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Abstract: The practice of xenotransplantation using pig islet cells or organs is under development
to alleviate the shortage of human donor islet cells or organs for the treatment of diabetes or organ
failure. Multiple genetically modified pigs were generated to prevent rejection. Xenotransplantation
may be associated with the transmission of potentially zoonotic porcine viruses. In order to prevent
this, we developed highly sensitive PCR-based, immunologicals and other methods for the detection
of numerous xenotransplantation-relevant viruses. These methods were used for the screening of
donor pigs and xenotransplant recipients. Of special interest are the porcine endogenous retroviruses
(PERVs) that are integrated in the genome of all pigs, which are able to infect human cells, and that
cannot be eliminated by methods that other viruses can. We showed, using droplet digital PCR,
that the number of PERV proviruses is different in different pigs (usually around 60). Furthermore,
the copy number is different in different organs of a single pig, indicating that PERVs are active in
the living animals. We showed that in the first clinical trials treating diabetic patients with pig islet
cells, no porcine viruses were transmitted. However, in preclinical trials transplanting pig hearts
orthotopically into baboons, porcine cytomegalovirus (PCMV), a porcine roseolovirus (PCMV/PRV),
and porcine circovirus 3 (PCV3), but no PERVs, were transmitted. PCMV/PRV transmission resulted
in a significant reduction of the survival time of the xenotransplant. PCMV/PRV was also transmitted
in the first pig heart transplantation to a human patient and possibly contributed to the death of the
patient. Transmission means that the virus was detected in the recipient, however it remains unclear
whether it can infect primate cells, including human cells. We showed previously that PCMV/PRV
can be eliminated from donor pigs by early weaning. PERVs were also not transmitted by inoculation
of human cell-adapted PERV into small animals, rhesus monkey, baboons and cynomolgus monkeys,
even when pharmaceutical immunosuppression was applied. Since PERVs were not transmitted in
clinical, preclinical, or infection experiments, it remains unclear whether they should be inactivated
in the pig genome by CRISPR/Cas. In summary, by using our sensitive methods, the safety of
xenotransplantation can be ensured.

Keywords: xenotransplantation; porcine endogenous retroviruses; porcine viruses; porcine cytomegalovirus;
porcine circoviruses; porcine lymphotropic herpesviruses

1. Introduction

The transmission of a pig virus, the porcine cytomegalovirus/porcine roseolovirus
(PCMV/PRV), during the first pig heart xenotransplantation to a human patient [1], demon-
strates that aspects of virus safety have been partially neglected in this clinical transplan-
tation. There is no doubt that the virus contributed to the death of the patient, because
the pig heart was still functional at the time of death. Clinical features observed in the
patient were similar to features that had been described previously in non-human primates
receiving pig organs infected with PCMV/PRV. In these preclinical trials, the transmission
of PCMV/PRV significantly reduced the survival time of the pig transplant in compari-
son with transplants free of PCMV/PRV [2–6]. In all cases, it remains unclear whether
PCMV/PRV infects primate cells, including human cells. It was proposed that the virus
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interacts with endothelial and immune cells of the recipient to induce cytokine modulation
and defects in coagulation [6]. However, there are good arguments that this accident could
be prevented when experienced virologists are involved in future clinical trials [7].

Besides the hepatitis virus E genotype 3 (HEVgt3 or HEV-3), PCMV/PRV is now
the second pig virus known to cause a zoonosis in the human recipient. Whether other
pig viruses are zoonotic for the human xenotransplant recipient is still unknown. Since
comprehensive reviews on PCMV/PRV [2,3,7], HEV [8,9], porcine lymphotropic herpes
viruses [10], and porcine endogenous retroviruses (PERVs) [11,12] were recently published
in the context of xenotransplantation, this study will concentrate on pig viruses that have
not yet been analyzed in such detail.

2. Potential Zoonotic Pig Viruses

A zoonosis is an infectious disease caused by a pathogen transmitted from an animal
species to humans. Such infectious pathogens may be bacteria, viruses, parasites, or
prions. There are many examples of zoonosis in history, the latest is the transmission of
the monkeypox virus, which originated from rodents in Africa. The one before was the
SARV-CoV-2 pandemic, caused by a corona virus most likely transmitted from bats to
humans. The one before that was the transmission of two simian immunodeficiency viruses
(SIV), which were apathogenic in their natural hosts. In humans, these viruses, now called
humans immunodeficiency viruses 1 and 2 (HIV-1 and HIV-2), induce severe and fatal
acquired immunodeficiencies (AIDS).

These recent examples suggest that zoonotic viruses from pigs used as donors for
xenotransplantation may be transmitted by the xenotransplant to the (immunosuppressed)
recipient. Pigs have been, for many reasons, selected as donor animals. However, it
is largely unknown, which of the numerous pig viruses detected in the pig virome can
be zoonotic (inducing a disease) for humans. At present, this is known only for HEV-3
and PCMV/PRV.

HEV-3 is widely distributed in wild boars and domestic pigs [13–15]. An infection
of humans with HEV-3 is, in most cases, the result of consumption of undercooked liver
or meat from pork or wild boar, or of direct contact with infected animals [15–17]. Acute
hepatitis E generally resolves on its own and rarely progresses to acute liver failure or
chronic hepatitis, however a majority of HEV infections in immunosuppressed patients,
such as organ transplant recipients, progress into chronicity [18]. A vaccine against HEV
is available in China, but not in other countries [19], and an HEV-specific antiviral is still
lacking, although pegylated interferon and ribavirin have been used to treat chronic HEV
infections with mixed results [20].

PCMV/PRV, a roseolovirus closely related to the human herpes viruses 6A, 6B, and 7,
is widely distributed in pig populations and most of the infections are sub-clinical [2,3].

The impact of some pig viruses was discussed in numerous reviews (Table 1), however,
the potential impact of other viruses was not well analyzed.

The first clinical trials had been performed with islet cells from Auckland Island
pigs [44–46]. Auckland Island pigs represent an inbred population of feral pigs isolated
on the subantarctic island for over 100 years. The animals have been maintained un-
der pathogen-free conditions in New Zealand, they are well characterized virologically
(Table 2) [47–49], and have been used as donor source in clinical trials, transplanting
encapsulated porcine neonatal islet cells for the treatment of human diabetes patients
in New Zealand and Argentina. In these trials, no transmission of porcine viruses was
observed, including porcine endogenous retroviruses (PERVs) [50–52]. Absence of trans-
mission in these cases means that no viral genetic information was found in the recipient.
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Table 1. Reviews analyzing the potential impact of porcine viruses on xenotransplantation.

Viruses Reviews

Different viruses, general aspects

Fishman [21], Yoo & Giulivi, 2000 [22], Takeuchi et al., 2005 [23],
Mattiuzzo et al., 2008 [24], Scobie & Takeuchi, 2009 [25],

Mueller et al., 2011 [26], Fishman et al., 2012 [27],
Denner & Mueller, 2015 [28], Fishman, 2018 [29],

Nellore & Fishman, 2018 [30], Fishman, 2020 [31],

Herpesviruses in general Mueller & Fishman, 2004 [32], Tischer & Osterrieder, 2010 [33]

PCMV Denner, 2015 [3], Denner, 2018 [2], Denner, 2022 [7]

PLHV Denner, 2021 [10]

PERV

Wilson, 2008 [34], Denner, 2008 [35], Denner et al., 2009 [36],
Denner & Tönjes, 2013 [37], Kimsa et al., 2014 [38], Denner, 2016 [39],
McGregor et al., 2018 [40], Denner et al., 2018 [41], Denner, 2018 [12],

Denner, 2021 [11],

Single stranded DNA viruses Karuppannan & Opriessnig, 2018 [42]

Circoviruses Denner & Mankertz, 2017 [43]

HEV Denner, 2015 [8], Denner, 2019 [9]

Table 2. Viruses absent in Auckland Island pigs used for clinical islet cell xenotransplantations [47–52].

Virus Name Abbreviation

Porcine circovirus 1 PCV1
Porcine circovirus 2 PCV2

Porcine lymphotrophic herpesvirus PLHV
Porcine cytomegalovirus/porcine roseolovirus PCMV/PRV

Rotavirus RV
Porcine enterovirus type 1 PEV1
Porcine enterovirus type 3 PEV3

Porcine hemagglutinating encephalomyelitis virus PHEV
Hepatitis E virus HEV

Bovine viral diarrhea virus BVDV
Suid herpesvirus 1 or Aujeszky’s disease virus or pseudorabies virus. SuHV-1 or ADV or PrV

Porcine parvovirus PPV
Porcine reproductive and respiratory syndrome virus PRRSV

Porcine encephalomyocarditis virus EMCV

When a new pig facility was opened at the Center for Innovative Medical Models
(CiMM) at the Ludwig Maximilians University, Munich, Germany, the animals were tested
for a number of microorganisms (Table 3). All testing is repeated continuously every
6 months on a representative proportion of the current pig population within CiMM to
ensure adequate hygiene monitoring [53]. The animals are vaccinated against porcine
circovirus 2 (PCV2), porcine parvovirus (PPV), and Erysioelothrix rhusiopathiae. The
source animals were made PCMV/PRV-free by early weaning. They were transferred to a
commercially available Rescue Deck system dedicated to motherless rearing of piglets and
the sows were removed from the facility. The PCMV/PRV status of F1-generation animals
was determined by a sensitive real-time PCR-based detection method testing blood, nasal
swabs, and cultured peripheral blood mononuclear cells (PBMCs) [53]. This report shows
that the elimination of PCMV/PRV from a pig herd is easy to achieve.

In order to generate designated pathogen-free (DPF) pigs to serve as donors for xenotrans-
plantation into clinical patients, a new facility at the Spring Point Project, Minneapolis, MN, USA,
was populated with caesarian derived, colostrum deprived piglets. The animals were tested
negative for numerous microorganisms (Table 4) [54].



Viruses 2022, 14, 1926 4 of 14

Table 3. Microorganisms tested in the pig facility of the CiMM in Munich, Germany [53].

Testing Microorganisms

Serological testing

Actinobacillus pleuropneumoniae, Haemophilus parasuis, Lawsonia intracellularis, Leptospira spp.,
Mycoplasma hyopneumoniae, Pasteurella multocida, porcine reproductive and respiratory syndrome

virus (PRRSV), swine influenza virus (SIV), Porcine epidemic diarrhea (PED), Porcine respiratory
coronavirus (PRCV), hepatitis E virus (HEV), transmissable gastroenteritis virus (TGEV)

Antigen testing Brachyspira hyodysenteriae, salmonella, swine influenza virus

Fecal swabs bacteriological content, endoparasites

PCR testing Lawsonia intracellularis, Brachyspira pilosicoli, Brachyspira hyodysenteriae, hepatitis E virus (HEV), porcine
cytomegalovirus/porcine roseolovirus (PCMV/PRV), rotavirus RV), coronavirus (CoV), tescho-sapelovirus

Cell culture Escherichia coli, Salmonella group C

Parasites Strongyloides

Table 4. Microorganisms excluded from a colony of designated pathogen free pigs [54].

Microorganisms Species

Bacteria

Actinobacillus pleuropneumonia, Actinobacillus suis, Bacillus anthracis, Bordetella bronchiseptica, Brucella sp.,
Campylobacter sp., Chlamydia sp., Erysipelothrix sp., Haemophilus parasuis, Lawsonia intracellularis,

Leptospira sp., Mycoplasma hyopneumonia, Mycoplasma hyorhinis, Mycoplasma hyosynoviae, Mycobacterium
tuberculosis, Mycobacterium bovis, Mycobacterium avium, Pasteurella multocida, Pasteurella. haemolytica,

Salmonella sp., Brachyspira sp., Staphylococcus hyicus, Streptococcus suis, Yersinia sp.

Fungi Systemic mycoses including: Blastomyces sp., Cryptococcus sp., Histoplasma sp.

Parasites Pathogeneic Protozoa including: Cryptosporidium parvum, Giardia sp., Toxoplasma sp., Helminths, Trichinella
spiralis, Blood parasites

Arthropods All pathogenic arthropods, e.g., lice and mite

Viruses

Porcine adenovirus, Bovine viral diarrhea virus, Porcine circoviruses 1 and 2, Encephalitis, Eastern and
Western Equine, Encephalomyocarditis virus, Enterovirus, Hemagglutinating encephalomyelitis Virus,

Hepatitis E virus, Infectious bovine rhinotracheitis Virus, Swine influenza virus, Porcine
cytomegalovirus/porcine roseolovirus, Porcine parvovirus, Porcine reproductive and respiratory

syndrome virus, Parainfluenza 3 Virus, Pseudorabies virus, Porcine respiratory coronavirus, Rotavirus,
Transmissible gastroenteritis virus, Vesicular stomatitis virus (NJ & Indiana), West Nile fever virus, Porcine

lymphotropic herpes virus 1 and 2

A similar screening was performed with pigs generated for islet cell transplantation
at another institution. Screening was performed for more than 30 viruses, including not
only PCR-based and immunological methods, but also infection assays and transmission
electron microscopy [55]. It is important to note that for some of the pig microorganisms,
effective vaccines are available and have been used (Table 5).

The alphaherpesvirus pseudorabies virus (PrV), also called Suid herpesvirus 1 (SuHV-1)
or Aujeszky’s disease virus (ADV), is the causative agent of Aujeszky’s disease, an infection
of major economic impact in animal husbandry [56]. The disease is highly contagious,
transmitted by nose-to-nose contact, and airborne. Eradication of the PrV infection from the
national pig populations has been achieved using ‘marker’ vaccines that allow serological
differentiation between infected and vaccinated animals. Though the virus is eradicated
in domestic swine populations in many countries, it is still present in wild boars [57].
Young pigs are the most severely affected by PrV infection and typically exhibit symp-
toms of central nervous infection, whereas older swine exhibit symptoms of respiratory
disease [56]. PrV can infect a wide variety of mammals, including pigs, sheeps, cattles, etc.,
thereby causing severe clinical symptoms and acute death [58]. The fact that this virus
also infects humans [59] makes it a risk factor in xenotransplantation. This virus is also an
excellent example of herpes viruses being not species-specific, and of their ability to cross
species barriers.
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Table 5. Vaccines used in a pig breed generated for islet cell xenotransplantation [55].

Vaccine Target Microorganisms Manufacturer

ParaSail Haemophilus parasuis Newport Laboratories

CircoFLEX Porcine circovirus 2 (PCV2) Boehringer Ingelheim

MycoFLEX Mycoplasma hyopneumoniae Boehringer Ingelheim

Myco Shield Mycoplasma hyopneumoniae Novartis

Pneumostar SIV H1N1 & H1N2 & H3N Novartis

Enterisol Ileitis Lawsonia intracellularis Boehringer Ingelheim

Parvo Shield L5E porcine parvovirus, Erysipelothrix rhusiopathiae, and Leptospira
canicola, grippotyphosa, hardjo, icterohaemorrhagiae, and pomona. Novartis

Prefarrow Shield 9d
Bordetella bronchiseptica, Clostridium perfringens type C,

Erysipelothrix rhusiopathiae, K88, K99, 987P & F41 piliated E.
coli, and Pasteurella multocida types A & D.

Novartis

Prosystem RCE Two major Rotavirus serotypes, four major E. coli pilus antigens
(K88, K99, F41 and 987P) and C. perfringens type C toxoid. Merck

Ingelvac PRRS PRRSV Stamm ATCC VR 2332 (Genotyp 2): Boehringer Ingelheim

PRRS PRRSV Newport

Other viruses with potential zoonotic potential are the porcine enteric viruses en-
cephalomyocarditis virus (EMCV), the porcine astrovirus (PAstV), the porcine norovirus
(PNoV), and the porcine sapovirus (PSaV) [60]. ECMV is another example of pig viruses can
overcoming species barrier, for example in zoo outbreaks (for review see [60]). Although
ECMV infections have been observed in humans, these originated mainly from mice and
primates, not from pigs. Alternately, antibodies against ECMV have been found in humans
with close contact to pigs, e.g., swine veterinarians. Therefore, pigs may serve as potential
reservoirs of transmission of ECMV to humans.

Attention should also be paid to rotaviruses (RVs). Among ten groups of RVs,
RV group A (RVA), RV group B (RVB), and RV group C (RVC) show the highest preva-
lence. Similar to human RVAs, porcine RVAs are widely distributed worldwide. Zoonotic
transmission of RVAs have been proven by epidemiological and experimental studies [60].
There are effective vaccines against human RVs and polyvalent vaccines for pigs, e.g., the
Prosystem RCE vaccine (Table 5).

Porcine endogenous retroviruses represent a special risk because these viruses are
integrated in the genome of all pigs [37]. There are multiple copies in the genome, ranging
to 60 or more [39]. It is important to note that the overall number of integrated proviral
copies has no significance for the risk posed by these viruses. Only the number of human-
tropic infectious viruses is relevant [61]. Most interestingly, the copy number is different in
different organs of a single pig, indicating that PERVs are active in living animals [39].

3. Detection of Porcine Viruses

There are numerous publications that describe PCR-based, immunological, and other
methods to screen for virus infection, especially for some selected xenotransplantation-
relevant viruses [62] (Table 6).

The detection systems used for screening the donor pigs and recipients include, along
with the specific detection methods, either PCR-based, cell-based, or immunological meth-
ods, as well as the sample generation, sample preparation, sample origin, time of sampling,
and the necessary negative and positive controls [62,70] (Table 7). The methods should be
sensitive, specific, and should be validated as described [62].
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Table 6. Publications describing methods for the detection of potential zoonotic porcine viruses in
the context of xenotransplantation.

Viruses Publication

General aspects

Chmielewicz et al., 2003 [63], Tucker et al., 2003 [64], Garkavenko et al., 2004 [50],
Garkavenko et al., 2008 [49], Abrahante et al., 2011 [65], Wynyard et al., 2014 [51],

Plotzki et al., 2016 [66,67], Gazda et al., 2016 [55], Morozov et al., 2016 [68,69], Denner, 2017 [70],
Hartline et al. 2018 [71], Crossan et al., 2018 [72], Noordergraaf et al. 2018 [54],

Krüger et al., 2019 [73], Matsumoto et al., 2020 [46], Denner 2020 [62], Halecker et al., 2021 [74]

PCMV Mueller et al., 2002 [75], Mueller et al., 2004 [76], Morozov et al., 2016 [69],
Plotzki et al., 2016 [77], Fiebig et al., 2018 [78], Hansen et al., 2022 [79], Halecker et al., 2022 [80]

PERV

Paradis et al., 1999 [81], Blusch et al., 2000 [82], Stephan et al., 2001 [83], Tacke et al., 2001 [84],
Herring et al., 2001 [85], Denner 2003 [86], Nishitai et al., 2005 [87], Issa et al., 2008 [88],

Xing et al., 2009 [89], Zhang et al., 2010 [90], Kaulitz et al., 2011 [91], Wynyard et al., 2011 [92],
Xiang et al., 2013 [93], Kaulitz et al., 2013 [94], Semaan et al., 2013 [95], Guo et al., 2014 [96],

Costa et al., 2014 [97], Gola & Mazurek, 2014 [98], Godehardt et al., 2015 [99],
Morozov et al., 2017 [52], Mourad et al., 2017, [100], Li et al., 2017 [101], Fiebig et al., 2018 [102],

Choi et al., 2017 [103], Kono et al. 2020 [104], Halecker et al., 2022 [105],

Circoviruses Tucker et al., 2003 [63], Hattermann et al., 2004 [106], Karuppannan & Opriessnig, 2018 [42],
Krüger et al., 2019 [107], Prinz et al., 2019 [108],

Single stranded DNA viruses Karuppannan & Opriessnig, 2018 [42]

HEV Busby et al., 2013 [109], Morozov et al., 2015 [110], Abicht et al., 2016 [111],

PLHV Tucker et al., 2003 [63], Mueller et al., 2004 [75], Brema et al., 2008 [112], Issa et al., 2008 [88],
Plotzki et al., 2016 [113]

Non-viral pathogens Tönjes, 2018 [114]

Table 7. Components of the detection systems [62].

n Sensitive and specific detection methods
n PCR-based methods
n Cell-based methods
n Immunological methods.

n Sample generation
n Sample preparation
n Sample origin
n Time of sampling
n Negative and positive controls

It is important to know whether the virus is replicating or latent (Figure 1). Both
replication-competent and latent viruses cannot be detected in the beginning of the infection,
however they can be detected later. Whereas the amount of the replicating virus soon rises
above the detection limit of the detection methodused, the latent virus goes into latency
and cannot be detected any longer (Figure 1). However, after transplantation, the virus
may be activated again, and replicates are consequently unrestricted in the transplanted
pig organ and are able to harm the recipient. This exact scenario happened in the case of
the first pig heart transplantation in Baltimore.

PCMV/PRV is an excellent example of a latent herpes virus. The infection normally
happens early in life, and at that time, PCMV/PRV can be detected easily by PCR-based
methods. In adult animals, when the virus is in its latent stage, it cannot be detected
by PCR. However, the detection of antibodies as an indirect method to detect infection
is possible [80]. It is important to note that young piglets may have antibodies against
PCMV/PRV derived from the colostrum of their mothers, if they were positive [80]. Based
on these results, a strategy should be selected to screen for PCMV/PRV in young and
in old animals [80]. It is also important to note that PCMV/PRV is widely distributed,
not only in production pigs, but also wild boars [79]. Therefore, pigs in facilities for
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xenotransplantation should not only be protected from contact with production pigs, but
also with wild boars. Furthermore, for the generation of cloned and genetically modified
pigs for xenotransplantation, oocytes and follicular fluid, which may be infected with
PCMV/PRV, are used for somatic cell nuclear transfer (SCNT), and this may introduce
the virus [115].
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4. Elimination of Porcine Viruses

Most pig viruses can be eliminated from the pig herd (Figure 2). Negative animals can
be used directly for xenotransplantation, whereas infected animals with a high virus load
should be eliminated. In the case where no negative animals are available, animals with
a low virus load should be selected, and the viruses can be eliminated by vaccination, if
a vaccine is available, or by antiviral drugs, if available. If neither are available, viruses
can be eliminated by early weaning to prevent transmission of the virus from the infected
mother by milk. Viruses can be eliminated by colostrum deprivation or, in extreme cases, by
caesarean delivery or embryo transfer (Figure 2). Once the virus is eliminated, the animal
should be kept in isolation to avoid de novo infection or re-entry. Using sensitive detection
methods, the animal should be screened before, during, and after elimination of the virus.
Early weaning has been shown to be a successful approach for eliminating PCMV/PRV
from pig herds [53,116].

Viruses 2022, 14, x FOR PEER REVIEW 8 of 16 
 

 

PCMV/PRV, are used for somatic cell nuclear transfer (SCNT), and this may introduce the 
virus [115]. 

4. Elimination of Porcine Viruses 
Most pig viruses can be eliminated from the pig herd (Figure 2). Negative animals 

can be used directly for xenotransplantation, whereas infected animals with a high virus 
load should be eliminated. In the case where no negative animals are available, animals 
with a low virus load should be selected, and the viruses can be eliminated by vaccination, 
if a vaccine is available, or by antiviral drugs, if available. If neither are available, viruses 
can be eliminated by early weaning to prevent transmission of the virus from the infected 
mother by milk. Viruses can be eliminated by colostrum deprivation or, in extreme cases, 
by caesarean delivery or embryo transfer (Figure 2). Once the virus is eliminated, the 
animal should be kept in isolation to avoid de novo infection or re-entry. Using sensitive 
detection methods, the animal should be screened before, during, and after elimination of 
the virus. Early weaning has been shown to be a successful approach for eliminating 
PCMV/PRV from pig herds [53,116]. 

 
Figure 2. Elimination programs of potentially zoonotic pig viruses. 

Whereas most pig viruses can be eliminated using the above-mentioned strategies, 
PERVs, which are integrated in the genome of all pigs, cannot be eliminated this way. 
PERV-A and PERV-B are integrated in the genome of all pigs, PERV-C is present in many, 
but not all pigs. In addition, PERVs are active in their hosts, and their copy number 
increases with time (for review see [39]). This also leads to recombinations between PERV-
A and PERV-C, the recombinant PERV-A/C viruses are characterized by high replication 
rates, and they are able to infect human cells. They are found integrated in the genome of 
certain somatic cells, but not in the germ line of the animals [35,117,118]. The isolation of 
replication-competent PERVs able to infect human cells (human-tropic) is rare [105]; It is 
important to note that PERV-A/C were found predominantly in minipigs [119]. 

Since PERVs are integrated in the pig genome, and cannot be eliminated as can all 
other viruses, several strategies have been developed in order to prevent the transmission 
of PERVs to the recipient (Table 8). 

Table 8. Strategies to prevent PERV transmission. 

 Vaccine, based on neutralizing antibodies against the transmembrane and surface envelope 
proteins of PERV [120–123] 

 Antiretroviral drugs [83,124–128] 
 Reduction of PERV expression by siRNA [129–132] 
 Gene editing 

 Zinc finger nuclease (ZFN) [133] 

Figure 2. Elimination programs of potentially zoonotic pig viruses.

Whereas most pig viruses can be eliminated using the above-mentioned strategies,
PERVs, which are integrated in the genome of all pigs, cannot be eliminated this way.
PERV-A and PERV-B are integrated in the genome of all pigs, PERV-C is present in many,
but not all pigs. In addition, PERVs are active in their hosts, and their copy number increases
with time (for review see [39]). This also leads to recombinations between PERV-A and
PERV-C, the recombinant PERV-A/C viruses are characterized by high replication rates,
and they are able to infect human cells. They are found integrated in the genome of
certain somatic cells, but not in the germ line of the animals [35,117,118]. The isolation of
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replication-competent PERVs able to infect human cells (human-tropic) is rare [105]; It is
important to note that PERV-A/C were found predominantly in minipigs [119].

Since PERVs are integrated in the pig genome, and cannot be eliminated as can all
other viruses, several strategies have been developed in order to prevent the transmission
of PERVs to the recipient (Table 8).
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Table 8. Strategies to prevent PERV transmission.

n Vaccine, based on neutralizing antibodies against the transmembrane and surface envelope
proteins of PERV [120–123]

n Antiretroviral drugs [83,124–128]
n Reduction of PERV expression by siRNA [129–132]
n Gene editing

n Zinc finger nuclease (ZFN) [133]
n Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9

(CRISPR/Cas9) [134,135] (Figure 3)

Since xenotransplantation surgeries are planned long in advance, the recipients could
be vaccinated against PERV to prevent transmission, if necessary. At the moment, there is
convincing evidence that no PERV has been transmitted in any transplantation or infection
experiments in small animals, as well as in non-human primates, with or without phar-
maceutical immunosuppression (for review see [12]). High titer antibodies neutralizing
PERVs were produced, immunizing different species (goat, mice, rats, hamsters) with
the recombinant ectodomain of the transmembrane envelope protein p15E and the entire
surface envelope protein gp70 of PERV [120–123]. Since there is no animal model of a PERV
infection available, in which the vaccine could be tested in vivo, we developed a model
using the same principle vaccines based on the envelope proteins of the closely related
feline leukaemia virus (FeLV), and showed that immunizing cats with our vaccine could
protect the animals from a FeLV-induced leukaemia [136–138], suggesting that the PERV
vaccine may also work in vivo.

Gene editing is a perfect way to inactivate PERVs in the genome. However, because
the number of integrated proviruses may reach more than 60, there is risk that the nu-
merous interventions in the cell genome may destroy the genome and kill the cell, as was
observed when using the ZFN [133]. More successful was the inactivation of PERV using
CRISPR/Cas [134,135] (Figure 3). Since PERV has not been transmitted until now, and
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since the off-target effects and the problems when breeding large numbers of CRISPR/Cas-
treated animals are still unknown, it remains unclear whether this strategy should be used,
or even if it can be used at all [41,139,140].

5. Future Clinical Trials

Based on the results of the first transplantation of a pig heart to a human patient, and on
all preclinical trials performed with non-human primates, the following recommendations
for future clinical trials are important [7]: First, in the study design, competent virologists
should be involved. Second, the donor animals have to be analyzed with sensitive methods
and appropriate strategies, especially in the case that latent viruses, such as herpes viruses,
are under investigation. The Federal Drug Administration (FDA), with involvement
from the Centers for Disease Control and Prevention (CDC) in the US, and the European
Medicines Agency (EMEA) in Europe, must ensure that these methods are used.

6. Conclusions

Recent findings have shown that virus safety is as important for a successful xeno-
transplantation as the genetic modifications of the donor pig, the effectiveness of the
immunosuppressive, and the skill of the surgeons. In the last several years, sensitive and
specific methods to detect potential zoonotic pig viruses have been developed, and using
these detection methods an elimination of most of theses viruses from genetically modified
pig breeds generated for xenotransplantation, is possible. PERVs, which are integrated in
the genome of all pigs, have not been transmitted in any of the many preclinical and clinical
xenotransplantation trials performed so far, nor in any of the numerous experimental
PERV infection experiments. To prevent PERV transmission after xenotransplantation, a
range of different strategies has been developed, including the selection of PERV-C-free
animals to prevent recombination between PERV-A and PERV-C. In order to prevent the
transmission of latent viruses, mainly herpes viruses such as PCMV/PRV, appropriate
sensitive detection methods and detection strategies must be used. In future clinical trials,
competent virologists should be involved.
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