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Abstract

The aim of this thesis is to establish local monotonicity formulee for solutions to Dirichlet-type
flows, such as the harmonic map and Yang-Mills heat flows, and the mean curvature flow. In par-
ticular, for the former, we allow as domain an evolving Riemannian manifold and for the latter,
we allow as target an evolving Riemannian manifold. The approach taken consists in first deriving
divergence identities involving an appropriate evolving quantity, then integrating over superlevel
sets (heat balls) of suitable kernels. A theory of heat balls analogous to that of Ecker, Knopf, Ni and
Topping is developed in order to accomplish this. The main result is then that, provided certain in-
tegrals are finite, local monotonicity formulee hold in this general setting, thus generalizing results
for the mean curvature and harmonic map heat flows and establishing a new local monotonicity
formula for solutions to the Yang-Mills flow.



Zusammenfassung

Das Ziel dieser Dissertation ist das Beweisen lokaler Monotonieformeln fiir Losungen Dirichlet-
artiger Flusse, wie des harmonischen Abbildungs- und Yang-Mills-Flusses, und des mittleren Kriim-
mungsflusses. Fir die Ersteren darf die Metrik des Definitionsbereiches und fiir den Letzteren die
der Zielmannigfaltigkeit eine Evolutionsgleichung l6sen. Die gewéhlte Methode besteht darin, dafl
einige eine geeignete entwickelnde Gréfle umfassende Divergenzidentitdten erst hergeleitet wer-
den, und daf diese dann iiber Superniveaumengen zulassiger Kerne integriert werden, zu welchem
Zwecke eine zu der von Ecker, Knopf, Ni und Topping analoge Theorie der Warmekugeln entwi-
ckelt wird. Das Hauptergebnis ist dann, daf} lokale Monotonieformeln auch in diesem verallge-
meinerten Rahmen gelten, solange gewisse Integrale endlich sind. Dieses Resultat verallgemeinert
deshalb vorherige Ergebnisse fiir den mittleren Kriimmungs- und harmonischen Abbildungsfluf3,
und fithrt eine neue lokale Monotonieformel fiir Lésungen des Yang-Mills-Flusses ein.
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Introduction

Monotonicity as a paradigm. Monotonicity is a property shared by many partial differential
equations (PDE) arising in geometry in physics, its statement being that a one-parameter family of
quantities, usually integral, depending on a solution to a certain PDE is monotone in that parameter.
In this thesis, we are principally interested in local monotonicity formulee. Roughly speaking, a
local monotonicity formula is an inequality of the form

(L)

on an interval of the form ]0,r,[, ro > 0, where f(u) is a quantity depending on a solution u to a
PDE, m € N and Q, is an increasing one-parameter family of precompact subsets of the domain
of u which tend in some sense to a point in the domain of u as r ™\, 0. Essentially, such a formula
would permit us to deduce qualitative information about the local behaviour of solutions to PDE.

For instance, the most prominent such formula is the mean value property for harmonic func-
tions due to Gauf} (cf. [43, p. 223]): Let Q < R” be open and fix xp € Q. If u : Q — R satisfies

—Au = 0 (Laplace’s equation), then
d /1
— (= =0
dr (rn jBr(xo) u) (*)

on 0, ro[ for any ry > 0 with B, (xy) < Q. Since the differentiated quantity, the average of u in
a neighbourhood of x, tends, as r \, 0, to u(x), (&) leads to many strong statements about the
behaviour of solutions to Laplace’s equation, such as the strong maximum principle.

More recently, an analogous formula has been derived by Watson [j73] for solutions to the
heat equation where the underlying domain of integration is more elaborate (see also [24]): Let
D < R" x R be open and fix (xp,ty) € D. Let ® : R" x |—o0,t[ — R* denote the backward heat
kernel centred at (xo, ), i.e.

1 _ 2
O(x,t) = ———exp (M)

(47 (ty — t))m/2 4(t — o)

and define the heat ball of radiusr, r > 0, by

E,(x0,10) := {(x,t) eR" x |—o0,to[ : D(x,t) > l}

rn

Ifu: D — R satisfies ;,u — Au = 0 (heat equation), then

|x — x0)?
0

d |1
5 r_" Jj u(x,t)mdxdt =0
)

E, (xo»to

on ]0,7o[ for any r, > 0 with E, (xo,ty) = D. In this case, the monotone quantity, a weighted
average of u in a neighbourhood of (x,t), tends, as r N\, 0, to u(x, %), leading to important
consequences just as in the case of Laplace’s equation.

In the above two examples, the quantities considered are more than just monotone — they are
conserved quantities. For solutions to nonlinear PDE, this is too much to hope for, though similarly
powerful monotonicity formule may still be obtained: if (M",g), (N™,§) are compact Riemannian
manifolds (n > 2) and u : M — N is a harmonic map, i.e. if it is smooth and solves the system

Nu = Apu®(x) + Zn: i gij(x)l"gy(u(x))ﬁiuﬂ(x)aju”(x) =0 #)
ij=1p=1

iii
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Figure: A heat ball in R*x | — o0, 1,][.

for every x € M, where l"f ¥ represent the Christoffel symbols obtained from the Levi-Civita con-
nection on (N, g), then for fixed xo € M, it satisfies the monotonicity property

d [ et 1
— (%f —|du|2dvolg> =0
dr r B, (x0) 2

on 0, 2io[, where for each x € M, (du)(x) € T,,(xyN®T; M is the differential of u, iy is the injectivity
radius of M at xp and A > 0 depends on the geometry of M in B;,(x) and, if M = R", A = 0 and
this quantity is conserved iff u is scale-invariant about xo, i.e. u(xo + rx) = u(xp + x) forallr > 0
whenever both sides are defined. This was first established (in a slightly different form) by Schoen
and Uhlenbeck [63] in a more general context for maps minimizing the Dirichlet energy

1
J = |du|?dvol,
M2

in the appropriate Sobolev space and later established by Price [61] for maps which are critical (in
the appropriate sense) for the Dirichlet energy which includes smooth maps satisfying (). The
monotonicity principle consequently states a law governing the behaviour of the local (n — 2)-
dimensional average energy of u which is a crucial ingredient in the regularity theory of harmonic
maps due to Schoen and Uhlenbeck. Moreover, it has been applied by Schoen [64] to the study of
compactness in the space of smooth solutions of uniformly bounded energy in dimensions greater
than two.

Harmonic maps are a natural generalization of solutions to Laplace’s equation. Similarly, a
natural generalization of solutions to the heat equation exists— the harmonic map heat flow: a
smooth map u : M x ]0,T[ — N is said to evolve by the harmonic map heat flow if

O — Nu=0.

Nonlocal monotonicity formule for such maps have been established by Struwe [68] for M = R”"
and by Chen and Struwe [12] and Hamilton [33] in the case where M is a static compact manifold. A
local counterpart of Struwe’s formula has more recently been obtained by Ecker [20]: let y € [0,n]
and define the weighted heat ball of radius r > 0 centred at (xg,t) € R"” x ]0,T] by

EY (xo,t0) := {(x,t) € R™ x |—00,to : (tg — t)Y/2®(x,t) > rnl—y }

If n > 2 and u evolves by the harmonic map heat flow, then

d 1 n—2 )
i\ J et
E

n
2 =
7 (x0.20)

(x — xp)" % (x — xo)"
20— 1) Oiu, 0ru + ; 2 Oiu ) dxdt

/ t—t)

C2
n—2 % (x — x0)"
_— H ‘atw;l 2y | drde =0

E} (x0,t0)
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whenever these integrals make sense, i.e. whenever E2(x, ) is contained in the domain of u and
the integrals are finite. Moreover, this quantity is conserved iff u is parabolically scale-invariant
about (xo,ty), i.e. u(xo + rx,ty + r’t) = u(xo + x,to + t) for every r > 0 whenever both sides are
defined. More recently, related formulee have been established for other flows in settings involving
evolving manifolds [22, 56].

Summary of results. In this thesis, an analogous formula to Ecker’s local monotonicity for-
mula for the harmonic map heat flow is proved for the Yang-Mills flow on (possibly evolving)
Riemannian manifolds. In particular, a more general identity for k-forms with values in vector
bundles which also implies a local monotonicity formula for the harmonic map heat flow between
Riemannian manifolds is established, thus leading to a generalization of Ecker’s result to curved
ambient spaces. Moreover, a local monotonicity formula for the mean curvature flow with (possi-
bly evolving) Riemannian target is established, generalizing another one of Ecker’s results [18]. A
brief sketch of these results follows.

Suppose that M is an oriented Riemannian manifold equipped with a family of metrics {gy } )4, — 0, ¢,
(to € R, 8 > 0) with 0,9 = h and consider functions ® : D < M x R — R which are, in some
sense, heat kernel-like (see Chapter ff). For such functions, an analogous notion of “heat ball”
may be formulated; we set EY := {(x,t) € D : (to — t)//? - d(x,t) > —} and ¢ := log ®.
Now, if P is a principal G-bundle (G as in §f.{) and the one-parameter family of connections
{w: = wo + a(t)}re1ty—s0,4[ ON P evolves by the Yang-Mills ﬂowED

ata = 5V9w

with curvature two-form Q® and codifferential 5V induced by w (see §f1.5, §i.4 and §.11 for details),
then for sufficiently small 0 < r; < rp,

r=ra

1 1 4
~|Q°* (o VP — ———— ) — (194Q%,194Q° — Q%) dvol,dt
JIECS (009 4 196 = 555 ) = (@m0 = 0702 v,
Er

Pl ([ _Lgep (s 1
= J =3 ff—EQ ? (0t¢ + Ap + |VP|* + Etrgh>
r .
Er

rn

1 1 . .
+ <V2¢ + Eh + mg,Z <laig‘”,lajgw> dx' ® dxj> dvolydt |dr
0 — —

2y)

Q@2 | . . .
whenever Ig_lt is summabléd over E‘r‘2 and these integrals make sense, where 1 denotes the interior

product of a vector field with a (vector bundle-valued) differential form (cf. §.2) and [£(r)]/Z/% :=

r=r

f(r2) — f(r1) (Theorem p.2.1). From the above formula, it may be read off that the first term on the
right-hand side vanishes iff ® solves the backward heat equation

1
01 + AD + Etrgh-CD: 0,

the second iff w is self-similar in the sense that

5ta = —lV¢9w

(see Chapter p for the case M = R"), and the final term, in the case where h = —2Ric, i.e. when g
evolves by the Ricci flow, iff

'Note that ¢ is the same parameter on which g depends.
*Throughout this thesis, we say a real-valued function f (or n-form fdvol,) on an oriented Riemannian manifold
(M™, g) with volume form dvoly, is summable if |f] is measurable and {, | f]dvol, < 0.
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. 2
Ric = V¢ + 20 = t)g,
i.e. iff g is a gradient shrinking soliton (see [45]) This sort of structure is analogous to that exhibited
by the monotonicity formula due to Magni, Mantegazza and Tsatis [53]. By applying the above
identity to appropriate kernels, monotonicity formule may be obtained for solutions to the Yang-
Mills heat flow in the case where (M,g) is compact and static (Theorem b.3.6) or evolving and
of locally bounded geometry about some (xo,ty) € M x R (Theorem f.3.9), thus providing local
counterparts of the nonlocal monotonicity formulee due to Chen and Shen [11] and Hamilton [33].
Similarly, with (M, (9:) ;14— 5.1, ) 25 before, itis also shown that if {u(-,¢) : (M,g:) = N}ieysy—6.1[
evolves by the harmonic map heat flow, then for sufficiently small r, > r; > 0,

r=ry
1 1 2
—|dul?*( 0 Vo> — ———— | — (ygu,0 0ru) dvol,dt
rnfzsz‘ ul <t¢+| P 2(t0t)> <v¢u vou + tu> vol,
E? r=nr
2 n-2 1 1
= —=|dul* (0 A Vo|* + =tr,h
|| 5 [ gl (200 a0 19+ G
E}
+ |(7v¢u + atu|2
2 1 1 i j
+ <V o+ Eh — mg,%}(&,—u,&j@ dx' ® dx’ ) dvolydt | dr
whenever L‘:L_‘i is summable over E? and these integrals make sense (Theorem p.2.1). As may

be seen, this formula (Theorem .2.1)) coincides with Ecker’s in the case where M = R" and ®
is replaced with (¢, — t) times the Euclidean backward heat kernel at (xo,%,) for any x, € R™.
Otherwise, it exhibits similar behaviour to that for the Yang-Mills flow and may similarly be used
to establish local counterparts (Theorems [.3.6 and [.3.2) of the nonlocal monotonicity formulzae
due to Chen and Struwe [[12] and Hamilton [33].

Finally, it is established in Theorem that if {F(-,t) : N™ — (M., g¢)}se]ty—,1[ is @ smooth
one-parameter family of embeddings evolving by mean curvature flow in an evolving background
manifold, ie. 0;F = H where H is the mean curvature vector of F and d;g = h, and the mapE
(F,pry) + N x Jto — 8o, t0] — M x Jtg — 8o, to[ is properd, then for appropriate heat kernel-like
©:= @0 (F,pr,) : (F,pr,) (D) —» R, E, := {(x,1) € (F.pr, )(D) : (tg — 1) 7 B(x,1) > 737}
is a “heat ball” for small enough r and for small enough r, > r; > 0,

1 1 7 m  h—m
py ff u [|V?2 + <|H2 - EM) (¢_r+ 5 log(to — t))] dvolsdt

7 (2)
"2 m 1
=J s H u (w - Ap+ Vgl + Etrgh>
n
E7 (D)

- (ﬁ-f—n_zmlog(to—t)) ~H3u+u‘H—V_J‘¢)2

1
trk [ V24 —h—
+u rg< ¢+2 20

1
—7” g) dvolsdt |dr

3Given two sets X, Y, pr; : X x Y — X is the projection onto the first component and pr, : X x Y — Y projection
onto the second.
4By this it is meant that inverse images of compact subsets of the codomain of (F, pr,) are compact.
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u
to—1t
u:Nx]h z 8o, to[ is a smooth function, Hyu = d,u — Agu and - denotes composition with (F, pr,)
(see §l1.14 for details and notation). As may be seen here, the terms on the right-hand side vanish
similarly to those in the monotonicity identity for the Yang-Mills heat flow above, most notably
also when H = V1 ¢, which represents a homothetically shrinking solution in R” (cf. [1d]). This
is exactly the behaviour exhibited by the formula in [53]. This local monotonicity formula is a
natural generalization (in the class of maps considered) of that due to Ecker [18] which is in turn
a local counterpart of the (nonlocal) monotonicity formula due to Huisken [40]. On the other
hand, the formula above yields local counterparts of nonlocal monotonicity formulee established
by Hamilton [33] for static compact M (Theorem [7.3.4) and Magni, Mantegazza and Tsatis [53] for
general evolving M (Theorem [.3.7).

Structure of the thesis. In Chapter [, the stage is set by way of introducing the notation,
geometric setup and kernels underlying the investigations to be carried out in the sequel, as well
as a brief introduction to the PDE we shall be most interested in. Here it is also noted that both the
harmonic map and Yang-Mills equations and their respective flows may be considered as special
cases of a more general nonhomogeneous Laplace or heat-type equations, henceforth to be referred
to as equations or flows of Dirichlet type.

In Chapter [, the scaling behaviour of solutions to the Yang-Mills flow over R” is investigated
and then used to establish Price’s monotonicity formula ([61]) for static solutions and a local mono-
tonicity formula for the flow, thus providing— for the Yang-Mills flow over Euclidean space at
least— alternative proofs of the more general theorems to be established later on in this thesis.

In Chapter [, the metric structure of Dirichlet-type energies is expounded, culminating in a
rigorous derivation of the so-called energy-momentum tensor and some useful identities, which are
subsequently applied to establish monotonicity formule for solutions to equations of Dirichlet-
type. Since it offers no additional difficulties, we consider the so-called p-Dirichlet-type energies
in these two chapters, thus re-proving the monotonicity formula for p-harmonic maps (cf. [34,
Lemma 4.1]) and establishing a monotonicity formula for p-Yang-Mills fields.

In Chapter lf, the identities derived from the energy-momentum tensor and the estimates in
§l1.§ are used to establish nonlocal monotonicity formulee for Dirichlet-type flows. Such formulz
are natural analogues of the identity

whenever

is summable over E, and these integrals make sense, where ¢;" = ¢ + mlogr and

% JER" u(x, )®(x, )dx =0

for solutions u of the heat equation on R” (and ® as before) which behave appropriately at oo and
are known to hold on static compact manifolds with both formal and canonical heat kernels. It is
these formulee that have heretofore been applied to questions regarding the structure of singular-
ities occurring in flows [4d, 68, 39]. The novelty of this chapter lies in the fact that these formulee
are established in the case of an evolving ambient space, much in the spirit of [53] and are sub-
sequently used to establish estimates ensuring the finiteness of certain singular integrals, such as
those occurring in the monotonicity formule for the Yang-Mills heat flow and Harmonic map heat
flow stated above.

In Chapter F, heat balls associated to kernels that satisfy certain properties are defined, of
which a few examples are given, and integration formulee analogous to those in [18] and [24]
are established which are then applied in Chapter [ to establish local monotonicity formulza for
Dirichlet-type flows. In Chapter [], these formulee are similarly applied to establish local mono-
tonicity formulee for mean curvature flow with Riemannian target. Finally, this dissertation is con-
cluded by two appendices— one containing auxiliary geometric and another analytical lemmata
used throughout the text.

For the convenience of the reader, an index containing terms, mathematical symbols and uni-
versal constants used throughout the text has been included, together with a reference to the first
occurrence of each term or symbol.
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Preliminaries

In this chapter the background underlying the following chapters is presented. After a summary of no-
tation, some algebraic preliminaries underlying the calculations to be carried out in subsequent chapters are
introduced. A summary of the results required from Lie theory for subsequent considerations is then pre-
sented, followed by a brief treatment of the theory of G-bundles and connections on them With these topics
out of the way, the discussion moves on to a brief description of the evolving objects to be considered in the
sequel, first starting with the notion of an evolving manifold, then proceeding onto heat kernel-type objects,
then Dirichlet-type problems and finally the mean curvature flow.

1.1. Notation. Throughout this thesis, (M,g) shall denote a smooth oriented Riemannian
manifold, TM its tangent bundle and T*M its cotangent bundle. Moreover, (R",§) shall denote
Euclidean space with the flat metric. If f : M — N is a once continuously differentiable map and
x € M, we write dy f : TuM — Tr()M for its differential at x. Moreover, whenever f : M — V is
a smooth map, where V is a finite-dimensional K-vector spaceE, and X € TM, we write dxf € V
for the directional derivative of f in direction X.

If N and P are smooth manifolds, we say that amap f : M x N — P is C5! (and write
f € CHH(M x N,P)) if f is k-times continuously differentiable in M and I-times continuously
differentiable in N. If k = I, we simply write C* and we write C for C°.

Given a collection of smooth manifolds {Mj}je{l’___,n}, the map pr; : M; x - - - x M,, — M; shall
denote the ith coordinate projection, i.e. for m; € M;, pri(ml,. cMy) = m;.

If V is a K-vector space, we write GL(V) for the set of all invertible K-linear maps V — V and
gl(V) for the set of all K-linear maps V — V.

All integrals occurring in this thesis are Lebesgue integrals.

1.2. Algebraic preliminaries. ~We first begin with some algebraic preliminaries. Let V
and {V;}¥ (N € N) be finite dimensional R-vector spaces equipped with positive-definite inner
products (-,-) and {{-,-);} respectively.

Let ay,...,ak,b1,...,bp € Vand v;,w; € V; (i € {1,...,N}). The following table summarizes
the vector spaces formed from these which we shall require in the sequel, together with the inner
products induced on them:

Symbol Designation Inner Product
Vi®- @V Tensor product space EZL%I‘; .' -@?-v-k(’vwkl, E?w "Q@wg) =
(ar Ao ANag,by Ao A bg)
ARV kth exterior product space — det ( (ai, bj>> fj=1.

Induced by inner products on
{AkV} such that for k # [,
ARV LAY,

Exterior algebra

A (= @Y k)

In particular, we make the identifications A°V = V, A%V 2 Rand R®V =~ V®R = V. That these
inner products are well-defined follows immediately from the characterizations of these spaces by
means of universal mapping properties; we refer the reader to [52, §IX.8, §XVL6] for definitions
and proofs of these statements. Furthermore note that, if {¢/}; form orthonormal bases for the
{V;};, then {51.11 R® sillz} form an orthonormal basis for V; ® - - - ® Vi with respect to the induced

inner product, where we vary over all i; € {1,...,dim V;}. Moreover, if {¢;}; form an orthonormal
basis for V, then {e;, A --- A &, } form an orthonormal basis for A¥V, where we vary over all
increasing sequences 0 < iy < --- < i < dimV of integers; we shall abbreviate such sequences
using multi-index notation and write I = (iy,...,i) (or I k to emphasize that the multi-index is a
k-multi-index).

'For a more detailed treatment of these topics, the reader is referred to [74, Chapter 2], [6a] and [7].
?Throughout this thesis, K = R or C.



2 Chapter 1. Preliminaries

Let V* denote the dual space of V. Since the inner product on V is non-degenerate, the R-linear
map

b:V —V*
v 0 = (v,

defines an isomorphism of R-vector spaces. We call it, together with its inverse § : V¥ — V the
musical isomorphisms (cf. [6d, §3.8]). If {e;} is a basis for V and {o'} the dual basis for V*, then if

we write g;; := <£,~,£j> and g for the matrix inverse of (g;;); ;, these isomorphisms may be given
explicitly by

(57) -5 (o)

and

) -3l7)-

On the one hand, b induces an inner product on V* given by (v, w) — (vb, wb>. On the other hand,
if we also write b; for the musical isomorphism defined on (V;,{:,-);), we obtain isomorphisms

M@ @bV ® @V > VF® @V and
b A Ab: ARV S ARYE
—_—

k times

Moreover, we note that the canonical non-singular bilinear pairing V* x V. — R (i.e. (v,v) —
v(v)) naturally induces canonical non-singular bilinear pairings between tensor product spaces and
the products of their duals, as well as exterior product spaces and exterior products of their duals.

Letv,ay,...,ax €V, v,a1,...,ar € V* v; € V; and v; € V.*. We summarize these in the following
table:
Pairing Characterization
OV Vv ® - ®ug)
VOVER @V x (Vi@ @V) -V | ©
(VOVF® @V x (e @) = vi(0)) - vie (v )o

(L1®ag A+ Aag,a1 A ...ag)
= det (ai(aj))k

i,j=1

(Vi @ AFV*) x (AFV) —» v o

Induced by the above pairing and
extended such that the restriction
to (Vi @ AKV*) x (AlV)is 0 € W
for k # L.

(Vi @ AV*) x (AV)

As before, well-definedness follows from the respective universal mapping properties (cf. [;72, §2.8,

§2.9]).

Finally, for each v € V, we introduce two maps, both referred to as interior products: the first is
the mapE Iy : ViI®QAV* > V; ® AV* dual to v A - : AV — AV with respect to the corresponding
pairing introduced above, i.e. such that for every « € AV* and a € AV,

(iva,a) = (a,v A a).

3By this we mean w’(¢;) = 5} for every i, j.
4This map is often denoted by the symbol — or an appropriate reflection thereof depending on the choice of V, cf. e.g.
[25].



I is an R-linear map and, moreover, an anti-derivation with respect to left wedge multiplication,E
i.e. whenever @ € AKV* and BeEVI®AVH,

o (@ A B) = 1o A B+ (=1)ka A 1,p.

Note in particular that

L (V1 ®AkV*> c V, @ ARy

and, keeping in mind the identification V; = V; ® AOV*,

1, (V1) = {0}.

The second interior product is the map j, : Vi@ V*® - Q@ V* > V@ V*®---® V* dual to
—_— —_—

k times k—1 times

V- : VR ---®V - V® - - ®V with respect to the corresponding pairing introduced above,

k—1 times k times

ie. suchthatforeveryTe Vi QV*®---®@V*andSeV®---QV,

k times k—1 times

(oT.S) = (T,o® ).

Jo is R-linear and, whenever v; € Vy and w; € V* (i € {1,...,k}), (01 R 01 ® -+ ® wi) =
() MW ® - ® wg.

In the sequel, we shall write 1, for both interior products, where the operand shall dictate which
is to be used.

1.3. Some Lie theory. We now review the Lie theory necessary to discuss bundles with
structure group and refer the reader to [72] and [36] for details. Recall that a Lie group is a group
which is a differentiable manifold such that both its product map - : G x G — G and inverse map
.=1: G — G are smooth. We denote the identity element of G by e and set ¢ = T.G. For fixed
g € G and X € g, we introduce the following notation.

Symbol Signification
pg:G—G Right multiplication by g
Ag:G—G Left multiplication by g
Cy:G—G Conjugation by g (:=44 © ps-1)
Adg:g—g Adjoint action of G on g (:= d.Cy)
ady:g —g Adjoint action of g on itself (:= (Y — dx(Ad.Y)))
(,y:gxg— RorC | TheKilling formon g (:= ((X,Y) — tr (adx o ady)))

The action Ad, gives rise to the adjoint representation Ad : G — GL(g) of G on g, C, the conjugate
action C : G — C*(G,G) of G on itself and ady the Lie bracket (X,Y) — [X,Y] := adx(Y) on g,
making g a Lie algebra in the algebraic sense which we refer to as the Lie algebra of G.

Now, the Killing form defines a symmetric bilinear form on g invariant under the adjoint action
of Gong,ie. foreveryge G, X,Y € g,

(AdyX.AdgY) = (X.Y).

Differentiating the map g — <Ang ,Ade> at e then implies the identity

(adzX,Y) + (X,ad,Y) = 0 = ([X,Z].Y) = (X,[Z.Y])

5Here, we may multiply elements of V; ® AV* from the left by elements of AV* by wedge multiplication with the
second entry of the tensor product. The universal mapping property implies that this is indeed well-defined.
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by the skew-symmetry of the Lie bracket. It is negative-definite if topological and algebraic con-
ditions are satisfied, viz. if G is connected, compact and semisimple. We shall always assume that
these conditions hold.

Two such Lie groups with which we shall be principally concerned are

SO(N,R) = {Ae GL(N,R) : ATA = I'and detA = 1} and
SU(N,C) = {A€ GL(N,C) : A' A= I and detA = 1},

where GL(N,K) denotes the (real/complex) Lie group of invertible N x N matrices with entries in
K =R or C. The corresponding Lie algebras are, considered as N x N matrices,

50(N,R) = {X € gI(N,R) : XT + X = 0} and
su(N,C) = {X € gl(N,C) : X' +X = 0},

where gl(N,K) is the K-vector space of N x N matrices with entries in K = R or C. The Killing
forms of these Lie algebras may both be written as

(X,Y) = 2ntr(XY) = —2ntr(XY ).

It can thus be seen that this form coincides with the Hilbert-Schmidt inner product on these spaces
of matrices up to a sign (and factor), which is known to be positive-definite.

1.4. G-bundles. We now proceed to use Lie groups to “glue” vector spaces (or Lie groups)
associated to each point of M in a smooth manner. Let G be a Lie group. We begin with a definition.

Definition 1.4.1. [66, §2.3] [38, §3] A G-bundle is a quadruple G & F — E 2> M of manifolds
together with

« A projection, viz. a smooth surjection 7 : E — M,

« a transformation group G acting effectively on F, viz. a smooth left G-action G x F — F
such that g - f = f for all f € F and some g € G implies g = e,

« an open cover {Uy }4ca of M, and
« a bundle atlas, i.e. smooth functions {gap : Uy N Ug — G} gea as well as diffeomorphisms
{¥y : Uy x F— 171 (Ug) }aea such that the diagram
Yo
Uy x F—— 771 (U,)
pry
Ua
commutes for every « € A and, foreverya,f € A,x € UynUgand f € F, (‘I’;l o ‘I’ﬁ) (x,f) =

(x.9ap(x) - f)-

E is called the total space of the bundle, F the standard fibre, G the structure group, M the base
manifold and for each x € M, E, := n~! ({x}) is the fibre over x.

The bundle G & F — E ©>— M will henceforth simply be denoted E when context dictates
the nature of the bundle.



Remark 1.4.2. We define a relation on the set of G-bundle atlases by

({Ua} {¥a} {9ap}) ~ (Vi1 A%} {Gup))

< H1gy : Uy NV} — G smooth}gea yer

such that g, s = T;Ylgaﬁrﬁg onUy "V, Va,fe A, y,6eT.

It is easy to check that this is an equivalence relation on the set of bundle atlases. We shall hence-
forth identify bundle atlases which are equivalent according to this relation.

For the sake of completeness, we also define what it means for G-bundles to be “isomorphic”,
the point being here that we may work with equivalent realizations of the same underlying bundle.

Definition 1.4.3. Let G; & F; — E; > M and G, G F, — E; =% M be a G, and G, bundle
respectively over M. A pair (v,®) of maps v : F; — F; and @ : E; — E; is called a strong bundle
morphism if whenever ¥, ¥ are bundle charts over U < M for E; and E; respectively, there is a

smooth map 7 : U — G, such that @ (¥(x, f)) = ¥ (x,7(x) - v(f)) foreveryx € U and f € F. If v
and @ are diffeomorphisms, we say that E; and E; are isomorphic and write E; = E,.

We are particularly interested in two sorts of G-bundles- vector bundles and principal bundles.

Example 1.4.4 (Vector Bundles). If F is a vector space and - is a group representation, then the fibres
of E may be equipped with a vector space structure compatible with the differential structure of E
according to the rules ¥, (x,v1) + ¥y (x,02) := ¥ (x,01 +0v2) and ¢- ¥, (x,0) := ¥, (x,c0) [66, §6.6]
(38, §3.5]. Such a G-bundle E is called a vector bundle. By defining g, 5(x) := gop(x)- : F — F,itis
clear that E is isomorphic to a GL(F)-bundle (v = 7 = idr, ® = idg). As we shall soon see, E may
be seen to be isomorphic to an O(F)-bundle with respect to some inner product on F, and is said
to be orientable if it may be made to be isomorphic to an SO(F)-bundle. If Gy & Fy — Ey = M is
another vector bundle, a vector bundle morphism is a smooth map ® : E; — E such that CI>|( Fo)x
(Eo), — Ex islinear. If @[ 5, is injective, Eq is said to be a vector subbundle of E, written Ey < E.
In particular, given a vector bundle morphism ® : E; — E such that <I>|( E,), 1s of constant rank for
each x € M, it may easily be shown that ker ® < Ey and im & < E (cf. 75, Prop. 2.10]).

Example 1.4.5 (Principal Bundles). If F = G and - is group multiplication from the left, E is called
a principal G-bundle. Such a bundle admits a smooth global right action P x G 3 (p,g) — pg =:
Ry(p) =: Ly(g) defined such that

Y, (x,9)h := ¥, (x,gh).

It is clear that this right action preserves fibres and, moreover, acts freely and transitively on them,
ie.p-g=p=g=-eforanype Pand E, = pG for any p € E,.

The definition above implies that, given a G-bundle E, the functions {gyp} gea satisfy the
cocycle condition go5(x)gpy (x) = gay (x) for every x € U, n Ug N U, and a, B,y € A, and we shall
subsequently refer to such functions as cocycles relative to {U, }. It turns out that, in fact, given
a transformation group G acting smoothly on F and a cover of M together with {g,4}, one can
reconstruct the bundle E (up to isomorphism), as is evident from the

Theorem 1.4.6. [38, §3.2a] If G is a transformation group acting smoothly on a manifold F, {Uy } gea
is an open cover of a manifold M and {gap}a pea are cocycles relative to this cover, then there exist a
topology and differential structure making the set

Ey := <U{a}><Ua><F>/~,

where (a,x,f) ~ (B.%.f) iff ¥ = x and f = 9pa(x) - f, a differentiable manifold which defines a
G-bundle G C F — Ey 2% M.
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In short, the cocycles and transformation group G contain all the information required to com-
pletely determine a G-bundle so that, for instance, given a G-bundle, one could isolate its cocycles
and make use of a different group action of G to construct another G-bundle using the above the-
orem. Such a bundle is called an associated bundle. In particular, if P is a principal G-bundle and
p : G — V is a group representation, we call the bundle obtained from the cocycles of P and p
the vector bundle associated to P and p and denote it by P x , V. Likewise, given a vector bundle E,
one may use its cocycles together with the left action of the structure group on itself to obtain the
principal bundle associated to E.

Let V be an R-vector space, {(V¢,x¢)}zez an atlas for M, f : N — M a smooth map, where
N is a smooth manifold, and F — E — M and Fy — E; — M vector bundles with cocycles
{9ap : Ux N Ug — GL(F)} 4 pea and {ggﬁ : Uy N Ug — GL(F,)} respectively, where in both cases
we consider the vector bundles as GL(-) bundles with the standard representation of GL(-). The
following table summarizes the GL(-)-bundle constructions we shall require, where we make use
of the canonical representation of GL(+):

Bundle Symbol Cocycles
Trivial bundle 14 M >3 x — idy € GL(V)
Tangent bundle ™ hey = (D (xgox, ")) o xy : Vg 0V — GL(R")
Cotangent bundle T*M h?n =1 (D <x,] o x?)) oxg: VeV, — GL ((R")*)
Pullback bundle (over N) fE (f*9)ap = 9gapo f: f' (Us nUg) — GL(F)
Dual bundle E* 9up = "9pa : Ua 0 Up — GL(F¥)
Tensor product bundle EQ®E, gg)ﬁ = Jap ®gg{ﬂ :Uy nUg — GL(F® Fy)
k k
= ggy af - Uy N"Ug — GL (A*F
kth exterior product bundle AFE Jap w “ g ( )
k times
Exterior algebra bundle AE Iup = (—Bkgs g Ua U — GL(AF)

For convenience, whenever we make use of V®E with V trivial and E a vector bundle as above,
we shall always assume that the representative point set of V ® E is

Ve | J{a} x Uy x F

acA

so that, for instance, (V ® E), = V ® E, for each x € M. Moreover, we assume for convenience
that the representative point set of f~'E is

1w} x Erqy

yeN

so that (f'E)y = {y} x Ep(y). We shall write T, M, T; M and A'T;* M for the fibres of the respective
bundles (x € M). Finally, note that, by construction, all of the bundles above inherit canonical
pairings from their linear algebraic counterparts and we shall use the same notation in all cases.
For instance, the canonical dual pairing F* x F — R defines the pairing

E*xE—->R

([a,x, €], [, x,e]) — (e,e),

which is well-defined, since

([8.x."gap(x)el.[B.x.9pa(x)e]) = (‘Gap(x)e.gpa(x)e) = (e.9ap(x)gpa(x)e) = (e.e).

We now turn our attention to the maps from the base manifold to the total space. We shall only
be concerned with sections in this regard.



Definition 1.4.7. Let U < M be open and E a G-bundle. A (smooth) map ¢ : U — E is said to be a
(smooth) local section over U if 7 o 0 = idy and the set of all smooth local sections of E over U is
denoted by T'(E — U), or simply T'(E) if U = M. If E = TM, we refer to o as a vector field, and if
E = AT*M we call o a differential form. Finally, if 0 : U x I — E is a smooth function with I ¢ R
open such that o(-,t) is a local section over U, we say that o is a time-dependent section over U x I.

Local sections exist in abundance; e.g. the map U, 3 x — ¥, (x, f) is a local section over U,
for fixed f € F. The existence of a global section is not necessarily guaranteed, however. On the
one hand, if E is a vector bundle, then the map x — 0, € E, can be seen to be a smooth section
(04 is the zero element of the vector space E). On the other hand,

Proposition 1.4.8. Let P be a principal G-bundle. Then sections over U < M open are in one-to-one
correspondence with bundle charts over U.

Proof. If ¥ : U x G — n~*(U) is a bundle chart, then, as above, x — ¥(x,e) is a local section over
U, where e is the identity of G. On the other hand, if 0 : U — P is a local section, then the map
U x G 3 (x,9) — o(x)g € 7 1(U) is smooth and may be seen to be a diffeomorphism. ]

The analogous statement for vector bundles is

Proposition 1.4.9. Let E be a vector bundle. Then frames over U < M open, i.e. a collection of
dim F smooth sections {¢; : U — E} with E, = span{e;(x)}%™F for each x € U, are in one-to-one

correspondence with (GL(F)) bundle charts over U.

Proof. If ¥ : U x F — n~1(U) is a GL(F) bundle chart over U, then, by the above, ¥(x,-) : F — E,

is a vector space isomorphism for each x € U, whence {x — ¥(x,e;)}4™"F yields a frame over

U, where e; is some basis for F. On the other hand, if {¢;} is a local frame over U, then U x F 3
(x, Z(iﬁ:niF viei) — Z?i:niF v'e;(x) defines a bundle chart. m]
To conclude this section, we recall a familiar example reformulated in the language of bundle

theory.

Proposition 1.4.10. [72, §1.22] Let M,N be smooth manifolds with charts {(Uy,xq)} and {(Ve,y¢)}
respectively, and suppose f : M — N is a smooth map. The map

LM 5 [a.x,0] = [, £ (x).D(ye © f 0 x,")(xa(x))0] € TN

defines a vector space homomorphism dy f : TxM — Tr(x)N, the differential of f, which may,
alternatively, be viewed as the vector bundle morphism

df : TM — f~'TN
[a,x,0] = [£,%,D(ye o f o x5") (xa(x))0]
or the smooth section df € T (f ~'TN ® T*M) defined by

x> [Ea,x, ) D(yg o f oxg ") (xalx)) & @ '],

i=1

The differential of f induces the map

5f : Tj N = TEM

the codifferential of f, which in turn induces algebra homomorphisms AT;‘(X)N — AT¥M and
® TJZ"(X)N — Q) TFM, both denoted by 5, f. Given asectionp € T(VRAT*N) (p e T(VRX T*N)),
where V is a trivial vector bundle, the map

M3 x> (idy @6« f) (pr(x)) € VQATEM (resp. x — (idy ® 8x f) (pr(x)) € VR Q) TEM)

defines a smooth section f*p € T (V@ AT*M) (resp. f*p € T(V ® ) T*M)), the pullback of p by
f.
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1.5. Connections and covariant derivatives. We now introduce the notion of a connection
on a principal bundle G — P % M. To this end, let {gag : Uy N Ug — G}q, pen be cocycles for P.
We shall adopt the following definition of a connection:

Definition 1.5.1. [49, §4] A connection on P is a collection @ := {w, € T (3 ® T*U,)} such that for
anya,f € A, x € Uy nUgand v € T, M,

(wﬁ,v) Adgﬂ (x) (Wa,0) + (dgaﬁ(x)ﬂgﬂa dega/;)( ).

Note that if it weren’t for the latter term, we could appeal to Theorem [i.4.4 to conclude that
a connection defines a section of (P x pq 9) ® T*M. However, if {04}« is any other connection,
then we have that

(("\)’ﬂ - O)ﬁ’v) Adgﬁa(x ( - wa,v)

so that the “difference” of two connections now defines a section of (P x 5 4 8) ® T*M. Therefore,
the space of connections may be viewed as being parametrized by elements of T (P XAdS®T*M )
and, when we write @ = w +afora € T'(P XAd9® T*M), we shall mean that a corresponds to the
section given by {0y — @g }aea. This should be compared to the behaviour of Christoffel symbols
in Riemannian geometry.

Given a connection and a section g = [«,-,g,] of the associated bundle G — P x¢ G — M,
one may form a new connection g - © = {@,} from w by defining

(@a»0) := Ady, (x)(@a,v) + (dg;l(x)).ga(x) o dxgojl) (v)

fora € A, x € Uy and v € Ty M [Y4, §2]. We refer to elements of T'(P x ¢ G), where C is the conjugate
action of G on itself (cf. §i.9), as gauge transformations [3, §2] and subsequently identify gauge-
transformed connections. Such transformations also act on sections of I'(P x 54 ¢ ® AT*M) by
means of Ad, i.e. for [a,, fo] € T(P X pq 9 ® AT*M),

g-la fol = [a"’Adgafa]-

Connections induce covariant derivatives on associated bundles. We first recall the notion of a
covariant derivative on a vector bundle.?

Definition 1.5.2. [60, §2.51] A covariant derivative on a vector bundle E — M is an R-linear map
I'(E) 5 I'(E® T*M) such that

V(fs) = fVs+s®@df (1.1)
for every f € C*M and s € T(E). We write Vxs for (Vs,X) whenever X € I'(TM).

Example 1.5.3. If E and F are vector bundles equipped with covariant derivatives, then E ® F may
be equipped with a covariant derivative such that, whenever sg € I'(E) and sf € T(F),

Vx(SE ®SF) = Vxsg ®sg + sg ® Vxsr.

for every X € T'(TM) [6d, §2.62]. That this operator is well defined has to be checked locally.
Similarly, if s} € T'(E*), then a covariant derivative may be defined on E* [6d, §2.61], just as is
usually done for T*M in Riemannian geometry, such that

For a more geometric presentation of the theory of connections on principal bundles and a proof of the equivalence
of the various definitions, the reader is referred to [6d, Chapter 9] and [0, §22].

7Since there is a one-to-one correspondence between connections on principal GL(N )-bundles and covariant deriva-
tives on vector bundles associated to them by the standard matrix representation GL(N) x RN — RN [6d, Theorem 9.3],
covariant derivatives are usually also, by an abuse of terminology, referred to as connections.



Ox (SZ(SE)) = (sz%k)(sE) + SE(VXSE)~

Moreover, a covariant derivative on I'(AE) may be defined such that

Vx(si A Ask)=Vxsi ASg A Asp+51AVxSaAS3 A A Sk

+ o+ S A ASk—1 A VxSk.

whenever si,...,sx € T(E) [60, §2.62]. Finally, suppose f : N — M is smooth. A covariant
derivative may be induced on f'E as follows: if U © M is open and {e, : U — E} form a local

frame for E, then V may be described locally by a collection of of local sections {Tf } of T*M such
that

Ve, = Zeﬁ ®l"f (1.2)
B

on U [75, §IIL1]. Since {e’; == (f"Y(U) 2y~ (y,ex(y)))} form a local frame for E, any section
s € I'(E) may be written in the form

_ Yl

a

We thus define a covariant derivative on f~1E by

Vs:z e£®ds“+s“2f*l‘f®eg . (1.3)
o B

This expression may be shown to be independent of the choice of local frame.

Remark 1.5.4. For later purposes, we shall need to know how a Riemannian connection on E — M
and the induced connection f~'E — N (f € C*(M,N)) compare. To this end, let Y be a local
section of f~'E and Y a local section of E such that

Y(x) = (xY(f(x)) (19)

for x € f~'(U), where U = M is open. Expanding in terms of a local frame as in Example [1.5.3,
we write

I Y
o
and

Y = veel,

a

noting that the relation (f.4) implies that Yo f = Y* on f~}(Uy). Now, let X € Ty,N for
xo € f~1U. (.3) implies that

VxY = (0.3, | (OxY") ea(f (x0 x0) Y (F*TE)(X)ep(f(x0)) |).
B

o
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Using Y* = Y" o f and a smooth curve ¢ : ]—¢,e[ — N such that ¢(0) = xo and ¢/(0) = X, we see
that

a d a _ d
6Xy —a (Y OC)— dr

<7a o(fo c)) = 6df(x)?a.

t=0

We also note that Y (xo) = Y* (f(x0))

(F*TE)(X) = T2 (df (X))
so that, using (Q) and the Leibniz rule (@), we have that

VxY = (X‘O, Vdf(X)?)~

Example 1.5.5. [[70, §2] Let E = P x, V be a vector bundle associated to P and a representation p.
The map

L(Px,V)>3|a,,s]— '

1

n
[@t,,0is + dep ((0as0i)) s] @ dx' € T(P x, V)

=1

is well-defined. This is the canonical induced covariant derivative on the associated bundle E.

For later purposes, we shall need a differential operator on sections of E® AT*M analogous to
the exterior derivative. Recall that, whenever V is a torsion-free covariant derivative on TM, the
latter may be defined by

n
do = Ze" A Vi

i=1

for @ € T(AT*M) and any local frame {t;} for TM with dual coframe {0} for T*M [0, §4.1]. In
our case, such a differential operator may be similarly defined.

Definition 1.5.6. The exterior covariant derivative associated to a connection V on E is defined by

I'(E® AT*M) — T'(E® AT*M)

n
s> dVs = Z dx' A Vs,

i=1
where V is induced by the connections on E and TM and the connection on TM is torsion-free.
We now introduce a notion of curvature.

Proposition 1.5.7. The collection Q© = {Q® € T'(q ® A’T*U,)} defined by

1
QY 1= dwy + E[wa,wa]

defines a global section Q” € T ((P x 4 48) ® A*T*M), referred to as the curvature form of . It
satisfies the Bianchi identity

dVQw — 0,

where V is the covariant derivative induced by w on the associated bundle P x 5 ; G.

8Here, [-, -] on g is combined with wedge multiplication on T* M to yield [-, -] on g ® AT* M.
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Proof. By [z, Theorem 2.2.14], we have

QF = Ady,, QY

on U, N Ug. By Theorem L.4.6, the map

X x,a,(Q°,0; A 0;)] @ dx’ A dx’
D (QF )]

i<j

is well-defined, thus establishing the first claim. The latter claim is a rephrasing of [7, Theorem
2.2.15]. O

1.6. Riemannian vector bundles. Let E — M be a vector bundle with projection 7 : E — M.
We denote the space of smooth sections of E over M, i.e. smooth maps s : M — E such that
mos = idpy, by T(E). If s : M x ]a,b[ — E is a smooth map such that s(-,¢) € T(E) for each
t € |a,b[, we shall refer to s as a time-dependent section over M x |a,b].

Definition 1.6.1. [60, §3.1] If the fibres E, := 7~ !({p}) (p € M) of E are equipped with positive-
definite inner products -,-), such that, for any local frame {e, } the map

P {ealp)res®)),

is smooth, we say that E is Riemannian.
Example 1.6.2. A manifold is Riemannian iff TM is a Riemannian vector bundle. O

Example 1.6.3. Let(:,-) : V x V — K = R or C be a positive-definite inner product on a K-vector
space V, P a principal G-bundle and p : G — GL(V) a group representation. If (-, ) is p-invariant,
ie.

(p(g)v.p(g)w) = (v, w)

for every g € G and v,w € V, then it defines a Riemannian structure on the associated vector
bundle P x , V such that for eachx € Mand v,w € V,

([a,x,0],[a,x,w]), := (v, w).
Thus, a p-invariant inner product on a vector bundle associated to P and p. O

Example 1.6.4. Given Riemannian structures on vector bundles E,E; — M, i € {1,...,k}, we may
define Riemannian structures on AE, E* and E; ® - - - ® Ey in a canonical manner just as was done
when inducing inner products on the vector space counterparts of the above: define everything
pointwise. Similarly, if f : N — M is smooth, then a Riemannian structure may be defined on

f7(E) such that for (y,vsy)). (¥, wr(y)) € (f'E)y,

(W v7))- (y’wf(y))>y = {ore) s <y>>f<y> '

It follows from the definitions of these bundles that the resulting inner products are smooth [60,
§3.6-§3.8]. O

A vector bundle may always be made to be Riemannian [6g, Proposition 3.3] and a Riemannian
vector bundle, viewed as a GL(F)-bundle, admits a canonical O(F) (with respect to some fixed
inner product on F) bundle atlas by taking the cocycles to be g p(x) = 74 (x) 'gap(x)7s(x), where
To(x) € GL(F) is defined such that {[a,x,7,(x)e;]} ({€;} orthonormal in F) form an orthonormal
basis for Ey and x — [@,x,7,(x)e;] is a smooth local section of E (e.g. by using the Gram-Schmidt
algorithm). On the other hand, given an O(F) bundle atlas (relative to an inner product (-,-) on
F) for E, a Riemannian structure may be defined by the formula (gy, [a,x,v] ® [a,x,w]) := (v, w),
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which defines a global object by virtue of the universal mapping property and the given bundle
atlas.
Given a Riemannian structure, we may define the L? inner product

(s1,82) == N (s1,52) dvolgy (1.5)
for sectionsd s, s, € T'(E) such that (s;,s;) and (sz,s2) are finite and write s € L*(E — M) (or simply
s € L2(M) when E is understood) whenever s € T'(E), {s,s) is measurable (with respect to the Borel
measure induced by dvoly) and (s,s) < c0. We may similarly use the norm induced by the inner
product (-, -) to define L norms ||- ||, of sections and time-dependent sections, where the domain of
integration is to be understood as the domain of definition of the section in question. For instance,
if (M,{g:}+e1) is an evolving Riemannian manifold and © < M x Iisopenands : D — Eisa
time-dependent local section of E, i.e. s(-,t) is a local section of E for all t € pr,(D), then

1/p

[Isllp := JJ (s,s)P/? dvoly, dt
D

and we write s € LP (D) whenever (s, s) is measurable (with respect to the Borel measure on M x I
induced by dvoly, A dt) and |[s||, < c0. Note that all of these considerations reduce to classical
statements about L? theory when E = R — M is the trivial line bundle over M, in which case
(time-dependent) sections are simply described by (time-dependent) functions on M.

We would like to consider differential operators on I'(E) in the sequel which, in a sense, are
compatible with the Riemannian structure on E.

Definition 1.6.5 ([6d, §3.19]). A Riemannian connection V on E is a covariant derivative on E such
that

Ox (s1,82) = (Vxs1,52) + (51, Vx$2)
holds for every X € I'(TM) and sy,s; € T'(E).

Example 1.6.6. If E — M and F — M are Riemannian vector bundles equipped with Riemannian
connections and f : N — M is smooth, then the induced covariant derivatives of Example [..5.
are all Riemannian connections [60, Proposition 3.23].

Example 1.6.7. Let E = P x, V be a vector bundle associated to a principal bundle P and group
representation G — GL(V) and suppose it is equipped with a Riemannian structure induced by
some p-invariant inner product on V. Now, for fixed Z € g and v,w € V,

0 = 0z {p.(v),p.(W)) = (dep(Z)v,w) + (v,dep(Z) ).

Hence, if P is equipped with a connection w, s; = [@,-,01],s2 = [a,,02] € T(E) and X € T(TM),
we have

Ox (81,82) = Ox (01,02)
= (0x01,02) + (01,0x02)
= (0x01,02) + {dep((0g, X)) 01,02) + {01,de (0, X))02) + {01,0x02)
= (Vxs1,82) + (51, Vx$2),

where V is the covariant derivative induced on E by w, whence we see that V is Riemannian. O

We may, as in §[L.g, build an exterior covariant differential d” from V. Using this and the L?
inner product ([.g), we may form a “divergence-type” operator 8" as in the following lemma.

9Here the sections in question needn’t be smooth nor continuous.



13

Lemma 1.6.8. The following hold:

(i) d¥ : T(E ® AT*M) — T(E ® AT*M) is an R-linear map such that d (fs) = df A s+ fd's
whenever f € C*(M) ands € T(E® AT*M).

(ii) Define the codifferential 5" : T(E ® AT*M) — T'(E® AT*M) as the R-linear map such that

n
Ve .— — _di
6's:= —Zteivgis =: —divs

i=1

for every s € T(E® A*T*M) and k > 0, and 5V|F(E) = 0. This operator satisfies the identity

<sl,dV52> — <5V31,sz> = div (Zn: (tgisl,sz>wi>
i=1

foreverys, € T(EQAX1T*M) ands, € T(EQAXT*M). In particular, 8V is the formal adjoint of
dY restricted to compactly supported sections of EQ AXT* M with respect to the L*-inner product,
ie.

JM <sl,dvsz> dvol, = JM <6Vsl,32>

whenever supp s; = {x € M : s;(x) # 0 € Ex @ AKt2-IT¥*M} € M.

Proof. (cf. [60, §2.76, §4.7])

1. The former claim is evident from the definition. As for the latter,

d¥(fs) = Y 0" A Ve (fs)

—_

O fo' Ns+ fol A Vs

I
(e

i=1

—df As+ fd'.

2. We compute in a frame adapted at p € M:

Sl,dv

32>
n
31,2 o' A Vgisz>
i=1

—
Il
—_—

I
e

Il
-

<lei51svgi52>

O, C1e;51,82) — (Ve (16,51) 152)

(Z (‘ei51’32>> + <5V31,32> ,

I
=

I
-

I
=9
<

i=1

since V,&; = 0 at p. The latter claim follows from Gauf3’ theorem.
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Motivated by considerations in Hodge theory (cf. [72, Chapter 6]), we define the Hodge Lapla-
cian AY on T'(E ® AT*M) associated to V by

AY = d%sY +5VdY.

It is noted that for compact M, the spectrum of this operator is nonnegative since, by Lemma

(E))

J <s,AVs>dvolg :J Vs + [87s|*dvol,
M M

for every s € T(E ® AkT*M). Thus, if M = R", E = R" x R is the trivial line bundle and
Vx (x = (x,f(x))) = (p,0x f) for X € T,R" and f : R" — R, it follows (cf. [72, §6.1]) that

(AY( 1)) (x) = (x,— Z 32 f(x)).

Similarly, the associated heat operator, acting on time-dependent sections of E ® AT*M, is
defined as the operator

o + AV,

viz. if M = R", and E is the trivial line bundle with V as before, we have

(0 + AY) (. f)(x) = (x.(0cf — Af)(x))

which coincides with the usual heat operator. We note that the above sign conventions for the
Laplacian and heat operator shall only be retained for sections of bundles of the form E ® AT*M
and that, for real-valued functions (cf. §B), different conventions shall be taken.

1.7. Geometric setup. The notion of an evolving Riemannian manifold is now introduced.
This shall, for the most part, be the setting in which we work in this thesis.

Definition 1.7.1. A manifold M is said to be equipped with an evolving Riemannian metric g =
{9¢}rer if {g: e T (T*M ® T*M)},.; is a smooth one-parameter family of Riemannian metrics in-
dexed by an open interval I. Such a Riemannian manifold M is said to be evolving.

We shall always write

0rg(x) = h(x),

where {h; € T (T*M ® T*M)},.; is a smooth one-parameter family of sections of T* M ®T*M and
agree to refer to the parameter t as time.

Example 1.7.2. If I = R and h = 0, we say that g (or M) is static. O

Example 1.7.3. If h = —2Ric, where Ric is the Ricci curvature of g, (M, g) is said to evolve by Ricci
flow. O

The usual notions and quantities of Riemannian geometry translate to this setting by fixing
time and considering the usual quantities. Noteworthy, however, is that the resulting quantities
are smooth in time. The relevant notation is summarized in the following table:

Symbol Signification

Trace of a (time-dependent) section of E ® T*M ® T*M (E a vector
bundle) with respect to g;

trgt
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dvolg, Volume form of g,
Volg, Volume measure induced by dvol,
expy, Exponential map at p of (M, g;)
o Exponential coérdinates at p with respect to g; as in Appendix |§
injj, Injectivity radius at p of (M, g;)
d' Geodesic distance on (M, g;)
BL(p) Geodesic ball of radius r at p in (M, g;)
2 Gradient associated to g (time understood)
div, Divergence induced by the Levi-Civita connection V associated to g
secyy Sectional curvature of (M, g)
Ric Ricci curvature. of (M, g)
VZ Hessian := Vod
Ay Laplace-Beltrami operator (:= divo V = tr, o V?)
(e(p,t) n Local g;-orthonormal frame for TM defined for (p,t) in some open sub-
setof M x I
{o'(p.0)}", Local orthonormal (co)frame for T*M dual to {;}7_,
er e, A+ A g, where I = (i1,..., i) is an increasing k-multi-index
w! 0" A -+ A 0* where IF = (iy,. .., i) is an increasing k-multi-index

We adopt the sign conventions of [57] and refer to that book for definitions of the above objects,
noting in particular that the sign convention of the Laplacian here is opposite to that of the Hodge-
type Laplacian AV introduced earlier. When the time parameter ¢ is understood, we omit it from
the above symbols and, when the metric is understood, we simply write div for divy, V for V and
Afor Ay. Fix p € M and set r(x,t) = d*(x,p). It is known that r? is smooth in some neighbourhood
of (p,s) for any p € M, s € I [14].Finally, we say a g;,-orthonormal frame {¢;} (¢, € I fixed) is
adapted atp € Mif V. e; = 0 at p.

With the above notation in mind, we introduce for ry,r; > 0, p € M and s € I the spacetime
cylinder

Drnpes)= | BL()x {1}

teln]s—ry,s|

In this thesis we shall be chiefly concerned with geometries that are suitably controlled locally, as
in the following definition.

Definition 1.7.4. Let (M,{g:}ser) be a Riemannian manifold with evolving metric, x, € M and t; €
I\{inf I'}. M is said to be of locally bounded geometry about (x, ) if there exist ko5, Kops Ao, Aoy €

. o )
R and § > 0 such that inj} > mjzx" =: 2 for every t €]ty — &, t[ and the bounds

hold in a neighbourhood of D;; /5 s(x0, 1‘0).E

Remark 1.7.5. If tp € I, then M is always of locally bounded geometry about (x,#) as may be
seen by writing the geodesic equations down and using the smooth dependence of the system of
ODE on the parameter ¢ (cf. e.g. [59, Theorem 4.17]) to conclude that for ¢ sufficiently close to t,
unit speed geodesics radiating from x; exist on the interval [0, 7 ]. We shall, however, require that
M be of locally bounded geometry about (xo,%) and usually suppose I is an interval of the form
1to — 80, to].-

1oNote that if § fulfils these conditions, then so does 8’ < §.
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On the one hand, this then implies that }trgh|
Diy2,5(%0,10)\{r = 0} [14, §18.1.1].

Since we shall make use of comparison geometry results (see Appendix [B), the spacetime neigh-
bourhood of (xo,%;) we shall be working with will have to be small enough to accommodate for
the geometries of the comparison spaces. To this end, we settd

=:npand |0;r| < Sron

T

Jo = mm{2 Wi +2\/KOO } (1.6)

We shall make use of this notation throughout this thesis and also assume that the flows to be
considered are defined on [t — 8, 1]

For later purposes, we shall need to know how the family of metrics induced on T*M, to be
written (g;°), and dvoly evolve. Write #* and b* for the musical isomorphisms induced by g;.

Proposition 1.7.6. 0;g* = —h!'.

Proof. We work in codrdinates: write g;; = (g,0; ® d;) and note that, since gV = (¢*,dx' @ dx’) is

simply given by the components of the matrix inverse of (g;;), > gikg*’ = 5. Differentiating with

respect to t and rearranging, we immediately see that (0,;9*,dx' ®dx/) = 9,97 = — 3. g?* gl hy; =
kol

—(h*',dx! ® dx’), whence the result follows. m]
Proposition 1.7.7. d;dvol, = %trghdvolg

Proof. Retaining the notation of the preceding proposition, we note that in any codrdinate neigh-

bourhood dvol, is given by dvol, = /det( gl] )dx. Since ( 511 det)(gl]) = ¢/! det(g;;), we see that
0Ordvoly = MZgJ det(g;; hljdx = 2 4/det(gi;) Zg hijdx = trghdvolg. O

We shall also require information about how induced inner products on E ® ART* M, where E

is a Riemannian vector bundle, evolve.

Proposition 1.7.8. Suppose 1,1, € T(E® T*M). Then

Or (o) = — (hi’, PR AT ®wf> - <hn > (et p) o’ ®wf>
i,j=1

ij=1
where {¢;} < {w'} are any local frame on M.

Proof. We fix a gy,-orthonormal basis {¢;} on TM for t, fixed and note that

Wity = 3 (Wnoen), (Yaep) - det (g5 (07 ,0™)) |

Ik’]k

and

Otly, (det( o', w)))
= - 2 R (@', w5 - (— )”S(wilA--~/\c;"\r/\---Aa)i’<,wj1/\---/\a/)ﬁ/\~-/\aﬂ’<>,

r,s=1

—~

whence, noting that 0 A -++ A @i A -+ A @ = (=1)"Ty, o,

O (Y1, ¥2)

Here we adopt the convention that § = 00 and min{a, 0} = aifa € R.
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k
£ . .
== 20 D WD), (W) - (b 0" @ 0F) - {1, 01, 07),
i, Jie 7,5=1
The inner sum is invariant under permutations of I and J, i.e. under I — o(I), J] — 7(J) for any
o,t:{1,...,k} > {1,...,k} bijective. We proceed with this in mind:

Z S (e (e - (5 Vot @) (1,0 g, 07), ()

lk r,s=1
.]1 Jk

Now, 1nterchang1ng sums and fixing r, s, we note that the inner summand may be written as, writing
(1) = (irsitse oo ripsesip) and 7(J) = (srjts- - - sJss- - - 2Jk)s

Z (—1)r*s <(¢1,fo ),(‘ﬁz’fr(J)» . (htioo’w(a(l))l ® w’l'(])l) (=1)rts <l€a(1)1wa(l)’lgru)lwr(l)>

i1, ~~,i_k
J15-- 5]k

to . .

= Z <(l€i1 Un,€iy Aot A €ik),(l€j1¢2,€i2 A A eik)> . (hg0 ;o' ® ') - <L€ila)l,t€hw]>,
Iyeensif
Jis--sJk

where we have now made a change of variables. Noting now that this expression does not depend
on r and s so that, summing over r and s we obtain k? of these sums and treating i; and j; as
separate variables from the other i.,j., we proceed from (), rewriting the outer sum in terms of
increasing multi-indices:

B Z Z < ls,llﬁlafP (lgjl lﬁz,é‘Q)> (hago,a)“ ®wj1) <60P,L<)Q>

pk— le 1ig,j1=1 - v
§PQ
n
Ly i .

== 3 (et ) (B 0 @)

ij=1
- (ha;, 3 (i ) o ®w"> ,

ij=1 o
which is independent of the choice of frame. O

1.8. Backward Heat Kernels. The kernels which play an important role in the monotonic-
ity formulee to follow are now introduced- the formal backward heat kernel and the canonical
backward heat kernel.

Let (M",(g;) ;) be an evolving Riemannian manifold with I — R an open interval, fix (xo, %) €
M x 1\{inf I} and assume M is of locally bounded geometry about (x,#,) with bounds as in Defi-

nition [1.7.4 and jo as in (f.6) of §}r.7.

Definition 1.8.1. [445, §33] The canonical backward heat kernel concentrated at (x, o) is the minimal
function satisfying

1
((?t + A+ Etr9h> Pixoty) =00n M x I

th/r'n P(Xo fo)( ’t) = 5360

where Jy, is the delta distribution at x, and this limit is to be considered in the (tempered) distri-
butional sense.

Remark 1.8.2. The motivation for the introduction of these kernels is that, if u,v € C*(M x I), the
following equality holds whenever Gauf3’ theorem may be applied [22]:
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d 1
— | wuvdvoly = J [(0r = A)u]v+u | 0 + A+ —trgh | vdvoly. (1.8)
dt Ju M 2

Thus, if u solves the heat equation, viz. (0; — A)u = 0, and v = P(y, 4, we have that

(J uP(xO,tO)dvolg> (t) = lim (J uP(xO,tU)dvolg) () = ul(ty)
M ./t \JM

for every ¢t € I. Therefore, P4, ;) is the natural analogue of the usual backward heat kernel

(x,t) — S exp <x——x02> (1.9)

(47 (ty — t))n/2 4(t — o)
on Euclidean space.

Whereas there is an explicit formula for the backward heat kernel on R”, such a formula is
not given on manifolds. For the purpose of comparison, we also introduce the kernel obtained by
adapting the definition ([1.d) of the Euclidean backward heat kernel to the manifold setting.

Definition 1.8.3. The formal backward heat kernel concentrated at (xo, ty) is the function

Qg M x I — R

(5.1) > ——exp (dt(x’x°)2> .

4 (ty — t)"/2 4(t — &)

Remark 1.8.4. ®gy is not everywhere smooth. However, we shall restrict our attention to the
study of it in a neighbourhood of (xo, %)) of bounded geometry. On this set, @5y, is smooth.

It is well known that this kernel may, in the compact case, be used to construct the canonical
backward heat kernel and furthermore draw conclusions about solutions to the (scalar) heat equa-
tion on M [6]. More generally, if M is complete, it may be shown that these kernels do not differ
much from one another around (x, ) in the C° norm, as the following theorem states.

Theorem 1.8.5. Suppose M is complete. For all ¢ > 0 there exist a relatively compact neighbourhood
Q of xq, 19 €] — 0,5 and £ € CP(Q x [10, 4], RT) with E(xo,8) = 1 such that on Q x |1y, to[,

IPt) = € - Ppim| < e
Proof. See [22, Lemma 21] or [[77, Proposition 5.1] in the case where sec, h and Vh are bounded. O

If (M, g) is compact and static, many estimates on the spatial and temporal derivatives of Py, ;)
are known to hold. To this end, we introduce the matrix Harnack expression [32] associated to a
C%! function f : © < M x I — Rand s € R by

1
H = V? -0
(f) fts 9t 5= n9
The following estimates are known to hold, where the matrix Harnack estimate is to be inter-
preted in the sense of bilinear forms, ie. (Hyf)(x,t) = Ag;(x) implies that (H,, f.oQv) =

(Wrnf,vb ® vb> > Alv|? for every v € Ty M.

Theorem 1.8.6. [48, 32] Set p(x, 1) = l0gP (x,,1). If M is closed, h = 0 and Ric > —Kg, then there
exist B,C,F € R* depending on the geometry of M such that the following hold on M x [ty — 1,4|:

B
(to — 1) |VP(x. e log (Gradient Estimate)
’ (xo to)| (47‘[(t0 _ t))n/zP(xo,to)



19

Pty + € KO |Wp . [P — K (fﬂ—’)g(t—nt) <0 (Li-Yau Estimate)
. —
(tg — £)0 >—F[1+1 b (Lower Time Derivative Bound)
- = — (0] Ower lime berivative boun

0 tP (xo,t0) g (@7(to — 1))"/2P (1)
H >—F(1+] B (Matrix H k Estimate)
= — (0] . atrix riarnac stimate

top(XO,to) g (4ﬂ(t0 o t))n/ZP(xO,to) g

Ifsec = 0 and dRic = 0, then Hy, p(x,. ) = 0.

As will be evident later on, it is the matrix Harnack estimate that is most crucial in establishing
monotonicity formulee, be they local or global. However, such estimates are not in abundance in
more general settings, making it more difficult to deduce such formule in these cases. With enough
work, coarser estimates on the gradient and time derivative of p(,, t may help in establishing local
monotonicity formulee, but given Theorem [1.8.5 and Propositions [1.8.71 and [1.8.8, we shall be content
with the formal backward heat kernel in these settings.

For later purposes, we compute the effect of applying the adjoint heat operator to g, on a
neighbourhood of (xy,%y) of bounded geometry. We set t(x,t) = d*(x,x,) as in §L.7.

Proposition 1.8.7. The inequality

np  Csx? np  Cyx?
- <7 s )‘I’fml 0P + Ay + - trgh Pl < (7 Tt Pl

holds on D), 5(x0,t0), where C3 = Cs3(K—o, t,jo) and Cqy = Cy(ko, i, jo) are positive.
o,

Proof. We compute:

- v 0 (r%) 12
i = 2(4n(ty — 1)) t2/2 (—dr) - exp (M) i <4(t — 1) 4(t) — t)2> - Dpnl
ke e (x%) 12
- T2 (A1) (—47) - Dgpy + (4(t mrn T t)2> Dy
= ( n B 2 N 0¢ (%) )q)
2(tg —t)  4(tp— 1) 4t —to) fml-

On the other hand, V&g, = @5y -

2(t 7 )Vr so that

r 1 r
ADg 1 = (VDe ,——V Op 1 - A
fml < fml 20t —10) f>+ fml <2(t_t0) + 20— 1) r)

= v + ! + ! Ar | @
o\t —t0)2  2(t—ty)  2(t—to) fiml>

whence, writing H* for d; + A + %trgh,

n—1 r
H*®p 1 = Op 1 - + Ar +
fml fml (2(t0 — t) Z(t _ to) 4(t _ tO)

1
5tr2 + Etlyh) .

Now, applying the Hessian comparison theorem (Theorem B.1) and taking the trace of the Hessian,
we see that

(n—1)fe,or<At<(n—1)f,_ or

from which it is evident that
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< H* gy

<| (G - o M) 5tk | .

2(ty — t) 4(t — o) 2

By Proposition B.4, 1 —1 - (fi_, o1) = —Cr? with C = C(jo,k_o) = 0and 1 — 1t - (fi, o1) < Cr?
with C = C(jo, k) > 0. Using these bounds and the inequalities |tryh| < ny and || < £ then
yields the result. O

Finally, we note that ®g, satisfies differential inequalities similar to those of Theorem
which shall suffice in applications in the sequel.

Proposition 1.8.8. Let ¢y = log @gy1- The inequalities

T
Vgt = .
1. |V 20— 1)
n r? pe’
e < + + - and
2. |0r g 26— 1) 4(to—1)2  4(tp—1) an
sz A—oo érz /IOC
- ‘ < Hubpnl < 5—— 00 + =
5 ol %t g IS T S g Tt 9

hold on Dsjy 5(x0,t0), where C = C(jo, k) and C = C(jo, ko) are as in the preceding proof.
o

Remark 1.8.9. If (M,g) = (R",9), then ®g = P(y, ) and these inequalities simplify to the
equalities

|x — xo]
Y )= —,
b 95l (x.8) = 5
X — X 2
2. at¢fml(x’ t) = z(ton_t) - ‘1(107(;‘)2’ and

3. HiyPrm) = 0.

Proof of Proposition [1.8.4. The first two assertions follow from the computations in the preceding
proof, together with the bound on the time derivative of the distance function. For the third asser-
tion, it is evident that

Vtm = V <;df)

2(t — to)
_ dr ® dr B r v,
2(t —t)  2(to—1)
and that
dr ® dr r g 1 1—1-(feor) 1
— — —J 4 p= MKk Zh
2ty —t)  2(ty — 1) (fiov)ge + 2(ty — t) "3 2o — 1) O "3
for every k € R, whence an application of theorem E yields
1—v-(fc, o) 1 1—1-(fx,o00) 1
- e 7 -h < < ————5—g + -h
2(1’0 — l’) 9 + 2 ‘7—[!0(¢fml) 2(1’0 — l’) g + 2

The result then follows from Proposition B.g (cf. proof of Proposition [1.8.7) and the bound on h. O

1.9. Problems of Dirichlet type. In this thesis, we are chiefly interested in problems of Dirich-
let type. These are characterized as those problems giving rise to Riemannian vector bundle-valued
k-forms, i.e. sections of E ® A*T*M for some Riemannian vector bundle E, or time-dependent
bundle-valued k-forms, which are either harmonic or satisfy the heat equation.
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More precisely, if M is a static Riemannian manifold, E — M is a Riemannian vector bundle
equipped with a Riemannian connection and a system may be written in the form

A"y =0and ¥y =0
for some section ¢ € T'(E® AXT*M), we say that i/ solves a static problem of Dirichlet type. On the
other hand, if (M,{g;}+e1) is an evolving Riemannian manifolds, E — M is a Riemannian vector
bundle equipped with a Riemannian connection and a system may be written in the form
(0 +AV)Y =0
for a time-dependent such section i € T'(E ® AKT* M), we say that / evolves by a flow of Dirichlet

type.
Associated to both problems is usually a Dirichlet-type energy of the form

1
-f 1y Pdvol,.
Y

In the sequel, since it shall not offer us any additional difficulties, we shall consider static problems
of p-Dirichlet type which are those systems that may be written in the form (cf. [41, §3])

d"y =0and 8" (|y[P~2y) =0

for some section i € I'(E @ AKT*M). Similarly associated to such a problem is a p-Dirichlet-type
energy of the form

1
-t Pdvol,.
2 f yfPdvol,

It is the structure of this energy which we shall investigate and subsequently make use of in later
chapters for p = 2. In that case, we note that flows of Dirichlet type on compact manifolds enjoy
the following energy decay property:

Proposition 1.9.1. If (M,{g; }se1) is a complete evolving Riemannian manifold with 0;g = h such
that |trgh| < p and (;)er is a one-parameter family of sections evolving by a flow of Dirichlet type
such that the integral

fM (19 + 17y + 87y + |Ay PPdvoly) (1) (1.10)

is finite for each t € I, then

d 1
g (| JwPavoly) < —e ¥ [ (8% + @y Pavol,
dt M 2 M

onl.

Proof. 1t is clear from Proposition that
L (1 1,,, 1
Ot E|¢| dvoly | = <at1//,¢>+§|¢| -Etrgh dvol,
v 1., 1
=(—{(a ¢,¢)+5\¢| - Strgh ) dvoly

— <|dvlﬁ|2 + ‘5V¢|2 — div (Z <<l€idv¢,l//> — <[€i¢’5vl//>) 51’)) dvol,
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1 1
+ (Etrgh> §|¢|2dvolg (1.11)

where the last inequality is a consequence of Lemma (i). Now, by the triangle inequality,
Cauchy-Schwarz inequality and Young’s inequality,

< \/2_(:5,.&@2 ¥ \/Z (1o 879

k+1
— (

W2+ a7 ) + 21"y

Likewise, an application of the triangle inequality and Young’s inequality implies that

div <Z ((1ed700) = (1e9.679)) g,-> |

](Aw,w)\ +[d [ + 18Ty

< WP+ S ATYE + dY P + (6% P
so that, by the bound |tryh| < y and the finiteness of the integral (.1d), all of the quantities under
consideration are summable on M for fixed t. Thus, integrating both sides of (1.11), applying Gauf’

theorem for complete manifolds [28] and standard integration theorems to interchange the integral
and derivative, we have that

d 1 1
5 \w\ dvol, = J |dy[* + |6V [*dvol, +J <Etrgh> §|1//|2dvolg

1
—J |dy|? + |8V ¢ |*dvol, + —J = |y|*dvol,.
M 2 Jm 2

The result then follows from multiplying both sides by the integrating factor e~ 7!, O

We now introduce the two problems of this type in which we shall be interested. In what
follows, we assume that (M, (g;)ser), I an open interval, is an evolving Riemannian manifold, and
t shall be understood as the same parameter appearing in the evolution equations to be discussed.

1.10. The theory of harmonic maps. Let (N™,g) be a smooth Riemannian manifold. If
u e C®(M,N), wewritedu € T (u™!'TN ® T*M) and equip u~ TN ®T*M with the metric induced
by those on TM and TN.

We introduce the p-Dirichlet energy of amap u : M — N by

1
Ep(u) := o) |dul? dvol,.

The consideration of critical points of this energy over the class of smooth maps u : M — N for
which E, (u) is finite is the starting point of the theory of p-harmonic maps.

Definition 1.10.1. A smooth map u : M — N is said to be p-harmonic if it satisfies

5" (|du|f’*2 du) — 0,

where V is the covariant derivative induced on u~!TN ® T*M by the Levi-Civita connections on
TM and TN.
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Such maps have been widely studied [23, 63, 34, 26]. In particular, 2-harmonic maps, which
we shall simply refer to as harmonic maps, arise as o-models in physics [30] and as a natural
generalization of harmonic functions in geometry [23].

A method for establishing the existence of harmonic maps initiated by Eells and Sampson [23],
which has turned out to be highly successful for harmonic maps when secy < 0, is to instead study
the corresponding heat equation.

Definition 1.10.2. Amap u : M x I — N is said to evolve by the harmonic map heat flow if

Ou=—586"du (HMHEF)
onM x I.

It was shown by Eells and Sampson [23] that, if (M,g) is compact and static and (N, g) is
complete, of nonpositive sectional curvature and admits an isometric embedding into Euclidean
space satisfying appropriate growth conditions which are always satisfied by compact N, given
smooth initial data u(-,0) : M — N, a smooth solution to (HMHF) exists with I = ]0,00[ and
a subsequence of {u(,t)}c]o,00[ uniformly converges to a harmonic map as t — o0; it was later
shown by Hartman [35] that if N is compact, u(-,t) uniformly converges to a harmonic map as
t — 0. More generally, however, even if smooth initial data is prescribed, in which case a solution
exists for at least a short time T, u is expected to develop singularities in finite time. It was shown
by Struwe [67] that if M and N are compact and (M,g) is a static Riemannian 2-manifold, then
a solution u to (HMHF) on M x ]0,00[ is smooth away from finitely many points in space-time.
Moreover, it was shown by Chen and Struwe [12] that if (M",g) is higher-dimensional, the set
S of singularities of u, i.e. the points at which u is not smooth, is a closed subset of M x R of
locally finite n-dimensional Hausdorff measure with respect to a suitable parabolic metric; in fact,
it was shown by Cheng [13] that for tp > 0 pr, (S n (M X {#})) < M has finite n — 2-dimensional
Hausdorff measure. Explicit examples of solutions to (HMHF) in various dimensions which develop
singularities in finite time have been given e.g. by Coron and Ghidaglia [15] and Chang, Ding and
Ye [d].

In the sequel, we shall make use of an alternative form of (HMHF) owing to the fact that
(du) (,t) € T (u(-,t)"'TN ® T*M), i.e. du(-,t) lives in a different bundle for each t, which makes
du a bit awkward to deal with geometrically. To overcome this difﬁculty,B we make use of an
isometric ernbeddingB 7 : N < RX as follows: by writing # = j o u : M — RX, we obtain a map
into J(N), i.e. N considered as a submanifold of R, for which dii € T (RK ® T*M). By isometry,
(du,v) = (di,dj(v)), so that the energies of both maps coincide. (HMHF) may thus be shown to
be equivalent to the equation [23, Lemma 7B]

Bl — Agii L 7 (TN),

where Ay acts on & componentwise. This may be written in the equivalent form

d.ii + 8%dir L j (TN)

where V is the connection on RX ® T*M induced by the Levi-Civita connection on TM and the
flat connection on RX. To see this, we note that

K
8V = = Y 1. Ve, [ D)) 0% ®wj>

2 An alternative to this option would be to instead view u as a map M x I — N between manifolds, but in this case
space and time would be treated on the same footing, which would make a few other things awkward.
3The existence of such an embedding is guaranteed by the Nash embedding theorem [55].
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In this setting, dii only satisfies an inhomogeneous heat-type equation. However, for our purposes,
this shall be sufficient.

The following lemma summarizes the information we shall need about du:
Lemma 1.10.3. Letu : M x I — N be a smooth map with @i as above. Then
(i) d%dir = 0 and
(ii) Ifu solves (HMHF), then

- s 2
<(3t + AV) da, d17> = ‘txdﬁ - 5de7‘ — |04 + 1xdii|® (Pythagoras-type identity)
forany X e TM.

(iii) If (M,{g: }rer) is a complete evolving Riemannian manifold with 0,9 = h such that |trgh| < p
and u solves (HMHF) such that the integral

f (|dul® + |0sul* + [8¥dul* + |AVdul*dvoly) (-,t)
M

is finite for each t € I, then the energy decay estimate

d 1
— (e_‘;t . ‘[ - |du2dvolg) < —e_%tJ |0ul? (1.12)

holds on I.
Proof. To simplify notation, we write u for & and V for V.

(i) This property is independent of the fact that u solves (HMHF). Indeed, if v : M — N < RX,
then

d¥du = d" (Z du® dxf)
i=1

= z": 8j8iu®dxj Adxt + Zn: oiu®
i=1

d?xt .
~ ~——
i,j=1

=0

Since mixed partial derivatives of u coincide, separating the former sum out into sums over
i <j,i=jandi > jimmediately shows that the former sum also vanishes.

(if) We thus compute, expanding the squares and noting that 1xydu = dxu:

|xedu — 8V dul* — |0,u + 1xdul?
<|1Xdu|2 - 2<1Xdu,5vdu> + |5Vdu|2) — (|0eul® + 2(0pu,1xduy + |ixdul®)
= —2(oxu,0,u + 8V du) + |8 dul* — |0pul”.

Now, —2 <6Xu,8tu + 5Vdu> = 0, since Oxu € ((TN). On the other hand, d;u € ((TN) so that
|0su|? = (Oru, Oru)y = — <5Vdu,8,u>, whence we are left with
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|ixdu — SVdu|2 — |0 + 1xdul® = <5Vdu,8zu + 5Vdu>.

By Lemma 6.8 (),

(8Vdu,0pu + 6V du) = (du,d"d,u + V6" du) — div <Z (1e,du,0,u + 5Vdu>gi) .

i

On the one hand, the latter term vanishes since t,,du = 0,,du € ((TN). On the other, dVdu =0
and d¥0,u = 0,du, whence the result follows.

(iii) (cf. Proposition [.9.1) We compute, using Proposition and (i) with X = 0:

1 1 1
O (Eduzdvolg> = ((@du,du) + 5|du|2 . Etrgh> dvol,

1 1
= (|5Vdu\2 — |0sul* — <Avdu,du>> dvol, + §|du|2 : Etrghdvolg

= _ <6tu|2 + div (Z <tgidu,5vdu> s,-)) dvoly

1

1 1
+ <§trgh> ~§\du|2dvolg. (1.13)

We now verify that we may integrate both sides of this expression and apply Gaufy’ theo-
rem for complete manifolds [28]. Note that by the triangle inequality, the Cauchy-Schwarz
inequality and Young’s inequality,

(

for each t € I by the finiteness of [r.12. Similarly,

Z <l£i du,évdu> &

i

) (1) < <é |6V dul* + % |du2> (-.t) e LY(M)

1 1
< [8Vdul® + E\Avdu|2 + §|du|2

i

div (Z <l€i du,5vdu> gl-)

which, for fixed ¢, is also in L' (M). Thus, in light of the bound |tryh| < p, we may integrate
both sides of (i.19) and interchange derivative and integral by standard integration theorems
to obtain

d (1., 1 1
— = l, = — 2dvol Z . Z|dul?dvol
iz |du|*dvoly JM |0ru|*dvoly + JM <2trgh> 5 |du|“dvoly

1
< —f |0¢ul*dvol, + EJ = |du|*dvol,.
M 2 Jpm2

The result now follows from using the integrating factor el

]

We shall henceforth always write u for 2 and V for V when it is made clear that N is isometrically
embedded in R,

1.11. Yang-Mills theory. Let G — P — M be a principal G-bundle, where G is a real
(complex) connected compact semisimple Lie group. We retain the notation of §i.9 and equip
P x pq 8 with the Riemannian structure induced by minus (the real part of) the Killing form.
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We introduce the p-Yang-Mills energy of a connection w on P by

1
YM,(w) == ;’L |Q“|P dvol,,. (1.14)

The consideration of critical points of this energy over the class of smooth connections w on P for
which YM, (o) is finite is the starting point of the theory of p-Yang-Mills connections.

Definition 1.11.1. A connection w on P is said to be a p-Yang-Mills connection if it satisfies

5V (‘Qw|p—29w) =0,
where V is the covariant derivative induced by V on P x 44 G by w.

Yang-Mills connections, i.e. 2-Yang-Mills connections, arise as models for certain elementary
particles in mathematical physics [76] and have been used successfully in the study of the topology
of 4-manifolds [16], whereas p-Yang-Mills connections have only more recently been studied [44,
58].

As is the case with harmonic maps, one way of establishing the existence of Yang-Mills con-
nections, which has been successful in the case n < 3, is to consider the associated heat flow.

Definition 1.11.2. A smooth one-parameter family of connections {w; = @ + a(t)}cs, where @ is
some fixed connection on P, is said to evolve by the Yang-Mills flow if

dia=—8"Q° (YMHF)
onM x I.

Remark 1.11.3. The p-Yang-Mills equation and Yang-Mills flow system are invariant under gauge
transformations, since, if @ = ¢ - © with g a gauge transformation and V is the corresponding
covariant derivative, Q% = g - Q® and §V (g - Q®) = g - 6V Q.

This flow was first suggested by Atiyah and Bott [3]. It was subsequently shown by Rade [62]
that if M is a static compact 2 or 3-manifold, given a smooth initial connection wy on P, it may be
made to smoothly evolve by (YMHF) on ]0, 00| and, moreover, w; tends to a Yang-Mills connection
in an appropriate Sobolev space. In higher dimensions, long-time existence is not guaranteed and
the structure of the set of singularities that may develop is not as well-understood as in the case of
(HMHEF), though there is a theory of weak solutions on static compact 4-manifolds due to Struwe
[69]. Examples of Yang-Mills connections developing singularities in higher dimensions have been
constructed by Naito [54] and Grotowski [31].

We shall need only one property of the curvature two-form for our purposes.

Lemma 1.11.4. [62, §4] Let w be a connection on P and V the induced covariant derivative on E. If
evolves by the Yang-Mills flow, then 0,Q® + AVQ® = 0.

This lemma implies that Q“ evolves by a flow of Dirichlet type and, consequently, has the
energy decay property (Proposition [1.9.1).

1.12. Mean curvature flow. We conclude this chapter with a discussion of the mean curva-
ture flow. Much of the material is standard and may be found in [14], though here we allow the
ambient space to be an evolving Riemannian manifold.

As before, we suppose (M, (g;)rer) with I = Jtg — 8o, t9[ (6§ > 0) and d;g = h is an evolving
manifold of locally bounded geometry about (xo,%;) and assume the notation in and followin,
Definition [.7.4. Let N™ be a smooth oriented manifold and let F : N x I — M be a smooth map
such that {F, := F(-,t) : N —> (M,g;)}se1 is a one-parameter family of embeddings and the map
(F,pr,) : N x I - M x I is proper, i.e. (F,pr,) *(K) is compact whenever K © M x I iskd

'4Note that in contrast to the harmonic map heat flow, M is now the target manifold.
15This last assumption is made for technical reasons which shall only become apparent in Chapter J, particularly in
Examples [.3.4 and F.3.9. It is satisfied for instance if N is compact.
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As in §[L7, all of the usual notions quantities of extrinsic differential geometry carry over to
this setting by fixing time and considering the usual quantities. Let U = M open, f € C}(U x
LR), (X(-,t) = X; : U > TM);cs a one-parameter family of continuous (local) sections of TM,
(Z(-,t) : U — F;'TM),er a one-parameter family of continuous (local) sections of F; 'TM and
(Q(,t) = Q; : U —> T*M ® T*M);e a one parameter family of continuous (local) sections of
T*M ® T*M. For convenience, F;lN shall be realized as the point set

{6t} x Tr, M = F7'TM.
xeN

The relevant notation is summarized in the following table:

Symbol Signification
3 = 3(-,1) First fundamental form of F; (:= F}"g;)
I, Secon.d fum.iamental form of F; as a section of F;ITM RT*NRT*N
(see discussion below)
H, =H (-t) Mean curvature of F; (:= trg,II, € F(F;lTM))
X (1) X(-t) as a section of F,'TM (ie. such that X (x,t) =

((r. 1), X (Fi (x),1)))
(X, (Fr(x)NT Tangent part of X, (F;(x)) (Orthogonally projected onto im d, F; wrt. g;)

(X2 (F (x)))* Normal part of X;(F;(x)) (= X;(F:(x)) — (X;(F:(x)))")
VLF(t) (U3 x— ((x,t),(VF(F(x),t))*) € F; 'N) for differentiable f
X, = (X(-1)) g;tl(l)ziilie))cinziltu((;:?xl)())(;e;l section X, : F, '(U) — TN of TN such that
f Pullback of f (:=((F,pr,) ' (U x I) 3 (x,t) — f(F:(x),t) €R))
tr;Q Normal trace := (N x I 3 (x,t) — (try,Q;) (Fe(x)) — (trs,F#Q;) (x) € R)
B! (x0) Pulled back geodesic ball := F; ' (B (xo)) (xo € M)

According to the above setup, H, X and V= f also define (local) sections of F~'TM and we shall
view them as such whenever ¢ is not explicitly mentioned. Moreover, F ~1TM shall be considered
a Riemannian vector bundle with inner product defined such that for ((x,t),v),((x,t),w) with
v, wWE TF,(x)M’

(((x,2),0),((x,2),w)) = (9:(Fe(x)), 0 @ w).

For fixed t € I, this coincides with the inner product induced on F, 'TM by g;. Note also that X
(resp. f) is as regular as X (resp. f) is.

As a rule, we follow the sign conventions of [37] and refer there and to [47] for the notions of
submanifold geometry used here. In particular, if (X;):cr and (Y;);er are smooth one-parameter
families of sections of TM such that X, (F;(x)), Y;(F:(x)) € im d, F; for each (x,t) € N x I, then

(1,(x).X, () @ X, (x)) = (680, (T ¥0) ) = (50), (Vwyern X))

for each (x,t) € N x I and, if (Z; )¢ is a smooth one-parameter family of sections of TM such that
Z;(Fy(x)) L im d,F, for each (x,t) € N x I, then

<(Ht(x),)_(t(x) ®Y,(x).Z, (x)> =- <Vx,(Ft(x))ZtsYt(Ft(x))>
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for each (x,t) € N x I. Moreover, writing V> for the Levi-Civita connection of 3 (t understood),
we have the relation

T 3
(Vxe(E oY) = V(Y

where the covariant derivative on the left-hand side is the Levi-Civita connection of g.
We write H(x,t) for the mean curvature as an element of Tr, ()M, ie. for the unique vector
H(x,t) such that for each (x,t) € N x I,

H (x,t) = (x,H(x,1))

and note in particular that both II; (x) and H(x, ) are normal to im d, F; for each (x,t) € N x I.
Now, N may be made to be an evolving Riemannian manifold with family of metrics {J; } ;c;.
We now restrict our attention to mean curvature flow.

Definition 1.12.1. The manifold N is said to evolve by mean curvature flow if

0 F=H

in the sense that

0¢F(x,t) = H(x,t) € Tr,(x)M
for each (x,t) € N x L.

This flow was first introduced by Brakke [8] in the context of varifolds and subsequently studied
in the smooth setting by Huisken [4qd], Ecker [19] and various others, especially in the case where
M = R™mt1

For our purposes we shall need but a few basic properties of this flow. We first more explicitly
describe how J evolves.

Proposition 1.12.2. [53], [19, (B.2)] The evolution equation

(0:3,v@w) = (Ffh,o®@w) —2{(;,v@w),H)

holds for v,w € Ty N. In particular,

tr50,3 = triFfh — 2| H, [*.

Proof. Fixty € Iandlet {0;}" | be alocal cobrdinate frame for TN over U — N open. Anunwinding
of definitions and an application of the product rule yields

(3t|to 9,(x0), il ® af|x0)

= il (g,(x0), 21, ® 31, )
= at|z0 (9¢(Ft(x0), 0iF(x0,t) ® 0;F(x0,t))
= (heo (Fiy (x0), 0:F (x0,t0) ® 03F (X0, 0)) + Ol (g1, (Fe(x0)), OiF (x0,t) ® 0;F (x0,t))  (1.15)

=(FEhey (). a1l @3] )

for each xy € U. Now, we handle the latter term as follows: note first that for each i € {1,...,n},
0;F may be considered a local section 0;F of F"!'TM — N x I such that

0iF (x,t) = (x,0;F;(x)).

—



29

Now, by Examples and[1.5.3, g1, and its Levi-Civita connection induce a Riemannian structure
and a Riemannian connection on the pullback bundle F —1TM, which we denote by (-,-)¢ and Vo
respectively. Using these, we write

(g1 © Fo,0iFs ® O;F;) = <ajf,aj1:> (1), (1.16)

0

whence, using the fact that V° is compatible with (-, ),

)<5 iF 0]F>0
(?zfaif (x0,%0) )0 + (OiF (xo,to),V%d(xo . ‘9&{%’ (1.17)

‘xot
_<V

0t|(x .t0)

where here 0¢f(y, ;) = Oxy @ 0tl;, € T(xy0) (N x I) = Ty,N P Ty, I. We proceed to use the local

description of V° given in Example [1.5.9. Let {e, = éa}zzl be a local codrdinate frame for TM in
a neighbourhood V' 3 F; (xy) and write e (x,t) = ((x,t),e,(F:(x))) as in Example [L.5.4. With this
in mind, we note that

O (nt) = Y OFE (x)el (x.1)

and note that, writing H as

H (x.,t) = Y H(x.t)ek(x.t)

in this frame, the mean curvature flow equation reads

0,F%(x,t) = H*(x,1)

for each & € {1,...,n}. With all of this in mind, the local description (i) of V° in Example [.5.
implies that

n n
v e OF Z 00 0;F (x0,10)eL (x0.10) + 0;F% (x0.10) > T4 (0:F(x0.t0)) ef (x0.1)
a=1 p=1
(1.18)

On the one hand,

040;F* = 0;0,F% = 0;H”.

On the other,

r? (o,F

2 (OtF(x0,10))

= ZHa(XO,tO a ‘F X'O)
and, since

n

D Ff(arhm(xo) ej (x0. )
p=1
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= ((xost0). ) T& (O lp, () €8 (Fra(x0)))
p=1

= ((%0,20), Vo, (1) Or) = ((x0:20),V 5 Oa),

Y|Ft0 (x0)

where the torsion-free property of V was used in the last line, we may write (.18) as

VO BF = Z &H (Xo,to) (Xo,to X(),to Z (3F Xo,t() )eﬁ(xo,to)
p=1

6,\(,% to) = o

= ((x020), Vo, (xp, 1) H)
where H € T'(TM) is a vector field locally agreeing with H in the sense that H o F = H. Thus,
(1.17) now reads, using the fact that {-,-), was induced by g;,, whose corresponding inner product
we shall write simply as (-, ),
Ot (xp,10) COiF, @f>o = <Va,»F(x0,t0)H, (9jF(xo,to)> + <aiF(x0stO)sV(';’jF(xo,to)H>
~2((M (o), ik, ® B4, ) Hxost).

The result now follows from (i.16) and (1.15). O

One reason for considering mean curvature flow is its tendency to decrease the volume of
compact (N,I) when h = 0, which is evident from the following proposition.

Proposition 1.12.3 (Area-Minimizing Property). [19, Corollary 4.3] If N is compact and M is static,

i.e. h =0, then
ty
f dvols, =J dvols, ff J |H\2dvolgtdt
N : N ! nJIn 7

where t1,t, € I are such thatt; < t,.

Proof. In view of the compactness condition, the volume of N is finite and since (x,¢) — dvols, (x)
is smooth, its tderivative is bounded and thus summable. Hence, by Proposition [.12.3,

d
—J. dvoly = f Ordvoly = —J | H \Zdvolst. m|
dt Jn N N

We are more interested in a local variant of this property which is applicable more generally.
Before presenting that, we recall how the divergence of a vector field defined on M may be related
to that of the induced vector field on N.

Proposition 1.12.4. Let X € C' (U x I, TM) be a time-dependent local section of TM. Then

divaX = divyX — tr; VX + (X.H).
In particular, if f € C' (D) with D = M x I open, then V> f = V9 f on (F,pr,) (D) and, taking
X =V,f,

Baf = Bgf — Vi +(V,f.0).
Proof. Let {£;}!" | be a local orthonormal frame for TN and set &;(F;(x)) = dF;(ei(x)) € Tg,(x)M

for each i (t € I fixed) and use the Gram-Schmidt algorithm to obtain an orthonormal basis
{ei(Fr(x))}m, U {vi(Fi(x)) 11 for Tg,(xyM. Now, by definition,
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(divg,X) (Fe(x)) = D (Ve X.E) + > (Vo Xvi).

i=1 i=m+1
| ——
1
=tr;vx

We deal with the first term as follows: extend {¢;} and {v;} to a local frame on an open subset of
M and write X as

X=) X%+ Y X
i=1 i=m+1
;V_/

=:Xi =:X;

on this set. Thus,

m
<V J(Fr () X108 (Fr (x >+ Z( J(Fr () X2, 8 (Fr (x ))>

i=1

I
.MS

I
-

> (Ve (r e X Ei(Fi(x)))

i=1

Il
.MS

Il
-

<(Va(Ft(x))X1)T, > Z( 7 (Fe(x))X2) ,l-(Ft(x))>,

where we have used the fact that ¢;(F;(x)) is tangent to F(M). We note that

(Vai(rexpX1) T = deFr (Ve X))

where the covariant derivative on the right-hand side is the Levi-Civita connection of 3, since X;
is an extension of the vector field X, and by definition of ¢; and 3, it is clear that

Z( i (Ft(x)) X]) s € > Z( ei( x)X E, > diVSX-

Similarly, since X is an extension of the normal part of X o F;,

((vgi(F,(x))xz)T Fi(Fr(x))) = D (X, (0t), (W (x),61(x) @ es(x))) = (X (x,8).H (x,1)).

1 i=1

s

1

O
Thus, assuming M is of locally bounded geometry about (xy,%,) and adopting the notation in

and following Definition and taking f(x,t) = r(x,t)? where v(x,t) = d’(xp,x) and D =

Dj,,s(x0,t), we may compute

(0r — Ag,)* = 0 + <Vgtr2,H> - Ag,rz +try V2 0% — <Y/rf,lj>
= (6’t — )r + trgtV; . (1.19)

Now, using the sectional curvature bounds, theorem @, we see that

g—(1—1-(fi,o1) g < %szkg*(l*f'(fx,@or))gz

so that, on the one hand, by Proposition B.3,

Mgt <2n—2(n—1) (1 =1+ (fi, o1)) < 2n+2(n = 1)C;_1".
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On the other hand, tr;‘g =n—mand0 < g, <gon (F,pr,) (N x Jto — &,t[) n D, so that

tr;Vzr2 >2(n—m)— ZC,(OOrztr‘f]‘gr > 2(n—m) —2(n—m)C,__1*

K—oo

on (F,pr,)(N x ]ty — 8,t[) n D. Hence, equation ([.1g) leads to
(0r —Ax)r* = —2m— (p+2Cc  (n—1) +2Cc, (n—m))1* > —y (1.20)
on (F,pr,) " 'D.

We are now in a position to state a localized form of Proposition [.12.3, which is the analogue
of the localized area identity of [g, §3.6] or [17, §1].

Theorem 1.12.5. IfR €]0,min{jo, 1/4yS}[ and t € [ty — %,to[, then

t
J dvols, + f 2 j | H [Pdvoly, ds
Bz (%0) fo*% R/2(%0)

LR/
Ao R? R?

< 16 exp <m kS > J dvoly, | (tp — —).
8y Bj (x0) 4y

Proof. We define (cf. Ex. [A.3 for the definition of 7)

t(x,t)2 +y (t— (t - g))
g(x,t)ery(t— (t —%)) !

+

Yr(x,t) =1

forxe N, t € [ty — g,l‘o [. It is clear that g is twice differentiable, and supp yr(-,t) < Bi(x)
B} (xo), since

Also, 0 < g < 1. Now,

(0r = B3,) (no f) = =4(0r = As,)f - (1= )% = 12]Vf]*(1 = f)?

for f : (F,pr,)'D — R, which together with ([.2d) implies that (9, — A3)yr < 0. Now, since F;
is a proper embedding for each ¢ and both Yg(-,¢) and 0;¥r(-,t) are compactly supported in N, we
may compute using Proposition [L.12.7:

d 1
—J Yrdvol; = f <6t¢R — | H [*yr + =trsFfh ¢R> dvolg,
dt Jn N - 2
< J Ayrdvols, — f | H [2ygdvols, + TAOOJ Yrdvols,
N N 2 N

A
= *J | ‘2¢Rdvolst + mToof Yrdvols,,
N N

whence

£ (2o o) o)
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RZ
(S (o)) e
N

Ao R?
< —exp (—m 8“; ) JN | H [*yrdvols,

so that, integrating from #, — f%; to t and estimating exp (—% (t — (to — g) )) from below,

Ao R? '
exp (_m 2 ) . J Yr(- t)dvols, +J j | H [*yr(-s)dvols, ds
8y N w—% N

RZ
S JN Yr(sto — E)dVObIU_R2 . (1.21)

1y

Now, since g (-, 1) < XBY, (x0)» the right-hand side of (i.21) may be bounded from above by

RZ
J dvoly, | (tp — —).
Bj (x0) 4y

On the other hand, since

2 _ R R? R
SO Gl Clk ) NS St 28 '
-2 R2 - R? 2
so that
4
1 1

Since the left-hand integrands of (f.21) are nonnegative, we may estimate their (spatial) integrals
from below by the respective integrals on Qltq /2 (xo), whence the result follows from (fL.23). O

Finally, we shall need another variant of this result which bounds a pulled-back ball of (pre-
scribed) variable radius by this radius to the appropriate power. In order to establish this, we shall
need a monotonicity formula. The following formula was first established by Huisken [40] in the
case where u = 1, (M,g) = (R™*1,8) and N is compact, then subsequently adapted to include
u by Ecker and Huisken [21] and finally adapted to the curved setting by Hamilton [33] in the
case where M and N are compact and M is static, by Lott [51] in the case where N is a compact
hypersurface and M is a gradient steady Ricci soliton (cf. [45]) and finally by Magni, Mantegazza
and Tsatis [53] in the case of general evolving manifolds.

Theorem 1.12.6 (Monotonicity Formula). Let (M,{g;}):er be an evolving Riemannian manifold with
0rg = h. Ifu € C3(N x LR) is such that supp u(-,t) € N foreacht € I and f € C*(D,R") with
D < M x I open with supp u(-,t) = (F,pr,) ' (D npr; ' ({t})), then

% (JN u- J_fdv013>

1
:f (0 —As)u+u- (atf+Agf+§trgh+
NT

2’(15__";) f) — uftriH,(log f)

—uf |[H =V log | dvols
onl foreverys = 1.

Proof. (cf. [21] and [53]) We verify that the identity
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9, (u- fdvoly) = [divst ( fVu—uv ]_f) + (00— B3,

tu- <0tf+Agf+%trgh~f+%f>

_uftr;?(s (log f) —uf |H— Vilog fo F’Z] dvoly, (1.23)

holds; an integration and an application of Gauf’ theorem and standard integration theorems to
justify interchanging the derivative and integral then imply the result.
Now, by Proposition [i.12.4, it is clear that

divy (fVau = uVaf) = fAqu - ubyf
= fAsu— u[ALf — tr;V;f + <Yﬁf’lj>] (1.24)
[\ —
(v H)

On the other hand, using the fact that ¢,f = J,f + <V f.H > as well as Propositions [.7.7 and

;v_/
=(v-r.H)
12,2, it is evident that
o, (u : fdvolg)
L 1 * 2
= (@u-f—l—u-&tf—&-u(V f,Ij>+ EtrSze h-u-f—|H| uf) dvols, . (1.25)

Using the fact that try, F*h; = try, h; — tr;-t hy, (L.24) and (L.29) imply that

X (u : idvolg) — divy, ( fV3u—uVs, f ) dvoly,

= ([(O%u —Aj,u) +u (atf + A, f + %trgtht -f>

\% 1
—uftrgﬁ ( ?;f + Eht) —|HPu-f+ 2u-f<VL logf,I;I>> dvoly,. (1.26)
Now, note that
Vof V@V
f f?
and try Vf](gi = Wz{lz = |V1 log f|*. On the other hand,
L9 n—m
t = .
92—t 2651
Incorporating these into ([.26) immediately implies (.23). O

Theorem 1.12.7. Leta = /2y/n, suppose R < min{5=Ry, V478} for Ry < min{jo, /4y8} and
set

RR(t) = \/Zm(t — 1) log (4”(2—2—1&))

Then
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f dvoly, < RF(H)™ (p + 2 ) J dvols, | (¢ Rg)
3 X . 0 o 3. 00— )
Bty o) () : R™ )\ Jpy, (x0) 4y

SR (1)

fort €]ty — %Rz,m [, where po, p1 > 0 depend on Ry, 6 and the geometry of M in Dj, 5(xo,t).

Proof. Consider the retardedid weighted backward heat kernel

zq) : ng,é (xO,to) g RJr

(0,1) o 1 > <dt(x,x0)2) ’

(r(s — )2 P\ a(t—s)

where q € N and s € [ty,so] with s and s, to be chosen later. The computation of Proposition
implies that

1 n—m
Oy + A+ —trgh + o)
! 2 2(s—t)>s

t 2
< (%MM) gy

2 s—1t

ny 1
= | — +4C4dlog — )
2 (4n(s—1)% - '@

1
< max{%,él@;} : (1 + log ((47Z(S “E mq;)) -

< max{n?y,4C4} <1 + 7@ - log <m)> , (1.27)

where the definition of "® was used in the third line and Lemma [A.4 in the last line. Similarly, the
computation of Proposition together with Lemma [A.4 implies that

where C depends on jy and x_, and C4 on ji, Ko and p. We now apply Theorem with f = I'®
and u = g where

r(x, )2 +y (t— (t - g))

a’R?

Yr(x,t) =1

R (¢
a = 4 PLANS 2%, and 1(x,t) = d* (F;(x),Xo). As in the proof of Theorem [1.12.5, it is clear
n

that supp Yr(",t) < Bfz(x0) € B} (xo) for each t € [ty R to[ and (0, — A3)yr < 0, whence

T

d
- (J Ur ~;n<I)dVOls) < gOJ Yrdvoly, + ¢ (s,t)J Ur - T @dvols,
dt N N N

where

6o = (n — m)max{2C,—A_x} + max{%,é&@} and

1The choice of words is motivated by considerations from physics.
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ci(s,t) = <(n —m)max{2C,—A_»} + max{%AQ}) log (W) :

Note that, since s — t € [tp — t,59 — to + g], the relation ¢; (s,t) < @;(t) holds with

o1(t) = (<n — m)max{2C, ~Az} + max{7" 4G} ) log (W) |

Moreover, @; € L' (Jty — 4,7’ to[). Thus,

d
T (exp (1(1)) JN YR - ;”Cde013> < goexp(I(t)) JN Yrdvoly < goexp (I(tp — 9)) JN Yrdvols
(1.29)

where [(t) = S;O @1(z)dz. Since Yr(-,t) < XB! (x> an application of Theorem yields

mAyR2 R:
J. Yrdvols | (¢) < J dvols, < 16exp J dvoly | (ty — —).
N B! 1 (x0) 8y By, 4y

Substituting this into (i.2d) and integrating from t, — g tot €ty — %, tl,

exp(l f Ur(- -, t)dvoly,
RZ
< (exp<l<->> j e ;"cpdvol:\_) )
N 4r
m/looR(z) Rg
16 I(tg — 6 dvol~ | (tg — =2). i
+ aoeXP((o )+ » ><J - Voxs>(o 4}/) (1:30)
In light of the inequality
R2
(-t — —) <R™,
m ( 0 471_)

we have that

R? R?
.m —Z)<R™ =
( N lﬂR s @dVOl:;_) (t() 47[) R L-QR(XO) dVOl:;_ (t() 4”)

mAeR? R
< 16exp (—OO 0) R™™ J dvols, | (to — —0)
8y By, (x0) 4y

On the other hand,

1 . f)ex RZL(;)Z A0) 1.31
f Yr (-, -, t)dvoly, > (47r(s—t))’"/zf . Yr(-t) exp <4(?_s)> dvoly;. (1.31)

*Rm(t)

Note that for ¢ € [ty — R? - exp(—1/2m) /4x, to[, we have Rm( )2+t > to, which is clearly bounded
from above by some sy on this interval. Thus, we suppose t lies in this interval and set s = R (¢ )2+
t. Substituting this into (L.31), and noting that, in view of the definition of @,

— - 2 — 2
(A HyE- (- ) _REOPvE

~ ~
a?R? a’R?

|



= Yr(-1) > (1)4 S,

on B;m @ (xo), we see that the left hand side of (.31 is greater than or equal to
R

dVOlST.

exp(1/4) J

16 - (4)™m/2 - R (E)™

t
7R1rzn @ (X())

Substituting these inequalities into (i.3d) then implies the result.
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Monotonicity for Yang-Mills over R"

In this chapter, we restrict our attention to Yang-Mills theory over R" and provide alternative proofs of
some monotonicity formule to be established more generally later on in this thesis. The existing local mono-
tonicity formula for solutions to the Yang-Mills equation due to Price [61] is first proved before we establish
the local monotonicity formula for the flow using methods along the lines of those available for solutions
of the harmonic map heat equation and reaction-diffusion equations as developed by Ecker in [2d]. Price’s
formula is local in nature, whereas the existing formula for the Yang-Mills flow due to Chen and Shen [11],
itself an analogue of a monotonicity formula for solutions to the harmonic map heat equation due to Chen
and Struwe [12], is not. However, it involves weighting the square norm of the curvature of the connection
against an appropriate Gauflian. In contrast to this, the formula we prove is local in nature, where the domain
of integration is a superlevel set of an appropriate Gauf3ian in space-time, a so-called “heat ball”.

2.1. Simplifications. In what follows, we work over a trivial SO(N)-bundle over R", whose
Lie algebra g = so(N) is equipped with the positive-definite rescaled Killing inner product (cf. §f.9)

(A,B) — (A,B) := —tr(AB).

We shall write |A| = 1/(A, A) for the induced norm. In this case, Ad-invariance takes the formf

(9A97".gBg™") = (A, B), (2.1)
where A,B € s0(N) and g € SO(N), which is easily verified. In particular, if g : |—¢,e[ — SO(N)
is a curve with g(0) = I and §(0) = X € so(N), differentiating both sides of (k.1) at 0 yields

(XA,B) — (AX,B) + (A, XB) —(A,BX) =0
= ([A.X],B) = (A,[X.B]) (2.2)
We note that a connection on the trivial bundle R” x SO(N) may be given by a single matrix-

valued one-form w : R" — s0(N) ® T*R". Here we shall write A; = (w,0;) and consider a
connection to be a collection of matrix-valued functions

{A; :R" - s0(N)}T_,.
Similarly, we write F;; = (Q“,0; A 0;) so that the curvature two-form is represented by the matrix-

valued functions

{Fij = 8,~Aj - ain + [A,',Aj] :R" — SD(N)}

n
ij=1
so that the Yang-Mills energy density takes the form
1 2 _ 1 2
e(A) = EZ |Fij|* = ZZ\FU\ :
i<j Lj

In this setting, the Bianchi identity (cf. Proposition [i.5.7) takes the form

Viij + Viji + VkFij =0, i,j,k € {1,. . .,I’l}

where V;Fji = 0;Fji + [A;,Fji], and the Yang-Mills flow system the form

'Here we treat elements of s0(N) and SO(N) as matrices.
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n
(}tAj = ZViFij je {1,.. .,n}

i=1

for a family of connections {A;(-,t)};ey with I — R an open interval, Yang-Mills connections being
static solutions (0;A; = 0).

In the remainder of this chapter we shall assume that I = ]—00,0][ for the sake of simplicity.
Furthermore, we shall be concerned with properties of A relative to (0,0). By using the translation
invariance of the Yang-Mills flow system, all of the formulee may be stated relative to some (xo, f) €
R” x R provided {A(-,t)} evolves by the Yang-Mills flow for ¢t < t,.

2.2. Scaling behaviour. We set (A,);(x,t) := r - A;(rx,r?t). If we consider F;; = 0;A; —
0jA; + [Ai,Aj] as being a function (F4);; of A, then

(Fa,)ij(x,t) = r* - (0;A;(rx,rt) — 0;Ai(rx,r*t) + [Ai(rx,r*t), A;(rx,r*t)])
= r’F;j(rx,r’t).

In particular, if A solves the Yang-Mills heat equation, then so does A,, for

n

Or(Ar)j(x,t) = r?0,A;(rx,r’t) = rSZ 0iFij(rx,r’t) + [A;(rx,r*t), Fij(rx,r’t)]

Z (Fa,)ij(x,t) + [(Ar)i(x.t), (Fa, )i (x,1)].

On the other hand,

e(Ay)(x.t) = iZ<(FAr)ij(x’t)’(FAr)ij(x’ t) =r'-e(A)(rx,r’t), (2.3)

L,j

which serves as motivation for how we shall weight the localized energy integrals to be introduced
in the coming sections.
We abbreviate (Fa, );; by (Fr);j. Now, note that

d n
d—(F,)l-j(x, t) = 2rF;;(rx,r’t) + r* Z xFOpFij(rx,r’t) + 2r°t0,Fij(rx,r’t)
,
k=1

and that

d x t
E(F,)ij(?r—z) =r- ( (%, 1) Z akFl] x,t) + 2t0:Fj(x, t))

(Fr)ij(x,1).

r=1

2.3. Scale-invariant solutions. We call a family of connections {A(-,t)};e]—o o[ Scale in-
variant about (0,0) if (A;);(x,t) = A;(x,t) for all r > 0, (x,t) € R" x |—0,0[ and i € {1,...,n}.
Differentiating this identity with respect to r and evaluating at r = 1 (cf. [2g, §1]), it is equivalent
to the condition that

Ai(x,t) + Y X/ 0jA;(x.t) + 2t0,A; = 0 or

x/ 1
OAi + ) S OA (1) + —Ai(xt) = 0. (2.4)
J
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On the other hand, we note that

XJ XJ
OAi + ) o Fit = 0+ > o7 (GAi = GiA; + [Ai4j])
j j

Jj

xJ 1 X
= 6;A,~ + Z Z—t&in + Z_tAl — 8,~ <Z > A,,Z _tA] . (2.5)
J J J

For general families of connections, this expression may only be made to coincide with the left
hand side of (2.4) at some fixed time ¢, for which a radial gauge is chosen, i.e. in a gauge such that
> ; XA j(x,t0) = 0 for all x € R". If, however, A is either scale-invariant or the expression (E)
vanishes, then this gauge is preserved, wherefore it follows that both conditions are equivalent.
For details of this argument, see e.g. [74].

We may thus characterize scale invariance by the condition that

xJ
ﬁtA,- + Z EF]‘,‘ =0
J

Such solutions are known to exist; see e.g. [31] and [29g].

2.4. The static case. We now prove Price’s monotonicity formula by scaling. This should be
compared with the approach usually taken to prove the monotonicity formula for harmonic maps
(see e.g. [64]) and contrasted with the approach taken in Chapter j§.

Theorem 2.4.1. IfA is a Yang-Mills connection with? A; € C? (Br;so(N)), then

d 1 n n xi ,
5(?’”4L ) zrn 4 Z‘ZFU(X)7|CISX>
r JB rj=1 i=1
holds on |0, R|.

Proof. We first simplify the expression that is to be differentiated:

1

rn—4

J, e = S | e ray

r

=2 _elA)(w)dy. (2.6)

Differentiating (g.4) with respect to r and making use of the scaling identities derived in the pre-
ceding section, we see that

1 d
T JB Z<E
k

rl]

Using (k.2), we may rewrite the integrand of (2.7) as

2We write B, for B,(0).
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53t + 3 St @b a) + TA) By D) Fi ) = S (o) + 3 35400 0),
k k

Lj i,j

since <[Ak,F,- i1 Fi j> = <Ak [Fij, Fij ]> = 0. On the other hand, an application of the Bianchi identity
yields

S {0 5 S (O 80 0.8 0)
k

—Z<U Zkaiij(x),Fij(x)>
= Z |Fij|* (x Z [ai <ij,Fij> — <ij7ViFij>] (x),

i,j,k

where the second line we have used the antisymmetry of F (F;; = —Fj;) and in the last line the
compatibility of V with (-,-). On the one hand, A is Yang-Mills so that ) ; V;F;; = 0, whence the
last term vanishes. On the other hand, we may integrate what we are left with by parts, so that the
integral (2.7) now reads

=3 J 2|F’J|2 + 2 5k< ks Fl] o -5 J\q <ijsFij>de

Br i j i,j,k BVle

1 i
T - 3J Z‘Fu‘z Fji-Fij Jrr”__3LB Z<2FkJXk’ZFijx7>dsx

B, i,j
2, x
= e 3J ZlFU‘ — |Fil + pn— 4J Z<2ijr ZF’17> x>
r l] 0B roj
where we have used the antisymmetry of F twice, whence the result follows. O

2.5. The heat flow case. We now provide a local monotonicity formula for the Yang-Mills
flow over R"” along the lines of Ecker’s local monotonicity formulee. Here, as in [2d], we prove the
formula by scaling. This should be contrasted with the approach taken in Theorem f.3.4 where we
make use of divergence identities.

Let

=< (x "X ]— s O(x '=;ex ﬁ
E,-{( ,t) € R" x |—00,0[ : ®(x,1) : (4”00_0)"7_4 p<4t)}.

We first recall an integration formula from [2q].

Theorem 2.5.1. IfX € C}(R" x |—o0,0[,R"), then

” divXdedt = -4 f f X - Xdxdt
n—4dr 2t
E, E,

whenever these integrals exist.

Proof. See [2d, Lemma 1.6] or Theorem f.4.2. O

Theorem 2.5.2. Suppose A evolves by the Yang-Mills flow on R" x |—o0,0[ and that

J_i JB A)dxdt < o0 (2.8)

2¢cn,470
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for somery > 0, where c, i is as in Theorem 6.3.4. Then the identity

d ! JJ (A) n_4—zn: iF xiiF-- xi+’A~ddt
ar \m— )¢ == Targt T
E, =1 \i= i=
f J DllaA; + ZF,, | dxdt. (2.9)
j=1

E,

holds on ]0,7,|.

Remark 2.5.3. This formula should be considered a local analogue of that of Chen and Shen [11]]
which in this case reads

d

EJ.R” (e(A)®) (x,t)dx f Z 10,A; +2Fu _zq)) (x,£)dx

whenever A decays appropriately at o0 (cf. Corollary @). In particular, the right hand side
of Chen and Shen’s formula vanishes precisely when the right hand side of (z.¢) does— on scale-
invariant solutions (cf. §.9).

Remark 2.5.4. The condition (2.§) ensures the ensures the summability (on Ej,) of each term oc-
curring in the monotonicity formula, a claim whose proof shall be deferred to §b.9 (cf. Lemma

B.3.1).

Proof of Theorem f.5.3. We first compute formally, writing X = (x,t) and Y = (y,s):

d 1 1 , 1
dr WJJZIZJ:FU(XJ)I 5 dX
E, .
X=P,(Y 1
- JJ Z r ij y> N r)lj(y,3)> . ZSdY (2.10)

~ s Hglz}<5 r=1

) (Fr)ij(x,t),Fij(x,t)>.idX
[l e e o

2t

As in the static case, we use the identity (b.2) and the Bianchi identity to write the integrand in

(.11 as

1 2 2 xk
Z lZ|FU| - Z <2—tViij,Fij> <5: ijs >] .
k=1

L,j

Now, since V is compatible with (-, ), we may rewrite the middle term as

k

xk 5lk X
Z_ai EijaFij +§<ij,Fij>+ o

ik
1 9 xk
—ZE|FU| —Z EijsatA] Za ij, ij
i ik

where the antisymmetry of F;; and the Yang-Mills heat equation have been used in the last step.
On the other hand,

S

ijaViFij>
i,j,k
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(7;Fij = (7,~(7tAj - &JO,AI- + [OtAi,Aj] + [Ai,&tAj]
= (Vla[A] - VjatA,) s

whence the last term may be rewritten as

S5 {0iFnt) = g D0 F) (T
_ % 12 (Vi0,A1.Fy — Fy)
_ ZZViatAj,Fij>
_ iai (00} Fyj) — (0:A},ViF;j)
v

= Z ai <atAj,Fij> — Z |atAj‘2,
j=1

iJ
where the antisymmetry of F and the Yang-Mills heat equation have again been used. Altogether,
the integral (2.11) is equal to

k
rn173 H—Z<Z ’;—tij+a,Aj,atA,> Za <aA +Z Fk,, ,J>
)k

Applying Theorem p.5.1 to the divergence term, we obtain

1 xk DA 1 d 5 xk xt X
s )] - 22+ ey )X - i | ) 20 2 g
E, 7 b

“Completing the derivative,” noting that minus the integrand of the latter integral completes the
square in the former integrand, we obtain

1 x* NN T L 5 xk X X
=3 7;|;2—tij+OtAj| — n_45 _r"_4 g tAj+;§ij,2—tFij
E, E, b

A careful inspection shows that the preceding steps are valid provided

div (Z (Z <Fij,6tAj + Z ng]>> e,') € Ero,
i J k

which justifies pulling the 4 7 under the integral sign in (.1d) and applying Theorem b.5.1, since
the condition (2.§) ensures the summability of everything else (cf. Remark p.5.4). To drop this
assumption, we instead compute analogously to before that

. ﬂw.(eu 2(2_2 L
:’;n ka Zth +ZF,J
E,

where {yx }xew is as in Example [A.]. Thus, integrating this expression on |ry,r;[ with 0 < r; <

—t) i (—t)dX,

ry < ro and using Remark p.5.4 and the fact that (—t) X (—1) 22,0 implies the result. m]



45

In light of the discussion in §p.9, the right hand side of this formula vanishes on scale-invariant
solutions. In particular, by [29, Proposition 1.5], we have that

_zt n

o [ e = [ e
E,

forallt < 0, r > 0 whenever A is scale-invariant. Therefore, on such solutions, this quantity
coincides with that in Chen and Shen’s formula.






JR— 3 E—
The Static Case: Monotonicity of Energies of p-Dirichlet Type

In this chapter, we investigate the metric properties of an energy functional naturally associated to prob-
lems of Dirichlet type in order to obtain identities that, in some sense, state how solutions to problems of
Dirichlet type scale; these identities then lead to monotonicity identities upon integration. The tensor that
naturally arises in these identities is the so-called energy-momentum tensor (also known as the stress-energy
tensor), which is quite well known in the physics literature [46] and was first considered in the context of
harmonic maps by Eells and Baird [5]. In [§], Alikakos made use of identities involving this tensor to derive
a monotonicity formula for solutions to a certain semilinear elliptic PDE. We take this approach as a start-
ing point for intrinsically deriving similar formulee for p-Dirichlet-type problems. We note that the energy-
momentum tensor is also of independent interest, and has been used to derive conservation laws for and draw
conclusions about nonexistence of solutions to certain PDE [5, 42, g, 2].

3.1. The energy-momentum tensor. Let E be a Riemannian vector bundle with Riemannian
connection V over an oriented Riemannian manifold (M", g).ﬂ Consider the Dirichlet-type energy

Fy:T(E®AFT*M) - R

Y= | eg(¥)dvoly

M

where k € Ny and ey () := Ilj\z,ﬂp is the p-Dirichlet energy density for p > 1 Rather than
scale the integrand as in the case M = R", we vary it with respect to the metric. The following
proposition describes the resulting first variation.

Proposition 3.1.1 (Energy-Momentum Tensor). The unique (symmetric) tensor TIZ e(T*"M®T*M)
satisfying

L1 (o e R)avolyn(x)) = (5 T20),hx) ol )

t=0

for all symmetrich € T(T*M ® T*M) and x € M is locally given in a g-ON frame {¢;} < {@'} by

n

Ti = |¢|p72 Z <[5i¢’l€j¢>a)i R — eg(‘#)g'

ij=1

Proof. On the one hand, Proposition [.7.7 immediately implies that

d
dt

(t > dvoly, e (x)) = (% (9.h), dvolg> (x).

t=0

On the other hand, by Proposition [r.7.8,

d

dt

=

. <I//’¢>g+th = <_ Z ((lgiw,lgj¢>> g)i ®(/J’,h>
ij=1

g9

The result then follows from

4
dt

d

eqren(¥) = S0P

dt <¢’¢>g+th . O

t=0

t=0

'The metric may depend on a parameter, though the following considerations assume the the parameter is fixed since
the dependence of g on its parameter is not relevant to the discussion.
?Except in this chapter and the following one, p shall be assumed to be 2.

47
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In [{/], Alikakos considered the systemH

Au—VW(u) =

for u € C? (R",R") and W € C*(R",R™"), which is naturally associated to the energy

1
J ) E|du|2 + W(u).

There, the energy-momentum tensor is

1
Tij = ﬁiu . ﬁju — <§|du|2 + W(u)) 5,']',

which was shown to enjoy the property div T = 0 that ultimately led to a monotonicity formula.
This suggests that computing the divergence of TlZ should lead to something useful.

Proposition 3.1.2. In any local frame as above,

B

vty =3, (BT (1729 )1 9) + (1P 0,9 )

Proof. We compute in a local ON frame adapted at x:

div Tg Z 1e, Ve, i

—th, o (WD (Wt neg).(bgy nep)) o' @

ij gkt

HY P2 D (Ve e A e)) (fogs A eg)) + (Wi A e))s (Ve g 1)) )0’ @
i,j jk—1

- afreg(¢>9)

S S D2 (ot e, ey A ) + W (Vethes 7 e), ey 2 ) )

j Jk—1 i

{2 Gt en e e ne)

+ Py ), (( (Voei A eg). (Ve ey A gg)) — %((Vé‘jlp’gi ~eg) (e A €J)>> o

i,j k=1
= =2 | DA U en). (e A ) |
jo o\ k-1
+ [yP- 22 Z (< (V.ei A eg), (Ve Pneg A 8])> - %((nglﬁ,si nep), (Y,e A £])>> .
i,j ]k 1

Now, we note that

vy . . oA .
(d JE N ELAE A A g]k—l)

3We note here that, apart from the case where Alikakos’ equation reduces to a linear one (W = 0), there is no overlap
between the equations considered here and those considered in [1].
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n
Z (0f AV, Ygj Aei A Ao A )

—_

P
( ¢ Ei NEjp N A gjk—l) - (Vfilﬁ’gj A Ejp N "'gjk—l)
+Z q+1vg]lﬁ(:‘]/\é‘l/\é‘h/\~-'A6A‘jq/\-~-/\é‘jk71),

whence

2 Z <(Ve,-¢,€i ~ep), (Y6 A e])>

JjoJk-1
= ﬁ N Z <(ngl//,£i NEjp N A gjk,1)7(¢7€i N Ejp N A gjk71)>
LJ1s-- 5 Jk—1
=20 (@ ey nei A ) (e A ) + ((Tathey A ). (ei A €)))
i ]k—l

1 R
+W Z Z <V€jlﬁeJAe,AejlA~--A£jqA--~/\£jk_1),(¢,eiAejlA~-~/\£jk_1)>.

Iy JiseosJk—1 =1
(3.1)

Expanding the sum over g out, keeping track of signs when permuting the basis vectors, we rewrite
the last sum (omitting the combinatorial factor) as

Z <(V5j11//,sj ANENE, N ANE_,), (V€ AEi A A A fjk71)> +...

b1 fk—1
+<(V€qu//,£‘j/\6jl/\-~-/\ g AN ANg ) (Woei, A A A g A~-~/\£jk_1)>+...
gth entry gth entry

+((Vey Vot A& A A i, A& (B A Ao A, A ED)

=(k=1) D) ((Vethgi e A Ag ) (e Mgy A A )

L J1seeesdi—1

=(k-1) (k—1)! ZZ(V&(ﬁsjAs]) (¢51A€])>

where the indices were relabeled in the second last line. Thus (§.1)) reduces to

Z Z [((de’gj nernep), (Ye A £])> + k<(VEi¢,gj nep),(Y,e A £])>]

i ]k—l

=k Z((dv¢’ej ner), (U, e > Z 2 < Ve .ei ~nep), (Y e A g])>

Lk 1]k1

The result follows, since the latter term cancels out the unwanted term in the expression for div T

¥
above. O

We therefore see that the following conservation law for p-harmonic k-forms may be read off
this formula.

Corollary 3.1.3 (Conservation Law). Ify is p-harmonic, then div TIZ =

As hinted at earlier, the energy-momentum tensor is thought to contain information about how
p-harmonic vector bundle-valued k-forms scale. In ], for example, the integral of the divergence
of T; contracted with the radial vector field x — Z dil, € TxR" yields an expression that

coincides with what is usually obtained when scaling the Dirichlet integral. In order to make use
of this technique more generally, we compute the divergence of the energy-momentum tensor
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contracted with an arbitrary vector field, henceforth to be interpreted as a ‘scaling direction’. The
following formula should be compared with [[71, Lemma 3.1], where this identity is established for
solutions to an inhomogeneous Yang-Mills equation.

Corollary 3.1.4. LetU < M be open and X € T'(TU). Define Y € I'(TU) by

V= (n1?)" = lyp- 2 (it ) e — e ()X,

j=1

Then

divY = [y|P~2 Z (1v, xV1e,0) — eg(¥)div X
— (VW) ix ) — [ (ixd™ )

Proof. We compute in a local ON frame adapted at x:

divy = an< ( -”)ﬁ,gi>

n
=Z<lv XT -‘rlegl l//, >
= <Tg VX >—|— 1xdiv Tg,

where we have used the symmetry of TlZ in the last step. Using proposition B.1.1, the former term

may be written as

WP Y Y AW Ve X A ep) (e 1 gp)) — eg($)div X.

i=1 ]k*l

On the other hand, using proposition f.1.2, we may write the latter term as

— (812 x¥) — 1P (1xd™ ). o

3.2. Monotonicity. We now apply the identities derived in §f.1 to the study of Dirichlet type
problems on static manifolds. In doing so, we provide a simple intrinsic proof of the monotonicity
principle for p-harmonic k-forms with values in vector bundles which in particular includes p-
harmonic maps and p-Yang—Mills fields. This should be compared with [4].

Suppose (M, g) is static, xo € M is fixed and the locally bounded geometry bounds of Definition
[.7.4 hold and let j be defined by () of §i.4 Let k € N and p > 1 be such that n > kp +
1. As remarked earlier, the energy-momentum tensor describes how p-harmonic k-forms scale.
Analogously to [{, Theorem 2.1] and [j71, Theorem 3.2], we make use of the energy-momentum
identities derived earlier to scale k-forms in the radial direction. This is the content of the following
lemma.

Lemma 3.2.1. Let X € I(TU) for U = Bj,(xo) be defined by X = V(ir?) = ro, and suppose Y is as
in corollary.1.4. Then

div Y < (kp — n)eg(y) + Areg(y) = Jy + [Y1P*|io, ¥1* - [1 = r fie(r)]

onU, where A = A(n,k,p,k,k,inj, ) and J, = <5V(|¢|P_2¢),1X¢> + |y |2 <1XdV¢,¢>.
If sec =k < 0, then

divY = (kp —n)eg(y) = Jy + [(n = kp — Deg(¥) + [Y[P*|io, y*] - (1 = rfic(r)).
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Remark 3.2.2. Note that in both cases, the term following J is nonpositive.E
Proof. Let {¢;}"_, be alocal orthonormal frame in U with &; = 0,. We first compute

n

Vgi(rar) = <€i,ar>ar + rE <V€iar’€j>gj

j=1
= 5i1(9, +r Z(Vzr,ei ® é‘j)é‘j,
j=1
whence, by lemma E,

n

div(ro,) Z r€l®£

Z r)6ii =1+ (n—1)rfi(r)
so that

n

divY = [P, yP + 1P D) r(Vore @ &) (1t ) — eg($)div(rey) — Jy

ij=1

<Pl P+ 192 Y rfe(r)(grei ® ) (e ¥te ) — eg () - (1+ (n = )rfe(r)) = Jy
ij=1

= Y2 lia, 0P + [ fi(r) D e —eg (@) - (1 + (n— Drfie(r) = Jy

i=2
= kplyI*"Peg(¥) — 1o, ¥I?
=eg() - (kp rfie(r) = 1= (n = Drfe(r)) = Jy + Y1~ |to,y[* - (1 = 1 fie(r))
= (kp — n)eg(y) + eg(¥) - [(rfi(r) = Dkp + (n = 1)(1 = rfe(r)] = Ty + Y1772 |to, *(1 = r fic(r)).

Now, in the case k = & = k < 0, the above inequalities are actually equalities and

divY = (kp — n)eg(y)) = Jy + [(n = kp — Deg () + [P0, ¥ ] (1 = r fie(r)).

In the general case, we have

(rfi(r) = Dkp + (n = 1)(1 = rfi(r))

rfe(r)—1 1—rfz
{kp max x(r) + (n — 1) max rfelr) } ,
10,jo] r 10.jo] r
—A
whence the result follows. O

Exactly as in [1] and [71], the integrated form of this identity leads to a monotonicity identity.

Proposition 3.2.3 (Monotonicity Identity). The identity

d [ ARpkp— J >
— | eMRPT e dvol
dR ( Br(x0) g(w) !

> MR [ ) = D g
BR X0

4See Appendix [ for the properties of the fi, which shall be taken for granted in the following proofs.
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= |¢|p2|la,‘//2d5}-
0BRr(x0)

holds for R € 0, jo[. If sec = x < 0, then

x (] )
— [ R e dvol
dR < Br(x0) g(lﬁ) !

_ pkp—n—1. {L ( )Jw + (1 =rfie(r) - [lYPP 20,9

+(n— (kp + 1))ey ()] dvol, + RJ

OBR(x0

| |¢|P2|lar¢|2d5}

forallR > 0.

Proof. By Gauf3’ theorem,

Rf [P0, ]* — eg(¥)dS = J (Y,0,) = J div Ydvoly. (3.2)
5BR(-’CO aBR(Xo) BR(XO)

In the case where sec = —K? < 0, the preceding proposition implies that

f div Ydvoly = (kp — n) J eg()dvol,
Br(xo) Br(xo)

=L B Q) [+ (n i+ 1)y 9] vl

Plugging this expression into (3.4) and rearranging a bit, we obtain

(kp — n) J eg()dvoly + RJ eq()dsS
Br(xo) OBR(x0)

- JB oy ¥ TS =) [[91P 2o,y 2 + (n — (kp + 1))e, ()] dvol,

+Rf W 1P~2 s, 28,
OBR(xO)

whence the monotonicity identity follows from the fact that

(kp — n) J eg()dvoly + RJ eg()ds
Br(x0) 0BR(x0)

d
= Rikp—n _—_ <Rkp_"f eq(1)dvol ) .
dr Bgr(xo) ! !

In the general case, we have that

J- div Y dvol, < (kp —n) J eg(¥)dvol, + AR eg(y)dvol,
Br(x0) Br(xo) Br(x0)

- f L Je ) = 0 vl

whence an application of (§.9) yields, after a rearranging of terms,

(kp —n) JB o eg()dvol, + AR eq(¥)dvol, + RJ eg()ds

BRr(xo) OBR(x0)
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> f Ty + (rfic(r) = DY P~2|1,9[*dvoly + RJ [Y1P~210,%dS.
Br(x0) 0BR(x0)

The monotonicity identity then follows from the fact that

eg(1)dvoly + RJ eg(¥)dS

(kp — n) J. eg()dvoly + AR
Br(x0) 0BR(xo)

BR(X())

d
_ lekpfnefARﬁ <RkP"eARJ eg(lﬁ)dvolg) . o
Br(x0)

As with the identities in the preceding chapter, we may immediately read off consequences for
p-harmonic k-forms.

Theorem 3.2.4 (Monotonicity Formula). Ify is p-harmonic, then

d ( AR pkp— j
— | eMRPTR eq(¥)dvol, | =0
dr Br(xo) ! !

on 10, jo[. If sec= —K? < 0, then

d kp— f )
— [ R e dvol, | >0
dR ( Br(x) g(¢) 9

on ]0,00].

Proof. If i is p-harmonic, then J; = 0. The result then follows immediately from Proposition

b2 o

As corollaries we obtain the following monotonicity formulee, the former of which is well-
known in the case p = 2, where it was first established by Price [61], and the latter of which is well
known for p > 1, having first been established by Schoen and Uhlenbeck [63] and Price [61] in the
case p = 2 and subsequently generalized by Hardt and Lin [34].

Corollary 3.2.5. The following hold:

(i) [61] Assume the setup of §1.14. If w is a p-Yang-Mills connection, then

d eAR
— | —— e, (Q¥)dvol, | =0
dR (R"_ZP JBR(XO) o(27) g)

holds on 10, jo[. If sec = —K? < 0, then the this inequality holds on ]0,c0[ with A = 0.

(i) [63] (4] Assume the setup of §1.1d. Ifu : M — N is p-harmonic, then

d eAR
— eg(du)dvol, | =0
dR <Rn—p JBR(XO) 9( ) 9>

holds on )0, jo[. If secpys = —K? < 0, then this inequality holds on ]0,00[ with A = 0.

In the same spirit as [65, §4.3], the right bounds on the inhomogeneities 8" (|y/|[P~2¢) and
|¢/|P~2d"y yield similar monotonicity formulse. An estimate leading us in this direction is the
following lemma.

5There is less that can be done in this setting owing to the fact that, in a sense, the area functional is an ’L® functional’,
whereas the p-Dirichlet energy is an ’L? functional’.
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Lemma 3.2.6. Letqy = |8V (|y/[P~2)| + |¢|P~2|d ¢| andp’ be such that% + [% = 1. Then
1 5
Jy=—R-|e(¥)+ Fql/,
on Br(xy).

Proof. Using Cauchy-Schwarz and the fact that r < R, it is clear that

Jy = (8P 2)s 0, ) + 19 P~ (v, 4V 9)
> —R{IBT(WIP2Y)| - 1o, 9] + (1P |t0, 47y | - [y}
> =R [{lqy.

whence an application of Young’s inequality yields

v d
Jy = —R ﬂ + —‘f O
p p
Thus, using this bound in the monotonicity identity (Proposition §.2.3), we obtain
4 <eARRkP_" J eg(t//)dvolg)
dr Br(x0)
+ eMRRkp—n f eg()dvol, + e RREP—" J —‘/:dvolg >0,
BR(XO) BR(X()) p
or, multiplying through by e,

d

— (e(AH)rRkP" J eg(¢)dvolg> + e(AFDRRkp—n J —%dvolg > 0. (3.3)

dR BRr(x0) Br(x) P

Therefore, if RK?—" SBR( ) qz,dvolg = O(1) as R — 0, then we may integrate the latter term on the

left-hand side of (§.3) to deduce a monotonicity formula. One case where this may be done is given
in the following theorem.

Theorem 3.2.7. IfqW‘BR(xo) <T for0 < R < jo, then

d r* (R
— (e(A‘H)RRkP_"J eq(¥)dvol, + —/J e(AH)“ukp_"Vol(Bu(xo))du> >0
dR Br(x0) P Jo

on]0,R][.

Proof. Applying (§.3), we obtain

d r?’
— (e(A“)RRkP”J eg(xp)dvolg> + —eATDRREP=IY0] (BR(x9)) = 0,
dr B (%) p
whence the result follows from the fact that Vol(Bg(x,)) = O(R") as R\, 0. m]

This implies in particular a monotonicity principle for solutions to an inhomogeneous p-Yang-
Mills or p-harmonic map equation with bounded right-hand side, the former of which was estab-
lished by Uhlenbeck [71] in the case p = 2.

Corollary 3.2.8. The following hold:
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1. [71] Assume the setup of §1.11. If  is a connection on P such that

87 (1Q°1P72Q%) = J e T ((P x g449) ® T*M)

and ||]||oo = sup,, |J| < oo, then

4 MJ eq(Q“)dvol, + M .[R eV 2P=nVo] (B, (x0))du | =0
dR Rn—2p B (x0) g\=2= 9 p/ 0 u\X0 =

on 10, jo[. If sec = —K? < 0, then A = 0 and the inequality holds on ]0,0|.

2. Assume the setup of §1.1d. Ifu : M — N is a smooth map such that

8" (|duP~*du) = v e T(u"'TN)

and ||v||e = sup,, [v| < oo, then

4 a— f ey(du)dvol, + —”UHP! JR e DU 2P =1V (B, (x0))du | =0
Vv 0 =
dR Rn—p Br(x0) g 9 p! 0 u
on 10, jo[. If sec = —K? < 0, then A = 0 and the inequality holds on ]0,|.

Proof. In both cases, the vector bundle-valued differential form i is closed, i.e. d"y = 0 so that
qy = |8¥([¢/|P~*¥)|. The result then follows immediately from Theorem .27 m]
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Nonlocal Monotonicity of Weighted Energies of Dirichlet Type

After recalling nonlocal monotonicity formulee for the harmonic map and Yang-Mills flows on static com-
pact manifolds, we apply the identities of Chapter ] and inequalities of §}1.§ to establish nonlocal monotonicity
identities for weighted energies of Dirichlet type. As corollaries, we obtain analogues of the aforementioned
nonlocal monotonicity formule in the evolving manifold setting. Moreover, we use this identity to establish
a counterpart of the estimate in [2d, Appendix] for vector bundle-valued k-forms satisfying the heat equation
in order to later establish that the heat ball integrals we consider are finite.

4.1. Known results. We first review the known nonlocal monotonicity formule for the har-
monic map and Yang-Mills heat flows.

First suppose that u : (R",8) x |ty — &.to| — N <= RX evolves by the harmonic map heat
flow, where N is a Riemannian submanifold of RX (cf. §fi.1d). It was shown by Struwe [68] that
the monotonicity formula

d 1
— (47T(t0 — t)f —\du\ZQ(XO to)dx> = —477.'(t0 — t)f
dt Rn 2 ’ n

holds on |ty — &, to[ whenever u decays appropriately at oo (cf. Corollary (i), where

1 x — xo|?
D@y 1) (X,8) = exp ( o )

(4 (ty — 1)) 4(t — o)

is the Euclidean backward heat kernel. This was subsequently adapted to the case where u : M x
Jty — So.to[ — N < RK evolves by the harmonic map heat flow for static compact M and N
isometrically embedded in R by Chen and Struwe [12], which takes the form

(to—12) [ 21dul?( )1 (1) 0Pdvoly < S (o — 1) [ 12, 10) B (-1 )pPdvol
0 2M2 s 82 )P t2)@ g\ecmo 11\42 1) P> 1)@ g

+CEO(\/t0—t1_ \/to_tZ) (42)

whenever tg — 8y < t; < t; < t; and SM %\du\zdvolg < Ey on ]ty — &, to[, where c is a constant
depending on the geometries of M and N, ®g,,,; is the formal backward heat kernel concentrated at
(x0.to) (cf. Definition p.8.9) and ¢ € Cg°(M, [0, o0[) is a cut-off function supported in Biy;__ (x0) 2 An
alternative adaptation of Struwe’s formula to this setting has been given by Hamilton [33], taking
the form

1 1
(to - tz) J;M 5‘du‘z(',tZ)P(xo,tg)("tZ)dV()lg < C()(to - tl) J;” 5|du‘2(',tl)P(xo,tO)(',tl)dVOIg
+ Ci(tz —t)Ey  (4:3)

whenever to — min{1,8,} < t; <t < fp and §,; 1|du|*dvol, < E, on ]ty — &, %[, where Cy and C;
are constants depending on the geometry of M with Cy = 1 and C; = 0 if sec; > 0 and dRic = 0,
and Py, ;) is the canonical backward heat kernel concentrated at (xo,#y) (cf. Definition h.8.1).

Now suppose that P — M is a principal bundle with semisimple structure group G and (w¢) re]z,— 0, [
is a one-parameter family of connections on P evolving by the Yang-Mills flow (cf. §.11). It
was shown by Chen and Shen [11] that if M is a static compact Riemannian manifold, that a
monotonicity-type formula analogous to that of Chen and Struwe holds, namely

!Note that despite the introduction of a cut-off function, this formula is still nonlocal on account of the energy finiteness
condition.

57
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(to—to)? [ 2102 12)0p o t)odvoly < S (ty—tn)? [ 1109 R (o 1) By (- 1) gPvol
0—t2 b2 2 12) Pl 12) P VOg\ec\/H 0o—h 2= »11) P (v, 81 dvoly

ec A/ t1—ty
+ cEy wevin 1 (4.4)

whenever t, — 8 < t; < t; <ty and §,; 3|Q®[*dvol, < Eq on ]ty — 8, to[, where c is a constant de-
pending on the geometry of M, @, is the formal backward heat kernel concentrated at (x, ) and
¢ € C°(M,[0,0]) is a cut-off function supported in Binj,, (x0). Hamilton [3] has also established
such a formula which takes the form

1 1
(to — tz)zf 5\Qw|2(.,tz)P(xO’to)(.,tz)dvolg < Go(ty — tl)zj 5|Q"’|2(.,t1)P(xO,t0)(~,t1)dvolg
M M
+Ci(tz —t1)Ey  (4.5)

whenever ty —min{1,8,} < t; < t; < to and SM %|Q“|2dvolg < Ey on |ty — 8, to[, where Cy and C;
are constants depending on the geometry of M with Cy = 1 and C; = 0 if sec; > 0 and dRic = 0,
and Py, 4, is the canonical backward heat kernel concentrated at (xo, ).

4.2. Monotonicity identities. We fix § > 0, let I = |ty — 8y, %[ < R for some ¢, € R and
suppose (M, (g¢):er) is an evolving manifold with d;g = h and x, € M fixed. We first establish a
general monotonicity identity for time-dependent sections of bundles over evolving Riemannian
manifolds. The following theorem should be considered the differential form analogue of (1.§) of

Remark or Theorem (cf. [n9]).

Theorem 4.2.1. Suppose (M,g;) is complete for each t € I, f € C>'(M x LR") and ¢ € T(E®
AKT*M) is a time-dependent section over M x I. If

2 2
[ { (1 5L L L D i+ ( a ) AP+ 1679+ AW} v, (1)
(4.6)
is finite for each t € I, then the identity
d
I ( L ) eq(V) fdvolg) = fM {(¢ (0: + AY) ¢> ¥
+eq(¥) - (& + A+ ltrgh + %) f (4.7)

= |l i - 07y

1 1 ; .
—f <V2 log f + Eh + 26— t)g,§<[€i¢,18j¢>a) ® aﬂ>} dvoly

holds on I for every s > t, whenever both integrands are summable over M.

Remark 4.2.2. Ifk = 0, i.e. if € T(E), then, since 1,y = 8" = 0 for any v € TM, the identity

(4.7 reads
it <J =|y|* fdvoly > jM <t//,((9; + Av)w>f + %\1//\2 <5t +A+ %trgh> f— fld%y[*dvol,
(4.8)

so that, in this case, we obtain a monotonicity identity if ¢/ is a subsolution to the heat equation
in the sense that <1//,8[ + AV¢> < 0 and f satisfies 0, f + Af + jtrgh < 0 which holds if f is a
solution to the backward heat equation.
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Remark 4.2.3. More generally, this identity yields a monotonicity formula provided the following
conditions are satisfied:

1. ¥ is an appropriate subsolution of the heat equation in the sense that <lﬁ, (0r + AV)¢> <0.
This holds with equality if ¥/ evolves by a Dirichlet-type flow.

2. f = (s—t)*® where ®is a subsolution to the backward heat equation, i.e. (0; +A+1tr h)® <
0, since then

1 k
(8, + A+ Etrgh + :) ((S — t)kq))
1
= (s—t)%, + A+ Etrgh)d) — k(s — )10 + k(s — ) '@ < 0.

This holds with equality if ® solves the backward heat equation.

3. The matrix Harnack expression
VZlo f—l—lhﬂ-; = H;log f
8S Tt T g T8

is nonnegative-definite. To see this, note that letting {e, } be a local frame for EQ AK~1T*M,
we may write

Z <l5i¢’L€j¢> 0w = ZZ(tgilﬁ,ea) <ea,t£]_¢> 0'®w

Lj Lj @

= Z <2 <‘£i¢’5a>wi> ® (2 <’€i‘//’5a>wi>

i i

so that, if H; log f > Ag, we have

<ws logf,;jée,w,wwi ® w"> = Z(ﬂ log f (2 <tgi¢,ea>wf> ® (2 <tgi¢,sa>wf>
> A(g, (Z <:E,.¢,ea>wf> ® (Z <lf,.¢,sa>w">>

=A-kly|%

B

If g evolves by Ricci flow, i.e. h = —2Ric, then this expression vanishes when g is a gradient
shrinking soliton (cf. [45, Appendix C]). As may be verified directly, (M,g;) = (R",6) is a
special case of this, where f is taken to be the Euclidean backward heat kernel concentrated

at (y,s) € M x I (cf. Remark [1.8.9).

Proof of Theorem [g.2.1. For convenience, we use the abbreviations

(0, +AY) =0, + AY

and

1 k
H* = 0; + A+ —tryh + —.
2 s—t

We first compute the derivative of the integrand:

01 (eg(y) fdvoly) = Oreq() - fdvol, + eg()0, f - dvoly + eq () fOrdvoly
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n

= (010, ¢) fdvol, — %<h -2 (1e,16,0) 0 ®a)j> fdvol,

i,j=1
+ eg(¥) (@f + %trgh : f) dvol,
= (@ + AV)y.y) fdvoly — (A¥y.y) fdvol,

— % <h, iJZn]I <tgi¢,tgi¢> 0'® wj>fdvolg
+ eg(tﬁ)H*f -dvoly — e (Y)Af - dvol, (4.9)

where Propositions [1.7.7 and [1.7.§ were used in the second line and the definitions of the respective
heat operators were used in line 3. We now ‘integrate out’ the lone second derivative terms, starting

#
with the latter one. To that end, consider Y := (tVfT‘/“i ) e I'(TM). By Corollary f.1.4,

- 2 <lVgin¢”Ei¢> - <5V¢,lvf¢> — <lvfdv1ﬁ,¢> —divY

= Y (Vo' @) (1e,¥te ) — (8% 1wpy) — (19pdVyyp) — div Y
i,j=1
_ <v2 £ (et ) o' ® a)j> —{(8%19py) — (19yd"y9) — div Y.

i,j=1

On the other hand, by Lemma ,
(AVy.y) f = (a6, fy) + (87d Y. fy)
= <5V¢,5V(f¢)> + div (fz <t€i¢,5‘7¢> wi) + (de,dV(f‘// > div < Z <l£l_dVI//’¢> wi)

= fI8YY P = (8% iwpy) + FIATYI” + (d79,df A ) — div (fZ ({107 0) = (19679 )

i=1

=2b
= 187912 + F1a%Y = (8% iwp9) + (rwpd ) — div Z
so that the right-hand side of the identity in [i.d takes the form

= (@ + A% g) £+ eg(p)H* £ ) dvol, + (2 <5V¢,@p> 15y - |dV¢|2> dvol,

<V2f+ ~fh, Z <L€L¢ l£j¢>w ®wf>dvol + div(Y + Z)dvol,

i,j=1

- (((a, + ALY f + eg(gb)H*f) dvol, — f (|wj[(// —8VyP + |dV¢|2> dvol, + %|lvf¢|2dvolg

2
f<fo zh, 2 <t£i¢,tgj¢> 0'® a)j> dvol, + div(Y + Z)dvol,
ij=1

- (((at + AV y) f + eg(y/)H*f) dvoly — f (|l\7f,c¢ —8Vy” + |dV¢|2> dvol,

Vi VFRVF 1, o
At + 1,
(R 2

Finally, we compute in an orthonormal frame that

<l€l!// Le; tﬁ) ®'® a)}> dvoly + div(Y + Z)dvol,,. (4.10)

k k
ey) —— = %Jka,mP -
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»lH

1
2

Z 2 lfjlp E
Z [EJ¢| —) <g’ Z <[8i¢’l£j¢>wi ®0)j> (4.11)

j=1 i,j=1

where the final expression is valid in any local frame. Overall, we have the identity

0 (eg(y) fdvoly)
- (((a, + AL Y) f + eg(y) (H* + s%) f) dvol, — f <[vff¢ — 8y + |d‘7¢|2> dvol,
f<ﬂM+l 1t)g’zn:

h+

f f? 2 2(s — <l5i¢’[6‘j¢> o' @wj>dvolg

ij=1
+ div(Y + Z)dvol,,.

Now, if M is compact, we may simply integrate, noting that the integral and t-derivative may be
interchanged by standard integration theorems and that the divergences integrate to 0 by Gauf’
theorem. For complete M, the interchanging of the derivative and integral is still valid, but Gau’
theorem is only guaranteed to hold provided |Y + Z|(-,¢) and div(Y + Z)(-,t) € L'(M) for fixed
t € I [28], but both of these are summable. To see this, we estimate Y, div Y, Z and div Z from
above. Firstly, note that by Corollary [.1.4.

¥1= |57 (st~ es)71

Dispay) + e Iv7]
<f byl |2 e+ 5019

—
S —

<SFlw

1 |VfP kios 1.,
< 3r [FL] e+ Sweer + Jwivn

where the first inequality follows from the triangle inequality and the fact that the {¢;} are or-
thonormal, the second from the Cauchy-Schwarz inequality and the third from Young’s inequality
applied to the terms with underbraces. Secondly, using the same techniques,

|div Y| = <V2f, D (lgilp,[gj¢>wf®wf> %|¢|2Af(5v¢,tvf¢)<,Vfdv¢,¢>‘
ij=1
< V1| D (et )0 @) + S FIAF + FI8TY] - lasg g + FIY1 - lngp a7y
i,j=1

f+|l//|f+

2
<KV g1+ (lﬁ A+ 187 f + ‘ Idvl//|2f> ;

where the last line follows from the fact that

3 (i ttg ol @ ‘
ij=1

2, (et ‘/’>2
ij=1

Z L V1P|, 2
\l Lj
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= D eyl = Kly .

Finally, we compute, again using the same techniques, that

N
Il
kﬁ

D=
VS
—_
&
[o%
<
=
<
S~
—_
=
<
[«%)
<
S~
N——

<f(2(teld Vo) e + |3 (et 0% ) e )
i=1 i=1
- f (J Z <l€zde 1//> \J Z <l€i¢»5vw>2 )
i=1 =1
<f (le 2l @V 418791 | D e Y2
i=1 i=1
< L (R + e+ DlaT P + 15%P)
and
div Z| = [(s5rd"0,9) = (og08%9) = £(A"9.9) + f1"Y + £l
< 5 (Isg a1 1+ lsgyl- 071+ Y1 91+ 079 + 107
1|Vf[? 3 1
<f (5 (1791 + 191?) + S 167y + |y + S ATy + dVW) :
By the finiteness of the integral (1.6), all of these expressions are summable, thus allowing us to
justify the application of Gau3’ theorem. O

Corollary 4.2.4. Suppose (M,g;) is complete for each t € I and f € C*'(M x ILLRT). Then the
following hold:

(i) Assume the setup of §1.11. If (wo; = & + a(t))ses is a one-parameter family of connections

evolving by the Yang-Mills heat flow and
+‘ fD 19917 +167Q° ) + |(9th2}de01 (-.1)

L{(”‘VTJC PN

is finite for each t € I, then the identity

% <LI eg(Q7)f dVOlg)

= L’I{eg(g‘”y (a, +A+ étrthr 2(s4_t)>f

— flora+ 15, Q)
7

_ 2 l _ 1 © w i j
f<V 10gf+ Zh 2(57t)932<15ig ,lng >(’) ®(/J]>}dV01g

L,j

holds on I whenever both integrands are in L'(M).
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(ii) Assume the setup of §1.1d. Ifu : M x I — N < RK evolves by the harmonic map heat flow,
where N is isometrically embedded in RX, and

{ (e 1

is finite for each t € I, then the identity

% ( L e(du) fdvolg>

= JM {eg(du)- (a, +A+ %trgh+ 2(32t)> f

— fl0su + v dul?
7

2 sz
+ 7‘ |dul? + 6V dul? + [0,u)? + |0,dul* } fdvoly(-,t)

(4.12)

_f(w? o L '
f<V log f + 2h 2(s—t)g’z<l€idu’[£jdu>w ® ')} dvolg

Lj
holds on I whenever both integrands are in L'(M).

Proof. (i) This follows immediately from Theorem by taking E = P x 54 g, V the covariant
derivative induced by w, y = Q¢ (= k = 2), using Lemma (0:Q° + AYQ® = 0) and
the Bianchi identity d¥Q® = 0 (cf. Proposition [1.5.4), keeping Remark in mind.

(ii) Take E = RK, V the flat connection and ¥ = du (= k = 1). Note that by Lemma (E)
with X = VTf, there holds

2 2

<((7t—|—AV) du,du)— vvpdu —8Vdu| = — |d,u + 1vrdu
f f

Furthermore, by Lemma @, d"du = 0. Now, theorem would then imply the claim
if the expression ([.6) were finite. However, the condition (}.12) is not quite the same, since
it does not say anything about the summability of |AYdu|? f. We thus go back to the proof of
Theorem [g.2.1. All of the steps there are clearly valid in this setting up to the claim that |div Z|
may be bounded from above by a summable expression. This is still the case, however, except
we must estimate |div Z| from above slightly differently. Note first that, by Lemma (i)
with X = 0 that

(AVdu,du) = — (Opdu, du) + |67 dul* — |0pul?,

whence we estimate analogously to before that

\div Z| = )—(lvfdu,svdu> — £(AVdu,du) + f15"duf’

(1vpdu,8Vdu) + f(0rdu,duy — £|87dul* + f|o,ul* + f]67duf?

_ ‘<1Vfdu,5vdu> + £(0,du, du) +f|8tu\2‘

1 vf

< |14+ |—=

! (z ( |7

which is now summable. Proceeding through the rest of the proof of Theorem then
establishes the claim. O

2
1 1
ul” + - ul” + —|0du|” + |ou|” |,
dul? 5Vdul? Ordul? + |0ul?
2 2
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Remark 4.2.5. Taking M = R” and f to be (s — t)¥® with ® the Euclidean backward heat kernel
concentrated at (y,s) € R" x I, where k = 1 for solutions to (HMHF) (cf. §) and k = 2 for
solutions to (YMHF) (cf. §f.11), we see that this corollary and Remark immediately imply
Struwe’s monotonicity formula (f.1) and a Euclidean analogue of Chen-Shen’s formula (.4).

If either f or ¢ is not compactly supported in spacetime, then we can force a local monotonicity
identity out of the above integrand by introducing a cut-off, as is done e.g. in [11, ig, 9, 12].

Theorem 4.2.6. Let ¢ € C>'(M x LR) and ¢(-,t) € C:(M) foreacht € I, f € C*(D,R") and
€ T(E ® AKT*M) a smooth time-dependent section over D — M x I open with supp ¢(-,t) €
pr; (D n (M x {t})) foreacht € I. Then

i ([ awreaa,) = [ o aw)r e (o 02+ gmne )|
~f- [|d"¢|2 + sy = le]

—f<Vzlogf+%h+ 26— ) Z(teilﬁ,tqlﬂ>wi®aﬂ>}q)2

+2e4(Y) fo (at(P + <V¢ 7 >>
20f [<1V¢¢ s%y — lVf!//> (ivpd"y.y ]dvolg. (4.13)

onl fors = ty.

Proof. We first note that

0t (eg(¥) fo*dvoly) = 2e4(y) fpdrpdvoly + 0, (eq(¥) fdvoly) ¢?. (4.14)
Retaining the notation used in the proof of Theorem and using (.1d) and (g.11), we see that

the latter term may be written as

{| e a0 vy (o4 2 ) | = |1aow iy — o7y
—f <v2 log f + %h - 2(31_ t)g’Z (1e,16,9) 0 @wf>} ¢2dvol,

Lj

+ div(Y + Z)¢*dvol,

but div (Y + Z) ¢* = div (¢*(Y + Z)) — 2¢{(Ve,Y + Z) and

(V.Y + Z) = (iwsPtv0¥) — eg () (V. V) + f (19,0 9.9) — f (1949.679)
= —¢y(¥)(VF.50) = (199087 = 157) + f (1mpd"p).

The result then follows from integrating (4.14) after substituting these expressions in and applying
Gauf}’ theorem. O

Let Sy = 8VY — 1vs and note that the last two terms in the integrand of (4.13) may be
f

estimated as follows:

2¢4(¥)fo <5t<p + <V¢’V7f>> + 20f ({1wp0Sy) = (90079.))

< 2¢,(y)fp (mtqo [Vl \VTfD £ 21190l - 9] (1Syle + [d7l0)
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1 1
< 2ey (9o (2u0lf + (9l 19S1) + 5 - (40P + 51S¢P20" + 3la"90?)

< 2e(y) (¢ (10c0lf + Vol - [VFI) + 4[Vo2f) + = (ISyl* + [Ty ) fo’, (4.15)

[NCR Y

where the inner products were separated out using the Cauchy-Schwarz inequality and the prod-
ucts treated by Young’s inequality. This observation immediately leads to the following monotonicity-
type identity:

Lemma 4.2.7. Letp € C2'(M x 1,[0,1]) be such that

0l p,, s (ote) = cOnstand |y o, 5 (xput) =0

for0 < r; <ry < RwithR > 0 fixed and suppose f € C*(Dg s,(x0,t),R") andy € T(EQ AKT*M)
is a smooth time-dependent section over M x I.

If f. |Vf| are bounded on D, s,(x0,t0)\Dr,.s,(x0.t0) and the inequalities

<8t +A+ %trgh—k %)f < ap+ai(t)f and
f <V2logf+ %h—i— ﬁ) = (by + b1(t)f) g (4.16)

hold on D, s5,(xo,to) for ai,by € C(I) N LY(I), ag,by € R and some s > t, then

d o
o (exp (J; l) JM eg(lﬁ)f(pzdvolg>
< exp (J l) KRN <|d‘7¢|2 "

+ Gy J eg()dvol,,

Bf, (x0)

Sy — 15y
7

2
) dvol,

where I(t) = a;(t) — 2kb;(t) and Cy = Co(l,a9,bo, f,@,r1,r2) > 0. In particular, if

J eg(¥)(-,t)dvoly, < Eo.
M

foreveryt € I, then

% (exp (J;to l) JM eg(tﬁ)ﬂpzdvolg + CoEo(ty — t))
< exp ( [ ) z) [RACRRN IS <|d‘7¢|2 ¥ ) avol,.

Proof. By (lg.15), the last two terms in the right-hand integrand of (4.19) may be bounded from
above by

VY — vy
f

(ISy [* + 17y %) fo’.

N | =

Cr.peq(Y) XB,, (x0) +

where Cr . r,.r, is a constant satisfying

2| (|0colf + Vol - [VF1) + 40P f| < Crprirs = XD,y i (0:20)\ Dy (300 (4.17)

such a constant exists in light of hypotheses on f and the fact that V¢ and 0;¢ are supported in
Dy,.50(%0,t0)\Dr, 5, (x0,0). With this and the bounds () in mind, () implies that
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% (JM eg(‘//)f(PdeOly)

JM <l//’(at + AV)l//>fq;2 _ %f‘ﬂz . [|dV¢|2 + |S¢‘2] dVOlg

N

+(arlt) — 26u(0) | eg9) futavol,

~——IM
=1(2)

+ ((ao — 2kby) + Cf,zp,rl,rz) f eg()dvol,,.
Brz (xO)

Hence, we immediately see that

& (oo (["3) [ ooy

< exp (f l> JM (w,(at + AV)¢>f - %f- [|01V¢|2 + ]S¢|Z] dvol,

ty
+ |ao — 2kbo + Cf, .1, | exp <f l) J eg(1)dvoly, (4.18)
t Brz (JC())

to
Syantl

whence the result follows. O

4.3. Applications. Assume now that M is of locally bounded geometry about (xo,#) with
notation as in Definition [1.7.4 and j, as before.
In this section, we let ¢ : M x I — R be defined by

o(x,t) = x (d’(x,xo) 4o 2}'0)

2(7’ — ]())

with 0 < r < jo and y as in Example [A.1. Note that if d’ (x,x,) < r then

d'(x,xp) + 71— 2jo - 2r—2jo
2(7'*_].0) - 2(7'*_]0)

so that ¢(x,t) = 1. Similarly, if d*(x,x) > jo, then ¢(x,t) = 0. Altogether, this implies that
?lp, s(xpt) = 1 and 90|(Mx1)\1),»0,5(xo,t0) = 0. We now use this cut-off function and a suitably
weighted version of the formal heat kernel to deduce analogues of the monotonicity formulee of
Chen and Struwe [12] and Chen and Shen [11] from Lemma in our evolving manifold setting.
We first introduce this weighted formal backward heat kernel.

Lemma 4.3.1. Suppose k € N and define fi : D, 5(xo,t0) — RT such that

filet) = (4r(to — £))* Pgy (x.1)

with @, as in Definition [1.8.. Then

fil + VA <C

on Z)E,-o’g(xo, t0)\Dy. 5 (x0.t0) with C depending on n,k,r and jo, and fi satisfies the inequalities (£.14)
with

?The constants C and C4 are those of Propositions and and depend only on the local geometry about (xy, ).
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ap = max{%,4c4},

n— 2k
ai(t) = — 5 aolog(4r(ty — t)),

by = —max{2C,—A_o},

n— 2k
bi(t) = 5 bo log(47(ty — t)),

and ay,by € C(Jty — 8,t0[) N L*(Jto — 8,t0[). Moreover, retaining the notation of Lemma [g.2.7,

J:Ol = [Zkz_ nao + k(2k — n)bo] - (log(4m) - (to —t) + (to — t) (log(to — t) — 1)),

and

Clly’ 2||x’
Co < |a0—2kbo+”x—.'°°~(ﬁjo+1+')‘—”°0) exp([l1]1).
r—Jo 2 r—Jo

Proof. We first establish boundedness of fi and V fi on D := Dj s(x0,t0)\ Dy, 5(x0, o). To stream-
ling this, we introduce the auxiliary function

d(x,x)?
(x.1) 1= e (i)
’7m B M (to _ t)m )
where m € R is fixed. Note that
N a2 (x,1)
filxt) = ———~
(47)"
and, by Proposition [.8.8,
dt(x,x
Vi) =~ (),
2-(4n)z :

Thus, since r < d*(x,x9) < jo for (x,t) € D, it suffices to show that

Sup N (x,t) <
D

for m € R. Now, it is clear that for (x,t) € D,

€xp (4(zr—2r0)>
(to — )™

and that the right-hand side is bounded from above provided t € |ty — &, — [ for some ¢ € ]0,6[.
On the other hand,

Nm(x,t) <

2
exp (—4([40)) 4m N
lim ———————— = — lim ™ —t) =0,
it (o —t)™ T exp(—1)
where the substitution 7 = 4([—_:0) was made. This establishes boundedness of 1, on D for each
m € R and thus boundedness of fi and |V f;| on D.
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We now turn our attention to the verification of the inequalities ([f.16). Firstly,

k _ _
(1 ) e = (a0 H g + k(4 0 = 0 0y — k(a0 = 40y
0 —
= (to — )" H*®pyy)
which, together with Proposition [1.8.7, implies that

(H* o k_ t) Jie < (ﬁ tC‘i t) Jie = (— + 4C, log <(4”(t0 — t)l)(n_zk)/sz)> e

ny !
< max{ - 4C} (1 +loe ((4n(to - t))("‘Z")/sz» &

nu 1
< —,4C 1 1
maX{ 2 4} ( +fk Og <(47T(t0 _t))(n—Zk)/2)>
where we have used Lemma [A.q in the last step. On the other hand, by Proposition [1.8.4,

r2
fiHi, (10g fi) > —max{2C,—A_oo} - fi (1 T t)) g

= —max{2C, —A-oo} - fi (1 +log <(4n(t0 — t)l)(nzk)/sz)> I
Z ~max{2C,~Ao}- (l * filog <(47T(t0 - :>><"—2k>/2>> %

where we have again used Lemma [A.{ in the final step. In either case, t — log(t, — t) is both
continuous and summable on |t — §,%,[. Hence,

to to
J | = J a; — Zkbl
t t

- [2"2 a0+ k(2k — n)bo] f:o log (47(t) — u)) du

= [Zkz— a0+ k(2k — n)bo] - (log(47)(to — t) + (to — t) (log(ty — t) — 1))

Finally, we estimate C, as follows: we note that on 9, the inequalities

[ 1o
Vo| < A1
Vel 2(r — jo)
and
/
rol < 2 0 e x)
2(r — jo) ———
<%
so that, by the triangle inequality,
IIX I X1l
2|o (0ol f + Vol - [VF]) + 4[Vo*f| < JOOO 2] 142 ]Oo : (4.19)

Using this upper bound! in the definition of Co (() in the proof of Lemma [g.2.7), the triangle
inequality and the upper bound | Sfo 1) < ||1|]; imply that

C /
Jay — 2kbo| + —”X”‘” <—JO+1+2”X” )]ml 0
—Jo \2 Jo

3Note that the right-hand side of (f.1d) is one such Cf.q.r.jo satistying (1) in the proof of Lemma [.2.7.
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Corollary 4.3.2. Let fi be as in Lemma [1.3.1 and retain the notation of that Lemma. The following
hold:

(i) If ¥ is a smooth time-dependent section of E ® AT*M over M x |ty — 8,to[ such that (0; +
AV)Y = 0 and

f eg(¥)(-,t)dvoly, < Eg
M

for everyt € |ty — &,to[, then

d fo
T (exp <Jr l) JM eg (V) fep*dvoly + CoEo(to — t))
1 o 2
< —3 &P (J; l) JMfk(pz . <dvtﬁ2 + ) dvol, <0

holds on ]ty — 8, to[. In particular, assuming the setup of §.14 and that (w; = &+ a(t))e)r—6.0]
is a one-parameter family of connections evolving by the Yang-Mills flow with

VY — 15 ¥
fr

J eq(Q?)(-,t)dvoly, < Ey
M

for eacht € |ty — 6,1, it follows that

ty
4 (exp (J l) J eg(Q%) fap*dvol, + CoEo(to — t))
dt t M
1 o
< ——exp (J l) f f20*
2 t M

holds on |ty — 8,ty[, where k = 2 in the expressions for | and C,.

(ii) Assume the setup of §r.1d. Ifu : M x |ty — 8,t)[ — N < RX evolves by the harmonic map heat
flow, where N is isometrically embedded in RX, and

2
dvol, <0

(}ta + [szgw
12

J eg(du)(-,t)dvoly, < E,
M

foreveryt € |ty — 8,1y[, then

to
4 (exp (J l) f eg(du) fip®dvol, + CoEo(ty — t))
dt t M
< ——exp l fip
2 t M

holds on |ty — &, to[, where k = 1 in the expressions for | and C,.

2
dvol, <0,

Ot + v du
h

Remark 4.3.3. Note that, up to the form of the error factor f’ I, integrating these identities from
t to ty (t1,t; € |ty — 8,1to[) implies the identities (f1.4) and (fp4) in the case where M is static.

Remark 4.3.4. The energy boundedness condition S 1 €g(+>t)dvoly, is satisfied, for example, when-
ever M is compact and

lim eq(+,t)dvol,, < oo,
Nto—6 M 9( ) gt

which is true whenever ¢ or u is obtained as the solution of an initial value problem with smooth
initial data. This is a consequence of Proposition and Lemma (fid) from which more

general situations where the energy boundedness condition holds may be gleaned.
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Proof. (i) This is a direct consequence of Lemma |g.2.7, where the formula for solutions to (YMHF)
follows from exactly the same observations as in the proof of Corollary @.

(i) By Lemma ()8

(du, (3, + AV)du) — 2

vvpdu — 8 du
f

= — ‘3;1,4 + lVf/fdu|2 .

On the other hand, d"du = 0, wherefore () now reads

d
e (JM eg(du)f(pzdvolg> = JM {eg(du) . (0; +A+ %trgh + . 1_ t) f

—f- [|8tu + twdu|2]
7

2 1 1 i j 2
_f <V logf + Eh + mQ,Z(lgidu,lgjdu> ' ®a)]>} @

Lj

\Y%
+ 2ey4(du) fo ((?tw + <qu, Tf>>
—2¢f <1V¢du,6tu + tgdu> dvoly,
7

where we have used the fact that 1y, du is tangent to N. We may now run through the com-
putation in the proof of Lemma @f\mth Otu + tvr du in place of Sy to yield
f

% (exp <f0 l) JM eg(du)fq; dvoly + CoEo(ty — t) )
<~ e (f l) [ o

which is what we sought to prove. O

2
dvoly,

&tu + lﬁdu
f

We may similarly recover Hamilton’s formulee (B) and (@) in the case where M is compact
and static. First, we begin with a lemma.

Lemma 4.3.5. Suppose k € N and define fi. : M x |ty — 1,t[ — R such that

filx,t) = (4m(to — £))F Plry.a) (x.1)

with P, 1) as in Definition [1.8.1. Then fi. satisfies the inequalities (4.14) with

apg = 0= al(t)
by = —F

bi(t) = —Flog (%) ;
(4r(ty —t)) 2

with B and F as in Theorem [1.8.4, and a1,b, € C (Jto — 1,10[) n L' (Jto — 1,to[). Moreover, retaining
the notation of Lemma l.2.,

fo I =2k (FB - @ (log(4m) + log(ty — t) — 1)) (tg — t).
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Proof. The fact that ap = a;(t) = 0 follows from that Py, ;) solves the backward heat equation.
Moreover, by Theorem and Lemma [A4,

feHi, log fi = —F (1 + fi log ( P TS )) 9
(4n(to—1)) 2 fi

=>—F|1+ log I —— g,
(4(to — 1)*=

whence by and b; may be read off. It is clear that b; is both continuous and summable on ¢y — 1,%,[
since t — log(to — t) is. Finally, we compute

ty to
J I = —Zkf b
t t

fo n—2k
= —ZkJ —FB+F- 5 [log(47) + log(to — u)] du
t

=2k (FB - @ (log(4m) + log(ty — t) — 1)) (tg — t). m]

Corollary 4.3.6. [33] Let fi. be as in Lemma and retain the notation of that Lemma. Set Cy =
2kF||l||;. The following hold:

(i) If ¥ is a smooth time-dependent section of E® A*T*M over M x |ty — 8,to[ such that (0; +
AV =0 and

J eg(¥)(-,t)dvoly, < Eg
M

foreveryt € |ty — 8,ty[, then

I
<o (1) [ 5 <d‘7¢2 + ) dvoly <0

holds on |ty — 8, to[. In particular, assuming the setup of §1.14 and that (w; = &+ a(t))telty—s,t]
is a one-parameter family of connections evolving by the Yang-Mills flow with

VY — iy ¥
fi

J eg(Q”)(-,t)dvoly, < Ey
M

for each t € |ty — min{8, 1}, to[, it follows that

% (exp <J:O l) L e9(2%) fodvoly + CoFalty ~ t))
()

holds on |ty — min{8,1}, %[, where k = 2 in the expressions for | and Cy.

2
dvol, <0

Ora + 1y, Q°
7

(i) Assume the setup of §1.1d. Ifu : M x |ty — 8,t[ — N < RX evolves by the harmonic map heat
flow, where N is isometrically embedded in RX, and
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f eg(du)(-,t)dvoly, < Eg
M

foreveryt € |ty — &, to[, then

% (exp (J,O l) JM eg(du) fidvoly + CoEo(ty — t))
1 fo
e ([ 1) ),5

holds on |ty — min{8, 1}, %[, where k = 1 in the expressions for | and Cy.

2

Oru + vy du| dvoly <0,
h

Moreover, if secy = 0 and dRic = 0, thenl = 0 and Cy = 0.

Proof. Since M is compact, there exists an R > 0 such that M = Bg(xp). Taking r; = 2R = %rz
and appealing to Lemma as in Corollary [t.3.4, noting that D,, s(xo,)\D;,.5(x0,to) so that
we may take Cr g, r, = 0 (cf. (1.17)), we may proceed exactly as in Corollary [1.3.4, noting that, by
(1.18), Co = 2k|bo| - ||I]|1. That I and Cy vanish when sec, > 0 and dRic = 0 is a consequence of
Theorem [1.8.6. O

Integrating these identities and estimating S?’ I accordingly immediately implies Hamilton’s

formulee (§.3) and (1.3) (cf. [33]).

4.4. A technical lemma. We shall now make use of Lemma to derive a technical lemma
which shall be made use of in Theorems f.3.4 and [p.3.4 of Chapter f to deduce the finiteness of
certain singular intervals. This is the equivalent of Theorem for Dirichlet-type flows and
should be compared with the computation in [20, Appendix].

Lemma4.4.1. Letyy €T (E ® AkT*M) be a smooth, time-dependent section over M x |ty — &, to[ such
that either (0; + AV )y = 0 or, assuming the setup of §i.1d, = du (k = 1) andu : M x |ty — 8,to[ —
N < RX evolves by the harmonic map heat flow, where N is isometrically embedded in RX. Set

RM(t) = \/Zm(t — 1) log (M(t:—z_t)>

Then for every 0 < r < min {1, ch:,k ,V 47‘[5} (cnk = nz;zek ), the following estimates hold:
1. Foreveryt e ]to —r? exp (—m> JAm,t, [,
J t eg(¥)(-,t)dvoly,
BR;z—Zk([)(XO)
~ pn Zk( )n 2k 1 o (lﬁ)d 1.d
< GoRy5 ()" —J J e vol,, dt
r rn—2k+2 to—ﬁ Bigcn'kr(x()) g9 g
T Wavoly | (1~ )
e Vo - —
yn—2k B: (x0) g g O 4x
2ep K
2.
to
J ) J |S|? + | [*dvoly,dt
to—iz VB o (X0

O]
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~ 1 to
—2k
e ﬁ B Lt e, (1)dvoly, dt

ZCn’k r (XO)

1 2
+r”TZk J-B eg(lﬁ)dvolg (to - E)

écn,kr (XO)

Here Cy is given by

2
2 2¢Cnk ok

1 1
¢ max {l’lao — 2kbo . ynk max{]|x'[[oo. | X'[1%} - (l—l + + —> }
with ay,by and | as in Lemma x as in Example[Ad and y,, . a positive constant such that

f < Yn,k
rnfzk

and

Yn,k
rn72k+l

IVl <

hold on D, r.5(X0:t0)\De,, ,r.5(X0.t0), T = d"y (= 0 ify = du and u solves (HMHF)) and
S =6 — 1y if (0; + AV)Y = 0 0rS = dsu + Ovru if y = du and u solves (HMHEF).
7 7

Proof. Write e, for e, (1) and let f = "_ZI;CD be as in the proof of Theorem with s > t, to be
chosen later. From (f.27) and (i.2§) in the proof of Theorem and the fact thats —t > t) — ¢,
we see that the bounds (.16) hold withf

ag max{%AC‘;},

nu 1
al(t) max{7,4C4} IOg (W) .
by = —max{2C,—A_} and

bi(t) = — max{2C,—A_4} log (W) :

In light of the argument used in the proof of Corollary [.3.2 (i), if ¢ solves the heat equation or
¥ = du (with k = 1) with u solving (HMHF) (cf. §fi.1d), Lemma (with & = 8, ¢l (xpto):
r1 = cp k7 and r; = 2ry, implies that

d [ !
d (ew’f ¢ -f¢2dvolg) <a| egdvoly —e M | 2 gt (171 +ST) dvoy
dt M Bchvkr(x()) M2

where e, := ey4(1/). Integrating from t, — g to t € ]ty — 8,1t [ and using the bound | {, 1| < [|I||1,
we see that

eIl

T
eIt (J eg.ﬂpzdvolg) (¥) + . f f fo* (IS|* + | T ?) dvoly, dt
M t— = JM

2

2
< COJ J eg,dvoly,dt + ell'll (J €g 'f‘PZdV019> (to — r_)
to—4= JBS,  (x0) M 4r

Zc"’kr

4This should be compared with Lemma [.3.1. As in the proof of that Lemma, C and Cy are constants depending only
on the local geometry about (xy, ).
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. 2
Noting that yp: () < X8t () S @(t) < xpr.(x,) foreveryt €]ty — ;. t[, and
RN (1) "’

2¢y, N3

1 1
TS )T = Grw 7

for t € I, as well as multiplying through by e!lll, we obtain

f eg - fdvol, | () + f f (ISP +|T ) dvoly,dt
Btnfzk“)(xﬂ) Bt n=2k () (x0)

g2l 2
< Gyellllh J J eg,dvoly, dt —|— —% f eg dvoly | (to — r_) (4.20)
to—iz VB, o (¥0) B, . . (x0) 47

To take care of the first term on the left-hand side, we set s = R}~ 2k( t)> +tand fix t € [t) —
r exp (—m) /Ar, o[ as in Theorem fi.12.4. As noted there, s > f; and, in this case,

_ 1

f("t)‘B?

= —— €
rmth ™ T (4 Ry ()2)

xp (—1/4)

so that, discarding the second term on the left-hand side of inequality (f1.2d),

! ! f dvol, | ()
n : — e,avo
T ep(/a) R\, o0

2

2l
< Cell'll f f eg,dvoly, dt + —— f ey dvol, | (to — —).
w22 B, ) B or(50) A

2¢, nk”

As for the second term, we set s = ¢ = f, and note that, by Example f.3.1, t € ]to 4;,1‘0[

and d* (x,xo) < R*%*(t) imply that f > m (cf. introductory remarks in Example f.3.1) so that,
after discarding the first term, we obtain

1 fo
— S| + | [*dvoly,dt
= S + 17 FPavol,
R

X
n—Zk(t)( 0)

" G2l .2
< Cpe''n J dVOlgtdt + ok J - €g dVOlg (to — a)
Bie,, or(*0) B, . (x0)

fo— 471

To more explicitly describe Cy, we proceed as in Corollary [4.3.2 and note that

B 1 o d" (x,x0)? . d" (x,x0)
VFl= (an(s — 1)) 5 F p( 4t —s) ) 2(s — 1)

- Cn kT ci,krz
S m n €ex
(471)77"(3 _ t) —k+1 p 4(t _ S)

_ 1 4 F—k+1 ,—u
T oonm—2k+1 Ik nok1 ¢
r 7z (enk)
bounded for ueR+

on Dy, r.5(X0,10)\De,, ,r.5(X0,t0). Similarly, using the same change of variables,



const(n, k)
rn—2k

on this set. Finally, we make a choice of cutoff ¢:

1) = (- LT 3

2¢cp kT 2
It is clear that this function satisfies the desired propertiesE and that

1 d'(x,x0) 3
Orp(x,1)| < X (= 4 2| [0d (s
Gr0e0] < 5o (= 4 ) [0 ()|
/
e B g
2ep k2 ——
<2Cp kT On supp @
Hiyo
<_ 9
11l
whereas
d'(x,x0) 3
[Vo(x,t)] < 5 X' (= + )| [vd* (-, x0)|
Cn kT 2Cp kT —_—
<1
/
Xl
2Cn kT

Thus, using the definition of C; ((1.18) in the proof of Lemma [1.2.7) (cf. proof of Corollary .3.9),
we see that

’ e
il + el | I
. nk

|ag — 2kbo| + const(n,k) - ,

|
rn72k+2 €

G <

1711
,

where we have used the fact that r < 1. Since r < 1, the former term may be absorbed into the
latter by bounding |ag — 2kby| and |const(n,k, y)| from above by their maximum, implying the
result.

O

5Since we are within the injectivity radii of {g¢ } ;¢14—s, ¢, [ the only points at which this function might not be smooth
are {(xo, t) : t € |tp — &, o[}, but it is constant in a cylindrical neighbourhood of these points.
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PR 5 JR—
Heat Balls

We introduce the sets over which the integrals appearing in our local monotonicity formulee take form—
heat balls. Heat balls were first introduced by Watson [73] as a generalization of Fulks’ ‘heat spheres’ [27]
and subsequently applied variously by Watson [j73] and Evans and Gariepy [24] to the study of solutions to
the heat equation in Euclidean space and by Ecker [18, 2a], Ecker, Knopf, Ni and Topping [22] and Ni [54] to
the study of nonlinear evolution equations in more general geometric settings. The presentation here mostly
parallels that of Ecker, Knopf, Ni and Topping [22] with a few noticeable differences. In particular, we do not
necessarily assume that the “kernel” in question is defined everywhere on the manifold and we assume that
the time derivative of its logarithm is summable over its superlevel sets. The latter condition may be dropped
in certain applications, but it shall be of use to us in establishing monotonicity formule for Dirichlet-type
flows. Moreover, we derive integration formulee analogous to those in [18] in order to simplify computations
to be carried out in the following chapters.

5.1. The story so far. Before proceeding to the introduction of heat balls in our general setting,
let us first review what is known about heat balls in Euclidean space and those in curved settings.

Let f : R" x ]—00,fp[ — R™ be the usual Euclidean backward heat kernel concentrated at
(x0,t0) e R" x R, ie.

Flot) = —— 1 exp (x—_?foz) ,

(47 (tg — t))"/2 4(t — to)

and define for each r > 0 the heat sphere of radius r by S, (xo, %) {f ln } and the heat ball of
radiusr by E,(xo, ) = {f > r_" } It was first shown by Fulks [27] that if u € C?(D,R) is a solution
to 0;u — Au = 0 in the open domain D < R" x R, then whenever (xy,t,) € D and E,(xo,%) € D,

1 2
u(xo,to) = _”J. = x| dS(x,t),
s o) \/4|x7x0| (ts — 1)2 + (|x — x0|2 — 2n(ty — 1))?

where dS denotes the usual surface measure in R” !, This idea was subsequently used by Watson
[73] to establish the representation formula

— xo|?
u(xp,tp) = ff u(x,t) to oy ———dxdt.

Ey(x0.t0)

The idea is that, since f is bounded outside of any open neighbourhood (xo, ), the {E, (x0,%) } er+
an increasingﬂ one-parameter family of relatively compact sets whose closures contain (xg, fy) and,
in a certain sense, tend to (xp,p) as r N\, 0. Thus, these representation formule are local and
provide a natural analogue of the usual mean-value formula for solutions to Laplace’s equation.
They have subsequently been used by Watson [[73] and Evans and Gariepy [24] to study solutions
to the heat equation. Moreover, in considering an appropriately modified version of the Euclidean
backward heat kernel f and different powers of r in the heat ball definition above, Ecker [2d, 18]
showed that these ideas naturally lead to local monotonicity formulee for solutions to nonlinear
parabolic systems such as the mean curvature flow, the harmonic map heat flow and reaction-
diffusion systems. For the latter two systems, the heat balls take the form

1
EY (x0.t0) = {(x,t) € R" x |—00, o] : (47(ty — 1)) % f(x,1) > -
for appropriately chosen y € ]0,n[ [2q].
The heat ball construction was first adapted to a non-Euclidean setting by Ecker [19] where the
heat balls take the form

"That is, E,, (xo, to) < Er,(xo, t) for ry < ry.
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M N E?im(XO, to),

where n — m > 0 and

M= | F(N)x{t}

te]a,b|

is the space-time track of a one-parameter family {F; : N™ — R"},¢}, | of embeddings evolving
by mean curvature flow (cf. §i.12). The construction was subsequently adapted in a different
manner by Ecker, Knopf, Ni and Topping [22] to the evolving Riemannian manifold setting, where
the heat balls take the form

{(D > i} c M x Ja,b[,
rn

where (M",{gt},c]a,5[) is an evolving Riemannian manifold and ® : M x ]a,b[ — R* is a suf-
ficiently smooth function satisfying properties which are typical of the Euclidean backward heat
kernel (cf. §5.2). Finally, the heat sphere construction has been adapted by Ni [56] to the evolving
Riemannian manifold setting, where the heat spheres take the form

1
{P(Xo,to) > r_”} c M x ]a,b[,
where (M",{g: }se]a,p[) is an evolving Riemannian manifold and P(y, ;) is the canonical backward
heat kernel concentrated at (xo, %) € M x |a,b[ (cf. Definition [1.8.1).

5.2. The definition. We proceed to define a notion of heat ball in an attempt to unify those of
Ecker [jd, 18] and Ecker, Knopf, Ni and Topping [22], in particular allowing for different powers
of r, whilst also accommodating for kernels which are not globally defined in spacetime.

Fix to € R, & > 0, m € N and let {(M.,g:)}+c]4,—50,,[ be an evolving manifold. Suppose we are
given ® € C'(D,R™"), where D = Mx |ty — &, to[ is open. Set

EM®) = {<I> > rim} = {log(r"®) > 0} ¢ D
forr > 0 and 0 < m < dim M and write ¢ = log(®) and ¢ := log(r™®).
We assume that there exists an ry € ]0, 1 such that
(HB1) EM(®) npr, ' (Jto — 8.7[) € D for every r €]ty — 8o, to[.
(HB2) |V§|*,0;¢ € L' (EJ(®)), and

(HB3) lim 4] dvolg, = 0.
T, "ty pr, (B (®)n(Mx{z}))

Definition 5.2.1. With the above definition and assumptions, E™(®) is said to be an (m,®)-heat
ball.

Remark 5.2.2. Since ry < ry = EJ'(®) < EJ}(®), if r, satisfies the above properties then so does
r €]0,ro].

Remark 5.2.3. In view of (HB1) and (HB3), ¢ € L'(EJ’(®)). To see this, note that, by Tonelli’s
theorem,

ty
dvol,, dt = dvol,, dt + dvol,, dt.
9t gt gt
v Jpr (Ep(@)n(Mx{t}))

E (@) ER(®)npry ' (Jto—50,7[)
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Since the former integral on the right-hand side is over a relatively compact subset of D, i.e. a set
on which ¢ is bounded, it is clearly finite. On the other hand, provided 7 is close enough to t,,

J |§| dvoly, <1
PI, (EX (@) n(Mx{}))

for t € ]z, [, thus establishing that the latter integral on the right-hand side is also finite.

Remark 5.2.4. Note that by Remark and (HB3), if r < rp < 1, then ¢ > —mlogr > 0 on
E™M(®) and

0= lim |p|dvoly, = lim (—mlog r)f dvoly,
770 Jpr, (B (@)~ (Mx{7})) © pry (E7* (@) (Mx{r}))

~ (~mlogr) lim Vo, (pr, (E7'(@) (M x {r})))

so that

| ¢ dvol,,
pri(E7* (@)n(Mx{7}))

= f [gldvoly, + m|logr| - Voly, (pr, (E7'(®) n (M x {r}))) Z 0.
pri (E (@) n(Mx{r}))

5.3. Examples. We now proceed to give examples of heat balls. In all of the following, let x; € M,
assume M is of locally bounded geometry about (xo, ) as in Definition and suppose jj is as
in (.6) of §h4.

The first example is an analogue of the Euclidean heat balls of Watson (73] and Ecker [20], the
idea being to mimic their constructions with the formal heat kernel.

Example 5.3.1 (Formal Heat Balls). Suppose M is of locally bounded geometry about (xo,#) and
assume the notation in and directly following Definition [1.7.4. We consider

n—m

@ = "y 1= (Dyslxunto) 3 (x,1) = [ty — 1)) 7)) - By

- (Djo,é(xo’to) 2t - nmre F (it(gxi’jo);))

for fixed m > 0.
Note that

d'(x,x0)®? mlog (4r(ty —t))
m _ —ml
A (x,t) > 0 < 2 —10) > > —mlogr

< d'(x,x0)* < 2m(t — ty) log (W) =: R (1)

On the other hand, since t — ty < 0in Dj, 5(xo,%0), we see that

4m(ty — ¢t
R™(1)? = 0 < log (M) <0

2
t 1 r’
S t>tg— —
4’

whence it is clear that

EM(®) = U By (x0) x {2} () Djo.s (x0.10).
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Let

1 2
ro——min{jo- ﬁ,\/4ﬂ5,l}.
2 m
We claim that E"(®) is an (m,®)-heat ball for r < ry and now proceed to verify the conditions
(HB1)-(HB3).
(HB1) We note that

m
R;n < %r (5.1)

wherever R is defined as is evident from a straightforward computation. Thus, we have

. 2
that R;g(t) < ]70 and, from the definition of ry, ty — Z—;’[ >ty — &, whence

EM(®) = U Blte;n(t)(XO) x {t} (52)

2
te]to—:?,to[

and

EM(@) mpr, (o —58,7) = | B (1 (X0) x {t} = Djp.5(x0. 1)

72

re[ty—7%.7]
for every t €]ty — 8, /.

(HB2) We use exponential codrdinates about x, with respect to g; for some fixed ¢. Note that since
sec = k in D;, s(xo,ty), Theorem B.24 and Proposition B.4 imply that

('9:0 dVOlgt) (x) < ngVOIeucl(x)’ (5~3)

for x € B;,(0) = R", where 9, is as defined in Appendix B and Cy is some positive constant
depending only on k and j,. Now, by Proposition [1.8.8,

|x[?
Voo 9y = ————
[V|* 0 Fx, 4ty — )2
and
2 2
|3t¢| Ol9x0 < n |X| ﬂ|X|

2(to —t)  4(to — )% 4(to — t)

hold and, by (5.1), R (t) < jo for every t € ]ty — i to[ so that (5.3) implies that

4>
J‘B

|V$|*dvoly, = J (|Vg|? o x,) 9 dvoly,

t
R (1) (x0) BR;g(z)(O)

and

[ el = [ (oglon.)savol,
B Ry (1) (0

t
R;Bz(t) (x0)
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n |x|* plx[?
<C J + + dx .
K{ Brm (1)(0) 2(tg —t) 4o —t)%  4(to—1t)

It therefore suffices to show that

toy |x‘2
2 J. ——dxdt <
fo— 5 By (1) (0) (to — 1)

and

to 1
2 dxdt < co.
to—7x BR’,g(t)(O) fo—t

The former integral is equal to

to 1 R ()
nwy J Py J W dudt
[Ofﬁ (tO - t) 0

nwy(2m)ttn/2 b ar(ty — )\ "2
o L (Y
t

n+2 0— gL 0
2\ /2 14n/2 roo
T nwy,(2m n
— (o %I s/ exp (__S) ds,
4 n+2 0 2

which is finite, where in the last line the change of variables ‘m(i*t) =: exp(—s) was made.
0

The latter integral may be evaluated likewise:

o [, Bl
T oty —t

0" 4

= a)n(Zm)"/2 fto 2 \/(t — )" ?log (W) ndt (5.5)
ty— 7 0

4

mr2\ "
= Wy <—0> J s exp (—Es) ds
2r 0 2

and this integral is clearly finite.

(HB3) By the volume comparison argument used in the verification of (HB2) and the fact that
pr, (EP(®) npr, ' ({r})) = Bryr (1) (p), it suffices to show that

lim |¢] 0 9% ) (x)dx = 0. (5.6)
7,7ty BR;BL(,[>(O) ( XO)
Now, for ty — ﬁ < T < ty, the integrand is equal to

|x| + m (—log (47 (ty — 1))),

- Rlog ant — )| < o+

where the latter term is nonnegative. On the one hand,
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_ L) \/(Zm)”+2(r —1)" log (w)m'

4(n+2 ry

On the other,

f ™ log(4n(ty — 7)) dx
BR;g(:)(O) 2

—% log(47(ty — 7))R™*(r)"

_ M®n \/(Zm)”(r —to)" log (—4”(t02_ T>> - % log (rg) R7(T)".

2 rs

now follows from the fact that R (7 LEAIN 0 and
(@) ro

a(ty — n+2 r2 n
lim (7 — )" log (M) = (—0) lim s"*?exp(—ns) = 0. O

/b s 47 5—00

Remark 5.3.2. If (M,g;) = (R",§), the preceding example reduces to the heat balls of Watson [73]
for m = n and to those of Ecker [24d] for m = n — y with y € ]0,n[ fixed.

Following [22], we turn our attention to heat balls constructed from the canonical backward
heat kernel on M. However, for later purposes, we shall need appropriate bounds on both ;¢ and
H,,¢ in heat balls which we only have for the case where M is compact and kA = 0. For this reason,
we now consider heat balls on static compact manifolds. Strictly speaking, these do not generalize
the Euclidean heat balls of Watson and Ecker, but they provide an adaptation different from that
of Example f.3.1 in this setting.

Example 5.3.3 (Weighted Heat Balls on Static Compact Manifolds). We suppose that (M,g) is
compact and static and let P, ;) denote the canonical backward heat kernel on M centred at
(x0.t)) € M x R. By Theorem [1.8.5, there exists a neighbourhood Q — M of x, € M and
To € Jto — 1,%o[ such that

1

2®@fml = 1S Plagrg) < 20piy +1 (5.7)

on Q X [19,ty [.E Hence, we set D = Q x [19, %[ and define the map
mP(xg,to) D - R+

(x,8) > (47 (tg — 1)) F Pyt (,1).-

We claim that E]" ("P(y,,4,)) is a heat ball for

1 _
r<ry:= > min{9_1/m, (1 + 29_'”) l/m} ,

where g = min { Var(ty — 1), 4/ Z€ sup{y € RT : By(x) € Q}, ry of Example EI'II}

To simplify notation, we write P for Py, ;) and p for logP. Now, G2 by (o — )7 and
noting that t) — t < 1 for t € [, [, it is clear that

1
SP-1<P<20+1, (5.8)

on D, where ® is as in Example f.3.1.

2This may be seen by first applying Theorem with € = 1, then restricting our attention to a smaller neighbourhood
of x¢ on which the coefficient of cbfml lies between % and 2.
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(HB1) (E) immediately implies that

EP(P) = (P > rol)m) CDA(RD+1> ﬁ)
=D N EZ(P),
1/m
where 7, = ( (,Ol)rzn - 1) and, by (5.9),
EF@) = |J  Bhm (o) x {t} < Bo(xo)x Jto — ?Q—O,to[,
To % 4

;2
te Jto— 72, t[

4

where o9 = /37570 (cf. Example B.3.1). In view of the choice of ry above, it is easily verified
~2
that By, (xo) € Q and |ty — Z—j[,to [< ]7o,to[, whence

E}'(P) < E'(®) (5.9)
and
’f’Z
B2 (B) oty (170, 7]) By (v0) % [to — 527]
c Q x ]To,to[ =D
(HB2) By Theorem [L.8.6,
C
2 _ —))m/2 .
Vot < (logB log ((47r(t0 1)) P(x,t)))
C m
< P (logB - log(4n(ty —t)) + mlogr())
C m
< . — 7 (IOgB — E lOg(47T(t0 — t)))

on EJ" (P), where we have used the fact that log P(x,t) > mlogr, on EJ! (P). Likewise, we
also have that

dip > —— <1+1 ( b )) + "
z—— )
O — &\ an( — )2 P 2(t — 1)

F m m-—n
> — 1+ logB— — log(4r(ty — t —
to—t(+og 20g(”(° )))+2(t0—t)

on E;? (P). Finally, again by Theorem [1.8.4, the upper bound

n (XK= —1) + m
2(ty — 1)

5tp < _ efzK(toft)|Vp|2’

holds, where K > 0 is such that Ric > —Kg. Thus, it suffices to show that (x,t) — ﬁ and

(x,t) — log(‘lg# are in L' (E? (P)). In light of the inclusion (.9). these functions are

summable over EJ? (P) if they are summable over EZ (®@).

Now, the former function was already shown to be summable in Example f.3.1. As for the
latter, in light of the volume comparison argument used in Example f.3.1 (HB2), we may



84 Chapter 5. Heat Balls

bound the latter integral in modulus from above by a constant depending on a lower sectional
curvature bound times

[ lestirtoot)l
tg—é BR;g(t) fo —t

to 4(te — t n+2
< wn(Zm)"/zf . \/(tto)"z [log <¥)] dt
to— =2 T

Yy 0

to

~ 1
+ 2| log 7| 2 J dxdt
fo= 5 JBrE (1) fo =1t

2 ~2\ n/2 o0
= w, ( mro) f (sl+"/2 + 2log7y ~s"/2) exp (—Es> ds < 0,
4r 0 2

where a change of variables identical to that in Example [.3.] was carried out.

(HB3) Since ry < 9~/™ and hence 7, < 4~Y/™ it is clear that ® > 4 on E%’ (@), whence

5 5
1<P<A—L<I>=>O<p<10gz—1+logfb

on E"(P). Thus, to establish (HB3) it suffices to show that

lim | log @ dvoly, =0,
70 Jpry (B2 (@) (M {7}))

but this was established in Example f.3.4 (HB3). O

We now turn our attention to heat balls obtained by pulling back those of Examples f.3.1] and
E.3.9 by mean curvature flow (cf. §f.13 for notation and setup) in the appropriate sense. Such
heat balls were first considered in the case (M,g) = (R",8) by Ecker [18] in a slightly different

light. The following example is— in the class of maps considered— a generalization of the heat balls
introduced there.

Example 5.3.4 (Formal Heat Balls Pulled Back by MCF). Suppose F : N™ x ]ty — &1, t[— M" evolves
by mean curvature flow such that the map (F,pr,) : N x |ty — 81,8 — M x [ty — 81, ] is proper
and fix Ry as in Theorem [1.12.]. Consider ® := "® o (F,pr,) : (F,pr,) " (Dj,.6(x0.t0)) — RT

with "® as in Example f.3.1. We claim that E” (‘bfml) = (F,pry) "' (E™ (®gyy)) is @ heat ball for
r < ro:=min{jo - 4/ 2£¢, \/47 min{81,6}, 7~ Ro,1}. We verify the conditions.

(HB1) By Example @ (HB1),

E™ (@) npr, ' (Jto — 6,7[) < Djy.s (x0.t0)

which, when pulled back by (F,pr,), implies that

Ef (@) npry (It — 8.7]) = (Fopry) ™" (B2 (@) npry " (It — 8.7]))
c (F,pr2)7l (Z)jo,g(xo,to)) .
On the other hand, (F,pr,) ™" (D, s (%o, 1)) is relatively compact, whence (HB1) follows.
(HB2) It is clear that

E(®) = (F.pr,) " (E(®))
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= (F’prz)il U B;;Bz(t)(xo) x {t} (5.10)
te]tg—g,to[
- U Biem 1y (x0) x {t}.

2
tE]to — l’0|:

Now, we note that, by the chain rule, the Cauchy-Schwarz inequality and Young’s inequality,
the inequality

0l = 100+ (H.99) <ol + 5 (1B P + |74

holds. Moreover, since

Vo= Vg + Vg,

where V¢ (x,t) = ((x,t),d<F; (VS, (#)(x, t)) ), it is clear that

Va(@)l = /I Vg | = [V <| V@ | = V9

Hence, in view of these two inequalities, (5.1d) and the gradient and time-derivative bounds
in Proposition (cf. Example f.3.1 (HB2)), it suffices to show that

fo 2
J ) J ———dvoly,dt < ® (5.11)
t B

_ 2
t%’(m(x") )

_h
0™ 4 =R

with v(x,1) := d’(xp,x) and

Jf() JBt (X(]

47r Rm (t)

dvolstdt < (5.12)

since, by Theorem ,E

) mAoRZ R:
f f | H |“dvols,dt < 16 exp J dvoly, | (tp — —) < o0,
to— B' Xo )(x0) 8y By, (x0) 4y

Zne

which establishes that | H |* € L' (E[(®)), since

2

—1 RO t
En (@) npry (Jto — E’tOD c U B' i (x0) x {t}

2 27e'0
Ry
1€ Jto— gy tol

- R} . - R}
and | H e L' (E2(®) ~ pr (It — 12,00 — 32) ), since B (®)  pry (It — 12,10 — 52))
is relatively compact in the domain of F by (HB1).

Now;, in light of Theorem and the fact that v < R(t) on E;m(t) (x0) x {t}, the estimate
o

3 m m 1. fr 1 i
We note here that /52 r) < 4/ 52 - 3 3y Ro < 3Ry, since y = 2m.
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v R (1)*
J = _dvoly, < f dvols,
B B!

,t%'(t)(’%) (to o t) (t() N t)z *R;g(t)(xﬂ)

Rm(t)m+2
g —7
" =1y

exp(—77)
4

2
P1 R

n=1\po+ = J dvoly, | (tp — —)
1 ( 0 Rm> < BRO(XO) 5 0 4}/

with pg and p; as in Theorem [.12.7. Likewise, we have the estimate

holds for t € |z, [ for r =ty — ré, where

1 R™ ()™
J dvoly, <y ro( )
B

7;2;3(”()(0) to—t to—t

for t € ]z, o[ so that the statements (5.11) and (5.12) are true if

J‘l‘o R%(t)m+2

dt < o
T (tO - t)z
and

ty RM()m
f L)tdt<oo,

¢ fo—

are finite, since finiteness of these two integrals establishes that |[V3¢|* and 0;¢ are in

L' (E7(®) npry t (Jr.t0)) -

2
and, by (HB1), the relative compactness of E*(®) N pr; ' (] to — :—;’T, T D) in the domain of F
implies summability on the rest of E; (®) since V3¢ and 0, ¢ are smooth.

Now, the former integral is equal to

(2m)m/2+ f \/(t— f) 2 [log (W)]mwdt

which, in light of the finiteness of the integral (5.4) of Example f.3.1, is finite. Likewise, the

latter integral is equal to

(2m)™ Lto \/(t ~ gy)m-2 [log (%{”)}mdt

which is also finite in light of the finiteness of the integral (5.5) of Example f.3.1.
(HB3) Inlight of (5.1d), pr; (E™(®) N (M x {r})) = Q;m(r)(xo). On the other hand,
o

r R m
- )4(;— to) él(tz—(—)r) + Py (—log(4r(ty — 7)))

~x

- %log (4r(ty — 7)| <
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on élTe;g(r)(xo)' Therefore, making use of Theorem again as in (HB2), we see that it
suffices to show that

lim R—Z;(T)mﬂ

T, tO_T

=0

and

Tli/n}ﬂ Ry (7)log (47(ty — 7)) =0

or, more explicitly,

s oo () -

and

Jim \/(x — to)™ [log(4m(ty )] — (z — to)m log(r2) = o.

We know, however, by making the same change of variables as in Example f.3.1 (HB3) that
both of these statements hold true, i.e. by noting that

4 _ m+2 2\ m
lim (7 — #)™ [log (M)] = (r_0> lim s™*exp(—ms) =0. O

7/t Ty 4 s—0

Whilst not quite being a generalization of the heat balls introducted by Ecker [18], the following
example provides an adaptation of his construction to the case where F evolves by MCF into a static
compact manifold.

Example 5.3.5 (Heat Balls on Static Compact Manifolds Pulled Back by MCF). We suppose that
(M,g) is compact and static and that F is as in Example [.3.4 We take P : D — R* to be the
canonical backward heat kernel on M centred at (xo,t) € M x ]ty — 81, [ as in Example f.3.3,
taking 7o > ty — § if necessary and claim that E*(P) is a heat ball for

r < ry := min {971/’", (1+ ngm)il/m ,} ,

where ¢ = min { V4 (ty — 19) 4/ € sup{y € RT : By(x0) € Q}, ro of Example m}
We note the bound from Example f.3.4 pulled back to N x ]zo, o[:
1
S2-1<P<20+1,

on (F,pr,) "' (D), where @ is as in Example f.3.4.

(HB1) The above bound immediately implies that

EM(P) = (P > #) < (Fpr,) (D) n (0 + 1> ﬁ)

= (F.pry) (D) N EZ (D),
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(HB2)
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1/m
where 7 = <+1> . By Example f.3.4,

(ro)™

@- U Beege)xe U B x {1

=2 =2

t€ Jto— 12, to[ te Jto— 12, 1o
)
= (F —1 B rO
= ( ’prz) Qo(xo)x Jto — E,to[ ,

where gy = /527 (cf. Example E.3.1). In view of the choice of ry above, it is easily seen
that B, (x9) € Q. Thus, we see that

B @) oty (o) = (py) ™ (Bl [ - 2.1
« (F.pry) ™ (@ T ) = (F.pry) (D).

As in Example [.3.4 (HB2), we note that

Vapl < [V,p] and
1
2epl < loepl + 5 (1 H 2+ V0]
with p = logP. Firstly, since E’(P) < EZ (®) and ry was chosen such that 7, does not
exceed the ry of Example f.3.4, it is clear that | H |? is L! (Em(P)). Secondly, since E(P) =

(F.pry) " (EM(™P(xy.15))) With ™P(y, ;) as in Example E.3.4, it follows from Example .3.9
(HB2) that the bounds

Vol <
Vol < +—,

F m
ap = R (1 + log B — > log(4r(ty — t))) +

<logB — %log(‘ln(to - t))) ,
2(t0_— t)

and

n (eZK(t"*t) — 1) +m
0.p < 2K (to—t) _ ,—2K(to—t) v 2
tP € Z(t() _ t) € | p|

hold on EJ?(P), where we retain the notation of Example E.3.4 (HB2). It therefore suf-

fices to show that (x,t) — ﬁ and (x,t) — bg(‘*g# are in L! (E%‘(@)) and thus

in L! (E;;’ (B)) An inspection of the computation in Example f.3.4 (HB2) establishes that

((x,t) — ﬁ) e L! (E;:@)) whereas it suffices to show that ((x,t) — bg@g#) €

R2
L! (E%’ (@) npr, ' (Iz.t [)) fort = ty—exp(— ﬁ)% as in Example f.3.4 (HBz2) since EZ(®)n
pr, ' (Jto — 8,70[) isrelatively compact and (x,t) ~— bg@g# isbounded on this set. Thus,
the integral we are left to establish the finiteness of may, by Theorem [1.12.7, be estimated

thus:

J"O J log(4m(ty — t))dxdt
T BR;:)‘(:)(XO) fp—t

to (o — 1)\ ™" RE(6)™
e (lam o= o () 1o
T 0
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2m2\ ™ o
=" ( 0) f (sl+m/2 + 2log7y - sm/2> exp (—%s) ds < o0.

4 a
Here y; is as in Example F.3.4 (HB2) and a = — log (4”(;+T))
0

(HB3) Since ry < 9~Y/™ and hence 7 < 4=/, we have that ® > 4 on ET(®) so that

5 5
1<£<Z@=>O<p<10gz+log@

on E(P). Hence, to establish (HB3) it suffices to show that

lim | log @|dvol,, =0,
771 Jpr, (EZ (@) (N {7}))

but this was shown to hold in Example [.3.4. O

Remark 5.3.6. Note that the approach taken in Examples f.3.4 and 3.9 is different from that taken
by Ecker [18] in that heat balls were considered as subsets of the parameter space N x |ty — &1, t[
as opposed to being subsets of M x |ty — &1,%[. In our setting, both approaches are equivalent.
However, Ecker’s approach more readily generalizes to the varifold setting of Brakke [8].

For later purposes (cf. Theorems [7.3.4 and [7.3.4), we shall need to know that if E™(®) is a heat
ball for sufficiently small r, then so is EM(® - n) provided 7 is a sufficiently regular function. This
motivates the following example.

Example 5.3.7 (Modified Heat Balls). Let E;"(®) be any (m,®)-heat ball and let n € L*(E}? (®)) N
CY(E!(®)) such that |Vn[? and 0, € L} (E["(®)). Set & := " - | g (). If we write

for 5+ € RE, then

whence

(‘IJ > min{r,ro}_’") c (&) > (re—'l—ao/m)—m)
and (Cf) > r””) c (qD > (min{ro,re’?oo/m})fm) )

so that

~

@) = E;n((b) < Egin{rg,rexp(r]oo/m)}(cp)’ (5'13)

Exlz:in{rn,r exp(—co/m)} (

which in turn implies that L (E:”exp(n Jm) (®)) — L'(E™(D)).

Set 7o := ro exp(—ne/m) so that 7y €]0,r[<]0,1[. We now verify (HB1)-(HB3).

(HB1) (f.19) immediately implies that

EZ(®) npry " (Jto — 8,7[)  EZ(®) npr, " (Jto — 8,7[) € D

for every 7 €]ty — 8,1y
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(HB2) If gg = log @, then gg = ¢ + 5, whence, in view of (5.19) and the following remark, the
assumptions on ¢ and 5 imply that 3;¢ = 0;¢ + Opn € Ll(Em( )) and, since |[V(¢ + n)|* <

2 (|V¢[? + |Vy|2), we also have that |V(¢)|? LI(E%’(CI))).

(HB3) By (), it suffices to show that

lim |$|dvoly, = o,
7t Jpr, (B (@) ~pry ' ({7)))

but \gi?\ < |¢| + || < |¢| + max{n., —n_o}, whence by Remark f.2.4,
—_—
=G

lim |gz?|dvolgr
7t Jpr, (B (@) mpry ' ({7)))

< lim $ldvol,_ + G lim Vol,_ (pr; (EF(®) n (M x {r}))) =
w0 prl(E:g(é)mpr;%{r}))H ’ wh o (o (5 () =)

We thus call the E™ (®) -modified (m,®)-heat balls, or simply modified heat balls. m]
5.4. Integration formulee. We now derive integration formulee for integrals over heat balls

in the spirit of [18] and [20]. These shall be used repeatedly in the sequel. To this end, we shall
consider the “approximate integrals”

JJf q© ¢r ( Xlto—So.to—q [ © prZ)dVOIgtdt’

where Yy, is as in Example [A.1, and analyze them, as well as their derivatives with respect to r, in
the limit ¢ — co. The idea here is that these approximate the heat ball integrals

I"(f) == f fdvoly, dt

Ef (@)

which would, with the right conditions on ®, yield an integral over 0E"(®) upon differentiation
with respect to r (cf. [18]). However, without additional information about ®, we wouldn’t be able
to utilize this technique, which is why we follow the approach of [22].

To streamline the proofs of the integration formule to follow, we summarize the relevant prop-
erties of these approximate integrals in the

Lemma 5.4.1. Let f € L (E;Z’(q))) and suppose J, and I" are as above. Then

1. Whenever 0 < r < ro, we have |J;(f)| < I"(|f]) andr — J5(f) is smooth.

q—%0

—I'(f).

3. Whenever0 < r; <ry <ryand Sr arJa(f)

2. Foreveryr €]0,ro], J; (f)

q—>P0

—— §; J with J € L'(Jr1,r2[), the identity

Irz( Irl J ]

In particular, %]c'] (f) = J almost everywhere on ]0,r[.

Proof. 1. By the first inequality in Example [A.1], it is clear that

[(Xg © ¢ ) (X1t—8.t9—g—1[ © PT2)| < XEP (@) < XEZ(9)s (5.14)
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which establishes the inequality.

As for smoothness, we note that |d%()(q o) = Txgo 9| < M)@ o ¢, which
is summable over [ry,r;] as a function of r, thus allowing us to differentiate once under the
integral sign by standard theorems from integration theory. Smoothness then follows by
taking successive derivatives iterating the same argument.

2. The inequality (5.14) immediately implies that

1F - g o 97) - (Xto—sute—q—11 © Pr2)| < | f Xz (@)
and the convergence properties of y;, (see Example [A.1) that
Jim £ (g ©97") - Cin-s.0—q-11 0 Pr2) = fXEP(@)-

By the dominated convergence theorem, the integral and limit may be interchanged, thus
implying the claim.

3. We note that, on the one hand,

O -a0) = [ 200,

On the other, the left-hand side tends to I"2(f) — I"'(f) by the preceding part and the right-
hand side tends to S:f J by assumption. By the Lebesgue differentiation theorem,

lim — fr]=lim ! FJ=J(r)

n/rr —r r\r g —r

for almost every r € ]0,ry[. The equality above then implies the latter claim.
O

Theorem 5.4.2 (Heat ball GauB). IfX € C'(E",TM) is a time-dependent section of TM such that
div X € L'(EJ'(®)) and X € L*(E[(®)), then

d
= J (X,V(]ﬁ)dvolg[dt:—? ﬂ div Xdvol,, dt
E™(®) ET(®)

holds a.e. on ]0,ro].

Proof. Note that

m
. ﬂ (X,V9) - (xq 097 -(X)ty—6.t0—q—1[ © Prz)dvolg,dt

=(X.V(xqo9))
m .
=2 [0 (12 87) - G sa-g-+1 pra)dvol, d

m . ..
= —7Jq(leX),

d| .
| (0x78)

where the second line follows from the fact that

div(X - (g 0 ¢)) = (X.V(xq 0 7)) + (div X) - (xg © $")

and an application of GauB’ theorem. Now, since div X and (X,V¢) € L'(E,,(®)), Lemma f.4.1
implies that
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—00

—| T (X V9)) = =T (div x) 5 2 (div X)

whence it follows from the fact that

=277 (div X)| < 21 (|div X]) € L' (Jr1,ra),
r ri

for0 < ry <ry <rgthat

J, @
n dr

An application of Lemma f.4.1 then yields the result. O

g g [ m._,.. .
J,(div X)dr 225, J (—71 (div X)) dr.

Theorem 5.4.3. If f € C'(EJ'(®)) n L*(E*(®)) and 0, f € L' (EJ*(®)), then

= H £ 0 dvoly, dt = == J f orf + ftrghdvolg[dt

E'"(cb
holds a.e. on ]0,r,|.

Proof. We compute again:

4

]q(f F0r$) = _Jff o1 O¢r )( 50,t0_q—1[)dvolg[dt

(t(XqO¢r )
—1

e

1
- Jf(atf + Etrgh : f) ' (Xq © ¢7r‘n) ! (X]to—(So,to—q’l[ © prZ)dVOIQtdt>

m

=2 ([ et — g vy, Jp(@rf + S )

r

where in the second line we have integrated by parts with respect to t and in the third we made
use of the fact that

|Xq © 97 |(-sto — 80) < xem(@)(sto — ) =0

The last equality follows from (HB1), viz. the fact that E™(®) n pr, ' (Jto — 8o.7[) € D = M x
]to — 80, to[ for r < ry. Now, on the one hand,

1f - (Xqo ¢/ (-t —q~ O <Ifllo " XEM(®)pr; H(to—g— 1)

whence

U(f (g o M) (oto — g Ddvoly [ < [|flloo - p(ET(®) npry H(ts — g 1)) =0,

On the other hand, 0, f + 3trgh- f € L'(E"(®)) by the assumptions on f in the theorem and since
h is smooth. Finally,

g (0cf + trgh DI<1(ocf1+ 5 IItrghIIocIIfHocH)
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Thus, utilizing these bounds in the same manner as in the Theorem f.4.3, it follows from an appli-
cation of Lemma f.4.1 that

J'Z %‘rjé(f‘at?”)dr = J 2 (_%Ir(atf'i- %trghf)) dr

n L8t

whenever 0 < r; < ry < ry. O

Theorem 5.4.4. If f, f¢" € L'(E(®)), then

m m
— ff f ¢ dvoly, dt = - Jf f dvoly, dt
EF(®)

Em(<1>)
holds a.e. on ]0,ro].

Proof. We compute yet again:

d . m
a r]q(f ’ ¢r ) — J\J‘f q° (]Sr ( —80to—q~ [ oprz)
+f (¢m Xq o ¢ ) (X1to—0,t9—q—1[ © PY3)dvoly, dt
m

Ba 2 [ 70 2 8 gLt (5a5)

Now, f € L'(E™(®)) so that just as before the first term in (§.15) tends to 2I,(f) asq — . On
the other hand, by Example @

q—©
[ X; 0| < C- xp-tatn<gmep-a) — 0

and

1F (87 xq o 97) - (Nt—suts—g—1D] < CF X(gn=0) € L'(D)
so that we may proceed as in the preceding proofs. O

Theorem 5.4.5. If f € C'(EJ*(®)) n L*(EJ(®)) and 0, f - ¢7* € L'(EJ (D)), then

1
f at(f-gb;")dvolg,dt:—f £ gy trgh dvoly, di
EP (@)

EF (@)
for every r €]0,ro].

Proof. We consider

JACRGR) f B(F 8 - (kg © B) - (Ytosto—q-1 © PEy)dvoly, e

[ o xie 8 s opn Gl a0
f f" Xq o Xitg—Suto—q—[ O PLy - —trghdvol dt
(8 o dm) (ot — g vl

(oo o ) 0= aavoly,
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where we have integrated by parts with respect to ¢t in the second line. Now, as in the proof of

Theorem f.4.4, ¢ - Xq o9 47%, 0 and

If 97" - xgo b 0l < Cllfllecl0rdlxem (@) € L' (Qx]ty — 80,10 [),

whence the first integral in (5.16) tends to 0 as ¢ — 0. Furthermore, the second integral in (§.16) is
equal to —J7 (f - " - jtrgh) which tends to —I,(f - ¢)" - 5trgh) as ¢ — oo in light of the inequality

1 1
f o7 - Steghl < SISl - lltrghlloo - 1677] € L'(E (@)).

Moreover, the third integral may be handled by estimating as follows:

[ Gaosm) Cao- g avol,,

q—00

< [ fleo J (1671 xep @) (+to — g~ Hdvoly, =0

Finally, the fourth integral is equal to 0 since )q(¢;" (x.to — d)) < xEp (@) (x,t0 — &) = 0 by (HB1)
(cf. proof of Theorem [.4.3). O

Theorem 5.4.6. IfX € C'(EJ",TM) is a time-dependent section of TM such that div X € L™ (E[(®))
and X € L*(E(®)), then

Jf div(X - ¢;")dvoly,dt = 0

EP (@)
for every r €]0,ro].

Proof. As in the preceding proof,

v 8) = [[ v 91 2 8) - - avao--o @ pradvoly de

= — ff <X, V(Xq o ¢;‘n)> . ¢;n . (X]tof(so,toqul[ O prz)dvolgtdt
—_—
=(xgo97) Vo
= 7J’ (X, Vo) - (¢ - )((II 0 Pr") * Xity—8uto—q—'[ © PTy dvolg, dt,
—_————
q—0

0

where the second line is a consequence of Gaufl’ theorem. Since

<X’V¢> ' (¢;n : Xé] © ¢;”) ) X]to—éo,fo—qil[ o pr2
< CI{X, V) xem(@) € L' (Qx]ty — 8. 10[),

it follows from the dominated convergence theorem that

g0

J(div(x - 7)) =% 0. 0
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Monotonicity of Localized Singular Energies of Dirichlet Type

In this chapter we establish local monotonicity identities for time-dependent vector bundle-valued dif-
ferential forms over heat balls as introduced in Chapter f with the help of the formulz introduced in that
chapter. It is then shown that these identities reduce to local monotonicity formulee when applied to differ-
ential forms satisfying the heat equation, in particular establishing monotonicity formulee for the Yang-Mills
and harmonic map heat flows in various cases where M is curved. The formula for the latter flow generalizes

that of [2d].

6.1. Review. We briefly recall the local monotonicity formula of Ecker [2d] which motivated
the considerations here.
Set

1

Y (x =< (x "x]— : ex bx — xol" !
Er( O’to) {( ’t)ER ] OO,to[. (47[<t0—t))% p<4(t—t0)) = r”)’}

as in §5.1. It was shown by Ecker [2d] that if u : R” x ]0,T[ — N c RX evolves by the harmonic
map heat flow, where N is a Riemannian submanifold of RX, then the local monotonicity formula

Jf |d ? — <Zn: (= au 8tu+iH6 u>dxdt

i=1
E} (x0,t0)

= H \WZ

E2 (X() l‘o)

2
dxdt >0 (6.1)

holds whenever n > 2, E%(xg,t;) = R" x ]0,T[ and |du|? € L'(E?(xy,t)). This formula is a natural
local analogue of the monotonicity formula of Struwe [68] (cf. identity (fp.1) in §}.1 and, together
with a local monotonicity formula for solutions to a certain reaction-difussion equation which was
also established in [2d], served as motivation for the considerations of Chapter .

6.2. Local monotonicity identities. Let (M,{g;}:cs,—s,[) be an evolving Riemannian
manifold with d;g = h. For a C*! function f : D = M x |ty — 8y, — R, write H,, f for the
matrix Harnack expression

1

1
v? -h+ —
f+2 +z(to—t)

g.

Furthermore, suppose ® € C%!(D,R ") with D © M x I open such that E'~2¥(®) is a heat ball for
r < 1y as defined in §5.4 and let ¢ = log ®. We begin with a local monotonicity identity which is
meant to generalize the identity (b.1) and Theorem p.5.9 to Dirichlet-type flows in curved settings.

Theorem 6.2.1. Ifn > 2k and (y, € T(E® A*T*M))
of sections, then

telty—bu10] S @ smooth one-parameter family

Tn2k ” (0e9 + [V92) = (wgttvgy — 67Y) — (1vd" . y) dvoly, dt

E; (@)

7 n—2k , 1 k
Zﬁ m JJ‘ —eg(lﬁ)' (6;¢+A¢+|V¢| +Etl"gh+ t0t>

1
E;~*F (@)

95
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— (@ + AV )y y)
+ liwgy = 8%y [* + [dVy?

+ (7{;0¢,Z<l£i¢,lgjlﬁ> & ®£j> dvoly, dt) dr (6.2)
Lj

holds whenever 0 < r; < ry < ry provided both spacetime integrands are in L! (Ef(fz" (<I>)) If

((x,t) — M) el (EfO’Zk(CD)) : (6.3)

to—t
then the inequality (6.4) holds with equality.
Remark 6.2.2. If k = 0, i.e. i, € I'(E), the identity (b.2) reads (cf Remark [5.2.4)

r=r,
: Ly (o vo|?) — (v dvol, d
pry §|¢| ( 1§+ [V )*( V¢¢,¢> volg, dt
E2 (@) .
ry n 1 1
= J; sy fj *E|¢|2 (atﬁb +Ap + |VH|* + Etrgh)
1 E} (o)

—{(0r + A) y.y) + |dVy|*dvoly,dt |dr

which should be compared with (4.§) of Remark [.2.4. In particular, this implies a monotonicity
1

formula if <¢, (0r + AV)¢> < 0and 0;p + A + [V@|* + Jtrgh = w < 0, the latter of

which holds if ® satisfies the backward heat equation.

Remark 6.2.3. Just as with Theorem , this identity immediately yields a monotonicity formula
provided the conditions outlined in Remark are satisfied with s = 1o, i.e. if the following
conditions are satisfied:

1. ¥ satisfies <¢, (0r + AV)¢> < 0, e.g. if ¥ evolves by a Dirichlet-type flow.

2. ® = (ty — t)*P where P is a positive subsolution to the backward heat equation, i.e. (0; +
A+ %trgh)P < 0, since then

1 k
(0§ + AP + VP[> + —trgh + ——)
2 to—t

(0 + A+ jtrgh + £5)@
@

(0r + A + jtrgh)P _

P ~

This holds with equality if P satisfies the backward heat equation.

3. The matrix Harnack expression

1 1
Vi + ~h+ ——
¢ 2 2(tp — t)g
is nonnegative-definite (cf. the corresponding property in Remark lj.2.9). This expression
vanishes e.g. if g evolves by Ricci flow (h = —2Ric and g is a gradient shrinking soliton (cf.

(45, Appendix C]). This includes the case where (M,g;) = (R",5) (cf. Remark [1.8.d).
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Remark 6.2.4. If @ is taken to be either the (suitably weighted) formal heat kernel concentrated
at (x0,to) (cf. Example F.3.1) or, if (M,g) is compact and static, the (suitably weighted) canonical
backward heat kernel concentrated at (xo,t) (cf. Example f.3.9), then (6.9) holds for sufficiently
small r if |/|* is summable over a certain cylinder (see Lemmata f.3.1] and [.3.9 below). Thus, in
particular, if (M,g;) = (R",8) and, assuming the setup of §i.1d, ¥ = du for a map u : M x
Jty — 8,to[ — N < RX evolving by the harmonic map heat flow (with N = RX isometrically
embedded and n > 2), the identity (EI) may be recovered in light of Lemma (E) (with X =

V).
Proof of Theorem [5.2.]. We first assume that i/, = 0 for t < t < t;, whence, by virtue of the

smoothness of i and ¢ on E" 2 (@) n pr, ' (Jto — 8,7[), which is assumed compact, and the fact
that each term occuring in the integrals is a product of / and something else, each individual term

in the identity (.3) is in L' (E;;*Zk (q>)).
Now, let Y be the time-dependent vector field defined by

Y= (lvqﬂ:z)u = Z <1V¢[//J€,~¢> - eg(‘p)V(ﬁ’

J

where Tz was defined in Proposition f.1.1. It is clear that Y is smooth on EfO_Zk (@) and |Y| €

L%(ER~2%(®)) by virtue of the above remarks. On the other hand,

(=Y. V6) = e (¥)|V9* — vy € L' (7 (@)) .

Now, by Corollary ,

n

divy = Y (1w, vgiste V) — eg(9)Ah = {81949 — (10gd" ¥

i=1

- <v2¢, Y ey y) o' @ wj> —eg(1)Ap — (8V19g0) — (9pd" YY) (6.4)

ij=1

from which it may be seen that divY € L! (Efﬂ_Zk (CID)) Therefore, adopting the notation of §.4

for “approximate integrals”, we note that

[]5 (eg(¥) - (919 +V9I") — livgy ) ]r’z
rn—zk

r=r

" ok — d
= f —rz,l_zkfljg (eg(¥) - (2 + [V9I*) — |1V¢‘//‘2)+_r,izk T (eg(¥) - (@16 + 1V9") — gy ) dr

(6:5)
so that, on the one hand, by Lemma @, the left-hand side tends to

r=ry

rn%Zk Jf eg(V) - (019 + [V9[*) — |ivgy|*dvoly, dt

EF (@)

as ¢ — o0 and the first term in the integrand, integrated alone, tends to

ry k _
f ,inl Jj eg(V) - (0r + \V¢|2) - \tv¢¢|2dvolgtdt dr

r
Ef (@)
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as ¢ — 20. On the other, the latter term in the integrand, integrated alone, may be written as

f T (%J;;(eg(w)at ) - ST, v¢>>)

by virtue of the fact that ey (/) - (0:¢ + |V¢|?) — [ivp¥|* = eg(¥)0:¢ — (Y, V§). By the proofs of
Theorems f.4.4 and f.4.3, the parenthetical expression may be written as

n— 2k
r

Ty AvY = 2peg() = Strgh - eg(1)) + o(1)

as ¢ — o0, where the latter term may be uniformly bounded in terms of ¢ and ry (cf. proof of
Theorem f.4.9). Using Lemma f.4.1 and the dominated convergence theorem, the integrability of
all of the terms occurring in the approximate integrals immediately implies that the integral of the
second term of the integrand in (b.g) tends, as ¢ — o0, to

2 n—2k ) 1
§ o divY — Orey (V) — Etrgh - eg(y)dvolg,dt |dr.

EN2 (@)
Altogether, this reads
r=r;
yn—2k JJ - (0e¢ + |V9|*) — |1wgy|*dvoly, dt
En Zk(cp .

& — 2k 1
= J‘ LTH J <Y,V¢> — eg<¢) . ﬁtgb — 8teg(l//) — Eeg(w) . trgh + diVYdVOlgtdt dr.

n

Ef (@)
(6.6)
By Proposition @ and Lemma ,
dves(§) = @) = (4 3 (aiat) o' ©/)
ij=1
— (@0 + A7) py) — (AT yy) - < hy (ie¥1e¥) ®w1>
i,j=1
= (2 + AV) ) — 167y * — [dVy[* — div (Z((lﬂlp,aw) - (l&.dV(p,[p))gi) :
i=1
where (ﬁt + AV) = 0; + AV, whence
r’:’ _Zszl ff —0req(¥)dvoly, dt
En Zk CI))
= ranﬂ H 6%y 2+ |dVy 2 + <%h Y (e ) o ®wf> —{(6r + AY) .y} dvol,dt
B (@) H

T n—2kt1 jf d1v< l((tg,dV¢ 1//> <tg,¢ 5V¢>)gi> dvoly, dt.

En Zk(q))
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To handle the final integral, we proceed as with the approximation (6.9), again making use of the
proof of Theorem f.4.2:

r=r;

[ty (Gt Gmat)|

| (B (v ) s ) |

i=1 r=r

- Jrz r’:l_—_szl <_J<; (<1v¢dv¢’¢> - <lv¢¢,5V¢>> —Jq (div (Z«’fide"m N <l€i¢’5\7¢>)gi> >) "

i=1

whence, taking the limit ¢ — oo, which is justified exactly as in the previous approximation by
means of Lemma f.4.1, the dominated convergence theorem and the summability of all terms in-

volved, we obtain

_ J ;;Tszl J J div (Z}l((l&dw,lp)([£i¢,5v¢>)gi> dvol,,dt | dr

n

E:—zk(q))
7| n—2k
B J;l pn—2k+1 JJ ‘V¢d ¥, ¢> <lv¢¢ 1 ¢> dvoly,dt | dr
n Zk((I))
r=ry
1
rn—2k fj (<1V¢dv¢’¢> - <tv¢¢,5vxﬁ>) dvol,, dt
E;I—Zk(cp) .
Altogether, this implies that
7| n—2k
J praTeey Jf —0reg(y)dvoly,dt | dr
" En Zk
7 n—2k
- Jﬁ pn—2k+1 JJ |5V¢|2 + |dVIN2 < h, Zl <[£,¢ l£j¢>a) ®w’>
E; (@) H
- <(6, + A7) ‘ﬁ,lﬁ) + <1v¢dv¢,l//> - <1v¢¢,5‘7¢> dvolg[dt> dr
r=ry

rn+2k Jj <‘V¢dv¢»¢> - <lv¢¢,5‘7¢> dvol,, dt

—2k
E (@) rery

Hence, plugging this expression into (b.6), moving the latter term to the left-hand side, using the
expression (b.4) for divY and combining like terms, we obtain

r=r;

rn—zk JJ (04 + [VHI?) — <lv¢¢,tv¢¢ - 5V¢> - <lv¢dv¢,lﬁ2 dvoly, dt

En 2k(<D :;il([//) r=r

ry ok
[T A [ v e (op+ ap 19+ Gungh)

E} R (@)
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<V2¢+ ~h, Z (1e 16, 9) 0 ®Qﬂ>—2(5 Yovgt)

i,j=1

+ (8% 2 + |dVy* = (2 + A7) ¢.¢) dvoly,dt | dr

B J | rr’l’kaZfl H —e(¥)- <af¢’ +Ap + VPP + %trgh + %)

i £ @)
— (@ + AV) i) + Livgy — STy + [dVy?
+<V2¢+ %h-‘r ,.Z_ <[€i¢,[€j¢>a)i®w—i>dvolgtdt dr, (6.7)

2(th — 1) Py

where in the last line (f.11) was used. This establishes the theorem in the case where 1/ vanishes
close to t.

Now let ¢ € T® (E ® AF T*M) be an arbitrary smooth time-dependent section and define the
smooth family of sections i/, by

U (x,1) = Y (x) - xm(to — ).

By the properties of yp, ¥m(-,t) = 0 for t > t; — 271, whence, applying (6.7) to ¢,

1

pn—2k H Xm(to — 1) - ix()dvoly, dt
EfiZk(q)) r=n

7 n—2k B

- J T2kl ” Xm(to = 1)" <eg(¢) (M + A9+ [Vgl* + —trgh + —t>
1 B (@)
<°+AV U) + lisa = 87+ |4y
+ <V2¢ +Sh + Z <l€i[//slsj‘//> o' ®(U]>> dVOlgtdt> dr

7| n—2k
+ J o H 2m(to — 1)t — to)eg (¥)dvoly,dt |dr. (6.8)

EF*H(@)

Now, the latter integral on the right-hand side is nonnegative, since y;, = 0. Since y,,(- — to) —
X]—c0,,[ POintwise and y,, (- — to) < 1 on |ty — &, to[, the result follows from discarding the latter
integral on the right-hand side, using the summability of the integrands to apply the dominated
convergence theorem and appealing to Lemma .4.1.

On the other hand, if ¢,(y/) - 7= € L' (E;’{Zk(fb)) , it follows from

o

(¥

X (t = t0) X (t — to)eg(¥) = xm(to — t) - (to — ) xpu(to — t) - —

~

and an application of the dominated convergence theorem, noting that (ty — )y’ (to — t) ———> 0

(cf. Example @) and that -‘7 ( ) is summable, that the integral in the last line of identity (@) tends
to 0 as m — 0. O

Corollary 6.2.5. The following hold:
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1. Assume the setup of §1.14 and thatn > 4. If (0, = & + a(t)) rejty—so,1[ IS @ One-parameter
family of connections evolving by the Yang-Mills heat flow, then the identity

J] (09 + |V9I*) — <1V¢Qw,lv¢9w - 5V9“>dvolgt dt
n 4((])) -
"2 n—4 2 4
= — - - -
J Jf eq(Q (atgb + Ad + |Vo|* + trgh + 2= t))
En 4

+ \(?ta + lv¢9w|2
+ (Wtogb,Z(lg,.g“’,lng“)ei @gj) dvoly, dt> dr
i,j

holds whenever 0 < ry < ry < ro provided both integrands are in L' (E;,~*(®)). If in addition
((x, t) — &Bgﬂ)) € L' (E}~*(®)), then this identity holds with equality.

to

2. Assume the setup of §1.1d and thatn > 2. Ifu : M x |ty — 8o.to[ — N < RX evolves by the
harmonic map heat flow with N isometrically embedded in RX, then the identity

ﬂ (019 + |V9[*) — (Ovgu. dygdu — 6V du) dvoly, dt
n 2((1)) .
"2 n—2 1 2
= —_— — . A Vol? + =
frl = ff eg(du) (6t¢ + AP+ |VP|” + 5 trgh + 20 = t))
E (@)

+ |0ru + 8v¢u\2

+ (Wtof/iz <5g,-u,0gju> & ®£j) dvol,, dt) dr

L,J
holds whenever 0 < r; < r, < ro provided both integrands are in L' (E}, *(®)). If in addition
((x, t) — M) € L' (E;%(®)), then this identity holds with equality.

To—1
Proof. For the former claim, apply Theorem by taking E = P x 5 49, V the covariant derivative
induced by w, = Q“ (= k = 2) and using the Bianchi identity d¥Q® = 0 (cf. Proposition [1.5.7)
and Lemma [.11.4, keeping Remark in mind.

The latter claim follows similarly by taking E = RX, V the flat connection and ¢y = du (= k =
1), noting the Bianchi-type identity Lemma (). This time, however, we use Lemma (i)
with X = V¢, which states that

((6t + Av)du,du> — |6V¢u — (Svdu|2 = — |(9tu + Ovgu 2

bl

which establishes the claim. O

In practice, we do not necessarily know too much about the integrability of the matrix Harnack
term. However, the proof of the preceding theorem implies a monotonicity identity nonetheless.

Corollary 6.2.6. Ifn > 2k and (y; e T(E® AkT*M)) relto—butof 1S @ smooth one-parameter family
of sections and

k
Orp + AP + |VP|* + —trgh + p— < a(t) and (6.9)
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Hy, (¢) = b(t)g (6.10)

on E:}O_Zk(q)) with a,b € C(]to — 50,1'0[) N Ll (]t() — (So,to[), then

1
|| e (eo)(@u + 96) — {isatreit — 8%9) — (1ogd®pup)) dvol de
EP (@) r=n
7 n—2k 2 2
> J e H exp(£(t)) - (|d‘7¢| + |vpy — 8Vy| — ((at + AV)‘//,(//)) dvolg,dt |dr
E; (@)
for0 < r; < ry < ry whenever the spacetime integrands are summable overE;’O_Zk (@), where
ty
E(t) = J a — 2kb.
t
If only the left-hand spacetime integrand is known to be summable over EfO*Zk(d)) and
|dVy|? + |:V¢¢/—5Vx//\2—((at +AY) ¢,¢) >0 (6.11)
on EfO_Zk(d)), then
1
% H exp(£(1)) (eg(;p)(atqs + V4[2) = (tvgoivgty — 87y) — (lw,dw,w)) dvoly, dt >0
E}*F (@) rer

for0 < ry < ry <ry, i.e the parenthetical quantity is monotone nondecreasing.

Proof. We apply (6.7) to Ym (x,t) := e5()/2y, (tg — t)i (x):

r=r;
1 .
m JJ )(m(to — t)ze»f(t)ll(lﬁ)dvolgldt

—2k
E;l (':D) r=r

B J rr'll—_Tszl H exp(£ (1)) m(t0 — 1)° (—eg(lﬁ) : <6t¢ + 0+ [+ trgh+ tok_ t)

E; (@)

+ vy — 8V P + |dy P — (00 + AV)y¥)
(0. 3 oy} w)) -

i,j=1
+2)0 (b — ) xm (to — 1)e¥ ey () — 0, - exp(€(t)) ym (to — t)zeg(¢)dvolg,dt) dr.

Making use of inequalities (6.9) and (6.1d) and noting that y/,(t, — t) = 0, 6;¢ = 2kb — a and

<g, P AS ®wf> = k[y|* = 2key (),

ij=1

we may estimate the r-integrand of the right-hand integral of equation (b.12) from below by
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S || et — 02 (egra+ lwpy — 8P + 19

EFH (@)

—{(@r + A P) + 2kbey () — (2kb — a)eg(l//)) dvol,, dt
n— 2k

IS ] et (lway — 8T +18F (@ -+ A7)y dvol,
E;*N (@)
(6.13)

Since exp of is bounded on |t, — &,t[, we may take limits exactly as in the preceding theorem,
thus establishing the first claim. For the second, we bound the right-hand side of (b.13) from below
by 0 and then take limits. O

Remark 6.2.7. If (8; + AY)y = 0, then (b.11) clearly holds. On the other hand, if = du and u
solves (HMHF) then, by Lemma [i.10.9, the left-hand side of (6.11) is equal to |0,u + 1ygdul® = 0so
that this condition also holds.

6.3. Applications. We now proceed to apply Corollary and Remark to establish
local monotonicity formulee for forms evolving by Dirichlet-type flows. We first prove a lemma
which guarantees the finiteness of certain quantities appearing in the identity (6.). In all of the
following, we assume that:

1. (M",g) is an n > 2k-dimensional evolving Riemannian manifold of locally bounded geome-
try about (xo, o) with bounds as in Definition [.7.4, and

2. (Y, e T(EQ®AF T*M):e)ty—5,1,[ 1S @ smooth one-parameter family of sections such that

a) (0r + AY)y = 0, in which case we write S = 1y4y — 6"y and J = dvy, or

b) ¢ = du, where, assuming the setup of §t.1d, u : M x |t, — 8,t[ — N < RX evolves by
the harmonic map heat flow with N isometrically embedded in RX, in which case we
write S = 0;u + 1ygdu and J = 0.

Lemma 6.3.1. Let ® be as in Example[5.3.1 (with m = n — 2k). If the integral

ty
f J eg()dvolg, dt
to— Rizg B (x0)
n,k

167c

is finite for some R > 0, where c, j = 1/ "Z;Zek, then the quantities

((x, t) — &W)i) and |S|?

) a0+ 196 ~ (00.5) (07 1),

arein L'(E,) forr < rg:= min{%, ro of Example 5.3.1}.

Proof. Firstly, by Lemma [1.4.1,

ﬂ |S|? + | [*dvoly,dt

Ep7R (@)
J J ¥)dvolg,dt + J y)dvoly | (to — —) |,
t077 Zc k70 (x[]) B, 0

2c kr()

where Co is as in Lemma @ whence the left-hand side is finite, since 2¢,, k7o < R.
Secondly, again by Lemma [g.4.1,
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[ W0,
B

o 0

2

R" Zk( )n 2k N r
<0 f f ¥)dvoly, dt + f es()dvol, | (to — —)
y—t ” Zk ro to— BzfC kro(xo) 7 Bicn,kro(x") I g 4
(6.14)

foreacht € Jtg — rg exp (—ﬁ) /A, to[ < ]to — g,to [ In light of the fact that, by (HB1),
n_

=:dp i
2

r
0
- tO - dn,krg[)

ok _
Bl e ) 1) = B @) oy (1o - £

2
"o 2
te fo*m,to*dnykrg

is relatively compact in M x |ty — 8,1y[, it suffices to show that

J v J WY L w
toy—dp e JB? () fo—1t 9

2k
Ry ()

is finite, which, by (), is guaranteed if

[ Ry (0
1

o—dn,k’“g fo—t

is finite. We know from the computation of Example [.3.1 (HB2) leading to (5.5) that

n—2k/,\n— /2—k
Jl‘o Rr() 2 (t) 2k dt _ (n — Zk)rg n J‘OC sn/Z—k eXp (_ (E _ k) s) ds
T ty—t 27 0 2 ’

0" ax

which is finite.
Finally, by the Cauchy-Schwarz inequality and Young’s inequality,

eq (1)@ + V) — (1590 — (10s.T¥),
< e (¥) (1209] + V) + V91 191 - IS] + 99| - ¥ - |7
< egl9) (12081 + 3199%) + 5 (ISP + TP

Thus, we need only show that e, () (|0;$| + 3|V¢|?) is in L! (E;'(TZk (CI>)) Now, by Proposition
1.8.8,
7d" (x,%0)? n pr?

+
4(ty—1)%>  2(tp—1t)  4(t—1t)

7 n 7
< —' R 2k + + R 2k
4ty — )% " Ok 2(tg—t)  4(tp—1t) ™ Ok

0:¢] + 3|Vg|* <

on Ef(ka (®) so that, by Lemma [4.4.1,

o @60 -2l +iver) avly
Ry R0 0
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Co 1 ([ r2
< —-c(t) —2J 2 J eg()dvoly,dt + f eg(y)dvoly | (to — 4—)
r ro Ju—i JB, | (x0) Bie, ro (%0) i
(6.15)
for each t € |ty — dy k72, 1o [, where
C(t) _ 7 Rnfzk(t)n72k+2 + n Rnfzk(t)nfzk + H Rnfzk(t)n72k+2
4ty —1)2 2(tp—t) ™ 4(ty—1t) ™ '

As before, it suffices to show that ¢ is summable over ]to — dn.k rg,to [ Now, the middle term in
the expression for ¢ was already shown to be summable on this interval. On the other hand, since
R;’O_Zk(t) < ¢p k7o and

RI2K (12 _ _omlog (477:(1‘0 — t))

(tg —t)2 r2

2
which is summable over |, — :—;’T, fo[, it is clear that the first and last terms in the expression for
c(t) are also summable over this interval. m]

Theorem 6.3.2. Let ® be as in Example5.3.4 (withm = n — 2k). Suppose that the integral

to
J - J. eg(1)dvoly, dt (6.16)
o= 167c? K Bltz(xo)
is finite for some R > 0, wherec, = 4/ % Then there exist an ry > 0 depending on the local

geometry of M about (x,t), § and R, and a function & € C(Jty — 1,y]) with £(ty) = 0 depending on
the geometry of M such that for 0 < r; < ry < ro, the identity

1

] ewe) (@6 + 199) — (wpurwsy — 89) — (1067 .9)) dvoly o

E (@)

" — 2k
>f ﬁ H exp(£(1)) - (\j|2+|3\2) dvoly,dt |dr

181 g
(@)

holds. In particular, the quantity

r"iZk Jj £ (Qq(‘ﬁ) (5t¢ + |V¢|2) _ <tv¢¢,lv¢¢ — (SV¢> — <1V¢j,xﬁ>) dvoly, dt
)

EF (@
is monotone nondecreasing inr.
Remark 6.3.3. ry is as in Lemma f.3.1 and ¢ is given by (b.17) below.
Remark 6.3.4. Note that

1. Ifn >4, {w; = @+ a(t)}se)s,—s,1[ is a family of connections on a principal bundle P — M"
evolving by the Yang-Mills flow according to the setup of §f1.11 and the integral (6.16) is finite
for y = Q%, then this identity holds and reads
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r=r;

,n1_4 H exp(¢(t)) (eg(Q“’)(&t¢ +|V$[%) — (1v4Q°. 0ra + %Qw)) dvol,, dt

EP (@)

r=ri

r _ 4
> f i =3 ff exp(&(1)) }ata + lv¢9w|2dvolgtdt dr,

r rn
Er (@)

and

2. Ifn>2,u:M" x |ty — 8,t[ — N = RX evolves by the harmonic map heat flow according
to the setup of §fi.1d, where N is isometrically embedded in RX, and the integral (b.16) is
finite for ¢ = du, then this identity holds and reads

r"%z jf exp(&(t)) (eg(d“)(atf}S +|Vg|?) — <lv¢du,(7tu + lv¢du>) dvoly, dt

—2
B @) r—r

ry _
> J- r:,n—lz ff exp(&(t)) |(7tu + lvqsdu!z dvoly,dt |dr.

n
E}TH(@)

Thus, these identities yield local analogues of the Chen-Struwe and Chen-Shen formulae(cf. §fy.1).

Proof of Theorem 6.3.3. Let ry be as in Lemma p.3.1. We first note that, by Proposition [L.8.7,

< <% ¥ _C4df<xo,->2)

2 to —t

< (% — 2(n — 2k)Cy log (W)) =: a(t)

To

1
01+ Ap + Vo[ + ~trgh +
2 to—t

on E%_Zk (@), where Cy is a constant depending only on the local geometry about (xo, fy). Similarly,
by Proposition [.8.8, the inequalities

Cd'(xo, ) A
B 0 oo)g

7‘{t0¢ = ( Z(t() — t) 2

§ ((n g <4ﬂ(t:2— t)) . A,zoo

0

>9 =:b(t)g

hold. Since a and b are continuous and summable on |t — &, t[, we may appeal to Corollary .2.6,
keeping Remark in mind and noting that since the integral (b.14) is finite, the integrals of
Corollary all exist by Lemma f.3.1. To compute &, note that

a(u) — 2kb(u) = (”7" _ 2(n — 2k)Cy log (‘i—f) + 2k(n — 2k)Clog (‘i—f) _ k/loo>

0 0

~-
=:a

+ 2(n — 2k) (kC — C4) log(to — u),

=:b

whence,

ﬂﬁ—Jfa—ZM‘%0—®@r4)+MM—ﬂbﬂ%—O, (6.17)

whence the result follows. ]



107

We now turn our attention to the case where M is static. We again prove a lemma ensuring
finiteness of the integrals we consider.

Lemma 6.3.5. Let (M,g) be a static compact Riemannian manifold and P := ”_ZkP(xO,,O) as in Ex-

ample5.3.9. If the integral

ty
J , J eg()dvolg, dt
ty— szk Bgr(x0)

16 c

is finite for some R > 0, where c, j = 1/ "Z;Zek, then the quantities

() LY ey9) (up + [9917) — (154:8) — (0T 5) . LT amd ISP

are in L'(E,) for

1/(n—2k)

1
r<ry:= min{g (2(471’5) 7 +1 , ro of Example F.3.4},

>

n—2k )71/(n*2k) 1

on—2k+1,n—2k
n,k

1+

Rn—2k
where p = logP.

Proof. From Example f.3.4 (HB1) and Example f.3.1 (HB1), we know that

?’2

Ep K (P) < EL7M(®) < By, . (x0) Xt — ﬁ,to[, (6.18)

where

1/(n—2k)

and @ is as in Lemma @ whence we see that i is defined on EfO*Zk (P), ie. that EZ;Zk (P)
Be, o7 (X0) % Jto — &, to[ provided

[l

n— —1/(n—2k)
ro < (2(4715)7 T 4 1> "

which is guaranteed in view of our choice of ry. Moreover, since

1/(n—2k)
1

on—2k+1 C”*Zk
n,k

1+ Rn—2k

we have that ¢, 17 < R. Now, by (b.18), we immediately see that, since ((x,t) — ey () (x,1) - T )

-t
|S|? and | T |? are in L! (E;“Zk (¢>)> and thus also in L! (Ef(fz" (P)) . As for the remaining function,

we estimate as in Lemma :

leq(¥) (2up + 1Vp1) = (15,9-8) = (190 )
(ISF*+1T%) -

N | =

< eg(¥) (|0ep] +3|Vpl*) +
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Now, by the computation in Example f.3.3 (HB2),

t ,nk 4m(ty —t
v < Somstlgeommk) (1_10g(M) and

o —t ré

4m(ty — ¢
|0:p| < const(geom,n, k) - ( ! (1 + log (M)) + |Vp|2) .
o —t FO

We note that

1 log (47{(to—t))_ : RE72R(1)?

ty—t ré 2(n — 2k)(to — t)?

so that it suffices to establish that the integral
n 2k
t
Jf (e —————dvoly, dt
to —t)
En Zk

n Zk(t)g

(f —1)

is finite, but it was shown in Lemma f.3.1 that (eg(lﬁ) . ) e L! (E;'O_Zk (@)) so that this

also follows from (b.18). O
Theorem 6.3.6. Let (M,g) be a static compact Riemannian manifold and P := ”*ZkP(XU’,O) as in

Examples.3.4, where k € N n [0, 2[. Suppose that the integral

ty
f J eg()dvoly, dt (6.19)
ty——2— B! (x0)

0 2
lénLn,k

n—2k
2me *

geometry of M about (x,ty), § and R, and a function & € C(Jty — 1,1y]) with £(ty) = 0 depending on
the geometry of M such that for 0 < ry < ry < ry, the identity

is finite for some R > 0, where c,, . = Then there exist an ry > 0 depending on the local

1
s H exp(£(1)) (eg(0)(@up + 19pI) = (15ptngty — 8%9) = (15,7 ) ) dvoly, de
Er K (p) —
n on—2k
> Jrl ﬁ fj exp(&(¢)) - (|j| + |S] )dvolgtdt dr
E;TR (p)

holds, where p = logP. In particular, the quantity

1

o ” e5(0) (eg(lp) (2ep + IVpI?) — (19p¥uirpyy — 6%9) — (lvpj,w)) dvol,, dt
;2R (p)

is monotone nondecreasing inr. If secy; = 0 and dRic = 0, then £ = 0.

Remark 6.3.7. ry is as in Lemma f.3.9 and £ is as in (b.2d).

Remark 6.3.8. Note that
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1. Ifn >4, {w; = @+ a(t)},e)s,—s,1[ is a family of connections on a principal bundle P — M"
evolving by the Yang-Mills flow according to the setup of §ft.11 and the integral (b.19) is finite
for ¢ = Q¢, then this identity holds and reads

r=r;
jj exp(& eg(Q°)(0rp + |Vp[?) — <leQ ,0ra + 1y, Q >) dvoly, dt
En 4 P) —
2 n—4 ©
> — exp ‘(%a +1ypQ | dvolg,dt |dr
-
; Erie)

and

2. Ifn>2,u:M" x |ty — 8,t)[ — N = RX evolves by the harmonic map heat flow according
to the setup of §fi.1d, where N is isometrically embedded in RX, and the integral (6.1d) is
finite for ¥ = du, then this identity holds and reads

r=rp

Jf exp(& eg(du)(atp +|Vpl?) — <vadu,8tu + lvpdu>> dvoly, dt
En 2 P)

2 ln-2 2
> J;l pry JJ exp(&(t)) yﬁtu + tvpdu| dvolg,dt |dr.
E}%(P)

Thus, these identities yield local analogues of Hamilton’s formulz (cf. §g.1).

Proof of Theorem [.3.4. We work on EJ~ 2k (P) where ry is as in Lemma p.3.9. By Theorem [L.8.,

B
7'{t0p > —F <1 + log (W) — p) g

B

<0

on E;’O_Zk (P) so that the inequalities (b.g) are satisfied by P with

a=0and
b(t) = —F [ 1+ log B (= 0if 0 and dRic — 0)
= — o D ——— secyr = 0 an C =
(4r(ty — 1))z F

Moreover, it is clear that both a and b define continuous, summable functions on |ty — §,%;[ and,
adopting the notation of Corollary b.2.6,

fo B n—2k
1+1 — ] = log(ty — u)d
t + log <4n> 5 og(ty — u)du

=U0t»(lH%<£>n%ﬂ%%ﬂD> (6:20)

2

i) = szJ

In light of the finiteness of the finiteness of the integral (b.1d), we may appeal to Lemma [.3.9 to
apply Corollary exactly as in Theorem [.3.4, which establishes the result. O






JR— 7 E—
Monotonicity of Localized Singular Area of a Submanifold Evolving by Mean
Curvature Flow

In this chapter we establish a local monotonicity identity for embeddings evolving by the mean curvature
flow using the heat balls of Chapter f in a similar manner to Chapter . This identity then leads to monotonic-
ity formulee in various cases where M is curved, thus furnishing a generalization of the local monotonicity
formula of Ecker [18]. The various terms arising in the formula should be compared to those arising in the

formula of [59] (Theorem [.12.6).

7.1. Review. We recall the local formula of Ecker [18] which served as motivation for the
identityof §f.2.

Let{F; : N — R"}te]to_&to[ (to € R, 8y > 0) be a smooth one-parameter family of embeddings
evolving by mean curvature (cf. §fi.12) and set

E,(x0,0) = M n {(x,t) eR" x |—o0,t[ : ®(x,t) > rim}

for (xo,tp) € R" x R, where

M= | F(N)x{t}

te]to—do, b [
is the spacetime track of {F;};c]s,—s,,7,[ and
1 2
<I>(x,t) _ — exp <|x x0| ) )
(47 (ty — )% 4(t — 1o)

It was shown by Ecker [318] that if F; is well-defined in a cylinder of the form Bgr(xp) x ]ty — &,t[
in an appropriate sense,” then the identity

d
Sl [ e i) area
)

E,(x0,10
d
o [ (sl o (- a)u) ereman

E;(x0,0)

holds for sufficiently small r, where dH™ denotes m-dimensional Hausdorff measure, ¢ = log @,
¢, = p+mlograndu € C>(R" x I,R). It is evident that if u = 1, then we obtain the monotonicity
formula

d 1
dr | rm

[[ Qe+ s anmat | >0
Er(x[l»to)
which is a local analogue of Huisken’s monotonicity formula (cf. Theorem ), Note that all

of the quantities appearing here are considered on M < R" x |iy — &, to[, as opposed to being
considered on N x |ty — &, to|.

7.2. Local monotonicity identities. Let (M, {g:}c]s,—s,,s,[) be an evolving Riemannian
manifold with 0,9 = h and {F; = F(,t) : N™ — (M",g;)}e]ty—60,1,[ @ family of embeddings

'In our case, we assume that (F, pr,) : N x I — M X I is proper in place of this.

111
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evolving by mean curvature flow such that (F,pr,) : N x |tg — 8o, [ — M X [t — 8, to| is proper
(cf. §f.17 for notation and setup), and let ® € C>! (D, — R*) with D < M x I be such that E™(®)
is a heat ball? for r < ro (cf. §5.2). As in Chapter f, write ,, f for the matrix Harnack expression

1 g
Vif+ <h+ —F—
f 2 2(ty — )
of f e C21(D).
The following theorem should be considered a local analogue of Magni, Mantegazza and Tsatis’
generalization [59] of Huisken’s monotonicity formula (Theorem [L.12.6).

Theorem 7.2.1. Ifu € C*>'(E(®)) ‘¢ e L (En(D)), then

to—t

1 1
“ Jf u [|V3t?|2 + <| HIJ* 5tr:;F;"h) d)_;‘] dvoly,dt
EP(®) r—r,
r m
= L rm+1 JJ —u - (&gb + Agth + |Vg[¢|2 trgh + m)
' E(@)
— ¢ - (0 Yu+ulH -V +u- try Hy, (¢)dvols, dt |dr  (7.2)

forO < 1 < ry < ry provided both spacetime integrands are in L' (E ( (@ )) Ifu > 0, then the
TePE L' (E™(®)) may be lifted so that the the identity () holds with = in place of =.

Remark 7.2.2. As with Theorem (cf. Remark f.2.9), this identity implies a monotonicity for-
mula if ®(-,¢) = (ty — t)“Z P(-,t) for a positive subsolution P of the backward heat equation and
if H;,¢ < 0, which in particular holds for (M,g;) = (R”,8) taken with ®(-,t) = (to —t)"z_ P(-,t)
with P being the standard heat kernel on R".

Remark 7.2.3. If u is bounded on E}'(®) and @ is either the (suitably weighted) formal backward
heat kernel (cf. Example F.3.4) or, if M is static and compact, the (suitably weighted) canonical
backward heat kernel concentrated at (xo.%y) (cf. Example f.3.5), then the estimates of Examples
5.3.4 (HB2) and E (HB2) immediately imply that the integrals of () (see Theorems and
7.3.4). In particular, if (M,g;) = (R",8), we recover (ﬂ) up to the choice of working in N x
]t() — 50,1'()[ or M x ]t() — 50,t0[.

Proof of Theorem [7.2.]. We first assume that u(-,t) = 0 for t € [rg,t,[. Just as in the proof of
Theorem f.2.1, we first approximate:

1 r N 1 r=r;
[t (v |wsstt ez (1= Gesre) )|
r 1
- | ( | [lwiz tor (' U= gteaft h>]> &
ry 1 d ) 2 m 2 1
+L 7 ar ( [vm@ o ( HI =gkt ”)D o

We note that, since u vanishes near ty, each individual term in the approximate integrals is summable
over EJ (D), i thus allowing us to freely separate these integrals.
To calculate the latter integral, we note that, by Theorem f.4.2,

2Recall that ® = ® o (F, pr,) : (F, pry) " 1(D) — RT.
3In particular, each term represents a continuous function supported in EJ? () N pr;,’ ! (Jto — 80, % (2o + 70)[), a rel-
atively compact set in N X |ty — 8.
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% Ty (u93,8.95,9) ) = = I (diva(uVs, 6)) = =T ((Va,u,V5,9) + utsg)

whilst, by Theorem f.4.4,

—] < < H”- —trﬁ*h)) m]; <| H|>- %tr:;th) +0(1)

as ¢ — o0, where the remainder may be bounded from above uniformly in r. Thus, by Lemma f.4.1
and the dominated convergence theorem, taking the limit ¢ — o in the above yields

r=ry

1 1
p Jf u- [|V3t¢|2 + - <| H— Etr:;th)] dvols, dt

B (@) .

2 m 2 1 *
:J ,m+1 U (|Vs,g| +gp - (| H [ — St h>> —(V3,u,95,4)
n
E(®)

1
—ulAzd +u- (| H>— EtrsFt*h) dvoly,dt |dr,
Now, by Proposition

D = Mg — try V2 + <Vg,¢ H>

On the other hand, we note that

Vs,9° =1 Vg8 | = V24

and

trgh = trsFfh + trg b,

Proceeding with these identities in mind,

r2 m 1
:J T ff — <0t¢+Ag¢+ |V_,,,gz5|2 —trg ) —uﬁ~ (| H | — EtrgF;“h>

E(®)

ue0up— (Va,u.V5,0) +u (| H [P+ V4P - <Vg,¢,H>)
+utrl (V26 + h)dvoly,dt |dr. (73
g 2 3, . (7.3
Now, together with Proposition and the identities

6 = tig — (V1)

and 6t¢ Ot , an application of Theorem f.4.9 yields
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Jf u - Orgdvoly, dt = ff u- 6t¢r —u-<V9[¢,Ij>dvolgtdt

B @)
f f g tu- gy ((Ij Ij>——tr‘)F h) <Vgt¢,H>dvolgtdt
EP(®)

On the other hand,

R A
920ty —t)  2(tp—1t)

Proceeding from (7.9) with these two identities in mind and completing the square in H and V¢
and writing

—m

1 n
Lp =010+ Ay + |V dI2 + —trygh + —,
¢ (t¢ y¢ | 9t¢| 2 rg 2(1’0 t)

we obtain,

_f: ,.nTH fj _u.<%)_u.£.<|lj|2—étr3ﬂ*h>

E7(D)

— O ¢ +u- g << Pj)—%trgF;”th) —u<Vg,¢,Ij>

—(Va,u.V3,8) + u- | H =V [ +u(H.V5g) + utryH;, (§)dvols, dt |dr

:r e ﬂ —u- L +ul H=V"$]° +u - tr;Hy,(9)

L8t
EP (@)

— du- ¢ — (V3,u,V5,8) dvoly,dt |dr.

3,
Now, it is clear that

<V3tu,V3t?> = diV:; (ﬁ Vgtu) —ﬁ . Vgtu

which, together with Theorem f.4.6, implies that

J J (V3,.V3,4) dvoly,dt = ﬂ P - Agu dvoly, dt

E (D) 7(2)

which establishes the result in the case where u vanishes close to t.
Now, consider u; : (F,pr,) (D) — R defined by u;(x,t) = y;(to — t) - u(x,t). The above
implies that

r=r;

1
- Jf Xi t() —l’ |:|V§ ¢|2 <| I;I |2 — Etr:;F* > d)r ] dVOlﬁtdt
r

r=n
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ry 1 -
- J rnrznﬂ Jf xi(to — 1) - (—u : <8t¢ +Ag,d+ Vg, 8° + Strgh + —(t _mt)>
" E7 (D)

—¢; - (0 As)u+ulH VJ‘¢| +u-tr ?{,0((;5)) dvols, dt |dr

r
+ Jrl rm+1 J:f _¢r Xl(tO - t) (tO - t)dVOIJ dt [dr. (7.4)
ET(2)

Since 0 < y;(to — t) < 1, the first two integrands may be bounded in absolute value from above
by the absolute values of the corresponding integrands occurring in the statement of this theorem,
which are assumed summable. Thus, we may pass to the limit I — oo in the first two integrals

of identity (f.4) as in the proof of Theorem p.2.1, and if - t(/’)r eL! (Em( )) then, also as in the
proof of Theorem .2.1,

Lo

u-ﬁﬁ-)d(to—t%(to—t) e L' (E™(@)).

to —
allowing us to apply the dominated convergence theorem, which implies that the last integral on

the right-hand side vanishes in the limit [ — oo, since y;(to —t) - (to — ) oz Finally, if u >

we may discard the latter integral on the right-hand side by estimating it from below by 0, since
X, = 0, wherefore the aforementioned limits involving the remaining integrals may be taken, thus
establishing the result. O

7.3. Applications. As was the case in Chapter f with Dirichlet-type flows, we may not know
too much about the integrability of the Harnack term. However, we may more carefully go through
the steps of the proof of Theorem in order to derive a monotonicity identity nonetheless.

Theorem 7.3.1. Supposeu € C>'(E(®),R") and the bounds

(t —t)
Hi () = b(t)g (7.5)

hold on E}(®) with a,b € C(]ty — o.to[) N L'(Jto — So.to[) and summable over EJ?(®). Then the
inequality

o ] el (1o 2]

> f rnTH Jf =" (0 — As)u+u H —VLHZ dvols,dt |dr
)

"
EM(Z

1
01§+ Dg,§ + |Vgt¢|2 _trgh + <a(t)

r=ra

r=r

holds for 0 < r; < ry < ro whenever the two spacetime integrands are summable over E]"(Z), where
. . 1

Z : El(®) — R7 is defined such that Z(x,t) =‘E|exp(§(t))fl>(x,t) with £(t) = §"a — (n — m)b,

(-2,

m

{ =logZ, " =log(Zr™) and 7y = roexp

Proof. Since a and b are summable over |ty — 8o, to, it is clear that £ is bounded so that, by Example
E.3.7. E™(Z) is a heat ball for r < 7 and EZ(Z (Z2) c EZ(Q).

Now, we first assume as in the proof of Theorem [7.2.1 that u vanishes close to t,. Under this
assumption, we may apply this theorem to the E™(Z):
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1 1
= H u[|V3t£|2+(|H2—Etr3th> g,"] dvoly, dt
E"(2) _—
1 n—m
= AL+ Vs, + 5t hd ——
N R R o)
EM(2)
=" (0 = AS)u+ulH Vi try Hy, ({)dvoly, dt | dr.

Applying the bounds for ¢, noting that 0;{ = 0;& + 0;¢, V{ = Vg,¢ and H;, ({) = H;,(¢), we
obtain

r=r;

JJ [|V\‘[§|2 (IH2 tr\\F* )g”,]dvol dt
EM(Z)

> frl rm+1 Jf u(0ré+a—(n—m)b) — Q (0r —As)u+u |151 —VLQ’}Z dvols,dt |dr,

E™(2)

r=r

but 0;¢ = (n—m)b—a so that we obtain the claim whenever u vanishes near t,. The approximation
argument in the proof of Theorem then establishes the inequality for more general u. O

We may now deduce local monotonicity formulee from the preceding identity, first starting with
the case where (M,g) is evolving and of locally bounded geometry about (xo,%). The following
should be considered a generalization of Ecker’s local monotonicity formula [18] and ultimately a
local analogue of the monotonicity formula that would follow as a consequence of Magni, Man-
tegazza and Tsatis’ formula [53].

Theorem 7.3.2. Let (M,g) be an evolving Riemannian manifold with locally bounded geometry about
(xo.to) and let @ be as in Examples.3.4. Supposeu € C*' (EM(®),RT) n L* (EM (D)) satisfies

(0r — A3)u < 0.

Then there exist anry > 0 depending on the geometry of M and 8, and a function & € C(Jty — 1,1])
with &(ty) = 0 depending on the geometry of M such that for 0 < r; < ry < rq, the identity

r=ry

1 "2
JJ [|V §|2 <| H- Eth* ) ar ] dvols, dt > J J] ulH — V¢ 2dvoly, dt |dr

E(2) e E"(2)

holds, i.e. the quantity

- U [|V\\tg|2 <| HI|*— —tr~F* )g, ]dvolgtdt

is monotone for r € 0,7,[, where Z : E™(®) — R* (ry as in Example [5.3.4) is defined such that
Z(x,t) = exp(&(1))D(x,t), { =logZ and {* = log(Zr™).

Remark 7.3.3. More explicitly, £ is given by (6.17) and % by ry exp(—2

b.3.1 (with k = 25™).

§ \

) where ry is as in Lemma
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Proof. We proceed as in Theorem in order to apply the Theorem [7.3.1. To this end, by Lemma
b.3.1, whose proof is valid for k = 5™, the necessary inequalities for ¢ hold on E?(®) (ry as in
Lemma f.3.1) with#

ar(ty — t)

a(t) = % — 2mCylog (T) and
0

4m(ty — t —_
b(t) = —mClog( adl = )+ A OC),
rs 2

and these define summable continuous functions on |, — 1, f[. Moreover, they are summable over
E(®), since we may write

ty
JJ a(t)dvoly,dt < J o oa(t)- f dvolsdt,
f

__0 Bt (x)
0 D 0
Ep(®) i Ko ()

and the inner integral is bounded from above by Theorem [.12.7.
Thus, let £ and 7; be as in Theorem [7.3.1. To apply this theorem, it suffices to show, since u is

bounded on EJ}(®) = E}(2), |V5,{| < | V¢ |and |H — V{2 < 2 <| Ve I+ |H |2),that

1
IV F i Fand (1 P - Jurrn) g

are summable over EX’ (Z). Now, the first function is summable by virtue of the fact that EZ (2).
As for the second, this follows from Example [.3.4 (HBz). Finally, to handle the last function, we

go back to the proof of Theorem [.4.9 and note that, Jg denoting the approximate integral over
E™(Z),
rp *—

TR0 = T (| B P = I G FERg) + o(1) 76)

as ¢ — 0. Since the geometry of M is locally bounded in a neighbourhood of (F,pr,) (E%’ (Z))

strsFjh is bounded on EY (Z) so that, by Remark [.2.3, the second term on the right-hand side of

(B) is uniformly bounded in g. On the other hand, by (HBz2), the left-hand side of (@) is bounded

uniformly in g so that, overall, | J;’ (| H [*{"")| is uniformly bounded in q. Taking the limit ¢ — oo,
EE

summability follows from the dominated convergence theorem. O

Restricting ourselves to the static compact case, we obtain the following analogue of Ecker’s
local monotonicity formula, which should be viewed as a localized version of Hamilton’s nonlocal
formula [33].

Theorem 7.3.4. Let (M,g) be a static compact Riemannian manifold and let P be as in Example|5.3.3.
Suppose u € C>'(E(®),R*) n L®(EJ(®)) satisfies
(0r — A3)u < 0.

Then there exist an ry > 0 depending on the geometry of M and 8, and a function & € C(Jty — 1,1])
with &(ty) = 0 depending on the geometry of M such that the identity

r=rz

1 1 "2
— H u [|V3[§|2 + <| H|?— 5trSFt*h) g;"] dvols, dt > J H ulH — V7 |?dvoly, dt
r - r

E(2) E7(2)

r=r;

(7.7)

4The constants C and C; depend only on the local geometry of M about (xg, #y) as in Propositions and [1.8.4.

dr
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holds, i.e. the quantity

1 1
e Jj u [|V3t£|2 + (| HI]? - 5trSF;"h> Q] dvols, dt

Er(2)

is monotone for r € 10,7, where Z : E'(P) — R* (ry as in Example b.3.9) is defined such that
Z(x,t) = exp(£(8))P(x,t), { =logZ and {* = log(Zr™). If secpr = 0 and dRic = 0, then £ = 0.

sup |¢]
m

Remark 7.3.5. More explicitly, £ is given by (6.2d) and 7, by ry exp(— ) where ry is as in Lemma

b.3.9 (with k = 25).

Proof of Theorem [7.3.4. We proceed as in Theorem [.3.4 in order to apply Theorem [.2.6. By Lemma
b.3.5, whose proof is valid for k = 2=, we have that the inequalities (.§) hold on EP(P) (ro as in
Lemma [.3.9) with

a=0and

B . .
b(t) = —F <1 + log (W)) (= 0 lfSeCju =0 and dRic = 0) .

where the constants are those of Theorem [1.8.4. These define summable continuous functions on
Jto — 1, to[ just as in the preceding theorem and they are furthermore summable over EJ' (P) in light

of the argument in the preceding theorem and the inclusion E} (P) < EJ (®) for vy = ( — )

1
(cf. the inclusion (6.18) in Lemma p.3.3).
Now, let £ and 7; be as in Theorem [7.3.1. Note that, since EZ (Z) < EJ'(P) < EJ(Q) and the

rightmost set is a heat ball, the integrands of (7.7) are summable by the proof of Theorem [7.3.2.
Theorem [7.3.1 now applies. O



A
Analytical Auxiliaries

Auxiliary Functions

In this section we present some auxiliary functions that are used in a few constructions.

Example A.1 (Approximation to yjo,.o[). Let y € C*(R,[0,1]) be defined by the following graph:

I e W

It is clear that
1 X[Lof S X < X3 o0[> and
2. Y| <C- Xl for some C > 0.

Now, let

{xm € C*(R,[0,1])}men
be defined such that y,,(x) = y(2™x). Clearly

m— o0 .
Xm — X]o,o[ Ptwise

and
()] = [27x] - ¥ (272)] < €+ [2"x] - )y1,40(27%) < Chjotmen pomp(x) 77> 0. O
Example A.2. Define  : R — [0,00[ by
s n(s) = (1—s)%.
n is smooth on R\{1} and C? on R, whence it may easily be verified that
n'(s) = —4(1—9)%

and

Inequalities of Note

The following inequality from [33] is useful for proving nonlocal monotonicity formulee:

Lemma A.3. Ifx,y > 0, then

x(l + log (%)) <1+xlogy
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Some Comparison Geometry

Let (M",g) be a Riemannian manifold. We collect a few technical lemmata which describe the
local behaviour of distance functions on M. To this end, fix p € M and letr : U, — R7T be the
distance function at p defined by r := dist(p, -), where U, is M\ {p} minus the cut locus of p. Set
O :=Vre I"(TM|UP) and let dr € F(T*M\Up) be the element dual to ¢,. We write the metric g in
polar form, treating ¢, as the radial direction, i.e. such that

g=dr®dr + g, (B.1)

where 15,g; = 0.

Theorem B.1 (Hessian Comparison Theorem [57, Theorem 27, p. 175]). Ifk < sec; < K inU,, then

(fxor) g <VAr < (fxor) g in Uy,

where f; : R™ — R u {+00} is defined such that forr > 0

v/ —scoth(y/=sr), s<0
fs(r) =14, s=0.
/s cot(+/sr), s>0

We shall also need to know how volumes may be compared. To this end, we fix an R-vector
space isomorphism A : R" — T,M such that, for every v,w € R", (v,w) = (gp,Av ® Aw). The
map

Jp :=exp,0A: V) cR"—>M
then yields exponential codrdinates about p, where V,, = (exp,, o A)~HU,).

Theorem B.2 (Volume Comparison Theorem [57, Lemma 34, p. 268]). IfRic > (n— 1)k in U, then

(95 dvoly)(x) < g (|x)) ™ dvoleya (x),

for every x € V,,, where qi : R — R is defined such that forr > 0

\/}kr sinh(+/—kr), k<0
qe(r) =<1, k=o.
ﬁ sin(vVkr), k>0

For the purposes of estimating certain quantities continually appearing in this thesis, we shall
need some very basic properties of the {f;}scr and {gs}ser-

Proposition B.3. Ifs > 0 andy € ]0, % [, then there exists a constant C = C(s,y) such that
I1—rfi(r)| < Cr?

on |0,y]. If s < 0, then there exists an absolute constant C > 0 such that

1—rfi(r) > —Csr?.

121
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Proof. First suppose s > 0. Note that

1— 4/srcot(+/sr)
(v/sr)*
whence it suffices to establish the finiteness of the rightmost quantity. Let q : ]0,7[ — R g(x) =

x cotx. It is clear that ¢ is smooth on its domain. Now, fix x € |0,y 1/s[ and ¢ €]0,x[. By Taylor’s
theorem with remainder,

1—rf(r)

r2

1 —xcotx
2

sup
relo,y]

=s- sup
relo,M]

=s- sup

xeloy v/3]

X

for some t € [¢,x]. Now, note that

li = li : =1.
Yim g(y) = lim cosy- 2=
On the other hand,
, singeosy—y U e o(y?) 4
q(y) = — == 0.
sin“ y sin“y sin“ y

Finally,

2(ycosy —sing)  2(y(1— % +0(t*) —y+ % +o(y"))

q"(y) = =
sin’ y sin®y
_ 4y o) s 4
6sin’y  sin’y 6

whence C := ; supjo,, /s 19" < c0. Estimating the above expansion then yields:

0
11— q(x)| < [1—q(e)| + |q'(e) (x — £)| + Clx — > =5 Clx[*.

For the case s < 0, we proceed in a similar manner, except we show that

sup
x€]0,00[

‘1 — xcothx
2

X

and 1 — x cothx < 0. We thus consider g : ]0,00] — R defined by g(x) = x coth x which is again
smooth on its domain. We again apply Taylor’s theorem. Firstly,

li =1 hy - =1.
fmat6) = fmeoshy g
Secondly,
, coshysinhy —y O(yz) y\0
q(y) = — == 0.
sinh” y sinh” y
Moreover,
(ycoshy —sinhy) 2 «° o(y!) yo 2

bl

q"(y) = 2 =

sinh® y 3 sinh’y  sinh’y 3
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whence it is clear, using the same argument as above, that |1 — g(x)| < D|x|? for x €]0,z] for any
z € RY, where D = D(z) € R™. On the other hand,

4y+1
1-qly) _1-¥ s 1 el oy

vy oy e
whence it follows that 1_32(’() is uniformly bounded for x € ]0, o0[.
Finally, a quick computation shows that ¢’ > 0 so that g > 1, establishing the result. O

Proposition B.4. Extend g to a function [0,00][ — R by setting q;(0) = 1 for everys € R. Then g;
is continuous.

sinh u
u

= limy o 2% — 1. O

Proof. This is clear, since lim,\ o "
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(+,-), see canonical bilinear pairing
(R",8), 1l

C.kd

Cs, bid

Cy, id

Hdv, see heat operator on sections
P,

N, positive integers

AV, see Hodge Laplacian

r().

H, see matrix Harnack expression
3, see first fundamental form

A, see exterior algebra

AF, see kth exterior product
P(sy.10)5 Se€ canonical backward heat kernel
X

5, hq

n,

1, see interior product

K_o0, E

Koos

Ao, liq

Ao,

R™, positive numbers

Drl, r2> G

Ppr. see projection

eg(1), see Dirichlet energy density
h,

Jos

kth exterior product bundle,
kth exterior product space, i

canonical backward heat kernel,
canonical bilinear pairing,

Dirichlet energy density, [

energy-momentum tensor, @
evolving (Riemannian) manifold, 14
evolving Riemannian metric, Q
exterior algebra, fi

first fundamental form, b
flow of Dirichlet type, b1
formal backward heat kernel, @

H, see mean curvature
harmonic map heat flow, 3
heat ball

definition, @

formal, E
heat operator on sections,
Hodge Laplacian,

II, see second fundamental form
interior product, Bl
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matrix Harnack expression,
mean curvature

definition, E

flow, @

®p1> see formal backward heat kernel
projection, B
proper,

second fundamental form,
static (Riemannian) manifold,
static metric,

static problem of Dirichlet type, EI
summable function (or n-form),

T; , see energy-momentum tensor

Yang-Mills (heat) flow, @
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