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Abstract  Theory and experiments have demon-
strated that negative plant-soil feedback (PSF) pro-
motes coexistence between plant species. Plants and 
soils, however, face the challenge of an increasingly 
unpredictable environment due to multiple global 
change factors. Environmental stochasticity induces 
fluctuations that increase the variability and unpre-
dictability of population dynamics, plant associations 
in the community and thus properties such as overall 
productivity. In this paper, we formulate a stochastic 
version of a classic PSF deterministic model, which 
describes the outcome of plant species competition 
in the presence of soil feedback. Especially when the 
soil feedback is negative, the deterministic expecta-
tion is that pulse perturbations to the system (e.g. a 

drought episode) cause plants and soil to move away 
from their equilibrium and then return to it. Environ-
mental stochasticity alters this expectation: the sys-
tem can either settle into a fluctuation regime around 
the deterministic expectation, or plant species may go 
extinct. Probability of extinction predictably increases 
with environmental stochasticity but the more nega-
tive the PSF, the more it can counteract the increase 
in extinction probability caused by increased envi-
ronmental stochasticity. We stress that in nature the 
actual impact of PSF will depend on the interactions 
that link different types of soil organisms to plant spe-
cies. We conclude that theory shows that plant com-
munities with strong negative PSF are best placed 
to withstand the risk posed by increased environ-
mental stochasticity but also that we still need more 
experimental evidence to validate theory and develop 
applications.

Keywords  Plant-soil feedback (PSF) · 
Stochasticity · Extinction · Negative and positive 
interactions

Introduction

Very many factors structure plant communities (Til-
man 1998; Rees et al. 2001; Hille Ris Lambers et al. 
2002; Adler 2007; HilleRisLambers et  al. 2012) 
but in the last three decades the so called plant-soil 
feedback (PSF) has been increasingly investigated 
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at multiple levels, from theory and in silico mod-
elling studies (Bever 2003; Bonanomi et  al. 2005; 
Bever et  al. 2010) to glasshouse experiments, com-
bined experimental and field studies, and metanalysis 
(Crawford et al. 2019; in’t Zandt et al. 2021). In very 
general terms, PSF can be defined as the reciprocal 
effects the soil and plants exert on each other at the 
population and community level (Bever et al. 1997). 
The effects can be either negative or positive and can 
ultimately determine whether competing plant species 
will coexist or not. In more specific terms, soil can 
affect the plant growth rate, with major consequence 
on the population dynamic processes that determine 
how different plant species come together to form 
communities. The plant species, too, exert effects on 
the soil community, hence the term “feedback”.

The simplest possible case to analyse PSF is when 
two plant species (A and B) compete, and we ask 
about the conditions for these two species to coex-
ist (Bever 2003). In the presence of competition, 
the classic condition for coexistence (Case 2000) is 
intraspecific competition be larger than interspecific 
competition. Intraspecific competition is larger than 
interspecific competition when individuals of one 
plant species compete more strongly between them-
selves than with individuals of the other species. The 
product of the competition coefficients (cA and cB) 
that describe the negative effects of one species on 
the other, should be smaller than 1 for the two spe-
cies to coexist, which will generally imply the supe-
rior competitors will not lead inferior ones to extinc-
tion. But there is also another way for plant A and B 
to coexist, and which is not mutually exclusive with 
the classic way: a net negative PSF. We define the net 
negative PSF more formally in the next paragraphs 
but in the simple case of two competing species the 
net PSF is negative if the summed effects of soil on 
plants add up to a negative term. If that is the case, 
plants can coexist even under levels of strong inter-
specific competition that would normally lead to one 
species outcompeting the other species (Bever et  al. 
1997, 2010; Bever 2003). That happens because PSF 
can reduce the negative effects of the superior com-
petitor by either increasing the growth rate of the 
inferior competitor or decreasing the one of the supe-
rior competitor, or both.

In the simple case of two competing plant species, 
it is customary to conceptualise the entire soil biota 
as a variable or “soil axis”, which is an extremely 

simplistic caricature of the tremendous diversity 
that soil biota actually encompass. As such, the soil 
axis is not a biologically realistic description of soil 
biodiversity and the multiple effects that soil biota 
exerts on plants. The axis is, however, very useful 
in mathematical models, where it has been shown to 
represent well the overall soil community in terms of 
how this community collectively affects plant popu-
lation dynamics (Bever et  al. 2010). That soil axis 
may range from an arbitrary value, say SA, which 
represents the soil community characteristic of plant 
A, to another value, say SB, which represents the soil 
community characteristic of plant B. The simplifica-
tion used by ecological modellers when describing 
the entire soil biota as a numerically standardised soil 
axis is analogous to the so called “characteristic” soil 
community, which the experimentalists define as the 
soil biota associated with two generations of a plant 
monoculture grown on the same soil. In other words 
that is the so called “home” soil (Brinkman et  al. 
2010). The definition of “home” soil is also based on 
the effect of the entire soil community on plants. In 
that sense, there is an analogy between the simplifica-
tion of classic PSF mathematical models and the sim-
plification of PSF experiments. That analogy makes 
the interpretation of in silico computational results 
relevant to experimental results.

In mathematical models, the soil axis is typically 
standardised to vary between 0 and 1. That helps 
with a formal mathematical definition of the net PSF. 
In general terms, the net PSF is the total sum of the 
effects of soil on plants. If there are two plants, A 
and B, we can describe the impact of soil on them in 
terms of the impact that the soil community SA typical 
of A (“home soil of A”) has on plant A (αA) as well as 
the impact that the same soil has on the other plant B 
(αB). We also need to quantify the impact that the soil 
community typical of B (SB = 1—SA) has on its own 
plant B (βB) as well as on plant A (βA). Using these 
definitions, the PSF can be defined with the metric 
Is = αA—αB—βA+βB. Previous theoretical works have 
shown that when two species compete, the space for 
coexistence is greatly expanded for Is < 1, even if 
the product of the competition coefficient cA and cB 
is bigger than 1 (Fig. 3 of Bever 2003). To be more 
accurate, it is possible to define a relationship that 
links Isto cA x cB and determines the conditions under 
which a certain combination of Is(PSF) and com-
petition associates with coexistence of A and B. In 
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general, coexistence greatly increases with negative 
Is, which can support the growth rate of the inferior 
competitor and reduce the one of the superior com-
petitor. Under weak competition, coexistence is even 
possible for positive Is but the parameter space for 
coexistence is much reduced. It is important to note 
that the four terms that quantitatively describe the 
PSF in terms of the metric Is can each be either posi-
tive or negative. That is very useful because it allows 
describing multiple types of combined positive, nega-
tive, direct and indirect effects of soil on plants. All 
these effects ultimately, although indirectly, describe 
the multiple and contrasting (i.e. mixture of positive 
and negative effects) impact of soil pathogens, mutu-
alists and also saprotrophs on plants.

How does the population dynamics of competing 
plant species change in the presence of PSF? PSF 
cause systematic and predictable fluctuations around 
the equilibrium of the system (Bever 2003), and can 
greatly expand the space for coexistence between 
plants that would otherwise coexist under a very 
limited range of conditions, or not even coexist at all 
(Bever 2003; Bever et al. 2010). There are also many 
other implications of PSF dynamics, which have 
been analysed extensively in the last 10 years (Van 
der Putten et al. 2013, 2016) but the classic theoreti-
cal approaches to PSF are mostly based on deter-
ministic models. It has, however, clearly been sug-
gested that plant-soil community interactions vary 
spatially and temporally, which implies a degree of 
stochasticity (Kardol et al. 2006, 2007). Also, natu-
ral systems are facing increasingly more unpredict-
able environments, especially in relation to multiple, 
interacting global change factors (Rillig et al. 2019). 
In the conservation biology literature, models that 
embrace stochasticity are the norm: time series of 
any natural population are, in fact, characterised by 
fluctuations that can, at least at first, appear erratic 
but that result from the interaction of many unknown 
events, which are best modelled using probability 
distributions (Lande et  al. 2003). The main impact 
of stochasticity on deterministic dynamic is that 
coexistence may no longer be guaranteed even when 
the expectation (e.g. average outcome) is coexist-
ence (May 1973a). This is important for plant ecolo-
gists because models and experiments that have for-
malised and investigated the impact of soil biota on 
plant populations show that negative PSF is a major 
determinant of plant species coexistence (Bever 

2003). We, thus, investigated how a general model 
that incorporates environmental stochasticity modi-
fies the classic expectation of PSF theory. The idea 
that plant assembly processes mediated by PSF can 
take multiple paths is, indeed, not new. For exam-
ple, the intensity and quality of PSF can be spatially 
and temporally variable. (Kardol et  al. 2006, 2007; 
Mangan et al. 2010; Suding et al. 2013; Bauer et al. 
2015) and we here explore that idea with a general 
stochastic model.

In this paper, we thus offer an expansion of the 
classic analytical models by incorporating envi-
ronmental stochasticity and reformulating the most 
classic expectation of PSF models in a stochastic 
framework. That means that we reframe the classic 
expectations of PSF theory in terms of probability 
of extinction and coexistence or, more generally, the 
probability distribution of species relative abundances 
(Lande et al. 2003; Allen 2010). In general, increas-
ing levels of stochasticity decreases long term popu-
lation growth rates (Lande et  al. 2003; Tuljapurkar 
2013) and may decrease the space for coexistence 
even when the average (i.e. deterministic) dynamics 
implies coexistence (May 1973b; Gravel et al. 2011). 
We here explore the tension between the not very 
well explored destabilising force of stochasticity and 
the well-known stabilising effect of negative PSF. 
We also explore how the balance between different 
types (positive and negative) of plant-soil interactions 
affects the final impact of PSF on plant stochastic 
dynamics. We introduce a simple general stochastic 
model for PSF dynamics, we numerically explore 
some aspects of the model to formulate expectations 
on probability of coexistence and extinction, and how 
the PSF affects this probability, and finally discuss the 
implications of our analysis for future model exten-
sions and experiments.

Methods

The deterministic model

We start from the classic Bever deterministic model 
(Bever 2003) that couples the population dynamics 
of two competing plant species, A and B, to their 
soil, SA and SB = 1—SA. The system of coupled ordi-
nary differential equations (ODE) that describes 
this model is (eqs. 1):
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where A and B are the population size of species A 
and B, and SA is the soil axis variable that reaches the 
maximum value when the soil communities equals 
the one associated to a monoculture of plant A. The 
parameter r and m are the intrinsic growth rate and 
logistic term of the classic logistic population model, 
and the terms “c” are the competition coefficients. 
Note that the parameters αA, αB, βAand βBare either 
positive or negative. The two alphas parameters (αA 
and αB) describe the net effect of soil of A on plant A 
and B, while the beta parameters (βAand βB) describe 
the net effect of the soil of B on plant A and B. The 
soil state variable thus can fluctuate between the 
soil typical of A and that typical of B. Finally, the 
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parameter v describes the impact of B on the soil of 
A. The behaviour of this model is well known (Bever, 
2003), and in the supplementary materials (RScript_
Bever_Model_Stochastic.R) we provide an R script 
that reproduces the behaviour of the model with an 
example based on the same parameters originally 
presented by Bever (2003). If the system starts away 
from the equilibrium values, and the combination of 
parameters is such that the system allows plant coex-
istence, the trajectories of the system will be charac-
terised by sinusoidal oscillations that quickly dampen 
until the system reaches the equilibrium, which 
is stable (Fig.  1a). Note that a multivariate exten-
sion of these models to include more plant species 
as well a more complex description of the soil biota 
are possible (Bonanomi et  al. 2005; de Castro et  al. 
2021). Also note that we implement the model with 
no assumption on competitive equivalence between 
species.

Fig. 1   In panel a), numerical solution to the deterministic 
plant-soil feedback (PSF) model of Bever (2003). The param-
eters are the same as in Bever (2003) but with equal carrying 
capacity for the two plants (set to 100), and starting initial con-
ditions set at 50 (0.5 for soil, which ranges from zero to 1). The 
numerical solution has been derived from applying the Euler-
Maruyana algorithm to our system of stochastic differential 
equations (SDEs) but with variance and correlation set to zero 
(which collapses our system of SDEs to Bever’s ODEs model). 

In panel b, ten trajectories or paths (each colour correspond to 
one simulation for the coupled equations of the three popula-
tions) for plant A, Soil and plant B from ten independent simu-
lations of our system of SDEs. Environmental stochasticity 
puts the system into a series of periodic fluctuations around the 
expectation for the deterministic equilibrium. The 10 trajecto-
ries represent a system over a period of time for which a quasi-
equilibrium is reached. For high level of stochasticity, the sys-
tem may exit this quasi-equilibrium state to become unfeasible
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Stochastic model: formulation

We introduce environmental stochasticity to the 
ODE system of eqs.1 through the Itô calculus for-
malism for continuous stochastic differential equa-
tions (SDE). SDEs for interacting populations are 
constructed by combining the deterministic com-
ponent (the ODE of eqs.  1 for us), which repre-
sents the “drift” term, and either a continuous time 
Markov chain describing probabilistic transitions 
within the population due demographic stochas-
ticity (Allen 2010) or an external source of ran-
dom variability due to environmental fluctuations 
(Allen 2010; Dobrow 2016), or a combination of 
both demographic and environmental stochastic-
ity (Lande et al. 2003). Here, we are mostly inter-
ested in broad scale population dynamics, where 
the impact of demographic stochasticity is likely 
to be minor given the size of the population under 
consideration and considering that, typically, 
demographic stochasticity scales as the inverse of 
population size (Lande et  al. 2003). We thus con-
sider a general model with environmental stochas-
ticity only, which can in the future be expanded to 
include also demographic stochasticity. The general 
SDE model then is:

where the bold notation indicates vectors, and so N 
is a vector with population sizes A, B and the soil 
state variable, dW is a vector of independent Wiener 
processes (often referred to as white noise in ecol-
ogy), which we use as the source of environmental 
stochasticity (Lande et al. 2003; Dobrow 2016), and 
the matrix Σ is the diffusion matrix, which quantifies 
the intensity of stochasticity for each state variable. 
The drift term μ, which is a function of population 
size, corresponds to the deterministic structure of our 
ODEs, that is the classic Bever model (Bever 2003). 
Note that there is no limit to how many equations, 
and thus plant and soil species, can make up our 
SDE system, but in this introductory paper we keep 
the system as simple as possible (two plant species, 
one soil axis) both for the purpose of illustration and 
the complexity involved in introducing stochasticity 
into actual experiments. If plant A, B and soil were 
affected by independent environmental stochasticity, 
the diffusion matrix would simply be

dN = �(N)dt + ΣdW

And the corresponding SDEs would then be

This model can be made more realistic by intro-
ducing correlations in the source of environmental 
stochasticity, and so to the responses of plants and 
soil to environmental fluctuations. For example, a 
flood event will modify water availability, but also 
produce physical disturbance and anoxic conditions, 
at the same time. The individual effects of all these 
factors on the different plants and soil may differ, but 
the resulting responses of the state variables might 
be correlated. The more general model should thus 
account for possible correlations in the three stochas-
tic terms via a covariance matrix

where the variance terms σ2 for plant A and B and 
soil S reflects the strength of environmental stochas-
ticity, and the terms ρ are the correlations. Note that 
this matrix is symmetric, simply because the covari-
ance between variable i and j is the same as the 
covariance between j and i. We used Cholesky fac-
torization (Allen 2010; Kloeden et  al. 2012) of the 
covariance matrix Kij to define the diffusion matrix 
that account for correlated environmental fluctuations 
in our matrix. The diffusion matrix now becomes:

Note that if the correlation terms ρ are set to zero, 
the matrix returns to the special case of independent 
Wiener processes, with variance terms in the diago-
nal equal to the three σ terms for A, B and S and all 
the off-diagonal elements equal to zero. Extensions 
to more than three equations are straightforward in 
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terms of Cholesky factorization (Allen 2010; Kloeden 
et al. 2012) and numerical simulations.

Computation

The key goal of the analysis of a stochastic process 
is the characterization of the probability distribu-
tion that describes how the population changes with 
time (Karlin and Taylor 1975). The variation of the 
population is not deterministic, meaning that given 
the same initial conditions, the population can take 
many different paths or trajectories. The population 
of size N is thus best described by a probability dis-
tribution P(N, t) that quantifies the key features of the 
collective behaviour of the paths. The mean and vari-
ance of N over time t are some of these key features. 
Another important feature is the probability that the 
population goes below a certain value, for example 
below zero (i.e. extinction). Or also, the probability 
for the population to be at a certain value (for exam-
ple two times the initial population size, or zero) 
after a certain amount of time (i.e. hitting time). For 
simple processes, the probability distribution P(N, t) 
has an analytically close form that can be derived by 
the Fokker–Planck equation corresponding to the 
Itô SDE. Our system, however, has a complex form, 
and we could not resolve it analytically. We thus 
simulated it numerically, using the Euler–Maruyama 
method (Allen 2010; Dobrow 2016), and we provide 
the full R script that implemented this method for our 
system (RScript_Bever_Model_Stochastic.R). The 
script we offer can be extended to multiple plant spe-
cies and more soil components.

We analysed multiple scenarios, starting from 
the same parameters as in Bever (2003), apart from 
equating the carrying capacity of the two plant spe-
cies (which we did just for convenience, and with 
no effect on the final results). First, we compared 
a scenario in which the stochastic components of 
the process are not correlated with a scenario in 
which they are correlated and, within each of these 
two scenarios, we also compared a scenario where 
the variances of plant A and B were relatively 
high with a scenario in which the variances where 
low (results in Fig.  2). Also, we compared a sce-
nario in which only the variance of A was high (or 
low) with the opposite scenario (results in Fig. 3). 
Finally, we also investigated how variance controls 
the probability of extinction at different level of 

soil feedback Is (results of Fig.  4). We replicated 
the simulation of each scenario 1000 times, and 
estimated the probability of a certain outcome (e.g. 
unfeasible system, that is at least one species goes 
extinct) as the frequency of that outcome over 1000 
independent replicates of the same process. In the 
scenarios in which we changed the soil feedback 
Is = αA—αB—βA+ βB, we set to negative the PSF by 
keeping three parameters (αB, βA,βB) and decreas-
ing the other parameters (αA). But PSF being the 
same, we expected that the probability of extinc-
tion changed with different combination of param-
eters. We thus also explored scenarios in which 
we kept the PSF positive, constant, and compat-
ible with coexistence at low level of variance, and 
then progressively increased the difference between 
parameters αB and βA.

Results

First, we verified that the Euler–Maruyama method 
of our SDEs with zero variance and zero correlation 
returned an accurate approximation of the trajectory 
expected under the deterministic model, which was the 
case (Fig.  1a). To explore the behaviour of the model 
qualitatively, we plotted 10 paths of two parameteriza-
tions of our SDE: one with no correlation, and the other 
one with correlation (Fig.  1b, we report just the one 
with correlation). As qualitatively visible across the 10 
trajectories plotted in Fig.  1b, the system rapidly con-
verges towards the deterministic equilibrium but it then 
keeps fluctuating indefinitely around the equilibrium, 
with plant A and B out of phase, and with the soil vari-
able with a phase intermediate between that of plant A 
and B. A key metric to describe the asymptotic behaviour 
of the system is the long-term value of the ratio between 
plant A and plant B population size. For the parameters 
of the deterministic model based on Bever (2003) this 
ratio is 0.8, and the two plants coexist although plant B is 
the superior competitor. Stochasticity alters this expecta-
tion in two ways: first, depending on the variance level, a 
fraction of the simulations returned unfeasible configura-
tions, which we defined as those where one of the plant 
populations went either extinct or to infinity. Second, 
when the system could settle into a feasible configura-
tion for the time span analysed in our simulation, the 
distribution of plant A to plant B ratio slightly shifted to 
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the right, that is above 0.8, and so in favour of plant A 
(Figs. 2 and 3).

When plotting probability of extinction (defined has 
the fraction of trajectories that returned an unfeasible sys-
tem, with one of the two plants going extinct) as a func-
tion of environmental stochasticity (with the variance 
terms of both plant A and B ranging from 0.5 to 10) and 
five different levels of PSF (ranging from slightly positive 
to slightly and more decisively negative) we observed a 
clear stabilising effect of PSF (Fig. 4a): the more nega-
tive the PSF the higher the level of variance needed to 
increase probability of extinction. to The details of these 
results, however, depend on the combination of param-
eters used in the simulation scenarios, in which we 

changed the soil feedback Is = αA—αB—βA+βB by keep-
ing three parameters (αB, βA,βB) constant while decreas-
ing the parameters αA. But there are also combinations 
for which, PSF being the same, probability of extinction 
varies depending on the ratios between the 4 param-
eters. We give an example (among the infinite number of 
possibilities) in Fig. 4b, where PSF is initially positive, 
constant, and compatible with coexistence at low level 
of variance. We then progressively increased the differ-
ence between parameters αB and βA while keeping the 
PSF at the same level. This set of simulations shows how 
the details of the PSF parameters matter in determining 
probability of extinctions and the response of this prob-
ability to increased levels of stochasticity.

Fig. 2   Frequency distribu-
tion (histograms, y-axis) of 
the ratio (x-axis) between 
the population size of plant 
A and plant B. The vertical 
blue line (just after 0.8 on 
the x-axis) shows the ratio 
for the deterministic model 
(and for the parameters 
used in Bever (2003), which 
are the same as in Fig. 1a). 
In general, stochasticity 
shifts the ratio to the right 
(that is > 0.8) and correla-
tion seems not to affect this 
shift. The shift is particu-
larly pronounced (> 95% 
of stochastic path have a 
ratio > 0.8) for scenarios 
with high variance in both 
species A and B, meaning 
that, for this combination 
of parameters, stochasticity 
tends to favour the inferior 
competitor (species A). 
Each distribution is calcu-
lated from 1000 simulations 
of the system
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Discussion

New predictions, limitations and possible extensions

Much experimental evidence on species coexistence 
theories come from plant communities (Vellend 2010; 
Gravel et al. 2011; HilleRisLambers et al. 2012) and 
is rooted in classic ecological theory based on the 
niche concept (Tilman 1982; Chase and Leibold 

2003). Stochastic versions of the classic niche frame-
work were formulated already early in the history of 
ecology (May 1973b), and have been reframed more 
recently following input from stochastic theories of 
community assembly (Tilman 2004; Adler 2007; Vel-
lend 2010). Our model applies that general theory 
of stochastic population dynamics to a general PSF 
model and shows that, differently from the determin-
istic classic case, stochastic PSF dynamics may result 

Fig. 3   Same as Fig. 2, but 
with variance in A either 
higher (panel a and b) or 
lower (panel c and d) than 
variance in B. This time, 
in all cases stochasticity 
markedly shift the ratio to 
the right of the determinis-
tic expectation, regardless 
of which species is affected 
by the highest level of 
stochasticity
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in a fraction of trajectories along which one plant spe-
cies goes extinct. That generally means a reduction 
of the space for coexistence, and it is not surprising. 
Stochastic models account for the realistic fact that 
in nature, especially under the influence of tempo-
rally dynamic and multiple global change factors 
(Rillig et al. 2019), there are sources of environmen-
tal variance that are difficult to predict and that are 
thus best modelled stochastically (Lande et al. 2003; 
Allen 2010). Under global change, the impact of envi-
ronmental variance on soil biota, for example in the 
form of unpredictable weather events, is expected to 
increase (Bardgett and Caruso 2020), which implies 
fluctuations in community dynamics that involve PSF 
(Kardol et al. 2006, 2007).

Our key result, however, goes beyond the plain 
verification of the fact that stochasticity may reduce 
the space for coexistence (Lande et  al. 2003): our 
simulations collectively show that, despite an over-
all reduction of the space for coexistence, the more 
negative the PSF the higher stochasticity needs to 
be to generate a sizeable probability of extinction. 
Negative PSF, which reduces the negative effects on 
the inferior competitors and positive effects on the 
superior competitor, counteracts the extinction risk 
brought about by stochasticity. Our theoretical model 
thus generalises the key expectation from the classi-
cal PSF model: PSF buffers plant-soil systems from 
the negative impact that environmental stochastic-
ity has on the risk of plant species extinction (for 
local population). It is, however, important to clarify 
a crucial point: the impact of an increasingly more 
negative PSF on the probability of extinction can be 
evaluated when conditions are fully controlled. Con-
trolled conditions are, in our simulations, represented 
by keeping three (out of four) PSF parameters con-
stant, and varying PSF by decreasing/increasing the 
fourth parameter. For example, consider the following 
two combinations of parameters for Is = αA—αB—βA 
+ βB: i) αA = 0.35, αB = 0.2, βA=0.2, and βB = 0.2; 
and ii) αA = 0.35, αB = 0.3, βA=0.1, and βB = 0.2. In 
both cases, the total PSF equals 0.15. But in case 1, 
which is the same as in Fig. 4a (i.e. see that figure for 
PSF = 0.15), the system rapidly becomes unfeasible 
for moderate levels of environmental variance, while 
in case 2 probability of extinction is comparable to 
some of the negative PSF explored in Fig.  4a. The 
implication is that PSF being the same, the nature and 
intensity of the interaction between soil and the plant 

Fig. 4   Relationship between variance (i.e. strength of sto-
chasticity, x-axis) and the probability of extinction (y-axis) 
estimated as the number of unfeasible configurations over 
1000 simulations of the same system. Each data point thus 
corresponds to 1000 simulations. Both in panels a) and b), 
eleven levels of variance, ranging from 0.5 to 10 were con-
sidered. For each level, the 1000 simulations of panel a) 
were run for each of the 5 different levels of plant soil feed-
back (PSF), marked with the different colours and symbols. 
In panel a), the scenario in orange, with the diamond sym-
bol, corresponds to a PSF of + 0.15, that quickly leads to 
extinction for moderately high level of stochasticity. But all 
the scenarios in figure a) keep the impact of soil A on plant 
B, that of soil B on plant A, and that of soil B on plant B 
constant, and negativizes PSF by making the impact of soil 
A on plant A more and more negative. In panel b), instead, 
we kept PSF constant (at 0.15) and also kept the impact of 
plant A on soil A and that of plant B on soil B constant. 
The scenarios in panel b) differ in the difference between 
the impact of soil A on plant B and that of soil B on plant 
A. As this difference increases, higher variance is required 
to lead the system to extinction
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species matters. In practice, a net positive (or nega-
tive) PSF exerted through, say, just positive mutual-
istic interactions can impact probability of extinction 
very differently from the same net positive (or nega-
tive) PSF but exerted through negative or a mixture of 
negative and positive interactions. The biology of the 
system does matter. The compound metrics used to 
quantify the net PSF helps, but those metrics are not 
sufficient to predict how environmental variance may 
impact the probability of extinction in local systems 
and in the real world.

Also, we stress that the current presentation of our 
model is based on two species only, and a single “soil 
axis” representing the overall soil community and so 
its impact on plants. But in nature, multiple plant spe-
cies interact with an enormous amount of different 
soil organisms, and it is nowadays textbook knowl-
edge that the nature of the interactions vary enor-
mously spatially and temporally. These basic facts 
of nature do not invalidate our theoretical results but 
directly call for a multivariate extension of the form 
of the model presented here, which should in the 
future include at least two more elements: first, more 
plant species (one more equation per plant species), 
and second a decomposition of the “soil axis” into the 
different components that make up the soil commu-
nity (de Castro et al. 2021; Potapov 2022), at least in 
terms of major microbial groups (e.g. fungi and bac-
teria; (de Vries et al. 2018; Müller and Bahn 2022)) 
and animals (e.g. micro vs. meso vs. macro fauna). 
We expect this multivariate extension and explicit 
consideration of spatial scales to make the relation-
ship between PSF and extinction probability more 
articulated and dependent on the multidimensional 
nature of the relationship that link plant species to 
each other as well as plants to soil, and plants and soil 
to degree of disturbance and environmental unpre-
dictability experienced by the entire ecological com-
munity (Kardol et al. 2006, 2007; Suding et al. 2013; 
Crawford et al. 2019).

Experimental tests

Some of our predictions can in principle be tested 
experimentally using classic PSF experiments (Van 
der Putten et al. 2013; Crawford et al. 2019) on pairs 
of plant species but with the addition of an experi-
mental regime that should incorporate environmen-
tal variance (Benedetti-Cecchi et  al. 2006). The 

environmental variables to consider for manipulation 
should be any that have an impact on the growth rate 
of the plants involved in the experiment. At a mech-
anistic level, the growth rate is the key focus here 
because it reflects the speed at which the processes 
connecting plants and soil take place. Key environ-
mental variable to introduce a stochastic regime in the 
environment could be temperature, or a physical dis-
turbance imposed on the system (drought, flood). The 
variance regime should be a factor in the experiment 
(Benedetti-Cecchi et  al. 2006), ranging from low to 
high variance, as per the x-axis of Fig. 4. This “vari-
ance factor” can be either continuous or categori-
cal. The variance factor would have been effective 
if it could be shown to alter the probability that the 
two species coexist. This may require pilot studies to 
identify the amount of environmental variance that 
can trigger a shift in the regime of the system, as in 
Fig. 4, where there is a range of variances for which 
the system rapidly goes from relatively low levels of 
extinction to the certainty that the plants cannot coex-
ist. An advantage of the stochastic approach is that 
the prediction is probabilistic and so the result of 
the experiment can be recorded in terms of number 
of experimental units for which a certain outcome 
is observed. That means that the key observation is 
not a time series of the plant population, but rather 
the frequency at which coexistence or extinction 
are observed over a relatively long but well-defined 
period of time. Standard measurements of PSF 
(Brinkman et al. 2010) can also be taken to validate 
the expectation that the PSF controls the relationship 
between environmental variance and probability of 
extinction of plant species.

General implication of stochasticity for plant‑soil 
feedback

Negative PSF can predict the relative abundance of spe-
cies in tropical forests (Mangan et  al. 2010) and has 
recently be shown to be linked to fluctuations in the 
relative abundance of plant species in diverse moun-
tain meadows (in’t Zandt et al. 2021). In these very spe-
cies rich system, PSF is hypothesised to be a key factor 
maintaining species diversity. Through its link to plant 
coexistence, PSF could also control the biodiversity-
productivity relationship (Forero et  al. 2021). If time 
series are available (e.g. in’t Zandt et al. 2021), they can 
be modelled as stochastic processes (Brouste et al. 2014; 
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Iacus and Yoshida 2018). Our current model presenta-
tion is limited in that for the purpose of a first illustration 
we limited our analysis to a two species system. But, our 
system of equations can easily be extended to multiple 
equations and then be fitted to plant time series using 
the formalism of SDEs through the R package Yuima 
(Brouste et al. 2014; Iacus and Yoshida 2018). Fitting a 
stochastic model to an actual time series of plant popula-
tions may help quantify the degree of stochasticity, pop-
ulation trends, and extinction risks.

There currently remains a major limitation when it 
comes to actual applications of the type of models we 
presented here. Ideally, one wishes to control for the 
negative implications of stochasticity on plant popula-
tion dynamics. Models suggest that one way of control-
ling negative effects (e.g. increase of extinction risk) is 
controlling the PSF through the type of biotic interac-
tions that determine the PSF, for example mutualistic 
vs. pathogenic effects. In principle, one could harness 
the soil community to control the PSF in a manner that 
boosts the ability of plants to resist to or recover from 
the perturbation regime continuously created by envi-
ronmental stochasticity. Controlling the PSF would, 
however, require a mechanistic knowledge of the bio-
logical interactions that underpin the total PSF (van der 
Putten et al. 2016), and these interactions are at least of 
two kinds, positive and negative, and notoriously very 
challenging to harness. But our models currently col-
lapse the total collective impact of the soil community, 
and so all the complexity of soil biodiversity, into just 
one simplistic variable and a few parameters control-
ling for the impact of this variable on the plant popu-
lation. While this approach is powerful at the phenom-
enological level (i.e., description of dynamics under the 
assumption of certain population processes: Bever et al. 
2010; Eppinga et al. 2018), it does not itself shed light 
on the actual biological and ecological mechanisms that 
cause PSF. Only manipulative experiments can achieve 
that level of understanding of PSF, which is needed for 
a future harnessing of PSF via soil biota. At that empiri-
cal level, the first operation will be a decomposition of 
the model soil axis into the actual major groups of soil 
organisms that affect plant dynamics.

An alternative to harness the PSF is the plant 
community itself, because the PSF depends on the 
mutual interaction that links plant to soil biota, and 
different pairs of plants will thus be associated with 
different types of PSF. Current models and synthe-
ses, including our own model presented here, suggest 

that, all else being the same, plant communities with 
strong negative PSF are resilient to environmental 
stochasticity (e.g. Kardol et  al. 2007; Mangan et  al. 
2010; Suding et al. 2013). There are studies that have 
investigated and quantified the effect of PSF at the 
entire multispecies plant community level (Eppinga 
et al. 2018). And yet, a still unresolved, major chal-
lenge is identifying the management actions that can 
harness the entire plant community to increase nega-
tive PSF and so counteract the impact of an increas-
ingly more unpredictable environment.
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