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Abstract
The era of high-throughput data generation enables new access to biomolecular profiles

and exploitation thereof. However, the analysis of such biomolecular data, for example,

transcriptomic data, suffers from the so-called “curse of dimensionality”. This occurs

in the analysis of datasets with a significantly larger number of variables than data

points. As a consequence, overfitting and unintentional learning of process-independent

patterns can appear. This can lead to insignificant results in the application. A common

way of counteracting this problem is the application of dimension reduction methods

and subsequent analysis of the resulting low-dimensional representation that has a

smaller number of variables.

In this thesis, two new methods for the analysis of transcriptomic datasets are intro-

duced and evaluated. Our methods are based on the concepts of Dictionary learning,

which is an unsupervised dimension reduction approach. Unlike many dimension reduc-

tion approaches that are widely applied for transcriptomic data analysis, Dictionary

learning does not impose constraints on the components that are to be derived. This

allows for great flexibility when adjusting the representation to the data. Further, Dic-

tionary learning belongs to the class of sparse methods. The result of sparse methods

is a model with few non-zero coefficients, which is often preferred for its simplicity

and ease of interpretation. Sparse methods exploit the fact that the analysed datasets

are highly structured. Indeed, a characteristic of transcriptomic data is particularly

their structuredness, which appears due to the connection of genes and pathways, for

example. Nonetheless, the application of Dictionary learning in medical data analysis

is mainly restricted to image analysis. Another advantage of Dictionary learning is

that it is an interpretable approach. Interpretability is a necessity in biomolecular data

analysis to gain a holistic understanding of the investigated processes.

Our two new transcriptomic data analysis methods are each designed for one main

task: (1) identification of subgroups for samples from mixed populations, and (2) tem-

poral ordering of samples from dynamic datasets, also referred to as “pseudotime esti-

mation”. Both methods are evaluated on simulated and real-world data and compared

to other methods that are widely applied in transcriptomic data analysis. Our methods

convince through high performance and overall outperform the comparison methods.
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Zusammenfassung
Die Ära der Hochdurchsatzdatenerzeugung ermöglicht einen neuen Zugang zur Be-

stimmung und Erschließung biomolekularer Profile. Die Analyse solcher Daten, wie

z.B. Transkriptomdaten, leidet allerdings unter dem sogenannten
”
Fluch der Dimen-

sionalität“. Dieser betrifft die Analyse von Datensätzen mit einer wesentlich größeren

Anzahl von Variablen gegenüber Proben. In der Konsequenz kann es zu Overfitting

und unbeabsichtigtem Lernen prozessunabhängiger Muster kommen. Dies kann im An-

wendungsfall zu insignifikanten Ergebnissen führen. Eine Möglichkeit, diesem Problem

entgegenzuwirken, ist die Anwendung von Dimensionsreduktionsverfahren und die an-

schließende Analyse der resultierenden niedrigdimensionalen Darstellung, die eine ge-

ringere Anzahl von Variablen aufweist.

In dieser Arbeit werden zwei neue Methoden zur Analyse von Transkriptomdaten

vorgestellt und evaluiert. Unsere Methoden basieren auf den Konzepten des Dictio-

nary Learning, einer unüberwachten Dimensionsreduktionsmethode. Im Gegensatz zu

vielen für die Analyse von Transkriptomdaten weitverbreiteten Dimensionsreduktions-

methoden werden beim Dictionary Learning die herzuleitenden Komponenten nicht

eingeschränkt. Dies ermöglicht eine große Flexibilität für die Anpassung der Darstel-

lung an die Daten. Darüber hinaus gehört das Dictionary Learning zur Klasse der

Sparse-Verfahren. Das Ergebnis solcher Verfahren ist ein Modell mit wenigen von Null

verschiedenen Koeffizienten. Dies wird aufgrund seiner Einfachheit und leichten Inter-

pretierbarkeit häufig bevorzugt. Sparse-Verfahren machen sich zunutze, dass die analy-

sierten Datensätze stark strukturiert sind. In der Tat ist Strukturiertheit ein Merkmal

von Transkriptomdaten, welche z.B. durch eine Verbindung von Genen und Pfaden

entsteht. Dennoch ist die Anwendung von Dictionary Learning in der Analyse medizi-

nischer Daten hauptsächlich auf die Bildanalyse beschränkt. Ein weiterer Vorteil des

Dictionary Learning ist, dass es ein interpretierbarer Ansatz ist. Interpretierbarkeit

stellt eine Notwendigkeit in der biomolekularen Datenanalyse dar, um ein ganzheitli-

ches Verständnis der untersuchten Prozesse zu erlangen.

Unsere beiden neuen Methoden zur Analyse von Transkriptomdaten sind jeweils für

eine Hauptaufgabe konzipiert: (1) die Identifizierung von Untergruppen für Datensätze,

die aus gemischten Populationen bestehen, und (2) die zeitliche Anordnung von Proben,

die sich in dynamischen Prozessen befinden, was auch als
”
Pseudozeitschätzung“ be-

zeichnet wird. Beide Methoden werden jeweils anhand von Simulations- und Realdaten-

studien evaluiert und mit anderen Methoden verglichen, die in der Transkriptomdaten-

Analyse weit verbreitet sind. Unsere Methoden überzeugen durch eine hohe Leistung

und übertreffen insgesamt die Vergleichsmethoden.
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1. Introduction

The primary motivation for studying molecular profiles of biological systems, cells, or

organisms is to derive an understanding of the occurring molecular processes. Nowa-

days, with the advent of biomolecular high-throughput technologies in the 1990s, large-

scale biomolecular datasets are widely available [203,217,271]. Analysing the resulting

omics datasets, such as genomic, transcriptomic, and proteomic data, provides the po-

tential for deriving a broad picture of molecular processes in cells and organisms and

for obtaining a deep understanding thereof. Applied to medical approaches, the new

insights derived from omics studies pave the way for understanding the molecular basis

of human diseases [58, 107, 139]. This knowledge can be exploited in order to improve

diagnosis and treatment strategies, among other things. Diseases and their subtypes

can now be understood in detail, and patients can be classified based on their molecular

profile. This is, for example, an aspiration in precision medicine, which is one of the

key aims of modern medical science [69,76,225].

The type of omics data under study in this thesis is transcriptomic data. Transcrip-

tomic data contains measurements of RNA transcripts in a sample. Transcriptome

analysis can be applied to build and understand associations between the genome and

the phenotype [88,104,187]. Measuring the transcriptome is a lot less complex than, for

example, measuring the proteome or all molecules involved in forming a phenotype. In

addition, transcriptomic data is the most frequently produced omics data [39,53,124],

which makes it widely available and well understood. Applications of transcriptomic

data analyses include, for example, feature selection, classification, identification of

alternative splicing, detection of differentially expressed pathways, and more.

It is evident that while omics technologies for obtaining biomolecular data present one

major and important achievement, these technologies come with the requirement of new

automated methods that can handle large datasets and derive meaningful results [20,

262,275]. In fact, the increasing data volume, for example, of omics datasets challenges

many existing algorithms [93, 255, 273]. Reasons for that are multifaceted: in general,

for many machine learning algorithms, it can be difficult to detect relevant patterns

in high-dimensional datasets when the number of observations is comparatively small.

Indeed, the number of observations required to estimate a function of several variables

to a given degree of accuracy grows exponentially with the number of variables [18,

1



149, 207]. This phenomenon was termed the “curse of dimensionality” by Bellman in

1961 [19]. When analysing datasets with a larger number of variables than observations,

the underlying mathematical problem will have many solutions. However, some of these

solutions might be neither meaningful for the research issue nor robust [11] – where

a non-robust solution in this context refers to a solution that is sensitive to small

parameter or data changes. This is because the solutions might be based on dataset

artefacts that are not relevant to the research issue. Consequently, high performance

is achieved on training data, while the performance on new data is poor. Hence,

reproducibility is often a problem [131, 196, 290]. Besides the high dimension, which

presents a challenge for obtaining robust results, the high degree of noise, as well as

irrelevant and redundant information in many omics datasets can further degrade the

methods’ performance [21,126,182].

Due to the aforementioned problems in the analysis of high-dimensional data such

as omics data, in many studies that analyse such datasets dimension reduction is

applied as a first step, and subsequently the low-dimensional representation that has

a smaller number of variables is investigated [81, 126, 154]. The main objective of

dimension reduction algorithms is to reduce the number of dimensions used to represent

the data while preserving the relevant dataset characteristics [250, 276]. Connected

goals are removal of noise and redundancy [116, 135, 146]. Yet, dimension reduction

does not necessarily lead to an understanding of the investigated molecular processes.

However, as stated above, this understanding is required in biomedical studies in order

to apply their results to clinical approaches [47,172,215]. When the dimension reduction

is performed in an interpretable way, the results obtained from an analysis of the

low-dimensional representation can be transferred to the original feature space and

interpreted in the context of the molecules under investigation.

There are several methods for dimension reduction that are widely applied in omics

data analysis. Examples of these methods are Independent component analysis (ICA)

[129], Principal component analysis (PCA) [113,201], t-distributed stochastic neighbour

embedding (t-SNE) [162], and Uniform manifold approximation and projection for

dimension reduction (UMAP) [174]. A similarity of ICA and PCA is that they impose

constraints on the components they determine, namely orthogonality or independence.

Yet, these constraints enforce a certain model that can result in representations that

are not displaying the relevant processes. Further, non-linear methods like t-SNE and

UMAP suffer from preserving local structures rather than global ones [5, 16, 134] and

an interpretation of the results in terms of the analysed genes is not provided.

Concerns regarding the use of the aforementioned dimension reduction methods for

deriving low-dimensional representations of transcriptomic data are discussed, for ex-

ample, in [6, 97, 285]. Together with the disadvantages illustrated above, this demon-
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strates a need for the development of new dimension reduction approaches that project

data to biologically meaningful and interpretable components. This is precisely where

this dissertation comes in.

A commonality of the mentioned dimension reduction methods is that they work

in an unsupervised fashion, meaning that they do not require labels of the observa-

tions. This independence of data labels presents an advantage over supervised methods.

Finding the hidden structures and latent groupings within the data present important

tasks in omics data analysis. For example, in precision medicine, patient groups or

disease subtypes are not initially known, but rather are aspired to be found. Unsuper-

vised approaches provide the opportunity to obtain solutions for these tasks. Another

advantage of unsupervised methods, compared to supervised methods, is that real-

world data does generally not come with labels. Any label is typically man-made and

therefore needs to be treated with caution.

The new methods for transcriptomic data analysis presented in this work aim at

representing the complex datasets in low-dimension while maintaining the relevant

data characteristics. In addition, they provide an interpretation of the low-dimensional

representation in terms of detected gene-modules. Gene-modules are groups of proteins

– or respective genes – that are associated with the same or connected functions or

processes.

Our new transcriptomic data analysis methods are based on Dictionary learning

(DiL). DiL is an unsupervised matrix factorisation approach that decomposes a given

data matrix into a dictionary matrix and a coefficient matrix, yielding the low-dimensional

representation. In contrast to ICA and PCA, DiL does not constrain the relation among

the derived components – the dictionary columns – but the coefficient matrix. Hence, in

DiL, the components are identified in a less restricted fashion, allowing more flexibility

to adjust the representation to the data. Therefore, in comparison to representations

which are derived with ICA or PCA, those from DiL are potentially nearer to the

analysed signals [25].

In DiL, the type of constraint applied on the coefficient matrix is sparsity. Note

that while a constraint on the derived components can result in representations that

are biased by the model of the method, posing some constraint on the representa-

tion is beneficial. Otherwise, the solution space can be large and thus inconclusive.

Due to their concept, sparse methods imply that the data is highly structured. This

prerequisite holds for transcriptomic data [4, 22, 208]. A reason for this structure in

transcriptomic data is the connection of genes and pathways [49]. It is precisely this

structure that is often not explicitly considered by other methods, and therefore not

exploited. Numerous scientists have criticised this as a weakness of many methods that

are widely applied for the analysis of transcriptomic data, for example, in [22,209,236].

3



In the light of this criticism, You et al. [286] conclude in their review on low-rank rep-

resentation and its application in bioinformatics that researchers need to exploit the

full potential of the structure of the considered problems.

Briefly, in our DiL-based methods, sparsity implies that each sample is represented

using only a few components of the dictionary. These components correspond to the

non-zero coefficients of the sparse coefficient matrix. When, in addition, the number of

components in total is relatively small, this means that each dictionary component is

enforced to depict highly characteristic structures in order to obtain a good represen-

tation. This presents the main motivation for applying DiL in our new transcriptomic

data analysis methods.

Summarising the properties of DiL, it presents an unsupervised approach that yields

interpretable results and that does not impose constraints on the dictionary compo-

nents. In our methods, interpretability is achieved in terms of the input features of

transcriptomic datasets – the genes or reads. The interpretability does then allow iden-

tifying gene-modules, which, ideally, are relevant to the investigated processes. Hence,

our methods satisfy what has been motivated before as important characteristics for a

new dimension reduction approach for transcriptomic data.

1.1. Objectives

In this thesis, two new methods for the analysis of transcriptomic datasets are de-

rived and evaluated. The main objective of these methods is the derivation of low-

dimensional representations of transcriptomic datasets that (1) preserve relevant dataset

characteristics and (2) are interpretable – thus allowing to understand molecular pro-

cesses that occur in the analysed samples.

The baseline approach Dictionary learning (DiL) is adjusted such that the resulting

methods are applicable to transcriptomic data. The first method presented, Dictio-

nary learning for transcriptomic data analysis (DLT), is specified for and evaluated

on the task of subgroup identification from transcriptomic data. The second method

presented, Dictionary learning for the analysis of transcriptomic data from dynamic

processes (dynDLT), is developed and applied for the temporal ordering of samples

from dynamic datasets, which is also referred to as “pseudotime estimation” or “pseu-

dotime inference”. In both methods, the transcriptomic datasets are represented in

low-dimension and subsequently analysed. Note that, for both tasks, good results

can be obtained only when the relevant data information is maintained in the low-

dimensional representation.

Further, for both methods, a biological interpretation can only be achieved if the

dimension reduction can be interpreted in terms of the initial feature space. The
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methods’ interpretability allows for the identification of genes – more precisely, RNAs

that can be assigned to genes – that are relevant for the processes occurring in the

analysed samples. Therefore, gene-module detection presents an accompanying task in

our methods.

1.2. Omics data

Our two new methods introduced and evaluated in this thesis are specified for the

analysis of transcriptomic data. Transcriptomic data is a type of omics data. High-

throughput omics technologies are large-scale methods, the objective of which is to

purify, identify, or characterise the biomedical molecules in focus, hence the total related

“ome”. Hence, the entire respective molecular profile – or at least a large extent of it – is

analysed in omics analyses. Genomics, for example, describes the study of the genome.

Accordingly, transcriptomic data describes the study of the transcriptome. The omics

era began with the first sequencing of the human genome, which was completed in 2003

[140,268]. Its development was further driven by the development of high-throughput

biomolecular technologies. Older biomedical studies typically focused on single genes,

transcripts, proteins, or other biomolecules. In contrast, by now, it is clear that solely

the variants in genomic data are not sufficient to explain all differences in, for example,

phenotypes or disease susceptibility [30, 66, 184]. Rather, these differences underlie an

interplay of different molecules or artefacts in these molecules, and also environmental

factors play an important role. Nowadays, omics cover a multitude of levels, e.g.,

genomics, epigenomics, transcriptomics, proteomics, metabolomics, and more.

Many molecular profiling technologies can be categorised as either targeted or un-

targeted. In targeted techniques, a pre-defined, but nevertheless large set of molecules

is measured. Untargeted techniques, on the other hand, can measure the entire set

of molecules under investigation. While targeted technologies are usually more afford-

able and offer higher sensitivity, untargeted techniques offer a broader spectrum of

detectable molecules.

Omics technologies and the generation of omics data present only one part of the

derivation of new insight. Additionally, it requires methods for analysing the obtained

datasets. Only the interplay of omics data and efficient computational approaches can

shed light on the dynamics of biomolecular mechanisms.

In this thesis, two new methods for the analysis of transcriptomic data are presented

and evaluated. To provide a general overview of the field of omics, two other common

omics types are introduced in this section as well. The types of omics presented are

restricted to the layers covered by the central dogma of molecular biology, i.e., the

idea that genetic information is transcribed from DNA to RNA and then translated
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from RNA into proteins (even though this is known to be incomplete): the genome,

the transcriptome, and the proteome. These three related omics types, genomics,

transcriptomics, and proteomics, belong to the central and most widely used ones

[86,148,179].

Along with a description of each omics type, a short description of the nowadays most

commonly used technology(ies) in each field, as well as a temporal classification of the

development of the field, are presented. To provide a brief explanation of the biological

processes connecting the different omics data levels, their illustration is preceded by

an introduction of the central dogma of molecular biology.

1.2.1. The central dogma of molecular biology

The “central dogma of molecular biology” is a model of the sequential information

transfer in a cell. It was first proposed by Francis Crick in a talk he gave in 1957

and published in 1958 [55]. The dogma is often summarised as DNA→RNA→protein,

meaning that genomic information encoded by DNA is transcribed to RNA, which

is then translated to proteins. Before explaining the model, its general entities, the

deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and proteins, are introduced.

DNA is a long, double-stranded helical molecule that carries genetic instructions of

all known living organisms and many viruses. DNA is made up of four different DNA

nucleotides. These nucleotides are composed of sugars, phosphates, and derivatives of

the four nitrogenous bases adenine, cytosine, guanine, and thymine. The order of these

four nucleotides in the DNA makes up the DNA-sequence, which determines the genetic

information. A gene is a region of DNA that encodes a specific functional product.

The human genome is estimated to consist of approximately 20,000 genes [132]. The

DNA is composed of such coding and also non-coding regions. In higher organisms,

only a small fraction of the DNA is coding.

RNA is a molecule that is made up of nucleotides which are composed of sugars,

phosphates, and derivatives of the four bases adenine, cytosine, guanine, and uracil.

RNAs function as messengers of information from DNA, either translating for proteins

or having certain structural or catalytic functions. In accordance with the different

functions of RNA, there are a number of different types of RNA molecules, for example,

messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), and more.

For RNA-viruses, RNA is the carrier of their genetic information.

Proteins are molecules which are composed of one or more chains of amino acids in

a specific order. The order of the amino acids determines the structure and function

of the proteins. Proteins carry out essentially all the functions necessary for life, and

each protein has a unique function [48,84,85].

Having described the entities of the central dogma of molecular biology, some restric-
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tions on the model need to be mentioned. The dogma is often incorrectly interpreted

in an oversimplified form, namely that genomic information encoded by DNA is tran-

scribed to RNA, which is then translated to proteins. Hence, the information flow in a

cell is interpreted as a one-way process. However, this interpretation is wrong. While

these interactions are correct, several interactions are lacking. In 1970, Crick published

another paper on the central dogma [54] to combat misconceptions of it. In this paper,

he emphasises a point he already makes in his first paper on the central dogma, that

“once (sequential) information has passed into protein it cannot get out again” [55].

While this means that there is no information transfer of the type protein→protein,

protein→DNA, or protein→RNA, this allows for a number of transfers which are not

considered in the simple model introduced above. Note, though, that the central dogma

is only making hypotheses about the information flow, and it only considers these three

mentioned types of molecules.

Biological processes as part of the simplified central dogma

The central dogma of molecular biology introduced above describes the information

flow in a cell for the expression of protein-coding genes. The simplified version of the

dogma is DNA→RNA→protein, meaning that genomic information encoded by DNA

is transcribed to RNA, which is then translated to proteins. This model involves two

steps: the so-called “transcription” of DNA to RNA and the so-called “translation” of

RNA to proteins. Below, the main biological processes as part of these steps are briefly

described.

Recall that the genetic instructions of all known living organisms and many viruses

are encoded as DNA. For this information to be processed, firstly, proteins called

“transcription factors” need to assemble at specific regulatory binding sites of the

DNA. These binding sites are called “promoters”, and they are situated upstream of

the gene that will be transcribed. Transcription factors can be activated in response

to changing conditions inside or outside the cell. Therefore, gene expression levels can

be interpreted as a response of the cell to different conditions.

The transcription factors stabilise the binding of RNA polymerase, a protein that

binds to the DNA. RNA polymerase firstly unwinds the double-stranded DNA helix,

exposing the bases in the template to allow for base pairing. The nucleotide on the

DNA strand are paired with complementary nucleotides in the cell, forming a single-

stranded RNA molecule, until a termination site is reached. Finally, RNA polymerase

releases the new RNA molecule. Whether a gene is switched on is mainly regulated at

the step of promoter binding by RNA polymerase.

The RNA molecule is then processed by splicing and the addition of an RNA cap at

one of the strands’ ends (5’) and a poly-adenylated tail at the other end (3’), forming
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messenger RNA (mRNA). In case the cell is a eukaryote, the mRNA molecule then

leaves the nucleolus. This is where transcription ends. Note that not all RNA molecules

undergo this step. However, those RNA molecules that are part of the simplified

version of the central dogma of molecular biology and can be interpreted as precursors

of proteins, namely the mRNA molecules, are formed at this step. Yet, protein-coding

mRNAs make up only 2-10% of the total RNA [45,120].

Translation is the next step of protein biosynthesis. In the translation process, the

mRNA molecule is synthesised into a protein. Same as for transcription, translation is

also controlled by proteins that bind and initiate the process. The first step of trans-

lation is ribosome assembly, for which initiation factors are required. These initiation

factors help to form the complex between the mRNA and the ribosome. The ribosome

is the organelle at which the mRNA is translated into a protein.

Actual translation of the mRNA sequence to a protein begins at the start-codon of

the mRNA molecule. A codon is a sequence of three nucleotide bases. Hence, the four

nucleotides in RNA can code for 43 = 64 codons. Each codon corresponds to a specific

amino acid, or to a stop codon. In total, 20 amino acids are encoded by the 64 codons.

The mRNA molecule is then threaded through the ribosome. In this process, it binds

to complementary transfer RNA (tRNA). tRNA carries an amino acid corresponding

to each codon. The respective amino acids are joined. Hence, the order of the amino

acids is specified by the mRNA sequence. The process ends at the stop-codon and the

formed polypeptide is released.

1.2.2. Genomics

Genomics appeared as the first omics discipline. The field of genomics studies the

genome, which is the complete genetic information in an organism. This genetic infor-

mation is encoded in the DNA of an organism, except for RNA-viruses, whose genetic

information is stored in the RNA. The technical determination of this genetic informa-

tion is conducted with nucleic acid sequencing.

The DNA sequence varies between species and between individuals of the same

species – however, to a smaller extent. Further, the genome can alter between cells

of the same individual due to mutational events within each cell division. One field

of genomics compares the respective genomic data with the aim of characterising the

differences.

Some genomic variants affect only small DNA regions. These include, for example,

point mutations, short insertions, deletions, and duplications. The majority of these

variants are benign. However, some of those variants are associated with specific phe-

notypes. They can be protective, for example, by improving the resistance to certain

conditions, but they can also cause diseases or increased susceptibility to specific con-
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ditions. Single nucleotide polymorphisms (SNPs) are the most common form of genetic

variation. A SNP is a variant between a single nucleotide of the genome and the ref-

erence genome. The majority of identified SNPs appear in non-coding regions of the

genome.

Other variants affect larger DNA regions. These variants can cause deletion or

disruption of one or more genes, which can cause functional loss. Further, they can

disrupt regulatory elements or even produce novel gene products. One example of a

type of variant affecting large DNA regions is a large scale copy number variation, i.e.

the gain or loss of sequences of, for example, 50 base pairs or more (the threshold is

not clearly defined). Complex structural variants present another type of variants that

affect large sequence regions. They are typically composed of three or more breakpoint

junctions. A breakpoint is defined as the location where a recombination event occurs.

Technologies

Sanger sequencing and next generation sequencing (NGS) are the gold standard tech-

nologies in genome sequencing. Sanger sequencing is limited to single DNA fragments,

however, compared to NGS, the length of the single sequence generated is longer. It

is therefore typically used in small-scale projects, for example, for sequencing of single

genes. NGS is more of an omics technology as it allows for high-throughput massively

parallel sequencing, is faster and also has much lower costs per base than Sanger se-

quencing. Latest Third generation sequencing (TGS) techniques produce longer reads

than traditional Next generation sequencing (NGS) technologies [46]. However, a draw-

back of TGS methods is that they typically contain high error rates [63]. As NGS

technologies present the most popular platform in both clinical and research genomics

currently [46,293], this method is described in detail here.

The main steps in NGS are DNA fragmentation, amplification, sequencing, and

alignment to a reference sequence, in case one is available. The DNA needs to be

fragmented as a first step in NGS because very long strands cannot be read by NGS

technology. Next, adapters are linked to those DNA fragments. The adapters consist of

binding regions for clustering (details on clustering in NGS are given below), a primer

binding site for sequencing, and indexes. These individual indexes are also referred to

as “barcode” sequences, and they are used to enable multiplexing. If desired, next, a

polymerase chain reaction (PCR) is performed to amplify the fragments. These steps

are also often summarised under the term library preparation.

Subsequently, the resulting set of fragments, the so-called “library”, is attached to

the flow cell. The flow cell is a glass slide with two types of oligonucleotides on the

surface that are complementary to the library adapters. The fragments with adapters

bind to the oligonucleotides on the flow cell. Each fragment is then amplified via
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bridge amplification. In bridge amplification, the unbound adapter end binds to the

other type of complementary oligonucleotide on the flow cell. This creates a bridge

formation of the strand. While in bridge position, polymerase creates a complementary

strand, yielding two strands covalently bound to the flow cell, which presents the fully

formed bridge. The resulting strands are then desaturated to form two isolated strands

(forward and reverse). This procedure is performed over multiple iterations, yielding

clusters of the same strand (forward and reverse). The reverse strands are then washed

off so that during sequencing the same base is attached to all strands in a cluster

(details below). The strands need to be amplified generating clusters in order for the

fluorescent signal, which is later measured to determine the binding nucleotides, to

reach a detectable level (details below).

The next step is the actual sequencing. The sequencing is initiated by binding of

Read 1 sequencing primer at the top of the strand. Strand extension and sequencing

are performed towards the flow cell. In so-called “sequencing by synthesis”, chemically

modified nucleotides, complementary to the current base of the original strand, suc-

cessively bind to the DNA fragments. Each nucleotide is labelled with fluorescence.

In addition, it contains a terminator that blocks further strand elongation. The fluo-

rophore that is attached to the incorporated nucleotide is illuminated with lasers and

imaged. Subsequently, the terminator is detached so that the next nucleotide can bind

and be read.

When all cycles of the forward strand are finished, paired-end sequencing is initi-

ated, which serves for quality control. Therefore, the sequenced strand is cleaved and

washed away, and the reverse strand is hybridised and amplified as before in bridge

amplification. The Read 2 sequencing primer then binds and sequencing starts in the

reverse direction.

The actual sequencing is succeeded by base calling from the generated images. In this

process, the intensities of the fluorescent signal in each generated image are converted

into bases and quality scores based on the confidence of each base call. Typically, this

information is stored in a FASTQ file. A FASTQ file is a text file that contains the

sequence data in a specific format. After quality control, if a reference genome sequence

is available for the studied organism, the sequenced reads are mapped and counted.

Else, if no reference genome sequence is available, the sequence reads are assembled to

so-called “contigs”, which are series of overlapping DNA sequences. The indices in the

sequencing adapters can be used to tag particular libraries. This way, large numbers

of libraries can be pooled and sequenced simultaneously during a single run.

Sequencing errors might bias the analysis and can lead to a misinterpretation of the

data. Typically, the sequencing quality decreases over the length of the read. The

main reasons therefore are pre-phasing and phasing. Due to either incorporation of
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nucleotides without effective blocking of further sequencing (pre-phasing), or incom-

plete removal of the blocker (phasing) the respective sequence is one nucleotide ahead

or lacks one nucleotide behind the other sequences. Consequently, in the later cycles,

when these errors add up, the signal of the cluster is less clear. Further, already during

PCR, ambiguities can occur. These are typically caused by either amplification imbal-

ance, drop-out or by mixed signals, for example, due to PCR crossover artefacts. In

NGS data analysis, one needs to consider that artefacts, such as those mentioned here,

can always appear. Therefore, pre-processing of NGS-data is required and applied in

most studies.

Timeline

Genomics present the first omics discipline, which is why a small historical overview

is provided in order to classify it temporally. Nucleic acid sequencing started in 1972

with the sequencing of a single RNA of the escherichia virus MS2 [127]. In 1976,

the complete nucleotide sequence of this virus was sequenced [80]. In 1977, Sanger

sequencing was developed [231] and the first complete DNA genome was determined

using this method [230]. Sanger sequencing became the most widely used sequencing

method for several decades. With increasing technological improvements, further or-

ganisms were sequenced and in the late 1990s, some model organisms such as yeast

were sequenced. Sequencing of the first human genome was launched in the 1990s and

completed in 2003 [268]. Further technical progress led to lower costs per base and

increased speed of the sequencing process. In 2005, the first next-generation sequenc-

ing (NGS) techniques emerged. In the last years, several technical NGS updates have

been achieved, such as an increased number of sequencing cycles and flow cell clusters.

Third generation sequencing (TGS) techniques were first described in [44] in 2009.

1.2.3. Transcriptomics

The field of transcriptomics studies the transcriptome, which is the complete set of RNA

transcripts in a sample. RNAs can serve as information carriers as well as catalytics.

Broadly, RNAs can be categorised into coding RNAs, hence RNAs that are translated

into proteins, and non-coding RNAs. The coding RNAs make up approximately 2-

10% of the transcriptome [45,120] and are referred to as “messenger RNAs” (mRNAs).

There are numerous types of non-coding RNAs, for example, ribosomal, transfer, small

nuclear, small interfering, micro, and long-non-coding RNA, that each fulfil different

functions in a wide range of cellular activities.

As mRNAs are the key intermediate between the genome and the proteome, their

analysis can serve for understanding the link between the genome, the proteome, and
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the cellular phenotype. Yet, the correlation between mRNA expression and protein lev-

els is rather poor. Nevertheless, understanding the mRNA levels provides information

on the actively expressed genes and thereby gives an image of the (levels of) available

building blocks for protein translation. Further, an advantage of transcriptomics over

proteomics is that RNAs, in contrast to proteins, can be amplified, which facilitates

detection.

In contrast to the genome, which is essentially a static entity, the transcriptome is

highly dynamic. It can be affected by both, external and internal factors [267], result-

ing in the regulation of RNA synthesis and degradation. Many of the dynamics are

characteristic for different cell types. However, they can also appear within the same

cell type, for example, depending on developmental stages or environmental condi-

tions. Analysing the transcriptome can provide insights into the molecular and cellular

mechanisms.

In transcriptomic studies, the term “gene expression” is often used, which is the

process by which the genomic sequence is decoded to produce a functional transcript.

In analysing gene expression levels from samples in different conditions, differentially

expressed genes can be determined. These can help in understanding developmental

processes, diseases, as well as transcriptional responses to conditions, among other

things. Besides the comparison of gene expression in samples from different conditions,

a study focus can also be the determination of the functional properties of the RNAs

and the role of individual genes or gene sets. Likewise, these genes, or gene-sets, can

be used as a molecular signature. Further, changes in the genome sequence can be

inferred, such as somatic mutations in diseased tissues, including mutation, insertion

and deletion.

The relatively new field of single-cell transcriptomic analysis investigates transcrip-

tomic profiles of individual cells. This new technology is beneficial in the direct analysis

of rare cell types and the determination of transcriptomic profiles of cells from heteroge-

neous populations. Further, when it comes to transcriptome analysis of cells undergoing

a similar development or adjustment process, ideally, one would observe the same cell

throughout the entire process. However, this is not possible as the cell is destroyed

prior to profiling as part of the protocol. In single-cell analysis, it is exploited that each

individual cell transitioning a dynamic process is typically at a different stage of this

process. These differences are also present in the transcriptomic profiles of the respec-

tive cells. To get a broader picture of the entire process, each cell can be interpreted

as a representation of a single snapshot of the studied process.
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Technologies

The main technologies in transcriptome analysis have evolved from microarrays, to

bulk RNA-sequencing (RNA-seq), to single-cell RNA-seq. Microarrays are used to

measure the hybridisation of labelled target complementary DNA (cDNA) strands

from a sample. This is performed by binding of probes which are fixed on the array.

Microarrays have been the method of choice in transcriptome studies for decades. Yet,

unlike RNA-seq, they cannot be used to uncover novel transcript variants. The latest

of the three methods, single-cell RNA-seq, allows the investigation of the transcriptome

in individual cells. This is not possible with bulk RNA-seq, which provides aggregated

transcriptome information from a batch of cells.

RNA-seq uses next generation sequencing (NGS) technology, which has been de-

scribed in detail in the previous section 1.2.2/Technologies. Differences in RNA-seq

versus genome sequencing are the library preparation and the generation of count data

in addition to the sequencing data. In the RNA-seq library preparation, the tran-

scripts in a sample are reverse transcribed to create the complementary DNA (cDNA)

sequences before adapters are added. Fragmentation is performed before or after re-

verse transcription, depending on the particular method. In case a study aims at

analysing only the coding or the non-coding part of a transcriptome, mRNAs can be

targeted by their polyadenosine tails to be either selected or filtered out. Likewise,

other types of RNA can be targeted. The other mentioned difference in RNA-seq vs.

genome sequencing is that, in RNA-seq, typically, count data is generated in addition

to the sequence. These counts quantify the number of reads. Often, the reads are

mapped to their associated genes. Note, though, that the reads can also be assigned

to intron sequences.

One reason why RNA-seq became more popular than microarrays is the already

mentioned limitation of microarrays, allowing to only measure the expression of prede-

fined probes, which requires knowledge of a reference genome or transcriptome. Thus,

RNA-seq can be used to identify yet undiscovered transcripts. Moreover, whereas mi-

croarray signals can be distorted by, for example, probe saturation and background

hybridisation, RNA-seq requires fewer RNA samples and has low background noise.

On the other hand, a major advantage of microarray experiments is that they are

generally cheaper than RNA-seq experiments.

Single-cell RNA-seq (scRNA-seq) has become the most commonly used approach

for gene expression profiling of individual cells [99, 108]. The development of new

scRNA-seq methods and protocols is currently an active area of research. Several

protocols have been published in recent years. However, most of them follow a similar

workflow. Broadly, scRNA-seq consists of two steps, namely the isolation of the single-

cells followed by RNA-seq analysis.
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There are two main strategies for capturing cells: plate-based and droplet-based

methods. Unlike droplet-based experiments, plate-based experiments are often low-

throughput. Hence, droplet-based methods do rather fall into the category of omics

technologies. As they further are the most common approach in scRNA-seq experi-

ments [9, 300] they are described here as an exemplary technology for single-cell tran-

scriptomics.

Droplet-based methods employ microfluidics to capture individual cells in nanolitre-

sized droplets in an oil emulsion. The single-cells are encapsulated in the droplets,

together with microbeads that contain barcoded primers. Each microbead contains

a unique barcode, which serves as a unique molecular identifier so that sequenced

transcripts can be assigned to individual cells or nuclei. Next, the cellular or nuclear

membrane is lysed and the barcoded primers are hybridised to the mRNA molecules

within each droplet. Lastly, RNA-sequencing is performed.

An artefact, particularly common in single-cell experiments, is a low RNA capture

rate. It can cause the failure of a detection of an expressed gene. This results in

an incorrect zero-count observation, referred to as a “drop-out event”. Additionally,

apart from the experiment-based noise, which is common in high-throughput data,

biological noise poses a challenge in the analysis of single-cell data. Biological noise

describes the artefacts that appear due to stochastic gene expression. Hence, even if

the profiling were performed correctly, differences between cells that are not necessarily

cell type-specific can appear [186].

Timeline

The first microarray experiment was published in 1995 by Schena et al. [233]. Soon

after the advent of the NGS technology, the first RNA-seq experiment was published in

2008 [188]. The first single-cell sequencing experiment was published in 2009 by Tang

et al. [254].

1.2.4. Proteomics

The field of proteomics studies the proteome, which is the entire set of proteins in a

sample. Proteins are important building blocks of cells, and the majority of biological

processes of any living system are controlled by proteins. Same as the transcriptome

and unlike the genome, the proteome is a highly dynamic entity.

The proteome is related to the transcriptome, however, the correlation between

mRNA expression and protein levels is rather poor. Reasons for the poor correla-

tion of the proteome and the transcriptome are, for example, the differing rates of

degradation of mRNAs and proteins and post-transcriptional regulation.
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One research focus in proteomics is the identification of proteins in a sample and the

assessment of the respective protein levels. Protein dynamics result from synthesis and

degradation. Protein levels can vary depending on the organism, condition, or time

point, for example.

Another type of protein analysis examines their 3D structures – secondary (local

structure), tertiary (overall structure), and, where applicable, quaternary (overall struc-

ture including all protein subunits). These can vary, for instance, in multiple protein

isoforms. These isoforms appear due to pre-transcriptional or post-transcriptional mod-

ifications. The resulting proteins can vary in their function. Technologies analysing

these structures can analyse fewer proteins compared to protein level detection exper-

iments, which is why corresponding studies cannot generally be categorised as pro-

teomics analysis.

As proteins do not function independently but interact in networks, yet another

branch in protein analysis addresses the identification of these interactions.

Technologies

There are a number of technologies for the identification of proteins in a sample and

the assessment of the respective protein levels. Broadly, these technologies can be

categorised into mass spectrometry (MS)-based methods and non-MS-based methods.

MS is currently the most commonly used technology in proteomics [112,240]. Therefore,

and due to the multitude of existing methods in proteomics, whose description would

exceed the scope of this section, only MS is explained in detail here.

MS is a technology that quantifies peptides by their mass-to-charge (m/z) ratio.

In MS analysis, a first step, typically, is the separation of the proteins in a sample

before the mass spectrometer analysis. This separation can be performed with 2D-

gel electrophoresis, which separates molecules according to their isoelectric points and

molecular mass, but there are also gel-free liquid-phase separation methods. Next,

fragmentation of the proteins to peptides spanning 6-50 amino acids is conducted us-

ing proteases. The sample is then analysed in the mass spectrometer, which consists of

three components: an ionisation source, a mass analyser, and a detector. After vapor-

isation, the peptides are ionised, which causes further fragmentation of the molecules.

To filter the resulting charged particles (ions), they are attracted to negatively charged

plates. They thereby pass a magnetic field which causes them to separate, as the paths

taken through this field depend on the mass and charge of the ions. The magnetic field

strength is altered throughout the MS analysis. The detector records the charge of the

arriving ions along with their mass. Most MS workflows depend on databases which

contain experimental peptide mass spectra, scored against theoretical mass spectra.

This omits the de novo protein sequencing.
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Timeline

Before the advent of biological mass spectrometry (MS) in the 1990s, protein analysis

was performed with non-high-throughput methods. In the 1970s, the first databases

of proteins were built using two-dimensional gel electrophoresis [194]. This technique

was followed by Edman protein sequencing and protein antibody arrays [8]. The term

proteomics was first used by Mark Wilkins in 1995 [274]. In 2008, nearly the entire

yeast proteome was identified via MS [96]. Recently, single-cell proteomics technologies

are emerging. However, as of 2021, “it is still immature and confronts many technical

challenges” [277].

1.3. Biomedical perspective

The analysis of biomolecular data, for example, transcriptomic data, can yield insight

into cellular processes and provide answers to a wide range of biological questions.

The biological tasks approached in this thesis touch on the topics of biomarker/ gene-

module detection, identification of sample subgroups, and pseudotime estimation. To

allow the reader to place these tasks in context, in this section, related concepts are

elaborated.

1.3.1. Biomarker detection

There are multiple definitions of biomarkers. For example, those in [110, 175, 258]

can be summarised the following: biomarkers are objective and quantifiable measures

of a biological process, pathogenic process, or response to a therapeutic intervention

that are related to a phenotype and can therefore serve as indicators for health- and

physiology-related assessments, such as disease risk, disease diagnosis, metabolic pro-

cesses, among others. The main biomarker families are genes, gene expression products,

and metabolites [29].

Biomarkers can be applied for diagnosis, prognosis, and treatment, thereby helping

clinicians to make decisions in the related context. They can, for example, help to

identify the likelihood of a clinical event, the recurrence or the progression, thereby

functioning as a predictive or prognostic marker, or to identify effective targets for

drug development. Additionally, once a good (set of) biomarker(s) has been found,

future medical screenings can be simplified because the number of entities that need

to be examined is decreased.

In the context of precision medicine, biomarkers play an important role. In fact,

Tebani et al. [257] state that “All precision medicine strategies include the use of

decision-making processes based on biomarker-driven approaches.” In line with this,
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Gill et al. [94] summarise in their review on personalised oncology that “there is a shift

towards biomarker based therapies targeting the causes of the cancer, enabling us to

move forward from the ‘one-size-fits-all’ approach.”

Gene-modules and the omnigenic model

When a study is designed to identify a (set of) biomarker(s), the number of molecules

searched for is often relatively small, e.g. ≤ 100. However, these (sets of) individual

molecule(s) do most often not determine the state of sickness or health on their own.

Instead, they act together with other molecules, forming large groups of interrelated

molecules.

In accordance with the above, Boyle et al. [31] note that “a large fraction of the

total genetic contribution to disease comes from peripheral genes that do not play

direct roles in disease.” This brings in the “omnigenic” model. In the omnigenic

model, it is anticipated that larger numbers of genes contribute to the phenotype of

a cell. Often, these groups of interrelated genes are referred to as “gene-modules”.

Certainly, this model is not providing the optimal answer to all kinds of demands. For

example, in a study which aims at finding a new diagnosis method, it can be beneficial

to identify only a small set of biomarkers that need to be examined in order to make

decisions. This will most likely be simpler, faster, and cheaper to implement compared

to examining larger a number of molecules. However, when it comes to understanding,

for example, the development of a phenotype, a set of only few molecules will most

likely not be sufficient to understand the complex mechanisms guiding the underlying

processes.

1.3.2. Subgroup identification

In many biomedical studies, for example [145,181,232], the aim is to determine molecules

that help in distinguishing different sample populations, for example, samples from

healthy and diseased tissue or samples from different variants of a disease. However,

in such a case, the stratification of sample populations is based on previously deter-

mined biomarkers. Yet, the obtained biomarkers do not necessarily have to be correct

– and neither does the determination of subgroups. They therefore must be reviewed

regularly.

It also needs to be taken into account that patient groups or disease subtypes are not

always initially known. For example, in conventional clinical approaches, a tumour,

has traditionally been classified based on histological features, such as size, shape, and

localisation [157]. Yet, the molecular characteristics of tumours, which are classified

to be similar based on these measures, can differ a lot. Yet, only in 2016, the World
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health organisation classification of tumours of the central nervous system included also

molecular characteristics for the first time in [206]. Analysis of molecular profiles of

tumour samples can reveal the respective tumour classes. As the tumour classes in such

a setting are initially unknown, such an analysis requires the identification of subgroups

in an unsupervised setting. This presents one example for a subgroup identification in

clinical approaches. There are a number of further examples in the precision medicine

field, where an aim is the identification and classification of subgroups in a variety of

diseases.

1.3.3. Pseudotime estimation

The transcriptomic profile of cells in a dynamic process changes over time, for exam-

ple, in a developmental progress or when exposed to some condition. In pseudotime

estimation, the aim is to determine the latent time component from the profiles of cells

that are at different stages of a dynamic process. Hence, pseudotime can be interpreted

as a latent dimension that describes the progress of a cell through the transition. Ob-

taining pseudotimes can help to identify temporal signatures and trends, develop an

understanding of the underlying mechanisms, identify key genes driving the dynamic

process, distinguish and characterise variants of different subgroups, and more.

Ideally, to obtain profiles of a cell in a transition process, the profiles would be

examined from the exact same cell at different time points. However, high-throughput

technologies used to measure such profiles destroy the cells as part of the protocol. In

order to nevertheless obtain the desired profiles, measurements are taken from different

cells in the same transition process. The resulting single-cell profiles are interpreted as

snapshots of the dynamic process. In many such experiments, the cells are analysed

at different time points. Note that pseudotime is typically related to this laboratory

capture time – however, this does not have to hold for every cell. Reasons for this

deviation are, for example, that the cells have started in similar but yet different

stages of the dynamic process or that they transition at different speeds.

In the context of clinical approaches, pseudotime estimation can, for example, be used

for disease modelling in order to derive an understanding of the progression of diseases

or disease subtypes. This can also be useful for the development or enhancement of

predictive approaches. In [192] Nguyen et al. report the potential of single-cell studies

and pseudotime estimation for precision medicine. An example of a study that applies

pseudotime estimation to reveal the dynamics of a disease is [294] by Zhang et al. In

the study on mantle cell lymphoma, they delineate the dynamic evolution of tumour

and immune cell compartments at the molecular level.
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1.4. Methodological perspective

In the previous section 1.3, the biomedical perspectives to the methods introduced in

this thesis are discussed. The various connected aims mentioned require the analy-

sis of datasets which are composed of molecular profiles of the investigated samples.

Nowadays, high-throughput methods present the standard approach for obtaining such

profiles (details on these methods are given in section 1.2). The resulting datasets are

large and require automated methods that can handle them in order to obtain the

desired insights and derive meaningful results [243].

For the analysis of the high-throughput dataset, their dimension is often reduced to

obtain a more computationally manageable representation of the datasets [1,155]. Di-

mension reduction is the transformation of high-dimensional data into lower-dimensional

data, obtained after a projection onto a low-dimensional latent space. The main ob-

jective of dimension reduction methods is the preservation of the significant charac-

teristics of the dataset [250, 276]. The baseline method for the approaches presented

in this thesis is Dictionary learning (DiL). DiL is an unsupervised regularised matrix

factorisation approach. It is applied such that the dimension of the resulting represen-

tation is smaller than the initial dimension of the dataset. Hence, a low-dimensional

representation is constructed. In the remainder of this section, different approaches

and concepts for generating low-dimensional representations as well as the concepts

of unsupervised and supervised methods are briefly introduced in order to allow the

reader to place the work into context.

1.4.1. Dimension reduction

The high dimension of datasets in the era of “big data” presents a challenge to many

conventional statistical methods [78, 193, 248]. The datasets do often contain a high

degree of irrelevant and redundant information, which can degrade the performance of

the analysis methods. In the analysis of such datasets, typically, many solutions can

be found that solve the desired task well in mathematical terms. However, sometimes

they struggle to find meaningful and robust patterns [11]. A reason for this is that the

obtained solutions can be based on artefacts that are not relevant to the research issue.

This also leads to problems with reproducibility, as small changes in the data can lead

to different results [131,196,290].

The reason for the problems in the analysis of high-dimensional datasets described

in the previous paragraph is often referred to as the “curse of dimensionality”. The

expression has first been used by Richard Bellman in 1957 to describe the difficulty in

determining optimal solutions when the number of variables in the dataset is large [18].

It is important to understand that the curse of dimensionality is not a problem of the
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high-dimensional data itself. Rather, it arises when algorithms do not scale well to

such data. For an increasing number of features, data becomes increasingly sparse in

the feature space. Therefore, for a constant number of observations and an increas-

ing number of features, for example, distances between points – which are evaluated

in many algorithms – are less meaningful. Training machine learning models from

such high-dimensional data, apart from consuming high computational and storage

complexities, may lead to model overfitting.

Fortunately, variables from real-world data are often correlated in some way, and the

data points do not fill out the entire data space. It is therefore commonly assumed that

there is some latent, low-dimensional structure in the data. Yet, this structure is as-

sumed to be corrupted by noise. Under the assumption of the latent low-dimensionality

of the high-dimensional data, dimension reduction approaches can be applied to reduce

or remove this noise and to obtain the underlying structure. Dimension reduction is

the transformation of high-dimensional data, obtained after a projection into a low-

dimensional latent space, into a meaningful representation of lower dimension. Ideally,

this transformation is performed without significant information loss.

In detail, dimension reduction methods transform a dataset X ∈ Rp×n – of either

n data points of dimension Rp or p data points of dimension Rn – into a new dataset

Y ∈ Rp×m, where m � n. It is hence assumed that the dataset X has an intrinsic

dimension m. Intrinsic dimension can be defined in many ways, for example, as the

minimum number of free variables required to define the data without any significant

information loss [34]. A problem thereby is that the intrinsic dimension of the dataset

is commonly not known. Therefore, the dimension is reduced under the assumption or

after the estimation of certain parameters.

Compared to the original dataset, low-dimensional representations are more compu-

tationally manageable, typically easier to analyse, understand, visualise etc. [1, 281].

Its analysis can therefore lead to better models for inference than the analysis of the

original dataset. From a methodological point of view, dimension reduction methods

are on the intercept of signal processing, linear algebra, and statistics. In the context

of signal processing, dimension reduction is often referred to as “data compression”.

Below, concepts related to dimension reduction methods and ways of classifying those

methods are illustrated. This should help the reader to place the methods presented

in this thesis into context.

Latent variable models

A latent variable is a variable that cannot be directly measured, but is rather inferred

using models from the observed data. Further, latent variables are assumed to affect

the response variable(s). Intelligence is a typical example of a latent variable. It was the
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subject of a popular study by Spearmen from 1904 [246] that lead to the development

of the first latent variable model. For an inference on intelligence, observed variables

such as test scores can be converted into the latent variable intelligence.

Latent variable models aim at explaining the intrinsic dimension of the observed

high-dimensional data by a few latent variables. Hence, the assumption in these mod-

els is that the observed high-dimensional data is generated from few underlying low-

dimensional processes. Latent variable models are often classified as continuous or

discrete, according to the type of variables involved.

Low-rank approximation

In low-rank approximation problems, the aim is to find a matrix that has lower rank

than the initial matrix, while capturing the underlying low-dimensional structures of

the original dataset as much as possible. Hence, the low-rank approximation provides

a compressed version of the original data matrix. Because most real-world datasets

exhibit a low-rank property, low-rank approximation is widely applied in many areas

of science and engineering.

Feature extraction and feature selection

Typically, in dimension reduction, the inferred latent variables are combinations of

many of the original variables. These variables are used for a transformation of the

original feature space. This is sometimes referred to as feature extraction. Feature

selection, on the other hand, aims at selecting the most informative variables in the

data, where informative is defined by the approach and aims. Feature selection does

not provide a transformation of the original feature space.

Linear and non-linear dimension reduction methods

Dimension reduction methods can be classified into linear and non-linear approaches.

Among all dimension reduction methods, linear methods are perhaps the most widely

used ones. They map the data to a low-dimensional space via a linear combination of

the original variables. The objective is, that either the most significant variables are

selected and the inappropriate or redundant variables are rejected, or that the latent

variables, which are characterised by the input variables, are identified. Thereby, the

dimension of the data should be reduced with as little loss of information as possible,

capturing the main patterns in the data. The process of creating new variables as linear

combinations of existing variables is referred to as “feature extraction” (see above).

The objective of non-linear dimension reduction methods is to preserve the original

distances between the data points in the low-dimensional representation of the data.
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The connected aim of these methods is to identify the low-dimensional manifold within

the high-dimensional space of the data. In order to determine this manifold, the

methods apply, for example, local neighbourhoods, geodesic distances, or other graph-

theoretic measures.

Reasons for choosing linear over non-linear methods for dimension reduction are,

among other things, lower computational complexity, interpretability of the represen-

tation, a smaller tendency for overfitting, and the option to apply the derived trans-

formation to new data that was not used for training. Yet, for datasets which lie on a

non-linear manifold, linear dimension reduction methods can fail to produce accurate

results. In such a case, non-linear methods should be preferred.

Lossy and lossless data dimension reduction methods

In the context of signal processing, it is usually required that the original high-dimensional

data can be reconstructed from the compressed data, hence providing the opportu-

nity for a reversal of the compression. One way of classifying dimension reduction

approaches is to distinguish between lossy and lossless compression. As the name

suggests, in lossless dimension reduction, all information is completely restored in the

reconstruction of the compressed data. In contrast, in lossy dimension reduction, the

reconstruction differs (slightly) from the original dataset. Hence, there is some loss,

or error, when comparing the original and the uncompressed dataset. The underlying

idea, in this case, is that accuracy of the reconstruction is traded with an efficiency of

compression.

1.4.2. Supervised and unsupervised problems

Statistical learning techniques can broadly be divided into supervised and unsupervised

approaches. Supervised learning algorithms require the annotation of outcome labels

of the observations. The relation between observations and outcomes is analysed with

the aim of approximating a function that maps the inputs to the outcomes. Depending

on the nature of the output as either discrete or continuous, the algorithms are referred

to as “classification” or “regression”, respectively.

A disadvantage in supervised approaches is that mislabelled observations that are

used for training can lead to an inaccurate decision boundary between classes. This can

cause inaccurate predictions and therefore substantially degrade the performance of the

model that uses the results of the supervised approach. Unsupervised approaches do

not use class label information, which makes them insusceptible to incorrect outcome

annotations. In unsupervised learning, an aim is, for example, the automatic discovery

of hidden and relevant relations and patterns. As stated in section 1.4.1, it is typically
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assumed that there exists a latent, low-dimensional structure in high-dimensional real-

world data. Unsupervised algorithms can be used to detect such inherent structures or

associations. Typical tasks in unsupervised learning are clustering, density estimation,

dimension reduction, and identification of outlier samples.

1.5. Contributions

The main contribution of this dissertation is the development of two new methods for

the analysis of transcriptomic datasets, each one with a different application focus. In

the light of the above, these methods can be categorised as unsupervised continuous

linear latent variable models for low-rank approximation, yielding lossy representations.

Our methods are developed for four, partially related, tasks: (1) dimension reduction

of large transcriptomic datasets to allow for an application of conventional statistical

methods for data analysis; (2) identification of subgroups from mixed sample popula-

tions; (3) temporal ordering of samples from time-course datasets, which is also referred

to as “pseudotime estimation”; (4) omnigenic gene-module detection allowing for an

interpretation and understanding of the obtained representations.

Our new methods provide several advantages:

• Interpretability of the resulting low-dimensional representations. This inter-

pretability is provided in terms of the genes for which the analysed transcriptomic

datasets include measurements. It allows for the derivation of an understanding

of the investigated processes.

• The methods are unsupervised. This means that they analyse the transcriptomic

datasets only and do not require any data labels. This is beneficial because real-

world data does not come with labels: if labels are available, they are typically

assigned manually and are not necessarily correct; in the other case, these labels

are not available which means that the data can only be analysed by unsupervised

methods.

• Our method for the task of subgroup identification, DLT, has only two parameters

that need to be selected by the user. Yet, one parameter is bounded by the other

one. Further, an orientation for the range of parameter values that yield good

results in the presented studies is given. This allows for an ease of use of DLT.

• Our method for pseudotime estimation, dynDLT, does only require one parameter

specification. Same as for DLT, an orientation for the range of parameter values

that yield good results in the presented studies (such as the representation of

relevant data characteristics and conclusive gene-module detection) is given. This

allows for an ease of use of dynDLT.
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• The methods are based on an already existing method, Dictionary learning

(DiL), which is well understood and is computational scalable, especially for

large datasets [167].

• DiL is a method that applies the concept of sparsity, which further enhances

the interpretability of the results. In addition, sparse matrices require smaller

memory compared to non-sparse matrices.

• Compared to the standard DiL approach, the methods presented use far fewer

components to represent the datasets. This leads to enhanced interpretability.

Concepts that are related to the application focus and method foundation are multi-

faceted. Overarching concepts to the respective contexts are introduced in the previous

sections 1.3 and 1.4. In chapter 2, the method DiL, the baseline method to our new

methods, and connected approaches are introduced. Chapter 3 includes an overview

of the application of DiL and connected approaches in the analysis of medical data,

with a focus on transcriptomic data. Further, in chapter 3, our new method Dictio-

nary learning for transcriptomic data analysis (DLT), is introduced and evaluated on

simulated data. Likewise, this is done, in chapter 5 for our new method Dictionary

learning for the analysis of transcriptomic data from dynamic processes (dynDLT). For

each method, an application to real-world data is presented in chapter 4, respectively

6. From the research presented in chapter 3-6 the papers [220] and [221] have been

published. In chapter 7, the approaches and results are discussed in summary.
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2. Introduction to Dictionary learning

and related methods

In the previous chapter, approaches and tasks in context with our two new methods are

introduced. In this chapter, the focus is put on Dictionary learning (DiL), the baseline

approach to our methods. DiL is an unsupervised matrix factorisation approach that

decomposes a given data matrix into a dictionary matrix and a coefficient matrix,

yielding a low-dimensional data representation. The dictionary is learned such that it

permits a sparse representation of the analysed dataset. Hence, DiL is a regularised

matrix factorisation approach.

DiL can be assigned to a branch of signal processing and machine learning [128,180,

280]. Popular applications of DiL are signal analysis, denoising, imputation, pattern

recognition, classification, feature extraction, and so forth. It is widely applied in

signal processing areas for signals such as images, speech, and video, for example

in [161, 218, 223]. However, as shown in section 3.1, its application in omics data

analysis is rare.

This chapter is initiated by a brief classification of DiL. Later in the chapter, the

fundamentals of DiL, details of the method itself, and related approaches are intro-

duced.

2.1. Classification of Dictionary learning

Before explaining the method Dictionary learning (DiL) in mathematical terms in the

further course of this chapter, in this section, a broad classification of DiL is presented.

Therefore, connections to related analysis methods or fields are illustrated. Further, a

temporal classification of DiL and the related methods is provided.

DiL can be interpreted as a signal transformation approach. Signal transforms are a

fundamental tool in signal processing. Fourier [52] and wavelet [100] dictionaries belong

to the earliest and most popular linear signal transforms using traditional dictionaries

[82,176]. These and related linear signal transforms are based on mathematical models

of signal classes. They can be used to perform signal analysis to understand what types

of, for example, periodicities are inherent in the dataset. Further common tasks, which
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signal transforms are applied for, are dimension reduction and noise removal.

Fourier transforms decompose signals into their global frequency content. They

became popular with the publication of a fast algorithm performing Fourier transforms,

called Fast Fourier transforms, which was introduced by Cooley and Tukey in 1965 [52].

A drawback in traditional Fourier analysis is that it only provides information on a

frequency scale, but not on a timescale. Yet, this information is captured by wavelet

transforms. Wavelet transforms decompose a signal into sets of functions by scaling

and translating the so-called “mother wavelet”. Briefly, a wavelet is an oscillating

waveform that has an average value of zero. Wavelet transforms were introduced by

Grossmann and Morlet in 1984 [100]. Wavelet transforms have been shown to perform

better than Fourier transforms in many applications [3, 165,287].

It has been shown that Fourier and wavelet transforms, as well as other analytically

derived dictionaries, can encounter limitations representing complex natural and high-

dimensional data [79, 205, 226]. Further, the information about the data that can be

obtained from such dictionaries is limited, as the dictionaries are either fixed or only

adapted to the dataset at hand by means of the respective basis functions. On the

contrary, in DiL, the dictionary components are not predefined or restricted by func-

tions or models. Instead, in DiL, the dictionary is learned in a data-driven approach.

Consequently, the dictionary can be used to derive new insight about the analysed

dataset. For such learned dictionaries, compression and denoising results can be shown

to achieve or improve upon traditional wavelet analysis results in the context of signal

processing for a variety of applications [71, 168,235].

Apart from the renunciation of model functions in the data representation, another

characteristic of DiL is that it applies sparsity in the reconstruction of the dataset by

the dictionary. Broadly, a sparse solution is one with few non-zero coefficients. Reasons

for seeking sparsity are widespread: compared to non-sparse solutions, sparse represen-

tations can reduce the sensitivity towards noise, require reduced storage space, simplify

or allow subsequent data analysis, and thereby promote interpretability [38, 198, 284].

The idea of model simplicity also appears in robust statistics, which emerged in the

1980s. Methods in robust statistics strive for estimators that are robust against errors

and noise. Yet, classical signal transforms such as Fourier and wavelets do not require

sparsity as part of their model. Neither do other data representation approaches like,

for example, Independent component analysis (ICA) [129], Non-negative matrix factori-

sation (NMF) [142, 197], Principal component analysis (PCA) [113, 201], t-distributed

stochastic neighbour embedding (t-SNE) [162], and Uniform manifold approximation

and projection for dimension reduction (UMAP) [174]. Nevertheless, these methods

are widely applied in biomedical studies, as discussed in section 3.1.

By now, the idea of sparsity has been incorporated into many machine learning al-
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gorithms, for example, in Sparse PCA [306], Sparse random forest [115], and Sparse

SVM [24]. The field of sparse approximation applies the principle of sparsity or “par-

simony” in the context of signal processing: sparse approximation methods search for

a representation of fixed data points as linear combinations of as few pre-specified

components as possible while maintaining a good data approximation. The idea of

sparse approximation can be connected to variable selection in regression analysis, as

both approaches attempt to identify a set of variables that maximise the predictive

performance, and thus to the 1950s [177]. However, popular sparse approximation

algorithms like Least angle regression (LARS) [68] and Orthogonal matching pursuit

(OMP) [200] appeared in the 1990s. Algorithms for sparse representation can also be

connected to data compression when they are applied for a representation of the data

in fewer dimensions.

Another main difference between DiL and other dimension reduction methods, for

example, ICA and PCA, is that DiL does not impose constraints on the derived com-

ponents. This allows for more flexibility to adjust the representation to the data.

Therefore, compared to these methods, the representations from DiL are on average

nearer to the signal examples [25].

In 1993, Olshausen and Field presented the first DiL algorithm [195], named “Sparse

coding”, for modelling neural coding in the primary visual cortex. Sparse coding is

an iterative approach that alternates between an optimisation step for finding the

dictionary while keeping the representation coefficients fixed and vice versa. Since the

publication by Olshausen and Field, other DiL algorithms have been presented, for

example, Method of optimal directions [74] and K-SVD [2].

2.2. Concepts applied in Dictionary learning

Before explaining the Dictionary learning (DiL) approach in detail in section 2.3, in

this section, concepts fundamental to DiL are introduced: (1) bases and frames, (2)

matrix factorisation, (3) regularisation, and (4) sparsity.

2.2.1. Bases and frames

A basis of a vector space is a set of the minimal number of elements required to

uniquely represent any vector in the considered space as a linear combination of these

basis elements. This means that the basis vectors span the vector space and are linearly

independent. For any given vector space, there is an infinite number of legitimate bases.

Formally, for the vector space V , a set of vectors B = {bi}i∈J ⊂ V indexed by some

countable set J , is called a basis if:
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1. span(B) = V ,

2. B is a linearly independent set.

Any vector v in V can be represented by B as:

v =
n∑

j=1

αjbj , (2.1)

where αj is the coefficient of vector v with respect to the basis vector bj. Because of

the linear independence, these coefficients are unique. Formulating a signal in terms

of a basis can be interpreted as formulating it in terms of its building blocks, which

are given by the elements of the basis, also referred to as “basis components”. If the

bj are orthogonal to each other, B is called an orthogonal basis. Further, if they are

orthogonal and of unit length, B is called an orthonormal basis.

Frames present another powerful tool for signal processing and have become popular

through their use in numerous applications. The concept of frames is more general than

that of bases. The theory of frames does not require the linear independence property

that is a necessity for bases, and thus provides a flexible tool for signal decomposition.

A frame can be thought of as a redundant basis, which can consist of more components

than needed. In finite-dimensional space, every basis is also a frame. It is generally

acknowledged that the idea of frames was introduced by Duffin and Schaeffer [65].

Today, frame theory is widely applied in both pure and applied mathematics [42].

For the vector space V , a set of vectors {fi}i∈F ⊂ V indexed by some countable set

F is called a frame if there exist constants 0 < a ≤ l <∞ such that for every v ∈ V :

a‖v‖2 ≤
∑
i∈F

〈v, fi〉 ≤ l‖v‖2 , (2.2)

where a and l are referred to as “frame bounds”. Whenever a = l, the frame is called a

tight frame. It holds for {fi}i∈F , that any vector v in V can be represented by {fi}i∈F
as

v =
n∑

j=1

βjfj , (2.3)

where βj is the coefficient of vector v with respect to frame vector fj. Note that be-

cause a frame does not need to have the linear independence property, the βj do not

have to be unique.
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2.2.2. Matrix factorisation

Generally speaking, matrix factorisation is a decomposition of a matrix into two or

more factor matrices. It is typically applied to obtain less complex matrices, which can

be processed more efficiently than the initial data matrix. Matrix factorisation is also

referred to as “matrix decomposition”.

A common objective of matrix factorisation approaches is to find matrices D ∈ Rp×k

and R ∈ Rk×n such that their product reasonably approximates a given matrix X ∈
Rp×n according to some criteria:

X ≈ DR . (2.4)

Some matrix factorisation approaches apply formulation (2.4) with exact equality. The

columns of D can be interpreted as the main constituent parts, or the main building

blocks of the matrix X. R then captures the coefficients for each respective building

block to reconstruct X. In this respect, matrix factorisation can also be viewed as

decomposing a matrix into a linear combination of basis or frame vectors, also referred

to as “components”. Depending on the method, D and R can each be composed of a

product of matrices as well.

Matrix factorisation methods are widely used in data analysis. Dimension reduction

is probably the most common application of matrix factorisation in data analysis. The

main objective of applying dimension reduction is to obtain a data representation that

is easier to analyse. Yet, matrix factorisation has been shown useful in a multitude of

tasks in data science [13,90,251].

Principal component analysis (PCA) is the most commonly used matrix factorisation

method [73, 153, 216]. However, by now, several matrix factorisation approaches have

been proposed in the literature. In [292], Zhang et al. provide a classification of a

multitude of matrix factorisation methods. In this chapter, besides the explanation of

DiL in section 2.3, in section 2.5.1, three different matrix factorisation methods, namely

Independent component analysis (ICA), Non-negative matrix factorisation (NMF), and

PCA, are presented.

The concepts of low-rank approximation and latent variable modelling are closely

related to matrix factorisation. Depending on the application, these concepts can

consider identical problems. In low-rank approximation, a data matrix is approximated

by a matrix whose rank is less than that of the original matrix. The aim is to capture

the underlying low-dimensional structure of the high-dimensional data matrix. Typical

matrix factorisation methods require the user to specify a rank for the factor matrix.

On the other hand, matrix factorisation can also be seen as an unsupervised learning

method to discover the latent variables from a data matrix. Latent variable models are

probabilistic models that try to explain the data matrix by a set of latent variables. A
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latent variable is a variable which is not directly observable and is assumed to affect

the response variable(s). Normally, a latent variable model with a considerably lower

dimension is sought. When the intrinsic dimension of the problem is smaller than the

apparent one, latent variable models are a powerful tool for data analysis.

2.2.3. Regularisation

Applying learning algorithms without regularisation can lead to overfitting. Overfitting

describes the phenomenon that the learned model is more accurate on known data than

on unseen data. This typically means that the model has learned noise patterns or other

patterns that are not relevant to the research issue, and appear, for example, due to

a sampling bias. Regularisation typically restricts the model complexity. The hope

is that irrelevant or incorrect patterns are no longer learned. Regularisation can yield

higher robustness when analysing noisy data, or it can be applied to impose consistency

with prior knowledge.

Regularisation can also be applied for ill-posed problems. Problem (2.4) presents an

example of an ill-posed problem, as it has infinitely many solutions. By applying regu-

larisation, the ill-posed problem is replaced with a well-posed and stable neighbouring

problem [234]. In regularised matrix factorisation, the aim is to determine matrices

that minimise the loss while maximising the fit to the regularisation constraint.

In statistical learning, to perform model selection, a tradeoff between good predictive

power and regularisation of the model is typically applied. This can be described in a

cost-function that is to be minimised:

Cost function = Loss term + λ Regularisation term , (2.5)

where λ ∈ R+ is a regularisation parameter. This is referred to as “soft regularisation”.

By contrast, in “hard regularisation”, the regularisation term is bounded by some

maximal value. For some value of λ, the solution of the hard regularisation problem is

also a solution of the soft one [23].

Numerous regularisation methods exist. Popular examples are the norm-penalty

regularisation methods, such as Lasso [259], applying the `1-norm, and Tikhonov reg-

ularisation [260], also known as ridge-regression, applying the `2-norm. These two

methods can be solved by convex optimisation schemes and a unique solution can be

guaranteed [159].
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2.2.4. Sparsity

The principle of sparsity, or “parsimony”, is simplicity. The goal thereby is to provide

a compact representation of the most important information of the analysed data. It

has been applied in many research fields throughout history [35,95,166]. It is connected

to the principle of Occam’s razor, named after the English philosopher and Franciscan

friar Father William of Occam. The principle suggests that among all the correct

hypotheses, the simplest one should be selected.

In scientific research, a common objective is the derivation of an appropriate ex-

planation for observed phenomena. In this context, sparsity can be applied to choose

the simplest among all correct explanations. Hence, the considered phenomena should

be represented with as few variables or parameters as possible while accounting for

most or all of the information. Apart from the reduced required storage space and the

resulting simplicity in the analysis of the sparse representation, sparsity may eliminate

redundancies, prevent overfitting, and aid interpretability of the resulting models.

To account for sparsity in matrix factorisation approaches, the `0-penalty can be

applied as a regularisation term in (2.5). The `0-penalty is defined as the number

of non-zero elements in a vector. When used as a regularisation term, models that

have the fewest coefficients are preferred. Due to its similarity with other norms, it

is sometimes also referred to as `0-norm. Note, though, that it is not a real norm,

because the triangle inequality does not hold. It is a cardinality, however.

The popular model selection criteria Akaike information criterion and Bayesian in-

formation criterion represent special cases of `0-penalisation. Among a set of suitable

candidate models describing a set of response measurements x, they each select a model

based on connected criteria. Let L(rh|x) denote the likelihood for a model Mh for x,

parametrised by a vector rh. In both criteria, a model is chosen such that:

min
r
−2L(r̂h|x) + λ‖r̂h‖0 , (2.6)

where r̂h denotes the parameter vector obtained by maximizing L(r̂h|x). The value

of λ for the Akaike information criterion is λ = 2 and for the Bayesian information

criterion it is λ = ln(n), where n is the number of data points.

The `0-penalty is a non-convex function. In consequence, problems involving the

`0-penalty are non-deterministic polynomial-time (NP) hard to solve [190]. Therefore,

the `0-penalty is often relaxed so that standard convex analysis ideas are applicable.

The most common relaxation for this purpose is the `1-norm. The resulting problem

can be solved globally and efficiently by convex optimisation techniques, for example,

linear programming [171]. In [219] Ramirez et al. show that the `1-norm is the best

convex approximation to the `0-penalty. Another regularisation is the `p-norm with
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0 < p < 1. In [43], Chartrand demonstrates that this regularisation leads to much

sparser representations than the `1-norm regularisation. However, same as for the `0

regularisation, optimization problems involving the `p-norm with 0 < p < 1 are not

convex.

In signal processing, measurements are usually assumed to be composed of structural,

replicable parts – the signals – and a non-replicable part – the noise – which distorts

the signal [241]. Following this notion, parsimony can be applied to discriminate the

signal from the noise. In practice, many signals are approximately sparse [59,160,210],

meaning that the representation coefficients decay rapidly when sorted in decreasing

order. This task is considered in sparse approximation (details on sparse approximation

are provided in section 2.4.1).

2.3. The Dictionary learning problem

The term Dictionary learning (DiL) is used to describe different approaches. A com-

monality of these DiL-termed approaches is that they describe unsupervised matrix

factorisation methods that decompose a given data matrix into a dictionary matrix

and a coefficient matrix, which yield the low-dimensional representation. In this the-

sis, DiL is referred to as the regularised matrix factorisation approach in which the

left factor matrix presents the dictionary, and the right factor matrix is imposed to be

sparse. This is illustrated in more detail in the following paragraphs. This approach is

sometimes also referred to as “Sparse coding”, “Sparse dictionary learning”, or “Sparse

coding and dictionary learning”.

The objective in DiL is to decompose a given dataset X = [x1, ..., xn] ∈ Rp×n by a

dictionary matrix D = [d1, ..., dm] ∈ Rp×m and a coefficient matrix R = [r1, ..., rn] ∈
Rm×n, such that:

xi = Dri + εi ∀i ∈ {1, . . . , n} , (2.7)

where εi is the reconstruction error for sample i. In DiL, the dictionary matrix is

typically chosen to be overcomplete, meaning m > p. A dictionary and a frame are

often regarded as the same thing. However, while a frame spans the signal space, a

dictionary does not have to do this.

Hereinafter, the left and right factor matrix in (2.7) are referred to as the “dictionary”

and the “coefficient matrix”, respectively. Further, the columns of D are referred to as

“atoms” and the columns of R are referred to as “coefficient vectors”.

Formulation (2.7) is no different from the general matrix factorisation problem (2.4)

and it does not describe the full DiL problem. In DiL, among the set of all possible

solutions to (2.7), the one with the sparsest coefficient vectors ri is desired. Together,
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this yields:

min
D,R

n∑
i=1

‖ri‖0 , s.t. ‖X−DR‖2
F ≤ δ ∀i ∈ {1, . . . , n} , (2.8)

where ‖·‖F denotes the Frobenius norm, ‖·‖0 is the `0-penalty, and δ is the error tol-

erance. If the atoms had arbitrarily large values, this would result in arbitrarily small

values of the ri. Therefore, it is common to constrain the atoms, such that ‖di‖2 = 1.

A reason to demand sparsity is that for the overcomplete dictionary, the coefficients

are not unique. However, the restriction of sparsity does not necessarily guarantee the

uniqueness of the solution. Yet, there are conditions, based on the Restricted isometry

property or Mutual coherence, under which the solution is indeed unique (details are

given in section 2.4.1/Exact recovery).

A formulation similar to (2.8), where the sparsity for each sample representation is

restricted to be at most s, is:

min
D,R
‖X−DR‖2

F , s.t. ‖ri‖0 ≤ s ∀i ∈ {1, . . . , n} , (2.9)

where s ∈ N. In this formulation, R is said to be “column-wise s-sparse”. Formulations

(2.8) and (2.9) can be reformulated in Lagrangian form as

min
D,R

1

2
‖X−DR‖2

F + λ
n∑

i=1

‖ri‖0 , (2.10)

where λ ∈ R+ is a regularisation parameter balancing between a small reconstruction

error and the sparsity of each coefficient vector ri.

Due to the `0-penalty, which is non-convex, formulations (2.8), (2.9), and (2.10) are

NP-hard to solve. This is discussed in detail in section 2.2.4. Therefore, to achieve

efficient and sparse representations, methods aiming to solve the DiL problem typically

use a relaxation of the `0-penalty. For this purpose, the `1-norm is the most frequently

used method [272].

2.3.1. Solvability of the Dictionary learning problem

The DiL approach with an overcomplete dictionary involves solving an underdeter-

mined non-convex system. In general, there are infinitely many solutions to under-

determined systems. Additional criteria are required to obtain a unique solution. In

DiL, sparsity presents such an additional criterion. In [98] Gorodnitsky and Rao show

that the sparsity constraint narrows down the size of the finite subset, but it does not

necessarily lead to a unique solution.
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As mentioned in section 2.2.4 on parsimony, the `0-penalty is often relaxed by the

`1-norm. This is also the case in most DiL implementations. Problem (2.10) is then

reformulated to

min
D,R

1

2
‖X−DR‖2

F + λ

n∑
i=1

‖ri‖1 . (2.11)

In [61], Donoho shows that if the optimally sparse representation R from problem

(2.10) is sufficiently sparse, for most dictionaries, the solution obtained by a relaxation

of the `0-penalty with the `1-penalty provides a good approximation.

In section 2.4.1/Exact recovery, exact recovery for the sparse approximation problem

is discussed in more detail.

2.4. Solving the Dictionary learning problem

Dictionary learning (DiL) involves the task of deriving the dictionary and the respective

sparse coefficient vectors. In most DiL algorithms, this is implemented as a twofold

optimisation process, solving for either of the problems respectively [70]. Alternating

between the two objectives, the problem is optimised for either the dictionary or the

coefficient vectors while keeping the other one fixed. While the joint problem is not

convex, each of the two sub-problems is [167]. Nevertheless, this formulation does not

necessarily lead to a global optimum [242].

The task of deriving the sparse coefficient vectors is a “sparse approximation” prob-

lem. Details on sparse approximation are given in section 2.4.1. Deriving the dictionary

is interchangeably referred to as “dictionary recovery”, “dictionary training”, or “dic-

tionary update”. Details on dictionary training are given in section 2.4.2.

2.4.1. Sparse approximation

Sparse approximation applies the principle of sparsity in the context of signal process-

ing: the field of sparse approximation searches for the most compact representation of

given data points as linear combinations of a small number of prespecified components.

As mentioned in section 2.2.4, finding the sparsest solution for the described DiL prob-

lem is NP-hard [190]. Therefore, in practice, the solution is typically approximated,

which explains the name of this domain: sparse approximation.

Combining matrix factorisation with a sparsity constraint yields:

min
ri
‖ri‖0 , s.t. X = DR, ∀i ∈ {1, . . . , n} . (2.12)

In real world problems, almost all measurements are noisy observations. Therefore, it

is common to relax the sparse problem (2.12) to allow for some noise. Given a vector
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x ∈ Rp and a matrix D ∈ Rp×m, the sparse problem with noise is to find a vector

r ∈ Rm, such that:

min
ri
‖ri‖0 , s.t. ‖X−DR‖2

F < δ, ∀i ∈ {1, . . . , p} , (2.13)

where δ is some error tolerance. Note that it is most common to measure the deviation

of the observation and prediction with the Frobenius norm, but other metrics can

also be applied. Problem (2.13) is also referred to as the “Error-constrained” sparse

approximation problem. Likewise, the “Sparsity-constrained” sparse approximation

problem is formulated as:

min
R
‖X−DR‖2

2 , s.t. ‖ri‖0 ≤ s , ∀i ∈ {1, . . . , n} , (2.14)

where s is a parameter controlling the sparsity.

Another typical relaxation of the sparse approximation problem (2.12) is the replace-

ment of the `0-norm with the `1-norm, which is applied in Basis pursuit (BP). Given a

data point x ∈ Rp, and a matrix D ∈ Rp×m, BP aims at finding a vector r ∈ Rm, such

that:

min
r
‖r‖1 , s.t. x = Dr . (2.15)

Combining this relaxation with noise tolerance and a predefined sparsity s results in the

Least absolute shrinkage and selection operator (Lasso), also known as BP denoising

(BPDN). Hence, the objective in Lasso for a given data point x ∈ Rp is to find a vector

r ∈ Rm, such that:

min
r
‖x−Dr‖2

2 , s.t. ‖r‖1 ≤ s . (2.16)

In Lagrangian form, the Lasso is formulated as:

min
r

1

2
‖x−Dr‖2

2 + λ ‖r‖1 , (2.17)

where λ ∈ R+ is a regularisation parameter. For a proper choice of λ, the two problems

(2.16) and (2.17) are equivalent [72].

Note that BP and Lasso are not algorithms, but optimisation problems. They can be

solved with general simplex methods or interior point methods, for example. However,

to obtain the best solution, these methods traverse the interior of the feasible region.

Therefore, these methods may not scale well, which can be problematic, especially

when the dimension of the considered problem is high. Nevertheless, a multitude of

sparse approximation methods exist that aim at finding an approximate solution for

problem (2.12). Details on sparse approximation algorithms are given below.
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Exact recovery

Given a solution to the problem with permitted noise, i.e. (2.13), (2.14), (2.16), or

(2.17), one cannot assert its uniqueness. However, by application of the Restricted

isometry property (RIP), one can instead show that it is close enough to the true

vector r that generated x [199].

A matrix D ∈ Rp×m satisfies the RIP of order k ∈ N if there exists an isometry

constant γk ∈ [0, 1] such that for every vector r ∈ Rp:

(1− γk)‖r‖2
2 ≤‖Dr‖

2
2 ≤ (1 + γk)‖r‖2

2 , (2.18)

where r satisfies ‖r‖0 ≤ k. An interpretation of the RIP is that a matrix fulfilling the

RIP changes the length of any vector r only by a small amount if the vector r is at

least k-sparse. A vector being k-sparse means that it has at most k non-zero elements.

Further, for two vectors r1, r2, with r1 6= r2, which are k-sparse in D, an interpretation

of the RIP is that the distance between them is almost preserved also after projection

through D. As r1 − r2 is 2k-sparse, for a matrix D satisfying the RIP of order 2k it

holds:

(1− δ2k)‖r1 − r2‖2
2 ≤‖Dr1 −Dr2‖2

2 ≤ (1 + δ2k)‖r1 − r2‖2
2 (2.19)

⇒ (1− δ2k) ≤ ‖Dr1 −Dr2‖2
2

‖r1 − r2‖2
2

≤ (1 + δ2k) . (2.20)

Mutual coherence describes another matrix property and is related to the RIP. It is

defined as the minimum number of linearly dependent columns of the matrix. Stability

claims, similar to those that apply the RIP, can be made for mutual coherence.

Under certain conditions, some sparse approximation methods can recover the true

solution [32]. Further, in [61], Donoho shows that whenever the solution to the problem

with the `0-penalty is unique and sufficiently sparse, it is equal to the solution of the

problem using the `1-norm.

Algorithms

A multitude of sparse approximation methods exists that aim at finding an approx-

imate solution for problem (2.12) in polynomial time. Most of the common sparse

approximation approaches are based on either convex optimisation using the `1-norm,

or on a greedy approach, approximating a solution to problem (2.12) with the `0-

norm [265,298,301]. Whereas greedy algorithms are typically faster than convex tech-

niques, convex techniques often yield accurate solutions.

Popular examples of algorithms that fall into either of these two categories are Least
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angle regression (LARS) [68], which solves the `1-norm minimisation problem, and Or-

thogonal matching pursuit (OMP) [200], which approximates the `0-norm minimisation

problem. Both algorithms start from an all-zero solution, and then iteratively construct

a sparse solution until convergence is reached. Further, thresholding algorithms present

the fastest and conceptually easiest sparse approximation algorithms [228]. They fall

into the category of greedy algorithms. Examples of thresholding algorithms are Hard

thresholding pursuit (HTP), Iterative hard thresholding (IHT) [27] [83], and Normal-

ized iterative hard thresholding (NIHTP) [28].

A third group of sparse approximation algorithms that is mentioned in some litera-

ture contains non-convex optimisation techniques. In [171] Marques et al. provide an

overview of a multitude of sparse approximation algorithms within the three categories.

A popular algorithm that falls into the category of non-convex optimisation techniques

is Focal underdetermined system solver (FOCUSS) [98].

The mentioned algorithms FOCUSS, HTP, LARS, and OMP, are illustrated in the

following paragraphs. The description of sparse approximation methods is restricted

to these methods in order not to exceed the scope of this section. The considered

methods are selected because they present popular and widely applied methods for

sparse approximation.

Orthogonal matching pursuit Orthogonal matching pursuit (OMP) [200], proposed

by Pati et al. in 1993, is based on an earlier algorithm called Matching pursuit (MP).

MP, proposed by Mallat and Zhang in 1993 [169], is the earliest method of greedy

algorithms to approximate problem (2.12) [299]. It is an iterative algorithm that pro-

gressively selects the atom that minimises the norm of the residual until it drops below

a given threshold. The major advantages of MP and OMP are their speed and simple

implementation.

In each iteration, both algorithms greedily add the atom with the highest correlation

to the current residual to the set of selected atoms. As the set of selected atoms is

empty initially, the initial residual ui is set equal to the data point xi. In contrast

to MP, OMP updates the residuals by projecting the data point xi onto the linear

subspace spanned by the atoms that have been selected so far. This guarantees that

the residual ui is orthogonal to all previously chosen atoms. Stopping criteria vary

depending on the application.

In detail, for data point xi, iteration t, the residual of xi with the current repre-

sentation ut,i, and the current coefficient vector rt,i, the OMP algorithm performs the

following steps:
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0. Initialisation

Initially, at iteration t = 0, the coefficient vector is set to r0,i = 0, the active set Ωt,i is

set to Ω0,i = ∅ and the residual ut,i is set to u0,i = x.

1. Identification

The absolute correlations of the atoms with the current residual are computed,

and the atom dj that is most correlated with the current estimate is selected.

The active set is updated to Ωt,i = {j}.

2. Estimation

The best coefficients rt,i for approximating xi with the atoms corresponding to

the active set Ωt,i is computed:

rt,i = arg min
r

∥∥xi −DΩt,i
r
∥∥

2
, (2.21)

where DΩt,i
is the matrix composed of only those atoms that correspond to the

entries of Ωt,i.

3. Iteration

The residual is updated:

ut,i = xi −DΩt,i
rt,i , (2.22)

t is incremented, and iteration is started/continued.

5. Stopping criterion

The process is continued until some stopping criterion is reached.

OMP is not guaranteed to find the optimal solution. However, it has been shown

that under certain conditions on the mutual incoherence and the minimum magnitude

of the non-zero components of the coefficient vector, exact support recovery with OMP

is reached with high probability [36].

By now, many variants of MP exist, offering improvements in either complexity

or accuracy, or both. Popular variants are, for example, Stagewise OMP [62] and

Regularised OMP [191].

Least angle regression Least angle regression (LARS) [68], proposed by Efron in

2004, is a stepwise approximation of the Lasso (2.17) introduced above. LARS is very

popular due to its low computational complexity, which is similar to that of greedy

methods. This computational advantage of LARS is due to the fact that the LARS

path is piecewise linear.

The LARS algorithm is similar to forward selection. Starting with all estimated

coefficients equal to 0, the LARS algorithm builds up the coefficient vector in successive
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steps. In each step, the coefficient(s) of the respective atom(s) having the highest

correlation with the current residual is/are adjusted. However, instead of including a

variable in each step, LARS only increases the respective coefficient until some other

variable has as much correlation with the current residual. The coefficient of this new

variable is then also increased, and the process is continued.

In detail, for data point xi, iteration t, residual of xi with the current representation

ut,i, and coefficient vector rt,i, the LARS algorithm performs the following steps:

0. Initialisation

Initially, at iteration t = 0, the coefficient vector is set to r0,i = 0, the active set

Ωt,i is set to Ω0,i = ∅ and the residual ut,i is set to u0,i = x.

1. Identification

The absolute correlations of the atoms with the current residual are computed,

and the atom dj that is most correlated with the current estimate is selected.

The active set is updated to Ωt,i = {j}.

2. First coefficient update

The coefficient rj is increased in the direction of the sign of this correlation.

While going in that direction, the residual is updated. The increase is stopped

as soon as another atom dq has the same absolute correlation with the residual

as dj. The active set is updated to Ωt,i = {j, q}.

3. Stepwise update

The coefficients for the atoms corresponding to the active set Ωt,i are increased in

the direction equiangular between these atoms until another atom dw has as much

correlation with the current residual. The active set is updated to Ωt,i = {j, q, w}.

5. Stopping criterion

The stepwise update is continued until all variables are in the model, or until

some stopping criterion is reached.

Hard thresholding pursuit Thresholding algorithms present very simple sparse ap-

proximation approaches. There are a number of thresholding algorithms, for example,

Hard thresholding pursuit (HTP), Iterative hard thresholding (IHT) [27] [83], and

Normalized iterative hard thresholding (NIHTP) [28]. Due to their simplicity, thresh-

olding algorithms present the fastest and conceptually easiest sparse approximation

algorithms [228].

As an exemplary thresholding algorithm, the HTP algorithm by Foucart [83] is

illustrated here. In HTP, for data point xi, the coefficient vector at iteration t = 0 is

initialised to be r0,i = 0. In an iterative scheme, the active set Ωt+1,i is updated to the
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t+ 1 largest entries of

rt,i + DT (xi −Drt,i) . (2.23)

Next, rt+1,i is computed as

rt+1,i = arg min
rΩt+1,i

∥∥x−DrΩt+1,i

∥∥
2
, (2.24)

where rΩt+1,i
is a vector with non-zero coefficients only for entries corresponding to

Ωt+1,i, hence, supp(rΩt+1,i
) ⊆ Ωt+1,i. The iteration is continued until some stopping

criterion is met.

FOCUSS Focal underdetermined system solver (FOCUSS) [98], introduced by Gorod-

nitsky et al. in 1997, is an iterative sparse approximation approach minimising a

weighted `2-norm approximation. Starting from a non-sparse initial solution estimate,

the main part of FOCUSS is an iterative process in which this solution is pruned to a

sparse representation. Therefore, FOCUSS uses the technique of Affine Scaling Trans-

formation [266], in which the entries of the current solution are scaled by the solutions

of the previous iteration.

Initially, for data point xi, at iteration t = 0, the coefficient vector r0,i is chosen as

a vector with only non-zero entries. The iteration process starts at iteration t = 1. At

iteration t, the current approximation of rt,i, is expressed as a weighted factorisation

of the solutions from previous iterations

rt,i = Rt−1,iqt,i , (2.25)

where Rt−1,i = diag(rt−1,i), with rt−1,i being the solution from the previous iteration,

and

qt,i = (Rt−1,i)
+rt,i , (2.26)

where (M)+ denotes the Moore–Penrose pseudoinverse of matrix M.

Combined with problem (2.4), the aim in FOCUSS is to find the sparse solution of

the problem:

min
qt,i

∥∥qt,i∥∥2

2
, s.t.

∥∥xi −DRt−1,iqt,i
∥∥2

2
. (2.27)

The minimisation problem (2.27) can be solved using Lagrange multipliers.

To understand how sparsity is promoted in FOCUSS, notice that:

∥∥qt,i∥∥2

2
=
∥∥(Rt−1,i)

+rt,i
∥∥2

2
=

n∑
j=1,rt−1,i(j) 6=0

rt,i(j)

rt−1,i(j)
, (2.28)

where rt,i(j), respectively rt−1,i(j), is the jth entry of the respective vector. Hence,
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larger values in rt,i are promoted, while the other values are reduced until they asymp-

totically reach 0.

A variation of FOCUSS that allows for noise is discussed in [222].

2.4.2. Dictionary training

The aforementioned sparse approximation methods approximate the given data as a

linear combination of a subset of atoms from a fixed dictionary. This process requires

a given dictionary. Dictionary training, also referred to as “dictionary update” or

“dictionary recovery”, is the part of the DiL approach in which a dictionary is trained

based on given data and sparse coefficient vectors such that it can be used to sparsely

represent the data.

Mathematically, the dictionary training problem consists of finding a set of atoms

dj ∈ Rp such that the data X ∈ Rp×n can be approximated by a linear combination of a

subset of the atoms {dj} – whereby the respective atoms are indicated by the coefficient

matrix R ∈ Rm×n – while minimising the squared error of the representation with the

data:

min
D
‖X−DR‖2

F , s.t.
∥∥dj∥∥2

≤ 1 . (2.29)

If the atoms had arbitrarily large values this would result in arbitrarily small values

of the coefficients in R. Therefore, it is common to constrain the atoms, such that

‖di‖2 = 1.

While problem (2.29) can be solved using gradient descent with iterative projection

or other least squares methods, more efficient methods have been developed [77, 143].

These are typically incorporated in algorithms that solve the entire DiL problem, hence

sparse approximation and dictionary training.

Algorithms

Dictionary training is typically incorporated in algorithms that solve the entire DiL

problem, hence sparse approximation and dictionary training.

Sparse coding by Olshausen and Fields [195] represents the first DiL algorithm. It

is a probabilistic model with latent variables. The objective of Sparse coding is to

maximise the likelihood that natural images have an efficient, sparse representation

in a redundant dictionary. Formulating the problem in this way leads to an integral

that is very difficult to solve, especially for high dimensions. Therefore, Olshausen and

Fields introduce assumptions that simplify the problem. The resulting problem can be

solved by the iterative approach solving for the coefficient vector and the dictionary in

an alternating manner. Specifically, the conjugate gradient is used for the computation
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of the coefficients and the atoms are derived with a single gradient descent step. This

iteration is performed until convergence.

The Sparse coding approach is relatively slow, which led to the emergence of other,

faster DiL methods. By now, there are a multitude of DiL methods with K-SVD,

Method of optimal directions (MOD), and Online dictionary learning (ODL) belonging

to the most common ones [114, 121, 269]. To avoid making the scope of this section

unmanageable, the description of DiL methods is restricted to these three methods.

Method of optimal directions Method of optimal directions (MOD) was proposed

by Engan et al. in 1999 [74]. MOD is a predecessor of K-SVD and the algorithm

closest to K-SVD [163]. It is also closely connected to Iterative least squares dictionary

learning algorithm (ILS-DLA), which presents a modification of the MOD algorithm.

In MOD, the derivation of the sparse coefficients is typically performed with either

OMP or FOCUSS. However, in principle, any sparse approximation method can be

used for this step. This step is followed by an update of the entire dictionary in each

iteration by calculating the exact least squares solution.

MOD starts with an initial dictionary, typically constructed by a number of random

training samples. Then, at each iteration t, for fixed Rt, Dt is updated such that the

residual ut =‖Xt −DtRt‖2
F is minimal. Taking the derivative of ut with respect to Dt

yields (Xt−DtRt)R
T
t = 0, which results in the update for Dt in the (t+1)th iteration:

Dt+1 = XRT
t (RtR

T
t )−1 = XR+

t , (2.30)

where (M)+ denotes the Moore–Penrose pseudoinverse of matrix M. Finally, the atoms

of the resulting matrix D are scaled to have unit norm.

The main contribution of MOD is its simple and efficient way of updating the dic-

tionary and the use of sparse approximation methods. These two modifications make

MOD faster compared to Sparse coding by Olshausen and Field [195]. However, iden-

tical to Sparse coding, finding the globally optimal solution is also not guaranteed with

MOD. Further, while MOD is efficient for the representation of low-dimensional data,

for high-dimensional data, the inversion operation in (2.30) often leads to a very high

computational cost.

K-Singular value decomposition K-Singular value decomposition (K-SVD) was pro-

posed by Aharon et al. in 2006 [2]. K-SVD belongs to the class of clustering-based

DiL methods and can be interpreted as a generalisation of the k-means clustering al-

gorithm [156] for DiL. To connect k-means and DiL, k-means can be interpreted as an

extreme case of sparse approximation, where only one of k atoms is used to represent

the sample and the respective coefficient is forced to be 1.
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In K-SVD, the two phases of sparse approximation and dictionary update are re-

peated for a predefined number of iterations. The computation of the coefficient vectors

is commonly implemented using OMP, but in general any sparse approximation method

can be used.

Compared to MOD, the algorithms differ in the dictionary update step. In K-SVD,

one atom at a time is iteratively updated such that the reconstruction error is minimised

using a Singular value decomposition (SVD). In this process, the remaining atoms are

kept fixed. For the atom update, only those data points whose sparse representations

use the respective atom are considered. In this process, only the positions, but not the

values of the non-zero elements of the coefficient vector, are fixed.

In detail, for given R, the representation error can be formulated in terms of a specific

atom dj as:

||X−DR||2F = ||X−
N∑
i=1

dir
T
j ||2F

= ||(X−
∑
i 6=k

dir
T
i )− djrTj ||2F (2.31)

where rTj is the j-th row of R. For simplification, Uj is defined as the error matrix

when atom dj is removed. In an iterative procedure, at iteration t, to update dt,j, in

K-SVD one considers:

min
dt,j

∥∥∥Ut,j − dt,jrTt,j
∥∥∥2

F
, s.t.

∥∥dt,j∥∥2
= 1 . (2.32)

(2.32) is solved using SVD. However, to maintain the sparsity of Rt, SVD is performed

not on the entire error matrix Ut,j but on a reduced version of it, containing only

those samples with non-zero coefficients for atom dt,j. From the SVD, only the largest

singular value σt,j,1 and the corresponding singular vectors wt,j,1 (left) and vt,j,1 (right)

are used. Atom dt,j is then set as dt,j = wt,j,1, and the non-zero entries in rTj are set as

σt,j,1v
T
t,j,1. This procedure is repeated for all columns of Dt.

While K-SVD is faster than MOD, just like MOD, K-SVD is also efficient only for

signals with relatively low dimension, it can get stuck at local minima, and it is not

guaranteed to converge in general.

Online dictionary learning As depicted in the explanations of MOD and K-SVD,

both algorithms may become inefficient regarding speed and memory requirements

when the training data is very large. To prevent this, in Online dictionary learning

(ODL), the training dataset is progressively increased, and the dictionary is updated

gradually in an online fashion.
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Here, the ODL algorithm by Mairal and Bach [167] is depicted. This algorithm is

used for the experiments later in this thesis. For iteration t00, the ODL algorithm

starts by initialising the dictionary D0 and two matrices A0 and B0 as zero-matrices.

Matrices A and B are used to store coefficients from the current and previous epochs

throughout the iteration process. Just like MOD and K-SVD, the ODL algorithm

alternates between sparse approximation and dictionary update. Yet, ODL does this

one sample at a time.

The sparse approximation is performed for the dictionary from the previous iter-

ation, Dt−1, using Least angle regression (LARS) (details on LARS are provided in

section 2.4.1/Least angle regression). The dictionary update step is performed in a

block-coordinate descent manner. For iteration t, matrices At and Bt are updated as

follows:

At = At−1 + rtr
T
t , Bt = Bt−1 + xhr

T
t , (2.33)

where xh is a randomly drawn data point xi, i ∈ {1, . . . , n}. Next, the algorithm

iterates through the dictionary atoms and updates them individually until convergence

to optimise for

1

t

t∑
i=1

(
1

2

∥∥xi −Dtrt,i
∥∥2

2
+ λ
∥∥rt,i∥∥) . (2.34)

With At = [at,1, ..., at,m], Bt = [bt,1, ..., bt,m], and At,jj being the jth entry of at,j, for

atom-update iteration j, an intermediary variable zt,j is computed

zt,j =
1

At,jj

(bt,j −Dat,j) + dt,j (2.35)

and used to update atom dj to:

dt,j =
1

max(
∥∥zt,j∥∥2

, 1)zt,j
. (2.36)

2.5. Related dimension reduction approaches

The application of our two new methods presented and evaluated in this thesis touches

upon multiple fields, for example, signal reconstruction, dimension reduction, matrix

factorisation, decomposing of signals, and sparsity. In this section, related approaches

are introduced, which should serve to classify the baseline approach to our methods,

Dictionary learning (DiL), within its field. Further, the approaches described in this

section are used as comparison methods in our experiments.

The number of comparison methods is limited to not exceed the scope of this
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Approach
Constraint on

the components
Constraint on

the coefficient matrix

DiL - Sparsity
ICA Independence -
NMF Non-negativity Non-negativity
PCA Orthogonality -

Table 2.1.: Overview of the linear dimension reduction approaches related to Dic-
tionary learning applied in this thesis. The different approaches impose constraints on
the components and/or the coefficient matrix. In ICA and PCA, a constraint restricts the
relationship of the derived components. In NMF, only non-negativity of both, the compo-
nents and the coefficient matrix, is required. In DiL, a constraint restricts the sparsity of the
coefficient matrix and the dictionary matrix is not restricted.

overview. Five of the most widely applied methods or those that are method-wise

closely connected to DiL are presented in this section. A review by Sumithra and

Subu [252] provides a comprehensive overview of a multitude of linear and non-linear

dimension reduction methods, as well as matrix factorisation methods.

2.5.1. Linear approaches

Linear dimension reduction methods transform the data to a low-dimensional space as

a linear combination of the original variables while aiming to preserve the main data

characteristics. Simply speaking, linear dimension reduction considers a problem of

the form Z ≈ XV, where X is the data matrix and matrices X and V are the sought

matrices. As illustrated in section 2.2.2, matrix factorisation methods consider the

problem of decomposing X as X ≈ DR. When V−1 is defined, these problems are

equivalent: Z ≈ XV ⇐⇒ ZV−1 ≈ X, hence Z = D and R = V−1.

In a review on matrix factorisation for omics data analysis [249] Stein-O’Brien et

al. classify Independent component analysis (ICA), Non-negative matrix factorisation

(NMF), and Principal component analysis (PCA) as the three most prominent matrix

factorisation approaches. The differences between these linear dimension reduction

approaches are the different constraints placed on the factorising matrices (details are

provided in Table 2.1). Details of these methods are explained in this section.

Throughout this section, the columns of matrix D for these methods are referred to

as “components” and the columns of matrix R are referred to as “coefficient vectors”.

Principal component analysis

Principal component analysis (PCA), invented by Pearson [201] and expanded on by

Hotelling [113], is the most widely used dimension reduction method [73,153,216]. It is

commonly used to generate a low-dimensional representation of a dataset X consisting
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of numerous interrelated variables.

The central idea in PCA is that a large set of correlated variables can be reduced to a

smaller set of new uncorrelated variables (“principal components”) so that the resulting

low-dimensional representation preserves most of the variability of the original dataset.

Hence, by applying PCA, one assumes that the desired information is provided by

variance only. In order for this to hold in biomedical data analysis, perfectly controlled

experiments in which all variation is only caused by the investigated biological process

or entities are required.

The principal components are linear functions of the original variables and are con-

structed such that they successively maximise variance. Each data point is represented

using those components with specific coefficients. The computation of principal com-

ponents can be regarded as an iterative process: the first principal component v1 points

in the direction in space along which projections have the largest variance. Each ad-

ditional principal component vi is the direction which maximises the variance among

all directions orthogonal to the previous one(s). Maximising the variance of the pro-

jections is equivalent to minimising the least-squares reconstruction error between the

original data points and their projections.

To get an intuition for deriving the PCA solution, assume the data is Gaussian. The

best-fitting line is then parallel to the long axis of the ellipse corresponding to the

covariance matrix. This means it is parallel to the eigenvector of the covariance matrix

with the largest eigenvalue. Indeed, finding the principal components of the dataset

X reduces to solving an eigenvalue/eigenvector problem of its covariance matrix or its

correlation matrix, as is shown below. This step is commonly implemented by Singular

value decomposition (SVD) or Eigenvalue decomposition (EVD). Subsequently, the

observed data point are represented as projections onto the obtained components.

To use PCA for dimension reduction, only a subset of the principal components is

used for the representation of the data. The proportion of variance explained can be

computed from the eigenvalues of the covariance matrix. Namely, the variance of each

principal component is equal to the corresponding eigenvalue of the covariance matrix.

These eigenvalues are positive and, when sorted, usually rapidly decreasing. Hence, a

large proportion of variance can be explained from the first few components.

PCA as maximisation of variance Suppose X = [x1, ..., xp] ∈ Rn×p is a column-wise

mean-centred dataset – hence, X consists of n points in Rp. Further, x ∈ Rp is assumed

to be a random variable. The n data points xi are interpreted as random realisations

of the variable x.

The goal in PCA is to find principal components V = [v1, ..., vp] ∈ Rp×p, with

vj ∈ Rp, such that the linear transformations Z = [z1, ..., zp] ∈ Rn×p are given by
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Z = XV. The principal components are orthogonal to each other and successively

maximise the sample variance of the projected data points.

To determine the first principal component, v1, one might apply the approach that

aims at maximising the sample variance of the projected data points. With the pro-

jection of each data point xi given by xTi v1, this variance is:

1

n− 1

n∑
i=1

(xTi v1)2 =
1

n− 1

n∑
i=1

vT1 xix
T
i v1

= vT1 Sv1 , (2.37)

where S is the covariance matrix of X, defined as S = 1
n−1

XXT ∈ Rp×p.

To obtain a well-defined solution, an additional restriction on the principal compo-

nents vi must be imposed. Recall that each vi defines a subspace which the data is

projected onto. Hence, only the angle needs to be identified, however, the magnitude

does not matter. The most common restriction posed is that the principal components

are required to be unit-norm vectors, i.e. vTi vi = 1,∀i ∈ {1, . . . , p}. Taken together,

finding the first principal component corresponds to solving the following optimisation

problem:

arg max
v1

vT1 Sv1, s.t. vT1 v1 = 1 . (2.38)

To find v1, (2.38) is reformulated in Lagrangian form:

L1 = vT1 Sv1 + λ1(1− vT1 v1) . (2.39)

Taking the derivative of L1 with respect to v1 and setting it to zero, gives:

∂L1

∂v1

= 2(Sv1 − λ1v1) = 0 (2.40)

⇒ Sv1 = λ1v1 . (2.41)

From this expression, it can be seen that v1 is an eigenvector of S with eigenvalue λ1.

Further, the sample variance of the projected data points (compare (2.37)) is given by:

vT1 Sv1 = λ1v
T
1 v1 = λ1 , (2.42)

which is the eigenvalue corresponding to the eigenvector v1. Thus, to maximise the

variance of the projection of the data points λ1 has to be the largest eigenvalue of S,

and v1 is the corresponding eigenvector.

Each additional principal component is the direction that is orthogonal to the pre-

vious ones and that explains the highest of the remaining variance. The entire PCA
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solution can be computed by solving the eigenvector/eigenvalue problem for S. Note

that S is a square symmetric matrix, which means that it is orthogonally diagonal-

isable, and there are multiple methods to derive the eigenvector/eigenvalue pairs, for

example, SVD or Eigenvalue decomposition.

A low-dimensional representation Zk using only the first k principal components is

obtained by Zk = XVk, with Vk = [v1, ..., vk] ∈ Rp×k. The proportion of variance ex-

plained by the low-dimensional representation reconstructed using the first k principal

components can be expressed as:

k∑
i=1

λi

/ p∑
j=1

λj , (2.43)

where λi is an eigenvalue of S.

Independent component analysis

Independent component analysis (ICA) [129] is approximately 30 years old. The ICA

algorithm corresponds to a latent variable model, which assumes that the data is a

linear mixture of some statistically independent sources. Statistical independence is a

stronger requirement than non-correlation in PCA: independent variables are uncor-

related, however, uncorrelatedness does not imply independence. ICA aims at finding

a linear representation of the data such that the resulting signals, or components, are

statistically independent, or as independent as possible.

To model the independence assumption, ICA requires a probabilistic interpretation of

the data. Therefore, x is assumed to be a random variable and the data points xi ∈ Rp

are interpreted as random realisations of the variable x. Further, the data points are

assumed to be linear mixtures of independent source signals sj ∈ Rn, j ∈ {1, ... . . . ,m}.
Most ICA algorithms require a preprocessing of the data: centring and whitening.

Whitening removes all linear dependencies in a dataset and normalises the variance,

i.e. the covariance matrix equals the identity matrix.

The noiseless model of ICA can be written as:

xi =
m∑
j=1

ahjsj , (2.44)

where the coefficients ahj are referred to as the “mixing coefficients”. The model can

also be expressed in matrix notation:

X = AS , (2.45)
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where A ∈ Rp×m is referred to as the “mixing matrix”, containing the mixture co-

efficients. Further, matrix S = [s1, s2, ..., sm]T ∈ Rm×n contains the m components.

The objective of ICA is to recover the original signals, represented by the components,

from only the observed data points. Therefore, an “unmixing matrix” W is sought,

which inverts the mixing process in (2.44) and (2.46). Hence, in case A is invertible

W = A−1, and in case A is not invertible W is derived as the pseudoinverse of A.

This enables the estimation of the components as:

Ŝ = WX , (2.46)

One approach for deriving the independent components is via non-Gaussianity and

based on the central limit theorem. The theorem states that, under certain conditions,

for an increasing number of independent random variables, the distribution of their

sum becomes increasingly Gaussian. Therefore, a linear combination of the observed

mixture variables is maximally non-Gaussian if it equals one of the independent com-

ponents (or one of the independent components multiplied by some scalar constants).

Therefore, in ICA, Gaussian sources are forbidden. In practice, this does not present

a challenge, as most sources of interest are non-Gaussian [37,133,189].

Because the concept of statistical independence alone does not yield a precise cost

function to optimise, numerous ICA algorithms exist, which optimise for different mea-

sures. They all use higher-order statistics because low-order statistics do not provide

information about independence.

Most ICA algorithms that aim at maximising the non-Gaussianity use kurtosis or

negentropy as indicators of the Gaussianity of a distribution. Kurtosis is a measure of

the concentration of a distribution around its mean. It is zero for a Gaussian variable.

A problem with kurtosis is that it is very sensitive to outliers and therefore not robust.

Negentropy, a normalised version of entropy, presents a measure of non-Gaussianity.

It is connected to entropy, in that the less predictable or structured a variable is, the

larger is its entropy. Among all random variables with equal variance, a Gaussian

variable has the largest entropy. Negentropy is always non-negative and zero only

for a Gaussian variable. The estimation of negentropy is computationally hard and

is therefore approximated in ICA algorithms. To optimise for kurtosis or negentropy,

fixed-point or gradient descent algorithms are used.

Another approach for the estimation of the independent components is based on

mutual information. Mutual information is a measure of the dependence between the

two random variables. It is always non-negative and zero if and only if the variables are

statistically independent. It can be expressed in terms of entropy and in terms of the

Kullback-Leibler divergence. Here, the formulation via the Kullback-Leibler divergence
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is chosen as it enables the interpretation of mutual information, which is sufficient for

the purpose of this section. The mutual information I of two random variables x and

y, with probability distributions p(x) and p(y) is defined as:

I(x, y) = DKL

(
p(x, y), p(x)p(y)

)
, (2.47)

where

DKL(P,Q) =
∑
x∈X

p(x) log
1

q(x)
−
∑
x∈X

p(x) log
1

p(x)

=
∑
x∈X

p(x) log
p(x)

q(x)
(2.48)

is the Kullback-Leibler divergence of the probability distributions P and Q. Hence,

mutual information can be interpreted as the error of modelling the joint probability

of two variables x and y, p(x, y), with p(x)p(y). If x and y are independent of each

other, it holds:

p(x, y) = p(x)p(y) , (2.49)

p(x|y) = p(x) , (2.50)

p(y|x) = p(y) . (2.51)

Thus, the mutual information of two variables is zero if and only if they are independent.

FastICA [119] and Infomax [17] belong to the most popular methods to solve the

ICA problem. Precisely speaking, FastICA is a family of algorithms, which optimise

for Kurtosis, negentropy, or maximum likelihood functions via fixed-point iteration or

approximate Newton iteration [118]. Infomax is based on maximum likelihood and

aims at minimising the mutual information.

Non-negative matrix factorisation

Non-negative matrix factorisation (NMF) is a matrix factorisation method which as-

sumes that the data is non-negative and which restricts the model matrices to be

non-negative as well. Initially proposed as “Positive matrix factorisation” by Paatero

and Tapper [197], it became more popular due to the work of Lee and Seung [142].

For a non-negative data matrix X ∈ Rp×n
+ and a rank m, NMF seeks to find two

non-negative matrices D ∈ Rp×m
+ , and R ∈ Rm×n

+ , whose product approximates X:

X ≈ DR, s.t. D ∈ Rp×m
+ ,R ∈ Rm×n

+ . (2.52)

The rank m is often chosen such that m � min(p, n). The choice of the particular
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value of m is critical in practice. However, it is often problem-dependent. To assess

the difference between the data matrix X and the product of the model matrices D

and R, is computed by some cost function D:

min
D∈Rp×m

+ ,R∈Rk×n
+

D(X; DR) , (2.53)

where D is some cost function. The choice of D varies among different NMF imple-

mentation.

Minimisation problem (2.53) presents a non-convex problem. The resulting lack

of a unique solution presents a challenge in solving (2.53). Therefore, optimisation

algorithms can at best guarantee convergence to a local minimum. Further, because of

the non-negativity, NMF is algorithmically more difficult compared to other algorithms

mentioned. However, due to the positivity constraint and allowance of addition only,

NMF provides a more intuitive decomposition of the data. Several NMF methods

have been suggested in the literature. Yet, due to the mentioned challenges, they are

limited by the lack of unique solutions, which is connected to difficulties in escaping

local maximum solutions, and their computational complexity.

The most popular choices for cost function D in (2.53) are the least squares or

Kullback-Leibler divergence, which is defined in (2.48). As the Kullback-Leibler diver-

gence is measuring the divergence of two probability distributions, for applying it to

matrices X and DR := Z,
∑

ij xi,j = 1 and
∑

ij zij = 1, where xij, zij are the entries of

matrices X and Z in row i and column j. This way, matrices X and Z can be regarded

as normalised probability distributions.

A variety of NMF algorithms exist. In principle, any constrained optimisation al-

gorithm can be used to derive D and R. Most NMF algorithms make use of the fact

that, though the optimisation problem (2.53) is not convex in both D and R, it is

convex in either D or R. NMF algorithms can be categorised into direct optimisation

methods, alternating optimisation methods, and alternating descent methods. Many

authors initialise D and R as random non-negative matrices.

The earliest NMF algorithms are those by Paatero and Tapper [197] and by Lee and

Seung [142]. The algorithm proposed by Paatero and Tapper [197] is an alternating

least squares algorithm. It alternately fixes either of the matrices D and R and solves

the optimisation problem with respect to the other with a simple least squares com-

putation until convergence. The algorithm proposed by Lee and Seung [142] is based

on iterative multiplicative updates of D and R. They derived multiplicative update

rules for which they could show that the Frobenius norm as a cont function in (2.53),

is non-increasing under these rules. They also derived multiplicative update rules for

the Kullback-Leibler divergence as a cost function. Other gradient descent algorithms
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take a step in the direction of the negative gradient. In that case, the step sizes vary

depending on the algorithm.

2.5.2. Non-linear approaches

Linear dimension reduction methods assume that the data points xi ∈ Rp lie on a

low-dimensional subspace of Rp. Non-linear dimension reduction methods are mainly

based on manifold learning [282]. These methods assume that the analysed data lies on

an embedded non-linear m-dimensional manifold within the higher-dimensional space,

hence m < p. Intuitively, a manifold is a topological space of dimension m that is

locally Euclidean. Locally Euclidean means that each point has a neighbourhood that

is homeomorphic to the Euclidean space of dimension m. However, the global structure

may be more complicated. A general optimisation criterion of such methods is to find

an embedding in which neighbouring points are kept close and far-off points are kept

far from each other.

The two most popular non-linear dimension reduction methods are t-distributed

stochastic neighbour embedding (t-SNE) and Uniform manifold approximation and

projection for dimension reduction (UMAP) [106,211,303]. They are presented below.

Unlike for the linear methods presented before, the dimensions of the embedding space

of t-SNE and UMAP have no specific meaning and cannot be interpreted in terms of

the input variables intuitively.

t-SNE

t-distributed stochastic neighbour embedding (t-SNE), introduced by van der Maaten

and Hinton in 2008 [162], is based on Stochastic neighbour embedding (SNE) [111].

The general idea behind both methods is that for a given set of p-dimensional points,

a low-dimensional representation is built in which the distances represent the distance

in the original p dimensions. Thereto, the Euclidean distances among the data points

are converted into conditional probabilities in the first step. Next, a low-dimensional

representation is derived in which the distances between points are similar to the prob-

abilities with regard to the Kullback-Leibler divergence, which is defined in (2.48).

Thereby, the focus is put on the maintenance of local structures. Below, the SNE

approach is described and subsequently the derivation of t-SNE is explained.

SNE In SNE, the Euclidean distances in the high-dimensional data are converted to

conditional probabilities of neighbourhoods. These probabilities are derived in pro-

portion to their probability density under a Gaussian that is centred at each point.

Formally, for n data points, two n × n matrices P and Q are defined. Each of these
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matrices contains the similarities of each two data points in the high-dimensional, re-

spectively low-dimensional space. To define the conditional probabilities, yi and yj are

defined to be the low-dimensional counterparts of the high-dimensional data points xi

and xj. The respective conditional probabilities are given by:

p(j|i) =
exp(−

∥∥xi − xj∥∥2
/2σ2

i )∑
k 6=i exp(−

∥∥xi − xj∥∥2
/2σ2

i )
, (2.54)

q(j|i) =
exp(−||yi − yj||2)∑
k 6=i exp(−||yi − yk||2)

, (2.55)

p(i|i) = q(j|i) = 0 . (2.56)

The parameter σ2
i is the variance of the Gaussian that is distribution centred around

xi. It essentially sets the size of the considered neighbourhood and balances the local

versus global structure. For small values of σi probability p(j|i) is very small for distant

points and large only for a few nearest neighbours. However, for large values of σi, the

probabilities for distant and close points become similar. Hence, σi is a parameter to

put the focus on either local or global structure preservation. The variance of q(j|i) is

fixed, for example, to 1√
2

or 1
2
, which results in a rescaled representation.

The parameter σ2
i is connected to a hyperparameter, the “perplexity”, l, which is

defined via the Shannon entropy H(pi) of a probability distribution, measured in bits.

For pi, for example, the perplexity is defined as:

l = 2H(pi) , (2.57)

H(pi) = −
∑
j

p(j|i) log2 p(j|i) . (2.58)

Hence, a larger perplexity l results in a smaller σ2
i , and it essentially sets the effective

number of nearby neighbours. The value of σi is obtained through a binary search,

such that

log2 l = −
∑
j

p(j|i) log2 p(j|i) . (2.59)

SNE aims at deriving a low-dimensional representation such that the joint neighbour-

hood probability distributions for the original space, pi, and for the embedded space,

qi, are very similar. The similarity is measured by the sum of the Kullback-Leibler

divergence (which is defined in (2.48)) for all data points:

L =
∑
i

DKL(pi, qi) =
∑
i

∑
j

p(j|i) log
p(j|i)
q(j|i)

. (2.60)
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Note that the Kullback-Leibler divergence is asymmetric. Therefore, in case two points

are far away from each other in the high-dimensional space – hence, p(i|j) is small –

and are close to each other in the low-dimensional space – hence, q(i|j) is high – the

penalty is smaller compared to the vice versa case. For that reason, the local structure

is mainly preserved in SNE.

SNE tries to minimise the difference between the conditional probabilities. The

minimisation is performed via gradient descent. The partial derivative with respect to

yi has the form:

∂L

∂yi
= 2

∑
j

(p(j|i)− q(j|i) + p(i|j)− q(i|j))(yi − yj) . (2.61)

It can be interpreted as a repulsion and attraction between points.

From SNE to t-SNE SNE suffers from two main problems, the first one of which is

the “crowding problem”. Assuming the intrinsic dimension of the data – which is the

minimum number of parameters needed to account for the observed properties of the

data [87] – is m, then there can be up to m + 1 equidistant points. This cannot be

modelled correctly in n < m dimensions. As SNE is mostly used for visualisation, n

is typically no larger than 3. This can lead to data points being collapsed. Another

problem that occurs in SNE appears in the representation of outliers. For an outlier

xi, in SNE, all p(i|j) are very small. In consequence, its modelled position has only a

small effect on the cost functions. Therefore, outliers are often not well modelled.

To decrease the aforementioned difficulties that SNE suffers from, two main changes

are implemented in t-SNE: (1) the similarities in the low-dimensional space are mod-

elled with the Student’s t-distribution rather than a Gaussian distribution, and (2) a

symmetrised version of the SNE cost function with simpler gradients is used.

In SNE, p(i|j) is not necessarily equal to p(j|i). As mentioned before, for an outlier

xi, this can result in all p(j|i) being very small. t-SNE therefore implements symmetric

SNE, in which the probabilities are adjusted to be pairwise similar:

p(ij) =
p(j|i) + p(i|j)

2n
, (2.62)

p(ii) = q(ii) = 0 . (2.63)

This avoids that any p(ij) is getting very small. In consequence, each xi has a significant

contribution to the cost function. Further, the resulting gradient is simpler than the

one in SNE.

To tackle the crowding problem, t-SNE uses the Student’s t-distribution instead of

the Gaussian distribution to model the probabilities in the low-dimensional represen-
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tations:

q(ij) =
(1 + ||yi − yj||2)−

1∑
k 6=i(1 + ||yi − yk||2)−1 . (2.64)

The heavy tails of the t-distribution help in overcoming the crowding problem.

Further, the cost function of t-SNE does not penalises the sum of the Kullback-

Leibler divergence between the conditional probabilities, as is done in SNE. Rather, it

penalises the Kullback-Leibler divergence between the joint probability distributions p

and q:

L = DKL(p, q) =
∑
i

∑
j 6=i

p(ij) log
p(ij)

q(ij)
. (2.65)

The partial derivative with respect to yi of the new loss function then is:

∂L

∂yi
= 4

∑
j

(p(ij)− q(ij))(yi − yj) . (2.66)

Just like for SNE, the gradient gets large when nearby points are too distant in the

low-dimensional representation.

Since t-SNE focuses on the preservation of the local data structure, the global struc-

ture is often not well represented. Therefore, interpretation of t-SNE does not allow for

an interpretation of the relation between clusters. Likewise, the size of clusters is not

necessarily meaningful, because t-SNE expands dense clusters, and contracts sparse

ones.

The balance between a focus on a good representation of either local or global struc-

ture is highly influenced by the choice of the value of the perplexity parameter. For

smaller values, the projected data points are further spread, which often leads to a bad

representation of the global structure. However, for higher values, the local structure is

typically not well represented. Often, t-SNE results vary strongly for different perplex-

ity values. Further, different initialisations can lead to different results, because the

cost function is not convex and t-SNE is a stochastic algorithm. Additionally, t-SNE

is computationally expensive, and it does not scale well for rapidly increasing sample

sizes.

Regarding the use of t-SNE for an analysis of biological data, note that it is mainly a

data visualisation technique. The reason therefore is that from its output, an inference

regarding the input features is not obvious.

UMAP

Uniform manifold approximation and projection for dimension reduction (UMAP) by

McInnes et al. [174] is a graph-based dimension reduction algorithm with many sim-

ilarities to t-SNE. It constructs a fuzzy topological representation of the data and
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then optimises the low-dimensional representation to be similar to the topological rep-

resentation in regard to cross-entropy. UMAP uses approximations to improve the

computational efficiency.

The first part of UMAP aims at deriving a topological representation of the data.

In UMAP, the assumption is that the data, which lies in a metric space, is drawn from

some underlying topological space. To derive the topological representation, the data

is thought of as a set of simplices. A k-simplex is the convex set spanned by k + 1

points in some Euclidean space, for example, a line segment in one-dimensional space

or a triangle in two-dimensional space. To learn about the topology of that space,

simplices are combined, forming simplicial complexes. More precisely, C̆ech complexes

are formed: a ball with a fixed radius is extended outwards from each point, and every

two points are connected whenever their radii overlap.

Choosing the radius is a critical step: if it is too small then the resulting simplicial

complex is split into multiple unconnected components, else, if it is too large then too

many node connections are made and the manifold structure is not learned. UMAP

chooses the radius locally for each point as the distance to its v-th nearest neighbour,

where the number of neighbours is a hyperparameter. In essence, this means that an

edge is drawn from a point to each of its v nearest neighbours. The number of nearest

neighbours controls how UMAP balances local versus global structure: while for a

small number of neighbours the focus is put on the local structure, for larger numbers

of neighbours the focus is put on representing the global structure and details of local

structures can get lost.

To capture the actual distances, edge strengths represent how far apart the points

are. This results in a fuzzy topology. A problem arising from this is that the local

metrics are not compatible, meaning that the distance from point a to b, dab, can be

different from the distance from point b to point a, dba. To merge the distances, the

UMAP distance between points a and b is set to dab + dba − dab · dba. This can result

in points that are essentially isolated. Therefore, UMAP requires that each point is

connected to at least one other point.

Constructing the edges, UMAP uses another parameter, the minimum distance be-

tween points. While for small values of this parameter the embedding is more tightly

packed, for larger values the projected points are further apart.

Taken together, the result of this approach is a fuzzy simplicial complex, hence topo-

logical representation of the data, which can be interpreted as a weighted graph. Due to

the theory applied for the derivation of this graph, it is known that this representation

captures the topology of the manifold underlying the data [174].

The second part of UMAP aims at deriving a low-dimensional representation which

accurately represents the derived topology. To obtain such a representation, in UMAP

56



the cross-entropy for the set of all possible 1-simplices E is minimised:

∑
e∈E

wh(e) log

(
wh(e)

wl(e)

)
+ (1− wh(e)) log

(
1− wh(e)

1− wl(e)

)
, (2.67)

where wh(e) is the weight of the 1-simplex e in the high-dimensional case, and wl(e) is

the weight of e in the low-dimensional case. While the first term in (2.67) causes a large

wl(e) whenever wh(e) is large, the second term causes wl(e) to be small whenever wh(e)

is small. This process should lead to a low-dimensional representation that accurately

represents the overall topology of the data.

Note that during optimisation wh(e) is fixed and thus for the minimisation only the

term

−
∑
e∈E

wh(e) log(wl(e)) + (1− wh(e)) log(1− wl(e)) (2.68)

needs to be considered. In addition, to make UMAP faster, not all simplices are con-

sidered. This is implemented through negative sampling, where potential 1-simplices

are sampled randomly and are assumed to be a negative example, i.e. with weight 0.

The update is then performed according to the value of 1 − wl(e). Therefore, only a

differentiable approximation to wl(e) is required, which allows application of gradient

descent for optimisation. UMAP uses stochastic gradient descent for the optimisation

process.

Comparison with t-SNE Comparing t-SNE and UMAP, one major difference is

the metric that is used to measure the similarity of the derived graph and the low-

dimensional representation. However, note that the Kullback-Leibler divergence DKL,

which is used in t-SNE, is connected to cross-entropy H:

H(P,Q) = DKL(P,Q) +H(P )

=
∑
i

Pi log
Pi

Qi

−
∑
i

Pi logPi

=
∑
i

(Pi logPi − Pi logQi − Pi logPi)

= −
∑
i

Pi logQi . (2.69)

Further, due to the theoretical foundations in UMAP, it preserves global structures

better than t-SNE. However, due to the use of local distances for the construction of

the initial graph, UMAP still represents local structures better than global ones. The

size of clusters relative to each other as well as the distances between clusters in the

low-dimensional representation are therefore not necessarily meaningful.
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UMAP is faster than t-SNE [12, 141]. Two reasons for that are: (1) UMAP uses

Stochastic Gradient Descent, whereas t-SNE uses regular Gradient Descent; (2) UMAP

does not apply normalisation to the probabilities in neither low-dimension nor high-

dimension.

Identical to t-SNE, from the output of UMAP, no inference regarding the input

features can be made.
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3. DLT – a new method for

multi-class transcriptomic data

analysis

In the introductory chapter, it is discussed that the analysis of omics data, including

transcriptomic data, involves several obstacles that need to be considered and tackled

carefully. One main problem in the analysis of such datasets is the large number

of features and the comparably small number of available samples. In the dataset

analysis, this can lead to overfitting. In consequence, the derived models can lack

reproducibility and therefore be insignificant in the medical context [131, 196, 290].

Further, many methods that are widely applied in the analysis of transcriptomic data

imply assumptions that originate purely from a mathematical perspective and are

thus not based upon biological principles [105,138,144]. Consequently, many methods

for dimension reduction often do not exploit the characteristic structuredness of the

biomolecular datasets [4, 22, 208]. Another obstacle exacerbating this problem is the

high noise in transcriptomic datasets. For these reasons, the biological or medical

relevance of results obtained by many currently applied methods in transcriptomic

data analysis has to be regarded carefully. Lastly, interpretability is required in order

to understand the derived models. This is only fulfilled by some existing methods that

are widely applied in transcriptomic data analysis. Therefore, the need for new methods

for the analysis of transcriptomic data that incorporate the idea of structuredness and

derive biologically interpretable results remains.

Within the scope of this thesis, new methods for the analysis of transcriptomic

datasets are developed and evaluated. As described in section 1.2 on omics, there is not

one omics data type that can explain all the processes relevant to the state of a cell or an

organism. As the majority of processes in a cell are guided by proteins and proteomics

yields direct measurements of these, one might conclude that proteomic data is most

suited for deriving insights into biomolecular processes in the cell. However, there are

a number of reasons that speak for an analysis of transcriptomic data.

One argument that speaks for the analysis of transcriptomic data rather than pro-

teomic data is that the proteome is more complex than the transcriptome [41,253,291].
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In addition to the large number of protein sequences, measuring and understanding

their complex three-dimensional structure presents an additional challenge. Yet, tran-

scriptomic data contains measurements of mRNAs, a special type of RNAs, which are

the key intermediate between the genome and the proteome. Hence, there is a direct

connection between the transcriptome and the proteome. Compared to proteomic data,

transcriptomic data provides easier and cheaper access to biomolecular processes in a

cell [245]. It is therefore not surprising that transcriptomic data is the most frequently

produced omics data type [39, 53, 124]. Consequently, besides being widely available,

by now, it is also well understood. This presents an advantage over the other types of

omics data and enhances the demand for new analysis methods in that field. Another

reason that speaks for the analysis of transcriptomic data rather than proteomic data,

is, that it covers the analysis of regulatory RNA molecules. These regulatory RNAs

are, for example, involved in protein synthesis and post-transcriptional modification.

They are influencing the state of a cell, which is why an analysis of them can yield

additional insight. Yet, these molecules are not considered in proteomic studies.

It can be seen that several reasons speak for an analysis of transcriptomic data.

Yet, throughout this work, it has to be kept in mind that transcriptomic data does

only provide measurements of RNA levels and that protein levels cannot necessarily

be inferred from mRNA levels.

A way of reducing problems connected to the obstacles regarding the dimensionality

of transcriptomic datasets is to apply dimension reduction and denoising methods and

subsequently analyse the resulting low-dimensional representation. A group of methods

for dimension reduction and denoising enforce sparsity. Such methods, hereinafter

referred to as “sparse methods”, derive models with few non-zero coefficients. The hope

is that, for example, the coefficients of variables related to noise or of uninformative

variables are set to zero. Further, sparse methods are often preferred for their simplicity

and easy interpretability [14, 130, 247]. Well known representatives of sparse methods

are Lasso [259], Sparse principal component analysis [306], Elastic net [305], Sparse

random forest [115], and Compressed sensing [60].

Due to their concept, sparse methods imply that the data is highly structured. This

prerequisite holds for transcriptomic data [4, 22, 208]. A reason for this structure in

transcriptomic data is the connection of genes and pathways [49]. It is precisely this

structure that is often not explicitly considered and therefore not exploited. Numerous

scientists have criticised this as a weakness of many methods that are widely applied

for the analysis of transcriptomic data, for example in [22,209,236]. In the light of this

criticism, You et al. [286] conclude in their review on low-rank representation and its

application in bioinformatics that researchers need to exploit the full potential of the

structure of the considered problems.
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In addition to the omission of the exploitation of the characteristic structure of tran-

scriptomic datasets, there are further weaknesses of commonly applied methods for

dimension reduction of transcriptomic datasets. In short, analyses by linear methods

like Independent component analysis (ICA) [129], Non-negative matrix factorisation

(NMF) [142,197], and Principal component analysis (PCA) [113,201] are governed by

the respective methods’ constraints on the derived components that can yield represen-

tations that are not displaying the relevant processes (correctly). Further, non-linear

methods like t-distributed stochastic neighbour embedding (t-SNE) [162] and Uniform

manifold approximation and projection for dimension reduction (UMAP) [174] suffer

from preserving local structures rather than global ones [5, 16, 134] and an interpreta-

tion of the results in terms of the analysed genes is more difficult or impossible. In

section 3.2, weaknesses of these methods are discussed in detail.

The methods developed and evaluated in the context of this thesis are based on

Dictionary learning (DiL). DiL is a regularised matrix factorisation approach that infers

sparsity and is thereby well suited for representing structured data. Details on DiL are

provided in chapter 2. One advantage of DiL is that it allows for an interpretation of

the derived representation. DiL is well established in the signal processing domain. A

key proposition of DiL is that each data point can be well constructed from a linear

combination of a small number of columns of the dictionary-matrix, given that the

data possesses a sparse structure.

In DiL, the dictionary columns are not constrained to fulfil any assumptions among

each other. Further, the DiL objective does not require solving a generalised eigen-

value problem. This presents a major difference from other widely applied dimension

reduction methods, for example, PCA and ICA. Approaches incorporating eigenvalue

problems stem from problems in linear algebra. Often, interpretability in the applied

case is at best a by-product of the decomposition. Therefore, such approaches are not

necessarily well-suited for the analysis of biomedical data. Consequently, in comparison

to representations which are derived with ICA or PCA, those from DiL are on average

nearer to the signals due to the refrain from the mentioned assumptions [25].

DiL has been widely applied in the analysis of signals such as image, audio, and video

data, for example in [161, 218, 223]. In section 3.1, it is shown that the application of

DiL for medical data analysis does mainly come down to image analysis. However,

approaches closely connected to DiL are more often applied to omics data.

Inspired by the fact that DiL is capable of detecting relevant structures in the anal-

ysed datasets, in this thesis, the application of DiL for dimension reduction and anal-

ysis of transcriptomic data is evaluated. Ideally, the derived approach should yield

low-dimensional representations in which the main characteristics of the analysed tran-

scriptomic dataset are well represented. Additionally, it should allow for an interpre-
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tation in terms of gene-sets that are most relevant for this representation. Obviously,

these gene-sets should be meaningful in the context of the analysed dataset. Only

such an interpretable approach enables understanding and characterising the investi-

gated processes. In the following, these gene-sets are referred to as “gene-modules”. A

gene-module is a set of genes that code for proteins that interact to coordinate specific

cellular functions and biochemical events. To apply DiL for the analysis of transcrip-

tomic data, some considerations need to be undertaken. These are described in section

3.3.

In the first section of this chapter, the application of DiL and method-wise connected

approaches for transcriptomic data analysis is illustrated. It is shown that the appli-

cation of DiL for transcriptomic data analysis, up until now, is limited. In section 3.2,

weaknesses of commonly applied dimension reduction methods for transcriptomic data

analysis are discussed. Together with the introductory chapter, these sections present

the motivation for the development of our new transcriptomic data analysis methods.

Subsequent to these motivating sections, in section 3.3, it is described how the con-

cept of DiL can be used to analyse transcriptomic data and our new method Dictionary

learning for the analysis of transcriptomic data (DLT) is introduced. Further, in order

to gain a comprehensive understanding of DLT, two simulation studies are performed.

Analysis of simulated datasets allows for parameter sensitivity investigation and per-

formance evaluation of DLT. The simulated datasets are constructed such that they

are composed of different sample types. Further, the influence of different levels of

noise in the data on the results is evaluated. In a first simulation study, the data

is simulated to be composed of five different sample types and the simulated expres-

sion patterns are inspired by real-world gene expression patterns. It is then examined

whether the differences among the sample types are maintained in the low-dimensional

representations. This also requires a parameter study. Therefore, in this simulation

study, the effect of various parameters is analysed. In a second simulation study, in

addition to analysing the low-dimensional representations, the dictionary atoms are

analysed. Further, in the second simulation study, the data is constructed based on

real-world transcriptomic datasets. Analysing real-world transcriptomic data requires

normalisation. Therefore, various normalisation approaches are evaluated in this study

as well.

It shows that the low-dimensional representations for the simulated datasets obtained

from DLT capture important data characteristics, and that the gene-modules derived

from the dictionary are composed of characteristic genes. An application of DLT to

real-world data, including a comparison to current standard approaches for dimension

reduction of transcriptomic datasets, is presented in chapter 4.
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3.1. Application of Dictionary learning in medical data

analysis

The application of Dictionary learning (DiL) in medical data analysis, up to now, is

mainly restricted to image analysis. Interestingly, its application in omics data analysis

is rare. However, approaches closely connected to DiL are more often applied to omics

data. Certainly, there are some studies in which modifications of DiL are applied to

omics data, as described in more detail below. In this section, provides an overview

of studies that belong to either of these categories. Thereby, a focus is put on the

analysis of transcriptomic data, as the methods developed in the context of this thesis

are designed for the analysis of this type of data.

Application of Dictionary learning in transcriptomic data analysis

One of the few studies that applies DiL on transcriptomic data is from Timonidis et

al. [261]. They analyse gene expression and structural connectivity data from several

mouse brain areas to predict the normalised projection volume. DiL is applied to

the gene expression data for a decomposition into transcriptional networks represented

by “spatial gene-modules” and coefficients. In their approach, the dictionary carries

information on the genes, while the coefficient vectors carry respective coefficients

for the mouse brain areas. Their intention of applying DiL is to identify functional

gene-modules with a similar spatial distribution related to cell-type-specific densities.

Their findings suggest that multiple spatial modules are needed to reproduce projection

density patterns from the mouse cortex. Further, an analysis of the detected gene-

sets reveals that the percentage of modules and tracing experiments with at least

one annotation related to postsynaptic function is 100% and 70%, for two datasets

respectively. However, the actual focus of the study is not gene-module detection,

but the performance for prediction. Therefore, models are trained with either random

forest or ridge regression, using the learned dictionaries. They show that high accuracy

is reached for several approaches that apply versions of the steps illustrated above.

In [137], Koletou describes another application of DiL to omics data. She applies

“Nested dictionary learning” to multi-omics data from prostate cancer patients to de-

termine patient subgroups along with their associated molecular features. The method

builds on learning dictionaries, first from the initial data matrix and then iteratively on

the resulting dictionaries. The initial dictionary contains “pseudo-features” of the data

samples; the initial coefficient vectors contain the coefficients from the pseudo-features

to the genes.

In [238], Shi et al. apply DiL with a modified K-SVD algorithm to infer gene regu-

latory networks from transcriptomic datasets. The coefficient vectors are interpreted

63



as regulatory coefficients for each target gene. Their non-zero elements are interpreted

as the regulatory relationship. From the factorised transcriptomic data matrix, they

estimate a regulation confidence to maintain only high confidence regulatory relation-

ships.

Hie et al. [109] take a different approach. Instead of analysing gene expression within

individual cells, they analyse a network determined by clusters of gene co-expression

from samples of multiple studies. On the resulting graph, they estimate pseudotimes

with the Diffusion pseudotime (DPT) approach. In addition, DiL is applied to the

coexpression matrices of each cluster – hence, the dictionary is a collection of few coex-

pression matrices and the coefficients assign combinations of those to different clusters.

A subsequent Gene Ontology term enrichment analysis [50] yields an interpretation of

each cluster.

Application of Dictionary learning in medical image data analysis

As stated above, DiL has found wide application in image processing. In numerous

studies, DiL is applied to medical images. In [147], Lei et al. propose a DiL-based

method to generate synthetic computed tomography (CT) images from magnetic res-

onance images (MRI). In [263], Tošić et al. show that ultrasound tomography (UST)

images can be better reconstructed from dictionaries that are learned from a large set

of MRI breast tissue scans, than from wavelet dictionaries. Interestingly, the studies

by Li et al. in [150, 151] analyse datasets that present a transition between imaging

and transcriptomic data. Namely, they apply DiL to elucidate patterns of transcrip-

tome organisation of the mouse brain from in situ hybridisation (ISH) transcriptomic

images.

Transcriptomic data analysis with modifications of Dictionary learning

In [136], Khormuji et al. present an algorithm based on DiL and locally linear em-

bedding (LLE) for tumour classification from gene expression data. In their approach,

the coefficient vectors, the dictionary, and the classifier are learned simultaneously.

Additionally, they incorporate the idea of LLE for the preservation of the geometri-

cal structure of the data, with the purpose to prevent overfitting. Their evaluation is

restricted to the accuracy of the classification results. An interpretation is not given.

Another approach connected to DiL is “deep DiL”. As given by the name of the

approach, deep DiL combines deep learning and DiL. One example of a study of

scRNA-seq data by a deep DiL based method is [183] by Mongia et al. They in-

troduce “deepMc”, an algorithm for the imputation of missing values in scRNA-seq

data. deepM is an adjusted version of deep DiL [256] with regard to the imputation
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of missing values in single-cell transcriptomic data. They evaluate the performance of

their approach in several experimentations including clustering accuracy, differential

genes prediction and cell type separability, validating biologically relevant and best

gene expression recovery. They state that deepMc outperforms various state-of-the-art

imputation methods.

Transcriptomic data analysis with methods related to Dictionary learning

A concept that is used in DiL is sparse approximation. The aim in sparse approximation

is to linearly represent data from a matrix using only a small number of columns of

this matrix for the representation of each data point. An example of the application

of sparse approximation to transcriptomic data is [103] by Hang and Wu. They apply

Sparse representation classification (SRC) for the classification of tumour samples.

SRC is an approach presented by Wright et al. [278]. In SRC, test samples are firstly

represented as a sparse combination of training samples from different classes. The

classification is performed based on the class of training samples that minimises the

residual between the test sample and the reconstruction. Zheng et al. [302] propose

“Metasample-based SRC” (MSRC), for the classification of microarray data. In MSRC,

“metasamples”, which are linear combinations of the gene expression patterns, are

firstly extracted for each class of training samples. They are then used to construct

the dictionary. Subsequently, testing data is represented as a linear combination of

these metasamples using sparse approximation. Each testing sample is then classified

with SRC. Gan et al. [89] present another application of SRC to transcriptomic data.

In their study, latent low-rank representation is used to compress gene expression data

and SRC is used for the classification.

Prat et al. [209] present another application of sparse approximation for transcrip-

tomic data analysis. They develop “Sparse recovery of linear combinations of ex-

pression” (SPARCLE) to derive new insights regarding the interrelationships between

genes. For this purpose, for a set of objective genes, a matrix containing all profiles ex-

cluding the objective genes is set as the dictionary matrix. Next, sparse approximation

is applied, to find for each objective gene the smallest number of profiles to recon-

struct its profile. Subsequently, a robustness test is performed to assess the derived

deductions.

In these studies that apply sparse approximation to transcriptomic data, for the

dataset X, the model X ≈ DR, with X ∈ Rsamples×genes, is used. Hence, D ∈
Rsamples×m and R ∈ Rm×genes, where m is the number of dictionary atoms. Further,

the “dictionary-like” matrix D is not learned with a DiL approach. The m columns of

D are often referred to as metasamples.

Recall that Non-negative matrix factorisation (NMF) is a method related to DiL.
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It aims at identifying non-subtractive patterns so that when linearly combined they

represent the data at hand. There are multiple studies applying NMF for the analysis

of transcriptomic data. In contrast to the sparse approximation studies introduced

above, NMF studies often use X ≈ DR, with X ∈ Rgenes×samples, hence D ∈ Rgenes×m

and R ∈ Rm×samples. The m columns of D are often referred to as “metagenes”.

One example of a study applying NMF to transcriptomic data is by Brunet et al. [33].

They apply NMF for the classification of leukaemia transcriptomic data. To select

the number of columns of the dictionary-like matrix D, they apply a model selection

methodology. They show that their approach elucidates biologically relevant cancer

subtypes by clustering the tumour samples. Similarly, in [15], Barnes et al. apply NMF

to transcriptomic data from 45 epithelial ovarian cancer cell lines. The representation is

clustered into five distinct subgroups that are representative of the five main subtypes

of epithelial ovarian cancer. They claim that this allows for classifying cell lines that

are not yet annotated. Zhu et al. [304] use NMF for the representation of heterogeneous

scRNA-seq datasets to separate similar groups and identify subpopulations. Further,

genes are ranked due to their importance in separating those groups. In [237], Shao

and Höfer apply NMF on scRNA-seq data for the identification of subpopulations.

Therefore, they use NMF in a cell-centred direction. Hence, relating to the introduced

term metagenes, they rather focus on metacells. They show that NMF outperforms

PCA in this task. Further, they show that genes selected based on the coefficient

matrix in their approach contain known marker genes.

Whereas the methods mentioned in the previous paragraph apply the standard NMF

approach to transcriptomic data, several studies apply modified versions of NMF. Liu

et al. [152], for example, compare standard NMF and multiple versions of regularised

NMF for the identification of differentially expressed genes as well as for clustering

of samples. They show that the regularised methods yield better results in clustering

accuracy and gene selection.

In [178], Min et al. start by proving that while the `2,0-norm is non-convex and non-

smooth, it satisfies the Kurdyka- Lojasiewicz property. This allows for the traditional

proximal gradient method to be used for solving optimisation problems with the `2,0-

norm. They introduce a class of structured sparse NMF models and optimisation

algorithms to solve them. In contrast to DiL, the sparsity constraint in their approaches

is applied to the dictionary-like matrix. They apply their methods for the identification

of subpopulation and gene selection on simulated and real-world data. They conclude

that their methods are well suited for these tasks and outperform standard NMF and

different versions of NMF.

In [92], Gao and Church apply sparse NMF to three microarray datasets. The

sparsity is achieved by adding an `2-norm constraint on the coefficient vectors. Recall
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that in DiL the `1-norm is applied and in contrast to NMF, the entries of the resulting

matrices are not restricted to be positive. They evaluate the performance for cancer

subtype identification, showing that sparse NMF performs better than classic NMF.

Further, they evaluate the 20 genes with the highest entries in the gene-coefficient

matrix by a PubMed search. This evaluation shows that the genes appear also in the

context of cancer-related analyses.

In [57], Devarajan gives a review of NMF in medical data analysis. Sparse NMF

methods are also discussed. Devarajan concludes that one of the most useful appli-

cations of NMF is, perhaps, metagene projection for the interpretation of large-scale

biological datasets. Further, he sees “tremendous potential for applicability in a wide

variety of computational biology problems”.

Another study by Cleary et al. [49] presents an approach that builds on Compressed

Sensing, DiL, and NMF to generate a high-dimensional transcriptomic profile from a

profile of a small, random selection of genes. In their method “Blind compressed sensing

with sparse modular activity factorisation” (BCS-SMAF), a sample is represented from

a matrix of random composite weights, a dictionary and a coefficient matrix. Both,

the dictionary and the coefficient matrix, are required to be sparse, and the dictionary

is required to be non-negative. In a method-wise connected study [288], Yu et al.

evaluate approaches that integrate different nature-inspired optimisation algorithms

with compressed sensing. They present a detailed evaluation of the reconstruction

accuracy, time complexity analysis, and a biological evaluation. Similar to DiL, they

also require one of the output matrices to be sparse. However, they choose to enforce

sparsity on the gene-coefficient dictionary matrix and not on the sample-coefficient

matrix. Another connected approach is presented in [296] by Zhang et al. They

introduce a new computational framework to infer gene expression profiles from random

composite measurements. Their approach “Differential evolution compressed sensing”

(DECS) combines the differential evolution algorithm with compressed sensing. They

evaluate the reconstruction performance, time complexity, convergence, and sensitivity.

A biological evaluation is not provided.

Multi-omics data analysis with methods related to Dictionary learning

In addition to studies analysing solely transcriptomic datasets, researchers are also

analysing datasets from different omics types. These studies are referred to as “multi-

omics” applying “data integration”. We have not found any studies applying a DiL-

based approach for analysing multi-omics datasets, including transcriptomic. However,

some studies apply methods similar to DiL for such an analysis.

In [91], Gao et al. present their new algorithm “Online integrative NMF” (iNMF).

Similar to online DiL [167], iNMF presents an online version of the NMF approach.
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They apply iNMF for the integration of large single-cell gene expression, chromatin

accessibility and DNA methylation datasets with samples from multiple types. They

show that iNMF reaches a high performance in dataset alignment and cluster preser-

vation and scales faster than the standard NMF algorithm. Yet, they do not present a

study of the genes that could have been identified from the dictionary-like matrix.

In [40], Cantini et al. evaluate nine methods for the dimension reduction of multi-

omics datasets, including transcriptomic datasets. Seven of the nine methods are exten-

sions of dimension reduction methods which have been applied for single-omics dataset

analysis, such as ICA, NMF, and PCA, among others. None of the considered meth-

ods is based on DiL. Cantini et al. analyse simulated datasets and real-world bulk

and single-cell omics datasets. They test the performance for clustering, as well as

the associations of identified factors with survival, clinical annotations and biological

annotations. They conclude that different methods should be prioritised depending on

the respective analysis focus.

In [26], Bismeijer et al. present another multi-omics study, which includes tran-

scriptomic data analysis from breast and lung tumours. Their approach “Functional

Sparse-Factor Analysis” (FuncSFA) integrates multiple data types to define a lower di-

mensional space capturing the relevant variation tailored to gene-set enrichment anal-

ysis. In FuncSFA sparsity is enforced on the regression coefficients associated with the

factors. They apply FuncSFA to TCGA breast and lung cancer datasets. They thereby

identify processes common to both cancer types. Further, in the breast cancer dataset,

they recover known intrinsic subtypes and identify additional processes.

For completeness, a recently published deep learning-based framework for high-

throughput biomolecular data analysis is also included in this literature overview.

While deep learning-based methods have not been illustrated in detail in section 2.5

on methods related to DiL, they can be considered method wise connected to DiL.

In [295], Zhang et al. propose their deep learning-based auto-encoder, DeepAE. They

apply their approach to transcriptomic, metabolic, and mass cytometry data. They

evaluate the encoding performance between the original and the reconstructed data.

For a biological evaluation, they evaluate each hidden key dimension in the central

hidden layer one by one via Gene Ontology term enrichment analysis [50] and pathway

analysis. While this approach is very substantial, it also indicates that an interpretation

for deep learning-based frameworks complicated and potentially not really given.
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3.2. Weaknesses of commonly applied dimension

reduction methods for transcriptomic data analysis

A multitude of methods exist that are widely applied for dimension reduction and anal-

ysis of transcriptomic datasets, for example, those presented in section 2.5: ICA, NMF,

PCA, t-SNE, and UMAP. While these methods are widely applied and therefore well

understood, there are a number of downsides to their application for transcriptomic

data analysis. These downsides are illustrated in this section to motivate the need for

new methods for transcriptomic data analysis. Note that the number of comparison

methods in this section is limited to those presented in section 2.5 to not exceed the

scope of this illustration. Recall that these methods are described in section 2.5 be-

cause they present widely applied methods or are method-wise closely connected to

Dictionary learning (DiL).

ICA [129] and PCA [201] present examples of linear methods that are widely applied

for the dimension reduction of transcriptomic datasets. However, there are concerns

regarding the use of these methods for this purpose which are also discussed by other

authors, for example in [97, 285]. Both, for ICA and PCA, the components to be

determined and which the data is projected onto have to satisfy assumptions, namely

independence (in ICA) or orthogonality (in PCA). It is precisely these restrictions that

can yield representations that are not displaying the relevant processes (correctly).

When PCA is used to derive low-dimensional representations of datasets, it is antic-

ipated that the desired information is exactly provided by variance. This assumption

does not necessarily hold for omics data, and can thus prohibit the detection of the ac-

tual process-guiding factors: the biological question might not be related to the highest

variance in the data. Indeed, the variance assumption can lead to the wrong factors

being detected [283]. Often, experiments cannot be controlled perfectly and, for ex-

ample, technical or sampling bias have a large impact on the variance of the data. In

addition, some genes might vary little, but nevertheless be important for the process

under investigation.

ICA derives statistically independent components. Independence is a stronger con-

dition than non-correlation in PCA. Especially in biological processes, though, inter-

dependency of occurring processes is perfectly conceivable. Such processes could be

missed by an ICA analysis and the derived low-dimensional representation would be

misleading. An additional disadvantage of ICA is that it suffers from instability [64].

A third linear approach that is widely applied to derive low-dimensional represen-

tations of transcriptomic datasets is NMF [142, 197]. This approach does not apply

restrictions on the dependency of the derived components, it only requires the entries

of the factor matrix and the factor loading matrix to be non-negative. However, with

69



only this restriction posed, NMF has the main disadvantage of the non-uniqueness of

solutions, and it suffers from the problem of falling into local extrema [289].

There are also non-linear methods that are widely applied for the dimension re-

duction of transcriptomic datasets. Popular examples are t-SNE and UMAP. Due

to the non-linearity, they do not result in two matrices, like ICA, NMF, PCA, and

other matrix factorisation approaches. This makes an interpretation of the results in

terms of the analysed variables – hence, genes in transcriptomic data analysis – more

difficult or impossible. Further, both approaches, and t-SNE in particular, are criti-

cised for preserving local structures rather than global ones, for example in [5,16,134].

In their evaluation of multiple methods for visualising structure and transitions of

high-throughput data, Moon et al. [185] find that t-SNE and UMAP encourage the

formation of clusters even when these cluster structures do not exist and that both

methods shatter trajectories.

In summary, the mentioned widely applied methods for the dimension reduction of

transcriptomic data suffer from several weaknesses. The main weaknesses are a bias

of the obtained representations by the underlying model of the methods, as well as

non-interpretability of the representations. This demonstrates the need for the devel-

opment of new methods that project transcriptomic data to biologically meaningful

and interpretable components.

3.3. Dictionary learning for transcriptomic data analysis

(DLT)

Our new method Dictionary learning for transcriptomic data analysis (DLT) is de-

signed for transcriptomic data analysis. The method is closely related to Dictionary

learning (DiL). DiL is a regularised and unsupervised matrix factorisation approach

that decomposes a given data matrix into a dictionary matrix and a coefficient matrix

that yield the low-dimensional representation. Details on DiL are presented in section

2.3.

DLT considers a slightly modified problem than DiL. For the explanation of DLT,

suppose X ∈ Rp×n presents a transcriptomic count data matrix, where p is the number

of genes (or reads) and n is the number of samples. In the application of DiL to such

a transcriptomic count data matrix, X can be analysed in two orientations, either

X ∈ Rp×n, or its transpose XT ∈ Rn×p. DiL then decomposes X as X ≈ DR. The

proposed method DLT should serve for gene-module detection from the dictionary

matrix D, which requires D ∈ Rp×m. Therefore, X ∈ Rp×n is considered, because

otherwise for XT , D ∈ Rn×m and, hence, D does not entail information on the genes.
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Figure 3.1.: Two optional orientations for Dictionary learning of transcriptomic
data. The different orientation of the data matrix X results in different dimensions of the
matrices D, the dictionary, and R, the sparse coefficient matrix. The figure shows the
matrices for both options. At the top, X ∈ Rn×p, where n is the number of samples and p
the number of genes. For this orientation D ∈ Rn×m, with m > n, is overcomplete. At the
bottom, X ∈ Rp×n and D is not overcomplete. Only for this orientation of X, D is carrying
information about the genes.

The two described options are visualised in Figure 3.1.

In transcriptomic count data analysis, datasets typically contain information on a

large number of genes and on a comparably small number of samples. This is referred

to as the “small n large p” problem. It is referred to as a problem because in its

consequence it can be difficult to derive consistent results which hold also for unseen

data. This is discussed in more detail the introduction of this thesis, as well as in the

introduction of this chapter. Because n � p, this also means that for X ∈ Rp×n, a

dictionary D = X presents an optimal solution to the problem. The reason is that in

such a case the reconstruction error would be zero and the sparsity would be one for

each sample and hence minimal. A higher number of atoms would not be beneficial.

At the same time, D = X is trivial and does not provide any new information about

the data. Therefore, in DLT, m < n and hence m � p. Thus, dictionaries in DLT

are not overcomplete, which presents a difference from the common application of DiL

where overcomplete dictionaries are learned.

As mentioned earlier, DLT presents an approach that yields sparse low-dimensional

representations. Therefore, the atoms need to be constructed such that the reconstruc-
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tion of each sample requires as few atoms as possible. Applying DLT to transcriptomic

data, the idea is that this leads to atoms that depict relevant processes appearing in a

large number of samples. Hence, there are two reasons for applying DLT as discussed:

(1) the dictionary matrix serves as a collection of gene-modules and (2) the sparsity

constraint on the coefficient matrix together with a small number of atoms compared

to the number of genes in the initial dataset enforces the determination of modules

that are highly characteristic over the entire dataset.

As stated above, the derived dictionary can be used for gene-module detection. A

gene-module is a set of genes that code for proteins that interact to coordinate specific

cellular functions and biochemical events. In DLT, the gene-modules are derived based

on the significant values of each dictionary atom. Recall that an atom represents a new

latent variable, which is generated by a weighted combination of the original variables,

hence, for transcriptomic data, genes or reads that can be assigned to genes. Ideally,

the atoms represent gene expression patterns, which are characteristic of a subset of

the samples in the data. Due to the construction of an atom as a weighted combination

of the genes, the most important genes for an investigated process can be identified by

ranking the genes by their corresponding coefficients in the dictionary atoms.

In summary, DLT serves as a dimension reduction approach for transcriptomic

datasets. The obtained representation given by the coefficient matrix can be used

for subsequent analysis. Further, the interpretability of the atoms serves for an evalua-

tion and interpretation of the representation. In the following, for simplicity and if not

stated otherwise, the term coefficient is used to refer to the sample coefficients from

the coefficient matrix –hence, not the entries of the dictionary matrix.

3.3.1. Motives for applying DLT with thin-matrix gene-dictionaries

As indicated before, applying DiL on transcriptomic data, the dictionary and coefficient

matrix can be constructed in two ways: either the entries of the dictionary atoms refer

to samples and the coefficient matrix entries refer to gene-sets or vice versa. This means

that choosing either of these settings also determines which matrix entity – gene-set or

sample representations – is constrained to be sparse.

In our approach Dictionary learning for transcriptomic data analysis (DLT), the

dictionary contains information about the genes. A reason for choosing this setting

is the interpretability such an approach provides. Namely, each column (atom) of

the dictionary can be interpreted as a gene-module. This means that prevalent gene-

modules are requested in the application of DLT, which are added for each sample to

construct the respective expression profile. The coefficient vector for each sample can be

interpreted as an instruction for the conjunction of the corresponding (sub-)processes,

or as a pattern of gene-module activation.
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DLT promotes the detection of gene-modules that are highly characteristic for the

subset of samples using this atom. This is achieved by the sparsity constraint, hence,

the small number of atoms (gene-modules) used for the representation of each sample,

and the regularisation term that promotes a representation which resembles the data

accurately: the few atoms need to present the data patterns well and for the represen-

tation of each sample few atoms may be used. This can only be achieved if the atoms

capture highly-characteristic data patterns.

Care has to be taken with outlier samples: whenever there are outlier samples in

the dataset, the inference depicted in the previous paragraph can be broken. This

is because a single atom representing this outlier sample could yield a similar loss,

while the sparsity would be equal to one for this sample (because it is representing

the sample perfectly), hence yielding a very small penalty. This example shows that

outlier detection and also data normalisation are important when applying DLT.

In analysing transcriptomic data from different groups of samples with DLT, ideally,

each atom represents a characteristic (sub-)profile of the sample group that uses this

atom. Assume a dataset contains expression profiles for two sample groups and DLT

was used to yield two atoms. Then, each DLT atom could represent an average profile

of each group. Likewise, DLT could return one atom that presents a gene-module

which is used in both groups and one which is used to distinguish the two sample

groups. An intuitive example for the latter case is a module that contains coefficients

on housekeeping genes (genes that are involved in fundamental cellular functions),

which is expressed in all samples. The other module in that case could then contain

coefficients on the genes that exhibit functions relevant for processes in the particular

group. Which one of these two cases occurs depends on the gene expression patterns

in the dataset. For an increasing number of atoms, each atom could represent gene-

modules for specific, more detailed processes.

Certainly, by applying DLT and hence obtaining thin-matrix dictionaries, the results

differ from the classical DiL approach with overcomplete dictionaries. Indeed, the main

goal of DLT is not to yield a data representation that has a very small reconstruction

error from the original dataset. Considering the high noise and drop-out events in

transcriptomic data, it becomes clear why this is not necessary. However, the char-

acteristic structural composition of gene expression data, which has been mentioned

before, should yield a representation of the actual biological processes with little error

by using a small number of atoms. A side benefit of using thin-matrix dictionaries is

that the small number of atoms promotes interpretability further as the samples are

represented using only a few atoms, hence dimensions.

Other dimension reduction approaches, for example, ICA, NMF, and PCA (which

are introduced in section 2.5), typically use the same orientation of the data matrix
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as proposed here for DLT. Hence, by application of these methods for transcriptomic

data analysis, components are also derived as weighted combinations of the genes and

therefore the number of components is a lot smaller than the number of genes. However,

due to the different constraints on the factoring matrices, the components obtained

by these approaches differ from those that result from DLT. As stated before, it is

exactly the sparsity constraint in DLT that promotes the determination of characteristic

components and enhanced interpretability of the representation. Further, as illustrated

in detail before, in the mentioned approaches, the components are constrained to satisfy

particular characteristics. Rather than imposing constraints on the components, in

DLT the gene-modules are not restricted other than to be qualified for the sparse low-

dimensional representation. This allows for the components to be well adapted to the

data at hand when derived with DLT. In addition, because the coefficients are not

determined as a simple linear function of the input, but in a sparsification process,

DLT presents a method that is robust towards noise.

Transition to an underdetermined system

The DLT approach implicates solving an underdetermined system. However, under-

determined systems do not necessarily have a solution. Therefore, the reconstruction

error δ in (2.8) is almost surely non-zero in DLT. Recall that the focus of the method

is not to derive a perfect representation. However, the structural characteristic of

transcriptomic data should serve for a DLT representation with little error.

3.3.2. Implementation and complexity

For the implementation of DLT, the dictionaries are learned with Python’s sklearn

[202] DictionaryLearning [167] object. It implements an Online dictionary learning

(ODL) method (details on ODL are provided in section 2.4.2/Online dictionary learn-

ing). The penalty parameter in the learning process, λ, (compare formulation (2.10))

is fixed to 1. Hence, the reconstruction error and the sparsity are equally penalised.

DictionaryLearning solves the DiL problem “by efficiently minimizing at each step

a quadratic surrogate function of the empirical cost over the set of constraints” [167].

This is in line with the observed times for the experiments presented throughout this

thesis.

In detail, the dictionary is learned in a first step according to formulation (2.10).

Next, the coefficient vectors are derived using the obtained dictionary in a second

run in which the sparsity is specified. This allows obtaining results for all sparsities

s ∈ {1, . . . ,m}.
The coefficient vectors are computed with Orthogonal matching pursuit (OMP) [200].
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The reason OMP is chosen as the sparse approximation algorithm is that, compared

to the three other approaches implemented in the applied DictionaryLearning object

from Python’s Scikit-learn module LARS, LASSO, and Thresholding, it showed the

best performance in the sample type representation on the simulated data analysed in

section 3.4. A complexity analysis of OMP is presented in [227].

Same as the selection of the sparse approximation algorithm, also the fixation of the

penalty parameter λ to a value of 1 is based on the results of the simulation study

presented in section 3.4. Different values for λ ∈ {0.01, 0.1, 0.5, 1, 5, 10, 100} have been

evaluated. Among the values, for λ < 0.5 or λ > 1, the low-dimensional representations

are more ambiguous in respect to representing simulated patterns compared to values

∈ {0.5, 1} and hence the simulated patterns are less identifiable. While for a smaller

number of atoms, a value of 0.5 tends to yield better results, for a larger number of

atoms, a value of 1 tends to yield better results. As a value of λ = 1 is chosen in most

DiL studies, this value is also selected for our method.

Thus, DLT has two main parameters: m, the number of atoms and s, the spar-

sity of the representation for each sample. A third parameter which is used by the

DictionaryLearning object is a random seed that is used for the initialisation of

the dictionary. If not stated otherwise, this parameter is fixed to 0 in all evaluations

presented throughout this thesis.

3.4. Simulation study 1: type separation

When applying DLT to transcriptomic data from multiple sample types, the intention

is that the atoms represent the main gene expression patterns, characteristic of the

sample types. Then, each sample can be reconstructed (with small errors) by a linear

combination of the determined atoms. In interpretation, this means that the dictionary

atoms entail the gene-modules of the analysed data, i.e., gene-sets that are mutually

activated or deactivated, and the low-dimensional representation can be interpreted as

a representation of the data based on the gene-modules.

To evaluate whether this desired behaviour holds for DLT, in a first simulation study,

the data is simulated to be composed of five different sample types. It is then examined

whether the differences among the sample types are maintained in the low-dimensional

representations. This simulation study also involves a parameter study to study the

effect of various parameter values.
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Background genes Housekeeping genes Type genes
S
e
tt

in
g

Amount Value Amount Value Amount Value

A All 0 None - All 1
B All 0 None - 50% 1
C 60% 0 40% 1 50% 1
D All N (0, 0.2) None - 50% N (0.7, 0.2)
E 60% N (0, 0.2) 40% N (0.7, 0.2) 50% N (0.7, 0.2)

Table 3.1.: Overview of the five data simulation settings for the DLT parameter
study. In each setting, five sample types with characteristic expression patterns are simu-
lated. Further, up to three gene classes are simulated: “background genes”, which have low
simulated expression values, “housekeeping genes”, which have high simulated expression val-
ues in all sample types, and “type genes”, which have high simulated expression values only
in the sample types. For each simulation setting, the percentage of these gene classes among
all genes as well as the particular values vary. Details are given in the respective columns of
the table. In two settings, values are drawn at random from a normal distribution to simulate
noisy patterns. N (µ, σ2) is the normal distribution with mean µ and variance σ2.

3.4.1. Data simulation

The simulated datasets are constructed to be composed of five different sample types.

Each sample type is characterised by a distinct expression pattern. Five different

simulation settings are performed, which vary in the construction of expression patterns

and noise.

The data is simulated for 50 samples and 100 genes. Each of the five sample types

is represented by 10 samples. In each sample type, up to 20 genes are simulated to be

highly expressed, further referred to as “type genes”. The other “background genes”

are simulated to be “normally expressed”. Among the five simulation settings, high and

normal expression is defined differently. Further, the number of highly expressed genes

differs. In two of the five simulation settings, a subset of the background values are

highly expressed amongst all sample types as well, to simulate “housekeeping genes”.

Further, in two settings, values are drawn from a normal distribution at random to

simulate noisy measurements.

A detailed explanation of the simulation settings is presented in Table 3.1 and visu-

alised in Figure 3.2. For each setting but the first (setting A) 100 datasets are simulated

with different seeds ∈ {1, . . . , 100} for the random drawing. Setting A does not involve

a random drawing, and thus only one dataset is simulated.

To assure that the ordering of the type genes, which are sorted for each type to

appear in blocks in our visualisations (in Figure 3.2), does not influence results, they

are shuffled.
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A B C D E

Figure 3.2.: Simulated datasets with five different sample types for the DLT pa-
rameter study. Each subfigure visualises the expression values for one simulation setting.
The setting ID is given in the subfigure headers. Expression values are colour coded from
white for low values to dark blue for high values. The simulated data is constructed to be
composed of five sample types. For each sample type, a subset of the type specific entries
has high values. In the simplest setting (A), which the other settings are based on, all type
specific entries are 1 and the other values are 0. In the other simulation settings: values of
the type specific genes are drawn at random (in B-E); the patterns are noisy (in D, E); a
subset of expression values is high in all types to simulate housekeeping genes (in C, E).

3.4.2. Result evaluation approaches

When DLT is applied to datasets from multiple sample types, the derived low-dimensional

representations should display the type-specific differences. To evaluate whether this

is the case, the low-dimensional representations are clustered. The clustering is per-

formed with k-means clustering [156] with k = 5 clusters. Clustering algorithms other

than k-means have been tested additionally, namely DBSCAN [75] and spectral cluster-

ing (using Python implementations from sklearn [202]). However, their performance

was not significantly better, which is why the simple and well-known k-means algo-

rithm is applied in the experiments. The resulting clusters are compared to the sample

types with the Adjusted rand index (ARI) [117] and the Adjusted mutual information

(AMI) [270].

The ARI is based on the Rand index (RI). The RI is a measure of the agreement of

two partitions. It is defined as the ratio of the sum of the number of pairs of elements

that are either in the same types or in different types in both partitions against the total

number of pairs of elements. A problem with the Rand index is that the expected value

of the Rand index between two random partitions is not constant. This is corrected in

the ARI. The maximum ARI is 1 and its expected value for random clusters is 0.

The mutual information is a measure of the mutual dependence between two vari-

ables. Briefly, for two clusterings, it measures how much knowing one of them reduces
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uncertainty about the other one. Similar to the RI and ARI, the AMI is an adjustment

of the mutual information to account for chance.

Additionally, the reconstruction error between the simulated data matrix and the

reconstruction based on the dictionary matrix D and coefficient matrix R (compare

equations (2.8), (2.9), and (2.10)) is measured as the euclidean distance.

3.4.3. Results

Our method DLT has two parameters: the number of dictionary atoms, m, and the

sparsity, s. Multiple parameter value combinations are tested to evaluate their influ-

ence on the representation of the simulated datasets. To narrow down the range of

parameters in this analysis, a first grid search is performed over a wide range of values

for parameter 1 ≤ m ≤ 50 and sparsity s ∈ {1, . . . ,m}. Depending on the simulation

setting, the most relevant changes in ARI, AMI, and reconstruction error are reached

when 1 ≤ m ≤ 20 (results not shown). Therefore, the number of atoms is varied over

m ∈ {1, 2, 3, 4, 5, 10, 20} in the detailed simulation study presented here.

Results for this simulation study are visualised in Figure 3.3. When the number of

atoms in DLT is equal to 5, for all simulation settings the median clustering scores

ARI=AMI=1. This means that the clustering is in entire agreement with the sample

type partition. This holds for all values of parameter s ∈ {1, . . . , 5}. Recall that the

simulated data is constructed to be composed of five sample types. Hence, in this

study, one optimal value for the number of atoms regarding the representation of the

sample types is equal to the number of sample types.

For the simulation settings without noise (settings A, B, C) clustering scores of 1 are

also reached whenever the dictionary has four or more atoms – this is when the median

over the 100 simulated datasets per setting is considered. There are few exceptions in

simulation setting C where the ARI and AMI are smaller than 1, however, the median

scores are equal to 1 (compare Figure 3.3). For simulation setting C, the median

clustering scores are 1 also for the smaller values of m. Simulation setting E is the only

one for which the clustering scores are less than 1 for dictionaries with four atoms.

Different to the results for the simulation settings without noise, in the simulation

settings with noise (settings D, E), the clustering scores decrease when the number of

atoms exceeds five. An explanation could be that the additional dictionary atoms in

settings D and E are representing noise which is uncorrelated to the sample types.

Similar to the clustering scores, also the median reconstruction error is minimal

for DLT among all evaluated numbers of atoms for m ≥ 5 – again, considering the

median value for the 100 simulations with different random seeds. In the simulation

settings without noise, the minimal median reconstruction error is zero, whereas, in

the settings with noise, the reconstruction error remains > 0. This is not surprising
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Figure 3.3.: Simulation study evaluations for DLT for several parameter values.
The data is simulated to consist of five sample types (precise simulation setting is given by
capital letters in rows, details are given in section 3.4.1). Each plot shows results for one
simulation setting and a fixed sparsity. The sparsities are given at the top of the figure.
Shown are the reconstruction error in blue, the Adjusted rand index (ARI) in green, and the
Adjusted mutual information (AMI) in purple on the two y-axes. The ARI and AMI are
used to measure the overlap of the k-means clusters of the low-dimensional representations
with the simulated sample types. The x-axis of each plot displays the number of atoms of the
dictionaries. For each simulation setting that requires a random drawing (all except setting
A) 100 simulations are performed. The lines and points for each evaluation metric display its
median value, and the shadows display the 25th and 75th quantile. In all settings without
noise (A, B, C) the minimal median reconstruction error is zero. Further, in all settings,
the clustering scores are 1 for a dictionary with five atoms no matter how sparsely the data
is represented. In the settings with noise (D, E), the clustering scores decrease when the
number of atoms exceeds five, whereas in the settings without noise the clustering scores stay
1 for any number of atoms ≥ 4.
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and indeed intended, as the hope is that the representation does not contain (much of

the) noise. This is also discussed in the section on the motives for designing DLT with

a thin-matrix dictionary (section 3.3.1).

Summarising the results of this simulation study, an influence of the parameter values

on the representation of the sample types is particularly noticeable for noisy data. In

this study, the best results among various simulation settings are reached when the

number of dictionary atoms is equal (or close) to the number of sample types in the

dataset.

3.5. Simulation study 2: gene-module detection and

normalisation

The numerical experiments in the previous section 3.4 provide access to understanding

DLT. It shows that in the low-dimensional representation obtained by a DLT analy-

sis, differences among distinct sample types in the simulated datasets are maintained.

Further, it shows that the choice of the parameter values has an impact on the results,

especially for noisy data. Yet, there is a range of values which yield good representations

– hence, representations with a small error that capture the main data characteristics

– and the values are based on the composition of the dataset.

In a second simulation study presented in this section, datasets are constructed based

on real-world transcriptomic datasets – unlike in the first simulation study, where values

are either fixed to 0 or 1 or are drawn from a normal distribution. Further, what is

not analysed in the first simulation study is whether DLT is suited for the detection

of gene-modules that exhibit characteristic patterns in the data. This is considered

here, in addition to analysing the low-dimensional representations, by an analysis of

the dictionary atoms.

Analysing real-world transcriptomic data requires normalisation to correct for se-

quencing biases, batch effects, library sizes, etc. Otherwise, these effects can yield

misleading results. Further, normalisation can help to provide numerical stability and

enable greater interpretability of the results. For DLT, the normalisation has to account

for different effects in the data.

To determine one best-performing normalisation technique, various approaches are

tested on the simulated datasets. In this evaluation, the focus is not put on the

low-dimensional representation but on the gene-module detection, enabling the inter-

pretability of the low-dimensional representations. The reason therefore is that the

effect of the normalisation is stronger visible in terms of the genes than in the low-

dimensional representations because in those the effects can be balanced out. Further,
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in the simulation study, datasets are created based on different gene expression pat-

terns. The effect on each gene – and therefore also on the genes with altered expression

– is visible in the dictionary only.

The simulated data is constructed to be composed of two sample types, each of

which has different expression patterns in a subset of genes. It is evaluated whether

the relevant expression patterns in the data are reflected by DLT. Further, just as in

the previous simulation study presented in section 3.4, the ARI of the clustered low-

dimensional representations with the sample partition is evaluated to assess whether

the types are well represented.

3.5.1. Data simulation

The simulated datasets are constructed to be composed of two sample types, each

of which has different expression patterns in a subset of genes. The simulated gene

expression values are constructed based on those from two real-world transcriptomic

RNA-seq datasets: GSE112004 from the Gene expression omnibus (GEO) database [67]

(pre-B cells, single-cell data) and GTEx from the Genotype-Tissue Expression (GTEx)

database [51] (tissues cells, bulk data). The datasets contain multiple subtypes, i.e.

cells in different states of transdifferentiation and cells from different tissue types.

Further, one of the datasets is a bulk dataset and the other one is a single-cell dataset.

This diversity in the datasets as well as in the sample types should provide a wide range

of observed expression patterns that are consequently considered in this simulation

study.

Effects in transcriptomic data to be corrected by a normalisation

The analysis of real-world transcriptomic data requires normalisation to correct for

sequencing biases, batch effects, library sizes etc. Otherwise, these effects can lead to

misleading representations. Further, normalisation can help to provide numerical sta-

bility and enable greater interpretability of the results. Hence, before applying DLT,

data normalisation should be performed. To determine a normalisation approach, sim-

ulated datasets are constructed and normalised with various normalisation approaches.

The normalisation needs to account for the following effects (visual examples are pro-

vided in Figure 3.4):

1. Different sum of expression in different genes

• If one gene has high values over many samples, the learned dictionary should

have high values for this gene in at least one atom. However, a gene that has

high values in all samples is not a type-specific gene. Not normalising the
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intensities of gene expression would lead to a dictionary with comparatively

high values for such a gene. Yet, the proportional difference among different

samples can be more relevant for other genes. A visual example is provided

in Figure 3.4a.

2. Different total expression in different samples

• Different total expression for all genes among different samples can be caused

by different experimental settings, such as a different number of total read

fragments. Without normalisation, this can lead to genes that are signifi-

cantly high expressed in a sample, but this gene not being recognised as such

due to a lower total expression in this sample compared to other samples.

A visual example is provided in Figure 3.4b, gene 18.

3. Similar expression differences in a gene for different average expression

• Depending on the average expression for a gene amongst all samples, an ex-

pression difference for a gene among different samples of some fixed value can

be more or less relevant for the sample classification depending on expression

in other samples. This holds when the difference among samples is propor-

tionally higher or smaller for the respective gene. In consequence, without

normalisation, genes with small expression values among all samples, but

significant proportional difference among samples could be overseen. A vi-

sual example is provided in Figure 3.4b, genes 4 and 6.

These effects can lead to putting too much weight on minor expression differences

among samples, which in its consequence can lead to the identification of genes that are

not relevant for the analysed process. Likewise, relevant genes can remain undetected.

Normalisation can help to even out these sorts of effects. In this section, different

normalisation techniques applied to genes and/or samples are evaluated on simulated

datasets for a wide parameter range.

Data simulation approach

The simulated datasets are constructed to be composed of samples from two different

sample types. In each type, particular genes exhibit specific expression patterns. These

distinct expression patterns should be detectable after normalisation. In addition,

expression patterns that are not meaningful for a type distinction but based on artefacts

are simulated as well. These effects should be balanced out by a normalisation. Each

of these effects is simulated by sets of genes, which are referred to as “gene classes” in

the following.
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(a) Gene expression of two genes for multiple samples

(b) Gene expression of three samples for multiple genes

Figure 3.4.: Effects in transcriptomic measurements that should be corrected for by
a normalisation for a DLT analysis. Visualised are different expression patterns that can
lead to the detection of gene-modules that are not relevant to the different types. Subfigure
(a) shows the expression (y-axis) of two genes (indicated by colour) over 10 samples (x-axis).
Genes A and B have similar differences in expression amongst all samples. However, for gene
B the relative change is significantly higher due to a lower overall expression. Subfigure (b)
shows the expression (y-axis) of three samples (indicated by colour) for 20 genes (x-axis). Note
the different axes in the two subfigures. For genes 4, 6, 10, 14, and 18 at least one sample has
a significantly higher expression compared to other measurements for the respective sample.
The ratio of expression difference between the samples for each gene varies, and so does the
total sum of expression among samples. For gene 18, the expression difference of sample C
to samples A and B appears small. However, sample C has the smallest sum of expression.
Therefore, this gene is displaying a strong type difference, which could be overseen without
normalisation. Further, for genes 4 and 6 the expression difference is the same among the
samples. However, for gene 4 the expression values are smaller for all samples. Therefore,
the relative type difference is stronger in gene 4 than in gene 6. Without normalisation, these
genes could be classified as equally important or with higher importance on gene 6 due to
the higher expression values.

The data simulation is based on two real-world datasets: GSE112004 from the Gene

expression omnibus (GEO) database [67] (pre-B cells, single-cell data) and GTEx from

the Genotype-Tissue Expression (GTEx) database [51] (tissues cells, bulk data). The

simulated datasets that are based on dataset GSE112004 are hereinafter referred to as
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Figure 3.5.: Parameters of the negative binomial distribution fits of two real-world
datasets. Evaluated are the parameters µ and size. The distributions of the values in these
real-world datasets GSE112004 and GTEx (the dataset IDs are given in the subfigure titles)
are used for the simulation of the datasets in the simulation study. The obtained negative
binomial distribution parameters of the real-world datasets are shown in red (axes in log-
scale). The selected simulation parameter pairs are shown in blue. As can be seen, for the
data simulation, a grid selection on this parameter space for the real-world data is conducted.

datasets “D1”, and those based on the GTEx dataset are referred to as datasets “D2”.

To simulate data based on these two datasets, in advance of the actual simulation,

parameter values of the distributions of the expression of all genes in all samples in those

datasets are determined. Commonly, the distribution of raw gene expression counts is

modelled with the negative binomial distribution [7]. The reason this distribution class

is chosen to simulate gene expression count data is its ability to model data with a low

number of available replicates. Further, it is an integer-valued distribution which is

well suited for count data simulation. To derive the parameters of the distributions of

gene expression from the real data, they are fitted with maximum likelihood (observed

parameters are shown in Figure 3.5). For dataset GSE112004, the range of parameter

values is a lot smaller than for dataset GTEx.

The simulated data is generated to be composed of n = 200 samples and p = 1000

genes. Further, it is constructed to consist of two sample types, A and B, with 100

samples each. To simulate differences or similarities in gene expression among the

sample types, five classes of genes with 200 genes each are simulated. For three of these

classes, the values are simulated identically in both sample types, for the remaining two

gene classes, the values are simulated to vary in the sample types. The gene classes are

constructed to exhibit effects that should be corrected by a normalisation as illustrated

above.

For the actual value simulation, for each gene, one value pair of negative binomial

distribution parameters µ and size is selected from the negative binomial distribution
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fits (compare Figure 3.5). The procedure for the selection of each value pair is described

after the explanation of the different gene classes. The gene counts are then simulated

depending on the gene class. Gene classes are simulated to differ in the range of the

distribution from which the values are drawn. Therefore, different quantiles qd of each

distribution d are chosen as the border between high and low expression values. This

allows evaluating how much of a difference in expression between the two types is nec-

essary for them to be identified and discriminating genes. Values from the distribution

characterised by the selected parameter values are drawn at random in the following

way:

a) from the entire distribution (hereinafter referred to as all values),

b) from all values ≤ qd (hereinafter referred to as low values),

c) from all values > qd (hereinafter referred to as high values).

The five gene classes are set up in the following way:

1. high values in type A, all values in type B,

2. all values in type A, high values in type B,

3. all values in both types,

4. high values in both types,

5. low values in both types.

This means that the genes which are crucial to distinguish the two sample types A and

B are those from gene classes 1 and 2. Note that for the simulation of values for the

genes with distinct expression, to generate more realistic data, the distinction is not

made between high and low values, but high and all values. This means the range of

values in the two types overlaps, but in one sample type, only a subset of the entire

range is used for the simulation. If done otherwise, the distinction between the two

types would be trivial.

Even though the genes which are crucial to distinguish the two sample types A and

B are those from gene classes 1 and 2, the random drawing of values can result in

significant differences in types A and B for genes from classes 3 to 5. At the same time,

genes from classes 1 and 2 can have similar values in both types due to the random

drawing as well. However, this should occur at most for a small percentage of genes.

Nevertheless, this needs to be considered in the evaluation.

For gene classes 3-5, the negative binomial distribution parameters for the simulation

of a gene are selected randomly from all distribution fits, and the values are randomly

drawn from the respective distribution. For gene classes 1 and 2, a grid selection among

all observed parameter values is performed to ensure that the real-world data parameter
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range is represented well (see Figure 3.5). In detail, for the grid selection for each of

the two parameters µ and size, further referred to as p1 and p2, all obtained values (not

unique) are sorted and 20 equidistant (in terms of the order ID) values are selected.

This yields parameter values pi,k, i ∈ {1, 2}, k ∈ {1, . . . , 20}, where i is the identifier

of the parameter type and k is the identifier of the parameter value order. To select

the value of the respective other parameter, for each of these fixed parameter values

for pi, 10 values pj,l, j ∈ {1, 2}, j 6= i, l ∈ {1, 10} are drawn from the fits for which pi is

close to the current selected value of pi,k. In detail, pj,l is selected from the obtained

parameter-pairs from the interval:

pi,k ∈ [min(pi),
pi,k + pi,k+1

2
] , for k = 1, (3.1)

pi,k ∈ ]
pi,k−1 + pi,k

2
,
pi,k + pi,k+1

2
] , for k ∈ {2, ..., 19}, (3.2)

pi,k ∈ ]
pi,k−1 + pi,k

2
,max(pi)] , for k = 20. (3.3)

Identically as for the fixed parameter pi, all these candidate values (not unique) for pj,l

for fixed i and k, are sorted and 10 equidistant (in terms of the order ID) values are

drawn. Figure 3.5 presents a visualisation of the real-world data parameters and those

selected for the simulation.

Zero-counts in transcriptomic datasets can present difficulties for some data analysis

approaches. To ensure that DLT works well for data with zero-counts, zero-counts

are added randomly amongst all samples for each gene. In gene classes 1 and 2 the

percentage of zero-counts amongst all samples is set to the median of the zero-count

percentages in the real datasets (≈ 40%). If the percentage of zero-counts in the

simulated values is already ≥ 40%, no further zero-counts are added. For gene classes

3-5, the number of zero-counts for each simulated gene is chosen as the number of zero-

counts of the gene that has been used for the simulation of the respective simulated

gene. The samples which are assigned a zero-count are selected randomly.

To get a broad picture of the influence of the normalisation approaches on the DLT

results, the boarders for high/low values are simulated for a range of q%-quantiles,

with q ∈ {5, 10, ..., 95}, of the negative binomial distribution. Recall that the larger

this quantile is, the stronger is the difference between the two sample types. This

results in 19 simulated “raw” matrices for each dataset D1 and D2.

3.5.2. Normalisation approaches

In this study, seven different normalisation techniques are evaluated. These include

techniques that are commonly used, as well as new approaches.

Two common normalisation techniques are mean-variance normalisation and median
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ratio normalisation. To evaluate these techniques, the implementation voom from R

[214] package limma [224], respectively estimateSizeFactors from R-package DESeq2

[158] are used.

Further, two simple normalisation steps are evaluated: centring and scaling (CS)

of values, as well as division by sum (SUM1). Each of these normalisations can be

performed on either genes or samples (rows or columns) of the data matrix and in a

different order. The following combinations are evaluated:

a) SUM1 for samples (hereinafter referred to as sum1 ),

b) CS for samples (hereinafter referred to as cs),

c) SUM1 for samples followed by CS of genes (hereinafter referred to as sum1 cs),

d) CS for samples followed by CS of genes (hereinafter referred to as cs cs),

e) SUM1 for samples followed by CS of genes followed by CS of samples (hereinafter

referred to as sum1 cs cs).

The first normalisation step is always performed on the samples, because, among other

things, datasets can be a collection of multiple experiments which can lead to different

total counts depending on the experimental setting. This effect can be so drastic that

it should be accounted for at first. Also, within the same experiment, total counts

can vary between samples. For completeness, an initial sample-wise normalisation has

been evaluated, which, as expected, led to a bad performance (results not shown).

3.5.3. Outlier detection

As stated before, besides normalisation, also outlier detection is crucial to obtain mean-

ingful results when data is analysed with DLT. A simple outlier detection approach is

adopted, as suggested for their compressed sensing approach by Cleary et al. in [49].

They remove genes for which the sum of counts is > 99.5th-percentile of the sum of

counts of all genes to “avoid performance statistics that are skewed by few genes with

extremely high expression”. This is also applied for outlier detection of the samples

in our approach. Also, genes for which > 99.5% of the samples have a zero-entry are

removed. Further, genes with a variance equal to zero are removed, as they do not

contribute to the distinction of different sample types. Outlier detection is performed

before normalisation.

3.5.4. Result evaluation approaches

Our method DLT yields two matrices as a result, the dictionary matrix and the co-

efficient matrix. To evaluate the coefficient matrix that yields the low-dimensional
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representation, it is clustered with k-means clustering [156]. The value of k is set to

2, because of the two simulated sample types. The resulting clusters are compared

with the true type partition via the Adjusted rand index (ARI). More details on this

evaluation are provided in section 3.4.2.

The second evaluation method is focused on the dictionary matrix. Recall that

the data is simulated to have 400 genes with different expression patterns in the two

sample types (from gene classes 1 and 2). For each dictionary, the genes corresponding

to the 400 highest absolute values are selected. Subsequently, the percentage of these

400 genes that are among the genes from gene classes 1 and 2 is evaluated. Note

that, especially for lower quantiles and for certain parameter values and due to the

random drawing step in the simulation, the actual 400 most important genes most

likely originate largely, but not entirely from classes 1 and 2 (more details on the

data simulation are provided in section 3.5.1). Therefore, a result of 100% is not

expected. Rather should this evaluation approach yield a measure to compare the

different normalisation approaches.

Recall that for the simulation of the gene expression values, a wide range of parameter

values of the negative binomial distribution is applied. In addition to the percentages of

correctly identified genes, it is investigated for each normalisation approach whether the

genes corresponding to the 400 highest dictionary entries are genes that are simulated

by distributions with specific parameter values.

3.5.5. Results

To evaluate the different normalisation methods, DLT is applied to all simulated

datasets and the resulting dictionaries and coefficient matrices are evaluated using

two methods. One evaluation method focuses on the separability of the sample types

in the low-dimensional representations. The other evaluation method considers the

overlap of the genes from classes 1 and 2 with the 400 highest entries in the dictionary.

Values for the number of atoms and the sparsity in this study are m ∈ {1, 2, 3, 4} and

s ∈ {1, ...,m}. This is chosen based on the result of the previous simulation study, in

which results are among the best when the number of atoms, m, equals the number of

types – in this case two – for various levels of sparsity, s.

In a first evaluation, the average of the ARIs of the low-dimensional representations

for one to four atoms is considered. For dataset D1, for all normalisation approaches

except for sum1, the average ARI is between 0.66 and 0.98 for any of the quantiles used

for the determination of high values in the simulations. For the sum1 normalisation,

the ARI is between 0 and 0.18. For none of the normalisation methods, the ARI

varies by more than 0.27 amongst all evaluated quantiles. The reason probably is

that dataset GSE112004, which all datasets D1 are based on, is a single-cell dataset.
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Figure 3.6.: Evaluations of the DLT coefficients of the raw and normalised simu-
lated D2 datasets. The average Adjusted rand index (ARI) amongst all simulations for
dictionaries with one to four atoms for all evaluated normalisation approaches is shown on
the y-axis (the abbreviation “cs” refers to a centring and scaling of values; “sum1” refers to a
division by sum; for combinations of these normalisations, indicated by “ ”, the first normal-
isation step is always performed on all expression values for a sample, if applicable, the next
normalisation step is performed on all expression values for a gene; the third normalisation
step, if applicable, is again performed on all expression values for a gene; more details on
the normalisation approaches are provided in section 3.5.2). Results are shown for all quan-
tiles used for the simulation (x-axis). The quantile determines which range of the negative
binomial distribution is used for the simulation of high values, namely all values that are
higher than the quantile. The higher the quantile is, the stronger is the expression difference
between the two simulated types. Hence, a higher ARI is expected for high quantiles. The
influence of the quantiles on the ARI is most visible for the raw matrix as well as for the
cs, sum1, cs cs, and DESeq normalised matrices. The ARI for the sum1 cs, sum1 cs cs, and
voom normalised matrices are ≥ 0.68 for all quantiles.

Usually, many genes in single-cell datasets (and also in dataset GSE112004) have a

very high percentage of zero values, such that (almost) all high values are larger than

zero, no matter which quantiles are used for the simulation. When, at the same time,

the other simulated type has (mainly) zero-counts for this gene, a separation of the

two types becomes trivial.

Results of the average ARI for dataset D2 are visualised in Figure 3.6. The effect of

the quantiles is the strongest for the raw dataset as well as normalised datasets from cs,

sum1, cs cs, and DESeq normalisation. The difference in ARI for these normalisation

approaches amongst all evaluated quantiles is between 0.69 and 0.85. For the other

normalisation methods, the variation in ARI amongst all quantiles is a lot smaller

(between 0.07 and 0.31). Strikingly, for the cs cs normalised data the ARI is not small

for low quantiles and high for larger quantiles, but the largest ARIs are obtained for

the 35%-, 40%-, and 100%-quantile. This presents an undesired behaviour as it does

not coincide with the data simulation setup.
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(a) Dataset D1

(b) Dataset D2

Figure 3.7.: Evaluation of the DLT dictionaries for each evaluated normalisation method for the simulated datasets. Results are
shown for the D1 datasets (in the top row) and the D2 datasets in subfigures (a) and (b), respectively. The normalisation method is indicated
in the respective subfigure title (the abbreviation the abbreviation “cs” refers to a centring and scaling of values; “sum1” refers to a division by
sum; for combinations of these normalisations, indicated by “ ”, the first normalisation step is always performed on all expression values for a
samples, if applicable, the next normalisation step is performed on all expression values for a gene; the third normalisation step, if applicable,
is again performed on all expression values for a gene; more details on the normalisation approaches are provided in section 3.5.2). The x-axis
shows the quantile that is used for the simulation of the high values in a sample type. The quantile determines which range of the negative
binomial distribution is used for the simulation of high values, namely all values that are higher than the quantile. The higher the quantile is,
the stronger is the expression difference between the two simulated types. The y-axis shows the percentage of genes corresponding to the 400
highest dictionary entries from the 400 genes with simulated high values. It can be seen that only for some normalisation methods a high overlap
and in particular a higher overlap for higher quantile values occurs. These methods are cs cs, sum1 cs, and sum1 cs cs.
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(a) Dataset D1

Figure 3.8.: Negative binomial distribution parameter values of gene-module genes
plotted against all gene parameter values. (This figure is continued on the next page.)
Results are shown for each normalisation approach as indicated by the plot headers (the ab-
breviation the abbreviation “cs” refers to a centring and scaling of values; “sum1” refers to a
division by sum; for combinations of these normalisations, indicated by “ ”, the first normal-
isation step is always performed on all expression values for a samples, if applicable, the next
normalisation step is performed on all expression values for a gene; the third normalisation
step, if applicable, is again performed on all expression values for a gene; more details on
the normalisation approaches are provided in section 3.5.2). Values for the negative binomial
distribution parameters µ and size, which are used for the simulation of genes expressing the
characteristic patterns, are shown on the x-axis and y-axis respectively. Results for datasets
D1 and D2 are shown in subfigures (a) and (b), respectively. The colour of each point in-
dicates whether the respective genes are among the top 400 dictionary genes (blue means
detected and orange means not detected). Shown are results for the simulated data in which
the high genes are defined by being ≥ the 50%-quantile of the respective negative binomial
distribution. Note that the x- and y-axis range varies among the two datasets due to the
different real-world datasets used for simulation. For both datasets, for the cs-normalised
data, genes with a distribution for which µ is neither large nor small are not among the top
400 dictionary genes. For dataset D2, dictionaries for the raw dataset, the voom, and the
DESeq normalised dataset have high values for characteristic parameter values as well: genes
with a distribution for which µ is small (/ 1) cannot be found. For the parameter size, no
such patterns are visible.
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(a) Dataset D2

Figure 3.8.: Negative binomial distribution parameter values of gene-module genes
plotted against all gene parameter values (continued) . Subfigure (a) as well as the
figure description can be found on the previous page.

Results for the evaluation of the dictionary entries are shown in Figures 3.7 and 3.8.

Recall that in this evaluation, the overlap of the 400 genes having the highest dictionary

entries with the 400 genes from gene classes 1 and 2 – which have different expression

patterns in the two types – is evaluated. For one thing, a high overlap is desired. For

another thing, the influence of the quantiles should be visible in such a way that for

higher quantiles the overlap is higher as well. In this evaluation, normalisation methods

sum1 cs, and sum1 cs cs yield best results for both datasets (compare Figure 3.7). For

dataset D1, also cs cs returns similarly good results. However, for dataset D2, results

for cs cs, show a pattern that is not related to the quantiles used for the simulation

of high expression values. Recall that this quantile-unrelated pattern also appeared in

the evaluation of the low-dimensional representations for cs cs. Interestingly, for some

other methods, the overlap decreases for an increasing quantile. For normalisation

approaches sum1 cs, sum1 cs cs, and cs cs, for dataset D1, dictionaries with two atoms,

followed by three and then four atoms yield the highest overlap.
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For both datasets, for the cs-normalised data, genes with a distribution for which µ

is neither large nor small are not among the top 400 dictionary genes (compare Figure

3.8). For dataset D2, dictionaries for the raw dataset, the voom, and the DESeq nor-

malised dataset have high values for characteristic parameter values as well: genes with

a distribution for which µ is small (. 1) cannot be found. For the parameter size, no

such striking patterns are visible. For q%-quantiles, with q ≤ 0.45, for cs cs, sum1 cs,

and sum1 cs cs normalised data, some of the genes that correspond to distributions

with high and average µ are not found. This is especially the case for dataset D2 for

cs cs normalisation.

In summary, sum1 cs and sum1 cs cs normalisation yield best results for the eval-

uation of the dictionaries. For the evaluation of the coefficient matrices, the results

for theses methods are similar to those from other normalisation approaches when the

difference in the data types is large. Recall that an emphasis in this study is put on the

dictionary matrices, as these can be used for the evaluation of the genes distinguish-

ing the two simulated types, which the simulations are based on. In the simulations

performed in this study, sum1 cs cs is yet better than sum1 cs, but only slightly. The

final selection of a normalisation method is done in line with the characteristic of our

method DLT, based Occam’s razor principle, which is introduced in section 2.2.4. It

suggests that among all the correct hypotheses, the simplest one should be selected.

Therefore, the sum1 cs normalisation is selected for the following experiments in this

thesis.

Further takeaways from this study

In addition to the evaluations presented above, for the selected normalisation approach

sum1 cs, the impact of the different datasets used as a baseline for the simulation as well

as the impact of varying dictionary sizes on the results is evaluated. The percentage

of correctly detected genes for increasing quantiles for simulated datasets D1 differs

in the increase from those for datasets D2. For datasets D1 the increase is close to

linear, whereas for datasets D2 it is more similar to a logarithmic growth: the stepwise

difference in percentage for quantiles . 50% is larger than for higher quantiles (precise

quantile value depends on the value of m, compare Figure 3.7).

The number of atoms, m, has little influence in the percentage of correctly identified

genes whenever m > 1 (precise values vary for each simulation setting, compare Figure

3.7). Best results are obtained for m = 2 when the quantile for the determination of

high values for the type distinction is >20%-quantile.
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3.6. Discussion and conclusion

In this chapter, our new method Dictionary learning for transcriptomic data analysis

(DLT) is presented. The objective of DLT is to derive a low-dimensional representation

of the analysed dataset, in which the important sample characteristic are maintained.

Further, the DLT representation should be interpretable in terms of the analysed genes

and provide access to gene-modules that are specific for the sample types in the dataset.

In this chapter, initially, the application of DiL in medical data analysis and the need

for new methods for transcriptomic data analysis is discussed. The objective thereof

is to provide arguments for applying DiL for transcriptomic data analysis and reasons

why an application of DiL for that purpose in contrast to other dimension reduction

methods is advantageous. In the further course of the chapter, the method DLT is

introduced and the difference between the standard Dictionary learning (DiL) approach

and DLT is explained. Subsequently, in two simulation studies, the influence of (1) the

DLT parameter values and (2) different normalisation approaches on the results are

evaluated. Accordingly, the purpose of these studies is to gain an understanding of the

influence of different parameter values, respectively normalisation approaches, on the

DLT results. What is not considered in this chapter is a performance comparison of

DLT to existing methods for transcriptomic data analysis. This is conducted for the

real-world data analysis, which is presented in chapter 4.

While DLT is closely connected to DiL, it is yet not identical. One difference between

the standard DiL approach and DLT is that the DLT dictionary is a thin-matrix and

hence not overcomplete. This modification is required for obtaining dictionary and co-

efficient vectors as desired, namely such that the dictionary matrix can be used for gene-

module detection and the low-dimensional representations represent the samples based

on these gene-modules. A bi-product of this alteration is that the low-dimensional rep-

resentations from DLT require far fewer atoms compared to the standard DiL approach

– where overcomplete dictionaries are learned – to obtain representations with small

representation error. This is discussed in detail in section 3.3.1.

In the DLT approach, a sparsity constraint is posed on the sample coefficients in

the low-dimensional representations. The anticipation is that this leads to dictionary

atoms, and hence gene-modules, that present highly characteristic biomolecular pro-

cesses occurring in the analysed dataset. To understand this, bear in mind that if

sparsity on the sample coefficients were not enforced in the dictionary training, atoms

could be combined on a larger scale and therefore be less specific.

Other than many widely applied methods for transcriptomic data analysis, for ex-

ample, ICA or PCA, DLT does not impose constraints on the derived components.

The refrain from such constraints allows obtaining representations that are not guided
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by these constraints, which can be beneficial for displaying biological processes that

do not necessarily follow such constraints. Furthermore, DLT is a linear approach,

which makes it well suited for deriving interpretable representation. This presents an

advantage over non-linear methods.

A linear dimension reduction approach that does not impose a constraint on the

relation of the derived components, such as orthogonality in PCA or independence in

ICA, is NMF. However, a problem in NMF is that it does not constrain the solution

space any other than to be non-negative. Without any further restriction, the solution

space can be inconclusive. In DLT, the solution space is reduced due to the sparsity

constraint.

It should be noted that a perfect representation is not sought-for in a DLT analysis.

This is because the objective is the determination of the main processes in the analysed

samples. In consequence, processes that are non-specific to the analysed set of samples

should not be captured in the representation. In a sample type representation, this

would be misleading. Rather, processes appearing in larger sample groups are desired

to be identified. Yet, a balance between representing main processes and neglecting in-

significant processes is required. The simulation study and real-world data experiments

confirm that this is the case for DLT and dynDLT.

As illustrated in the introduction of DiL and DLT, the uniqueness of their solution

is not necessarily given. Yet, as explained, the uniqueness of the solution depends on

the properties of the analysed dataset. As discussed earlier, transcription datasets are

highly structured, which presents a characteristic that enhances the chance of obtaining

unique solutions in DiL.

In the simulation studies, datasets are constructed to be composed of different sam-

ple types whose samples have similar, characteristic expression patterns, different to

the expression patterns of the other sample types. For the evaluation of the DLT rep-

resentations, the low-dimensional representations of the datasets are clustered. It is

then analysed whether the clusters are in agreement with the sample types.

The clustering of the DLT representations is performed with the k-means approach.

For completeness, it should be mentioned that a variety of clustering algorithms and

cluster assessment metrics exist. k-means belongs to the most widely applied ones,

which is why it is applied in this study. Two further clustering algorithms other than

k-means, namely DBSCAN and spectral clustering, have been used for the evaluation

as well. However, the resulting performance was not significantly better. Therefore,

the simple and well-known k-means algorithm is applied in the experiments. Further, it

should be mentioned that the number of subtypes in the dataset is typically not known

in advance. In that case, an exploration of the cluster quality for different values for the

number of clusters can be performed, for example. Yet, the focus in this study is put
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on the preservation of relevant data characteristics in the determined representations.

The fixation of the number of clusters belongs to a different class of problems.

The simulation study that is focused on the influence of varying parameter values

shows that the parameter m, which determines the number of dictionary atoms, has a

significant influence on the representation of the samples, particularly for noisy data.

In the conducted study, the best results among various simulation settings are reached

when the number of dictionary atoms is close to the number of sample types in the

dataset. The values of the parameter s, which determines the sparsity of the represen-

tation, influences the performance as well. Yet, for fixed m, there is a wide range of

values for which the influence on the performance is insignificant. For respective pa-

rameter values, the different sample types in the simulated datasets are well represented

by DLT.

The results for the simulation study confirm that the low-dimensional representa-

tions from DLT represent the differences in different sample types well. While in our

experiments, the sample types are known, this means that for data for which this

information is not given, DLT can be used to determine different sample types.

Regarding the normalisation of the transcriptomic dataset before a DLT analysis,

seven different approaches are evaluated in a second simulation study. In detail, the

maintenance of dataset patterns in the low-dimensional representations from DLT and

the capture of type-characteristic genes in the DLT-dictionaries are evaluated. Our

new normalisation approach sum1 cs – a division by the sum of all expression values

for each sample followed by a centring and scaling (CS) of the expression values for all

genes – is identified as the best-performing approach in this simulation study. Certainly,

the evaluated normalisation approaches are rather basic and limited in their number.

A reason for this is to narrow down the extent of the conducted study. Yet, further

normalisation approaches are conceivable, for example, a logarithmic transformation,

and a study on their influence on the performance carries the potential for a further

improvement of the performance of DLT.

Besides the evaluation of the representation quality and the normalisation approaches,

in the second simulation study, it becomes apparent that DLT is suited for gene-module

detection. This conclusion is drawn because the simulation study reveals that the dic-

tionary atoms have high values for the genes that are simulated to have characteristic

sample type patterns. Hence, based on a selection of genes with high values in the

dictionary, type-characteristic gene-modules can be identified. This property presents

a major benefit in medical data analysis, as it enhances the interpretability of the ob-

tained low-dimensional representations. The obtained gene-modules can be applied for

future research, for example, to gain an understanding, respectively a characterisation

of the analysed biomolecular processes.
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4. Real-world data application: type

separation for multi-class

transcriptomic data with DLT

The numerical experiments presented in chapter 3 reveal that our new method Dictio-

nary learning for transcriptomic data analysis (DLT), introduced in section 3.3, works

well on simulated transcriptomic data to (1) generate low-dimensional representations

that maintain relevant data characteristics, as well as for (2) the detection of gene-

modules, which are composed of genes that exhibit characteristic patterns. In this

chapter, DLT is applied to real-world transcriptomic data.

Recall that the main idea in Dictionary learning (DiL) and DLT is that the data

points can each be well constructed from linear combinations of a small number of

components (“atoms”) of some basis-like matrix – the dictionary – given that the data

possesses a sparse structure. Therefore, the dictionary atoms should represent the ba-

sic elements of the data. When applied to transcriptomic data, this means that the

atoms are composed of gene-sets that are mutually activated/ deactivated in numer-

ous samples. This is confirmed in the simulation study presented in chapter 3. This

indicates that the DLT atoms can be used to derive insight into biological processes

that are characteristic of the respective samples. On the other hand, the DLT coeffi-

cient matrix contains the information on how to reconstruct each sample as a linear

combination of a subset of the atoms (with small errors), yielding the low-dimensional

representation. Taken together, the coefficient matrix entails the information on the

active gene-modules in each sample.

To evaluate whether DLT works well for real-world transcriptomic data, it is ap-

plied to four such datasets. In general, for DLT to be suitable for the analysis of

transcriptomic data, one required property is that the main differences in the data are

preserved in the low-dimensional representation. To analyse if this is the case, datasets

with samples from different types are analysed. This allows evaluating whether each

of the respective types has a characteristic and distinct representation in the low-

dimensional representation. Sample types can, for example, be different phenotypes or

differently stimulated samples in an experiment. In addition to requiring that differ-
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ences between the sample types are maintained in the low-dimensional representation,

the low-dimensional representation should also be biologically reasonable. To evaluate

whether this is the case, the gene-modules which are identified from the dictionary

atoms are analysed. It is then evaluated whether the gene-modules are in agreement

with the biological context of the sample types.

To evaluate the performance of DLT for the analysis of transcriptomic data from

different types and the influence of different parameter values, in this real-world data

study the following topics are addressed:

1. How do the different values of the DLT parameters number of atoms (m) and

sparsity (s) influence the results?

2. Do the different sample types each have a distinct representation in the obtained

low-dimensional representations?

3. Is the biological evaluation of the gene-modules given by the DLT dictionary

matrix in agreement with the biological context of the sample types?

The studies are separated into two parts: in the first part, a wide range of parameter

values is evaluated in a more general fashion; in the second part results that yield

the best performance in the first part are analysed in more detail. Namely, they are

evaluated regarding the distinct sample type representation as well as regarding the

suitability for gene-module detection. The result section in this chapter is divided

accordingly.

Besides the evaluation of DLT, low-dimensional representations are also computed

with approaches that are method-wise closely connected to DiL as well as widely applied

methods for compression of transcriptomic datasets, namely ICA, NMF, PCA, t-SNE,

and UMAP, details on which can be found in section 2.5. The results of the different

methods are compared among each other and with DLT.

4.1. Data

The four analysed transcriptomic datasets are taken from Gene expression omnibus

(GEO) [67], Expression Atlas [204], and Genotype-Tissue Expression (GTEx) [51]

database. They each contain samples from multiple types, and for each type, the

data contains multiple samples. Table 4.1 shows an overview of the metadata of the

datasets. In three of the four datasets, the different types are composed of samples

from different tissues and in one dataset, the different types are composed of differently

stimulated B-cells. More details on each of the datasets are given below.

To avoid a bias of a (subset of) sample type(s) in the dataset analysis by DLT and the

comparison methods, for each dataset the samples are selected such that the number of
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ID Database Database ID
Single-cell
experiment

Number of
Types

Number of
samples
per type

Number of
reads/
genes

Type class

D1 GTEx GTEx (version 8) no 26 92 55,091 Tissues
D2 GEO GSE120795 no 9 8 45,407 Tissues

D3
Expression
Atlas

E-MTAB-2836 no 8 8 43,787 Tissues

D4 GEO GSE112004 yes 10 374 11,778

B-cells with
different duration of
transdifferentiation
or reprogramming

Table 4.1.: Overview of the metadata for the four datasets analysed in the DLT
real-world data study. The datasets each contain samples from different types. For each
dataset, samples are selected in such a way that for each type, the number of samples is
identical. The number of types, the number of samples per type, and the number of reads,
respectively genes, vary among the datasets. D4 is a dataset that stems from a single-cell
experiment, the other datasets stem from bulk experiments.

samples per type is the same. Thereto, a threshold value w for the minimum number of

samples per type is chosen and only those types for which at least w many samples are

present are selected. For each type, exactly w many samples are selected at random.

Outlier detection and normalisation

Outlier detection based on total read count and amount of zero-counts is performed

before sample selection as described in section 3.5.3. Normalisation is performed af-

ter sample selection. The applied normalisation method is the sum1 cs method that

performs best in the numerical experiments presented in section 3.5. Recall that the

sum1 cs-method refers to a division by the total count sum for all genes in a sample,

followed by a centring of all count values for a gene to zero and a scaling of the ob-

tained values to a standard deviation of one. The centring cannot be performed for an

NMF analysis, as this results in negative and positive values. Therefore, for the NMF

analysis, the expression values are rescaled to the interval [0, 1].

GTEx dataset

The GTEx dataset is composed of TPM-normalised count data for 11,688 samples

from different tissues and 56,202 sequence reads. For each sample a tissue subtype

label (e.g. “Adipose - subcutaneous”, “Adipose - Visceral”, “Brain - Amygdala”, ...),

as well as a general tissue type label (e.g. “Adipose - Subcutaneous” and “Adipose

- Visceral” as type “Adipose”) are provided. In total, the dataset contains samples

for 53 tissue subtypes with five to 564 samples per type, respectively samples for 31

general tissue types with seven to 1671 samples per type. The selection of samples per

type is performed for the general types. The number of samples per type, w, is set
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to 50, which results in 26 general tissue types remaining. With the outlier removal in

addition, this results in a 1, 300×55, 091 matrix.

GEO dataset GSE120795

The GEO dataset GSE120795 contains FPKM-normalised counts for 166 samples from

different tissues and 58,233 sequence reads. The samples are taken from 25 tissues and

for each tissue type between one and 15 samples are provided. The number of samples

per tissue type, w, is set to w = 8, which is fulfilled for nine tissue types. With the

outlier removal in addition, this results in a 72×53, 679. It is striking that for some

samples most of the read counts are zero and only a few genes have high values. An

additional outlier detection accounting for such samples could easily be performed by

a limitation to the number of zero-values per sample (for example, no more than 75%

zero-entries).

Expression Atlas dataset E-MTAB-2836

The Expression Atlas dataset E-MTAB-2836 contains count data for 200 samples from

32 different tissues and 65,217 reads. For each tissue type, between three and 13

samples are provided. The minimum number of samples per tissue, w, is set to w = 8,

which is fulfilled for eight tissue types. With the outlier removal in addition, this results

in a 64×49, 914 matrix.

GEO dataset GSE112004

The GEO dataset GSE112004 is a single-cell dataset and contains count data for 3,648

samples and 11,841 genes (reads are already mapped). The cells are mice CD19+

B-cells, which are either untreated or treated with two different transcription fac-

tor protocols to transdifferentiate or reprogram. The cells either transdifferentiate to

macrophages or are reprogrammed to induced pluripotent stem (iPS) cells. For three

cell types, measurements are provided for three time points and for one cell type, mea-

surements are provided for one time point, which is considered as ten types in total.

In addition to the outlier removal, this results in a 3, 740×11, 781 matrix.

4.2. Result evaluation approaches

For each of the four transcriptomic datasets, dictionaries of different sizes and recon-

structions of different sparsity are computed. It is evaluated (1) how a variation of

the DLT-parameters, the number of atoms and the sparsity, influences the results, (2)

whether the different sample types each have a distinct representation in the obtained
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low-dimensional representations, and (3) whether the biological evaluation of the gene-

modules that are derived based on the dictionary atoms agrees with the sample types.

DLT has two parameters. One parameter, m, determines the number of dictionary

atoms. The other parameter, s, determines the sparsity of each representation or, in

other words, the number of atoms that are used for the representation of each sample.

In this chapter, DLT is applied to the four real-world datasets presented in the previous

section 4.1. In a first study, multiple parameter value combinations are applied and

the influence on the performance is evaluated.

Recall that the outputs of DLT are a dictionary matrix and a coefficient vector for

each sample. Further, recall that the four transcriptomic datasets are composed of

samples from multiple types, and for each type, multiple samples are provided. The

low-dimensional representations derived by DLT, should ideally maintain differences

among the distinct sample types. To evaluate whether this is the case, the coefficient

vectors are clustered and the resulting clusters are compared with the true sample type

partitioning.

The parameter values that yield the best results in the simulation study presented

in section 3.4 function as a guideline for the selection of parameter values in this study.

Recall that in this former simulation study, the best results are obtained when the

number of atoms, m, is close to the number of sample types of the datasets, further

referred to as n. Therefore, in this study, values of m are chosen to be centred around n.

Precisely, the real-world transcriptomic datasets are analysed with DLT with parameter

values m ∈ {1, ..., 2n} and s ∈ {1, ...,m}.
In addition to the parameters of the method itself, the applied implementation of

DLT (details are provided in section 3.3.2) uses a random seed for the initialisation of

the dictionary. And so does the clustering, which is used for the evaluation. To derive

an understanding of the influence of this random drawing, for each parameter value set

for m and s, experiments are run for 10 different seeds ∈ {0, ..., 9}.
Clustering of the coefficient vectors is performed with the k-means algorithm [156]

(using Python implementation from sklearn [202]) for k = n. For completeness, it

should be mentioned that the number of types in the dataset is typically not known in

advance. In that case, an exploration of the cluster quality for different values for the

number of clusters can be performed, for example. Yet, the focus in this study is put on

the preservation of relevant data characteristics in the determined representations. The

fixation of the number of clusters belongs to a different class of problems. Further note

that clustering algorithms other than k-means have been tested additionally, namely

DBSCAN [75] and spectral clustering (using Python implementations from sklearn

[202]). However, their performance was not significantly better. Therefore, the simple

and well-known k-means algorithm is applied in the experiments.
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In k-means, a random seed is used for the initialisation of the cluster centroids. In

the experiments, the same seed that is used for the DLT analysi, i.e. {0, ..., 9}, is

used for this step. To evaluate the clustering, the Adjusted rand index (ARI) of the

clusters obtained by k-means with the true type partitioning is computed (for details

on the ARI, please see section 3.4.2). In contrast to the simulation study, results for

the Adjusted mutual information (AMI) are not shown because the behaviour of the

ARI and AMI, i.e. the relative increase/ decrease, is similar for both measures in

the simulation experiments. Hence, no significant additional information is gained by

considering both measures. For dataset D1, clustering is performed for both, k = 26

(based on the n = 26 general tissue types) and k = 48 (based on the n = 48 tissue

subtypes).

In addition to the ARI, the reconstruction error is evaluated for each representation.

It is computed as the Euclidean distance of the data matrix and the reconstruction

based on the dictionary and the coefficient vectors, DR (compare formulation (2.8)).

Results for the ARI are compared with those from Independent component anal-

ysis (ICA), Non-negative matrix factorisation (NMF), Principal component analysis

(PCA), t-distributed stochastic neighbour embedding (t-SNE), and Uniform manifold

approximation and projection (UMAP). Details on the comparison methods are given

in section 2.5. The reconstruction error is not compared, because, as stated earlier, the

main aim is not to reconstruct the data with the smallest error but to represent the

main characteristics in an interpretable fashion.

Furthermore, in addition to the experiments which are designed for understanding

the influence of different parameter values, a study focusing on the evaluation of the

dictionary and low-dimensional representation for a fixed parameter-value pair is con-

ducted. Therefore, the parameter values yielding the highest ARI in the parameter

study for the random seed fixed to 0, are chosen. Recall that in the parameter study,

experiments are conducted for m ∈ {1, . . . 2n} atoms, where n is the number of sample

types in the dataset, and for each dictionary sparsities s ∈ {1, ...,m} are evaluated.

To assess the dictionaries, gene-sets corresponding to the highest values in the dic-

tionary atoms are selected. Recall that the dictionary is of dimension D ∈ Rp×m,

where p is the number of genes and m is the number of atoms. Hence, each entry in a

dictionary atom can be assigned to a gene. In detail, all values of the dictionary matrix

in the interval ]1st-percentile, 99th-percentile[ are set to zero. The resulting matrix is

hereinafter referred to as “2%Dictionary”. Further, a gene-module for each atom is

then defined to be composed of all genes that correspond to the non-zero entries in

the 2%Dictionary. Note that this procedure most likely results in different numbers of

non-zero values per atom. Consequently, the gene-modules derived for each atom are

of different sizes.
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The gene-modules are evaluated by a Gene ontology (GO) term analysis [50]. Gene

Ontology is a controlled vocabulary for representing knowledge related to genes with

regard to biochemical activities, biological goals, and cellular structures. The GO-

terms are structured in a directed acyclic graph, in which each term has a defined

relationship to one or more other terms. A GO-term analysis provides an overview of

the functions of a set of genes and their products. In the present study, it is analysed

whether the terms obtained from the GO-term analysis are connected to the sample

types.

4.2.1. Comparison method evaluation approach

The results of DLT are compared to the methods described in section 2.5: ICA, NMF,

PCA, t-SNE, and UMAP. Recall that all linear methods return two matrices. The

p×m result matrix is hereinafter referred to as the “dictionary-like” matrix. The m×n
result matrix is referred to as the “coefficient matrix”. The interpretation of NMF as

a method that yields a dictionary-like matrix and a low-dimensional representation

matrix is trivial. How PCA and ICA can be interpreted as such methods is depicted

below.

To evaluate PCA as such a method, the matrices resulting from PCA have to be

reinterpreted. Therefore, let us firstly define X = [x1, ..., xn] ∈ Rp×n to be a column-

wise mean-centred dataset. A PCA analysis then yields principal components V =

[v1, ..., vn] ∈ Rn×n, with vj ∈ Rn , such that the linear transformations Z = [z1, ..., zn] ∈
Rp×n are given by Z = XV. With that:

Z = XV

⇔ ZV−1 = X

⇔ ZVT = X . (4.1)

This illustrates, that PCA can be directly compared to DLT. To understand this, recall

that in DLT DR ≈ X. Thus, Z is comparable to the dictionary matrix D, and VT is

comparable to the coefficient matrix R.

To evaluate ICA as a method yielding a dictionary-like matrix and a coefficient

matrix, as defined above, recall that, for ICA, the model

X = AS , (4.2)

is used. In (4.2), the mixing matrix A ∈ Rp×m contains the mixture coefficients.
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Further, matrix S ∈ Rm×n contains the m components. Hence, for

XT = STAT , (4.3)

matrices ST and AT have the same orientation as matrices D and X, respectively.

Note that, in order to apply ICA as such, the input data matrix has to be XT .

For all comparison methods, all but one parameter are kept to their default value

in the Python implementation in sklearn [202] (for ICA, NMF, PCA, and t-SNE),

respectively umap [174] (for UMAP). For ICA, NMF, and PCA, different values for the

number of components, identical to the number of atoms in dynDLT, are evaluated.

For the analysis of t-SNE and UMAP different parameters are varied. For t-SNE,

the dimension can be maximally 3. As for t-SNE the parameter “perplexity”, px, can

have a large impact on the results, the dimension is fixed to 2. Instead, the value of

the perplexity is varied. Values of px ∈ {10, ..., 100} are evaluated. This selection is

based on the default perplexity of 30 and hence a search around this default value is

performed. The dimension of results from UMAP is always 2. A critical parameter

in UMAP is the number of neighbours v. For UMAP, the number of neighbours is

varied in the simulation study. Values of v ∈ {1, ..., 10} are evaluated. This selection

is based on the default value in the Python implementation, namely 5, and hence a

search around this default value is performed.

4.3. Results

To assess the performance of our approach DLT on the real-world datasets, it is eval-

uated on different tasks. Firstly, a parameter study is conducted in order to derive an

understanding of the influence of different parameter values and to identify the param-

eter values that yield the best results. Next, results for the parameter values for which

the highest performance is obtained are evaluated in detail. Thereto, the representa-

tion of the datasets is analysed regarding its suitability for type separation, respectively

identification. In addition, it is evaluated whether the determined gene-modules are

connected to the sample types for whose representation the respective gene-modules

are used. The evaluation approaches are described in detail in the previous section 4.2.

4.3.1. Results for the parameter study

For all datasets, for an increasing number of atoms (m), with few exceptions, the ARI

increases significantly for smaller values of m and drops again for larger values of m.

A visualisation of the ARI for all evaluated parameter values m and s is provided in

Figure 4.1a for dataset D1 and in Figure 4.2a,b for dataset D3. Similarly, in the vice-
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Dataset

Maximum ARI
for fixed

DLT-seed = 0
and fixed

k-means-seed = 0

Number
of atoms,

m

Sparsity,
s

SD for varied
DLT-seed
and varied

k-means-seed

SD for fixed
DLT-seed = 0

and varied
k-means-seed

D1 0.77 42 39 0.06 0.05
39 32 0.03 0.01
42 26 0.03 0.01D1∗ 0.73
47 34 0.03 0.02

D2 0.58 9 9 0.00 0.00
D3 1.00 7 1 0.00 0.00
D4 0.85 14 8 0.07 0.08

Table 4.2.: Overview of the maximum Adjusted rand index (ARI) for all evaluated
parameters values. The ARI is used as the evaluation metric of the clustered sample
coefficients against the sample type partition in the dataset. Different parameter values for
m, the number of atoms and s, the sparsity, are evaluated. In the table, the maximum
ARI is given for representations with a fixed random seed for DLT and a fixed random seed
for the k-means clustering. For each value of m, only the smallest s yielding the maximal
ARI is shown. The “D1∗” dataset is dataset D1 with the tissue subtype labels used for
the comparison with the k-means clusters – in contrast to the general tissue labels for D1.
Interestingly, the ARI for dataset D2 is significantly smaller than the ARI obtained for the
other datasets. In dataset D2, many samples have a strikingly high number of zero values.
In addition to the ARI, the standard deviation (SD) among 10 simulations with different
random seeds – for DLT as well as for the k-means clustering and additionally for the k-
means clustering only – is given for each parameter pair. The SD is similarly high in both
evaluations, which indicates that the variation arises mainly from the k-means clustering.

versa case, when m is fixed and s is increased, whenever the number of atoms is large,

the ARI increases for increasing s and then decreases again. For a smaller number of

atoms and increasing sparsity, the ARI also increases and then stays close to constant

for larger values of s. The reconstruction error decreases when either of the parameters

is fixed and the other one is increased (results shown in Figure 4.1b). This also occurs

in a convergence-like pattern.

The maximal ARI reached among all evaluated parameters for the four datasets is

shown in Table 4.2. For datasets D1, D3, and D4, the maximal ARI reached among

all parameter values tested is ≥ 0.7. The maximal ARI for dataset D2 is significantly

lower than for the other three datasets, namely 0.58. Interestingly, dataset D2 has

many samples with a strikingly high number of zero values. Discarding samples with

zero-entries per sample of more than 75%, yields significantly better results with a

maximum ARI of 0.80.

Note that for the evaluation of the influence of the random seed in DLT as well

as in the k-means clustering, the two different metrics ARI and reconstruction error

are used, rather than comparing the dictionaries and coefficient vectors themselves.

The reason for this is that the matrices are difficult to compare. For example, when
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(a) ARI for different DLT parameter values

(b) Reconstruction error for a dictionary with 26 atoms

Figure 4.1.: Adjusted rand index (ARI) and reconstruction error results for DLT
for the real-world dataset D1. Evaluated are the representation of the different sample
types via clustering, as well as the representation quality. Subfigure (a) shows the mean
ARI, the evaluation score for the clustering, for different parameter values of the number
of atoms, m, and the sparsity, s, for 10 different random seeds for all evaluated parameter
values. For increasing s, the ARI increases in bigger steps for smaller values of s and stays
close to constant for larger values, showing a convergence-like pattern. For larger values of
m and s, the ARI drops slightly. Subfigure (b) shows the ARI and reconstruction error for
dictionaries with 26 atoms (m = 26) – as many as tissue types, n, in the dataset – and sparsity
s ∈ {1, ..., 26}. The line shows the mean ARI/reconstruction error for 10 different random
seeds – used for both, DLT and the k-means clustering. The darker shadow shows the lower-
upper-quantile boundaries, and the lighter shadows show the minimum-maximum boundaries.
Similar to the observations on the ARI, a convergence-like pattern can be observed for the
reconstruction error.
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(a) Mean ARI for 10 different random seeds
for DLT as well as for the k-means clustering

(b) Maximum ARI for 10 different random
seeds for DLT as well as for the k-means clus-
tering

(c) Standard deviation in ARI with 10 differ-
ent random seeds for DLT as well as for the
k-means clustering

(d) Standard deviation in ARI with random
seed = 0 for DLT and 10 different seeds for
the k-means clustering

Figure 4.2.: Adjusted rand index (ARI) of the DLT coefficients with the sample
types for dataset D3. The ARI is used as the evaluation score for the clustering of the
DLT coefficient vectors against the true type partition. Shown are results for the evaluated
parameters: i) number of atoms, m, ∈ {1, ..., 2n}, where n is the number of sample types
in each dataset (on the x-axis) and ii) sparsity, s, ∈ {1, ...,m} for each dictionary (on the
y-axis). Shown are the mean value, maximum value and standard deviation (SD) of the
ARI for 10 evaluations with different random seeds used for the initialisation of DLT as well
as for the k-means clustering (subfigures (a-c)). For an increasing number of atoms and
fixed sparsity, with some exceptions, the ARI increases until it reaches a maximum or starts
highest when the number of atoms is sufficiently large and then decreases (compare values
from left to right in subfigures (a, b)). For an increasing sparsity and fixed number of atoms,
the ARI first increases and then remains close to constant (compare values from bottom to
top in subfigures (a, b)). The standard deviation in the ARI among the evaluations with 10
different seeds is higher for larger dictionaries. Subfigure (d) shows the standard deviation in
the ARI when the dictionary is learned with one random seed and the k-means clustering is
performed with 10 different seeds. It shows that the variance is similar when the dictionary is
learned with a fixed random seed, hence is fixed, compared to the varied random seeds. This
gives rise to the assumption that the variation in the ARI arises from the k-means clustering
(mainly).
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certain atoms are similar but not exactly identical, this is difficult to assess. Further,

large differences in a few positions might appear similar to many small differences.

Yet, the effect on the representations and gene-modules can be drastic. Evaluating on

differences of the entire matrices can mean that these effects are averaged and therefore

have a rescinding effect. Otherwise, a way of assessing each of these different alterations

is required. By applying the metrics ARI and reconstruction error, uncertainties in this

light are avoided.

For the parameters for which the maximal ARI is reached, the standard deviation

in the ARI among evaluations for 10 different random seeds (used for DLT as well as

for the k-means clustering) varies between 0.00 and 0.07 (see Table 4.2). To assess

whether this variation mainly arises from DLT or from the k-means clustering, an-

other analysis is performed in which the seed for DLT is fixed to 0 and the k-means

clustering is performed with ten different seeds ∈ {0, ..., 9}. In this case, the standard

deviation in the ARI varies between 0.00 and 0.08. This gives rise to the assumption

that the variation arises mainly from the k-means clustering. Further, results for the

reconstruction error, which is independent of the clustering and varies little for differ-

ent random seeds, reveal that the variation for different random seeds for DLT itself

is small. For an example, see Figure 4.1b, which shows the range of the ARI and the

reconstruction error among evaluations with 10 different random seeds – compared to

the relative spread in the ARI, the relative spread in the reconstruction error is small.

Among the evaluations for the comparison methods, DLT reaches the highest ARI

most often, namely for three out of the four datasets. The next best method in these

terms is UMAP for which the highest ARI is reached for two of the four datasets (details

for all datasets and methods are given in Table 4.3). However, recall that among those

two methods only for DLT the low-dimensional representation can be interpreted in

terms of the genes. Furthermore, for dataset D2, for which DLT does not reach the

highest ARI, UMAP is the only dataset for which the ARI is larger than for DLT and

the difference in the ARI is only small (0.58 vs. 0.61). Moreover, both ARIs are small

and therefore, for this dataset, neither the representation by UMAP, nor by DLT or

any of the other methods can be considered good. PCA and t-SNE reach the highest

ARI for one dataset only, namely D3, and the ARI for the DLT representation for this

dataset is the same. ICA does not reach the highest ARI for any of the four datasets.

Summary of the parameter study for the real-world datasets

The experiments on the real-world datasets reveal that there is a wide range of pa-

rameters for which the variation in the ARI is small. For all four datasets, setting

the parameter values to m = s = n results in an ARI that is larger than 0.8ARI∗,

where ARI∗ is the highest ARI measured. When multiple parameters are evaluated in
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Method D1 D2 D3 D4

DLT 0.77 0.58 1.00 0.85

ICA 0.76 0.42 0.96 0.82
NMF 0.29 0.24 0.83 0.69
PCA 0.52 0.37 1.00 0.48
t-SNE 0.74 0.54 1.00 0.55
UMAP 0.73 0.61 1.00 0.64

Table 4.3.: Overview of the maximum Adjusted rand index (ARI) for all evaluated
methods and evaluated parameters. The ARI is used as the evaluation metric of the
sample coefficient clusters against the sample type partition in the dataset. For each method,
10 analyses with different random seeds used for the construction of the low-dimensional
representations as well as for the k-means clustering are computed. The maximum ARI per
dataset is marked bold. For DLT, the highest ARI is reached the most often, namely for
three of the four datasets, followed by UMAP for which the highest ARI is reached for two
of the four datasets. Recall, however, that among those two methods only for DLT the low-
dimensional representation can be interpreted in terms of the genes. PCA and t-SNE reach
the highest ARI only for one dataset. ICA does not reach the highest ARI for any of the four
datasets.

a DLT study, to reduce the number of evaluated parameter values, it can be concluded

that a search for parameter values in that range, for example, b0.5nc ≤ m ≤ d1.5ne,
b0.5mc ≤ s ≤ d1.5me, includes optimal parameter values most likely.

Further remarks

Restriction to positive dictionary entries For the interpretation of the DLT repre-

sentations, it can be beneficial to allow for positive dictionary entries only. In exper-

iments with such a constraint, similar maximal ARIs (±0.01) are reached. However,

the required number of atoms is often higher compared to dictionaries with positive

and negative entries.

Use case runtime evaluation The presented experiments were carried out on a ma-

chine with Intel(R) Core(TM) i5-8500 processors and 16 GB RAM. The runtime of

DLT scales with dataset size and the number of atoms, m. Depending on the value

of parameter m, the runtime for the three smaller datasets varies between 0.4 and 1.4

seconds (for m ∈ {1, ..., 20}); for the larger dataset D1, the runtime lies between 3.15

and 46.45 seconds in the same parameter range (see Table 4.4).
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Dataset
Wall-clock time [s]

for m = 1
Wall-clock time [s]

for m = 20

D1 3.2* 46.5*
D2 0.4 1.4
D3 0.4 1.2
D4 0.4 0.7

Table 4.4.: Wall-clock time for the dictionary training part of DLT for the four
real-world datasets. Shown are wall-clock times for two parameter values for the num-
ber of atoms m ∈ {1, 20}. The times are given for the implementation using functions
from Python’s sklearn [202]). For dataset D1, due to the large dataset size, sklearn’s
MiniBatchDictionaryLearning is applied (marked with a ’*’). For the other datasets, the
method DictionaryLearning from sklearn is used. For the smaller datasets, the runtime
is less than two seconds for m = 20. For D1, the runtime for m = 20 is less than one minute.

4.3.2. Results for the type separation for fixed parameter values

In order to verify the maintenance of group differences in the low-dimensional represen-

tation, in this section, it is analysed in more detail how far the clusters of the coefficient

vectors represent overlap with the actual sample types and which types appear in one

cluster, respectively are spread over multiple clusters.

D1: GTEx

For dataset D1, the maximal ARI for the general types is 0.77 (for parameter values

m = 42, s = 39). When the assignment of the tissue subtypes is used to define the

type partition, the ARI for this representation is 0.67. A visualisation of the clusters

is provided in Figure 4.3. In the resulting clusters,

• 13 of 26 clusters are composed of samples from one tissue type only;

• 18/ 24/ 25 clusters, more than 90% of samples are from one/ two/ three tissue

type(s).

Hence, the mixing of types in the clusters affects only a few samples.

Some clusters are composed of one tissue subtype, or a subset of all tissue subtypes

belonging to one general tissue type. For example, the brain samples appear in two

clusters, belonging to either cerebrum or cerebellum (in clusters 15, respectively 21).

This is a reasonable separation, and it shows that the algorithm detects the respective

subgroups. Note that even though this is a correct finding, this decreases the ARI when

the general type labels are used to define the true type partitioning because all brain

tissues have the same type label. Further, as the number of clusters is set equal to

110



(a) Pie chart by cluster

Figure 4.3.: Clusters of the DLT sample coefficients for the real-world dataset D1.
(This figure is continued on the next page.) Shown are the clusters for the representation
which yields the maximal ARI (dictionary with 42 atoms and a 39-sparse representation).
Subfigure (a) shows the composition of the clusters by sample types. If the clusters were in
entire agreement with the type partition according to the data labels, all clusters (circles)
were composed of exactly one tissue type. Even though this is not the case, most clusters are
composed of one tissue type (to a large extent). Interestingly, some tissue types appear in
different clusters, for example, the brain samples in clusters 15 and 21. The detailed tissue
labels in the metadata clarify that the clusters separate samples of the cerebellum from those
of the cerebrum. Subfigure (b) shows for each sample type the cluster(s) it appears in. Similar
as for subfigure (a), if the clusters were in entire agreement with the type partition according
to the data labels, all tissue types (circles) would appear in exactly one cluster. To see why
both perspectives present different and yet relevant access about the representation consider,
for example, cluster 6: it consists of one main type, muscle, and a few salivary gland samples
(which can be seen in subfigure (a)); from subfigure (b) it can be seen that all muscle tissue
samples appear in only one cluster, namely cluster 6.
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(b) Pie chart by tissue

Figure 4.3.: Cluster partition of the DLT sample coefficients for the real-world
dataset D1 (continued). Subfigure (a) as well as the figure description can be found on
the previous page.

the number of general tissue types, this means that when subtypes appear in different

clusters other general tissue types have to be clustered together. This appears for:

• cluster 5, containing breast and adipose tissue samples in large amounts;

• cluster 10, containing skin and stomach samples in large amounts;

• cluster 14, containing spleen and small intestine samples in large amounts;

• cluster 16, containing salivary gland, uterus, and vagina samples in large amounts;

• cluster 18, containing salivary gland and colon, samples in large amounts;

• cluster 23, containing uterus and vagina samples in large amounts;

• cluster 24, containing colon, esophagus, small intestine, and stomach samples in

large amounts.
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Many of these groupings are comprehensible, and the subtype labels reinforce this

assumption.

When the tissue subtypes are used to define the true type partitioning, the maximal

ARI of 0.73 is reached for parameter values [m, s] ∈
{

[39, 32], [42, 26], [47, 34]
}

.

D2: GEO GSE120795

For dataset D2, the maximal ARI of the clusterings of the coefficient vectors with the

true type partitioning is 0.58 (for parameters m = 9, s = 9). For this best result, six

clusters contain samples of one tissue type only, while three clusters contain samples

from multiple tissues. The three mixed clusters are composed of:

• lung, pancreas, and stomach samples;

• colon and lung samples;

• bone marrow, kidney, liver, lung, oesophagus, and stomach samples.

It can be speculated that the mixed clusters, which are composed of samples from

several types, contain outlier samples – especially because the poor performance for

this dataset among all methods evaluated suggests that the dataset itself is deficient.

As mentioned earlier, discarding samples with zero-entries per sample of more than

75%, yields significantly better results with a maximum ARI of 0.80. Due to the

ambiguities observed for this dataset, a figure visualising the clusters is not provided.

D3: Expression Atlas E-MTAB-2836

For dataset D3, the maximal ARI is 1.00 (reached for m = 7, s = 1). This means that

the clusters of the coefficient vectors are in entire agreement with the sample types –

hence, each cluster is composed of one sample type only and each sample type appears

in one cluster only. Due to the unambiguousness of this result, a figure visualising the

clusters is not provided.

D4: GEO GSE112004

For dataset D4, the maximal ARI of 0.85 is reached for m = 14, s = 8. A visualisation

of the clusters for this representation is provided in Figure 4.4. In eight/ ten/ ten of

ten clusters, more than 90% of samples are from one/ two/ three tissue type(s). For

an even higher threshold regarding the composition of the clusters, ten/ nine/ seven

of ten clusters are composed of samples from one/ two/ three tissue type(s) by at

least 0.95%. Hence, the mixing of types in the clusters affects only a few samples. In

the two clusters in which a bigger mixing appears, the majority of samples are from

the same treatment type but from different time points after initial treatment. These
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(c) Pie chart by cluster

(d) Pie chart by type

Figure 4.4.: Clusters of the DLT sample coefficients for the real-world dataset D4.
Shown are the results for the maximal ARI measured (dictionary with 14 atoms and a 10-
sparse representation). The type labels specify the treatment type and time (hours). (a)
Shown are the clusters and which types they are composed of (types, hence treatment time
and duration, are given in the legend). Except for clusters 2 and 6 at least 90% of the samples
are from one tissue type. (b) Shown are the tissue types and in which clusters they appear.
For all types except Transdifferentiation - 42h, ≥ 90% of samples of each type are in the
same cluster.

samples can be more alike than those from the same time point, for example, when the

initial states of the cells differ or when the cells behave differently to the treatment.

Therefore, this can present a reasonable allocation.

4.3.3. Results for the biological evaluation for fixed parameter

values

In the previous sections, it is evaluated whether sample type differences are captured

in the low-dimensional representations resulting from DLT. In this section, the DLT

dictionary matrices are evaluated. Recall that each entry in the dictionary matrix can

be assigned to a gene/ read in the analysed transcriptomic dataset. Further, recall that

sets of genes with significant entries are interpreted as gene-modules. In this section, it

is evaluated whether these gene-modules, given by the genes corresponding to high or

low values in the dictionary matrix, are associated with specific biomolecular functions.

Recall that the gene-modules are based on the 2%Dictionary, the dictionary with all
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values in interval ]1st-percentile, 99th-percentile[ set to zero (for details, see section

4.2). Since the low-dimensional representation is based on the dictionary atoms (given

by the columns of the dictionary matrix), it can further be evaluated whether the asso-

ciated biomolecular functions are related to the sample types for whose representation

the respective atom is used.

In the 2%Dictionary, the number of non-zero entries per atom varies for dataset

D1 between 127 and 1841 (out of 55,091); for dataset D2 it varies between 259 and

1601 (out of 45,407); for dataset D3 it varies between 37 and 1246 (out of 43,787); for

dataset D4 it varies between 197 and 262 (out of 11,778).

The coefficient matrix assigns atoms to each sample. To evaluate which atom is the

most relevant for each type, the coefficients of all samples belonging to the respective

type need to be summarised. Therefore, from all coefficients from samples belonging to

a type, the mean absolute value is computed for each atom. This value is hereinafter

referred to as the “atom-selection-value”. For each sample type, the atom with the

highest atom-selection-value is selected as the characteristic atom.

To characterise the biomedical functions of each atom, the genes corresponding to

the non-zero entries in the 2%Dictionary are evaluated with a GO-term analysis. The

significance level for the GO-term analysis is set to 10−4. For each atom, the genes

with positive, respectively negative values are analysed separately. For many atoms,

the GO-terms can be associated with the corresponding tissue type (see Figure 4.5).

4.4. Discussion and conclusion

In this chapter, the application of our new method Dictionary learning for transcrip-

tomic data analysis (DLT) is evaluated on four real-world transcriptomic datasets that

are composed of different sample types. Investigated are the coefficient matrix as well

as the dictionary matrix. The DLT results are compared to results from ICA, NMF,

PCA, t-SNE, and UMAP.

To evaluate the coefficient matrix it is clustered, and the obtained clusters are com-

pared to the sample type partition as given by the metadata. For all four datasets,

for the majority of sample types, the corresponding samples are clustered together

and mixed with samples from other types only to a small extent. The performance

for dataset D2 is significantly worse than those for the other datasets. However, the

performance for this dataset is bad for all evaluated methods and the dataset contains

a strikingly high amount of zero-counts. Compared to the other evaluated methods,

DLT has the best overall performance in representing the sample types of the analysed

datasets. Namely, the ARIs for DLT are highest for three out of four datasets; those

for UMAP are highest for two datasets; those for PCA and t-SNE are highest for one
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dataset; those for ICA are highest for no dataset.

For the clustering, the number of k-means clusters, k, is set equal to the number of

sample types in the dataset, n. For the assessment of the clusters, the ARI is used as the

evaluation metric. An evaluation of the clusters shows that in some cases, one sample

type is split into multiple clusters while other sample types are clustered together, which

results in an ARI smaller than 1 - recall that an ARI of 1 presents a perfect agreement of

two partitions. For some datasets and sample types, such a separation of a type agrees

with the subtypes. The observation that the subtypes are represented differently, and

thus partitioned in the clustering, suggests that the differences between these subtypes

are bigger than among other general types. However, when the number of clusters

is set to k = n and samples belonging to one type appear in different clusters, other

types have to be clustered together. Choosing higher values for k could resolve this

issue because the types that appear in one cluster for k = n could then be in separate

clusters. This could be examined in a follow-up study. Furthermore, what needs to be

considered is that the evaluation of the clusters based on metadata labels always needs

to be interpreted carefully, as these labels are man-made and not necessarily correct.

This affects both, the interpretation of the clusters and the selection of a value for k.

To evaluate the dictionary atoms, gene-modules are derived based on significant

values in the dictionary matrix. A GO-term analysis is performed to assess the resulting

gene-modules. For completeness, it should be mentioned that a variety of gene-set

assessment methods exist. GO-term analysis belongs to the most widely applied ones

and is therefore chosen in this thesis. An evaluation of various gene-set assessment

methods would quickly go beyond the scope of this thesis and could cause ambiguities.

Nevertheless, an evaluation by an alternative method would be interesting and can

present a starting point for future research.

In the gene-module evaluation, it shows that the genes can be associated with the

respective sample types, thereby revealing the potential of DLT for the extraction

of type-specific gene-modules from transcriptomic data. Yet, the selection of gene-

modules from the dictionary atoms is achieved via thresholding of the dictionary matrix

to the 2%Dictionary. Incorporation of a constraint in the DLT approach, forcing the

dictionary matrix itself to be sparse, could make thresholding superfluous.

DLT has two main parameters, the number of dictionary atoms, m, and the sparsity,

s. The presented experiments reveal that for all evaluated datasets, there is a wide

range of parameters for which the variation in the ARI is small. This coincides with

the simulation study results presented in the previous chapter 3. For all four datasets,

setting m = s = n results in an ARI that is larger than 0.8ARI∗, where ARI∗ is

the highest ARI measured among all evaluated parameter values. A small grid search

around m = s = n can improve results further. For many values of m, sparser solu-
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tions often perform equally well or even better. Certainly, this requires approximate

knowledge of the number of sample types in the dataset, which is not always given.

In the light of considerings on the solution space, recall that uniqueness of the DiL

or DLT solution is not necessarily given, as illustrated in the introduction of DLT and

also in the description of DiL in the previous chapter. Yet, as explained, the uniqueness

of the solution is influenced by properties of the analysed dataset. The implementation

of DLT has a third parameter, the random seed, which is used for the initialisation

of the dictionary matrix. The real-world data experiments show that the solutions

obtained for different random seeds are highly similar. Hence, the value of the random

seed has a small influence on the DLT performance. As discussed earlier, transcription

datasets are highly structured, which presents a characteristic that enhances the chance

of obtaining unique solutions in DiL. The conducted experiments confirm that the DLT

solutions for the analysed datasets are highly similar, both, for different random seeds

and also over varying parameter values for m and s.

While the influence of the random seed for DLT is small, the influence of the ran-

dom seed for the k-means clustering is high for representations with comparably many

components for all evaluated dimension reduction methods. Hence, the choice of initial

centroids has a strong effect. So care should be taken there, but this is not part of

our method, as the clustering is only used for the evaluation of the low-dimensional

representations.

As discussed in the previous chapter 3, the investigated datasets are normalisation

only little, and also the outlier detection is very basic. The studies presented in this

chapter are focused on the evaluation of the DLT results. Anyhow, a more extensive

normalisation and/ or outlier detection could improve results further. This can be seen

for dataset D2, where one additional outlier detection step results in an increase of the

ARI by 0.22 (from 0.58 to 0.80).

One of the analysed datasets, D4, is a single-cell dataset. Interestingly, the DLT

representation for this dataset is displaying the different sample types similarly good

as observed for the bulk datasets. Further, dataset D4 contains samples from a dynamic

process. This leads us to the idea of applying DLT, or more precisely a modification

of DLT, to analyse dynamic single-cell datasets to represent dynamic processes. This

is considered in the following chapters 5 and 6.

In summary, relevant sample characteristics are maintained in the low-dimensional

representations from DLT. Further, the presented real-world data evaluations demon-

strate that DLT is suitable for the detection of biologically relevant gene-modules

specific to various types from transcriptomic data. Hence, DLT performs the data

compression in an interpretable fashion well.
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(a) D1: heart (b) D1: liver (c) D1: muscle

(d) D2: brain (e) D2: kidney (f) D2: liver

(g) D3: heart (h) D3: lymph node (i) D3: small intestine

Figure 4.5.: Wordclouds of the GO-terms for the DLT gene-modules for the three
real-world tissue datasets. The dataset ID and tissue type are given in the figure subtitles.
Shown are the GO-terms for the atom with the highest atom-selection-value for each type.
A significance level of p-value≤ 10−4 is applied. Shown are only atoms which are added, in
contrast to those that are subtracted, for the representation. Many of the GO-terms can be
associated with the tissue types they represent, as the terms contain names of tissue (parts)
or functions that are connected to the sample types.
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5. dynDLT – a new method for

transcriptomic time-course data

analysis

In chapters 3 and 4, our new method Dictionary learning for transcriptomic data anal-

ysis (DLT) is presented and shown to perform well for the derivation of interpretable

low-dimensional representations of transcriptomic datasets on both simulated and real-

world data. One objective of DLT is the derivation of distinctive low-dimensional rep-

resentations of different sample types from transcriptomic datasets. In addition, the

obtained results should promote an understanding of the transcriptomic landscape of

the different sample types. This requires interpretability, which holds for DLT. It shows

that DLT represents the different sample types well and that the derived gene-modules

agree with the biological context of the respective sample types.

In the present chapter, our new method Dictionary learning for the analysis of tran-

scriptomic data from dynamic processes (dynDLT) is introduced. As given by the

name of the method, it is designed for the analysis of transcriptomic datasets from

dynamic processes, also referred to as transcriptomic “time-course” datasets. Cells

are progressing through dynamic processes, for example, during the cell cycle, during

differentiation, or when exposed to a new condition. In these dynamic processes, the

cells’ transcriptomic profiles vary over time. Gene expression profiling and analysis

thereof can help to understand the underlying mechanisms, identify driving genes in

the dynamic processes, determine external factors that lead to a certain cell state, dis-

tinguish and characterise variants of different cell subtypes, and more. dynDLT is a

new method for estimating the progress of the analysed samples within the dynamic

process in an interpretable way.

Our two methods DLT and dynDLT are connected in that the obtained sample

coefficient matrices yield low-dimensional representations of the analysed datasets and

the dictionary matrices contain the information on the genes that are relevant for

the representation. Yet, they differ in the determination of the coefficient matrices,

more precisely in the parameter sparsity. Further, while in DLT sample subgroups

are inferred from the coefficients, in dynDLT, the coefficients are used to estimate

119



the temporal state of each sample within the dynamic process. Hence, dynDLT is

designed for pseudotime estimation. Recall, that in pseudotime estimation, the aim is

to determine the latent time component from the profiles of cells which are at different

stages of a dynamic process. Further details on pseudotime estimation are provided in

section 1.3.3. One major issue why DLT cannot be applied for pseudotime estimation

is the sparseness of the representation. This is because, in DLT, many samples have

the same coefficient for an atom, namely zero. This does not allow assigning a distinct

temporal ordering to each sample. However, an approach for pseudotime estimation

of transcriptomic datasets, which is based on DLT, can be derived. The respective

considerations taken and adjustments made, which lead to our approach dynDLT, are

presented in this chapter.

The identification of dynamic gene expression patterns has attracted increasing at-

tention in biomedical research [297]. First approaches aiming at understanding the

cells’ dynamic behaviour from expression profiles are based on expression similarity

of bulk data [101, 164, 212]. In the course of these studies, the term pseudotime was

introduced. Pseudotime is a measure of the progress of a cell within a dynamic process.

In current pseudotime estimation experiments, single-cell datasets, in contrast to bulk

datasets, are commonly analysed. A key idea in single-cell studies is that it is highly

unlikely to assay several cells at the exact same stage in the dynamic process. There-

fore, the data of each single-cell is interpreted as a snapshot of the dynamic process.

Thereby, the hope is that numerous stages of the dynamic process are captured by a

single-cell study of multiple cells.

Since the development of single-cell RNA-sequencing (scRNA-seq) techniques, var-

ious pseudotime estimation methods have been developed. In [229], Saelens et al.

provide an extensive review of 45 existing pseudotime estimation methods together

with an evaluation of a total of 339 datasets. They evaluate the pseudotime prediction

accuracy, scalability, and usability of the methods, as well as the stability of the respec-

tive predictions. Yet, they do not consider the interpretability of the methods. They

find that, depending on the trajectory topology, different methods perform best in each

case. Likewise, in [279], Xiang et al. compare ten dimensionality reduction approaches

for single-cell data analysis. They perform evaluations on data with cluster structures

and evaluate the methods based on the cluster identification accuracy, parameter sen-

sitivity and required computational time. Same as in [229], they do not consider the

interpretability of the methods. Further, although they discuss time dynamics, they

only perform evaluations targeted at cluster identification rather than at representing

the continuous developmental processes. Similar to Saelens et al. [229], they conclude

that there is no “one-size-fits-all” method that works well for every dataset. However,

they find that t-distributed stochastic neighbour embedding (t-SNE) [162] yields the
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best overall performance regarding accuracy and computing cost.

Most pseudotime estimation methods start with a dimension reduction of the single-

cell dataset to allow for easier handling of the data. Three of the most widely applied

methods for dimension reduction in pseudotime estimation are Independent component

analysis (ICA) [129], Principal component analysis (PCA) [201], and t-SNE. Well-

known pseudotime estimation methods using PCA for dimension reduction are, for

example, A probabilistic model to analyse single-cell expression data during differen-

tiation with Ornstein–Uhlenbeck process (SCOUP) [173], Tools for single-cell analysis

(TSCAN) [122], and Waterfall [239]. Monocle [264] presents a well-known pseudotime

estimation method that uses ICA, and Single-cell clustering using bifurcation analysis

(SCUBA) [170] presents a pseudotime estimation method that uses t-SNE.

There are several concerns regarding the use of the applied dimension reduction

methods for transcriptomic data. For one thing, these concerns are based on the omis-

sion of the characteristic structure of transcriptomic data, which can lead to represen-

tations that are not displaying the relevant processes (correctly). Further, this risk is

increased due to the methods’ constraints on the derived components. For non-linear

methods, the lack of a straightforward approach for the result interpretation presents

another challenge. Weaknesses of the common dimension reduction methods, when

applied for transcriptomic data analysis, are discussed in section 3.2.

In this chapter, subsequent to a detailled description of dynDLT, its performance

is evaluated in a simulation study. In the simulated datasets, a subset of the genes

expresses a characteristic pattern over simulated time. It is evaluated whether the

low-dimensional representations preserve the simulated dynamic patterns and whether

the genes corresponding to high values in the dictionary atoms is in agreement with

the genes exhibiting the simulated patterns. Results from dynDLT are compared to

those from ICA, Non-negative matrix factorisation (NMF) [142,197], PCA, t-SNE, and

Uniform manifold approximation and projection (UMAP) [174]. An application of the

methods for pseudotime estimation of real-world data is presented in chapter 6.

5.1. Dictionary learning for the analysis of

transcriptomic data from dynamic processes

(dynDLT)

An aim of our new method Dictionary learning for the analysis of transcriptomic data

from dynamic processes (dynDLT) is to estimate the pseudotimes of the analysed sam-

ples. This means that the objective is to order the samples based on their progress

through the dynamic biological process. dynDLT can be considered an extension of
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our method Dictionary learning for transcriptomic data analysis (DLT), which is in-

troduced in section 3.3. The two methods are connected in that the obtained sample

coefficient matrices yield low-dimensional representations of the analysed datasets, and

the dictionary matrices represent gene-modules of the determined main processes in

the analysed samples.

In order to assign pseudotimes to the samples, the idea of several other pseudotime

approaches, e.g. [56, 123, 213], is transferred and the pseudotimes are derived based

on the similarities of the transcriptomic profiles of the analysed samples. In dynDLT,

the requested similarity of the samples is measured via Euclidean distance in the low-

dimensional representation of the dataset. Same as in DLT, in dynDLT these repre-

sentations are derived via a thin-matrix Dictionary learning (DiL) approach. However,

to account for the dynamic data, the derivation of the coefficient matrix differs in the

two approaches. In dynDLT, the requested pseudotimes are inferred based on the co-

efficients. More precisely, they are determined based on the sample coefficients for one

atom among all samples.

In accordance with DLT, in dynDLT, the genes driving the obtained (dynamic)

processes can be derived from the dictionary matrix. Recall that the dictionary matrix

consists of atoms, in which a value is assigned to each gene which measurements are

taken for in the investigated dataset. The higher the value of an entry corresponding

to a gene in an atom, the more relevant the gene is interpreted to be within the gene-

module reflected by the atom. Therefore, the genes corresponding to the highest atom

values are interpreted as the relevant genes for the process this atom reflects. In chapter

4, it is shown that the genes derived by an analysis of transcriptomic data from different

phenotypes with our DLT approach, in the same way as described here, are in biological

context to the different types. To provide an even more intuitive understanding of the

obtained gene-modules, in dynDLT, the dictionary is restricted to have positive values

only. The sample coefficient matrices can be composed of positive and negative values.

Our numerical experiments of dynamic processes with dynDLT show that the dy-

namic patterns in the dataset are usually captured by one dictionary atom (results

presented in section 5.2.3). Therefore, it is stipulated that the pseudotimes are derived

based on the sample coefficients corresponding to one atom. This means that, unlike in

DLT, in dynDLT, the sample coefficients are required to be non-sparse. The reason is

that this allows placing each sample along the dynamic process. Otherwise, zero-values

for a number of samples would not enable this.

5.1.1. Parameter and implementation details

Our new method dynDLT for the analysis of transcriptomic datasets from dynamic

processes is based on DLT, which is introduced in section 3.3. Yet, there are differences
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in the methods’ parameters. Details on this are described below. Further, details on

the implementation of dynDLT are given.

Parameters

Recall that DLT has two parameters: m, specifying the number of dictionary atoms,

and s, specifying the number of non-zero entries in each coefficient vector for a sam-

ple. Identical to DLT, in dynDLT, dictionaries are learned to yield maximally sparse

coefficient vectors. However, once the dictionary is learned, the coefficient vectors are

derived to be non-sparse, hence s = m.

The reason for enforcing sparsity in the dictionary training is that this should result in

atoms that represent the main gene-modules: without this constraint, the atoms could

represent more overlapping processes compared to the formulation with a sparsity

constraint. This is because the atoms could be combined more often without being

penalised. In addition, by posing the sparsity constraint, the solution space is smaller

compared to a formulation without this constraint, thereby increasing the chance of

obtaining unique solutions.

Enforcing the coefficient vectors to be non-sparse means that the sample coefficients

are non-zero for each atom and sample. The reason for imposing non-sparsity in this

step is that the pseudotimes are derived based on the sample coefficients for one atom.

To derive the pseudotimes for all samples, a value for each sample is required. Only for

s = m, it is guaranteed that for each particular atom and sample it can be inferred how

much the process reflected by the atom is expressed in the sample. A further benefit

of this approach is that in dynDLT only one parameter, m, needs to be defined.

Implementation and complexity

The dictionary training is performed with the Python’s sklearn [202] implementa-

tion DictionaryLearning [167] with default setting except for the restriction to posi-

tive dictionary entries. DictionaryLearning implements an online DiL approach and

solves the problem “by efficiently minimizing at each step a quadratic surrogate func-

tion of the empirical cost over the set of constraints” [167]. This is in accordance with

the observed times of the presented experiments.

The coefficient vectors are computed with Orthogonal matching pursuit (OMP) [200].

In [227] a detailed complexity analysis of OMP is presented.
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5.2. Simulation study

When applying dynDLT on transcriptomic data from samples in a dynamic process,

the anticipation is that the dynamic process is captured in the low-dimensional repre-

sentations. In a simulation study, it is evaluated whether this desired behaviour holds

for dynDLT. In the simulation study, datasets are simulated such that a subset of genes

expresses characteristic patterns over simulated time, for example, by an increased ex-

pression. To assess the performance of dynDLT the resulting dictionary and sample

coefficient matrices are evaluated for two things: (1) whether the simulated patterns

are deducible from the coefficient matrix and (2) to what extent the genes in the deter-

mined gene-modules are overlapping with the genes simulated to exhibit the dynamic

patterns.

Two types of datasets with different dynamic gene expression patterns are simulated.

In one type, the gene expression increases from an initial state over time continuingly.

An intuitive example for such dynamics is an exposure of samples to a condition over

a period of time. In the other simulated dataset type, a periodic, or fluctuating change

over time is simulated. An intuitive example therefore is a cyclic process, for example,

the cell cycle or processes that are driven by the circadian rhythm. For the construc-

tion of the simulated datasets, multiple simulation parameters and perturbations are

applied. This way, the influence thereof on the performance of the method can be

tracked.

Results from dynDLT are compared to those from ICA, NMF, PCA, t-SNE, and

UMAP. Details on these methods are given in section 2.5. Note, though, that only

the linear methods ICA, NMF, and PCA result in a matrix decomposition. Therefore,

an evaluation of the derived gene-modules can be conducted for these methods only.

Thereto, identical to dynDLT, one matrix is interpreted as the matrix of gene-modules,

while the other matrix yields the low-dimensional representation. This is described in

detail in section 4.2.1.

5.2.1. Data simulation

In the simulated datasets, simulated dynamic patterns are inserted into a baseline

dataset. In order to obtain simulated data that is similar to real-world data, a real-

world dataset (NCBI GEO [67] accession number: GSE87375) is used as a baseline

dataset which the dynamic patterns are incorporated into. The dataset is a single-

cell time-course dataset with 931 samples. After an outlier detection based on the

total read count and amount of zero-counts as described in section 3.5.3, 500 samples,

which are fixed over the simulation, and 10,000 genes, hereinafter referred to as gor,

are randomly selected. To prevent that the simulation study results are representing
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the time-dynamics of this baseline dataset, samples are shuffled in experimental time

before the simulated patterns are incorporated.

The pattern simulation is performed on a subset of the 10,000 genes, gsim, of varying

size, i.e. |gsim| ∈ {100, ..., 1000}. These genes can be considered to form the dy-

namic process gene-module. The simulation of expression values of each gene gsim,i, i ∈
{1, . . . , |gsim|} is based on the expression values of a randomly drawn gene gor, o ∈
{1, ..., 10,000}. For the simulation of the expression values, characteristics of the dis-

tribution of the expression values of gor,o are maintained. Details on the simulation of

the dynamic patterns are given below.

Simulation patterns

For the simulation of expression values, for each gsim,i ∈ gsim, a gene gor,o ∈ gor is

randomly selected from the baseline dataset. Recall that each sample is interpreted as

a snapshot of the cell within the dynamic process. Three different expression patterns

are each simulated by reordering the expression values of each gor,o (visualisations are

provided in Figure 5.1):

1. Expression values are sorted increasingly for all simulated genes.

2. Expression values are sorted in a fluctuating manner for all simulated genes.

Therefore, the expression values are partitioned into four equally large segments

for each gene. The allocation of values into segments is conducted randomly.

Subsequently, values are sorted increasingly in the first and third segment, while

they are sorted decreasingly in the second and fourth segment.

3. Two patterns are simulated. Therefore, in one half of the simulated genes

(|gsim|/2), all values are ordered increasingly (as described above for pattern

1), while in the other half of the simulated genes, values are ordered fluctuating

(as described above for pattern 2).

An intuition for the simulated dynamics in pattern 1 is, for example, an exposure of

a cell to a condition over a period of time and the cell (including the transcriptomic

landscape) is adjusting to that new condition. Cyclic processes present an intuitive

example for pattern 2, for instance, the cell cycle or processes connected to the circadian

rhythm. An occurrence of multiple gene expression patterns for different sets of genes

gene, as simulated in pattern 3, has been observed in several studies on dynamic

transcriptomic data, e.g. in [102, 125, 244]. An analysis of this dataset should reveal

whether the investigated methods can identify more than one pattern in a dataset.

Datasets which are simulated according to pattern 3 are further referred to as datasets

with two subpatterns.
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Figure 5.1.: Dynamic expression patterns in the simulated datasets for the dynDLT
simulation study. Visualised are the simulated datasets with 1,000 genes exhibiting the
simulated pattern and with additional noise perturbation. The respective simulation pattern
is given in the plot headers. Each sample is interpreted as a snapshot of the cell within
the dynamic process. The x-axis shows the samples ordered by simulated time. The y-axis
shows the genes. The pattern is the same for all simulated genes gsim in each dataset with
the simulated increasing pattern, as well as in the dataset with the simulated fluctuating
pattern. However, for the third dataset with simulated pattern increasing and fluctuating,
one half of the simulated genes expresses a different pattern than the other.
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For increasing |gsim|, the pattern is exhibited by a larger number of genes. Therefore,

for each simulation pattern, the pattern becomes more significant for increasing |gsim|.
Hence, the performance of each method should increase for increasing |gsim|.

To make the simulated datasets more alike to real-world data and to understand the

methods’ behaviour better, (combinations of) perturbations are added to the sim-

ulated expression values. These perturbations are noise of different intensity and

zero-counts. For the noise perturbation, for each gsim,i, random “small noise” ∈
N (0, σ2(valuesgsim,i

)), or random “high noise” ∈ N (0, 2σ2(valuesgsim,i
)) is added to

the simulated expression values, where valuesgsim,i
are the expression values of gene

gsim,i. If left unchanged, this would result in a dataset with positive and negative values

which are non-integer. However, real-world single-cell RNA-seq datasets are composed

of count values and hence positive integer values only. To make the simulated values

more real-world data like, they are rounded to integers and negative values are set to

their initial values before addition of noise. The two noise perturbations are further

referred to as noise or high-noise perturbation, respectively. This perturbation yields

six datasets for each value of |gsim|: for each of the three simulation patterns, one with

noise and one with high noise perturbation.

The described noise perturbations result in few zero-counts compared to the original

values. The reason is that zero-counts only remain zero if noise was negative or close

to zero, i.e. ∈] − ∞, 0.5[. Further, the chance of a negative noise that is equal to

the initial count value, which would result in a zero-count, is low. To obtain datasets

for which the expression values contain zero-counts in a proportion similar to those

in real-world datasets, datasets with added zero-counts are simulated. The number of

zero-counts for each simulated gene is selected as the number of zero-counts occurring

in the original dataset for each gor,o. The zero-counts are assigned randomly to the

samples. Thus, in total, for each value of |gsim|, 12 datasets are simulated: six datasets

with noise or high-noise perturbation only and six datasets with noise or high-noise

perturbation and zero-counts perturbation.

5.2.2. Result evaluation approaches

To assess the methods’ performance on the simulated datasets, two things are eval-

uated: (1) whether the simulated patterns are deducible from the coefficient matrix

and (2) to what extent the genes in the derived gene-modules are overlapping with the

genes simulated to exhibit the dynamic patterns.

To determine whether the simulated patterns are deducible from the coefficient ma-

trix, the Spearman correlation of the simulated patterns with the coefficients for each

atom is evaluated. The Spearman correlation is a measure of statistical dependence

between two variables and takes values between [−1, 1]. A Spearman correlation of 1 or
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−1 means that each of the variables is a perfect monotone function of the other. For the

determination of the Spearman correlation, the coefficient values are compared with

vectors representative of each pattern. The Spearman correlation considers the ranks

of the values of two variables. It is equivalent to the Pearson correlation of ranked data.

Therefore, the representative vectors are constructed as rank vectors according to the

simulation pattern construction. Thus, the order applied for the construction of the

simulated expression values (compare section 5.2.1/Simulation patterns) is used as the

representative vector for each (sub-)pattern. Note that by application of the Spearman

correlation, due to the restriction to the rank, as long as the order of the samples is

correct, for example, large jumps in the estimated pseudotemporal ordering that do not

appear in the analysed dataset are not penalised. The same holds for the opposite case.

However, the other common correlation type, the Pearson correlation, assesses linear

relationships and linearity is not necessarily given in transcriptomic time dynamics.

Yet, this should not be neglected when interpreting the following evaluations.

In a second evaluation, the overlap of genes corresponding to the high values in the

dictionary(-like) matrices with the genes simulated to express the dynamic patterns is

considered. Thus, the gene-module detection performance is evaluated. Therefore, the

percentage of simulated genes among the |gsim| highest values in the dictionary(-like)

matrices is calculated.

In case a method correctly identified the imposed simulation pattern, the Spearman

correlation with the representative vector as well as the percentage of genes overlapping

with the simulated genes would be high. Note that due to the performed perturbations,

perfect correlation or an overlap of genes of 100% is not expected. Yet, values should

serve as an indicator of performance and in order to compare the different methods.

For the dataset with two simulated subpatterns (pattern 3), a pattern with increasing

count values and a fluctuating pattern over simulated time, the time correlation and

gene overlap percentage are measured for each pattern separately. The derived evalu-

ation values for each pattern are not combined to allow for verifying the performance

for each pattern in this mixed-pattern datasets.

Comparison method evaluation approach

For comparison, the simulated datasets are also analysed with five other widely ap-

plied methods for the dimension reduction and analysis of transcriptomic dataset: ICA,

NMF, PCA, t-SNE, and UMAP. As t-SNE and UMAP are non-linear methods, they do

not return a matrix decomposition and are not suitable for gene-module detection as

performed here. Therefore, for t-SNE and UMAP, an evaluation of correctly identified

genes is not conducted and only the representation of the simulated patterns is eval-

uated. The linear methods are evaluated towards their applicability for gene-module
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detection, additionally.

For simplification, the two matrices returned from the linear methods are hereinafter

referred to as the “dictionary-like matrix” and the “coefficient matrix”. Further, the

columns/ components/ dimensions of the obtained dictionary-like matrices are here-

inafter referred to as “components” for all linear comparison methods. The total

number of components is referred to as the “dimensionality” of the low-dimensional

representation. How ICA, NMF, and PCA methods can be interpreted as methods

yielding a dictionary-like matrix as well as a low-dimensional representation matrix is

described in section 4.2.1. Briefly, identical to dynDLT, one of the resulting matrices

is interpreted as the matrix of gene-modules and the other matrix is interpreted as

the matrix yielding the low-dimensional representation. This way, the identification of

gene-modules, as well as the representation of the simulated patterns, can be evaluated

for these methods in the same fashion as for dynDLT.

For the evaluation of the methods for the applicability for pseudotime estimation, the

coefficient matrices are evaluated. Thereto, the Spearman correlation of the sample

coefficients for each component with the simulated patterns is computed. For the

evaluation of the methods for gene-module detection, the dictionary-like matrices are

evaluated. Recall that only a set of genes, gsim, exhibit the simulated pattern. To

evaluate the methods’ performance for gene-module detection, the overlap of the |gsim|
highest dictionary-like matrix entries per component with the genes gsim is computed

(details on the evaluation methods are given in section 5.2.2). Same as for dynDLT,

for each dataset and method, among all evaluated dimensionalities, the component

performing best is evaluated only.

For all comparison methods, all but one parameter are kept to their default value in

the Python implementation in sklearn [202] (for ICA, NMF, PCA, and t-SNE), re-

spectively umap [174] (for UMAP). For ICA, NMF, and PCA, the values for the number

of components identical to the evaluated number of atoms dynDLT, i.e. {1, ..., 10}, are

evaluated. For the analysis of t-SNE and UMAP different parameters are varied. For t-

SNE, the dimension can be maximally 3. As for t-SNE the parameter “perplexity”, px,

can have a large impact on the results, the dimension is fixed to 2. Instead, the value

of the perplexity is varied. Values of px ∈ {10, ..., 100} are evaluated. This selection

is based on the default perplexity of 30 and hence a search around this default value

is performed. The dimension of results from UMAP is always 2. A critical parameter

in UMAP is the number of neighbours v. For UMAP, the number of neighbours is

varied in the simulation study. Values of v ∈ {1, ..., 10} are evaluated. This selection

is based on the default value in the Python implementation, namely 5, and hence a

search around this default value is performed.
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5.2.3. Results

To assess the performance of our approach dynDLT on the simulated datasets, it is

evaluated for different tasks. Firstly, the performance in pseudotime estimation is

evaluated. Next, it is evaluated to what extent the determined gene-modules overlap

with the genes simulated to exhibit the dynamic patterns. The evaluation approaches

are described in detail in the previous section 5.2.2. Lastly, the performance of dynDLT

is compared to those of ICA, NMF, PCA, UMAP, and t-SNE.

Pseudotime estimation with dynDLT

Different dictionary sizes m ∈ {1, ..., 10} are evaluated. Detailed correlation results for

all evaluated DLT parameter values are visualised for a subset of simulated datasets in

Figure 5.2. The dictionary size has an influence on the representation of the simulated

patterns: correlations close to 1 are reached for the majority of values of m, except for

very small dictionaries (e.g. m ≤ 3)

As expected, the performance also depends on the number of genes exhibiting the

simulated pattern, |gsim|, and the intensity of perturbation: the smaller |gsim| and

the less perturbed the dataset is, the higher is the reached correlation. Differences in

performance among the patterns and added perturbations are discussed in the next

paragraph. For increasing m, once a high correlation is reached, it remains high also

for larger values of m. It is striking that for most patterns, there is one atom in each

dictionary that represents the simulated pattern. Hereinafter, the atom for which the

maximum Spearman correlation with the ground truth is measured is considered for

any value of m ∈ {1, ..., 10}.
Within one simulation pattern, for increasing |gsim|, correlations increase or remain

stable (results for all datasets are visualised in Figure 5.3). As explained in section

5.2.1, this presents an anticipated behaviour, as the pattern becomes stronger by in-

creasing |gsim| and should therefore be better detected. For |gsim| ≥ 400, the Spearman

correlations are ≥ 0.74 for all datasets. For the datasets with simulation pattern 3, for

which one half of genes is simulated to exhibit an increasing pattern and the other half

a fluctuating pattern over time, correlations are lower compared to the other datasets

with one simulated dynamic pattern. Recall that for these datasets, only |gsim|/2 genes

exhibit each subpattern. Therefore, the results for this pattern can be compared to

the result for the datasets with the other patterns with |gsim|/2 genes exhibiting the

simulated pattern. In such a comparison, the obtained correlations are similar. This

shows that dynDLT can also identify two subpatterns in one dataset accurately.

Regarding the applied perturbations, noise and noise-and-zero-counts perturbation

have a smaller effect on the performance than the high-noise perturbation. Compared
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Figure 5.2.: Spearman correlations of the dynDLT sample coefficients with the
simulated patterns. Shown are the Spearman correlations for five simulation (sub-)patterns
in rows. The simulation (sub-)pattern and perturbation type is given in the row headers
on the left. For the dataset which is simulated to have an increasing and a fluctuating
subpattern, the results are shown for each subpattern separately – for this dataset, the
respective subpattern is given in the row title in italic letters. For each (sub-)pattern and
perturbation, results for three values of simulated genes exhibiting the pattern (|gsim|) are
shown in columns. The x-axis of each subfigure shows the number of atoms (m) of the
dictionary, and the y-axis shows the atom ID. The maximal correlation increases or remains
stable for an increase of the presented values of the number of genes exhibiting the simulated
pattern (|gsim| ∈ {100, 500, 1000} with few exceptions (compare subfigures from left to right).
Typically, in each dictionary, there is one atom which shows a high correlation with the
simulation pattern.
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Figure 5.3.: Evaluations of the simulated pattern representation for all evaluated
methods. Shown is the maximum Spearman correlation of the coefficients of all single atoms
and dictionary sizes with the simulated patterns. Each subfigure shows evaluations for one
method (method name in subfigure headers). The x-axis shows the number of genes exhibiting
the simulated dynamic pattern, |gsim|. The y-axis shows the maximum Spearman correlation
among the matrices with different method parameter values obtained for each dataset. Re-
sults for each dataset are colour coded (as indicated by the legend at the figure bottom). The
dataset with pattern 3, in which one half of the genes exhibiting the simulated patterns is
ordered increasingly, and the other half is ordered fluctuating, is labelled “Incr Fluct”, with
“Incr Fluct 1” being the subpattern with increasing values and “Incr Fluct 2” the subpat-
tern with fluctuating values. For increasing |gsim|, correlations for dynDLT, ICA, and NMF
increase or remain similar, which presents an anticipated behaviour. However, compared to
dynDLT and ICA, correlations for NMF are significantly smaller, especially for smaller values
of |gsim|. For PCA, t-SNE, and UMAP correlations are generally smaller and the stepwise
correlation increase for increasing |gsim| does not appear.
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to the high-noise perturbation alone, an additional zero-counts perturbation results in

only a slightly decreased performance. This indicates that zero-counts are not present-

ing a challenge for dynDLT.

Gene-module detection with dynDLT

Recall that the gsim genes are simulated to express the characteristic expression pat-

terns. They can therefore be considered to form the dynamic process gene-modules.

To assess the applicability of dynDLT for gene-module detection, the percentage of

the |gsim| highest atom entries overlapping with the gsim genes is evaluated (results

are shown in Figure 5.4). Percentages are larger than 98 for all datasets for which

|gsim| > 300 (median percentage for these datasets is 100, mean 99.6). This presents

a very good performance and means that dynDLT is suitable for the identification of

gene-modules of the simulated dynamic processes. Datasets for which |gsim| ≤ 300 are

either those with two subpatterns or those with high-noise perturbation. This finding

coincides with the results for the correlation analysis.

Comparison method results

For comparison, the simulated datasets are also analysed with five other methods for di-

mension reduction widely applied in the analysis of transcriptomic dataset: ICA, NMF,

PCA, t-SNE, and UMAP. All methods are evaluated for their performance for pseu-

dotime estimation. As t-SNE and UMAP are non-linear methods, they do not return

a matrix decomposition and are not suitable for gene-module detection as performed

here. Therefore, for t-SNE and UMAP an evaluation of correctly identified genes is

not conducted and only the representation of the simulated patterns is evaluated.

Results for pseudotime estimation for all analysed methods are shown in Figures 5.3.

Recall that the number of genes exhibiting the simulated patterns, |gsim|, is varied in

the simulated datasets. Therefore, for increasing |gsim|, the pattern should be better

identifiable and hence, the correlations of the sample coefficients with the simulated

patterns should increase. Indeed, for ICA and NMF, the correlations increase or remain

stable over an increase of |gsim| with few exceptions. However, this desired behaviour

is most evident for dynDLT. Further, whereas dynDLT and ICA reach correlations

close to 1 for small values of |gsim| and correlations remain high for higher values of

|gsim|, for NMF correlations are high for higher values of |gsim| only. Expectedly, this

conspicuousness appears especially for the dataset with two subpatterns. Correlations

for PCA, t-SNE, and UMAP, on the other hand, are to a large extent smaller than those

measured for dynDLT and ICA, and, contrary to anticipation, they do not increase for

increasing |gsim|.
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Figure 5.4.: Percentage of correctly identified gene-module genes for the simu-
lated datasets for all evaluated linear methods. Each subfigure shows evaluations for
one method (method name in subfigure headers). The x-axis shows the number of genes
simulated to exhibit the dynamic pattern, |gsim|. The y-axis shows the highest percentage
measured among the matrices with different method parameter values for each dataset. Re-
sults for each dataset are colour coded (as indicated by the legend at the figure bottom).
The dataset with pattern 3, in which one half of the genes exhibiting the simulated patterns
is ordered increasingly, and the other half is ordered fluctuating, is labelled “Incr Fluct”,
with “Incr Fluct 1” being the genes with increasing values and “Incr Fluct 2” the genes with
fluctuating values. dynDLT and ICA perform similarly well, with many percentages close to
100%. NMF does generally not reach as high percentages as the other methods. For PCA,
high percentages are reached for most datasets, but they are smaller than those reached for
dynDLT or ICA to a great extent. Notably, for several simulation patterns, percentages for
PCA decrease for increasing |gsim|, which should not appear. As t-SNE and UMAP are
non-linear methods they are not suitable for gene-module detection as applied here and their
performance for this task can therefore not be evaluated.
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Figure 5.5.: Spearman correlations of the ICA sample coefficients with the simu-
lated patterns. Shown are the Spearman correlations for five simulated (sub-)patterns in
rows. The simulation (sub-)pattern and perturbation type is given in the row headers on the
left. For the dataset which is simulated to have an increasing and a fluctuating subpattern,
the results are shown for each subpattern separately – for this dataset, the respective subpat-
tern is given in the row title in italic letters. For each (sub-)pattern and perturbation, results
for three values of simulated genes exhibiting the pattern (|gsim|) are shown in columns. The
x-axis of each subfigure shows the number of components, and the y-axis shows the com-
ponent ID. Unlike for dynDLT, for an increase in the number of ICA components, a high
correlation does rarely remain high once it is reached for a certain number of components.
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Hence, the two best-performing methods in the correlation analysis and thus for

pseudotime estimation for the simulated datasets are ICA and dynDLT. Taking a closer

look at their respective performance, it is striking that for ICA, unlike for dynDLT,

correlations do not remain high for all dimensionalities successive to the dimensionality

for which a high correlation is reached first (compare among Figure 5.2 and Figure

5.5). Hence, to obtain a good representation from an ICA analysis, results have to be

acquired for a large set of parameters. Subsequently, the results have to be assessed

to select the best performing solution among all results. However, this requires an

idea of the ground truth. In case only a few data labels are known, this task can be

non-trivial, if not impossible. For dynDLT on the other hand, if the dimensionality is

selected well (among a wide range of values yielding high correlations), only the best

performing atom has to be selected. This should present a feasible task, as the results

display that one atom is representing the pattern clearly. Therefore, for dynDLT, a

few labelled data points are sufficient to identify the time-representing atom.

Despite the aforementioned difficulties in an ICA analysis for pseudotime estimation,

dynDLT and ICA are further considered the two best-performing methods for pseudo-

time estimation. Comparing the respective performance of these two methods, dynDLT

reaches higher correlations than ICA for 64% of the simulated datasets. dynDLT and

ICA perform identical for 4% of the datasets and for 31% of the datasets ICA performs

better than dynDLT. On average, dynDLT outperforms ICA in the analysis of the sim-

ulated datasets with two subpatterns (average difference in correlation is 0.03) as well

as those with perturbations (average difference in correlation is 0.01). ICA performs on

average better in the analysis of the simulated datasets for which |gsim| ≤ 200 (average

difference in correlation is 0.05). However, for all datasets with |gsim| ≥ 300 dynDLT

is on average outperforming ICA (average difference in correlation 0.03).

Results for the gene-module detection for all analysed linear methods are shown

in Figure 5.4. Recall that t-SNE and UMAP are non-linear methods and thus are

not suitable for gene-module detection as performed here. The performances of the

methods in the evaluation for gene-module detection are similar to the performances

for the correlation evaluations: dynDLT and ICA perform best and percentages of

overlapping genes increase or remain similar for increasing |gsim| with few exceptions.

This desired behaviour does not apply to the results for PCA. However, PCA reaches

relatively high percentages, albeit on average significantly lower ones than those of

dynDLT and ICA. NMF on the other hand performs significantly worse than dynDLT

and ICA for the evaluated parameters and datasets: the highest percentage obtained

for NMF is 69, whereas the other three methods reach 100% for many datasets.

Taking a closer look at the gene-module detection for the two best-performing meth-

ods dynDLT and ICA, it shows that the percentages of correctly identified genes

136



are similarly high for most datasets. This holds especially for datasets for which

|gsim| > 300. For these datasets, the maximal difference in percentages is 6, with

an average difference of 0.02. Interestingly, for the datasets with two simulated pat-

terns and high-noise as well as zero-counts perturbation, for |gsim| = 300, dynDLT is

performing significantly better for the increasing pattern half. ICA, on the other hand,

identifies genes of the fluctuating pattern half significantly better for these datasets.

5.3. Discussion and conclusion

In this chapter, our new method Dictionary learning for the analysis of transcriptomic

data from dynamic processes (dynDLT) is presented and evaluated in an extensive

simulation study. The objective of dynDLT is to estimate the pseudotimes of the sam-

ples in transcriptomic datasets from dynamic processes. Additionally, gene-modules

depicting the dataset-specific gene-sets whose expression varies in the dynamic process

should be identified.

In a simulation study, it is evaluated whether the simulated gene expression patterns

are reflected by the obtained low-dimensional representations and whether the detected

gene-modules overlap with the genes exhibiting the simulated dynamic patterns. The

former is evaluated by a correlation analysis, while the latter is evaluated by a study on

the overlap of simulated and detected dynamic genes. For comparison, the simulated

datasets are also analysed with ICA, NMF, PCA, t-SNE, and UMAP.

Both methods presented in this thesis, DLT and dynDLT, are connected to Dic-

tionary learning (DiL). Yet, they are not identical to DiL. One difference is that the

dictionary in DLT and dynDLT is a thin-matrix and hence not overcomplete, as it

is the case for DiL. A similarity is that in the dictionary training, dictionary atoms

are learned such that the coefficient matrix is sparse. This should lead to dictionary

atoms, and hence gene-modules, that present highly characteristic biomolecular pro-

cesses occurring in the analysed dataset. The reason therefore is that if sparsity on the

sample coefficients were not enforced in the dictionary training of DLT, atoms could be

combined on a larger scale and therefore be less specific. A further similarity of DiL,

DLT, and dynDLT is that the atoms are not constrained, which allows for obtaining

representations that are not guided by such constraints.

One difference between dynDLT and DiL, respectively DLT, is that the dynDLT

dictionary entries are positive, which allows for an enhanced interpretation of the low-

dimensional representation. Another difference is that for the pseudotime estimation,

only one atom is considered in dynDLT, while the entire representation is consid-

ered in DiL and DLT. It should be noted, however, that while the one-atom approach

yields promising results, a solution for determining the respective atom is not provided.
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As a starting point for solving this problem, semi-supervised clustering could be ap-

plied, which requires only a few known sample states. Likewise, an assessment of the

agreement of respective pseudotimes with general time class labels, for example, from

different time points in an experiment is conceivable. This should facilitate selecting

the atom representing the dynamic module.

An additional difference between dynDLT and DiL, respectively DLT, is that the

coefficient matrix is non-sparse in dynDLT, while it is sparse in DiL. This is necessary

because otherwise, many of the coefficients for an atom could be zero. Yet, distinct

coefficients for each sample are required in order to determine each sample’s pseudo-

time. A consequence of the non-sparsity is that in dynDLT, only one parameter has

to be selected, which makes it very user-friendly. Recall that, nevertheless, the dic-

tionary training in dynDLT is conducted with the sparsity constraint in order to take

advantage of the resulting determination of highly characteristic dictionary atoms as

discussed above.

In the presented simulation study, 120 simulated datasets with different dynamic ex-

pression patterns, perturbations, or numbers of genes exhibiting the simulated patterns

are analysed in total. As each subpattern of the dataset with two subpatterns is consid-

ered separately, it adds up to 160 dataset evaluations in total. The simulated patterns

are reflected by one dynDLT dictionary atom. Overall, dynDLT detects the simulated

dynamic patterns accurately for all the simulated patterns, also when perturbations

are added. The correlations of the sample coefficients with the simulated patterns, the

evaluation metric for pseudotime estimation, are > 0.9 for 120 of 160 evaluations. The

respective average correlation amongst all evaluations is 0.87 (median 0.96).

In total, the percentage of the genes in the DLT gene-modules overlapping with the

simulated expression pattern genes, gsim, is > 90% in 144 of 160 evaluations. For some

datasets, for which |gsim| ≤ 200, the performance of dynDLT is significantly worse

than for datasets with |gsim| > 300. This is comprehensible as the dynamic patterns

in these datasets are very small. Other signals in the dataset can be more drastic and

therefore identified over the simulated patterns. Among the 112 datasets for which

|gsim| > 300, the correlations are > 0.9 for 106 datasets and the respective percentage

is > 90%. These convincing results for gene-module determination are in agreement

with respective results for DLT, which characterises also dynDLT as an interpretable

approach.

As illustrated, an increase in the number of genes exhibiting the simulated patterns,

|gsim|, means that the pattern becomes stronger in the dataset. Therefore, for increas-

ing |gsim|, an increase or stability in the methods’ performance should occur. Among

the evaluated methods this is observed only for dynDLT, ICA, and NMF with few

exceptions for some values of |gsim|. Neither for PCA, t-SNE, nor UMAP such a con-
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nection becomes apparent. The only method that shows a similar performance to the

one of dynDLT is ICA. NMF, on the other hand, reaches high correlations similar to

ICA and dynDLT – however, only for large values of |gsim|. Yet, in the gene-module

detection, NMF performs significantly worse.

Comparing the evaluated performance of the two best-performing methods for pseu-

dotime estimation of the simulated datasets, dynDLT and ICA, dynDLT performs

better for a larger proportion of datasets. Further, what is striking for ICA, is that for

an increase of its parameter determining the number of components, once a high corre-

lation is reached, the performance of ICA does not remain high for all representations

with more components. This demonstrates the instability of ICA, which is pointed

out in section 3.2. In conclusion, this means that for ICA, choosing the number of

components is far more critical than for dynDLT. From this, it follows a requirement

of an evaluation of multiple parameter values in an ICA analysis and a measure to

assess and subsequently select among the respective representations. However, this is

non-trivial as pseudotime estimation presents an unsupervised approach. This is dif-

ferent for dynDLT. Yet another advantage of dynDLT over ICA is that the dictionary

entries are positive, which allows for an easier interpretation of the low-dimensional

representation.

In summary, dynDLT shows the best overall performance for pseudotime estimation

in the conducted experiments among all evaluated methods. Further, based on the

composition of the approach, the results are interpretable in terms of the analysed

genes, which is confirmed in the simulation study.
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6. Real-world data application:

pseudotime estimation of

transcriptomic time-course data

with dynDLT

The numerical experiments presented in the previous chapter reveal that our new

method Dictionary learning for the analysis of transcriptomic data from dynamic pro-

cesses (dynDLT) performs well for pseudotime estimation and provides interpretability

of the results: the simulated dynamic processes are accurately represented by the de-

rived low-dimensional representation; further, the gene-modules derived by dynDLT are

highly overlapping with the genes exhibiting the simulated dynamic patterns, which

suggests that the chosen representation is meaningful from a biological point of view.

In this chapter, dynDLT is applied on eight real-world time-course datasets, and it

is examined whether dynamic processes are depicted by the obtained low-dimensional

representations.

Details on our new method dynDLT are presented in section 5.1. Recall that in

dynDLT, the pseudotimes are derived based on the sample coefficients for one atom.

Note that the consequence of such an approach is that whenever a set of atoms captures

the time-dynamics, the pseudotime cannot be inferred in its entirety. However, in the

simulation studies, in almost all evaluations, one atom captures the time-dynamics.

The one-atom approach provides a simple way of deriving pseudotimes based on the

low-dimensional representations: the order of the coefficients for all samples for one

component is simply regarded as the pseudotemporal ordering.

As an alternative approach, allowing to use the entire low-dimensional represen-

tation for pseudotime estimation, the low-dimensional representations are combined

with the polygonal reconstruction algorithm from Monocle. This algorithm constructs

a minimum spanning tree (MST) from the derived low-dimensional representations.

Next, the algorithm finds the longest connected path within the MST. In the last step,

each graph node (sample) is assigned to the closest node on this longest path. The

pseudotimes are derived along the obtained path.
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To allow for an evaluation of the derived pseudotimes, datasets for which the ex-

perimental times are provided are analysed. These experimental time labels are used

for the evaluation of the estimated pseudotimes. For a start of the real-world data

analysis, two dynamic datasets with samples from one phenotype/ experimental con-

dition are evaluated. Further, inspired by the results for DLT presented in chapters

3 and 4, which revealed that the low-dimensional representations from DLT maintain

differences among samples from different phenotypes, six dynamic datasets with dif-

ferent subtypes are evaluated. Different subtypes are, for example, cells of the same

type which are exposed to different conditions or stem cells that develop into a variety

of different cell types. Such datasets, in which samples are diverging over time from

one type into several types, are often referred to as having “branching” timelines. It is

evaluated whether the different timelines/ branches are accurately represented by the

dynDLT coefficients. Results from dynDLT are compared to those from ICA, NMF,

PCA, t-SNE, and UMAP. Details on the comparison approaches are given in section

2.5.

6.1. Data

In the analysis of real-world time-course datasets, eight datasets from different organ-

isms, experimental settings, and databases are evaluated. Datasets are taken from

Gene expression omnibus [67] and ArrayExpress [10]. To allow for an evaluation of the

derived pseudotimes, datasets for which the experimental times are known are anal-

ysed. This way, the experimental time labels can be used for the evaluation of the

estimated pseudotimes. The datasets include bulk and single-cell experiments. Details

on the dataset compositions are shown in Table 6.1. Two datasets contain samples

from one phenotype. Inspired by the results for DLT presented in chapters 3 and 4,

which revealed that the low-dimensional representations from DLT maintain differences

among samples from different phenotypes, six dynamic datasets with different subtypes

are further analysed with dynDLT. Details on the sample types and conditions in these

six datasets are given in Table 6.2.

To avoid a bias of a (subset of) sample type(s) and time points in the analysis by

dynDLT and the comparison methods, for each dataset the samples are selected such

that the number of samples per type is the same. Thereto, a threshold value w for the

minimum number of samples per type and time point is chosen and only those types

and time points for which at least w many samples are present are selected. For each

type and time point, exactly w many samples are selected at random. The value of

w is chosen such that the number of samples per type is the same for all types and

maximal given the data.
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Database-ID Database Data type Organism Samples
Reads/
Genes

Time
points

Type distinguishing
metadata features

GSE122380 GEO scRNA-seq Homo
sapiens

294 16,237 16 -

E-MTAB-2565 ArrayExpress Microarray Arabidopsis
thaliana

71 20,361 18 -

GSE100425 GEO RNA-seq Mus
musculus

120 19,715 7 6

GSE129486 GEO RNA-seq Homo
sapiens

174 30,566 9 6

GSE84712 GEO scRNA-seq Homo
sapiens

78 18,255 27 2

GSE87375 GEO scRNA-seq Mus
musculus

912 22,027 7 8

GSE92652 GEO RNA-seq Homo
sapiens

92 46,378 6 5

E-MTAB-6811 ArrayExpress Microarray Rattus
norvegicus

359 27,330 16 4

Table 6.1.: Overview of the composition of the eight real-world dynamic datasets
(after outlier removal). The first two datasets, GSE122380 and E-MTAB-2565, do not
contain sample subtypes according to the dataset metadata. The other datasets are taken
from cells that diverge into different subtypes over time.

Database-ID Organism Cell/tissue type Conditions

GSE100425 Mus musculus Hematopoietic stem cells of
different type (short-term,
long-term) and multipotent
progenitors

Different age mice,
(not) stimulated with
inflammatory stimulus

GSE129486 Homo sapiens Fibroblasts from individuals
with rheumatoid arthritis or
osteoarthritis

Stimulation with
TNF or
TNF + IL-17A

GSE84712 Homo sapiens Neural progenitor cells Lead exposure
(two different
concentrations and control)

GSE87375 Mus musculus Pancreatic Islet β-cells and
α-cells

Transgenic mice
(Ins1-RFP, Gcg-Cre,
Rosa-RFP and Ngn3-GFP

GSE92652 Homo sapiens Transduced hematopoietic
stem cells

Lentiviral vector (LV)
mediated gene correction

E-MTAB-6811 Rattus norvegicus 7 organ types
(brain, cerebellum, heart,
kidney, liver, ovary, testis)

-

Table 6.2.: Overview of the experimental settings of six real-world datasets with
different subtypes. Depending on the dataset, the subtypes are either different cell types,
different experimental conditions/ treatments, or a combination of both.
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Outlier detection and normalisation

Outlier detection based on total read count and amount of zero-counts is performed

before sample selection as described in section 3.5.3. Normalisation is performed af-

ter sample selection. The applied normalisation method is the sum1 cs method that

performs best in the numerical experiments presented in section 3.5. Recall that the

sum1 cs-method refers to a division by the total count sum for all genes in a sample,

followed by a centring of all count values for a gene to zero and a scaling of the ob-

tained values to a standard deviation of one. The centring cannot be performed for an

NMF analysis, as this results in negative and positive values. Therefore, for the NMF

analysis, the expression values are rescaled to the interval [0, 1].

6.2. Result evaluation approaches

To assess the methods’ performance, it is evaluated whether the obtained pseudotimes

are in agreement with the experimental time points. Further, the derived gene-modules

are analysed by a Gene ontology (GO) term analysis [50] in order to assess whether

they are biologically relevant for either the sample types they represent or for dynamic

processes.

Results from dynDLT are compared to those from ICA, NMF, PCA, t-SNE, and

UMAP. Details on the comparison approaches are given in section 2.5. For simpli-

fication, the two matrices returned from the linear methods are hereinafter referred

to as the “dictionary-like” matrix and the “coefficient” matrix. Further, the columns

of the obtained dictionary-like matrices are hereinafter referred to as “components”

for all linear comparison methods; the total number of components is referred to as

the “dimensionality” of the low-dimensional representation. Same as for dynDLT, the

pseudotimes are derived based on one component of the respective low-dimensional

representations.

Note that by comparing the derived pseudotimes with the experimental time points

in the evaluation, the experimental times are treated as the ground truth. However,

this does not have to be correct for each sample. This becomes obvious, considering

that multiple samples have the same time label. For one thing, these samples are most

surely not all at precisely the same stage. Further, it is conceivable that a subset of

the samples taken at each time point is slower or faster developing than the average set

of cells. In consequence, those general time labels could be wrong, as a sample from

a successive time point could lack behind (in the dynamic process) a sample from a

preceding time point. This is a crucial remark. Consequently, perfect correlations of 1

are not expected. Nevertheless, the experimental times should provide an orientation

of the dynamic processes and enable assessing whether the time-dynamics are captured
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approximately.

The actual assessment is performed with the same metric as in the simulation study

(compare section 5.2.2), the Spearman correlation: to determine whether the obtained

pseudotimes are in agreement with the experimental time points, the Spearman corre-

lation of the experimental time points with the sample coefficients for each component

is computed. Recall that the Spearman correlation considers the ranks of the values of

two variables – it is equivalent to the Pearson correlation of ranked data. This step is

performed for each type and corresponding subtypes in the dataset (details are given

below).

To evaluate the performance of gene-module detection, only the component for which

the coefficients have the highest correlation with the experimental time points is con-

sidered. For the evaluation of the genes, a GO-term analysis of the 500 genes with the

highest absolute entries in the component is performed. Note that for some comparison

methods, namely ICA and PCA, the entries can be positive or negative, which is why

absolute values are considered. However, recall that for our approach dynDLT, the

values are positive, which allows for a better interpretation. Only GO-terms with a

p-value ≤ 10−3 are regarded.

Merge of correlation for data with different subtypes

For the six real-world datasets with subtypes, several features in the metadata provide

information on differences among the samples based on different criteria (details on the

datasets are provided in Table 4.1). Recall that the underlying idea in the analysis of

these datasets is that there are sample types with distinct dynamic expression (appear-

ing in so-called “branches”). This can be seen for two exemplary datasets in Figure

6.1. Note that it is not known in advance to the dataset analysis which of the features

is the feature that characterises the sample subtypes with such an individual dynamic

development. Therefore, in the evaluation, each feature is considered as a candidate

feature for a subtype partition with distinct dynamics.

For each feature, for each subtype – hence, all samples with the same value for

this feature – the correlation of the experimental times and obtained pseudotimes are

computed for all samples belonging to the subtype. To obtain one value for the entire

feature, values of all corresponding subtypes are merged. Therefore, the obtained

correlations for each subtype are scaled by the percentage of samples belonging to the

subtype. The resulting adjusted subtype correlations are summed for each feature.

To be considered for this assessment, for each feature and subtype (and time point) a

number of observations are required. Therefore, the following restrictions are made:
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Figure 6.1.: dynDLT representations for three atoms for two real-world datasets
with samples from different types. Shown are three different rotations of each dynDLT
representation for the two datasets E-MTAB-6811 and GSE84712. Visualisations for dataset
GSE84712 are shown to the left; visualisations for dataset E-MTAB-6811 are shown to the
right. For each dataset, the low-dimensional representation is coloured once by the subtype
separating feature (Dose for GSE84712 and Organ for E-MTAB-6811) and once by the ex-
perimental times. Respective legends below the subfigures give rise to those distinctions. For
dataset GSE84712, for later time points, samples with a dose of 30µM have a distinctive
representation compared to those with no or 3µM lead exposure. This is often referred to
as samples being represented on different “branches”. Note that on each branch, samples
are well-ordered according to experimental times. A similar pattern is observable for the
subtypes in dataset E-MTAB-6811.
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• For the feature to be considered:

1a) for more than half of the subtype measurements at least three time points

of the entire experiment need to be present;

1b) the number of subtypes must not be larger than half of the total sample

number.

• For the subtype to be considered:

2a) samples are present for at least five samples of the subtype;

2b) samples are present for at least three time points for the subtype.

Using dynDLT with existing trajectory inference methods

Several existing pseudotime estimation methods construct graphs based on the low-

dimensional representations of the analysed datasets (details are provided in the in-

troduction of this chapter) and derive the pseudotimes based on distances measured

on that graph. This is also referred to as “trajectory inference”. PCA, ICA, or t-SNE

belong to the most widely used methods for dimension reduction in those pseudotime

estimation methods.

As an alternative to deriving pseudotimes based on the coefficients of one com-

ponent as described above, the entire derived low-dimensional representation can be

incorporated into existing trajectory inference approaches. This means that dynDLT

is performed rather than the dimension reduction method applied in the respective ap-

proach, for example, ICA, PCA, or t-SNE. Results for such a procedure are evaluated

exemplary using Monocle [264] in section 6.3.2.

Note that in the described combined approach, the interpretability, which is a major

benefit of dynDLT, is partially lost. The reason is that the pseudotimes are no longer

estimated based on the coefficient matrices, but based on the derived graph. However,

this is the case for any pseudotime estimation approach based on graphs, no matter

which method is used for dimension reduction.

6.3. Results

In the real-world data study, our approach dynDLT is evaluated on different tasks. For

one thing, the derived pseudotimes are evaluated. The evaluation is performed via a

correlation analysis of the estimated pseudotimes with the experimental time points

given in the metadata of the datasets. For another thing, the derived gene-modules

are analysed by a GO-term analysis. The obtained terms are evaluated in regard to

their biological relevance for either the sample types they represent or for dynamic

processes. Details on the evaluation approach are given in the previous section 6.2.
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6.3.1. Results for time-dynamic data from one type

For the two real-world datasets that are composed of samples from one type only,

E-MTAB-2565 and GSE122380, results for all methods with two components are vi-

sualised in Figure 6.2. Visually, the representations differ significantly between the

methods. Not for all methods, a representation of the dynamic progress becomes ap-

parent in these two component representations. Yet, the fixation of a value of two for

the number of components present a relatively small value and results can be better

for an increased number of components. Respective results are described below. Es-

pecially for UMAP and similarly for t-SNE, it is striking that a subset of samples is

accumulated, and these accumulations are separated from the other samples. Notably,

this effect occurs the strongest for the samples with the time stamp “0”. For the other

methods, this does not occur anywhere near this strong. However, the dynamic process

is not expected to appear in such a stepwise pattern, but rather as a continuous process.

Therefore, there is reason to believe that the time dynamics are not well represented

in these representations.

For the datasets that are composed of samples from one type only, the correlations

for dynDLT are highest for dictionaries with few atoms, for example, three atoms

(results for all parameter values are provided in Figure 6.3). Amongst all evaluated

values for the number of atoms, the highest correlation reached by dynDLT for dataset

E-MTAB-2565 is 0.98. The respective smallest correlation is 0.88. Correlations for

PCA are similarly high. For NMF and ICA, maximal correlations are similarly high,

but obtained only for fewer values of all analysed numbers of components. The same

holds for t-SNE and UMAP, for which an influence of the values of the method pa-

rameters perplexity, respectively number of neighbours on the correlations is evident.

For dataset GSE122380, the highest correlation reached by dynDLT is 0.95, and the

smallest correlation is 0.65. ICA, PCA, and NMF reach similarly high correlations.

Only UMAP does not reach a correlation as high as obtained for the other methods

(maximal correlation obtained for UMAP is 0.85).

In an alternative approach, the pseudotemporal ordering is derived from the entire

low-dimensional representation by incorporation thereof into the polygonal reconstruc-

tion approach from Monocle (as opposed to the one component approach evaluated

above). The highest correlations for this approach amongst all evaluated parameter

values are similarly high compared to those from the one-component approach (see

Figure 6.3). However, it is striking that for the graph-based approach, for several

methods, the correlation drops for an increasing number of components, especially for

dataset GSE122380.

In addition to the evaluation of each method’s performance, the pseudotimes of the

methods are also compared among each other. Therefore, the correlation of the esti-
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Figure 6.2.: Low-dimensional representations of all evaluated methods for two components for two dynamic real-world datasets.
The subfigures show visualisations of the sample coefficients of each method (method name in figure column title) for the two real-world datasets
without subtypes and with samples from dynamic processes, E-MTAB-2565 and GSE122380. The respective dataset ID is given to the left of each
set of subfigures for all methods. The data points are colour coded according to the experimental time points (see legend at the right). The values
of the parameters for the representations for t-SNE, respectively UMAP (perplexity = 10, number of neighbours = 10) for these visualisations
are chosen such that the correlations among all values evaluated are on average maximal for the two datasets. Hence, for these methods, unlike
for the other ones, a parameter study and subsequent selection are performed for this visualisation. Note that this presents an advantage over
the other methods for which the adjusted parameter, the number of components, is selected by the composition of the representations to two. If
a method were to represent the dynamics well, the data points would be ordered according to the experimental time point for at least one of the
components. For datasets E-MTAB-2565, for all methods, at least one component is representing the dynamics of the data relatively well, with
varying quality among the methods. It is striking that the low-dimensional representations from dynDLT, ICA and NMF represent the dynamics
with little noise. In each representation of dataset GSE122380, one component of dynDLT, ICA, and PCA is representing the dynamics well.
Same as for datasets E-MTAB-2565, comparing among these, dynDLT represents the dynamics with smaller noise.
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Figure 6.3.: Evaluations for the real-world datasets with samples from one type for
all evaluated methods. Evaluated are the correlations of the experimental times with the
derived pseudotimes. The legends to the right entail the colour-coding for the methods, as
well as the shape-coding of the component ID. Results for each dataset are shown row-wise
(datasets ID in row title). Correlations for pseudotimes, which are derived based on the
coefficients for one component, are shown to the left; correlations for pseudotimes derived
based on the entire low-dimensional representation in combination with Monocle’s polygonal
reconstruction are shown to the right. The x-axis displays the number of components the data
is reduced to for the linear methods; for t-SNE it shows 0.1∗perplexity ; for UMAP it shows the
number of neighbours. Generally, high correlations, for example, > 0.7, are reached for almost
all methods and datasets. In the majority of method/ parameter evaluations, correlations
are higher when the pseudotimes are derived based on the coefficients of one component.

mated pseudotimes of each two methods is evaluated. Same as in the evaluation of the

pseudotimes of each method, the Spearman correlation is computed for this appraisal.

Results are shown in Figure 6.4. For the datasets with samples from one phenotype,

pseudotimes are highly correlated (E-MTAB-2565 and GSE122380). However, for some

of the other datasets, the different methods’ pseudotimes differ strongly. Interestingly,

for dataset E-MTAB-6811, the representations of the linear methods, respectively the

non-linear methods are highly correlated among each other. Yet, the correlations of the

pseudotimes derived by the linear methods have a small correlation with those from

the non-linear methods. For the other datasets, such a pattern is not apparent.

Besides the pseudotime evaluation, a GO-term analysis of the derived gene-modules

is performed. Recall that the gene-modules are derived from the component displaying

149



Figure 6.4.: Correlations of the estimated pseudotimes for all method pairs for
all analysed dynamic real-world datasets. Shown are, for each analysed dataset, vi-
sualisations of the correlation of the estimated pseudotimes among each method-pair. The
correlations are colour coded based on their value (legend on the top right). In the first
row, results for the two datasets with samples from one type are shown. It is striking that
pseudotimes are more similar among the different methods for these two datasets compared
to the datasets with samples from multiple phenotypes when assessed by correlation. Inter-
estingly, for dataset E-MTAB-6811, the representations of the linear methods, respectively
the non-linear methods are highly correlated among each other. Yet, the correlations of
the pseudotimes derived by the linear methods have a small correlation with those from the
non-linear methods.
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the pseudotime and a significance cut-off of 10−3 is applied. The precise procedure for

the GO-term evaluation is explained in section 6.2. A list of all obtained GO-terms

for the evaluated methods is given in the appendix, section A.1. For both datasets

and all methods, with few exceptions, the obtained GO-terms contain terms that are

either connected to dynamic processes or the sample types, respectively experimental

conditions. Terms that fall into either of these categories are regarded as relevant in this

study. However, only for gene-modules from dynDLT and NMF, the GO-terms can be

associated with the sample types, respectively experimental conditions. Interestingly, it

is exactly these two methods which have solely positive entries in their dictionary(-like)

matrices. Recall that this is a property that enhances interpretability. Comparing the

results for dynDLT and NMF, the proportion of terms regarded as relevant in the

analysis context is higher for dynDLT.

6.3.2. Results for time-dynamic data with different subtypes

The analysis of the two analysed real-world datasets which are composed of samples

from one type shows that the dynDLT-based sample coefficients are highly correlated

with the experimental time points. In this section, six dynamic transcriptomic datasets

with samples from different subtypes are analysed with dynDLT and the five compar-

ison methods ICA, NMF, PCA, t-SNE, and UMAP.

For all datasets, for several evaluated methods and parameter values, high corre-

lations, for example, > 0.7, are reached when pseudotimes are derived based on the

ordering of the coefficients for one component (results for all datasets and methods are

shown in Figure 6.5). Solely the smallest parameter value evaluated results in a sig-

nificantly smaller correlation for many methods and datasets. For all datasets except

GSE92652, correlations over the remaining parameter values do on average not vary

by more than 0.23. Considering the highest correlation obtained amongst all evaluated

parameter values for each dataset between the different methods, dynDLT reaches the

highest correlation for three out of six datasets (GSE84712, GSE92652, EMTAB6811).

This presents the best overall performance. Further, ICA and UMAP are the second-

best methods in this collective evaluation. They are among the best scoring methods for

two datasets each (ICA: GSE87375, EMTAB6811; UMAP: GSE100425, EMTAB6811).

In addition to the evaluation of each method’s performance, the pseudotimes of the

methods are also compared among each other. Therefore, the correlation of the esti-

mated pseudotimes of each two methods is evaluated. Same as in the evaluation of the

pseudotimes of each method, the Spearman correlation is computed for this appraisal.

Results are shown in Figure 6.4. A high correlation, for example, > 0.7, is observed

only for some method-pairs. Interestingly, for dataset E-MTAB-6811, a difference be-

tween the linear methods (i.e. dynDLT, ICA, PCS, and NMF) and non-linear methods
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(i.e. t-SNE and UMAP) is striking. Yet, for this dataset, the correlations of the pseu-

dotimes derived by the linear methods have a small correlation with those from the

non-linear methods. For the other datasets, such a pattern is not apparent. Rather,

correlations of the pseudotimes for the two non-linear methods t-SNE and UMAP are

often small, with a Spearman correlation ≤ 0.5 for four out of the six datasets.

When pseudotimes are derived with the alternative, graph-based approach described

in the introduction of this chapter, namely by an integration of the entire low-dimensional

representation from each method with the polygonal reconstruction from Monocle, for

several dataset/method combinations, the correlations are slightly worse than those

for the one component approach (see Figure 6.5). For dataset GSE92652, Monocle

fails. Therefore, only the remaining five datasets can be analysed by this approach.

For this approach, correlations measured for dynDLT are highest among all methods

for two out of the five datasets, which presents the best overall performance among

all evaluated methods. Correlations for ICA, NMF, and UMAP are each among the

highest for one dataset.

Besides the pseudotime evaluation, a GO-term analysis of the gene-modules is per-

formed. Recall that the gene-modules are derived from the component displaying the

pseudotime. Further, only GO-terms with p-values < 10−3 are considered significant

and included in the subsequent analysis. The precise procedure for the GO-term eval-

uation is explained in section 6.2. A list of the obtained GO-terms for all methods

is given in the appendix, section A.1. To summarise the GO-term evaluation, in the

following, GO-terms which are associated with dynamic processes, or those which are

in association with the sample types, respectively the experimental setup, are referred

to as “relevant” GO-terms. The results for the individual datasets are the following:

For dataset GSE100425, for all methods but ICA, among all obtained significant GO-

terms, two are relevant. Only for ICA, six of the significant GO-terms are relevant.

However, for ICA and also for NMF, the number of significant GO-terms is higher in

total, compared to dynDLT and PCA. Hence, the amount of non-relevant GO-terms

is higher for these methods.

For dataset GSE129486, for dynDLT, four of all obtained significant GO-terms are

relevant. For all other methods, fewer relevant GO-terms are found and the number of

non-relevant GO-terms is a lot higher for NMF and PCA.

For dataset GSE84712, for dynDLT, there are 18 relevant GO-terms among all

the significant GO-terms. The second-highest number of relevant GO-terms is ob-

tained for NMF, for which seven relevant GO-terms are obtained. Same as for dataset

GSE129486, the number of non-relevant GO-terms is a lot higher for NMF and PCA.

For ICA, two out of eight significant GO-terms are relevant.

For dataset GSE87375, only for PCA, more than one GO-term is relevant among all
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Figure 6.5.: Evaluations for the six dynamic real-world datasets with multiple sub-
types for all evaluated methods. (This figure is continued on the next page.) Results
for each dataset are shown row-wise (datasets ID in row title). Evaluated are the corre-
lations of the experimental times with the derived pseudotimes. The legends to the right
entail the colour-coding for the methods, as well as the shape-coding of the component ID.
Results for each dataset are shown row-wise (datasets ID in row title). Correlations for pseu-
dotimes, which are derived based on the coefficients for one component, are shown to the
left; correlations for pseudotimes derived based on the entire low-dimensional representation
in combination with Monocle’s polygonal reconstruction are shown to the right. The x-axis
displays the number of components the data is reduced to for the linear methods; for t-SNE it
shows 0.1∗perplexity ; for UMAP it shows the number of neighbours. For dataset GSE92652,
Monocle fails, which is why results are shown only for the remaining five datasets. In the
majority of method/parameter evaluations, correlations are higher when the pseudotimes
are derived based on the sample coefficients of one component. For the one component ap-
proach, correlations for dynDLT are highest, compared to the other methods for three out of
six datasets. The second-best scoring methods, ICA and UMAP, reach highest correlations
for two datasets each.

153



Figure 6.5.: Evaluations for the six dynamic real-world datasets with multiple sub-
types for all evaluated methods (continued). Subfigure (a) as well as the figure de-
scription can be found on the previous page.

significant GO-terms.

For dataset GSE92652, a significant GO-term that can be associated with the sample

types, respectively the experimental setup is obtained only for NMF. However, results

for ICA, NMF, and PCA include GO-terms that can be associated with dynamic

processes. For dataset GSE92652, the dynDLT results do not contain any relevant

GO-terms.

For dataset EMTAB6811, the number of relevant GO-terms is either two or three in

dynDLT, ICA, and PCA. For NMF, 13 relevant GO-terms are found. Nevertheless, at

the same time – similar to the results for the other datasets – for NMF, the amount of

non-relevant GO-terms is a lot higher than for the other methods.
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6.4. Discussion and conclusion

In this chapter, the application of Dictionary learning for the analysis of transcriptomic

data from dynamic processes (dynDLT) is evaluated for pseudotime estimation of real-

world transcriptomic datasets which are composed of samples from dynamic processes.

Investigated are, for one thing, the pseudotime estimation, which is based on the

sample coefficients. Further examined is the gene-module detection, which is based on

the dictionary matrix and provides interpretability of the obtained pseudotimes. The

dynDLT results are compared to those from ICA, NMF, PCA, t-SNE, and UMAP.

In dynDLT, pseudotimes are obtained based on the sample coefficients of one dictio-

nary atom. This procedure is transferred to the comparison methods. The resulting

pseudotime estimation approach for the comparison methods can be interpreted as a

new pseudotime estimation approach as well.

The estimated pseudotimes are assessed based via the experimental time points,

which are provided in the metadata of the analysed datasets. Therefore, a correlation

analysis of the estimated pseudotimes with the experimental time points is conducted.

However, bear in mind that labels for the real-world datasets are unspecific, with only

a few distinct time labels per dataset. If the time labels depicted the process correctly,

this would mean that cells jump from one state to another and that they did this at the

same speed. This stands in contrast to the assumption that the cells evolve through a

continuous process, possibly with state-like phases in between, and at different speed.

In addition, due to the few different time point labels, the assessment derived via a

correlation analysis is vaguer for the real-world datasets than for the simulated datasets

presented in the previous chapter 5.1, for which the temporal ordering of each sample

is known.

For all methods, high correlations of the estimated pseudotimes and the experimental

time points are measured. Recall that, in contrast, in the simulation study, only

dynDLT and ICA representations reach a high correlation of the estimated pseudotimes

as well as a high overlap of gene-module genes, with the genes exhibiting dynamic

patterns. The considerations made in the previous paragraph could be one reason why

the real-world data study results purport a more similar performance of the evaluated

methods compared to the simulation studies. Yet, summarising the results for all

evaluated real-world datasets, dynDLT has the best overall performance compared to

the other methods.

In the presented workflow, pseudotimes are derived based on the coefficients for

one dictionary atom for dynDLT and based on one component of the dictionary-like

matrices for the comparison methods. The identification of this one atom presents

an open task which is left for future research. As a starting point for solving this
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problem, semi-supervised clustering could be applied, which requires only a few known

sample states. Likewise, an assessment of the agreement of respective pseudotimes

with general time class labels, for example, from different time points in an experiment

is conceivable. This should facilitate selecting the atom representing the dynamic

module – particularly, because the experiments reveal that the other atoms have a

very small correlation with the experimental time points. Likewise, an assessment of

the agreement of respective pseudotimes with experimental time points, as is done

in this chapter, is conceivable. Yet, to avoid the selection of one atom, the entire

low-dimensional representation can be incorporated into existing trajectory inference

approaches and thus be exchanged with the representation that is used by the respective

method. As an example of such a workflow, ICA in Monocle is exchanged with the

considered dimension reduction methods. Interestingly, it shows that this approach

yields high correlations of the estimated pseudotimes with the experimental time points

as well. However, the performance for this approach is slightly worse than by applying

dynDLT with the one atom approach. This is transferable to the results for the other

methods. Certainly, besides Monocle, there is a wide range of trajectory inference

approaches for which this workflow could be adopted. A study of the incorporation of

dynDLT into other approaches remains for future research.

While some datasets analysed in this chapter are composed of samples from multiple

types, a new method to identify branches is not presented. However, an analysis of

the results for these multi-type datasets shows that the temporal orderings of each

branch are captured by dynDLT. Further, the approach illustrated in the previous

paragraph, namely incorporation of the obtained low-dimensional representation into

existing trajectory inference approaches, can be applied for this purpose. It shows that

this approach yields good results as well, however, the performance is slightly worse

than by applying dynDLT with the one atom approach.

Our method dynDLT has only one parameter which has to be defined by the user,

the number of atoms, m. If no parameter search is performed, based on the conducted

experiments, settingm = 3 is suggested, as this value yields good results in the majority

of the performed real-world data analyses.

For the linear methods dynDLT, ICA, NMF, and PCA, apart from the pseudotime

estimation, gene-modules, enhancing the interpretability of the results, can be obtained.

The identified gene-modules are evaluated by a GO-term analysis. For completeness,

it should be mentioned that a variety of gene-set assessment methods exist. GO-term

analysis belongs to the most widely applied ones and is therefore chosen in this thesis.

Yet, an evaluation of various gene-set assessment methods would quickly go beyond

the scope of this thesis and could cause ambiguities. Nevertheless, an application of

different methods and a corresponding evaluation of the differences in the obtained
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performance would be interesting.

In the GO-term analysis, dynDLT performs better than the comparison methods for

four out of eight real-world datasets. Further, for two of the remaining four datasets,

no method shows an outstanding performance. PCA is the best performing method

for one dataset. For the other three datasets, a subset of the comparison methods

performs best. Further, it is striking that the GO-term results for the comparison

methods, compared to those for dynDLT, show a smaller proportion of relevant GO-

terms among all significant GO-terms. This holds particularly for NMF, for which

numerous significant GO-terms are obtained, but many of them cannot be associated

with the analysed dataset.

In summary, the presented real-world data evaluations confirm the conclusion from

the simulation study, that dynDLT is suitable for pseudotime estimation of transcrip-

tomic data with samples from dynamic processes. Furthermore, the dynDLT represen-

tations yield biologically relevant gene-modules specific to the sample types or dynamic

processes. These provide an interpretation of the pseudotimes in terms of the analysed

genes.
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7. Discussion, outlook, and conclusion

7.1. Discussion

In this thesis, two new interpretable methods for the analysis and dimension reduction

of transcriptomic datasets are presented and evaluated. As illustrated in the intro-

ductory chapter, there is a need for new automated methods that can handle large

datasets and derive meaningful insight in the context of the respective analyses. In

the context of biomedical data analysis, it particularly requires methods that provide

interpretability of the results. Only in such a setting, new insights into the processes,

which appear in the analysed samples, can be gained. The conducted simulation and

real-world data studies demonstrate that our new methods present effective approaches

for the analysis of transcriptomic data in the context of the respective application.

Our two new methods are based on the concepts of Dictionary learning (DiL). Our

method Dictionary learning for transcriptomic data analysis (DLT) presented in chap-

ter 3, is designed for the analysis of transcriptomic datasets with samples from dif-

ferent sample types, for example, different phenotypes. The objective of DLT is to

derive a low-dimensional representation of the analysed data that maintains relevant

dataset characteristics and is interpretable in terms of the input variables. Our second

presented method, Dictionary learning for the analysis of transcriptomic data from dy-

namic processes (dynDLT), described in chapter 5, can be considered an advancement

of DLT. dynDLT is designed for the analysis of transcriptomic data, which is composed

of samples that are in dynamic processes. The objective of dynDLT is to order the

analysed samples along their progression in the dynamic process, which is also referred

to as “pseudotime estimation”. Just like for DLT, this is done in an interpretable

fashion.

DLT and dynDLT are similar in that they present unsupervised methods that aim at

deriving low-dimensional representations which maintain relevant data characteristics

and that these representations are interpretable. In both methods, the low-dimensional

representations are given by the coefficient matrix. The dictionary columns, referred to

as “atoms”, yield the interpretation of the representation. Precisely, in our methods,

they are used for the derivation of gene-modules. The idea is that these gene-modules

are composed of genes that have a characteristic expression in the analysed samples.
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As these gene-modules are composed of numerous genes, they are in line with the

omnigenic model. The conducted studies confirm that the determined gene-modules

are biologically relevant as their functions stand in association with the analysed sample

types.

A further characteristic that holds for both our methods is that the solution space in

the dictionary training is restricted by a sparsity constraint on the coefficient matrix.

This means that the sample coefficients are enforced to be sparse. Hence, it is rewarded

when a small number of atoms is used for the representation of a sample. In conse-

quence, besides the effect of restricting the solution space, the sparsity constraint in

the dictionary training step promotes the identification of dictionary atoms, and hence

gene-modules, that represent the highly characteristic biomolecular processes occur-

ring in the analysed dataset. Otherwise, if sparsity on the sample coefficients were not

enforced in the dictionary training, atoms could be combined on a larger scale and

therefore be less specific.

While our methods are closely connected to DiL, they are yet not identical. Unlike in

the standard DiL approach, the dictionary in our methods is a thin-matrix and hence

not overcomplete. This modification is required for obtaining dictionary and coefficient

matrix as desired: a dictionary that can be applied for gene-module detection, yielding

a low-dimensional representation that can be interpreted in terms of the genes. Details

on this are discussed in the derivation of DLT in section 3.3. A bi-product of this

alteration is that the low-dimensional representations from our approaches require far

fewer atoms compared to the standard DiL approach in order to obtain representations

with small representation error. For dynDLT, there are additional differences to the

standard DiL approach. For one thing, the coefficient matrix is non-sparse in dynDLT,

while it is sparse in DiL and DLT. Additionally, unlike for DiL and DLT, the values of

the dynDLT dictionary matrix are positive, to further enhance interpretability.

Compared to existing methods for transcriptomic data analysis, DLT and dynDLT

present approaches that do not impose constraints on the derived components as is

done, for example, in an Independent component analysis (ICA) or Principal com-

ponent analysis (PCA) analysis. This can be beneficial as it allows obtaining repre-

sentations that are not guided by these constraints, which provides greater flexibility

to adjust the representations to the data. Furthermore, DLT and dynDLT are linear

approaches, which makes them well suited for deriving interpretable representation.

For non-linear methods, this is not trivial. A linear dimension reduction approach

that does not impose a constraint on the derived components is Non-negative matrix

factorisation (NMF). However, a problem in NMF is that it does not constrain the

solution space any other than to be non-negative. Without any further restriction, the

solution space can be inconclusive. In DLT and dynDLT, the solution space is reduced
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due to the sparsity constraint on the coefficient matrix.

In the light of considerations on the solution space, it is illustrated that the unique-

ness of the DiL, DLT, or dynDLT solution is not necessarily given. Yet, as explained,

the uniqueness of the solution is influenced by the properties of the analysed dataset.

Transcription datasets are highly structured, which presents a characteristic that en-

hances the chance of obtaining unique solutions in these methods. The difference of

the determined solution for varying parameters in an application case is analysed in

detail for DLT. The conducted experiments confirm that the DLT solutions are highly

similar for the analysed datasets – both, for different initialisations and also over vary-

ing parameter values for m and s. Due to the equivalence of the dictionary training in

DLT and dynDLT, these considerations can be transferred to dynDLT.

It should be noted that a perfect representation is not sought-for neither by a DLT nor

by a dynDLT analysis. This is because the objective is the determination of the main

processes in the analysed samples. In consequence, processes that are non-specific to

the analysed set of samples should not be captured in the representation. This, indeed,

could be misleading in a sample type representation. Rather, processes appearing in

sample groups are desired to be identified. Yet, a balance between representing main

processes and neglecting insignificant processes is required. The simulation study and

real-world data experiments confirm that this is the case for DLT and dynDLT.

Our methods are evaluated on simulated and real-world data and are compared

to standard methods for dimension reduction of transcriptomic datasets or methods

similar to DiL. Namely, a comparison is performed to ICA, NMF, PCA, t-distributed

stochastic neighbour embedding (t-SNE), and Uniform manifold approximation and

projection for dimension reduction (UMAP). Note that, among those methods, the

only ones suitable for an interpretation in terms of the genes as conducted for our

methods DLT and dynDLT are the linear methods ICA, NMF, and PCA.

In the application of DLT to four real-world transcriptomic datasets with samples

from different types, both, the low-dimensional representations given by the coefficient

matrix and the gene-modules which are obtained based on the dictionary atoms are

evaluated. The evaluation of the DLT coefficient matrix is conducted via clustering.

The resulting clusters are compared against the sample groups, as given by the meta-

data, via the Adjusted rand index. For completeness, it should be mentioned that the

number of types in the dataset is typically not known in advance. In that case, an

exploration of the cluster quality for different values for the number of clusters can

be performed, for example. Yet, the focus in this study is put on the preservation

of relevant data characteristics in the determined representations. The fixation of the

number of clusters belongs to a different class of problems.

The clustering that is used for the evaluation of the DLT representations mentioned
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in the previous paragraph is performed with the k-means algorithm. For the sake

of completeness, it should be pointed out that a variety of clustering algorithms and

cluster assessment metrics exist. Clustering algorithms other than k-means have been

tested additionally, namely DBSCAN [75] and spectral clustering (using Python im-

plementations from sklearn [202]). However, their performance was not significantly

better. Therefore, the simple and well-known k-means algorithm is applied in the ex-

periments. Yet, a detailed study of a multitude of other clustering algorithms could be

conducted.

For three out of four analysed real-world datasets, the low-dimensional representa-

tions from DLT capture the differences of the sample types well. Hence, the ARIs

are the highest among all methods. For the fourth dataset, none of the evaluated

methods yields a good representation in terms of sample type distinction, which could

be an indicator that this dataset is flawed. For the other datasets, PCA, t-SNE, and

UMAP ARIs are highest for one dataset. Further, those for ICA are highest for no

dataset. The GO-term analysis of the gene-modules given by the dictionary atoms

shows that the derived genes stand in association with the respective sample types.

This reveals the potential of DLT for the determination of type-specific gene-modules

from transcriptomic data.

DLT has two main parameters, the number of dictionary atoms, m, and the sparsity,

s. The presented experiments reveal that for all evaluated datasets, there is a wide

range of parameter values for which the variation in performance regarding a distinct

representation of the respective sample types is small. Hence, an extensive grid search is

not necessary for obtaining high accuracy. The applied implementation of the method

has a third parameter, a random seed, which is required for the initialisation of the

dictionary matrix. The conducted experiments reveal that this parameter has a small

influence on the methods’ results only. Same as for the other two parameters, an

evaluation of a few different values for the random seed in the initialisation can be

beneficial, but is not necessary for obtaining high accuracy.

Besides the evaluation targeted to the application of our methods for transcriptomic

data analysis, different normalisation approaches have been investigated regarding their

influence on the methods’ results. The effect of different normalisation approaches

varies drastically. The best-performing and therefore chosen normalisation approach

is very simple: all expression values for each sample are normalised to a sum equal to

one; subsequently, the expression values for each gene are centred and scaled. Other

normalisation approaches, for example, a logarithmic transformation, are conceivable

and might yield a further performance improvement. This could be evaluated in a

follow-up study.

In addition to alternative normalisation approaches, other preprocessing steps are
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conceivable as well. These include, for example, additional outlier detection and impu-

tation of dropouts. However, many imputation methods even apply methods similar to

DiL – which our methods are based on – in their workflow. Further, DiL is often used

for denoising and hence should conduct noise-reduction itself. This is why imputation

is left aside in the presented experiments. Additional studies in this context present

an optional starting point for future research.

The second main task considered in this thesis is the estimation of pseudotimes

from dynamic transcriptomic datasets. dynDLT is designed for this purpose. The

pseudotimes are derived from the coefficients for one atom of the dynDLT dictionary.

For the comparison approaches, this concept is adopted and pseudotimes are estimated

based on one component of the low-dimensional representation.

In the simulation study, dynDLT reaches a high performance and the results are

better compared to the other evaluated methods. The second-best performing method

in the simulation study is ICA. The performance of the other methods is significantly

worse. For the pseudotime estimation of the real-world datasets, high performances

are observed for all methods. However, labels for the real-world datasets are unspecific,

with only a few distinct time labels per dataset. If the time labels depicted the process

correctly, this would mean that cells jump from one state to another and that they

did this at the same speed. This stands in contrast to the assumption that the cells

evolve through a continuous process (possibly with state-like phases in between) and at

different speed. In addition, due to the few different time point labels, the assessment

derived via a correlation analysis is vaguer for the real-world datasets than for the

simulated datasets for which the temporal ordering of each sample is known. This could

be one reason why the real-world data study results purport a more similar performance

of the evaluated methods compared to the simulation studies. Yet, summarising the

results for all evaluated real-world datasets, compared to the other methods, dynDLT

has the best overall performance for these evaluation criteria.

The second-best performing method in the conducted pseudotime estimation exper-

iments is ICA. Yet, recall that in the studies on sample type distinction, ICA has the

worst performance. Additionally, another advantage of dynDLT compared to ICA is

that the dictionary entries in dynDLT are positive, which allows for an easier interpre-

tation of the low-dimensional representation.

In addition to the pseudotime estimation, for the linear methods dynDLT, ICA,

NMF, and PCA, gene-modules can be determined, which yield an interpretation of the

results. Same as for DLT, the identified gene-modules are evaluated by a GO-term anal-

ysis. In this evaluation, for four out of eight real-world datasets, results for dynDLT are

better than those for the comparison methods – in terms of detecting gene-modules with

significant dynamic process-associated or sample type-associated GO-terms on a larger
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scale. Further, for two of the remaining four datasets, no method shows an outstanding

performance. For one of the remaining datasets, one best performing method can be

identified, namely PCA. Strikingly, the GO-term results for the comparison methods,

compared to those for dynDLT, show a smaller proportion of dataset-associated or

dynamic process-associated GO-terms among all significant GO-terms. This holds in

particular for NMF, for which numerous significant GO-terms are obtained, but many

of them cannot be associated with the analysed dataset.

An open task in the pseudotime estimation workflow, which is left for future research,

is the identification of the atom representing the pseudotimes. As a starting point for

solving this problem, semi-supervised clustering could be applied, which requires only

a few known sample states. This should facilitate selecting the atom representing

the dynamic module – particularly, because the experiments reveal that the other

atoms have a very small correlation with the experimental time points. Likewise, an

assessment of the agreement of respective pseudotimes with experimental time points

is conceivable. Furthermore, the presented alternative workflow, in which the entire

dynDLT coefficient matrix is combined with a trajectory inference method, does not

require the selection of one atom. Interestingly, for the exemplary approach Monocle,

it shows that this approach yields high correlations of the estimated pseudotimes with

the experimental time points as well. However, the performance for this approach is

slightly worse than by applying dynDLT alone and determining pseudotimes based on

the coefficients for one atom. Certainly, there is a wide range of methods for which

this workflow could be adopted. A study of the combination of dynDLT and other

trajectory inference method methods remains for future research.

While the datasets analysed for pseudotime estimation are composed of samples

from multiple types, dynDLT is not designed to identify the branches for each type.

However, the analysis of the results for these multi-type datasets shows that the tem-

poral orderings of each branch are captured by dynDLT. A simple approach for branch

detection using the dynDLT representation is the substitution of dimension reduction

methods, for example, ICA, PCA, t-SNE, with dynDLT in existing trajectory infer-

ence methods with branch detection, as described also in the previous paragraph for

Monocle.

7.2. Outlook

In the discussion, some starting points for adaptations of our methods which could be

reviewed with regard to a performance improvement are described. Also, methods for

the result evaluation, alternative to those applied, are illustrated. Further discussed are

the application of (evaluation) methods different from those in the presented workflows.
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Examples are the k-means algorithm which is applied for the clustering of the low-

dimensional representations or Monocle which, in turn, is applied for the embedding of

the entire coefficient matrix in the pseudotime estimation. Studies on these adaptations

present one outlook for future research.

Beyond the discussed alterations of the methods or the evaluation pipelines, there

are several tasks our methods could be applied for, other than those presented in this

thesis. For example, DLT could be used for outlier detection. In some representations,

atoms for which only very few samples have a non-zero coefficient become apparent.

Those samples that are represented significantly different from the remaining ones, can

easily be detected as outliers. The respective samples could, for example, be identified

via clustering or thresholding. Note that this holds only when a small number of atoms

are learned. Otherwise, it is to be expected that for some atoms only very few samples

have non-zero coefficients.

Another new task DLT could be applied for is the application of the derived gene-

modules as predictive markers for the allocation of data that was not used for training.

By representing new, unlabelled data with any sparse coding algorithm, the resulting

representation could be compared to those of known sample types and used for a type

estimation of the respective samples.

Another conceivable approach considers the application of our methods with an

emphasis on gene-module detection: in a semi-supervised approach with a constraint

on a meta variable fit, the resulting dictionary could be learned based on subtypes in

this meta variable. The resulting dictionary could be applied for gene-module detection

for the known subtypes.

Another starting point for future research is the evaluation of our methods on omics

data other than transcriptomics. Due to the refrain from a model on the data in

our approaches, a good performance for these other omics is well conceivable. Yet,

due to the sparsity constraint, the only requirement is that the data is structured.

However, all biological datasets depict entities that are parts of biological processes. It

is therefore conceivable that such a structure is also present in omics data other than

transcriptomic data. Further, an integrated analysis of datasets from multiple omics

presents a connected starting point for further research.

The presented methods could also be applied in precision medicine approaches. For

example, the task of subgroup identification, which is the aim of DLT analyses, can

be used for the identification of patient subgroups. For another thing, the task of

pseudotime estimation, which is tackled in dynDLT analyses, can be transferred to the

prediction of disease emergence and development: in pseudotime estimation, the cells/

samples are ordered along a timeline; analysing, for example, healthy and diseased

samples, this ordering, together with the derived gene-modules, can yield insight into
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disease emergence and development. This can be used to improve predictive diagnos-

tics, disease treatment, and -prevention, among other things.

The aforementioned future work ideas consider a different application focus without

any method changes. Likewise, modifications of our methods, which could be tested for

yet further application foci or regarding a performance improvement, are conceivable.

For example, the dictionary atoms – in addition to the coefficient matrix – could be

constrained to be sparse, which could enhance their interpretability. In the presented

experiments, thresholding of the dictionary entries has been applied in order to derive

meaningful gene-modules. This step could become superfluous when the dictionary

atoms are sparse themselves.

A further idea for a modification of our approach is the implementation of a stopping

criterion regarding the number of atoms during the dictionary training over an increas-

ing number of atoms. Hence, instead of fixing a parameter value for m, dictionaries

would be learned for increasing numbers of atoms. This process would be stopped

whenever the representation does no longer improve significantly – certainly, for this

purpose, improvement has to be well-defined. The idea of this approach is based on the

observation that for high numbers of atoms (the precise value depends on the dataset

evaluated) the representations include many atoms for which only a small number of

samples have a non-zero coefficient. Limiting the number of atoms with a high amount

of zero-entries presents a criterion easily verifiable and could be conducted throughout

the learning step. For example, an increment of the number of atoms could be stopped

whenever there are at least 20% of atoms for which the coefficient vectors for s = m/2

(which means that the sparsity is set to half the number of atoms) have at least 95%

of samples with coefficients close to zero. Of course, these three values are only exem-

plary and would require further investigation. Yet, such an approach would make a

parameter search on the number of atoms superfluous.

7.3. Conclusion

In this thesis, two new methods for the analysis of transcriptomic datasets, Dictionary

learning for transcriptomic data analysis (DLT) and Dictionary learning for the analysis

of transcriptomic data from dynamic processes (dynDLT), are presented and evaluated.

Both methods are based on the concepts of Dictionary learning (DiL). Our methods

are applied to derive low-dimensional representations of the analysed datasets. Each

method is designed for a specific task. Namely, DLT is designed for the representation of

static transcriptomic data from different sample types with the objective of distinctively

representing each sample type. Further, dynDLT is designed for the estimation of

pseudotimes of dynamic transcriptomic data samples.
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A commonality of DiL, DLT, and dynDLT is that the dictionary atoms are learned

such that the low-dimensional representation is sparse. In DLT and dynDLT, the

dictionary is learned to yield sparse sample coefficients and the dictionary contains

components with gene coefficients. This formulation is different from the standard

DiL approach, as it implicates the learning of non-overcomplete dictionaries. In con-

sequence of such a formulation, in DLT and dynDLT, the derived low-dimensional

representations are interpretable in terms of the genes. The interpretability is given

by the dictionary, based on which gene-modules that display characteristic processes

in the analysed samples can be identified.

There are a number of advantages of our methods DLT and dynDLT for the analysis

of transcriptomic datasets. For one thing, in neither of the methods, constraints on the

components are imposed. Compared to other approaches applying such constraints,

this allows for more flexibility to better adjust the low-dimensional representation to

the data. This holds the potential to detect the actual relevant dataset structures. For

another thing, the obtained low-dimensional representations are interpretable in terms

of the analysed genes and can be used for gene-module detection. The sparsity of the

representations in both methods facilitates this interpretability. By a restriction to

positive entries in the dynDLT dictionary entries, interpretability is further enhanced.

Another advantage of our methods is their ease of application. DLT has only two

parameters that have to be selected by the user, dynDLT has only one such parameter.

A high performance is observed for several parameter values, meaning that a large

parameter search is not necessary to obtain high accuracy. A suggestion for specific

parameter values is given for each method in the respective chapters. Transferring

these values provides the opportunity for applying our methods without any parameter

search. Further, both methods are unsupervised, meaning that data labels are not

required.

Our methods are evaluated on simulated and real-world data. In the evaluations,

two properties are assessed: the representation of study-relevant data characteristics

in low-dimension, as well as the interpretability of the low-dimensional representation

in terms of gene-modules. The conducted studies demonstrate the high performance

for the representation of transcriptomic datasets from different sample types for DLT,

respectively from dynamic processes for dynDLT. Further, the studies confirm that the

derived gene-modules are composed of genes which are characteristic of the processes

that appear in the analysed samples. In addition, a comparison of DLT and dynDLT

to commonly applied approaches for dimension reduction of transcriptomic datasets,

namely ICA, NMF, PCA, t-SNE, and UMAP, shows that our methods achieve a higher

overall performance in the considered tasks.

As discussed, the applications our methods can be used for are not limited by those
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presented, but numerous other applications are conceivable. These present a starting

point for future research.
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[241] Silver, N. : The signal and the noise: the art and science of prediction. Penguin

UK, 2012

[242] Skretting, K. ; Engan, K. : Recursive least squares dictionary learning algo-

rithm. In: IEEE Transactions on signal processing 58 (2010), Nr. 4, S. 2121–2130

xxxiii



[243] Smith, T. M. ; Abajian, C. ; Hood, L. : Hopper: software for automating

data tracking and flow in DNA sequencing. In: Bioinformatics 13 (1997), Nr. 2,

S. 175–182

[244] Song, Q. ; Hawkins, G. A. ; Wudel, L. ; Chou, P.-C. ; Forbes, E. ; Pul-

likuth, A. K. ; Liu, L. ; Jin, G. ; Craddock, L. ; Topaloglu, U. u. a.:

Dissecting intratumoral myeloid cell plasticity by single cell RNA-seq. In: Can-

cer medicine 8 (2019), Nr. 6, S. 3072–3085

[245] Sood, S. : Developing RNA diagnostics for studying healthy human ageing,

Loughborough University, Diss., 2017

[246] Spearmen, C. : General intelligence objectively determined and measured. In:

American Journal of Psychology 15 (1904), S. 107–197

[247] Spence, J. : Flexible mean field variational inference using mixtures of non-

overlapping exponential families. In: Advances in Neural Information Processing

Systems 33 (2020), S. 19642–19654

[248] Stein, C. K.: Topic on the statistical analysis of high-dimensional data., Baylor

University, Diss., 2019

[249] Stein-O’Brien, G. L. ; Arora, R. ; Culhane, A. C. ; Favorov, A. V. ;

Garmire, L. X. ; Greene, C. S. ; Goff, L. A. ; Li, Y. ; Ngom, A. ; Ochs,

M. F. ; Xu, Y. ; Fertig, E. J.: Enter the Matrix: Factorization Uncovers

Knowledge from Omics. In: Trends in genetics : TIG 34 (2018), Okt., S. 790–

805. – ISSN 0168–9525

[250] Stites, M. R.: Assessing and enabling independent component analysis as a

hyperspectral unmixing approach. Utah State University, 2012

[251] Stoll, M. : A literature survey of matrix methods for data science. In: GAMM-

Mitteilungen 43 (2020), Nr. 3, S. e202000013

[252] Sumithra, V. ; Surendran, S. : A review of various linear and non linear

dimensionality reduction techniques. In: Int. J. Comput. Sci. Inf. Technol 6

(2015), S. 2354–2360

[253] Suter-Dick, L. ; Singer, T. : 4.5 Omics in Toxicology. In: Toxicology and

risk assessment: a comprehensive introduction 143 (2008), S. 437

xxxiv



[254] Tang, F. ; Barbacioru, C. ; Wang, Y. ; Nordman, E. ; Lee, C. ; Xu, N. ;

Wang, X. ; Bodeau, J. ; Tuch, B. B. ; Siddiqui, A. u. a.: mRNA-Seq whole-

transcriptome analysis of a single cell. In: Nature methods 6 (2009), Nr. 5, S.

377–382

[255] Tariq, M. U. ; Haseeb, M. ; Aledhari, M. ; Razzak, R. ; Parizi, R. M.

; Saeed, F. : Methods for Proteogenomics Data Analysis, Challenges, and

Scalability Bottlenecks: A Survey. In: IEEE Access 9 (2020), S. 5497–5516

[256] Tariyal, S. ; Majumdar, A. ; Singh, R. ; Vatsa, M. : Deep dictionary

learning. In: IEEE Access 4 (2016), S. 10096–10109

[257] Tebani, A. ; Afonso, C. ; Marret, S. ; Bekri, S. : Omics-based strategies

in precision medicine: toward a paradigm shift in inborn errors of metabolism

investigations. In: International journal of molecular sciences 17 (2016), Nr. 9,

S. 1555

[258] Thrall, J. H.: Moreton lecture: imaging in the age of precision medicine. In:

Journal of the American College of Radiology 12 (2015), Nr. 10, S. 1106–1111

[259] Tibshirani, R. : Regression shrinkage and selection via the lasso. In: Journal

of the Royal Statistical Society: Series B (Methodological) 58 (1996), Nr. 1, S.

267–288

[260] Tikhonov, A. N.: On the solution of ill-posed problems and the method of reg-

ularization. In: Doklady Akademii Nauk Bd. 151 Russian Academy of Sciences,

1963, S. 501–504

[261] Timonidis, N. ; Bakker, R. ; Tiesinga, P. : Prediction of a Cell-Class-Specific

Mouse Mesoconnectome Using Gene Expression Data. In: Neuroinformatics

(2020), Mai. – ISSN 1559–0089

[262] Toga, A. W. ; Foster, I. ; Kesselman, C. ; Madduri, R. ; Chard, K. ;

Deutsch, E. W. ; Price, N. D. ; Glusman, G. ; Heavner, B. D. ; Dinov,

I. D. u. a.: Big biomedical data as the key resource for discovery science. In:

Journal of the American Medical Informatics Association 22 (2015), Nr. 6, S.

1126–1131
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A. Appendix

A.1. GO-term evaluation for the real-world data

analysis

The tables on the following pages show the results for the GO-term analysis from the

dynamic real-world data analysis presented in chapter 6. On each page, the results for

one of the eight datasets are shown in tables. For the sake of a simplified overview,

the tables are cropped to fit on one page for each dataset. The GO-terms are shown

for each of the methods from whose dictionary-like matrices gene-sets can be derived

– recall, that these are only the linear methods dynDLT, ICA, NMF, and PCA.

In six columns, the dataset name, method name, GO-term, GO-term p-value, the

number of genes in the determined gene-module overlapping with the genes from the

particular GO-term, and the percentage these genes make among all genes associated

with that GO-term, are listed.

The GO-terms are ordered by significance for each method. Further, the GO-terms

are colour-coded based on whether they are associated with (a) dynamic cell processes,

or (b) the sample types, respectively the experimental conditions. The percentage of

genes (5th column) is colour-coded based on the value. Respective legends on each

page provide insight into the colour-coding.
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Dataset Method GO term P-Value #Genes %Overlap

Dataset/subtype conditions highlighted
Immune system/ hemaptopoesis related

GSE100425 dynDLT oxidation-reduction process 5.21E-08 40 8.6
GSE100425 dynDLT purine nucleotide biosynthetic process 3.41E-06 7 1.51
GSE100425 dynDLT 'de novo' IMP biosynthetic process 3.45E-06 5 1.08
GSE100425 dynDLT rRNA processing 0.000024 13 2.8
GSE100425 dynDLT tricarboxylic acid cycle 3.53E-05 7 1.51
GSE100425 dynDLT response to iron ion 4.71E-05 6 1.29
GSE100425 dynDLT mitochondrion organization 7.56E-05 10 2.15
GSE100425 dynDLT metabolic process 0.000113 25 5.38
GSE100425 dynDLT nucleotide metabolic process 0.000282 6 1.29
GSE100425 dynDLT pseudouridine synthesis 0.000351 5 1.08
GSE100425 dynDLT ribonucleoside monophosphate biosynthetic process 0.000355 4 0.86
GSE100425 dynDLT fatty acid beta-oxidation 0.000397 7 1.51
GSE100425 dynDLT cell proliferation 0.000416 15 3.23
GSE100425 dynDLT purine nucleotide metabolic process 0.000558 4 0.86
GSE100425 dynDLT pyrimidine nucleotide metabolic process 0.000558 4 0.86
GSE100425 dynDLT definitive hemopoiesis 0.00057 5 1.08
GSE100425 dynDLT UTP biosynthetic process 0.000823 4 0.86

GSE100425 ICA inflammatory response 9E-11 33 6.88
GSE100425 ICA intrinsic apoptotic signaling pathway in response to DNA damage 5.05E-09 13 2.71
GSE100425 ICA regulation of apoptotic process 1.84E-08 22 4.58
GSE100425 ICA response to lipopolysaccharide 3.65E-07 20 4.17
GSE100425 ICA immune response 9.31E-07 23 4.79
GSE100425 ICA oxidation-reduction process 3.95E-06 38 7.92
GSE100425 ICA cell proliferation 2.89E-05 18 3.75
GSE100425 ICA release of cytochrome c from mitochondria 3.05E-05 7 1.46
GSE100425 ICA isoprenoid biosynthetic process 4.05E-05 6 1.25
GSE100425 ICA regulation of cell proliferation 4.29E-05 18 3.75
GSE100425 ICA DNA replication 4.66E-05 13 2.71
GSE100425 ICA negative regulation of apoptotic process 5.99E-05 31 6.46
GSE100425 ICA immune system process 6.93E-05 24 5
GSE100425 ICA positive regulation of NF-kappaB transcription factor activity 7.05E-05 12 2.5
GSE100425 ICA positive regulation of I-kappaB kinase/NF-kappaB signaling 7.32E-05 14 2.92
GSE100425 ICA response to drug 9.22E-05 22 4.58
GSE100425 ICA purine nucleotide biosynthetic process 9.56E-05 6 1.25
GSE100425 ICA response to oxidative stress 9.99E-05 13 2.71
GSE100425 ICA cellular response to DNA damage stimulus 0.000103 25 5.21
GSE100425 ICA cholesterol biosynthetic process 0.000106 7 1.46
GSE100425 ICA cell chemotaxis 0.000114 10 2.08
GSE100425 ICA cellular response to interleukin-1 0.000139 10 2.08
GSE100425 ICA cellular response to lipopolysaccharide 0.000192 16 3.33
GSE100425 ICA response to toxic substance 0.000242 10 2.08
GSE100425 ICA 'de novo' IMP biosynthetic process 0.000271 4 0.83
GSE100425 ICA innate immune response 0.000343 23 4.79
GSE100425 ICA chemokine-mediated signaling pathway 0.000357 8 1.67
GSE100425 ICA positive regulation of peptidyl-serine phosphorylation 0.000427 9 1.88
GSE100425 ICA sterol biosynthetic process 0.000433 6 1.25
GSE100425 ICA protein tetramerization 0.000438 7 1.46
GSE100425 ICA metabolic process 0.000447 25 5.21
GSE100425 ICA extrinsic apoptotic signaling pathway in absence of ligand 0.000501 7 1.46
GSE100425 ICA positive regulation of apoptotic process 0.000591 20 4.17
GSE100425 ICA negative regulation of reactive oxygen species metabolic process 0.000611 6 1.25
GSE100425 ICA defense response to protozoan 0.000719 6 1.25
GSE100425 ICA pyrimidine nucleotide metabolic process 0.000732 4 0.83
GSE100425 ICA lipopolysaccharide-mediated signaling pathway 0.00084 6 1.25
GSE100425 ICA negative regulation of viral genome replication 0.000976 6 1.25
GSE100425 ICA response to virus 0.001 9 1.88

GSE100425 NMF translation 2.3E-29 61 12.79
GSE100425 NMF formation of translation preinitiation complex 5.71E-15 14 2.94
GSE100425 NMF translational initiation 1.04E-14 18 3.77
GSE100425 NMF cell-cell adhesion 3.04E-13 28 5.87
GSE100425 NMF regulation of translational initiation 5.24E-13 14 2.94
GSE100425 NMF protein folding 1.11E-12 23 4.82
GSE100425 NMF protein stabilization 3.73E-09 19 3.98
GSE100425 NMF positive regulation of protein localization to Cajal body 6.77E-09 7 1.47
GSE100425 NMF cytoplasmic translation 1.16E-07 10 2.1
GSE100425 NMF RNA splicing 2.23E-07 23 4.82
GSE100425 NMF negative regulation of apoptotic process 4.01E-07 37 7.76
GSE100425 NMF positive regulation of telomerase RNA localization to Cajal body 1.04E-06 7 1.47
GSE100425 NMF positive regulation of establishment of protein localization to telomere 1.17E-06 6 1.26
GSE100425 NMF platelet aggregation 3.93E-06 9 1.89
GSE100425 NMF antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-dependent 7.74E-06 8 1.68
GSE100425 NMF toxin transport 2.29E-05 8 1.68
GSE100425 NMF mRNA processing 2.57E-05 23 4.82
GSE100425 NMF binding of sperm to zona pellucida 2.78E-05 8 1.68
GSE100425 NMF DNA replication 0.000067 13 2.73
GSE100425 NMF DNA unwinding involved in DNA replication 7.49E-05 5 1.05
GSE100425 NMF positive regulation of telomere maintenance via telomerase 0.000131 7 1.47
GSE100425 NMF ribosomal small subunit assembly 0.000147 6 1.26
GSE100425 NMF response to drug 0.000157 22 4.61
GSE100425 NMF cell redox homeostasis 0.000224 9 1.89
GSE100425 NMF glycolytic process 0.000258 7 1.47
GSE100425 NMF DNA replication initiation 0.000288 6 1.26
GSE100425 NMF IRES-dependent viral translational initiation 0.00052 4 0.84
GSE100425 NMF positive regulation of translation 0.000558 8 1.68
GSE100425 NMF tricarboxylic acid cycle 0.000726 6 1.26
GSE100425 NMF negative regulation of cell death 0.000924 9 1.89
GSE100425 NMF actin cytoskeleton organization 0.000976 12 2.52
GSE100425 NMF cell cycle 0.00098 30 6.29

GSE100425 PCA cell cycle 1.46E-14 51 10.83
GSE100425 PCA cell division 3.38E-12 36 7.64
GSE100425 PCA mitotic nuclear division 8.87E-11 29 6.16
GSE100425 PCA DNA replication 5.89E-10 19 4.03
GSE100425 PCA DNA replication initiation 0.000204 6 1.27
GSE100425 PCA DNA-dependent DNA replication 0.000434 5 1.06
GSE100425 PCA response to cytokine 0.000617 9 1.91
GSE100425 PCA heme biosynthetic process 0.000874 5 1.06
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Dataset Method GO term P-Value #Genes %Overlap

Dataset/subtype conditions highlighted
Stem/ heart/ cardiac/ muscle cell related

GSE122380 dynDLT cilium morphogenesis 5.94E-07 16 3.2
GSE122380 dynDLT transcription, DNA-templated 3.17E-06 77 15.4
GSE122380 dynDLT cilium assembly 3.03E-05 13 2.6
GSE122380 dynDLT regulation of transcription, DNA-templated 3.79E-05 60 12
GSE122380 dynDLT embryonic skeletal system morphogenesis 2.51E-04 7 1.4
GSE122380 dynDLT anterior/posterior pattern specification 5.14E-04 9 1.8
GSE122380 dynDLT mRNA splice site selection 5.26E-04 5 1
GSE122380 dynDLT inner ear receptor stereocilium organization 8.26E-04 5 1

GSE122380 ICA cell division 9.60E-20 47 9.4
GSE122380 ICA DNA replication 5.35E-17 30 6
GSE122380 ICA mitotic nuclear division 8.21E-11 29 5.8
GSE122380 ICA G1/S transition of mitotic cell cycle 1.44E-10 19 3.8
GSE122380 ICA DNA repair 1.39E-08 25 5
GSE122380 ICA DNA replication initiation 8.81E-08 10 2
GSE122380 ICA mitotic nuclear envelope disassembly 1.69E-06 10 2
GSE122380 ICA sister chromatid cohesion 2.89E-06 14 2.8
GSE122380 ICA double-strand break repair 7.82E-06 11 2.2
GSE122380 ICA G2/M transition of mitotic cell cycle 1.47E-05 15 3
GSE122380 ICA tRNA export from nucleus 1.54E-05 8 1.6
GSE122380 ICA anaphase-promoting complex-dependent catabolic process 3.95E-05 11 2.2
GSE122380 ICA cellular response to DNA damage stimulus 1.23E-04 17 3.4
GSE122380 ICA viral process 1.27E-04 21 4.2
GSE122380 ICA mitotic spindle assembly checkpoint 1.35E-04 6 1.2
GSE122380 ICA telomere maintenance via recombination 1.59E-04 7 1.4
GSE122380 ICA regulation of glucose transport 1.90E-04 7 1.4
GSE122380 ICA cell cycle 2.00E-04 17 3.4
GSE122380 ICA protein sumoylation 2.53E-04 12 2.4
GSE122380 ICA base-excision repair 2.66E-04 7 1.4
GSE122380 ICA cell proliferation 2.76E-04 23 4.6
GSE122380 ICA 'de novo' IMP biosynthetic process 3.37E-04 4 0.8
GSE122380 ICA intracellular transport of virus 3.46E-04 8 1.6
GSE122380 ICA strand displacement 5.04E-04 6 1.2
GSE122380 ICA protein ubiquitination 5.43E-04 22 4.4
GSE122380 ICA spindle organization 6.59E-04 5 1
GSE122380 ICA regulation of cellular response to heat 7.58E-04 9 1.8
GSE122380 ICA positive regulation of ubiquitin-protein ligase activity involved in regulation of mitotic cell cycle transition 8.28E-04 9 1.8
GSE122380 ICA DNA replication checkpoint 9.07E-04 4 0.8
GSE122380 ICA DNA duplex unwinding 9.50E-04 7 1.4

GSE122380 NMF cell-cell adhesion 2.02E-17 40 8
GSE122380 NMF translational initiation 4.84E-13 25 5
GSE122380 NMF SRP-dependent cotranslational protein targeting to membrane 9.71E-12 20 4
GSE122380 NMF nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 1.22E-11 22 4.4
GSE122380 NMF viral transcription 1.76E-09 19 3.8
GSE122380 NMF cell adhesion 1.95E-09 39 7.8
GSE122380 NMF sarcomere organization 5.52E-08 10 2
GSE122380 NMF muscle filament sliding 5.79E-08 11 2.2
GSE122380 NMF extracellular matrix organization 1.30E-07 22 4.4
GSE122380 NMF osteoblast differentiation 1.77E-07 16 3.2
GSE122380 NMF muscle contraction 2.59E-07 16 3.2
GSE122380 NMF heart development 8.37E-07 20 4
GSE122380 NMF response to hypoxia 1.45E-06 19 3.8
GSE122380 NMF axon guidance 2.11E-06 18 3.6
GSE122380 NMF actin filament organization 4.39E-06 12 2.4
GSE122380 NMF cell migration 6.17E-06 18 3.6
GSE122380 NMF cytoskeletal anchoring at plasma membrane 6.48E-06 6 1.2
GSE122380 NMF translation 8.34E-06 22 4.4
GSE122380 NMF regulation of cardiac muscle contraction by regulation of the release of sequestered calcium ion 8.82E-06 7 1.4
GSE122380 NMF platelet degranulation 2.81E-05 13 2.6
GSE122380 NMF cardiac muscle contraction 2.90E-05 9 1.8
GSE122380 NMF cell growth involved in cardiac muscle cell development 3.75E-05 5 1
GSE122380 NMF cytoskeleton organization 4.32E-05 16 3.2
GSE122380 NMF positive regulation of gene expression 4.55E-05 21 4.2
GSE122380 NMF adherens junction organization 6.06E-05 8 1.6
GSE122380 NMF canonical glycolysis 6.35E-05 7 1.4
GSE122380 NMF endodermal cell differentiation 7.97E-05 7 1.4
GSE122380 NMF erythrocyte differentiation 1.02E-04 8 1.6
GSE122380 NMF rRNA processing 1.03E-04 18 3.6
GSE122380 NMF regulation of ryanodine-sensitive calcium-release channel activity 1.36E-04 6 1.2
GSE122380 NMF regulation of cardiac conduction 1.46E-04 9 1.8
GSE122380 NMF vasculogenesis 1.46E-04 9 1.8
GSE122380 NMF mRNA splicing, via spliceosome 1.61E-04 18 3.6
GSE122380 NMF heart morphogenesis 2.17E-04 7 1.4
GSE122380 NMF RNA splicing 2.23E-04 15 3
GSE122380 NMF regulation of heart rate 2.59E-04 7 1.4
GSE122380 NMF actin cytoskeleton organization 2.70E-04 13 2.6
GSE122380 NMF positive regulation of apoptotic process 2.86E-04 21 4.2
GSE122380 NMF epithelial to mesenchymal transition 3.07E-04 7 1.4
GSE122380 NMF glycolytic process 3.07E-04 7 1.4
GSE122380 NMF atrial septum morphogenesis 3.43E-04 5 1
GSE122380 NMF viral entry into host cell 3.66E-04 10 2
GSE122380 NMF regulation of translational initiation 4.25E-04 7 1.4
GSE122380 NMF angiogenesis 5.16E-04 17 3.4
GSE122380 NMF embryo development 5.74E-04 7 1.4
GSE122380 NMF protein targeting 6.63E-04 7 1.4
GSE122380 NMF chorio-allantoic fusion 6.84E-04 4 0.8
GSE122380 NMF viral process 7.24E-04 20 4
GSE122380 NMF response to muscle stretch 8.17E-04 5 1
GSE122380 NMF neuromuscular junction development 9.34E-04 6 1.2

GSE122380 PCA cell division 9.60E-20 47 9.4
GSE122380 PCA DNA replication 5.35E-17 30 6
GSE122380 PCA mitotic nuclear division 8.21E-11 29 5.8
GSE122380 PCA G1/S transition of mitotic cell cycle 1.44E-10 19 3.8
GSE122380 PCA DNA repair 1.39E-08 25 5
GSE122380 PCA DNA replication initiation 8.81E-08 10 2
GSE122380 PCA mitotic nuclear envelope disassembly 1.69E-06 10 2
GSE122380 PCA sister chromatid cohesion 2.89E-06 14 2.8
GSE122380 PCA double-strand break repair 7.82E-06 11 2.2
GSE122380 PCA G2/M transition of mitotic cell cycle 1.47E-05 15 3
GSE122380 PCA tRNA export from nucleus 1.54E-05 8 1.6
GSE122380 PCA anaphase-promoting complex-dependent catabolic process 3.95E-05 11 2.2
GSE122380 PCA cellular response to DNA damage stimulus 1.23E-04 17 3.4
GSE122380 PCA viral process 1.27E-04 21 4.2
GSE122380 PCA mitotic spindle assembly checkpoint 1.35E-04 6 1.2
GSE122380 PCA telomere maintenance via recombination 1.59E-04 7 1.4
GSE122380 PCA regulation of glucose transport 1.90E-04 7 1.4
GSE122380 PCA cell cycle 2.00E-04 17 3.4
GSE122380 PCA protein sumoylation 2.53E-04 12 2.4
GSE122380 PCA base-excision repair 2.66E-04 7 1.4
GSE122380 PCA cell proliferation 2.76E-04 23 4.6
GSE122380 PCA 'de novo' IMP biosynthetic process 3.37E-04 4 0.8
GSE122380 PCA intracellular transport of virus 3.46E-04 8 1.6
GSE122380 PCA strand displacement 5.04E-04 6 1.2
GSE122380 PCA protein ubiquitination 5.43E-04 22 4.4
GSE122380 PCA spindle organization 6.59E-04 5 1
GSE122380 PCA regulation of cellular response to heat 7.58E-04 9 1.8
GSE122380 PCA positive regulation of ubiquitin-protein ligase activity involved in regulation of mitotic cell cycle transition 8.28E-04 9 1.8
GSE122380 PCA DNA replication checkpoint 9.07E-04 4 0.8
GSE122380 PCA DNA duplex unwinding 9.50E-04 7 1.4
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Dataset Method GO term P-Value #Genes %Overlap

Dataset/subtype conditions highlighted
Cell migration/ cell adhesion/ connective tissue related

GSE129486 dynDLT lung alveolus development 1.72E-05 8 1.6
GSE129486 dynDLT platelet degranulation 5.21E-05 12 2.4
GSE129486 dynDLT branching involved in prostate gland morphogenesis 6.06E-05 4 0.8
GSE129486 dynDLT skeletal system development 1.67E-04 13 2.6
GSE129486 dynDLT odontogenesis 4.84E-04 6 1.2
GSE129486 dynDLT response to wounding 9.51E-04 8 1.6

GSE129486 ICA actin cytoskeleton organization 4.49E-05 14 2.8
GSE129486 ICA cellular response to hypoxia 4.95E-05 12 2.4
GSE129486 ICA signal transduction 8.73E-05 54 10.8
GSE129486 ICA angiogenesis 1.06E-04 18 3.6
GSE129486 ICA positive regulation of cell proliferation 7.75E-04 26 5.2

GSE129486 NMF SRP-dependent cotranslational protein targeting to membrane 4.00E-48 48 9.6
GSE129486 NMF translational initiation 8.50E-47 54 10.8
GSE129486 NMF nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 6.23E-38 45 9
GSE129486 NMF viral transcription 6.44E-38 44 8.8
GSE129486 NMF translation 1.82E-27 50 10
GSE129486 NMF rRNA processing 7.08E-26 45 9
GSE129486 NMF cell-cell adhesion 3.61E-18 41 8.2
GSE129486 NMF protein folding 6.27E-09 23 4.6
GSE129486 NMF positive regulation of protein localization to Cajal body 1.21E-08 7 1.4
GSE129486 NMF cytoplasmic translation 1.29E-08 10 2
GSE129486 NMF regulation of translational initiation 4.53E-07 10 2
GSE129486 NMF ER to Golgi vesicle-mediated transport 5.30E-07 19 3.8
GSE129486 NMF movement of cell or subcellular component 7.07E-07 14 2.8
GSE129486 NMF positive regulation of telomerase RNA localization to Cajal body 1.83E-06 7 1.4
GSE129486 NMF positive regulation of establishment of protein localization to telomere 1.89E-06 6 1.2
GSE129486 NMF cell adhesion 1.98E-06 33 6.6
GSE129486 NMF formation of translation preinitiation complex 2.08E-06 8 1.6
GSE129486 NMF ribosomal small subunit biogenesis 2.87E-06 7 1.4
GSE129486 NMF protein stabilization 5.99E-06 16 3.2
GSE129486 NMF ribosomal small subunit assembly 9.04E-06 7 1.4
GSE129486 NMF Wnt signaling pathway, planar cell polarity pathway 9.18E-06 13 2.6
GSE129486 NMF retrograde vesicle-mediated transport, Golgi to ER 1.65E-05 12 2.4
GSE129486 NMF osteoblast differentiation 3.23E-05 13 2.6
GSE129486 NMF negative regulation of apoptotic process 3.24E-05 30 6
GSE129486 NMF COPII vesicle coating 4.50E-05 10 2
GSE129486 NMF proteolysis involved in cellular protein catabolic process 4.86E-05 9 1.8
GSE129486 NMF toxin transport 5.17E-05 8 1.6
GSE129486 NMF negative regulation of canonical Wnt signaling pathway 5.24E-05 16 3.2
GSE129486 NMF viral process 1.04E-04 22 4.4
GSE129486 NMF protein N-linked glycosylation via asparagine 1.05E-04 8 1.6
GSE129486 NMF intracellular protein transport 1.15E-04 19 3.8
GSE129486 NMF antigen processing and presentation of peptide antigen via MHC class I 1.53E-04 7 1.4
GSE129486 NMF positive regulation of substrate adhesion-dependent cell spreading 2.22E-04 7 1.4
GSE129486 NMF positive regulation of telomere maintenance via telomerase 2.22E-04 7 1.4
GSE129486 NMF barbed-end actin filament capping 4.77E-04 5 1
GSE129486 NMF platelet degranulation 5.99E-04 11 2.2
GSE129486 NMF ephrin receptor signaling pathway 6.46E-04 10 2
GSE129486 NMF response to reactive oxygen species 6.78E-04 7 1.4
GSE129486 NMF tRNA aminoacylation for protein translation 7.79E-04 7 1.4
GSE129486 NMF regulation of mitochondrial membrane potential 9.52E-04 6 1.2

GSE129486 PCA defense response to virus 9.66E-08 20 4
GSE129486 PCA type I interferon signaling pathway 9.37E-07 12 2.4
GSE129486 PCA actin cytoskeleton organization 1.03E-05 15 3
GSE129486 PCA response to virus 3.88E-05 13 2.6
GSE129486 PCA negative regulation of viral genome replication 8.21E-05 8 1.6
GSE129486 PCA negative regulation of apoptotic process 2.52E-04 27 5.4
GSE129486 PCA proteolysis involved in cellular protein catabolic process 2.70E-04 8 1.6
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Dataset Method GO term P-Value #Genes %Overlap

Dataset/subtype conditions highlighted
Neuron related

GSE84712 dynDLT neurotransmitter secretion 2.47E-08 12 2.6
GSE84712 dynDLT positive regulation of GTPase activity 2.57E-07 36 7.81
GSE84712 dynDLT chemical synaptic transmission 3.18E-07 22 4.77
GSE84712 dynDLT nervous system development 4.21E-07 24 5.21
GSE84712 dynDLT synapse assembly 1.60E-06 11 2.39
GSE84712 dynDLT long-term synaptic potentiation 2.53E-06 9 1.95
GSE84712 dynDLT glutamate secretion 3.17E-06 8 1.74
GSE84712 dynDLT positive regulation of excitatory postsynaptic potential 5.14E-06 7 1.52
GSE84712 dynDLT vesicle fusion 9.89E-06 10 2.17
GSE84712 dynDLT protein localization to plasma membrane 1.71E-05 10 2.17
GSE84712 dynDLT positive regulation of calcium ion-dependent exocytosis 2.63E-05 6 1.3
GSE84712 dynDLT adult behavior 2.70E-05 7 1.52
GSE84712 dynDLT calcium ion-regulated exocytosis of neurotransmitter 3.29E-05 8 1.74
GSE84712 dynDLT social behavior 1.31E-04 8 1.74
GSE84712 dynDLT gamma-aminobutyric acid signaling pathway 1.41E-04 6 1.3
GSE84712 dynDLT regulation of calcium ion-dependent exocytosis 1.59E-04 7 1.52
GSE84712 dynDLT regulation of potassium ion transmembrane transport 3.51E-04 5 1.08
GSE84712 dynDLT learning 3.91E-04 8 1.74
GSE84712 dynDLT neuron cell-cell adhesion 4.60E-04 5 1.08
GSE84712 dynDLT ion transmembrane transport 5.31E-04 15 3.25
GSE84712 dynDLT potassium ion transmembrane transport 6.35E-04 11 2.39
GSE84712 dynDLT inositol phosphate metabolic process 8.27E-04 7 1.52
GSE84712 dynDLT positive regulation of synaptic transmission, glutamatergic 9.26E-04 5 1.08

GSE84712 ICA mRNA splicing, via spliceosome 2.44E-10 26 5.65
GSE84712 ICA neurotransmitter secretion 3.77E-07 11 2.39
GSE84712 ICA intracellular signal transduction 6.43E-05 25 5.43
GSE84712 ICA RNA splicing 2.40E-04 14 3.04
GSE84712 ICA viral transcription 4.41E-04 11 2.39
GSE84712 ICA nervous system development 7.84E-04 18 3.91
GSE84712 ICA apoptotic process 8.55E-04 28 6.09
GSE84712 ICA protein phosphorylation 9.52E-04 24 5.22

GSE84712 NMF translational initiation 3.26E-83 76 16.2
GSE84712 NMF SRP-dependent cotranslational protein targeting to membrane 5.84E-82 66 14.07
GSE84712 NMF nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 2.19E-75 68 14.5
GSE84712 NMF viral transcription 8.15E-71 64 13.65
GSE84712 NMF translation 2.40E-52 71 15.14
GSE84712 NMF rRNA processing 1.78E-51 66 14.07
GSE84712 NMF cell-cell adhesion 2.23E-18 40 8.53
GSE84712 NMF cytoplasmic translation 8.28E-15 14 2.99
GSE84712 NMF mRNA splicing, via spliceosome 2.03E-14 32 6.82
GSE84712 NMF gene expression 1.14E-11 15 3.2
GSE84712 NMF ATP-dependent chromatin remodeling 2.98E-09 10 2.13
GSE84712 NMF regulation of translational initiation 1.78E-08 11 2.35
GSE84712 NMF nucleosome disassembly 1.20E-07 8 1.71
GSE84712 NMF ribosomal small subunit assembly 2.96E-07 8 1.71
GSE84712 NMF osteoblast differentiation 5.00E-07 15 3.2
GSE84712 NMF formation of translation preinitiation complex 1.32E-06 8 1.71
GSE84712 NMF ribosomal small subunit biogenesis 1.93E-06 7 1.49
GSE84712 NMF regulation of mRNA stability 2.68E-06 14 2.99
GSE84712 NMF G2/M transition of mitotic cell cycle 2.86E-06 16 3.41
GSE84712 NMF Wnt signaling pathway, planar cell polarity pathway 4.58E-06 13 2.77
GSE84712 NMF chromatin remodeling 1.38E-05 12 2.56
GSE84712 NMF positive regulation of protein localization to Cajal body 2.91E-05 5 1.07
GSE84712 NMF establishment of integrated proviral latency 2.91E-05 5 1.07
GSE84712 NMF positive regulation of transcription from RNA polymerase II promoter 3.90E-05 48 10.23
GSE84712 NMF positive regulation of viral genome replication 4.44E-05 7 1.49
GSE84712 NMF cholesterol biosynthetic process 4.84E-05 8 1.71
GSE84712 NMF mRNA processing 7.08E-05 16 3.41
GSE84712 NMF protein folding 7.55E-05 16 3.41
GSE84712 NMF cell proliferation 9.49E-05 24 5.12
GSE84712 NMF negative regulation of translation 1.21E-04 9 1.92
GSE84712 NMF ribosomal large subunit assembly 1.68E-04 6 1.28
GSE84712 NMF CRD-mediated mRNA stabilization 1.68E-04 4 0.85
GSE84712 NMF positive regulation of transcription, DNA-templated 2.06E-04 29 6.18
GSE84712 NMF RNA processing 2.15E-04 11 2.35
GSE84712 NMF regulation of circadian rhythm 2.57E-04 8 1.71
GSE84712 NMF axon guidance 2.71E-04 14 2.99
GSE84712 NMF toxin transport 3.01E-04 7 1.49
GSE84712 NMF DNA damage response, detection of DNA damage 3.01E-04 7 1.49
GSE84712 NMF positive regulation of muscle cell differentiation 3.29E-04 6 1.28
GSE84712 NMF viral process 3.30E-04 20 4.26
GSE84712 NMF negative regulation of apoptotic process 3.80E-04 26 5.54
GSE84712 NMF ribosomal large subunit biogenesis 4.03E-04 6 1.28
GSE84712 NMF cell adhesion 4.33E-04 26 5.54
GSE84712 NMF positive regulation of telomerase RNA localization to Cajal body 4.92E-04 5 1.07
GSE84712 NMF actin cytoskeleton organization 5.91E-04 12 2.56
GSE84712 NMF antigen processing and presentation of exogenous peptide antigen via MHC class II 6.49E-04 10 2.13
GSE84712 NMF positive regulation of DNA binding 6.99E-04 6 1.28
GSE84712 NMF covalent chromatin modification 7.33E-04 11 2.35
GSE84712 NMF protein import into nucleus 7.37E-04 8 1.71
GSE84712 NMF protein stabilization 8.63E-04 12 2.56
GSE84712 NMF ribosomal protein import into nucleus 8.89E-04 4 0.85
GSE84712 NMF positive regulation of apoptotic process 9.17E-04 19 4.05

GSE84712 PCA mRNA splicing, via spliceosome 7.63E-17 34 7.41
GSE84712 PCA mRNA export from nucleus 3.39E-10 18 3.92
GSE84712 PCA RNA splicing 1.53E-07 19 4.14
GSE84712 PCA chromatin remodeling 1.75E-07 14 3.05
GSE84712 PCA termination of RNA polymerase II transcription 3.44E-06 11 2.4
GSE84712 PCA viral process 5.37E-06 23 5.01
GSE84712 PCA RNA export from nucleus 7.19E-06 10 2.18
GSE84712 PCA gene expression 2.03E-05 9 1.96
GSE84712 PCA mRNA 3'-end processing 2.76E-05 9 1.96
GSE84712 PCA protein sumoylation 3.19E-05 13 2.83
GSE84712 PCA intracellular transport of virus 3.21E-05 9 1.96
GSE84712 PCA mRNA processing 3.84E-05 16 3.49
GSE84712 PCA tRNA export from nucleus 1.14E-04 7 1.53
GSE84712 PCA ATP-dependent chromatin remodeling 2.07E-04 6 1.31
GSE84712 PCA neurotransmitter secretion 2.39E-04 8 1.74
GSE84712 PCA positive regulation of mRNA splicing, via spliceosome 4.01E-04 5 1.09
GSE84712 PCA gene silencing by RNA 4.19E-04 11 2.4
GSE84712 PCA glutamate secretion 5.47E-04 6 1.31
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Dataset Method GO term P-Value #Genes %Overlap

Dataset/subtype conditions highlighted
Pancreas related

GSE87375 dynDLT 3.48E-05 10 2
GSE87375 dynDLT 6.68E-05 52 10.4
GSE87375 dynDLT 8.23E-04 4 0.8

GSE87375 ICA 3.07E-07 9 1.8
GSE87375 ICA 3.47E-04 8 1.6
GSE87375 ICA 4.27E-04 6 1.2
GSE87375 ICA 7.45E-04 7 1.4

GSE87375 NMF 9.57E-12 28 5.6
GSE87375 NMF 9.74E-11 94 18.8
GSE87375 NMF 1.58E-09 11 2.2
GSE87375 NMF 5.41E-09 19 3.8
GSE87375 NMF 1.12E-08 15 3
GSE87375 NMF 1.93E-08 13 2.6
GSE87375 NMF 2.01E-08 45 9
GSE87375 NMF 3.98E-08 24 4.8
GSE87375 NMF 4.26E-08 10 2
GSE87375 NMF 4.89E-07 20 4
GSE87375 NMF 2.88E-06 26 5.2
GSE87375 NMF 6.38E-06 28 5.6
GSE87375 NMF 1.43E-05 8 1.6
GSE87375 NMF 1.44E-05 10 2
GSE87375 NMF 1.67E-05 10 2
GSE87375 NMF 2.67E-05 8 1.6
GSE87375 NMF 2.86E-05 5 1
GSE87375 NMF 3.18E-05 34 6.8
GSE87375 NMF 4.26E-05 10 2
GSE87375 NMF 4.83E-05 15 3
GSE87375 NMF 1.23E-04 13 2.6
GSE87375 NMF 1.78E-04 31 6.2
GSE87375 NMF 1.86E-04 5 1
GSE87375 NMF 1.90E-04 18 3.6
GSE87375 NMF 3.22E-04 6 1.2
GSE87375 NMF 4.82E-04 5 1
GSE87375 NMF 5.29E-04 7 1.4
GSE87375 NMF 6.30E-04 5 1
GSE87375 NMF 6.43E-04 8 1.6
GSE87375 NMF 7.66E-04 9 1.8
GSE87375 NMF 7.73E-04 20 4
GSE87375 NMF 8.08E-04 6 1.2
GSE87375 NMF 8.76E-04 4 0.8
GSE87375 NMF regulation of neuron projection development 9.49E-04 6 1.2

GSE87375 PCA cell division 1.01E-35 65 13
GSE87375 PCA mitotic nuclear division 3.90E-31 53 10.6
GSE87375 PCA cell cycle 4.72E-30 74 14.8
GSE87375 PCA chromosome segregation 2.54E-15 22 4.4
GSE87375 PCA mitotic sister chromatid segregation 1.73E-09 10 2
GSE87375 PCA mitotic chromosome condensation 3.06E-07 7 1.4
GSE87375 PCA microtubule-based movement 2.93E-06 12 2.4
GSE87375 PCA mitotic cytokinesis 6.22E-06 8 1.6
GSE87375 PCA antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-dependent 6.22E-06 8 1.6
GSE87375 PCA mitotic metaphase plate congression 1.51E-05 8 1.6
GSE87375 PCA chromosome condensation 2.98E-05 6 1.2
GSE87375 PCA attachment of spindle microtubules to kinetochore 4.03E-05 5 1
GSE87375 PCA mitotic spindle organization 4.92E-05 7 1.4
GSE87375 PCA protein localization to kinetochore 6.58E-05 5 1
GSE87375 PCA proteolysis involved in cellular protein catabolic process 6.92E-05 9 1.8
GSE87375 PCA metaphase plate congression 1.49E-04 5 1
GSE87375 PCA cytokinesis 2.52E-04 7 1.4
GSE87375 PCA mitotic spindle midzone assembly 2.75E-04 4 0.8
GSE87375 PCA microtubule depolymerization 2.90E-04 5 1
GSE87375 PCA regulation of attachment of spindle microtubules to kinetochore 4.72E-04 4 0.8
GSE87375 PCA spindle organization 5.08E-04 5 1
GSE87375 PCA mitotic spindle assembly checkpoint 8.21E-04 5 1
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cellular calcium ion homeostasis
transport
wound healing, spreading of epidermal cells

antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-dependent
proteolysis involved in cellular protein catabolic process
neurotransmitter secretion
cellular response to hormone stimulus

vesicle-mediated transport
transport
tricarboxylic acid cycle
protein folding
ER to Golgi vesicle-mediated transport
proteolysis involved in cellular protein catabolic process
oxidation-reduction process
intracellular protein transport
antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-dependent
cell-cell adhesion
response to drug
translation
positive regulation of telomere maintenance via telomerase
positive regulation of translation
proton transport
toxin transport
positive regulation of protein localization to Cajal body
protein transport
cell redox homeostasis
ubiquitin-dependent protein catabolic process
protein stabilization
negative regulation of apoptotic process
NADH metabolic process
RNA splicing
cellular process
positive regulation of telomerase RNA localization to Cajal body
ATP metabolic process
retrograde protein transport, ER to cytosol
ER-associated ubiquitin-dependent protein catabolic process
response to endoplasmic reticulum stress
mRNA processing
retrograde vesicle-mediated transport, Golgi to ER
regulation of stress-activated MAPK cascade
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Dataset Method GO term P-Value #Genes %Overlap

Dataset/subtype conditions highlighted
Blood cell related

GSE92652 dynDLT G-protein coupled receptor signaling pathway 1.63E-07 14 16.87
GSE92652 dynDLT detection of chemical stimulus involved in sensory perception of smell 8.32E-07 10 12.05

GSE92652 ICA G2/M transition of mitotic cell cycle 7.68E-07 16 3.64
GSE92652 ICA cell division 2.79E-05 23 5.24
GSE92652 ICA mitotic cytokinesis 4.76E-05 7 1.59
GSE92652 ICA mitotic sister chromatid segregation 2.47E-04 6 1.37
GSE92652 ICA inflammatory response 2.48E-04 22 5.01
GSE92652 ICA mitotic nuclear division 2.53E-04 17 3.87
GSE92652 ICA leukocyte migration 5.91E-04 11 2.51
GSE92652 ICA mitotic spindle midzone assembly 6.53E-04 4 0.91
GSE92652 ICA extracellular matrix organization 7.32E-04 14 3.19

GSE92652 NMF viral transcription 1.71E-15 24 5.58
GSE92652 NMF SRP-dependent cotranslational protein targeting to membrane 7.47E-12 19 4.42
GSE92652 NMF translational initiation 9.12E-11 21 4.88
GSE92652 NMF cell-cell adhesion 1.86E-09 27 6.28
GSE92652 NMF nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 3.36E-09 18 4.19
GSE92652 NMF viral process 3.40E-09 28 6.51
GSE92652 NMF mitotic nuclear envelope disassembly 7.81E-07 10 2.33
GSE92652 NMF translation 3.07E-06 21 4.88
GSE92652 NMF cell division 3.96E-06 25 5.81
GSE92652 NMF rRNA processing 4.03E-06 19 4.42
GSE92652 NMF sister chromatid cohesion 6.29E-06 13 3.02
GSE92652 NMF IRE1-mediated unfolded protein response 1.01E-05 10 2.33
GSE92652 NMF actin cytoskeleton organization 1.41E-05 14 3.26
GSE92652 NMF intracellular transport of virus 2.56E-05 9 2.09
GSE92652 NMF tRNA export from nucleus 9.56E-05 7 1.63
GSE92652 NMF protein sumoylation 1.13E-04 12 2.79
GSE92652 NMF regulation of glucose transport 1.15E-04 7 1.63
GSE92652 NMF phagocytosis 1.33E-04 8 1.86
GSE92652 NMF platelet degranulation 1.76E-04 11 2.56
GSE92652 NMF ATP-dependent chromatin remodeling 1.79E-04 6 1.4
GSE92652 NMF positive regulation of erythrocyte differentiation 2.21E-04 6 1.4
GSE92652 NMF positive regulation of B cell differentiation 2.65E-04 5 1.16
GSE92652 NMF mRNA processing 3.76E-04 14 3.26
GSE92652 NMF response to endoplasmic reticulum stress 4.12E-04 9 2.09
GSE92652 NMF G2/M transition of mitotic cell cycle 4.51E-04 12 2.79
GSE92652 NMF mRNA splicing, via spliceosome 9.36E-04 15 3.49

GSE92652 PCA cell division 3.91E-07 27 6.05
GSE92652 PCA mitotic nuclear division 1.11E-04 18 4.04
GSE92652 PCA G2/M transition of mitotic cell cycle 1.19E-04 13 2.91
GSE92652 PCA mitotic metaphase plate congression 2.31E-04 7 1.57
GSE92652 PCA microtubule bundle formation 2.81E-04 6 1.35
GSE92652 PCA mitotic sister chromatid segregation 2.81E-04 6 1.35
GSE92652 PCA response to oxidative stress 3.21E-04 11 2.47
GSE92652 PCA interferon-gamma secretion 4.50E-04 4 0.9
GSE92652 PCA protein phosphorylation 7.08E-04 24 5.38
GSE92652 PCA extracellular matrix organization 9.48E-04 14 3.14
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Dataset Method GO term P-Value #Genes %Overlap

Dataset/subtype conditions highlighted
Plant related

EMTAB2565 dynDLT suberin biosynthetic process 5.74E-08 8 1.6
EMTAB2565 dynDLT oxidation-reduction process 3.20E-04 47 9.4
EMTAB2565 dynDLT iron ion homeostasis 4.43E-04 6 1.2
EMTAB2565 dynDLT cellular response to nitric oxide 6.41E-04 5 1

EMTAB2565 ICA translation 1.07E-20 79 15.8
EMTAB2565 ICA ribosome biogenesis 4.66E-15 25 5
EMTAB2565 ICA cytoplasmic translation 8.15E-10 13 2.6
EMTAB2565 ICA ribosomal small subunit assembly 3.88E-04 7 1.4
EMTAB2565 ICA protein transport 4.35E-04 19 3.8

EMTAB2565 NMF response to cadmium ion 7.67E-26 51 10.2
EMTAB2565 NMF oxidation-reduction process 3.25E-23 95 19
EMTAB2565 NMF response to oxidative stress 1.58E-22 44 8.8
EMTAB2565 NMF response to salt stress 5.93E-17 48 9.6
EMTAB2565 NMF hydrogen peroxide catabolic process 1.70E-12 19 3.8
EMTAB2565 NMF response to cytokinin 6.59E-12 25 5
EMTAB2565 NMF response to karrikin 9.30E-10 19 3.8
EMTAB2565 NMF response to cold 1.80E-09 28 5.6
EMTAB2565 NMF lignin biosynthetic process 4.49E-09 14 2.8
EMTAB2565 NMF ATP hydrolysis coupled proton transport 1.38E-08 11 2.2
EMTAB2565 NMF response to water deprivation 3.72E-08 25 5
EMTAB2565 NMF plant-type cell wall organization 1.22E-06 13 2.6
EMTAB2565 NMF proton transport 1.52E-06 8 1.6
EMTAB2565 NMF tricarboxylic acid cycle 3.14E-06 10 2
EMTAB2565 NMF response to wounding 4.04E-06 18 3.6
EMTAB2565 NMF electron transport chain 5.98E-06 7 1.4
EMTAB2565 NMF toxin catabolic process 9.28E-06 9 1.8
EMTAB2565 NMF glutathione metabolic process 1.20E-05 10 2
EMTAB2565 NMF phenylpropanoid biosynthetic process 1.30E-05 8 1.6
EMTAB2565 NMF response to abscisic acid 1.73E-05 25 5
EMTAB2565 NMF cellular water homeostasis 1.91E-05 8 1.6
EMTAB2565 NMF ion transmembrane transport 3.62E-05 7 1.4
EMTAB2565 NMF glycolytic process 3.66E-05 10 2
EMTAB2565 NMF water transport 8.20E-05 5 1
EMTAB2565 NMF mitochondrial electron transport, ubiquinol to cytochrome c 1.21E-04 5 1
EMTAB2565 NMF response to water 1.21E-04 5 1
EMTAB2565 NMF cold acclimation 1.62E-04 8 1.6
EMTAB2565 NMF response to zinc ion 2.08E-04 8 1.6
EMTAB2565 NMF ATP synthesis coupled proton transport 2.53E-04 7 1.4
EMTAB2565 NMF aging 3.35E-04 7 1.4
EMTAB2565 NMF response to UV-B 5.02E-04 8 1.6
EMTAB2565 NMF proteolysis involved in cellular protein catabolic process 6.43E-04 10 2
EMTAB2565 NMF defense response to bacterium 7.39E-04 17 3.4

EMTAB2565 PCA translation 4.43E-25 86 17.2
EMTAB2565 PCA ribosome biogenesis 2.38E-20 30 6
EMTAB2565 PCA cytoplasmic translation 5.34E-11 14 2.8
EMTAB2565 PCA ribosomal small subunit assembly 4.61E-05 8 1.6
EMTAB2565 PCA ribosomal large subunit assembly 8.67E-04 6 1.2
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Dataset Method GO term P-Value #Genes %Overlap

Dataset/subtype conditions highlighted
Stem cell/ tissue type related

EMTAB6811 dynDLT sodium ion transport 2.50E-10 16 3.2
EMTAB6811 dynDLT transmembrane transport 2.98E-08 21 4.2
EMTAB6811 dynDLT excretion 3.07E-07 7 1.4
EMTAB6811 dynDLT kidney development 2.64E-06 15 3
EMTAB6811 dynDLT sodium-independent organic anion transport 4.06E-06 7 1.4
EMTAB6811 dynDLT receptor-mediated endocytosis 5.33E-06 12 2.4
EMTAB6811 dynDLT regulation of pH 5.40E-06 7 1.4
EMTAB6811 dynDLT sodium ion transmembrane transport 9.09E-05 9 1.8
EMTAB6811 dynDLT regulation of microvillus length 1.64E-04 4 0.8
EMTAB6811 dynDLT inorganic anion transport 2.62E-04 5 1
EMTAB6811 dynDLT ion transport 2.62E-04 7 1.4
EMTAB6811 dynDLT proteolysis 3.24E-04 23 4.6
EMTAB6811 dynDLT cellular response to hepatocyte growth factor stimulus 3.36E-04 5 1
EMTAB6811 dynDLT multicellular organismal water homeostasis 6.58E-04 4 0.8
EMTAB6811 dynDLT glutathione biosynthetic process 9.25E-04 4 0.8

EMTAB6811 ICA spermatid development 6.93E-05 10 2
EMTAB6811 ICA spermatogenesis 5.04E-04 17 3.4
EMTAB6811 ICA sperm motility 7.55E-04 7 1.4
EMTAB6811 ICA regulation of nucleic acid-templated transcription 8.12E-04 5 1
EMTAB6811 ICA negative regulation of mRNA splicing, via spliceosome 9.40E-04 5 1

EMTAB6811 NMF translation 8.65E-22 52 10.4
EMTAB6811 NMF positive regulation of protein localization to Cajal body 7.55E-11 8 1.6
EMTAB6811 NMF cell-cell adhesion 9.87E-11 27 5.4
EMTAB6811 NMF mRNA processing 2.10E-10 21 4.2
EMTAB6811 NMF RNA splicing 3.27E-10 18 3.6
EMTAB6811 NMF positive regulation of establishment of protein localization to telomere 2.85E-08 7 1.4
EMTAB6811 NMF positive regulation of telomerase RNA localization to Cajal body 5.15E-08 8 1.6
EMTAB6811 NMF cell division 7.74E-08 21 4.2
EMTAB6811 NMF translational initiation 1.04E-07 12 2.4
EMTAB6811 NMF transcription, DNA-templated 1.06E-07 49 9.8
EMTAB6811 NMF formation of translation preinitiation complex 1.29E-07 9 1.8
EMTAB6811 NMF ATP-dependent chromatin remodeling 1.29E-07 9 1.8
EMTAB6811 NMF negative regulation of mRNA splicing, via spliceosome 3.62E-07 9 1.8
EMTAB6811 NMF chromatin remodeling 5.94E-07 13 2.6
EMTAB6811 NMF IRES-dependent viral translational initiation 7.17E-07 6 1.2
EMTAB6811 NMF toxin transport 8.79E-07 10 2
EMTAB6811 NMF negative regulation of transcription, DNA-templated 1.08E-06 36 7.2
EMTAB6811 NMF regulation of translational initiation 1.17E-06 9 1.8
EMTAB6811 NMF covalent chromatin modification 1.47E-06 11 2.2
EMTAB6811 NMF liver regeneration 1.76E-06 11 2.2
EMTAB6811 NMF mRNA splicing, via spliceosome 2.16E-06 14 2.8
EMTAB6811 NMF protein stabilization 2.19E-06 16 3.2
EMTAB6811 NMF binding of sperm to zona pellucida 3.99E-06 9 1.8
EMTAB6811 NMF regulation of circadian rhythm 4.46E-06 10 2
EMTAB6811 NMF positive regulation of translation 7.34E-06 11 2.2
EMTAB6811 NMF protein folding 9.71E-06 14 2.8
EMTAB6811 NMF positive regulation of telomere maintenance via telomerase 2.25E-05 8 1.6
EMTAB6811 NMF DNA unwinding involved in DNA replication 3.30E-05 5 1
EMTAB6811 NMF circadian regulation of gene expression 3.38E-05 10 2
EMTAB6811 NMF neural tube closure 4.33E-05 12 2.4
EMTAB6811 NMF nucleosome assembly 4.33E-05 12 2.4
EMTAB6811 NMF DNA repair 4.91E-05 16 3.2
EMTAB6811 NMF cellular response to DNA damage stimulus 5.51E-05 19 3.8
EMTAB6811 NMF cell proliferation 5.83E-05 19 3.8
EMTAB6811 NMF cell migration 8.63E-05 17 3.4
EMTAB6811 NMF cell cycle 9.37E-05 13 2.6
EMTAB6811 NMF regulation of translation 1.17E-04 9 1.8
EMTAB6811 NMF negative regulation of transcription from RNA polymerase II promoter 1.24E-04 39 7.8
EMTAB6811 NMF regulation of alternative mRNA splicing, via spliceosome 1.35E-04 8 1.6
EMTAB6811 NMF brain development 2.15E-04 21 4.2
EMTAB6811 NMF cellular response to transforming growth factor beta stimulus 2.62E-04 10 2
EMTAB6811 NMF cellular response to X-ray 3.03E-04 5 1
EMTAB6811 NMF nucleosome disassembly 3.03E-04 5 1
EMTAB6811 NMF cytoplasmic translation 3.37E-04 9 1.8
EMTAB6811 NMF cerebral cortex development 3.48E-04 10 2
EMTAB6811 NMF osteoblast differentiation 3.63E-04 12 2.4
EMTAB6811 NMF negative regulation of catalytic activity 4.60E-04 9 1.8
EMTAB6811 NMF response to drug 5.16E-04 29 5.8
EMTAB6811 NMF rRNA processing 5.60E-04 9 1.8
EMTAB6811 NMF spindle organization 7.23E-04 5 1
EMTAB6811 NMF nucleocytoplasmic transport 8.07E-04 6 1.2
EMTAB6811 NMF protein import into nucleus 8.88E-04 8 1.6
EMTAB6811 NMF regulation of cell migration 9.73E-04 9 1.8

EMTAB6811 PCA spermatogenesis 6.48E-05 19 3.8
EMTAB6811 PCA spermatid development 4.41E-04 9 1.8
EMTAB6811 PCA tRNA wobble uridine modification 5.13E-04 4 0.8
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