparency of deep learning models through
interpretability, as it potentially leads to a better understanding of the data and the
deployed model?

This thesis addresses these challenges in high-throughput structured data and
high-dimensional imaging data modalities. We begin our study on high-throughput
structured data with the application of proteomics data analysis. We robustly learn
the data representation and extract the medically relevant information using DL
techniques. We develop novel data analysis based on what the DL model can learn
through interpreting its predictions. This information enables getting insight into
the data patterns and discovering discriminating features. We also justify the reli-
ability of the model interpretation through comprehensive quantitative assessments.
We show that the proper combination of DL techniques coupled with interpreta-
tion strategies that enable an in-depth understanding of model decisions can guide
towards a reliable clinical decision support system.

Further, we study DL techniques on high-dimensional imaging data. Unlike
structured data where desired features appear with slight deviations, regions of
interest on medical images may appear with a large deviation on different data
points. Therefore, we built our image analysis on supervised convolutional neural
networks (CNN), which can handle large deviations. We investigate different CNN
architectures and compare their strength. Finally, we built a robust pipeline on het-
erogeneous imaging data with the challenging application of human spinal vertebra
detection-identification. To deal with the scarcity of data, we show how different
techniques, including transfer learning, data augmentation, human-in-the-loop, and
synthetic generation of data in medical settings, boost generalization.
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Zusammenfassungen
Mit den Fortschritten bei den Technologien zur Datenerfassung mit hohem Durchsatz nimmt
die Menge heterogener und komplexer Daten ständig zu. Die Anwendung intelligenter Algorith-
men wie deep neural networks (DNNs), die eine Hierarchie zunehmend komplexer Merkmale
aus den Daten lernen, entwickelt sich zu einem effektiven Paradigma für die Analyse komplexer
Datensätze. In der medizinischen Forschung kann deep learning (DL) jedoch aufgrund der ho-
hen Dimensionalität der Daten unter einer Überanpassung leiden. Der Mangel an qualitativ
hochwertigen beschrifteten Daten verschärft dieses Problem noch, da die Bereitstellung von
Beschriftungen und Metadaten durch einen menschlichen Experten teuer und zeitaufwändig
ist. Außerdem führt die hierarchische Kombination dieser Blöcke trotz der einfachen linearen
Funktionsweise der Kernbausteine von DNNs zu einer Überparametrisierung, die es schwierig
macht, ihr Verhalten zu erklären. Um hochdimensionale medizinische Daten mit fortschrit-
tlichen DL-Modellen in der Medizin zu analysieren, müssen wir daher zwei wichtige Fragen
beantworten: 1) Wie kann man mit dem Fluch der Dimensionalität und der Begrenztheit der
annotierten Daten umgehen? 2) Wie kann die Transparenz von DL-Modellen durch Interpreti-
erbarkeit verbessert werden, da dies potenziell zu einem besseren Verständnis der Daten und
des eingesetzten Modells führt?
Diese Arbeit befasst sich mit diesen Herausforderungen in strukturierten Hochdurchsatzdaten
und hochdimensionalen Bildgebungsdatenmodalitäten. Wir beginnen unsere Studie über struk-
turierte Hochdurchsatzdaten mit der Anwendung der Proteomik-Datenanalyse. Wir erlernen
die Datenrepräsentation auf robuste Weise und extrahieren die medizinisch relevanten Inform-
ationen mithilfe von DL-Techniken. Wir entwickeln neuartige Datenanalysen, die auf dem
basieren, was das DL-Modell durch die Interpretation seiner Vorhersagen lernen kann. Diese
Informationen ermöglichen einen Einblick in die Datenmuster und die Entdeckung von Un-
terscheidungsmerkmalen. Wir rechtfertigen auch die Zuverlässigkeit der Modellinterpretation
durch umfassende quantitative Bewertungen. Wir zeigen, dass die richtige Kombination von
DL-Techniken in Verbindung mit Interpretationsstrategien, die ein tiefgreifendes Verständnis
der Modellentscheidungen ermöglichen, zu einem zuverlässigen klinischen Entscheidungsun-
terstützungssystem führen kann.
Außerdem untersuchen wir DL-Techniken für hochdimensionale Bilddaten. Im Gegensatz
zu strukturierten Daten, bei denen die gewünschten Merkmale mit geringen Abweichungen
auftreten, können die interessierenden Regionen auf medizinischen Bildern an verschiedenen
Datenpunkten mit einer großen Abweichung auftreten. Daher haben wir unsere Bildanalyse
auf überwachte convolutional neural network (CNN) aufgebaut, die mit großen Abweichun-
gen umgehen können. Wir untersuchen verschiedene CNN-Architekturen und vergleichen ihre
Stärken. Schließlich haben wir eine robuste Pipeline für heterogene Bilddaten mit der ans-
pruchsvollen Anwendung der Erkennung und Identifizierung menschlicher Wirbel entwickelt.
Um mit der Datenknappheit umzugehen, zeigen wir, wie verschiedene Techniken, einschließ-
lich Transferlernen, Datenerweiterung, Human-in-the-Loop und synthetische Generierung von
Daten im medizinischen Umfeld, die Generalisierung verbessern.
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Plagiaten. Alle Ausführungen, die wörtlich oder inhaltlich aus anderen Schriften
entnommen sind, habe ich als solche kenntlich gemacht. Diese Dissertation wurde
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2 Chapter 1 Introduction

Artificial intelligence (AI) continues to attract interest in many disciplines, in-
cluding healthcare and medicine. Fueled by growing computational power, big data,
and machine learning (ML) techniques, AI has shown its clinical impact in different
applications, including drug discovery, medical imaging, and genomic medicine (Toh
et al., 2019; Wadhwa et al., 2020). However, Employing ML technologies for high-
throughput data comes with its limitations and shortcomings. Limitations include
high-dimensionality and data scarcity, which degrade ML models’ performance, and
lack of interpretability that increases the ambiguity. Overcoming these limitations
can enable ML methods to become more powerful and reliable. This thesis addresses
some of these points, in particular, scarcity of data and lack of explainability using
advanced ML techniques in high-throughput clinical data analysis.

1.1 Artificial Intelligence and Machine Learning

Artificial Intelligence (AI) is a general term that implies the use of a computer to
model intelligent behavior with minimal human intervention (Hamet and Tremblay,
2017). The application of AI in healthcare, which is the focus of this thesis, is
transforming the healthcare industry and improving outcomes (Panesar, 2019). One
of the early works on AI in medicine began by focusing on expert systems (Shu
et al., 2019). In expert system specific rules are captured from medical experts,
and translated into computer program for knowledge processing so that it can deal
with quantitative and qualitative data (Tan et al., 2016). One of the early expert
systems in medicine was developed to suggest antibiotic regimens for severe bacterial
infections (Shortliffe et al., 1975; Shortliffe, 2012). This approach, with almost 450
rules, was impractical at the time due to the lack of system integration into clinical
pipelines. By increasing computing power, expert systems have become practical in
many clinical decision support systems (CDSSs) or computer-aided diagnosis (CAD)
since they directly depend on logical rules and therefore are understandable and
reliable. Nevertheless, rule-based approaches fall short when dealing with complex
clinical decisions, for instance, where a finite number of manual features can not
describe the data representation. Besides, rule-based approaches could be costly
and time-consuming for scaling the system and could be impractical when data are
changing faster than the ability to write new rules continually.

ML systems, on the other hand, extract the knowledge from raw data and make
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decisions on unknown events based on what has been observed from historical data.
The capability of defining rules from the data enables ML to overcome expert system
limitations (Akkus et al., 2019; Peiffer-Smadja et al., 2020; Buchlak et al., 2020).
Besides, due to its scalability property, ML systems can be enhanced constantly
through algorithm and data preparations. These capabilities and success of ML
in clinical studies are drawing increased interest in CDSSs (Cabitza et al., 2017;
Challen et al., 2019; Rawson et al., 2019). Among different ML techniques, deep
learning (DL) has recently achieved breakthroughs in many domains (Falcone et al.,
2007; Young et al., 2018; Jumper et al., 2021). DL hierarchically extracts features
from data by learning them automatically, as opposed to the handcrafted feature
extraction in classical ML algorithms. Although DL has had a long history, a break-
through occurred when backpropagation learning algorithm (Werbos, 1974b) was
applied to neural networks (LeCun et al., 2015). More improvement and satisfactory
experimental results have been achieved by the availability of large datasets, more
complex and deeper architectures, and a rapid increase in the processing power of
graphics processing units (Holzinger et al., 2019; Shrestha and Mahmood, 2019).
DL has been proven one of the most successful ML algorithms in image recognition
(Krizhevsky et al., 2012; Huang et al., 2016b), speech recognition (Hinton et al.,
2012a), natural language processing (Sutskever et al., 2014), etc. This potential has
also been shown in many bioinformatics applications, including biomedical image
processing and diagnosis (Esteva et al., 2017; Kermany et al., 2018), biomedical sig-
nal processing (Rashid et al., 2020), biomolecule interaction prediction, and systems
biology (Ma et al., 2018b; Zitnik et al., 2018; Piccialli et al., 2021). In the following
sections, we discuss how healthcare systems can benefit from ML/DL models. We
further explain the challenges towards the integration of these models into healthcare
systems like CDSS.

1.2 Clinical Decision Support System

As briefly introduced earlier, CDSSs are computer systems initiated to deliver better
healthcare through providing clinicians, staff, patients, or other individuals with tar-
geted clinical knowledge, patient information, and other health information (Osheroff
et al., 2012). CDSSs are more established as systems to help clinicians as a second
opinion by delivering a variety of services, including diagnosis, prognoses, treatment
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response prediction, treatment recommendation (personalization), and many more.
Traditional CDSSs are traced back to 1970s (Shortliffe and Buchanan, 1975). The
poor system integration, ethical and legal issues, and imperfect explainability at the
time had limited the applicability of these systems to academic pursuits (Middleton
et al., 2016; Shortliffe and Buchanan, 1975). Today’s CDSSs take advantage of web
applications, integration with electronic health records, or computerized provider or-
der entry systems, which can be administrated through desktop, tablet, smartphone,
and other devices such as biometric monitoring and wearable health technology (Dias
and Paulo Silva Cunha, 2018). CDSS provides a variety of functions, including im-
proving clinical workflow, patient safety, quality of care, healthcare efficiency and dis-
ease management, and diagnostic assistant tools (Berner, 2007; Shahsavarani et al.,
2015; Sutton et al., 2020). For patient safety and quality of care, CDSSa are greatly
enhanced towards reducing prescribing and dosing errors (Helmons et al., 2015),
contraindications through automated warnings (Peris-Lopez et al., 2011), and drug
control events (Jia et al., 2016). Towards healthcare efficiency, the CDSS’s function
is extending to reduce the health system cost containment(Calloway et al., 2013),
and administration function, which directly helps clinical protocols (McEvoy et al.,
2018). CDSSs have also been developed and applied across a variety of diagnosis
systems, including infectious diseases (Shen et al., 2018), Alzheimer’s disease (Toro
et al., 2012), skin cancer (Curry and Reed, 2011), breast cancer (Mazo et al., 2020),
imaging diagnosis (Curry and Reed, 2011), and chronic disease grading (Nejati et al.,
2016).

Based on how CDSSs are derived, they can be classified into knowledge-based and
non-knowledge-based systems. Knowledge-based CDSSs are expert-driven systems
in which the rules are made using literature-based, practice-based, or patient-directed
evidence (Sim et al., 2001). Non-knowledge-based CDSSs rather leverages ML mod-
els. ML extracts knowledge from the historical clinical data and builds a predictive
model to estimate the outcome of new observations (Berner, 2007; Cabitza et al.,
2017; Challen et al., 2019; Rawson et al., 2019). The outcomes are then used as
a recommendation system to support clinicians in their practice. There is a great
interest in non-knowledge-based CDSSs using ML algorithms to enhance clinical de-
cisions’ accuracy and minimize medical errors, e.g, in diagnosis system for detection
of diabetic retinopathy in retinal fundus photographs (Abràmoff et al., 2018) and
infection disease (Lamping et al., 2018), and in improving clinical workflows for ana-
lysis of imaging modality (Akkus et al., 2019)). Despite advantages, there are still
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challenges that should be addressed for adopting ML/DL models into complex med-
ical data analysis such as high-throughput data and integration of these models into
CDSS. These challenges include: 1) providing good quality historical data ( which
is usually scars) to train a robust ML model, and 2) explaining the outcomes of the
black-box nature of ML models to bring trust to the users. In the following sections,
we discuss these shortcomings in the context of high-throughput data analysis. We
first introduce high-throughput data analysis and then elaborate on the challenges.

1.3 High-throughput Data Analysis

High-throughput data are information generated in massive and have the poten-
tial to improve our understanding of the biological system significantly (Porter and
Hajibabaei, 2018). The term high-throughput in the literature is used when the
number of observations, number of features, or both are gigantic. High-throughput
technologies enable comprehensive study of biological processes by measuring mul-
tiple parts of a biological system, simultaneously and at the reduced cost. Therefore,
they are widely used in modern medicine, and diagnostic systems (Eicher et al., 2020;
Ristevski and Chen, 2018; Viceconti et al., 2015). The rapid development of high-
throughput quantification tools for different modalities, (e.g., omics data (Guan,
2015; Albaradei et al., 2021), high-throughput imaging data (Huizing et al., 2019),
medical health records data (Yu et al., 2015; Smoller, 2018), and sensor arrays) and
the variety of research questions are constantly increasing its popularity in different
fields, including automated diagnosis, prognosis, and drug design.

We refer to a dataset as high-throughput only when the number of features
greatly outnumbers the number of observations. Unfortunately, this phenomenon
that is called the curse of dimensionality makes the high-throughput data analysis
prone to overfitting for classical ML methods. The scarcity of annotated data is
mainly due to the expensive and time-consuming process of providing annotation
by the human expert. In addition, noise content in such data is often high as a
result of several stages of data acquisition. These characteristics make analyses of
high-throughput data challenging for ML researchers, and slow their integration into
clinical workflows.

This thesis elaborates on the challenges mentioned above and presents possible
solutions through developing new ML/DL techniques based on recent advances in
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this field, which potentially can pave the way for more accurate diagnosis. We adopt
ML models to analyze two types of high-throughput data: 1) Mass spectrometry
proteomics data that has emerged as a standard tool for large-scale protein analysis
of biological samples (e.g., blood), and 2) Magnetic resonance imaging data that has
been established as non-invasive diagnostic tool for analyzing internal body struc-
tures. These data are characterized by few observations, lots of features or high
complex content, and noise interference.

1.4 Challenges and Contributions

As previously stated, the demand for AI using ML and DL is increasing in the field
of health informatics. Their potential benefits have already been shown in many
applications, such as, supporting clinicians to diagnose diseases (Peiffer-Smadja et
al., 2020), identifying cancer biomarkers (Sharma and Rani, 2021), and predicting
outbreaks of infectious diseases (Khakharia et al., 2021). Despite conventional meth-
ods, the DL approach does not require domain-specific data preprocessing, and it is
expected that it will enable the healthcare assistant tools towards full automation
in the future (Nakkiran et al., 2019). In spite of all the advantages, there are still
challenges to adopting ML/DL models for high-throughput data interpretation.

The first challenge is related to data scarcity. In medical applications, data ac-
quisition and ground truth annotations are often very expensive and time-consuming.
Because it requires a considerable amount of time from human experts that could be
in return dedicated to patients. Sometimes, annotations could even be infeasible to
acquire due to millions of features that are needed to be investigated. High dimen-
sionality and scarcity of data, which is also known as the curse of dimensionality,
increase sparsity. To assure that the model remains valid, the amount of needed
data grows exponentially. To address this problem, ML models are conventionally
equipped with a dimension reduction preprocessing step (Meng et al., 2016) that
removes the irrelevant and redundant features, and a feature selection method that
chooses the best subset of features.

The feature selection methods for sparse high-dimensional data can be divided
into three categories: filter, wrapper, and embedded methods (Chandrashekar and
Sahin, 2014; Espadoto et al., 2019). Filter methods select features based on general
characteristics of training data, e.g., Fisher’s t-test, an information-theoretic criteria.
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Filter methods evaluate the importance of each feature in univariate or multivariable
measures, independent of the learning model. The wrapper methods (e.g., simulated
annealing or genetic algorithms) use the searching techniques to select feature subsets
and a learning algorithm to evaluate these subsets in terms of classification error or
accuracy (Dash and Liu, 1997). Compared to filter methods, the wrapper methods
achieve better feature subsets to enhance the performance of a predefined learning
algorithm. The wrapper methods, however, are more computationally demanding,
which makes their application to high-throughput data analysis infeasible. Similar
to wrapper methods, the embedded methods, e.g., LASSO, SVM, and ElasticNet,
also select features based on the learning algorithm. However, unlike the wrapper
method, they simultaneously select the most important features during the training
phase. Although the embedded methods are shown to be computationally more effi-
cient, they rarely reach better learning performance than wrapper methods (Hancer
et al., 2020). In summary, adopting conventional feature selection to the applica-
tion of high-throughput data is either computationally inefficient (or even infeasible)
or affected by overfitting and feature-biased problems. As for medical data, con-
ventional features selection methods can raise the risk of losing relevant biological
information. This thesis proposes ways to analyze such data in their raw format by
developing new models based on DL techniques capable of handling large data due
to their scalable characteristics. We exemplify our analysis in different biomedical
data modalities and extract the biologically relevant information through the means
of model interpretation.

To overcome the scarcity of data and avoid overfitting, we rely on the fact that
the neural network can memorize complex features and has scalable capacity to learn
these complex patterns. Therefore, the key to obtaining a proper generalization per-
formance is to allow the network to be exposed to more variants of the data. These
variations on high-throughput structured data are modeled through synthetic gener-
ation of data in Chapters 3 and 4. To achieve better generalization performance, we
demonstrate how one can effectively benefit from transferring the knowledge from
datasets that share similar representations. On structured proteomics data, vari-
ations are synthesized through data simulation in Chapters 3 and 4. On imaging
modality, variations are modeled through proper data augmentation in Chapter 5.
We further investigate enriching the annotated data by the semi-supervised genera-
tion of labels with the help of human interference in Chapter 5.

The second concern surrounding ML/DL in medicine is the lack of model trans-



8 Chapter 1 Introduction

parency (Topol, 2019). As decisions made or influenced by these systems affect
human health, it is crucial to understand how and why a system has produced a
given output (Arrieta et al., 2020). Therefore, ML-based CDSS is in great need
of explainable AI, which can explain how recommendations are made. This can
allow practitioners to decide when and where to trust the model, especially in high-
stakes cases. Lacking proper interpretation that is understandable by the users in
ML/DL models, can be one of the reasons that still less complex models, for in-
stance, rule-based expert systems, have preferably been used in CDSS. Rules are
easy to interpret, and therefore they can be used reliably. But, they may not be
capable of solving complex tasks, where thousands of features in the data should be
evaluated for making decisions. In this thesis, to convey a sense of trust to the users
and demonstrate the model’s reliability and trustworthiness, we employ the new ad-
vances of interpretation strategies that enable understanding the black-box nature
of DNNs. In Chapter 3, we show how to adopt these strategies into our DL-based
high-throughput data analysis.

Model interpretations can also be translated into building units to enhance the
model’s generalization, find possible bugs, and provide new insight into the analyzed
data. Towards these goals, we quantitatively measure and visually assess the inter-
pretation of decisions made by the network in Chapter 4. These assessments provide
systematic information regarding the model behavior and patterns in the data. We
show how to utilize this information from interpretation assessments to enhance the
models that is designed for high-dimensional data analysis, and to reveal relevant
discriminating patterns of data.

1.5 Thesis Overview

This thesis aims to address challenges that are essential for successfully applying
DL in high-dimensional biomedical data, which provides tools and in-depth insights
towards automatic healthcare as a support for physicians. This chapter has de-
scribed the general motivation of this thesis by highlighting the importance of AI in
medical settings and the challenges of analyzing high-throughput data for adopting
modern ML approaches. Chapter 2 gives an introduction to the data modalities. In
Chapters 3, 4, and 5 the analyses listed below will be investigated:
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Analysis of high-dimensional structured data using modern machine
learning techniques towards finding objective indications of medical
states: In Chapter 3, we shed light on difficulties of analyzing high-dimensional
structured data, including the high-dimensionality, scarcity of good quality labeled
data, and high noise level. These characteristics pose challenges to making a dia-
gnosis, extracting relevant information, and finding relevant patterns associated with
medical states. This task so far has been addressed either with statistical analysis,
which is often not accurate enough, or with ML approaches, which can be prone
to overfitting. Moreover, ML methods may suffer from lack of interpretability, and
are limited to the capacity of the model. We propose an interpretable DL-based
approach for classifying such data and identifying biomarker candidates to address
these challenges. We successfully apply our proposed method on simulated and real-
world datasets.

Understand and enhance developed machine learning models through in-
terpretability assessment: In Chapter 4, through interpretability assessments
we demonstrate how to understand the behavior and enhance the architecture of
high-throughput data predictive models. The interpretation of a model gives an in-
sight into the reasons why the model makes certain decisions. These reasons can be
quantified and act as feedback to modify model parameters or serve as an evidence of
the model’s robustness. We develop a quantitative interpretation assessment of DNN
predictions to tune the DL model parameters and adopt visualization assessments
to understand the model’s behavior.

Translate acquired knowledge into analysis of medical imaging modality:
In Chapter 5, our knowledge from analyzing high-throughput structured proteom-
ics data will be transferred into high-dimensional medical imaging data. We target
analyzing challenging high-dimensional magnetic resonance imaging (MRI) data of
the human anatomy to detect and identify the region of interest. Besides the com-
plexity itself, these tasks also suffer from high-dimensionality and a small labeled
sample size (similar to structured proteomics data analysis in Chapters 3 and 4).
Unlike the structured data the regions of interest (ROI) on imaging modality can
be appeared in different parts of the data. It means the position ROI largely varies
from one data points to another. Chapter 5 adopt convolutional neural networks to
handle spatial variations in imaging modality, which require minimal preprocessing.
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We compare different supervised DL architectures (e.g., UNet (Ronneberger et al.,
2015) for Segmentation, YOLO (Redmon et al., 2016) for detection, and ResNet (He
et al., 2016a) for Regression) and propose a robust pipeline for detecting regions of
interest on heterogeneous imaging data. This study can add valuable insight into
the image data analysis and open new ways to solve medical imaging tasks.

In summary, we successfully build robust DL classifiers on raw high-throughput
mass-spectrometry proteomics data to identify the medical states of proteomics
samples. The scarcity of data is coped with transfer learning and leveraging synthet-
ically generated data. We then propose a novel biomarker detection using the robust
classifier and the means of interpretation. Compared to existing methods, we find a
more accurate subset of biomarker candidates and reduce many otherwise necessary
preprocessing steps, which lessen the dependency on human-expert knowledge. We
quantitatively assess the interpretation of developed models to demonstrate reliabil-
ity and achieve better configurations. In addition, with the comprehensive study of
the high-dimensional biomedical imaging analysis, we successfully propose workflows
for segmentation, detection, and regression of regions of interest on such data. Our
developed methods have been actively used by a project partner for interpretation
and annotations of MRI imaging data.
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Before we jump into the data analysis, we will introduce the data modalities used
in this thesis, including 1D and 2D high-throughput mass-spectrometry proteomics
and human organ high-throughput medical imaging.

2.1 Proteomics

Proteomics is the large-scale study of proteins that are regarded as vital parts of a
living organism and functional units of cells. Proteins control all biological systems
in a cell and regulate the body’s tissues and organs. Therefore, identifying the
presence of proteins and their alterations is required to develop diagnosis systems.
Towards this goal, mass spectrometry has evolved into an indispensable tool for the
comprehensive identification of all proteins and their abundance levels in complex
analytes. To explain why proteomics is investigated in general and how it differs from
genomics and transcriptomics, we will have a gentle introduction in the following.

2.1.1 DNA, RNA, and Protein

Genomics is the study of the genome or (mainly) the entire set of DNA (deoxyribo-
nucleic acid) that contains genetic information for the development and functioning
of cells and organisms. DNA is made of two strands that wind around each other
by paring four chemical compounds known as nucleotide bases. The four bases are
adenine (A), tyrosine (T), guanine (G), and cytosine (C). The bases pair up with
each other - A with T and C with G - between the two strands and form a spiraling
ladder shape, known as a double helix shape. Three consecutive nucleotides, termed
a codon, form a unit of genomic information (e.g., ACT, CAG, TTT) and encode
for a specific amino acid (or stop signal). The sequence of codons then encodes
for the sequence of amino acids, which form proteins. Four nucleotide bases can
happen in 43 = 64 different codons, enough to encode for the 20 existing amino
acids. The flow of information from DNA to RNA and then from RNA to proteins
consists of two major steps: transcription and translation. Through the process of
transcription, the codons of a gene are copied and formed into an RNA molecule
(called messenger RNA) in the nucleus. After the RNA molecule leaves the nucleus
and enters the ribosome, the sequence of codons is read and translated into a chain
of amino acids. Proteins are typically composed of hundreds of amino acids in se-
quence, held together by chemical bonds. Different combinations of amino acids give
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proteins different shapes, sizes, and functions. Besides, proteins may become further
altered with post-translational modifications in their lifetime for better-specialized
functions.

RNA (Ribonucleic acid) presented in all biological cells is a single-stranded nucleic
acid with base uracil (U) instead of base T. While DNA contains all the instructions
for the cell to grow, function, and replicate, RNA carries out these instructions. It
copies and transfers the genetic code from the DNA to make relevant proteins. Cells
contain many types of RNA, including messenger RNA and transfer RNA. Messenger
RNA evolves in the translation of genes from DNA into proteins, while transfer RNA
serves as the link between the messengers RNA and the amino acid sequence of a
protein.

During the translation process, the molecular complexity increases by several
mechanisms, generating from an estimated 20,000 human genes (Kuster et al., 2005)
to between 70,000 and 100,000 transcripts with varying abundance levels (Gaudet
et al., 2017). These transcripts are converted into even a larger number of different
protein sequences because of sequence mutations, alternative translations, and post-
translation modification. Further, the enormous variation in protein abundance and
its concentration over time expand the number of different protein products even
more. These alterations sometimes cannot be captured directly from DNA or RNA,
where proteomics fills the gap.

Changes in the abundance of proteins can influence the state of an organism.
One focus of proteomics, for instance, is to study the changes in protein abundances
generated responding to a perturbation, disease, morphogenesis, toxicity, or other
cell stress in a given biological system (Villanueva et al., 2006; Faca et al., 2009; Calvo
et al., 2009; Magni et al., 2010). All efforts to assign these responses to changes in
proteome rely on the identification and quantification of proteins that are presented
in a sample. The success of mass spectrometry (MS)-based proteomics illustrates
its role as an indispensable tool towards the goal of Proteomics research, which is
the comprehensive identification of proteins, their abundances, and concentrations
presented in an analyte. It does not require prior information on which proteins are
presented in a sample, and it allows identification and quantification of thousands
of analytes in parallel. MS-based approaches have contributed significantly to our
understanding of life by comprehensively mapping entire proteomes.
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Figure 2.1: Overview of a hierarchy of omics approaches: genomics, transcriptomics,
and proteomics. Each level of information in DNA, RNA, and proteins in these ap-
proaches provides a different levels of characterization of the systems biology. The
flow of genetic information within a biological system is studied through genomics,
transcriptomics, and proteomics. Copying the DNA information into RNAs is re-
ferred to as transcription, and that by which RNA is used to produce proteins is
called translation. Proteomics is the large-scale study of proteins, which is investig-
ated by mass spectrometry analysis in Chapter 3.

2.1.2 Mass-Spectrometry Proteomics

Mass spectrometry (MS) is a high-throughput data acquisition technique that can
be used for study of proteins. In this analytical technique, chemical compounds are
first ionized into charged molecules, and then their mass to charge (m/z) ratio are
measured. A mass spectrometer is made of three parts: ionizer, mass analyzer, and
detector. The ionizer or ion source transfers the analyte, e.g., peptides, to the gas
phase and ionizes the gaseous analyte afterwards. Although MS was discovered in the
early 1900s, the development of matrix-assisted laser desorption ionization (MALDI)
(Karas and Hillenkamp, 1988), and electrospray ionization techniques (ESI) (Fenn
et al., 1989) in 1980s, increased the applicability of MS to large biological molecules
like proteins (Singhal et al., 2015). Both ionization techniques convert the peptides
into ions by adding or losing one or more than one protons. These techniques are
also known as soft ionization, which do not cause major fragmentation. The datasets
that are used in this thesis are generated by these ionization techniques, which will
be introduced later in this section.
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The mass analyzer receives the ionized analytes and separates the charged
particles based on their mass to charge (m/z) ratio. There are different types of
mass analyzer, including magnetic sector, time-of-fligh (TOF), quadrupole, and ion
trap. The detector then detects a signal produced by the charged ions. For instance,
in TOF, the signal is the time that accelerated ions take to travel a distance in an
electric field (Mamyrin, 2001). In ion trap, the signal is measured by the oscillation
frequencies along an electrode (Makarov, 2000). The recorded signal in this setting
is known as mass spectrum, MS scan, or MS1 scan. The mass spectrum is a plot
that has mass-to-charge ratio (m/z) on the x-axis and intensity values – ion count –
on the y-axis. The masses are measured in the Dalton (Da) or unified atomic mass
unit (u).

A limitation of the MS1 scan or 1D MS data is that the gained information
cannot determine the exact sequence of peptides whose ions have very similar m/z

ratios. To address this limitation, an extra mass analyzer can be added to the mass
spectrometer, which helps to distinguish the ions with close m/z ratios. To this end,
ions with a particular m/z from the first analyzer are isolated and fragmented into
smaller ions. Some commonly used fragmentation methods include collision-induced
dissociation (CID)(Wells and McLuckey, 2005), higher energy collision-induced dis-
sociation (HCD) (Olsen et al., 2007), and electron-transfer dissociation (ETD) (Syka
et al., 2004). CID collides the ions into fragments using neutral gas molecules, e.g.,
nitrogen or argon gas. In HCD, a high voltage breaks the ions with the gas. ETD
induces ions’ fragmentation by transferring electrons to them. Once the ions are
fragmented, the second MS analyzer receives and measures the m/z ratio of the
fragmented ions. The signal from the second scanner is termed MS2 scan, which
enables identifying the analyzed peptides because the masses of all amino acids and
most common post-translational modifications are known.

Peptides from MS2 scans can be identified by different approaches, such as de
novo (Taylor and Johnson, 1997) and spectrum library search (Frewen et al., 2006).
De novo tests the combination of amino acids and checks if their masses are equi-
valent to the fragmented ions. Spectrum library search matches the derived spectra
against existing identified peptides. While spectrum library search approach uses an
extensive search, the database search engine uses protein databases to match spectra
to peptides. Databases contain amino acid sequences of all known human proteins,
such as the UniProt database (Bairoch et al., 2005), and the National Center for
Biotechnology Information, (Wheeler et al., 2007).
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Figure 2.2: Overview of a bottom-up proteomics workflow. In the proteomics study,
a protein mixture is typically digested to break the proteins into smaller units of
peptides, which are then further separated with the means of liquid chromatography
and mass spectrometry. Finally, the generated spectrum derived from a fragmenta-
tion is used for protein identification through database searching.

Mass spectrometry proteomics studies proteins in bottom-up or top-down ap-
proaches. Top-down proteomics measures all modifications that occur on the same
molecule, which enables the identification of precise proteomes. However, in bottom-
up proteomics, protein or peptide mixtures are first subjected to enzymatic cleavage.
This process generates peptides that are more tractable to experiment and compute,
making bottom-up proteomics the most widespread workflow (Dupree et al., 2020).
Figure 2.2 illustrates an overview of a bottom-up proteomics workflow. In typical
bottom-up proteomics approach, a sequence-specific enzyme, e.g., Trypsin, digests
proteins. The resulting peptide products are analyzed using a mass spectrometer
coupled with high-performance liquid chromatography (HPLC) system or MALDI-
TOF instruments. Next, a database searching approach is used for protein identi-
fication. The following sections introduce 1D an 2D mass-spectrometry proteomics
datasets that are used in this thesis using MALDI-TOF and HPLC-ESI instruments.

2.1.3 1D Mass Spectrometry Proteomics

We refer to MS data as 1D when the MS analyzer generates one spectrum per sample.
As previously stated, there are different ionization techniques and analyzers that can
be used for mass spectrometry. MALDI-TOF MS is one of the most popular MS
techniques (Hou et al., 2019), which is also used in this thesis as 1D MS proteomics
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data. In MALDI-TOF MS, the molecules of the examined sample are vaporized, ion-
ized, and finally analyzed by their respective TOF through an electric field. MALDI
stands for Matrix-assisted laser desorption ionization. To facilitate the ionization
process, this approach uses a small organic molecule called Matrix. The Matrix
comprises Benzoic acid and cinnamic acid. The mixture of the Matrix and analyte
is deposited onto the sample plate, known as the target. Adding the Matrix allows
solvent to evaporate, solidify and trap the sample. The solid sample on the target is
then analyzed by MALDI-TOF spectrometer. The target is vacuumed and hit by a
laser beam. The Matrix absorbs the laser energy and provides this energy to ablate
from the surface of the samples, and carry the analyte molecule into the gas phase.
The molecules are ionized by a proton transfer during the ablation process, often
with a single charge (z = 1). Note that the analyte itself would be destroyed by
hitting the laser in the absence of the Matrix. Now, the masses of the gas-phase ions
can be analyzed by the TOF MS. The TOF process accelerates the molecular ions in
a high voltage electric field. This filed makes constant kinetic energy: Ekin = 1

2mv2,
where m and v denote the ion mass and velocity, respectively. At a fixed kinetic
energy, ions with different m/z ratios are accelerated to different velocity, which is
inversely proportional to their mass so that small ions reach the detector first. The
detector records the time that the ions spend travelling a certain distance. Mass
spectrometer calculates the m/z of ions using the measured time and constant kin-
etic energy. Then, it forms a mass spectrum with mass to charge ratio of ions on the
x-axis and the ion intensities on the y-axis. The scale on y-axis generally contains
more than 10000 m/z ratios.

MALDI is considered a soft ionization technique. It means the molecules are
turned into the gas phase without fragmentation, and they remain intact when
they are ionized. The soft ionization allows the direct mass spectrometry of mixed
samples. However, it is difficult with this process to identify larger micro molecules,
e.g., peptides, that have overlapping masses. In such cases, for more precise and ac-
curate identification, for instance, ESI-MS can be used, which is readily coupled with
the chromatography separation technique. This technique allows online separation
during MS analysis and, thus, is more widely used for complex mixtures of proteins.
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Figure 2.3: MALDI-TOF MS proteomics sample visualization in OpenMS (Röst et
al., 2016). The x-axis shows the mass-to-charge ratio (m/z) of the ions captured
by the mass spectrometer, and the y-axis demonstrates their intensities. This is the
input vector for the MALDI-MS analysis in Chapter 3.

2.1.4 2D Mass Spectrometry Proteomics

Liquid Chromatography

The complexity of proteomics samples may require a separation step prior to the
mass spectrometry analysis to reduce the complexity of peptide identification. This
separation leads the analyzer to generate separate spectra. We refer the generated
data as 2D MS data. One of the most common peptide separation techniques is high-
performance liquid chromatography (HPLC) (Liu et al., 2020b). HPLC consists of
a solvent, and a chromatography column termed mobile and stationary phases, re-
spectively. In HPLC, the peptide solute is first injected into the chromatography
column. This solute is then forced through the column at high pressure, which
effectively separates the components based on the chemical affinity (e.g., hydro-
phobicity, ionic interactions) and weight. To run the solute through the column,
molecules of the sample require a different amount of time, so-called retention time
(RT). RT measures the time from when the solvent injected into the column until
the components elute from the column. The difference in RT separates the peptides
of different species. The components that leaves the chromatography column are in
the form of droplets, which need to turn into gaseous ionized peptides prior to mass
spectrometry.
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ESI

ESI is one of the ionization techniques that can be coupled online to the HPLC.
ESI produces peptide ions with different charges and allows analyzing compounds
in the solution. In this technique, analyte solution is forced through a needle at the
tip of the LC column. A high voltage is applied to the needle, which forms charged
droplets of peptide solution to be entered to the ESI source. In ESI, the droplets
are directed through the heated desolvation region, which evaporates the solvent and
turns the charged peptides to the gas phase. The desolvated peptide ions are then
entered into the mass spectrometer. Similar to MLDI, ESI is also considered a soft
ionization technique, as it leaves the analyte mostly intact.

LC-MS Map

Stacking the spectra derived from the HPLC at a specific interval forms a liquid
chromatography-mass spectrometry (LC-MS) dataset. Retention time adds a di-
mension to the individual mass spectrum and builds a three-dimensional map whose
axes represent retention time, m/z ratio, and ion count (intensity), respectively. An
examples of LC-MS map is shown in Figure 2.4. LC-MS data is considered a 2D MS
data analyzed in this thesis.

Figure 2.4: Visualization of an LC-MS map in MZmine 2 (Pluskal et al., 2010).
Left panel shows a 3D visualization of an LC-MS map, where x, y, and z axes
demonstrate mass-to-charge ratio (m/z), the retention time, and ion intensities,
respectively. Right panel is a 2D visualization of the same sample from the top
perspective. The gray-scale color values demonstrate the ion intensities. This image
is the input to our LC-MS data analysis pipeline in Chapter 3.
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2.2 Medical Imaging

Medical imaging has delivered rich information about the human anatomy and is
usually the initial source of investigation for various diagnoses. There are different
imaging modalities, including computed tomographic scanning (CT) and magnetic
resonance imaging (MRI), which are used for different purposes. In comparison to
CT, MRI has the advantages of improved contrast resolution for bone and soft tis-
sues, along with the versatility of direct imaging in multiple planes. These imaging
techniques play an essential role in medical imaging diagnoses. This thesis focuses on
spine MRI interpretation, including vertebra segmentation, localization, and iden-
tification, which assist clinicians in their everyday workflows. We will expand this
application in detail in Chapter 5. The following section gives a gentle introduction
to this clinical imaging modality and the anatomy of the spine itself.

2.2.1 MRI

MRI produces detailed anatomical images in axial, sagittal, and coronal dimensions.
It is a non-invasive imaging technology for diagnosing a broad range of soft-tissue
conditions. MRI does not use x-rays or other radiation, which makes it the imaging
modality of choice for diagnosis, treatment, and monitoring, especially when frequent
imaging is required.

MRI relies on the magnetic properties of hydrogen atoms, which are abundant in
the human body. It uses a strong magnetic field of 1.5 or 3 Tesla and radio waves,
which excites and captures the energy released by changes in the direction of the
rotational axis of protons in the body tissues. Hydrogen protons, which act like
a tiny magnet, are all in random positions and spinning on their axes. Therefore,
there is no magnetic field. The spinning motion is known as precession. A strong
primary magnetic field in MRI first aligns the protons with the field and affects
how fast these protons spin. Next, the gradient coil in MRI generates a secondary
magnetic field within the bore of the primary magnet that varies across the body.
The arrangement of the gradient coils enables MRI to image along the X, Y , and
Z axes. This happens by varying the strength of the primary magnetic field, which
changes the precession frequencies between slices, allowing spatial encoding for MRI
images. The X, Y , and Z gradients run along horizontal, vertical, and long axes to
generate sagittal, coronal, and axial images.
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A radiofrequency pulse is then introduced from radiofrequency coils, which turns
some low-energy protons into a high-energy state and flips them away from the
primary magnetic field. The radiofrequency should be the same as the frequency of
the spinning hydrogen protons so that the protons can absorb energy and rotate.
Radiofrequency coils are designed for specific body regions.

Once the radiofrequency pulse is turned off, the protons flip back and realign
along the primary magnetic field. This realignment releases electric-magnetic field
energy captured by the MRI sensors. Different tissues release different amounts of
energy in different periods of time. Therefore, various tissues can be differentiated
based on the amount of the released energy and the time it takes for the protons to
realign with the magnetic field since the radiofrequency pulse has turned off. The
Changes in the released magnetic field along the way generate electric current. A
Computer receives an analog electrical signal and converts it to a digital signal. Then,
the digital signals are transformed into MRI images using Fourier transformation.
For more details on physics of MRI, please see (Plewes and Kucharczyk, 2012).

2.2.2 Spinal Anatomy

The human spinal column, also known as the vertebrae column, contains 24 vertebrae
and two sections of naturally fused vertebrae – the sacrum and the coccyx. The
vertebrae column is divided into five sequences of regions stacked on top of each
other: cervical vertebrae in the neck, thoracic vertebrae in the upper back, lumbar
vertebrae in the lower back, the sacral vertebra in the sacrum, and coccygeal bones
located below the sacrum. In this thesis, we refer to the first three regions as the
vertebrae column. There are seven cervical (C1-C7), 12 thoracic (T1-T12), and five
lumbar (L1-L5) vertebrae, as it is illustrated in Figure 2.5.

Each vertebra comprises a cylinder-shaped bone in front of the spine called the
vertebral body, separated by interval discs and paired facet joints in the back. All
vertebrae are knitted together by ligaments and tendons in an S-shaped curve. They
support and stabilize the spine while allowing balance maintenance, shock absorp-
tion, and mobility.

Spinal anatomy is visualized by different imaging modalities such as CT, X-ray,
and MRI. While CT and X-ray may subject patients to ionizing radiation, limiting
the number of scans that can be taken from patients, MRI is considered a non-
invasive and safe modality uses of non-ionizing radiation (Watson, 2015). Spine
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Figure 2.5: Lateral view of the human spine. Left panel: Spinal vertebrae anatomy
(taken from Henry Vandyke Carter, Public domain, via Wikimedia Commons, 1918).
Right panel: Spinal vertebrae MRI scan. The spinal column consists of 24 individual
vertebrae, including seven cervical (C1-C7), 12 thoracic (T1-T12), and five lumbar
vertebrae (L1-L5). Spinal column disorders can be diagnosed through MRI scans by
showing the shape and structure of bones, discs, spinal cord, and spaces between
the vertebral bones. The last five vertebrae, the lumbar region, support most of the
weight of the human body. This region causes the pain for the majority of people.
Many other spinal diseases are also associated to lumbar region. Robust localization
and identification of this region is an essential and primary step for diagnose of
various spinal disorders, which is addressed in Chapter 5.
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MRI scans show the bones, discs, spinal cord, and the spaces between the vertebral
bones. Therefore, they can be used in a wide variety of spine-related assessments,
including the spine alignment; trauma injury to the bone, disc, ligament, or spinal
cord; spinal cord inflammation or compression; disc and joint disease; and tumors in
vertebrae and their surrounding soft tissues.
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High-throughput Omics Data
High-throughput biomedical technologies create large datasets that routinely

need to be interpreted in medical settings to investigate the medical relevant patterns.
This chapter presents a novel biomarker detection approach for high-throughput
mass spectrometry proteomics data, which employs modern machine learning tech-
niques. We build a robust DL classifier on complex proteomics data with a limited
number of training instances through transfer learning. Then, we employ the trained
classifier and explain its decision using a proper interpretation method to extract
biomarker-relevant information.

The produced data through high-throughput biomedical techniques results in
degrees of complexity. This complexity is often caused by the high-dimensionality,
scarcity of good quality labeled data, and high noise level. Besides, integration of any
analysis into the medical decision support system requires decision interpretation for
trustworthiness and reliability, which are hard to acquire with complex algorithms.
This chapter sheds light on these difficulties and studies the application of mod-
ern ML/DL techniques to resolve them. First, we investigate new advances in deep
learning interpretation methods and show what we can learn from these interpret-
ations. We then propose an interpretable deep learning model to extract relevant
information from high-throughput data. Our framework learns the representation
of instances by training the deep neural network, and realizes the relevant patterns
based on what the machine has learned. We formulate this problem in the context
of high-throughput proteomics data classification and biomarker detection with the
case studies of MALDI-MS and LC-MS data analyses, introduced in Sections 2.1.3
and 2.1.4.

To set the stage, we will first briefly overview the background of the DL approach
in Section 3.1, the background of various explanation methods in Section 3.2, and
the background of deep transfer learning for generalization purposes in Section 3.3.
Section 3.4 reviews the related work on high-throughput proteomics data analysis
and the challenges that DL and ML models pose in this analysis. In Section 3.5 and
3.6, our proposed method for MALDI-TOF MS accompanied with an evaluation
study will be presented. Then, we will extend our feature selection approach utilized
in the proposed DL pipeline to more complex data, LC-MS data, in Section 3.7. The
evaluation of this extension is demonstrated in Section 3.8. We will finally discuss
the main findings and limitations in Section 3.9.
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3.1 Deep Learning

Deep learning (DL) is a subset of machine learning algorithms, which attempts to
learn high-level abstractions in data by hierarchically extracting features. Although
DL has had a long history, it has just recently achieved more satisfactory exper-
imental results. One of the early prototypes developed by McCulloch and Pitts
(1943) has gone the name of artificial neural networks, reflecting the viewpoint of how
learning happens in the brain. Then, Rosenblatt (1958) proposed the concept of the
perceptron. Given instances of input from different categories, the perceptron was
the first model that learns weights to classify these categories. The backpropagation
was then proposed by Werbos (1974a), which realized the multi-layer neural net-
work. In 1985 Rumelhart, Williams, and Hinton introduced backpropagation into
the optimization of neural networks, which laid the foundation for the subsequent
rapid development of DL. LeCun et al. (1988b) provided the first practical demon-
stration of backpropagation using convolutional neural networks with the application
of reading “handwritten” digits. The most significant breakthrough happened when
Hinton et al. (2006) tackled the vanishing gradient phenomena on backpropagation
and revealed the potential of DL technology. Now, this technology has begun to
rapidly develop owing to 1) the genesis of the big complex and high-dimensional
data that cannot be handled well with traditional methods, 2) the consistent devel-
opment of hardware that allows training very deep networks and growing the size of
networks, and 3) the support of the community and big companies that promote the
continuous development of this technology. This section gives a gentle introduction
to DL techniques and architectures that are used in this chapter.

3.1.1 Learning Algorithms

Machine learning methods generally can be divided into three major categories based
on the availability of ground truth data as prior knowledge of the model’s output
for a given input: supervised learning, unsupervised learning, and semi-supervised
learning. In a supervised learning algorithm, the training data are labeled, and the
goal is to approximate a function that maps inputs to outputs, given samples of input
data and corresponding outputs. The common tasks in supervised learning include
classification and regression. In an unsupervised learning algorithm, however, the
training data is unlabeled, and the goal is to infer the natural structure existed in
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the input data. Clustering, representation learning, and density estimation are the
common tasks in unsupervised learning. A semi-supervised learning algorithm falls
between these two algorithms, where the goal is to use knowledge learned from a
small amount of labeled data to make decisions on a large amount of unlabeled data.
This technique requires an assumption to relate the labeled and unlabeled data to
justify the conclusions about the unlabeled data from the knowledge learned from a
small set of labeled data.

Following in this paragraph, we formally defines supervised learning as the
learning algorithm of choice in our analysis. In supervised learning, training data
D = {xi, yi}N

i=1 comes in pairs of input features xi and labels yi for i = i, ..., N ,
where y typically represents an instance of a fixed set of classes. y can also rep-
resent a vector of continuous values for regression purpose. (xi, yi) pairs are drawn
from unknown distribution P (x, y). The objective is to learn the model parameters
Θ through minimizing a loss L such that for a new instance (x, y) ∼ P , f(x; Θ)
outputs ŷ ≈ y with high probability.

3.1.2 Deep Neural Network

A neural network (or artificial neural network) consists of an input layer of neurons
(or nodes, units), one or a couple of hidden layers, and an output layer. A hid-
den layer comprises neurons, weights, and activation units. Weights are defined as
Θ = {W, B}, where W denotes the set of edges connecting the neurons between
consequent layers, i.e. W = {w1, ..., wl}, and B defines the set of biases, i.e.
B = {b1, ..., bl}. In a hidden layer, each neuron receives one or more input sig-
nals from the raw dataset, or neurons at preceding layers. The linear combination of
received signals is passed on to the activation function σ(.) to generate the output.
The output of the activation function is received by the next layer of the network:

f(x) = σ(wT x + b). (3.1)

The illustration of a single neuron is shown in Figure 3.1. Multi-layered perceptrons
(MLP) are the most well-known traditional neural networks, consisting of several
layers of neural units defined in (3.1):

f(x; Θ) = σ((w1)T σ((w2)T ...σ((wl)T x + bl) + ... + b2) + b1), (3.2)
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where l denotes the layer number. All the neurons in one layer are connected to
all the neurons in the preceding and subsequent layers. These types of layers are
called fully connected layers. Neural networks containing multiple hidden layers are
considered as deep neural networks.

In traditional neural networks, the typical activation function is the sigmoid
function that takes a real-valued number x and squashes it into the range between
0 and 1:

sigmoid(x) = 1
1 + e−x

, (3.3)

Another common activation function is hyperbolic tangent function that takes a
real-valued number x and squashes it between -1 and 1:

tanh(x) = ex − e−x

ex + e−x
. (3.4)

Sigmoid and hyperbolic tangents place very large negative and positive inputs
close to 0 and unity or -1 and 1, respectively, causing saturation in practice. In
modern deep networks, the rectified linear unit (ReLU) is commonly used, which is
faster to compute the gradient, and less prone to vanishing gradient or saturation.

ReLU(x) = max{x, 0} (3.5)

At the last layer of the network, however, the softmax activation unit takes
the outputs. The role of the softmax is to normalize the outputs to a probability
distribution over the predicted output classes:

softmax(x; Θ)c = P (y = c|x; Θ) = ewT
c x+bc

ΣC
c=1ewT

c x+bc
, (3.6)

where wc presents the vector of incoming weights to the output neuron of class c, and
C determines the number of classes. P (y = c|x, Θ) is called class score, implying the
computed probability distribution. It tells how likely input x belongs to the class C.
To optimize the parameters, the output probability distribution is compared to the
true distribution. This comparison is the role of the loss function that evaluates how
well the network classifies the sample x to the corresponding class. The choice of the
loss function for neural networks is typically similar to the choice of loss function for
other parametric models (as linear models). For instance, cross-entropy, a common
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Figure 3.1: Single neuron illustration. Each neuron in a neural network takes one or
more input signals xj that is multiplied by the corresponding weight wj. The linear
combination of received signals is passed on to the activation function to generate the
output. Activation functions add nonlinearity to the whole network, which enables
the network to learn complex patterns. The output of the neuron becomes the input
to the following neurons in the network.

way to measure the distance between two probability distributions, is used as a loss
function for classification tasks. The cross-entropy loss is defined in Eq (3.7).

L = −ΣC
c=1yclogP (Y = c|X = x; Θ) = −ΣC

c=1yclog ewT
c x+bc

ΣC
c=1ewT

c x+bc
(3.7)

The ground truth vector y in DL frameworks is commonly one-hot encoded. It
means only the positive class element of the target vector is non-zero. Therefore, the
elements of the summation, which are zero due to target labels, can be discarded,
and the cross-entropy loss can be rewritten as:

L = −log ewT
c x+bc

ΣC
c=1ewT

c x+bc
(3.8)

This is equivalent to the negative log-likelihood equation. To find the optimal para-
meters of the network, we minimize the negative log-likelihood obtained from the
entire training data.

Ltotal = −ΣN
i=1log(P (yi|xi; Θ)) (3.9)
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Θ∗ = argmin
Θ

Ltotal(x, y; Θ), (3.10)

where Ltotal and Θ∗ determine the total loss and optimal parameters, respectively.
Due to a large number of data points in practice, it is infeasible to learn all parameters
at once. Currently, the most popular practical way to fit parameters of a neural
network to a dataset is stochastic gradient descent (SGD). SGD iteratively performs
an update on every sample, xi or every mini-batch of n training examples, denoted
by x(i:i+n−1) :

Θt = Θt−1 − η∇ΘL(Θ; x(i:i+n−1); y(i:i+n−1)), (3.11)

where η indicate the learning rate.
Optimization in neural networks is non-convex due to the numerous suboptimal

local minima or saddle points. These make the convergence to the global minimum
or an optimal local minimum challenging for SGD. Other challenges that need to
be dealt with SGD include: speeding up the learning phase, adjusting learning rate
η properly, tuning learning rate during training, and adapting the learning rate
to the network parameters (that have very different frequencies in the case of a
sparse dataset). To address these challenges, many algorithms have been proposed
as extensions to SGD, including Momentum (Sutton, 1986), NAG (Nesterov, 1983),
Adagrad (Duchi et al., 2011), Adadelta (Zeiler, 2012), RM-Sprop, Adam (Kingma
and Ba, 2014), and many others. These methods pick different strategies for updating
the weights in each iteration to improve the convergence in a different situation,
but the main principle of optimization remains the same. The following section
introduces Momentum and Adam, mainly used as DL optimization algorithms in
this thesis.

Momentum and Adam

SGD is slow, caused by poor conditioning of the Hessian matrix and variance in the
stochastic gradient. The momentum extension is designed to speed up the conver-
gence, for instance, in scenarios where high curvature, small but consistent gradients,
or noisy gradients slow down the learning. Momentum circumvents this problem by
accumulating an exponentially decaying moving average of past gradients and contin-
ues to move in their direction. It simply means momentum memorizes past gradients
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to maintain the direction towards the global minimum that decreases oscillations and
accelerates learning. To memorize past gradients, a fraction γ of the moving average
gradient of the previous time step υt−1 is added to the current gradient:

υt = γυt−1 + η∇ΘL(Θt), (3.12)

which then is used to update the weights of the network:

Θt = Θt−1 − υt−1

Hyperparameter γ ∈ [0, 1) indicates how quickly the contributions of previous
gradients exponentially decay. Larger values of γ relative to η, increase the contri-
bution of the previous gradient to the current direction.

Adaptive moment estimation (Adam) (Kingma and Ba, 2014) is another widely
used extension to SGD. This optimizer adapts the learning rate for each neural
network parameter using estimations of the first and second moments of the gradient.
It performs smaller updates for frequently occurring features, and larger updates
for infrequent features. Adam keeps an exponentially decaying average of the past
gradients υt (similar to momentum) as well as the past squared gradients mt (similar
to RMSprop):

υt = β1υt−1 + (1 − β1)∇L(Θt)
mt = β2mt−1 + (1 − β2)(∇L(Θt))2,

(3.13)

where the hyperparameters β1, β2 ∈ [0, 1) control the exponentially decaying rates
of these moving averages. Adam also considers bias corrections:

υ̂t = υt

1 − (β1)t

m̂t = mt

1 − (β2)t

(3.14)

Since mt and υt are initialized as vectors of zeros, they can be biased towards
zero, during the initial time steps and for small decay rates. The weights of the
network are updated through the following rule:

Θt+1 = Θt − η√
m̂t + ϵ

υ̂t. (3.15)
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In DL models, the best algorithm is the one that can traverse the loss for that
problem very well, which is chosen empirically than mathematically. For example,
in this thesis, adaptive learning algorithms are shown to be a better choice of optim-
ization for learning mass spectrometry data that is inherently sparse.

Regularization

Overfitting is a common problem of DNNs due to the complexity of the model that
tends to fit all data points in the training set completely. Regularization is a tech-
nique to alleviate this problem by simplifying the model, which explicitly boost
the network’s performance on the test phase, possibly at the expense of increased
training error. Many forms of regularization are available to the DL practitioner,
including ℓ1 (Lasso) and ℓ2 (weight decay) parameter norm penalties, data augment-
ation, adding noise to the weights (Graves, 2011), modeling the noise on the labels
(Szegedy et al., 2016), dropout (Srivastava et al., 2014), multi-task learning, early
stopping, batch-normalization (Ioffe and Szegedy, 2015a), bagging (Breiman, 1996),
and other ensemble methods.

One or a couple of regularization strategies can be applied for training a general-
ized network simultaneously. For example, early stopping, dropout, and ℓ2 regulariz-
ation. Early stopping terminates the weight updates when the minimum validation
error is reached. Due to both its effectiveness and simplicity, it is one of the most
commonly used forms of regularization in DL. The other most common regularization
strategy is the ℓ2 parameter norm penalty, known as weight decay. This regulariz-
ation strategy adds a regularization term Ω(θ) = λ

2 ||W ||22 to the objective function.
λ is the regularization term, and θ denotes some subset of the parameters, typically
targeted weights of the network, not the biases. ℓ2 drives the weights closer to the
origin. ℓ1 with the same strategy, adds Ω(θ) = λ

2 ||W ||1 to the objective function,
which forces the weight parameters to become zero. Dropout deactivates random
weights at every epoch with a certain probability during the training. Each epoch
sees a different set of nodes, resulting in a different set of outputs. Therefore, it
can be seen as an ensemble technique in machine learning. In general, regulariz-
ation in neural networks simplifies networks during training to reduce overfitting.
For instance, smaller weight parameters in ℓ1 and ℓ2 and deactivating neurons in
dropout make some neurons neglectable. Consequently, the neural network becomes
less complex, less biased to the training data points, and less prone to overfitting.
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3.1.3 Convolutional Neural Network

A convolutional neural network or CNN is a special neural network that utilizes the
convolutional operation to extract features. The layers of CNN consist of a set of
spatial kernels or filters of small sizes which slide over the input data and compute the
dot products at each spatial location. These layers are called convolutional layers.
The kernels at each layer indicate the weights or parameters of the network that
are learned over the training. Compared to fully connected layers, convolutional
layers can preserve the spatial structure. Fully connected layers operate on vectors.
Therefore, Given an image task, the images are vectorized, which leads to losing the
spatial correlation between neighboring pixels. This step is bypassed by convolutional
layers using convolution operation on the full structure of the data. At each layer
l, a set of K kernels W l = {W l

1, W l
2, ..., W l

K} and a bias bl convolved with the input
of that layer X l−1. The non-linear activation function σ(.) takes the results and
generates the output feature map X l:

X l = σ(W l ∗ X l−1 + bl). (3.16)

Almost all convolutional networks employ one more stage called the pooling func-
tion to further modify the output. A pooling function replaces the values of the
feature map with a summary statistic of these values in a rectangular neighborhood.
Popular pooling functions include the max-pooling (Zhou and Chellappa, 1988),
which takes the maximum values, and average pooling, which takes the mean val-
ues of the outputs. The pooling operation leads the network to be approximately
invariant to small translations. It also reduces the number of learnable parameters
that ease the optimization. The layers on top of the network typically are followed
by fully-connected layers. The softmax then takes outputs of the last fully con-
nected layer and generates a probability distribution over classes. The network is
then trained using the maximum likelihood principle, similar to the training neural
network described in section 3.1.2.

There has been a great effort in using deep neural networks (DNN) since a CNN-
based method significantly outperformed other approaches for the first time in the
well-known ImageNet challenge (Krizhevsky et al., 2012). Since then, dozens of
different network topologies have been proposed to improve the performance of DNNs
for various applications, e.g., varying layers and filter sizes (Zeiler and Fergus, 2014;
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Simonyan and Zisserman, 2014), development of the inception module (Szegedy et
al., 2015) that replaces the mapping defined in Eq (3.16) with a set of convolutions of
different sizes, and adding additional connectivity between layers (He et al., 2016a)
that ease the flow of the gradient backward through the layers. Furthermore, effects
of different training techniques (Hinton et al., 2012b; Huang et al., 2016a), better
activation units (Glorot et al., 2011), different stochastic optimization method (Duchi
et al., 2011; Kingma and Ba, 2014), faster training methods (Ioffe and Szegedy,
2015b), and different connectivity patterns between layers (Huang et al., 2016b)
have improved DNN efficiency.

Parallel to advances in training deep networks, there have been attempts to
interpret classification decisions of trained networks and even first steps to go beyond
this (Holzinger et al., 2019). We will have a comprehensive review of this topic in
the next section.

3.2 Model Interpretation

With the success of machine learning in industry and science, there has been a
growing demand for interpreting these models, especially in the medical domain (
e.g., healthcare and medicine), involving high stakes decisions that impact human
health and life. Gaining a better understanding of ML problem-solving strategies
opens better communication so that users may know if and when to trust model
predictions. For example, if interpretability explains that the model may make an
individual prediction according to relevant variables, the user can more reliably take
actions according to the model’s prediction. Besides trusting individual predictions,
it is essential to measure the robustness of the model before the deployment. To this
end, an evaluation is performed using accuracy metrics on the validation dataset.
However, real-world data has more variations from validation data; therefore, even
with high precision, the evaluation metric on validation may not represent the model
generalization. In this case, interpretability is also a worthwhile solution to facilitate
debugging, detecting possible biases, and confirming the model generalization.

Model understanding can be achieved by building inherently interpretable models
like linear models and shallow decision trees. However, in recent years, the success
of more complex models like DNNs encourages scientists to advocate post-hoc ex-
planations through explaining pre-built models. Accordingly, DL libraries have star-
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ted to include these methods in their own explainable-AI libraries, such as Pytorch
Captum and TensorFlow tf-explain. This thesis uses post-hoc explanation methods
to describe DNN decisions. The following subsection defines and introduces vari-
ous post-hoc explanation methods. It is worth noting that, despite many articles
that have attempted to define interpretability and explainability (Doshi-Velez and
Kim, 2017; Ribeiro et al., 2016; Lipton, 2018; Došilović et al., 2018; Arrieta et al.,
2020), there is no clear exposition on how they should be incorporated into the great
diversity of implementations of ML models. Therefor, this thesis uses the words
interpretability and explainability interchangeably.

3.2.1 What is an Explanation?

The explanation is any interpretable description of decision-maker behavior, which
represents the true decision/reasoning process of the model, referred to as faithful-
ness, and is understandable by the user, referred to as readability. Being less faithful
is sometimes a trade-off for more readability. However, this can be changed based
on the targeted audience and their expertise level. For example, the explanation for
text classification can be a binary vector indicating the presence or absence of a word
readable by the general audience, even though the classifier may use more complex
features such as word embedding. For image classification, likewise, an explanation
may be a binary vector indicating the “presence” or “absence” of a contiguous patch
of similar pixels readable for general users, while the classifier may represent the
image as a tensor with three color channels per pixel. Given this definition, many
approaches can fit into a model explanation, e.g., providing model parameters under-
standable by the users, releasing many example predictions, summarizing the model
behavior with rule-based methods or decision tree methods, selecting important fea-
tures, describing how to flip the model prediction, etc.

The explanation models are grouped into local and global methods. The global
explanation describes the model’s complete behavior that vets if the model is suit-
able for deployment at a high level. However, the global explanation might be too
complicated to communicate with the user. On the other hand, the local explana-
tion is a more practical explanation approach, which describes the model’s behavior
in a target neighborhood and measures if individual predictions are made for the
right reasons. For instance, in a binary classification setting, the prediction inter-
pretation should highlight discriminating variables between samples of two groups to
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show the right reasoning. In medical disease diagnosis, these discriminating variables
represent the disease-triggered information. Therefore, the alignment of the model
explanation and disease-related information provides evidence of the robustness of
the model. Furthermore, in the case of unknown disease-relevant variables, the model
explanation can give an insight into the unknown pattern of the data. This thesis
elaborates the concepts above by adopting the local explanation methods. The fol-
lowing section introduces different local explanation methods in the literature. To
give a broader insight, different methods of global explanation will also be presented.

3.2.2 Local Explanation

Local explanations are designed to describe the individual predictions of the model.
The general idea is to approximate a small region of interest in a complex and accur-
ate model to understand why the model arrived at a specific decision. Researchers
categorized these approaches differently, based on the research question the explan-
ation is expected to answer: which application does the explanation methods cover?
(For example, explaining the image networks through heat-mapping or explaining
word embedding networks through feature importance); which one of the predic-
tions, model, or data are being explained; Or based on which concept of the gradient
method, perturbation analysis, or variant of backpropagation the methods have been
developed? In the following, we categorize the post-hoc local explanation methods
based on the concept and intuition of their developments.

Saliency Map

Saliency map is a gradient-based technique proposed by Simonyan et al. (2013a) to
generate understandable visualization of deep convolutional network classification
models. This method, which is also known as input-gradient, investigates how much
a unit change in an input dimension induces in the output. To set up notations, let
f map the input data x ∈ IRd to the output y ∈ IRC :

f : IRd → IRC . (3.17)

Consider this function as a standard supervised classification setting, where C is
the number of classes. Input-gradient takes the gradient of class-specific logit - the
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output of a model before feeding into the soft-max - with respect to the input i:

∇xfi(x) → IRd, (3.18)

which has the same dimension as the input dimension and can be visualized in the
form of a heatmap. The highlighted regions on the heatmap demonstrate the most
relevant variables or pixels for the model to make decisions. This heatmap in the
context of model interpretation is known as a saliency map or sensitivity map.

The input-gradient method, however, is likely to encounter gradient saturation
or sensitivity issue. For instance, changing the input from one sample to another,
which induces a change in f , does not change the gradient. This problem can arise
because the function might be flat around a particular input, or the gradient could
be saturated around that point. Besides, the sensitivity maps are often visually
noisy, highlighting some pixels that – to a human eye – seem randomly selected.
Several methods have been proposed to circumvent the undesired properties of the
sensitivity map. One of them is smooth-grad (Smilkov et al., 2017) that enhances
the input-gradient method through smoothing the gradient. The idea is to take the
image, sample images by adding noise to the input image, and calculate the average
of saliency maps of the sampled images:

1
N

N∑
i

∇(x+ϵ)fi(x + ϵ), ϵ ∼ N (0, σ2). (3.19)

It is shown that smooth-grad output is visually more coherent than saliency map.
Another method that counteracts with sensitivity issue of saliency map is integrated
gradient proposed by Sundararajan et al. (2017). Instead of evaluating the partial
derivative just at the given input x, integrated gradient computes the average of it
while the input is changing along a linear path from a baseline x̃ to the input of
interest x:

(x − x̃)
∫ 1

α=0

∂f(x̃ + α × (x − x̃))
∂x

, (3.20)

where x̃ could be a black image for image networks or a zero embedding vector
for text models. In practice, this can correspond to interpolating inputs from the
baseline, computing the saliency map for all different interpolates, and summing
them up.
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Modified Backpropagation

Modified backpropagation methods propagate the signal of importance in output
neurons backward through all the network layers to the input neurons. It is similar
to computing the saliency map using the gradient of output w.r.t input, except for
handling the non-linearity at rectified linear units (ReLUs) or the pooling layers.
Zeiler and Fergus (2014) proposed a deconvolution network to map all the network
activities back to the input, looking for a pattern in the input space. A given
activation is propagated back through un-pooling, rectifying, and filtering (transpose
of learned features in a forward path) to the input layer. To un-pool for max-pooling
in deconvolution network, the switches (the maximum position within each pooling
region) are recorded on the forward pass. Besides, the signal comes into ReLU in
backpropagation is zeroed out if it is negative:

Rl
i =

Rl+1
i , if Rl+1

i > 0

0, Otherwise.
(3.21)

l ∈ [1, L] determines the current layer of the network, and R denotes the signal of
importance in the backpropagation. By contrast, the input-gradient method zeroed
out the signal that comes into ReLU if and only if the incoming signal to the ReLU
in the forward pass is negative (normal backpropagation in gradient method):

Rl
i =

Rl+1
i , if f l

i > 0

0, Otherwise
(3.22)

where f l+1
i = ReLU(f l

i ) = max(f l
i , 0), Rl+1

i = ∂fout

∂f l+1
i

. Guided backpropagation (Sprin-
genberg et al., 2014) combined these two approaches. It zeroes out the signal of
importance coming into the ReLU, if the signal itself is negative in the backward
pass or the input to the ReLU is negative in the forward pass:

Rl
i =

Rl+1
i , if f l

i > 0, and Rl+1
i > 0

0, Otherwise
(3.23)

This simple modification in Guided backpropagation obtains a sparser saliency map
in comparison to the input gradient and provides a visually better explanation. The
limitation of these methods is that negatively contributed samples would be ignored



40
Chapter 3 A Novel Interpretable Deep Learning Feature Selection Approach for

High-throughput Omics Data
due to discarding the negative gradient. Besides, discontinuing the gradient might
cause undesired artifacts.

Layer-wise Relevance Propagation

Layer-wise relevance propagation (LRP) method (Bach et al., 2015) is the family of
explanation methods that uses the layered structure of the neural network to con-
struct the explanation. It distributes the neuron activation of the decision layer to
the previous layers until the input layer is reached. The importance signal on the in-
put layer determines how much and to what extent each feature in a particular input
contributes to the network’s decision. To back propagate the activation, Montavon
et al. (2019) specify the variety of rules for controlling the positive and negative rel-
evances. These rules are tuned for explanation quality, e.g., sensitivity in top layers,
robustness in lower layers, or tracking the contradicting evidence in the input. The
limitation to this method is that the LRP propagation strategy must be adopted to
each new architecture, and it makes some assumptions about the structure of the
model. (more detail about this method and its variation is delayed to 3.5.3.)

Feature Importance

Despite the LRP method, the feature importance method does not consider any
assumptions about the internal structure of the model and can be applied to any
machine learning algorithm. Occlusion analysis is one of the approaches in this
category that measures the effect of perturbing individual inputs on the later neurons
of the network:

Ri = f(x) − f(x ⊙ perti), (3.24)

where perti is an indicator function to perturb (e.g., to remove), and ⊙ denotes the
element-wise product. The perturbation can be a simple occlusion (Zintgraf et al.,
2017; Zeiler and Fergus, 2014), an in-painting occluded pattern using generative
models (Agarwal et al., 2019), or a meaningful perturbation that is synthesized
(Fong and Vedaldi, 2017). In genomics (Zhou and Troyanskaya, 2015), perturbation
is introduced by virtual mutations at individual positions in a genomic sequence.
However, such methods can be computationally inefficient or even infeasible for high-
dimensional data, since each perturbation requires a separate forward propagation
through the network. These methods may also underestimate the importance of
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features that have saturated their contribution to the output.
LIME (Ribeiro et al., 2016) is another approach in this category, which is applied

to image and text analysis. LIME replaces the decisions of a function with a local
surrogate model that is structured so that it can be explained by a self-interpretable
model (like the linear model). To this end, LIME first defines some local perturbation
pert(xi) around a single sample xi, and then approximates the function f locally
around perturbed xi with the linear model g:

arg ming∈GL(f, g, pert(xi)) + Ω(g), (3.25)

where pert(xi) is the local perturbation of input xi, and Ω(g) is a regularizer. The
coefficient of the linear model g is then served as the explanation. LIME is quite cus-
tomizable in the different domains since users can specify the perturbation function,
the distance/similarity measure, the size of the locality, and the expression of the
explanation. Another method in this category is SHAP (Lundberg and Lee, 2017),
which provides a tractable approximation to the Shapely value (Shapley, 1953). In-
tuitively, it works similarly to LIME by perturbing the instances and recording which
perturbations lead to a change in the output. Nevertheless, the main difference is
that in SHAP, the marginal contribution of input features in all possible perturb-
ations towards the prediction is considered, which is known to be a fair way of
attributing predictions to specific features.

It is worth mentioning that the model-agnostic methods like LIME, SHAP, and
occlusion models are slower to compute than gradient-based methods and sometimes
can be infeasible to calculate in high-throughput data. For instance, in proteomics,
sometimes a couple of thousand or millions of features should be analyzed to compute
all the importances.

3.2.3 Global Explanation

Global explanations are designed to explain the complete behavior of a given model to
provide a bird’s-eye view of the model. It can help detect big picture biases persistent
across larger subgroups of populations, which are often harder to detect by examining
the local explanation of several instances. In this sense, global explanations are
complementary to local explanations.

One of the techniques to construct global explanations is the collection of local
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explanations, in which a local explanation for every instance in the data is generated.
Then, a subset of K local explanations is picked to constitute the global explana-
tion. For example, LIME explains a single prediction for a single instance, but due
to the time/patience that human has, it could be impossible to examine all possible
explanations to understand the model’s global behavior. To address that, SP-LIME
(Ribeiro et al., 2016) advocates picking K explanations to show to the users. These
K explanations are picked so that they summarize the model’s behavior and are not
redundant in their descriptions. SP-LIME uses sub-modular optimization and greed-
ily picks k explanation. Besides, it is still model agnostic because it does not require
access to the internal details of the underlying predictive model. If we repeat the
same procedure but replace LIME with the Anchor algorithm, a global explanation
is obtained by presenting a subset of K local rule sets (Ribeiro et al., 2018), which
still makes no assumption about the model while providing explanations.

The representation-based approach is another global explanation method that
uses an internal representation of a DNN to provide insight into the concepts that
the model might have learned. One of the representation-based approaches is net-
work dissection (Bau et al., 2017) that determines the model’s reliance on the concept
of interest, by quantifying the interpretability of latent representations. To this end,
a broad set of human-labeled visual concepts is first identified, and the activations
of hidden variables to these known concepts are gathered; then, the alignment -
intersection over union- of the activation and ground truth label are quantified. This
method can explain globally how much the model relies on each concept of interest.
For instance, how much a model relies on the sky scene to classify tall buildings.
While this method encodes hidden units for a single concept, compositional explan-
ation (Mu and Andreas, 2020) encodes hidden units for the composition of concepts.
For instance, the sky scene, spike shape, and water tower are encoded for classifying
tall buildings.

TCAV (Kim et al., 2018a) is another method that uses the model internal repres-
entation, but for measuring the sensitivity of a model’s prediction to user-provided
concepts. For instance, it tells how sensitive a prediction of “zebra” is to the presence
of strip. TCAV works by first collecting the images from the concept of interest and
a different set of random images. Second, the images are fed into the network to
collect activations across different layers, which then are used for training a linear
model to separate the concept of interest. Finally, the trained linear model encodes
for the concepts, in which the weights are used for measuring the sensitivity of the
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model prediction. This is computed using directional derivatives in the direction of
the concept of interest. While TCAV seeks a discriminator between two concepts,
RCV (Graziani et al., 2018) seeks the direction of the greatest increase in the meas-
ures for a single continuous concept, which extends this method to the regression
task. This method is applied to identifying the factors relevant to the classification
of breast cancer histopathology.

Table 3.1 lists the explanation methods based on interpretability methods used
or interpretability mechanisms.

Table 3.1: Summary of explanation methods arranged according to interpretability
methods used, or interpretability mechanism. Local (L) means if the methods are the
local explanation that describes individual predictions, and global (G) means if the
methods are the global explanation that explains the complete behavior of a given
model. Ad-hoc (AH) refers to the models that are inherently interpretable, and post-
hoc (PH) describes methods that explain pre-built complex models. Model-agnostic
!means if the interpretation is independent of the underlying learning model.
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Decision trees Garćıa et al., 2009
Hara and Hayashi, 2016 G AH - Inherentely

Linear models Haufe et al., 2014 G AH -
Input gradient Simonyan et al., 2013a L PH % Sensitivity

analysisSmooth-grad Smilkov et al., 2017 L PH %

Deconvolution Zeiler and Fergus, 2014 L PH %
BackpropagationGuided backpropagation Springenberg et al., 2014 L PH %

LRP (Layer-wise relevance propagation) Bach et al., 2015
Montavon et al., 2019 L PH %

Occlusion
Agarwal et al., 2019

Fong and Vedaldi, 2017
Zintgraf et al., 2017

L PH " Perturbation
analysis

LIME/SP-LIME Ribeiro et al., 2016 L/G PH "

SHAP (Shapley additive explanations) Lundberg and Lee, 2017 L PH "

Anchore Ribeiro et al., 2018 G PH "

Network dissection Bau et al., 2017
Mu and Andreas, 2020 G PH %

Representation
analysisTCAV Kim et al., 2018a G PH %

RCV Graziani et al., 2018 G PH %
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3.2.4 Medical Setting Application using Explanation Meth-
ods

The explanation methods appear for different purposes, e.g., to give a justification
and reliance to a model’s decision-making, to improve the system by providing the
reasoning for the human or machine on an ongoing iteration, to control a system
by giving an insight to the bugs in low critical scenarios and make it more robust,
and to discover and gain knowledge from a system. Although these applications
capture different motivations for explainability, they share similar concepts, and one
application may include more than one purpose. In the following, we review some of
the recent applications in medical settings.

Guided backpropagation (Springenberg et al., 2014) was employed by Larson et
al. (2018) to reason the assessment of skeletal maturity on pediatric hand radiographs
with rivaling performance that of expert radiologists.

Rieger et al. (2020) proposed a skin cancer detection model based on contex-
tual decomposition explanation penalization (for reasoning and improvement). This
method uses contextual decomposition of the feature importance to explain the DL
model. During training, the explanation penalizes data points and their prediction
labels in loss function to align the predictions with prior knowledge. This approach
improves the skin cancer diagnosis model that is less reliant on spurious correlation.

Sayres et al. (2019) employed an integrated gradient heat map as an assistant
tool (discovery purpose and improvement) for diabetic retinopathy diagnosis. They
examined the interaction of physicians with different DL prediction explanations.
They suggested that by increasing the transparency, a model assistant, can boost
ophthalmologist performance beyond what can be achieved by model only or oph-
thalmologist alone. In another study of diabetic retinopathy, TCAV explanation
(Kim et al., 2018a) was employed to assess the model reliance on clinically relevant
factors. They discussed that TCAV might be useful for helping experts interpret
and fix model errors when they disagree with model predictions (reasoning and con-
trolling purposes).

Thomas et al. (2019) utilized the LRP explanation method to explain the pre-
diction of cognitive states from fMRI data in order to identify the physiologically
appropriate brain regions associated with these states (discovery purpose). LRP
analysis was performed on the level of a single input sample, enabling an analysis of
the fine-grained temporospatial distribution of brain activity underlying sequences
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of single fMRI samples.
Several challenges emerge with the application of explanation methods, especially

in medical settings. Several explanation methods have been developed and tailored
towards standard architectures -Vgg16, ResNet50, and Inception - on standard data-
sets like Imagenet. However, adapting these methods to high-throughput data, e.g.,
proteomics, is challenging due to the homogeneity of the inputs -where the focuses
are more on similar artifacts or same poses, but the conditions are quite different
from patient to patient- which will be discussed in this chapter.

3.3 Transfer Learning

One of the promising practical concepts in DL is transfer learning. The idea is to
take the neural network’s knowledge from one task and apply that knowledge to a
separate task. For example, a neural network that has learned to recognize objects
(e.g., cats, table, glass) in images, uses that knowledge or part of that knowledge to
read and analyze X-ray scans. Transfer learning, which focuses on transferring the
knowledge across domains, might be inspired by the human ability to utilize previous
experience to learn a new task faster with less effort. For example, a person who has
learned inline skating can learn ice skating faster than others since both may share
some common knowledge, such as a sense of balance on skates.

The need for transfer learning has been brought by the ML and DL hunger for
abundant labeled training instances having the same distribution as the test data.
This need is more pronounced in medical applications since collecting sufficient train-
ing data in this domain can be more expensive, time-consuming, or even infeasible.
Approaches like semi-supervised learning (Chapelle et al., 2009) address this prob-
lem by increasing the learning accuracy using unlabeled data. In semi-supervised
learning, both the labeled and unlabeled instances are drawn from the same dis-
tribution. In opposition to semi-supervised learning, in transfer learning, the data
distributions of the source and the target domains can be different. Transfer learning
tries to leverage the knowledge of a different but related domain to compensate for
the insufficient amount of labeled data. In many medical cases, transfer learning is
preferred because collecting unlabeled data is also strenuous and unrealistic.

One closely related area to transfer learning is multi-task learning (Ruder, 2017),
where the idea is to solve several related tasks simultaneously. Multi-task learn-
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ing shares the representations between the tasks and leverages the domain-specific
information contained in the training signals of these tasks to obtain better general-
ization. While both transfer learning and multi-task learning improve performance
by transferring knowledge, transfer learning optimizes a single loss, but multi-task
learning optimizes more than one loss. Although this thesis only focuses on trans-
fer learning, Our proposed method can be extended to multiple parent tasks and
formalized as multi-task learning.

Transfer learning can improve the performance of DL models in three ways: (1)
improve the performance in the initial epochs of the training model, (2) accelerate
the training phase, and (3) improve the overall performance.

To formally define the transfer learning, some notations need to be introduced.
Let D = {χ, P (X)} represent a domain, which contains the feature space χ, and
marginal probability distribution P (X), where X = {x1, x2, ..., xn} ∈ χ, and T =
{y, f(x)} represent a task, which contains label space y and target prediction function
f(x). Some machine learning models output the predicted conditional probability of
instances, f(x) = P (y|x). Transfer learning then can be defined as follows:

Definition 3.3.1 (Transfer Learning). Given observations in a task Ts based on a
source domain Ds, and observations in a task Tt based on a target domain Dt, transfer
learning utilizes the latent knowledge from Ds and Ts to improve the performance of
predictive function fT (.) for learning Tt, where Ds ̸= Dt and/or Ts ̸= Tt. Typically,
the number of observations in Ds, Ns, is much larger than the number of observations
in Dt, Nt; Ns >> Nt.

In this thesis, deep transfer learning is used to address the limitation of labeled
training data, which is defined as follows:

Definition 3.3.2 (Deep Transfer Learning). Given Ds, Ts, Dt, and Tt, a task is
defined as deep transfer learning if fT (.) is a non-linear function and reflects a deep
neural network.

Tan et al. (2018) divided deep transfer learning into four widely accepted categor-
ies: instance-based deep transfer learning, mapping-based, deep transfer learning,
network-based deep transfer learning, and adversarial-based deep transfer learning.
We first introduce these categories, and then review the applications in network-
based deep transfer learning, which is mainly used in this thesis.
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3.3.1 Instance-based Deep Transfer Learning

In instance-based deep transfer learning, partial instances from the source domain
are used to supplement the training set in the target domain. Appropriate weight
values are assigned to these selected instances using a specific weight adjustment
technique. The partial instances from a domain with the appropriate weight added
to the target training set boost the model performance.

3.3.2 Mapping-based Deep Transfer Learning

In mapping-based deep transfer learning, the instances in the source domain and
target domain are mapped into new data space, in which the instances of these dif-
ferent domains are more similar. In the new space, the instances from both domains
are used for a union deep neural network.

3.3.3 Network-based Deep Transfer Learning

In network-based deep transfer learning, the partial network pre-trained in the source
domain is used to retrain the target domain. Similar to human cognition, neural
networks tend to learn fine-grained to coarse-grained features, progressively through
the early layers to top layers. The fine-grained features that are typically similar
across the source and target domains are considered as the transferable knowledge.
Transferring the knowledge in this way facilitates the learning process of the target
task, since a part of the network has already trained on the source data. Therefore,
the network may faster or easier reach the maximum performance.

3.3.4 Adversarial-based Deep Transfer Learning

In adversarial-based deep transfer learning – inspired by generative adversarial nets
– a transferable representation is found such that it is discriminative for the main
learning task and indiscriminate between the source domain and target domain. The
front layers of a network are considered feature extractors. The features are sent to
the adversarial layer, which aims to discriminate the origin of the features, in terms
of whether they are extracted from the domain source or the target source. The
worse performance of adversarial layer indicates a small difference between the two
types of feature and better transferability, and vice versa. In the course of training,
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the transfer network is forced to learn general features with more transferability. The
sketch map of these four techniques is shown in Figure 3.2.

(a) Instance-based deep transfer learning.

(b) Mapping-based deep transfer learning.

(c) Network-based deep transfer learning.

See the next page for a detailed description.
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(d) Adversarial-based deep transfer learning.

Figure 3.2: The sketch map of deep transfer learning techniques. These methods
are introduced in Section 3.3. In this thesis, we mainly employ network-based deep
transfer learning.

3.3.5 Medical Setting Application using Transfer Learning

In the medical domain, for using network-based deep transfer learning, a pre-trained
network on a source domain (e.g., the ImageNet dataset consists of fourteen million
annotated images with more than twenty thousand categories (Russakovsky et al.,
2015)) is fine-tuned on instances of the target domain. One way for fine-tuning is to
run the whole pre-trained network on the instances of the target domain for a couple
of epochs. Alternatively, the early layers of the pre-trained network are frizzed, and
the top layers are retrained on the target instances. Choosing the fine-tuning ap-
proach depends on how close the distribution of the source domain instances is to the
distribution of the target domain instances. Maqsood et al. (2019) employed trans-
fer learning for multi-class classification of Alzheimer’s disease. They used AlexNet
(Iandola et al., 2016) whose convolutional layers were pre-trained on the Imagenet
dataset, but the top layers, including fully connected and softmax layers, were ini-
tialized randomly. The whole modified network was then fine-tuned on Alzheimer
dataset. Their experimental results showed the highest accuracy for Alzheimer’s
stage detection. Similar to this work, Shin et al. (2016) fine-tuned a pre-trained DL
model to address the computer-aided detection problems. Transfer learning was ad-
apted to active learning by Tang et al. (2018) to address the classification of various
medical data. The idea in this study was to iteratively query a small number of
informative unlabeled target samples, remove the source samples which do not fit
with the posterior probability distributions in the target domain, and combine the
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basic idea of transfer learning with active learning.

One well-known task in bioinformatics is gene expression analysis that was ad-
dressed by employing transfer learning to associate gene expression to phenotype
(Petegrosso et al., 2017). One of the main challenges in this application is the data
sparsity since often, the number of known associations is little. Petegrosso et al.
(2017) showed that transfer learning can bring useful training information across hu-
man phenotype ontology and gene ontology, and also how multi-task learning could
result in an overall improvement by combining relevant training associations and
the predictions along with the ontology structure. Xu et al. (2010) applied trans-
fer learning to solve protein-protein interaction prediction task by transferring the
linkage knowledge from the source protein-protein interaction network to the target
one.

3.4 Proteomics Data Analysis and Related Works

Now that we have introduced all the prerequisites, we can introduce how we address
high-throughput data analysis using DL, transfer learning, and the principle of in-
terpretation strategy in proteomics. This section first introduces proteomics data
analysis, its challenges, and prior works. Then, it proposes a new method to classify
and extract biomarkers from proteomics data using DL methods to circumvent the
difficulties associated with the proteomics data analysis.

High-throughput omics methods such as proteomics are often used in various
settings to gain a better understanding of the molecular background of human dis-
eases. Due to the precise and fast quantification process, it is widely used in high-
throughput proteomics applications (Wang et al., 2016; Hoffmann et al., 2019; Souza
et al., 2017). Various levels of data acquisition workflow and the large range of ex-
pressed protein abundances in mass-spectrometry make the data highly complex and
contain a high level of noise, which are typically handled with different filtering steps
and statistical analysis. This requires various manual parameter tuning by experts,
which can be different across different labs, times, and interpreters. Automation of
this processing can lead the proteomics analysis towards more reproducibility and
full automation in clinical decision support systems (CDSS) (Marrugal et al., 2016;
Aebersold and Mann, 2003). In this chapter, we aim to develop two demanding
and important disciplines for facilitating diagnosis and prognosis in CDSS: 1) the
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classification of clinical states from the big data generated by high-throughput data,
and 2) the identification of so-called biomarkers.

Classification: The aim of classification in our task is to determine the medical
state of a protein mixture sample. What makes this task challenging for ML research-
ers is the high-dimensionality of data, often outnumbering the sample size. It causes
the curse of dimensionality and overfitting in the ML model. The reason is that as
the number of dimensions or features in the data grows, the sparsity of the data
increases, and the amount of data that is needed to accurately generalize the model
grows exponentially. The key to fitting a machine learning model on raw data is to
have enough data for the learning process so that they fill the space where the model
must be valid. In practice, however, it can be difficult to acquire this amount of
real clinical data for a specific disease and especially for mass-spectrometry samples.
Please see Section 2.1.2 for an introduction to the mass-spectrometry data acquisition
and specifications.

To avoid overfitting, machine learning models can be equipped with preprocessing
steps on the data, such as dimension reduction (Meng et al., 2016) or feature selection
(Chandrashekar and Sahin, 2014; Espadoto et al., 2019) approaches. Dimension
reduction methods, e.g., principal component analysis (Wold et al., 1987) as one
of the traditional methods, convert the data into lower dimensional variables by
transforming the data into the most informative space. This allows the use of fewer
dimensions, which are almost as informative as the original data.

Dimensions or features on the mass-spectrometry data present the ion counts
and their masses in the data, which appear as peaks on a plotted spectrum. By
that definition, dimension reduction can be seen as peak picking. As peak picking
is performed prior to the decision-making analysis, the dimensions or peaks that are
left out in the preprocessing step are not further analyzed. This can raise the risk
of losing relevant features with low intensities, which are not captured by means of
dimension reduction methods. Feature selection approaches (Dash and Liu, 1997;
Chandrashekar and Sahin, 2014; Espadoto et al., 2019) pose similar pitfalls, as they
are either not powerful enough to not raise the risk of losing relevant biological
information, or not computationally efficient, especially when they are coupled with
modern ML methods. Many state-of-the-art model-based methods such as SVM
(Cortes and Vapnik, 1995), Lasso (Friedman et al., 2010), or ElasticNet (Zou and
Hastie, 2005) have been adapted to classify and select discriminating features from
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raw MS data (Liu et al., 2009). Other approaches include SPA (Conrad et al., 2017)
addressed classification and feature selection using compressed sensing (Donoho et
al., 2006) or rule mining approaches (e.g., (Jayrannejad and Conrad, 2017)) where
relevant features are identified by adapting a disjunctive association rule mining
algorithm to distinguish emerging patterns from MS data. However, analyzing high-
dimensional data in their raw format brings the need for scalable models in data
handling and model training levels. Towards this end, the research to date has
tended to integrate the advantage of DL scalability to different biomedical areas. So
far, however, little attention has been paid to using DL to study raw MS proteomics
data – mainly due to the lack of enough samples to train a deep network and the
lack of enough evidence to guarantee the robustness. We will demonstrate how we
robustly train a classifier on two high-throughput modalities of MALDI-MS and LC-
MS datasets by leveraging the transferring representation or transfer learning in the
context of proteomics data analysis. Despite the prior works, we use synthetically
generated data as the source data, produced in an arbitrary number of samples.

Biomarker Detection: The aim of biomarker detection – also known as feature
selection – in our context is to discover the identification of proteins that can determ-
ine a specific medical condition. Biomarkers in this study are differentially abundant
single peaks specified by m/z in MALDI-TOF MS data and pairs of m/z, RT on raw
LC-MS map. An advantage of biomarker detection is that a medical condition can be
determined by focusing on the biomarker-related areas, reducing the computational
cost, and conserving time. Conventional biomarker discovery tools (Bellew et al.,
2006; Pluskal et al., 2010; Smith et al., 2006; Qi et al., 2012) often start with a peak
detection step to extract interesting and informative areas due to the difficulties of
processing noisy, sparse, and high-throughput raw samples. Some well-known soft-
ware for peak detection are the MsInspect (Bellew et al., 2006) which identifies peaks
using a wavelet additive decomposition, the MZmine 2 (Pluskal et al., 2010) which
applies a deconvolution algorithm on each chromatogram to detect peaks, and the
Progenesis LC-MS (Qi et al., 2012) that uses a wavelet-based approach in such a
way that all relevant quantitation and positional information are retained. Other
frameworks include XCMS (Smith et al., 2006) in which the peak detection step
is addressed by developing a pattern matching approach on overlaid extracted ion
chromatograms with Gaussian kernels; AB3D (Aoshima et al., 2014) which iterat-
ively takes the highest intensity peak candidates and heuristically keeps or removes
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neighboring peaks to form peptide features; MSight (Palagi et al., 2005) which ad-
apts an image-based peak detection on the generated images from LC-MS maps; and
MaxQuant (Cox and Mann, 2008) in which a correlation analysis involving a fit to
a Gaussian peak shape is applied. Subsequently, the detected peaks are used for
biomarker detection through a combination of several steps, including noise reduc-
tion, deisotoping, deconvolution, RT alignment (Listgarten et al., 2007; Podwojski
et al., 2009; Gupta et al., 2019), data normalization (Välikangas et al., 2018), data
filtering (Schiffman et al., 2019), baseline correction, and peak grouping. However, it
is likely to miss low-intensity peaks through different levels of processing. Moreover,
the tuned parameters may need to be adjusted again for any data from new sources.
This chapter presents a biomarker detection approach that reaches overall better
performance than mentioned conventional biomarker approaches independent of the
aforementioned preprocessing steps.

The success of DL-based methods, often replacing state-of-the-art classical model-
based methods, in many fields such as medical imaging (Lundervold and Lundervold,
2019), biomedicine (Mamoshina et al., 2016), and healthcare (Miotto et al., 2018),
has also encouraged the use of DL models for proteomics data analysis. To name
a few, DeepIso (Zohora et al., 2019) that combines a convolutional neural network
(CNN) with a recurrent neural network (RNN) to detect peptide features; DeepNovo
(Tran et al., 2017) and DeepNovo-DIA (Tran et al., 2019), which use DL-based ap-
proach (CNN coupled with RNN) for peptide sequencing on data-dependent acquisi-
tion (tandem mass spectra) and data-independent acquisition MS data, respectively;
pDeep (Zhou et al., 2017b) that adapt the bidirectional long short-term memory for
the spectrum prediction of peptides; and DeepRT (Ma et al., 2018a) that employs
a capsule network to predict RT by learning features of embedded amino acids in
peptides.

Despite the current successful DL approaches on analyzing LC-MS proteomics,
most of the studies are empirically driven, and having a justifiable interpretation
foundation is largely missing (Iravani and Conrad, 2019). Addressing this issue and
adopting DNN interpretability is the focus of this chapter. DNN interpretation was
introduced in detail in Section 3.2. Thereby, we explain how explainability provides
information about what makes a network arrive at a certain decision. We also re-
viewed the state-of-the-art explanation method and categorized ad-hoc and post-hoc
explanations based on how their algorithm has been built. As in this chapter we util-
ize post-hoc explanations to investigate the underlying of the data, we once again
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categorize this family of explanations based on what we can learn from them about
the data: (1) the function analysis explains the DL model itself through gradient
and shows how much changes in input pixel affect the output (Simonyan et al.,
2013b; Smilkov et al., 2017), (2) the attribution method interprets the output of the
model and explains which input features and to what extent they contribute to the
model’s output (Sundararajan et al., 2017; Shrikumar et al., 2016; Bach et al., 2015;
Sundararajan et al., 2017), (3) the signal method tries to find patterns in inputs
on which the decision is based (Zeiler and Fergus, 2014; Springenberg et al., 2014;
Kindermans et al., 2017), and (4) the perturbation analysis calculates the import-
ance of features through measuring the effect of perturbing the elements of inputs
on the output (Zintgraf et al., 2017; Agarwal et al., 2019; Fong and Vedaldi, 2017).
Although the application of DNN explanation employing perturbation analysis has
previously been studied in metabolomics, (Date and Kikuchi, 2018) this explanation
is computationally infeasible for high-throughput MS analysis. Hence, the perturb-
ation explanation method is excluded in our high-throughput proteomics analysis.

This section proposes a biomarker detection approach based on interpretable DL
to allow analyzing and – ultimately – understanding LC-MS data. The basic idea is
as follows: Given two groups of LC-MS samples (say, healthy and diseased), a DNN
is trained, and the learned parameters are interpreted through the layer-wise relev-
ance propagation (LRP) technique. We use the result from the interpretation step
to identify the areas in the input data that play a crucial role in differentiating the
two groups. Our approach is further analyzed to firstly verify the robustness of the
network and secondly to detect the differentially abundant peaks as biomarkers. Our
biomarker detection model benefits from optimizing class labels rather than expens-
ive annotations at peak levels. We evaluate the proposed model also on real-world
data and demonstrate its superiority compared to conventional biomarker detection
frameworks. One of the major advantages here is that our method does not depend
on the otherwise necessary preprocessing steps. Nevertheless, the preprocessing ap-
proaches (Liu et al., 2020a; Kantz et al., 2019) could be potentially added to our
framework for further improvement.

Our contribution in this section lies in the combination of the following triad:

(1) Develop a new DL-based classification and feature selection model on high-
dimensional raw MS proteomics data.

(2) Tackle the small sample size of real clinical data by integrating the transfer
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learning and leveraging synthetically generated data.

(3) Adapt DL interpretation methods to provide explanation and transparency to
the model and realize biological relevant information from the data.

3.5 New Feature Selection Method for Proteom-
ics Data

3.5.1 Problem Formulation

Let In ∈ IRD for n = {1, .., N}, and On ∈ {0, 1} be the classifier input vectors in a
very large D-dimensional feature space and the corresponding class labels, respect-
ively. Each dimension of the data represent ion-counts demonstrating the features.
The aim is to find a small (if possible, minimal) sized subset of features from the
input data Î ∈ IRd (d << D), which can be used to build a classifier f . Ideally, f -
which is based only on a subset of all available features – possesses the same classi-
fication performance as a classifier based on all features. Our approach for feature
selection makes use of interpretability analysis for DNNs. Our strategy is to design a
DNN architecture, modeled as function f , classify samples into two classes, and learn
from the prediction behavior to detect the most d discriminating features. Mathem-
atically speaking, a DNN with L layers can be abstracted as f(I) = fL ◦ ... ◦ f1(I)
where each layer is a linear function followed by a nonlinear activation function, such
as the rectified linear unit (ReLU (Nair and Hinton, 2010)). Please see Section 3.1
for a gentle introduction to deep neural networks. The power of DNN prediction
comes from combining many layers, which at the same time makes it complex and
consequently difficult to interpret. The last layer of the trained network contains
the class probabilities of the given input data. This information is propagated back
through the network to the first layer using LRP. We use this information to identify
the parts of a given input that contribute the most to the DNN classification decision
over all the training data and determine the discriminating features candidate.

3.5.2 DNN for Proteomics Data Classification

DNNs are characterized by the depth and width of the layers. Depth refers to the
number of layers, and width determines the number of neurons on those layers. Depth
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and width are selected depending on the complexity of the task, while more neurons
usually lead the network to learn more complex functions. Our experiments with
DNNs of different depth and width show that even though mass spectrum samples
can be classified with only a few DNN layers, using more layers leads to a decreasing
generalization error. However, we observe that almost all architecture, ranging from
shallow to deep networks, fails to generalize correctly due to the limited available
labeled spectra in public datasets. To circumvent this challenge, we integrate the idea
of network-based transfer learning to improve the network’s performance. The idea,
as it is described in Section 3.3, is to take the representation of a neural network that
has learned from one task and transfer that representation to the target task. Here,
we learn the representation of mass-spectrometry data by first training the network
on a large number of instances that we synthetically generated. We generate the
synthetic data with specifications similar to the real data, including the baseline
noise, mean, and variance of peaks. We use the Maldiquant library (Gibb and
Strimmer, 2012) in R to simulate the needed labeled data. The simulated data
contains two classes representing diseased and healthy instances, and a network with
multiple fully connected layers, followed by ReLU, which adds non-linearity and,
consequently, more complexity to the network.

In addition to the proper architecture, training the DNN demands setting up
some hyperparameters that – along with the selected architecture – lead to conver-
gence. The hyperparameters include the learning rate lr, optimization method of
gradient descent, and fitting batch size. Setting up the appropriate depth, width,
activation function, and hyperparameters leads to high classification performance on
the simulated dataset. Consequently, the weight of the trained network or the rep-
resentation of the synthetic data is then used to initialize the weight of the network
for the target task. We then retrain the whole network on the mass proteomics data,
which results in a robust and generalized network.

3.5.3 DNN Interpretability for Feature Selection

In most MS proteomics datasets, the number of samples is a lot smaller than the num-
ber of features (N << D). Most of these features in high-dimensional and sparse
proteomics data make no contribution to the decision-making and are redundant.
Our strategy to identify the most informative features, which leads to detecting the
biomarker candidates, is to learn from the decisions by the machine through the
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means of interpretability. A proper interpretation of a classification network gives
the user the information about why samples in a certain class are discriminated from
other classes. This information, which is associated with the input data, determines
features that are more important for the classifier to make decisions. We investig-
ate this information using post-hoc explanation methods, which interpret a single
sample. To obtain features that are discriminating for the whole data in general,
we run the explanation analysis on the entire dataset on which we base our feature
selection method. Note that with this analysis, we can also obtain a bird’s eye view
of the model behavior to check the robustness of the classifier.

Layer Wise Relevance Propagation

Here, we elucidate our model based on LRP post-hoc explanation. Note that we also
set up other explanation methods in the model whose performances are compared
in Section 3.6.

LRP (Bach et al., 2015) is a technique to explain a classifier through identifying
the contribution of features in an input space in making classification prediction.
Given the trained network f and the single sample I, the aim of LRP is to assign
each dimension d of I as a relevance score Rd such that

f(x) =
D∑

d=1
R1

d, (3.26)

where Rd should follow qualitative interpretation, i.e., Rd > 0 denotes the positive
contributions of the presence of dimension d for classification decision, and Rd < 0
the negative contributions. LRP leverages the layer-wise structure of the network to
compute relevance values. It propagates back the last layer relevance, which is the
classifier output f(x), layer by the layer into the input layer, consisting of all the
features, to yield Rl

d for d ∈ [1, D]. The class score is maintained through the hidden
layers as follows:

f(x) = ... =
∑
d∈l

Rl
d =

∑
d∈l+1

Rl+1
d = ... =

D∑
d

R1
d, (3.27)

Iterating Eq (3.27) from the last layer down to the input layer I then yields the de-
sired Eq (3.26). To guarantee a unique and meaningful interpretation of the classifier
prediction, Bach et al. (2015) define a further constrain to Eq (3.26) and (3.27). It
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is assumed that we know the relevance R

(l+1)
j of a neuron j at network layer l + 1 for

the classification decision f(x). To start the decomposition, the part of the output
corresponding to the targeted class is considered as the relevance value of the last
layer. This relevance is decomposed into messages R

(l,l+1)
i←j sent to those neurons i

at the layer l which provide inputs to the neuron j. The relevance of any neuron
i at the layer l R

(l)
i – except the last layer – is defined as the sum of all incoming

messages R
(l,l+1)
i←j from neurons j at the layer l + 1:

R
(l)
i =

∑
i: i is input for neuron j

R
(l,l+1)
i←j . (3.28)

Using this definition, the Eq (3.29) is a sufficient condition to ensure maintaining
the Eq (3.27).

R
(l+1)
j =

∑
i: i is input for neuron j

R
(l,l+1)
i←j (3.29)

Eq (3.28) and (3.29) define the decomposition of the relevances from layer l + 1
to layer l.

The variant of LRP differs in decomposition rule, which is the way of computing
the messages R

(l,l+1)
i←j . One possible choice of relevance decomposition is based on the

ratio of local and global pre-activations that is given by (3.30), called LRP.ϵ rule.

R
(l,l+1)
i←j =


zij

zj+ε
.R

(l+1)
j , if zj ≥ 0

zij

zj−ε
.R

(l+1)
j , otherwise

(3.30)

where zij = Oiwij, zj = ∑
i

zij + bj, Oj = g(zj) is the output of the activation
function, and wij defines the weight that connects the neuron j in layer l + 1 to the
neuron i in layer l. The variable ϵ in the denominator is a “stabilizer” term to avoid
numerical degeneration when zj is close to zero. For each layer, Ri is calculated
for i = 1, ..., num neurons, where num neurons denotes the number of neurons. The
propagation procedure terminates once the input layer has been reached.

Alternatively, the LRP.αβ rule according to Eq (3.31) allows controlling the im-
portance of positive and negative values that leads to demonstrate contradicting
evidence in the input (such that α − β = 1) . They are typically chosen as α = 2
and β = 1.

R
(l,l+1)
i←j = R

(l+1)
j .(α.

z+
ij

z+
j

+ β.
z−ij
z−j

), (3.31)
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where ”+”, ”−” denote the positive and negative parts. For α = 1, β = 0 the
propagation rule is equivalent to LRP.z+ rule as in Eq. (3.32).

R
(l,l+1)
i←j = R

(l+1)
j

z+
ij

z+
j

. (3.32)

Iterating every equation down to the first layer yields the relevance scores of all
input dimensions R1

d.

Feature Selection

R1
d gives a score for each dimension of the input vector, demonstrating their strength

in decision making. It means that the values assigned to each dimension indicate
the importance of these features on the overall classification decision. Therefore,
the high-ranked dimensions represent the most discriminating features. Considering
offsets, the presence of noise, and different peak indices on samples belonging to
different categories, we look through the entire sample relevance distributions, R1

dn

for n = 1, ..., N . The normalized relevance values are added up through the entire
dataset. The high weighted dimensions show the strength of each individual feature
to differentiate the classes. However, for MS proteomics data, in most cases, the
identified features are wide, and all the sounding indices are assigned with high values
as well (see Fig. 3.4). We establish a postprocessing step to detect the strongest
individual features locally to deal with this effect. The postprocessing works as
follows: we first select the best feature in the whole spectra, which is determined by
weights from the relevance values. Then, the neighbor’s features in the determined
window are removed. We then select the second-best feature and iterate the process
until a stopping criterion is met, e.g., when the classification reaches the whole data
classification accuracy.

3.6 Results on MALDI-MS Data

In this section, the aim is to evaluate the proposed method for analyzing high-
throughput proteomics datasets. One of the datasets we evaluated our method on
consists of some known peptide biomarkers injected into the samples prior to the mass
analysis. These biomarkers appear as peaks on the mass spectrum whose masses
are predictable. We discover the strength of our feature selection or biomarker
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Figure 3.3: LRP illustration for proteomics data classification. This illustration
shows the interpretation of a diseased sample (the spectrum in black) classification
prediction. In LRP, the decision is decomposed layer by layer through backpropaga-
tion to the input layer. The relevance values of the input layer indicate which dimen-
sions and to what extent make a role in the prediction. The bars show the prominent
dimensions (features). In comparison with a healthy sample (the spectrum in blue),
it can be realized that the network relies on differently abundant peaks to distinguish
the diseased sample from the healthy ones.
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model on detecting these biomarkers using a variant of LRP to interpret the DL
model. Besides, other methods of interpretation including input gradient (grad),
integrated gradient (int grad), guided back-propagation (guided), deconvenet (dcnv),
and smooth grad (smgrad) introduced in Section 3.2.2 are investigated. Further, the
model is applied on a real-world public dataset, in which the selected biomarkers are
compared with the state-of-the-art methods.

3.6.1 Spiked Dataset

We evaluate our proposed method on a public dataset known as spiked data (Fiedler
et al., 2009; Kratzsch et al., 2005) and compare the effect of employing different
interpretation methods in our pipeline. The spiked dataset contains proteomics
mass spectra of control and case groups from human blood samples. The case group
has been spiked with a protein mix of different concentrations. The amplitudes
of 6 spiked peaks differentiate the spectra into case and control, and their known
m/z (position) values can be used as ground-truth (Conrad et al., 2006). Thus, the
main aim of this part is to investigate how well an algorithm can detect the m/z

positions of the known six individual spiked peeks among all 42381 dimensions. The
data contains 95 samples of 50 cases and 45 control spectra. The experiments are
carried out on two concentration levels, 12.21nMol/L and 0.76nMol/L, referred to
as spiked160 and spiked80.

The results of our approach, i.e., the selected spiked peaks, are shown in table 3.2
and 3.3. The reported peaks are the closest to the spiked peaks ground-truth among
almost 30 high-ranked features. From these two tables, we can see that LRP variants
(attribution method), inp×grad, and int grad are far more capable than signal (grad
and smoothgrad) and function (guided and dCN) methods. It can also be seen
from the results that, while there is no considerable difference between the variant
of LRP in this application, one small peak (m/z 3149) can only be detected using
LRP.z. The reason could be that since only LRP.z do not allow the fellow of negative
values, this small peak is detected earlier. To better understand the negative values
or contracting evidence, we run a systematic experiment on synthetically generated
data in the next chapter in Section 4.4.2.

Prior to feature selection using the described DNN classification analyzer, the
network should become generalized enough to allow the application of interpretation
methods. This is what we addressed with transfer learning for the cases when only
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a few labeled samples are available to train a DNN. In this situation, a simulated
dataset of 5000 samples (Gibb and Strimmer, 2012) is fed to the network. The
dataset contains two equal-size groups of spectra as control and case. Each simulated
spectrum has more than 40 thousand mass values, as the real data spectra have. In
addition, each one has 412 peaks, of which 24 are discriminating. They are equally
spread in two groups and are set in fixed positions throughout the entire dataset.
After training, the network re-trained on a real-world dataset of 81 samples and then
fine-tuned on spiked data. This way, initializing the network weights should lead to
better results since it is less likely that the optimizer gets trapped in a bad local
minimum.

We observe from training the network that, while the objective function cannot
converge on some subsets of samples, the pre-trained network can avoid that. Pre-
trained weights lead to a more robust network that resulted in 97.1% (CI ±2.68) and
96.5% (CI ± 3.6) generalization accuracies on spiked160 and spiked80, respectively.
The seemingly large confidence intervals (CI) result from misclassifying one sample
on different subsamples during training. Iterating training (train and validation) on
90% of randomly selected spiked160 (95 samples) and inferring on the rest, each time,
leads to 100% or 88% testing accuracies. This means when the network performs
88% on testing, one spectrum out of nine ones was misclassified.

Table 3.2: Comparison of detected spiked peaks using nine interpretation methods
on spiked160 data. We compare which spiked-in features are highlighted as the top
30 high ranked features with these methods using our pipeline. It can be clearly
seen that the LRP variants, inp×grad, and int grad in attribution category are far
more capable than signal (grad and smoothgrad) and function (guided and dCN)
methods.

peaks grad LRP.z LRP.αβ LRP.ϵ inp×grd int_grad guided dCN smoothgrad
1047.20 - 1047.91 1046.76 1047.91 1047.91 1047.91 - - -
1297.51 - 1300.67 1298.23 1300.67 1300.67 1300.67 - - -
1620.88 1623.6 1621.91 1620.48 1621.91 1621.91 1621.91 - - 1623.6
2466.73 - 2467.63 2466.51 2467.63 2467.63 2467.63 2463.63 - -
3149.61 - -* - - - - - - -
5734.56** - - - - - - - - -

* Although m/z 3149 is not selected as the top high-ranked feature because of its insignificant peak in
comparison to larger peaks in the spectra (as illustrated in Fig. 3.4), it is selected as the 94th feature with
our method using LRP.z. The other LRP rules can also select this peak but later as the less important
feature. However, inp×grad and int grad could not find this small peak. This is the reason we analyzed
the noisy P.CA data and the visualizations by adopting the LPR.z rule.
** The mean height of the signal in this peak is less than 40 that is comparable to the level of noise in
both spiked160 and spiked80 datasets (Conrad et al., 2017). Therefore, this peak cannot be selected as a
discriminating feature.
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Table 3.3: Comparison of detected spiked peaks using the nine interpretation meth-
ods on spiked80 as the top 30 high ranked features. Similar to results on spike160
data the LRP variants, inp×grad, and int grad in attribution category are far more
capable than signal (grad and smoothgrad) and function (guided and dCN) methods
in our application.

peaks grad LRP.z LRP.αβ LRP.ϵ inp×grd int_grad guided deCN smoothgrad
1047.20 - 1040.61 1041.76 1040.61 1040.61 1040.61 - - -
1297.51 - 1298.35 1298.0 1298.35 1298.35 1298.35 - - -
1620.88 - 1620.87 1619.7 1620.87 1620.87 1620.87 - - -
2466.73 - 2467.63 2468.6 2467.63 2467.63 2467.63 - - -
3149.61 3151.25 - - - - - - - 3151.25
5734.56 - - - - - - - - -

We further explain the results in Fig. 3.4 by visualizing the output of one of the
interpretation methods. The figure shows the mean of the normalized LRP.z values
of a spiked160 spectrum overlaid on the distribution of case and control spectra of the
dataset around the selected spiked peaks. The visualization around the spiked peaks,
as shown in these plots, indicates the wide peak range that causes the deviation on
the decided features from the spiked ground truth peaks in tables 3.2 and 3.3.

The spiked peaks among the top 30 selected features using our pipeline are sup-
posed to be selected as the most discriminating features. However, in Figure 3.5 we
illustrate that the selected features that are ranked better than the true spiked peaks
are more discriminating. For example, it is apparent from the plot that the intensity
gap between the case and control samples around feature 1021 is larger than the
corresponding intensity gap around feature 1047.

(a) m/z 1620.88

See the next pages for a detailed description.
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(b) m/z 1297.51

(c) m/z 24666.73

(d) m/z 1047.20

See the next page for a detailed description.
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(e) m/z 3149.61

Figure 3.4: Visualization of the relevance values around the spiked peaks. Black
and blue show the diseased and healthy spectrum of spiked160, and the bars are the
average of the normalized LRP.z values over the entire samples. The bars are scaled
to the maximum intensity of the spectrum. x, y axes represent the intensity and
m/z value of the spectrum. This visualization shows that the network heavily relies
on discriminating areas to make classification predictions. Figure (e) demonstrates
that the network still recognizes the very small differentially abundant peak. But, it
can not be detected among the first 30 differentially abundant peaks since the level
of signal is close to level of the noise.

Therefore, the DNN tends to rely more on these areas to make the classification
decision. We can also learn from this plot that not only the individual features are
essential for the DNN to make a classification decision, but a Gaussian range around
high-ranked ones also plays a crucial role. For example, relevance values around
the m/z 1021 are considerably higher than the relevance value of individual m/z

1047. Therefore, we cannot expect a DNN to classify the two groups based on only
individual features.

3.6.2 Pancreas Cancer Dataset

The Pancreas Cancer dataset (P. CA) is another publicly available dataset (Fiedler
et al., 2009), where only the health status of instances are known as labels. It
contains 81 spectra having 42391 features collected from pancreatic cancer patients
and healthy control patients. To demonstrate the performance of our model, we
report the features that are selected as discriminating features using our method
and compare them with the ones reported by other methods on this benchmark
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Figure 3.5: Visualization comparison of two selected peaks. This plot illustrates
the selected spiked 1047 in a wider range to include the selected feature 1021. This
illustration shows that m/z 1021 is selected prior to the ground truth m/z 1047
since the network sees larger differences between the two classes. Black and blue
show the diseased and healthy spectrum of spiked160, and the bars are the average
of the normalizer LRP.z values over the entire samples. The bars are scaled to the
maximum intensity of the spectrum.

dataset.
As described previously, due to the lack of sufficient training samples on the

public dataset for training a deep network, we initialized the weight of the classi-
fication network with the representation of simulated data. We achieved 98%-95%
training-testing average accuracy, while almost all the structures of DNN we tried
from shallow to deep and narrow to wide could not become generalized correctly.
The classification decision is interpreted using LRP.z rule to extract the important
parts. Fig. 3.6 illustrates the average of normalized LRP.z over the entire dataset,
around two of the high-ranked features. The relevance values are overlaid on top of
the mean of the case and control spectra. These two features are illustrated due to
the large impact on the classification decision after feature selection (see Fig. 4.4).

We compare our feature selection method with benchmark methods on this data-
set. A BinDA-algorithm-based method (Gibb and Strimmer, 2015) reported 30 peaks
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Figure 3.6: Illustration of the relevance values around the second (m/z 1465) and
forth (m/z 2661) high ranked features of P.CA data. These features are picked for
illustration due to their largest impact on the classification accuracy after feature
selection. The means of the case and healthy spectrum are shown in black and
blue, respectively. This illustration elucidates that the network heavily relies on
differentially abundant peaks on real data.
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m/z 4495, 8868, 8989, 1855, 4468, 8937, 2023, 1866, 5864, 5946, 1780, 2093, 5906,
5960, 8131, 1207, 4236, 2953, 9181, 1021, 1466, 4092, 4251, 5005, 8184, 1897,
3264, 2756, 6051, 1264, and m/z 8937 as the most discriminating features for pan-
creatic progenitor cell differentiation. Note that, the bold m/z values indicate the
features that are also discovered by our method.

Using a compressed sensing-based approach, Conrad et al. (2017) identify peaks
with m/z 1464, 1546, 1944, 5904, 1619, 4209, and m/z 2662 as discriminating
features, which are all selected with our approach.

Using our method, peaks with m/z values 4212.36, 1465.43, 3264.36, 2661.37,
5909.96, 4092.18, 1616.98, 1545.91, 4647.56, 6636.87, 3191.41, 2934.34, 5338.51,
2953.42, 1060.26, and m/z 3242.47 are ranked as the most discriminating features
to achieve the state-of-the-art classification accuracy of 95% (Conrad et al., 2017).
The first eight selected peaks in our approach have been selected with at least one
of the earlier approaches. The mass shift of 1 to 3 Dalton on the m/z axis among
the identified peaks over different study is likely arising from different preprocessing
and postprocessing procedures.

3.7 Extension to 2D Proteomics Data

In the preceding sections, we introduced our new feature selection method on high-
dimensional vector-shaped data and showed the efficiency and robustness of the
proposed method with the case study of mass-spectrometry proteomics data. In this
section, we extend our feature selection methodology for data of matrix form. The
extension is formulated to apply more complex proteomics data than mass spectra
data. Oftentimes, quantifying complex proteomics samples in just a single mass
spectrum is impossible. This is because different peptides may have similar masses
after ionization in mass spectrometry, and on a single quantified spectrum, these
peptides are overlaid, making it impossible to differentiate those peptides. One
possible way to simplify the quantification is to add one more separation level prior
to mass spectrometry, which is liquid chromatography (LC) separation in our case.

LC separates peptides based on their chemical affinity in specific retention time,
and a mass spectrometer quantifies them afterwards. This separation enables the
dissimilar ions with similar masses to enter the mass spectrometer at different times,
which adds the time variable to the quantified spectrum. Stacking all the spectra
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through a time axis then acquiring LC-MS map whose x, y, and z axes present the
m/z, RT , and intensity of ions, respectively. LC-MS data acquisition and interpreta-
tion have been introduced in more detail in Section 2.1.4. LC-MS allows the analysis
of complex biological mixtures, such as body fluids (e.g., blood or urine). Due to
the precise and fast quantification process, it is widely used in high-throughput pro-
teomics applications (Wang et al., 2016; Hoffmann et al., 2019; Souza et al., 2017),
such as disease diagnosis (or prognosis), biomarker detection, or drug target iden-
tification. The main goal is to select discriminating m/z, Rt pairs between LC-MS
maps of healthy and disease samples. Ions’ masses, the time they are released from
the chromatography column, and the intensity of ions are used as the specification
of peptides, which are searched in databases to be identified. The identified peptides
indicate the possible disease fingerprint. An overview of the feature selection model
for LC-MS data is shown in figure 3.7.

Figure 3.7: Overview of our approach for discovery of disease related biomarkers.
A CNN is robustly trained on diseased and healthy LC-MS maps for the binary
classification task. The predictions of the trained network are interpreted by layer-
wise relevance propagation strategy on samples belonging to each class, separately.
The peaks on the interpretation heatmap represent the peaks that the CNN relies to
make classification decisions. The statistically significant peaks that occurred only
on heatmaps of diseased samples are considered as possible diseased biomarkers.

Similar to MALDI-MS feature selection, we formally formulate the LC-MS feature
selection as follows: let In ∈ R2 for n = 1, ..., N be a series of LC-MS maps, which
take On ∈ {0, 1} as the medical condition labels. Each (x, y) pair of I, where x = m/z

and y = RT , contains ion-count demonstrating features on LC-MS map. The aim is
to find the smallest subset of (x̂, ŷ) pairs whose ion-counts are differentially abundant
between conditions 0 and 1. Similar to MS biomarker detection, the strategy is to
design a network, modeled as function f , to classify LC-MS samples into two classes,
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and learn from the prediction behavior to detect (x̂, ŷ) pairs using LRP. A CNN with
L layers is trained on LC-MS instances. By assuming that the network is generalized
accurately, predictions are redistributed backward layer by layer to give a score to
all the input features. A feature (x̂, ŷ) will be attributed strong relevance if the
function f is sensitive to the presence of that feature. The relevance value of all
(x, y) pairs form the matrix of relevances, R1

i , known as a heatmap. The goal is to
employ this information to verify the predicted medical condition and find the most
relevant attributions associated with this condition.

The first step again is to design a robust classifier, a CNN, to classify the LC-MS
samples of two classes that we are interested in their differences. We train networks
with different widths and depths from standard structures like variants of ResNet (He
et al., 2016b) to customized structures. We observe that training very deep networks
like ResNet32 on the LC-MS data (both synthetic and real data) leads to overfitting,
while a network with a few layers fits with high accuracy. The outperformance of the
customize network over very deep networks can intuitively be explained by the local
dependent characterization of the peaks on the LC-MS map. Very deep networks
capture both the local dependencies gained by the reach feature representation and
the global dependencies gained by the large receptive field. Therefore, very deep
networks may learn some global patterns irrelevant to the data information but
relevant to the noise, such as quantification calibration error in data acquisition.
This may arise from the insufficient amount of training data with respect to the
number of parameters, increased by the depth of the network.

More strategies we take for generalization are delayed to chapter 4, where we in-
troduce how we take advantage of synthetically generated data to tune the parameter
and hyperparameters of the network for convergence and generalization assurance.

Once the network has been robustly trained, we employed the network to learn
the representation of the real data and to discover the discriminating peaks from its
interpretation. It is worth mentioning that our assumptions to use the interpretation
for biomarker discovery are the reproducibility and robustness of the interpretations,
which will be discussed and justified in the next chapter, Section 4.4.3. In Section 3.6
we showed that LRP results in a better outcome for MS data than other neural
networks interpretation approaches. Since the LC-MS is inherently similar to MS
and basically is the stack of many MS spectra, we also interpret the CNN’s decision
here with LRP given by Eq (3.30). This time relevance values in the input layer R1

build a heatmap over the matrix of instances, likewise the heatmap for images. R1
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which is calculated for all pairs of (m/z, RT ) demonstrates how much index (x, y)
representing m/z and RT contributes to the decision-making.

Figure 3.8 depicts the interpretation heatmap on local area of a peak that only
occur in diseased LC-MS samples.

Considering offsets, the presence of noise, and different peak indices of instances,
we interpret the decisions on statistics of the whole training-set. We take the mean
of LC-MS samples belonging to the diseased and healthy classes separately. Each
mean is given to the trained network f , and the predictions are interpreted by the
LRP function. This results in two matrices of diseased relevance values R1

dis and
healthy group’s relevance values, R1

hel.

R1
dis = LRP(f( 1

Ndis

∑
n∈dis

In)), R1
hel = LRP(f( 1

Nhel

∑
n∈hel

In)),

where Ndis and Nhel are the number of samples in diseased and healthy classes,
respectively. The spatial location of peaks on the LC-MS map are widely distributed,
and the exact location of peaks can be estimated by finding the index with maximum
intensity in a predefined window. The size of the window is estimated through a
statistic on the length of peaks along m/z and RT axis. To this end, similar to
the MS feature selection, we first select the peak with the strongest relevancees
from R1

dis. Then, the neighbor’s relevances in the window are zeroed. We iterate
this process until all the high-intensity relevances are covered. The selected peaks
are distinguished as biomarkers if corresponding indices on R1

hel are attributed non-
negative relevances.

To extract the biomarker from an unknown sample, the sample is fed to the
network to be classified. The classification prediction is interpreted using LRP,
similar to the training phase. The high relevances are selected locally from LRP
interpretation, similar to selecting the peaks from training samples. These peaks,
corresponding to the high relevances, are distinguished as biomarkers if their indices
attributed strong on R1

dis and non-negative on R1
hel.

3.8 Results on LC-MS Data

In this section, the performance of the proposed method is assessed on a published
benchmark LC-MS data, (Tuli et al., 2012) which we refer to as real data. Many
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Figure 3.8: Visualization of real LC-MS data and its prediction interpretation using
LRP in the local area, where peaks spike only on disease samples. As it is apparent,
the discriminating peak in the disease sample is captured by the network’s prediction
interpretation of this sample. Despite widely used gradient based methods that are
locally calculated, LRP takes into account of the whole input, which makes it less
prone to the discontinuity problem (Montavon et al., 2018) and consequently more
applicable for very noisy proteomics data.
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Table 3.4: Specification of the real data spike-in peptides. Base peak chromatograms
of the group with spike-in peptides are presented based on their mass-to-charge ratio
(m/z), retention time (RT), and ion charge.
Features No. 1 2 3a 3b 4 5a 5b 6 7a 7b 8 9a 9b
m/z 501.25 450.23 530.78 354.19 523.77 648.84 432.89 586.98 624.99 630.35 943.43 712.43 570.15
Charge 2 2 2 3 2 2 3 3 3 3 3 4 5
RT(min) start-end 4-8 45-49 53-56 53-56 59-62 63-67 63-67 73-77 77-81 82-86 79-83 103- 107 103-107

other Mass spectrometry datasets are available at repositories such as PRIDE or
CompMS. However, the focus of this section is to assess the feature selection on a
raw LC-MS map of samples from two conditions (healthy and control) with known
biomarkers presented by their m/z and RT, which is perfectly met in the selected
dataset. The known biomarkers are not considered for training because our method is
needless of labels at the biomarker levels, but we used them for the assessment of the
method. All the parameters and hyperparameters of the model classification network
are tuned on the synthetically generated data, which are delayed to Chapter 4.

3.8.1 Real Data

The real LC-MS dataset consists of two groups. The first group was derived from five
serum samples of healthy individuals spiked with a known concentration of spike-in
peptides. The second group was obtained from the serum samples only. We refer to
the first and second groups as diseased and healthy, respectively. The added peptides
to the diseased group are the selection of nine peptides with different concentrations
to be representative of real datasets. They have predictable retention behavior and
elution order that let the ground truth available in m/z and RT (Tuli et al., 2012).
LC-MS acquisition yields 13 peaks from nine peptides due to the different charges.
The specifications of these peaks are presented in Table 3.4.

Figure 3.9 provides the visualization of the spiked-in peaks in this dataset. The
chromatograms are zoomed into each of the 13 unique features of serum with spike-in
peptides and serum alone groups. As is apparent from the visualization, peaks are
spread in different concentrations with different mean and variances to be represent-
ative of the real mass spectrum data.

The proposed method is intended to detect differentially abundant spike peaks
as biomarkers and keep detected FP peaks low. Therefore, the evaluation will be
reported as the exact number of TP and FP peaks. We quantize the raw data and
form chromatograms matrices. This outcome is then converted into images whose
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width and height are m/z and RT, respectively. Each RT bin on the y-axis presents
seven seconds of the MS level-1 scan, and the x-axis covers ions of m/z 350 to
m/z 2000. Pixel intensities demonstrate the ion counts. LC runs for 240 minutes;
however, similar to the benchmark methods, we filter the samples to retain features
within 150 minutes because there is no significant peak out of this range. Besides,
we remove the features with the ion-count intensities less than two as the only noise
reduction on the samples.

See the next pages for the remaining plots and a detailed description.
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See the next pages for the remaining plots and a detailed description.
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See the next pages for the remaining plots and a detailed description.



3.8 Results on LC-MS Data 77

Figure 3.9: Visualization of all 13 spike-in peptides in the real LC-MS data. Chro-
matograms are zoomed into the location of spiked-in peptides in the group of serum
samples mixed with the spiked-in peptides (MP) and group of serum samples only
(noMP). Different colors show the distribution of different serum samples. As it
is apparent, different samples contain different concentrations of spike-in peptides,
such as m/z 432.89, 523.77, and m/z 648.84. Besides, some peaks are not spiked on
all serum samples, including m/z 712.43 and m/z 570.15.
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3.8.2 Results

This section describes the comparison results of our method with four other LC-MS
analysis workflows. A false discovery rate based on statistical analysis is applied to
the output of these workflows to reduce the number of selected false positive peaks.
We first introduce this statistical analysis and then present the comparison results.

False Discovery Rate

A false discovery rate is a tool commonly used in high-throughput sequencing to weed
out, for example, dimensions of the data that are wrongly selected as significant.
To this end, a statistical test is calculated for all selected features to obtain the
distribution of the p-values. The p-values in our problem indicate the significance
of the variables for discriminating two groups of healthy and diseased. The smaller
the p-values, the stronger the evidence to reject the null hypothesis, which says
given the values of variables in samples of two groups, no real difference existed;
therefore, it can be concluded that the difference in group abundance is significant.
The p-values smaller than 0.05 are usually considered significant. This means there
is a 5% chance of getting a significant difference where no difference exists in the
group means. 5% is acceptable for one test. But the multiple testing of thousands
of components, common in omics experiments, can result in a large number of false
positives. To address this problem, most attempts are towards adjusting p-values to
a more resealable value.

As we form the histogram of p-values on the output of selected features, we expect
the p-values to be heavily skewed and closer to zero. This is depicted in Figure 3.10.
It is shown that around 4000 features are significant, with p-values smaller than
0.05. To control the false discovery rate or to limit the number of false positives,
Benjamini-Hochberg punishes p-values accordingly to their ranking:

q-value = p-value × (total number of p-values
p-value rank )

The q-value is the name given to the adjusted p-value. By adjusting the p-values,
some selected features will be no longer considered statistically significant. For in-
stance, p-values of 0.04 turn into 0.06 after the false discovery correction, which is
no longer significant. Applying the p-value correction following the feature selection
workflows reduces the false positives, as reported in Table 3.5. Note that q-values
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Figure 3.10: Density distribution of p-values on all selected features from our feature
selection method. It can be seen that most features are skewed to the left side of
the p-value histogram, which indicates most of the selected features are statistically
significant. To limit the false positives, we apply the p-value correction following the
feature selection workflow.

will not always result in fewer false positives, but it can be perceived that it gives
a more accurate indication of the level of false positives for a given cut-off value.
Besides, it is not guaranteed to not lose the true positives with the false-discovery
correction. For instance, as it is shown in Table 3.5, although the false-positive rates
reduce significantly, all the workflows, including MZmin 2, XCMS, and DLearnMS
lose the true positive peaks after the p-value correction.

T-test

The t-test in the statistic is originally developed to deal with small samples by
introducing the t-distribution when: (1) underlying sample distribution is normal, (2)
population standard deviation is unknown, and (3) sample size is too small to apply
central limit theory (which says if the sample size gets large enough we can just use
a normal distribution for our sample statistics). In this case, for hypothesis testing,
the sample standard deviation is used in place of population standard deviation for
the test statistic. Different samples of small size from the population might have
different standard deviations, which brings the need for t-distribution to adjust the
additional uncertainty around the sample’s standard distribution. In this section,
according to the limitation to the number of samples in the real dataset, we use the
t-test for multiple testing, as mentioned earlier.

Table 3.5 compares the feature selection of our proposed method on the described
real dataset with the benchmark pipelines using msInspect, MZmine 2, Progenesis,
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and XCMS. The first row in Table 3.5 demonstrates that our method outperforms
the other pipelines in terms of detecting fewer FP peaks. Moreover, our analysis does
not depend on the preprocessing steps used in other workflows. Nevertheless, LC-MS
preprocessing approaches (Liu et al., 2020a; Kantz et al., 2019) could be potentially
added to our DLearnMS framework and could even further improve the performance
results. The t-test for p < 0.05 is calculated on each selected feature and multiple
testing correction is applied. The features that satisfy q < 0.05 are selected as the
discriminating features, presented on the third row of Table 3.5. The fourth row
shows the number of selected features that satisfy q < 0.05 and the fold change (FC)
> 10. We detect nine biomarker peaks similar to msInspect, while we achieve almost
ten times fewer FP peaks, 195 in comparison with 2099 FP peaks in msInspect. We
also outperform MZmine 2 and Progenesis with respect to both evaluation metrics,
namely the number of biomarker peaks (seven in MZmine 2 and eight in Progenesis)
and FP peaks (539 in MZmine 2 and 467 in Progenesis). Although XCMS achieves
the best results with respect to the number of FP peaks, 66, which is the smallest
number of FP peaks, its performance concerning the number of detected biomarker
peaks, has dropped to seven. It should be noted that in high-stake decisions, we
should always consider the FP and TP detection trade-off.

The biomarker peaks that are selected according to the statistical analysis are
presented in Table 3.6. Six peaks that are commonly selected by all four other
methods as differentially abundant peaks have also been detected by our method.

Implementation Setup

The experiments in this study are implemented in Python for data analysis, Scikit-
learn library (Pedregosa et al., 2011) for ML analyzes, Keras (Chollet et al., 2015)
with Tensorflow backend (Abadi et al., 2016) for DL analysis, and “iNNvestigate”
library (Alber et al., 2019) for DL interpretation analysis on a machine with a 3.50
GHz Intel Xeon(R) E5-1650 v3 CPU and a GTX 1080 graphics card with 8 GiB GPU
memory. We use the weight of the network that has been trained on synthetic data
for initializing the network for training the real data. We retrain the whole network
on the real data using leave-one-out cross validation. The classification network is
trained for 20 epochs with batch size of two using Adam optimizer (Kingma and
Ba, 2014) with the learning rate of 0.00001 and momentum of 0.9. We use binary
cross-entropy as the loss function. The kernel size in all layers is set to 3×3 with the
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Table 3.5: Feature selection comparison of the proposed method with MZmine 2
(Pluskal et al., 2010), Progenesis LC-MS (Qi et al., 2012), and XCMS (Smith et al.,
2006), which are all presented in (Tuli et al., 2012). The total number of selected
features is represented for all methods in the first row. The baseline methods report
only used those features for statistical analysis, which are presented in at least two
replicates in each group. The third and fourth rows demonstrate the number of
features satisfying two representative criteria, including t-test with multiple hypo-
thesis testing (q-value< 0.05) and fold change (FC > 10). The plus sign denotes
the combination of different criteria. The numbers written in parentheses indicate
the selected biomarker peaks. In compression with msInspect we achieve 10 times
fewer false positive with comparable number of true positive peaks. We outperform
Mzmine 2 and Prognesis by detecting more true positive and fewer false positive
peaks. Although XCMS detects fewer false-positive peaks when applying the stat-
istical analysis, it finds two fewer biomarkers than DLearnMS.

msInspect MZmine 2 Progenesis XCMS DLearnMS
# All selected features 31168 (12) 12271 (12) 9267 (9) 21486 (13) 8044 (12)
# Features for statistical analysis 6525 (9) 12092 (9) 8415 (9) 8703 (10) 8044 (12)
t-test (q < 0.05) 4824 (9) 3505 (7) 4465 (9) 1896 (7) 3985 (11)
t-test (q < 0.05) + FC (> 10) 2099 (9) 539 (7) 467 (8) 66 (7) 222 (9)

Table 3.6: Real data biomarker detection comparison according to the statistical
analysis. Detected differential abundant spike-in peaks are shown by checkmarks.
Note that our method detects all the features that are commonly selected by all
other methods.

Features No. 1 2 3a 3b 4 5a 5b 6 7a 7b 8 9a 9b
msInspect ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - ✓ - - -
MZmine 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ - - - - - -
Progenesis ✓ ✓ ✓ ✓ ✓ - ✓ - - ✓ - - ✓
XCMS. ✓ ✓ ✓ ✓ ✓ - ✓ - - ✓ - -
DLearnMS ✓ ✓ ✓ ✓ ✓ - ✓ - - ✓ - ✓ ✓
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dropout rate of 0.3. The convolution layers in the network are two dimensions and
contain the following number of kernels: 32 in the first and second layers, 64 in the
third layer, and two in the fourth layer. The fully connected layer as the last layer
has two neurons for binary classification.

3.9 Discussion

This chapter introduced a novel DL biomarker detection method for high-throughput
data. Applying ML and DL on raw data without preprocessing could be challenging
due to the sparsity, small sample size, complexity, and high noise level. Despite
available tools, current workflows require several steps of data preparation. Besides,
interpretation of ML and DL models is often neglected in favor of precision, despite
the importance of decision explanation in biomedical settings. We developed a DL
method backed by interpretation strategies to address the aforementioned issues. We
designed and trained a DL classification network to learn the representation of data
consisting of instances of healthy and diseased individuals and interpret the network
decisions to learn what brings the network to certain decisions.

We demonstrated that our biomarker detection approach achieved better per-
formance on a benchmark LC-MS dataset than conventional methods in detecting
fewer false positive (FP) peaks and more true peaks as biomarkers despite being
independent of otherwise necessary preprocessing steps. Based on the data presen-
ted here, our experiments showed that although one of the methods, XCMS, finds
fewer FP peaks, it loses low-intensity markers (9a and 9b). However, it should be
noted that FP reduction should avoid losing TPs. Especially in medical domain ap-
plications, these low-intensity markers can determine potential candidates for early
disease diagnosis.

Despite the common belief that in transfer learning, the source data should share
high-level semantic overlap with the target data, our findings (aligned by recent
work by Zhao et al. (2021)) suggest that low-level features play a role. We showed
that pretraining real data classification with weights of the synthetic data that has a
similar low-level characteristic leads to successful information transfer. We achieved
accuracies near to one for the classification of real MALDI-MS and LC-MS datasets.
These results using transfer learning have been reached, while training from scratch
on these datasets would diverge on some folds of data due to scarcity and high-
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dimensionality.
As our biomarker detection approach was built on DNN decision interpretations,

we compared the quality of different interpretation strategies, including saliency
maps, modified backpropagation, and LRPs. Based on our controlled experiments
on spike-in MALDI-MS datasets, we speculate better DNN explanations using LRP
variants for the analysis of the noisy high-throughput proteomics data. Based on
presented datasets, we observed that the performance of LRP on highlighting the
spike-in regions is (a) slightly better than methods like input×gradient and input-
gradient and (b) significantly better than methods like SmoothGrad, Deconvolution,
and guided-backpropagation. This is mainly because LRP takes into account of the
whole input, which makes it less prone to the discontinuity problem (Montavon et al.,
2018) and consequently more applicable for very noisy proteomics data. The gradient
methods, as the earliest DL interpretation approaches, are locally calculated, and
therefore, small changes in input can cause drastic changes in the output, which
is particularly not applicable for such data. In addition, unlike gradient methods
that explain the whole network at once, LRP takes advantage of the structured
layer of neural networks and simplifies the explanation problem. Therefore, since it
decomposes the function into simpler functions and explains these easier functions,
it results in more reliable explanations.

We also studied the role of the false discovery rate by adjusting the p-values in
our analysis. It is demonstrated that false discovery rate can weed out the wrongly
detected features. Applying this correction to real LC-MS proteomics significantly
reduced the false positives. Nonetheless, the risk of losing important information
should always be taken into account, as we experimentally showed that the other
workflows lost the discriminating peaks by such correction.

It should also be noted that although we consider a minimal data preprocessing,
these steps (Liu et al., 2020a; Kantz et al., 2019) could be potentially added to
our framework for further improvement of the results. To further this work, we are
interested in applying our proposed method to more real diseased cases in which
the data may require some necessary preprocessing steps, such as the batch-effect
correction. We consider investigating if our method can be adopted to remove this
effect.

This work can be extended to the multi-subject localization of biomarkers. In
this case, the interpretation of a robust multi-class classification network on the LC-
MS map of samples would highlight the dominant differences of each class from the
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others. These differences are the potential position of biomarkers. We also consider
adopting different LRP rules to different layers of the network due to their confirmed
success in machine vision applications (Samek et al., 2020).
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As machine learning (ML) and Deep learning (DL) have been rapidly growing

in real-world applications, a concern has emerged that the high-precision accuracy
may not be enough in practice (Samek et al., 2020), and interpreting the decisions
is important for robustness, reliability, and enhancement of a system. While in the
previous chapter, we employed interpretability to realize a medical condition relevant
information, this chapter demonstrates how to use interpretability to enhance the
model for classifying conditions and provides robustness evidences. We quantitat-
ively measure the quality of DNN classifier interpretation on high-throughput data
for enhancing the architecture tuning. Besides, through the means of visualization
we demonstrate the robustness of the classifier decisions.

The model interpretation is deemed important for deploying ML/DL models in
medical decision support systems, especially when the size of good quality-labeled
data is small. In such scenarios that we have also encountered during our MS analysis
in the previous chapter, training a DL model requires carefully tuning the network
architecture and hyperparameters. Tuning the model parameters on small sample
size may encourage the network to get biased to the training instances. Therefore,
the measurements based on prediction performance may not ensure generalization
accuracy or introduce the optimal architecture tuning. Even with high training
and generalization performance, this question may arise: what if the test data do
not represent the general real-world instances. This is especially important when
a model is integrated into clinical settings. One solution is to provide clinically
plausible explanations, which can provide information about, for example, what are
the most pertinent areas of the given data for a model to make the decision. The
relevance of these areas to what we expect as a human brings more reliance on system
generalization and provides users with information to decide whether to rely on the
system’s individual predictions.

To extend our MS analysis in this context, this chapter quantitatively assesses
the classifier explanations to provide generalization evidence and enhance the neural
network architecture design. We first review the background of the interpretability
assessments in the literature in Section 4.1. In Section 4.2, we explain how we assess
DNN classifier interpretations in high-throughput data and apply it to proteomics
data. We introduce the measurements for this assessment in Section 4.3. Section 4.4
elucidates the application of interpretation assessment on tuning the architecture
of a DNN classifier. We also run a sensitivity analysis to justify the robustness
of explanations themselves. This analysis is highly important since the explanation
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methods are criticized for being sensitive to small changes of data instances. Further,
in Section 4.5, we assess the interpretations by means of visualization for scenarios
where quantitative assessment is not possible due to the lack of knowledge about the
underlying data. Section 4.6 elucidates why we choose DNN at first place for ana-
lyzing high-throughput data in their raw format over conventional machine learning
methods through comparing the interpretation of these methods.

4.1 Interpretability Assessment and Related
Works

The evaluation of explanation can be divided based on the purpose of explanation:
understand the behavior of the model for the user, employ for debugging the model,
or facilitate making decisions. In the following, we will give examples for these
purposes.

4.1.1 Understanding the Model Behavior

Assume that to interpret the model, the explanation study introduce a set of features
that are deemed important for decision making. Then, the evaluation is formulated
by calculating the importance of the selected features on model performance. Qi et
al. (2019) measure the importance of the selected features by removing these features
from the data and observing the model’s performance on the new data. Given an
imaging task, they first identify important features on a single image using a saliency
map, delete these features from the sample and plot the prediction probability of the
model as the features are removed from the image until, for example, all the image
is deleted. Then, the curve of the plot demonstrates whether the explanation model
corresponds to the model’s behavior or not. If the curve falls quickly, it means the
explanation method picks the features that are more representative of the model’s
behavior. This evaluation also can be measured via inserting the important features
into a flat image instead of deleting the features from the original image. In this
case, raising the curve quickly in the plot would indicate the correspondence of good
explanation to the model’s behavior. Ghorbani and Zou (2019) use the same idea of
deleting or adding important features but in the training phase. Instead of tracking
the influence of features in the single sample on the prediction, the influence of
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deleting or adding important features on the training phase is measured. Apart
from evaluating the explanation, the data cleaning is addressed with this approach.

Another approach for evaluating the explanation according to understanding the
model behavior is through simulation test proposed by Hase and Bansal (2020). In
this approach, given a classifier and an explanation method of choice, the prediction
on validation data and the corresponding explanation are shown to users. The users
first need to figure out the model behavior based on this information. Then, new
data without any labels or explanations are shown to the users, and they are asked to
guess the classifier prediction on the newly presented data. Finlay, the user prediction
is compared with the prediction of the actual classifier. This shows how well a user
might understand the explanation strategy, which can measure if the explanation
method was successful in explaining the model behavior.

4.1.2 Debugging

Here, examples of debugging a classifier through evaluating the model explanation are
presented. The goal is to examine if the explanation can give an insight into a bug in
a model. Ribeiro et al., 2016 address this task by first presenting a buggy classifier’s
prediction and true labels to the subject. They ask the subject, for instance, if they
think the classier is trustworthy in the real world and how they think the algorithm
is able to distinguish between classes. Then, they ask the subject the same questions
after the explanation of the predictions were presented to the subject. They showed
that almost all of the subjects identified the correct insight and explained a bug
in the classifier after being presented with the explanations. Further, the trust in
the classifier dropped substantially. This study elucidated the utility of explaining
predictions in finding a buggy or a bad classifier. Alternatively, the strength of
explanation for finding a bug in a classifier can be measured by comparing a clean
classifier with a buggy classifier. For instance, the prediction and explanation of
both classifiers are presented to the subject, and they are asked which explanation
is better in explaining the reason for classifying the given sample. The more the
subject picks the explanation of the clean classier, the more useful the explanation
could be for detecting the bug.
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4.1.3 Facilitate Decision Making

Another way of evaluating the explanation methods is to investigate if these methods
can help humans make a better decision. Mac Aodha et al. (2018) proposed a teach-
ing framework that provides feedback from a machine learning classifier on specific
tasks through interpretable explanation, and determines how the human learners
incorporate this information. In an image task, explanations of the classifier’s pre-
diction on different categories are shown to subjects. The subjects are asked to make
the classification on unseen samples, once before and once after they are given the
classifier’s prediction explanation. The performances of the users would indicate
the quality of explanation. Improving the users’ performance after giving them the
prediction explanation determines the explanations quality.

4.2 Quantitative Interpretation Assessment for
Enhancement of DNN Classifier

The methods of interpretation assessment so far mainly targeted image-based tasks.
This section describes how such assessments can be applied to a high-throughput
data classification task that consequently helps enhancing the models and under-
standing its behavior. Although the strategies introduced for understanding the
model behavior are applicable for high-throughput data analysis (which will be em-
ployed in Section 4.5), the other two categories are infeasible to use in this context.
It is because the strategies proposed for debugging and Facilitating decision making
are mainly dependent on the human user, and employing the human user for evaluat-
ing the interpretation of predictions on high-dimensional data seems unrealistic and
time-consuming. Besides, labeling the interpretation regions could be infeasible as
well. For instance, in MS analysis of unknown data, couple of thousands or millions
of features need to be studied or labeled for assessment of interpretations. Therefore,
in this section, we make use of synthetically generated data to systematically assess
the interpretation of model predictions.

In other cases that the underlying data are known and therefore only a subset of
dimensions seems to need to be studied, the interpretation still highlights enormous
features that should undergo investigation. For instance, the LC-MS data intro-
duced in 3.8.1 and 3.6.1 contain 13 discriminating peaks. However due to the noise
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and peaks of different concentrations across different samples of data, interpretation
map misidentified a considerable number of peaks as discriminating. These peaks are
false-positive peaks mentioned in 3.8, which are outnumbered the number of true dis-
criminating ones. Therefore, using such data for interpretability assessment is more
false-positive reflection than true positives. Besides, the interpretability assessment
would be criticized for the small number of instances in these datasets. Therefore,
we run the interpretation assessments in this section on synthetically generated data.

We quantitatively assess the interpretation of networks for classifying high-
throughput MS data. To this end, we measure the reliance of different architectures
on the discriminating regions when these architectures make the same prediction
performance, and when they cannot be tuned better by just observing the predic-
tion performances. As the interpretation method in this chapter, we use the LRP
explanation method introduced in Section 3.5.3.

4.3 Evaluation Metrics

Here, we introduce selected metrics to evaluate the capability of interpretation heat-
map, R1

i , on reflecting the discriminating regions of the data. We describe in 4.4.1
that the simulated data are generated in the tabular format (vectors and matrices).
The data are also converted to images. Hence, regions of interest are defined by
pixels when we analyse images and indices when we analyse matrices and vectors.

For our purpose of MS data classification, we expect the classifier to rely on the
discriminating peaks on the data. Hence, the metrics should represent the percentage
of true-positive (TP) and false-positive (FP) peaks in which can be determined by
intersection over union (IOU), precision, and recall defined in Eq (4.1):

IOU = relevant peaks ∩ selected peaks
relevant peaks ∪ selected peaks

Precision = relevant peaks ∩ selected peaks
selected peaks

Recall = relevant peaks ∩ selected peaks
relevant peaks , (4.1)

where the relevant peaks and selected peaks are ground-truth and highlighted peaks
by the interpretation. To obtain the ground truth on synthetic data, the mean
of the images in the diseased group is subtracted from the mean of images in the
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healthy group, and the absolute value of the result is taken. The result contains all
relevant peaks and is referred to as ground-truth image (GTI). GTI is identical to the
result of alternatively simulating several replicates of the extra peptide of diseased
samples (using OpenMs, and TOPPAS) and taking the mean of the replications.
We apply a threshold, γgt, to the GTI to ignore small perturbations generated by
LC-MS quantification error. The spatial location of peaks is distributed widely, and
therefore, we restrict our attention to the peaks with the highest intensities and set
to zero a box window with a size of [w, h]. To this end, first, the index of the highest
intensity value on GTI is selected. Second, the surrounding peaks in the window of
w and h are set to zero. Next, we iterate this process until all the high-intensity
regions are covered. We refer to the resulting as ground truth peak map (GTPM).
The selected peaks in Eq 4.1 are extracted similar to GTPM from the LRP relevances
and form prediction peak map (PPM). The metrics of Eq 4.1 can be rewritten as
follows:

IOU = 2(
∑

(x,y)∈I GTPM(x,y).PPM(x,y))/
∑

(x,y)∈I(GTPM(x,y)+PPM(x,y)) (4.2)
Precision =

∑
(x,y)∈I GTPM(x,y).PPM(x,y)/

∑
(x,y)∈I PPM(x,y) (4.3)

Recall =
∑

(x,y)∈I GTPM(x,y).PPM(x,y)/
∑

(x,y)∈I GTPM(x,y), (4.4)

where I covers the entire range of (m/z,RT) values.

4.4 Experimental Design and Results

4.4.1 Data Simulation

Experiments in this section target the enhancement of the system through inter-
pretations. To guarantee control results, we run the experiments in this section on
synthetically generated MS data. As a quick recap to its introduction (Section 2.1.4),
LC-MS consists of two levels of separations; First, a protein solute (mobile phase)
passes through a chromatography column (stationary phase), which effectively sep-
arates the components based on the chemical affinity and weight. RT measures the
time taken from the injection of the solvent to the detection of the components.
Second, each component is ionized and scanned through a mass spectrometer that
generates a mass spectrum (MS). Each MS scan measures m/z values of charged
particles and peak intensities. Stacking all MS scans on top of each other forms
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three-dimensional data whose x, y, and z axes are m/z values, RT, and ion-count
intensities, respectively.

To generate the synthetic LC-MS dataset, two groups of samples representing
healthy and diseased classes are simulated using UniPort human proteome dataset
(Consortium, 2019). The healthy class contains 20 peptides. Two peptides that are
independent of the peptides in the healthy samples are added to the peptides in the
healthy group to form the diseased group. As a result, there are 20 and 22 peptides
in the healthy and diseased group. The accession number of the corresponding
sequences is provided in Table 4.1. The quantification of two extra peptides in form

Table 4.1: The accession number associated with diseased and healthy group in the
synthetic dataset.

Classes Peptide sequences

Healthy

Q9NYW0, Q9NYV9, P59538, P59539, Q96CE8, Q96A56,
O75478, Q86TJ2, Q15543, Q15573, Q9H5J8, O00268,

Q9UI15, Q9H2K8, Q17R31, P10636, P68366, A6NHL2,
Q13509, Q9NVG8

Diseased

Q9NYW0, Q9NYV9, P59538, P59539, Q96CE8, Q96A56,
O75478, Q86TJ2, Q15543, Q15573, Q9H5J8, O00268,

Q9UI15, Q9H2K8, Q17R31, P10636, P68366, A6NHL2,
Q13509, Q9NVG8, Q9HA65, Q9ULP9

of peaks on LC-MS map of the diseased group define the discriminating peaks on
which we want the classifier to rely the most for classification decision. Investigating
such differences not only evidences of a reliable classifier as it is the purpose of this
section but also is considered as the basis of diagnosis of different biological conditions
(discussed in Chapter 3) and disease treatment —, e.g., measuring the concentration
level of cardiac troponin that enters the blood soon after a heart attack, or measuring
thyroglobulin, a protein made by cells in the thyroid, which is used as a tumor marker
test to help guide thyroid cancer treatment.

The data then is read and converted to mzML by OpenMS MSSimulator (Röst
et al., 2016), with the following settings: label-free quantification, Trypsin for di-
gestion, and electrospray ionization (ESI), random noise selected between biological
and technical noise at each run, m/z range of 2000, retention time range 240 min,
minPeaks = 2. The rest of the parameters remain the same as the default. The
samples are then read by TOPPAS (Kohlbacher et al., 2007) to generate images.
The width, height, and pixel intensities of images present m/z, RT, and ion-count
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intensity, respectively. It should be noted that the images still represent the raw
data. The only difference between the matrix of raw data and the converted images
is that the ion-count intensity range in raw data is scaled to [0,255]. We also run
the pipeline and all the experiments on the raw data matrix to make sure the scal-
ing would not cause loosing small peaks in our analysis. No noise filtering, spectra
filtering, or other corrections are applied in this stage. The only noise reduction we
applied to the raw data is that we remove the ion-count intensities less than two of
the data. The dataset contains 4000 samples of each group. 10% of each group is
left out for testing, and the rest is used for training and validation.

4.4.2 Optimizing the Model Parameters on Synthetic Data

In this section, we use interpretability assessment to tune CNN model parameters.
Specifically, we show how to properly tune the parameters of the network when
changing some layers does not considerably change the prediction performance.

Many standard well-structured networks such as Vgg18, ResNet32, and Incep-
tionV3 have been established a great performance on huge datasets of millions of
instances, such as ImageNet and they have been applied successfully to many ap-
plications in the medical domain as well. However, as it is explained in Chapter 3
these standard networks such as ResNet32 fail to fit on high-throughput proteomics
data. This can be explained by the fact that MS and LC-MS data contains more
local dependent features than global ones. On the other hand, a large receptive field
in very deep networks encourages the network to capture global dependencies as
well. Hence, network may learn some global pattern, for instance, patterns related
to the global noise. To avoid this problem using standard deep networks, we design
and tune the network’s architecture from scratch. We tune the number of layers, the
number and the size of filters, hyperparameters, etc, using SGD optimization and
tracking the accuracy and loss of training and testing samples. But, our experiments
show that changing some layers on the network architecture does not considerably
change the accuracy and loss of training and testing phases. In such cases, either
more layers with more learnable parameters would be chosen to obtain a better gen-
eralization performance, or a shallower network is employed in favor of the need for
less memory, for example, for the development in mobile system applications. The
purpose of our experimental study in this section is to demonstrate how adding or
removing the layers mentioned above could make a difference in the focus of the
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network on the relevant information of the data for decision making by assuming fix
number of training instances.

Network Architecture Selection

We study the influence of varying one to two fully connected layers (FCL), convolu-
tional layers (CL), and max-pooling layers (MPL). Although the variation of these
settings results in slight differences in the classification performances, our experi-
ment highlights the major improvement in their interpretations. We elucidate this
improvement through assessing the classification decision reliance on true discrimin-
ating regions of the data.

Due to the shortage of annotated real datasets at the discriminating peaks level,
the proposed model is developed and tuned on a synthetically generated dataset.
Another important reason to run the experiment on synthetic data as it is described
previously is to guarantee control results of the effect of network architecture on its
interpretation and, consequently, its generalization.

To demonstrate this impact, we tune parameters of the network, including the
number of FCL, CL, and MPL for classifying synthetic LC-MS data. These paramet-
ers do not change the classification accuracy in the variations presented in Table 4.2;
however, they significantly had an impact on the focus of the network on the relevant
part of the data for making decisions. This effect is measured through interpreta-
tion assessment metrics in this table. To form this table, networks that are built
by varying parameters mentioned above are first trained and interpreted using the
LRP interpretation strategy. Then the interpretations are assessed through IOU,
Precision, and Recall. This evaluation is presented in Table 4.2.

In our assumption, networks with higher values of IOU, precision, and recall are
more generalized due to the fact that these networks know on which part of the data
look for the reason of distinguishing a sample in one class from others; therefore, it
is more likely to do the same on unseen data and more likely to gain trust through
the reasoning. According to the research in the DL field, exploiting deeper networks
is recommended for better generalization as they offer richer representation. Con-
trary to the expectation, results in table 4.2 show that the interpretation of deeper
networks (more CL and FCL layers) for LC-MS classification show less reliance on
the discriminating peaks. As a result, among the networks with the same accuracy
performance, the one with four CL, one FCL, and one MPL reach the best inter-
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Figure 4.1: Training and validation performance of the Enhanced Classifier on LC-
MS synthetic dataset. Training and validation classification accuracy are shown in
the purple dash line and back dash-doted line, respectively. Training and validation
losses are also shown along with the accuracies in the red line and blue dotted line.
This plot demonstrates the five-fold cross-validation training curves for ten epochs.
However, for the classification comparison, interpretation, and feature selection, the
early stopping has been considered. Therefore, training is stopped after five epochs
on the fourth fold, which avoids divergence.
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Table 4.2: Network architecture selection through interpretation assessment. This
table shows the effect of adding fully connected layers (FCLs), convolutional layers
(CLs), max-pooling layers (MPLs) on focusing the network on the discriminating
peaks for decision making. The parameters are tuned according to the intersection
over union (IOU), precision, and recall. The effect of incorporating the interpretation
of diseased samples’ mean (Rd) and the interpretation of healthy samples’ mean (Rh)
on peak detection is also demonstrated.

# CL # MPL #FCL Samples IOU Precision Recall
6 4 2 Rd 0.3975 0.3814 0.4149
6 4 1 Rd 0.5006 0.4513 0.5621
6 4 1 Rd, Rh 0.6177 0.6188 0.616
4 3 1 Rd 0.6599 0.5985 0.7353
4 3 1 Rd, Rh 0.7008 0.6756 0.7281
4 1 1 Rd 0.7165 0.6171 0.8441
4 1 1 Rd, Rh 0.8501 0.8554 0.8448

pretation performance. Hence, we can make sure that by making decisions on the
health status of LC-MS samples, the network distinguishes the samples according to
the data regions that are truly discriminating. This is the way how we as a human
would make decisions. Therefore, we can hope for more generalization performance
for the real-world instances whose perturbations are not predictable.

The classification performances of the designed network on simulated and real
LC-MS data are depicted in Figures 4.1 and 4.2, respectively. The plots demonstrate
that the network designed for synthetic data works as expected on the real data. It
is worth mentioning that our LC-MS biomarker detection approach in Chapter 3 was
built on top of this tuned model. To further validate the model selection on the real
data, it is interesting to observe that the suboptimal architecture in Table 4.2 leads to
worse biomarker detection performances on the real dataset, as well. However, this
experiment could only validate the model selection if the biomarker detection results
were only dependent on the architecture tuning. However, not only the architecture
tuning but also pretraining the weights affected the outcomes of real data biomarker
detection. Note that transfer learning was used to transfer the knowledge from
synthetic data classification to real data classification. Thus, since the suboptimal
architectures were unable to be fitted to simulated data (i.e., the interpretations
result in poor IOU, Precision, and Recall) the weights can not be technically used as
source weights for the real data classification. For instance, our experiments showed
that a suboptimal architecture (e.g., L=6, MPL=4, FCL=2) in Table 4.2 barely can



4.4 Experimental Design and Results 97

find the true biomarkers on real data. Although this observation is aligned by what
we have expected, it cannot validate the model selection. It is because to have a fair
comparison with the performance of the selected architecture, we should pretrain this
network using the simulated data weight, as well. But, the results in Table 4.2 show
that the suboptimal architecture itself poorly highlight the discriminating regions of
the simulated data. Hence, the poor biomarker detection performance on real data
either can be caused by the selected architecture or it can be caused by the poor
initialization.

See the next page for a detailed description.
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Figure 4.2: Training and validation performance of the Enhanced Classifier on LC-
MS real dataset. We retrain the network that has been initially trained on the
synthetic LC-MS data (shown on Figure 4.1) on the real LC-MS data. Training
and validation losses are also shown along with the accuracies in the red line and
blue dotted line. Training and validation accuracies are shown in dash line and back
dash-doted line, respectively. It can be seen from the plots that all folds of data has
reached the maximum accuracies.The trends are less smooth than simulated data
because of the smaller data points in the real dataset than the simulated dataset.

Interpretation Importance Across Different Classes

So far, all the assessments are formed based on the information gained by interpret-
ation of disease instances in the data. Now, we would like to make an extra point
about the use of both class interpretations for the analysis of LC-MS data that can
alleviate the problem of false-positive detection. To this end, we change the gear
a little to our goal of biomarker detection approach in Chapter 3. In this section,
we experimentally explain the effect of incorporating the interpretation of healthy
predictions along with the interpretation of diseased predictions on biomarker detec-
tion performance. In Section 4.3, we have described in detail how prediction peak
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map (PPM) is calculated through LRP relevance values. As a recap, To estimate
relevance values on the training set, we calculate the mean of the diseased samples,
run the trained network on the mean, and calculate the relevances. By convention,
positive relevance values are the evidence of existing relevant peaks belonging to the
respected class. Therefore, in our study, positive relevance values on the interpret-
ation of diseased class are associated with the biomarker candidates. Basing these
candidates for further biomarker analysis – that described in detail in Chapter 3
- keep too many false-positive peaks into consideration that can be decreased by
incorporating the interpretation of healthy samples along with the interpretation of
diseased samples. The positive relevances of the interpretation of the healthy group
can be explained as the absence of diseased relevant peaks or the presence of healthy
relevant peaks. Because all the peaks in healthy samples are presented in diseased
samples in our simulation, the positive relevances of this group are explained as the
absence of diseased relevant peaks. Accordingly, the indices of high-ranked relevances
on the diseased group are selected as biomarker candidates if the corresponding in-
dices in the interpretation of the healthy group attribute non-negative relevance.
The results cause by this extra criteria are shown in Table 4.2. As it is apparent,
IOU and Precision, which are both directly affected by FP in the denominator, have
considerably improved. We also confirm the effectiveness of this idea in real LC-MS
data as well in Table 4.3.

The improvement in the false positive rate on the LC-MS real data analysis was
not as pronounced as the LC-MS synthetic data analysis. This behavior can be
statistically explained by the number of samples in the synthetic dataset (∼ 8000)
that outnumber the real dataset (∼ 10). We calculated the interpretation analysis
on the mean of the samples’ intensities. Therefore, the mean intensities on the large
set of data represent whole data distribution better than a small set. Consequently,
the importance of features belonging to the larger dataset assigned by the network’s
decision would be more precise.

4.4.3 Interpretation Sensitivity Analysis

The sensitivity analysis of deep learning interpretation methods has recently gained
attention intending to address how much we can trust in the outcome of interpret-
ations. For example, Arun et al. (2020) discussed that it is essential to rigorously
examine the utility and robustness of the explanation in the context of medical ima-
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Table 4.3: The effect of incorporating the interpretation of diseased samples (R1

d)
and the interpretation of healthy samples (R1

h) on peak detection.The third and
fourth rows demonstrate the number of features satisfying two representative criteria,
including t-test with multiple hypothesis testing (q-value< 0.05) and fold change
(FC > 10). The plus sign denotes the combination of different criteria. The numbers
written in parentheses indicate the selected biomarker peaks. The results show that
incorporating both existing classes’ interpretations contributes to decreasing the false
discovery rate.

R1
d R1

d,R1
h

# All selected features 8044 (12) 6992(11)
t-test (q < 0.05) 3985 (11) 3499(11)
t-test (q < 0.05) + FC (> 10) 222 (9) 195(9)

ging data. This study posits that explanation trustworthiness requires repeatability,
reproducibility, and other imaging data analysis assumptions. In addition to repeat-
ability and reproducibility in the context of MS feature importance discovery, we
posit that the explanations need to be consistent from one sample to other samples
of the same group in order to guarantee the robustness of the results. We assess
this assumption by comparing the intersection over union (IOU) when the network
is run in cross-validation mode. The visualization scheme of this examination is
depicted in Figure 4.3. This experiment specifically run on the synthetic data in
order to avoid problems of disentangling errors made by the model from errors made
by the explanation. First, 10% of the data is left out for testing, and the rest is
used for training and validation sets in a five-fold cross-validation split. On every
cross-validation run, the network is trained on the training set. Then, the infer-
ence is run for testing and validation set, and finally, LRP interpretation is run on
the predictions. The interpretations of the test set, which are generated five times
over five-fold cross-validation, reach almost 99% IOU. The high level of overlapped
regions demonstrates the reproducibility and repeatability of the interpretations.
Likewise, the interpretations of the five validation sets over the training using five-
fold cross-validation reach almost 98% IOU. This result shows the robustness of the
interpretations with respect to changing the samples in the data.

These results not only justify the stability of the interpretations and the designed
classification but also imply the robustness of feature selection results in Chapter 3.
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4.5 Visualization Assessment of Interpretations

So far in this chapter, we have shown the methods of assessing the models’ inter-
pretation, where the training data’s discriminating features are known as the ground
truth, or this information is simulated and assessed on the synthetically generated
data. This may raise concerns about what if this level of ground truth cannot be
obtained or be simulated, which makes it impossible to evaluate the interpretations
through the IOU, precision, and recall (as it is carried out in Table 4.2). Since, in
this case, we do not know where to expect the model to rely on to make decisions,
the interpretation assessment cannot be quantified. We instead employ the follow-
ing evaluations for MS data, similar to visualization methods introduced earlier in
Section 4.1:

1. Feature importance: Measure the importance of highlighted areas from the
output of the interpretations for the model’s performance. To this end, we add
the high-ranked features that are achieved by the interpretation of the model
to the data one after the other and plot the model’s performance. The steeper
the plot’s slope, the more important the selected features are for the model,
which determines the quality of the interpretation method.

2. Feature visualization: Visualize the areas that the network thinks are the most
pertinent through its interpretation and check if these areas are logical and are
coherent to us as humans by what the model is trained for.

4.5.1 Measure Importance of Features

Figure 4.4 shows the interpretation assessment through feature importance described
in item 1. This evaluation is compared to linear SVM with ℓ1 norm (ℓ1-SVM) (Noble,
2006; Haq et al., 2019), as a conventional feature selection models for sparse solu-
tions. The experiments run on MLDI-MS datasets, spiked160, spiked80, and Pan-
creas cancer datasets, introduced in Section 3.6.1 and 3.6.2. To form this plot, first,
the important features that are selected according to the feature selection method
proposed in Chapter 3 are ranked based on the relevance values that LRP assigns to
the features. These features are inserted one by one to a vector for each sample, and
the model each time is separately trained on these data. The accuracies are plotted
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in Figure 4.4 with respect to the number of features that were added to classify the
dataset. It can be seen that our model reaches the maximum performance on all
three datasets with the first few high-ranked features. It is worth noting that these
features have been found without any prior knowledge of the discriminating regions
on the whole data. The sharp steep of the curve demonstrates the high quality of
DNN interpretation.

Compared with the plot by SVM interpretation, the plot’s slop by DNN inter-
pretation is sharper. This means the features that are extracted according to the
DNN interpretation approach reach the maximum classification performance faster
and with fewer features. This is an important property in situations where selecting
more features leads to higher costs in some biomedical pipelines in which each feature
must be validated in expansive wet-lab experiments.

4.5.2 Visualization of Important Features

Figure 4.7 shows the interpretation assessment through feature visualization de-
scribed in item 2. These plots show the interpretation of the first 12th regions that
DNN relies on the most to make classification decisions on real LC-MS data. As
mentioned earlier, in this experiment, we assume that the discriminating regions are
unknown. We classify the samples into healthy and diseased groups, which LRP then
interprets. The feature selection approach proposed in Chapter 3 is applied, and the
first 12th high ranked regions of the data are visualized. The samples classified as
diseased are visualized together at the location of high-ranked regions, indicated by
MP. Likewise, The samples classified as healthy are visualized together at the same
locations, indicated by noMP. By looking at these plots, it is clear that some peaks
in one group are missing in the other group. If we assume that the model function
is unknown, but we know that the model makes decisions based on these regions, we
can easily speculate that the model does a classification task. Therefore, it can be
concluded that the interpretation method is meaningful and coherent by the classific-
ation task’s aim. In our study, we have already justified the interpretation method’s
quality in different ways. But, if we were limited to assessing the interpretation only
by the feature visualization method, the non-expert feedbacks on the feature visu-
alization would be necessary to demonstrate the effectiveness of the interpretation
method.

With these two experiments, we have shown that, given a dataset of two groups
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Figure 4.4: Interpretation assessment through visualizing the model performance
while adding the selected important features to the data. Plots show the strength of
selected features on spiked160 (first row), spiked80 (second row), and P. CA (third
row) using our method in red-square and ℓ1-SVM in blue-triangle.
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without any prior knowledge about discriminating regions of the instances, the qual-
ity of the interpretation of the DNN classifier can still be assessed. Besides, the
interpretation output may also lead to learning the underlying characteristics of the
data. For example, suppose the cause of a specific disease or effectiveness of a drug is
unknown in the protein blood samples. In that case, this visualization can illustrate
which features of the data are most affected by the sickness or a specific drug.
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See the next pages for the remaining plots and a detailed description.
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See the next pages for the remaining plots and a detailed description.
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Figure 4.7: Visualization of the first 12 regions on which the network relies to make
classification decisions for the LC-MS real data. If this visualization is given to a
user without any prior knowledge about the network functionality, the user are likely
able to describe the network as a discriminator or a classifier.



4.6 Interpretation of Conventional Machine Learning Classification Models 109

4.6 Interpretation of Conventional Machine
Learning Classification Models

In the course of experiments in this thesis, all the high-throughput data analyses
are carried out directly on the raw instances. We avoided any dimension reduction
before data analysis because we wanted to keep all the dimensions and hinder losing
important information. However, keeping all the dimensions when analyzing high-
dimensional data with ML algorithms often leads to overfitting. It means a model
that works well on training instances likely performs poorly on the test set. This can
go to even the worst scenarios, where the model performs well on the test set too, but
after deployment, the performance degrades on new instances. That is because you
cannot ensure if the test data represents all unseen instances and deformations in the
world. In such scenarios, the model’s interpretation can play an important role. If
the interpretation highlights relevant regions of the data, for example, discriminating
region in a classification task, it means the model does not make decisions based on
irrelevant artifacts of training instances. Therefore, it is more probable to be robust
against the new samples’ artifacts. But, the problem is that it is not always possible
to interpret ML models that are fitted on high-dimensional data.

To exemplify this shortcoming, we run experiments for classifying LC-MS data
(4.4.1 and 3.8.1) as one of the high-dimensional datasets investigated in this thesis us-
ing conventional ML algorithms and compare the performances with DNN. Table 4.4
shows the classification comparison of ML methods, including support vector ma-
chine (SVM) with linear kernel, decision tree (DT), and Adaboost with our CNN
model. The parameters of the selected methods are tuned using grid search in Scikit-
learn on synthetic data. We run the CNN architecture that we tuned in Section 4.4.2.
We use five-fold and leave-on-out cross-validation for training on the synthetic and
real datasets, respectively. As it is apparent from Table 4.4, there is a huge gap
in the classification performance of ML methods between the synthetic data and
the real data. As has been already discussed, one way to investigate the reason is
to interpret the results. One way to interpret ML models is model agnostic meth-
ods, which enables estimating the importance of features for decision-making by any
trained model regardless of the model’s complexity. For instance, permutation fea-
ture importance, measured by randomly shuffling the feature and tracking the drop
in the model’s score. LIME (Ribeiro et al., 2016) as another model agnostic inter-
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Table 4.4: Classification comparison of the convolutional neural network (CNN) with
conventional machine learning methods including, decision tree (DT), support vector
machine (SVM), and adaboost. CNN shows significantly better classification per-
formance on the real datasets. The interpretation is not available for weak classifiers.
On the synthetic dataset, ML methods are as accurate as CNN. However, SVM in-
terpretation demonstrates the overfitting effect. Interpretation of the synthetic data
is reported by intersection over union (IOU) between the selected and true peaks.
Interpretation of the real data is reported by the amount of true positive peaks from
13 spike-in peaks. ’-’ shows no interpretation is available for the models.

Synthetic dataset Accuracy Sensitivity Specificity Interpretation (IOU)
SVM 0.98 0.99 0.98 feature importance(< 0.1)
DT 1.0 1.0 1.0 -
Adaboost 0.99 1.0 0.99 -
CNN 1.0 1.0 1.0 LRP (0.85)
Real dataset Accuracy Sensitivity Specificity Interpretation (TP/13)
SVM < 0.5 < 0.5 < 0.5 -
DT < 0.5 < 0.5 < 0.5 -
Adaboost < 0.5 < 0.5 < 0.5 -
CNN 0.8 0.8 0.8 12/13

pretation locally interprets any model around a single prediction. Given a trained
model, LIME perturb each instance locally, calculates the distance of the perturbed
instance from the original sample according to the trained model, and generates a
new dataset. A linear model is then fitted on the new dataset. The linear model
coefficients determine which features are more dominant. These methods, however,
are computationally infeasible for analyzing high-dimensional LC-MS data. On the
other hand, inherently interpretable models cannot correctly classify complex LC-
MS data. As an example of such models, we can name linear models in which the
weights of the variables serve as the explanation or shallow decision trees in which the
normalized total reduction of the Gini index by every feature yields the explanation.
In Table 4.4, despite adaboost that is not inherently interpretable and decision tree
(DT) that is not shallow enough to be interpreted, linear SVM still can be explained
by the weights assigned to the features. According to this table, SVM reaches com-
parable classification performance as CNN. However, the explanation results in a
very poor IOU – less than 10% – between the important features selected by the
coefficient of the SVM model and actual differences. This effect –the high accuracy
and weak explanation – resulted by SVM can be explained by low fidelity of the
model’s interpretation or overfitting of the model caused by some biases or patterns
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(comes with the simulation), unrelated to actual differences. But, the overfitting
effect is more likely since SVM with the same parameter setting, trained on the
synthetic data, results in a very poor classification of the real data. The adaboost
and DT classification gap between the real and synthetic data can also explain the
overfitting effect.

These experiments demonstrate one of the reasons that we choose DNN mod-
els for High-throughput data analysis, which exemplify not only the DNN enables
reaching the high performance, but also their interpretation is now more alleviated
by the recent interpretation technologies.

4.7 Discussion

The main goal of this chapter was to provide a comprehensive study of DNN inter-
pretability assessment in the context of high-throughput data analysis and to show
how this assessment can be employed to enhance the model and justify the sys-
tem’s reliability. These arguments were investigated with the application of mass-
spectrometry data classification and biomarker detection. We classified an LC-MS
dataset with a convolutional neural network that has been introduced in Chapter 3
and interpreted the results using the LRP interpretation method.

We assessed these interpretations in three scenarios: 1) the ground truth data
is available, where the goal is to confirm that the predicted decisions were made
based on relevant features, 2) the ground truth is not available, but similar data
can be synthetically generated, where the goal is to enhance the model through
interpretation assessment, and 3) there is no knowledge about the underlying data,
where the goal is to confirm the reliability of detected patterns through feature
importance and feature visualization.

In the first scenario, where the relevant information or discriminating features
are known, the interpretations were assessed directly on the ground truth. This
scenario was studied in Chapter 3 based on the selection of spiked-in peaks on two
MALDI-MS datasets with 42381 features. We showed that most of the ground truth
peaks were selected among 30 selected high-ranked features. These results justify
that the predictions were made based on true features.

In the second scenario, we assume that the ground truth is not available, which
is often the case for high-throughput data analysis. We proposed studying the DNN
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model’s behavior based on synthetically generated data. When the network is trained
on the simulated data, since we know which elements we want to make decisions based
on, we can check through the means of interpretation, for instance, if a certain depth
of layers is able to learn the representation of such data, or adding too much pooling
layer lose local dependent information in the prediction analysis, etc. Accordingly,
through quantitative measurement of interpretation, we enhanced the design of the
DNN so that the network focuses more on discriminating regions for making de-
cisions. Our experiment elucidated that this information is transferable to real data
analysis. We demonstrated that on LC-MS proteomics data, retraining the enhanced
classifier attained maximum accuracy on all folds of 10-fold cross-validation. Note
that our biomarker detection on LC-MS data in Chapter 3 was built on top of this
tuned model.

In the third scenario, we assumed that not only ground-truth is not available, but
also there is no knowledge about the underlying data (for the simulation purpose).
We justified the reliability of learned patterns through interpretability assessment
through feature importance plot and feature visualization. In the feature import-
ance plot, we showed a steep slop by adding high-ranked dimensions, assigned by
decision interpretations on three MALDI-MS datasets. The slop with DNN using
our approach is significantly steeper than the conventional method using SVM. This
means our approach detects the discriminating features faster with fewer false pos-
itives. This is deemed an important property for pipelines, where each feature must
be validated in expansive wet-lab experiments. In feature visualization, we demon-
strated the interpretations are logical and are coherent to our cognition as humans,
and the model function can be estimated by only looking into the instances’ inter-
pretations.

To show the explanation’s trustworthiness, we showed that the interpretations are
repeatable, reproducible, and consistent from one sample to other samples within one
class. Our model interpretations were shown to be stable when calculated on different
data points within a class or when the model is trained on different runs. This claim
is exemplified by running a sensitivity analysis. We showed the interpretations are
98% overlapped when calculated in cross-validation mode on validation sets and 99%
on the test set. We calculated the overlaps on different folds of the validation set as
well as the test set when the interpretations are obtained by the network trained on
different folds of data.

We further showed in synthetic data analysis that exploiting the interpretation
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of both classes rather than just the target class can considerably improve the FP in
comparison with the setting when only the diseased class was considered. This obser-
vation stressed the importance of understanding the implications that are provided
by interpretation analyzes. Leveraging this valuable information can foster more
plausible network architectures, resulting in a more meaningful conclusion. Recent
advances in the image processing field confirm this important fact (Bach et al., 2015;
Samek et al., 2020; Kohlbrenner et al., 2020).

We also demonstrated why analyzing high throughput data using DNN was pre-
ferred over conventional ML models. According to Section 4.6, conventional ML
models are failed to correctly fit on LC-MS real dataset. Despite high accuracy on
the synthetic data, the poor interpretation of linear SVM on synthetic data and the
huge gap between classification performance of real and synthetic data demonstrate
the overfitting effect.

So far, the application of biomarker detection has been investigated through deep
learning classification networks and their interpretation strategies in the context of
high-throughput data analysis. To extract the information in our study, we only
needed the class labels of samples and are independent of the labels at the biomarker
level. Based on what we have learned from analyzing structured data, in the next
chapter, we will continue our study in imaging modality with other architectures,
such as encoder-decoder models that require being trained in a fully supervised
manner.
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In this chapter, we change our focus from high-dimensional structured proteomics

data analysis to analysis of high-dimensional imaging data that is deemed essential in
the healthcare diagnostic process. We propose a robust deep learning (DL) imaging
pipeline for the localization of regions of interest in medical images. We target the
challenging task of spinal vertebrae localization and identification, which will be
addressed using supervised DL approaches.

In Chapters 3 and 4, we employed the explanation of the network predictions
to discover unknown patterns and localize biological relevance features from high-
throughput structured data. Our approach is independent of the costly annotations
at the feature level. In structured proteomics data, we took into account the devi-
ations caused by noise and data acquisition. Considering such deviations, we showed
that the interpretations of decisions of a robustly trained model can reveal relevant
features. In biomedical images, however, the deviations of the region of interest can
be largely varied from one sample to another. For instance, in our application, the
localization-identification of spinal vertebrae, the shape and number of vertebrae
can be totally varied from one scan to another. Besides, different fields of view and
many other deviations related to the imaging acquisition induce more variations.
Some preprocessing steps, such as image registration, can solve the spatial vari-
ations of anatomy across different images. However, to avoid preprocessing steps
that add more complexity, we employ deep convolutional neural networks (CNNs) in
a supervised manner, which is capable of handling spatial variations with minimal
preprocessing (Anwar et al., 2018; Zhao et al., 2021) on raw data.

To set the stage, we first give an introduction to medical imaging analysis in
Section 5.1, and the difficulties of spinal vertebrae detection task in Section 5.2.
Section 5.3 surveys previous related works. We formulate detection of the spinal
vertebra through different machine learning concepts, including segmentation using
the encoder-decoder architecture of UNet (Ronneberger et al., 2015) in Section 5.5,
detection using YOLO architectures (Redmon et al., 2016) in Section 5.6, and our
regression-based approach in Section 5.7. These methods are built based on CNNs
as the main feature extraction part. The comparison performances of localization-
identification of lumbar vertebrae is reported in Section 5.8 on heterogeneous data.
We demonstrate that for heterogeneous and complex data, our regression-based
CNN, leads to a more robust performance. The architectures mentioned above have
achieved state-of-the-art performance in many medical imaging analysis tasks. How-
ever, they are still facing challenges when the data is heterogeneous, and at the same
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time, the annotated samples are scarce. To deal with these challenges, we equip
all the models with the proper data augmentation, and data enhancement using
the human-in-the-loop process. Moreover, we utilize strategies that we have learned
from analyzing structured proteomics data, such as network generalization through
transfer learning. Our lumbar vertebrae localization-identification requires assump-
tions about the number of vertebrae expected to be found in an image. We further
extend our proposed method to the whole spine to alleviate this limiting assumption
in Section 5.9. We propose to simplify the vertebrae localization-identification task
by classifying the images to different (fields of view) FOVs and then address the
localization-identification of each region separately.

5.1 Medical Imaging Analysis

Medical imaging is able to look into the human body and has long been estab-
lished as an essential tool in the healthcare diagnostic process. To leverage the full
potential of medical images, image processing steps are necessary. In the case of high-
dimensional imaging data, the healthcare experts spend an increasing amount of time
manually reviewing and preparing medical images to input into different kinds of IT
systems. This process is time-consuming. Besides, the results may not be consistent
when they are made in different attempts or by different interpreters. The attempt
of automatic analysis of medical images to assist physicians emerged since 1960’s
(Chen et al., 2016; KIMME et al., 1977; Semmlow et al., 1980). Systematic use of
machine learning has also emerged since 1980, for instance, as a second opinion to
assist radiologists in interpreting images. Conventional machine learning extracts
hand-crafted features from the data that are then used as an input variable to a
predictor for different tasks. The quality of conventional machine learning models,
therefore, depends on the domain expertise and the capability of the mathematical
formulations or empirical image analysis techniques designed to translate the image
characteristics to numerical values. Besides, the finite number of feature descriptors
in conventional machine learning approaches may not be able to translate all the dis-
criminating characteristics of complex data into feature space. Hence, the outcome
of the model is limited to the design of the features and consequently to the domain
knowledge. With the advent of powerful modern machine learning techniques such as
DL, representations are learned automatically, without manually designed features.
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As introduced in detail in Chapter 3, Section 3.1, CNNs learn representations using
convolutional operation. When this operation is performed hierarchically in consec-
utive layers, it enables CNNs to learn complex pattern by transforming the data into
multiple levels of abstraction. CNNs learn to extract features from training samples
for a given task by iteratively updating the kernels with stochastic gradient des-
cent. The tremendous progress of CNNs in predictive analytics almost rivals human
performance in vision tasks, such as image classification (He et al., 2016a), recogni-
tion (Sun et al., 2017), or segmentation (Ronneberger et al., 2015). These successes
have brought high expectations that DL, or artificial intelligence (AI), can bring re-
volutionary changes in healthcare and medical image diagnosis. For instance, early
studies of integrating DL into computer-aided diagnosis (CAD) in radiology have
shown even though deep CAD diagnosis did not reach human-level accuracy, the ra-
diologists’ accuracy was improved significantly when reading with CAD as a second
opinion (Chen et al., 2013). Despite achieving state-of-the-art performance, this field
is still facing challenges, in particular with the scarcity of labeled data, mostly due
to the high costs of acquiring expert annotations. In this chapter, we circumvent
this shortage by incorporating advanced data augmentation, transfer learning, and
human-in-the-loop process. We study different supervised DL models, formulated as
organ detection, on MRI images of human body. Organ detection is the backbone of
numerous clinical applications, for instance, the study of anatomical structure (Fischl
et al., 2002; Tu et al., 2008), diagnosis of diseases (Silveira et al., 2009; Chrástek et
al., 2005), localization of pathology (Ghafoorian et al., 2017; Trebeschi et al., 2017),
treatment planning (Fortunati et al., 2013), and computer-integrated surgery (Chen
et al., 2016). Our analysis focuses on spinal vertebra localization-identification on
MRI images. This task remains challenging mainly due to the similar appearance
of neighboring vertebrae, spine deformation, different and limited FOVs, and image
artifacts induced by surgical implants. Through a comprehensive study of CNNs in
this chapter, we propose a robust pipeline to tackle these challenges for localization-
identification of lumbar vertebrae and finally extend our pipeline to whole spinal.

5.2 Lumbar Vertebrae Localization-Identification

Robust localization and identification of lumbar vertebrae from spine MRI images
is an essential and primary step for many clinical tasks, such as reviewing spinal
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images to diagnose various spinal diseases, surgical planning, and postoperative
assessment. However, it could be nontrivial and time-consuming even for human
experts to localize and identify each vertebra and distinguish it from neighboring
ones. The challenges include the similar appearance of neighboring highly repetitive
vertebrae, different structures and shapes of each vertebra from one scan to other,
narrow FOVs that makes the referencing vertebrae invisible, and no adequate res-
olution of scans, especially on the edges. Moreover, because of pathological cases,
the anatomical shape of the vertebral column can be unpredictable when patients
have spinal deformations or surgical implants around the vertebrae, which often re-
duces the contrast of the vertebrae boundaries. In addition, interpretation of the
scans might not always be reproducible across interpreters. Therefore, devising a
computational methods and establishing a computer-assisted system for automation
of vertebrae localization-identification can substantially benefit the daily work of
radiologists and many subsequent tasks in spinal image analysis. The focus of our
study in this chapter is to address vertebrae localization-identification of the lumbar
vertebrae through adopting DL techniques. We overcome challenges of this task
via a straightforward DNN approach with a prior assumption regarding the number
of vertebrae that appears on the scan, which is generalized with transfer learning.
We formulate vertebra localization as the coordinate regression to regress corner co-
ordinates of the surrounding boxes around every single lumbar vertebra using a very
deep pre-trained network. We evaluate the performance on a heterogeneous dataset
that contains a wide variety of image resolutions, different fields of view, and patho-
logical cases. We compare our regression-based network to other approaches using
encoder-decoder UNet and YOLO-based detection architectures. It is shown that
our regression-based network particularly performs robustly on pathological cases,
such as the spinal column images with missing vertebrae and extreme deformation
caused by severe diseases or surgical implants.

5.3 Related Works

Lower back pain is one of the common problems in the general population (Wilson
et al., 2021), which can be originated in the lumbar spine region. There are clinical
symptoms that require investigations through computed tomography (CT) or
magnetic resonance imaging (MRI) with the help of computer-assisted diagnosis.
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The localization and identification of most of the clinical images are based on
manual annotation by experts. For instance, for lumbar spine MRI interpretation,
one needs to look through many slices of the sagittal plane and other planes of the
scan to identify the correct vertebrae, which is time-consuming.

(a) (b) (c) (d)

Figure 5.1: Demonstration of some pathological cases in our dataset (the first row)
and outputs of our pipeline (the second row) overlaid on those cases. The artifacts
in our dataset include, (a) bright and sharp regions caused by metal implants, (b)
missing vertebrae in imaging outcomes caused by spine-related severe diseases, (c)
abnormal curvature and disc disorder, (d) and abnormal vertebrae shape. The second
row of overlaid images shows our method’s localization and identification result on
the pathological cases. The surrounding bounding boxes show the lumbar vertebrae
location, and the colors show the identifications. Magenta, blue, cyan, green, and
yellow demonstrate the identification of L5, L4, L3, L2, and L1, respectively.

On the other hand, these slices sometimes do not have enough length to incorpor-
ate all the necessary information. Besides, the interpretations might not be reprodu-
cible across interpreters. These are the motivations of many studies to address the
problem of automating vertebrae localization-identification. However, many chal-
lenges caused by pathologies, surgical implants, image artifacts, and different FOVs
should be tackled to design a robust and generalized algorithm. Figure 5.1 shows
the overview of the variety of the pathological cases in our dataset.

Studies proposed to tackle the problems associated with vertebrae localization-
identification can be roughly classified into two types. The first type mainly targets
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specific regions of the spine, such as lumbar vertebrae and thoracic regions (Oktay
and Akgul, 2011; Ma et al., 2010), or depend on the prior knowledge about visible
parts (Huang et al., 2009; Schmidt et al., 2007; Kelm et al., 2010; Zhan et al., 2015;
Forsberg et al., 2017).

The second type focuses on lessening the prior assumptions or the limit of visible
parts on the scans. Glocker et al. (2012) presented a regression forest method of
the vertebra center points in an arbitrary field of view CT scans and a refinement
step using the Hidden Markov Model. This method is likely to fail in cases with
a limited FOV. To address this challenge, Glocker et al. (2013) later proposed a
randomized classification forest approach. This method probabilistically classified
all the voxels to the particular vertebrae, and the centroid of the predictions are
estimated using the mean shift algorithm. But, they make assumptions about the
shape and appearance of vertebrae, which is not realizable to pathological spinal
scans. More probabilistic and model-based methods were proposed by (Kelm et al.,
2013; Klinder et al., 2009).

The aforementioned approaches were trained by hand-crafted feature descriptors,
which cannot encode more representative features of spinal images. Therefore, they
are likely to fail in handling more complicated cases when abnormalities arise. Re-
cently, the advances of DL techniques in the computer vision field (Long et al., 2015;
Ronneberger et al., 2015; Milletari et al., 2016), encouraged the community to build
automatic CT/MRI vertebrae localization and identification models based on DL
methods. For instance, Chen et al. (2015) presented a joint learning model to ex-
ploit high-level feature representation with a CNN. Suzani et al. (2015) proposed
a multi-variate non-linear regression to parametrize the vertebrae volume localiz-
ation. In this method, the reference voxel center points were identified using the
Canny edge detector, and CNN learned the displacement of the rough locations to
the true ones. The estimations were finally refined by an adaptive kernel density
estimation method. Recently Janssens et al. (2018) proposed DL method for 3D
CT lumbar spine localization. This method localized individual lumbar vertebrae
through a segmentation network, UNet (Ronneberger et al., 2015), on the estimated
lumbar region. Liao et al. (2018) proposed a recurrent neural network approach to
address localization-identification of vertebrae. Using a fully convolutional network,
they roughly estimated the vertebrae location and then refined the estimations using
bidirectional recurrent neural networks. This method may lose the global depend-
ency among the vertebrae, which is important for vertebrae identification. To handle
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both local and global information, Qin et al. (2020) proposed an end-to-end model
that combine a classification and detection model with an integral regression. The
current methods have already achieved acceptable performance in 3D analysis, but,
the complex network models with 3D data could come at high computational costs
and expenses. More recently, (Wang et al., 2021) converts and simplifies 3-D de-
tection maps into 1-D detection signals and jointly localize vertebrae following an
anatomical constraint. It is shown that, however, severe pathologies and extreme
imaging conditions may still negatively impact the model’s performance.

Our method proposes an end-to-end DL method on a single slice of MRI scans
to robustly localize and identify lumbar vertebra, which can handle pathological
cases. Inspired by Toshev and Szegedy (2014), we formulate the lumbar vertebrae
localization as the coordinate regression of the bounding boxes around all five lumbar
vertebrae. The regression is based on the CNN approach through transfer learning,
which enables us to take advantage of very deep networks (He et al., 2016a), despite
the small available dataset for training. Given an MRI scan of a lumbar vertebra,
our end-to-end method robustly performs a localization and identification over five
lumbar vertebrae, L5, . . . , and L1. The only assumption in our pipeline is that the
scans should incorporate the lumbar region. But it does not mean all the lumbar
vertebrae should be visible on the scan. For instance, in Figure 5.1.b, L1 and L2

were not appeared in the scan, but the pipeline still can predict their locations
and labels. We achieve a 93.72% identification rate on a heterogeneous dataset
containing many pathological spine MRI scans. We also develop pipelines using state-
of-the-art DL architectures that are applicable to the spine localization-identification
through segmentation network (Ronneberger et al., 2015) and detection network
YOLO (Redmon et al., 2016). Particularly for pathological cases, We show that
our regression model results in more robust performances. We further extend our
pipeline to the whole spine that can relax the assumption we made on the lumbar
vertebrae region. To this end we propose to first classify the FOVs and then address
localization-identification of each part separately.

5.4 Evaluation Metrics

To evaluate the vertebrae localization-identification, we propose using a preci-
sion rate that represents the model’s ability to accurately label lumbar verteb-
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rae by satisfying a localization criteria. Precision (P) measures the ratio of the
true detected objects (true positive) to the total number of detected objects as:
P = true positive/(true positive + false positive), where true positive (TP ) and
false positive (FP ) are controlled by a localization threshold T on the intersection
over union (IOU). IOU measures how well the ground truth object overlaps with the
model predictions. The selected vertebrae satisfying IOU ≥ T are selected as TP ;
otherwise, they are assigned to FP .

IOU is also used in this chapter to measure the performance of segmentation
networks: IOU = y · ŷ/((y + ŷ) − y · ŷ), where y and ŷ denote the ground truth and
predicted mask, respectively.

5.5 Image Segmentation for Localization and
Identification

This section first gives an introduction to image segmentation and later employs
the recent advances in image segmentation to formulize the lumbar vertebrae
localization-identification.

5.5.1 Image Segmentation

Image segmentation has been widely used over the recent decade in a wide variety of
applications, especially due to the rise of DL techniques. In medical imaging settings
such as computer-aided diagnosis and smart medicine, segmentation is considered one
of the key steps towards improving diagnostic efficiency and accuracy. We further
demonstrate the effect of data augmentation, human-in-the-loop and loss function
to improve the segmentation network performance evaluated by IOU .

Some tasks in medical image segmentation include liver segmentation (Kavur et
al., 2020) and liver tumor segmentation (Budak et al., 2020), knee bone segmentation
(Ambellan et al., 2019), chronic skin lesion segmentation (Nejati et al., 2016), brain
tumor segmentation (Tiwari et al., 2020), interval disc and spine vertebrae segment-
ation (Kim et al., 2018b; Lessmann et al., 2019), and lung segmentation (Shi et al.,
2020).

Image segmentation aims to divide an image into regions with strong correlations.
It was conventionally addressed by drawing boundaries around the region of interest
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using edge detection, template matching techniques, statistical shape models, active
contours, and machine learning (Noble and Boukerroui, 2006). With the advances
of the CNN, however, the focuses has been shifted towards deep neural network
techniques, which surpass state-of-the-art methods by a large margin (Siddique et
al., 2021).

Fully convolutional network

A fully convolutional network (FCN) is a variation of CNN (introduced in Sec-
tion 3.1), which has led to great progress in image segmentation tasks (Long et al.,
2015). FCN replaces the pooling layer and fully connected layers at the top of the
CNN with up-sampling operators, which is a learnable parameter. Because FCN
excludes the fully connected layers, the network is no longer limited to a fixed-size
input and is able to generate segmentation maps with the same size as the input
samples. This aligns with the goal of semantic segmentation, which formulates im-
age segmentation as a pixel-wise classification task, where every pixel in an image
is assigned with a corresponding class label. One of the early attempts to use FCL
for semantic image segmentation, shown in Figure 5.2, has been done by Long et al.
(2015).

Figure 5.2: Dense predictions for semantic segmentation using fully convolutional
networks. This network replaces the pooling layer and fully connected layers at the
top of a CNN with learnable up-sampling operators to reach the input resolution.
Therefore, through pixel-wise classification, this network outputs the input segment-
ation map with the same resolution as the input image.
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UNet

UNet is proposed by Ronneberger et al. (2015) upon FCN architecture to solve
problems of medical image segmentation such that it works precisely with very few
training images to address the insufficient amount of training images. UNet modifies
the up-sampling part of the FCN network by including a large number of feature
channels, which allows the network to propagate contextual information to higher
resolution layers. UNet has an encoder (contracting) path that transfers an image to
the latent space through convolutional and max-pooling layers and a symmetric de-
coder (expanding) path that generates segmentation through learn-able up-sampling
layers. The expansive path is designed in a way that the output of each up-sampling
level has the same feature map size as the contracting pass, illustrated in (5.3). In
such architecture, gradients likely vanish through propagating through many layers
of the network. Subsequently, no gradient remains to update the weights, specially
in the early layers of the network.

To address this problem, skip connections are added between the network layers
so that high-resolution features from the contracting path can combine with the
up-sampled feature maps on the expansive path. These skip connections provide a
shorter path for the gradient to flow, facilitating gradient updates and convergence.
Besides, long skip connections in the encoder-decoded architecture of UNet enable
the recovery of the fine-grained details of images.

The U-Net has become the benchmark for most medical image segmentation
tasks and has inspired numerous meaningful improvements (Lei et al., 2020). In this
thesis, the application of UNet as semantic image segmentation is used to localize
the spine vertebrae of MRI images.

5.5.2 Lumbar Vertebrae Localization-Identification through
Segmentation

Localization

FCN architectures composed of convolutional layers can also be seen as a tool for
medical data localization. Convolutional filters as learning parameters in FCN con-
siderably degrade the number of learnable parameters, as opposed to the architec-
tures with the same depth containing fully connected layers. This section introduces
two ways of adopting FCN for lumbar vertebrae localization-identification.
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Network Design

We adopted UNet (Ronneberger et al., 2015) introduced in Section 5.5.1 as the seg-
mentation network for our purpose. AS it is explained it this section U-Net contains
a contracting and expanding path. The expanded layers are concatenated with the
convolutional layers of the equal resolution in the contracting path. In total, our
network has 23 convolutional layers, each of which are followed by a ReLU activa-
tion layer. Activation layers are followed by a 2 × 2 max pooling layer with stride 2
for downsampling on the contracting pass and a 2×2 transposed convolution (“up-
convolution”) layer on the expanding path. The role of transposed convolution is to
scale the feature map to larger sizes in expanding path through convolution opera-
tions of kernels so that at the output layer, the same resolution as the input layer is
obtained. Unlike up-sampling that resizes the input by copying the pixel intensities,
the parameters of the transposed convolution are learned during the training phase.
The number of feature channels gets halved and doubled at each down-sampling
and up-convolution steps, respectively. We use small kernel size of 3 × 3 for all the
channels. It is shown by Simonyan and Zisserman (2014) through the evaluation of
networks that the smaller kernel size significantly improves the performance of the
very deep networks. At the top of the network, a 1 × 1 convolutional layer is added
to map the feature space to the desired number of classes in the output.

Training

The network is trained on MRI images as input and their masks as output. The
loss function is computed by combining a pixel-wise softmax function over the final
feature map with the cross-entropy loss function. Softmax activation and cross-
entropy loss are defined as follows:

pc(x) = exp (ac(x)) /

(
C∑

c′=1
exp (ac′(x))

)
, (5.1)

loss =
∑

x
log

(
pℓ(x)(x)

)
, (5.2)

where ac(x) denotes the activation of the last layer in feature channel c at pixel
position x. C denotes the number of classes and ℓ determines the true label of each
pixel. pc(x) represent the approximated maximum function. I.e., pc(x) ≈ 1 for the c
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that has the maximum activation ac(x) and pc(x) = 0 for all other c. The loss then
penalizes at each position the deviation of pℓ(x)(x) from 1.

We first adopt UNet, which is formulated as five class segmentation for the seg-
mentation of five lumbar vertebrae. This enables UNet to localize and identify all
lumbar vertebrae in an end-to-end manner. We refer to this approach as multi-class
segmentation(M-seg). The input sample to the M-seg is the center slice of the MRI
lumbar image, and the output comprises five channels. Each channel is associated
with the segmentation of one vertebra body and is equal in size to the input res-
olution. The surrounding bounding boxes around the predicted segmentation area
serve as the position of the vertebrae, and the channels determine their identifica-
tion. Albeit this approach is straightforward and en-to-end, we will show that its
performance is poor.

We then separate the localization and identification tasks into two stages to ease
the complexity. We refer to this approach as single class segmentation (S-seg). As
opposed to M-seg, we first make binary segmentation for localization of all vertebrae
and then label the localized vertebrae in a post-processing scheme. Using UNet in
this manner aims to perform the localization, in a way that all the vertebrae pixels
(as the instances of one class) are predicted as the foreground in a single channel.
Therefore, unlike optimizing the loss on five channels in M-seg, it will be run on one
single channel. Our observation shows that, as it was expected, this relaxation in
the training objective can improve the localization performance of the model. The
following section describes how the localized vertebrae using S-seg are labeled.

Identification

Here, we describe the pipeline for labeling or identifying the vertebra in S-seg. The
vertebrae in S-Seg are localized using binary masks. These masks are labeled through
the following steps.

1. Clean the binary masks in the following order: (a) Fill the holes (also known
as region filling) on segmented areas – where small regions inside the vertebral
body are predicted as background – by machine vision morphological image
processing operations. (b) Remove the small connected components whose
sizes are less than 0.2 of the largest connected component. (c) Erode touching
connected components horizontally for once using morphological erosion oper-
ation with 3 × 3 struct (a matrix of entries of one in the middle row and zeroes
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otherwise).

2. Label the first connected component from the bottom as L5. We assume that
the first vertebrae localized by S-seg at the bottom of the image is L5. Although
this assumption can be violated in the cases where S-seg fails to predict the L5

body, or it wrongly detects the sacrum bones as lumbar vertebral body, our
observation shows that S-seg is highly robust in this regard.

3. Calculate the distances between the centers of the two neighboring segmented
vertebrae and take the median and standard deviation of the distances.

4. Label the rest of the connected components using a criterion based on com-
ponent order on the image given the reference point L5, and the statistics
calculated on the vertebrae center distances on step 3. The criterion says that
if the distance of the current vertebra center from the preceding one minus the
median is less than two standard deviation, assign the immediate label to the
current vertebra. Otherwise, assign the second immediate label to the com-
ponent. Not that we set this specific criterion for the cases that the vertebral
body does not appear on the scan because of the pathological cases, and as a
result, the S-seg cannot localize them.

Table 5.1: Precision rate (%) performance comparison of lumbar vertebrae
localization-identification using S-seg and M-seg. The results demonstrate a sig-
nificant improvement on using the segmentation network in binary mode for lumbar
vertebrae detection.

Lumbar S-seg M-seg
L1 75.182 45.34
L2 71.53 45.14
L3 59.124 49.3
L4 64.963 60.43
L5 80.29 75.34

Table 5.1 compares the performances of the S-seg and M-Seg. It shows the
performance has been greatly improved in S-seg due to optimizing a simpler loss.
This experiment show that how dividing a complex problem into simpler steps, in
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practice, can boost the performance of the localization-identification precision rate.
Figure 5.4 visualize some failed examples resulting from M-seg and compares them
to the outcome of S-seg localization-identification.

Figure 5.4: Comparison of lumbar vertebrae localization-identification through segmentation.
The first row demonstrates the outcome of S-seg approach, described in Section 5.5.2, while
the second row illustrates the outcome of M-seg approach, described in Section 5.5.2, on the
same samples. Colors indicate the identification of vertebrae, which starts from purple as L5
at the bottom of the spine. The colored area determines the localization performance. In
quantitative evaluation, we draw a bounding box around the segmented area to measure the
precision rate. As it is apparent, S-seg is more robust than M-seg in both localization and
identification.

5.5.3 Data Augmentation

In this section, we aim to show the effect of data augmentation and the choice of
the augmentation method on training deep convolutional networks with the focus
of S-seg approach. As mentioned earlier, lack of sufficient training data leads to
overfitting problems and reduce generalization ability. Besides, adversarial attack
tolerance is another growing concern for researchers (Deldjoo et al., 2021). One way
to address these challenges is data augmentation approaches, which synthetically
generate data instances for training a model. Growing data via data augmentation
makes the network more generalized and less vulnerable to adversarial attacks. This
is because the network learns invariances and robustness properties without the need
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to see these transformations in the annotated image corpus.

Affine Transformation It is a family of simple and easy to understand and im-
plementation methods of data augmentation, including affine image transformation
(rotation, reflection, scaling, and shearing), and color modification (histogram equal-
ization, enhancing contrast or brightness, white balancing, sharpening, and blurring).

GANs Using Generative adversarial networks (GANs) is one of the advanced data
augmentation techniques which generate new images in an unsupervised manner
using min-max strategy (Engstrom et al., 2018). GANs use two adversarial networks,
a generator and a discriminator. The generator generates realistic images to fool
the discriminator by minimizing a cost function, while the discriminator maximizes
the cost to better distinguish fake images from the real ones (Goodfellow et al.,
2014). GANs are found to be useful in many image generation and manipulation
problems (Creswell et al., 2018; Yi et al., 2019). Some problem, however, may arise
with generating images with GANs, such as lack of compliance with reality and
coordinating a global structure (Miko lajczyk and Grochowski, 2018), which is the
reasons we avoid GANs for data augmentation in this section.

Elastic Deformation In addition to small affine transformations, elastic deform-
ation (introduced by Simard et al. (2003) in the context of visual document analysis)
is also known as common deformations of tissues appeared on medical images (Castro
et al., 2018; Ronneberger et al., 2015; Nalepa et al., 2019). Despite studies that show
performance improvements of CNNs using elastic deformation as data augmentation,
there are works which indicate that such aggressive augmentation may deteriorate
the performance of the models (Lorenzo et al., 2019). Therefore, the effect of ex-
cessive data augmentation using affine transformation and elastic deformation on
segmentation of spinal vertebrae is investigated in this section.

In this study, scans are primarily enhanced by contrast limited adaptive histogram
equalization (Yadav et al., 2014). We then excessively applied affine transformation
and elastic deformation to the training set, generating 30 deformed versions for each
of coupled image-masks. The deformations are selected based on the nature of the
spine MRI images. For elastic deformation, we follow the setting proposed by Ron-
neberger et al. (2015). The smooth deformations using random displacement vectors
are generated. The displacement vectors are sampled from a Gaussian distribution
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Table 5.2: The effect of different data augmentation on lumbar spine segmentation
using S-seg on the original dataset of 60 images. The results are reported based on
intersection over union (IOU). Ten of the images are left out for the testing time, and
the rest are used for training and validation sets. Augmentations are only applied
to the training set. The affine transformation is primarily applied to the dataset,
which improves the IOU by 17%. Then, the affine transformation further improves
the results by 2.7%.

Training(%) Validation(%) Testing (%)
Original data 86.42 77.28 75.30
Original data

+ affine transformation 96.34 94.2 92.2

Original data
+ affine transformation
+ elastic deformation

98.98 97.76 94.98

with 10 pixels standard deviation. Bi-cubic interpolation is then used to compute
per-pixel displacements. The affine transformation is limited to translation of 10
pixels in x and y directions, rotation of 10 degrees, and scaling of range=[0.9,0.11].

The effect of the described data augmentations are reported in Table 5.2. As it
is apparent from this table, the performance is improved by growing the data. The
affine transformation is primarily applied to the dataset, which improves the IOU
by 17% and degrades the overfitting (the difference between the testing and training
performance) by 7%. Then, the elastic transformation further improves the results
by 2.7%. From these results, it can be realized that realistic deformations reduce
overfitting effect and enhance the performance of spinal vertebrae segmentation.

5.5.4 Semi-automatic Generation of Training Annotations

To alleviate the scarcity of data and provide more training annotations, we take one
more step, by incorporating human expert opinion. We bootstrap the annotation
with the human-in-the-loop approach (Holzinger et al., 2017; Cui et al., 2016) in
which the uncertain part of the output generated with the network is modified with
humans and the modified outcome is added to the training set. Not that the uncer-
tain part of the output refers to the masks that are not completely aligned with the
true regions.

In this section, we investigate whether growing annotated data in this way help
the network to see more variances and consequently perform better. To this end, we
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Table 5.3: Human-in-the-loop effect on the segmentation performance, IOU of S-
seg. This experiment includes all the data augmentation variations introduced in
Section 5.5.3. First row shows the S-seg performance on original 60 images, and the
second shows the performance after one human-in-the-loop iteration. The results
show an improvement of 4% in segmentation performance, and a reduction of 3%
in overfitting effect (the difference in IOU performance between training and testing
phases).

#Original scans Training (%) Validation (%) Testing (%)
60 98.98 97.76 94.98
137 99.9 99.9 98.68

employ the S-seg approach defined in section 5.5.2 to generate preliminary results.
This network is first trained on 60 original images in addition to all variants of
data augmentation introduced in Section 5.5.3. The trained network is inferred on
unknown samples to generate the masks over lumbar vertebrae. We know that the
samples that the model perfectly annotates can not add more information to the
network and are deemed redundant to be a part of training data. Therefore, we
select the uncertain generated masks. Because there were no available annotations
for the generated mask on the unknown samples, the uncertain samples were picked
by a human expert instead of using quantitative measurements. Among the uncertain
generated samples, we randomly collect part of them to be modified.

The chosen image-mask pairs are added to the training set after a single round of
the human-in-the-loop cycle and two post-processing modifications. We first fill in
the holes appeared on some areas over the segmented vertebrae and remove a small
component over unwanted areas. Both modifications are applied using morphological
operations. Then, the segmented areas are manually modified, especially the regions
close to the borders. We run one iteration of this process as illustrated in Figure 5.5.
This cycle can be iterated to get more masks or enhance the model over time.

As it is shown in Table 5.3 one iteration of the human-in-the-loop cycle improves
the segmentation performance in all training, validation, and testing phases. Besides,
the gap between training and testing performance degrades by 2%.

5.5.5 Loss Function

The choice of loss function for training efficient DL segmentation models has been
experimented in various domains (Kayalibay et al., 2017; Milletari et al., 2016; Ron-
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Figure 5.5: Human-in-the-loop illustration. In our pipeline, with the segmentation
network as the main learning block, the network is trained on the training data,
and it outputs the segmentation maps of the testing instances. From the predicted
segmentation maps, the uncertain maps are selected by a human expert. Some of
these uncertain maps are randomly selected and modified by automatic modification
(computer vision operations) and human annotation. The modified mask and the
corresponding instances are then added to the training set for the second round of
training. Table 5.3 shows an improvement of 4% in segmentation performance, and
a reduction of 3% in overfitting (the difference in IOU performance between training
and testing phases), with one round of human-in-the-loop iteration.

neberger et al., 2015). The loss functions in DL semantic segmentation can be
categorized into four groups: region-based loss, e.g., Dice and Jaccard; distributed-
based loss, e.g., binary cross-entropy and balanced cross-entropy; boundary-based
loss, e.g., Hausdorf distance; and compounded loss, e.g., combo. In this section,
for training UNet on spine MRI images, we compare the two most commonly used
losses (Kayalibay et al., 2017; Milletari et al., 2016; Ronneberger et al., 2015) in
medical image segmentation: cross-entropy and Jaccard losses. Cross-entropy (Yi-
de et al., 2004) measures the difference between two probability distributions for a
given variable or set of events, which is widely used for pixel-level classification as a
segmentation task. Binary cross-entropy loss LCE is defined as:

LCE(y, ŷ) = −(y log(ŷ) + (1 − y) log(1 − ŷ)), (5.3)

where y and ŷ are true and predicted labels of image pixels. While this loss is shown
to be successful in many applications, in a situation where the target area is rather
small in comparison to the rest of the image, this loss might not reflect the actual
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accuracy of semantic segmentation. When the number of pixels on the background
outnumber the number of pixels on the target foreground, the accuracies of near 98%
are more likely influenced by the background regions. This is the motivation to use
the Jaccard loss LJD that directly optimize the dissimilarity between two objects:

LJD = −2|y| × |ŷ|
|y| + |ŷ|

(5.4)

Equation (5.4) which is close to Jaccard index (Jacc = |y∩ŷ|
|y|+ŷ|−|yŷ|) is also known as

IOU loss. Minimizing Jaccard loss for training segmentation network UNet minimizes
the dissimilarity between the predicted mask ŷ and the ground truth y. Therefore,
the network is trained to optimize the weights so that to make ŷ close to y.

As we mentioned earlier in Section 5.5.4, we start training UNet with the limited
number of annotated samples. These samples include 60 MRI scans, on which we
train the initial UNet. We train the network with similar hyperparameters with cross-
entropy loss and Jaccard loss separately. Interestingly, while the training and testing
segmentation performances using these two losses were comparable, the inference
predictions using the network trained on Jaccard loss has shown to be far more
capable on unlabeled data, which we visually observed on most of the segmented
scans. This enabled us to get some preliminary segmentation masks that were later
chosen as potential candidates to be added to the training set with the human-in-
the-loop iteration (described in Section 5.5.4). We compare these two losses once
again with 137 scans. Similar to the first try (on 60 training samples) both cross-
entropy and Jaccard losses lead to equally well outcome on training and testing
phases. However, this time the outperformance of Jaccard loss on unlabeled data is
not as pronounced. This can be explained in two ways: (1) the remaining unlabeled
data are still too difficult to learn, or (2) the added samples to the training data
using human-in-the-loop, contain only redundant information to this network. In
either cases, based on our experiments it can be concluded that, while Jaccard and
cross-entropy loss perform equally well with more training samples, Jaccard loss can
be more reliable with a smaller number of training data points.
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5.6 Object Detection for Localization and Identi-
fication

The previous section presented how the localization-identification problem can be
formalized by single and multi-class segmentation networks. In this section, we
continue this analysis by adopting object detection networks.

5.6.1 Object Detection

Object detection aims to locate instances of semantic objects of a certain class.
Object detection can be formulated by the localization of regions of interest by
drawing bounding boxes around them and classification of these bounding boxes by
corresponding class labels. In the medical imaging context, object detection can be
applied to locate organs or disease-related regions. Let I be an image with n regions
of interest. The detection function then estimates the specification of the bounding
boxes, including width w, height h, the xi and yi coordinates of the centroid, and
the class label ci.

Traditional object detection pipelines include three stages of informative region
selection, feature extraction and classification. Each stages of the traditional pipeline
comes with shortcomings. Informative region were selected by scanning the whole
image with a multiscale sliding window. Although this exhaustive strategy can de-
tect all possible positions of objects, a large number of candidate windows, makes
this strategy computationally expensive and inefficient in terms of memory consump-
tion, and producing many redundant windows. Feature extractions were manually
designed, such as, SIFT (Lowe, 2004), HOG (Dalal and Triggs, 2005) and Haar-like
(Lienhart and Maydt, 2002) features. Due to the diversity of appearances, illumina-
tion conditions, and many other variations, these features my not be able to perfectly
describe the visual features. Classification, which distinguishes a target object from
all the other categories, was done using conventional machine learning models, such
as, SVM (Cortes and Vapnik, 1995), Adaboost (Schapire, 2013), and Deformable
Part-based Model (Felzenszwalb et al., 2010), which have limited capacity.

A significant gain in object detection has been achieved by the introduction of
regions with CNN features (R-CNN) (Girshick et al., 2014). R-CNN was the first to
show that a CNN can lead to dramatically higher object detection performance (on
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PASCAL VOC 2010 challenge) as compared to systems based on traditional meth-
ods. R-CNN first uses a selective search (Uijlings et al., 2013) for region proposals.
Proposed regions are assumed to contain the objects of interest (e.g., 2000 regions
per image). The regions are then resized to a certain size and fed to CNN (due to the
fixed size limitation caused by fully connected layers at the top of CNNs). The fea-
tures on top of CNN enter the class-specific linear SVM for classifying the proposed
regions. For example, given 20 classes in the dataset, there are 20 SVM classifiers in
the pipeline. There is also one more SVM for the background classification. Besides,
the bounding box coordinates offset are learned for each object class with CNN fea-
tures. The main shortcoming of R-CNN is that it is computationally expensive and
slow. This is because the training process consists of multiple objectives, the log
loss for the softmax classifier, the hing loss for linear SVM, and the least-squares for
bounding box regressions. Besides, it takes a lot of memory during training phase
to optimize each stage, since these stages do not share representations. R-CNN can
also be slow during testing since the features must be extracted per proposed region
without sharing computation.

A number of detection improvements have been achieved by successive innova-
tions that have been motivated by the R-CNN drawbacks. For example, Fast R-CNN
(Girshick, 2015) proposed to mitigate the computational cost of convolutional oper-
ation. It runs the entire image through some convolutional layers all at once to get
a high-resolution convolutional feature map corresponding to the entire image. The
region proposal is then applied to this feature map, which allows us to reuse all the
expensive convolutional computation across the entire image. The pooling layer then
wraps the crops from feature map and runs them through fully connected layers to
predict the class scores and linear regression offsets. Fast R-CNN is trained on these
two losses jointly. Training Fast R-CNN is ten times faster than R-CNN because it
shares all the computations between different feature maps. One bottleneck to make
this method even faster is that the computational time is mainly dominated by com-
puting the region proposals. For instance, processing all proposed regions takes less
than a second, while computing region proposals using selective search takes around
two seconds.

Faster R-CNN (Ren et al., 2016) addressed this bottleneck by making the network
predicts its own region proposals. Similar to fast R-CNN, the entire image in this
method is run through some convolutional layers to get the high-resolution feature
map. Then, instead of a fixed region-proposal method, the feature map in Faster R-
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CNN is run through a region-proposal network that learns to project region proposals
inside the network. The remaining parts of this method are similar to Fast R-CNN,
except that in faster R-CNN, the network is jointly trained with four losses. These
losses include the classification and regression losses for learning the bounding boxes
around region proposals, and classification and regression offsets for learning final
bounding boxes.

The methods mentioned above are in the family of region-based object detection
methods. There is also another family of methods for object detection, in which,
rather than processing each individual potential region independently, the object
detection is formalized as a regression task on the entire image, as depicted in Fig-
ure 5.6. This makes the regression-based methods quite faster than region-based
methods. One of these methods is YOLO (Redmon et al., 2016) that runs a single
giant CNN on images and tries to regress the bounding box coordinates and predict
corresponding class labels on image grid cells. To this end, YOLO first divides the
images into grid cells S ×S. Within those grid cells, it sets different bounding boxes,
called base bounding boxes B on which the network makes different predictions, in-
cluding the offsets of the base bounding boxes and the corresponding classification
scores for C categories. Then, Non-max suppression selects the best fits. YOLOV2
(Redmon and Farhadi, 2017) extend YOLO by adding batch normalization to CNN
layers for better generalization and allowing the grid cells to contain more than one
object. In YOLOV2, to encounter the problem of complexity and accuracy, a new
classification network called Darknet-19 is used as a backbone, which has 19 convolu-
tional layers and five max-pooling layers. They remove the fully connected layers in
YOLO architecture and instead add the anchor boxes to predict the bounding boxes.
The updated version of this framework has then been presented in so-called YOLOV3
(Redmon and Farhadi, 2018) and YOLOV4 (Bochkovskiy et al., 2020), which has
been shown to be the state-of-the-art method for real-time object detection tasks.

5.6.2 Vertebrae Localization-Identification Formulation as
Object Detection

Having object detection problem introduced in the previous subsection, we now for-
mulate lumbar vertebrae localization-identification in this concept in two ways. First,
we treat each vertebra as an individual class, in which the goal of the detector is
to regress and identify five different objects from different classes, L1 to L5. This
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Figure 5.6: YOLO Object detection framework. YOLO is a regression based ap-
proach that use a single giant network to learn features and directly make predic-
tions on grid cells on the entire input image. Non-max suppression at the final stage
choose the most accurate anchor boxes.

approach is end-to-end and enables both localization and identification of verteb-
rae simultaneously. We refer to this approach as a multi-class detector (M-detect).
Second, we consider all the vertebrae L1 to L5 as a single class, where the detector
is aimed to regress all the vertebra body objects in a given input, regardless of their
class labels. This way, the localization is performed by the detector, but the iden-
tification requires a labeling step later on the detected vertebrae, which we simply
address by counting the lumbar vertebrae from a reference point L5. We refer to this
approach as a single class detector (S-detect). Each approach has its pros and cons.
For instance, M-detect has the advantage of being end-to-end, while S-detect com-
poses of a localization step by detection network followed by a post-processing step
as the identification part. This may make S-detect less robust in the identification
part. On the other hand, minimizing five class losses in M-detect makes its optim-
ization more complex than the single class loss in S-detect, which may degrade the
localization accuracy. This section investigates how S-setect and M-detect perform
on our heterogeneous dataset.

Network Design

Now, let’s construct our YOLO-based (Redmon and Farhadi, 2017) detection model
in detail as the core design of both M-detect and S-detect. As previously introduced
in Section 5.6.1, YOLO sees the entire image during training and test time, so it
implicitly encodes contextual information about classes as well as their appearance.
The training images for the vertebrae detection are divided into 13 × 13 grids, and
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each grid predicts five anchor boxes. Each bounding box consists of 5 predictions:
x, y, w, h, and confidence. The (x, y) coordinates represent the center of the box
relative to the bounds of the grid cell. The (w, h) are width and height, which are
predicted relative to the whole image. Finally, the confidence prediction represents
the IOU between the predicted box and any ground truth box. Each grid cell also
predicts C conditional class probabilities, Pr(Classi|Object). These probabilities
are conditioned on the grid cell containing an object. During training, the following
multiple parts will be optimized:
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(5.5)

where 1obj
i denotes the existence of an object in cell i and 1obj

ij denotes that the
jth bounding box predictor in cell i is “responsible” for that prediction. λnoobj and
λcoord are set to 0.5 and 5, respectively, which control the effect of gradient from
cells that do contain objects. The network runs on 23 convolutional layers, where
each layer is followed by batch normalization and leaky rectified linear activation,
ϕ(x).

ϕ(x) =
 x, if x > 0

0.1x, otherwise
(5.6)

In addition, the network is composed of four max-pooling layers. The convolutional
part acts as a feature extraction unit on the whole image and outputs the bounding
box (center coordinate) with the highest IOU (Intersection over the union of the
ground truth and prediction) among five anchor boxes.

Training

We initialize the network with PASCAL VOC2007 (Everingham et al., 2007) weights
and run the tuned model on our spine dataset and the inference on the test set. We
train the network for about 100 epochs on the training and validation datasets.
Throughout the training, we use a batch size of 16, the learning rate of 0.5e−4,
and Adam optimizer with the first momentum of 0.9 and the second momentum of
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0.999. To avoid overfitting, extensive data augmentation from affine transformation
to elastic deformation, introduced in 5.5.3, are applied to the training dataset.

Testing

For testing, first, class-specific confidence scores are calculated for each box by mul-
tiplying the conditional class probabilities and the individual box confidence predic-
tions:

Pr ( Class i | Object ) ∗ Pr( Object ) ∗ IOUtruth
pred = Pr ( Class i) ∗ IOU truth

pred (5.7)

These scores encode both the probability of the class appearing in the box,
Pr ( Class i), and how well the predicted box fits the object, IOU truth

pred . These
predictions are encoded as a S × S × (B × 5 + C) tensor. For M-detect and S-detect,
C is equal to five (for five lumbar vertebrae L1 to L5 detection) and one (for ver-
tebrae detection), respectively. We use S = 13 and B = 5 for both M-detect and
S-detect. Accordingly, the predictions are encoded as 13 × 13 × (5 × 5 + 5) and
13 × 13 × (5 × 5 + 1) tensors.

Non-max Suppression: As the output of the model, for each grid cell on an
image, we receive five predicted anchor boxes. For final prediction and to select the
most accurate anchor boxes, first, the low probability predictions are removed, and
then for each of the classes, non-max suppression is run independently. Non-max
suppression is a computer vision method that selects a single entity out of many
overlapping entities to make sure the model detects each object only once. This
method first discards the bounding boxes with low probabilities. Then, it iteratively
takes a box with the largest probability and discards any remaining box that has
IOU≥ 0.5 with the box predicted in the previous step.

Post-processing

While the non-max suppression stage is the final step for the M-detect approach,
S-detect requires the labeling stage after the localization of the vertebrae. To this
end, once the model predicts the most probable boxes as the individual vertebrae in
the lumbar region, we assume that the first vertebra detected at the bottom of the
given image is the last lumbar vertebrae L5. Then, the remaining detected vertebrae
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are labeled based on their order on the image from L4 to L1. In cases where one
of the vertebrae is missed to be localized by the detector, the labeling is controlled
by the mean and variance of the center distances of consecutive vertebrae that has
been estimated over the training images. These distances are measured relative to
the size of the images.

We compare these two approaches along with other methods of vertebrae
detection-identification in table 5.4. We observed that S-detect performs a better
localization performance, as we expected since the loss is simpler for optimization.
However, both approaches perform equally well on detection, since M-detect com-
pensates its localization outcome by making a better identification predictions. This
is because in M-detect the identification part is also part of the learning. The com-
parison results will be discussed in more detail in Section 5.8.

5.7 New Regression Formulation for Localization
and Identification

Despite acceptable performances of the YOLO-based detection network for lumbar
vertebra localization-identification, this method fails in pathological cases where the
abnormalities appear. Some of these abnormalities are depicted on Figure 5.1. For
instance, on Figure 5.1 (b) or Figure 5.1 (a), YOLO based detection network failed
detecting L1-L2 because of the visual artifacts. These failures occur because of: (1)
different appearance of pathological cases on unseen data from the training data, and
(2) considering vertebrae as individual objects with no dependency between them.
To address these problems, we ease the training by introducing prior knowledge that
is specific to lumbar vertebra scans. Unlike object detection task as the objective of
the YOLO, which we do not have any prior knowledge about the existence of the
objects in the scans, in vertebrae localization-identification task, we primarily know
that scans are taken from the patient lumbar region, and therefore, five lumbar
vertebrae exist on the scans, and locate in a specific order. Therefore, we make
this assumption that given an MRI scan from the vertebrae region, firstly, all five
vertebrae L5 to L1 are existed, but they may not be appeared on the scan. Secondly,
they locate in descending order from the bottom of the image. Considering these
assumptions, we train a deep CNN whose neurons at the output layer are fixed to
regress the five lumbar vertebrae locations. The neurons’ order is associated with
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vertebrae identification. In this way, the network is forced to detect all five vertebrae
even if they do not appear in the image like Figure 5.1 (b), or lose the order like
Figure 5.1 (a). Following in this section, we formulate the vertebrae localization-
identification as a regression model. We then describe how the model is optimized
in the training phase and inferred in the testing phase.

5.7.1 Model formulation
We formulate lumbar vertebrae localization-identification as coordinate regression
of two diagonal corners of bounding boxes around every single vertebra, using a
feed-forward deep neural network for the regression problem. We train a CNN as
function φ(I; θ) to regress vector of coordinates y = (..., yT

i1, yT
i2, ...)T , i ∈ {1, ..., 5}, on

a given image. θ denotes the parameters of the model, and (yi1, yi2) pair contains x,
y absolute coordinates of upper left and bottom right corners of ith lumbar vertebra.
As these coordinates are assigned to specific neurons of the network, the localization
and identification will be predicted at the same time. The function φ is based on
a CNN structure, including a feature extraction block and regression. The feature
extraction part is the very deep ResNet with 50 layers, excluding the classification
decision layer. All the convolutional layers are followed by a batch normalization
(BN) (Ioffe and Szegedy, 2015b) and a rectified linear activation layers (ReLU)(Nair
and Hinton, 2010). The regression part is a fully connected (FCN) layer of 20
neurons, which is added to the top of the feature extraction block. Despite the
other layers, FCN layer is activated linearly to enable the network to regress the
coordinates in x ∈ [0, imgw] and y ∈ [0, imgh] intervals, in which imgw and imgh

are image width and image height, respectively. We optimize the loss on the single
vector y including all five lumbar vertebrae coordinates. One advantage of the defined
target vector y is that we forced the network to learn the coordinates of all vertebrae,
even if they do not appear on the scan. Therefore, the network is able to localize
the missing vertebrae without adding more complexity to the network. To this end,
our labeling strategy incorporates every lumbar vertebra, whether they are visible
or missing. The missing vertebra locations in training phase are measured by the
average of the precedent and subsequent vertebrae coordinates. Since the network
learns the structure of missing objects on training, it will be able to predict similar
cases on unknown samples. These vertebrae are omitted (Toshev and Szegedy, 2014)
or considered as do-not-care (Redmon et al., 2016) in other approaches.
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5.7.2 Training

We pre-train our convolutional layers on the ImageNet 1000-class competition data-
set (Russakovsky et al., 2015). The choice of pre-trained weight will be discussed
later in Section 5.8.4. For the pretraining, we use the first 50 convolutional layers,
followed by an average-pooling layer and a fully connected layer. The whole φ is then
retrained using L1 loss, with respect to the model parameters θ as in equation 5.8,
where θ∗ refers to the optimal model parameters. The error is measured in absolute
coordinates, and this is the reason that we rather train the network on L1 loss than
L2 loss (used by Toshev and Szegedy (2014) and Janssens et al. (2018) for a similar
regression purpose) since L1 loss is more robust when the error is larger than 1.

θ∗ = arg min
θ

∑
i∈[1,10]

∥yi − φi(I, θ)∥ (5.8)

The retraining is based on mini-batch gradient descent using the Adam optim-
ization algorithm (Kingma and Ba, 2014). To minimize the overhead and make
maximum use of the GPU memory, we reduce the batch to two images. Therefore,
we use a high momentum (0.99) such that a large number of the previously seen
training samples determine the update in the current optimization step. The optim-
ization starts with the learning rate of 1e−4 and weight decay of 0.1 for 100 epochs.
The data augmentation, including the affine transformation and elastic deformation,
is applied over the training, increasing the number of training annotations by the
factor of 30.

5.7.3 Testing

The pipeline has a straightforward inference. One single image is fed to the network,
and the network outputs the coordinates of the two diagonal corners of all lumbar
vertebrae. The advantage of our method is that it does not need post-processing
steps to refine the predictions, unlike the other recent works based on the DNN
approach described in Section 5.3. To tackle the problem that different FOV may
cause instead of adding more complexity to the network or the pipeline (Lessmann
et al., 2018; Janssens et al., 2018), we grow the dataset in such a way that includes
the FOV representing the ROI along the different FOV to the training set through
excessive data augmentation and human-in-the-loop process.

One assumption of our regression-based method is that the scans contain all five
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lumbar vertebrae, and therefore, the output of the network is fixed to regress the five
bounding boxes. But in some cases, the scan does not cover all five lumbar regions;
for instance, the scan is zoomed in for magnification. In such cases, the network gets
confused about how to locate all five lumbar vertebrae on the scan unless proper
padding is applied to the images. The padding can be roughly adjusted based on the
number of vertebrae presented in the scan with respect to the size of the image. The
rough number of vertebrae is either asked from the user or automatically estimated
using the S-detect approach presented in Section 5.6.2 and then the scan is padded
with zeros to include the left-out vertebrae. Besides, to make the network familiar
with these cases, we simulate such data from the training set. To this end, on random
samples, we crop the data to eliminate a couple of vertebrae and pad these regions
with zeros.

5.8 Results

In this section, we compare the performances of the proposed methods for the
localization-identification of lumbar vertebra.

5.8.1 Dataset

We evaluate the proposed method on the dataset consisting of 305 MRI scans of pa-
tients with different types of pathologies. The scans are T1-weighted, and they are
a stack of sagittal slices taken from one shoulder to another. In general, the middle
slice, the closest image to the middle of the vertebral column, has a higher probab-
ility of showing well-clustered vertebrae. Other slices are important for the manual
annotation since they might have some information, e.g., clear edges or indications
like rip bone location, making the vertebrae easier to be differentiated. Although
the slices from one patient are taken from the same FOV, they vary widely through
different patients, which increases the difficulties of accurate vertebrae localization-
identification. This challenge has been addressed by adding augmented data, which is
described in section 5.5.3. There are various pathological cases in our dataset, such
as the abnormal curvature, shape, and appearance of vertebrae caused by severe
diseases. Besides, the images contain different visual artifacts caused by surgical
implants and the patient’s movement during MRI acquisition. The whole dataset
consists of two parts. There are 168 images with segmentation masks on the lumbar
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vertebrae that had been grown with the factor of two by the human-in-the-loop pro-
cess described in section 5.5.4. These masks are directly used as the training data
for the segmentation network described in section 5.5.2. For the detection and re-
gression networks, the surrounding bounding boxes from the segmentation mask are
extracted as the ground truth. The 168 images are fed into networks for the training
and validation with a split ratio of 0.2. The remaining 137 scans, annotated with
the lumbar vertebrae bounding boxes, are used to compare the methods for lumbar
vertebrae localization-identification. The scans in the test set are considerably more
challenging in terms of pathological cases and image artifacts.

5.8.2 Experimental Results

Table 5.4 shows the precision rate of detected vertebrae with threshold T = 0.5 or
IOU ≤ 0.5, which is typically considered as a decent outcome in object detection
problems (Redmon et al., 2016; Ren et al., 2015). In Table 5.4, we compare the
outcome of all presented methods in this chapter, including, S-seg, M-seg, S-detect,
M-detect, and our regression model. The results show that our regression model
works significantly better than state-of the-art detection models that have been em-
ployed for the lumbar vertebrae detection. To further evaluate the results, we plot
the precision rate curve generated by different threshold T in [0.1,1] interval with
step size 0.05 in Figure 5.7. In this plot, S-seg and S-detect, which outperform the
M-seg and M-detect respectively, are represented as the segmentation and detection
based models. As it can be clearly seen, our model shows more stable outcome for
all values of T on most of the vertebrae except for L2 that S-detect surpasses for
IOU > 06. Nevertheless, for IOU = 0.5, an acceptable detection rate, our method
wins. These plots illustrate that our approach makes a better localization than other
approaches, even when we increase the ground truth and prediction overlaps.

The average run-time per scan of size 224×224 using our method was 12.3 ms,
which is excluded the time required for loading the image, overlaying the predictions
on the image, and saving the results. This time is considerably less than 115 ms,
which the detection network needs for vertebrae localization-identification. Using
the segmentation network, the average run-time per scan of size 512×512 was 121.75
ms, comprising the segmentation part (44.108 ms) and the labeling (77.651 ms).
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Figure 5.7: L1 to L5 precision rate curve generating by T between 0.1 and 1 with
the step size of 0.5. The blue, green, and red lines represent s-seg, s-detect, and
our regression method, respectively. The curves show that our regression method
consistently outperforms the other two methods, except for L2 that s-detect surpasses
for IOU > 06. Nevertheless, for IOU = 0.5, an acceptable detection rate, our
method always wins.
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Table 5.4: Precision rate (%) of each individual lumbar vertebra identification on
137 test data. The values show how many of the detected vertebrae are correctly
detected while the localization criteria of IOU = 0.5 is satisfied. Our regression
method outperforms the segmentation and detection network on a test set including
many pathological cases.

Lumbar Regression M-seg S-seg M-detect S-detect
L1 92.70 45.34 75.182 83.21 83.94
L2 94.16 45.14 71.53 92.45 91.45
L3 93.43 49.3 59.124 89.05 89.05
L4 93.43 60.43 64.963 75.83 77.37
L5 94.89 75.34 80.29 91.24 91.24

Average 93.72 55.11 70.21 84.8 85.25

5.8.3 Sensitivity Analysis

We evaluate the sensitivity of our regression model through assessing the prediction
robustness to the noise. We add incremental noise to the testing data and measure
the mean absolute error on regressing the two diagonal corners of bounding boxes.
A zero-mean Gaussian noise generated by the different standard deviation (std)
between 0.1 and 0.9 with step size 0.05 was added to the test data. The variance of
a given image is defined as the average of the squared deviation of all pixels from the
local mean, calculated in a two-by-two window. The signal-to-noise ratio (SNR) is
defined as the ratio of the squared of image variance σimage to the standard deviation
of added noise σnoise.

σimage =

√√√√ 1
M

M∑
i=1

(Ik − Ilocal)2 (5.9)

SNR = σimage

σnoise

(5.10)

Figure 5.8 shows the robustness of the method’s prediction performance to the
added noise. It is apparent from the plots that the predictions remain robust for
large noise levels. As expected from a robust model, for SNR ≤ 1, which means
until the noise level becomes as large as the signal level, the network performs as
accurately as when no noise is added.
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Figure 5.8: Illustration of noise robustness of the proposed regression-based network.
The upper row shows the network predictions mean absolute error by increasing std
of noise on a subset of test data, while the bottom row shows the changes in the SNR
of those data. Approximately, until the noise level becomes as large as the signal
level, the network performs as accurately as when no noise was added.

5.8.4 Network Generalization through Transfer Learning

The deep convolutional layer, in general, needs large-scale data to reach a (local)
minimum that makes their parameters unbiased to the training images. However,
insufficient labeled data for medical image DL analysis that has existed for years
has been leading the developments to use narrower networks (Sekuboyina et al.,
2017) or training the same network iteratively on subsequent stage representations
(Toshev and Szegedy, 2014). On the other hand, several studies take advantage of
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Table 5.5: Weight initialization impact of a data in the source domain, which has
similar high-level semantic to the spine dataset, compare to weight initialization
using ImageNet weights. The CT-Liver dataset is inherently similar to the spine
MRI dataset, and we acquire the weights by training the whole regression network
on the data, with the same goal of regressing the bounding boxes around the liver on
the scans. But for the ImageNet dataset, we used the pre-trained weights available
by Keras for the first 50 convolutional layers of the network. This experiment aims
to show that pretraining on a dataset that barely has high-level semantic overlap
with target objects also achieves equally good transfer performance for our purpose
of localization identification.

#Weight initialization Training (%) Validation (%) Testing (%)
Random 97.8 96.5 95.45
ImageNet 99.9 98.9 98.68
CT-Liver 99.9 98.9 98.68

well-trained, very deep networks on large-scale datasets (Yosinski et al., 2014). We
used the later technique, which is called transfer learning, to generalize the proposed
regression model.

Transfer learning and domain adaptation refer to the situation where what has
been learned in one setting is exploited to improve generalization in another setting
(Goodfellow et al., 2016). The idea is to take the representation of a neural network
that has been learned from one task and transfer that representation to a new task.
Please see Section 3.3 for a gentle introduction to transfer learning and its different
types.

Transfer learning can also be seen as a proper weight initialization of the core
part of a network that is going to be employed for a new task. In deep networks
with many convolutional layers and different paths through the network, a good ini-
tialization of the weights is important. Otherwise, parts of the network might give
excessive activations, while other parts never contribute (Ronneberger et al., 2015).
Moreover, since the early layers of the network extract the detailed features of the
input data, which are rather fixed in different kinds of image sources, proper initial-
ization prevents the objective function from getting trapped in the local minimum
or even saddle points and eventually eases the optimization. In other words, when
the parameters are initialized with values close to optimum values, the error function
in early epochs will get rather small, and the objective function will tend to reach
minima in the correct direction. This is the reason that a pre-trained network also
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has the property of becoming generalized faster. These are the reason we employ
transfer learning nearly on all the networks that have been developed in this thesis
for better performance and generalization.

Now, let’s discuss what kind of datasets should be used for pretraining in a cer-
tain task. In a downstream paradigm, a supervised model is typically pre-trained
on a large dataset of similar high-level semantics, for example, ImageNet for ob-
ject recognition, which often results in a significant performance improvement. But,
Zhao et al. (2021) declared that pretraining on a dataset that barely has high-level
semantic overlap with target objects also achieve equally good transfer performance
for object recognition problem. They showed that pretraining a network on a face
dataset (VGGFace2 (Cao et al., 2018)), or a scenes’ dataset (Places (Zhou et al.,
2017a)) could achieve equally good transfer performance as ImageNet dataset for
object recognition problems. Therefore, supervised transfer learning models mainly
focus on transferring low-level and mid-level features, but not high-level features. To
confirm this idea on the medical images, we compared our regression model when
pre-trained on CT liver (Bilic et al., 2019) and ImageNet datasets (Russakovsky
et al., 2015). The feature extraction part of our model φ is initialized with the
well-trained weights of ResNet-50 on ImageNet dataset for object detection task and
CT-Liver dataset for regression task. The last layers in the source domain are ob-
viously discarded and replaced with the layer which is specialized for our regression
problem, and it is initialized randomly. For transferring learning, one can either fine-
tune some parts of the network by focusing on the latest layers, or retrain the whole
network. Based on our experiments on a couple of networks, including segmenta-
tion, detection, and regression, retraining the whole network on target data that is
semantically different from source data will lead to more robust results, especially
when the number of instances in target data is small. This experiment is performed
on the part of the spine data as the target that exclude pathological cases, to clearly
observe the impact of transferring knowledge of different sources. Table 5.5 reports
the results. The training set in the target domain contain 60 samples. The training
data is separated into validation and training with a ratio of 40/60. The training
samples are augmented excessively as described in Section 5.5.3. For inference, 30
new samples are used for evaluation. Results show that both datasets reach equally
well-transferring knowledge, which is aligned with the study by Zhao et al. (2021).
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5.9 Spinal Vertebrae Localization-Identification

In this section, we show how far we can extend the current work on lumbar verteb-
rae to be applicable to the whole spine, including the lumbar, thoracic, and cervical
regions. Despite few training samples of those new regions, we will show how devel-
oping robust models in one region can be extended to other regions.

As we discussed in Section 5.7, to address the vertebrae localization-identification,
we assumed our scans contain the lumbar region. To relax this restricted assumption,
we extend the pipeline so that it first makes classification predictions to classify
different FOVs, and then addresses the localization and identification of each group
separately. The variation of scans’ FOV in our dataset is depicted in Figure 5.9: the
scans looking into the lumbar region shown on the left image, the ones that cover
the larger region where all vertebrae are included on the middle image, and the scans
looking into the upper region of the spine on the right image. Ideally, the spine MRI
should have one more category, where scans only cover the thoracic area, but this
is out of the scope of our study. For the identification of such samples, one would
need indications on other plains of the MRI images to correctly distinguish different
vertebrae.

For the first two groups, localization-identification of vertebrae in our pipeline
is addressed by extending our regression approach developed for lumbar vertebrae.
However, as mentioned, one limiting assumption of this work is that the scans are
assumed to contain only five lumbar vertebrae. Therefore, the network’s output is
fixed to regress the five bounding boxes, which is simultaneously the key point to
benefit from the rich representation of CNNs. To extend this work to an arbitrary
number of vertebrae (from five to 24), one could train the regression network for
all possible numbers of outputs, which is obviously not computationally efficient.
Instead, we keep the regression network as a strong reference point for the lumbar
region. For the remaining vertebrae, we merge the other methods to be attached
to the lumbar vertebrae regression outcome. On the third group, the localization-
identification can also be addressed similarly by developing a regression model for the
cervical vertebrae. However, in this group, we can only address the localization since
no expert identification annotations are given in our dataset to reliably study this
region. Especially that first and second cervical vertebrae may not always appear or
distinguishable on a slice of the sagittal plane, which makes it even more challenging
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Figure 5.9: Illustration of different FOVs examples in our dataset on sagittal plane
of spine MRI scans. We classify the dataset into these three FOVs and address the
vertebrae localization-identification of each class separately.

for experts. For the localization of the third group, we adopt S-detect rather than
the regression method due to the flexibility of S-detect in the number of output. It
is worth mentioning that the main reason to use the regression network for the other
two classes is to introduce a robust reference point for the identification parts. The
detailed pipeline will be explained in the following sections.

5.9.1 Pipeline

As already mentioned in the previous section, the first problem with spine MRI
vertebrae identification is the variant of FOV of images. To ease this complexity,
we first break down localization-identification of spinal vertebrae to easier tasks by
categorizing the dataset into the majority of FOVs groups, and then, the vertebrae
localization-identification is addressed to each FOV separately. In the following,
we describe our pipeline in detail, where again, the localization is defined as finding
Vertebrae surrounding bounding boxes, and identification is defined as labeling those
detected bounding boxes.

First Stage: FOV classification

Define Classes: We first classify scans into three following FOV subgroups:

• The scans show the lower part of the spine, focusing on the lumbar vertebrae.



154
Chapter 5 A New Deep Learning Localization-Identification Approach for

High-dimensional Medical Images
This group that we refer to as group A comprises 97.8% of the training set.

• The scans cover lumbar, thoracic, and cervical vertebrae, which we refer to as
group B.

• The rest of the scans covering the cervical region that is referred to as group
C.

In more general cases, there could be another subgroup as well, in which the scans
cover thinner regions, for example around thoracic vertebrae.

To get an overview of the dataset, we introduce how the scans and the annotations
are distributed over different classes in the following. Note that this dataset mostly
consists of group A on which essentially our task is initially defined. But, still, it is
interesting to show how far one can extend a pipeline with the limited number of
data points.

Training Data: There are 140 images with annotations (localization plus identi-
fication) in total in our dataset. 137 images in training-set are in group A and other 3
images in group B. There is no annotation for the cervical region. Still, we will later
explain how the localization is addressed for this group as well (in Section 5.9.1). 11
images in total, consisting of 10 images from group A and one image from group B,
are left out for quantitative testing to evaluate localization-identification of vertebrae.

Additional Test Data: There are 191 images without annotations in this
dataset, on which we applied the whole pipeline to explore the performance of the
model visually. 178 images belong to group A, 10 images to group B and 3 images
to group C. The classification performance of the pipeline can be evaluated on these
samples since we know FOV class annotations. But, the localization-identification
of these samples is only visually observed. Figure 5.12 demonstrates the output of
the pipeline on pathological cases in this dataset.

Classification Now, we describe how this dataset is classified into three classes. To
classify the dataset, a tuned and regularized ResNet50 is derived and trained on the
training set. But, since the majority of the scans in the training dataset comprises
group A, we are facing an imbalanced classification. In this case, the model tends
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to ignore samples in minority classes to achieve good performance, which results in
overfitting. There are different ways to tackle the imbalanced classification problem,
such as adding more weights to the minority classes, oversampling the samples in
these classes, or under-sampling from the majority classes. We first modify the class
weights in the loss function so that the model pays more attention to examples
from the under-represented classes B and C. The weight applied to each class is

1
num-samples ×total/3, where num-samples and total define the number of samples in the
respected class and the total number of samples in the training dataset, respectively.
Our experiments show that the weighting approach slightly improves the performance
in our case. To get a better balance of data, we further added more samples of group
B and C by adding scans, which we extract from other slices of DICOM images
than just the middle slice. We preprocess these scans and add them to the training
data along with all the variations of data augmentation described in Section 5.5.3.
Note that these samples are just used for training of this stage of the pipeline, which
improves the performance of the training phase significantly. On the test data, which
contains 202 test samples (191 additional test data plus 11 test samples), we achieve
accuracy of close to one for FOV classification.

Interpretation We interpret the network predictions to make sure our classifica-
tion network works as expected. Figure 5.10 shows the interpretation of the classific-
ation network using layer-wise relevance propagation (LRP) on the respected samples
given in Figure 5.9. As it is apparent from the interpretation in this figure and also
based on our observation of the majority of samples in the test set, the network
follows a similar pattern to distinguish the samples within one group. For instance,
the interpretation of group A prediction highlights the lower part of the spine, which
is the sacrum area, as the most important area for network prediction. This area
for us as a human is also an apparent discriminating area to distinguish lumbar
vertebra. Interpretations of group B predictions show the focus of the network on
thoracic regions. Detecting this region is also aligned by the human conception for
discriminating this group. For group C the interpretations highlight different regions
such as the very lower region of the spine, the middle part, and the curvature of the
back of the neck. These may not be the first region or reason that we as humans
deem discriminating, rather, the first discriminating feature for us most probably is
the size of the cervical vertebra, which is significantly smaller in this region. But,
this does not mean we cannot make decisions based on other discriminating features,
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Figure 5.10: Interpretation illustration of categorizing fields of view of spine verteb-
rae. These visualizations show the classification interpretation respected images in
Figure 5.11. We use layer wise relevance propagation for interpreting the decisions.
This interpretation shows which pixels are more important for the network to classify
images into three categories. As it is apparent on the right, the network sees the lower
part of the spine as discriminating areas to classify the images as group A. In the
middle, the interpretation shows the middle of the spine as the discriminating area.
On the left, different regions such as the very lower region of the spine, the middle
part, and the curvature of the back of the neck are discriminating for the network
to make decisions. These explanations are reasonable since they are comparable to
the way a human discriminates the three defined classes, especially for group A and
B. For Group C, the size of the vertebrae can be more discriminating for human,
but it does not mean decisions can not be made based on the other discriminating
features.

which are found by the network and are still reasonable. Using the interpretation
of the classification network, we verify that the model reliably classifies the samples
based on true features.

Slice Selection: There are certainly more indications to identify different verteb-
rae on the other slices of the sagittal plane. However, our goal is to build a model
using one slice of the sagittal plane. In our pipeline, this slice is chosen from the
middle slice of entire scans of DICOM images since it has a higher probability of
showing well-clustered vertebrae. In some cases, for instance, when patients are
affected by severe diseases, this consideration may not hold, resulting in lower per-
formances. In these cases, a couple of slices in the middle, two slices from the left
and two slices from the right, are shown to the user. Then, the user chooses the best
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slice among the shown ones.

Second Stage: Vertebrae localization and identification of group A

Group A covers vertebrae of the lower region of the spine, comprises lumbar vertebrae
and a couple of lower thoracic vertebrae as well (Figure 5.9, left image). To address
the localization-identification of this group, we employ and extend our model for
robust lumbar vertebrae localization-identification, introduced in Section 5.7, by
merging its results with the results from the detection network for localization of
the rest of the vertebrae. We kept the model, as it is, for the lumbar region as
a strong reference point, and the rest of the detected vertebrae are labeled in a
post-processing. The Following list describes step by step of this process in detail:

1. Localize and identify the lumbar vertebrae using a CNN that we developed to
regress the coordinates of the bounding boxes, described in section 5.7. The
bounding boxes around the vertebra are regressed by the output of the specific
neurons, which at the same time identify their labels.

2. The rest of the vertebrae above the lumbar region are localized using S-detect,
a YOLO-based object detection approach, introduced in Section 5.6.2. We
adapted the network to detect all the visible vertebrae in the image.

3. The vertebrae detected by S-detect, which are located above the lumbar re-
gion, are kept as thoracic vertebrae and are labeled in post-processing using
a criterion based on their order and L1 − L5 as the reference points. In cases
where the localization misses a vertebra, a term based on a statistic is added
to this criterion for modification.

4. For each detected component as thoracic vertebrae, we calculate the distances
between the centers of the last five consecutive vertebrae centers and take the
median and standard deviation of the distances.

5. In the post-processing, the criterion says that if the distance of the preced-
ent vertebra center from the previous one minus the median is less than two
standard deviations, assign the immediate label to the precedent vertebra.
Otherwise, assign the second immediate label to the component and fill the
missing vertebrae by the mean coordinates from the precedent and previous
vertebrae bounding boxes.
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Third stage: Vertebrae localization and identification of group B.

Samples in group B comprise larger FOV than group A. Therefore, the vertebrae
and interval disc are considerably smaller in this region. Although the pipeline de-
veloped for group A could be employed on group B as well, the small and compacted
components in group B degrades its performance. Moreover, few training samples
in this class make it more difficult to learn these small components, despite apply-
ing excessive data augmentation. These hinder the S-detect to localize the verteb-
rae robustly. However, the localization results of S-seg, introduced in Section 5.5.2
demonstrate less sensitivity to the problems mentioned above. In this stage, we still
keep the regression network for lumbar vertebrae localization-identification similar
to Stage 5.9.1. The difference is that the rest of the components above the lumbar
region is localized and identified using S-seg as follows:

1. Localize and identify the lumbar vertebrae using the regression network (similar
to the second stage 5.9.1, step1).

2. Localize the rest of vertebrae using S-seg (introduced in Section 5.5.2. )

3. The results from the S-seg are post-processed with morphological operations
to remove the unwanted small areas, fill out the holes in the segmented com-
ponents, and separate the adherent vertebrae: (a) Fill the holes (also known
as region filling) on segmented areas – where small region inside the verteb-
ral body is predicted as background -, by machine vision morphological image
processing operations; (b) Remove the small size connected components which
sizes are less than 0.2 of the largest connected component; (c) Erode the touch-
ing connected components horizontally using morphological erosion operation,
for once, with 3 × 3 struct – a matrix entry of 1 in the middle row and zeros
elsewhere.

4. The segmented vertebrae above the lumbar region are labeled based on their
order on the image, the reference points L1 − L5, and a statistic of distances
between consecutive vertebrae, similar to the second stage 5.9.1, step 4 and 5.

Fourth stage: Vertebrae localization of group C.

The samples in group C cover the upper region of the spine, the cervical vertebrae,
in which we address the localization task. Since we had no training annotations for
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this group, we generated rough localization annotations for 60 scans using S-detect
that has been trained on samples of group A and B. Then, we modify the annotations
manually. To address the localization of this group, we again employ S-detect as the
core architecture of the model. This model is pre-trained on all training samples of
group A and B. To enrich the feature space, we added model-based features such as
the Canny edge detector as extra information to the network since the vertebrae in
this region are small, and edges might not always be clear. Besides, we add a low
representation of the S-seg that has been trained on the entire training dataset to one
of the layers of the S-detect in the middle of the network to mount the performance.
The entire network is then re-trained with this additional information. Enriching
the features space as well as pre-training the model on other FOV’s of vertebrae help
alleviate under-fitting in the training phase and generalization performance. Given
a sample classified as group C, the pipeline to localize the vertebrae is as follows:

1. Run the sample through S-seg and extract the low representation of the seg-
mentation network, where the encoder reaches the end of the pass. Then, add
this representation as an input layer to the middle of the S-detect with the
same filter size.

2. Extract the Canny edges of the given image and add this information to the
input layer from the top of the network, where the original image is fed to the
network.

3. Localize all the visible vertebrae using the adapted network.

4. Post-proccess the results similar to second stage 5.9.1, step 4 and 5.

We observe that, on the test-set of three samples C, we localize all the visible
vertebrae.

5.9.2 Results

We achieved a precision rate of 96% on average for localization-identification of all
vertebrae, including 11 images in the test set from group A and group B. Besides, our
collaborators and we visually confirm the robustness of the pipeline on the samples
of the additional test set. Figure 5.11 shows examples of the output of the pipeline
for three categories. In Figure 5.12, we depict how well the pipeline works on patho-
logical cases.
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Figure 5.11: Spine vertebrae detection pipeline output. The pipeline for Group A and
B localization-identification and Group C localization is presented in Section 5.9.1.

5.10 Discussion

This chapter aimed to further our study of high-dimensional biomedical data using
deep neural networks in an imaging modality. We investigated the challenges of
this analysis and the possible solution strategies in the context of MRI data inter-
pretation. We addressed the challenging problem of lumbar vertebrae localization-
identification on human Spine MRI in which similar to proteomics data analysis, we
predominantly dealt with the scarcity and heterogeneity of the data. We developed
a new pipeline for lumbar vertebrae localization-identification using DL strategies
and extended our approach to the whole spinal vertebrae. Towards this goal, various
imaging tasks, including classification, segmentation, regression, and detection, were
investigated.

We formulated lumbar vertebrae localization as the coordinate regression of sur-
rounding bounding boxes around each individual vertebrae. Based on the presented
dataset, containing 137 testing instances with a variety of pathological cases, our
pipeline achieved almost 94% precision rate on average for localization-identification
of five lumbar vertebrae. We showed that our regression approach significantly out-
performs the other methods that have been studied in this chapter for solving lumbar
vertebrae localization-identification, including variations of UNet and YOLO net-
works. The superior performance is more highlighted in challenging pathological
spine MRI cases because we employ prior knowledge in our assumptions regarding
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(a) (b)

(c) (d)

Figure 5.12: The output of our pipeline on pathological cases. The presented pipeline
is able to address localization-identification of a wide variety of vertebrae deforma-
tion, including (a) two separated bodies belonging to one vertebra, (b) no clear edges
and poor appearance, (c) difference color intensities between vertebrae in one scan,
and (d) brighter regions caused by implants.
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the fixed number of vertebrae on the scans. This assumption can also help predict
the vertebra body even when it does not appear in the image. The main strength
of the proposed regression method for lumbar vertebrae detection is that it has an
end-to-end pipeline that does not need extra steps to refine the predictions.

Further, we proposed a pipeline that extends the study of lumbar-vertebrae to
the whole spinal vertebrae that relieved the restricting assumption on the lumbar
region. We first eased this task by dividing the detection problem into subgroups, in
which the scans are first classified into major FOVs, and each subgroup is analyzed
separately. On the presented test set containing 11 instances, our pipeline attained a
precision rate of 96% on average for localization-identification of all vertebrae. Notice
that the classification of FOVs was explained in our study using LRP interpretation,
where we showed and explained that the interpretations of classification predictions
were aligned by true discriminating areas.

In addition, through a comprehensive study of different CNN topologies in de-
tection problems, we elucidated their strength and weaknesses. We adopted UNet,
a segmentation network, and YOLO, a regression-based detection network, for our
localization-identification of lumbar vertebrae. We first adopted UNet in a single
class model to segment all lumbar vertebrae and use the surrounding bounding
boxes as their localization. We then identified a reference point and ordered the
localized vertebrae to address the identification part. In addition, we adopted UNet
in multi-class segmentation as well, which enables localization and identification of
the vertebrae simultaneously. We showed that the earlier approach that we called
S-seg led to significantly better results. We continued the localization-identification
analysis of lumbar vertebrae using DL detection networks with the aim of enhancing
the outcome that had been obtained by the segmentation-based approaches. We ad-
opted the YOLO network as a state-of-the-art approach for this purpose, again in two
modes. First, it was employed to regress coordinates of bounding boxes around each
vertebra as instances of one class for the localization part. Then, the identification,
similar to segmentation, is addressed by identifying a reference point and labeling
the rest of the detected bounding boxes by counting. We referred to this approach as
S-detect. Second, like the segmentation approach, we employed YOLO to regress the
surrounding vertebrae bounding boxes and label them simultaneously, which we re-
ferred to as M-detect. We empirically showed that although S-detect performs better
at localization since the loss is simpler for optimization, M-detect compensates for its
localization weakness by doing a better identification performance since the identific-
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ation part is also part of the learning process. We demonstrated both M-detect and
S-detect perform equally well and better than S-seg at localization-identification of
the lumbar vertebra. Nonetheless, our end-to-end regression-based network outper-
forms the pipelines based on segmentation and detection network on lumbar vertebra
localization-identification.

Towards tackling the scarcity of labeled data, We demonstrated the effect of the
human-in-the-loop process, data augmentation, and transfer learning in improving
system accuracy. By adopting proper data augmentation, in particular affine trans-
formation and elastic deformation, the inference IOU for segmentation of the region
of interest has improved by 20%. Further, it is shown that with one human-in-the-
loop cycle, the performance can be increased by 4%. Using transfer learning, we
also showed an increased performance by 3%. Thereby, we mainly investigated the
weight initialization of contrastive models for the model improvements. We experi-
mentally elucidated that the source data for pretraining a network do not necessarily
need to be semantically similar to the target data. As for training on the lumbar
vertebra, initializing the network on the ImageNet (containing classes for object de-
tection)reached equally good transfer performance as initializing the network on the
CT-Liver image dataset that has more similar semantic to medical imaging in our
problem.

The accurate generalization performance using our method has important implic-
ations for developing a DNN localization method on computer-assisted diagnoses. Es-
pecially since we study different aspects of imaging analysis, including classification,
segmentation, regression, localization, identification, and detection. These studies
convey an in-depth understanding of high-throughput medical imaging analysis.

One of the limitations and also future work to this study is the investigation of
the scans, which consist of narrow FOVs, where an indication or a reference point for
starting the labeling cannot be easily found even for human experts by just looking
into the one slice.
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High-throughput datasets are pervasive in medical research. Analyzing these data
effectively and efficiently is deemed essential in providing reliable support for devel-
oping interpretable clinical decision support systems. This thesis has introduced new
methods for analyzing high-throughput biomedical data, employing modern machine
learning techniques through tackling high-dimensionality and scarcity of data. This
final chapter gives concluding remarks and suggest possible future directions.

6.1 Discussion and Conclusion

Medical data analysis is aimed to find patterns and extract information with the
purpose of facilitating disease diagnosis, prognosis, and treatments. When it comes
to high-throughput data analysis, several challenges immediately arrive, such as
scarcity, high-dimensionality, and complexity of data. This thesis dealt with these
challenges in a variety of high-throughput medical data analyses by adopting modern
machine learning concepts, including classification, feature selection, model explan-
ation, image segmentation, and object detection.

In the first part of our analysis in chapter 3, we addressed the challenges as-
sociated with the classification of high-throughput proteomics data whose samples
contain more than 50000 features that are required to be studied to discover biological
relevant information. Such large-scale data leads to the sparsity problem, limiting
conventional machine learning models to fit robustly. In addition, the scarcity of data
worsen this limitation due to the overfitting problem. To ease this problem, machine
learning methods are equipped with dimension reduction steps, which can raise the
risk of losing biological relevant information. This phenomena is likely to happen in
proteomics data due to the high order of magnitude of different peak intensities and
the high noise content of data, which may drop critical relevant information. An-
other limitation of conventional machine learning methods is their limited capacity,
which is certainly not suitable for large-scale data analysis.

To overcome these limitations, we proposed a deep learning-based classification
method on high-dimensional structured data. Deep learning benefits from scalable
capacity, and transferring the knowledge between tasks or domains. The scalable
capacity of deep learning enables enhancing the performance by growing the data,
which might not be feasible in medical settings due to expensive data acquisition
and annotation. In such case, deep learning can be equipped with transferring the
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knowledge also known as transfer learning. The idea is to take the knowledge that the
neural network has learned from one task as a source and apply that knowledge to a
separate task as a target, which enables deep learning to benefit from its capacity. We
employed this idea for proteomics data classification of healthy and disease classes.
Since finding good-quality source data could also be infeasible in many real-world
scenarios, we proposed to synthetically generate the source data that must share
similar characteristics with the target data. The source and the target data may not
share the high-level features, but they should share similar low-level representations
in a similar context. For instance, in our study, to learn the representation of MALDI-
MS human proteomics, the synthetic data were generated from the human protein
complex in the MALDI-MS simulator. We generated the synthetic data so that the
samples in two classes are representative of healthy and disease groups. It is realized
that when training the proteomics data on a network that initialized with synthetic
data weights, the outcomes became more robust and reproducible across different
runs and different data batches. We confirmed this observation in MALDI-MS and
LC-MS proteomics real data classification.

Built on this robustly trained network, we developed a feature selection model to
extract biomarkers – disease relevant biological information – from high-throughput
proteomics data. We aimed to learn from the trained network and find what makes
the network arrive at a certain decision. In the diseased/healthy classification task
described earlier, if we discover which features are deemed more important for the
network to make certain decisions, we could potentially discover biomarker candid-
ates. It has been a common belief that simpler models provide higher interpretability
compared their complex counterparts. However, this belief is challenged by recent
works, in which carefully designed interpretation techniques have shed light on some
of the most complex and deepest machine learning models (Zhang et al., 2021; Huang
et al., 2020). Thus, deep learning is no longer considered a black box, which enables
us to extract the important features, for instant, through studying the model’s pre-
diction. We built our biomarker detection model on a backpropagation interpretation
strategy called Layer wise relevance propagation (LRP). We successfully showed that
a robustly trained deep neural network classifier coupled with a proper interpretation
strategy could reveal the underlying disease-relevant pattern of the data. The real
data analysis with our approach results in the smallest set of biomarker candidates,
which can surpass state-of-the-art conventional machine learning performances.

We also compared different interpretation strategies, such as input×gradient,
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input-gradient, SmoothGrad, Deconvolution, and guided-backpropagation methods.
As a result, we demonstrated that the performance of LRP on highlighting the
true discriminating regions are slightly better than methods like input×gradient and
input-gradient, but it is significantly better than other methods, such as, Smooth-
Grad, Deconvolution, and guided backpropagation. These results can be explained
by the fact that LRP takes advantage of structured layers of neural networks and
simplifies the explanation problem. Besides, despite gradient-based methods that
are locally calculated, LRP considers the whole picture of the input, in addition to
being less prone to discontinuity effect.

We demonstrated that in comparison with well-established prior works (msIn-
spect, MZmine 2, Progenesis, and XCMS), our method enables the discovery of
biomarkers with more sensitivity and a lower false-negative rate. Furthermore, this
success was achieved while we skipped expensive preprocessing steps often employed
in conventional methods. We ran the experiments on raw data to avoid loosing
relevant information through data preprocessing steps.

In the second part of our analysis in Chapter 4, the application of deep learn-
ing explanation was further investigated for high-throughput data analysis through
quantitatively assessing the prediction interpretations. Suppose that we know which
features of the data are relevant for making decisions. In this case, the model can
be tuned, or its robustness can be measured by checking if the interpretation of the
model is aligned with the relevant features. Now, assume that different network
architectures with different depth and number of layers for a classification task share
similar accuracy and performance. To decide which architecture to choose, we can
check which of these networks results in interpretations that align with the relevant
features. But, in real-world tasks, especially when dealing with high-throughput
data, the annotations on relevant features in this level are unknown or could be very
expensive to acquire. In such cases, we suggested selecting the architecture based on
synthetically generated data, in which we know about the relevant features. We then
demonstrated that this information regarding the network architecture is transferable
to real data analysis, assuming that the synthetic data shares similar characterist-
ics with the data being studied. We successfully showed that the network that is
primarily tuned on synthetic data is more robust, and its interpretation is more
aligned with the true, relevant features.

One important key that should be examined prior to incorporating the deep
learning interpretation is to check their trustworthiness and reliability, which we
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demonstrated through sensitivity analysis for repeatability, reproducibility, and con-
sistency of the outcomes. In our interpretation-based biomarker detection study, we
investigated three criteria: 1) whether the interpretations of the same samples are
reproducible when the network is trained with random seeds, 2) whether the inter-
pretations of the same samples present a repeatable pattern when the network is
trained on a different subset of data, and 3) whether the interpretations are consist-
ent across different samples within one class when the network is trained on one or
a different subset of data. In these criteria, intersection over union (IOU) between
the interpretations was considered as the similarity measure. For instance, in the
second criterion, we reached IOU near to one between interpretations of test sample’s
predictions which are made by networks trained on the different folds of data (in five-
fold cross-validation mode). We observed a similar performance on other criteria, as
well, which provides strong evidence to support the trustworthiness and reliability
of our interpretation-based approach.

The aforementioned quantitative assessments, however, can be done when the
annotations at the feature level is known or can be synthesized. Otherwise, the in-
terpretations can be assessed through heuristic approaches. In our work, biomarkers
were selected using the network prediction interpretations. Therefore, we reformu-
lated the interpretation assessment to the biomarker detection assessment. Then, we
measured the importance of the selected biomarkers in the classification accuracy.
We performed this experiment on three real MALDI-MS data. The results illustrated
that the model reaches almost the maximum accuracy with only first few selected
high-ranked features, elucidating the high quality of the network interpretations.

In the third part of our analysis in Chapter 5, other machine learning concepts, in-
cluding segmentation, detection, and regression, were investigated. We changed our
focus from high-dimensional structured proteomics data analysis to analyzing ima-
ging data modality with the application of localization of regions of interest. In early
chapters, for the purpose of localization of biological relevances, we used network in-
terpretation which enables the discovery of unknown patterns from the data. In the
third part, with a change of direction, we investigated the supervised deep learning
approaches. We aimed for the challenging spinal lumbar vertebrae localization and
identification task, where we formulated object detection with different convolutional
neural network topologies, including segmentation and detection networks in binary
and multi-class modes. We found that simplifying the multi-class tasks to the binary
mode that is coupled with an extra refinement step can significantly contribute to
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the generalization performance in heterogeneous data.
As previously stated, a major obstacle to the translation of data-driven technolo-

gies to clinical settings is the lack of good quality data, where we showed a significant
generalization improvement with the human-in-the-loop process, adding proper data
augmentations, and the right choice of the objective function. We then proposed
a robust new regression-based pipeline to localize individual vertebrae, focusing on
the lumbar region that successfully performed better than prior works. It especially
works well on pathological cases, mainly because we assumed to have a fixed number
of vertebrae in an image. With this assumption, we were able to anticipate the loc-
ation of regions that do not appear on the scan due to artifacts and severe diseases.
Based on the presented heterogeneous dataset, containing 137 testing instances, our
pipeline achieved almost 94% precision rate on average for localization-identification
of five lumbar vertebrae.

All the networks in our downstream tasks were primarily trained with medical
images of other tasks for transferring the representation, which eases the optimiz-
ation. But, we also showed that the source domain dataset does not necessarily
require having high-level semantic with the target domain. This means, for transfer-
ring the representation in deep learning, the low-level features are deemed beneficial
transferable information from one task to another. This observation is previously
realized in natural object recognition applications, in which we provide evidence in
the medical imaging domain.

Through a comprehensive study of different CNN topologies, we elucidated
their strength and weaknesses, which provides a valuable understanding of high-
dimensional medical imaging interpretation using modern machine learning tech-
niques. Built on our observation, we finally proposed a pipeline that extends the
lumbar-vertebrae to the whole spinal vertebrae interpretation by dividing this com-
plex task into simpler subgroups. This pipeline results in a 96% precision rate and
has been actively used by the project partner. Our approach is

To summarize, this thesis has addressed two important questions related to high-
throughput data analysis, which were considered at the beginning of this thesis.

1. High-dimensionality and scarcity of data. How to deal with the curse of
dimensionality and limitation of good quality labeled data?

High-dimensionality and scarcity of data are the major topics of this thesis, owing
to the expensive process of standard medical data collection and annotations. In
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Chapter 3, we tackled this issue on structured data by employing transfer learning.
We showed pre-training a DL model on a huge synthetically generated data that
share similar characteristics with the target task results in a robust classification
result. We demonstrated how we effectively take advantage of synthetic data not
only for pre-training purposes but also for a better classification network design
in Chapter 4, which were both then translated into real-world data analyses. We
provided our findings to learn the representation of high-throughput proteomics data
that severely suffers from the curse of dimensionality and contains a high level of
noise. In Chapter 5, addressing the scarcity of data was discussed in high resolution
medical imaging data analysis. We demonstrated the effect of data augmentation
and human-in-the-loop to alleviate the problem in the challenging task of human
spinal vertebrae detection. We also studied the transfer learning, where the main
concern was to show that the source data for pretraining do not necessarily need to
be semantically similar in appearance to target data. We started the analysis with
segmentation application, and then successfully extended it all over this chapter for
classification, detection, and regression purposes, as well.

2. Learn data patterns from the machine. How to improve the transparency
of deep learning models through interpretability as it potentially leads to a better
understanding of the data and the deployed model?

As the second concern in this thesis, we considered the role of deep learning
interpretability in analyzing high-throughput biomedical data. In Chapter 3, we
showed that when we build a robust DNN classifier, for example, for disease pre-
diction, we can learn from the prediction interpretations where the network looks
into the data for discriminative patterns. This information enables discovering the
biomarker candidates and associating them with specific diseases. To validate this
claim, we provided evidences regarding the robustness of the explanations. We exem-
plified our findings with the application of biomarker discovery in high-throughput
mass-spectrometry proteomics data, which surpassed conventional biomarker discov-
ery pipelines. Prior works were highly dependent on consecutive steps with several
parameter tuning that may differ from one setting to another. But, we showed
with a minimal human intervention we can yet outperform prior works. We also
demonstrated that without a single label at the biomarker level, and just by learning
medical states on training data, the biomarker candidates can be estimated accur-
ately. We extended our interpretability analysis in Chapter 4 through a series of
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assessments that serve as feedback to the system. We employed this feedback to
enhance the model performance by adjusting the parameters of the model developed
for biomarker discovery, such as architecture design. Furthermore, we employed the
interpretability assessment to better understand the model, which provides evidence
for the reliability and robustness of the model. The application of interpretability
has also been employed in Chapter 5 in the context of imaging modality with the
aim of confirming classification decisions as a part of an image analysis pipeline.

6.2 Future Directions

Finally, we suggest potential future research directions related to high-throughput
data analysis.

• Self-supervised learning: Our analyses on structured tabular data in Chapter 3,
and imaging data in Chapter 5 indicate the significance of transferring the
knowledge between domains to help the network convergence and generaliza-
tion ability. But in many applications, the target dataset contains more un-
labeled data than labeled ones, like our spine MRI dataset in Chapter 5, and
the question is that whether the knowledge from unlabeled data could further
improve the model performances. Self-supervised learning (Jing and Tian,
2020) is one possible and recent way of extracting the representations from
unlabeled data. This strategy learns the representations similar to supervised
learning through optimizing on inputs and labels. The difference is that the
labels in this strategy are generated automatically by machine based on a pre-
designed task, without involving any human annotation. This representation
is then used as initialization weights in downstream tasks by fine-tuning. An
example for learning visual features is SimCLR (Chen et al., 2020) approach
that learns representations by maximizing agreement between differently aug-
mented views of the same training example using a contrastive loss. It is shown
that SimCLR outperforms some models, e.g., AlexNet with 100x fewer labels.
It is interesting to study whether a similar strategy can be adapted in medical
data analysis that severely suffer from lack of labeled data.

• Transformer: Attention-based networks have been widely adapted to many
ML domains, such as natural language processing (NLP) (Wolf et al., 2020),
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computer vision (Khan et al., 2021), speech recognition (Dong et al., 2018),
etc. Attention in transformer architecture was born to resolve losing dependen-
cies in long sequences with sequence-to-sequence models in language modeling.
But, the powerful properties of the transformer have encouraged scientists to
explore its implications in many domains as well. This require reformulating
tasks into into sequencing problems. For instance, to take advantage of the
transformer in machine vision tasks, the images are converted into sequences
of patches, embedded to vectors, similar to the word embedding in NLP. A
recent study has shown that emerging the self-supervised properties in the
transformer can potentially let the attention map accurately highlight the rel-
evant information in the image (Caron et al., 2021). It has been shown that the
learned representation can be used in a variety of applications, e.g., in down
stream tasks for fine-tuning, image retrieval, zero-shot classification through
K-nearest neighbor classifier, and image segmentation. With this powerful rep-
resentation from unlabeled data, it is quite interesting to see the implication
of transformers in the context of high-throughput medical data analysis that
can be meaningfully converted to sequence analysis. It is especially important
to see if the attention map could highlight relevant information on complex
biological data.

• Multi-modality: In a clinical setting, physicians may diagnose diseases accord-
ing to reviewing different examinations that might be in different modalities,
e.g., medical imaging, certain features in blood samples in the form of tabu-
lar data, and metadata written in the text about the patient symptoms, etc.
Multi-modal machine learning is one way to implement this idea. This ap-
proach aims to build models that can process and relate information from
various aspects (Baltrušaitis et al., 2018). This idea can be coupled with the
self-supervised learning approach to understanding diseases. (Li et al., 2020)
showed that learning representation in a self-supervised format via exploiting
multi-modal data results in comparable performance to the supervised format.
This approach was described with the application to Retinal disease diagnosis,
in which the second modality was synthesized. It is interesting to employ this
idea for omics data analysis for biomarker detection in Chapter 3 for better
performance and a smaller amount of data.
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