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Abstract

Open systems have been the subject of interest in science for a long time because many

complex molecular systems are open systems embedded in a large environment that serves as

a reservoir of particles and energy.

In order to test the methods’ accuracy and applicability, simulations of open systems exposed

to different non-equilibrium conditions are performed, and the results are compared to the

results of full resolution simulations and the range of applicability of the method is investigated.

Furthermore, a study on fluid flow through regular bead packings as a model of a porous

medium was conducted to investigate the flow–pressure relation in these media and its

dependence on geometry and porosity of the medium. These simulations are also done with

AdResS for extension to open boundaries.

The results presented in this thesis help to understand the capabilities of our simulation

method to simulate open systems out of equilibrium. We found that by choosing proper

boundary conditions and reservoir states, simulations of open systems embedded in large

reservoirs of particles and energy can be done with low computational cost. The findings of

this thesis pave the way for future research on applications in which a more realistic system is

subjected to non-equilibrium conditions and flows of heat and mass.
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Zusammenfassung

Offene Systeme sind in der Wissenschaft schon seit langem von Interesse, da viele kom-

plexe molekulare Systeme offene Systeme sind, die in eine große Umgebung eingebettet sind,

die als Reservoir für Teilchen und Energie dient.

Um die Genauigkeit und Anwendbarkeit der Methoden zu testen, werden Simulationen offener

Systeme durchgeführt, die verschiedenen Nichtgleichgewichtsbedingungen ausgesetzt sind.

Die Ergebnisse werden mit den Ergebnissen von Simulationen mit voller Auflösung verglichen

und der Anwendungsbereich der Methode wird untersucht. Darüber hinaus wurde eine

Studie über die Flüssigkeitsströmung durch regelmäßige Perlenpackungen als Modell eines

porösen Mediums durchgeführt, um die Strömungs-Druck-Beziehung in diesen Medien und

ihre Abhängigkeit von der Geometrie und Porosität des Mediums zu untersuchen. Diese

Simulationen wurden auch mit AdResS zur Erweiterung auf offene Grenzen durchgeführt.

Die in dieser Arbeit vorgestellten Ergebnisse helfen, die Fähigkeiten unserer Simulationsme-

thode zur Simulation offener Systeme außerhalb des Gleichgewichts zu verstehen. Wir haben

festgestellt, dass durch die Wahl geeigneter Randbedingungen und Reservoirzustände Simula-

tionen offener Systeme, die in große Reservoirs von Teilchen und Energie eingebettet sind, mit

geringem Rechenaufwand durchgeführt werden können. Die Ergebnisse dieser Arbeit ebnen

den Weg für künftige Forschungsarbeiten zu Anwendungen, bei denen ein realistischeres

System Nicht-Gleichgewichtsbedingungen und Wärme- und Massenströmen ausgesetzt ist.
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1 Introduction

Many phenomena in nature are fundamentally out of equilibrium. The corresponding phys-

ical systems are subject to fluxes of matter and energy to and from their environments, as

well as chemical reactions therein, and they may violate mechanical, chemical, or thermal

equilibrium conditions. A physical system is said to be in equilibrium if it is mechanically

stable, is free of currents on average, and is invariant under time reversal. State variables

have inherent fluctuations that do not disturb the macroscopic state near equilibrium but

can be amplified far from equilibrium [1]. These are important indications of the qualita-

tive differences between equilibrium and non-equilibrium situations. Some examples of

non-equilibrium phenomena on the molecular scale include fluid flow in porous media and

nanotubes [2], liquid evaporation[3], glass formation in liquids [4], and osmosis [5].

For studying non-equilibrium phenomena, a suitable extension of thermodynamics is needed.

One of the goals of non-equilibrium thermodynamics is to determine the relation between

the flux of some property to the gradient of conjugate variable that drive the flux. This allows

for the representation of energy, momentum and mass transport equations [6]. In 1854, W.

Thomson used thermodynamic concepts to treat irreversible phenomena. Later work by

Onsager in 1931 [7, 8] led to the development of the classical theory of non-equilibrium

thermodynamics based on reciprocal relations connecting the coefficients of proportionality

between irreversible fluxes and thermodynamic forces [1, 9, 10].

Thermal gradients can create a variety of non-equilibrium phenomena and have many ap-

plications. Experimental studies have detected non-uniform temperature fields around the

membranes of living cells [11], and it is possible to control the shape of the membrane by

manipulating the temperature around it. Another application is the separation of ionic liquids

as a solvent from other components like water [12].
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Directed fluid flow is a major transport mechanism in porous media that can either be gener-

ated by pumps or emerge in response to a gradient of pressure. The pressure-flow relation

and how it depends on the structure and geometry of the medium is an important question to

be answered as it helps to optimize the medium and control the flow in relevant applications

such as gas separation with metal organic frameworks (MOFs) [13, 14].

For studying phenomena such as the examples above, one needs a reliable simulation tech-

nique of a system that can exchange energy and particles with the environment. The standard

method for simulation of closed systems have limitations in modeling open system conditions,

necessitating the development and use of well-founded algorithms for efficient and accurate

numerical simulations.

From a thermodynamic standpoint, most physical systems can be classified into three groups

based on their interactions with their surroundings: 1. isolated systems that are unable to

interchange matter and energy, 2. closed systems that allow the exchange of energy but not

matter, 3. open systems that can exchange both matter and energy. The boundary conditions

mimic the interaction of the system with its surroundings. There may be walls located at the

boundaries, which close the system for the exchange of particles. Periodic boundaries are

another choice, and are very well suited for the simulation of microcanonical and canonical

ensembles. Another option are open boundaries to model a grand canonical ensemble. One

method to simulate an open system is to employ a huge system as a universe with periodic

boundary conditions and to consider a subvolume of this universe as an open system where

particles can enter and exit. The drawback with this type of simulation is that it requires a

very large reservoir (10-20 times larger than the considered open system [15]) to imitate grand

canonical conditions and to eliminate finite size effects, which has a significant computing

cost.

In multi-scale systems, often details are important in some regions and not important in

others. The matter of considering or ignoring the details is determined by our point of view

on the problem. When investigating the local features of a system in contact with large-scale

reservoir, not all of the details need to be taken into account. As a result, it has proven to be

advantageous to have simulation approaches that deal with problems locally, where the region

of interest is resolved microscopically and is in equilibrium with a simplified, coarse-grained

(CG) environment [16].

The method used in this thesis is the Adaptive Resolution Simulation (AdResS) technique,

which provides a framework to model open systems with considering different resolutions in

the system and the surroundings at lower computational cost (see chapter 2). This method has

been tested in equilibrium in a range of applications [17–19] and in this thesis, studies on open
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systems in non-equilibrium conditions are presented. Physico-mathematical models of open

systems determine the guideline protocol for the simulation algorithms. For non-equilibrium

conditions, they mostly consider the linear independent combination of reservoir actions and

AdResS simulations are based on these principles. These studies are conducted using AdResS

as well as full-resolution simulations, in which all particles are explicitly treated with all of

their degrees of freedom. This was done in order to verify the computational process and its

numerical applicability.

Another approach to lowering computational costs and paving the way for complex system

simulations is to run molecular dynamics simulations on high-end general purpose graphics

processing units (GPUs). This can bring an encouraging performance boost, but the transition

from the usual sequential algorithm to the parallel algorithm must be made carefully to gain

the theoretical performance advantage. HAL’s MD package (HALMD) [20] is a molecular dy-

namics software which has been designed and written to run on GPUs, and ref. [21] shows that

simulating a Lennard-Jones fluid on GPU in HALMD has an 80-fold speedup over sequential

CPU simulations. This number has changed with newer generations of hardware both in GPUs

and CPUs, and varies between 50 and 200 times faster in GPUs. Similar factors are obtained

for the equivalance of one GPU to the numbers of CPU cores in parallel implementations [20].

The simulations in this thesis are all performed in HALMD on GPUs.

This thesis focuses on modeling open boundaries in non-equilibrium conditions, with a

minimal computing cost, which is useful in a variety of applications. We have extended the

AdResS method to simulate non-equilibrium conditions. We have studied an open system

subjected to temperature gradients, demonstrating that the mathematical model of an open

system in non-equilibrium is also well compatible with AdResS and produces the expected

results. Then the applicability range is thoroughly examined, and a detailed mathematical

formulation of the non-equilibrium conditions is presented (ch.4). Going further from the

simulation of a heat flux in an open system to the simulation of a mass flux, we faced some

challenges and chapter 5 is dedicated to explain different approaches we used to create a

steady mass current in an AdResS setup, their problems and potential solutions.

The non-equilibrium conditions featuring a steady mass flux were studied for an application-

relevant setup using full resolution simulations. We studied the fluid flow through regular bead

packings as a model for nano porous media in periodic boundaries (ch.6). We also studied the

same setup but with open boundaries (ch.7) with the AdResS method, where the original idea

of chapter 4 works naturally.

Some of the results of this thesis have already been published in the following peer-reviewed ar-

ticles for which I have implemented and conducted the simulations, analysed and interpreted
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the data, and written some parts of the text.

[22] R. Ebrahimi Viand, F. Höfling, R. Klein and L. Delle Site, Theory and simulation of open

systems out of equilibrium, J. Chem. Phys. 153. 101102 (2020), Featured article.

[23] R. Klein, R. Ebrahimi Viand, F. Höfling and L. Delle Site, Nonequilibrium induced by

reservoirs: Physico-mathematical model and numerical tests, Adv. Theory Simul. 4, 2100071

(2021).
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2 The Adaptive Resolution Simulation

Technique

Multiscale phenomena are ubiquitous in nature, and studying them requires multiscale

methods. All effort can be concentrated on the phenomena of interest by ignoring numerous

unimportant details. Particles in such a system should be able to move freely between different

regions with different properties. This is provided by the Adaptive Resolution Simulation

(AdResS) technique which has been presented for nearly two decades and has evolved in

a variety of ways. In the original form of AdResS [25, 26], the region of interest with high

resolution is referred to as (AT) and it is linked to the coarse-grained region via a hybrid region

denoted by (∆). Particle resolution changes smoothly and continuously from all-atom to fully

coarse grained levels. The transition function w(x) in the ∆ region controls this change of

resolution, which avoids the abrupt change in particle interactions and thus the discontinuity.

This region’s length is typically smaller than other regions but greater than the interaction

length to avoid direct interaction between coarse-grained and full-atomistic particles.

Figure 2.1: The original AdResS configuration. The box is divided into three regions. The high resolution
region is depicted in the figure as the "Atomistic" region and is referred to as "AT" throughout this
thesis. There exists a transition region referred to as ∆ and a coarse grained region (CG) where the
resolution is decreased. To change the resolution smoothly, the switching function w(x) is used in the
∆ region. Reprinted figure with permission from ref. [24].
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Some of the system’s properties are inconsistent as a result of this type of coupling. Although a

thermostat can keep the temperature uniformly throughout the box, this is not true for the

other parameters. The difference in resolution and, as a result, the mismatch in the number

of degrees of freedom result in a difference in entropy. This results in a pressure difference,

and the consequence of this pressure difference is a non-physical change in density caused

only by this coupling of scales, which should be compensated for. There are two approaches

to fixing this mismatch. One is based on manipulating the force and the other is based on

manipulating the Hamiltonian.

A one-particle thermodynamic force is applied to fix the density in the original form of AdResS

[25], which was force-based, whereas in Hamiltonian-based AdResS (H-AdResS), the free

energy difference between the AT and CG regions is considered to compensate for the density

difference. Both versions ensure that there is no barrier to particles passing from different

regions, resulting in equilibrium between the regions of different resolution. They are, in fact,

different technical expressions of the same balancing process [19]. More information on these

two AdResS types, as well as a simplified version of the force-based one for dealing with open

systems, is provided in the following subsections.

2.1 Force based AdResS

Particles feel different potentials in the AT and CG regions. For a system of N molecules made

of n atoms with intramolecular interactions V int, the Hamiltonians in the atomistic region

(HAT ) and the coarse grained Hamiltonian (HCG ) are [19],

H AT =
N∑
α=1

n∑
i =1

p2
αi

2mαi
+V int +

N∑
α=1

V AT
α , V AT

α =
1

2

N∑
β ̸=α

n∑
i j

V AT (|rαi − rβ j |
)

, (2.1)

HCG =
N∑
α=1

p2
α

2mα
+V int +

N∑
α=1

V CG
α , V CG

α =
1

2

N∑
β ̸=α

V CG (|Rα−Rβ|
)

. (2.2)

In these equations, p is momentum, m is mass, r is particle position and R is the center of

mass of the coarse grained particle. The subscripts i andα refer to atom and molecule indexes,

respectively. V i nt can have any form and is not important in our case.

When moving from one region to another, particles pass through the transition region ∆,
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where the transition function w(x) is felt. As a result, the final force between particles is [26]

Fαβ = w(xα)w(xβ)FAT
αβ +

(
1−w(xα)w(xβ)

)
FCG
αβ , (2.3)

where xα = êx · rα in which êx is the unit vector along the x-axis. FAT
αβ

represents the total

force exerted by the atoms of molecule β on molecule α due to the atomistic interactions

and the force between the centers of mass of the coarse-grained particles is represented by

FCG
αβ

= −∇V CG (Rα−Rβ).

The thermostat and a position-dependent thermodynamic force Fth(x) keep the simulation

box in global thermodynamic equilibrium. Fth compensates for pressure differences in the

system to reach constant density ρ in the whole box and is calculated iteratively,

Fth(x) =
M

ρ
∇P (x) (2.4)

with M being the molecular mass.

2.2 Hamiltonian based AdResS

In the force-based AdResS, the force is defined everywhere in the box, but it is non-conservative

in the ∆ region [27, 28], so a global Hamiltonian cannot be defined. A well-defined Hamil-

tonian is required, such as in a Monte Carlo AdResS where the energy should be known

everywhere [29]. This is one of the reasons for performing interpolation at the potential level.

H-AdResS is a free energy compensation scheme that attempts to balances the missing free en-

ergy contributions of the AT region due to the loss of degrees of freedom in the coarse-grained

region [30, 31]. The Hamiltonian includes the smooth transition function and is given by

H =
N∑
α=1

n∑
i =1

pαi

2mαi
+ ∑
α=1

N
[
w(xα)V AT

α + (1−w(xα))V CG
α

]+V int. (2.5)

From this Hamiltonian, the force applied on i th atom of molecule α is calculated as

Fαi =
∑

β,β ̸=α

[
w(xα)+w(xβ)

2

n∑
j =1

FAT
αi ,β j +

(
1− w(xα)+w(xβ)

2

)
FCG
αi ,β

]
+Fint

αi −
[
V AT
α −V CG

α

]∇αi w(xα).

(2.6)
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A drift term
[
V AT
α −V CG

α

]∇αi w(xα) appears in the force, coming from the energy differences

and proportional to the gradient of transition function and this violates the Newton’s Third

Law. The fact that energy and force are defined everywhere in this scheme appears to be a

plus, but calculating force from this smooth Hamiltonian has some mathematical issues, and

the equation is ill-posed [28].

2.3 GC-AdResS for the simulation of open systems

AdResS’s high efficiency, in simulating a system that exchanges energy and particles with

another system, makes it a good candidate for modeling open systems. The AT region of

AdResS can be treated as a high-resolution open system embedded in a larger, coarser reservoir

of energy and particles. In AdResS, the AT region shows grand canonical (GC) behavior, which

is formulated in the GC version of AdResS [32].

The Liouville equation describes the time evolution of the probability distribution of a system

of particles and is normally used for closed systems in molecular dynamics (more details

are given later in section 3.1), but Bergmann and Lebowitz developed a generalization of the

Liouville equation for open systems in 1955 and later [33, 34]. The system in this mathematical

model has impulsive interactions with one or more reservoirs, resulting in a transition from a

state with M particles to a state with N particles. The reservoir’s state remains unchanged after

this transition. The reservoir’s action (I ) is formalized by a stochastic function that determines

the probability of this transition as a result of interaction with the reservoir. Liouville’s equation

describes the time evolution of the probability distribution ( f (XM , M)) of a system of M

particles

∂ f (XM , M , t )

∂t
= −{ f (XM , M , t ), H(XM )}+ I (XM , f (XN , N , t )), (2.7)

where {., .} is the poisson bracket. This model assumes the linear sum of actions of different

reservoirs, so the actions of different reservoirs will be added together. The BL model’s princi-

ples can be properly translated into AdResS, and AdResS can be used to model open systems

in and out of equilibrium.

2.4 Further simplifications of GC-AdResS

In ref. [35], an abrupt change in resolution was tested and shown to be accurate, the need for

a smooth transition function in the ∆ region was demonstrated to be ignorable. It was also

tested separately and with the original smooth switching function that two-body interactions

8



Figure 2.2: Representation of different types of AdResS. (a) The original idea of AdResS with a switching
function to smooth the change of particle resolution. (b) An abrupt interface between high resolution
and coarse grain region is employed. (c) The CG particles are replaced with non-interacting particles
(tracers). Reprinted figure from ref. [17].

in the CG region can be removed and non-interacting particles used instead [36]. In ref. [17] a

newer version of AdResS is presented that combines these two simplifications in modeling

open systems. In this model, the transition function w(x) is eliminated and the particles feel

an abrupt change of identity instead of a smooth and continuous change as shown in part (b)

of figure fig. 2.2. The ∆ region in which the resolution changed smoothly is now filled with full

resolution particles.

As shown in part (c) of figure fig. 2.2, it also replaces CG particles with point-like non-

interacting particles (tracers), which significantly increases computational efficiency. The

disadvantage of this computational efficiency is the emergence of numerical instabilities.

Non-interacting particles enter the high resolution region (∆) without any barriers, exactly

as we want and expect, and then change to full resolution particles. Particles’ new positions

are determined by other particles and the net force exerted on them. This avoids being in

very close vicinity to other particles. This is not the case for the newborn particles at the CG−∆
interface. The tracers do not interact with each other or with particles in the ∆ and AT regions.

When the newborn particles pass through the interface, they choose their new position blindly,

and they may be located in an inappropriate location, very close to other particles, causing

a strong repulsive force and instability. This problem is solved by considering a force value

threshold in each direction that is greater than the maximum possible force. Forces with

values greater than this threshold are truncated and will eventually relax in the following steps.

9



Figure 2.3: AdResS configuration illustration. Blue spheres represent full resolution particles, while
small gray dots represent tracers. Thermostat is used on the colored areas. Reprinted from ref. [22],
with the permission of AIP publishing.

This is not very likely and accounts for about 1% of total interactions in each time step, but

it is crucial to avoid instabilities. We will use this variation of AdResS with an abrupt change

in resolution and non-interacting particles in the CG region, which we will refer to as the TR

region from now on in this thesis.

2.5 Simulation process

In order to simulate a physical system with AdResS, the simulation box should be divided

into different regions and the reservoir (∆ and TR regions) is kept at the desired temperature

using a suitable thermostat. When passing through the boundary of the ∆ and TR regions,

particles are converted to tracers and vice versa. Particle forces in the transition region should

be checked to ensure that they do not exceed the threshold value. Thermodynamic Force Fth

of eq. (2.4) should be calculated but local pressure is not easily accessible. For a constant ρ0 in

the simulation domain, in the first estimation, the local pressure dependent on the density is

p(ρ(x),T ) ≈ p0 +1/(ρ0χT )(ρ0 −ρ(x)), where χT is the isothermal compressibility. Using this

approximation, eq. (2.4) can be rewritten as

F k+1
th (x) = F k

th(x)− M

ρ2
0χT

∇ρk (x). (2.8)

This formula is not directly dependent on pressure and is easier to implement comparing to

eq. (2.4). Alternative approach is considering the fact that the potential energyφ(x) is uniquely

determined by the equilibrium density [37]. The number density can be approximated by its

10
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Figure 2.4: Comparison of convergence of thermodynamic forces for eq. (2.8) (left) and eq. (2.12)(right).
The x-axis is different in two plots.

ideal gas expression as

ρ(x) ∝ exp(− 1

kB T
φth(x)), (2.9)

so the corresponding external potential is

φth(x) ∝−kB T ln(ρ(x)). (2.10)

In each iteration, the potential φk
th and density ρk may differ from the target potential φ0

th and

target constant density ρ0, (φ0
th =φk+1

th =φk
th + A(x)), so A(x) will be:

A(x) =φ0
th −φk

th = kB T ln

(
ρk (x)

ρ0(x)

)
(2.11)

For interacting fluids, the potential can be approximated iteratively as

φk+1
th (x) =φk

th(x)+kB T ln

(
ρk (x)

ρ0(x)

)
, (2.12)

and the thermodynamic force is calculated as the gradient of this potential, Fth(x) = −∇φth(x).

The latter formula converges faster than eq. (2.8) as shown in fig. 2.4 and we used it for all the

AdResS simulations through this thesis.

The initial configuration of the fluid is exposed to the thermostats, and other AdResS elements

such as species change and particle interaction are applied, and simulation is run without

any external force at first. Using the resulting density profile and taking into account the

target density profile and temperature, the new force and potential to reach the target density

are calculated using eq. (2.12). Another simulation begins by applying the calculated Fth to

the previous simulation’s final configuration. This process of correcting the required force
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Figure 2.5: Comparison of convergence of thermodynamic forces for different simulation times. The
infinity norm of density does not show a significant improvement with increasing simulation time.

is repeated until the density error is within the prescribed tolerance. The converged Fth(x)

value is calculated once and is then used in the main simulation. The typical number of

iterations required to achieve convergence is around 30–40, but this can vary depending on

the state of the liquid and the size of the simulation. For a system of 12150 particles with

T = 1.6kB /ε and in ρ = 0.3σ−3, the convergence was tested for t = 1000τ with thermodynamic

force and potential calculated by eq. (2.12) and with eq. (2.8). This was done by comparing

the Lp distances between the current and the target densities in a set of grid points (xi ) in

the space. The first and second norms are ∥ρ(x)−ρ0(x)∥p =
(∑n

i =1 |ρ(xi )−ρ0(xi )|p)1/p with

p = 1,2 and the infinity norm is ∥ρ(x)−ρ0(x)∥∞ = max |ρ(xi )−ρ0(xi )|. As previously indicated,

eq. (2.12) converges after 30 steps, which is considerably faster than the other formula, where

the error is still approximately 5 percent after 200 steps as demonstrated in fig. 2.4.

Different parameters can influence convergence, and we investigated the role of simulation

time, as shown in fig. 2.5. When the simulation time is increased from 500τ to 1000τ, the

number of iterations required for convergence decreases, but increasing the simulation time

further does not change the convergence and does not decrease the error.

To check if any spatially adaptive molecular resolution technique is subjective for modeling

open systems and has realistic physical meaning, we need to make sure that the method

produce the same properties in AT region as the all-atom simulation. Some criteria that need

to be met are as follows [38]:

• During the simulation, the system should reach equilibrium and have a flat density and

temperature all over the box within a certain tolerance. This is required because the

reservoir in the BL model is designed such that its thermodynamic state is unaffected

by the AT region. This is accomplished by using a thermostat to maintain temperature

and thermodynamic force to control the density.

• In the thermodynamic limit, the system needs to display the typical characteristics of
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a grand canonical ensemble. At any time t , the interaction energy of full resolution

particles in the AT region with particles in the reservoir, (which reduces to the ∆ re-

gion as tracers are non-interacting) U (t)AT−∆, should be negligible comparing to the

interaction energy of the particles in AT region with themselves |U (t )AT−AT|.

δ(t ) =
|U (t )AT−∆|
|U (t )AT−AT|

≪ 1 (2.13)

• The probability distribution function of the number of particles in the AT region should

be Gaussian and equal to the all-atom simulation.

• Finally, the detailed structural properties should agree with the full-atom simulation, as

determined by the radial distribution function g (r ) in the AT region.

An example of such validation can be found later in section 4.1.7.1.
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3 Molecular Dynamics Simulations

Molecular dynamics simulation is a powerful tool for investigating classical many-body prob-

lems. It is the numerical solution to Newton’s equation of motion for a system of classical

particles. Particle configurations and their time evolution are then used to obtain observables,

e.g., thermodynamic quantities and material constants.

The fundamentals of statistical mechanics is explained in the following section before going

deeper into the methods and materials, and giving an explanation of the massively parallel

programming technique, which is the power of the HAL’s MD package [20, 21] used in this

thesis.

3.1 Liouville dynamics

For an isolated system of N particles of mass m in a box with volume V , the position of

the i th particle is indicated with ri and its momentum is shown with pi . In phase space of

(rN ,pN ) ∈R6N , the Hamiltonian of the system is defined as H(rN ,pN ) = T (pN )+U (rN ), where

T is the kinetic energy and U is the potential energy of the system. The Hamiltonian equations

of motion are

ṙi =
∂H

∂pi
, ṗi = −∂H

∂ri
. (3.1)

An ensemble is a collection of phase points in phase space that can result in the same macro-

scopic properties. The phase space probability density f (rN ,pN , t ) allows us to determine the

statistical properties of all macroscopic observables that are dependent on particle positions

and momenta, and so the time evolution of this probability density contains detailed informa-

tion on the dynamics of the system. Phase space trajectories do not merge or split, according
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to the Liouville theorem, and the probability density is conserved over time [39]:

d f (rN ,pN , t )

d t
= 0. (3.2)

Positions and momenta are time dependent, and the total time derivative is expressed as

∂ f

∂t
+

N∑
i =1

(
ṙi
∂ f

∂ri
+ ṗi

∂ f

∂pi

)
= 0. (3.3)

By inserting eqs. (3.1) and (3.3) into eq. (3.2) and using the Poisson bracket definition, we get

∂t f = {H , f }. Considering the Liouville operator, that is a linear differential operator on the

phase space L ≡ i {H , ·}, leads to ∂t f = −iL f . The formal solution to this equation is

f (rN ,pN , t ) = exp(−iL t ) f (rN ,pN ,0). (3.4)

Any observable property A(rN (t),pN (t)) of the system which depends on the phase space

variables has a temporal evolution that is connected to the evolution of the phase space

probability density. The observable is not directly dependent on time, although it does change

over time as the system progresses through phase space:

d A

d t
=

N∑
i =1

(
ṙi
∂A

∂ri
+ ṗi

∂A

∂pi

)
= iL A, (3.5)

and the solution is

A(t ) = A(rN (t ),pN (t )) = exp(iL t )A(0). (3.6)

The integration of the equation of motion is used to follow the motion of the particles. To

achieve this, the macroscopic time interval [0, t ] is divided into n discrete intervals of length

∆t [39],

exp(iL t ) =
[
exp(iL∆t )

]n . (3.7)

After each interval, new positions and momenta are calculated by discretizing and solving the

equation of motion. This will cause a velocity computation error, and then an energy drift.

Because many physical systems have continuous potentials, the integration technique must

be carefully chosen and should be symplectic to ensure that the total energy does not increase

and remains constant on average.
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The Liouville operator is made up of two different shifts in phase space, iL = iLr+iLp, where

iLr =
p

m

∂

∂r
, iLp = F

∂

∂p
. (3.8)

As a result, both positions and momenta are displaced in phase space after the interval ∆t .

The order of these shifts is important and e iL ̸= e iLr e iLp as Lr and Lp do not commute.

The error of different combinations of shifts in phase space can be calculated using the

Baker–Campbell–Hausdorff formula

Z = X +Y + 1

2
[X ,Y ]+ 1

12
([X , [X ,Y ]]+ [Y , [Y , X ]])+ ..., (3.9)

where [X ,Y ] = X Y −Y X and Z is the solution to the equation e X eY = e Z .

For the choice of e i∆tLp e i∆tLr , the discretisation error of L would be of the order O (∆t).

The error is reduced by using the following approximation for iL , known as velocity-verlet

algorithm:

exp

(
iLp

∆t

2

)
exp(iLr∆t )exp

(
iLp

∆t

2

)
= exp

(
iL∆t +O (∆t 3)

)
. (3.10)

This indicates that position and momentum are displaced in phase space in three successive

stages. A displacement in momentum is followed by a displacement in position and is com-

pleted by another displacement of momentum. This approximation of the Liouville operator,

conserves energy within a reasonable error range. The scheme is symplectic by construction

as a sequence of shifts, and thus it generates stable trajectories in phase space.

Other alternative approximations include the position-verlet method, which has two shifts

in position and one shift in momentum. It has the same error as velocity verlet, however it

needs more force calculations at least in sampling steps. Other decomposition choices are

also suggested in [40] and the efficiency of these algorithm were investigated in a student

project in which I had a contribution. Although there are more efficient approximations, the

velocity-Verlet approach is the most widely used, and we used it in all of our simulations in

HALMD.

The integration procedure in each time step and for each particle, according to eq. (3.10), is

made up of sequential steps given in algorithm 1:
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Algorithm 1 Velocity-verlet algorithm

1: pi ← pi + (∆t/2)Fi ▷ Estimating the momentum after (∆t/2) using the current force
2: ri ← ri + (∆t/m)pi ▷ Predicting the position after (∆t ) using the new momentum
3: Fi ← Fnew

i ▷ Updating the force because the positions changed in the previous step
4: pi ← pi + (∆t/2)Fi ▷ Using this updated force to finalize the integration of momentum

3.2 Parallelization with GPU

Molecular dynamics simulations require a large number of floating-point instructions to

be completed in a reasonable amount of time. This massive number of instructions and

calculations can severely limit the number of particles that can be considered in the simulation,

necessitating a shift to high-performance computations in order to speed up calculations and

model larger systems of particles in the same amount of time.

The performance of central processing units (CPUs) has been improving for the past decades,

allowing them to perform more floating point operations per second, but the rate of growth

has slowed since 2003, and thus most software written sequentially and optimized for CPUs

will not improve significantly [41]. Multicore CPUs were used to execute programs parallel

on multiple cores in order to boost efficiency. A multicore processing system is essentially

a single processor on a single chip with multiple execution cores. An alternative is massive

parallelisation of microprocessors on high-end general purpose graphics processing units

(GPUs), in which a large number of execution threads work together to finish a task. A GPU

consists of about 100 so-called Streaming Multiprocessors (SMs), each of them can operate

128 floating-point operations in parallel. The ratio of peak floating point operations between

GPUs and multicore processors is about 10 [41]. Software for GPUs should be developed in

a way that allows for parallel executions. This means the program should be written as a

sequence of tasks that can be completed in parallel, rather than sequentially, as is typical with

sequential programming.

GPUs have a hierarchical memory design. These memories differ in terms of bandwidth (the

rate at which data can be read from or written to) and latency (the time it takes from initiating a

request for a byte in memory until it is retrieved by a processor). Register is the fastest memory

and private to each single thread. GPU caches include L1 cache stored on-chip and L2 cache

stored off-chip. The L1 cache is shared by threads of the same multiprocessor and is typically

relatively small. It has a high bandwidth as well as a low latency. L2 cache is in the next level of

hierarchy, connected to all multiprocessors, and is slower than L1 cache. It is connected to

the global memory which is GPU’s main memory. The global memory has lower bandwidth

and high latency and is accessible to all the threads. A problem with thread communication is
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Figure 3.1: A simplified version of the CPU and GPU designs. There is a big memory cache in the CPU
while there are small caches for each multiprocessor of threads in GPU. The control unit is a big part of
CPUs, but this is not so in GPUs . Reprinted figure from [41] with permission from Elsevier.

that the order, in which the threads are processed, is not defined (more precisely, the order

of thread blocks), so typically communication via global memory uses several kernel calls

and requires synchronisation barriers. The L2 cache and, e.g., atomic locking of the memory

access, have been introduced to mitigate these limitations, but we do not have any control

over it. We have control over global memory, which exchanges data with CPU memory. We can

also explicitly allocate and manage the shared memory, which threads of a multiprocessor can

access and communicate with [42, 43]. Among the mentioned memory, the only persistent

memory across kernel calls is the global memory.

A code can be processed in parallel by a central logic in a multi-core CPU, which can be

complex needs complex instructions and branch predictions. There should be a large cache

memory for the memory access of this cores. A limiting issue is memory bandwidth. GPUs

have a rate that is ten times higher, making it difficult to compete with them, although CPUs

have been improved either.

In GPUs, while some threads take longer to accomplish their tasks, other threads execute a

greater number of instructions and do not have to wait for the long-running threads. CPUs,

on the other hand, have focused on increasing the speed of single executions at the expense of

large memory caches and increased power consumption.

As a result, applications that are ideal candidates for parallel programming usually process a

lot of data, demand a lot of computation in each iteration, or execute a lot of iterations on the

data. Aside from that, the CPU is a fine choice. We deal with such a vast number of particles in

molecular dynamics that each of them can be handled by a single thread and the numerically

intensive calculations can be performed in parallel on GPUs.

The Compute Unified Device Architecture (CUDA) programming interface can be used to

access GPUs for scientific programming. In Fig. 3.2 the structure of the GPU is shown. The

thread execution manager distributes the threads in a number of multiprocessors. Each

multiprocessor contains a number of threads shown in green. Threads of each multiprocessor
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Figure 3.2: Architecture of a CUDA-capable GPU. Reprinted figure from [41] with permission from
Elsevier.

share the same control logic and memory cache. The multiprocessors are in contact with a

global memory to exchange data with.

The host (CPU) and GPU devices coexist in a CUDA code. The code begins on the host side

and then calls kernel functions which are executed by many GPU threads in parallel. When a

kernel is launched, a grid of threads is created, and when all of the threads have completed

their tasks, such as updating all of the particle positions and velocities, the grid terminates.

The GPU-implemented code in HALMD can speed up a Lennard-Jones fluid by up to 80 times

[21] as compared to a serial CPU implementation. This has changed over years and the speed

up is now between 50 to 200 times for different generations of hardwares. This enables the

simulation of systems with more particles and over longer times.

Calculating properties which are needed every MD step or in some intervals, such as temper-

ature and centre-of-mass velocity need many executions. The parallel reduction algorithm

on GPU is used to do this calculations efficiently. It typically refers to an algorithm which

performs a mathematical operation such as summation on the elements of an array, producing

a single result. It uses the multiple thread blocks in a GPU to reduce a small portion of the

array. A tree based reduction is used inside each thread block [44] and shared memory is used

to achieve communication among threads of the same block and synchronization among

them.

A small portion of the array is read from the global memory by each thread and stored into the
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Figure 3.3: Parallel reduction operations are done in different steps and is continued until a single
result is obtained.

shared memory. The array is then reduced in the shared memory which means the operations

are performed on the pairs of elements within each thread block. The result is then stored in

the shared memory leading to halved array size. The process is repeated recursively by several

kernel calls, until a single result is obtained as shown in fig. 3.3.

3.3 Molecular dynamics algorithm

In a MD simulation, particles are usually assigned initial velocities from the Maxwell distri-

bution according to the desired temperature. The initial coordinates are chosen to be within

the defined simulation box. The integrator tracks the particles’ movements and updates the

particle information at each step. A system state comprises data arrays for position, velocity,

mass, force and chemical species of each particle.

When the positions of particles are updated, the values of the interaction potential of the

particles change, and the force must be updated as well. Force calculation is the most compu-

tationally expensive part of a molecular dynamics simulation. A verlet neighbor list is used

for each particle to lower this cost by book keeping of its neighbors within a defined radius.

After the force has been updated, the process continues with finalizing the integration and the

velocity is updated once more in this stage. Calculation of macroscopic properties such as

temperature, pressure, and so on, occurs after the finalize step as depicted in the flowchart 3.4.

In order to control the temperature of the system, the integrator can include some additional

rules for updating velocities. A number of thermostats utilized in this thesis are discussed in

the following section.
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Figure 3.4: The standard molecular dynamics algorithm.
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3.4 Thermostats

Many physical experiments are done at a prescribed temperature. Temperature is a measure

of the average kinetic energy of the particles in a system. A a result, the best way to control

the temperature in the system is to manipulate the velocities during or after the integration

step. This allows us to generate a statistical ensemble at a fixed temperature, for example, a

canonical ensemble.

A variety of thermostat methods are available to add and remove heat during a MD simulation,

and they all modify the dynamics of the system. Among them, some cause a change of net

momentum, while others control the temperature while conserving momentum [45, 46].

Thermostats can be local or global. Global thermostats dissipate energy uniformly across the

system, whereas local thermostats do so in a spatially localized fashion [45].

The following subsections describe a number of thermostats that are implemented in HALMD

package and used in this thesis. The net momentum fluctuates about zero in the first two

thermostats, while the others conserve or adjust the momentum’s value as needed.

3.4.1 The Andersen thermostat

The Andersen thermostat, introduced in 1980 [47], assigns random velocities to each particle

in random intervals, using the Maxwell-Boltzmann distribution,

fMB(v) =

√
m

2πkB T
exp

(−mv2

2kB T

)
, (3.11)

where kB is the Boltzmann constant. "Collisions" with the heat bath occur infrequently and

on randomly picked particles in this thermostat. This leads to a local dissipation of energy.

Because successive collisions are uncorrelated, the distribution of time intervals between two

stochastic collisions P (t ) takes the shape of an exponential distribution

P (t ) =Γexp(−Γt ), (3.12)

P (t) is the probability that the next collision will take place in the interval [t , t +∆t ] and

Γ = 1/∆s.

The velocity-Verlet algorithm coupled to the Andersen thermostat is a modification to the

finalize step of the algorithm in each step as given in algorithm 2. Each CUDA thread is

assigned to a single particle in the GPU version, and the integration is done in parallel. The
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integration is then finalized in parallel, either by updating the velocities at random or normally

by using Newton’s equation.

Algorithm 2 Andersen thermostat

1: for all particles i do ▷ update position and velocity of all particles in parallel
2: pi ← pi + (∆t/2)Fi

3: ri ← ri + (∆t/m)pi

4: end for
5: for all particles i do ▷ finalize the integration
6: Update Fi

7: if U (0,1) ≤Γ∆t then
8: pi ← m N (0,

√
kB T /m) ▷ random velocity

9: else
10: pi ← pi + (∆t/2)Fi ▷ deterministic step
11: end if
12: end for

3.4.2 The Maxwell-Boltzmann thermostat

This thermostat is a global stochastic thermostat and is a special case of the Andersen thermo-

stat introduced in previous section. Unlike Andersen thermostat, the time interval between

random rescaling of each particle’s velocities is fixed here and after each s steps, all particles

are assigned Gaussian random velocities according to eq. (3.11). The coupling rate of the

thermostat is Γ = 1
s∆t

.

The Maxwell-Boltzmann thermostat has the same algorithm as algorithm 2 with the line 6

replaced by:

if t mod s == 0 then

...,

where t is the time step.

3.4.3 Non-equilibrium extensions of the Maxwell-Boltzmann thermostat

Previous thermostats changed the velocities to a random distribution with a zero mean value,

preventing the center of mass of the particles from moving. In non-equilibrium systems with

particle flows, we have to make sure that the mass flux is not suppressed by the thermostat’s

action and that the thermostat conserves the local momentum. The temperature on these

thermostats is set so that the particle’s center of mass velocity prior to the update is preserved.

As a simple implementation of a global, momentum conserving thermostat, we suggest taking
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Algorithm 3 Velocity conserving MB and pump algorithms

1: µ← 0 µ← i nput
2: for all particles i do
3: pi ← pi + (∆t/2)Fi

4: ri ← ri + (∆t/m)pi

5: end for
6: µ←µ+pi /m −−−−− ▷ µ is calculated in MB and not in pump
7: for all particles i do
8: Update Fi

9: if t mod s == 0 then
10: pi ← m N (µ,

√
kB T /m)

11: else
12: pi ← pi + (∆t/2)Fi

13: end if
14: end for

the center of mass velocity of all particles prior to re-assignment and shifting the new center

of mass velocities accordingly.

Thermalization is performed by combining the Maxwell-Boltzmann distribution of velocities

and the velocity Verlet algorithm, like section 3.4.2, but keeping the center of mass velocity

of all particles and shifting the new random velocities according to it. This implies that the

random velocities should come from a Gaussian distribution with a non-zero mean value, vcm

for each component,

v ∼N
(
vcm ,

√
kB T /m

)
. (3.13)

A pump-like thermostat was another sort of integrator employed in this thesis. The goal is to

enforce a mass flux in the system by manipulating the velocity of particles in a part of box. For

the pump, the Maxwell-Boltzmann thermostat 3.4.2 is modified to shift the freshly generated

random velocities of particles to a prescribed velocity, rather than the previously determined

center of mass velocity. This helps to create a synthetic mass flux in the system as determined

by us, not by the system. The algorithm for these two types of thermostats is presented in

algorithm 3. The differences in the pump algorithm is indicated by the red text. The velocity

conserving MB thermostat should calculate the center of mass velocity µ, so it is set to zero

before the integration and updated after the momentum updates. The value of µ in the pump,

on the other hand, is determined at the beginning and remains constant.

The summation of particle velocities in line 6 of the algorithm 3 is performed on GPU utilizing

a parallel reduction scheme. Other system properties are also calculated in each MD step if
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Figure 3.5: A schematic of a simulation box divided into a number of collision cells appropriate for
DSMC and MPC thermostats. For this specific system, the collision cells are located on top of each
other in the z direction, as it is simulating a fluid bounded in this direction by two walls, but there may
be a number of cells needed in the other two directions as well for other simulations. Figure reproduced
from [55], with the permission of AIP Publishing.

needed, using parallel reduction to speed up the calculations [21, 48]. It’s worth noting that,

the enforced mass flux of pump, can be also created by a custom flow as suggested in [49] and

tested in this thesis later in section 5.3.

3.4.4 Lowe-Andersen thermostat

A local momentum conserving thermostat known as Lowe-Andersen [50, 51] is used in this

thesis. Prior to presentation of this thermostat in 1999, a number of other momentum con-

serving thermostats where presented, like Dissipative Particle Dynamics (DPD) thermostat

[52, 53], which updates pairs of neighboring particles together and assigns the new velocity

such that their center of mass momentum does not change. Another technique to conserve

momentum is Direct Simulation Monte Carlo (DSMC) [54, 55], which divides the space into a

number of cells and selects pairs of particles from these cells to update the momentum. An

illustration of these cells are shown in fig. 3.5. This approach is extended in Multi Particle

Collision (MPC) dynamics [56] to update the position of each particle individually, but sets

the new velocity to be along the cell’s center of mass velocity instead of a pair’s to increase

efficiency.

The Lowe-Andersen thermostat combines the ideas of Andersen section 3.4.1 and DPD ther-

mostats. The procedure is similar to Andersen’s methodology, but instead of changing the
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velocity of individual particles, it changes the relative velocity of pairs of particles separated at

most by a distance RT to ensure the locality of momentum conservation.

The bath collision involves selecting a new relative velocity for the two particles based on

the Maxwellian distribution of relative velocities. This operation is only performed on the

component of the relative velocity parallel to the connecting line of particle centers to conserve

angular momentum. In addition, the new relative velocity is imposed in such a way that linear

momentum is preserved. In the event of a successful pair selection and collision with a heat

bath, the new velocities of the two selected particles will bev∗1 = v1 + (M/m1) (λ− (v1 −v2) · σ̂12) σ̂12,

v∗2 = v2 − (M/m2) (λ− (v1 −v2) · σ̂12) σ̂12

(3.14)

In this equations σ̂12 represents the unit separation vector, M = m1m2/(m1+m2) is the reduced

mass, and λ denotes a Gaussian random number with a mean of zero and a variance kB T /M .

We discovered that the original Lowe-Andersen thermostat, which conserves both linear and

angular momentum, does not yield the precise target temperature. The error is small enough

to be ignored, but by giving up angular momentum conservation, which is unnecessary if one

is working with a cuboid simulation box, the target temperature is matched more accurately.

The new velocities in this variant is as followsv∗1 = vcm + (M/m1)λ,

v∗2 = vcm − (M/m2)λ.
(3.15)

The algorithm that we used is presented below, and more details and a comparison between

our and the original algorithm can be found in the appendix A.

3.5 Potential and force fields

For the simulation a fluid, we need two types of forces. A brief description of each is provided

below.

3.5.1 Interaction potential

The Lennard-Jones model is the paradigm of a simple fluid and works well for noble gases as

well as spherical, uncharged molecules like methane. The Lennard-Jones pair potential for
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Algorithm 4 Lowe-Andersen thermostat algorithm

1: for all particles i do
2: pi ← pi + (∆t/2)Fi

3: ri ← ri + (∆t/mi )pi

4: end for
5: for all particle pairs (i , i +1) do ▷ each CUDA thread deals with a pair of particle
6: Update Fi and Fi+1

7: pi ← pi + (∆t/2)Fi

8: pi+1 ← pi+1 + (∆t/2)Fi+1

9: if U (0,1) ≤Γ∆t then
10: if |ri − ri+1| ≤ RT then
11: M ← mi ∗mi+1/(mi +mi+1) ▷ reduced mass is calculated
12: vcm ← (pi +pi+1)/(mi +mi+1)
13: λ←N (0,

√
kB T /M)

14: pi ← mi ∗ vcm +M ∗λ
15: pi+1 ← mi+1 ∗ vcm −M ∗λ
16: end if
17: end if
18: end for

two particles in distance r is given by

ULJ(r ) = 4ε

[(σ
r

)12
−

(σ
r

)6
]

. (3.16)

This potential is small for large pair separations, so it is put to zero for distances greater than

some cutoff radius rc . This truncation produces a drift in the energy due to the discontinuity

at r = rc . To reduce energy drift, the potential is shifted and smoothly truncated so that it

remains C 2-continuous at the cutoff, and thus the force and its derivatives are continuous

there. The potential takes the form

U (ri j ) =


(
ULJ(r )−ULJ(rc )

)
g

(r − rc

h

)
, r ≤ rc ,

0, r > rc .
(3.17)

A smoothing function g (ζ) = ζ4

1+ζ4 is multiplied on the shifted potential in this equation. h

controls the smoothing range and is much smaller than σ and is typically chosen to be 0.005σ.

The resulting force F = −∇U is continuous and has the magnitude

|F(r)| = |FLJ(r)|g
(r − rc

h

)
− 1

h
U (r )g ′

(r − rc

h

)
; r ≤ rc . (3.18)
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Calculation of the pair potentials of a system of N particles is of order (N 2). By considering a

cutoff distance, the calculational expense is reduced to O (N rc
3 log N ) [57].

On the GPU, each thread reads the indices of a particle’s neighbors, then reads the coordinates

and calculates the potential and force.

3.5.2 Tabulated external force

To meet the requirements of a method described in the following chapter, we need to apply

an external one-body force F (r) in the simulation box. This force, as well as the potential

from which it is extracted, are position dependent. For more flexibility, the values of force and

potential are tabulated on a regular grid in space referred to as "knots". The values between

the knots are then calculated using cubic Hermite spline interpolation. The result of the

interpolation, as well as its first derivative, are then continuous. The Hermite interpolation

has the advantage of working well with periodic boundary conditions.

For simplicity, we will explain the method in one space dimension. A number of knots are

determined and each has two neighbors. Consider the first two points with values x0 and

x1. The known potential values of these points are U (x0) and U (x1) and we aim to find the

potential and force values for point x located between them, x0 < x < x1. The interval is

mapped to [0,1] with

t =
x −x0

x1 −x0
, x1 > x0. (3.19)

The potential in x is approximated by the third order polynomial

U (x) = h00(t )U (x0)+h10(t )(x1 −x0)∂xU (x0)

+h01(t )U (x1)+h11(t )(x1 −x0)∂xU (x1)
(3.20)

In this equation, hi j (t ) are the Hermite basis functions

h00(t ) = 2t 3 −3t 2 +1, h10(t ) = t 3 −2t 2 + t ,

h01(t ) = −2t 3 +3t 2, h11(t ) = t 3 − t 2.
(3.21)

In two and three dimensions, each point has four and eight neighboring knots respectively,

and the same interpolation is done in the other directions as well.

29



3.6 Local groups of particles

It will be necessary to treat a group of particles differently than others, for example, to track

some specified particles in the system, to calculate an observable for a group of particles only,

or to apply a thermostat to the particles of a region in the box rather than to all the particles.

These are all available in HALMD package, and I had a contribution in implementing the

region groups, which select all or those particles with a special chemical species that are either

inside or outside of a region.

Because particles move continuously and may enter or leave the region, the list of IDs of the

particles in the region and region-species groups change during the simulation, so the particle

selection should be constantly updated. The possible geometries include spheres and cuboids.

After updating particle positions, they are checked to see if they are in or out of the region,

and the group selection is updated accordingly. This is checked for a spherical geometry by

the center coordinate ro and radius d . If |r− ro | < d , the particle is inside. The criteria for the

cuboid region are checked using the position of the region’s lowest left corner rcr and the edge

lengths d. If for each dimension i , 0 < (r[i ]− rcr[i ]) < d[i ], the particle is inside the cuboid

region. The chemical species can also be checked before finalising the selection.

3.7 Monte-Carlo simulation in grand canonical ensemble

For future reference, the grand canonical Monte Carlo method is described below. To derive

the proper equations, we start with a canonical system of particles and develop the grand

canonical partition function and probability densities from there [58].

Grand canonical ensemble from canonical ensemble

In a cubic box of volume V = L3, at temperature T and with N particles, the partition function

is given by

Q(N ,V ,T ) =
1

Λ3N N !

∫ L

0
· · ·

∫ L

0
drN exp(−βU (rN )), (3.22)

where Λ =
√

h2/(2πkB T ) is the thermal de Broglie wavelength and h is Planck’s constant. Then

the position can be rewritten as ri = Lsi for i = 1,2, ..., N . This changes equation 3.22 to

Q(N ,V ,T ) =
V N

Λ3N N !

∫
[0,1]3N

dsN exp(−βU (sN ;L)), (3.23)
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Now, going toward the grand canonical ensemble, we assume this box is embedded in a

reservoir of ideal gas with volume V ′. Assume the universe has a volume V0 and contains

M particles, N of which are inside the smaller box and M −N particles outside and in the

reservoir.

This means there is volume V accessible to N interacting particles and a volume V ′ = V0 \V

accessible to M −N non-interacting particles. For each of these systems, a partition function

as in eq. (3.23) can be assigned. The partition function of the combined system is the product

of these two independent subsystems:

Q(N , M ,V ,V0,T ) =
V N (V ′)M−N

Λ3M N !(M −N )!

∫
ds′M−N

∫
dsN exp(−βU (sN ;L)). (3.24)

The particles in the reservoir are non-interacting and there is no dependence on s′. If the

subsystems are allowed to exchange particles, N can change from 0 to M and thus the partition

function of the system, including all possible distributions of the M particles over the two

subvolumes, is

Q(M ,V ,V0,T ) =
M∑

N =0

V N (V ′)M−N

Λ3M N !(M −N )!

∫
dsN exp(−βU (sN ;L)). (3.25)

The probability distribution of the M particles with N particles in the subvolume V is given by

p(sM ; N ) =
V N (V ′)M−N

Q(M ,V ,V ′,T )Λ3M N !(M −N )!
exp(−βU (sN )). (3.26)

In the limit of a large reservoir, V ′ →∞ and M →∞, such that the density is ρ = M/V ′ = const..

On the other hand, the chemical potential µid of the ideal gas depends on density as µid =

kB T lnΛ3ρ. These will change the probability density to

p(sN ; N ) ∼ V N exp(βµidN )

Λ3N N !
exp(−βU (sN )). (3.27)

The process in the Metropolis algorithm is done by the random choice of adding or removing

a particle with equal weight. Then a particle is selected randomly from all N particles and the

acceptance probabilities of the change are checked for the final decision.
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Add or remove 1 particle

The acceptance probability of adding one particle to the subvolume V is calculated as follows:

acc(N → N +1) =
p(s(N+1); N +1)

p(sN ; N )
=

V exp(βµid)

Λ3 exp(−β[U (s(N+1))−U (s(N ))). (3.28)

defining reduced fugacity , ζ = V exp(βµid)

Λ3 . Specialising to the ideal gas (our final purpose is to

apply MC on the TR regions), the potential terms vanish and the equation is simplified. The

acceptance probability of removing one particle is calculated in a similar way, and it holds

acc(N → N +1) = min(1,
ζ

N +1
), acc(N → N −1) = min(1,

N

ζ
). (3.29)

The Monte-Carlo Markov chain should be symmetric which means the probability to move

a particle from V ′ to V is equal to the probability of the reverse move. This detailed balance

condition reads:

P (N +1)acc(N +1 → N ) = P (N )acc(N → N +1), (3.30)

where P (N ) is the probability that the system has N particles. Substituting eq. (3.29) into

eq. (3.30) yields

P (N +1) = P (N )
min(1, ζ

N+1 )

min(1, N+1
ζ )

= P (N )
ζ

N +1
. (3.31)

Considering P (0) = P0, we get P (N ) = ζN

N ! P0. We also have
∑

N≥0 P (N ) = 1 and this determines

P0 = exp(−ζ). With this, the equilibrium distribution is found as

P (N ) =
ζN

N !
exp(−ζ), (3.32)

which is a Poisson distribution and thus 〈N〉 = ζ (fig. 3.6).
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Figure 3.6: Probability distribution of particle numbers in a system of non interacting particles. The
process is done for 106 MC steps and one particle is exchanged in each MC step randomly, so that
the mean number of particles or equivalently ζ reaches 100. This results in N = 100.210 with standard
deviation ∆N =

p
Var[N ] = 9.913, which accurately reproduces the expectations, N = ζ and ∆N =

√
ζ.

The solid line is the corresponding Poisson distribution.

Add or remove k particles

The probabilities of acceptance are calculated as in the previous section and are as follows:

acc(N → N +k) = min

(
1,

ζk

Πk
j =1(N + j )

)
,

acc(N → N −k) = min

(
1,
Πk−1

j =0 (N − j )

ζk

) (3.33)

The important point here is that in order to get a Poisson like distribution, k must not be fixed

and in each MC step and a random number of particle between 1 and k should be moved.

We tested this for ζ = 1000 and 1 < k < 100. The result is N = 999.957 with standard deviation

∆N = 31.57.

Exchange of k particles between two subsystems

Eventually, we consider two subsystems and exchange k particles between them instead of

adding or removing particles with the reservoir. The second subsystem has N ′ particles, with

reduced fugacity ζ′. The acceptance probabilities are determined by multiplication of the two
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trial probabilities.

acc(N → N +k, N ′ → N ′−k) = min

(
1,
ζk

NΠ
k−1
j =0 (N ′− j )

ζk
N ′Π

k
j =1(N + j )

)
,

acc(N → N −k, N ′ → N ′+k) = min

(
1,
ζk

N ′Π
k−1
j =0 (N − j )

ζk
NΠ

k
j =1(N ′+ j )

)
,

(3.34)

This was tested for ζ = 100,ζ′ = 50. Up to 10 particles are exchanged randomly in each step and

the results are shown in fig. 3.7.
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Figure 3.7: Probability distribution of particle numbers. A random number of particles between 1 and
10 are exchanged in each MC step randomly between two subsystems to set the number of particles to
be 100 in one box and 50 in another. N = 100.0155 and N ′ = 49.985 with standard deviation to be 5.770.
The solid lines are Poisson distributions for 50 and 100.
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Exchange of k1 and k2 particles

If two independent exchanges occur in the system, the acceptance probabilities are modified

to read

acc(N → N +k2 −k1, N ′ → N ′−k2 +k1)

= min

1,
Πk2−1

j =0 (N ′− j )

ζ′k2

Πk1−1
j =0 (N +k2 − j )

ζk1

ζk2

Πk2
j =1(N + j )

ζ′k1

Πk2
j =1(N ′−k2 + j )

 ,

acc(N → N +k1 −k2, N ′ → N ′−k1 +k2)

= min

1,
Πk2−1

j =0 (N − j )

ζk2

Πk1−1
j =0 (N +k2 − j )

ζ′k1

ζ′k2

Πk2
j =1(N ′+ j )

ζk1

Πk1
j =1(N −k2 + j )

 ,

(3.35)

which is supported by numerical tests.
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4 Open Systems Out of Equilibrium

In the first part of this chapter, we consider the BL theoretical model for open systems out

of equilibrium and translate its principles to the AdResS technique. The model claims the

linear summation of the action of different reservoirs and this was tested with Lennard-Jones

fluids imposed to thermal gradients. In the second part, more details on the theoretical model

are presented, the range of validity of this linear summation approximation is tested and a

formulation of an extension of this model in order to account for nonlinear effects is discussed.

Section 4.1 is published as "Communication: Theory and simulation of open systems out of

equilibrium" in the Journal of Chemical Physics (2020) [22], and was selected by editor as a

Featured article.

Section 4.2 is published as "Nonequilibrium induced by reservoirs: Physico-mathematical

model and numerical tests" in Advanced Theory and Simulation (2021) [23].

The content has been brought here unchanged and contains some information that has

already been explained.

4.1 Open systems exposed to thermal gradients

Content is reprinted from [22]( https://doi.org/10.1063/5.0014065), with the permission from

API publishing.

We consider the theoretical model of Bergmann and Lebowitz for open systems out of equi-

librium and translate its principles in the adaptive resolution molecular dynamics technique

(AdResS). We simulate Lennard-Jones fluids with open boundaries in a thermal gradient and

find excellent agreement of the stationary responses with results obtained from the simulation

of a larger, locally forced closed system. The encouraging results pave the way for a computa-
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tional treatment of open systems far from equilibrium framed in a well-established theoretical

model that avoids possible numerical artifacts and physical misinterpretations.

Many applications of modern nanotechnology rely on processes that are far from equilibrium

and their efficient control requires insight into their principles. Long-standing and relevant

problems with recent progresses in experiment and simulation include fluid flow through

nanopores [2, 59–61], gas storage in microporous hosts [62, 63], and the diffusion and perme-

ability in random media [64–67]. Thermal gradients, in particular, are of ongoing interest in

molecular nanoscience as they give rise to a variety of nonequilibrium phenomena such as

the evaporation of liquids [3, 68], the thermomolecular orientation of nonpolar fluids [69],

effects of thermo-phoresis [70, 71] and osmosis [5], separation in liquid mixtures [72, 73],

diffusion of polymers in a solvent [74, 75], heat transfer in protein–water interfaces [76], and

the polarization of water [77] to cite but a few.

Molecular simulation can provide techniques that may both support our understanding of

the detailed mechanisms responsible for the observed phenomena and guide the design and

optimization of future applications. However, Molecular simulation, and its most popular vari-

ant molecular dynamics (MD) in particular, faces two interconnected problems when dealing

with systems out of equilibrium. MD techniques were developed originally for equilibrium sit-

uations, whereas out-of-equilibrium simulations not only have a more complex mathematical

description but also call for related, more complex computational protocols. Nonequilibrium

MD (NEMD) techniques have been desired and developed by the MD community since 50

years and various conceptual approaches and efficient techniques are available today [6].

Most of these techniques rely on the simulation of systems with a fixed and typically large

number of particles, thereby simultaneously representing the—generally limited—region of

physical interest and the surrounding environment.

In the present work, we describe instead a nonequilibrium extension of the adaptive resolution

simulation (AdResS) approach, which was developed in the past decade [25, 26, 78] for systems

in equilibrium. The goal of the approach is the reduction of the computational complexity of a

molecular simulation by focusing the main efforts, with full details and high accuracy, only on

those regions in which the physics of interest is taking place. The surrounding environment is,

in contrast, simplified to the essential degrees of freedom that are required to avoid undue

losses of physical information relevant to the region of interest. The region of high resolution

is effectively reduced to an open sub-domain of the total system that exchanges energy and

particles with its environment, the latter playing the role of a thermodynamic reservoir at

prescribed macroscopic conditions [79].

The new conceptual challenge in developing a nonequilibrium extension to this approach
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Figure 4.1: Schematic illustration of the typical AdResS set-up. The atomistically resolved region AT is
the region of interest, in which particles evolve under Hamiltonian dynamics without artificial forcing.
The AT region is interfaced with the ∆ regions where molecules have atomistic resolution and are, in
addition, subject to a thermostat and to the one-particle “thermodynamic force”, which assures the
proper equilibrium in the AT region. Each ∆ region is interfaced on the other side with a reservoir of
tracers, i.e., with non-interacting particles whose thermal state is controlled by the same thermostat
and thermodynamic force that act in the ∆ region. Extreme repulsions between tracer particles whose
centers are unphysically close upon entering the ∆ region are controlled by capping the forces on these
particles at a certain threshold.

is the proper representation of the statistical mechanics of an open system that is out of

equilibrium with its given surroundings. The aim is to show that the model of Bergmann and

Lebowitz (BL) for open systems far from equilibrium [33, 34] provides a theoretical framework

that justifies the use of the AdResS approach as a simulation protocol for nonequilibrium

situations, here specifically applied to a liquid with open boundaries [15] in a thermal gradient.

4.1.1 Adaptive resolution technique

AdResS in its latest version [17, 35] consists of a simulation set-up in which space is divided

in two parts, a region of interest where molecules have an atomistic resolution (AT), and a

larger region (TR), serving as a reservoir, where molecules are represented by non-interacting

point particles (tracers) thermalized at a prescribed temperature by an imposed thermostat.

At the interface between these two regions lies a region (∆) where molecules have atomistic

resolution and are subject to the action of a thermostat and a one-particle force, F⃗ th(r⃗ ), named

thermodynamic force (see also the pictorial representation in fig. 4.1). In an equilibrium

set-up, the latter enforces the expected thermodynamic, structural, and dynamic equilibrium

properties within the atomistic subdomain, without noticeable artifacts. The derivation of the

method is based on the equality in equilibrium of the grand potential of the atomistic region

and the rest of the system [24]. F⃗ th(r⃗ ), in essence, induces a local balancing of the pressure,

p(r⃗ ), to the fully atomistic value of reference. Related studies [79, 80] have shown that the work

due to F⃗ th(r⃗ ) balances, together with the work of the thermostat, the difference in chemical

potential between the atomistic region and the rest of the system. For practical applications
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F⃗ th(r⃗ ) is calculated via an iterative procedure with the aim of eliminating in ∆ local variations

of the density with respect to the value at the desired thermodynamic state point as it would

be obtained from a full atomistic simulation [24, 38, 78]. The converged function, F⃗ th(r⃗ ), is

then employed in subsequent production runs without further amendments.

At the technical level, in the set-up of fig. 4.1, molecules of the AT region interact through

atomistic force fields among themselves and with molecules in ∆, whereas there is no direct

interaction with the tracers. The two contributions yield the potential energies UAT−AT and

UAT−∆, respectively. Second, the thermodynamic force derives from a potential, F⃗ th(r⃗ ) =

−∇ϕth(r⃗ ), with the convention that ϕth = 0 in the AT region [17]. The total potential energy

of the system is thus Utot = UAT−AT +UAT−∆+∑
j∈∆∪TRϕth(r⃗ j ), where r⃗ j denotes the position

of particle j . A relevant conceptual step in the elaboration of the method reported above is

the mapping of the AdResS protocol onto a well established theoretical framework for the

statistical mechanics of an open system [32, 38, 78, 81]. In fact, all the principles of the AdResS

protocol have been put in direct relation with the principles of the stochastic model of open

systems developed by Bergmann and Lebowitz [33, 34].

4.1.2 Bergmann-Lebowitz model of open system

In the BL model the open system is embedded in an environment of one or more reservoirs

(r = 1, . . . ,m) with which the system exchanges energy and particles. The coupling between

the system and reservoir r consists of an impulsive interaction at discrete points in time,

which is mathematically formalized by a suitable kernel K r
nn′(X ′

n′ , Xn). This represents the

probability per unit time that, due to the interaction, the n-particle open system with phase

space configuration Xn makes a transition to n′ particles with phase space configuration X ′
n′ .

In the evolution equation for the n-particle phase-space probability fn(Xn , t ),

∂ fn(Xn , t )

∂t
= { fn(Xn , t ), Hn(Xn)}+ In(Xn , f (t )) , (4.1)

the last term

In(Xn , f (t )) :=
m∑

r =1

∞∑
n′=0

∫
d X ′

n′
[
K r

nn′(Xn , X ′
n′) fn′(X ′

n′ , t )−K r
n′n(X ′

n′ , Xn) fn(Xn , t )
]
, (4.2)

depends on the full hierarchy f (t) = { fn′(·, t)}n′=0,1,... at time t and expresses the interaction

between the system and the m reservoirs. Equation (4.1) is the equivalent of Liouville’s equa-

tion for an open system in contact with several reservoirs. The development of a systematic

40



procedure for deriving an analytic form of K r
nn′(Xn , X ′

n′) for complex many-particle systems

represents, until now, a formidable task. For this reason, in molecular simulations one can

only design algorithms which mimic, as close as possible, the expected action of the kernel,

K r
nn′(Xn , X ′

n′), without knowing its exact analytic expression. Along these lines we now proceed

with a discussion of the analogy between the AdResS protocol and the BL model.

4.1.3 Analogy of AdResS and the BL model

The AT region in the AdResS scheme can be interpreted as an open system in the sense of the

BL model under the approximation that the reservoir (TR and ∆ region) is large enough and

that UAT−AT ≫UAT−∆, i.e., that the interaction energy between the particles in the atomistic

region and the particles in ∆ is negligible. Furthermore, the action of the transition kernel in

the BL model, in AdResS corresponds to (i) the force which particles in ∆ impose on particles

in AT and (ii) to the exchange of particles between AT and ∆. The former impose changes

of momentum and energy of the particles residing in AT, the latter allows for changes of the

number of particles inside the AT region. The combined action of the thermodynamic force

and the thermostat in ∆ guarantees that the statistics of the ∆-particles is maintained at the

desired reservoir state [32, 38, 78, 81].

In its general form, the BL model allows for the instantaneous exchange of an arbitrary number

of particles through the action of the stochastic exchange kernels. At the same time the system

state can undergo arbitrary changes in phase space as well. In contrast, in the situation we

consider in AdResS, i.e., that of a dynamically evolving open system, instantaneous changes of

the particle number larger than one and state changes that involve particles far away from

the system boundaries are extremely unlikely. Therefore, a specification of the BL kernel to

this situation would call for setting Knn′ = 0 whenever |n −n′| > 1. Similarly, for substantial

transition probabilities Knn′(Xn , Xn′), Xn and Xn′ should be nearly identical for all particles

far away from the boundaries [82, 83]. Conceptually, the AdResS approach implements these

constraints in that (i) number changes are induced by a dynamical process continuous in time

for which simultaneous crossing of the boundaries by more than one particle is extremely

unlikely and (ii) particles entering or leaving the open system would at this instant influence

only their immediate surroundings but not the entire system domain. In this sense, one way

to interpret the AdResS set-up is as a dynamic-like approximation of the BL stochastic process

or vice versa. Numerical simulations showed that indeed under such a framework AdResS

follows the grand canonical behaviour predicted within the BL model for equilibrium (see e.g.

Refs. [17, 18, 32]).
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4.1.4 Nonequilibrium of an open system

Bergmann and Lebowitz [34] pointed out that, according to their model, a system connected to

two (or more) reservoirs with different thermodynamic conditions, e.g., different temperatures,

in the stationary state will have heat (and mass) currents flowing through the system. Formally,

such currents are produced by the interaction terms In (n = 0,1, . . . ) of the extended Liouville

equation 4.1, with In defined in eq. (4.2). For the AdResS simulation the equivalent effect,

according to the analogy with the BL model, is produced by coupling the region AT of interest

to two reservoirs that are at different thermodynamic state points of the fluid, specified

for example by their temperature and density, (T1,ϱ1) and (T2,ϱ2), respectively (fig. 4.2).

For simplicity, we restrict to set-ups with planar interfaces; then the thermodynamic force

F⃗ th(r⃗ ) depends only on the position x along the interface normal and consists only of the

vector component Fth along the x direction. In a prepratory step, one needs to pre-compute

F (1)
th (x) at the state point (T1,ϱ1) and, separately, F (2)

th (x) at the other state point (T2,ϱ2); the

result may be stored in a “dictionary” mapping pairs (Ti ,ϱi ) to F (i )
th (x) for later reference. The

nonequilibrium AdResS set-up is then realized by employing F (1)
th (x) together with a thermostat

at the temperature T1 in the ∆1 and TR1 regions and correspondingly for the second reservoir

using F (2)
th (x) and a thermostat at T2.

To demonstrate that this protocol will indeed approximate the behavior of a large molecular

system with spatially separated thermodynamic forcings, we performed numerical experi-

ments on Lennard-Jones (LJ) fluids that are subject to a temperature gradient (see below).

If a set of relevant physical observables, computed from the AT region of the set-up only,

agrees with the results of a full atomistic simulation, it is corroborated that the BL model with

localized exchange kernels provides a solid theoretical reference for AdResS simulations far

from equilibrium and we can conclude that the combination of the BL model with the AdResS

protocol provides a promising basis for further development in the theory and simulation of

open systems, in and out of equilibrium [82, 83].

4.1.5 Nonequilibrium simulations

Motivated by a recent study [84], we simulated the stationary response of a LJ fluid to an

applied temperature gradient using the nonequilibrium AdResS set-up described above

(fig. 4.2). The stationary state of the analogous full atomistic simulation is characterized

by mechanical equilibrium, in which pressure gradients are balanced. We have accounted

for this fact by choosing the reservoir states 1 and 2 along an isobar of the fluid: for given

temperatures T1 and T2, we determined the densities ϱ1 and ϱ2 that yield equal pressures,

p(T1,ϱ1) = p(T2,ϱ2), according to the equation of state. For the initial equilibrium state, we
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Figure 4.2: Schematic illustration of the meaning of a thermal gradient in the BL model and its
corresponding mapping into the AdResS set-up. When interacting only with one reservoir the system
equilibrates at the thermodynamic condition of the reservoir. In the BL model [eqs. (4.1) and (4.2)],
this is equivalent to defining the transition term I (i ) for system i = 1 or 2, while in AdResS it means that
the ∆i and TRi regions are subject to a thermostat with target temperature Ti and the corresponding
thermodynamic force, F (i )

th (x). Once the system is in contact with two different reservoirs, then in the

BL model one has the combined effect of I (1)+ I (2), which, in the AdResS set-up, translates into a region
∆1∪TR1 forced at temperature T1 and by F (1)

th (x) and a region ∆2∪TR2 with parameters T2 and F (2)
th (x).
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used a state point in the liquid phase with number density ϱ = (ϱ1 +ϱ2)/2 = 0.65σ−3 and

temperature T = (T1 +T2)/2 ≈ 0.91ε/kB; the symbols σ and ε serve as units of length and

energy and refer to the parameters of the LJ potential, which was truncated at rc = 2.5σ (see

also Supplementary Material). A temperature difference of ∆T = T2 −T1 = 0.125ε/kB was then

imposed symmetrically. To this end, the AdResS set-up was first equilibrated at (T ,ϱ) using

the same, suitably adjusted reservoir parameters on both sides, which yields a uniform density

and temperature across the whole set-up comprised of AT, ∆, and TR regions. Then, the states

of the two reservoirs were switched to (T1,ϱ1) and (T2,ϱ2) by (i) replacing the thermodynamic

force of the equilibrium set-up by the forces F (1)
th (x) and F (2)

th (x), respectively (see above), and

by (ii) changing the thermostat temperatures to T1 and T2. The system evolves under this

non-equilibrium forcing to a stationary state of inhomogeneous density and temperature;

concomitantly, the pressure adjusts from its initial value to the common value of the reservoirs.

Both the nonequilibrium AdResS set-up and the full atomistic simulation, serving as a bench-

mark for reference, were implemented in the simulation framework “HAL’s MD package” [20,

21], which features large systems due to massive parallelization provided by high-end graph-

ics processors and, concomitantly, excellent numerical long-time stability of Hamiltonian

dynamics; the technical details can be found in the Supplementary Material. We have verified

that the AT regions of the equilibrium set-ups of AdResS for the calculation of F (1)
th (x) and

F (2)
th (x), satisfy the conditions of an open system (see Supplementary Section II.B). The result-

ing thermodynamic forces can be found along with their potentials in Supplementary Fig. S2.

Nonequilibrium averages were computed as in Ref. [84] using the D-NEMD approach devel-

oped by [85]. It consists of running MD simulations for an equilibrium (or, at least, stationary)

state of reference, e.g., a fluid at temperature T . Along the obtained system trajectory a series

of uncorrelated samples is selected, from which an ensemble of nonequilibrium trajectories is

branched off by taking these samples as initial configurations of the NEMD simulations with,

e.g., an imprinted thermal gradient.

Following [84], we have considered the observables density, temperature, and heat flux and

calculated their spatial profiles ϱ(x), T (x), and J(x), respectively, which emerge as the sta-

tionary response to the nonequilibrium forcing by the reservoirs. The absence of many-body

interactions permits the calculation of the heat flux in a slab-like control volume Ω centered at

position x∗ as [84, 86] J (x∗) = V −1
Ω

∑
j∈Ω(e j + tr σ⃗ j )v⃗ j ; therein, e j , σ⃗ j , and v⃗ j denote the total

energy, the potential part of the stress tensor, and the velocity of the j -th particle, respectively,

and VΩ is the volume of Ω. Within the AT region, where the molecular dynamics evolves

freely without a thermostat nor a thermodynamic force, all three profiles obtained from the

AdResS set-up show excellent agreement with the results of the corresponding full atomistic

simulation (fig. 4.3). In particular, the density profile interpolates non-linearly between the
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Figure 4.3: Results of open-system simulations for a Lennard-Jones (LJ) liquid in a thermal gradient
obtained from the nonequilibrium AdReS set-up (solid lines, fig. 4.2) and from a full atomistic sim-
ulation serving as reference (dots). Both set-ups share the same geometry of the simulation box, in
particular, the same size of the region of interest (AT) and the same box length 120σ along the x-axis;
parts of the tracer regions (TR) have been omitted for clarity. The units of energy, length, and time are
given by the LJ parameters ε, σ, and τ, respectively. The panels display spatial profiles of (a) the particle
number density ϱ(x), (b) the temperature T (x), and (c) the heat flux J (x), as stationary responses to the
nonequilibrium forcing.

reservoir densities, a feature that is already present in the full atomistic simulations and that is

well reproduced by the AdResS set-up. In the ∆ region, the system is artificially forced so that

an agreement with the reference is neither required nor expected; most importantly, the small

peaks of the temperature profile T (x) near the ∆/TR boundary decay within the ∆ region.

These peaks originate from the instantaneous change of resolution at these boundaries, which

introduces heat into the system that needs to be removed by the thermostat. The peak height

depends on details of the thermostat and can be adjusted, see supplementary material and

fig. 4.6.

As a second test, we performed simulations along the same lines for a supercritical LJ fluid

at moderate density ϱ = 0.3σ−3 and elevated temperature T = 1.5kB/ε, well above the liquid–

vapour critical point, with a symmetric temperature difference of ∆T = 0.2kB/ε. This fluid is

more compressible and exhibits a six-fold higher pressure than the above liquid. The obtained

profiles are reported in Supplementary fig. 4.8 and show the same high degree of agreement

as found for the liquid case.

4.1.6 Conclusions

We have introduced a generic MD framework that is designed to simulate open systems out of

equilibrium and have demonstrated its use for an open-boundary LJ fluid in a thermal gradient.

We have shown that an AdResS set-up that follows a tight analogy to the BL stochastic model of

open systems out of equilibrium can accurately reproduce the full atomistic simulations with

large reservoirs serving as benchmark reference. Such results allow one to employ AdResS and

the BL model with localized exchange kernels as a prototype theoretical and numerical model
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of reference in the development and application of open system approaches in molecular

simulation. In particular, the proposed method enables the explicit control over the reservoir

states and delivers great flexibility with respect to the simulated scenarios. The price to pay is

the need to determine the thermodynamic force for the reservoir states in a preparatory step,

which, however, can be automated and tabulated. As a computational advantage, it allows

cutting the load on the simulation of the reservoirs, which can amount to 90% of the system

size [15, 18]. An appealing perspective offered by the method concerns its possible use in

particle-continuum approaches and the possibility of performing simulations involving mass

flow which so far have required problem-specific, tailored solutions not transferable to other

situations (see Refs. [83, 87, 88] and references therein).

4.1.7 Supplementary material

4.1.7.1 Simulation details

Physical parameters The simulated Lennard-Jones (LJ) fluids consist of point particles of

mass m interacting via the smoothly truncated and shifted pair potential U (r ) = [ULJ(r )−
ULJ(rc )] f ((r − rc )/h) for r ⩽ rc , and U (r ) = 0 otherwise, with ULJ = 4ε

[
(r /σ)−12 − r /σ)−6

]
, the

cutoff radius rc = 2.5σ, the truncation function f (x) = x4/(1+ x4), and h = 0.005σ [20, 21, 89,

90]. The parameters ε and σ serve as units for energy and length, τ =
p

mσ2/ε defines the

unit of time, and dimensionless quantities are given by ϱ∗ = ϱσ3 and T ∗ = kBT /ε. The tracer

particles in the AdResS set-up do not interact with each other and not with the LJ particles in

the AT and ∆ regions, which is achieved by setting ε = 0 for the interactions involving tracers.

The simulation results reported in Fig. 3 of the main text were obtained for two liquid states

along the same isobar. The first point was chosen at temperature T ∗
2 = 0.975 and density

ϱ∗2 = 0.5987, right at the liquid–vapour coexistence line [91], yielding a (reduced) pressure of

p∗ := pσ3/ε = 0.052. For the second point, we used the lower temperature T ∗
1 = 0.850 and,

from a small sequence of simulations, determined the density ϱ∗1 = 0.7047 at which the two

liquids have the same pressure, p(T1,ϱ1) = p(T2,ϱ2). An accurate equation of state and the

phase diagram for the truncated LJ potential can be found in Ref. [92].

A second set of simulations was carried out for LJ fluids in the supercritical regime, at moderate

density and well above the liquid–vapour critical temperature (T ∗
c ≈ 1.08). Specifically, we have

chosen the two state points (T ∗
1 ,ϱ∗1 ) = (1.40,0.350) and (T ∗

1 ,ϱ∗1 ) = (1.60,0.248), corresponding

to a pressure of p∗ = 0.32.
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Implementation and algorithmic parameters For AdResS set-ups in its most recent form as

employed here [17], the following capabilities are needed beyond standard MD techniques:

(i) partitioning of the the simulation domain into the regions AT, ∆, and TR and unions

thereof,

(ii) a stochastic thermostat acting on such subdomains,

(iii) a mechanism for the change of resolution that flips molecules (here: LJ beads) into

tracers and back,

(iv) the thermodynamic force calculated from an external, one-particle potential parametrized

on a grid,

(v) the capping of excessively large forces between molecules in the ∆ region.

We have implemented these requirements into the simulation framework “HAL’s MD package”

[20, 21], which has proven as an efficient and accurate tool for large-scale MD studies of the

dynamics in liquids [90, 93]. Data sets for particle trajectories and time series of thermody-

namic observables were stored in the binary and compressed hierarchical file format H5MD

[94].

In all nonequilibrium simulations performed, we used a cuboid simulation box of size 120σ×
20σ×20σ, where the first dimension refers to the direction along which molecules change

their resolution, denoted as x-axis. Periodic boundary conditions were applied on all faces of

the box, and to this end, the set-up was extended by its mirror image (fig. 4.4). The final set-up

contained two independent AT regions (the regions of interest), which separately entered the

ensemble average for the calculation of the observed profiles. For the AdResS set-up, each AT

region of width 20σ was sandwiched along the x-axis by two transition regions ∆ of width 5σ,

the remaining space was divided in two equally sized tracer regions (TR) of width 30σ each.

Δ Δ Δ ΔTR TRAT AT

Figure 4.4: Extending the nonequilibrium AdResS set-up (Fig. 2 of the main text) by its mirror set-up
facilitates periodic boundary conditions on all faces of the simulation box. The two mirror-symmetric
AT regions yield independent samples of the observables.
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The total number of particles in the system (LJ beads and tracers) was such that it matches the

average density ϱ = (ϱ1 +ϱ2)/2 of the corresponding nonequilibrium states, e.g., 31,282 parti-

cles for the liquid case, and the same number of particles was used in the corresponding full

atomistic simulation. Non-equilibrium trajectories over a duration of 15,000τ were generated

with the velocity Verlet integrator with timestep 0.002τ. The first quarter of each trajectory

(3,750τ) was discarded for the data accumulation of the stationary profiles.

Particles in the AT region are subject to the unmodified Hamiltonian dynamics due to the

atomistic force fields. The ∆ and TR regions were thermalized with the Andersen thermostat

[47], with the update rate set to νcoupl = 50τ−1, i.e., a particle’s velocity is re-sampled from the

Maxwell–Boltzmann distribution every 10 integration steps on average. The choice of the rate

influences the peaks of the temperature profiles in the ∆ region (Fig. 3b of the main text),

which are diminished by a tighter coupling of the thermostat to the system (fig. 4.6).

The thermodynamic force Fth(x) was parametrized on a uniform grid along the x-axis with a

knot spacing of 0.25σ using an interpolation in terms of a cubic Hermite spline for the potential

ϕth(x). The total force on a particle was capped at a threshold of 500ε/σ for each Cartesian

vector component while preserving the sign of the component. After every integration step, LJ

beads whose centers entered the TR region were changed into tracers, and tracers that entered

the ∆ region where changed into LJ beads.

Nonequilibrium simulation protocol For the nonequilibrium simulations, we made use of

the D-NEMD technique [84, 85] to generate an ensemble of trajectories from uncorrelated

initial conditions. Both the AdResS and the full atomistic reference simulations followed the

same protocol:

(i) Perform one equilibrium simulation at temperature T = (T1 +T2)/2 and density ϱ =

(ϱ1 +ϱ2)/2. It yields the trajectory of a homogeneous fluid along which configurations

are sampled every 40τ after an initial equilibration phase of 2,000τ.

(ii) Start non-equilibrium simulations from these samples. In the AdResS set-up, the two

reservoirs for the equilibrium set-up at (T ,ϱ) are replaced by one reservoir at (T1,ϱ1)

and one at (T2,ϱ2), i.e., the thermostat temperature and the parameters of Fth(x) are

changed. For the full atomistic reference, only the thermostat is modified.

In the case of AdResS, the thermodynamic force was pre-computed for the three state points

used. Note that the full atomistic simulations are not needed for AdResS simulations according

to this protocol, they served as a benchmark reference merely.
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Figure 4.5: The thermodynamic forces Fth(x) (top) and their corresponding potentials ϕth(x) (bottom)
along the x-axis for the four reservoir states used in the nonequilibrium simulations. It holds Fth(x) =
−∂xϕth(x). By construction, Fth(x) = 0 in the AT region. The thermostat coupling rate was chosen as
νcoupl = 15τ−1

LJ for all four states.

Observables For the calculation of the spatial profiles of thermodynamic observables, the

simulation box was partitioned into slab-like control volumes Ωk of width 2.5σ and volume

VΩ along the x-axis (k = 1, . . . ,48). The temperature T (xk ) at the position xk in the center

of Ωk follows from the kinetic energy of the particles in Ωk . The heat flux was obtained

as J(xk ) = V −1
Ω

∑
i∈Ωk

(ei + tr σ⃗i )v⃗i [84, 86] with v⃗i denoting the velocity of the i -th particle,

ei the sum of its kinetic and potential energies, and tr σ⃗i = −1
2

∑
j ̸=i ri j U ′(ri j ) the trace of

the potential contribution of particle i to the stress tensor; ri j = |r⃗i − r⃗ j | is the distance of

separation between particles i and j .

After giving ample time for relaxation of the non-equilibrium setup (3,750τ), the profiles were

computed as time averages over samples taken every 0.3τ. The data shown in Fig. 3 (main

text) and fig. 4.8 are averages over time, over the 4 independent nonequilibrium trajectories

and the two independent AT regions in the simulation box.

4.1.7.2 AdResS simulations in equilibrium

In this section, we describe the procedure to calculate the thermodynamic force used in the

AdResS set-ups and we give numerical evidence that the AT region of the set-up properly

represents a grand canonical open system.
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Figure 4.6: Profiles of temperature (left) and density (right) of the investigated LJ liquid in a stationary
non-equilibrium state for three different coupling rates νcoupl. The data for νcoupl = 50τ−1

LJ are the same
as shown in Fig. 3 of the main text.

Computation of the thermodynamic force The reservoirs of the AdResS set-up need to

be calibrated to the fluid state they represent. To this end, a sequence of short equilibrium

simulations is needed to self-consistently determine the thermodynamic force Fth(x) for the

pair (T,ϱ) of temperature and density of the fluid. The calculation occurs iteratively, starting

from Fth(x) = 0. The stationary density profile ϱ(x) is computed across the AT, ∆, and TR

regions for a given form of Fth(x), which is then updated to reduce gradients of the density

(see Ref. [advtsres]). The iteration ends when the deviation of ϱ(x) from the target density is

within a prescribed tolerance. In this work, each iteration step consisted of an MD simulation

over 4,000τ, where the first quarter was skipped in the calculation of ϱ(x), allowing the fluid to

adjust to the modified value of Fth(x). Whereas after about 7 iterations the deviation of the

density profile from a constant had dropped below 3%, we ran about 50 iterations to achieve

convergence within 1.5%. The resulting functional forms of Fth(x) and their corresponding

potentials ϕth(x) are shown in fig. 4.5 for the four state points involved in the nonequilibrium

AdResS set-ups used here. Finally, as Fth(x) depends on the thermostat coupling rate it was

calculated separately for every value of νcoupl used in fig. 4.6.

Validation of the AdResS set-up as an open system Here we report details for the AdResS

simulations of the equilibrium fluids and corroborate numerically that the AT region of AdResS

is indeed representing a physically well-defined open system. To this end, the following three

conditions must be met by the AT region [38, 78]. Data are shown exemplarily for one fluid

state only, the results of the other simulations are similar.

(1) The particle number density and the temperature must be uniform across the AT and ∆

regions and, within a certain tolerance, be equal to their values of the desired thermody-

namic state (fig. 4.7a).
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Figure 4.7: Numerical test of the equilibrium AdResS set-up for open-system simulations of a LJ fluid at
temperature T ∗ = 1.40 and density ϱ∗ = 0.350. Red circles refer to results of the full atomistic reference
simulation, where the calculation was restricted to a subdomain that is equivalent to the AT region of the
AdResS set-up. The panels follow the criteria described in Supplemental section 4.1.7.2: (a) stationary
profile ϱ(x) of the number density across the AdResS set-up (blue line) compared to the target density
ϱ∗ (black). The shaded area indicate a tolerance of ±1.5% around ϱ∗, which was the convergence
criterion for the computation of the thermodynamic force. (b) Interaction energy UAT−∆(t ) of the AT
region of interest with the reservoir relative to the potential energy UAT−AT due to the interactions within
the AT subsystem, as a function of time. The energy contribution from the reservoir to the AT region
is below 8% on average, with a standard deviation of 0.5%. (c) Probability distribution P (N ) of the
fluctuating particle number in the AT region of the AdResS set-up (black crosses) compared with results
of the reference simulation (red circles). The solid line is a Gaussian fit to the data. (d) Comparison of
the radial distribution function g (r ) computed from the AT region of the AdResS set-up (black solid
line) and from the full atomistic reference; here, the relative deviation is less then 0.3%.
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(2) The interaction energy UAT−∆ of the particles in the AT region with the particles in

the ∆ region must be negligible relative to the interaction energy UAT−AT amongst the

particles in the AT region (fig. 4.7b).

(3) The probability distribution P (N ) of the number of particles in the AT region must

reproduce the distribution P (N ) obtained from an equivalent, open subdomain of the

full atomistic reference simulation (fig. 4.7c).

From condition (1), we can conclude that, due to the combined action of the thermodynamic

force and the thermostat in the ∆ region, the AT region is at the same thermodynamic state

point as the reference fluid of a full atomistic simulation. If condition (2) is satisfied, there are

no sizable energy contributions in the AT region stemming from the reservoir. This criterion is

usually employed in statistical mechanics texts in the definition of the grand canonical-like

ensemble (see, e.g., [95]). As a consequence of condition (3), the particle statistics in the AT

region is consistent with that of the reference case; in particular, the density (first moment

of P (N )) and the compressibility (proportional to the variance) are the same. As a further

cross-check, usually automatically fulfilled when conditions (1–3) are met, we have tested

that the radial distribution function g (r ), obtained within the AT region, agrees tightly with

the one calculated in the full atomistic simulation (fig. 4.7d). The quantitative criterion used

in this work for the equivalence of the data from the AdResS and the full atomistic reference

simulation is a tolerance of 1.5%, which is well met by the data shown in fig. 4.7.

4.1.7.3 Results for the supercritical fluid
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Figure 4.8: Results of the open-system simulation for a supercritical LJ fluid in a thermal gradient
obtained from the nonequilibrium AdReS set-up (solid lines) and from a full atomistic simulation
serving as reference (dots). Only a single AT region is shown, and parts of the tracer regions (TR) have
been omitted for clarity. The panels display spatial profiles of (a) the particle number density ϱ(x),
(b) the temperature T (x), and (c) the heat flux J(x) as stationary responses to the nonequilibrium
forcing.
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4.2 Physio-mathematical model and numerical tests

Content reprinted from [23] ( https://doi.org/10.1002/adts.202100071).

In a recently proposed computational model of open molecular systems out of equilibrium

the action of different reservoirs enters as a linear sum into the Liouville-type evolution

equations for the open system’s statistics. The linearity of the coupling is common to different

mathematical models of open systems and essentially relies on neglecting the feedback of

the system onto the reservoir due to their interaction. In this paper, we test the range of

applicability of the computational model with a linear coupling to two different reservoirs,

which induces a nonequilibrium situation. To this end, we studied the density profiles of

Lennard-Jones liquids in large thermal gradients using nonequilibrium molecular dynamics

simulations with open boundaries. We put in perspective the formulation of an extension of

the mathematical model that can account for nonlinear effects.

4.2.1 Introduction

Theory and modeling of open systems are becoming increasingly prominent since they allow

one to focus on the relevant regions where a process of interest is taking place. The exterior

can be instead simplified in the form of thermodynamic reservoirs of particles and energy and

is controlled by few macroscopic variables [78]. In particular, open molecular systems are of

relevance because of their occurrence in a variety of current cutting edge technologies, thus

they require well-founded numerical algorithms for their efficient and accurate numerical

simulation [38].

In this perspective, physico-mathematical models of open systems represent a guideline

protocol for the development of simulation algorithms. Established models such as the

one by Bergmann and Lebowitz [33, 34] (BL) express the combined actions of the reservoirs

in the Liouville-like equation of the statistical evolution of the open system by adding the

contributions of each single reservoir linearly and independently [cf. eq. (4.3) below]. The

linearity for the coupling is a direct consequence of the assumption of impulsive interactions

between system and reservoirs, that is each interaction is considered a discrete event in time

so that the open system interacts separately in time with each reservoir. The linearity of action

is also an assumption in the thermodynamic-based model presented by [96] (GBY). There,

the system interacts with different external “ports” each of which is a source of energy and

mass and mechanical work, and the resulting model is built by adding up the contribution

of each port. Both models are based on a drastic a priori simplification of the reservoirs,
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whose microscopic origin is neglected, thus ruling out the possibility of nonlinear effects in

the coupling.

Two of the authors[97] have recently proposed a model, inspired by a simulation protocol for

open systems, where the microscopic character of the reservoir is taken into account. In a

large system (Universe) the degrees of freedom of the particles of the reservoir are analytically

integrated out and an equation for the statistical evolution of the open system is derived. The

original derivation considers an open system embedded in a single homogeneous reservoir,

but the extension to more than one reservoir is straightforward and is reported in the appendix.

Also in this model the combined actions of the reservoirs in the equation of statistical evolution

of the open system enters as the sum of action of each single reservoir. Differently from the

other models reported above, this model is not constructed on an a priory choice of a linear

sum of reservoir actions. Rather, the latter originates from the hypotheses of (i) two-body short

range interactions between the particles and (ii) of statistical independence of the states of

reservoir particle residing close to the open system boundary. As a consequence the coupling

between the open system and each reservoir occurs only at the interface regions and thus the

contribution of each reservoir is reduced to a surface integral at the interface region.

In a recent work, we have embedded the idea of adding the actions of independent, concurrent

reservoirs in the Adaptive Resolution Simulation approach (AdResS) [17, 25, 98] and treated

the case of an open system interfaced with two distinct and disjoint reservoirs at different

temperatures [22]. The encouraging results of Ref. [22] raise the question about the range of

validity of the linear approximation of the reservoir action. In this paper, we test the quality of

the numerical approach based on the AdResS technique, which rests solely on the additivity

of the reservoir contributions. The test consists in simulating a Lennard-Jones (LJ) liquid in an

open domain set up such that there is a feedback of the open system onto a sizable part of

two attached reservoirs. We compare the results of our model with the results of a reference

simulation of the Universe in which all particles are explicitly treated with all their degrees

of freedom, but are thermalized at different temperatures in subregions equivalent to the

reservoir domains of our model. With such a comparison we conclude about the numerical

applicability of the linear approximation. Surprisingly, for a LJ liquid at thermodynamic

and gradient conditions common to a large variety of situations in chemical physics, it is

shown that the linear hypothesis holds and nonlinear effects are numerically negligible. This

is a promising insight in the perspective of developing accurate and efficient simulation

algorithms.

While encouraging from the numerical point of view, our conclusions also call for a further

development of the mathematical models. The BL and the GBY models by construction cannot
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implement a boundary response of the reservoir, instead generalizations to nonlinear and

memory effects are within the scope of the other model when less restrictive conditions on

the range of particle–particle interactions and on the statistics of reservoir states close to the

open system boundary are adopted. For example, it is known rigorously [99] that, just as a

consequence of multidimensional wave propagation in the reservoir, a nonreflecting acoustic

boundary condition must entail memory effects. Moreover, when the single- and two-particle

statistics involving reservoir particles close to the system boundary are permitted to depend

on the state of the open system as a whole, then nonlinear effects will arise in addition as

discussed in section 4.2.5. Such nonlinear and memory effects of the reservoirs are covered

only qualitatively here, while a detailed analysis is left for future work.

4.2.2 Mathematical models of open system

4.2.2.1 Bergmann-Lebowitz model

The linear coupling of the open system to distinct reservoirs is the starting point of relevant

mathematical models that describe the exchange of matter and energy of a system with its

surroundings (see, e.g., Refs.[33, 34, 96] and references therein). For example, in the well-

established BL model [33, 34], the Liouville equation for the phase space density fn(X n , t ) of

the open system with n particles assumes a priori the linear sum of the action of m different

reservoirs:

∂ fn(t , X n)

∂t
+ { fn(t , X n), Hn(X n)} =

m∑
r =1

I (BL)
n,r [X n , { fn′(t )}] , (4.3)

where {·, ·} denotes the Poisson bracket, Hn(X n) is the n-particle Hamiltonian, and the action

of the r -th reservoir depends on the family { fn′(t )}n′⩾0 of phase space densities at time t and

is given by the functional

I (BL)
n,r [X n , { fn′(t )}] =

∞∑
n′=0

∫ [
K r

nn′(X n , X ′
n′) fn′(X ′

n′ , t )−K r
n′n(X ′

n′ , X n) fn(t , X n)
]
d X ′

n′ . (4.4)

Each system–reservoir coupling is assumed to consist of an impulsive interaction formalized

by a Markovian kernel, Knn′(X ′
n′ , X n), i.e., a transition probability per unit time from an n-

particle (open system) and phase space configuration X n to n′ particles and phase space

configuration X ′
n′ . The overall global effect resulting from the interactions of the open system

with its surrounding is assumed to be linear as expressed by the sum over the I (BL)
n,r in eq. (4.3)

and each term being linear in the fn . This linearity is actually implicit in the assumption

of impulsive and independent interactions. [33, 34] also note that the model of impulsive

interaction represents only an asymptotic limit which is not always realized.
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Figure 4.9: The partitioning of the “Universe” into the open system Ω and the reservoir Ωc ≡U \Ω. The
number of particles in the universe is fixed to N , but it can fluctuate in the domain Ω due to exchange
with the reservoir.

4.2.2.2 The thermodynamic model of Gay-Balmaz and Yoshimura

A thermodynamic perspective to justify a linear coupling is instead employed by Gay-Balmaz

and Yoshimura [96], using a Lagrangian formulation of the dynamic many-particle system.

In their model, the system interacts with different “ports” each of which is a source of energy

and mass and mechanical work that can be injected into or adsorbed from the system. The

resulting global model is built by adding up the contribution of each port. Such a modeling

approach is justified by the application of the first principle of thermodynamics expressed by

a time-dependent energy of the system due toehe action of the ports:

dE

d t
=

m∑
r =1

(
P ext

W,r +P ext
H ,r +P ext

M ,r

)
, (4.5)

where P ext
W,r is the power corresponding to the work done by the r -th reservoir on the system

and P ext
H ,r and P ext

M ,r , respectively, are the power corresponding to the heat and matter transfer

from the r -th reservoir to the system.

4.2.2.3 Model with marginalization of the degrees of freedom of the reservoir

In this section we report the essential features of the model developed in Ref. [97], which

are required for the discussion about the linear action of concurrent reservoirs. An extended

explanation of the model and its extension to the case of many concurrently acting reservoirs

at different thermodynamic conditions are reported in section 4.2.7 and section 4.2.8. The

model considers a large closed system of N particles, the “Universe” U (fig. 4.9). The Universe

is statistically described by its phase space density function FN (t , X N ), where t is the time

variable and X N are the 6N -dimensional coordinates in phase space SN =ΩN ×R3N . The time
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Figure 4.10: The partitioning of the “universe” in two large reservoirs, Res1 and Res2, and the subsystem
of interest, Ω. The boundary of the open system splits according to ∂Ω≡ ∂Ω1 ∪∂Ω2 into the boundary
surface ∂Ω1 between Res1 andΩ and the boundary surface∂Ω2 between Res2 andΩ. The two reservoirs
are set up at different thermodynamic conditions, e.g., different densities, ϱ1 and ϱ2, and different
temperatures, T1 and T2.

evolution of FN (t , X N ) follows the corresponding Liouville equation. A subsystem Ω⊂U of

the Universe with n particles is described by the probability distribution function, fn(t , X n),

obtained by marginalizing FN (X N ) w.r.t. the N −n particles located in the reservoir Ωc = U \Ω:

fn(t , X n) =

(
N

n

) ∫
SN−n

c

FN (t , X n ,ΞN
n ) dΞN

n ; (4.6)

ΞN
n indicates the degrees of freedom in the reservoir phase space SN−n

c =ΩN−n
c ×R3(N−n). The

binomial factor is chosen such that the hierarchy of phase space densities { fn}0⩽n⩽N satisfies

the normalization condition
∑N

n=0

∫
Sn fn(t , X n)d X n = 1. The procedure of marginalization is

then applied to the Liouville equation of FN (X N ), leading to a hierarchy of equations for the

fn(t , X n):

∂ fn

∂t
+ { fn , Hn} =Ψn +Φn+1

n ; 0⩽ n ⩽ N , (4.7)

where the r.h.s. represents the coupling between the system Ω and the exterior. Specifi-

cally, Ψn = Ψn[X n , fn] stems from the forcing of the system particles by the reservoir and

Φn+1
n = Φn+1

n [X n+1, fn , fn+1] describes the exchange of one particle between the system and

the reservoir.

The derivation above is done under the assumption that the reservoir is thermodynamically

uniform. However, one can imagine that the exterior of Ω is formed by m disjoint regions

at different thermodynamic conditions (see fig. 4.10 for an example for two regions). Let us

assume that the two regions acting as reservoirs are large enough so that we can consider each
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of them to be in a stationary state within the time scale of observation that we are considering.

In such a case, eq. (4.7) becomes:

∂ fn

∂t
+ { fn , Hn} =

m∑
r =1

(
Ψn,r +Φn+1

n,r

)
, (4.8)

where the sum over r expresses the additive effect of the m reservoirs. The detailed derivation

of (4.8) along the lines of Ref.[97] is conceptually simple, but involves few specific modifi-

cations of the model at the different boundaries of Ω; a step by step derivation is given in

section 4.2.8. Most importantly, the contributions Ψn ,r and Φn+1
n,r are linear in the fn and (4.8)

formally resembles eq. (4.3).

4.2.3 The AdResS setup with the linear combination of reservoirs

In a recent work [22], we have employed the Adaptive Resolution Simulation technique

(AdResS) for molecular dynamics [17] to test the concept of a linear combination of reservoir

actions on an open system. The AdResS setup consists of partitioning the simulation box

in three regions: the region of interest AT, at full atomistic resolution, the interface region

∆, at full atomistic resolution, but with additional coupling features to the large reservoir,

and TR, the large reservoir of noninteracting particles (fig. 4.11). Particles can freely cross the

boundaries between the different regions and automatically acquire the molecular resolution

that characterize the region in which they are instantaneously located.

Regarding the coupling conditions, molecules of the AT region interacts with atomistic po-

tentials among themselves and with molecules in ∆, and vice versa, while there is no direct

interaction with the tracer particles. Tracers and molecules in ∆ are subject to an additional

one-body force, named thermodynamic force, which acts along the direction n⃗ perpendic-

ular to the ∆/TR interface, F⃗th(q⃗) = Fth(q⃗)n⃗ for positions q⃗ . In essence, this is the coupling

condition between the ∆ region and the reservoir TR, amended by a thermostat in these

regions. As a consequence the total potential energy reads: Utot = U AT
tot+

∑
q⃗ j∈∆∪TRϕth(q⃗ j ) with

the potential ϕth(q⃗) such that F⃗th(q⃗) = −∇ϕth(q⃗) and ϕth(q⃗) = 0 in the AT region, q⃗ ∈ AT. The

thermodynamic force is derived by basic principles of statistical mechanics; in essence, of

relevance for this paper, it assures that the particle density in the atomistic region is equal to a

value of reference. As it is shown in Refs.[24, 79, 98, 100] the constraint on the particle density

in AdResS implies the equilibrium of the atomistic region w.r.t. conditions of reference of a

fully atomistic simulation.

The setup of AdResS resembles the partitioning employed in the mathematical models of open

system and, in particular, it is very well suited for a numerical test of the idea of a linear action
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Figure 4.11: The AdResS setup consists of an atomistic region AT and an interface region ∆, both
where molecule i interacts with molecule j through the pair potential Ui j = U (q⃗ i − q⃗ j ). The ∆ region is
interfaced (to the right) with a large reservoir TR of noninteracting particles (tracers). In the ∆∪TR
region, the thermodynamic force, Fth(q⃗i ), acts on all particles individually to enforce the desired
thermodynamic equilibrium. The correspondence with the mathematical model of open systems is
illustrated by identifying each region of AdResS with the equivalent region of figs. 4.9 and 4.10.

of reservoirs. In fact, in AdResS one can implement a setup as that of fig. 4.10, where the action

of the two distinct reservoirs, Res1 and Res2, is encoded in two distinct coupling conditions at

the corresponding interfaces. The coupling terms, which correspond to the thermodynamic

forces, are calculated separately; that is, the system first interacts only in the presence of

Res1, which is at temperature T1 and density ϱ1, and one obtains the thermodynamic force

needed at the interface with Res1. Next, the system interacts only in the presence of Res2, at

T = T2 and ϱ = ϱ2, and one obtains the thermodynamic force needed at the interface with

Res2. A nonequilibrium situation is then achieved by running a simulation setup with distinct

thermodynamic forces applied in the corresponding interface regions (fig. 4.12).

4.2.4 Numerical tests of the linear approximation of the reservoir action

The AdResS approach to open systems out of equilibrium was applied to simulate a LJ liquid

in a temperature gradient [22]. The results of this earlier study showed that indeed the model

accurately reproduces data from fully atomistic reference simulations in the presence of

a thermal gradient. Specifically, an isobaric setup was employed, that is the temperature

gradient is applied at constant pressure by choosing reservoir densities along an isobar for

prescribed reservoir temperatures. Here we go further and consider situations where the idea

of linearity is pushed to its edge of validity. To this aim, we numerically test what happens in

the atomistic region of interest when at the interface regions one has a feedback from the rest

of the system. We performed nonequilibrium simulations (i) along an isobar with increasing

temperature gradients, whose largest value exceeds the one of our earlier work [22] by a factor

of 3 and (ii) in an isochoric setup, that is, the thermodynamic forces are calculated at the same
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Figure 4.12: Schematic illustration of the simulation of a thermal gradient in the AdResS setup and
its correspondence to the mathematical models. First, the open system is equilibrated at the thermo-
dynamic condition of each reservoir (left). In AdResS, this corresponds to running the equilibration
procedure twice to determine the thermodynamic force Fth,1(q⃗) and Fth,2(q⃗) separately. Once the
system is in contact with two different reservoirs (right), then the mathematical models predict a linear
action of the reservoirs as is apparent from the r.h.s. I1 + I2 of the extended Liouville equation eqs. (4.3)
and (4.8). The reservoir coupling terms Ir (r = 1,2) translate in AdResS to the combined action of
Fth,1(q⃗) and a thermostat that maintains the temperature at T1 in the region ∆1 ∪TR1 and analogously
for the second reservoir; in this sense, Ir is a function of Fth,r (q⃗) and the thermostat at Tr .
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Figure 4.13: Density profiles of a LJ liquid in different thermal gradients, simulated with the isobaric
setups of nonequilibrium AdResS (solid lines). The temperature difference ∆T between the hot (red)
and cold (blue) reservoirs increases from bottom to top as indicated in the legend. The temperature
and density of the hot reservoir are kept fixed at Thot = 0.95ε/kB and ϱhot = 0.622σ−3, respectively, while
the state points of the cold reservoir are chosen along the corresponding isobar. Here, ε and σ refer to
the parameters of the LJ potential, see section 4.2.9. Reference results from full atomistic simulations
are given by disc-shaped symbols. Only the parts of the TR regions close to the coupling boundary are
shown.

density ϱ̄ = ϱ1 = ϱ2, but different reservoir temperatures T1 < T2. We note that the reservoir

states are chosen in the liquid phase and are close to the liquid–vapour binodal curve; here, the

LJ fluid is almost incompressible and is characterized by low pressure. The technical details of

the simulations are given in section 4.2.9.

For the isobaric setup, case (i), the density profiles across the simulation box obtained for

different thermal gradients (fig. 4.13) follow closely the results of the corresponding, fully

atomistic reference simulations (which involves the atomistic simulation of a huge reservoir),

in particular in the region AT of interest. The highly satisfactory agreement is qualitatively

similar for all temperature gradients investigated, despite ∆T := T2 −T1 increasing from 14%

to 40% relative to the respective mean temperature, T̄ = (T1 +T2)/2. In the ∆∪TR there are

noticable effects due to a feedback of the system onto the reservoir, without repercussions on

the region of interest.

For the isochoric nonequilibrium setup, case (ii), one expects that the thermal gradient induces

a pressure gradient in the AT region. Interestingly, our simulation results (fig. 4.14) instead

exhibit a density gradient that closely follows the one of the isobaric AdResS setup and the

full atomistic reference. A possible explanation is that the pressure gradient induces a mass

flux, which builds up a density gradient until the pressure differences are compensated. The

interpretation is corroborated by the large density difference between the two TR regions,
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Figure 4.14: Density profiles of a LJ liquid in a fixed thermal gradient (∆T = 0.125ε/kB ) simulated
with the isochoric (green line) and isobaric (black line) setups of nonequilibrium AdResS; reference
data from full atomistic simulations are given by red symbols. The temperature of the hot reservoir is
Thot = 0.975ε/kB , and the mean particle density, averaged over the whole setup, is ϱ̄≈ 0.65σ−3 (grey
line). Only parts of the TR regions are shown.

reflecting tracers that were moved in excess from the hot to the cold reservoir. This mechanism

introduces a feedback on the two reservoirs and yields a sizeable shift of their intended

densities. Nevertheless, also the isochoric AdResS setup provides a meaningful (and simpler)

approach to nonequilibrium simulations. It shall be added that the temperature profiles of all

AdResS setups considered in figs. 4.13 and 4.14 agree extremely well with the simulations of

reference and are not shown here, see Ref.[22] for an example.

4.2.5 Theoretical perspectives

From the physical point of view, both the BL and GBY models rely on neglecting any feedback

of the system onto the reservoirs. The former model also predicts a linear combination of the

action of different reservoirs as long as the condition of short range pair interactions and the

explicit assumption of statistical independence of reservoir states from the open system states

apply. However, such constraints can be relaxed and nonlinear and memory effects can be

introduced into the derivation. Both types of effects are expected in general, as the following

examples demonstrate:

1. Memory effects: We are dealing with thermodynamically compressible systems support-

ing sound waves. It is known from the theory of fluid dynamics that the modelling of

acoustic waves that exit an open domain without reflection at its boundary demand

that one keeps track of the system’s history to properly capture the wave dynamics in

the reservoir[99].

62



2. Nonlinearities: When the open system is at a higher pressure than the reservoir(s) ini-

tially, then the velocity statistics of outer particles near the open system boundary is

clearly biased towards the outward pointing normal. This effect could be modelled by

introducing single- and two-particle statistics f ◦
n,1 and f ◦

n,2 that depend explicitly on the

particle number n of the open system and by coupling these functions to thermody-

namic averages of the entire hierarchy of phase space densities fν, ν ∈ {0, ..., N }. This

ansatz will render the terms Ψn and Φn+1
n in eq. (4.8) nonlinear functions of the fn . If

nonlinear effects are to arise in the presence of long-range interactions, then the model

would similarly be able to account for these.

3. Long-range correlations: Another possibility is that, in the vicinity of a critical point, the

correlation length of the fluid is of the order of the linear size of the open system. In

this case, the presence of the open boundaries (i.e., the finite size of the subsystem) un-

avoidably modifies the observed fluid properties, e.g., its thermodynamics [101] and the

strength of local density fluctuations [15, 102], and one anticipates a direct correlation

between the reservoirs. Truncating such a correlation spectrum is known to give rise to

critical Casimir forces: an effective, non-additive interaction between the boundaries,

which was found for (binary) fluids between solid and periodic boundaries near critical-

ity [103–105], but also transiently after a temperature quench [106]. Capturing such an

extreme situation by a model of open systems would require that detailed information

about the reservoir states is kept, with the degree of detail depending on the observables

of interest.

Yet, the model of Ref.[97] tells something more. Even within the assumption of short-range

interactions, one still needs basic information about the reservoirs at the interface, e.g.,

one- and two-particle distributions. These latter are assumed to be stationary, under the

approximation that the reservoir, due to its size, fully controls the particle distribution at the

surface. Such an approximation is no more valid if the range of interaction is extended because

the system itself starts to significantly influence the distribution of particles near the boundary

and a generally nonlinear feedback between the reservoirs is to be expected.

4.2.6 Conclusions

We have discussed models of open systems that rely on the linear combination of the actions

of several reservoirs. From the general discussion emerges the necessity of considering the

scenario in which nonlinear effects arise once the hypotheses of short range potentials and

statistical independence of the reservoirs becomes less strict. In such a perspective, a model

recently proposed by two of the authors offers the possibility of automatically including the
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feedbacks between the open system and the attached reservoirs by generalizing the pertinent

models of the reservoir statistics at each interface. Such a possibility is ruled out in the other

models of an open system covered here. An analytic derivation of such a generalization is, how-

ever, left to future research. Instead we have focused on the numerical consequences of such

nonlinear effects and reported a numerical test where the reference simulation automatically

includes nonlinear effects while the simulation mimicking the mathematical model of eq. (4.8)

does not include such a nonlinearity. The results show that even under such conditions, the

approximation of a linear combination of actions yields numerically satisfying results for a

range of systems of interest. This is good news for the numerical simulations, in particular, it

removes the need to fine-tune the reservoir states of the isobaric setup. At the same time, our

findings also call for an extension of the concepts and its numerical counterpart to nonlinear

effects. In fact in this paper we have validated the model for a molecular system with Lennard-

Jones-like short-ranged potentials, however the current conclusions may not apply to systems

characterized by long-ranged interactions. In such a case, non-linear effects at the coupling

boundary may become relevant. One example are ionic liquids, where electrostatics plays

a major role. The AdResS approach was shown to describe such liquids in equilibrium in a

highly satisfactory manner [107–109], and it will be interesting, in perspective, to test whether

the current non-equilibrium set up of AdResS would be directly applicable to ionic liquids in a

thermal gradient, or whether modifications at the coupling boundaries are needed.

4.2.7 Appendix A: Liouville-type equations for an open system

In this appendix, we summarize the key steps of the modeling procedure adopted in Ref.[97]

for an open system embedded in a single uniform reservoir. This serves as basis for the

extension of the model to several independently acting reservoirs in section 4.2.8.

4.2.7.1 Topological definition of an open system

Let us consider the open system schematically illustrated in fig. 4.9. The total system, here

called “Universe”, is characterized by the number N of particles (fixed) and a spatial domain

U . A subdomain Ω⊂U defines the open system, which may contain any number n ∈ {0, ..., N }

of particles, while the region of the reservoir corresponds to the complement U \Ω≡Ωc with

N −n particles. The phase space of the N particles in U is SN = U N ×R3N (positions in U N ,

momenta in R3N ), the phase space of the open system is in case of n particles is Sn =Ωn ×R3n ,

and the phase space of the reservoir is S(N−n)
c =Ω(N−n)

c ×R3(N−n).
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4.2.7.2 Relevant quantities that characterize U

The Universe is characterized by the Hamiltonian

HN (qN ,pN ) = Ekin(pN )+Vtot(qN ) ≡
N∑

i =1

(p⃗i )2

2M
+ 1

2

N∑
i , j =1

j ̸=i

V (q⃗ j − q⃗i ) (4.9)

where
(
qN ,pN ,

)
= (q⃗1, ..., q⃗N , p⃗1, ..., p⃗N ) and (q⃗i , p⃗i ) are the position and momentum of the i -th

particle, respectively, M is the particle mass, assumed to be the same for all particles here, and

V is the two-body interaction potential (as typical for, e.g., molecular dynamics simulations).

The statistical mechanics description of the system in phase space is achieved through its

probability density defined as

FN :R+×SN →R , (t , X N ) 7→ FN (t , X N ) , (4.10)

with normalization
∫

SN FN d X N = 1. The probability density of the Universe is subject to the

transport equation of the phase space density (Liouville equation)

∂FN

∂t
=

N∑
i =1

[
∇q⃗i

· (v⃗i FN
)+∇p⃗i

· (−∇qi Vtot(q⃗ N )FN
)]≡−{FN , HN } (4.11)

where the r.h.s. is a Poisson bracket and v⃗i = p⃗i /M the velocity of the i -th particle.

4.2.7.3 Relevant quantities that characterize Ω

The open system Ω containing n particles is characterized by the Hamiltonian

Hn =
n∑

i =1

(p⃗i )2

2M
+ 1

2

n∑
i , j =1

j ̸=i

V (q⃗ j − q⃗i ) ; (q⃗i , q⃗ j ∈Ω) . (4.12)

The statistical mechanics description of the open system in phase space is given by the

collection of all its n-particle probability densities

fn :R+×Sn →R , (t , X n) 7→ fn(t , X n) , (4.13)

for n ∈ {0, ..., N }. Consistent with the fact that Ω is a subsystem of U , fn is explicitly given by

[97]:

fn(t , X n) =

(
N

n

) ∫
(Sc )N−n

FN (t , X n ,ΞN
n ) dΞN

n (4.14)
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with ΞN
n ≡ [Xn+1, .....XN ] collecting the reservoir’s degrees of freedom, Xi = (q⃗i , p⃗i ) ∈ Sc , and

the normalization condition:
∑N

n=0

∫
Sn fn(t , X n)d X n = 1. The binomial factor counts the

number of ways to pick n particles out of N .

4.2.7.4 Derivation of a Liouville-like equation for Ω

The starting point is eq. (4.11) and the strategy to achieve a Liouville-like equation for fn

consists in the marginalization of eq. (4.11) w.r.t. the degrees of freedom of the N −n particles

in Ωc . The procedure can be schematized by the following two steps

I) Marginalization of the term
∑N

i =1∇p⃗i
·(−∇qi Vtot(q⃗ N )FN

)
. Since Vtot(q⃗ N ) is a sum over all

index pairs 1⩽ i , j ⩽ N , one needs to analyze three specific situations:

(a) i , j ∈Ωc ; (b) i , j ∈Ω; (c) i ∈Ω, j ∈Ωc . (4.15)

II) Marginalization of the term
N∑

i =1
∇q⃗i

· (v⃗i FN
)
, where two specific situations need to be

distinguished:

(a) i ∈Ω and (b) i ∈Ωc . (4.16)

Results of step I

(a) For all particle indices i in the reservoir, n +1 ≤ i ≤ N , Gauss’ theorem implies:

∫
Br (0)

∇p⃗i
· (∇qi Vtot(q N )FN (t , q N , p N )

)
d 3pi

=
∫

∂Br (0)

n⃗ · (∇qi Vtot(q N )
)

FN (t , q N , p N )dσpi → 0 (4.17)

as r →∞, where Br (0) is the sphere of radius r in momentum space centered at the

origin and n⃗ the surface normal on ∂Ω pointing outwards. It is assumed that FN

decays sufficiently rapidly for large |p⃗i | for the boundary integral to vanish in the

limit. This is certainly true, e.g., for the Boltzmann distribution of the momenta,

FN ∝ exp
(−(p⃗i )2/2MkB T

)
. Actually, it is sufficient that FN decays to zero at all for

large momenta and this is a consequence of FN being a probability density and thus

integrable.

(b) If both particles i , j are in the open system Ω, 1 ⩽ i , j ⩽ n, marginalization over the
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reservoir yields:

(
N

n

) ∫
(Sc )N−n

∇p⃗i
·
(
∇qi V (q⃗i − q⃗ j )FN (t , X n ,ΞN

n )
)
dΞN

n

= ∇p⃗i
·
(
∇qi V (q⃗i − q⃗ j ) fn(t , X n)

)
. (4.18)

(c) If particle i is in the open system, 1 ≤ i ≤ n, but particle j is in the reservoir, n+1 ≤ j ≤ N ,

then choosing i = n and j = n +1 for the ease of notation, one finds:

(
N

n

)∫
Sc

∫
(Sc )N−n−1

∇p⃗i
·
(
−∇qi V (q⃗i − q⃗ j )FN (t , X n−1,, Xi , (q⃗ j , p⃗ j ),ΞN

n+1)
)
dΞN

n+1d p j d q j

= ∇p⃗i
·
(
F⃗av(q⃗i ) fn(t , X n−1, Xi )

)
(4.19)

with

F⃗av(q⃗i ) = −
∫
Sc

∇q⃗i
V (q⃗i − q⃗ j ) f ◦

2 (X j |Xi )d X j (4.20)

denoting the mean-field force exerted by the outer particles onto the i -th inner particle under

the assumptions that

(1) pair interactions V (qi −q j ) are short-ranged so that pair interactions are relevant only

close to the open system’s boundary,

(2) the probability density of finding n particles in states
(

X n−1, Xi
) ∈ Sn and one other

outer particle in X j , given by marginalization over ΞN
n+1, can be factorized as(

N

n

) ∫
(Sc )N−n−1

FN (t , X n−1,, Xi , X j ,ΞN
n+1)dΞN

n+1 ≈ f ◦
2 (X j |Xi ) fn

(
t , X n−1, Xi

)
. (4.21)

(3) f ◦
2 (Xout|Xin) is a known or modelled conditional distribution for joint appearances of

an outer particle given the state of an inner one.

Here we consider assumption (1) as a physical necessity for assumptions (2) and (3) to be

justifiable in the first place, while the latter two encode the more general assumption that the

statistics of the reservoir is independent of the instantaneous state of the open system for the

present purposes.
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Results of step II

(a) For all particles i in Ω, i ∈ {1, . . . ,n}, it holds(
N

n

) ∫
(Sc )N−n

∇q⃗i
· (v⃗i FN (t , X n ,ΞN

n )
)

dΞN
n = ∇q⃗i

· (v⃗i fn
)

. (4.22)

(b) In the reservoir, n +1 ⩽ i ⩽ N , one of the integrals will be over Ξi ∈ Sc which, after

summing over the respective terms and utilizing the indistinguishability of the particles,

leads to an integral over the boundary ∂Ω of the open system:

(
N

n

)
(N −n)

∫
Sc

∫
(Sc )N−n−1

∇q⃗i
· (v⃗i FN (t , X n , (q⃗i , p⃗i ),ΞN

n+1

)
dΞN

n+1 dΞi

= −(n +1)
∫
∂Ω

∫
R3

(
v⃗i · n⃗

)
f̂n+1(t , X n , (q⃗i , p⃗i ))d 3pi dσi , (4.23)

where we employed the identity
(N

n

)
(N −n) =

( N
n+1

)
(n + 1) and the notation assumes

i = n +1.

Here, guided by the theory of characteristics, we distinguish the relevant forms of f̂n+1 for

outgoing and incoming particles as follows: Under the assumption of statistical independence

of the reservoir particle states from those of the inner particles, we have

f̂n+1 =

 fn+1
(
v⃗i · n⃗ > 0

)
,

fn f ◦
1

(
v⃗i · n⃗ < 0

)
,

(4.24)

where f ◦
1 is the single particle (equilibrium) density of the reservoir. Alternatively, assuming a

grand canonical (GC) distribution for state space trajectories that enter the open system from

outside one could write down as a plausible model:

f̂n+1 =

 fn+1
(
v⃗i · n⃗ > 0

)
,

f GC
n+1

(
v⃗i · n⃗ < 0

)
.

(4.25)

Note that we do not intend to promote the closure assumptions regarding the reservoir statis-

tics introduced above (through the functions f ◦
1 and f ◦

2 ) as being optimal or preferable over

alternative formulations. Instead, these closures are meant to be placeholders that highlight

the principal necessity of explicitly formulating assumptions on the reservoir behavior in the

context of the present derivations.
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Final equation

Combining the results of Steps I and II, one obtains a hierarchy of Liouville-type equations for

fn :

∂ fn

∂t
+ { fn , Hn} =Ψn +Φn+1

n (4.26)

with boundary terms on the r.h.s. describing the action of the reservoir, namely the interaction

term due to a mean-field forcing by the reservoir particles

Ψn[X n , fn] = −
n∑

i =1
∇p⃗i

· (F⃗av(q⃗i ) fn(t , X i−1, Xi , X n−i
i )

)
, (4.27)

and an exchange term due to particles entering and leaving the domain Ω:

Φn+1
n [X n , fn , fn+1] =

(n +1)
∫
∂Ω

∫
(p⃗i ·n⃗)>0

(v⃗i · n⃗)
(

fn+1
(
t , X n , (q⃗i , p⃗i )

)− fn
(
t , X n)

f ◦
1

(
q⃗i ,−p⃗i

))
d 3pi dσi . (4.28)

4.2.8 Appendix B: the case of two distinct reservoirs at different thermodynamic

conditions

Let us consider a prototype situation as that illustrated in fig. 4.10 where Ω is a region that

separates the Universe in two distinct (large) reservoirs, (Res1 and Res2), and, as anticipated

before, we assume that the two reservoirs are in stationary thermodynamic conditions in the

time scale considered. Straightforward physical considerations lead to the conclusion that Ω

has a spatially asymmetric exchange with the Universe and may thus possess a nonequilibrium

stationary state. Formally one can proceed as for the case of a single reservoir and derive

an equation for fn in this situation. The total probability distribution function FN describes

the entire Universe including the thermodynamic states of Res1 and Res2. From FN , by

marginalizing w.r.t. N −n degrees of freedom of particles in Ωc , one obtains the distribution

function fn of the open system. Furthermore, the Liouville equation for FN applies as before,

and thus by marginalizing the Liouville equation for FN w.r.t. the degrees of freedom of

the particles in Ωc one would obtain the corresponding Liouville-type equation for fn (n ∈
{0, ..., N }) as for the case of one reservoir of Ref.[97]. This means an analytic derivation of the

conditions of nonequilibrium induced by the concurrent action of the two reservoirs. In the

sections below we will follow the marginalization procedure adopted in the previous section

and adapted to the setup illustrated in fig. 4.10
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4.2.8.1 Step I revised with Res1 and Res2

(a) Again, the boundary integral in eq. (4.17) will vanish in the limit of the radius of the ball

tending to infinity because FN will decay rapidly for large momenta, i.e., one can expect

a decay as exp[−(p⃗i )2/2MkB T1] in Res1 and exp[−(p⃗i )2/2MkB T2] for Res2 (assuming

they are both much larger than Ω). As said before, it is sufficient that FN is a probability

density and thus integrable.

(b) If both particles i , j of the pair are inside of Ω, nothing changes. In particular, the

marginalization w.r.t. the particles outside [eq. (4.18)] implies that the whole information

about the particles of the reservoirs is integrated out.

(c) Here emerges the first substantial difference. In the case that particle i is inside of Ω

and particle j in one of the reservoirs, eq. (4.19) remains formally the same, but the

calculation of the mean force changes [eq. (4.20)]. One needs to carefully consider

the dependency of the pair’s potential energy on the position of the particle in each of

the two distinct reservoirs. The modified expression of F⃗av(q⃗i ) carries the fact that the

boundary with Res1 has different thermodynamic and statistical mechanics properties

than the boundary with Res2, depending on the specific subdomain of Sc over which the

integration in the variable X j is carried out. This implies that the assumed probability

density of finding n particles in states
(

X n−1, Xi
) ∈ Sn and one other outer particle in X j

is now given by fn
(

X n−1, Xi
)

f ◦,R1
2 (X j |Xi ) if X j ∈ Res1 and by fn

(
X n−1, Xi

)
f ◦,R2

2 (X j |Xi )

if X j ∈ Res2. The integration of X j over the whole Sc = Res1 ∪Res2 splits into the sum of

two integrals over the domains Res1 and Res2, respectively:

F⃗av(q⃗i ) = −
∫

Res1

∇q⃗i
V (q⃗i − q⃗ j ) f ◦,R1

2 (X j |Xi )d X j −
∫

Res2

∇q⃗i
V (q⃗i − q⃗ j ) f ◦,R2

2 (X j |Xi )d X j .

(4.29)

Specifically, the assumption that the statistics of both reservoirs are independent of

each other yields the additive form F⃗av(q⃗i ) = F⃗ R1
av (q⃗i )+ F⃗ R2

av (q⃗i ).

4.2.8.2 Step II revised with Res1 and Res2

(1) Similarly as in step I, for the particles i ∈ {1, . . . ,n} inside of the domain Ω the terms

in eq. (4.22) remain the same because the marginalization w.r.t. the particles outside

implies that any information about the reservoirs is integrated out.

(2) Otherwise, for n +1⩽ i ⩽ N , the effects of the two distinct reservoirs entering eq. (4.23)

clearly emerges in the definition of f̂ [eq. (4.24)], because one needs to define f̂ differ-
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ently on the two reservoirs. For Ξi ∈ Res1, one has f̂ R1
n+1 = fn f ◦,R1

1 with f ◦,R1
1 being the

single particle (equilibrium) density in reservoir 1 and equivalently f̂ R2
n+1 = fn f ◦,R2

1 for the

other reservoir. Or, equivalently, f̂ R1
n+1 = f GC

R1
(same for R2,) if one makes the modeling

choice of the grand canonical distribution for each reservoir.

Moreover, the decomposition of the boundary ∂Ω = ∂Ω1 ∪∂Ω2 implies the splitting of

the surface integral:

−(n +1)
∫
∂Ω

∫
R3

(
v⃗i · n⃗

)
f̂n+1(t , X n , (q⃗i , p⃗i )d 3pi dσi =

2∑
r =1

I∂Ωr (4.30)

where

I∂Ωr = −(n +1)
∫

∂Ωr

∫
R3

(
v⃗i · n⃗

)
f̂n+1(t , X n , (q⃗i , p⃗i )d 3pi dσi . (4.31)

In the case v⃗i · n⃗ < 0, one has to replace f̂ n+1 with fn f ◦,R1
1 in the integral over ∂Ω1 and

with fn f ◦,R2
1 in the integral over ∂Ω2.

After collecting the results of the previous steps, we straightforwardly obtain:

∂ fn

∂t
+ { fn , Hn} =

∑
r∈{R1,R2}

(
Ψn,r +Φn+1

n,r

)
(4.32)

where the terms on the r.h.s. closely resemble those for a single reservoir and read, e.g., for

r = R1:

Ψn,R1[X n , fn] = −
n∑

i =1
∇p⃗i

·
(
F⃗ R1

av (q⃗i ) fn(t , X i−1, Xi , X n−i
i )

)
(4.33)

and

Φn+1
n,R1[X n , fn , fn+1] =

(n +1)
∫

∂Ω1

∫
(p⃗i ·n⃗)>0

(
v⃗i · n⃗

) (
fn+1

(
t , X n , (q⃗i , p⃗i )

)− fn
(
t , X n)

f ◦,R1
1

(
q⃗i ,−p⃗i

))
d 3pi dσi .

(4.34)

The setup of fig. 4.10 and the marginalization procedure can be straightforwardly extended to

an arbitrary number of m disjoint reservoirs, interfaced with Ω:

∂ fn

∂t
+ { fn , Hn} =

m∑
r =1

(
Ψn,r +Φn+1

n,r

)
, (4.35)
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which describes a linear and additive action of independent reservoirs.

4.2.9 Appendix C: technical details of the simulations

The setup of both the AdResS and the full atomistic reference simulations was the same as

described in detail in Ref.[22] and its supplementary material. The investigated LJ fluids

consist of point particles of mass m that interact via the shifted and smoothly truncated

pair potential U (r ) = [ULJ(r )−ULJ(rc )] f ((r − rc )/h) for r ⩽ rc , and U (r ) = 0 otherwise, with

ULJ = 4ε
[
(r /σ)−12 − r /σ)−6

]
, the cutoff radius rc = 2.5σ, the smoothing function f (x) = x4/(1+

x4), and h = 0.005σ. The parameters ε and σ are taken to define the units for energy and

length, τ =
p

mσ2/ε is the unit of time. Dimensionless quantities are defined as ϱ∗ = ϱσ3 and

T ∗ = kB T /ε for density and temperature, respectively. For particle pairs involving at least one

tracer particle of AdResS, the interaction is switched off, ε = 0.

For the simulations reported in fig. 4.13, we used reservoir states in the liquid phase along

the same isobar, i.e., they have the same pressure P (T,ϱ) = const. The hot reservoir serves as

reference state point and is chosen at temperature T ∗
hot = 0.95 and density ϱ∗hot = 0.622, which

results in a (reduced) pressure of P∗ := Pσ3/ε≈ 0.045. The state points of the cold reservoir

were determined such that they are at the same pressure as the hot reservoir. We used the fol-

lowing points in the temperature–density plane: (T ∗
2 ,ϱ∗2 ) = (0.825,0.72), (T ∗

3 ,ϱ∗3 ) = (0.7,0.791),

and (T ∗
4 ,ϱ∗4 ) = (0.625,0.828), leading to temperature differences between the reservoirs of

∆T ∗ = 0.125, 0.250, and 0.325, respectively.

For the isobaric results shown in fig. 4.14, state points along a slightly different isobar were used,

namely (T ∗
hot’,ϱ

∗
hot’) = (0.975,0.5987) and (T ∗

cold,ϱ∗cold) = (0.85,0.7047), both at a pressure of

P∗ = 0.051. The data for the isochoric setup were obtained with reservoir states that represent

the same, average density, ϱ̄∗ = (ϱ∗hot’ +ϱ∗cold)/2 = 0.6517, but different temperatures T ∗
hot’ and

T ∗
cold as before; the corresponding pressures differ widely: p∗

hot’ = 0.194 and p∗
cold = −0.140.

The negative pressure implies that in equilibrium such a reservoir would phase separate. This

is not necessarily the case in the non-equilibrium situation. In our case it is found that the

pressure gradient is balanced by a density gradient so that effectively the reservoir is no longer

in the unstable state (but at a higher density, i.e., liquid again). So in essence, the example

makes sense in the non-equilibrium case and it represents a challenging condition for testing

our model. For all nonequilibrium simulations, a cuboid domain of size 120σ×20σ×20σ

was used for the “Universe”, with the long edge corresponding to the direction along which

molecules change their resolution in AdResS. Periodic boundary conditions were applied

at all faces of the cuboid, and a mirrored setup with in total two AT boxes, four ∆ regions,

and two TR regions was employed as in Ref. [22]. The Hamiltonian dynamics of the systems
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was integrated with the velocity Verlet scheme for a timestep of 0.002τ. No further measures

were applied to the AT regions; the ∆ and TR regions in AdResS and the reservoir regions

in the full atomistic reference simulation were thermalized with the Andersen thermostat

[47] with the update rate set to νcoupl = 50τ−1 for fig. 4.13 and 20τ−1 for fig. 4.14. The AdResS

setups contained typically 16000 LJ particles on average, whereas about 31000 LJ particles

were used for the reference simulations. At each state point, nonequilibrium trajectories over

a duration of 15000τ each were generated, the first quarter of which (3750τ) was discarded

for the calculation of stationary time averages. For the data analysis, the simulation box

was divided at the mirror plane of the setup and the results were averaged over both halves.

The averages are done over one long trajectory for the isobaric case and over three different

trajectories for the isochoric case.

4.3 Conclusion

AdResS is a suitable framework for numerically simulating open systems of molecules em-

bedded in a reservoir, similar to the Bergmann-Lebowitz model for open systems, which is a

generalization of Liouville’s equation. The desired domain is coupled to distinct reservoirs

using a linear combination of thermodynamic forces and thermostats, while any nonlineari-

ties are ignored. By exposing a LJ fluid with open boundaries to temperature gradients and

enlarging the temperature gradient to determine the applicability range, the correctness of this

approximation in linking separate reservoirs was confirmed. The results indicate a high level of

agreement with the full resolution molecular simulation, indicating that this simplification is

acceptable. We also discovered that, even if the reservoir conditions aren’t fully set as in the full

resolution case, the framework can still produce the correct result in the open system region.

We can conclude from these studies that the setup can successfully mimic non-equilibrium

situations (at least temperature gradients), that the range of validity is clear, and that the right

protocol for performing these types of simulations is also verified. These findings pave the way

for future applications in which a more realistic system is subjected to temperature gradients.
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5 Mass Flux in AdResS

This chapter includes different attempts to create and maintain a steady mass current in an

AdResS setup, as well as the challenges we have faced. The goal of providing these results is to

give the reader an understanding of some possible approaches, the AdResS’ response, and the

potential reasons behind them. This may help to find a consistent simulation procedure to

generate a steady mass flux in an AdResS setup in future studies.

5.1 Pressure gradient

The most common way of establishing mass flux in a physical system is to create a pressure

gradient and then observe the system’s response to it, which is a flow of particles from regions

of higher pressure to the lower pressure.

This can be challenging in the AdResS, because the system has a strong desire to maintain

a consistent pressure throughout the box and opposes any attempts to create a pressure

difference. We tested this in section 4.2 by exposing the system to two reservoirs at different

pressures and temperatures, but equal densities. The Andersen thermostat was used in the

reservoir regions to control the heat, and thermodynamic forces were used to control the den-

sity. The system does not respond to this isochoric configuration as prescribed (see fig. 4.14)

and adjusts the density in order to obtain equal pressure everywhere in the system. In other

words, the reservoirs have densities that can considerably deviate from what was imposed,

whereas in an isobaric simulation, the densities are exactly as specified. In this section, we try

to keep the pressure difference in the system, first by changing the thermodynamic force and

then by using the grand canonical Monte Carlo approach.
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Figure 5.1: Densities (left) and temperatures (right) for a fluid with an average density of 0.72σ−3

exposed to two reservoirs in Th = 0.95ε/kB and Tc = 0.825ε/kB . The red dots represent the reference
simulation data, the green curve represents the outcome of two thermodynamic forces computed inde-
pendently and added up linearly, and the black curve represents one thermodynamic force calculated
simultaneously using two different reservoir states.

Thermodynamic force

We have considered the linear summation of reservoir actions in non-equilibrium settings

using the BL model [33, 34]. We changed this, and instead of calculating two different ther-

modynamic forces for the two different states separately and adding them afterwards, we

calculated one thermodynamic force with two reservoirs acting on the system simultaneously,

to account for possible nonlinear relations between the two reservoirs’ actions and see if

the resulting density gradient can be avoided this way. We observed that the density in the

T R regions approaches the mean density (prescribed by the thermodynamic force), but the

density gradient in the AT region remains unchanged as shown in figure 5.1. The pressure is

still constant in the box and no mass current is created.

The regions where thermodynamic forces are applied are another factor that could make a

difference. To keep the Hamiltonian dynamics, AdResS sets Fth(x) to zero in the AT region. We

applied thermodynamic force everywhere in the box and found that this helped to decrease

the density gradient in the AT region, but not totally eliminate it, as shown in fig. 5.2. So it is

not possible to keep the pressure gradient.

Monte-Carlo particle movements

We combine the setup with a grand canonical Monte Carlo step to re-balance the reservoirs,

adjust the densities, and keep the pressure difference in the system. The goal is to balance

mass transport across the AT region by moving particles from one T R region to the other in a
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Figure 5.2: The role of applied thermodynamic force in different regions The presence of the ther-
modynamic force is unavoidable as the density shows non-physical deviations without it (red curve)
according to the difference in the number of degrees of freedom. The black curve depicts the case in
which Hamiltonian dynamics are maintained in the AT region and no thermodynamic force is applied
there, but it is applied as usual in the TR and ∆ regions. The thermodynamic force was also applied to
the AT area, resulting in the green curve.
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Figure 5.3: Non-equilibrium density profiles in three different simulations. Reservoirs have different
temperatures, but the same density. The AdResS resists this pressure difference by creating a density
difference. MC moves are used to counteract and prevent the creation of density difference.
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systematic manner. The equations and details of the grand canonical Monte Carlo approach

are explained in section 3.7.

We calculate two Fth(x)s, both in the same density (ϱ = 0.6σ−3), but at different temperatures

(T = 1ε/kB ,T = 1.5ε/kB ) set with Andersen thermostat, and combined them to run the non-

equilibrium, isochoric simulation, which leads to density deviations. In the same setup and

with the same thermodynamic forces, using MC, we check if we can prevent the system from

equalizing the pressure by manipulating the densities.

In the x direction, the T R regions are 15σ wide. Stripes of size 4σ are considered in the

center of the T R regions, and the particles to be swapped are chosen from these stripes. The

prescribed pressure value is used to calculate the expected mean number of particles (reduced

fugacities) in the two TR regions. During the MD integration, after each 10 MD steps, a MC

step is applied, and a random number of particles between 1 and 100 are swapped between

the stripes.

The results of the reference simulation, the isochoric simulation without the MC step, and the

identical simulation with MC swaps are presented in fig. 5.3. In the T R regions, the number of

particles, N , reached the reference result, and the stationary density profile has a peak on one

side and a valley on the other. The application of the MC in the T R regions had no effect on

the density profile in the AT region, and no flux was observed.

5.2 Constant external force

Applying a constant external force such as gravity, all over the simulation box should result in

a stationary mass current across the periodic setup. The role of thermostat type when dealing

with mass currents is important, so we tested external forces in an AdResS configuration with

a number of thermostats, and the results are presented below.

Andersen thermostat

In our first attempt, we used LJ fluid with T = 2ε/kB and ϱ = 0.46σ−3, as well as an Andersen

thermostat acting on the reservoirs (∆ and T R regions). A constant external force was applied

globally in addition to the thermodynamic force. We observed that as the external force is

increased, the AT region is increasingly depleted (fig. 5.4), and only a transient mass flux

occurs.

We also used the Andersen thermostat everywhere throughout the box. The AT region was
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Figure 5.4: Density profile in a (T = 2ε/kB ,ϱ = 0.46σ−3) system with an Andersen thermostat in the ∆
and TR regions (colored regions). Constant external force is applied along the box in x direction.

no longer depleted; instead, a constant density profile along the box was created, and no

stationary current was observed.

The fact that the regions where the thermostat is acting can change the response suggests that

the type of the thermostat can have an impact as well. Replacing the Andersen thermostat

with a momentum conserving thermostat can change the response of the system, and we have

investigated this in the following.

Momentum conserving thermostats

The same configuration as before is employed, but instead of an Andersen thermostat, a

velocity conserving Maxwell-Boltzmann thermostat (section 3.4.3) and a Lowe-Andersen

thermostat (section 3.4.4) were used.

We observed that the system is unstable with these momentum conserving thermostats acting

on∆ and T R regions. Even without applying an external force, a growing current was observed,

and the temperature in the system increased without bounds.

Conclusion

We found that in order to maintain the current in the system, a momentum conserving

thermostat is required. A momentum conserving thermostat, however, might cause instability

in the AdResS transition region. This is due to the possibility that tracers may end up in an

undesired place close to other particles when they enter the ∆ region, resulting in an atypical
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configuration with high energy. The thermostat in the ∆ region is in charge of extracting this

excess energy, but now that we use a momentum conserving thermostat, this excess energy

may remain in the system, causing instability in long runs. In chapter 7, we propose a setup in

which the system is stable and no energy blow-up occurs even in long simulations.

5.3 Custom flow

In this section, we describe another approach that aims to generate a prescribed non-equilibrium

state by applying an appropriate external force. The so-called custom flow method introduced

in ref. [49], can numerically construct the external force field required to get the desired

non-equilibrium state in the system as defined by its mass current and density profiles. This

force is calculated iteratively with the fields ϱ and J being the target density and mass currents,

and J̇ being the partial time derivative of J,

F(k+1)
ext (r, t ) = F(k)

ext (r, t )+α
(
J(r, t )− J(k)(r, t )

)
+β

(
J̇(r, t )− J̇(k)(r, t )

)
+γ∇ ln

ϱ(r, t )

ϱ(k)(r, t )
. (5.1)

Here, k denotes the iteration index, and α, β, and γ are free non-negative prefactors that

can depend on time and position. The third term in eq. (5.1) is similar to what we used in

the calculation of the ϕth(x) eq. (2.12) in the AdResS scheme. The mass current and its time

derivative will be set by the other two terms. ϱ, J and J̇ are corrected as the iterations progress,

reducing their difference from the respective target values, and this procedure is repeated

until a convergence within the specified tolerance is obtained.

The strength of corrections are determined with the prefactors. A possible choice for these

prefactors are

α(r, t ) =
m

ϱ(r, t )∆t
, β(r, t ) =

m

ϱ(r, t )
, γ = kB T. (5.2)

To check the approach, we test it for a LJ fluid in a closed system with ϱ = 0.46σ−3 and

T = 2ε/kB and without AdResS to impose the same density 0.46 and the same mass current

J = 0.2 throughout the box. In some areas of the box, a Maxwell-Boltzmann velocity conserving

thermostat (section 3.4.3) is used to fix the temperature. The outcomes are very good, the L2

error in density is 0.3%, while the L2 error of the current J (x) is 0.8%.

To apply the custom flow method in AdResS, we try to calculate the proper external force

for getting J = 0.2 in the same system as before. We applied Maxwell-Boltzmann velocity

conserving thermostat in the reservoirs and observed that the velocity conserving thermostat
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cannot be used in AdResS easily as the energy increases without bounds and the simulation

becomes unstable.

5.4 Conclusion and suggestions

During various trials in creating a steady mass flux across the open system and observing the

response, we discovered that a momentum conserving thermostat is required to maintain

such a flux in the system. AdResS is very sensitive to this choice as it may lead to simulation

instability and an energy blow up. The reason is that the excess heat in the transition region

caused by the change of resolution cannot be removed efficiently using this type of thermostat.

Coupling the AdResS to a momentum conserving thermostat has been done before, but with

the original version of AdResS (without tracers and the abrupt change of particle type) [110–

113].

Using a pump described in section 3.4.3, we could create a steady mass flux and saw no

instabilities and will show the setup and results in chapter 7.
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6 Blocking of liquid flow through

nanoporous bead packings

The material in this chapter is the basis of a manuscript draft to be submitted for publication

in a peer-reviewed journal: R. Ebrahimi Viand and F. Höfling: "Blocking of liquid flow through

nanoporous bead packings".

We employ non-equilibrium molecular dynamics simulations to study the stationary flow of

dense liquids through a model nanoporous medium, which is composed of obstacles arranged

on an fcc lattice. The typical way to produce particle flow is to create a pressure gradient in the

system and the particle flow appears as a response. We employ a different approach and use a

"pump" to create a stationary flow of particles through the box, passing through the porous

medium and observe the pressure drop as the response. The aim is to check to what extent

the linear response regime (Darcy’s law) is valid and when it breaks down. The dependence of

the medium’s permeability on its porosity is also of interest.

6.1 Model and simulation method

6.1.1 Model

The MD simulations and the data analysis were performed with the massively parallel software

HAL’s MD package [20, 114]. The setup consists of a slab of porous medium of width L, which is

placed in the centre of the cuboid simulation domain, and the remaining space is filled initially

with a dense Lennard-Jones (LJ) fluid (see fig. 7.1). We refer to the regions to the left and to the

right of the medium as the inlet and the outlet, respectively. The porous medium is modelled

as an array of obstacles located on a face-centered cubic lattice with lattice constant alat; the

obstacles are soft, repulsive spheres of radius σo (see section 6.4 for details). For the fluid

particles, we employ a smoothly truncated LJ pair potential; the corresponding LJ parameters
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Figure 6.1: Snapshot of the simulation of liquid flow (from left to right) through a nanoporous medium.
The medium is realised as a bead packing of obstacles (grey spheres) placed on an fcc lattice; here, it
has a width of nx = 2 unit cells. The temperature of the fluid particles increases from left to right (color
code from blue to red). For clarity of the representation, the particles in the upper parts of the outlet
region are not shown and the far ends of the simulation box have been omitted.

ε and σ serve as units of energy and length, respectively, and τ := (mσ2/ε)1/2 defines the unit

of time; m is the particle mass (section 6.4). Periodic boundary conditions are applied at

all faces of the simulation domain, which has a length of Lx = 100σ in the direction of flow

and a quadratic cross section of area A = (30σ)2. At the left boundary of the inlet, a region of

width Lth = 10σ is coupled to a stochastic thermostat which, in addition to the temperature

control, acts as a “pump” by imposing a mean velocity on the particles and thereby creates and

maintains a steady mass flux. Outside of this region, particle positions and momenta follow

the unperturbed Hamiltonian dynamics. In response to the driving, a pressure difference ∆P

develops between the inlet and outlet regions, which is a central observable of our study. The

values for the temperature and number density of the fluid at the far end of the inlet were

fixed at T ∗ := kBT /ε = 1 and ϱeq = 0.805σ−3 in the absence of driving, placing the LJ fluid in the

liquid state.

The porous medium is composed of No = 4nx ny nz obstacles arranged on an fcc lattice with

nα unit cells along each Cartesian axis such that ny = Ly /alat = nz are integer. The porosity of

the medium is the fraction of free and total volumes, and here we use the nominal porosity

ϕ = (AL − No vo)/AL, where vo = (4π/3)σ3
o is the excluded volume due to a single obstacle

I and L = (nx −1/2)alat +2σo is the width of the medium. The porosity decreases by either

decreasing the lattice constant alat or increasing the size σo of the obstacles; below we will

choose alat = 3σ and 5σ.

IWith this definition, the values quoted for the porosity refer to the pore volume that is accessible to an ideal
gas of point particles.
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Figure 6.2: Simulation results (symbols) for the flow–pressure relations of regular bead packings.
For each prescribed mass flux J , the pressure drop ∆P between inlet and outlet was observed and
normalized by the width L of the porous medium. The medium was made of obstacles arranged on fcc
lattices with either nx = 2 and alat = 5σ (discs) or nx = 6 and alat = 3σ (triangles); colors refer to different
obstacle sizes σo as given in the legend of panel (b). For clarity, the data for some values of σo have
been omitted in panel (a). Panel (a): solid lines test Darcy’s law, J = (k/ν)∆P/L, using the values of k/ν
obtained from panel (b). Panel (b): the non-linear response is highlighted by showing J/(∆P/L) vs.
∆P/L on double-logarithmic scales. Solid lines are fits to the asymptotic behaviour as ∆P/L → 0 using
eq. (6.2), which includes the leading correction to Darcy’s law; the intercepts at the left border yield
k/ν, where k is the linear permeability. In both panels, dashed lines merely connect data points and
serve as guide to the eye.

6.2 Results

6.2.1 Flow–pressure relation beyond Darcy’s law

Fluid transport through a porous medium is characterized by the relationship between a

steady mass flux J and the corresponding pressure drop ∆P applied across the medium. For

small ∆P , the relation becomes linear and is known as Darcy’s law [115]:

J =
k∆P

νL
, (6.1)

where L is the width of the porous medium and k its permeability. The law is often stated

for the volumetric flux in the case of incompressible liquids; the above form is obtained by

multiplying with the mass density ϱ and then the kinematic viscosity ν = η/ϱ appears instead

of the shear viscosity η. We use the mass flux J here as it is constant across the whole setup by

mass conservation.

For a range of porous media, realized as bead packings, we have monitored the pressure drop

∆P that builds up when a certain mass flux J is imposed on the LJ liquid, using values for

Jσ2τ/m between 0.002 and 0.2 (fig. 6.2a). With this choice, the Reynolds number Re = alat J/η

does not exceed values of O(1).
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Considering two different lattice constants and varying the obstacle size σo , we observe

an approximately linear dependence, eq. (6.1), and thus Darcy flow in case of the larger

lattice constant (alat = 5σ) for all obstacle sizes studied (σo ⩽ 1.6σ). For the denser lattice

(alat = 3σ), however, we find a pronounced non-linear behavior for σo ⩾ 1.05σ, corresponding

to porosities of ϕ ⩽ 40%: the J–∆P relation displays an affine increase, giving rise to an

apparent permeability. However, this behavior sets in only after some threshold value of

∆P/L has been exceeded (the corresponding straight lines do not intersect the axis origin);

for pressure gradients below this threshold, the flux increases only marginally as ∆P/L is

increased.

In a less heuristic approach, we follow linear response theory, which suggests to amend Darcy’s

law by non-linear corrections. Including the leading term, II

J (F → 0) ≃ k

ν
F (1+ cF ), F =∆P/L, (6.2)

allowed us to fit the asymptotic behavior to the data as ∆P/L → 0 and to extract the actual

linear permeability k := ν limF→0 d J/dF (fig. 6.2b). For each obstacle size, only the two or

three data points for the smallest ∆P/L were used for fitting. For σo = 1.1σ, the two points

with ∆P/L between 0.7εσ−4 and 3εσ−4 were considered instead, and it is seen that the data

for the smallest ∆P/L fall on the same curve. In the representation of fig. 6.2b, the apparent

permeability is visible as a plateau at large pressure gradients, whereas the mentioned thresh-

old behavior leads to a decrease of the effective or local permeability, JL/∆P . These trends

combine into a non-monotonic behavior of JL/∆P for the two lowest porosities studied,

and the data suggest that the position of the minimum effective permeability shifts to larger

pressure gradients as the obstacle size is increased. The further discussion of the rich J–∆P

relationship as it emerges for very strong driving and low porosities would exceed the present

scope.

6.2.2 Linear permeability and critical porosity

For the range of bead packings studied, we observe a variation of the linear permeability

k over two orders of magnitude (fig. 6.2b) and a monotonic decrease as a function of the

porosity (fig. 6.3). The dependence of the permeability has some analogies with the diffusion

problem in the Lorentz gas, i.e., the equilibrium motion of tracer particles in an obstacle array

[117–121], which motivates the following arguments. At high porosity, one expects that the

resistance of the medium to the flow is proportional to the obstacle density [117, 120, 122],

IINote that such analytic behaviour in the driving force, here ∆P , may break down at a critical point [116].

86



0.0 0.2 0.4 0.6 0.8 1.0
1 − ϕ

0.0

0.5

1.0

1.5

k
/(
ντ

)

0.5 1.0

1 − ϕ
0.00

0.25

0.50

0.75

(k
/(
ντ

))
1/
µ

Figure 6.3: Dependence of the linear permeability on the porosity of the bead packings. Triangle and
disc symbols refer to different lattice constants of the obstacle array: alat = 3σ and 5σ, respectively (see
fig. 6.2). The high-porosity behavior, k ∼ 1/(1−ϕ), is indicated by the solid line, which was fitted to only
those two data points where ϕ> 0.85. The dashed line shows Archie’s law, i.e., the critical scaling at low
porosity, k ∼ |ϕ−ϕc |µ, anticipatingµ = 2 for the exponent. The latter dependence is rectified in the inset,
and the linear extrapolation of the data points (solid line) yields the critical porosity ϕc = (2.3±0.7)%.

equivalently, to the excluded volume fraction 1−ϕ, and taking the reciprocal, one has

k ∼ (1−ϕ)−1 , ϕ ↑ 1, (6.3)

as for the diffusion constant, D ∼ (1−ϕ)−1. This relation describes the permeability data

in fig. 6.3 very well for ϕ⩾ 50%, whereas at lower porosities, a stronger suppression of the

permeability is observed, in line with the behavior of the diffusivity [119].

By geometrical considerations for the fcc lattice, the investigated porous medium can be

decomposed into tetrahedral and octahedral pores with the corners given by the obstacle

positions. The pores are connected by equilateral triangular ports of edge length alat/
p

2,

which suggests that the flow is blocked when the obstacle size exceeds a critical value where

the ports close, e.g., σo,c = alat/
p

6 in the case of hard-core exclusions. Indeed, our simula-

tion results suggest that the linear permeability vanishes rapidly as a certain porosity ϕc is

approached. Due to the soft repulsion between fluid particles and obstacles, fluid flow is still

possible at lower porosities for sufficiently large pressure gradients, however, such a flow is

beyond the linear response regime. Phenomenologically, the suppression of fluid flow near

the percolation transition of a random medium is known as Archie’s law [123, 124]:

k ∼ |ϕ−ϕc |µ , ϕ ↓ϕc , (6.4)

introducing some exponent µ. Such a power-law suppression is well established for the
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diffusivity, D ∼ |ϕ−ϕc |µ′
, and [125] proposed the general proportionality k ∝ D, arguing

that fluid flow and diffusion cease concomitantly near the percolation threshold. Although

it is not clear a priori that different transport mechanisms share the same exponent [121],

we anticipate that µ′ = µ for regular bead packings. Concerning the value of the diffusivity

exponent, insight is gained from the mapping to random resistor networks, which yields

µ′ = (d − 2)ν̄+ ζ, [126, 127] where d is the dimension of space and the exponents ν̄ and ζ

govern the critical divergence of the correlation length and the chain resistance, respectively.

For periodic porous media, as investigated here, the correlation length does not diverge,

and we put ν̄ = 0. As a peculiarity of continuum percolation, the transition rate W between

adjacent pores has a singular distribution due to narrow gaps, p(W → 0) ∼W −α with exponent

α = (d −2)/(d −1) [128]. In d ⩾ 3 dimensions, this singularity determines the exponent of the

chain resistance, ζ = (1−α)−1 [129, 130]. In conclusion, we find µ = d −1 and thus µ = 2 for

d = 3. Indeed, rectification of the permeability data using this value of µ yields a straight line

(see inset of fig. 6.3). The axis intercept renders the critical porosity as ϕc = (2.3±0.7)%, and

such a small value was expected [131, 132].

6.2.3 Non-isothermal flow

Aiming at insight into the non-equilibrium aspects of the permeability problem, we have

computed the spatially resolved profiles of central thermodynamic observables, namely

pressure P (x), temperature T (x), and mass density ϱ(x), where the x-axis points along the

direction of the flow (fig. 6.4). The resistance of the porous medium to the imposed fluid

flow leads to a pronounced increase of the pressure in front of the medium. In agreement

with mechanical equilibrium, the pressure is constant in both the inlet and outlet regions, so

that the pressure drop across the medium is unambiguously defined, ∆P = Pin −Pout. In a

more refined argument, ∂x P = 0, follows from local momentum conservation for small Mach

number [eq. (6.6)] (section 6.4); the thermostatted region and the porous medium act as

sources and sinks for the momentum density, respectively, which explains the linear variation

of P (x) in these regions. The outlet pressure equals to the equilibrium baseline pressure Peq

that is attained by the resting fluid (J = 0) at the same temperature and (mean) density. The

slight difference observed in the data (fig. 6.4a) can be diminished by increasing the width of

the thermostatted region; it does not affect the value of ∆P .

For the temperature, the situation is markedly different: as we will justify below, T (x) increases

exponentially fast in the inlet as the porous medium is approached and it increases further

linearly inside of the medium. The maximum temperature is reached at the interface of the

medium and the outlet; its value is the larger the larger the pressure drop ∆P . Due to the
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Figure 6.4: Simulation results for the spatially resolved thermodynamic observables pressure P (x),
temperature T (x), and mass density ϱ(x) obtained along the flow of a LJ liquid through a porous
medium (grey region). The parameters of the obstacle lattice are nx = 2 and alat = 5σ and the line
colors refer to different obstacle sizes. A mass flux of J = 0.2mσ−2τ−1 was imposed on the far end of
the inlet using a pump-like thermostat (yellow region). The value of the equilibrium pressure (for
J = 0) is marked in the outlet region by the black dashed line in the upper left panel. Solid horizontal
lines indicate the plateaus of T (x) and ϱ(x) in the outlet that emerge for macorscopically large outlet
regions. In the lower panel, symbols show the density that is predicted by the thermal equation of state,
anticipating local equilibrium. In the calculation of the density profile ϱ(x) within the porous medium,
the excluded volume of the obstacles was partially accounted for (see main text).
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Figure 6.5: Temperature profiles for increasing sizes of the inlet and outlet regions (from left to right);
line colors refer to different mass fluxes J . The total length of the simulation box Lx along the direction
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kept fixed.
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periodic boundary conditions of the simulation box, T (x) decreases again in the outlet region

to match the thermostat temperature at the right boundary, T (Lx /2) = Tin. For macroscopically

large inlet and outlet regions, T (x) converges to a plateau Tout in the outlet (fig. 6.5); these

outlet temperatures can reach high values, even several multiples of the inlet temperature (see

also fig. 6.6).

Due to thermal expansion along the direction of the flow at constant pressure, the fluid density

decreases in the inlet and also inside of the porous medium, reaching a low plateau value

ϱout < ϱeq in the outlet. The density variation along the flow is non-trivial; generally, it is

larger for larger mass fluxes due to a higher inlet pressure and a larger temperature increase.

When calculating ϱ(x) inside of the porous medium, we have corrected for the excluded

volume of the obstacle lattice, based on the density profile in equilibrium (see section 6.4).

However, it appears that, for the strongly driven liquid, more fluid particles can be squeezed

between the obstacles, leading to the spurious, residual oscillations of the density seen in

fig. 6.4c. a complete correction would be flux-dependent. The density profile in the inlet and

outlet regions neatly follows the predictions from the thermal equation of state, P = P (ϱ,T )

[133], using the simulation data for P (x) and T (x) as input and numerically inverting P (x) =

P (ϱ(x),T (x)). We conclude that the flowing liquid is locally in thermal equilibrium, also for

the largest mass flux considered here.

6.2.4 Non-equilibrium thermodynamics

The last observation allows us to rationalize the observed temperature profile in terms of

conservation laws combined with thermodynamic properties of the liquid. In particular, we

will focus on the exponential increase of T (x) in the inlet region. Such an behavior of the

temperature is known, e.g., for the compressible gas flow of a premixed laminar flame [134],

which we extend here to the case of liquids.

By symmetry, vectorial quantities such as the flow velocity u⃗ = uêx point along the direction

of the flow (which is chosen as the x-axis) and the problem reduces to an effectively one-

dimensional one. Conservation of mass implies the continuity equation

∂tϱ+∂x (ϱu) = 0, (6.5)

and thus a constant mass flux, J(x) = ϱu = const, in a stationary situation. It yields a simple

relation between the derivatives of density and velocity, u∂xϱ = −ϱ∂x u.

The product ϱu is also interpreted as momentum density, and momentum conservation yields
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the balance equation [135, 136]

∂t (ϱu)+∂x (ϱu2 +P +τ) = 0, (6.6)

where τ is the only non-zero component of the deviatoric stress tensor for parallel flow; for

a Newtonian fluid, it holds τ = −η∂x u. We note that on the right hand side, appropriate sink

or source terms have to be included in the thermostatted region and inside of the porous

medium.

For an asymptotic dimensional analysis of the problem, we estimate the magnitudes of

pressure and density by their equilibrium values, ϱ0 = ϱeq and pressure P0 = Pout. We use alat

as a typical length, which defines the Reynolds number Re = alat J/η, and introduce the Mach

number Ma = u0/cs , using u0 := J/ϱ0 and cs ≈ (P0/ϱ0)1/2 as an approximation to the speed

of sound. With this, eq. (6.6) can be written for stationary flow in terms of dimensionless

fractions as

∂x

(
ϱu2

ϱ0u2
0

+ 1

Ma2

P

P0
− 1

Re

∂x u

u0/alat

)
= 0. (6.7)

For the present simulations of a LJ liquid, one estimates that Ma ≲ 0.2 and Re ≲ 2 (see ta-

ble 6.1), so that the second term is the dominant one. One concludes in agreement with our

observations that ∂x P = 0, the fluid is in mechanical equilibrium in the inlet and outlet regions.

The isobaric conditions along the flow suggest to use the specific enthalpy, h(x) = e(x)+
P (x)/ϱ(x), for the discussion of the balance of energy fluxes; here, e(x) is the internal energy

per unit mass of the quiescent fluid, which needs to be amended by the kinetic energy u(x)2/2

of the flowing liquid. Local conservation of energy implies a continuity equation for e(x),

which in the stationary case reads [136]

∂x
[
ϱu

(
h + 1

2 u2)+ JT +τu
]

= 0. (6.8)

For the heat flux JT (x), we assume that Fourier’s law holds,

JT = −κ∂x T, (6.9)

with the heat conductivityκ. We have verified eq. (6.8) numerically, showing thatϱu
(
h + 1

2 u2
)+

JT ≈ const along the flow, also across the porous medium (fig. 6.9); in particular, the viscous

contribution τu is either constant or negligible. For the calculation of JT (x), see section 6.4.

In the next step, local thermal equilibrium allows us to express the enthalpy through the
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variables P and T by means of the caloric equation of state, h = h(P,T ). For isobaric flow, the

enthalpy gradient obeys

∂x h = cP ∂x T (∂x P = 0), (6.10)

where cP = (∂h/∂T )P is the isobaric specific heat.

The kinetic term Ju2/2 favourably combines with the flux of viscous stresses as follows. From

eq. (6.6), it follows that J∂x u = −∂x (P +τ) and thus with ∂x P = 0,

∂x
(1

2 Ju2 +τu
)

= τ∂x u . (6.11)

Collecting terms, we obtain

JcP∂x T = ∂x (κ∂x T )−τ∂x u , (6.12)

which, for a Newtonian fluid, reduces to

JcP∂x T = κ∂2
x T +η(∂x u)2. (6.13)

Here, we have also assumed that ∂xκ = 0, which we have verified numerically by plotting

−JT (x)/∂x T (x) using eq. (6.9). Considering the thermal equation of state P = P (ϱ,T ), and

the mechanical equilibrium, gradients of temperature and density are related as (1/ϱ)∂xϱ =

−α∂x T , where α is the thermal expansion coefficient and is verified to be constant in inlet

and outlet regions. This relation and the mass conservation eq. (6.5) in a constant J help to

express the velocity gradient as a temperature gradient,

∂x u = −(u/ϱ)∂xϱ = (αJ/ϱ)∂x T , (6.14)

which leads to

cP ∂x T =
κ

J
∂2

x T + ηα2 J

ϱ2 (∂x T )2. (6.15)

The second term in r.h.s is negligible according to table 6.1 and the solution to remaining

differential equation, under the boundary conditions T (x →−∞) = Tin and T (x0) = Tin +∆T

is

T (x) = Tin +∆T e(x−x0)/ℓ , ℓ =
κ

cP J
, (6.16)
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Figure 6.6: Temperature profiles, exponential (dashed) and linear (dotted) fitted curves for simulations
with different width of the porous medium. Lattice parameters are (a) nx = 2 (red), nx = 4 (orange) and
(b) nx = 10. The box length in x direction in simulations of panel (a) is 100σ, which is extended to 200σ
in simulation of panel (b) to provide required inlet and outlet lengths.

which introduces the length scale ℓ. The behaviour is shown in fig. 6.6. It rises exponentially

before the medium, following a linear increase inside the medium, creates a plateau as far as

the outlet size permits and then falls again as it approaches the thermostat. The linear growth

of temperature is better seen in wider media.

6.3 Conclusions

We have investigated the response of a boundary-driven LJ fluid flow through a model porous

medium composed of bead packings located on an fcc lattice. The porosity of the medium

affects the behavior of the passing fluid. The flow-pressure relation is examined and found

to be linear for small pressure gradients, only in high porosities and the dependence of the

linear permeability on the porosity of the medium is presented. It is observed that the linear

response regime breaks down significantly for low porosities. The simulations further exhibit

an exponential temperature rise in the inlet and a constant temperature profile in the outlet

region. This behavior has been rationalized using thermal and caloric equations of state and

conservation laws.

6.4 Supplemental information

6.4.1 Simulation parameters

The simulated fluid consists of particles of mass m interacting with Lennard-Jones potential

ULJ(r ) = 4ε((σ/r )12 − (σ/r )6). The potential is shifted and smoothly truncated for r < rc as

U (r ) = [ULJ(r )−ULJ(rc )]g ((r − rc )/h), where rc is the cutoff radius, the trucation funcation

93



0.0 0.5 1.0 1.5
∆PL−1/(ε−1σ4)

0.0

0.1

0.2

0.3

0.4

0.5

J/
(ε
−2
τ−

1 m
)

nx =
1
2
4

3
6
8

Figure 6.7: Dependence of mass current J on the length of the porous medium L. Simulations are done
in the same state (Tbase = 1ε/kB ,ϱ = 0.8σ−3). Different mass currents J are generated to pass through
the porous medium with obstacle size σobst = 1σ and alat = 5σ represented by discs and with obstacle
size σobst = 1.05σ and alat = 3σ represented by diamonds. Different colors indicate nx , changing the
length of the medium. The slopes of the lines indicate k/ν.

g (x) = x4/(1+x4) and h = 0.005. The cutoff radius in the interaction of particles with particles

is rc = 2.5σ and in the interaction with obstacles is rc = 21/6σ to avoid the possibility of

sticking particles to obstacles. The obstacles are not interacting with each other εo−o = 0. The

simulations are done in a cubic box of size 100σ×30σ×30σwith periodic boundary conditions

being applied in all directions. The box is symmetrical in the y and z directions and different

regions are divided by planar interfaces with a normal vector in x direction.

The density of the fluid is 0.805σ−3 and the temperature is set to be 1ε/kB with a thermostat

and a pump located on the border of the box covering a region of size 10σ×30σ×30σ. The

stochastic thermostat resamples velocities with an update rate Γ = 8τ−1. The timestep is

0.002τ and this means the velocites are resampled approximately every 62 steps by generating

random velocities with the target mean velocity v⃗i ∼N (v⃗t ,kB T /m). We covered velocities in

the range of 2.5% to 62.5% of the thermal velocity.

The accessible volume to the particles changes with the number and size of the obstacles. The

number of particles is set accordingly to keep the same density in all simulations. In absence

of obstacles, the number of particles is 72000. The porous medium is created by placing a

number of obstacles on a fcc lattice in the middle of the box, far enough from the pump. The

length of the medium is L = (nx −1/2)alat +2σo .

According to Darcy’s law eq. (6.1), the length of the medium L should scale out when calculating

the permeability in the limit of large L. Using different sizes, fig. 6.7 shows the effect of L

is as expected by the equation. For the medium with low density, the simulations are done
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Figure 6.8: Density and the correction function. The density profile is multiplied by a correction
function f (x) shown with the black line which is determined due to the accessible space in the medium.
The gray curve represents the equilibrium density profile before correction and is shifted (ϱ(x)+0.2)
for clarity. The two remaining profiles are the results after the correction for equilibrium (green) and
non-equilibrium (red).

with lattice parameters (nx = 2, alat = 5σ) and we expect to get the same permeability for any

medium size. For the medium with higher density, however, the behavior is a little different

for the smaller medium size but not very noticiable in this plot. For the denser medium, our

choice is (nx = 6, alat = 3σ).

6.4.2 Correcting the density for the excluded volume

The density in the medium is corrected for the excluded volume by the obstacles. At each

point in x direction, the modifier function f is determined by calculating the occupied area

of the corresponding y x plane by obstacles. In this calculation, the effective radius of the

obstacles are determined by comparing the density profile inside and outside the medium in

equilibrium (more details in appendix B). In fig. 6.8, the effective radius of obstacles whose

interaction with fluid particles has been considered σo = 1σ is found to be r = 0.79σ to get

the best possible result. This difference is because particles are not hard spheres and they

penetrate. Each obstacle makes a sphere of this determined radius inaccessible to the center

of fluid particles.

6.4.3 Thermodynamic observables

For the calculation of thermodynamic observables, the simulation box is partitioned into a

number of slabs of width δL = 2.5σ, and area Ly Lz = (15σ)2 along the x-axis. In intervals of 300

steps (∆t = 0.002∗300 = 0.6τ), the thermodynamic properties are calculated in these slabs,

95



−40 −20 0 20 40
x/σ

−0.2

0.0

0.2

0.4

σ
2 τ
ε−

1

J(h + u2/2)
JT
sum

Figure 6.9: Enthalpy flux, heat flux and the summations as shown in the legend for a simulation with
lattice constants (alat = 5σ,nx = 2) and with J = 0.2mσ−2τ−1 and σo/σ = 1.

but density is calculated in a fine grid (and not in slabs). Temperature is calculated from the

kinetic energy of the particles. Pressure is calculated from the virial and we have validated

it with the method of planes [137–139]. The mass flux was obtained as J = (1/V )
∑N

i =0 p⃗i ,

where V is the volume of the slab. The heat flux JT is calculated using the stress tensor,

JT = (1/V ) <∑N
i =1 v⃗i ei +Q >, where Q = (1/2)

∑N
i =1

∑
i ̸= j (r⃗i j ⊗ F⃗i j ) · v⃗i , and ei is the total energy

of particle i . As there is a net flux in one direction and this changes the calculated heat flux,

JT is corrected to eliminate the effect of center of mass velocity of the particles in each slab,

J∗T = 1
V

〈∑N
i =1(v⃗i − v⃗cm)(ui + m

2 (v⃗i − v⃗cm)2)+ (1/2)
∑N

i =1

∑
i ̸= j (r⃗i j ⊗ F⃗i j ) · (v⃗i − v⃗cm)

〉
. And finally,

the enthalpy is calculated as h = e +P/ϱ.

6.4.4 Local conservation of energy

The sum of the enthalpy flux and the heat flux results in a constant value. This behavior could

be expected from conservation of energy as in eq. (6.8). We have considered the last term τu

negligible.

6.4.5 Material parameters

In table 6.1, the isochoric specific heat per particle cV , the isothermal compressibility χT , and

the shear viscosity η were calculated at the specified temperature and density using standard

simulations for a homogeneous sample of bulk liquid [39, 90]. The heat conductivity κ and

the thermal expansion coefficient α were obtained via eqs. (6.9) and (6.14) from the non-

equilibrium simulations in presence of the porous medium, i.e., the x-dependence of α and κ
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temperature T = 1.0 1.51 2.12 ε/kB
mass density ϱ= 0.98 0.91 0.60 mσ−3

pressure P = *7.79 7.710 2.371 εσ−3

internal energy e = *−4.81 −2.303 0.116 ε/m
enthalpy h = *3.56(± 0.4) 6.170 4.068 ε/m

isochoric specific heat cV = *3.217 2.55 1.849 kB/m
= 2.568 1.895 kB/m

isobaric specific heat cP = *4.78 **3.96 **3.73 kB/m
= 3.90 3.76 kB/m

compressibility χT = *0.0194 *0.0235 *0.1431 σ3/ε
= 0.0247 0.145 σ3/ε

thermal expansion coefficient α= *0.173 *0.141 *0.277 kB/ε

shear viscosity η= 3.52(6) 0.89(2) σ3τ/ε
heat conduction κ= 9.86

speed of sound cs = *7.252 6.670 3.390 σ/τ
Mach number Ma = *0.028 0.033 0.064

Table 6.1: Thermodynamic properties, material constants, and transport coefficients of the LJ liquid
at the state point (ϱ,T ). The first set of parameters are for the inlet far from the porous medium. The
middle set is for the inlet and next to the medium and the last set is for the point, right after the medium
in the outlet region. Numbers in parentheses give the uncertainty in the last digit. The numbers shown
with ∗ are calculated from the thermal or caloric equations of state and in calculation of parameters
with ∗∗, both the equation of state and the bulk results are used. For the state point in the inlet and
far from the media, the parameters cannot be calculated from the bulk in equilibrium because of
crystallization.

in the inlet region yields their values along an isobar of the fluid, within the approximation of

local equilibrium.
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7 Fluid Flow Through Porous Media in

an Open System

We discussed the fluid flow through a model porous medium in chapter 6, and in this chapter,

a similar setup will be simulated in AdResS to reproduce those results for an open system

in contact with reservoirs of particles and energy. Additionaly, AdResS will be employed to

decrease the outlet size by using open boundaries and coupling the system to appropriate

reservoirs.

7.1 Simulation setup

As in the previous chapter, the fluid is driven at the boundary of the inlet by a thermostat pump

(section 3.4.3). The system is coupled to reservoirs of particles and energy, where momentum-

conserving Maxwell-Boltzmann thermostats are acting (section 3.4.3) to avoid the flux being

suppressed. In other words, the thermostat in the left transition region (∆) sets the prescribed

velocity, whereas the thermostats in the other ∆ region and in both T R regions conserve

center of mass velocity in each thermostat region independently. The high-resolution region

(AT ) that represents the open subsystem has Hamiltonian dynamics and no thermostat is

applied there (fig. 7.1). The reference full-resolution simulations are also performed in the

same setup and with a dense LJ liquid with ϱ = 0.8σ−3 and T = 1ε/kB to test the applicability

of AdResS.

As explained in chapter 2 and applied in chapter 4, an external one-body force must be

calculated prior to the main simulation and applied throughout the box, in order to get the

desired state in the AdResS system. In the absence of particle flow, the macroscopic state of

the system is specified by temperature and density . However, when a particle flow is present,

the macroscopic state (T,ϱ) is extended to (T,ϱ, J ) [49], and it is important to set J in addition
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Figure 7.1: The AdResS simulation setup. The open system (white region) is embedded in the reservoirs
connected to the thermostats (red shaded area). The pump is located in the left ∆ region and the
arrows show the direction of the center of mass velocity given to particles passing through the pump.
The large particles in the middle of the open system represent the obstacles, and the smaller ones are
the LJ particles. The very small particles in the shaded area are non-interacting tracer particles.

to T and ϱ when calculating the thermodynamic force. This changes the thermodynamic

force profile, especially near the pump (fig. 7.2).

There are no obstacles in the box during the iterative computation of the thermodynamic

force, and the obstacle will be located in the middle of the box in the main simulation. The

medium length is 1.5alat+2σo , consisting of 288 obstacles, placed on a fcc lattice with a lattice

constant of alat = 5σ and different obstacle sizes σo (fig. 7.1).

7.2 Results

7.2.1 Periodic boundaries

In chapter 6, the Darcy’s law, J = (k/νL)∆P , was examined for regular bead packings and

found to be linear in low porosities and small pressure gradients.

To check the applicability of the AdResS approach, we reproduce those results with the same

periodic boundaries by connecting the open system to the reservoirs at the same state. To that

end, one thermodynamic force at T = 1ε/kB , ϱ = 0.8σ−3, and a J is calculated for each state. We

tested four different mass currents (J = 0.05,0.1,0.2 and 0.5mσ−2τ−1) passing through three

different mediums made up of the same number of obstacles but varying in size (σo).

The permeability calculated from the AdResS approach matches that calculated from the full

resolution method. In particular, for smaller mass currents, the results are remarkably similar.

There is a slight difference in large driving forces, and the produced current and pressure
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Figure 7.2: Thermodynamic forces and potentials in the same system with J = 0 and J = 0.1σ−2τ−1m in
x direction. This one-body force is calculated once before the main simulation to guarantee that the
proper temperature, density, and mass current are maintained throughout the box. The presence of J
in the simulation alters this force and its associated potential.

gradient show a small difference, but the proportion remains close to the fitted line, and the

permeability remains unchanged (fig. 7.3). The permeability k depends on the porosity ϕ as

k ∼ (1−ϕ)−1 (chapter 6) and is well reproduced by AdResS.

The thermodynamic properties of the AdResS and full-resolution results are compared in

fig. 7.4. As in the ∆ region of the inlet, a steady mass flux is propagated through the box,

leading to a pressure drop . The pressures are calculated with the method of planes [137] in the

AdResS setup. The expected exponential increase in temperature in the inlet region (chapter 6)

is reproduced with the AdResS. AdResS results show peaks in the temperature and near the

boundary between the ∆ and T R regions. This peak is due to the excess energy resulting from

switching on the interactions of previously non-interacting tracers abruptly. The thermostat

limits this excess energy and the temperature relaxes to the thermostat value (T = 1ε/kB )

within both the ∆ and T R regions. The thermodynamic observables are very well reproduced

by AdResS and in the worst case, which is for large obstacle sizes and driving forces, the error

does not exceed 10% for J = 0.5mσ−2τ−1. This reduces to 5% for J = 0.2mσ−2τ−1.

7.2.2 Open boundaries

The pressure profiles in the outlet and inlet regions are constant, and there exists mechanical

equilibrium in these regions. However, the inlet and outlet regions should be wide enough

so that the convergence of the temperature and density profiles to the constant value can

be reached in the outlet and the exponential increase in the temperature can be seen in the
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Figure 7.4: Spatial profiles of thermodynamic properties in AdResS (black) and full-AT (red) simulations.
Panels (a), (b) and (c) are pressure, temperature and density profiles for J = 0.1mσ−2τ−1 and σo = 1σ.
Panels (d), (e) and (f) are for J = 0.2mσ−2τ−1 and σo = 1.6σ. The gray region represents the model
porous medium. The red shaded area around the profiles of temperature and density show 1% error
around the reference simulation results in (b) and (c) and 3.5% in (e) and (f). For pressure profiles
the shaded area shows 2% error in panel (a) and 5% in panel (d) in which the elevation in inlet region
(x <−5σ) is much less than the elevation in outlet region (x > 5σ).
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Figure 7.5: Temperature (left) and density (right) profiles of AdResS simulation of an open system in
contact with two different reservoirs. The outlet region is L = 10.5σ wide and is much smaller than
than the outlet region in full resolution simulations. The T R and ∆ regions are 14σ and 7.5σ in this
simulation setup.

inlet, leading to the correct temperature inside the medium. The temperature drop in the

outlet region is due to the connection of the outlet to the thermostat according to periodic

boundaries, and it can be avoided near the medium by enlarging the outlet region. AdResS

helps in reducing the outlet size by opening the boundaries and connecting the system to

different reservoir states. This needs the tuning of the thermodynamic forces in the inlet and

outlet regions for the state of the system after placing the medium. So new thermodynamic

forces should be calculated for inlet and outlet regions and added linearly [22, 33, 34].

We need to know the reservoir states, so we run a full-resolution simulation in a small box

to estimate the density and temperature values at the inlet, near the thermostat, and at the

outlet, near the medium. Two thermodynamic forces at these temperatures and densities are

calculated. Because the temperature and density values in the outlet and inlet are not accurate

in small system sizes, an iterative change of Fth may be required.

We tested this with J = 0.2mσ−2τ−1 and σo = 1.25σ by running a small full resolution simu-

lation and estimating the plateau values and correcting then iteratively. We found that the

density and temperature plateaus are near (ϱ1 = 0.91σ−3,T1 = 1ε/kB ) and (ϱ2 = 0.67σ−3,T2 =

1.51ε/kB ). Connecting the open system to these reservoirs results in fig. 7.5.

To test the method, a reference simulation with very large oulet and inlet sizes was run, and

the AdResS results were verified as satisfactory. The outlet size in the full resolution simulation

to reach the appropriate temperature and density values is 60σ which is reduced to 10.5σ in

AdResS simulation setup, and the clear temperature and density platesus are reproduced. The

density profile in the T R regions are different from the prescribed value. This is due to the
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periodic boundaries and connection of the thermostats at the border of the box. The inlet size

cannot be changed as it is needed according to the physics of the system.

7.3 Conclusion

We identified a high level of consistency between AdResS simulation results and those of the

reference simulation, showing that AdResS is capable of reproducing the reference results at a

reduced computing cost and with a well-founded implementation of the open boundaries. In

modeling fluid flow through the porous medium, examined in chapter 6, wide enough outlet

and inlet regions are required in order for the proper temperature to emerge. AdResS can

significantly decrease the outlet size while maintaining the right behavior.
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8 Conclusions and Outlook

This thesis focuses on non-equilibrium molecular dynamics simulations of open systems.

To this end, the grand canonical Adaptive Resolution Simulation (GC-AdResS) technique

[17] has been extended to simulate out of equilibrium conditions along with the Bergmann-

Lebowitz stochastic model of open systems [33, 34], which is based on adding the actions

of independent, concurrent reservoirs. This enables the control of the reservoir states by

applying thermodynamic forces prepared for the desired macroscopic states and combining

them to drive the system out of equilibrium. This extension has been tested for open systems

in non-equilibrium in the presence of heat and mass fluxes.

In the first test, the method has been used to simulate a Lennard-Jones fluid with open

boundaries exposed to two different reservoirs along the same isobar, which are at the same

pressure but different densities and temperatures [22]. As a result of applying this temperature

gradient, a heat flux was generated and AdResS could accurately reproduce the full resolution

simulations, where the system is in contact with large reservoirs of particles and energy, and

all the particles of the system are considered in detail.

The approximations in the method and the theoretical model, which ignore the microscopic

origin of the reservoirs and consider the linear combination of the reservoir actions, raise a

question about the validity range of these approximations and the applicability of AdResS. By

increasing the thermal gradient, it has been demonstrated that the method is applicable at least

in the tested range which is temperature difference of 40% relative to the mean temperature,

and that the results closely follow the results of the corresponding, full-resolution reference

simulations. On the other hand, the method has been tested in an isochoric setup, where

the reservoirs are at the same density but different temperatures, putting them at different

pressures. The thermodynamic forces were calculated for these two states and combined. It

has been shown that with the isochoric setup, the resulting densities in the reservoirs are not
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as prescribed, but this does not affect the boundaries of the atomistic open system (AT region)

and the behavior is similar to the isobaric and full resolution setups. These tests confirm the

method, helping to simulate more realistic systems in connection to thermal gradients.

In the next step and before modeling the mass flux in AdResS, a non-equilibrium molecular

dynamics simulation of a boundary driven fluid flow through a model porous medium has

been performed, and the blocking of the flow has been examined in a full-resolution, closed

system with periodic boundary conditions. The flow was generated by a "pump" in the

boundary, giving the particles a velocity in the range of 6 to 60 % of their thermal velocity. The

flow–pressure relation and its dependence on the porosity of the medium were studied and

we have found that the Darcy’s law is followed in low pressure gradients and mass currents

and the linear permeability varies over two orders of magnitude and vanishes below a critical

porosity. For porosities greater than this critical value and for high pressure gradients, there

exist significant deviations from the linear regime. The simulations show an exponential

increase in the temperature in the inlet region followed by a linear increase inside the medium,

which has been rationalized via non-equilibrium thermodynamics, using conservation laws

and the thermal and caloric equations of state.

Following this study, the fluid flow in an open system has been simulated with a similar setup

in AdResS, with the pump being located at one border of the open system and connecting

the open system to two reservoirs. The results of AdResS closely match the full resolution

results, even under strong driving. On the other hand, AdResS has been used to simulate open

boundaries instead of periodic boundaries, which allows one to decrease the size of the outlet

significantly.

In this thesis, simulations were based on truncated, short-range Lennard-Jones interaction

potentials, and one can expect different results with long-range potentials like electrostatic po-

tential. Furthermore, the cuboid geometries of the high resolution open systems (AT regions)

studied here can in principle be changed to spherical geometries to simulate e.g., droplet

evaporation. Further, the simulation of hydrated membranes in thermal gradients is one of

the method’s possible applications. Experiment results show non-uniform temperature fields

around the membranes of living cells [11], and controlling the thermal gradient may help to

control the shape of the membrane. Additionally, the porous media have been simulated in

this work using regular bead packings, which could be replaced with randomly located bead

packings and nanochannels for future research. Some other applications which could be inter-

esting include the investigation of species separations in gases moving through nanoporous

media and osmotic flow across membrane proteins that function as channels.
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A More Details on Lowe Andersen Ther-

mostat

The Lowe-Andersen thermostat is a Galilean invariant version of the Andersen thermostat that

conserves momentum [50]. It has a much smaller impact on the dynamics of the system than

the Andersen thermostat. This method thermalizes the relative velocity of pairs of particles

rather than the velocity of individual particles.

In the original Andersen thermostat, if the collision rate is high enough, the second momentum

update is performed by selecting random numbers from the Maxwell distribution. The new

velocity of i th particle v∗i is

v∗i =

vi (t ), Γ∆t < ζ
λ. Γ∆t ⩾ ζ

(A.1)

In this equation, Γ is the thermostat’s collision rate, ζ is a random number from a uniform

distribution with a range of [0,1), and λ is a random vector with independent elements drawn

from a Gaussian distribution with a mean of zero and a width of
p

KB T /m.

The Lowe-Andersen thermostat is based on Andersen and adjusted step by step to conserve

angular and linear momentum. The coordinates and momenta of a selected pair of particles

in the system are shown with (ri ,pi ) and (r j ,p j ). If the distance between the two particles,

dr = |ri −r j |, is larger than a specified radius, RT , the process is deterministic; otherwise, the

pair is selected and the stochastic update may be applied instead of deterministic update if

the Andersen thermostat condition is met. For now we consider same mass for all particles for

simplicity. For particles with the same mass, the center of mass velocity of the particles vcm
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and their relative velocity vi j is represented by
vcm =

vi +v j

2
,

vi j = vi −v j .
(A.2)

The unit separation vector is σ̂i j = (ri − r j )/|ri − r j |.

In order to conserve linear momentum, a random relative velocity related to the deterministic

relative velocity vi j is chosen. This random relative velocity is also chosen to be parallel to the

separation vector in order to conserve angular momentum, so we consider

v′i j · σ̂i j = 2λ−vi j · σ̂i j . (A.3)

where λ is a Gaussian random number. The new particle velocities are set to be the pair’s

shifted center of mass velocity in opposite directions,
v∗i = vcm + 1

2
v∗i j ,

v∗j = vcm − 1

2
v∗i j .

(A.4)

By inserting (A.3) into (A.4) we get
v∗i =

1

2
(vi +v j )+ 1

2

[
vi j + (2λ−vi j · σ̂i j )σ̂i j

]
= vi + (λ− 1

2
(vi −v j ) · σ̂i j )σ̂i j ,

v∗j =
1

2
(vi +v j )− 1

2

[
vi j + (2λ−vi j · σ̂i j )σ̂i j

]
= v j − (λ− 1

2
(vi −v j ) · σ̂i j )σ̂i j .

(A.5)

This results in the following rules for updating the velocity of a pair of particles with different

masses and reduced mass µ

v∗i =


vi (t ), Γ∆t < ζ

vi + (µi j /mi )(λ− 1

2
(vi −v j ) · σ̂i j )σ̂i j , Γ∆t ⩾ ζ

(A.6)

v∗j =


v j (t ), Γ∆t < ζ

v j − (µi j /m j )(λ− 1

2
(vi −v j ) · σ̂i j )σ̂i j . Γ∆t ⩾ ζ

(A.7)
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Figure A.1: The particles in HALMD are sorted in memory according to the Hilbert space-filling curve.
The successive particles in the memory are most likely spatially close to each other as well. Figure from
[colberg_2011]

We implemented this algorithm in the "finalize" step of the integration scheme by choosing

pairs of successive particles in the memory.

Our algorithm differs from the original algorithm in that there are no collision cells in the

system from which to choose the pairs in the original algorithm, and all possible pairs can be

chosen, though they will be discarded if the distance is greater than RT . Although we lack cells,

particles in HALMD are sorted in memory using the space-filling Hilbert curve and we choose

neighbor pairs in memory. The Hilbert curve provides a mapping between one-dimensional

and high-dimensional spaces that preserves locality reasonably well. This means that two data

points that are close together in one dimension are also close together in high dimensions. So

in our case, the interacting particles, being close in space, are also close in memory for higher

efficiency.

As previously stated, we select pairs of successive particles, and there is a high likelihood

that the selected particles are not far in space, and the condition of having less distance

than a threshold will be met. It should be noted that low collision rates in our algorithm

are equivalent to higher collision rates in the original algorithm because we’ll have more

successful pair choosing.

This algorithm is tested for a liquid with (ϱ = 0.7σ−3) containing 3000 particles to set the target

temperature to be (T = 2kB /ε). The equilibration and production runs were 200 and 400τ

respectively with timestep 0.002 and the sampling was done in intervals of 100 timesteps. We
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chose RT = 5σ and Γ = 10, and the resulted temperatures for the Lennard-Jones and ideal gas

particles for simulations on CPU and GPU are as follows:

– LJ Ideal gas

CPU 1.959±0.002 1.809±0.005

GPU 1.968±0.003 1.891±0.003

There exists about 2% error in the system’s final temperature in LJ and 5%− 10% in ideal

gas, that cannot be eliminated in any way. To identify the problem, we ran simulations

beginning with the Andersen method and gradually adding elements of the Lowe-Andersen

thermostat.We discovered that going backward and adding and removing a random velocity

to the vcm solves the issue. This means that the discrepancy appears when the condition of

angular momentum conservation enters the algorithm by selecting the new velocity to be

along the separation vector. With the following velocities, we get better results for temperature,

as shown in the table below.

v∗i =

vi (t ), Γ∆t < ζ
vi + (µi j /mi )λ Γ∆t ⩾ ζ

(A.8)

v∗j =

v j (t ), Γ∆t < ζ
v j − (µi j /m j )λ Γ∆t ⩾ ζ

(A.9)

– LJ Ideal gas

CPU 1.993±0.001 1.988±0.002

GPU 1.987±0.001 1.945±0.002

The cause of this problem could be a hidden correlation between the separation vectors

and the center of mass velocities. Assume the particle positions are on the XY plane, so the

separation vector is also on the XY plane. If the particle velocities are in the Z direction, vcm

and ri j are perpendicular, resulting in a temperature error. More precise and detailed research

on this topic could be conducted to determine the exact root cause, but it was beyond the

scope of this thesis as well as the time available.
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B Calculation of Excluded Volume in

Porous medium

In a porous medium, the obstacles occupy space and reduce the accessible volume of the fluid

particles. This affects the density, current density, and pressure profiles inside the medium.

To correct for this effect, we must compute the "excluded-volume", which is the volume over

which the center of a fluid particle can move. By assuming the obstacles and particles to

be hard spheres, their centers cannot be less than 1σ apart. This means that each obstacle

prevents the fluid particles from accessing a volume of (4/3)πσ3.

To ensure that our assumption holds true in our case, we run a simulation in which the particles

do not interact with one another and the only interaction in the system is particle-obstacle

interaction.

The fluid contains 72000 particles, and the entire box is thermalized using an Andersen

thermostat set to T = 1kB /ε. Near the center of the box is a model porous medium made of

obstacles on a fcc lattice. The number of particles inside and outside the medium is recorded

after 100τ.

Clearly, the total density in the system can be written as a weighted mean of it in different

regions taking volume into account.

ϱ∗tot =
ϱout Lout +ϱ∗i nLi n

L
, (B.1)

Where parameters with superscript ∗ are corrected parameters concerning the volume. Pa-

rameters inside and outside the medium are shown with subscripts i n and out respectively
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and the parameters related to the whole box are shown with subscript tot . L is the whole

length of the box in x direction.

Equation B.1 can be modified by ϱ∗tot = Ntot /V ∗
tot and ϱ∗i n = Ni n/V ∗

i n . The volume outside the

medium Vout is not changed and is known. On the other hand V ∗
tot = Vout +V ∗

i n . Replacing

these parameters will lead to:

Ntot

Vout +V ∗
i n

=
ϱout Lout + Ni n

V ∗
i n

Li n

L
, (B.2)

and simplified to:

(ϱout Lout )V ∗2

i n + (Nout Lout +Ni nLi n −Ntot L)V ∗
i n +Ni nLi nVout = 0. (B.3)

All of the above parameters are known, and solving this second order equation results in the

accessible volume within the medium. The radius of the sphere is calculated from this, and

in this case, where σ = 1, the radius of the sphere was 0.942σ. The difference between our

options is that particles and obstacles are not truly hard spheres and can penetrate.
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111. Delgado-Buscalioni, R., Sablić, J. & Praprotnik, M. Open boundary molecular dynamics.

Eur. Phys. J. Spec. Top. 224, 2331–2349 (2015).

112. Sablić, J., Praprotnik, M. & Delgado-Buscalioni, R. Open boundary molecular dynamics

of sheared star-polymer melts. Soft Matter 12, 2416–2439 (2016).

113. Delgado-Buscalioni, R., Kremer, K. & Praprotnik, M. Coupling atomistic and continuum

hydrodynamics through a mesoscopic model: Application to liquid water. The Journal

of Chemical Physics 131, 244107 (2009).

114. Colberg, P. H. & Höfling, F. Highly accelerated simulations of glassy dynamics using

GPUs: Caveats on limited floating-point precision. Comput. Phys. Commun. 182, 1120–

1129 (2011).

115. Muskat, M. & Wyckoff, R. D. The flow of homogeneous fluids through porous media

(McGraw-Hill, New York, 1937).

116. Leitmann, S. & Franosch, T. Nonlinear Response in the Driven Lattice Lorentz Gas. Phys.

Rev. Lett. 111, 190603. http://link.aps.org/doi/10.1103/PhysRevLett.111.190603 (2013).

117. Lorentz, H. A. Le mouvement des electrons dans les metaux. Arch. Néerl. Sci. Exactes

Nat. 10. Proc. Amst. Acad. 7, 438 (1905), 336–370 (1905).

118. Van Beijeren, H. Transport properties of stochastic Lorentz models. Rev. Mod. Phys. 54,

195–234 (1982).

119. Höfling, F., Franosch, T. & Frey, E. Localization Transition of the Three-Dimensional

Lorentz Model and Continuum Percolation. Phys. Rev. Lett. 96, 165901 (2006).

120



120. Höfling, F. & Franosch, T. Crossover in the Slow Decay of Dynamic Correlations in the

Lorentz Model. Phys. Rev. Lett. 98, 140601 (2007).

121. Spanner, M. et al. Splitting of the Universality Class of Anomalous Transport in Crowded

Media. Phys. Rev. Lett. 116, 060601 (2016).

122. Van Leeuwen, J. M. J. & Weijland, A. Non-analytic density behaviour of the diffusion

coefficient of a Lorentzgas I. Physica (Amsterdam) 36, 457–490 (1967).

123. Sahimi, M. Flow phenomena in rocks: from continuum models to fractals, percolation,

cellular automata, and simulated annealing. Rev. Mod. Phys. 65, 1393–1534 (1993).

124. Scholz, C. et al. Permeability of Porous Materials Determined from the Euler Character-

istic. Phys. Rev. Lett. 109, 264504 (2012).

125. Katz, A. J. & Thompson, A. H. Quantitative prediction of permeability in porous rock.

Phys. Rev. B 34, 8179–8181 (1986).

126. Stauffer, D. & Aharony, A. Introduction to Percolation Theory 2nd ed. (Taylor & Francis,

London, 1994).

127. Höfling, F., Munk, T., Frey, E. & Franosch, T. Critical dynamics of ballistic and Brownian

particles in a heterogeneous environment. J. Chem. Phys. 128, 164517 (2008).

128. Machta, J. & Moore, S. M. Diffusion and long-time tails in the overlapping Lorentz gas.

Phys. Rev. A 32, 3164 (1985).

129. Machta, J., Guyer, R. A. & Moore, S. M. Conductivity in percolation networks with broad

distributions of resistances. Phys. Rev. B 33, 4818–4825 (1986).

130. Stenull, O. & Janssen, H. Conductivity of continuum percolating systems. Phys. Rev. E

64, 56105 (2001).

131. Balberg, I. Excluded-volume explanation of Archie’s law. Phys. Rev. B 33, 3618–3620

(1986).

132. Balberg, I. Simple holistic solution to Archie’s-law puzzle in porous media. Phys. Rev. E

103, 063005 (2021).

133. Johnson, J. K., Zollweg, J. A. & Gubbins, K. E. The Lennard-Jones equation of state

revisited. Mol. Phys. 78, 591–618 (1993).

134. Klein, R. Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (eds Giga, Y.

& Novotny, A.) 2827–2868 (Springer, 2018).

135. EVANS, D. J. & MORRISS, G. P. Statistical Mechanics of Nonequilibrium Liquids (ANU

Press, 2007).

136. Kundu, P. K., Cohen, I. M. & Dowling, D. R. Fluid Mechanics 6th ed. ISBN: 9780124059351

(Academic Press, Elsevier, San Diego, 2016).

121



137. Heinz, H. Calculation of local and average pressure tensors in molecular simulations.

Mol. Simul. 33, 747–758 (2007).

138. Varnik, F., Baschnagel, J. & Binder, K. Molecular dynamics results on the pressure tensor

of polymer films. J. Chem. Phys. 113, 4444–4453 (2000).

139. Todd, B. D., Evans, D. J. & Daivis, P. J. Pressure tensor for inhomogeneous fluids. Phys.

Rev. E 52, 1627–1638 (1995).

122


