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Abstract

e aim of this thesis is to establish local monotonicity formulæ for solutions to Dirichlet-type
flows, such as the harmonic map and Yang-Mills heat flows, and the mean curvature flow. In par-
ticular, for the former, we allow as domain an evolving Riemannian manifold and for the laer,
we allow as target an evolving Riemannian manifold. e approach taken consists in first deriving
divergence identities involving an appropriate evolving quantity, then integrating over superlevel
sets (heat balls) of suitable kernels. A theory of heat balls analogous to that of Ecker, Knopf, Ni and
Topping is developed in order to accomplish this. e main result is then that, provided certain in-
tegrals are finite, local monotonicity formulæ hold in this general seing, thus generalizing results
for the mean curvature and harmonic map heat flows and establishing a new local monotonicity
formula for solutions to the Yang-Mills flow.



Zusammenfassung

Das Ziel dieser Dissertation ist das Beweisen lokaler Monotonieformeln ür Lösungen Dirichlet-
artiger Flüsse, wie des harmonischenAbbildungs- und Yang-Mills-Flusses, und desmileren Krüm-
mungsflusses. Für die Ersteren darf die Metrik des Definitionsbereiches und ür den Letzteren die
der Zielmannigfaltigkeit eine Evolutionsgleichung lösen. Die gewählte Methode besteht darin, daß
einige eine geeignete entwickelnde Größe umfassende Divergenzidentitäten erst hergeleitet wer-
den, und daß diese dann über Superniveaumengen zulässiger Kerne integriert werden, zu welchem
Zwecke eine zu der von Ecker, Knopf, Ni und Topping analoge eorie der Wärmekugeln entwi-
ckelt wird. Das Hauptergebnis ist dann, daß lokale Monotonieformeln auch in diesem verallge-
meinerten Rahmen gelten, solange gewisse Integrale endlich sind. Dieses Resultat verallgemeinert
deshalb vorherige Ergebnisse ür den mileren Krümmungs- und harmonischen Abbildungsfluß,
und ührt eine neue lokale Monotonieformel ür Lösungen des Yang-Mills-Flusses ein.
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Introduction

Monotonicity as a paradigm. Monotonicity is a property shared by many partial differential
equations (PDE) arising in geometry in physics, its statement being that a one-parameter family of
quantities, usually integral, depending on a solution to a certain PDE ismonotone in that parameter.
In this thesis, we are principally interested in local monotonicity formulæ. Roughly speaking, a
local monotonicity formula is an inequality of the form

d
dr

ˆ

1
rm

ż

Ωr

f puq

˙

ě 0,

on an interval of the form s0,r0r, r0 ą 0, where f puq is a quantity depending on a solution u to a
PDE,m P N and Ωr is an increasing one-parameter family of precompact subsets of the domain
of u which tend in some sense to a point in the domain of u as r Œ 0. Essentially, such a formula
would permit us to deduce qualitative information about the local behaviour of solutions to PDE.

For instance, the most prominent such formula is the mean value property for harmonic func-
tions due to Gauß (cf. [, p. ]): Let Ω Ă Rn be open and fix x0 P Ω. If u : Ω Ñ R satisfies
´∆u “ 0 (Laplace’s equation), then

d
dr

ˆ

1
rn

ż

Br px0q

u

˙

“ 0 (˚)

on s0,r0r for any r0 ą 0 with Br0px0q Ă Ω. Since the differentiated quantity, the average of u in
a neighbourhood of x0, tends, as r Œ 0, to upx0q, (˚) leads to many strong statements about the
behaviour of solutions to Laplace’s equation, such as the strong maximum principle.

More recently, an analogous formula has been derived by Watson [] for solutions to the
heat equation where the underlying domain of integration is more elaborate (see also []): Let
D Ă Rn ˆ R be open and fix px0,t0q P D. Let Φ : Rn ˆ s´8,t0r Ñ R` denote the backward heat
kernel centred at px0,t0q, i.e.

Φpx ,tq “
1

p4πpt0 ´ tqqn{2
exp

ˆ

|x ´ x0|
2

4pt ´ t0q

˙

and define the heat ball of radius r , r ą 0, by

Er px0,t0q :“

"

px ,tq P Rn ˆ s´8,t0r : Φpx ,tq ą
1
rn

*

.

If u : D Ñ R satisfies Btu ´ ∆u “ 0 (heat equation), then

d
dr

¨

˚

˝

1
rn

ĳ

Er px0,t0q

upx ,tq
|x ´ x0|

2

4pt ´ t0q2
dxdt

˛

‹

‚
“ 0

on s0,r0r for any r0 ą 0 with Er0px0,t0q Ă D. In this case, the monotone quantity, a weighted
average of u in a neighbourhood of px0,t0q, tends, as r Œ 0, to upx0,t0q, leading to important
consequences just as in the case of Laplace’s equation.

In the above two examples, the quantities considered are more than just monotone – they are
conserved quantities. For solutions to nonlinear PDE, this is too much to hope for, though similarly
powerful monotonicity formulæ may still be obtained: if pMn ,дq, pNm ,rдq are compact Riemannian
manifolds (n ą 2) and u : M Ñ N is a harmonic map, i.e. if it is smooth and solves the system

∆1u :“ ∆Mu
α pxq `

n
ÿ

i,j“1

m
ÿ

β“1

дi jpxqΓαβγ pupxqqBiu
β pxqBju

γ pxq “ 0 (#)

iii
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px0,t0q

Figure: A heat ball in R2ˆs ´ 8,t0r.

for every x P M , where Γβγα represent the Christoffel symbols obtained from the Levi-Civita con-
nection on pN ,rдq, then for fixed x0 P M , it satisfies the monotonicity property

d
dr

ˆ

eΛr

rn´2

ż

Br px0q

1
2

|du|2dvolд
˙

ě 0

on s0, 12i0r, where for each x P M , pduqpxq P TupxqNbT˚
x M is the differential ofu, i0 is the injectivity

radius of M at x0 and Λ ě 0 depends on the geometry of M in Bi0px0q and, if M “ Rn , Λ “ 0 and
this quantity is conserved iff u is scale-invariant about x0, i.e. upx0 ` rxq “ upx0 ` xq for all r ą 0
whenever both sides are defined. is was first established (in a slightly different form) by Schoen
and Uhlenbeck [] in a more general context for maps minimizing the Dirichlet energy

ż

M

1
2

|du|2dvolд

in the appropriate Sobolev space and later established by Price [] for maps which are critical (in
the appropriate sense) for the Dirichlet energy which includes smooth maps satisfying (#). e
monotonicity principle consequently states a law governing the behaviour of the local pn ´ 2q-
dimensional average energy ofu which is a crucial ingredient in the regularity theory of harmonic
maps due to Schoen and Uhlenbeck. Moreover, it has been applied by Schoen [] to the study of
compactness in the space of smooth solutions of uniformly bounded energy in dimensions greater
than two.

Harmonic maps are a natural generalization of solutions to Laplace’s equation. Similarly, a
natural generalization of solutions to the heat equation exists— the harmonic map heat flow: a
smooth map u : M ˆ s0,T r Ñ N is said to evolve by the harmonic map heat flow if

Btu ´ ∆1u “ 0.

Nonlocal monotonicity formulæ for such maps have been established by Struwe [] for M “ Rn

and by Chen and Struwe [] andHamilton [] in the case whereM is a static compact manifold. A
local counterpart of Struwe’s formula has more recently been obtained by Ecker []: let γ P r0,ns

and define the weighted heat ball of radius r ą 0 centred at px0,t0q P Rn ˆ s0,T s by

E
γ
r px0,t0q :“

"

px ,tq P Rn ˆ s´8,t0r : pt0 ´ tqγ {2Φpx ,tq ą
1

rn´γ

*

.

If n ą 2 and u evolves by the harmonic map heat flow, then

d
dr

¨

˚

˝

1
rn´2

ĳ

E2
r px0,t0q

n ´ 2
2pt0 ´ tq

|du|2 ´

⟨ n
ÿ

i“1

px ´ x0q
i

2pt ´ t0q
Biu,Btu `

n
ÿ

i“1

px ´ x0q
i

2pt ´ t0q
Biu

⟩
dxdt

˛

‹

‚

“
n ´ 2
rn´1

ĳ

E2
r px0,t0q

ˇ

ˇ

ˇ

ˇ

ˇ

Btu `

n
ÿ

i“1

px ´ x0q
i

2pt ´ t0q
Biu

ˇ

ˇ

ˇ

ˇ

ˇ

2

dxdt ě 0



Introduction v

whenever these integrals make sense, i.e. whenever E2r px0,t0q is contained in the domain of u and
the integrals are finite. Moreover, this quantity is conserved iff u is parabolically scale-invariant
about px0,t0q, i.e. upx0 ` rx ,t0 ` r 2tq “ upx0 ` x ,t0 ` tq for every r ą 0 whenever both sides are
defined. More recently, related formulæ have been established for other flows in seings involving
evolving manifolds [, ].

Summary of results. In this thesis, an analogous formula to Ecker’s local monotonicity for-
mula for the harmonic map heat flow is proved for the Yang-Mills flow on (possibly evolving)
Riemannian manifolds. In particular, a more general identity for k-forms with values in vector
bundles which also implies a local monotonicity formula for the harmonic map heat flow between
Riemannian manifolds is established, thus leading to a generalization of Ecker’s result to curved
ambient spaces. Moreover, a local monotonicity formula for the mean curvature flow with (possi-
bly evolving) Riemannian target is established, generalizing another one of Ecker’s results []. A
brief sketch of these results follows.

Suppose thatM is an oriented Riemannianmanifold equippedwith a family ofmetrics tдt utPst0´δ0,t0r

(t0 P R, δ0 ą 0) with Btд “ h and consider functions Φ : D Ă M ˆ R Ñ R` which are, in some
sense, heat kernel-like (see Chapter ). For such functions, an analogous notion of “heat ball”
may be formulated; we set Eγr :“ tpx ,tq P D : pt0 ´ tqγ {2 ¨ Φpx ,tq ą 1

rn´γ u and φ :“ logΦ.
Now, if P is a principal G-bundle (G as in §.) and the one-parameter family of connections
tωt “ ω0 ` aptqutPst0´δ0,t0r on P evolves by the Yang-Mills flow

Bta “ δ∇Ωω

with curvature two-formΩω and codifferential δ∇ induced byω (see §., §. and §. for details),
then for sufficiently small 0 ă r1 ă r2,

»

—

–

1
rn´4

ĳ

E4
r

1
2

|Ωω |2
ˆ

Btφ ` |∇φ|2 ´
4

2pt0 ´ tq

˙

´
⟨
ι∇φΩ

ω ,ι∇φΩ
ω ´ δ∇Ωω

⟩
dvolдdt

fi

ffi

fl

r“r2

r“r1

“

ż r2

r1

¨

˚

˝

n ´ 4
rn´3

ĳ

E4
r

´
1
2

|Ωω |2
ˆ

Btφ ` ∆φ ` |∇φ|2 `
1
2
trдh

˙

` |ι∇φΩ
ω ´ δ∇Ωω |2

`

⟨
∇2φ `

1
2
h `

1
2pt0 ´ tq

д,
ÿ

i,j

⟨
ιBiΩ

ω ,ιBjΩ
ω
⟩
dx i b dx j

⟩
dvolдdt

˛

‹

‚
dr

whenever |Ωω |2

t0´t is summable over E4r2 and these integrals make sense, where ι denotes the interior
product of a vector field with a (vector bundle-valued) differential form (cf. §.) and rf prqs

r“r2
r“r1 :“

f pr2q ´ f pr1q (eorem ..). From the above formula, it may be read off that the first term on the
right-hand side vanishes iff Φ solves the backward heat equation

BtΦ ` ∆Φ `
1
2
trдh ¨ Φ “ 0,

the second iff ω is self-similar in the sense that

Bta “ ´ι∇φΩ
ω

(see Chapter  for the case M “ Rn ), and the final term, in the case where h “ ´2Ric, i.e. when д
evolves by the Ricci flow, iff

Note that t is the same parameter on which д depends.
roughout this thesis, we say a real-valued function f (or n-form f dvolд ) on an oriented Riemannian manifold

pMn, дq with volume form dvolд is summable if |f | is measurable and
ş

M |f |dvolд ă 8.
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Ric “ ∇2φ `
1

2pt0 ´ tq
д,

i.e. iff д is a gradient shrinking soliton (see []) is sort of structure is analogous to that exhibited
by the monotonicity formula due to Magni, Mantegazza and Tsatis []. By applying the above
identity to appropriate kernels, monotonicity formulæ may be obtained for solutions to the Yang-
Mills heat flow in the case where pM ,дq is compact and static (eorem ..) or evolving and
of locally bounded geometry about some px0,t0q P M ˆ R (eorem ..), thus providing local
counterparts of the nonlocal monotonicity formulæ due to Chen and Shen [] and Hamilton [].

Similarly, with pM ,pдt qtPst0´δ0,t0rq as before, it is also shown that if tup¨,tq : pM ,дt q Ñ N utPst0´δ ,t0r

evolves by the harmonic map heat flow, then for sufficiently small r2 ą r1 ą 0,

»

—

–

1
rn´2

ĳ

E2
r

1
2

|du|2
ˆ

Btφ ` |∇φ|2 ´
2

2pt0 ´ tq

˙

´
⟨
B∇φu,B∇φu ` Btu

⟩
dvolдdt

fi

ffi

fl

r“r2

r“r1

“

ż r2

r1

¨

˚

˝

n ´ 2
rn´1

ĳ

E2
r

´
1
2

|du|2
ˆ

Btφ ` ∆φ ` |∇φ|2 `
1
2
trдh

˙

` |B∇φu ` Btu|2

`

⟨
∇2φ `

1
2
h ´

1
2pt0 ´ tq

д,
ÿ

i,j

⟨
Biu,Bju

⟩
dx i b dx j

⟩
dvolдdt

˛

‹

‚
dr

whenever |du|2

t0´t is summable over E2r2 and these integrals make sense (eorem ..). As may
be seen, this formula (eorem ..) coïncides with Ecker’s in the case where M “ Rn and Φ
is replaced with pt0 ´ tq times the Euclidean backward heat kernel at px0,t0q for any x0 P Rn .
Otherwise, it exhibits similar behaviour to that for the Yang-Mills flow and may similarly be used
to establish local counterparts (eorems .. and ..) of the nonlocal monotonicity formulæ
due to Chen and Struwe [] and Hamilton [].

Finally, it is established in eorem .. that if tF p¨,tq : Nm Ñ pM ,дt qutPst0´δ0,t0r is a smooth
one-parameter family of embeddings evolving by mean curvature flow in an evolving background
manifold, i.e. Bt F “ H where H is the mean curvature vector of F and Btд “ h, and the map
pF ,pr2q : N ˆ st0 ´ δ0,t0r Ñ M ˆ st0 ´ δ0,t0r is proper, then for appropriate heat kernel-like
Φ :“ Φ ˝ pF ,pr2q : pF ,pr2q´1pDq Ñ R`, Er :“ tpx ,tq P pF ,pr´1

2 qpDq : pt0 ´ tq
n´m

2 Φpx ,tq ą 1
rm u

is a “heat ball” for small enough r and for small enough r2 ą r1 ą 0,

»

—

–

1
rm

ĳ

Emr pΦq

u

„

|∇φ|2 `

ˆ

|H |2 ´
1
2
trTдh

˙ˆ

φmr `
n ´m

2
logpt0 ´ tq

˙ȷ

dvolIdt

fi

ffi

fl

r“r2

r“r1

“

ż r2

r1

¨

˚

˝

m

rm`1

ĳ

Emr pΦq

´u ¨

ˆ

Btφ ` ∆φ ` |∇φ|2 `
1
2
trдh

˙

´

ˆ

φmr `
n ´m

2
logpt0 ´ tq

˙

¨ HIu ` u
ˇ

ˇ

ˇ
H ´ ∇Kφ

ˇ

ˇ

ˇ

2

` u ¨ trK
д

˜

∇2φ `
1
2
h ´

1
2pt0 ´ tq

д

¸

dvolIdt

˛

‹

‚
dr

Given two sets X , Y , pr1 : X ˆ Y Ñ X is the projection onto the first component and pr2 : X ˆ Y Ñ Y projection
onto the second.

By this it is meant that inverse images of compact subsets of the codomain of pF , pr2q are compact.
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whenever u
t0´t is summable over Er2 and these integrals make sense, where φ

m
r “ φ `m log r and

u : N ˆst0 ´ δ0,t0r is a smooth function,HIu “ Btu´∆Iu and ¨ denotes composition with pF ,pr2q
(see §. for details and notation). As may be seen here, the terms on the right-hand side vanish
similarly to those in the monotonicity identity for the Yang-Mills heat flow above, most notably
also when H “ ∇Kφ, which represents a homothetically shrinking solution in Rn (cf. []). is
is exactly the behaviour exhibited by the formula in []. is local monotonicity formula is a
natural generalization (in the class of maps considered) of that due to Ecker [] which is in turn
a local counterpart of the (nonlocal) monotonicity formula due to Huisken []. On the other
hand, the formula above yields local counterparts of nonlocal monotonicity formulæ established
by Hamilton [] for static compactM (eorem ..) and Magni, Mantegazza and Tsatis [] for
general evolvingM (eorem ..).

Structure of the thesis. In Chapter , the stage is set by way of introducing the notation,
geometric setup and kernels underlying the investigations to be carried out in the sequel, as well
as a brief introduction to the PDE we shall be most interested in. Here it is also noted that both the
harmonic map and Yang-Mills equations and their respective flows may be considered as special
cases of a more general nonhomogeneous Laplace or heat-type equations, henceforth to be referred
to as equations or flows of Dirichlet type.

In Chapter , the scaling behaviour of solutions to the Yang-Mills flow over Rn is investigated
and then used to establish Price’s monotonicity formula ([]) for static solutions and a local mono-
tonicity formula for the flow, thus providing— for the Yang-Mills flow over Euclidean space at
least— alternative proofs of the more general theorems to be established later on in this thesis.

In Chapter , the metric structure of Dirichlet-type energies is expounded, culminating in a
rigorous derivation of the so-called energy-momentum tensor and some useful identities, which are
subsequently applied to establish monotonicity formulæ for solutions to equations of Dirichlet-
type. Since it offers no additional difficulties, we consider the so-called p-Dirichlet-type energies
in these two chapters, thus re-proving the monotonicity formula for p-harmonic maps (cf. [,
Lemma .]) and establishing a monotonicity formula for p-Yang-Mills fields.

In Chapter , the identities derived from the energy-momentum tensor and the estimates in
§. are used to establish nonlocal monotonicity formulæ for Dirichlet-type flows. Such formulæ
are natural analogues of the identity

d
dt

ż

Rn
upx , ¨qΦpx , ¨qdx “ 0

for solutions u of the heat equation on Rn (and Φ as before) which behave appropriately at 8 and
are known to hold on static compact manifolds with both formal and canonical heat kernels. It is
these formulæ that have heretofore been applied to questions regarding the structure of singular-
ities occurring in flows [, , ]. e novelty of this chapter lies in the fact that these formulæ
are established in the case of an evolving ambient space, much in the spirit of [] and are sub-
sequently used to establish estimates ensuring the finiteness of certain singular integrals, such as
those occurring in the monotonicity formulæ for the Yang-Mills heat flow and Harmonic map heat
flow stated above.

In Chapter , heat balls associated to kernels that satisfy certain properties are defined, of
which a few examples are given, and integration formulæ analogous to those in [] and []
are established which are then applied in Chapter  to establish local monotonicity formulæ for
Dirichlet-type flows. In Chapter , these formulæ are similarly applied to establish local mono-
tonicity formulæ for mean curvature flow with Riemannian target. Finally, this dissertation is con-
cluded by two appendices— one containing auxiliary geometric and another analytical lemmata
used throughout the text.

For the convenience of the reader, an index containing terms, mathematical symbols and uni-
versal constants used throughout the text has been included, together with a reference to the first
occurrence of each term or symbol.
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Preliminaries

In this chapter the background underlying the following chapters is presented. Aer a summary of no-
tation, some algebraic preliminaries underlying the calculations to be carried out in subsequent chapters are
introduced. A summary of the results required from Lie theory for subsequent considerations is then pre-
sented, followed by a brief treatment of the theory ofG-bundles and connections on them. With these topics
out of the way, the discussion moves on to a brief description of the evolving objects to be considered in the
sequel, first starting with the notion of an evolving manifold, then proceeding onto heat kernel-type objects,
then Dirichlet-type problems and finally the mean curvature flow.

1.1. Notation. roughout this thesis, pM ,дq shall denote a smooth oriented Riemannian
manifold, TM its tangent bundle and T˚M its cotangent bundle. Moreover, pRn ,δq shall denote
Euclidean space with the flat metric. If f : M Ñ N is a once continuously differentiable map and
x P M , we write dx f : TxM Ñ Tf pxqM for its differential at x . Moreover, whenever f : M Ñ V is
a smooth map, where V is a finite-dimensional K-vector space, and X P TM , we write BX f P V
for the directional derivative of f in direction X .

If N and P are smooth manifolds, we say that a map f : M ˆ N Ñ P is Ck,l (and write
f P Ck,l pM ˆ N ,Pq) if f is k-times continuously differentiable in M and l-times continuously
differentiable in N . If k “ l , we simply write Ck and we write C for C0.

Given a collection of smooth manifolds tMjujPt1, ...,nu, the map pri : M1 ˆ ¨ ¨ ¨ ˆMn Ñ Mi shall
denote the ith coördinate projection, i.e. formj P Mj , pri pm1, . . . ,mnq “ mi .

If V is a K-vector space, we write GLpV q for the set of all invertible K-linear maps V Ñ V and
дlpV q for the set of all K-linear maps V Ñ V .

All integrals occurring in this thesis are Lebesgue integrals.

1.2. Algebraic preliminaries. We first begin with some algebraic preliminaries. Let V
and tViu

N
i“1 (N P N) be finite dimensional R-vector spaces equipped with positive-definite inner

products ⟨¨, ¨⟩ and t⟨¨, ¨⟩iu respectively.
Let a1, . . . ,ak ,b1, . . . ,bk P V and vi ,wi P Vi (i P t1, . . . ,N u). e following table summarizes

the vector spaces formed from these which we shall require in the sequel, together with the inner
products induced on them:

Symbol Designation Inner Product

V1 b ¨ ¨ ¨ bVk Tensor product space ⟨v1 b ¨ ¨ ¨ bvk ,w1 b ¨ ¨ ¨ bwk ⟩ :“
⟨v1,w1⟩ ¨ ¨ ¨ ¨ ¨ ⟨vk ,wk ⟩.

ΛkV kth exterior product space
⟨a1 ^ ¨ ¨ ¨ ^ ak ,b1 ^ ¨ ¨ ¨ ^ bk ⟩
:“ det

´⟨
ai ,bj

⟩¯k
i,j“1

.

ΛV
Exterior algebra
(“

ÀdimV
k“1 ΛkV )

Induced by inner products on
␣

ΛkV
(

such that for k ‰ l ,
ΛkV K ΛlV .

In particular, we make the identifications Λ0V – V , Λ0V – R and RbV – V bR – V . at these
inner products are well-defined follows immediately from the characterizations of these spaces by
means of universal mapping properties; we refer the reader to [, §IX., §XVI.] for definitions
and proofs of these statements. Furthermore note that, if tε ji ui form orthonormal bases for the
tVjuj , then tε1i1 b ¨ ¨ ¨ bεikk

u form an orthonormal basis forV1 b ¨ ¨ ¨ bVk with respect to the induced
inner product, where we vary over all i j P t1, . . . ,dimVju. Moreover, if tεiui form an orthonormal
basis for V , then tεi1 ^ ¨ ¨ ¨ ^ εik u form an orthonormal basis for ΛkV , where we vary over all
increasing sequences 0 ă i1 ă ¨ ¨ ¨ ă ik ď dimV of integers; we shall abbreviate such sequences
using multi-index notation and write I “ pi1, . . . ,ik q (or Ik to emphasize that the multi-index is a
k-multi-index).

For a more detailed treatment of these topics, the reader is referred to [, Chapter ], [] and [].
roughout this thesis, K “ R or C.


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LetV ˚ denote the dual space ofV . Since the inner product onV is non-degenerate, theR-linear
map

5 : V Ñ V ˚

v ÞÑ v5 :“ ⟨v, ¨⟩

defines an isomorphism of R-vector spaces. We call it, together with its inverse 7 : V ˚ Ñ V the
musical isomorphisms (cf. [, §.]). If tεiu is a basis forV and tωiu the dual basis forV ˚, then if
we write дi j :“

⟨
εi ,εj
⟩
and дi j for the matrix inverse of pдi jqi,j , these isomorphisms may be given

explicitly by

˜

ÿ

i

viεi

¸5

“
ÿ

i

˜

ÿ

j

дi jv
j

¸

ωi

and

˜

ÿ

i

viω
i

¸7

“
ÿ

i

˜

ÿ

j

дi jvj

¸

εi .

On the one hand, 5 induces an inner product onV ˚ given by pv,wq ÞÑ
⟨
v5,w5

⟩
. On the other hand,

if we also write 5i for the musical isomorphism defined on pVi ,⟨¨, ¨⟩i q, we obtain isomorphisms

51 b ¨ ¨ ¨ b 5k : V1 b ¨ ¨ ¨ bVk
–
ÝÑ V ˚

1 b ¨ ¨ ¨ bV ˚
k and

5 ^ ¨ ¨ ¨ ^ 5
loooomoooon

k times

: ΛkV
–
ÝÑ ΛkV ˚.

Moreover, we note that the canonical non-singular bilinear pairingV ˚ ˆV Ñ R (i.e. pν ,vq ÞÑ

νpvq) naturally induces canonical non-singular bilinear pairings between tensor product spaces and
the products of their duals, as well as exterior product spaces and exterior products of their duals.
Let v,a1, . . . ,ak P V , ν ,α1, . . . ,αk P V ˚ vi P Vi and νi P V ˚

i . We summarize these in the following
table:

Pairing Characterization
`

V bV ˚
1 b ¨ ¨ ¨ bV ˚

k

˘

ˆ pV1 b ¨ ¨ ¨ bVk q Ñ V
pv b ν1 b ¨ ¨ ¨ b νk ,v1 b ¨ ¨ ¨ bvk q

“ ν1pv1q ¨ ¨ ¨ ¨ ¨ νk pvk qv

`

V1 b ΛkV ˚
˘

ˆ
`

ΛkV
˘

Ñ V
pv1 b α1 ^ ¨ ¨ ¨ ^ αk ,a1 ^ . . . ak q

“ det pαi pajqq
k
i,j“1v1

pV1 b ΛV ˚q ˆ pΛV q

Induced by the above pairing and
extended such that the restriction
to pV1 b ΛkV ˚q ˆ pΛlV q is 0 P V1
for k ‰ l .

As before, well-definedness follows from the respective universal mapping properties (cf. [, §.,
§.]).

Finally, for eachv P V , we introduce two maps, both referred to as interior products: the first is
the map ιv : V1 b ΛV ˚ Ñ V1 b ΛV ˚ dual to v ^ ¨ : ΛV Ñ ΛV with respect to the corresponding
pairing introduced above, i.e. such that for every α P ΛV ˚ and a P ΛV ,

pιvα ,aq “ pα ,v ^ aq.

By this we mean ω i pεj q “ δ ij for every i, j .
is map is oen denoted by the symbol␣ or an appropriate reflection thereof depending on the choice ofV , cf. e.g.

[].
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ιv is an R-linear map and, moreover, an anti-derivation with respect to le wedge multiplication,
i.e. whenever α P ΛkV ˚ and β P V1 b ΛV ˚,

ιv pα ^ βq “ ιvα ^ β ` p´1qkα ^ ιvβ .

Note in particular that

ιv

´

V1 b ΛkV ˚
¯

Ă V1 b Λk´1V ˚

and, keeping in mind the identification V1 – V1 b Λ0V ˚,

ιv pV1q “ t0u.

e second interior product is the map jv : V1 b V ˚ b ¨ ¨ ¨ bV ˚
looooooomooooooon

k times

Ñ V1 b V ˚ b ¨ ¨ ¨ bV ˚
looooooomooooooon

k´1 times

dual to

v b ¨ : V b ¨ ¨ ¨ bV
looooomooooon

k´1 times

Ñ V b ¨ ¨ ¨ bV
looooomooooon

k times

with respect to the corresponding pairing introduced above,

i.e. such that for every T P V1 bV ˚ b ¨ ¨ ¨ bV ˚
looooooomooooooon

k times

and S P V b ¨ ¨ ¨ bV
looooomooooon

k´1 times

,

pjvT ,Sq “ pT ,v b Sq.

jv is R-linear and, whenever v1 P V1 and ωi P V ˚ (i P t1, . . . ,ku), jv pv1 b ω1 b ¨ ¨ ¨ b ωk q “

ω1pvq ¨v1 b ω2 b ¨ ¨ ¨ b ωk .
In the sequel, we shall write ιv for both interior products, where the operand shall dictate which

is to be used.

1.3. Some Lie theory. We now review the Lie theory necessary to discuss bundles with
structure group and refer the reader to [] and [] for details. Recall that a Lie group is a group
which is a differentiable manifold such that both its product map ¨ : G ˆG Ñ G and inverse map
¨´1 : G Ñ G are smooth. We denote the identity element of G by e and set g “ TeG. For fixed
д P G and X P g, we introduce the following notation.

Symbol Signification
ρд : G Ñ G Right multiplication by д
λд : G Ñ G Le multiplication by д
Cд : G Ñ G Conjugation by д (:=λд ˝ ρд´1 )
Adд : gÑ g Adjoint action ofG on g (:“ deCд)
adX : gÑ g Adjoint action of g on itself (:“ pY ÞÑ BX pAd¨Y qq)

⟨¨, ¨⟩ : g ˆ gÑ R or C e Killing form on g (:“ ppX ,Y q ÞÑ tr padX ˝ adY qq)

e action Adд gives rise to the adjoint representation Ad : G Ñ GLpgq of G on g, Cд the conjugate
action C : G Ñ C8pG,Gq of G on itself and adX the Lie bracket pX ,Y q ÞÑ rX ,Y s :“ adX pY q on g,
making g a Lie algebra in the algebraic sense which we refer to as the Lie algebra ofG.

Now, the Killing form defines a symmetric bilinear form on g invariant under the adjoint action
of G on g, i.e. for every д P G, X ,Y P g,

⟨
AdдX ,AdдY

⟩
“ ⟨X ,Y ⟩ .

Differentiating the map д ÞÑ
⟨
AdдX ,AdдY

⟩
at e then implies the identity

⟨adZX ,Y ⟩` ⟨X ,adZY ⟩ “ 0 ô
⟨
rX ,Z s,Y

⟩
“
⟨
X , rZ ,Y s

⟩
Here, we may multiply elements of V1 b ΛV˚ from the le by elements of ΛV˚ by wedge multiplication with the

second entry of the tensor product. e universal mapping property implies that this is indeed well-defined.
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by the skew-symmetry of the Lie bracket. It is negative-definite if topological and algebraic con-
ditions are satisfied, viz. if G is connected, compact and semisimple. We shall always assume that
these conditions hold.

Two such Lie groups with which we shall be principally concerned are

SOpN ,Rq “ tA P GLpN ,Rq : ATA “ I and detA “ 1u and

SU pN ,Cq “ tA P GLpN ,Cq : A
T
A “ I and detA “ 1u,

whereGLpN ,Kq denotes the (real/complex) Lie group of invertible N ˆN matrices with entries in
K “ R or C. e corresponding Lie algebras are, considered as N ˆ N matrices,

sopN ,Rq “ tX P glpN ,Rq : XT ` X “ 0u and

supN ,Cq “ tX P glpN ,Cq : X
T

` X “ 0u,

where glpN ,Kq is the K-vector space of N ˆ N matrices with entries in K “ R or C. e Killing
forms of these Lie algebras may both be wrien as

⟨X ,Y ⟩ “ 2ntrpXY q “ ´2ntrpXYT
q.

It can thus be seen that this form coïncides with the Hilbert-Schmidt inner product on these spaces
of matrices up to a sign (and factor), which is known to be positive-definite.

1.4. G-bundles. We now proceed to use Lie groups to “glue” vector spaces (or Lie groups)
associated to each point ofM in a smooth manner. LetG be a Lie group. We begin with a definition.

Definition ... [, §.] [, §] A G-bundle is a quadruple G ýF Ñ E
π
ÝÑ M of manifolds

together with

• A projection, viz. a smooth surjection π : E Ñ M ,

• a transformation group G acting effectively on F , viz. a smooth le G-action G ˆ F Ñ F
such that д ¨ f “ f for all f P F and some д P G implies д “ e ,

• an open cover tUα uαPA ofM , and

• a bundle atlas, i.e. smooth functions tдα β : Uα XUβ Ñ Guα,βPA as well as diffeomorphisms
tΨα : Uα ˆ F Ñ π´1 pUα quαPA such that the diagram

..Uα ˆ F.

Uα

. π´1 pUα q.

pr1

. Ψα.

π

commutes for everyα P A and, for everyα ,β P A, x P UαXUβ and f P F ,
`

Ψ´1
α ˝ Ψβ

˘

px , f q “
`

x ,дα β pxq ¨ f
˘

.

E is called the total space of the bundle, F the standard fibre, G the structure group, M the base
manifold and for each x P M , Ex :“ π´1 ptxuq is the fibre over x .

e bundle G ýF Ñ E
π
ÝÑÑ M will henceforth simply be denoted E when context dictates

the nature of the bundle.





Remark ... We define a relation on the set ofG-bundle atlases by

ptUα u,tΨα u,tдα β uq „ ptVγ u,trΨγ u,trдα β uq

ô Dtταγ : Uα XVγ Ñ G smoothuαPA,γPΓ

such that д̃γ δ “ τ´1
αγ дα βτβδ onUα XVγ @α ,β P A, γ ,δ P Γ.

It is easy to check that this is an equivalence relation on the set of bundle atlases. We shall hence-
forth identify bundle atlases which are equivalent according to this relation.

For the sake of completeness, we also define what it means for G-bundles to be “isomorphic”,
the point being here that we may work with equivalent realizations of the same underlying bundle.

Definition ... Let G1 ýF1 Ñ E1
π1
ÝÑ M and G2 ýF2 Ñ E2

π2
ÝÑ M be a G1 and G2 bundle

respectively over M . A pair pν ,Φq of maps ν : F1 Ñ F2 and Φ : E1 Ñ E2 is called a strong bundle
morphism if whenever Ψ, rΨ are bundle charts over U Ă M for E1 and E2 respectively, there is a
smooth map τ : U Ñ G2 such that Φ pΨpx , f qq “ rΨ px ,τ pxq ¨ νpf qq for every x P U and f P F . If ν
and Φ are diffeomorphisms, we say that E1 and E2 are isomorphic and write E1 – E2.

We are particularly interested in two sorts ofG-bundles– vector bundles and principal bundles.

Example .. (Vector Bundles). If F is a vector space and ¨ is a group representation, then the fibres
of E may be equipped with a vector space structure compatible with the differential structure of E
according to the rulesΨα px ,v1q`Ψα px ,v2q :“ Ψα px ,v1`v2q and c ¨Ψα px ,vq :“ Ψα px ,cvq [, §.]
[, §.]. Such aG-bundle E is called a vector bundle. By defining д̃α β pxq :“ дα β pxq¨ : F Ñ F , it is
clear that E is isomorphic to a GLpF q-bundle (ν “ τ “ idF , Φ “ idE ). As we shall soon see, E may
be seen to be isomorphic to an OpF q-bundle with respect to some inner product on F , and is said
to be orientable if it may be made to be isomorphic to an SOpF q-bundle. IfG0 ýF0 Ñ E0

π0
ÝÑ M is

another vector bundle, a vector bundle morphism is a smooth map Φ : E0 Ñ E such that Φ|pE0qx
:

pE0qx Ñ Ex is linear. If Φ|pE0qx
is injective, E0 is said to be a vector subbundle of E, wrien E0 ă E.

In particular, given a vector bundle morphism Φ : E0 Ñ E such that Φ|pE0qx
is of constant rank for

each x P M , it may easily be shown that kerΦ ă E0 and im Φ ă E (cf. [, Prop. .]).

Example .. (Principal Bundles). If F “ G and ¨ is group multiplication from the le, E is called
a principal G-bundle. Such a bundle admits a smooth global right action P ˆ G Q pp,дq ÞÑ pд “:
Rдppq “: Lppдq defined such that

Ψα px ,дqh :“ Ψα px ,дhq.

It is clear that this right action preserves fibres and, moreover, acts freely and transitively on them,
i.e. p ¨ д “ p ñ д “ e for any p P P and Ex “ pG for any p P Ex .

e definition above implies that, given a G-bundle E, the functions tдα β uα ,βPA satisfy the
cocycle condition дα β pxqдβγ pxq “ дαγ pxq for every x P Uα XUβ XUγ and α ,β ,γ P A, and we shall
subsequently refer to such functions as cocycles relative to tUα u. It turns out that, in fact, given
a transformation group G acting smoothly on F and a cover of M together with tдα β u, one can
reconstruct the bundle E (up to isomorphism), as is evident from the

eorem ... [, §.a] IfG is a transformation group acting smoothly on a manifold F , tUα uαPA

is an open cover of a manifoldM and tдα β uα ,βPA are cocycles relative to this cover, then there exist a
topology and differential structure making the set

E0 :“

˜

ď

αPA

tαu ˆUα ˆ F

¸O

„,

where pα ,x , f q „ pβ ,rx , rf q iff rx “ x and rf “ дβα pxq ¨ f , a differentiable manifold which defines a

G-bundleG ýF Ñ E0
pr2
ÝÑ M .
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In short, the cocycles and transformation groupG contain all the information required to com-
pletely determine aG-bundle so that, for instance, given aG-bundle, one could isolate its cocycles
and make use of a different group action ofG to construct another G-bundle using the above the-
orem. Such a bundle is called an associated bundle. In particular, if P is a principal G-bundle and
ρ : G Ñ V is a group representation, we call the bundle obtained from the cocycles of P and ρ
the vector bundle associated to P and ρ and denote it by P ˆρ V . Likewise, given a vector bundle E,
one may use its cocycles together with the le action of the structure group on itself to obtain the
principal bundle associated to E.

Let V be an R-vector space, tpVξ ,xξ quξPΞ an atlas for M , f : N Ñ M a smooth map, where
N is a smooth manifold, and F Ñ E Ñ M and F0 Ñ E0 Ñ M vector bundles with cocycles
tдα β : Uα XUβ Ñ GLpF quα,βPA and tд0α β : Uα XUβ Ñ GLpF0qu respectively, where in both cases
we consider the vector bundles as GLp¨q bundles with the standard representation of GLp¨q. e
following table summarizes the GLp¨q-bundle constructions we shall require, where we make use
of the canonical representation ofGLp¨q:

Bundle Symbol Cocycles
Trivial bundle V M Q x ÞÑ idV P GLpV q

Tangent bundle TM hξ η :“
`

D
`

xξ ˝ x´1
η

˘˘

˝ xη : Vξ XVη Ñ GLpRnq

Cotangent bundle T˚M h˚
ξ η :“ t

´

D
´

xη ˝ x´1
ξ

¯¯

˝ xξ : Vξ XVη Ñ GL
`

pRnq
˚
˘

Pullback bundle (over N ) f ´1E pf ˚дqα β :“ дα β ˝ f : f ´1
`

Uα XUβ
˘

Ñ GLpF q

Dual bundle E˚ д˚
α β :“ tдβα : Uα XUβ Ñ GLpF˚q

Tensor product bundle E b E0 дb

α β :“ дα β b д0α β : Uα XUβ Ñ GL pF b F0q

kth exterior product bundle ΛkE
дkα β :“ дα β ^ . . . ^ дα β

loooooooomoooooooon

k times

: Uα XUβ Ñ GL
`

ΛkF
˘

Exterior algebra bundle ΛE д¨
α β :“ ‘kд

k
α β : Uα XUβ Ñ GLpΛF q

For convenience, whenever we make use ofV bE withV trivial and E a vector bundle as above,
we shall always assume that the representative point set ofV b E is

V b
ď

αPA

tαu ˆUα ˆ F

so that, for instance, pV b Eqx “ V b Ex for each x P M . Moreover, we assume for convenience
that the representative point set of f ´1E is

ď

yPN

tyu ˆ Ef pyq

so that pf ´1Eqy “ tyuˆEf pyq. We shall writeTxM ,T˚
x M andΛ¨T˚

x M for the fibres of the respective
bundles (x P M). Finally, note that, by construction, all of the bundles above inherit canonical
pairings from their linear algebraic counterparts and we shall use the same notation in all cases.
For instance, the canonical dual pairing F˚ ˆ F Ñ R defines the pairing

E˚ ˆ E Ñ R

prα ,x ,εs, rα ,x ,esq ÞÑ pε,eq,

which is well-defined, since

`

rβ ,x , tдα β pxqεs, rβ ,x ,дβα pxqes
˘

“ ptдα β pxqε,дβα pxqeq “ pε,дα β pxqдβα pxqeq “ pε,eq.

We now turn our aention to the maps from the base manifold to the total space. We shall only
be concerned with sections in this regard.





Definition ... LetU Ă M be open and E aG-bundle. A (smooth) map σ : U Ñ E is said to be a
(smooth) local section over U if π ˝ σ “ idU and the set of all smooth local sections of E over U is
denoted by ΓpE Ñ U q, or simply ΓpEq if U “ M . If E “ TM , we refer to σ as a vector field, and if
E “ ΛT˚M we call σ a differential form. Finally, if σ : U ˆ I Ñ E is a smooth function with I Ă R
open such that σp¨,tq is a local section overU , we say that σ is a time-dependent section overU ˆ I .

Local sections exist in abundance; e.g. the map Uα Q x ÞÑ Ψα px , f q is a local section over Uα
for fixed f P F . e existence of a global section is not necessarily guaranteed, however. On the
one hand, if E is a vector bundle, then the map x ÞÑ 0x P Ex can be seen to be a smooth section
(0x is the zero element of the vector space Ex ). On the other hand,

Proposition ... Let P be a principal G-bundle. en sections over U Ă M open are in one-to-one
correspondence with bundle charts overU .

Proof. If Ψ : U ˆG Ñ π´1pU q is a bundle chart, then, as above, x ÞÑ Ψpx ,eq is a local section over
U , where e is the identity of G. On the other hand, if σ : U Ñ P is a local section, then the map
U ˆG Q px ,дq ÞÑ σpxqд P π´1pU q is smooth and may be seen to be a diffeomorphism. □

e analogous statement for vector bundles is

Proposition ... Let E be a vector bundle. en frames over U Ă M open, i.e. a collection of
dim F smooth sections tεi : U Ñ Eu with Ex “ spantεi pxqudim F

i“1 for each x P U , are in one-to-one
correspondence with (GLpF q) bundle charts overU .

Proof. If Ψ : U ˆ F Ñ π´1pU q is aGLpF q bundle chart overU , then, by the above, Ψpx , ¨q : F Ñ Ex
is a vector space isomorphism for each x P U , whence tx ÞÑ Ψpx ,ei qudim F

i“1 yields a frame over
U , where ei is some basis for F . On the other hand, if tεiu is a local frame over U , then U ˆ F Q
´

x ,
řdim F

i“1 viei

¯

ÞÑ
řdim F

i“1 viεi pxq defines a bundle chart. □

To conclude this section, we recall a familiar example reformulated in the language of bundle
theory.

Proposition ... [, §.] LetM ,N be smooth manifolds with charts tpUα ,xα qu and tpVξ ,yξ qu

respectively, and suppose f : M Ñ N is a smooth map. e map

TxM Q rα ,x ,vs ÞÑ rξ , f pxq,Dpyξ ˝ f ˝ x´1
α qpxα pxqqvs P Tf pxqN

defines a vector space homomorphism dx f : TxM Ñ Tf pxqN , the differential of f , which may,
alternatively, be viewed as the vector bundle morphism

df : TM Ñ f ´1TN

rα ,x ,vs ÞÑ rξ ,x ,Dpyξ ˝ f ˝ x´1
α qpxα pxqqvs

or the smooth section df P Γ pf ´1TN bT˚Mq defined by

x ÞÑ rξα ,x ,
n
ÿ

i“1

Dpyξ ˝ f ˝ x´1
α q pxα pxqq ei b ωi s.

e differential of f induces the map

δx f : T˚
f pxq

N Ñ T˚
x M

the codifferential of f , which in turn induces algebra homomorphisms ΛT˚
f pxq

N Ñ ΛT˚
x M and

Â

T˚
f pxq

N Ñ
Â

T˚
x M , both denoted by δx f . Given a section ρ P ΓpV bΛT˚N q (ρ P ΓpV b

Â

T˚N q),
where V is a trivial vector bundle, the map

M Q x ÞÑ pidV b δx f q pρf pxqq P V b ΛT˚
x M presp. x ÞÑ pidV b δx f qpρf pxqq P V b

â

T˚
x Mq

defines a smooth section f ˚ρ P Γ pV b ΛT˚Mq (resp. f ˚ρ P ΓpV b
Â

T˚Mq), the pullba of ρ by
f .
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1.5. Connections and covariant derivatives. We now introduce the notion of a connection
on a principal bundle G Ñ P

π
ÝÑ M . To this end, let tдα β : Uα XUβ Ñ Guα ,βPA be cocycles for P .

We shall adopt the following definition of a connection:

Definition ... [, §] A connection on P is a collectionω :“ tωα P Γ pg bT˚Uα qu such that for
any α ,β P A, x P Uα XUβ and v P TxM ,

`

ωβ ,v
˘

“ Adдβα pxq pωα ,vq `

´

dдα β pxqλдβα pxq ˝ dxдα β
¯

pvq.

Note that if it weren’t for the laer term, we could appeal to eorem .. to conclude that
a connection defines a section of pP ˆAd gq b T˚M . However, if trωα uα is any other connection,
then we have that

prωβ ´ ωβ ,vq “ Adдβα pxqprωα ´ ωα ,vq

so that the “difference” of two connections now defines a section of pP ˆAd gq bT˚M . erefore,
the space of connections may be viewed as being parametrized by elements of Γ

`

P ˆAd g bT˚M
˘

and, when we write rω “ ω`a for a P ΓpP ˆAd gbT˚Mq, we shall mean that a corresponds to the
section given by trωα ´ωα uαPA. is should be compared to the behaviour of Christoffel symbols
in Riemannian geometry.

Given a connection and a section д “ rα , ¨,дα s of the associated bundle G Ñ P ˆC G Ñ M ,
one may form a new connection д ¨ ω “ tωα u from ω by defining

prωα ,vq :“ Adдα pxqpωα ,vq `

´

dд´1
α pxq

λдα pxq ˝ dxд´1
α

¯

pvq

for α P A, x P Uα andv P TxM [, §]. We refer to elements of ΓpP ˆCGq, whereC is the conjugate
action of G on itself (cf. §.), as gauge transformations [, §] and subsequently identify gauge-
transformed connections. Such transformations also act on sections of ΓpP ˆAd g b ΛT˚Mq by
means of Ad, i.e. for rα , ¨, fα s P ΓpP ˆAd g b ΛT˚Mq,

д ¨ rα , ¨, fα s :“ rα , ¨,Adдα fα s.

Connections induce covariant derivatives on associated bundles. We first recall the notion of a
covariant derivative on a vector bundle.

Definition ... [, §.] A covariant derivative on a vector bundle E Ñ M is an R-linear map
ΓpEq

∇
ÝÑ ΓpE bT˚Mq such that

∇pf sq “ f ∇s ` s b df (.)

for every f P C8M and s P ΓpEq. We write ∇X s for p∇s,X q whenever X P ΓpTMq.

Example ... If E and F are vector bundles equipped with covariant derivatives, then E b F may
be equipped with a covariant derivative such that, whenever sE P ΓpEq and sF P ΓpF q,

∇X psE b sF q :“ ∇X sE b sF ` sE b ∇X sF .

for every X P ΓpTMq [, §.]. at this operator is well defined has to be checked locally.
Similarly, if s˚

E P ΓpE˚q, then a covariant derivative may be defined on E˚ [, §.], just as is
usually done for T˚M in Riemannian geometry, such that

For a more geometric presentation of the theory of connections on principal bundles and a proof of the equivalence
of the various definitions, the reader is referred to [, Chapter ] and [, §‚].

Since there is a one-to-one correspondence between connections on principal GLpN q-bundles and covariant deriva-
tives on vector bundles associated to them by the standard matrix representationGLpN q ˆ RN Ñ RN [, eorem .],
covariant derivatives are usually also, by an abuse of terminology, referred to as connections.
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BX
`

s˚
E psEq

˘

“ p∇X s˚
E qpsEq ` s˚

E p∇X sEq.

Moreover, a covariant derivative on ΓpΛEq may be defined such that

∇X ps1 ^ ¨ ¨ ¨ ^ sk q “ ∇X s1 ^ s2 ^ ¨ ¨ ¨ ^ sk ` s1 ^ ∇X s2 ^ s3 ^ ¨ ¨ ¨ ^ sk

` ¨ ¨ ¨ ` s1 ^ ¨ ¨ ¨ ^ sk´1 ^ ∇X sk .

whenever s1, . . . ,sk P ΓpEq [, §.]. Finally, suppose f : N Ñ M is smooth. A covariant
derivative may be induced on f ´1E as follows: if U Ă M is open and teα : U Ñ Eu form a local
frame for E, then ∇ may be described locally by a collection of of local sections tΓ

β
α u of T˚M such

that

∇eα “
ÿ

β

eβ b Γ
β
α (.)

on U [, §III.]. Since te
f
α :“ pf ´1pU q Q y ÞÑ py,eα pyqqqu form a local frame for E, any section

s P ΓpEq may be wrien in the form

s “
ÿ

α
sαe

f
α .

We thus define a covariant derivative on f ´1E by

∇s “
ÿ

α

¨

˝e
f
α b dsα ` sα

ÿ

β

f ˚Γ
β
α b e

f
β

˛

‚. (.)

is expression may be shown to be independent of the choice of local frame.

Remark ... For later purposes, we shall need to know how a Riemannian connection on E Ñ M
and the induced connection f ´1E Ñ N (f P C8pM ,N q) compare. To this end, let Y be a local
section of f ´1E and Y a local section of E such that

Y pxq “

´

x ,Y pf pxqq

¯

(.)

for x P f ´1pU q, where U Ă M is open. Expanding in terms of a local frame as in Example ..,
we write

Y “
ÿ

α
Y
α
eα

and

Y “
ÿ

α
Y αe

f
α ,

noting that the relation (.) implies that Y α ˝ f “ Y α on f ´1pUα q. Now, let X P Tx0N for
x0 P f ´1U . (.) implies that

∇XY “ px0,
ÿ

α

¨

˝pBXY
α q eα pf px0qq ` Y α px0q

ÿ

β

pf ˚Γ
β
α qpX qeβ pf px0qq

˛

‚q.
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Using Y α “ Y
α

˝ f and a smooth curve c : s´ε,εr Ñ N such that cp0q “ x0 and c 1p0q “ X , we see
that

BXY
α “

d
dt

ˇ

ˇ

ˇ

ˇ

t“0
pY α ˝ cq “

d
dt

ˇ

ˇ

ˇ

ˇ

t“0

´

Y
α

˝ pf ˝ cq

¯

“ Bdf pX qY
α
.

We also note that Y α px0q “ Y
α

pf px0qq

pf ˚Γ
β
α qpX q “ Γ

β
α pdf pX qq

so that, using (.) and the Leibniz rule (.), we have that

∇XY “ px0,∇df pX qY q.

Example ... [, §] Let E “ P ˆρ V be a vector bundle associated to P and a representation ρ.
e map

ΓpP ˆρ V q Q rα , ¨,ss ÞÑ

n
ÿ

i“1

rα , ¨,Bis ` deρ ppωα ,Bi qq ss b dx i P ΓpP ˆρ V q

is well-defined. is is the canonical induced covariant derivative on the associated bundle E.

For later purposes, we shall need a differential operator on sections of E bΛT˚M analogous to
the exterior derivative. Recall that, whenever ∇ is a torsion-free covariant derivative on TM , the
laer may be defined by

dω “

n
ÿ

i“1

θ i ^ ∇tiω

for ω P ΓpΛT˚Mq and any local frame ttiu for TM with dual coframe tθ iu for T˚M [, §.]. In
our case, such a differential operator may be similarly defined.

Definition ... e exterior covariant derivative associated to a connection ∇ on E is defined by

ΓpE b ΛT˚Mq Ñ ΓpE b ΛT˚Mq

s ÞÑ d∇s :“
n
ÿ

i“1

dx i ^ ∇Bi s,

where ∇ is induced by the connections on E and TM and the connection on TM is torsion-free.

We now introduce a notion of curvature.

Proposition ... e collection Ωω “ tΩω
α P Γpg b Λ2T˚Uα qu defined by

Ωω
α :“ dωα `

1
2

rωα ,ωα s

defines a global section Ωω P Γ
`

pP ˆAd gq b Λ2T˚M
˘

, referred to as the curvature form of ω. It
satisfies the Biani identity

d∇Ωω “ 0,

where ∇ is the covariant derivative induced by ω on the associated bundle P ˆAd G.

Here, r ,̈ ¨s on g is combined with wedge multiplication on T˚M to yield r ,̈ ¨s on gb ΛT˚M .
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Proof. By [, eorem ..], we have

Ωω
β “ Adдβα Ω

ω
α

onUα XUβ . By eorem .., the map

x ÞÑ
ÿ

iăj

rx ,α ,pΩω
α ,Bi ^ Bjqs b dx i ^ dx j

is well-defined, thus establishing the first claim. e laer claim is a rephrasing of [, eorem
..]. □

1.6. Riemannian vector bundles. Let E Ñ M be a vector bundle with projection π : E Ñ M .
We denote the space of smooth sections of E over M , i.e. smooth maps s : M Ñ E such that
π ˝ s “ idM , by ΓpEq. If s : M ˆ sa,br Ñ E is a smooth map such that sp¨,tq P ΓpEq for each
t P sa,br, we shall refer to s as a time-dependent section overM ˆ sa,br.

Definition ... [, §.] If the fibres Ep :“ π´1ptpuq (p P M) of E are equipped with positive-
definite inner products ⟨¨, ¨⟩p such that, for any local frame teα u the map

p ÞÑ
⟨
eα ppq,eβ ppq

⟩
p

is smooth, we say that E is Riemannian.

Example ... A manifold is Riemannian iff TM is a Riemannian vector bundle. □

Example ... Let ⟨¨, ¨⟩ : V ˆV Ñ K “ R or C be a positive-definite inner product on a K-vector
space V , P a principal G-bundle and ρ : G Ñ GLpV q a group representation. If ⟨¨, ¨⟩ is ρ-invariant,
i.e.

⟨
ρpдqv,ρpдqw

⟩
“ ⟨v,w⟩

for every д P G and v,w P V , then it defines a Riemannian structure on the associated vector
bundle P ˆρ V such that for each x P M and v,w P V ,

⟨
rα ,x ,vs, rα ,x ,ws

⟩
x :“ ⟨v,w⟩ .

us, a ρ-invariant inner product on a vector bundle associated to P and ρ. □

Example ... Given Riemannian structures on vector bundles E,Ei Ñ M , i P t1, . . . ,ku, we may
define Riemannian structures on ΛE, E˚ and E1 b ¨ ¨ ¨ b Ek in a canonical manner just as was done
when inducing inner products on the vector space counterparts of the above: define everything
pointwise. Similarly, if f : N Ñ M is smooth, then a Riemannian structure may be defined on
f ´1pEq such that for py,vf pyqq,py,wf pyqq P pf ´1Eqy ,

⟨
py,vf pyqq,py,wf pyqq

⟩
y
:“
⟨
vf pyq,wf pyq

⟩
f pyq
.

It follows from the definitions of these bundles that the resulting inner products are smooth [,
§.–§.]. □

A vector bundle may always be made to be Riemannian [, Proposition .] and a Riemannian
vector bundle, viewed as a GLpF q-bundle, admits a canonical OpF q (with respect to some fixed
inner product on F ) bundle atlas by taking the cocycles to be rдα β pxq “ τα pxq´1дα β pxqτβ pxq, where
τα pxq P GLpF q is defined such that trα ,x ,τα pxqei su (teiu orthonormal in F ) form an orthonormal
basis for Ex and x ÞÑ rα ,x ,τα pxqei s is a smooth local section of E (e.g. by using the Gram-Schmidt
algorithm). On the other hand, given an OpF q bundle atlas (relative to an inner product ⟨¨, ¨⟩ on
F ) for E, a Riemannian structure may be defined by the formula pдx , rα ,x ,vs b rα ,x ,wsq :“ ⟨v,w⟩,
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which defines a global object by virtue of the universal mapping property and the given bundle
atlas.

Given a Riemannian structure, we may define the L2 inner product

ps1,s2q :“
ż

M
⟨s1,s2⟩ dvolд (.)

for sections s1,s2 P ΓpEq such that ps1,s1q and ps2,s2q are finite and write s P L2pE Ñ Mq (or simply
s P L2pMq when E is understood) whenever s P ΓpEq, ⟨s,s⟩ is measurable (with respect to the Borel
measure induced by dvolд) and ps,sq ă 8. We may similarly use the norm induced by the inner
product ⟨¨, ¨⟩ to define Lp norms ||¨||p of sections and time-dependent sections, where the domain of
integration is to be understood as the domain of definition of the section in question. For instance,
if pM ,tдt utPI q is an evolving Riemannian manifold and D Ă M ˆ I is open and s : D Ñ E is a
time-dependent local section of E, i.e. sp¨,tq is a local section of E for all t P pr2pDq, then

||s||p :“

¨

˝

ĳ

D

⟨s,s⟩p{2 dvolдt dt

˛

‚

1{p

and we write s P LppDq whenever ⟨s,s⟩ is measurable (with respect to the Borel measure onM ˆ I
induced by dvolдt ^ dt ) and ||s||p ă 8. Note that all of these considerations reduce to classical
statements about Lp theory when E “ R Ñ M is the trivial line bundle over M , in which case
(time-dependent) sections are simply described by (time-dependent) functions onM .

We would like to consider differential operators on ΓpEq in the sequel which, in a sense, are
compatible with the Riemannian structure on E.

Definition .. ([, §.]). A Riemannian connection ∇ on E is a covariant derivative on E such
that

BX ⟨s1,s2⟩ “ ⟨∇X s1,s2⟩` ⟨s1,∇X s2⟩

holds for every X P ΓpTMq and s1,s2 P ΓpEq.

Example ... If E Ñ M and F Ñ M are Riemannian vector bundles equipped with Riemannian
connections and f : N Ñ M is smooth, then the induced covariant derivatives of Example ..
are all Riemannian connections [, Proposition .].

Example ... Let E “ P ˆρ V be a vector bundle associated to a principal bundle P and group
representation G Ñ GLpV q and suppose it is equipped with a Riemannian structure induced by
some ρ-invariant inner product on V . Now, for fixed Z P g and v,w P V ,

0 “ BZ
⟨
ρ¨pvq,ρ¨pwq

⟩
“
⟨deρpZqv,w

⟩
`
⟨
v,deρpZqw

⟩
.

Hence, if P is equipped with a connection ω, s1 “ rα , ¨,σ1s,s2 “ rα , ¨,σ2s P ΓpEq and X P ΓpTMq,
we have

BX ⟨s1,s2⟩ “ Bx ⟨σ1,σ2⟩
“ ⟨BXσ1,σ2⟩` ⟨σ1,BXσ2⟩
“ ⟨BXσ1,σ2⟩`

⟨deρppωα ,X qqσ1,σ2
⟩

`
⟨
σ1,de ppωα ,X qqσ2

⟩
` ⟨σ1,BXσ2⟩

“ ⟨∇X s1,s2⟩` ⟨s1,∇X s2⟩ ,

where ∇ is the covariant derivative induced on E by ω, whence we see that ∇ is Riemannian. □

We may, as in §., build an exterior covariant differential d∇ from ∇. Using this and the L2
inner product (.), we may form a “divergence-type” operator δ∇ as in the following lemma.

Here the sections in question needn’t be smooth nor continuous.
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Lemma ... e following hold:

(i) d∇ : ΓpE b ΛT˚Mq Ñ ΓpE b ΛT˚Mq is an R-linear map such that d∇pf sq “ d f ^ s ` f d∇s
whenever f P C8pMq and s P ΓpE b ΛT˚Mq.

(ii) Define the codifferential δ∇ : ΓpE b ΛT˚Mq Ñ ΓpE b ΛT˚Mq as the R-linear map such that

δ∇s :“ ´

n
ÿ

i“1

ιεi∇εi s “: ´div s

for every s P ΓpE b ΛkT˚Mq and k ą 0, and δ∇
ˇ

ˇ

ΓpEq
” 0. is operator satisfies the identity

⟨
s1,d∇s2

⟩
´
⟨
δ∇s1,s2

⟩
“ div

˜

n
ÿ

i“1

⟨
ιεi s1,s2

⟩
ωi

¸

for every s1 P ΓpEbΛk`1T˚Mq and s2 P ΓpEbΛkT˚Mq. In particular, δ∇ is the formal adjoint of
d∇ restricted to compactly supported sections of EbΛkT˚M with respect to the L2-inner product,
i.e.

ż

M

⟨
s1,d∇s2

⟩
dvolд “

ż

M

⟨
δ∇s1,s2

⟩
whenever supp si “ tx P M : si pxq ‰ 0 P Ex b Λk`2´iT˚

x Mu Ť M .

Proof. (cf. [, §., §.])

. e former claim is evident from the definition. As for the laer,

d∇pf sq “

n
ÿ

i“1

ωi ^ ∇εi pf sq

“

n
ÿ

i“1

Bεi f ω
i ^ s ` f ωi ^ ∇εi s

“ df ^ s ` f d∇s .

. We compute in a frame adapted at p P M :

⟨
s1,d∇s2

⟩
“

⟨
s1,

n
ÿ

i“1

ωi ^ ∇εi s2
⟩

“

n
ÿ

i“1

⟨
ιεi s1,∇εi s2

⟩
“

n
ÿ

i“1

Bεi
⟨
ιεi s1,s2

⟩
´
⟨∇εi pιεi s1q ,s2

⟩
“ div

˜

n
ÿ

i“1

⟨
ιεi s1,s2

⟩¸
`
⟨
δ∇s1,s2

⟩
,

since ∇εi εj “ 0 at p. e laer claim follows from Gauß’ theorem.

□
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Motivated by considerations in Hodge theory (cf. [, Chapter ]), we define the Hodge Lapla-
cian ∆∇ on ΓpE b ΛT˚Mq associated to ∇ by

∆∇ :“ d∇δ∇ ` δ∇d∇.

It is noted that for compactM , the spectrum of this operator is nonnegative since, by Lemma ..
(ii),

ż

M

⟨
s,∆∇s

⟩
dvolд “

ż

M
|d∇s|2 ` |δ∇s|2dvolд

for every s P ΓpE b ΛkT˚Mq. us, if M “ Rn , E “ Rn ˆ R is the trivial line bundle and
∇X px ÞÑ px , f pxqqq “ pp,BX f q for X P TpR

n and f : Rn Ñ R, it follows (cf. [, §.]) that

`

∆∇p¨, f q
˘

pxq “ px ,´
n
ÿ

i“1

B2
i f pxqq.

Similarly, the associated heat operator, acting on time-dependent sections of E b ΛT˚M , is
defined as the operator

Bt ` ∆∇,

viz. ifM “ Rn , and E is the trivial line bundle with ∇ as before, we have

`

Bt ` ∆∇
˘

p¨, f qpxq “ px ,pBt f ´ ∆f qpxqq

which coïncides with the usual heat operator. We note that the above sign conventions for the
Laplacian and heat operator shall only be retained for sections of bundles of the form E b ΛT˚M
and that, for real-valued functions (cf. §.), different conventions shall be taken.

1.7. Geometric setup. e notion of an evolving Riemannian manifold is now introduced.
is shall, for the most part, be the seing in which we work in this thesis.

Definition ... A manifold M is said to be equipped with an evolving Riemannian metric д “

tдt utPI if tдt P Γ pT˚M bT˚MqutPI is a smooth one-parameter family of Riemannian metrics in-
dexed by an open interval I . Such a Riemannian manifoldM is said to be evolving.

We shall always write

Btдpxq “ hpxq,

where tht P Γ pT˚M bT˚MqutPI is a smooth one-parameter family of sections ofT˚M bT˚M and
agree to refer to the parameter t as time.

Example ... If I “ R and h ” 0, we say that д (orM) is static. □

Example ... If h “ ´2Ric, where Ric is the Ricci curvature of д, pM ,дq is said to evolve by Ricci
flow. □

e usual notions and quantities of Riemannian geometry translate to this seing by fixing
time and considering the usual quantities. Noteworthy, however, is that the resulting quantities
are smooth in time. e relevant notation is summarized in the following table:

Symbol Signification

trдt
Trace of a (time-dependent) section of E b T˚M b T˚M (E a vector
bundle) with respect to дt





dvolдt Volume form of дt
Volдt Volume measure induced by dvolдt
exptp Exponential map at p of pM ,дt q

ϑ tp Exponential coördinates at p with respect to дt as in Appendix B
injtp Injectivity radius at p of pM ,дt q

dt Geodesic distance on pM ,дt q

Btr ppq Geodesic ball of radius r at p in pM ,дt q

∇д Gradient associated to д (time understood)
divд Divergence induced by the Levi-Civita connection ∇ associated to д
secM Sectional curvature of pM ,дq

Ric Ricci curvature. of pM ,дq

∇2д Hessian :“ ∇ ˝ d

∆д Laplace-Beltrami operator p:“ div ˝ ∇ “ trд ˝ ∇2q

tεi pp,tquni“1
Localдt -orthonormal frame forTM defined for pp,tq in some open sub-
set ofM ˆ I

tωi pp,tquni“1 Local orthonormal (co)frame forT˚M dual to tεiu
n
i“1

εI εi1 ^ ¨ ¨ ¨ ^ εik where Ik “ pi1, . . . ,ik q is an increasing k-multi-index
ω I ωi1 ^ ¨ ¨ ¨ ^ ωik where Ik “ pi1, . . . ,ik q is an increasing k-multi-index

We adopt the sign conventions of [] and refer to that book for definitions of the above objects,
noting in particular that the sign convention of the Laplacian here is opposite to that of the Hodge-
type Laplacian ∆∇ introduced earlier. When the time parameter t is understood, we omit it from
the above symbols and, when the metric is understood, we simply write div for divд , ∇ for ∇д and
∆ for ∆д . Fix p P M and set rpx ,tq “ dt px ,pq. It is known that r2 is smooth in some neighbourhood
of pp,sq for any p P M , s P I [].Finally, we say a дt0-orthonormal frame tεiu (t0 P I fixed) is
adapted at p P M if ∇εi εj “ 0 at p.

With the above notation in mind, we introduce for rx ,rt ą 0, p P M and s P I the spacetime
cylinder

Drx ,rt pp,sq “
ď

tPIXss´rt ,sr

Btrx ppq ˆ ttu.

In this thesis we shall be chiefly concerned with geometries that are suitably controlled locally, as
in the following definition.

Definition ... Let pM ,tдt utPI q be a Riemannian manifold with evolving metric, x0 P M and t0 P

Iztinf Iu. M is said to be of locally bounded geometry about px0,t0q if there existκ´8,κ8,λ´8,λ8 P

R and δ ą 0 such that injtx0 ě
injt0x0
2 “: i0

2 for every t Pst0 ´ δ ,t0r and the bounds

κ´8 ď sec ď κ8

λ´8д ď h ď λ8д

hold in a neighbourhood of Di0{2,δ px0,t0q.

Remark ... If t0 P I , then M is always of locally bounded geometry about px0,t0q as may be
seen by writing the geodesic equations down and using the smooth dependence of the system of
ODE on the parameter t (cf. e.g. [, eorem .]) to conclude that for t sufficiently close to t0,
unit speed geodesics radiating from x0 exist on the interval r0, i02 s. We shall, however, require that
M be of locally bounded geometry about px0,t0q and usually suppose I is an interval of the form
st0 ´ δ0,t0r.

Note that if δ fulfils these conditions, then so does δ 1 ă δ .



 Chapter . Preliminaries

On the one hand, this then implies that
ˇ

ˇtrдh
ˇ

ˇ ď n ¨ maxt|λ´8|, |λ8|u “: nµ and |Bt r| ď
µ
2 r on

Di0{2,δ px0,t0qztr “ 0u [, §..].
Since we shall make use of comparison geometry results (see Appendix B), the spacetime neigh-

bourhood of px0,t0q we shall be working with will have to be small enough to accommodate for
the geometries of the comparison spaces. To this end, we set

j0 “ min

#

i0
2
,

π

2
a

pκ8q`

,
π

2
a

pκ´8q`

+

. (.)

We shall make use of this notation throughout this thesis and also assume that the flows to be
considered are defined on st0 ´ δ ,t0r.

For later purposes, we shall need to know how the family of metrics induced on T˚M , to be
wrien pд˚

t q, and dvolд evolve. Write 7t and 5t for the musical isomorphisms induced by дt .

Proposition ... Btд
˚ “ ´h7t .

Proof. We work in coördinates: write дi j “ pд,Bi b Bjq and note that, since дi j “ pд˚,dx i b dx jq is
simply given by the components of thematrix inverse of pдi jq,

ř

k дikд
k j “ δ ji . Differentiating with

respect to t and rearranging, we immediately see that pBtд
˚,dx i bdx jq “ Btд

i j “ ´
ř

k,l
дikдl jhkl “

´ph7t ,dx i b dx jq, whence the result follows. □

Proposition ... Btdvolд “ 1
2 trдhdvolд

Proof. Retaining the notation of the preceding proposition, we note that in any coördinate neigh-
bourhood dvolд is given by dvolд “

a

detpдi jqdx . Since pBi j detqpдi jq “ дji detpдi jq, we see that
Btdvolд “ 1

2
?

detpдi j q

ř

i,j
дji detpдi jqhi jdx “ 1

2

a

detpдi jq
ř

i,j
дi jhi jdx “ 1

2 trдhdvolд . □

We shall also require information about how induced inner products on E b ΛkT˚M , where E
is a Riemannian vector bundle, evolve.

Proposition ... Supposeψ1,ψ2 P ΓpE bT˚Mq. en

Bt
⟨
ψ1,ψ2

⟩
“ ´

˜

h7t

t ,
n
ÿ

i,j“1

⟨
ιεiψ1,ιεjψ2

⟩
ωi b ω j

¸

“ ´

⟨
ht ,

n
ÿ

i,j“1

⟨
ιεiψ ,ιεjψ

⟩
ωi b ω j

⟩

where tεiu Ø tωiu are any local frame onM .

Proof. We fix a дt0-orthonormal basis tεiu on TM for t0 fixed and note that

⟨
ψ1,ψt

⟩
t “

ÿ

Ik , J k

⟨
pψ1,εI q,pψ2,ε J q

⟩
¨ det

`

д˚
t pωir ,ω js q

˘k
r ,s“1

and

Bt |t0

`

detpд˚
¨ pωir ,ω js qq

˘

“ ´

k
ÿ

r ,s“1

h7pωir ,ω js q ¨ p´1qr`s
⟨
ωi1 ^ ¨ ¨ ¨ ^ xωir ^ ¨ ¨ ¨ ^ ωik ,ω j1 ^ ¨ ¨ ¨ ^ xω js ^ ¨ ¨ ¨ ^ ω jk

⟩
,

whence, noting that ωi1 ^ ¨ ¨ ¨ ^ xωir ^ ¨ ¨ ¨ ^ ωik “ p´1qr`1ιεir ω
I ,

Bt
⟨
ψ1,ψ2

⟩
Here we adopt the convention that 1

0 “ 8 and minta,8u “ a if a P R.
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“ ´
ÿ

Ik , Jk

k
ÿ

r ,s“1

⟨
pψ1,εI q,pψ2,ε J q

⟩
¨ ph7t0

t0 ,ω
ir b ω js q ¨

⟨
ιεir ω

I ,ιεjsω
J
⟩
t0
.

e inner sum is invariant under permutations of I and J , i.e. under I Ñ σpIq, J Ñ τ pJq for any
σ ,τ : t1, . . . ,ku Ñ t1, . . . ,ku bijective. We proceed with this in mind:

“ ´
1

pk!q2
ÿ

i1, ...,ik
j1, ...,jk

k
ÿ

r ,s“1

⟨
pψ1,εI q,pψ2,ε J q

⟩
¨ ph7t0

t0 ,ω
ir b ω js q ¨

⟨
ιεir ω

I ,ιεjsω
J
⟩
t0
. (.)

Now, interchanging sums and fixing r ,s , we note that the inner summandmay bewrien as, writing
σpIq “ pir ,i1, . . . , pir , . . . ,ik q and τ pJq “ pjs , j1, . . . , pjs , . . . , jk q,

ÿ

i1, ...,ik
j1, ...,jk

p´1qr`s
⟨
pψ1,εσ pI qq,pψ2,ετ pJ qq

⟩
¨ ph7t0

t0 ,ω
pσ pI qq1 b ωτ pJ q1q ¨ p´1qr`s

⟨
ιεσ pIq1

ωσ pI q,ιετ pJ q1
ωτ pJ q

⟩
“

ÿ

i1, ...,ik
j1, ...,jk

⟨
pιεi1ψ1,εi2 ^ ¨ ¨ ¨ ^ εik q,pιεj1ψ2,εi2 ^ ¨ ¨ ¨ ^ εik q

⟩
¨ ph7t0

t0 ,ω
i1 b ω j1q ¨

⟨
ιεi1ω

I ,ιεj1ω
J
⟩
,

where we have now made a change of variables. Noting now that this expression does not depend
on r and s so that, summing over r and s we obtain k2 of these sums and treating i1 and j1 as
separate variables from the other i¨, j¨, we proceed from (.), rewriting the outer sum in terms of
increasing multi-indices:

“ ´
ÿ

Pk´1,Qk´1

n
ÿ

i1,j1“1

⟨
pιεi1ψ1,εP q,pιεj1ψ2,εQ q

⟩
ph7t0

t0 ,ω
i1 b ω j1q

⟨
ωP ,ωQ

⟩
looomooon

δ PQ

“ ´

n
ÿ

i,j“1

⟨
ιεiψ1,ιεjψ2

⟩´
h7t0

t0 ,ω
i b ω j

¯

“ ´

˜

h7t0

t0 ,
n
ÿ

i,j“1

⟨
ιεiψ1,ιεjψ2

⟩
ωi b ω j

¸

t0

,

which is independent of the choice of frame. □

1.8. Backward Heat Kernels. e kernels which play an important role in the monotonic-
ity formulæ to follow are now introduced– the formal backward heat kernel and the canonical
backward heat kernel.

Let pMn ,pдt qtPI q be an evolving Riemannian manifold with I Ă R an open interval, fix px0,t0q P

M ˆ Iztinf Iu and assumeM is of locally bounded geometry about px0,t0q with bounds as in Defi-
nition .. and j0 as in (.) of §..

Definition ... [, §]e canonical backward heat kernel concentrated at px0,t0q is theminimal
function satisfying

ˆ

Bt ` ∆ `
1
2
trдh

˙

Ppx0,t0q “ 0 onM ˆ I

lim
tÕt0

Ppx0,t0qp¨,tq “ δx0

where δx0 is the delta distribution at x0 and this limit is to be considered in the (tempered) distri-
butional sense.

Remark ... emotivation for the introduction of these kernels is that, ifu,v P C8pM ˆ Iq, the
following equality holds whenever Gauß’ theorem may be applied []:
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d
dt

ż

M
uvdvolд “

ż

M
rpBt ´ ∆qusv ` u

ˆ

Bt ` ∆ `
1
2
trдh

˙

vdvolд . (.)

us, if u solves the heat equation, viz. pBt ´ ∆qu “ 0, and v “ Ppx0,t0q, we have that

ˆ
ż

M
uPpx0,t0qdvolд

˙

ptq “ lim
τÕt0

ˆ
ż

M
uPpx0,t0qdvolд

˙

pτ q “ upt0q

for every t P I . erefore, Ppx0,t0q is the natural analogue of the usual backward heat kernel

px ,tq ÞÑ
1

p4πpt0 ´ tqqn{2
exp

ˆ

|x ´ x0|
2

4pt ´ t0q

˙

(.)

on Euclidean space.

Whereas there is an explicit formula for the backward heat kernel on Rn , such a formula is
not given on manifolds. For the purpose of comparison, we also introduce the kernel obtained by
adapting the definition (.) of the Euclidean backward heat kernel to the manifold seing.

Definition ... e formal backward heat kernel concentrated at px0,t0q is the function

Φfml : M ˆ I Ñ R`

px ,tq ÞÑ
1

4πpt0 ´ tqn{2
exp

ˆ

dt px ,x0q
2

4pt ´ t0q

˙

.

Remark ... Φfml is not everywhere smooth. However, we shall restrict our aention to the
study of it in a neighbourhood of px0,t0q of bounded geometry. On this set, Φfml is smooth.

It is well known that this kernel may, in the compact case, be used to construct the canonical
backward heat kernel and furthermore draw conclusions about solutions to the (scalar) heat equa-
tion on M []. More generally, if M is complete, it may be shown that these kernels do not differ
much from one another around px0,t0q in the C0 norm, as the following theorem states.

eorem ... SupposeM is complete. For all ε ą 0 there exist a relatively compact neighbourhood
Ω of x0, τ0 Ps ´ 8,t0r and ξ P C8pΩ ˆ rτ0,t0s,R

`q with ξ px0,t0q “ 1 such that on Ω ˆ rτ0,t0r,

ˇ

ˇPpx0,t0q ´ ξ ¨ Φfml
ˇ

ˇ ď ε .

Proof. See [, Lemma ] or [, Proposition .] in the case where sec, h and ∇h are bounded. □

If pM ,дq is compact and static, many estimates on the spatial and temporal derivatives of Ppx0,t0q

are known to hold. To this end, we introduce the matrix Harnack expression [] associated to a
C2,1 function f : D Ă M ˆ I Ñ R and s P R by

Hs pf q :“ ∇2 f `
1
2

Btд `
1

2ps ´ tq
д

e following estimates are known to hold, where the matrix Harnack estimate is to be inter-
preted in the sense of bilinear forms, i.e. pHt0 f qpx ,tq ě λдt pxq implies that pHt0 f ,v bvq “⟨
Ht0 f ,v

5 bv5
⟩

ě λ|v|2 for every v P TxM .

eorem ... [, ] Set ρpx0,t0q “ log Ppx0,t0q. If M is closed, h ” 0 and Ric ě ´Kд, then there
exist B,C,F P R` depending on the geometry ofM such that the following hold onM ˆ rt0 ´ 1,t0r:

pt0 ´ tq
ˇ

ˇ∇ρpx0,t0q

ˇ

ˇ

2
ď C log

˜

B

p4πpt0 ´ tqqn{2Ppx0,t0q

¸

(Gradient Estimate)





Btρpx0,t0q ` e´2Kpt0´tq
ˇ

ˇ∇ρpx0,t0q

ˇ

ˇ

2
´ e2Kpt0´tq n

2pt0 ´ tq
ď 0 (Li-Yau Estimate)

pt0 ´ tqBt ρpx0,t0q ě ´F

˜

1 ` log

˜

B

p4πpt0 ´ tqqn{2Ppx0,t0q

¸¸

(Lower Time Derivative Bound)

Ht0ρpx0,t0q ě ´F

˜

1 ` log

˜

B

p4πpt0 ´ tqqn{2Ppx0,t0q

¸¸

д. (Matrix Harnack Estimate)

If sec ě 0 and dRic ” 0, thenHt0ρpx0,t0q ě 0.

As will be evident later on, it is the matrix Harnack estimate that is most crucial in establishing
monotonicity formulæ, be they local or global. However, such estimates are not in abundance in
more general seings, making it more difficult to deduce such formulæ in these cases. With enough
work, coarser estimates on the gradient and time derivative of ρpx0,t0q may help in establishing local
monotonicity formulæ, but giveneorem .. and Propositions .. and .., we shall be content
with the formal backward heat kernel in these seings.

For later purposes, we compute the effect of applying the adjoint heat operator to Φfml on a
neighbourhood of px0,t0q of bounded geometry. We set rpx ,tq “ dt px ,x0q as in §..

Proposition ... e inequality

´

ˆ

nµ

2
`

C3r
2

t0 ´ t

˙

Φfml ď BtΦfml ` ∆Φfml `
1
2
trдh ¨ Φfml ď

ˆ

nµ

2
`

C4r
2

t0 ´ t

˙

Φfml

holds on D 3j0
4 ,δ px0,t0q, where C3 “ C3pκ´8,µ, j0q and C4 “ C4pκ8,µ, j0q are positive.

Proof. We compute:

BtΦfml “ ´
n

2p4πpt0 ´ tqqpn`2q{2
¨ p´4πq ¨ exp

ˆ

r2

4pt ´ t0q

˙

`

ˆ

Bt pr
2q

4pt ´ t0q
´

r2

4pt0 ´ tq2

˙

¨ Φfml

“ ´
n

2 ¨ p4πpt0 ´ tqq
¨ p´4πq ¨ Φfml `

ˆ

Bt pr
2q

4pt ´ t0q
´

r2

4pt0 ´ tq2

˙

¨ Φfml

“

ˆ

n

2pt0 ´ tq
´

r2

4pt0 ´ tq2
`

Bt pr
2q

4pt ´ t0q

˙

Φfml.

On the other hand, ∇Φfml “ Φfml ¨ r

2pt´t0q
∇r so that

∆Φfml “

⟨
∇Φfml,

r

2pt ´ t0q
∇r
⟩

` Φfml ¨

ˆ

1
2pt ´ t0q

`
r

2pt ´ t0q
∆r

˙

“

ˆ

r2

4pt ´ t0q2
`

1
2pt ´ t0q

`
r

2pt ´ t0q
∆r

˙

Φfml,

whence, writing H˚ for Bt ` ∆ ` 1
2 trдh,

H˚Φfml “ Φfml ¨

ˆ

n ´ 1
2pt0 ´ tq

`
r

2pt ´ t0q
∆r `

1
4pt ´ t0q

Bt r
2 `

1
2
trдh

˙

.

Now, applying the Hessian comparison theorem (eorem B.) and taking the trace of the Hessian,
we see that

pn ´ 1qfκ8 ˝ r ď ∆r ď pn ´ 1qfκ´8 ˝ r

from which it is evident that

„ˆ

n ´ 1
2pt0 ´ tq

¨
`

1 ´ r ¨ pfκ´8 ˝ rq
˘

`
Bt pr

2q

4pt ´ t0q

˙

`
1
2
trдh

ȷ

Φfml
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ď H˚Φfml

ď

„ˆ

n ´ 1
2pt0 ´ tq

¨ p1 ´ r ¨ pfκ8 ˝ rqq `
Bt pr

2q

4pt ´ t0q

˙

`
1
2
trдh

ȷ

Φfml.

By Proposition B., 1 ´ r ¨ pfκ´8 ˝ rq ě ´Cr2 withC “ Cpj0,κ´8q ě 0 and 1 ´ r ¨ pfκ8 ˝ rq ď C̃r2

with C̃ “ C̃pj0,κ8q ě 0. Using these bounds and the inequalities |trдh| ď nµ and |Bt r| ď
µ
2 r then

yields the result. □

Finally, we note that Φfml satisfies differential inequalities similar to those of eorem ..
which shall suffice in applications in the sequel.

Proposition ... Let φfml “ logΦfml. e inequalities

. |∇φfml| “
r

2pt0 ´ tq
,

. |Btφfml| ď
n

2pt0 ´ tq
`

r2

4pt0 ´ tq2
`

µr2

4pt0 ´ tq
, and

. ´
Cr2

2pt0 ´ tq
дr `

λ´8

2
д ď Ht0φfml ď

C̃r2

2pt0 ´ tq
дr `

λ8

2
д

hold on D 3j0
4 ,δ px0,t0q, where C “ Cpj0,κ´8q and C̃ “ C̃pj0,κ8q are as in the preceding proof.

Remark ... If pM ,дq “ pRn ,δq, then Φfml “ Ppx0,t0q and these inequalities simplify to the
equalities

. |∇φfml|px ,tq “
|x ´ x0|

2pt0 ´ tq
,

. Btφfmlpx ,tq “ n
2pt0´tq

´
|x´x0|2

4pt0´tq2
, and

. Ht0φfml ” 0.

Proof of Proposition ... e first two assertions follow from the computations in the preceding
proof, together with the bound on the time derivative of the distance function. For the third asser-
tion, it is evident that

∇2φfml “ ∇
ˆ

r

2pt ´ t0q
dr
˙

“
dr b dr
2pt ´ t0q

´
r

2pt0 ´ tq
∇2r,

and that

´
dr b dr
2pt0 ´ tq

´
r

2pt0 ´ tq
pfκ ˝ rqдr `

д

2pt0 ´ tq
`

1
2
h “

1 ´ r ¨ pfκ ˝ rq

2pt0 ´ tq
дr `

1
2
h

for every κ P R, whence an application of theorem B. yields

1 ´ r ¨ pfκ´8 ˝ rq

2pt0 ´ tq
дr `

1
2
h ď Ht0pφfmlq ď

1 ´ r ¨ pfκ8 ˝ rq

2pt0 ´ tq
дr `

1
2
h.

e result then follows from Proposition B. (cf. proof of Proposition ..) and the bound onh. □

1.9. Problems of Dirichlet type. In this thesis, we are chiefly interested in problems of Dirich-
let type. ese are characterized as those problems giving rise to Riemannian vector bundle-valued
k-forms, i.e. sections of E b ΛkT˚M for some Riemannian vector bundle E, or time-dependent
bundle-valued k-forms, which are either harmonic or satisfy the heat equation.
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More precisely, if M is a static Riemannian manifold, E Ñ M is a Riemannian vector bundle
equipped with a Riemannian connection and a system may be wrien in the form

d∇ψ “ 0 and δ∇ψ “ 0

for some sectionψ P ΓpE bΛkT˚Mq, we say thatψ solves a static problem of Dirichlet type. On the
other hand, if pM ,tдt utPI q is an evolving Riemannian manifolds, E Ñ M is a Riemannian vector
bundle equipped with a Riemannian connection and a system may be wrien in the form

pBt ` ∆∇qψ “ 0

for a time-dependent such sectionψ P ΓpE b ΛkT˚Mq, we say thatψ evolves by a flow of Dirichlet
type.

Associated to both problems is usually a Dirichlet-type energy of the form

1
2

ż

M
|ψ |2dvolд .

In the sequel, since it shall not offer us any additional difficulties, we shall consider static problems
of p-Dirichlet type which are those systems that may be wrien in the form (cf. [, §])

d∇ψ “ 0 and δ∇
`

|ψ |p´2ψ
˘

“ 0

for some section ψ P ΓpE b ΛkT˚Mq. Similarly associated to such a problem is a p-Dirichlet-type
energy of the form

1
p

ż

M
|ψ |pdvolд .

It is the structure of this energy which we shall investigate and subsequently make use of in later
chapters for p “ 2. In that case, we note that flows of Dirichlet type on compact manifolds enjoy
the following energy decay property:

Proposition ... If pM ,tдt utPI q is a complete evolving Riemannian manifold with Btд “ h such
that |trдh| ď µ and pψt qtPI is a one-parameter family of sections evolving by a flow of Dirichlet type
such that the integral

ż

M

`

|ψ |2 ` |d∇ψ |2 ` |δ∇ψ |2 ` |∆∇ψ |2dvolд
˘

p¨,tq (.)

is finite for each t P I , then

d
dt

ˆ

e´
µ
2 t
ż

M

1
2

|ψ |2dvolд
˙

ď ´e´
µ
2 t
ż

M
|δ∇ψ |2 ` |d∇ψ |2dvolд

on I .

Proof. It is clear from Proposition .. that

Bt

ˆ

1
2

|ψ |2dvolд
˙

“

ˆ⟨
Btψ ,ψ

⟩
`

1
2

|ψ |2 ¨
1
2
trдh

˙

dvolд

“

ˆ

´
⟨
∆∇ψ ,ψ

⟩
`

1
2

|ψ |2 ¨
1
2
trдh

˙

dvolд

“ ´

˜

|d∇ψ |2 ` |δ∇ψ |2 ´ div

˜

ÿ

i

´⟨
ιεi d∇ψ ,ψ

⟩
´
⟨
ιεiψ ,δ

∇ψ
⟩¯
εi

¸¸

dvolд
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`

ˆ

1
2
trдh

˙

1
2

|ψ |2dvolд (.)

where the last inequality is a consequence of Lemma .. (ii). Now, by the triangle inequality,
Cauchy-Schwarz inequality and Young’s inequality,

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i

´⟨
ιεi d∇ψ ,ψ

⟩
´
⟨
ιεiψ ,δ

∇ψ
⟩¯
εi

ˇ

ˇ

ˇ

ˇ

ˇ

ď

d

ÿ

i

⟨
ιεi d∇ψ ,ψ

⟩2
`

d

ÿ

i

⟨
ιεiψ ,δ

∇ψ
⟩2

ď
k ` 1
2

`

|ψ |2 ` |d∇ψ |2
˘

`
1
2

|δ∇ψ |2.

Likewise, an application of the triangle inequality and Young’s inequality implies that

ˇ

ˇ

ˇ

ˇ

ˇ

div

˜

ÿ

i

´⟨
ιεi d∇ψ ,ψ

⟩
´
⟨
ιεiψ ,δ

∇ψ
⟩¯
εi

¸ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

⟨
∆∇ψ ,ψ

⟩ˇ
ˇ

ˇ
` |d∇ψ |2 ` |δ∇ψ |2

ď
1
2

|ψ |2 `
1
2

|∆∇ψ |2 ` |d∇ψ |2 ` |δ∇ψ |2

so that, by the bound |trдh| ď µ and the finiteness of the integral (.), all of the quantities under
consideration are summable onM for fixed t . us, integrating both sides of (.), applying Gauß’
theorem for complete manifolds [] and standard integration theorems to interchange the integral
and derivative, we have that

d
dt

ż

M

1
2

|ψ |2dvolд “ ´

ż

M
|d∇ψ |2 ` |δ∇ψ |2dvolд `

ż

M

ˆ

1
2
trдh

˙

1
2

|ψ |2dvolд

ď ´

ż

M
|d∇ψ |2 ` |δ∇ψ |2dvolд `

µ

2

ż

M

1
2

|ψ |2dvolд .

e result then follows from multiplying both sides by the integrating factor e´
µ
2 t . □

We now introduce the two problems of this type in which we shall be interested. In what
follows, we assume that pM ,pдt qtPI q, I an open interval, is an evolving Riemannian manifold, and
t shall be understood as the same parameter appearing in the evolution equations to be discussed.

1.10. The theory of harmonic maps. Let pNm ,rдq be a smooth Riemannian manifold. If
u P C8pM ,N q, we write du P Γ pu´1TN bT˚Mq and equipu´1TN bT˚M with the metric induced
by those on TM and TN .

We introduce the p-Dirichlet energy of a map u : M Ñ N by

Eppuq :“
1
p

ż

M
|du|

p dvolд .

e consideration of critical points of this energy over the class of smooth maps u : M Ñ N for
which Eppuq is finite is the starting point of the theory of p-harmonic maps.

Definition ... A smooth map u : M Ñ N is said to be p-harmonic if it satisfies

δ∇
´

|du|
p´2 du

¯

“ 0,

where ∇ is the covariant derivative induced on u´1TN bT˚M by the Levi-Civita connections on
TM and TN .
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Such maps have been widely studied [, , , ]. In particular, 2-harmonic maps, which
we shall simply refer to as harmonic maps, arise as σ -models in physics [] and as a natural
generalization of harmonic functions in geometry [].

A method for establishing the existence of harmonic maps initiated by Eells and Sampson [],
which has turned out to be highly successful for harmonic maps when sec

rд ď 0, is to instead study
the corresponding heat equation.

Definition ... A map u : M ˆ I Ñ N is said to evolve by the harmonic map heat flow if

Btu “ ´δ∇du (HMHF)

onM ˆ I .

It was shown by Eells and Sampson [] that, if pM ,дq is compact and static and pN ,rдq is
complete, of nonpositive sectional curvature and admits an isometric embedding into Euclidean
space satisfying appropriate growth conditions which are always satisfied by compact N , given
smooth initial data up¨,0q : M Ñ N , a smooth solution to (HMHF) exists with I “ s0,8r and
a subsequence of tup¨,tqutPs0,8r uniformly converges to a harmonic map as t Ñ 8; it was later
shown by Hartman [] that if N is compact, up¨,tq uniformly converges to a harmonic map as
t Ñ 8. More generally, however, even if smooth initial data is prescribed, in which case a solution
exists for at least a short time T , u is expected to develop singularities in finite time. It was shown
by Struwe [] that if M and N are compact and pM ,дq is a static Riemannian -manifold, then
a solution u to (HMHF) on M ˆ s0,8r is smooth away from finitely many points in space-time.
Moreover, it was shown by Chen and Struwe [] that if pMn ,дq is higher-dimensional, the set
S of singularities of u, i.e. the points at which u is not smooth, is a closed subset of M ˆ R of
locally finite n-dimensional Hausdorff measure with respect to a suitable parabolic metric; in fact,
it was shown by Cheng [] that for t0 ą 0 pr1 pS X pM ˆ tt0uqq Ă M has finite n´2-dimensional
Hausdorffmeasure. Explicit examples of solutions to (HMHF) in various dimensions which develop
singularities in finite time have been given e.g. by Coron and Ghidaglia [] and Chang, Ding and
Ye [].

In the sequel, we shall make use of an alternative form of (HMHF) owing to the fact that
pduq p¨,tq P Γ pup¨,tq´1TN bT˚Mq, i.e. dup¨,tq lives in a different bundle for each t , which makes
du a bit awkward to deal with geometrically. To overcome this difficulty, we make use of an
isometric embedding ȷ : N ãÑ RK as follows: by writing ru “ ȷ ˝ u : M Ñ RK , we obtain a map
into ȷpN q, i.e. N considered as a submanifold of RK , for which dru P Γ

`

RK bT˚M
˘

. By isometry,
⟨du,v⟩ “

⟨dru,dȷpvq
⟩, so that the energies of both maps coïncide. (HMHF) may thus be shown to

be equivalent to the equation [, Lemma B]

Btru ´ ∆дru K ȷ pTN q ,

where ∆д acts on ru componentwise. is may be wrien in the equivalent form

Btru ` δ
r∇dru K ȷ pTN q

where r∇ is the connection on RK b T˚M induced by the Levi-Civita connection on TM and the
flat connection on RK . To see this, we note that

dru “

n
ÿ

i“1

Bεi ru b ωi “

K
ÿ

α“1

n
ÿ

i“1

Bεi ru
α ¨ eα b ωi ,

where teα uKα“1 is a basis for RK so that, since ∇eα ” 0,

δ∇dru “ ´

n
ÿ

i“1

ιεi∇εi

˜

n
ÿ

j“1

K
ÿ

α“1

Bεj ru
αeα b ω j

¸

An alternative to this option would be to instead view u as a map M ˆ I Ñ N between manifolds, but in this case
space and time would be treated on the same footing, which would make a few other things awkward.

e existence of such an embedding is guaranteed by the Nash embedding theorem [].
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“ ´

K
ÿ

α“1

˜

n
ÿ

i“1

ιεi∇εi

˜

n
ÿ

j“1

Bεj ru
αω j

¸¸

eα

“ ´

K
ÿ

α“1

`

∆дu
α ˘ eα .

In this seing, dru only satisfies an inhomogeneous heat-type equation. However, for our purposes,
this shall be sufficient.

e following lemma summarizes the information we shall need about du:

Lemma ... Let u : M ˆ I Ñ N be a smooth map with ru as above. en

(i) dr∇dru “ 0 and

(ii) If u solves (HMHF), then

⟨
´

Bt ` ∆
r∇
¯

dru,dru
⟩

“

ˇ

ˇ

ˇ
ιX dru ´ δ

r∇dru
ˇ

ˇ

ˇ

2
´ |Btru ` ιX dru|

2 (Pythagoras-type identity)

for any X P TM .

(iii) If pM ,tдt utPI q is a complete evolving Riemannian manifold with Btд “ h such that |trдh| ď µ
and u solves (HMHF) such that the integral

ż

M

`

|du|2 ` |Btu|2 ` |δ∇du|2 ` |∆∇du|2dvolд
˘

p¨,tq

is finite for each t P I , then the energy decay estimate

d
dt

ˆ

e´
µ
2 t ¨

ż

M

1
2

|du|
2 dvolд

˙

ď ´e´
µ
2 t
ż

M
|Btu|2 (.)

holds on I .

Proof. To simplify notation, we write u for ru and ∇ for r∇.

(i) is property is independent of the fact that u solves (HMHF). Indeed, if v : M Ñ N Ă RK ,
then

d∇du “ d∇
˜

n
ÿ

i“1

Biu b dx i
¸

“

n
ÿ

i,j“1

BjBiu b dx j ^ dx i `

n
ÿ

i“1

Biu b d2x i
loomoon

“0

.

Since mixed partial derivatives of u coïncide, separating the former sum out into sums over
i ă j, i “ j and i ą j immediately shows that the former sum also vanishes.

(ii) We thus compute, expanding the squares and noting that ιX du “ BXu:

ˇ

ˇιX du ´ δ∇du
ˇ

ˇ

2
´ |Btu ` ιX du|

2

“

´

|ιX du|2 ´ 2
⟨
ιX du,δ∇du

⟩
` |δ∇du|2

¯

´
`

|Btu|2 ` 2 ⟨Btu,ιX du⟩` |ιX du|2
˘

“ ´2
⟨
BXu,Btu ` δ∇du

⟩
` |δ∇du|2 ´ |Btu|2.

Now, ´2
⟨
BXu,Btu ` δ∇du

⟩
“ 0, since BXu P ιpTN q. On the other hand, Btu P ιpTN q so that

|Btu|2 “ ⟨Btu,Btu⟩ “ ´
⟨
δ∇du,Btu

⟩
, whence we are le with
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ˇ

ˇιX du ´ δ∇du
ˇ

ˇ

2
´ |Btu ` ιX du|

2
“
⟨
δ∇du,Btu ` δ∇du

⟩
.

By Lemma .. (ii),

⟨
δ∇du,Btu ` δ∇du

⟩
“
⟨
du,d∇Btu ` d∇δ∇du

⟩
´ div

˜

ÿ

i

⟨
ιεi du,Btu ` δ∇du

⟩
εi

¸

.

On the one hand, the laer term vanishes since ιεi du “ Bεi du P ιpTN q. On the other, d∇du “ 0
and d∇Btu “ Btdu, whence the result follows.

(iii) (cf. Proposition ..) We compute, using Proposition .. and (ii) with X “ 0:

Bt

ˆ

1
2

|du|2dvolд
˙

“

ˆ

⟨Btdu,du⟩`
1
2

|du|2 ¨
1
2
trдh

˙

dvolд

“

´

|δ∇du|2 ´ |Btu|2 ´
⟨
∆∇du,du

⟩¯
dvolд `

1
2

|du|2 ¨
1
2
trдhdvolд

“ ´

˜

|Btu|2 ` div

˜

ÿ

i

⟨
ιεi du,δ∇du

⟩
εi

¸¸

dvolд

`

ˆ

1
2
trдh

˙

¨
1
2

|du|2dvolд . (.)

We now verify that we may integrate both sides of this expression and apply Gauß’ theo-
rem for complete manifolds []. Note that by the triangle inequality, the Cauchy-Schwarz
inequality and Young’s inequality,

˜ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i

⟨
ιεi du,δ∇du

⟩
εi

ˇ

ˇ

ˇ

ˇ

ˇ

¸

p¨,tq ď

ˆ

1
2

ˇ

ˇδ∇du
ˇ

ˇ

2
`

1
2

|du|
2
˙

p¨,tq P L1pMq

for each t P I by the finiteness of .. Similarly,

ˇ

ˇ

ˇ

ˇ

ˇ

div

˜

ÿ

i

⟨
ιεi du,δ∇du

⟩
εi

¸ˇ

ˇ

ˇ

ˇ

ˇ

ď |δ∇du|2 `
1
2

|∆∇du|2 `
1
2

|du|2

which, for fixed t , is also in L1pMq. us, in light of the bound |trдh| ď µ, we may integrate
both sides of (.) and interchange derivative and integral by standard integration theorems
to obtain

d
dt

ż

M

1
2

|du|2dvolд “ ´

ż

M
|Btu|2dvolд `

ż

M

ˆ

1
2
trдh

˙

¨
1
2

|du|2dvolд

ď ´

ż

M
|Btu|2dvolд `

µ

2

ż

M

1
2

|du|2dvolд .

e result now follows from using the integrating factor e´
µ
2 t .

□

We shall henceforth alwayswriteu for ru and∇ for r∇when it ismade clear thatN is isometrically
embedded in RK .

1.11. Yang-Mills theory. Let G Ñ P Ñ M be a principal G-bundle, where G is a real
(complex) connected compact semisimple Lie group. We retain the notation of §. and equip
P ˆAd g with the Riemannian structure induced by minus (the real part o) the Killing form.
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We introduce the p-Yang-Mills energy of a connection ω on P by

YMppωq :“
1
p

ż

M
|Ωω |

p dvolд . (.)

e consideration of critical points of this energy over the class of smooth connections ω on P for
which YMppωq is finite is the starting point of the theory of p-Yang-Mills connections.

Definition ... A connection ω on P is said to be a p-Yang-Mills connection if it satisfies

δ∇
´

|Ωω |
p´2 Ωω

¯

“ 0,

where ∇ is the covariant derivative induced by ∇ on P ˆAd G by ω.

Yang-Mills connections, i.e. 2-Yang-Mills connections, arise as models for certain elementary
particles in mathematical physics [] and have been used successfully in the study of the topology
of 4-manifolds [], whereas p-Yang-Mills connections have only more recently been studied [,
].

As is the case with harmonic maps, one way of establishing the existence of Yang-Mills con-
nections, which has been successful in the case n ď 3, is to consider the associated heat flow.

Definition ... A smooth one-parameter family of connections tωt “ rω ` aptqutPI , where rω is
some fixed connection on P , is said to evolve by the Yang-Mills flow if

Bta “ ´δ∇Ωω (YMHF)

onM ˆ I .

Remark ... e p-Yang-Mills equation and Yang-Mills flow system are invariant under gauge
transformations, since, if rω “ д ¨ ω with д a gauge transformation and r∇ is the corresponding
covariant derivative, Ω rω “ д ¨ Ωω and δ r∇pд ¨ Ωωq “ д ¨ δ∇Ωω .

is flow was first suggested by Atiyah and Bo []. It was subsequently shown by Råde []
that if M is a static compact 2 or 3-manifold, given a smooth initial connection ω0 on P , it may be
made to smoothly evolve by (YMHF) on s0,8r and, moreover, ωt tends to a Yang-Mills connection
in an appropriate Sobolev space. In higher dimensions, long-time existence is not guaranteed and
the structure of the set of singularities that may develop is not as well-understood as in the case of
(HMHF), though there is a theory of weak solutions on static compact 4-manifolds due to Struwe
[]. Examples of Yang-Mills connections developing singularities in higher dimensions have been
constructed by Naito [] and Grotowski [].

We shall need only one property of the curvature two-form for our purposes.

Lemma ... [, §] Let ω be a connection on P and ∇ the induced covariant derivative on E. If ω
evolves by the Yang-Mills flow, then BtΩ

ω ` ∆∇Ωω “ 0.

is lemma implies that Ωω evolves by a flow of Dirichlet type and, consequently, has the
energy decay property (Proposition ..).

1.12. Mean curvature flow. We conclude this chapter with a discussion of the mean curva-
ture flow. Much of the material is standard and may be found in [], though here we allow the
ambient space to be an evolving Riemannian manifold.

As before, we suppose pM ,pдt qtPI q with I “ st0 ´ δ0,t0r (δ ą 0) and Btд “ h is an evolving
manifold of locally bounded geometry about px0,t0q and assume the notation in and following
Definition ... Let Nm be a smooth oriented manifold and let F : N ˆ I Ñ M be a smooth map
such that tFt :“ F p¨,tq : N Ñ pM ,дt qutPI is a one-parameter family of embeddings and the map
pF ,pr2q : N ˆ I Ñ M ˆ I is proper, i.e. pF ,pr2q´1pKq is compact whenever K Ă M ˆ I is.

Note that in contrast to the harmonic map heat flow, M is now the target manifold.
is last assumption is made for technical reasons which shall only become apparent in Chapter , particularly in

Examples .. and ... It is satisfied for instance if N is compact.
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As in §., all of the usual notions quantities of extrinsic differential geometry carry over to
this seing by fixing time and considering the usual quantities. Let U Ă M open, f P C1pU ˆ

I ,Rq, pX p¨,tq “ Xt : U Ñ TMqtPI a one-parameter family of continuous (local) sections of TM ,
pZp¨,tq : U Ñ F´1

t TMqtPI a one-parameter family of continuous (local) sections of F´1
t TM and

pQp¨,tq “ Qt : U Ñ T˚M b T˚MqtPI a one parameter family of continuous (local) sections of
T˚M bT˚M . For convenience, F´1

t N shall be realized as the point set

ď

xPN

tpx ,tqu ˆTFt pxqM Ă F´1TM .

e relevant notation is summarized in the following table:

Symbol Signification
It “ Ip¨,tq First fundamental form of Ft (:“ F˚

t дt )

Ⅱt Second fundamental form of Ft as a section of F´1
t TM bT˚N bT˚N

(see discussion below)
rH t “rH p¨,tq Mean curvature of Ft (:“ trItⅡt P ΓpF´1

t TMq)

rX p¨,tq
X p¨,tq as a section of F´1

t TM (i.e. such that rX px ,tq “

ppx ,tq,X pFt pxq,tqq)
pXt pFt pxqqqT Tangent part of Xt pFt pxqq (Orthogonally projected onto im dxFt wrt. дt )
pXt pFt pxqqqK Normal part of Xt pFt pxqq (“ Xt pFt pxqq ´ pXt pFt pxqqqT )

∇K f p¨,tq
`

U Q x ÞÑ ppx ,tq,p∇f pFt pxq,tqqKq P F´1
t N

˘

for differentiable f

X t “ pX p¨,tqq
e unique continuous local section X t : F´1

t pU q Ñ TN of TN such that
dxFt pX t pxqq “ pXt pFt pxqqqT

f Pullback of f (:=ppF ,pr2q´1pU ˆ Iq Q px ,tq ÞÑ f pFt pxq,tq P Rq)

trK
д Q Normal trace :“

`

N ˆ I Q px ,tq ÞÑ
`

trдtQt
˘

pFt pxqq ´ ptrIt F˚
t Qt q pxq P R

˘

Btr px0q Pulled back geodesic ball :“ F´1
t pBtr px0qq (x0 P M)

According to the above setup, rH , rX and ∇K f also define (local) sections of F´1TM and we shall
view them as such whenever t is not explicitly mentioned. Moreover, F´1TM shall be considered
a Riemannian vector bundle with inner product defined such that for ppx ,tq,vq,ppx ,tq,wq with
v,w P TFt pxqM ,

⟨
ppx ,tq,vq,ppx ,tq,wq

⟩
“ pдt pFt pxqq,v bwq .

For fixed t P I , this coïncides with the inner product induced on F´1
t TM by дt . Note also that rX

(resp. f ) is as regular as X (resp. f ) is.
As a rule, we follow the sign conventions of [] and refer there and to [] for the notions of

submanifold geometry used here. In particular, if pXt qtPI and pYt qtPI are smooth one-parameter
families of sections of TM such that Xt pFt pxqq,Yt pFt pxqq P im dxFt for each px ,tq P N ˆ I , then

pⅡt pxq,X t pxq b Y t pxqq “

´

px ,tq,
`

∇Xt pFt pxqqYt
˘K

¯

“

´

px ,tq,
`

∇Yt pFt pxqqXt
˘K

¯

for each px ,tq P N ˆ I and, if pZt qtPI is a smooth one-parameter family of sections ofTM such that
Zt pFt pxqq K im dxFt for each px ,tq P N ˆ I , then

⟨
`

Ⅱt pxq,X t pxq b Y t pxq
˘

,rZ t pxq
⟩

“ ´
⟨
∇Xt pFt pxqqZt ,Yt pFt pxqq

⟩
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for each px ,tq P N ˆ I . Moreover, writing ∇I for the Levi-Civita connection of I (t understood),
we have the relation

p∇Xt pFt pxqqYt q
T “ ∇IX t pxq

Y t ,

where the covariant derivative on the le-hand side is the Levi-Civita connection of д.
We write Hpx ,tq for the mean curvature as an element of TFt pxqM , i.e. for the unique vector

Hpx ,tq such that for each px ,tq P N ˆ I ,

rH px ,tq “ px ,Hpx ,tqq

and note in particular that both Ⅱt pxq and Hpx ,tq are normal to im dxFt for each px ,tq P N ˆ I .
Now, N may be made to be an evolving Riemannian manifold with family of metrics tIt utPI .

We now restrict our aention to mean curvature flow.

Definition ... e manifold N is said to evolve by mean curvature flow if

Bt F “ H

in the sense that

Bt F px ,tq “ Hpx ,tq P TFt pxqM

for each px ,tq P N ˆ I .

is flowwas first introduced by Brakke [] in the context of varifolds and subsequently studied
in the smooth seing by Huisken [], Ecker [] and various others, especially in the case where
M “ Rm`1.

For our purposes we shall need but a few basic properties of this flow. We first more explicitly
describe how I evolves.

Proposition ... [], [, (B.)]e evolution equation

pBtI,v bwq “ pF˚
t ht ,v bwq ´ 2xpⅡt ,v bwq, rHy

holds for v,w P TxN . In particular,

trIBtI “ trT
I
F˚
t h ´ 2| rH t |2.

Proof. Fix t0 P I and let tBiu
m
i“1 be a local coördinate frame forTN overU Ă N open. An unwinding

of definitions and an application of the product rule yields

´

Bt |t0 дt
px0q, Bi |x0 b Bj |x0

¯

“ Bt |t0

´

д
t
px0q, Bi |x0 b Bj |x0

¯

“ Bt |t0 pдt pFt px0q,BiF px0,tq b BjF px0,tqq

“ pht0pFt0px0q,BiF px0,t0q b BjF px0,t0qq
loooooooooooooooooooooomoooooooooooooooooooooon

“
´

F˚
t0
ht0 px0q, Bi |x0

b Bj |x0

¯

` Bt |t0 pдt0pFt px0qq,BiF px0,tq b BjF px0,tqq (.)

for each x0 P U . Now, we handle the laer term as follows: note first that for each i P t1, . . . ,nu,
BiF may be considered a local section ĂBiF of F´1TM Ñ N ˆ I such that

ĂBiF px ,tq “ px ,BiFt pxqq.
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Now, by Examples .. and .., дt0 and its Levi-Civita connection induce a Riemannian structure
and a Riemannian connection on the pullback bundle F´1TM , which we denote by ⟨¨, ¨⟩0 and ∇0
respectively. Using these, we write

pдt0 ˝ Ft ,BiFt b BjFt q “

⟨
ĂBiF , ĂBjF

⟩
0

p¨,tq, (.)

whence, using the fact that ∇0 is compatible with ⟨¨, ¨⟩0,

Bt |px0,t0q x ĂBiF , ĂBjFy0

“ x∇0
Bt |px0,t0q

ĂBiF , ĂBjF px0,t0qy0 ` x ĂBiF px0,t0q,∇0Bt |px0,t0q
ĂBjFy0, (.)

where here Bt |px0,t0q “ 0x0 ‘ Bt |t0 P Tpx0,t0q pN ˆ Iq – Tx0N
À

Tt0 I . We proceed to use the local
description of ∇0 given in Example ... Let teα “ rBα unα“1 be a local coördinate frame for TM in
a neighbourhoodV Q Ft0px0q and write eFα px ,tq “ ppx ,tq,eα pFt pxqqq as in Example ... With this
in mind, we note that

ĂBiF px ,tq “

n
ÿ

α“1

BiF
α
t pxqeFα px ,tq

and note that, writing rH as

rH px ,tq “

n
ÿ

α“1

Hα px ,tqeFα px ,tq

in this frame, the mean curvature flow equation reads

Bt F
α px ,tq “ Hα px ,tq

for each α P t1, . . . ,nu. With all of this in mind, the local description (.) of ∇0 in Example ..
implies that

∇0
Bt |px0,t0q

ĂBiF “

n
ÿ

α“1

¨

˝BtBiF
α px0,t0qe

F
α px0,t0q ` BiF

α px0,t0q
n
ÿ

β“1

Γ
β
α pBt F px0,t0qq eFβ px0,t0q

˛

‚.

(.)

On the one hand,

BtBiF
α “ BiBt F

α “ BiH
α .

On the other,

Γ
β
α pBt F px0,t0qq

“

n
ÿ

γ“1

Hα px0,t0qΓ
β
α pBγ

ˇ

ˇ

Ft0 px0q
q

and, since

n
ÿ

β“1

Γ
β
α pBγ

ˇ

ˇ

Ft0 px0q
eFβ px0,t0q
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“ ppx0,t0q,
n
ÿ

β“1

Γ
β
α pBγ

ˇ

ˇ

Ft0 px0q
eβ pFt0px0qqq

“ ppx0,t0q,∇ Bα |Ft0 px0q
Bγ q “ ppx0,t0q,∇ Bγ |Ft0 px0q

Bα q,

where the torsion-free property of ∇ was used in the last line, we may write (.) as

∇0
Bt |px0,t0q

ĂBiF “

n
ÿ

α“1

¨

˝BiH
α px0,t0qe

F
α px0,t0q ` Hα px0,t0q

n
ÿ

β“1

Γ
β
α pBiF px0,t0qq eFβ px0,t0q

˛

‚

“ ppx0,t0q,∇Bi F px0,t0qHq

where H P ΓpTMq is a vector field locally agreeing with H in the sense that H ˝ F “ H . us,
(.) now reads, using the fact that ⟨¨, ¨⟩0 was induced by дt0 , whose corresponding inner product
we shall write simply as ⟨¨, ¨⟩,

Bt |px0,t0q x ĂBiF , ĂBjFy0 “
⟨
∇Bi F px0,t0qH ,BjF px0,t0q

⟩
`
⟨
BiF px0,t0q,∇Bj F px0,t0qH

⟩
“ ´2

⟨
´

Ⅱt px0q, Bi |x0 b Bj |x0

¯

,Hpx0,t0q
⟩
.

e result now follows from (.) and (.). □

One reason for considering mean curvature flow is its tendency to decrease the volume of
compact pN , Iq when h ” 0, which is evident from the following proposition.

Proposition .. (Area-Minimizing Property). [, Corollary .] If N is compact andM is static,
i.e. h ” 0, then

ż

N
dvolIt2 “

ż

N
dvolIt1 ´

ż t2

t1

ż

N
| rH |2dvolIt dt

where t1,t2 P I are such that t1 ă t2.

Proof. In view of the compactness condition, the volume of N is finite and since px ,tq ÞÑ dvolIt pxq

is smooth, its tderivative is bounded and thus summable. Hence, by Proposition ..,

d
dt

ż

N
dvolI “

ż

N
BtdvolI “ ´

ż

N
| rH |2dvolIt . □

We are more interested in a local variant of this property which is applicable more generally.
Before presenting that, we recall how the divergence of a vector field defined onM may be related
to that of the induced vector field on N .

Proposition ... Let X P C1pU ˆ I ,TMq be a time-dependent local section ofTM . en

divIX “ divдX ´ trK
д ∇X `

⟨
rX , rH
⟩
.

In particular, if f P C1 pDq with D Ă M ˆ I open, then ∇I f “ ∇д f on pF ,pr2q´1pDq and, taking
X “ ∇д f ,

∆I f “ ∆д f ´ trK
д ∇2д f `

⟨
Ą∇д f , rH

⟩
.

Proof. Let tεiu
m
i“1 be a local orthonormal frame for TN and set εi pFt pxqq “ dFt pεi pxqq P TFt pxqM

for each i (t P I fixed) and use the Gram-Schmidt algorithm to obtain an orthonormal basis
tεi pFt pxqqumi“1 Y tνi pFt pxqquni“m`1 for TFt pxqM . Now, by definition,
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`

divдtX
˘

pFt pxqq “

m
ÿ

i“1

⟨
∇ε iX ,εi

⟩
`

n
ÿ

i“m`1

⟨∇νiX ,νi⟩
loooooooomoooooooon

“trK
д ∇X

.

We deal with the first term as follows: extend tεiu and tνiu to a local frame on an open subset of
M and write X as

X “

m
ÿ

i“1

X iεi
loomoon

“:X1

`

n
ÿ

i“m`1

X iνi
looooomooooon

“:X2

on this set. us,

m
ÿ

i“1

⟨
∇ε i pFt pxqqX ,εi pFt pxqq

⟩
“

m
ÿ

i“1

⟨
∇ε i pFt pxqqX1,εi pFt pxqq

⟩
`

m
ÿ

i“1

⟨
∇ε i pFt pxqqX2,εi pFt pxqq

⟩
“

m
ÿ

i“1

⟨
`

∇ε i pFt pxqqX1
˘T
,εi pFt pxqq

⟩
`

m
ÿ

i“1

⟨
`

∇ε i pFt pxqqX2
˘T
,εi pFt pxqq

⟩
,

where we have used the fact that εi pFt pxqq is tangent to F pMq. We note that

`

∇ε i pFt pxqqX1
˘T

“ dxFt
`

∇εi pxqX
˘

,

where the covariant derivative on the right-hand side is the Levi-Civita connection of I, since X1

is an extension of the vector field X , and by definition of εi and I, it is clear that

m
ÿ

i“1

⟨
`

∇ε i pFt pxqqX1
˘T
,εi pFt pxqq

⟩
“

m
ÿ

i“1

⟨
∇εi pxqX ,εi pxq

⟩
“ divIX .

Similarly, since X2 is an extension of the normal part of X ˝ Ft ,

m
ÿ

i“1

⟨
`

∇ε i pFt pxqqX2
˘T
,εi pFt pxqq

⟩
“

m
ÿ

i“1

⟨
rX 2 px ,tq,pⅡt pxq,εi pxq b εi pxqq

⟩
“
⟨
rX px ,tq, rH px ,tq

⟩
.

□

us, assuming M is of locally bounded geometry about px0,t0q and adopting the notation in
and following Definition .. and taking f px ,tq “ rpx ,tq2, where rpx ,tq “ dt px0,xq and D “

Dj0,δ px0,t0q, we may compute

pBt ´ ∆It qr
2 “ Bt r

2 `

⟨
Ć∇дt r2, rH

⟩
´ ∆дt r

2 ` trK
дt∇

2
дt r

2 ´
⟨
Ą∇r2, rH

⟩
“
`

Bt ´ ∆дt
˘

r
2 ` trK

дt∇
2
дt r

2. (.)

Now, using the sectional curvature bounds, theorem B., we see that

д ´ p1 ´ r ¨ pfκ8 ˝ rqqдr ď
1
2
∇2r2 ď д ´

`

1 ´ r ¨ pfκ´8 ˝ rq
˘

дr

so that, on the one hand, by Proposition B.,

∆дr
2 ď 2n ´ 2pn ´ 1q

`

1 ´ r ¨ pfκ´8 ˝ rq
˘

ď 2n ` 2pn ´ 1qCκ´8r
2.
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On the other hand, trK
д д “ n ´m and 0 ď дr ď д on pF ,pr2qpN ˆ st0 ´ δ ,t0rq XD, so that

trK
д ∇2r2 ě 2pn ´mq ´ 2Cκ8r

2trK
д дr ě 2pn ´mq ´ 2pn ´mqCκ´8r

2

on pF ,pr2qpN ˆ st0 ´ δ ,t0rq XD. Hence, equation (.) leads to

pBt ´ ∆It q r
2 ě ´2m ´

`

µ ` 2Cκ´8 pn ´ 1q ` 2Cκ8 pn ´mq
˘

r
2 ě ´γ (.)

on pF ,pr2q´1D.
We are now in a position to state a localized form of Proposition .., which is the analogue

of the localized area identity of [, §.] or [, §].

eorem ... If R Ps0,mintj0,
a

4γδur and t P rt0 ´ R2

4γ ,t0r, then

ż

BtR{2px0q

dvolIt `

ż t

t0´ R2
4γ

ż

BsR{2px0q

| rH |2dvolIs ds

ď 16 exp

ˆ

mλ8R2

8γ

˙

˜

ż

B¨
R px0q

dvolI¨

¸

pt0 ´
R2

4γ
q.

Proof. We define (cf. Ex. A. for the definition of η)

ψRpx ,tq :“ η

¨

˝

rpx ,tq2 ` γ
´

t ´

´

t0 ´ R2

4γ

¯¯

R2

˛

‚

“

¨

˝1 ´
rpx ,tq2 ` γ

´

t ´

´

t0 ´ R2

4γ

¯¯

R2

˛

‚

4

`

.

for x P N , t P rt0 ´ R2

4γ ,t0r. It is clear that ψR is twice differentiable, and suppψRp¨,tq Ă BtRpx0q Ă

Btj0px0q, since

1 ´
rpx ,tq2 ` γ

´

t ´

´

t0 ´ R2

4γ

¯¯

R2 ě 0 ô R2 ě r2 ` γ

ˆ

t ´

ˆ

t0 ´
R2

4γ

˙˙

ě r2.

Also, 0 ď ψR ď 1. Now,

pBt ´ ∆It q pη ˝ f q “ ´4pBt ´ ∆It qf ¨ p1 ´ sq3` ´ 12|∇f |2p1 ´ f q2

for f : pF ,pr2q´1D Ñ R, which together with (.) implies that pBt ´ ∆IqψR ď 0. Now, since Ft
is a proper embedding for each t and bothψRp¨,tq and BtψRp¨,tq are compactly supported in N , we
may compute using Proposition ..:

d
dt

ż

N
ψRdvolI “

ż

N

ˆ

BtψR ´ | rH |2ψR `
1
2
trIF˚

t h ψR

˙

dvolIt

ď

ż

N
∆ψRdvolIt ´

ż

N
| rH |2ψRdvolIt `

m

2
λ8

ż

N
ψRdvolIt

“ ´

ż

N
| rH |2ψRdvolIt `

mλ8

2

ż

N
ψRdvolIt ,

whence

d
dt

ˆ

exp

ˆ

´
mλ8

2

ˆ

t ´

ˆ

t0 ´
R2

4γ

˙˙˙
ż

N
ψRdvolIt

˙
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ď ´ exp

ˆ

´
mλ8

2

ˆ

t ´

ˆ

t0 ´
R2

4γ

˙˙˙
ż

N
| rH |2ψRdvolIt

ď ´ exp

ˆ

´
mλ8R2

8γ

˙
ż

N
| rH |2ψRdvolIt

so that, integrating from t0 ´ R2

4γ to t and estimating exp
´

´
mλ8
2

´

t ´

´

t0 ´ R2

4γ

¯¯¯

from below,

exp

ˆ

´
mλ8R2

8γ

˙

¨

˜

ż

N
ψRp¨,tqdvolIt `

ż t

t0´ R2
4γ

ż

N
| rH |2ψRp¨,sqdvolIs ds

¸

ď

ż

N
ψRp¨,t0 ´

R2

4γ
qdvolI

t0´ R2
4γ

. (.)

Now, sinceψRp¨,tq ď χBtR px0q, the right-hand side of (.) may be bounded from above by

˜

ż

B¨
R px0q

dvolI¨

¸

pt0 ´
R2

4γ
q.

On the other hand, since

r ă
R

2
ñ 1 ´

r2 ` γ
´

t ´

´

t0 ´ R2

4γ

¯¯

R2 ě 1 ´

R2

4 ` γ ¨ R2

4γ

R2 “
1
2

so that

ψRp¨,tq|BtR{2px0q ě

ˆ

1
2

˙4

“
1
16
. (.)

Since the le-hand integrands of (.) are nonnegative, we may estimate their (spatial) integrals
from below by the respective integrals on BtR{2px0q, whence the result follows from (.). □

Finally, we shall need another variant of this result which bounds a pulled-back ball of (pre-
scribed) variable radius by this radius to the appropriate power. In order to establish this, we shall
need a monotonicity formula. e following formula was first established by Huisken [] in the
case where u “ 1, pM ,дq “ pRm`1,δq and N is compact, then subsequently adapted to include
u by Ecker and Huisken [] and finally adapted to the curved seing by Hamilton [] in the
case where M and N are compact and M is static, by Lo [] in the case where N is a compact
hypersurface and M is a gradient steady Ricci soliton (cf. []) and finally by Magni, Mantegazza
and Tsatis [] in the case of general evolving manifolds.

eorem .. (Monotonicity Formula). Let pM ,tдt uqtPI be an evolving Riemannian manifold with
Btд “ h. If u P C2pN ˆ I ,Rq is such that supp up¨,tq Ť N for each t P I and f P C2pD,R`q with
D Ă M ˆ I open with supp up¨,tq Ă pF ,pr2q´1

`

D X pr´1
2 pttuq

˘

, then

d
dt

ˆ
ż

N
u ¨ f dvolI

˙

“

ż

N
f pBt ´ ∆Iqu ` u ¨

˜

Bt f ` ∆д f `
1
2
trдh `

n ´m

2ps ´ tq
f

¸

´ u f trK
дHs plog f q

´ u f
ˇ

ˇ

rH ´∇K log f
ˇ

ˇ

2 dvolI

on I for every s ě t0.

Proof. (cf. [] and []) We verify that the identity
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Bt pu ¨ f dvolIq “

„

divIt
´

f ∇u ´ u∇f
¯

` f ¨ pBt ´ ∆It qu

` u ¨

˜

Bt f ` ∆д f `
1
2
trдh ¨ f `

n ´m

2ps ´ tq
f

¸

´u f trK
дHs plog f q ´ u f

ˇ

ˇH ´ ∇K log f ˝ F
ˇ

ˇ

2
ı

dvolIt (.)

holds; an integration and an application of Gauß’ theorem and standard integration theorems to
justify interchanging the derivative and integral then imply the result.

Now, by Proposition .., it is clear that

divI
´

f ∇Iu ´ u∇I f
¯

“ f ∆Iu ´ u∆I f

“ f ∆Iu ´ ur∆д f ´ trK
д ∇2д f `

⟨
Ą∇д f , rH

⟩
looomooon

“
⟨
∇Kf ,rH

⟩
s. (.)

On the other hand, using the fact that Bt f “ Bt f `
⟨
Ă∇f ,H

⟩
loomoon

“
⟨
∇Kf ,rH

⟩
as well as Propositions .. and

.., it is evident that

Bt

´

u ¨ f dvolI
¯

“

ˆ

Btu ¨ f ` u ¨ Bt f ` u
⟨
∇K f , rH

⟩
`

1
2
trIt F˚

t h ¨ u ¨ f ´ | rH |2 ¨ u ¨ f

˙

dvolIt . (.)

Using the fact that trIt F˚
t ht “ trдtht ´ trK

дtht , (.) and (.) imply that

Bt

´

u ¨ f dvolI
¯

´ divIt
´

f ∇Itu ´ u∇It f
¯

dvolIt

“

ˆ

f pBtu ´ ∆Ituq ` u

ˆ

Bt f ` ∆дt f `
1
2
trдtht ¨ f

˙

´u f trK
дt

˜

∇2дt f
f

`
1
2
ht

¸

´ | rH |2 ¨ u ¨ f ` 2u ¨ f
⟨
∇K log f , rH

⟩¸
dvolIt . (.)

Now, note that

∇2д log f “
∇2д f
f

´
∇f b ∇f

f 2

and trK
д
∇f b∇f

f 2 “
|∇Kf |2

f 2
“ |∇K log f |2. On the other hand,

trK
д

д

2ps ´ tq
“

n ´m

2ps ´ tq
.

Incorporating these into (.) immediately implies (.). □

eorem ... Let α “
a

2γ {π , suppose R ă mint 1
2α R0,

?
4πδu for R0 ă mintj0,

a

4γδu and
set

RmR ptq “

d

2mpt ´ t0q log

ˆ

4πpt0 ´ tq

R2

˙

.

en
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ż

Bt
RmR ptqpx0q

dvolIt ď RmR ptqm ¨

´

ρ0 `
ρ1
Rm

¯

˜

ż

B¨
R0

px0q

dvolI¨

¸

pt0 ´
R2
0

4γ
q,

for t Pst0 ´
expp´ 1

2m q
4π R2,t0r, where ρ0,ρ1 ą 0 depend on R0, δ and the geometry ofM inDj0,δ px0,t0q.

Proof. Consider the retarded weighted backward heat kernel

q
s Φ : Dj0,δ px0,t0q Ñ R`

px ,tq ÞÑ
1

p4πps ´ tqqq{2
exp

ˆ

dt px ,x0q
2

4pt ´ sq

˙

,

where q P N and s P rt0,s0s with s and s0 to be chosen later. e computation of Proposition ..
implies that

ˆ

Bt ` ∆ `
1
2
trдh `

n ´m

2ps ´ tq

˙

m
s Φ

ď

ˆ

nµ

2
`C4

dt px ,x0q
2

s ´ t

˙

¨ ms Φ

“

˜

nµ

2
` 4C44 log

˜

1

p4πps ´ tqq
m
2 ¨ ms Φ

¸¸

¨ ms Φ

ď maxt
nµ

2
,4C4u ¨

˜

1 ` log

˜

1

p4πps ´ tqq
m
2 ¨ ms Φ

¸¸

¨ ms Φ

ď maxt
nµ

2
,4C4u

ˆ

1 ` m
s Φ ¨ log

ˆ

1

p4πps ´ tqqm{2

˙˙

, (.)

where the definition of ms Φ was used in the third line and Lemma A. in the last line. Similarly, the
computation of Proposition .. together with Lemma A. implies that

m
s Φ ¨Hs plogm

s Φq ě ´maxt2C,´λ´8u ¨

ˆ

1 ` m
s Φ log

ˆ

1

p4πps ´ tqqm{2

˙˙

д, (.)

whereC depends on j0 andκ´8 andC4 on j0,κ8 and µ. We now applyeorem .. with f “ m
s Φ

and u “ ψR where

ψRpx ,tq :“ η

¨

˝

rpx ,tq2 ` γ
´

t ´

´

t0 ´ R2

4π

¯¯

α2R2

˛

‚,

α “

c

2
γ

π
ą 2

RmR ptq

R
, and rpx ,tq “ dt pFt pxq,x0q. As in the proof of eorem .., it is clear

that suppψRp¨,tq Ă BtαRpx0q Ť Btj0px0q for each t P rt0 ´ R2

4π ,t0r and pBt ´ ∆IqψR ď 0, whence

d
dt

ˆ
ż

N
ψR ¨ ms ΦdvolI

˙

ď ς0

ż

N
ψRdvolIt ` ς1ps,tq

ż

N
ψR ¨ ms ΦdvolIt

where

ς0 “ pn ´mqmaxt2C,´λ´8u ` maxt
nµ

2
,4C4u and

e choice of words is motivated by considerations from physics.
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ς1ps,tq “

´

pn ´mqmaxt2C,´λ´8u ` maxt
nµ

2
,4C4u

¯

log

ˆ

1

p4πps ´ tqqm{2

˙

.

Note that, since s ´ t P rt0 ´ t ,s0 ´ t0 ` R2

4π s, the relation ς1ps,tq ď ϖ1ptq holds with

ϖ1ptq “

´

pn ´mqmaxt2C,´λ´8u ` maxt
nµ

2
,4C4u

¯

log

ˆ

1

p4πpt0 ´ tqqm{2

˙

.

Moreover, ϖ1 P L1pst0 ´ R2

4π ,t0rq. us,

d
dt

ˆ

exp plptqq

ż

N
ψR ¨ ms ΦdvolI

˙

ď ς0 expplptqq

ż

N
ψRdvolI ď ς0 exp plpt0 ´ δqq

ż

N
ψRdvolI

(.)

where lptq “
şt0
t ϖ1pzqdz. SinceψRp¨,tq ď χBtαR px0q, an application of eorem .. yields

ˆ
ż

N
ψRdvolI

˙

ptq ď

ż

BtαR px0q

dvolIt ď 16 exp

ˆ

mλ8R2
0

8γ

˙

˜

ż

B¨
R0

dvolI

¸

pt0 ´
R2
0

4γ
q.

Substituting this into (.) and integrating from t0 ´ R2

4π to t Pst0 ´ R2

4π ,t0r,

expplptqq

ż

N
ψRp¨,tq ¨ ms Φp¨,tqdvolIt

ď

ˆ

expplp¨qq

ż

N
ψR ¨ ms ΦdvolI¨

˙

pt0 ´
R2

4π
q

` 16a0 exp

ˆ

lpt0 ´ δq `
mλ8R2

0

8γ

˙

˜

ż

B¨
R0

px0q

dvolI

¸

pt0 ´
R2
0

4γ
q. (.)

In light of the inequality

s
mΦp¨,t0 ´

R2

4π
q ď R´m ,

we have that

ˆ
ż

N
ψR ¨ ms ΦdvolI¨

˙

pt0 ´
R2

4π
q ď R´m

˜

ż

B¨
αR px0q

dvolI¨

¸

pt0 ´
R2

4π
q

ď 16 exp

ˆ

mλ8R2
0

8γ

˙

R´m

˜

ż

B¨
R0

px0q

dvolI¨

¸

pt0 ´
R2
0

4γ
q.

On the other hand,

ż

N
ψRp¨,tq ¨ ms Φp¨,tqdvolIt ě

1

p4πps ´ tqqm{2

ż

Bt
RmR ptq

px0q

ψRp¨,tq exp

˜

RmR ptq2

4pt ´ sq

¸

dvolIt . (.)

Note that for t P rt0 ´R2 ¨ expp´1{2mq{4π ,t0r, we have RmR ptq2 ` t ě t0, which is clearly bounded
from above by some s0 on this interval. us, we suppose t lies in this interval and set s “ RmR ptq2`

t . Substituting this into (.), and noting that, in view of the definition of α ,

rp¨,tq2 ` γ pt ´ pt0 ´ R2

4π qq

α2R2 ď
RmR ptq2 ` γ R2

4π

α2R2 ď
1
2





ñ ψRp¨,tq ě

ˆ

1
2

˙4

“
1
16

on Bt
RmR ptq

px0q, we see that the le hand side of (.) is greater than or equal to

expp1{4q

16 ¨ p4πqm{2 ¨ RmR ptqm

ż

Bt
RmR ptq

px0q

dvolIt .

Substituting these inequalities into (.) then implies the result. □







Monotonicity for Yang-Mills over Rn

In this chapter, we restrict our aention to Yang-Mills theory over Rn and provide alternative proofs of
some monotonicity formulæ to be established more generally later on in this thesis. e existing local mono-
tonicity formula for solutions to the Yang-Mills equation due to Price [] is first proved before we establish
the local monotonicity formula for the flow using methods along the lines of those available for solutions
of the harmonic map heat equation and reaction-diffusion equations as developed by Ecker in []. Price’s
formula is local in nature, whereas the existing formula for the Yang-Mills flow due to Chen and Shen [],
itself an analogue of a monotonicity formula for solutions to the harmonic map heat equation due to Chen
and Struwe [], is not. However, it involves weighting the square norm of the curvature of the connection
against an appropriate Gaußian. In contrast to this, the formula we prove is local in nature, where the domain
of integration is a superlevel set of an appropriate Gaußian in space-time, a so-called “heat ball”.

2.1. Simplifications. In what follows, we work over a trivial SOpN q-bundle over Rn , whose
Lie algebra g “ sopN q is equipped with the positive-definite rescaled Killing inner product (cf. §.)

pA,Bq ÞÑ ⟨A,B⟩ :“ ´trpABq.

We shall write |A| “
?
⟨A,A⟩ for the induced norm. In this case, Ad-invariance takes the form

⟨
дAд´1,дBд´1

⟩
“ ⟨A,B⟩ , (.)

where A,B P sopN q and д P SOpN q, which is easily verified. In particular, if д : s´ε,εr Ñ SOpN q

is a curve with дp0q “ I and 9дp0q “ X P sopN q, differentiating both sides of (.) at 0 yields

⟨XA,B⟩´ ⟨AX ,B⟩` ⟨A,XB⟩´ ⟨A,BX ⟩ “ 0

ñ
⟨
rA,X s,B

⟩
“
⟨
A, rX ,Bs

⟩ (.)

We note that a connection on the trivial bundle Rn ˆ SOpN q may be given by a single matrix-
valued one-form ω : Rn Ñ sopN q b T˚Rn . Here we shall write Ai “ pω,Bi q and consider a
connection to be a collection of matrix-valued functions

tAi : R
n Ñ sopN quni“1.

Similarly, we write Fi j “ pΩω ,Bi ^Bjq so that the curvature two-form is represented by the matrix-
valued functions

tFi j “ BiAj ´ BjAi ` rAi ,Aj s : R
n Ñ sopN quni,j“1

so that the Yang-Mills energy density takes the form

epAq “
1
2

ÿ

iăj

|Fi j |
2 “

1
4

ÿ

i,j

|Fi j |
2.

In this seing, the Bianchi identity (cf. Proposition ..) takes the form

∇iFjk ` ∇jFki ` ∇kFi j “ 0, i, j,k P t1, . . . ,nu

where ∇iFjk “ BiFjk ` rAi ,Fjk s, and the Yang-Mills flow system the form
Here we treat elements of sopN q and SOpN q as matrices.


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BtAj “

n
ÿ

i“1

∇iFi j j P t1, . . . ,nu

for a family of connections tAi p¨,tqutPI with I Ă R an open interval, Yang-Mills connections being
static solutions (BtAj ” 0).

In the remainder of this chapter we shall assume that I “ s´8,0r for the sake of simplicity.
Furthermore, we shall be concerned with properties ofA relative to p0,0q. By using the translation
invariance of the Yang-Mills flow system, all of the formulæmay be stated relative to some px0,t0q P

Rn ˆ R provided tAp¨,tqu evolves by the Yang-Mills flow for t ă t0.

2.2. Scaling behaviour. We set pAr qi px ,tq :“ r ¨ Ai prx ,r
2tq. If we consider Fi j “ BiAj ´

BjAi ` rAi ,Aj s as being a function pFAqi j of A, then

pFAr qi jpx ,tq “ r 2 ¨
`

BiAjprx ,r
2tq ´ BjAi prx ,r

2tq ` rAi prx ,r
2tq,Ajprx ,r

2tqs
˘

“ r 2Fi jprx ,r
2tq.

In particular, if A solves the Yang-Mills heat equation, then so does Ar , for

Bt pAr qjpx ,tq “ r 3BtAjprx ,r
2tq “ r 3

n
ÿ

i“1

BiFi jprx ,r
2tq ` rAi prx ,r

2tq,Fi jprx ,r
2tqs

“

n
ÿ

i“1

Bi pFAr qi jpx ,tq ` rpAr qi px ,tq,pFAr qi jpx ,tqs.

On the other hand,

epAr qpx ,tq “
1
4

ÿ

i,j

⟨
pFAr qi jpx ,tq,pFAr qi jpx ,tq

⟩
“ r 4 ¨ epAqprx ,r 2tq, (.)

which serves as motivation for how we shall weight the localized energy integrals to be introduced
in the coming sections.

We abbreviate pFAr qi j by pFr qi j . Now, note that

d
dr pFr qi jpx ,tq “ 2rFi jprx ,r

2tq ` r 2
n
ÿ

k“1

xkBkFi jprx ,r
2tq ` 2r 3tBt Fi jprx ,r

2tq

and that

d
dr pFr qi jp

x

r
,
t

r 2
q “ r ¨

˜

2Fi jpx ,tq `

n
ÿ

k“1

xkBkFi jpx ,tq ` 2tBt Fi jpx ,tq

¸

“ r ¨
d
dr

ˇ

ˇ

ˇ

ˇ

r“1
pFr qi jpx ,tq.

2.3. Scale-invariant solutions. We call a family of connections tAp¨,tqutPs´8,0r scale in-
variant about p0,0q if pAr qi px ,tq “ Ai px ,tq for all r ą 0, px ,tq P Rn ˆ s´8,0r and i P t1, . . . ,nu.
Differentiating this identity with respect to r and evaluating at r “ 1 (cf. [, §]), it is equivalent
to the condition that

Ai px ,tq `
ÿ

j

x jBjAi px ,tq ` 2tBtAi “ 0 or

BtAi `
ÿ

j

x j

2t
BjAi px ,tq `

1
2t
Ai px ,tq “ 0. (.)
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On the other hand, we note that

BtAi `
ÿ

j

x j

2t
Fji “ BtAi `

ÿ

j

x j

2t
pBjAi ´ BiAj ` rAi ,Aj sq

“ BtAi `
ÿ

j

x j

2t
BjAi `

1
2t
Ai ´ Bi

˜

ÿ

j

x j

2t
Aj

¸

` rAi ,
ÿ

j

x j

2t
Aj s. (.)

For general families of connections, this expression may only be made to coïncide with the le
hand side of (.) at some fixed time t0 for which a radial gauge is chosen, i.e. in a gauge such that
ř

j x
jAjpx ,t0q “ 0 for all x P Rn . If, however, A is either scale-invariant or the expression (.)

vanishes, then this gauge is preserved, wherefore it follows that both conditions are equivalent.
For details of this argument, see e.g. [].

We may thus characterize scale invariance by the condition that

BtAi `
ÿ

j

x j

2t
Fji “ 0.

Such solutions are known to exist; see e.g. [] and [].

2.4. The static case. We now prove Price’s monotonicity formula by scaling. is should be
compared with the approach usually taken to prove the monotonicity formula for harmonic maps
(see e.g. []) and contrasted with the approach taken in Chapter .

eorem ... If A is a Yang-Mills connection with Ai P C2pBR ; sopN qq, then

d
dr

ˆ

1
rn´4

ż

Br
epAq

˙

“
1

rn´4

ż

BBr

n
ÿ

j“1

|

n
ÿ

i“1

Fi jpxq
x i

r
|2dSx ě 0

holds on s0,Rr.

Proof. We first simplify the expression that is to be differentiated:

1
rn´4

ż

Br
epAqpxqdx x“ry

“
1

rn´4

ż

B1

epAqpryq ¨ rndy

2.3
“

ż

B1

epAr qpyqdy. (.)

Differentiating (.) with respect to r and making use of the scaling identities derived in the pre-
ceding section, we see that

d
dr

ˆ

1
rn´4

ż

Br
epAq

˙

“

ż

B1

1
2

ÿ

i,j

⟨
d
dr pFr qi jpyq,pFr qi jpyq

⟩
dy

y“ x
r

“
1
2rn

ż

Br

ÿ

i,j

⟨
d
dr pFr qi jp

x

r
q,pFr qi jp

x

r
q

⟩
dx

“
1

2rn´3

ż

Br

ÿ

i,j

⟨
d
dr

ˇ

ˇ

ˇ

ˇ

r“1
pFr qi jpxq,Fi jpxq

⟩
dx

“
1

rn´3

ż

Br

ÿ

i,j

⟨
Fi jpxq `

1
2

ÿ

k

xkBkFi jpxq,Fi jpxq

⟩
dx . (.)

Using (.), we may rewrite the integrand of (.) as

We write Br for Br p0q.
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ÿ

i,j

⟨
Fi jpxq `

1
2

ÿ

k

xk pBkFi jpxq ` rAk pxq,Fi jpxqsq ,Fi jpxq

⟩
“
ÿ

i,j

⟨
Fi jpxq `

1
2

ÿ

k

xk∇kFi jpxq,Fi jpxq

⟩
,

since
⟨
rAk ,Fi j s,Fi j

⟩
“
⟨
Ak , rFi j ,Fi j s

⟩
“ 0. On the other hand, an application of the Bianchi identity

yields

ÿ

i,j

⟨
Fi jpxq ´

1
2

ÿ

k

xk
`

∇iFjk ` ∇jFki
˘

pxq,Fi jpxq

⟩
“
ÿ

i,j

⟨
Fi jpxq ´

ÿ

k

xk∇iFjk pxq,Fi jpxq

⟩
“
ÿ

i,j

|Fi j |
2pxq ´

ÿ

i,j,k

xk
”

Bi
⟨
Fjk ,Fi j

⟩
´
⟨
Fjk ,∇iFi j

⟩ı
pxq,

where the second line we have used the antisymmetry of F (Fi j “ ´Fji ) and in the last line the
compatibility of ∇ with ⟨¨, ¨⟩. On the one hand, A is Yang-Mills so that

ř

i ∇iFi j “ 0, whence the
last term vanishes. On the other hand, we may integrate what we are le with by parts, so that the
integral (.) now reads

1
rn´3

ż

Br

ÿ

i,j

|Fi j |
2 `

ÿ

i,j,k

δki
⟨
Fjk ,Fi j

⟩
´

1
rn´3

ż

BBr

ÿ

i,j,k

xk ¨
x i

r
¨
⟨
Fjk ,Fi j

⟩
dSx

“
1

rn´3

ż

Br

ÿ

i,j

|Fi j |
2 `
⟨
Fji ,Fi j

⟩
`

1
rn´3

ż

BBr

ÿ

j

⟨
ÿ

k

Fk jx
k ,
ÿ

i

Fi j
x i

r

⟩
dSx

“
1

rn´3

ż

Br

ÿ

i,j

|Fi j |
2 ´ |Fi j |

2 `
1

rn´4

ż

BBr

ÿ

j

⟨
ÿ

k

Fk j
xk

r
,
ÿ

i

Fi j
x i

r

⟩
dSx ,

where we have used the antisymmetry of F twice, whence the result follows. □

2.5. The heat flow case. We now provide a local monotonicity formula for the Yang-Mills
flow over Rn along the lines of Ecker’s local monotonicity formulæ. Here, as in [], we prove the
formula by scaling. is should be contrasted with the approach taken in eorem .. where we
make use of divergence identities.

Let

Er “

#

px ,tq P Rn ˆ s´8,0r : Φpx ,tq :“
1

p4πpt0 ´ tqq
n´4
2

exp

ˆ

|x |2

4t

˙

+

.

We first recall an integration formula from [].

eorem ... If X P C1pRn ˆ s´8,0r ,Rnq, then

ĳ

Er

divXdxdt “ ´
r

n ´ 4
d
dr

ĳ

Er

X ¨
x

2t
dxdt

whenever these integrals exist.

Proof. See [, Lemma .] or eorem ... □

eorem ... Suppose A evolves by the Yang-Mills flow on Rn ˆ s´8,0r and that

ż 0

´
r 20
4π

ż

B2cn,4r0

epAqdxdt ă 8 (.)
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for some r0 ą 0, where cn,k is as in eorem ... en the identity

d
dr

¨

˝

1
rn´4

ĳ

Er

epAq ¨
n ´ 4
´2t

´

n
ÿ

j“1

⟨ n
ÿ

i“1

Fi j ¨
x i

2t
,
n
ÿ

i“1

Fi j ¨
x i

2t
` BtAj

⟩
dxdt

˛

‚

“
n ´ 4
rn´3

ĳ

Er

n
ÿ

j“1

|BtAj `

n
ÿ

i“1

Fi j ¨
x i

2t
|2dxdt . (.)

holds on s0,r0r.

Remark ... is formula should be considered a local analogue of that of Chen and Shen []
which in this case reads

d
dt

ż

Rn
pepAqΦq px ,tqdx “ ´

ż

Rn

˜

n
ÿ

j“1

|BtAj `

n
ÿ

i“1

Fi j ¨
x i

2t
|2Φ

¸

px ,tqdx

whenever A decays appropriately at 8 (cf. Corollary .. (i)). In particular, the right hand side
of Chen and Shen’s formula vanishes precisely when the right hand side of (.) does— on scale-
invariant solutions (cf. §.).

Remark ... e condition (.) ensures the ensures the summability (on Er0 ) of each term oc-
curring in the monotonicity formula, a claim whose proof shall be deferred to §. (cf. Lemma
..).

Proof of eorem ... We first compute formally, writing X “ px ,tq and Y “ py,sq:

d
dr

¨

˝

1
rn´4

ĳ

Er

1
4

ÿ

i,j

|Fi jpx ,tq|2 ¨
1
2t
dX

˛

‚

X“Pr pY q
“

d
dr

¨

˝

ĳ

E1

1
4

ÿ

i,j

⟨
pFr qi jpy,sq,pFr qi jpy,sq

⟩
¨
1
2s
dY

˛

‚ (.)

“
1

rn´3

ĳ

Er

1
2

ÿ

i,j

⟨
d
dr

ˇ

ˇ

ˇ

ˇ

r“1
pFr qi jpx ,tq,Fi jpx ,tq

⟩
¨
1
2t
dX

“
1

rn´3

ĳ

Er

ÿ

i,j

⟨
1
2t
Fi j `

n
ÿ

k“1

xk

4t
BkFi j `

1
2

Bt Fi j ,Fi j

⟩
px ,tqdX , (.)

As in the static case, we use the identity (.) and the Bianchi identity to write the integrand in
(.) as

ÿ

i,j

«

1
2t

|Fi j |
2 ´

n
ÿ

k“1

⟨
xk

2t
∇iFjk ,Fi j

⟩
`

1
2

⟨
Bt Fi j ,Fi j

⟩ff
.

Now, since ∇ is compatible with ⟨¨, ¨⟩, we may rewrite the middle term as

´
ÿ

i,j,k

⟨
xk

2t
∇iFjk ,Fi j

⟩
px ,tq “

ÿ

i,j,k

´Bi

⟨
xk

2t
Fjk ,Fi j

⟩
`
δki
2t

⟨
Fjk ,Fi j

⟩
`

⟨
xk

2t
Fjk ,∇iFi j

⟩

“ ´
ÿ

i,j

1
2t

|Fi j |
2 ´

ÿ

j,k

˜⟨
xk

2t
Fk j ,BtAj

⟩
´
ÿ

i

Bi

⟨
xk

2t
Fk j ,Fi j

⟩¸
,

where the antisymmetry of Fi j and the Yang-Mills heat equation have been used in the last step.
On the other hand,
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Bt Fi j “ BiBtAj ´ BjBtAi ` rBtAi ,Aj s ` rAi ,BtAj s

“ p∇iBtAj ´ ∇jBtAi q ,

whence the last term may be rewrien as

ÿ

i,j

1
2

⟨
Bt Fi j ,Fi j

⟩
“

1
2

ÿ

i,j

⟨
∇iBtAj ,Fi j

⟩
´
⟨
∇jBtAi ,Fi j

⟩
“

1
2

ÿ

i,j

⟨
∇iBtAj ,Fi j ´ Fji

⟩
“
ÿ

i,j

⟨
∇iBtAj ,Fi j

⟩
“
ÿ

i,j

Bi
⟨
BtAj ,Fi j

⟩
´
⟨
BtAj ,∇iFi j

⟩
“
ÿ

i,j

Bi
⟨
BtAj ,Fi j

⟩
´

n
ÿ

j“1

|BtAj |
2,

where the antisymmetry of F and the Yang-Mills heat equation have again been used. Altogether,
the integral (.) is equal to

1
rn´3

ĳ

Er

´
ÿ

j

⟨
ÿ

k

xk

2t
Fk j ` BtAj ,BtAj

⟩
`
ÿ

i,j

Bi

⟨
BtAj `

ÿ

k

xk

2t
Fk j ,Fi j

⟩
dX .

Applying eorem .. to the divergence term, we obtain

1
rn´3

ĳ

Er

´
ÿ

j

⟨
ÿ

k

xk

2t
Fk j ` BtAj ,BtAj

⟩
dX ´

1
pn ´ 4qrn´4

d
dr

¨

˝

ĳ

Er

ÿ

i,j

⟨
BtAj `

ÿ

k

xk

2t
Fk j ,

x i

2t
Fi j

⟩
dX

˛

‚.

“Completing the derivative,” noting that minus the integrand of the laer integral completes the
square in the former integrand, we obtain

1
rn´3

ĳ

Er

´
ÿ

j

|
ÿ

k

xk

2t
Fk j ` BtAj |

2dX ´
1

n ´ 4
d
dr

¨

˝

1
rn´4

ĳ

Er

ÿ

i,j

⟨
BtAj `

ÿ

k

xk

2t
Fk j ,

x i

2t
Fi j

⟩
dX

˛

‚.

A careful inspection shows that the preceding steps are valid provided

div

˜

ÿ

i

˜

ÿ

j

⟨
Fi j ,BtAj `

ÿ

k

xk

2t
Fk j

⟩¸
ei

¸

P Er0 ,

which justifies pulling the d
dr under the integral sign in (.) and applying eorem .., since

the condition (.) ensures the summability of everything else (cf. Remark ..). To drop this
assumption, we instead compute analogously to before that

d
dr

¨

˝

1
rn´4

ĳ

Er

χk p´tq ¨

˜

epAqpX q ¨
n ´ 4
´2t

´

n
ÿ

j“1

⟨ n
ÿ

i“1

Fi j ¨
x i

2t
,
n
ÿ

i“1

Fi j ¨
x i

2t
` BtAj

⟩¸
dX

˛

‚

“
n ´ 4
rn´3

ĳ

Er

χk p´tq
n
ÿ

j“1

|BtAj `

n
ÿ

i“1

Fi j ¨
x i

2t
|2dX `

n ´ 4
rn´3

ĳ

Er

epAq

´t
¨ p´tqχ 1

k p´tqdX ,

where tχkukPN is as in Example A.. us, integrating this expression on sr1,r2r with 0 ă r1 ă

r2 ă r0 and using Remark .. and the fact that p´tqχ 1
k p´tq

kÑ8
ÝÝÝÑ 0 implies the result. □
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In light of the discussion in §., the right hand side of this formula vanishes on scale-invariant
solutions. In particular, by [, Proposition .], we have that

1
rn´4

ĳ

Er

n ´ 4
´2t

epAqdxdt “

ż

Rn
epAqpx ,tqΦpx ,tqdx

for all t ă 0, r ą 0 whenever A is scale-invariant. erefore, on such solutions, this quantity
coïncides with that in Chen and Shen’s formula.







e Static Case: Monotonicity of Energies of p-Dirichlet Type

In this chapter, we investigate the metric properties of an energy functional naturally associated to prob-
lems of Dirichlet type in order to obtain identities that, in some sense, state how solutions to problems of
Dirichlet type scale; these identities then lead to monotonicity identities upon integration. e tensor that
naturally arises in these identities is the so-called energy-momentum tensor (also known as the stress-energy
tensor), which is quite well known in the physics literature [] and was first considered in the context of
harmonic maps by Eells and Baird []. In [], Alikakos made use of identities involving this tensor to derive
a monotonicity formula for solutions to a certain semilinear elliptic PDE. We take this approach as a start-
ing point for intrinsically deriving similar formulæ for p-Dirichlet-type problems. We note that the energy-
momentum tensor is also of independent interest, and has been used to derive conservation laws for and draw
conclusions about nonexistence of solutions to certain PDE [, , , ].

3.1. The energy-momentum tensor. Let E be a Riemannian vector bundle with Riemannian
connection ∇ over an oriented Riemannian manifold pMn ,дq. Consider the Dirichlet-type energy

Fд : ΓpE b ΛkT˚Mq Ñ R

ψ ÞÑ

ż

M
eдpψ qdvolд

where k P N0 and eдpψ q :“ 1
p |ψ |p is the p-Dirilet energy density for p ą 1. Rather than

scale the integrand as in the case M “ Rn , we vary it with respect to the metric. e following
proposition describes the resulting first variation.

Proposition .. (Energy-Momentum Tensor). e unique (symmetric) tensorT дψ P ΓpT ‹MbT ‹Mq

satisfying

d
dt

ˇ

ˇ

ˇ

ˇ

t“0

`

t ÞÑ eд`thpψ qpxqdvolд`thpxq
˘

“

⟨
´
1
2
T
д
ψ pxq,hpxq

⟩
dvolдpxq

for all symmetric h P ΓpT˚M bT˚Mq and x P M is locally given in a д-ON frame tεiu Ø tωiu by

T
д
ψ “ |ψ |p´2

n
ÿ

i,j“1

⟨
ιεiψ ,ιεjψ

⟩
ωi b ω j ´ eдpψ qд.

Proof. On the one hand, Proposition .. immediately implies that

d
dt

ˇ

ˇ

ˇ

ˇ

t“0

`

t ÞÑ dvolд`thpxq
˘

“

ˆ

1
2

⟨
д,h
⟩
д dvolд

˙

pxq.

On the other hand, by Proposition ..,

d
dt

ˇ

ˇ

ˇ

ˇ

t“0

⟨
ψ ,ψ
⟩
д`th “

⟨
´

n
ÿ

i,j“1

´⟨
ιεiψ ,ιεjψ

⟩¯
ωi b ω j ,h

⟩
д

.

e result then follows from

d
dt

ˇ

ˇ

ˇ

ˇ

t“0
eд`thpψ q “

1
2

|ψ |p´2 d
dt

ˇ

ˇ

ˇ

ˇ

t“0

⟨
ψ ,ψ
⟩
д`th . □

e metric may depend on a parameter, though the following considerations assume the the parameter is fixed since
the dependence of д on its parameter is not relevant to the discussion.

Except in this chapter and the following one, p shall be assumed to be 2.


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In [], Alikakos considered the system

∆u ´ ∇W puq “ 0

for u P C2 pRn ,Rnq andW P C2pRn ,R`q, which is naturally associated to the energy

ż

Rn

1
2

|du|2 `W puq.

ere, the energy-momentum tensor is

Ti j “ Biu ¨ Bju ´

ˆ

1
2

|du|2 `W puq

˙

δi j ,

which was shown to enjoy the property div T “ 0 that ultimately led to a monotonicity formula.
is suggests that computing the divergence ofT дψ should lead to something useful.

Proposition ... In any local frame as above,

div T дψ “ ´

n
ÿ

j“1

´⟨
δ∇p|ψ |p´2ψ q,ιεjψ

⟩
`
⟨
|ψ |p´2ιεjd

∇ψ ,ψ
⟩¯
ω j .

Proof. We compute in a local ON frame adapted at x :

div T дψ “

n
ÿ

r“1

ιεr∇εrT
д
ψ

“
ÿ

r
ιεr

¨

˝Bεr p|ψ |p´2q
ÿ

i,j

ÿ

J k´1

⟨
pψ ,εi ^ ε J q,pψ ,εj ^ ε J q

⟩
ωi b ω j

`|ψ |p´2
ÿ

i,j

ÿ

J k´1

p
⟨
p∇εrψ ,εi ^ ε J q,pψ ,εj ^ ε J q

⟩
`
⟨
pψ ,εi ^ ε J q,p∇εrψ ,εj ^ ε J q

⟩
qωi b ω j

´ Bεr eдpψ qд
¯

“
ÿ

j

¨

˝

ÿ

J k´1

ÿ

i

Bεi p|ψ |p´2q
⟨
pψ ,εi ^ ε J q,pψ ,εj ^ ε J q

⟩
` |ψ |p´2

⟨
∇εiψ ,εi ^ ε J q,pψ ,εj ^ ε J q

⟩
loooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooon

“

⟨
ř

i
p∇εi p|ψ |p´2ψ q,εi^ε J q,pψ ,εj^ε J q

⟩
¯

ω j

` |ψ |p´2
ÿ

i,j

ÿ

J k´1

ˆ⟨
pψ ,εi ^ ε J q,p∇εiψ ,εj ^ ε J q

⟩
´

1
k

⟨
p∇εjψ ,εi ^ ε J q,pψ ,εi ^ ε J q

⟩˙
ω j

“ ´
ÿ

j

¨

˝

ÿ

J k´1

⟨
pδ∇p|ψ |p´2ψ q,ε J q,pψ ,εj ^ ε J q

⟩˛
‚ω j

` |ψ |p´2
ÿ

i,j

ÿ

J k´1

ˆ⟨
pψ ,εi ^ ε J q,p∇εiψ ,εj ^ ε J q

⟩
´

1
k

⟨
p∇εjψ ,εi ^ ε J q,pψ ,εi ^ ε J q

⟩˙
ω j .

Now, we note that

´

d∇ψ ,εj ^ εi ^ εj1 ^ ¨ ¨ ¨ ^ εjk´1

¯

We note here that, apart from the case where Alikakos’ equation reduces to a linear one (W “ 0), there is no overlap
between the equations considered here and those considered in [].
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“

n
ÿ

p“1

`

ωp ^ ∇εpψ ,εj ^ εi ^ εj1 ^ ¨ ¨ ¨ ^ εjk´1

˘

“ p∇εjψ ,εi ^ εj1 ^ ¨ ¨ ¨ ^ εjk´1q ´ p∇εiψ ,εj ^ εj1 ^ . . . εjk´1q

`

k´1
ÿ

q“1

p´1qq`1p∇εjqψ ,εj ^ εi ^ εj1 ^ ¨ ¨ ¨ ^ ε̂jq ^ ¨ ¨ ¨ ^ εjk´1q,

whence

ÿ

j

ÿ

J k´1

⟨
p∇εjψ ,εi ^ ε J q,pψ ,εi ^ ε J q

⟩
“

1
pk ´ 1q!

ÿ

i,j1, ...,jk´1

⟨
p∇εjψ ,εi ^ εj1 ^ ¨ ¨ ¨ ^ εjk´1q,pψ ,εi ^ εj1 ^ ¨ ¨ ¨ ^ εjk´1q

⟩
“
ÿ

i

ÿ

J k´1

´⟨
pd∇ψ ,εj ^ εi ^ ε J q,pψ ,εi ^ ε J q

⟩
`
⟨
p∇εiψ ,εj ^ ε J q,pψ ,εi ^ ε J q

⟩¯

`
1

pk ´ 1q!

ÿ

i,j1, ...,jk´1

k´1
ÿ

q“1

p´1qq
⟨
p∇εjqψ ,εj ^ εi ^ εj1 ^ ¨ ¨ ¨ ^ ε̂jq ^ ¨ ¨ ¨ ^ εjk´1q,pψ ,εi ^ εj1 ^ ¨ ¨ ¨ ^ εjk´1q

⟩
.

(.)

Expanding the sum overq out, keeping track of signs when permuting the basis vectors, we rewrite
the last sum (omiing the combinatorial factor) as

ÿ

i,j1, ...,jk´1

⟨
p∇εj1ψ ,εj ^ εi ^ εj2 ^ ¨ ¨ ¨ ^ εjk´1q,pψ ,εj1 ^ εi ^ εj2 ^ ¨ ¨ ¨ ^ εjk´1q

⟩
` . . .

`
⟨
p∇εjqψ ,εj ^ εj1 ^ ¨ ¨ ¨ ^ εi

loomoon

qth entry

^ ¨ ¨ ¨ ^ εjk´1q,pψ ,εjq ^ εj1 ^ ¨ ¨ ¨ ^ εi
loomoon

qth entry

^ ¨ ¨ ¨ ^ εjk´1q
⟩

` . . .

`
⟨
p∇εjk´1

ψ ,εj ^ εj1 ^ ¨ ¨ ¨ ^ εjk´2 ^ εi q,pψ ,εjk´1 ^ εj1 ^ ¨ ¨ ¨ ^ εjk´2 ^ εi q
⟩

“ pk ´ 1q
ÿ

i,j1, ...,jk´1

⟨
p∇εiψ ,εj ^ εj1 ^ ¨ ¨ ¨ ^ εjk´1q,pψ ,εi ^ εj1 ^ ¨ ¨ ¨ ^ εjk´1q

⟩
“ pk ´ 1q ¨ pk ´ 1q!

ÿ

i

ÿ

J

⟨
p∇εiψ ,εj ^ ε J q,pψ ,εi ^ ε J q

⟩
,

where the indices were relabeled in the second last line. us (.) reduces to

ÿ

i

ÿ

J k´1

”⟨
pd∇ψ ,εj ^ εi ^ ε J q,pψ ,εi ^ ε J q

⟩
` k
⟨
p∇εiψ ,εj ^ ε J q,pψ ,εi ^ ε J q

⟩ı

“ k

$

&

%

ÿ

Lk

⟨
pd∇ψ ,εj ^ εLq,pψ ,εLq

⟩
`
ÿ

i

ÿ

J k´1

⟨
p∇εiψ ,εj ^ ε J q,pψ ,εi ^ ε J q

⟩,.
-

.

e result follows, since the laer term cancels out the unwanted term in the expression for divT дψ
above. □

We therefore see that the following conservation law for p-harmonic k-forms may be read off
this formula.

Corollary .. (Conservation Law). Ifψ is p-harmonic, then div T дψ “ 0.

As hinted at earlier, the energy-momentum tensor is thought to contain information about how
p-harmonic vector bundle-valued k-forms scale. In [], for example, the integral of the divergence
of T дψ contracted with the radial vector field x ÞÑ

ř

i
x i
|x |

Bi |x P TxR
n yields an expression that

coïncides with what is usually obtained when scaling the Dirichlet integral. In order to make use
of this technique more generally, we compute the divergence of the energy-momentum tensor
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contracted with an arbitrary vector field, henceforth to be interpreted as a ‘scaling direction’. e
following formula should be compared with [, Lemma .], where this identity is established for
solutions to an inhomogeneous Yang-Mills equation.

Corollary ... LetU Ă M be open and X P Γ1pTU q. Define Y P Γ1pTU q by

Y :“
´

ιXT
д
ψ

¯7

“ |ψ |p´2
n
ÿ

j“1

⟨
ιXψ ,ιεjψ

⟩
εj ´ eдpψ qX .

en

div Y “ |ψ |p´2
n
ÿ

i“1

⟨
ι∇εi Xψ ,ιεiψ

⟩
´ eдpψ qdiv X

´
⟨
δ∇p|ψ |p´2ψ q,ιXψ

⟩
´ |ψ |p´2

⟨
ιXd

∇ψ ,ψ
⟩
.

Proof. We compute in a local ON frame adapted at x :

div Y “

n
ÿ

i“1

⟨
∇εi

´

ιXT
д
ψ

¯7

,εi

⟩

“

n
ÿ

i“1

⟨
∇εi

´

ιXT
д
ψ

¯

,ωi
⟩

“

n
ÿ

i“1

⟨
ι∇εi XT

д
ψ ` ιX∇εiT

д
ψ ,ω

i
⟩

“

⟨
T
д
ψ ,∇X

⟩
` ιX div T дψ ,

where we have used the symmetry of T дψ in the last step. Using proposition .., the former term
may be wrien as

|ψ |p´2
n
ÿ

i“1

ÿ

J k´1

⟨
pψ ,∇εiX ^ ε J q,pψ ,εi ^ ε J q

⟩
´ eдpψ qdiv X .

On the other hand, using proposition .., we may write the laer term as

´
⟨
δ∇p|ψ |p´2ψ q,ιXψ

⟩
´ |ψ |p´2

⟨
ιXd

∇ψ ,ψ
⟩
. □

3.2. Monotonicity. We now apply the identities derived in §. to the study of Dirichlet type
problems on static manifolds. In doing so, we provide a simple intrinsic proof of the monotonicity
principle for p-harmonic k-forms with values in vector bundles which in particular includes p-
harmonic maps and p-Yang–Mills fields. is should be compared with [].

Suppose pM ,дq is static, x0 P M is fixed and the locally bounded geometry bounds of Definition
.. hold and let j0 be defined by (.) of §.. Let k P N and p ą 1 be such that n ě kp `

1. As remarked earlier, the energy-momentum tensor describes how p-harmonic k-forms scale.
Analogously to [, eorem .] and [, eorem .], we make use of the energy-momentum
identities derived earlier to scale k-forms in the radial direction. is is the content of the following
lemma.

Lemma ... Let X P ΓpTU q for U “ Bj0px0q be defined by X “ ∇p 12r
2q “ rBr and suppose Y is as

in corollary ... en

div Y ď pkp ´ nqeдpψ q ` Λreдpψ q ´ Jψ ` |ψ |p´2|ιBrψ |2 ¨ r1 ´ r fκprqs

onU , where Λ “ Λpn,k ,p,κ,κ̄, injx0q and Jψ “
⟨
δ∇p|ψ |p´2ψ q,ιXψ

⟩
` |ψ |p´2

⟨
ιXd

∇ψ ,ψ
⟩
.

If sec ” κ ď 0, then

div Y “ pkp ´ nqeдpψ q ´ Jψ `
“

pn ´ kp ´ 1qeдpψ q ` |ψ |p´2|ιBrψ |2
‰

¨ p1 ´ r fκprqq.
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Remark ... Note that in both cases, the term following Jψ is nonpositive.

Proof. Let tεiu
n
i“1 be a local orthonormal frame inU with ε1 “ Br . We first compute

∇εi prBr q “ ⟨εi ,Br ⟩ Br ` r
n
ÿ

j“1

⟨
∇εi Br ,εj

⟩
εj

“ δi1Br ` r
n
ÿ

j“1

p∇2r ,εi b εjqεj ,

whence, by lemma B.,

divprBr q “ 1 ` r ¨

n
ÿ

i“1

p∇2r ,εi b εi q

ě 1 ` r
n
ÿ

i“2

fκ̄prqδii “ 1 ` pn ´ 1qr fκ̄prq

so that

div Y “ |ψ |p´2|ιBrψ |2 ` |ψ |p´2
n
ÿ

i,j“1

rp∇2r ,εi b εjq
⟨
ιεjψ ,ιεiψ

⟩
´ eдpψ qdivprBr q ´ Jψ

ď |ψ |p´2|ιBrψ |2 ` |ψ |p´2
n
ÿ

i,j“1

r fκprqpдr ,εi b εjq
⟨
ιεjψ ,ιεiψ

⟩
´ eдpψ q ¨ p1 ` pn ´ 1qr fκ̄prqq ´ Jψ

“ |ψ |p´2|ιBrψ |2 ` |ψ |p´2r fκprq

n
ÿ

i“2

|ιεiψ |2

loooomoooon

“ kp|ψ |2´p eдpψ q ´ |ιBr ψ |2

´eдpψ q ¨ p1 ` pn ´ 1qr fκ̄prqq ´ Jψ

“ eдpψ q ¨ pkp ¨ r fκprq ´ 1 ´ pn ´ 1qr fκ̄prqq ´ Jψ ` |ψ |p´2|ιBrψ |2 ¨ p1 ´ r fκprqq

“ pkp ´ nqeдpψ q ` eдpψ q ¨ rpr fκprq ´ 1qkp ` pn ´ 1qp1 ´ r fκ̄prqqs ´ Jψ ` |ψ |p´2|ιBrψ |2p1 ´ r fκprqq.

Now, in the case κ “ κ̄ “ κ ď 0, the above inequalities are actually equalities and

div Y “ pkp ´ nqeдpψ q ´ Jψ ` rpn ´ kp ´ 1qeдpψ q ` |ψ |p´2|ιBrψ |2sp1 ´ r fκprqq.

In the general case, we have

pr fκprq ´ 1qkp ` pn ´ 1qp1 ´ r fκ̄prqq

ď

"

kp ¨ max
s0,j0s

r fκprq ´ 1

r
` pn ´ 1qmax

s0,j0s

1 ´ r fκ̄prq

r

*

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

“:Λ

r ,

whence the result follows. □

Exactly as in [] and [], the integrated form of this identity leads to a monotonicity identity.

Proposition .. (Monotonicity Identity). e identity

d
dR

ˆ

eΛRRkp´n
ż

BR px0q

eдpψ qdvolд
˙

ě eΛRRkp´n´1 ¨

"
ż

BR px0q

Jψ ` pr fκprq ´ 1q|ψ |p´2|ιBrψ |2dvol

See Appendix B for the properties of the fκ , which shall be taken for granted in the following proofs.
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`R

ż

BBR px0q

|ψ |p´2|ιBrψ |2dS
*

.

holds for R P s0, j0r. If sec ” κ ď 0, then

d
dR

ˆ

Rkp´n
ż

BR px0q

eдpψ qdvolд
˙

“ Rkp´n´1 ¨

"
ż

BR px0q

Jψ ` p1 ´ r fκprqq ¨
“

|ψ |p´2|ιBrψ |2

`pn ´ pkp ` 1qqeдpψ q
‰

dvolд ` R

ż

BBR px0q

|ψ |p´2|ιBrψ |2dS
*

for all R ą 0.

Proof. By Gauß’ theorem,

R

ż

BBR px0q

|ψ |p´2|ιBrψ |2 ´ eдpψ qdS “

ż

BBR px0q

⟨Y ,Br ⟩ “

ż

BR px0q

div Ydvolд . (.)

In the case where sec ” ´K2 ď 0, the preceding proposition implies that

ż

BR px0q

div Ydvolд “ pkp ´ nq

ż

BR px0q

eдpψ qdvolд

´

ż

BR px0q

Jψ ´ p1 ´ r fκprqq ¨
“

|ψ |p´2|ιBrψ |2 ` pn ´ pkp ` 1qqeдpψ q
‰

dvolд .

Plugging this expression into (.) and rearranging a bit, we obtain

pkp ´ nq

ż

BR px0q

eдpψ qdvolд ` R

ż

BBR px0q

eдpψ qdS

“

ż

BR px0q

Jψ ` pr fκprq ´ 1q
“

|ψ |p´2|ιBrψ |2 ` pn ´ pkp ` 1qqeдpψ q
‰

dvolд

` R

ż

BBR px0q

|ψ |p´2|ιBrψ |2dS ,

whence the monotonicity identity follows from the fact that

pkp ´ nq

ż

BR px0q

eдpψ qdvolд ` R

ż

BBR px0q

eдpψ qdS

“ R1´kp´n d
dR

ˆ

Rkp´n
ż

BR px0q

eдpψ qdvolд
˙

.

In the general case, we have that

ż

BR px0q

div Y dvolд ď pkp ´ nq

ż

BR px0q

eдpψ qdvolд ` ΛR

ż

BR px0q

eдpψ qdvolд

´

ż

BR px0q

Jψ ` pr fκprq ´ 1q|ψ |p´2|ιBrψ |2dvolд ,

whence an application of (.) yields, aer a rearranging of terms,

pkp ´ nq

ż

BR px0q

eдpψ qdvolд ` ΛR

ż

BR px0q

eдpψ qdvolд ` R

ż

BBR px0q

eдpψ qdS
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ě

ż

BR px0q

Jψ ` pr fκprq ´ 1q|ψ |p´2|ιBrψ |2dvolд ` R

ż

BBR px0q

|ψ |p´2|ιBrψ |2dS .

e monotonicity identity then follows from the fact that

pkp ´ nq

ż

BR px0q

eдpψ qdvolд ` ΛR

ż

BR px0q

eдpψ qdvolд ` R

ż

BBR px0q

eдpψ qdS

“ R1´kp´ne´ΛR d
dR

ˆ

Rkp´neΛR
ż

BR px0q

eдpψ qdvolд
˙

. □

As with the identities in the preceding chapter, we may immediately read off consequences for
p-harmonic k-forms.

eorem .. (Monotonicity Formula). Ifψ is p-harmonic, then

d
dR

ˆ

eΛRRkp´n
ż

BR px0q

eдpψ qdvolд
˙

ě 0

on s0, j0r. If sec ” ´K2 ď 0, then

d
dR

ˆ

Rkp´n
ż

BR px0q

eдpψ qdvolд
˙

ě 0

on s0,8r.

Proof. If ψ is p-harmonic, then Jψ “ 0. e result then follows immediately from Proposition
... □

As corollaries we obtain the following monotonicity formulæ, the former of which is well-
known in the case p “ 2, where it was first established by Price [], and the laer of which is well
known for p ą 1, having first been established by Schoen and Uhlenbeck [] and Price [] in the
case p “ 2 and subsequently generalized by Hardt and Lin [].

Corollary ... e following hold:

(i) [] Assume the setup of §.. If ω is a p-Yang-Mills connection, then

d
dR

ˆ

eΛR

Rn´2p

ż

BR px0q

eдpΩωqdvolд
˙

ě 0

holds on s0, j0r. If sec ” ´K2 ď 0, then the this inequality holds on s0,8r with Λ “ 0.

(ii) [] [] Assume the setup of §.. If u : M Ñ N is p-harmonic, then

d
dR

ˆ

eΛR

Rn´p

ż

BR px0q

eдpduqdvolд
˙

ě 0

holds on s0, j0r. If secM ” ´K2 ď 0, then this inequality holds on s0,8r with Λ “ 0.

In the same spirit as [, §.], the right bounds on the inhomogeneities δ∇p|ψ |p´2ψ q and
|ψ |p´2d∇ψ yield similar monotonicity formulæ. An estimate leading us in this direction is the
following lemma.

ere is less that can be done in this seing owing to the fact that, in a sense, the area functional is an ’L8 functional’,
whereas the p-Dirichlet energy is an ’Lp functional’.
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Lemma ... Let qψ “ |δ∇p|ψ |p´2ψ q| ` |ψ |p´2|d∇ψ | and p1 be such that 1
p ` 1

p1 “ 1. en

Jψ ě ´R ¨

ˆ

eдpψ q `
1
p1
q
p1

ψ

˙

on BRpx0q.

Proof. Using Cauchy-Schwarz and the fact that r ă R, it is clear that

Jψ “
⟨
δ∇p|ψ |p´2ψ q,ιrBrψ

⟩
` |ψ |p´2

⟨
ιrBr d∇ψ ,ψ

⟩
ě ´R

␣

|δ∇p|ψ |p´2ψ q| ¨ |ιBrψ | ` |ψ |p´2|ιBr d∇ψ | ¨ |ψ |
(

ě ´R |ψ |qψ ,

whence an application of Young’s inequality yields

Jψ ě ´R

¨

˝

|ψ |p

p
`

q
p1

ψ

p1

˛

‚. □

us, using this bound in the monotonicity identity (Proposition ..), we obtain

d
dR

ˆ

eΛRRkp´n
ż

BR px0q

eдpψ qdvolд
˙

` eΛRRkp´n
ż

BR px0q

eдpψ qdvolд ` eΛRRkp´n
ż

BR px0q

q
p1

ψ

p1
dvolд ě 0,

or, multiplying through by eR ,

d
dR

ˆ

epΛ`1qrRkp´n
ż

BR px0q

eдpψ qdvolд
˙

` epΛ`1qRRkp´n
ż

BR px0q

q
p1

ψ

p1
dvolд ě 0. (.)

erefore, if Rkp´n
ş

BR px0q
q
p1

ψ dvolд “ Op1q as R Ñ 0, then we may integrate the laer term on the
le-hand side of (.) to deduce a monotonicity formula. One case where this may be done is given
in the following theorem.

eorem ... If qψ
ˇ

ˇ

B
rR px0q

ď Γ for 0 ă rR ď j0, then

d
dR

ˆ

epΛ`1qRRkp´n
ż

BR px0q

eдpψ qdvolд `
Γp

1

p1

ż R

0
epΛ`1quukp´nVolpBupx0qqdu

˙

ě 0

on s0, rRr.

Proof. Applying (.), we obtain

d
dR

ˆ

epΛ`1qRRkp´n
ż

BR px0q

eдpψ qdvolд
˙

`
Γp

1

p1
epΛ`1qRRkp´nVolpBRpx0qq ě 0,

whence the result follows from the fact that VolpBRpx0qq “ OpRnq as R Œ 0. □

is implies in particular a monotonicity principle for solutions to an inhomogeneous p-Yang-
Mills or p-harmonic map equation with bounded right-hand side, the former of which was estab-
lished by Uhlenbeck [] in the case p “ 2.

Corollary ... e following hold:
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. [] Assume the setup of §.. If ω is a connection on P such that

δ∇
`

|Ωω |p´2Ωω˘ “ J P Γ
`

pP ˆAd gq bT˚M
˘

and ||J ||8 “ supM |J | ă 8, then

d
dR

˜

epΛ`1qR

Rn´2p

ż

BR px0q

eдpΩωqdvolд `
||J ||

p1

8

p1

ż R

0
epΛ`1quu2p´nVolpBupx0qqdu

¸

ě 0

on s0, j0r. If sec ” ´K2 ď 0, then Λ “ 0 and the inequality holds on s0,8r.

. Assume the setup of §.. If u : M Ñ N is a smooth map such that

δ∇
`

|du|p´2du
˘

“ v P Γpu´1TN q

and ||v||8 “ supM |v| ă 8, then

d
dR

˜

epΛ`1qR

Rn´p

ż

BR px0q

eдpduqdvolд `
||v||

p1

8

p1

ż R

0
epΛ`1quu2p´nVolpBupx0qqdu

¸

ě 0

on s0, j0r. If sec ” ´K2 ď 0, then Λ “ 0 and the inequality holds on s0,8r.

Proof. In both cases, the vector bundle-valued differential form ψ is closed, i.e. d∇ψ “ 0 so that
qψ “

ˇ

ˇδ∇p|ψ |p´2ψ q
ˇ

ˇ. e result then follows immediately fromeorem ... □







Nonlocal Monotonicity of Weighted Energies of Dirichlet Type

Aer recalling nonlocal monotonicity formulæ for the harmonic map and Yang-Mills flows on static com-
pact manifolds, we apply the identities of Chapter  and inequalities of §. to establish nonlocal monotonicity
identities for weighted energies of Dirichlet type. As corollaries, we obtain analogues of the aforementioned
nonlocal monotonicity formulæ in the evolving manifold seing. Moreover, we use this identity to establish
a counterpart of the estimate in [, Appendix] for vector bundle-valued k-forms satisfying the heat equation
in order to later establish that the heat ball integrals we consider are finite.

4.1. Known results. We first review the known nonlocal monotonicity formulæ for the har-
monic map and Yang-Mills heat flows.

First suppose that u : pRn ,δq ˆ st0 ´ δ0,t0r Ñ N Ă RK evolves by the harmonic map heat
flow, where N is a Riemannian submanifold of RK (cf. §.). It was shown by Struwe [] that
the monotonicity formula

d
dt

ˆ

4πpt0 ´ tq

ż

Rn

1
2

|du|2Φpx0,t0qdx
˙

“ ´4πpt0 ´ tq

ż

Rn

ˇ

ˇ

ˇ

ˇ

ˇ

Btu `

n
ÿ

i“1

px ´ x0q
i

2pt ´ t0q
Biu

ˇ

ˇ

ˇ

ˇ

ˇ

2

Φpx0,t0qdx

(.)

holds on st0 ´ δ0,t0r whenever u decays appropriately at 8 (cf. Corollary .. (ii)), where

Φpx0,t0qpx ,tq “
1

p4πpt0 ´ tqq
n
2
exp

ˆ

|x ´ x0|
2

4pt ´ t0q

˙

is the Euclidean backward heat kernel. is was subsequently adapted to the case where u : M ˆ

st0 ´ δ0,t0r Ñ N Ă RK evolves by the harmonic map heat flow for static compact M and N
isometrically embedded in RK by Chen and Struwe [], which takes the form

pt0 ´ t2q

ż

M

1
2

|du|2p¨,t2qΦfmlp¨,t2qϕ
2dvolд ď

ec
?
t0´t1

ec
?
t0´t2

pt0 ´ t1q

ż

M

1
2

|du|2p¨,t1qΦfmlp¨,t1qϕ
2dvolд

` cE0
`?

t0 ´ t1 ´
?
t0 ´ t2

˘

(.)

whenever t0 ´ δ0 ă t1 ă t2 ă t0 and
ş

M
1
2 |du|2dvolд ď E0 on st0 ´ δ0,t0r, where c is a constant

depending on the geometries ofM and N , Φfml is the formal backward heat kernel concentrated at
px0,t0q (cf. Definition ..) and ϕ P C8

0 pM , r0,8rq is a cut-off function supported in Binjx0 px0q. An
alternative adaptation of Struwe’s formula to this seing has been given by Hamilton [], taking
the form

pt0 ´ t2q

ż

M

1
2

|du|2p¨,t2qPpx0,t0qp¨,t2qdvolд ď C0pt0 ´ t1q

ż

M

1
2

|du|2p¨,t1qPpx0,t0qp¨,t1qdvolд

`C1pt2 ´ t1qE0 (.)

whenever t0 ´mint1,δ0u ă t1 ă t2 ă t0 and
ş

M
1
2 |du|2dvolд ď E0 on st0 ´ δ0,t0r, whereC0 andC1

are constants depending on the geometry of M with C0 “ 1 and C1 “ 0 if secд ě 0 and dRic “ 0,
and Ppx0,t0q is the canonical backward heat kernel concentrated at px0,t0q (cf. Definition ..).

Now suppose thatP Ñ M is a principal bundlewith semisimple structure groupG and pωt qtPst0´δ0,t0r

is a one-parameter family of connections on P evolving by the Yang-Mills flow (cf. §.). It
was shown by Chen and Shen [] that if M is a static compact Riemannian manifold, that a
monotonicity-type formula analogous to that of Chen and Struwe holds, namely

Note that despite the introduction of a cut-off function, this formula is still nonlocal on account of the energy finiteness
condition.


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pt0´t2q
2
ż

M

1
2

|Ωω |2p¨,t2qΦfmlp¨,t2qϕ
2dvolд ď

ec
?
t0´t1

ec
?
t0´t2

pt0´t1q
2
ż

M

1
2

|Ωω |2p¨,t1qΦfmlp¨,t1qϕ
2dvolд

` cE0

˜

ec
?
t1´t0

ec
?
t2´t0

´ 1

¸

(.)

whenever t0 ´δ0 ă t1 ă t2 ă t0 and
ş

M
1
2 |Ωω |2dvolд ď E0 on st0 ´ δ0,t0r, where c is a constant de-

pending on the geometry ofM , Φfml is the formal backward heat kernel concentrated at px0,t0q and
φ P C8

0 pM , r0,8rq is a cut-off function supported in Binjx0 px0q. Hamilton [] has also established
such a formula which takes the form

pt0 ´ t2q
2
ż

M

1
2

|Ωω |2p¨,t2qPpx0,t0qp¨,t2qdvolд ď C0pt0 ´ t1q
2
ż

M

1
2

|Ωω |2p¨,t1qPpx0,t0qp¨,t1qdvolд

`C1pt2 ´ t1qE0 (.)

whenever t0 ´mint1,δ0u ă t1 ă t2 ă t0 and
ş

M
1
2 |Ωω |2dvolд ď E0 on st0 ´δ0,t0r, whereC0 andC1

are constants depending on the geometry of M with C0 “ 1 and C1 “ 0 if secд ě 0 and dRic “ 0,
and Ppx0,t0q is the canonical backward heat kernel concentrated at px0,t0q.

4.2. Monotonicity identities. We fix δ0 ą 0, let I “ st0 ´ δ0,t0r Ă R for some t0 P R and
suppose pM ,pдt qtPI q is an evolving manifold with Btд “ h and x0 P M fixed. We first establish a
general monotonicity identity for time-dependent sections of bundles over evolving Riemannian
manifolds. e following theorem should be considered the differential form analogue of (.) of
Remark .. or eorem .. (cf. []).

eorem ... Suppose pM ,дt q is complete for each t P I , f P C2,1pM ˆ I ,R`q and ψ P ΓpE b

ΛkT˚Mq is a time-dependent section overM ˆ I . If

ż

M

#˜

1 `

ˇ

ˇ

ˇ

ˇ

∇f
f

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

∇f
f

ˇ

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ

ˇ

∇2 f
f

ˇ

ˇ

ˇ

ˇ

¸

|ψ |2 `

˜

1 `

ˇ

ˇ

ˇ

ˇ

∇f
f

ˇ

ˇ

ˇ

ˇ

2
¸

|d∇ψ |2 ` |δ∇ψ |2 ` |∆∇ψ |2

+

f dvolдp¨,tq

(.)

is finite for each t P I , then the identity

d
dt

ˆ
ż

M
eдpψ qf dvolд

˙

“

ż

M

!⟨
ψ ,

`

Bt ` ∆∇
˘

ψ
⟩
f

`eдpψ q ¨

ˆ

Bt ` ∆ `
1
2
trдh `

k

s ´ t

˙

f (.)

´ f ¨

„

|d∇ψ |2 ` |ι ∇f
f
ψ ´ δ∇ψ |2

ȷ

´f

⟨
∇2 log f `

1
2
h `

1
2ps ´ tq

д,
ÿ

i,j

⟨
ιεiψ ,ιεjψ

⟩
ωi b ω j

⟩+
dvolд

holds on I for every s ě t0 whenever both integrands are summable overM .

Remark ... If k “ 0, i.e. if ψ P ΓpEq, then, since ιvψ ” δ∇ψ ” 0 for any v P TM , the identity
(.) reads

d
dt

ˆ
ż

M

1
2

|ψ |2 f dvolд
˙

“

ż

M

⟨
ψ ,pBt ` ∆∇qψ

⟩
f `

1
2

|ψ |2
ˆ

Bt ` ∆ `
1
2
trдh

˙

f ´ f |d∇ψ |2dvolд

(.)

so that, in this case, we obtain a monotonicity identity if ψ is a subsolution to the heat equation
in the sense that

⟨
ψ ,Bt ` ∆∇ψ

⟩
ď 0 and f satisfies Bt f ` ∆f ` 1

2 trдh ď 0 which holds if f is a
solution to the backward heat equation.
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Remark ... More generally, this identity yields a monotonicity formula provided the following
conditions are satisfied:

. ψ is an appropriate subsolution of the heat equation in the sense that
⟨
ψ ,pBt ` ∆∇qψ

⟩
ď 0.

is holds with equality ifψ evolves by a Dirichlet-type flow.

. f “ ps´tqkΦwhereΦ is a subsolution to the backward heat equation, i.e. pBt`∆` 1
2 trдhqΦ ď

0, since then

pBt ` ∆ `
1
2
trдh `

k

s ´ t
q

´

ps ´ tqkΦ
¯

“ ps ´ tqk pBt ` ∆ `
1
2
trдhqΦ ´ kps ´ tqk´1Φ ` kps ´ tqk´1Φ ď 0.

is holds with equality if Φ solves the backward heat equation.

. e matrix Harnack expression

∇2 log f `
1
2
h `

1
2ps ´ tq

д “ Hs log f

is nonnegative-definite. To see this, note that leing teα u be a local frame for EbΛk´1T˚M ,
we may write

ÿ

i,j

⟨
ιεiψ ,ιεjψ

⟩
ωi b ω j “

ÿ

i,j

ÿ

α

⟨
ιεiψ ,eα

⟩ ⟨
eα ,ιεjψ

⟩
ωi b ω j

“
ÿ

α

˜

ÿ

i

⟨
ιεiψ ,εα

⟩
ωi

¸

b

˜

ÿ

i

⟨
ιεiψ ,εα

⟩
ωi

¸

so that, ifHs log f ě λд, we have

⟨
Hs log f ,

ÿ

i,j

⟨
ιεiψ ,ιεjψ

⟩
ωi b ω j

⟩
“
ÿ

α

⟨
Hs log f ,

˜

ÿ

i

⟨
ιεiψ ,εα

⟩
ωi

¸

b

˜

ÿ

i

⟨
ιεiψ ,εα

⟩
ωi

¸⟩

ě λ

⟨
д,

˜

ÿ

i

⟨
ιεiψ ,εα

⟩
ωi

¸

b

˜

ÿ

i

⟨
ιεiψ ,εα

⟩
ωi

¸⟩
“ λ ¨ k|ψ |2.

If д evolves by Ricci flow, i.e. h “ ´2Ric, then this expression vanishes when д is a gradient
shrinking soliton (cf. [, Appendix C]). As may be verified directly, pM ,дt q ” pRn ,δq is a
special case of this, where f is taken to be the Euclidean backward heat kernel concentrated
at py,sq P M ˆ I (cf. Remark ..).

Proof of eorem ... For convenience, we use the abbreviations

pBt ` ∆∇q “ Bt ` ∆∇

and

H˚ “ Bt ` ∆ `
1
2
trдh `

k

s ´ t
.

We first compute the derivative of the integrand:

Bt
`

eдpψ qf dvolд
˘

“ Bteдpψ q ¨ f dvolд ` eдpψ qBt f ¨ dvolд ` eдpψ qf Btdvolд
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“
⟨
Btψ ,ψ

⟩
f dvolд ´

1
2

⟨
h,

n
ÿ

i,j“1

⟨
ιεiψ ,ιεjψ

⟩
ωi b ω j

⟩
f dvolд

` eдpψ q

ˆ

Bt f `
1
2
trдh ¨ f

˙

dvolд

“
⟨
pBt ` ∆∇qψ ,ψ

⟩
f dvolд ´

⟨
∆∇ψ ,ψ

⟩
f dvolд

´
1
2

⟨
h,

n
ÿ

i,j“1

⟨
ιεiψ ,ιεjψ

⟩
ωi b ω j

⟩
f dvolд

` eдpψ qH˚ f ¨ dvolд ´ eдpψ q∆f ¨ dvolд (.)

where Propositions .. and .. were used in the second line and the definitions of the respective
heat operators were used in line . We now ‘integrate out’ the lone second derivative terms, starting
with the laer one. To that end, consider Y :“

´

ι∇fT
д
ψ

¯7

P ΓpTMq. By Corollary ..,

eдpψ q∆f “

n
ÿ

i“1

⟨
ι∇εi ∇fψ ,ιεiψ

⟩
´
⟨
δ∇ψ ,ι∇fψ

⟩
´
⟨
ι∇f d∇ψ ,ψ

⟩
´ div Y

“

n
ÿ

i,j“1

⟨
∇2 f ,ωi b ω j

⟩ ⟨
ιεjψ ,ιεiψ

⟩
´
⟨
δ∇ψ ,ι∇fψ

⟩
´
⟨
ι∇f d∇ψ ,ψ

⟩
´ div Y

“

⟨
∇2 f ,

n
ÿ

i,j“1

⟨
ιεiψ ,ιεjψ

⟩
ωi b ω j

⟩
´
⟨
δ∇ψ ,ι∇fψ

⟩
´
⟨
ι∇f d∇ψ ,ψ

⟩
´ div Y .

On the other hand, by Lemma ..,

⟨
∆∇ψ ,ψ

⟩
f “
⟨
d∇δ∇ψ , fψ

⟩
`
⟨
δ∇d∇ψ , fψ

⟩
“
⟨
δ∇ψ ,δ∇pfψ q

⟩
` div

˜

f
n
ÿ

i“1

⟨
ιεiψ ,δ

∇ψ
⟩
ωi

¸

`
⟨
d∇ψ ,d∇pfψ q

⟩
´ div

˜

f
n
ÿ

i“1

⟨
ιεi d∇ψ ,ψ

⟩
ωi

¸

“ f |δ∇ψ |2 ´
⟨
δ∇ψ ,ι∇fψ

⟩
` f |d∇ψ |2 `

⟨
d∇ψ ,df ^ψ

⟩
´ div

˜

f
n
ÿ

i“1

´⟨
ιεi d∇ψ ,ψ

⟩
´
⟨
ιεiψ ,δ

∇ψ
⟩¯
ωi

¸

loooooooooooooooooooooooomoooooooooooooooooooooooon

:“Z 5

“ f |δ∇ψ |2 ` f |d∇ψ |2 ´
⟨
δ∇ψ ,ι∇fψ

⟩
`
⟨
ι∇f d∇ψ ,ψ

⟩
´ div Z

so that the right-hand side of the identity in . takes the form

“

´⟨
pBt ` ∆∇qψ ,ψ

⟩
f ` eдpψ qH˚ f

¯

dvolд ` f

ˆ

2
⟨
δ∇ψ ,ι ∇f

f
ψ
⟩

´ |δ∇ψ |2 ´ |d∇ψ |2
˙

dvolд

´

⟨
∇2 f `

1
2
f h,

n
ÿ

i,j“1

⟨
ιεiψ ,ιεjψ

⟩
ωi b ω j

⟩
dvolд ` divpY ` Zqdvolд

“

´⟨
pBt ` ∆∇qψ ,ψ

⟩
f ` eдpψ qH˚ f

¯

dvolд ´ f

ˆ

|ι ∇f
f
ψ ´ δ∇ψ |2 ` |d∇ψ |2

˙

dvolд `
1
f

|ι∇fψ |2dvolд

´ f

⟨
∇2 f
f

`
1
2
h,

n
ÿ

i,j“1

⟨
ιεiψ ,ιεjψ

⟩
ωi b ω j

⟩
dvolд ` divpY ` Zqdvolд

“

´⟨
pBt ` ∆∇qψ ,ψ

⟩
f ` eдpψ qH˚ f

¯

dvolд ´ f

ˆ

|ι ∇f
f
ψ ´ δ∇ψ |2 ` |d∇ψ |2

˙

dvolд

´ f

⟨
∇2 f
f

´
∇f b ∇f

f 2
`

1
2
h,

n
ÿ

i,j“1

⟨
ιεiψ ,ιεjψ

⟩
ωi b ω j

⟩
dvolд ` divpY ` Zqdvolд . (.)

Finally, we compute in an orthonormal frame that

eдpψ q ¨
k

s ´ t
“

1
2

ÿ

J k
|pψ ,ε J q|2 ¨

k

s ´ t
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“
1
2

¨
1
k

n
ÿ

j“1

ÿ

Ĵ k´1

|pιεjψ ,ε Ĵ q|2 ¨
k

s ´ t

“
1

2ps ´ tq

n
ÿ

j“1

|ιεjψ |2 “
1

2ps ´ tq

⟨
д,

n
ÿ

i,j“1

⟨
ιεiψ ,ιεjψ

⟩
ωi b ω j

⟩
(.)

where the final expression is valid in any local frame. Overall, we have the identity

Bt
`

eдpψ qf dvolд
˘

“

ˆ⟨
pBt ` ∆∇qψ ,ψ

⟩
f ` eдpψ q

ˆ

H˚ `
k

s ´ t

˙

f

˙

dvolд ´ f

ˆ

|ι ∇f
f
ψ ´ δ∇ψ |2 ` |d∇ψ |2

˙

dvolд

´ f

⟨
∇2 f
f

´
∇f b ∇f

f 2
`

1
2
h `

1
2ps ´ tq

д,
n
ÿ

i,j“1

⟨
ιεiψ ,ιεjψ

⟩
ωi b ω j

⟩
dvolд

` divpY ` Zqdvolд .

Now, if M is compact, we may simply integrate, noting that the integral and t-derivative may be
interchanged by standard integration theorems and that the divergences integrate to 0 by Gauß’
theorem. For complete M , the interchanging of the derivative and integral is still valid, but Gauß’
theorem is only guaranteed to hold provided |Y ` Z |p¨,tq and divpY ` Zqp¨,tq P L1pMq for fixed
t P I [], but both of these are summable. To see this, we estimate Y , div Y , Z and div Z from
above. Firstly, note that by Corollary ...

|Y | “

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

f
⟨
ι ∇f
f
ψ ,ιεiψ

⟩
εi ´ eдpψ q∇f

ˇ

ˇ

ˇ

ˇ

ˇ

ď f

d

ÿ

i

⟨
ι ∇f
f
ψ ,ιεiψ

⟩2
` eдpψ q|∇f |

ď f |ι ∇f
f
ψ |

loomoon

ď

ˇ

ˇ

ˇ

∇f
f

ˇ

ˇ

ˇ
¨|ψ |

d

ÿ

i

|ιεiψ |2

looooomooooon

“
?
k |ψ |

`
1
2

|ψ |2|∇f |

ď
1
2
f

ˇ

ˇ

ˇ

ˇ

∇f
f

ˇ

ˇ

ˇ

ˇ

2

|ψ |2 `
k

2
|ψ |2 f `

1
2

|ψ |2|∇f |

where the first inequality follows from the triangle inequality and the fact that the tεiu are or-
thonormal, the second from the Cauchy-Schwarz inequality and the third from Young’s inequality
applied to the terms with underbraces. Secondly, using the same techniques,

|div Y | “

ˇ

ˇ

ˇ

ˇ

ˇ

⟨
∇2 f ,

n
ÿ

i,j“1

⟨
ιεiψ ,ιεjψ

⟩
ωi b ω j

⟩
´

1
2

|ψ |2∆f ´
⟨
δ∇ψ ,ι∇fψ

⟩
´
⟨
ι∇f d∇ψ ,ψ

⟩ˇˇ
ˇ

ˇ

ˇ

ď |∇2 f |

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i,j“1

⟨
ιεiψ ,ιεjψ

⟩
ωi b ω j

ˇ

ˇ

ˇ

ˇ

ˇ

`
1
2

|ψ |2|∆f | ` f |δ∇ψ | ¨ |ι ∇f
f
ψ | ` f |ψ | ¨ |ι ∇f

f
d∇ψ |

ď k|∇2 f | ¨ |ψ |2 `
1
2

˜

|ψ |2|∆f | ` |δ∇ψ |2 f `

ˇ

ˇ

ˇ

ˇ

∇f
f

ˇ

ˇ

ˇ

ˇ

2

|ψ |2 f ` |ψ |2 f `

ˇ

ˇ

ˇ

ˇ

∇f
f

ˇ

ˇ

ˇ

ˇ

2

|d∇ψ |2 f

¸

,

where the last line follows from the fact that

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i,j“1

⟨
ιεiψ ,ιεjψ

⟩
ωi b ω j

ˇ

ˇ

ˇ

ˇ

ˇ

“

g

f

f

e

n
ÿ

i,j“1

⟨
ιεiψ ,ιεjψ

⟩2
ď

d

ÿ

i,j

|ιεiψ |2|ιεjψ |2
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“
ÿ

i

|ιεiψ |2 “ k|ψ |2.

Finally, we compute, again using the same techniques, that

|Z | “

ˇ

ˇ

ˇ

ˇ

ˇ

f
n
ÿ

i“1

´⟨
ιεi d∇ψ ,ψ

⟩
´
⟨
ιεiψ ,δ

∇ψ
⟩¯
εi

ˇ

ˇ

ˇ

ˇ

ˇ

ď f

˜ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

⟨
ιεi d∇ψ ,ψ

⟩
εi

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

⟨
ιεiψ ,δ

∇ψ
⟩
εi

ˇ

ˇ

ˇ

ˇ

ˇ

¸

“ f

¨

˝

g

f

f

e

n
ÿ

i“1

⟨
ιεi d∇ψ ,ψ

⟩2
`

g

f

f

e

n
ÿ

i“1

⟨
ιεiψ ,δ

∇ψ
⟩2 ˛
‚

ď f

¨

˝|ψ |

g

f

f

e

n
ÿ

i“1

|ιεi d∇ψ |2 ` |δ∇ψ |

g

f

f

e

n
ÿ

i“1

|ιεiψ |2

˛

‚

ď
f

2

`

p1 ` kq|ψ |2 ` pk ` 1q|d∇ψ |2 ` |δ∇ψ |2
˘

and

|div Z | “

ˇ

ˇ

ˇ

⟨
ι∇f d∇ψ ,ψ

⟩
´
⟨
ι∇fψ ,δ

∇ψ
⟩

´ f
⟨
∆∇ψ ,ψ

⟩
` f |d∇ψ |2 ` f |δ∇ψ |2

ˇ

ˇ

ˇ

ď f

ˆ

|ι ∇f
f
d∇ψ | ¨ |ψ | ` |ι ∇f

f
ψ | ¨ |δ∇ψ | ` |∆∇ψ | ¨ |ψ | ` |d∇ψ |2 ` |δ∇ψ |2

˙

ď f

˜

1
2

ˇ

ˇ

ˇ

ˇ

∇f
f

ˇ

ˇ

ˇ

ˇ

2
`

|d∇ψ |2 ` |ψ |2
˘

`
3
2

|δ∇ψ |2 ` |ψ |2 `
1
2

|∆∇ψ |2 ` |d∇ψ |2

¸

.

By the finiteness of the integral (.), all of these expressions are summable, thus allowing us to
justify the application of Gauß’ theorem. □

Corollary ... Suppose pM ,дt q is complete for each t P I and f P C2,1pM ˆ I ,R`q. en the
following hold:

(i) Assume the setup of §.. If pωt “ rω ` aptqqtPI is a one-parameter family of connections
evolving by the Yang-Mills heat flow and

ż

M

#˜

1 `

ˇ

ˇ

ˇ

ˇ

∇f
f

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

∇f
f

ˇ

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ

ˇ

∇2 f
f

ˇ

ˇ

ˇ

ˇ

¸

|Ωω |2 ` |δ∇Ωω |2 ` |BtΩ
ω |2

+

f dvolдp¨,tq

is finite for each t P I , then the identity

d
dt

ˆ
ż

M
eдpΩωqf dvolд

˙

“

ż

M

#

eдpΩωq ¨

ˆ

Bt ` ∆ `
1
2
trдh `

4
2ps ´ tq

˙

f

´ f |Bta ` ι ∇f
f
Ωω |2

´f

⟨
∇2 log f `

1
2
h ´

1
2ps ´ tq

д,
ÿ

i,j

⟨
ιεiΩ

ω ,ιεjΩ
ω
⟩
ωi b ω j

⟩+
dvolд

holds on I whenever both integrands are in L1pMq.
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(ii) Assume the setup of §.. If u : M ˆ I Ñ N Ă RK evolves by the harmonic map heat flow,
where N is isometrically embedded in RK , and

ż

M

#˜

1 `

ˇ

ˇ

ˇ

ˇ

∇f
f

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

∇f
f

ˇ

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ

ˇ

∇2 f
f

ˇ

ˇ

ˇ

ˇ

¸

|du|2 ` |δ∇du|2 ` |Btu|2 ` |Btdu|2

+

f dvolдp¨,tq

(.)

is finite for each t P I , then the identity

d
dt

ˆ
ż

M
eдpduqf dvolд

˙

“

ż

M

#

eдpduq ¨

ˆ

Bt ` ∆ `
1
2
trдh `

2
2ps ´ tq

˙

f

´ f |Btu ` ι ∇f
f
du|2

´f

⟨
∇2 log f `

1
2
h ´

1
2ps ´ tq

д,
ÿ

i,j

⟨
ιεi du,ιεj du

⟩
ωi b ω j

⟩+
dvolд

holds on I whenever both integrands are in L1pMq.

Proof. (i) is follows immediately fromeorem .. by taking E “ P ˆAd g, ∇ the covariant
derivative induced by ω, ψ “ Ωω (ñ k “ 2), using Lemma .. (BtΩω ` ∆∇Ωω “ 0) and
the Bianchi identity d∇Ωω “ 0 (cf. Proposition ..), keeping Remark .. in mind.

(ii) Take E “ RK , ∇ the flat connection and ψ “ du (ñ k “ 1). Note that by Lemma .. (ii)
with X “

∇f
f , there holds

⟨
`

Bt ` ∆∇
˘

du,du
⟩

´

ˇ

ˇ

ˇ

ˇ

ι ∇f
f
du ´ δ∇du

ˇ

ˇ

ˇ

ˇ

2

“ ´

ˇ

ˇ

ˇ

ˇ

Btu ` ι ∇f
f
du
ˇ

ˇ

ˇ

ˇ

2

.

Furthermore, by Lemma .. (i), d∇du “ 0. Now, theorem .. would then imply the claim
if the expression (.) were finite. However, the condition (.) is not quite the same, since
it does not say anything about the summability of |∆∇du|2 f . We thus go back to the proof of
eorem ... All of the steps there are clearly valid in this seing up to the claim that |divZ |

may be bounded from above by a summable expression. is is still the case, however, except
we must estimate |div Z | from above slightly differently. Note first that, by Lemma .. (ii)
with X “ 0 that

⟨
∆∇du,du

⟩
“ ´ ⟨Btdu,du⟩` |δ∇du|2 ´ |Btu|2,

whence we estimate analogously to before that

|div Z | “

ˇ

ˇ

ˇ
´
⟨
ι∇f du,δ∇du

⟩
´ f
⟨
∆∇du,du

⟩
` f |δ∇du|2

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

⟨
ι∇f du,δ∇du

⟩
` f ⟨Btdu,du⟩´ f |δ∇du|2 ` f |Btu|2 ` f |δ∇du|2

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

⟨
ι∇f du,δ∇du

⟩
` f ⟨Btdu,du⟩` f |Btu|2

ˇ

ˇ

ˇ

ď f

˜

1
2

˜

1 `

ˇ

ˇ

ˇ

ˇ

∇f
f

ˇ

ˇ

ˇ

ˇ

2
¸

|du|2 `
1
2

|δ∇du|2 `
1
2

|Btdu|2 ` |Btu|2

¸

,

which is now summable. Proceeding through the rest of the proof of eorem .. then
establishes the claim. □
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Remark ... Taking M “ Rn and f to be ps ´ tqkΦ with Φ the Euclidean backward heat kernel
concentrated at py,sq P Rn ˆ I , where k “ 1 for solutions to (HMHF) (cf. §.) and k “ 2 for
solutions to (YMHF) (cf. §.), we see that this corollary and Remark .. immediately imply
Struwe’s monotonicity formula (.) and a Euclidean analogue of Chen-Shen’s formula (.).

If either f orψ is not compactly supported in spacetime, then we can force a local monotonicity
identity out of the above integrand by introducing a cut-off, as is done e.g. in [, , , ].

eorem ... Let ϕ P C2,1pM ˆ I ,Rq and ϕp¨,tq P C2
0pMq for each t P I , f P C2pD,R`q and

ψ P ΓpE b ΛkT˚Mq a smooth time-dependent section over D Ă M ˆ I open with supp ϕp¨,tq Ť

pr1 pD X pM ˆ ttuqq for each t P I . en

d
dt

ˆ
ż

M
eдpψ qf ϕ2dvolд

˙

“

ż

M

"„⟨
ψ ,pBt ` ∆∇qψ

⟩
f ` eдpψ q ¨

ˆ

Bt ` ∆ `
1
2
trдh `

k

s ´ t

˙

f

ȷ

´ f ¨

„

|d∇ψ |2 ` |ι ∇f
f
ψ ´ δ∇ψ |2

ȷ

´f

⟨
∇2 log f `

1
2
h `

1
2ps ´ tq

д,
ÿ

i,j

⟨
ιεiψ ,ιεjψ

⟩
ωi b ω j

⟩+
ϕ2

` 2eдpψ qf ϕ

ˆ

Btϕ `

⟨
∇ϕ, ∇f

f

⟩˙
` 2ϕ f

„⟨
ι∇ϕψ ,δ

∇ψ ´ ι ∇f
f
ψ
⟩

´
⟨
ι∇ϕd∇ψ ,ψ

⟩ȷ
dvolд . (.)

on I for s ě t0.

Proof. We first note that

Bt
`

eдpψ qf ϕ2dvolд
˘

“ 2eдpψ qf ϕBtϕdvolд ` Bt
`

eдpψ qf dvolд
˘

ϕ2. (.)

Retaining the notation used in the proof of eorem .. and using (.) and (.), we see that
the laer term may be wrien as

"„⟨
ψ ,pBt ` ∆∇qψ

⟩
f ` eдpψ q ¨

ˆ

H˚ `
k

s ´ t

˙

f

ȷ

´ f ¨

„

|d∇ψ |2 ` |ι ∇f
f
ψ ´ δ∇ψ |2

ȷ

´f

⟨
∇2 log f `

1
2
h ´

1
2ps ´ tq

д,
ÿ

i,j

⟨
ιεiψ ,ιεjψ

⟩
ωi b ω j

⟩+
ϕ2dvolд

` divpY ` Zqϕ2dvolд ,

but div pY ` Zqϕ2 “ div pϕ2pY ` Zqq ´ 2ϕ
⟨∇ϕ,Y ` Z

⟩ and
⟨∇ϕ,Y ` Z

⟩
“
⟨
ι∇fψ ,ι∇ϕψ

⟩
´ eдpψ q

⟨∇f ,∇ϕ⟩` f
⟨
ι∇ϕd∇ψ ,ψ

⟩
´ f
⟨
ι∇ϕψ ,δ

∇ψ
⟩

“ ´eдpψ q
⟨∇f ,∇ϕ⟩´ f

⟨
ι∇ϕψ ,δ

∇ψ ´ ι ∇f
f
ψ
⟩

` f
⟨
ι∇ϕd∇ψ ,ψ

⟩
.

e result then follows from integrating (.) aer substituting these expressions in and applying
Gauß’ theorem. □

Let Sψ “ δ∇ψ ´ ι ∇f
f
ψ and note that the last two terms in the integrand of (.) may be

estimated as follows:

2eдpψ qf ϕ

ˆ

Btϕ `

⟨
∇ϕ, ∇f

f

⟩˙
` 2ϕ f

´⟨
ι∇ϕψ ,Sψ

⟩
´
⟨
ι∇ϕd∇ψ ,ψ

⟩¯
ď 2eдpψ qf ϕ

ˆ

|Btϕ| ` |∇ϕ| ¨

ˇ

ˇ

ˇ

ˇ

∇f
f

ˇ

ˇ

ˇ

ˇ

˙

` 2f |∇ϕ| ¨ |ψ |
`

|Sψ |ϕ ` |d∇ψ |ϕ
˘
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ď 2eдpψ qϕ p|Btϕ|f ` |∇ϕ| ¨ |∇f |q ` f ¨

ˆ

4|∇ϕ|2|ψ |2 `
1
2

|Sψ |2ϕ2 `
1
2

|d∇ψ |2ϕ2
˙

ď 2eдpψ q
`

ϕ p|Btϕ|f ` |∇ϕ| ¨ |∇f |q ` 4|∇ϕ|2 f
˘

`
1
2

`

|Sψ |2 ` |d∇ψ |2
˘

f ϕ2, (.)

where the inner products were separated out using the Cauchy-Schwarz inequality and the prod-
ucts treated by Young’s inequality. is observation immediately leads to the followingmonotonicity-
type identity:

Lemma ... Let ϕ P C2,1
0 pM ˆ I , r0,1sq be such that

ϕ|Dr1,δ0 px0,t0q ” const and ϕ|pMˆI qzDr2,δ0 px0,t0q ” 0

for 0 ă r1 ă r2 ă R with R ą 0 fixed and suppose f P C2pDR,δ0px0,t0q,R
`q andψ P ΓpE bΛkT˚Mq

is a smooth time-dependent section overM ˆ I .
If f , |∇f | are bounded on Dr2,δ0px0,t0qzDr1,δ0px0,t0q and the inequalities

ˆ

Bt ` ∆ `
1
2
trдh `

k

s ´ t

˙

f ď a0 ` a1ptqf and

f

ˆ

∇2 log f `
1
2
h `

д

2pt0 ´ tq

˙

ě pb0 ` b1ptqf qд (.)

hold on Dr2,δ0px0,t0q for a1,b1 P CpIq X L1pIq, a0,b0 P R and some s ě t0, then

d
dt

ˆ

exp

ˆ
ż t0

t
l

˙
ż

M
eдpψ qf ϕ2dvolд

˙

ď exp

ˆ
ż t0

t
l

˙
ż

M

⟨
ψ ,pBt ` ∆∇qψ

⟩
f ϕ2 ´

1
2
f ϕ2 ¨

˜

|d∇ψ |2 `

ˇ

ˇ

ˇ

ˇ

δ∇ψ ´ ι ∇f
f
ψ

ˇ

ˇ

ˇ

ˇ

2
¸

dvolд

`C0

ż

Btr2 px0q

eдpψ qdvolд ,

where lptq “ a1ptq ´ 2kb1ptq and C0 “ C0pl ,a0,b0, f ,ϕ,r1,r2q ą 0. In particular, if

ż

M
eдpψ qp¨,tqdvolдt ď E0.

for every t P I , then

d
dt

ˆ

exp

ˆ
ż t0

t
l

˙
ż

M
eдpψ qf ϕ2dvolд `C0E0pt0 ´ tq

˙

ď exp

ˆ
ż t0

t
l

˙
ż

M

⟨
ψ ,pBt ` ∆∇qψ

⟩
f ϕ2 ´

1
2
f ϕ2 ¨

˜

|d∇ψ |2 `

ˇ

ˇ

ˇ

ˇ

δ∇ψ ´ ι ∇f
f
ψ

ˇ

ˇ

ˇ

ˇ

2
¸

dvolд .

Proof. By (.), the last two terms in the right-hand integrand of (.) may be bounded from
above by

Cf ,ϕeдpψ qχBr2 px0q `
1
2

`

|Sψ |2 ` |d∇ψ |2
˘

f ϕ2,

where Cf ,ϕ,r1,r2 is a constant satisfying

2
ˇ

ˇϕ p|Btϕ|f ` |∇ϕ| ¨ |∇f |q ` 4|∇ϕ|2 f
ˇ

ˇ ď Cf ,ϕ,r1,r2 ¨ χDr2,δ0 px0,t0qzDr1,δ0 px0,t0q; (.)

such a constant exists in light of hypotheses on f and the fact that ∇ϕ and Btϕ are supported in
Dr2,δ0px0,t0qzDr1,δ0px0,t0q. With this and the bounds (.) in mind, (.) implies that
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d
dt

ˆ
ż

M
eдpψ qf ϕ2dvolд

˙

ď

ż

M

⟨
ψ ,pBt ` ∆∇qψ

⟩
f ϕ2 ´

1
2
f ϕ2 ¨

“

|d∇ψ |2 ` |Sψ |2
‰

dvolд

` pa1ptq ´ 2kb1ptqq
looooooooomooooooooon

“lptq

ż

M
eдpψ qf ϕ2dvolд

`
`

pa0 ´ 2kb0q `Cf ,ϕ,r1,r2
˘

ż

Br2 px0q

eдpψ qdvolд .

Hence, we immediately see that

d
dt

ˆ

exp

ˆ
ż t0

t
l

˙
ż

M
eдpψ qf ϕ2dvolд

˙

ď exp

ˆ
ż t0

t
l

˙
ż

M

⟨
ψ ,pBt ` ∆∇qψ

⟩
f ´

1
2
f ¨

”

|d∇ψ |2 `
ˇ

ˇSψ
ˇ

ˇ

2
ı

dvolд

`
ˇ

ˇa0 ´ 2kb0 `Cf ,ϕ,r1,r2

ˇ

ˇ exp

ˆ
ż t0

t
l

˙

looomooon

ď
şt0
t0´δ |l |

looooooooooooooooooooomooooooooooooooooooooon

“:C0

ż

Br2 px0q

eдpψ qdvolд , (.)

whence the result follows. □

4.3. Applications. Assume now that M is of locally bounded geometry about px0,t0q with
notation as in Definition .. and j0 as before.

In this section, we let ϕ : M ˆ I Ñ R` be defined by

ϕpx ,tq “ χ

ˆ

dt px ,x0q ` r ´ 2j0
2pr ´ j0q

˙

with 0 ă r ă j0 and χ as in Example A.. Note that if dt px ,x0q ď r then

dt px ,x0q ` r ´ 2j0
2pr ´ j0q

ě
2r ´ 2j0
2pr ´ j0q

“ 1

so that ϕpx ,tq “ 1. Similarly, if dt px ,x0q ě j0, then ϕpx ,tq “ 0. Altogether, this implies that
ϕ|Dr ,δ px0,t0q ” 1 and ϕ|pMˆI qzDj0,δ px0,t0q ” 0. We now use this cut-off function and a suitably
weighted version of the formal heat kernel to deduce analogues of the monotonicity formulæ of
Chen and Struwe [] and Chen and Shen [] from Lemma .. in our evolving manifold seing.
We first introduce this weighted formal backward heat kernel.

Lemma ... Suppose k P N and define fk : Dj0,δ px0,t0q Ñ R` such that

fk px ,tq “ p4πpt0 ´ tqq
k Φfmlpx ,tq

with Φfml as in Definition ... en

|fk | ` |∇fk | ď rC

on Dj0,δ px0,t0qzDr ,δ px0,t0q with rC depending on n,k ,r and j0, and fk satisfies the inequalities (.)
with

e constantsC andC4 are those of Propositions .. and .. and depend only on the local geometry about px0, t0q.
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a0 “ maxt
nµ

2
,4C4u,

a1ptq “ ´
n ´ 2k

2
a0 logp4πpt0 ´ tqq,

b0 “ ´maxt2C,´λ´8u,

b1ptq “
n ´ 2k

2
b0 logp4πpt0 ´ tqq,

and a1,b1 P Cpst0 ´ δ ,t0rq X L1pst0 ´ δ ,t0rq. Moreover, retaining the notation of Lemma ..,

ż t0

t
l “

„

2k ´ n

2
a0 ` kp2k ´ nqb0

ȷ

¨ plogp4πq ¨ pt0 ´ tq ` pt0 ´ tq plogpt0 ´ tq ´ 1qq ,

and

C0 ď

˜

|a0 ´ 2kb0| `
rC||χ 1||8

r ´ j0
¨

ˆ

µ

2
j0 ` 1 `

2||χ 1||8

r ´ j0

˙

¸

expp||l ||1q.

Proof. We first establish boundedness of fk and ∇fk onD :“ Dj0,δ px0,t0qzDr ,δ px0,t0q. To stream-
ling this, we introduce the auxiliary function

ηmpx ,tq :“
exp

´

d t px,x0q2

4pt´t0q

¯

pt0 ´ tqm
,

wherem P R is fixed. Note that

fk px ,tq “
η n´2k

2
px ,tq

p4πq
n´2k

2

and, by Proposition ..,

|∇fk |px ,tq “
dt px ,x0q

2 ¨ p4πq
n´2k

2

¨ η n`2´2k
2

px ,tq.

us, since r ă dt px ,x0q ă j0 for px ,tq P D, it suffices to show that

sup
D
ηmpx ,tq ă 8

form P R. Now, it is clear that for px ,tq P D,

ηmpx ,tq ď
exp

´

r 2
4pt´t0q

¯

pt0 ´ tqm

and that the right-hand side is bounded from above provided t P st0 ´ δ ,t0 ´ εr for some ε P s0,δ r.
On the other hand,

lim
tÕt0

exp
´

r 2
4pt´t0q

¯

pt0 ´ tqm
“

4m

r 2m
lim
rtÑ8

rtm expp´rtq “ 0,

where the substitution rt “ r 2
4pt´t0q

was made. is establishes boundedness of ηm on D for each
m P R and thus boundedness of fk and |∇fk | on D.
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We now turn our aention to the verification of the inequalities (.). Firstly,

ˆ

H˚ `
k

t0 ´ t

˙

fk “ p4πpt0 ´ tqqkH˚Φfml ` kp4πqk pt0 ´ tqk´1Φfml ´ kp4πqk pt0 ´ tqk´1Φfml

“ pt0 ´ tqkH˚Φfml

which, together with Proposition .., implies that

ˆ

H˚ `
k

t0 ´ t

˙

fk ď

ˆ

nµ

2
`

C4r
2

t0 ´ t

˙

fk “

ˆ

nµ

2
` 4C4 log

ˆ

1

p4πpt0 ´ tqqpn´2kq{2 fk

˙˙

fk

ď maxt
nµ

2
,4C4u

ˆ

1 ` log

ˆ

1

p4πpt0 ´ tqqpn´2kq{2 fk

˙˙

fk

ď maxt
nµ

2
,4C4u

ˆ

1 ` fk log

ˆ

1

p4πpt0 ´ tqqpn´2kq{2

˙˙

where we have used Lemma A. in the last step. On the other hand, by Proposition ..,

fkHt0plog fk q ě ´maxt2C,´λ´8u ¨ fk

ˆ

1 `
r 2

4pt0 ´ tq

˙

д

“ ´maxt2C,´λ´8u ¨ fk

ˆ

1 ` log

ˆ

1

p4πpt0 ´ tqqpn´2kq{2 fk

˙˙

д

ě ´maxt2C,´λ´8u ¨

ˆ

1 ` fk log

ˆ

1

p4πpt0 ´ tqqpn´2kq{2

˙˙

д,

where we have again used Lemma A. in the final step. In either case, t ÞÑ logpt0 ´ tq is both
continuous and summable on st0 ´ δ ,t0r. Hence,

ż t0

t
l “

ż t0

t
a1 ´ 2kb1

“

„

2k ´ n

2
a0 ` kp2k ´ nqb0

ȷ
ż t0

t
log p4πpt0 ´ uqq du

“

„

2k ´ n

2
a0 ` kp2k ´ nqb0

ȷ

¨ plogp4πqpt0 ´ tq ` pt0 ´ tq plogpt0 ´ tq ´ 1qq .

Finally, we estimate C0 as follows: we note that on D, the inequalities

|∇ϕ| ď
||χ 1||8

2pr ´ j0q

and

|Btϕ| ď
||χ 1||8

2pr ´ j0q
|Btd

¨px ,x0q|
looooomooooon

ď
µ
2 j0

so that, by the triangle inequality,

2
ˇ

ˇϕ p|Btϕ|f ` |∇ϕ| ¨ |∇f |q ` 4|∇ϕ|2 f
ˇ

ˇ ď
rC||χ 1||8

r ´ j0

ˆ

µ

2
j0 ` 1 ` 2

||χ 1||8

r ´ j0

˙

. (.)

Using this upper bound in the definition of C0 ((.) in the proof of Lemma ..), the triangle
inequality and the upper bound |

şt0
t l | ď ||l ||1 imply that

C0 ď

«

|a0 ´ 2kb0| `
rC||χ 1||8

r ´ j0

ˆ

µ

2
j0 ` 1 ` 2

||χ 1||8

r ´ j0

˙

ff

||l ||1. □

Note that the right-hand side of (.) is one such Cf ,ϕ,r ,j0 satisfying (.) in the proof of Lemma ...
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Corollary ... Let fk be as in Lemma .. and retain the notation of that Lemma. e following
hold:

(i) If ψ is a smooth time-dependent section of E b ΛkT˚M over M ˆ st0 ´ δ ,t0r such that pBt `

∆∇qψ “ 0 and

ż

M
eдpψ qp¨,tqdvolдt ď E0

for every t P st0 ´ δ ,t0r, then

d
dt

ˆ

exp

ˆ
ż t0

t
l

˙
ż

M
eдpψ qfkϕ

2dvolд `C0E0pt0 ´ tq

˙

ď ´
1
2
exp

ˆ
ż t0

t
l

˙
ż

M
fkϕ

2 ¨

˜

|d∇ψ |2 `

ˇ

ˇ

ˇ

ˇ

δ∇ψ ´ ι ∇fk
fk

ψ

ˇ

ˇ

ˇ

ˇ

2
¸

dvolд ď 0

holds on st0´δ ,t0r. In particular, assuming the setup of §. and that pωt “ rω`aptqqtPst0´δ ,t0r

is a one-parameter family of connections evolving by the Yang-Mills flow with

ż

M
eдpΩωqp¨,tqdvolдt ď E0

for each t P st0 ´ δ ,t0r, it follows that

d
dt

ˆ

exp

ˆ
ż t0

t
l

˙
ż

M
eдpΩωqf2ϕ

2dvolд `C0E0pt0 ´ tq

˙

ď ´
1
2
exp

ˆ
ż t0

t
l

˙
ż

M
f2ϕ

2

ˇ

ˇ

ˇ

ˇ

Bta ` ι ∇f2
f2

Ωω
ˇ

ˇ

ˇ

ˇ

2

dvolд ď 0

holds on st0 ´ δ ,t0r, where k “ 2 in the expressions for l and C0.

(ii) Assume the setup of §.. If u : M ˆ st0 ´ δ ,t0r Ñ N Ă RK evolves by the harmonic map heat
flow, where N is isometrically embedded in RK , and

ż

M
eдpduqp¨,tqdvolдt ď E0

for every t P st0 ´ δ ,t0r, then

d
dt

ˆ

exp

ˆ
ż t0

t
l

˙
ż

M
eдpduqf1ϕ

2dvolд `C0E0pt0 ´ tq

˙

ď ´
1
2
exp

ˆ
ż t0

t
l

˙
ż

M
f1ϕ

2

ˇ

ˇ

ˇ

ˇ

Btu ` ι ∇f1
f1

du
ˇ

ˇ

ˇ

ˇ

2

dvolд ď 0,

holds on st0 ´ δ ,t0r, where k “ 1 in the expressions for l and C0.

Remark ... Note that, up to the form of the error factor
şt0
t l , integrating these identities from

t1 to t2 (t1,t2 P st0 ´ δ ,t0r) implies the identities (.) and (.) in the case whereM is static.

Remark ... e energy boundedness condition
ş

M eдp¨,tqdvolдt is satisfied, for example, when-
everM is compact and

lim
tŒt0´δ

ż

M
eдp¨,tqdvolдt ă 8,

which is true wheneverψ or u is obtained as the solution of an initial value problem with smooth
initial data. is is a consequence of Proposition .. and Lemma .. (iii) from which more
general situations where the energy boundedness condition holds may be gleaned.
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Proof. (i) is is a direct consequence of Lemma .., where the formula for solutions to (YMHF)
follows from exactly the same observations as in the proof of Corollary .. (i).

(ii) By Lemma .. (ii),

⟨
du,pBt ` ∆∇qdu

⟩
´

ˇ

ˇ

ˇ

ˇ

ι ∇f
f
du ´ δ∇du

ˇ

ˇ

ˇ

ˇ

2

“ ´
ˇ

ˇBtu ` ι∇f {f du
ˇ

ˇ

2
.

On the other hand, d∇du “ 0, wherefore (.) now reads

d
dt

ˆ
ż

M
eдpduqf ϕ2dvolд

˙

“

ż

M

"

eдpduq ¨

ˆ

Bt ` ∆ `
1
2
trдh `

1
t0 ´ t

˙

f

´ f ¨

„

|Btu ` ι ∇f
f
du|2

ȷ

´f

⟨
∇2 log f `

1
2
h `

1
2pt0 ´ tq

д,
ÿ

i,j

⟨
ιεi du,ιεj du

⟩
ωi b ω j

⟩+
ϕ2

` 2eдpduqf ϕ

ˆ

Btϕ `

⟨
∇ϕ, ∇f

f

⟩˙
´ 2ϕ f

⟨
ι∇ϕdu,Btu ` ι ∇f

f
du
⟩
dvolд ,

where we have used the fact that ι∇ϕdu is tangent to N . We may now run through the com-
putation in the proof of Lemma .. with Btu ` ι ∇f

f
du in place of Sψ to yield

d
dt

ˆ

exp

ˆ
ż t0

t
l

˙
ż

M
eдpduqf ϕ2dvolд `C0E0pt0 ´ tq

˙

ď ´
1
2
exp

ˆ
ż t0

t
l

˙
ż

M
f ϕ2

ˇ

ˇ

ˇ

ˇ

Btu ` ι ∇f
f
du
ˇ

ˇ

ˇ

ˇ

2

dvolд ,

which is what we sought to prove. □

We may similarly recover Hamilton’s formulæ (.) and (.) in the case where M is compact
and static. First, we begin with a lemma.

Lemma ... Suppose k P N and define fk : M ˆ st0 ´ 1,t0r Ñ R` such that

fk px ,tq “ p4πpt0 ´ tqq
k Ppx0,t0qpx ,tq

with Ppx0,t0q as in Definition ... en fk satisfies the inequalities (.) with

a0 “ 0 “ a1ptq

b0 “ ´F

b1ptq “ ´F log

˜

B

p4πpt0 ´ tqq
n´2k

2

¸

,

with B and F as in eorem .., and a1,b1 P C pst0 ´ 1,t0rq X L1 pst0 ´ 1,t0rq. Moreover, retaining
the notation of Lemma ..,

ż t0

t
l “ 2k

ˆ

FB ´
pn ´ 2kqF

2
plogp4πq ` logpt0 ´ tq ´ 1q

˙

pt0 ´ tq.
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Proof. e fact that a0 “ a1ptq “ 0 follows from that Ppx0,t0q solves the backward heat equation.
Moreover, by eorem .. and Lemma A.,

fkHt0 log fk ě ´F

˜

1 ` fk log

˜

B

p4πpt0 ´ tqq
n´2k

2 fk

¸¸

д

ě ´F

˜

1 ` log

˜

B

p4πpt0 ´ tqq
n´2k

2

¸¸

д,

whence b0 and b1 may be read off. It is clear that b1 is both continuous and summable on st0 ´1,t0r
since t ÞÑ logpt0 ´ tq is. Finally, we compute

ż t0

t
l “ ´2k

ż t0

t
b1

“ ´2k
ż t0

t
´FB ` F ¨

ˆ

n ´ 2k
2

˙

rlogp4πq ` logpt0 ´ uqs du

“ 2k

ˆ

FB ´
pn ´ 2kqF

2
plogp4πq ` logpt0 ´ tq ´ 1q

˙

pt0 ´ tq. □

Corollary ... [] Let fk be as in Lemma .. and retain the notation of that Lemma. Set C0 “

2kF ||l ||1. e following hold:

(i) If ψ is a smooth time-dependent section of E b ΛkT˚M over M ˆ st0 ´ δ ,t0r such that pBt `

∆∇qψ “ 0 and

ż

M
eдpψ qp¨,tqdvolдt ď E0

for every t P st0 ´ δ ,t0r, then

d
dt

ˆ

exp

ˆ
ż t0

t
l

˙
ż

M
eдpψ qfkdvolд `C0E0pt0 ´ tq

˙

ď ´
1
2
exp

ˆ
ż t0

t
l

˙
ż

M
fk ¨

˜

|d∇ψ |2 `

ˇ

ˇ

ˇ

ˇ

δ∇ψ ´ ι ∇fk
fk

ψ

ˇ

ˇ

ˇ

ˇ

2
¸

dvolд ď 0

holds on st0´δ ,t0r. In particular, assuming the setup of §. and that pωt “ rω`aptqqtPst0´δ ,t0r

is a one-parameter family of connections evolving by the Yang-Mills flow with

ż

M
eдpΩωqp¨,tqdvolдt ď E0

for each t P st0 ´ mintδ ,1u,t0r, it follows that

d
dt

ˆ

exp

ˆ
ż t0

t
l

˙
ż

M
eдpΩωqf2dvolд `C0E0pt0 ´ tq

˙

ď ´
1
2
exp

ˆ
ż t0

t
l

˙
ż

M
f2

ˇ

ˇ

ˇ

ˇ

Bta ` ι ∇f2
f2

Ωω
ˇ

ˇ

ˇ

ˇ

2

dvolд ď 0

holds on st0 ´ mintδ ,1u,t0r, where k “ 2 in the expressions for l and C0.

(ii) Assume the setup of §.. If u : M ˆ st0 ´ δ ,t0r Ñ N Ă RK evolves by the harmonic map heat
flow, where N is isometrically embedded in RK , and
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ż

M
eдpduqp¨,tqdvolдt ď E0

for every t P st0 ´ δ ,t0r, then

d
dt

ˆ

exp

ˆ
ż t0

t
l

˙
ż

M
eдpduqf1dvolд `C0E0pt0 ´ tq

˙

ď ´
1
2
exp

ˆ
ż t0

t
l

˙
ż

M
f1

ˇ

ˇ

ˇ

ˇ

Btu ` ι ∇f1
f1

du
ˇ

ˇ

ˇ

ˇ

2

dvolд ď 0,

holds on st0 ´ mintδ ,1u,t0r, where k “ 1 in the expressions for l and C0.

Moreover, if secд ě 0 and dRic ” 0, then l ” 0 and C0 “ 0.

Proof. Since M is compact, there exists an R ą 0 such that M “ BRpx0q. Taking r1 “ 2R “ 1
2r2

and appealing to Lemma .. as in Corollary .., noting that Dr2,δ px0,t0qzDr1,δ px0,t0q so that
we may takeCf ,ϕ,r1,r2 “ 0 (cf. (.)), we may proceed exactly as in Corollary .., noting that, by
(.), C0 “ 2k|b0| ¨ ||l ||1. at l and C0 vanish when secд ě 0 and dRic ” 0 is a consequence of
eorem ... □

Integrating these identities and estimating
şt0
t l accordingly immediately implies Hamilton’s

formulæ (.) and (.) (cf. []).

4.4. A technical lemma. We shall now make use of Lemma .. to derive a technical lemma
which shall be made use of in eorems .. and .. of Chapter  to deduce the finiteness of
certain singular intervals. is is the equivalent of eorem .. for Dirichlet-type flows and
should be compared with the computation in [, Appendix].

Lemma ... Letψ P Γ
`

E b ΛkT˚M
˘

be a smooth, time-dependent section overMˆst0 ´ δ ,t0r such
that either pBt `∆∇qψ “ 0 or, assuming the setup of §.,ψ “ du (k “ 1) andu : M ˆst0 ´ δ ,t0r Ñ

N Ă RK evolves by the harmonic map heat flow, where N is isometrically embedded in RK . Set

Rmr ptq “

d

2mpt ´ t0q log

ˆ

4πpt0 ´ tq

r 2

˙

.

en for every 0 ă r ă min
!

1, j0
2cn,k
,

?
4πδ

)

(cn,k :“
b

n´2k
2π e ), the following estimates hold:

. For every t P

ı

t0 ´ r 2 exp
´

´ 1
2pn´2kq

¯

{4π ,t0
”

,

ż

Bt
Rn´2k
r ptq

px0q

eдpψ qp¨,tqdvolдt

ď rC0R
n´2k
r ptqn´2k

¨

˝

1

rn´2k`2

ż t0

t0´ r 2
4π

ż

Bt2cn,k r px0q

eдpψ qdvolдt dt

`
1

rn´2k

¨

˝

ż

B¨
2cn,k r

px0q

eдpψ qdvolд

˛

‚pt0 ´
r 2

4π
q

˛

‚.

.

ż t0

t0´ r 2
4π

ż

Bt
Rn´2k
r ptq

px0q

|S|2 ` |J |2dvolдt dt
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ď 2rC0r
n´2k

¨

˝

1

rn´2k`2

ż t0

t0´ r 2
4π

ż

Bt2cn,k r px0q

eдpψ qdvolдt dt

`
1

rn´2k

¨

˝

ż

B¨
2cn,k r

px0q

eдpψ qdvolд

˛

‚pt0 ´
r 2

4π
q

˛

‚.

Here rC0 is given by

e2||l ||1 max

#

1, |a0 ´ 2kb0|,γn,k maxt||χ 1||8, ||χ
1||28u ¨

˜

µ

2
`

1
2cn,k

`
1

c2n,k

¸+

with a0,b0 and l as in Lemma .. χ as in Example A. and γn,k a positive constant such that

f ď
γn,k

rn´2k

and

|∇f | ď
γn,k

rn´2k`1

hold on D2cn,k r ,δ px0,t0qzDcn,k r ,δ px0,t0q, J “ d∇ψ (“ 0 if ψ “ du and u solves (HMHF)) and
S “ δ∇ψ ´ ι ∇f

f
ψ if pBt ` ∆∇qψ “ 0 or S “ Btu ` B ∇f

f
u ifψ “ du and u solves (HMHF).

Proof. Write eд for eдpψ q and let f “ n´2k
s Φ be as in the proof of eorem .. with s ě t0 to be

chosen later. From (.) and (.) in the proof of eorem .. and the fact that s ´ t ě t0 ´ t ,
we see that the bounds (.) hold with

a0 “ maxt
nµ

2
,4C4u,

a1ptq “ maxt
nµ

2
,4C4u log

ˆ

1

p4πpt0 ´ tqqn{2´k

˙

,

b0 “ ´maxt2C,´λ´8u and

b1ptq “ ´maxt2C,´λ´8u log

ˆ

1

p4πpt0 ´ tqqn{2´k

˙

.

In light of the argument used in the proof of Corollary .. (ii), if ψ solves the heat equation or
ψ “ du (with k “ 1) with u solving (HMHF) (cf. §.), Lemma .. (with δ0 “ δ , ϕ|Dr1,δ px0,t0q,
r1 “ cn,kr and r2 “ 2r1, implies that

d
dt

ˆ

e
şt0
t l

ż

M
eд ¨ f ϕ2dvolд

˙

ď C0

ż

B2cn,k r px0q

eд dvolд ´ e´||l ||1
ż

M

1
2
f ϕ2 ¨

´

|J |2 ` |S|
2
¯

dvolд ,

where eд :“ eдpψ q. Integrating from t0 ´ r 2
4π to t P st0 ´ δ ,t0r and using the bound |

ş

I l | ď ||l ||1,
we see that

e´||l ||1

ˆ
ż

M
eд ¨ f ϕ2dvolд

˙

ptq `
e´||l ||1

2

ż t

t0´ r 2
4π

ż

M
f ϕ2

`

|S|2 ` |J |2
˘

dvolдt dt

ď C0

ż t

t0´ r 2
4π

ż

Bt2cn,k r px0q

eдt dvolдt dt ` e ||l ||1

ˆ
ż

M
eд ¨ f ϕ2dvolд

˙

pt0 ´
r 2

4π
q.

is should be compared with Lemma ... As in the proof of that Lemma, C and C4 are constants depending only
on the local geometry about px0, t0q.
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Noting that χBt
Rn´2k
r ptq

px0q ď χBtcn,k r px0q ď ϕp¨,tq ď χBt2cn,k r px0q for every t Pst0 ´ r 2
4π ,t0r, and

f p¨,tq ď
1

p4πps ´ tqq
n
2 ´k

ď
1

p4πpt0 ´ tqq
n
2 ´k

for t P I , as well as multiplying through by e ||l ||1 , we obtain

¨

˝

ż

Bt
Rn´2k
r ptq

px0q

eд ¨ f dvolд

˛

‚ptq `
1
2

ż t

t0´ r 2
4π

ż

Bt
Rn´2k
r ptq

px0q

f
`

|S|2 ` |J |2
˘

dvolдt dt

ď C0e
||l ||1

ż t

t0´ r 2
4π

ż

Bt2cn,k r px0q

eдt dvolдt dt `
e2||l ||1

rn´2k

¨

˝

ż

B¨
2cn,k r

px0q

eд dvolд

˛

‚pt0 ´
r 2

4π
q. (.)

To take care of the first term on the le-hand side, we set s “ Rn´2k
r ptq2 ` t and fix t P rt0 ´

r 2 exp
´

´ 1
2pn´2kq

¯

{4π ,t0r as in eorem ... As noted there, s ě t0 and, in this case,

f p¨,tq
ˇ

ˇ

Bt
Rn´2k
r ptq

px0q
ě

1

p4πRn´2k
r ptq2q

n
2 ´k

exp p´1{4q

so that, discarding the second term on the le-hand side of inequality (.),

1

p4πq
n
2 ´k expp1{4q

¨
1

Rn´2k
r ptq2

¨

˝

ż

B¨
Rn´2k
r p¨q

px0q

eдdvolд

˛

‚ptq

ď C0e
||l ||1

ż t

t0´ r 2
4π

ż

Bt2cn,k r px0q

eдt dvolдt dt `
e2||l ||1

rn´2k

¨

˝

ż

B¨
2cn,k r

px0q

eд dvolд

˛

‚pt0 ´
r 2

4π
q.

As for the second term, we set s “ t “ t0 and note that, by Example .., t P

ı

t0 ´ r 2
4π ,t0

”

and dt px ,x0q ă Rn´2k
r ptq imply that f ą 1

rn´2k (cf. introductory remarks in Example ..) so that,
aer discarding the first term, we obtain

1

2rn´2k

ż t0

t0´ r 2
4π

ż

Bt
Rn´2k
r ptq

px0q

|S|2 ` |J |2dvolдt dt

ď C0e
||l ||1

ż t

t0´ r 2
4π

ż

Bt2cn,k r px0q

eдt dvolдt dt `
e2||l ||1

rn´2k

¨

˝

ż

B¨
2cn,k r

px0q

eд dvolд

˛

‚pt0 ´
r 2

4π
q.

To more explicitly describeC0, we proceed as in Corollary .. and note that

|∇f | “
1

p4πps ´ tqq
n
2 ´k

exp

ˆ

dt px ,x0q
2

4pt ´ sq

˙

¨
dt px ,x0q

2ps ´ tq

ď
cn,kr

p4πq
n
2 ´k ps ´ tq

n
2 ´k`1

exp

˜

c2n,kr
2

4pt ´ sq

¸

looooomooooon

“:´u

“
1

rn´2k`1
¨

4

π
n
2 ´k pcn,k qn´2k`1

¨ u
n
2 ´k`1e´u

looooomooooon

bounded for uPR`

on D2cn,k r ,δ px0,t0qzDcn,k r ,δ px0,t0q. Similarly, using the same change of variables,
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f ď
constpn,kq

rn´2k

on this set. Finally, we make a choice of cutoff ϕ:

ϕpx ,tq :“ χp´
dt px ,x0q

2cn,kr
`

3
2

q.

It is clear that this function satisfies the desired properties and that

|Btϕpx ,tq| ď
1

2cn,kr
¨

ˇ

ˇ

ˇ

ˇ

χ 1p´
dt px ,x0q

2cn,kr
`

3
2

q

ˇ

ˇ

ˇ

ˇ

¨ |Btd
¨px ,x0q|

ď
||χ 1||8

2cn,kr
¨
µ

2
dt px ,x0q
looomooon

ď2cn,k r on supp ϕ

ď
µ

2
||χ 1||8,

whereas

|∇ϕpx ,tq| ď
1

2cn,kr
¨

ˇ

ˇ

ˇ

ˇ

χ 1p´
dt px ,x0q

2cn,kr
`

3
2

q

ˇ

ˇ

ˇ

ˇ

¨ |∇dt p¨,x0q|
loooomoooon

ď1

ď
||χ 1||8

2cn,kr
.

us, using the definition of C0 ((.) in the proof of Lemma ..) (cf. proof of Corollary ..),
we see that

C0 ď

¨

˚

˝
|a0 ´ 2kb0| ` constpn,kq ¨

µ
2 ||χ 1||8 `

||χ 1||8
2cn,k

`
||χ 1||28
c2n,k

rn´2k`2

˛

‹

‚
e ||l ||1 ,

where we have used the fact that r ă 1. Since r ă 1, the former term may be absorbed into the
laer by bounding |a0 ´ 2kb0| and |constpn,k , χq| from above by their maximum, implying the
result. □

Since we are within the injectivity radii of tдt utPst0´δ ,t0r, the only points at which this function might not be smooth
are tpx0, tq : t P st0 ´ δ , t0ru, but it is constant in a cylindrical neighbourhood of these points.
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Heat Balls

We introduce the sets over which the integrals appearing in our local monotonicity formulæ take form—
heat balls. Heat balls were first introduced by Watson [] as a generalization of Fulks’ ‘heat spheres’ []
and subsequently applied variously by Watson [] and Evans and Gariepy [] to the study of solutions to
the heat equation in Euclidean space and by Ecker [, ], Ecker, Knopf, Ni and Topping [] and Ni [] to
the study of nonlinear evolution equations in more general geometric seings. e presentation here mostly
parallels that of Ecker, Knopf, Ni and Topping [] with a few noticeable differences. In particular, we do not
necessarily assume that the “kernel” in question is defined everywhere on the manifold and we assume that
the time derivative of its logarithm is summable over its superlevel sets. e laer condition may be dropped
in certain applications, but it shall be of use to us in establishing monotonicity formulæ for Dirichlet-type
flows. Moreover, we derive integration formulæ analogous to those in [] in order to simplify computations
to be carried out in the following chapters.

5.1. The story so far. Before proceeding to the introduction of heat balls in our general seing,
let us first review what is known about heat balls in Euclidean space and those in curved seings.

Let f : Rn ˆ s´8,t0r Ñ R` be the usual Euclidean backward heat kernel concentrated at
px0,t0q P Rn ˆ R, i.e.

f px ,tq “
1

p4πpt0 ´ tqqn{2
exp

ˆ

|x ´ x0|
2

4pt ´ t0q

˙

,

and define for each r ą 0 the heat sphere of radius r by Sr px0,t0q “
␣

f “ 1
rn
(

and the heat ball of
radius r by Er px0,t0q “

␣

f ą 1
rn
(

. It was first shown by Fulks [] that ifu P C2pD,Rq is a solution
to Btu ´∆u “ 0 in the open domainD Ă Rn ˆR, then whenever px0,t0q P D and Er px0,t0q Ť D,

upx0,t0q “
1
rn

ż

Sr px0,t0q

upx ,tq ¨
|x ´ x0|

2

b

4|x ´ x0|2pt0 ´ tq2 ` p|x ´ x0|2 ´ 2npt0 ´ tqq
2
dSpx ,tq,

where dS denotes the usual surface measure in Rn`1. is idea was subsequently used by Watson
[] to establish the representation formula

upx0,t0q “
1
rn

ĳ

Er px0,t0q

upx ,tq ¨
|x ´ x0|

2

4pt0 ´ tq2
dxdt .

e idea is that, since f is bounded outside of any open neighbourhood px0,t0q, the tEr px0,t0qurPR`

an increasing one-parameter family of relatively compact sets whose closures contain px0,t0q and,
in a certain sense, tend to px0,t0q as r Œ 0. us, these representation formulæ are local and
provide a natural analogue of the usual mean-value formula for solutions to Laplace’s equation.
ey have subsequently been used by Watson [] and Evans and Gariepy [] to study solutions
to the heat equation. Moreover, in considering an appropriately modified version of the Euclidean
backward heat kernel f and different powers of r in the heat ball definition above, Ecker [, ]
showed that these ideas naturally lead to local monotonicity formulæ for solutions to nonlinear
parabolic systems such as the mean curvature flow, the harmonic map heat flow and reaction-
diffusion systems. For the laer two systems, the heat balls take the form

E
γ
r px0,t0q “ tpx ,tq P Rn ˆ s´8,t0r : p4πpt0 ´ tqq

γ
2 f px ,tq ą

1
rn´γ u

for appropriately chosen γ P s0,nr [].
e heat ball construction was first adapted to a non-Euclidean seing by Ecker [] where the

heat balls take the form
at is, Er1 px0, t0q Ă Er2 px0, t0q for r1 ă r2.


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M X En´m
r px0,t0q,

where n ´m ě 0 and

M “
ď

tPsa,br

Ft pN q ˆ ttu

is the space-time track of a one-parameter family tFt : Nm Ñ RnutPsa,br of embeddings evolving
by mean curvature flow (cf. §.). e construction was subsequently adapted in a different
manner by Ecker, Knopf, Ni and Topping [] to the evolving Riemannian manifold seing, where
the heat balls take the form

"

Φ ą
1
rn

*

Ă M ˆ sa,br ,

where pMn ,tдt utPsa,brq is an evolving Riemannian manifold and Φ : M ˆ sa,br Ñ R` is a suf-
ficiently smooth function satisfying properties which are typical of the Euclidean backward heat
kernel (cf. §.). Finally, the heat sphere construction has been adapted by Ni [] to the evolving
Riemannian manifold seing, where the heat spheres take the form

"

Ppx0,t0q ą
1
rn

*

Ă M ˆ sa,br ,

where pMn ,tдt utPsa,brq is an evolving Riemannian manifold and Ppx0,t0q is the canonical backward
heat kernel concentrated at px0,t0q P M ˆ sa,br (cf. Definition ..).

5.2. The definition. We proceed to define a notion of heat ball in an aempt to unify those of
Ecker [, ] and Ecker, Knopf, Ni and Topping [], in particular allowing for different powers
of r , whilst also accommodating for kernels which are not globally defined in spacetime.

Fix t0 P R, δ0 ą 0,m P N and let tpM ,дt qutPst0´δ0,t0r be an evolving manifold. Suppose we are
given Φ P C1pD,R`q, where D Ă Mˆst0 ´ δ0,t0r is open. Set

Emr pΦq “

"

Φ ą
1
rm

*

“ tlogprmΦq ą 0u Ă D

for r ą 0 and 0 ă m ď dimM and write φ “ logpΦq and φmr :“ logprmΦq.
We assume that there exists an r0 P s0,1r such that

(HB) Emr0 pΦq X pr´1
2 pst0 ´ δ0,τ rq Ť D for every τ Pst0 ´ δ0,t0r.

(HB) |∇φ|2,Btφ P L1pEmr0 pΦqq, and

(HB) lim
τÕt0

ż

pr1pEmr0 pΦqXpMˆtτ uqq

|φ| dvolдτ “ 0.

Definition ... With the above definition and assumptions, Emr pΦq is said to be an pm,Φq-heat
ball.

Remark ... Since r1 ă r2 ñ Emr1 pΦq Ă Emr2 pΦq, if r0 satisfies the above properties then so does
r Ps0,r0r.

Remark ... In view of (HB) and (HB), φ P L1pEmr0 pΦqq. To see this, note that, by Tonelli’s
theorem,

ĳ

Emr0 pΦq

|φ|dvolдt dt “

ĳ

Emr0 pΦqXpr´1
2 pst0´δ0,τ rq

|φ|dvolдt dt `

ż t0

τ

ż

pr1pEmr0 pΦqXpMˆttuqq

|φ| dvolдt dt .
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Since the former integral on the right-hand side is over a relatively compact subset ofD, i.e. a set
on which φ is bounded, it is clearly finite. On the other hand, provided τ is close enough to t0,

ż

pr1pEmr0 pΦqXpMˆttuqq

|φ| dvolдt ă 1

for t P sτ ,t0r, thus establishing that the laer integral on the right-hand side is also finite.

Remark ... Note that by Remark .. and (HB), if r ă r0 ă 1, then φ ą ´m log r ą 0 on
Emr pΦq and

0 “ lim
τÕt0

ż

pr1pEmr pΦqXpMˆtτ uqq

|φ|dvolдτ ě lim
τÕt0

p´m log rq

ż

pr1pEmr pΦqXpMˆtτ uqq

dvolдτ

“ p´m log rq lim
τÕt0

Volдτ ppr1pEmr pΦq X pM ˆ tτuqqq

so that

ż

pr1pEmr pΦqXpMˆtτ uqq

|φmr |dvolдτ

ď

ż

pr1pEmr pΦqXpMˆtτ uqq

|φ|dvolдτ `m| log r | ¨ Volдτ ppr1pEmr pΦq X pM ˆ tτuqqq
τÕt0
ÝÝÝÑ 0.

5.3. Examples. We now proceed to give examples of heat balls. In all of the following, let x0 P M ,
assume M is of locally bounded geometry about px0,t0q as in Definition .. and suppose j0 is as
in (.) of §..

e first example is an analogue of the Euclidean heat balls of Watson [] and Ecker [], the
idea being to mimic their constructions with the formal heat kernel.

Example .. (Formal Heat Balls). Suppose M is of locally bounded geometry about px0,t0q and
assume the notation in and directly following Definition ... We consider

Φ “ mΦfml :“
´

Dj0,δ px0,t0q Q px ,tq ÞÑ r4πpt0 ´ tqs
n´m

2

¯

¨ Φfml

“

ˆ

Dj0,δ px0,t0q Q px ,tq ÞÑ
1

4πpt0 ´ tqm{2
exp

ˆ

dt px0,xq2

4pt ´ t0q

˙˙

for fixedm ą 0.
Note that

φmr px ,tq ą 0 ô
dt px ,x0q

2

4pt ´ t0q
´

m log p4πpt0 ´ tqq

2
ą ´m log r

ô dt px ,x0q
2 ă 2mpt ´ t0q log

ˆ

4πpt0 ´ tq

r 2

˙

“: Rmr ptq2.

On the other hand, since t ´ t0 ă 0 in Dj0,δ px0,t0q, we see that

Rmr ptq2 ě 0 ô log

ˆ

4πpt0 ´ tq

r 2

˙

ă 0

ô t ą t0 ´
r 2

4π
,

whence it is clear that

Emr pΦq “

¨

˚

˝

ď

tPst0´ r 2
4π ,t0r

BtRmr ptq
px0q ˆ ttu

˛

‹

‚

č

Dj0,δ px0,t0q.
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Let

r0 “
1
2
min

#

j0 ¨

c

2πe
m
,

?
4πδ ,1

+

.

We claim that Emr pΦq is an pm,Φq-heat ball for r ă r0 and now proceed to verify the conditions
(HB)-(HB).

(HB) We note that

Rmr ď

c

m

2πe
r (.)

wherever Rmr is defined as is evident from a straightforward computation. us, we have
that Rmr0 ptq ă

j0
2 and, from the definition of r0, t0 ´

r 20
4π ą t0 ´ δ , whence

Emr pΦq “
ď

tPst0´ r 2
4π ,t0r

BtRmr ptq
px0q ˆ ttu (.)

and

Emr pΦq X pr´1
2 pst0 ´ δ ,τ rq “

ď

tPrt0´
r 20
4π ,τ s

BtRmr0 ptq
px0q ˆ ttu Ă Dj0,δ px0,t0q

for every τ Pst0 ´ δ ,t0r.

(HB) We use exponential coördinates about x0 with respect to дt for some fixed t . Note that since
sec ě κ in Dj0,δ px0,t0q, eorem B. and Proposition B. imply that

`

ϑ˚
x0dvolдt

˘

pxq ď Cκdvoleuclpxq, (.)

for x P Bj0p0q Ă Rn , where ϑx0 is as defined in Appendix B andCκ is some positive constant
depending only on κ and j0. Now, by Proposition ..,

|∇φ|2 ˝ ϑx0 “
|x |2

4pt0 ´ tq2

and

|Btφ| ˝ ϑx0 ď
n

2pt0 ´ tq
`

|x |2

4pt0 ´ tq2
`

µ|x |2

4pt0 ´ tq

hold and, by (.), Rmr0 ptq ă j0 for every t P st0 ´
r 20
4π ,t0r so that (.) implies that

ż

Bt
Rmr0 ptqpx0q

|∇φ|2dvolдt “

ż

BRmr0 ptqp0q

p|∇φ|2 ˝ ϑx0qϑ
˚
x0dvolдt

ď Cκ

ż

BRmr0 ptqp0q

|x |2

4pt0 ´ tq2
dx

and

ż

Bt
Rmr0 ptqpx0q

|Btφ|dvolдt “

ż

BRmr0 ptqp0q

p|Btφ| ˝ ϑx0qϑ
˚
x0dvolдt
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ď Cκ

#

ż

BRmr0 ptqp0q

n

2pt0 ´ tq
`

|x |2

4pt0 ´ tq2
`

µ|x |2

4pt0 ´ tq
dx

+

.

It therefore suffices to show that
ż t0

t0´
r 20
4π

ż

BRmr0 ptqp0q

|x |2

pt0 ´ tq2
dxdt ă 8

and
ż t0

t0´
r 20
4π

ż

BRmr0 ptqp0q

1
t0 ´ t

dxdt ă 8.

e former integral is equal to

nωn

ż t0

t0´
r 20
4π

1
pt0 ´ tq2

ż Rmr0 ptq

0
un`1dudt

“
nωnp2mq1`n{2

n ` 2

ż t0

t0´
r 20
4π

d

pt ´ t0qn´2 log

ˆ

4πpt0 ´ tq

r 20

˙n`2

dt (.)

“

ˆ

r 20
4π

˙n{2

¨
nωnp2mq1`n{2

n ` 2

ż 8

0
s1`n{2 exp

´

´
n

2
s
¯

ds,

which is finite, where in the last line the change of variables 4π pt0´tq

r 20
“: expp´sq was made.

e laer integral may be evaluated likewise:

ωn

ż t0

t0´
r 20
4π

Rmr0 ptqn

t0 ´ t
dt

“ ωnp2mqn{2
ż t0

t0´
r 20
4π

d

pt ´ t0qn´2 log

ˆ

4πpt0 ´ tq

r 20

˙n

dt (.)

“ ωn

ˆ

mr 20
2π

˙n{2 ż 8

0
sn{2 exp

´

´
n

2
s
¯

ds

and this integral is clearly finite.

(HB) By the volume comparison argument used in the verification of (HB) and the fact that
pr1

`

Emr0 pΦq X pr´1
2 ptτuq

˘

“ BRmr0 pτ qppq, it suffices to show that

lim
τÕt0

ż

BRmr0 pτ qp0q

`

|φ| ˝ ϑ τx0
˘

pxqdx “ 0. (.)

Now, for t0 ´ 1
4π ă τ ă t0, the integrand is equal to

ˇ

ˇ

ˇ

ˇ

|x |2

4pτ ´ t0q
´

m

2
log p4πpt0 ´ τ qq

ˇ

ˇ

ˇ

ˇ

ď
|x |2

4pt0 ´ τ q
`

m

2
p´ log p4πpt0 ´ τ qqq ,

where the laer term is nonnegative. On the one hand,

ż

BRmr0 pτ qp0q

|x |2

4pt0 ´ τ q
dx

“
nωn

4pn ` 2qpt0 ´ τ q
Rmr0 pτ qn`2
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“
nωn

4pn ` 2q

d

p2mqn`2pτ ´ t0qn log

ˆ

4πpt0 ´ τ q

r 20

˙n`2

.

On the other,

ż

BRmr0 ptqp0q

m

2
p´ logp4πpt0 ´ τ qqq dx

“ ´
mωn

2
logp4πpt0 ´ τ qqRmr0 pτ qn

“
mωn

2

d

p2mqnpτ ´ t0qn log

ˆ

4πpt0 ´ τ q

r 20

˙n`2

´
mωn

2
log

`

r 20
˘

Rmr0 pτ qn .

(.) now follows from the fact that Rmr0 pτ q
τÕt0
ÝÝÝÑ 0 and

lim
τÕt0

pτ ´ t0q
n log

ˆ

4πpt0 ´ τ q

r 20

˙n`2

“

ˆ

r 20
4π

˙n

lim
sÑ8

sn`2 expp´nsq “ 0. □

Remark ... If pM ,дt q ” pRn ,δq, the preceding example reduces to the heat balls of Watson []
form “ n and to those of Ecker [] form “ n ´ γ with γ P s0,nr fixed.

Following [], we turn our aention to heat balls constructed from the canonical backward
heat kernel onM . However, for later purposes, we shall need appropriate bounds on both Btφ and
Ht0φ in heat balls which we only have for the case whereM is compact and h ” 0. For this reason,
we now consider heat balls on static compact manifolds. Strictly speaking, these do not generalize
the Euclidean heat balls of Watson and Ecker, but they provide an adaptation different from that
of Example .. in this seing.

Example .. (Weighted Heat Balls on Static Compact Manifolds). We suppose that pM ,дq is
compact and static and let Ppx0,t0q denote the canonical backward heat kernel on M centred at
px0,t0q P M ˆ R. By eorem .., there exists a neighbourhood Ω Ă M of x0 P M and
τ0 P st0 ´ 1,t0r such that

1
2
Φfml ´ 1 ď Ppx0,t0q ď 2Φfml ` 1 (.)

on Ω ˆ rτ0,t0r. Hence, we set D “ Ω ˆ rτ0,t0r and define the map

mPpx0,t0q : D Ñ R`

px ,tq ÞÑ p4πpt0 ´ tqq
n´m

2 Ppx0,t0qpx ,tq.

We claim that Emr pmPpx0,t0qq is a heat ball for

r ă r0 :“
1
2
min

!

9´1{m ,
`

1 ` 2ϱ´m˘´1{m
)

,

where ϱ “ min
!

a

4πpt0 ´ τ0q,
b

2π e
m supty P R` : Bypx0q Ť Ωu, r0 of Example 5.3.1

)

.

To simplify notation, we write P for mPpx0,t0q and ρ for log P. Now, (.) by pt0 ´ tq
n´m

2 and
noting that t0 ´ t ă 1 for t P rτ0,t0r, it is clear that

1
2
Φ ´ 1 ď P ď 2Φ ` 1, (.)

on D, where Φ is as in Example ...
ismay be seen by first applyingeorem .. with ε “ 1, then restricting our aention to a smaller neighbourhood

of x0 on which the coefficient of Φfml lies between
1
2 and 2.
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(HB) (.) immediately implies that

Emr0 pPq “ pP ą
1

pr0qm
q Ă D X p2Φ ` 1 ą

1
pr0qm

q

“ D X Em
rr0

pΦq,

where rr0 “

ˆ

2
1

pr0qm ´1

˙1{m

and, by (.),

Em
rr0

pΦq “
ď

tP st0´
rr 20
4π ,t0r

BtRm
rr0

ptq
px0q ˆ ttu Ă Bϱ0px0qˆ st0 ´

rr 20
4π
,t0r,

where ϱ0 “
a m

2π err0 (cf. Example ..). In view of the choice of r0 above, it is easily verified
that Bϱ0px0q Ť Ω and st0 ´

rr 20
4π ,t0rĂ sτ0,t0r, whence

Emr0 pPq Ă Em
rr0

pΦq (.)

and

Em
rr0

pPq X pr´1
2 psτ0,τ rq Ă Bϱ0px0q ˆ rt0 ´

rr 20
4π
,τ s

Ă Ω ˆ sτ0,t0r “ D .

(HB) By eorem ..,

|∇ρpx ,tq|2 ď
C

t0 ´ t

´

logB ´ log
´

p4πpt0 ´ tqqm{2 ¨ Ppx ,tq
¯¯

ď
C

t0 ´ t

´

logB ´
m

2
logp4πpt0 ´ tqq `m log r0

¯

ď
C

t0 ´ t

´

logB ´
m

2
logp4πpt0 ´ tqq

¯

on Emr0 pPq, where we have used the fact that log Ppx ,tq ě m log r0 on Emr0 pPq. Likewise, we
also have that

Bt ρ ě ´
F

t0 ´ t

ˆ

1 ` log

ˆ

B

p4πpt0 ´ tqqm{2 ¨ P

˙˙

`
m ´ n

2pt0 ´ tq

ě ´
F

t0 ´ t

´

1 ` logB ´
m

2
logp4πpt0 ´ tqq

¯

`
m ´ n

2pt0 ´ tq

on Emr0 pPq. Finally, again by eorem .., the upper bound

Btρ ď
n
`

e2Kpt0´tq ´ 1
˘

`m

2pt0 ´ tq
´ e´2Kpt0´tq|∇ρ|2,

holds, where K ą 0 is such that Ric ě ´Kд. us, it suffices to show that px ,tq ÞÑ 1
t0´t and

px ,tq ÞÑ
logp4π pt0´tqq

t0´t are in L1
`

Emr0 pPq
˘

. In light of the inclusion (.), these functions are
summable over Emr0 pPq if they are summable over Em

rr0
pΦq.

Now, the former function was already shown to be summable in Example ... As for the
laer, in light of the volume comparison argument used in Example .. (HB), we may
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bound the laer integral inmodulus from above by a constant depending on a lower sectional
curvature bound times

ż t0

t0´
rr 20
4π

ż

BRm
rr0

ptq

| log p4πpt0 ´ tqq |

t0 ´ t
dxdt

ď ωnp2mqn{2
ż t0

t0´
rr 20
4π

d

pt ´ t0qn´2

„

log

ˆ

4πpt0 ´ tq

rr 20

˙ȷn`2

dt

` 2| logrr0|
ż t0

t0´
rr 20
4π

ż

BRm
rr0

ptq

1
t0 ´ t

dxdt

“ ωn

ˆ

2mrr 20
4π

˙n{2 ż 8

0

´

s1`n{2 ` 2 logrr0 ¨ sn{2
¯

exp
´

´
n

2
s
¯

ds ă 8,

where a change of variables identical to that in Example .. was carried out.

(HB) Since r0 ă 9´1{m and hence rr0 ă 4´1{m , it is clear that Φ ą 4 on Em
rr0

pΦq, whence

1 ď P ď
5
4
Φ ñ 0 ď ρ ď log

5
4

` logΦ

on Emr0 pPq. us, to establish (HB) it suffices to show that

lim
τÕt0

ż

pr1pEm
rr0

pΦqXpMˆtτ uqq

| logΦ| dvolдτ “ 0,

but this was established in Example .. (HB). □

We now turn our aention to heat balls obtained by pulling back those of Examples .. and
.. by mean curvature flow (cf. §. for notation and setup) in the appropriate sense. Such
heat balls were first considered in the case pM ,дq “ pRn ,δq by Ecker [] in a slightly different
light. e following example is— in the class of maps considered— a generalization of the heat balls
introduced there.

Example .. (Formal Heat Balls Pulled Back byMCF). Suppose F : Nmˆst0´δ1,t0rÑ Mn evolves
by mean curvature flow such that the map pF ,pr2q : N ˆ st0 ´ δ1,t0r Ñ M ˆ st0 ´ δ1,t0r is proper
and fix R0 as in eorem ... Consider Φ :“ mΦ ˝ pF ,pr2q : pF ,pr2q

´1 `Dj0,δ px0,t0q
˘

Ñ R`

with mΦ as in Example ... We claim that Emr
´

Φfml
¯

“ pF ,pr2q´1 pEmr pΦfmlqq is a heat ball for

r ă r0 :“ mintj0 ¨

b

2π e
m ,

a

4π mintδ1,δu, 1
2α R0,1u. We verify the conditions.

(HB) By Example .. (HB),

Emr0 pΦq X pr´1
2 pst0 ´ δ ,τ rq Ă Dj0,δ px0,t0q ,

which, when pulled back by pF ,pr2q, implies that

Emr0 pΦq X pr´1
2 pst0 ´ δ ,τ rq Ă pF ,pr2q

´1
´

Emr0 pΦq X pr´1
2 pst0 ´ δ ,τ rq

¯

Ă pF ,pr2q
´1 `Dj0,δ px0,t0q

˘

.

On the other hand, pF ,pr2q´1
`

Dj0,δ px0,t0q
˘

is relatively compact, whence (HB) follows.

(HB) It is clear that

Emr0 pΦq “ pF ,pr2q´1
`

Emr0 pΦq
˘
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“ pF ,pr2q´1

¨

˚

˚

˚

˝

ď

tP

ȷ

t0´
r 20
4π ,t0

„

BtRmr0 ptq
px0q ˆ ttu

˛

‹

‹

‹

‚

(.)

“
ď

tP

ȷ

t0´
r 20
4π ,t0

„

BtRmr0 ptq
px0q ˆ ttu.

Now, we note that, by the chain rule, the Cauchy-Schwarz inequality and Young’s inequality,
the inequality

|Btφ| “ |Btφ `
⟨
H ,∇φ

⟩
| ď |Btφ| `

1
2

´

| rH |2 ` |∇φ|
2
¯

holds. Moreover, since

Ą∇дφ“ ∇Tφ ` ∇Kφ,

where ∇Tφpx ,tq “ ppx ,tq,dxFt
´

∇It pφqpx ,tq
¯

q, it is clear that

|∇Ipφq| “

b

| Ą∇дφ |
2

´ |∇Kφ|2 ď | Ą∇дφ | “ |∇дφ|.

Hence, in view of these two inequalities, (.) and the gradient and time-derivative bounds
in Proposition .. (cf. Example .. (HB)), it suffices to show that

ż t0

t0´
r 20
4π

ż

Bt
Rmr0 ptqpx0q

r2

pt0 ´ tq2
dvolIt dt ă 8 (.)

with rpx ,tq :“ dt px0,xq and

ż t0

t0´
r 20
4π

ż

Bt
Rmr0 ptqpx0q

1
t0 ´ t

dvolIt dt ă 8 (.)

since, by eorem ..,

ż t0

t0´
R20
4γ

ż

Bt?
m
2π e r0

px0qpx0q

| rH |2dvolIt dt ď 16 exp

ˆ

mλ8R2
0

8γ

˙

˜

ż

B¨
R0

px0q

dvolI¨

¸

pt0 ´
R2
0

4γ
q ă 8,

which establishes that | rH |2 P L1
`

Emr0 pΦq
˘

, since

Emr0 pΦq X pr´1
2 pst0 ´

R2
0

4γ
,t0rq Ă

ď

tP st0´
R20
4γ ,t0r

Bt? m
2π e r0

px0q ˆ ttu

and | rH |2 P L1
´

Emr0 pΦq X pr´1
2 pst0 ´

r 20
4π ,t0 ´

R2
0

4γ sq

¯

, since Emr0 pΦq X pr´1
2 pst0 ´

r 20
4π ,t0 ´

R2
0

4γ sq

is relatively compact in the domain of F by (HB).
Now, in light of eorem .. and the fact that r ă Rmr0 ptq on BtRmr0 ptq

px0q ˆ ttu, the estimate

We note here that
b

m
2π e r0 ď

b

m
2π e ¨

1
2 ¨

b

π
2γ R0 ă

1
2R0, since γ ě 2m.



 Chapter . Heat Balls

ż

Bt
Rmr0 ptqpx0q

r2

pt0 ´ tq2
dvolIt ď

Rmr0 ptq2

pt0 ´ tq2

ż

Bt
Rmr0 ptqpx0q

dvolIt

ď γ1
Rmr0 ptqm`2

pt0 ´ tq2
,

holds for t P sτ ,t0r for τ “ t0 ´
expp´ 1

2m q

4π r 20 , where

γ1 “

´

ρ0 `
ρ1
Rm

¯

˜

ż

B¨
R0

px0q

dvolI¨

¸

pt0 ´
R2
0

4γ
q

with ρ0 and ρ1 as in eorem ... Likewise, we have the estimate

ż

Bt
Rmr0 ptqpx0q

1
t0 ´ t

dvolIt ď γ1
Rmr0 ptqm

t0 ´ t

for t P sτ ,t0r so that the statements (.) and (.) are true if

ż t0

τ

Rmr0 ptqm`2

pt0 ´ tq2
dt ă 8

and

ż t0

τ

Rmr0 ptqm

t0 ´ t
dt ă 8,

are finite, since finiteness of these two integrals establishes that |∇Iφ|2 and Btφ are in

L1
`

Emr0 pΦq X pr´1
2 psτ ,t0rq

˘

,

and, by (HB), the relative compactness of Emr0 pΦq X pr´1
2

´ı

t0 ´
r 20
4π ,τ

”¯

q in the domain of F
implies summability on the rest of Emr0 pΦq since ∇Iφ and Btφ are smooth.
Now, the former integral is equal to

p2mqm{2`1
ż t0

τ

d

pt ´ t0qm´2

„

log

ˆ

4πpt0 ´ tq

r 20

˙ȷm`2

dt

which, in light of the finiteness of the integral (.) of Example .., is finite. Likewise, the
laer integral is equal to

p2mqm
ż t0

τ

d

pt ´ t0qm´2

„

log

ˆ

4πpt0 ´ tq

r 20

˙ȷm

dt

which is also finite in light of the finiteness of the integral (.) of Example ...

(HB) In light of (.), pr1
`

Emr0 pΦq X pM ˆ tτuq
˘

“ BτRmr0 pτ q
px0q. On the other hand,

|φp¨,τ q| “

ˇ

ˇ

ˇ

ˇ

r 2

4pτ ´ t0q
´

m

2
log p4πpt0 ´ τ q

ˇ

ˇ

ˇ

ˇ

ď
Rmr0 pτ q2

4pt0 ´ τ q
`

m

2
p´ logp4πpt0 ´ τ qqq
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on BτRmr0 pτ q
px0q. erefore, making use of eorem .. again as in (HB), we see that it

suffices to show that

lim
τÕt0

Rmr0 pτ qm`2

t0 ´ τ
“ 0

and

lim
τÕt0

Rmr0 pτ q log p4πpt0 ´ τ qq “ 0

or, more explicitly,

lim
τÕt0

d

pτ ´ t0qm
„

log

ˆ

4πpt0 ´ τ q

r 20

˙ȷm`2

“ 0

and

lim
τÕt0

b

pτ ´ t0qm rlogp4πpt0 ´ τ qqs
m`2

´ pτ ´ t0qm logpr 20q “ 0.

We know, however, by making the same change of variables as in Example .. (HB) that
both of these statements hold true, i.e. by noting that

lim
τÕt0

pτ ´ t0q
m
„

log

ˆ

4πpt0 ´ τ q

r 20

˙ȷm`2

“

ˆ

r 20
4π

˙m

lim
sÑ8

sm`2 expp´msq “ 0. □

Whilst not quite being a generalization of the heat balls introducted by Ecker [], the following
example provides an adaptation of his construction to the case where F evolves byMCF into a static
compact manifold.

Example .. (Heat Balls on Static Compact Manifolds Pulled Back by MCF). We suppose that
pM ,дq is compact and static and that F is as in Example ... We take P : D Ñ R` to be the
canonical backward heat kernel on M centred at px0,t0q P M ˆ st0 ´ δ1,t0r as in Example ..,
taking τ0 ą t0 ´ δ if necessary and claim that Emr pPq is a heat ball for

r ă r0 :“ min
!

9´1{m ,
`

1 ` 2ϱ´m˘´1{m
,
)

,

where ϱ “ min
!

a

4πpt0 ´ τ0q
b

2π e
m supty P R` : Bypx0q Ť Ωu, r0 of Example 5.3.4

)

.
We note the bound from Example .. pulled back to N ˆ sτ0,t0r:

1
2
Φ ´ 1 ď P ď 2Φ ` 1,

on pF ,pr2q´1 pDq, where Φ is as in Example ...

(HB) e above bound immediately implies that

Emr0 pPq “ pP ą
1

pr0qm
q Ă pF ,pr2q´1pDq X pξ0Φ ` 1 ą

1
pr0qm

q

“ pF ,pr2q´1pDq X Em
rr0

pΦq,
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where rr0 “

ˆ

2
1

pr0qm ´1

˙1{m

. By Example ..,

Em
rr0

pΦq “
ď

tP st0´
rr 20
4π ,t0r

BtRm
rr0

ptq
px0q ˆ ttu Ă

ď

tP st0´
rr 20
4π ,t0r

Btϱ0px0q ˆ ttu

“ pF ,pr2q´1

ˆ

Bϱ0px0qˆ st0 ´
rr 20
4π
,t0r

˙

,

where ϱ0 “
a m

2π err0 (cf. Example ..). In view of the choice of r0 above, it is easily seen
that Bϱpx0q Ť Ω. us, we see that

Em
rr0

pPq X pr´1
2 psτ0,τ rq Ă pF ,pr2q´1

ˆ

Bϱ0px0q ˆ rt0 ´
rr 20
4π
,τ0s

˙

Ă pF ,pr2q´1 pΩ ˆ sτ0,t0rq “ pF ,pr2q´1pDq.

(HB) As in Example .. (HB), we note that

|∇Iρ| ď |∇дρ| and

|Bt ρ| ď |Btρ| `
1
2

´

| rH |2 ` |∇дρ|
2
¯

with ρ “ log P. Firstly, since Emr0 pPq Ă Em
rr0

pΦq and r0 was chosen such that rr0 does not
exceed the r0 of Example .., it is clear that | rH |2 is L1

`

Emr0 pPq
˘

. Secondly, since Emr0 pPq “

pF ,pr2q´1
`

Emr0 pmPpx0,t0qq
˘

with mPpx0,t0q as in Example .., it follows from Example ..
(HB) that the bounds

|∇ρ|
2

ď
C

t0 ´ t

´

logB ´
m

2
logp4πpt0 ´ tqq

¯

,

Bt ρ ě ´
F

t0 ´ t

´

1 ` logB ´
m

2
logp4πpt0 ´ tqq

¯

`
m ´ n

2pt0 ´ tq

and

Btρ ď e2Kpt0´tq
n
`

e2Kpt0´tq ´ 1
˘

`m

2pt0 ´ tq
´ e´2Kpt0´tq|∇ρ|

2

hold on Emr0 pPq, where we retain the notation of Example .. (HB). It therefore suf-
fices to show that px ,tq ÞÑ 1

t0´t and px ,tq ÞÑ
logp4π pt0´tqq

t0´t are in L1
´

Em
rr0

pΦq

¯

and thus
in L1

`

Emr0 pPq
˘

. An inspection of the computation in Example .. (HB) establishes that
´

px ,tq ÞÑ 1
t0´t

¯

P L1
´

Em
rr0

pΦq

¯

, whereas it suffices to show that
´

px ,tq ÞÑ
logp4π pt0´tqq

t0´t

¯

P

L1
´

Em
rr0

pΦq X pr´1
2 psτ ,t0rq

¯

forτ “ t0´expp´ 1
2m q

rR2
0

4γ as in Example .. (HB) sinceE
m
rr0

pΦqX

pr´1
2 pst0 ´ δ ,τ0rq is relatively compact and px ,tq ÞÑ

logp4π pt0´tqq

t0´t is bounded on this set. us,
the integral we are le to establish the finiteness of may, by eorem .., be estimated
thus:

ż t0

τ

ż

BRm
rr0

ptqpx0q

logp4πpt0 ´ tqq

t0 ´ t
dxdt

ď γ1

˜

p2mqm{2
ż t0

τ

d

pt ´ t0qm´2

„

log

ˆ

4πpt0 ´ tq

rr 20

˙ȷm`2

` 2 logrr0
Rm
rr0

ptqm

t0 ´ t
dt

¸
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“ γ1

ˆ

2mrr 20
4π

˙m{2 ż 8

a

´

s1`m{2 ` 2 logrr0 ¨ sm{2
¯

exp
´

´
m

2
s
¯

ds ă 8.

Here γ1 is as in Example .. (HB) and a “ ´ log
´

4π pt0´τ q

rr 20

¯

.

(HB) Since r0 ă 9´1{m and hence rr0 ă 4´1{m , we have that Φ ą 4 on Em
rr0

pΦq so that

1 ď P ď
5
4
Φ ñ 0 ď ρ ď log

5
4

` logΦ

on Emr0 pPq. Hence, to establish (HB) it suffices to show that

lim
τÕt0

ż

pr1pEm
rr0

pΦqXpNˆtτ uqq

| logΦ|dvolдτ “ 0,

but this was shown to hold in Example ... □

Remark ... Note that the approach taken in Examples .. and .. is different from that taken
by Ecker [] in that heat balls were considered as subsets of the parameter space N ˆ st0 ´ δ1,t0r
as opposed to being subsets of M ˆ st0 ´ δ1,t0r. In our seing, both approaches are equivalent.
However, Ecker’s approach more readily generalizes to the varifold seing of Brakke [].

For later purposes (cf. eorems .. and ..), we shall need to know that if Emr pΦq is a heat
ball for sufficiently small r , then so is Emr pΦ ¨ ηq provided η is a sufficiently regular function. is
motivates the following example.

Example .. (Modified Heat Balls). Let Emr pΦq be any pm,Φq-heat ball and let η P L8pEmr0 pΦqq X

C1pEmr0 pΦqq such that |∇η|2 and Btη P L1pEmr0 pΦqq. Set rΦ :“ eη ¨ Φ|Emr0 pΦq. If we write

η´8 ď η ď η8

for η˘8 P R˘, then

eη´8Φ ď rΦ ď eη8Φ,

whence

`

Φ ą mintr ,r0u
´m˘ Ă

´

rΦ ą pre´η´8{mq´m
¯

and
´

rΦ ą r´m
¯

Ă

´

Φ ą pmintr0,re
η8{muq´m

¯

,

so that

Emmintr0,r exppη´8{mqu
pΦq Ă Emr prΦq Ă Emmintr0,r exppη8{mqu

pΦq, (.)

which in turn implies that L1pEmr exppη8{mq
pΦqq ãÑ L1pEmr prΦqq.

Set rr0 :“ r0 expp´η8{mq so that r̃0 Ps0,r0rĂs0,1r. We now verify (HB)-(HB).

(HB) (.) immediately implies that

Em
rr0

prΦq X pr´1
2 pst0 ´ δ ,τ rq Ă Emr0 pΦq X pr´1

2 pst0 ´ δ ,τ rq Ť D

for every τ Pst0 ´ δ ,t0r.
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(HB) If rφ :“ log rΦ, then rφ “ φ ` η, whence, in view of (.) and the following remark, the
assumptions on φ and η imply that Bt rφ “ Btφ ` Btη P L1pEm

rr0
prΦqq and, since |∇pφ ` ηq|2 ď

2 p|∇φ|2 ` |∇η|2q, we also have that |∇prφq|2 P L1pEm
rr0

prΦqq.

(HB) By (.), it suffices to show that

lim
τÕt0

ż

pr1pEmr0 pΦqXpr´1
2 ptτ uqq

|rφ|dvolдτ “ 0,

but |rφ| ď |φ| ` |η| ď |φ| ` maxtη8,´η´8u
loooooooomoooooooon

“:G

, whence by Remark ..,

lim
τÕt0

ż

pr1pEmr0 pΦqXpr´1
2 ptτ uqq

|rφ|dvolдτ

ď lim
τÕt0

ż

pr1pEmr0 pΦqXpr´1
2 ptτ uqq

|φ|dvolдτ `G lim
τÕt0

Volдτ
`

pr1
`

Emr0 pΦq X pM ˆ tτuq
˘˘

“ 0.

We thus call the Emr prΦq η-modified pm,Φq-heat balls, or simply modified heat balls. □

5.4. Integration formulæ. We now derive integration formulæ for integrals over heat balls
in the spirit of [] and []. ese shall be used repeatedly in the sequel. To this end, we shall
consider the “approximate integrals”

J rq pf q :“
ĳ

f ¨ pχq ˝ φmr q ¨ pχst0´δ0,t0´q´1r ˝ pr2qdvolдt dt ,

where χq is as in Example A., and analyze them, as well as their derivatives with respect to r , in
the limit q Ñ 8. e idea here is that these approximate the heat ball integrals

I r pf q :“
ĳ

Emr pΦq

f dvolдt dt

which would, with the right conditions on Φ, yield an integral over BEmr pΦq upon differentiation
with respect to r (cf. []). However, without additional information about Φ, we wouldn’t be able
to utilize this technique, which is why we follow the approach of [].

To streamline the proofs of the integration formulæ to follow, we summarize the relevant prop-
erties of these approximate integrals in the

Lemma ... Let f P L1
`

Emr0 pΦq
˘

and suppose J rq and I r are as above. en

. Whenever 0 ă r ď r0, we have |J rq pf q| ď I r0p|f |q and r ÞÑ J rq pf q is smooth.

. For every r Ps0,r0s, J rq pf q
qÑ8
ÝÝÝÑ I r pf q.

. Whenever 0 ă r1 ă r2 ă r0 and
şr2
r1

d
dr J

¨
qpf q

qÑ8
ÝÝÝÑ

şr2
r1
J with J P L1psr1,r2rq, the identity

I r2pf q ´ I r1pf q “

ż r2

r1
J .

In particular, d
dr J

¨
qpf q “ J almost everywhere on s0,r0r.

Proof. . By the first inequality in Example A., it is clear that

|pχq ˝ φmr qpχst0´δ ,t0´q´1r ˝ pr2q| ď χEmr pΦq ď χEmr0 pΦq, (.)





which establishes the inequality.

As for smoothness, we note that | d
dr pχq ˝ φmr q| “ m

r |χ 1
q ˝ φmr | ď

const(m,q)
r χq ˝ φmr , which

is summable over rr1,r2s as a function of r , thus allowing us to differentiate once under the
integral sign by standard theorems from integration theory. Smoothness then follows by
taking successive derivatives iterating the same argument.

. e inequality (.) immediately implies that

ˇ

ˇf ¨ pχq ˝ φmr q ¨ pχst0´δ0,t0´q´1r ˝ pr2q
ˇ

ˇ ď |f |χEmr0 pΦq

and the convergence properties of χq (see Example A.) that

lim
qÑ8

f ¨ pχq ˝ φmr q ¨ pχst0´δ0,t0´q´1r ˝ pr2q “ f χEmr pΦq.

By the dominated convergence theorem, the integral and limit may be interchanged, thus
implying the claim.

. We note that, on the one hand,

J r2q pf q ´ J r1q pf q “

ż r2

r1

d
dr J

¨
qpf q.

On the other, the le-hand side tends to I r2pf q ´ I r1pf q by the preceding part and the right-
hand side tends to

şr2
r1
J by assumption. By the Lebesgue differentiation theorem,

lim
r1Õr

1
r ´ r1

ż r

r1
J “ lim

r2Œr

1
r2 ´ r

ż r2

r
J “ Jprq

for almost every r P s0,r0r. e equality above then implies the laer claim.
□

eorem .. (Heat ball Gauß). If X P C1pEmr0 ,TMq is a time-dependent section of TM such that
div X P L1pEmr0 pΦqq and X P L2pEmr0 pΦqq, then

d
dr

ĳ

Emr pΦq

⟨
X ,∇φ⟩ dvolдt dt “ ´

m

r

ĳ

Emr pΦq

div Xdvolдt dt

holds a.e. on s0,r0r.

Proof. Note that

d
dr

ˇ

ˇ

ˇ

ˇ

r
J ¨
qp
⟨
X ,∇φ⟩q “

m

r

ĳ ⟨
X ,∇φ⟩ ¨ pχ 1

q ˝ φmr q
loooooooooomoooooooooon

“⟨X ,∇pχq˝φmr q⟩

¨pχst0´δ ,t0´q´1r ˝ pr2qdvolдt dt

“ ´
m

r

ĳ

pdiv X q ¨ pχq ˝ φmr q ¨ pχst0´δ ,t0´q´1r ˝ pr2qdvolдt dt

“ ´
m

r
J rq pdiv X q,

where the second line follows from the fact that

divpX ¨ pχq ˝ φmr qq “
⟨
X ,∇pχq ˝ φmr q

⟩
` pdiv X q ¨ pχq ˝ φmr q

and an application of Gauß’ theorem. Now, since div X and ⟨X ,∇φ⟩ P L1pEr0pΦqq, Lemma ..
implies that
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d
dr

ˇ

ˇ

ˇ

ˇ

r
J ¨
qp
⟨
X ,∇φ⟩q “ ´

m

r
J rq pdiv X q

qÑ8
ÝÝÝÑ ´

m

r
I r pdiv X q

whence it follows from the fact that

|
´m

r
J rq pdiv X q| ď

m

r1
I r0p|div X |q P L1psr1,r2rq,

for 0 ă r1 ă r2 ă r0 that

ż r2

r1

d
dr

ˇ

ˇ

ˇ

ˇ

r
J ¨
qpdiv X qdr qÑ8

ÝÝÝÑ

ż r2

r1

´

´
m

r
I r pdiv X q

¯

dr .

An application of Lemma .. then yields the result. □

eorem ... If f P C1pEmr0 pΦqq X L8pEmr0 pΦqq and Bt f P L1pEmr0 pΦqq, then

d
dr

ĳ

Emr pΦq

f ¨ Btφ dvolдt dt “ ´
m

r

ĳ

Emr pΦq

Bt f `
1
2
f trдh dvolдt dt

holds a.e. on s0,r0r.

Proof. We compute again:

d
dr

ˇ

ˇ

ˇ

ˇ

r
J ¨
qpf ¨ Btφq “

m

r

ĳ

f ¨ Btφ ¨ pχ 1
q ˝ φmr q

looooooomooooooon

Bt pχq˝φmr q

¨pχst0´δ0,t0´q´1rqdvolдt dt

“
m

r

˜

„
ż

pf ¨ pχq ˝ φmr qqp¨,tqdvolдt
ȷt“t0´q´1

t“t0´δ0

´

ĳ

pBt f `
1
2
trдh ¨ f q ¨ pχq ˝ φmr q ¨ pχst0´δ0,t0´q´1r ˝ pr2qdvolдt dt

˙

“
m

r

ˆ
ż

pf ¨ pχq ˝ φmr qqp¨,t0 ´ q´1qdvolдt0´q´1 ´ J rq pBt f `
1
2
trдh ¨ f q

˙

where in the second line we have integrated by parts with respect to t and in the third we made
use of the fact that

|χq ˝ φmr |p¨,t0 ´ δ0q ď χEmr pΦqp¨,t0 ´ δ0q “ 0.

e last equality follows from (HB), viz. the fact that Emr pΦq X pr´1
2 pst0 ´ δ0,τ rq Ť D Ă M ˆ

st0 ´ δ0,t0r for r ď r0. Now, on the one hand,

|f ¨ pχq ˝ φmr qp¨,t0 ´ q´1q| ď ||f ||8 ¨ χEmr pΦqXpr´1
2 pt0´q´1q

,

whence

ˇ

ˇ

ˇ

ˇ

ż

pf ¨ pχq ˝ φmr qqp¨,t0 ´ q´1qdvolдt0´q´1

ˇ

ˇ

ˇ

ˇ

ď ||f ||8 ¨ µpEmr pΦq X pr´1
2 pt0 ´ q´1qq

qÑ8
ÝÝÝÑ 0.

On the other hand, Bt f ` 1
2 trдh ¨ f P L1pEmr pΦqq by the assumptions on f in the theorem and since

h is smooth. Finally,

|J rq pBt f `
1
2
trдh ¨ f q| ď I r0p|Bt f | `

1
2

||trдh||8||f ||8||q.





us, utilizing these bounds in the same manner as in the eorem .., it follows from an appli-
cation of Lemma .. that

ż r2

r1

d
dr

ˇ

ˇ

ˇ

ˇ

r
J ¨
qpf ¨ Btφqdr “

ż r2

r1

ˆ

´
m

r
Ir pBt f `

1
2
trдh ¨ f q

˙

dr

whenever 0 ă r1 ă r2 ă r0. □

eorem ... If f , f φmr P L1pEmr0 pΦqq, then

d
dr

ĳ

Emr pΦq

f φmr dvolдt dt “
m

r

ĳ

Emr pΦq

f dvolдt dt

holds a.e. on s0,r0r.

Proof. We compute yet again:

d
dr

ˇ

ˇ

ˇ

ˇ

r
J ¨
qpf ¨ φmr q “

m

r

ĳ

f ¨ pχq ˝ φmr q ¨ pχst0´δ0,t0´q´1r ˝ pr2q

` f ¨

´

φmr ¨ χ 1
q ˝ φmr

¯

¨ pχst0´δ0,t0´q´1r ˝ pr2qdvolдt dt

“
m

r
J rq pf q `

m

r

ĳ

f ¨ pφmr ¨ χ 1
q ˝ φmr q ¨ pχst0´δ0,t0´q´1r ˝ pr2qdvolдt dt . (.)

Now, f P L1pEmr pΦqq so that just as before the first term in (.) tends to m
r Ir pf q as q Ñ 8. On

the other hand, by Example A.,

|φmr ¨ χ 1
q ˝ φmr | ď C ¨ χp2´pq`1qăφmr ă2´qq

qÑ8
ÝÝÝÑ 0

and

|f ¨ pφmr ¨ χ 1
q ˝ φmr q ¨ pχst0´δ0,t0´q´1rq| ď C f χpφmr0 ą0q P L1pDq

so that we may proceed as in the preceding proofs. □

eorem ... If f P C1pEmr0 pΦqq X L8pEmr0 pΦqq and Bt f ¨ φmr P L1pEmr0 pΦqq, then

ĳ

Emr pΦq

Bt pf ¨ φmr q dvolдt dt “ ´

ĳ

Emr pΦq

f ¨ φmr ¨
1
2
trдh dvolдt dt

for every r Ps0,r0r.

Proof. We consider

J rq pBt pf ¨ φmr qq “

ĳ

Bt pf ¨ φmr q ¨ pχq ˝ φmr q ¨ pχst0´δ0,t0´q´1r ˝ pr2qdvolдt dt

“ ´

ĳ

f ¨ φmr ¨ χ 1
q ˝ φmr ¨ χst0´δ0,t0´q´1r ˝ pr2 ¨ Btφdvolдt dt (.)

´

ĳ

f ¨ φmr ¨ χq ˝ φmr ¨ χst0´δ0,t0´q´1r ˝ pr2 ¨
1
2
trдh dvolдt dt

`

ż

`

f ¨ φmr ¨ pχq ˝ φmr q
˘

p¨,t0 ´ q´1qdvolдt0´q´1

´

ż

`

f ¨ φmr ¨ pχq ˝ φmr q
˘

pt0 ´ δ0qdvolдt0´δ0
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where we have integrated by parts with respect to t in the second line. Now, as in the proof of
eorem .., φmr ¨ χ 1

q ˝ φmr
qÑ8
ÝÝÝÑ 0 and

|f ¨ φmr ¨ χ 1
q ˝ φmr ¨ Btφ| ď C||f ||8|Btφ|χEmr0 pΦq P L1pΩˆst0 ´ δ0,t0rq,

whence the first integral in (.) tends to 0 as q Ñ 8. Furthermore, the second integral in (.) is
equal to ´J rq pf ¨φmr ¨ 1

2 trдhq which tends to ´Ir pf ¨φmr ¨ 1
2 trдhq as q Ñ 8 in light of the inequality

|f ¨ φmr ¨
1
2
trдh| ď

1
2

||f ||8 ¨ ||trдh||8 ¨ |φmr | P L1pEmr pΦqq.

Moreover, the third integral may be handled by estimating as follows:

ˇ

ˇ

ˇ

ˇ

ż

`

f ¨ φmr ¨ pχq ˝ φmr q
˘

p¨,t0 ´ q´1qdvolдt0´q´1

ˇ

ˇ

ˇ

ˇ

ď ||f ||8

ż

`

|φmr | ¨ χEmr pΦq

˘

p¨,t0 ´ q´1qdvolдt0´q´1

qÑ8
ÝÝÝÑ 0.

Finally, the fourth integral is equal to 0 since χqpφmr px ,t0 ´δ0qq ď χEmr0 pΦqpx ,t0 ´δ0q “ 0 by (HB)
(cf. proof of eorem ..). □

eorem ... If X P C1pEmr0 ,TMq is a time-dependent section ofTM such that div X P L8pEmr0 pΦqq

and X P L2pEmr0 pΦqq, then

ĳ

Emr pΦq

divpX ¨ φmr qdvolдt dt “ 0

for every r Ps0,r0r.

Proof. As in the preceding proof,

J rq pdivpX ¨ φmr qq “

ĳ

divpX ¨ φmr q ¨ pχq ˝ φmr q ¨ pχst0´δ0,t0´q´1r ˝ pr2qdvolдt dt

“ ´

ĳ
⟨
X ,∇pχq ˝ φmr q

looooomooooon

“pχ 1
q˝φmr q¨∇φ

⟩
¨ φmr ¨ pχst0´δ0,t0´q´1r ˝ pr2qdvolдt dt

“ ´

ĳ ⟨
X ,∇φ⟩ ¨ pφmr ¨ χ 1

q ˝ φmr
loooooomoooooon

qÑ8
ÝÝÝÑ0

q ¨ χst0´δ0,t0´q´1r ˝ pr2 dvolдt dt ,

where the second line is a consequence of Gauß’ theorem. Since

ˇ

ˇ

ˇ

⟨
X ,∇φ⟩ ¨ pφmr ¨ χ 1

q ˝ φmr q ¨ χst0´δ0,t0´q´1r ˝ pr2
ˇ

ˇ

ˇ

ď C|
⟨
X ,∇φ⟩ χEmr pΦq P L1pΩˆst0 ´ δ0,t0rq,

it follows from the dominated convergence theorem that

J rq pdivpX ¨ φmr qq
qÑ8
ÝÝÝÑ 0. □
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Monotonicity of Localized Singular Energies of Dirichlet Type

In this chapter we establish local monotonicity identities for time-dependent vector bundle-valued dif-
ferential forms over heat balls as introduced in Chapter  with the help of the formulæ introduced in that
chapter. It is then shown that these identities reduce to local monotonicity formulæ when applied to differ-
ential forms satisfying the heat equation, in particular establishing monotonicity formulæ for the Yang-Mills
and harmonic map heat flows in various cases whereM is curved. e formula for the laer flow generalizes
that of [].

6.1. Review. We briefly recall the local monotonicity formula of Ecker [] which motivated
the considerations here.

Set

E
γ
r px0,t0q “

#

px ,tq P Rn ˆ s´8,t0r :
1

p4πpt0 ´ tqq
n´γ
2

exp

ˆ

|x ´ x0|
2

4pt ´ t0q

˙

ą
1

rn´γ

+

as in §.. It was shown by Ecker [] that if u : Rn ˆ s0,T r Ñ N Ă RK evolves by the harmonic
map heat flow, where N is a Riemannian submanifold of RK , then the local monotonicity formula

d
dr

¨

˚

˝

1
rn´2

ĳ

E2
r px0,t0q

n ´ 2
2pt0 ´ tq

|du|2 ´

⟨ n
ÿ

i“1

px ´ x0q
i

2pt ´ t0q
Biu,Btu `

n
ÿ

i“1

px ´ x0q
i

2pt ´ t0q
Biu

⟩
dxdt

˛

‹

‚

“
n ´ 2
rn´1

ĳ

E2
r px0,t0q

ˇ

ˇ

ˇ

ˇ

ˇ

Btu `

n
ÿ

i“1

px ´ x0q
i

2pt ´ t0q
Biu

ˇ

ˇ

ˇ

ˇ

ˇ

2

dxdt ě 0 (.)

holds whenever n ě 2, E2r px0,t0q Ă Rn ˆ s0,T r and |du|2 P L1pE2r px0,t0qq. is formula is a natural
local analogue of the monotonicity formula of Struwe [] (cf. identity (.) in §. and, together
with a local monotonicity formula for solutions to a certain reaction-difussion equation which was
also established in [], served as motivation for the considerations of Chapter .

6.2. Local monotonicity identities. Let pM ,tдt utPst0´δ0,t0rq be an evolving Riemannian
manifold with Btд “ h. For a C2,1 function f : D Ă M ˆ st0 ´ δ0,t0r Ñ R, write Ht0 f for the
matrix Harnack expression

∇2 f `
1
2
h `

1
2pt0 ´ tq

д.

Furthermore, suppose Φ P C2,1pD,R`q withD Ă M ˆ I open such that En´2k
r pΦq is a heat ball for

r ď r0 as defined in §. and let φ “ logΦ. We begin with a local monotonicity identity which is
meant to generalize the identity (.) and eorem .. to Dirichlet-type flows in curved seings.

eorem ... If n ě 2k and
`

ψt P ΓpE b ΛkT˚Mq
˘

tPst0´δ0,t0r
is a smooth one-parameter family

of sections, then

»

—

–

1

rn´2k

ĳ

En´2k
r pΦq

eдpψ q ¨
`

Btφ ` |∇φ|2
˘

´
⟨
ι∇φψ ,ι∇φψ ´ δ∇ψ

⟩
´
⟨
ι∇φd∇ψ ,ψ

⟩
dvolдt dt

fi

ffi

fl

r“r2

r“r1

ě

ż r2

r1

¨

˚

˝

n ´ 2k

rn´2k`1

ĳ

En´2k
r pΦq

´eдpψ q ¨

ˆ

Btφ ` ∆φ ` |∇φ|2 `
1
2
trдh `

k

t0 ´ t

˙


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´
⟨
pBt ` ∆∇qψ ,ψ

⟩
` |ι∇φψ ´ δ∇ψ |2 ` |d∇ψ |2

`

˜

Ht0φ,
ÿ

i,j

⟨
ιεiψ ,ιεjψ

⟩
εi b εj

¸

dvolдt dt

¸

dr (.)

holds whenever 0 ă r1 ă r2 ă r0 provided both spacetime integrands are in L1
´

En´2k
r0 pΦq

¯

. If

ˆ

px ,tq ÞÑ
eдpψ qpx ,tq

t0 ´ t

˙

P L1
´

En´2k
r0 pΦq

¯

, (.)

then the inequality (.) holds with equality.

Remark ... If k “ 0, i.e. ψt P ΓpEq, the identity (.) reads (cf Remark ..)

»

—

–

1
rn

ĳ

Enr pΦq

1
2

|ψ |2
`

Btφ ` |∇φ|2
˘

´
⟨
∇∇φψ ,ψ

⟩
dvolдt dt

fi

ffi

fl

r“r2

r“r1

ě

ż r2

r1

¨

˚

˝

n

rn`1

ĳ

Enr pΦq

´
1
2

|ψ |2
ˆ

Btφ ` ∆φ ` |∇φ|2 `
1
2
trдh

˙

´
⟨
`

Bt ` ∆∇
˘

ψ ,ψ
⟩

` |d∇ψ |2dvolдt dt

˛

‹

‚
dr

which should be compared with (.) of Remark ... In particular, this implies a monotonicity
formula if

⟨
ψ ,pBt ` ∆∇qψ

⟩
ď 0 and Btφ ` ∆φ ` |∇φ|2 ` 1

2 trдh “
BtΦ`∆Φ` 1

2 trдhΦ
Φ ď 0, the laer of

which holds if Φ satisfies the backward heat equation.

Remark ... Just as witheorem .., this identity immediately yields a monotonicity formula
provided the conditions outlined in Remark .. are satisfied with s “ t0, i.e. if the following
conditions are satisfied:

. ψ satisfies
⟨
ψ ,pBt ` ∆∇qψ

⟩
ď 0, e.g. ifψ evolves by a Dirichlet-type flow.

. Φ “ pt0 ´ tqkP where P is a positive subsolution to the backward heat equation, i.e. pBt `

∆ ` 1
2 trдhqP ď 0, since then

pBtφ ` ∆φ ` |∇φ|2 `
1
2
trдh `

k

t0 ´ t
q

“
pBt ` ∆ ` 1

2 trдh ` k
t0´t qΦ

Φ

“
pBt ` ∆ ` 1

2 trдhqP

P
ď 0.

is holds with equality if P satisfies the backward heat equation.

. e matrix Harnack expression

∇2φ `
1
2
h `

1
2pt0 ´ tq

д

is nonnegative-definite (cf. the corresponding property in Remark ..). is expression
vanishes e.g. if д evolves by Ricci flow (h “ ´2Ric and д is a gradient shrinking soliton (cf.
[, Appendix C]). is includes the case where pM ,дt q ” pRn ,δq (cf. Remark ..).
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Remark ... If Φ is taken to be either the (suitably weighted) formal heat kernel concentrated
at px0,t0q (cf. Example ..) or, if pM ,дq is compact and static, the (suitably weighted) canonical
backward heat kernel concentrated at px0,t0q (cf. Example ..), then (.) holds for sufficiently
small r if |ψ |2 is summable over a certain cylinder (see Lemmata .. and .. below). us, in
particular, if pM ,дt q ” pRn ,δq and, assuming the setup of §., ψ “ du for a map u : M ˆ

st0 ´ δ ,t0r Ñ N Ă RK evolving by the harmonic map heat flow (with N Ă RK isometrically
embedded and n ě 2), the identity (.) may be recovered in light of Lemma .. (ii) (with X “

∇φ).

Proof of eorem ... We first assume that ψt ” 0 for τ ă t ă t0, whence, by virtue of the
smoothness of ψ and φ on En´2k

r pΦq X pr´1
2 pst0 ´ δ ,τ rq, which is assumed compact, and the fact

that each term occuring in the integrals is a product ofψ and something else, each individual term
in the identity (.) is in L1

´

En´2k
r0 pΦq

¯

.
Now, let Y be the time-dependent vector field defined by

Y “ pι∇φT
д
ψ q7 “

ÿ

j

⟨
ι∇φψ ,ιεiψ

⟩
´ eдpψ q∇φ,

where T дψ was defined in Proposition ... It is clear that Y is smooth on En´2k
r0 pΦq and |Y | P

L2pEn´2k
r0 pΦqq by virtue of the above remarks. On the other hand,

⟨
´Y ,∇φ⟩ “ eдpψ q|∇φ|2 ´ |ι∇φψ |2 P L1

´

En´2k
r0 pΦq

¯

.

Now, by Corollary ..,

divY “

n
ÿ

i“1

⟨
ι∇εi ∇φψ ,ιεiψ

⟩
´ eдpψ q∆φ ´

⟨
δ∇ψ ,ι∇φψ

⟩
´
⟨
ι∇φd∇ψ ,ψ

⟩
“

⟨
∇2φ,

n
ÿ

i,j“1

⟨
ιεiψ ,ιεjψ

⟩
ωi b ω j

⟩
´ eдpψ q∆φ ´

⟨
δ∇ψ ,ι∇φψ

⟩
´
⟨
ι∇φd∇ψ ,ψ

⟩
(.)

from which it may be seen that divY P L1
´

En´2k
r0 pΦq

¯

. erefore, adopting the notation of §.
for “approximate integrals”, we note that

«

J rq
`

eдpψ q ¨ pBtφ ` |∇φ|2q ´ |ι∇φψ |2
˘

rn´2k

ffr“r2

r“r1

“

ż r2

r1

2k ´ n

rn´2k`1
J rq
`

eдpψ q ¨ pBtφ ` |∇φ|2q ´ |ι∇φψ |2
˘

`
1

rn´2k

d
dr J

¨
q
`

eдpψ q ¨ pBtφ ` |∇φ|2q ´ |ι∇φψ |2
˘

dr

(.)

so that, on the one hand, by Lemma .., the le-hand side tends to

»

—

–

1

rn´2k

ĳ

En´2k
r pΦq

eдpψ q ¨ pBtφ ` |∇φ|2q ´ |ι∇φψ |2dvolдt dt

fi

ffi

fl

r“r2

r“r1

as q Ñ 8 and the first term in the integrand, integrated alone, tends to

ż r2

r1

¨

˚

˝

2k ´ n

rn´2k`1

ĳ

En´2k
r pΦq

eдpψ q ¨ pBtφ ` |∇φ|2q ´ |ι∇φψ |2dvolдt dt

˛

‹

‚
dr
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as q Ñ 8. On the other, the laer term in the integrand, integrated alone, may be wrien as

ż r2

r1

1

rn´2k

ˆ

d
dr J

¨
qpeдpψ qBtφq ´

d
dr J

¨
qp
⟨
Y ,∇φ⟩q˙ dr

by virtue of the fact that eдpψ q ¨ pBtφ ` |∇φ|2q ´ |ι∇φψ |2 “ eдpψ qBtφ ´
⟨
Y ,∇φ⟩. By the proofs of

eorems .. and .., the parenthetical expression may be wrien as

n ´ 2k
r

J rq pdivY ´ Bteдpψ q ´
1
2
trдh ¨ eдpψ qq ` op1q

as q Ñ 8, where the laer term may be uniformly bounded in terms of ψ and r0 (cf. proof of
eorem ..). Using Lemma .. and the dominated convergence theorem, the integrability of
all of the terms occurring in the approximate integrals immediately implies that the integral of the
second term of the integrand in (.) tends, as q Ñ 8, to

ż r2

r1

¨

˚

˝

n ´ 2k

rn´2k`1

ĳ

En´2k
r pΦq

divY ´ Bteдpψ q ´
1
2
trдh ¨ eдpψ qdvolдt dt

˛

‹

‚
dr .

Altogether, this reads

»

—

–

1

rn´2k

ĳ

En´2k
r pΦq

eдpψ q ¨
`

Btφ ` |∇φ|2
˘

´ |ι∇φψ |2dvolдt dt

fi

ffi

fl

r“r2

r“r1

“

ż r2

r1

¨

˚

˝

n ´ 2k

rn´2k`1

ĳ

En´2k
r pΦq

⟨
Y ,∇φ⟩´ eдpψ q ¨ Btφ ´ Bteдpψ q ´

1
2
eдpψ q ¨ trдh ` divYdvolдt dt

˛

‹

‚
dr .

(.)

By Proposition .. and Lemma ..,

Bteдpψ q “
⟨
Btψ ,ψ

⟩
´

⟨
1
2
h,

n
ÿ

i,j“1

⟨
ιεiψ ,ιεjψ

⟩
ωi b ω j

⟩

“
⟨
`

Bt ` ∆∇
˘

ψ ,ψ
⟩

´

⟨
∆d∇ψ ,ψ

⟩
´

⟨
1
2
h,

n
ÿ

i,j“1

⟨
ιεiψ ,ιεjψ

⟩
ωi b ω j

⟩

“
⟨
`

Bt ` ∆∇
˘

ψ ,ψ
⟩

´ |δ∇ψ |2 ´ |d∇ψ |2 ´ div

˜

n
ÿ

i“1

p
⟨
ιεiψ ,δ

∇ψ
⟩

´
⟨
ιεi d∇ψ ,ψ

⟩
qεi

¸

,

where
`

Bt ` ∆∇
˘

“ Bt ` ∆∇, whence

n ´ 2k

rn´2k`1

ĳ

En´2k
r pΦq

´Bteдpψ qdvolдt dt

“
n ´ 2k

rn´2k`1

ĳ

En´2k
r pΦq

|δ∇ψ |2 ` |d∇ψ |2 `

⟨
1
2
h,

n
ÿ

i,j“1

⟨
ιεiψ ,ιεjψ

⟩
ωi b ω j

⟩
´
⟨
`

Bt ` ∆∇
˘

ψ ,ψ
⟩
dvolдt dt

´
n ´ 2k

rn´2k`1

ĳ

En´2k
r pΦq

div

˜

n
ÿ

i“1

p
⟨
ιεi d∇ψ ,ψ

⟩
´
⟨
ιεiψ ,δ

∇ψ
⟩
qεi

¸

dvolдt dt .





To handle the final integral, we proceed as with the approximation (.), again making use of the
proof of eorem ..:

„

1

rn´2k
J rq

´⟨
ι∇φd∇ψ ,ψ

⟩
´
⟨
ι∇φψ ,δ

∇ψ
⟩¯ȷr“r2

r“r1

“

«

1

rn´2k
J rq

˜⟨ n
ÿ

i“1

´⟨
ιεi d∇ψ ,ψ

⟩
´
⟨
ιεiψ ,δ

∇ψ
⟩¯
εi ,∇φ

⟩¸ffr“r2

r“r1

“

ż r2

r1

n ´ 2k

rn´2k`1

˜

´J rq

´⟨
ι∇φd∇ψ ,ψ

⟩
´
⟨
ι∇φψ ,δ

∇ψ
⟩¯

´ J rq

˜

div

˜

n
ÿ

i“1

p
⟨
ιεi d∇ψ ,ψ

⟩
´
⟨
ιεiψ ,δ

∇ψ
⟩
qεi

¸¸¸

dr

whence, taking the limit q Ñ 8, which is justified exactly as in the previous approximation by
means of Lemma .., the dominated convergence theorem and the summability of all terms in-
volved, we obtain

´

ż r2

r1

¨

˚

˝

n ´ 2k

rn´2k`1

ĳ

En´2k
r pΦq

div

˜

n
ÿ

i“1

p
⟨
ιεi d∇ψ ,ψ

⟩
´
⟨
ιεiψ ,δ

∇ψ
⟩
qεi

¸

dvolдt dt

˛

‹

‚
dr

“

ż r2

r1

¨

˚

˝

n ´ 2k

rn´2k`1

ĳ

En´2k
r pΦq

⟨
ι∇φd∇ψ ,ψ

⟩
´
⟨
ι∇φψ ,δ

∇ψ
⟩
dvolдt dt

˛

‹

‚
dr

`

»

—

–

1

rn´2k

ĳ

En´2k
r pΦq

´⟨
ι∇φd∇ψ ,ψ

⟩
´
⟨
ι∇φψ ,δ

∇ψ
⟩¯

dvolдt dt

fi

ffi

fl

r“r2

r“r1

.

Altogether, this implies that

ż r2

r1

¨

˚

˝

n ´ 2k

rn´2k`1

ĳ

En´2k
r pΦq

´Bteдpψ qdvolдt dt

˛

‹

‚
dr

“

ż r2

r1

¨

˚

˝

n ´ 2k

rn´2k`1

ĳ

En´2k
r pΦq

|δ∇ψ |2 ` |d∇ψ |2 `

⟨
1
2
h,

n
ÿ

i,j“1

⟨
ιεiψ ,ιεjψ

⟩
ωi b ω j

⟩

´
⟨
`

Bt ` ∆∇
˘

ψ ,ψ
⟩

`
⟨
ι∇φd∇ψ ,ψ

⟩
´
⟨
ι∇φψ ,δ

∇ψ
⟩
dvolдt dt

¯

dr

`

»

—

–

1

rn´2k

ĳ

En´2k
r pΦq

⟨
ι∇φd∇ψ ,ψ

⟩
´
⟨
ι∇φψ ,δ

∇ψ
⟩
dvolдt dt

fi

ffi

fl

r“r2

r“r1

.

Hence, plugging this expression into (.), moving the laer term to the le-hand side, using the
expression (.) for divY and combining like terms, we obtain

»

—

—

–

1

rn´2k

ĳ

En´2k
r pΦq

eдpψ q ¨
`

Btφ ` |∇φ|2
˘

´
⟨
ι∇φψ ,ι∇φψ ´ δ∇ψ

⟩
´
⟨
ι∇φd∇ψ ,ψ

⟩
looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon

“:i1pψ q

dvolдt dt

fi

ffi

ffi

fl

r“r2

r“r1

“

ż r2

r1

¨

˚

˝

n ´ 2k

rn´2k`1

ĳ

En´2k
r pΦq

|ι∇φψ |2 ´ eдpψ q ¨

ˆ

Btφ ` ∆φ ` |∇φ|2 `
1
2
trдh

˙
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`

⟨
∇2φ `

1
2
h,

n
ÿ

i,j“1

⟨
ιεiψ ,ιεjψ

⟩
ωi b ω j

⟩
´ 2
⟨
δ∇ψ ,ι∇φψ

⟩

` |δ∇ψ |2 ` |d∇ψ |2 ´
⟨
`

Bt ` ∆∇
˘

ψ ,ψ
⟩
dvolдt dt

˛

‹

‚
dr

“

ż r2

r1

¨

˚

˝

n ´ 2k

rn´2k`1

ĳ

En´2k
r pΦq

´eдpψ q ¨

ˆ

Btφ ` ∆φ ` |∇φ|2 `
1
2
trдh `

k

t0 ´ t

˙

´
⟨
`

Bt ` ∆∇
˘

ψ ,ψ
⟩

` |ι∇φψ ´ δ∇ψ |2 ` |d∇ψ |2

`

⟨
∇2φ `

1
2
h `

д

2pt0 ´ tq
,

n
ÿ

i,j“1

⟨
ιεiψ ,ιεjψ

⟩
ωi b ω j

⟩
dvolдt dt

˛

‹

‚
dr , (.)

where in the last line (.) was used. is establishes the theorem in the case where ψ vanishes
close to t0.
Now let ψ P Γ8

`

E b ΛkT˚M
˘

be an arbitrary smooth time-dependent section and define the
smooth family of sectionsψm by

ψmpx ,tq “ ψt pxq ¨ χmpt0 ´ tq.

By the properties of χm ,ψmp¨,tq ” 0 for t ą t0 ´ 2´m´1, whence, applying (.) toψm ,

»

—

–

1

rn´2k

ĳ

En´2k
r pΦq

χmpt0 ´ tq2 ¨ i1pψ qdvolдt dt

fi

ffi

fl

r“r2

r“r1

“

ż r2

r1

¨

˚

˝

n ´ 2k

rn´2k`1

ĳ

En´2k
r pΦq

χmpt0 ´ tq2 ¨

ˆ

´eдpψ q ¨

ˆ

Btφ ` ∆φ ` |∇φ|2 `
1
2
trдh `

k

t0 ´ t

˙

´
⟨
`

Bt ` ∆∇
˘

ψ ,ψ
⟩

` |ι∇φψ ´ δ∇ψ |2 ` |d∇ψ |2

`

⟨
∇2φ `

1
2
h `

д

2pt0 ´ tq
,

n
ÿ

i,j“1

⟨
ιεiψ ,ιεjψ

⟩
ωi b ω j

⟩¸
dvolдt dt

¸

dr

`

ż r2

r1

¨

˚

˝

n ´ 2k

rn´2k`1

ĳ

En´2k
r pΦq

2χmpt0 ´ tqχ 1
mpt ´ t0qeдpψ qdvolдt dt

˛

‹

‚
dr . (.)

Now, the laer integral on the right-hand side is nonnegative, since χ 1
m ě 0. Since χmp¨ ´ t0q Ñ

χs´8,t0r pointwise and χmp¨ ´ t0q ď 1 on st0 ´ δ0,t0r, the result follows from discarding the laer
integral on the right-hand side, using the summability of the integrands to apply the dominated
convergence theorem and appealing to Lemma ...

On the other hand, if eдpψ q ¨ 1
t0´t P L1

´

En´2k
r0 pΦq

¯

, it follows from

χmpt ´ t0qχ
1
mpt ´ t0qeдpψ q “ χmpt0 ´ tq ¨ pt0 ´ tqχ 1

mpt0 ´ tq ¨
eдpψ q

t0 ´ t

and an application of the dominated convergence theorem, noting that pt0 ´ tqχ 1
mpt0 ´ tq

mÑ8
ÝÝÝÝÑ 0

(cf. Example A.) and that eдpψ q

t0´t is summable, that the integral in the last line of identity (.) tends
to 0 asm Ñ 8. □

Corollary ... e following hold:





. Assume the setup of §. and that n ě 4. If pωt “ rω ` aptqqtPst0´δ0,t0r is a one-parameter
family of connections evolving by the Yang-Mills heat flow, then the identity

»

—

–

1
rn´4

ĳ

En´4
r pΦq

eдpΩωq ¨
`

Btφ ` |∇φ|2
˘

´
⟨
ι∇φΩ

ω ,ι∇φΩ
ω ´ δ∇Ωω

⟩
dvolдt dt

fi

ffi

fl

r“r2

r“r1

ě

ż r2

r1

¨

˚

˝

n ´ 4
rn´3

ĳ

En´4
r pΦq

´eдpΩωq ¨

ˆ

Btφ ` ∆φ ` |∇φ|2 `
1
2
trдh `

4
2pt0 ´ tq

˙

` |Bta ` ι∇φΩ
ω |2

`

˜

Ht0φ,
ÿ

i,j

⟨
ιεiΩ

ω ,ιεjΩ
ω
⟩
εi b εj

¸

dvolдt dt

¸

dr

holds whenever 0 ă r1 ă r2 ă r0 provided both integrands are in L1
`

En´4
r0 pΦq

˘

. If in addition
´

px ,tq ÞÑ
eдpΩω qpx,tq

t0´t

¯

P L1
`

En´4
r0 pΦq

˘

, then this identity holds with equality.

. Assume the setup of §. and that n ě 2. If u : M ˆ st0 ´ δ0,t0r Ñ N Ă RK evolves by the
harmonic map heat flow with N isometrically embedded in RK , then the identity

»

—

–

1
rn´2

ĳ

En´2
r pΦq

eдpduq ¨
`

Btφ ` |∇φ|2
˘

´
⟨
B∇φu,B∇φdu ´ δ∇du

⟩
dvolдt dt

fi

ffi

fl

r“r2

r“r1

ě

ż r2

r1

¨

˚

˝

n ´ 2
rn´1

ĳ

En´2
r pΦq

´eдpduq ¨

ˆ

Btφ ` ∆φ ` |∇φ|2 `
1
2
trдh `

2
2pt0 ´ tq

˙

` |Btu ` B∇φu|2

`

˜

Ht0φ,
ÿ

i,j

⟨
Bεiu,Bεju

⟩
εi b εj

¸

dvolдt dt

¸

dr

holds whenever 0 ă r1 ă r2 ă r0 provided both integrands are in L1
`

En´2
r0 pΦq

˘

. If in addition
´

px ,tq ÞÑ
eдpduqpx,tq

t0´t

¯

P L1
`

En´2
r0 pΦq

˘

, then this identity holds with equality.

Proof. For the former claim, applyeorem .. by taking E “ PˆAdg, ∇ the covariant derivative
induced by ω, ψ “ Ωω (ñ k “ 2) and using the Bianchi identity d∇Ωω “ 0 (cf. Proposition ..)
and Lemma .., keeping Remark .. in mind.

e laer claim follows similarly by taking E “ RK , ∇ the flat connection andψ “ du (ñ k “

1), noting the Bianchi-type identity Lemma .. (i). is time, however, we use Lemma .. (ii)
with X “ ∇φ, which states that

⟨
pBt ` ∆∇qdu,du

⟩
´
ˇ

ˇB∇φu ´ δ∇du
ˇ

ˇ

2
“ ´

ˇ

ˇBtu ` B∇φu
ˇ

ˇ

2
,

which establishes the claim. □

In practice, we do not necessarily know too much about the integrability of the matrix Harnack
term. However, the proof of the preceding theorem implies a monotonicity identity nonetheless.

Corollary ... If n ě 2k and
`

ψt P ΓpE b ΛkT˚Mq
˘

tPst0´δ0,t0r
is a smooth one-parameter family

of sections and

Btφ ` ∆φ ` |∇φ|2 `
1
2
trдh `

k

t0 ´ t
ď aptq and (.)
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Ht0pφq ě bptqд (.)

on En´2k
r0 pΦq with a,b P Cpst0 ´ δ0,t0rq X L1 pst0 ´ δ0,t0rq, then

»

—

–

1

rn´2k

ĳ

En´2k
r pΦq

exppξ ptqq

´

eдpψ qpBtφ ` |∇φ|2q ´
⟨
ι∇φψ ,ι∇φψ ´ δ∇ψ

⟩
´
⟨
ι∇φd∇ψ ,ψ

⟩¯
dvolдt dt

fi

ffi

fl

r“r2

r“r1

ě

ż r2

r1

¨

˚

˝

n ´ 2k

rn´2k`1

ĳ

En´2k
r pΦq

exppξ ptqq ¨

´

ˇ

ˇd∇ψ
ˇ

ˇ

2
`
ˇ

ˇι∇φψ ´ δ∇ψ
ˇ

ˇ

2
´
⟨
pBt ` ∆∇qψ ,ψ

⟩¯
dvolдt dt

˛

‹

‚
dr

for 0 ă r1 ă r2 ă r0 whenever the spacetime integrands are summable over En´2k
r0 pΦq, where

ξ ptq “

ż t0

t
a ´ 2kb .

If only the le-hand spacetime integrand is known to be summable over En´2k
r0 pΦq and

|d∇ψ |2 ` |ι∇φψ ´ δ∇ψ |2 ´
⟨
`

Bt ` ∆∇
˘

ψ ,ψ
⟩

ě 0 (.)

on En´2k
r0 pΦq, then

»

—

–

1

rn´2k

ĳ

En´2k
r pΦq

exppξ ptqq

´

eдpψ qpBtφ ` |∇φ|2q ´
⟨
ι∇φψ ,ι∇φψ ´ δ∇ψ

⟩
´
⟨
ι∇φd∇ψ ,ψ

⟩¯
dvolдt dt

fi

ffi

fl

r“r2

r“r1

ě 0

for 0 ă r1 ă r2 ă r0, i.e. the parenthetical quantity is monotone nondecreasing.

Proof. We apply (.) toψmpx ,tq :“ eξ ptq{2χmpt0 ´ tqψt pxq:

»

—

–

1

rn´2k

ĳ

En´2k
r pΦq

χmpt0 ´ tq2eξ ptqi1pψ qdvolдt dt

fi

ffi

fl

r“r2

r“r1

“

ż r2

r1

¨

˚

˝

n ´ 2k

rn´2k`1

ĳ

En´2k
r pΦq

exppξ ptqqχmpt0 ´ tq2
ˆ

´eдpψ q ¨

ˆ

Btφ ` ∆φ ` |∇φ|2 `
1
2
trдh `

k

t0 ´ t

˙

` |ι∇φψ ´ δ∇ψ |2 ` |d∇ψ |2 ´
⟨
pBt ` ∆∇qψ ,ψ

⟩
`

⟨
Ht0pφq,

n
ÿ

i,j“1

⟨
ιεiψ ,ιεjψ

⟩
ωi b ω j

⟩¸
(.)

`2χ 1
mpt0 ´ tqχmpt0 ´ tqeξ ptqeдpψ q ´ Bt ξ ¨ exppξ ptqqχmpt0 ´ tq2eдpψ qdvolдt dt

¯

dr .

Making use of inequalities (.) and (.) and noting that χ 1
mpt0 ´ tq ě 0, Bt ξ “ 2kb ´ a and

⟨
д,

n
ÿ

i,j“1

⟨
ιεiψ ,ιεjψ

⟩
ωi b ω j

⟩
“ k|ψ |2 “ 2keдpψ q,

we may estimate the r -integrand of the right-hand integral of equation (.) from below by





n ´ 2k

rn´2k`1

ĳ

En´2k
r pΦq

exppξ ptqqχmpt0 ´ tq2
`

´eдpψ qa ` |ι∇φψ ´ δ∇ψ |2 ` |d∇ψ |2

´
⟨
pBt ` ∆∇qψ ,ψ

⟩
` 2kbeдpψ q ´ p2kb ´ aqeдpψ q

¯

dvolдt dt

“
n ´ 2k

rn´2k`1

ĳ

En´2k
r pΦq

exppξ ptqqχmpt0´tq2¨
´

ˇ

ˇι∇φψ ´ δ∇ψ
ˇ

ˇ

2
`
ˇ

ˇd∇ψ
ˇ

ˇ

2
´
⟨
pBt ` ∆∇qψ ,ψ

⟩¯
dvolдt dt .

(.)

Since exp ˝ξ is bounded on st0 ´ δ0,t0r, we may take limits exactly as in the preceding theorem,
thus establishing the first claim. For the second, we bound the right-hand side of (.) from below
by 0 and then take limits. □

Remark ... If pBt ` ∆∇qψ “ 0, then (.) clearly holds. On the other hand, if ψ “ du and u
solves (HMHF) then, by Lemma .., the le-hand side of (.) is equal to |Btu ` ι∇φdu|2 ě 0 so
that this condition also holds.

6.3. Applications. We now proceed to apply Corollary .. and Remark .. to establish
local monotonicity formulæ for forms evolving by Dirichlet-type flows. We first prove a lemma
which guarantees the finiteness of certain quantities appearing in the identity (.). In all of the
following, we assume that:

. pMn ,дq is an n ě 2k-dimensional evolving Riemannian manifold of locally bounded geome-
try about px0,t0q with bounds as in Definition .., and

. pψt P ΓpE b ΛkT˚MqtPst0´δ ,t0r is a smooth one-parameter family of sections such that

a) pBt ` ∆∇qψ “ 0, in which case we write S “ ι∇φψ ´ δ∇ψ and J “ d∇ψ , or
b) ψ “ du, where, assuming the setup of §., u : M ˆ st0 ´ δ ,t0r Ñ N Ă RK evolves by

the harmonic map heat flow with N isometrically embedded in RK , in which case we
write S “ Btu ` ι∇φdu and J “ 0.

Lemma ... Let Φ be as in Example .. (withm “ n ´ 2k). If the integral

ż t0

t0´ R2

16π c2n,k

ż

BtR px0q

eдpψ qdvolдt dt

is finite for some R ą 0, where cn,k “

b

n´2k
2π e , then the quantities

ˆ

px ,tq ÞÑ
eдpψ qpx ,tq

t0 ´ t

˙

, eдpψ qpBtφ ` |∇φ|2q ´
⟨
ι∇φψ ,S

⟩
´
⟨
ι∇φJ ,ψ

⟩
, |J |2 and |S|2

are in L1pEr q for r ď r0 :“ mint R
2cn,k
, r0 of Example ..u.

Proof. Firstly, by Lemma ..,

ĳ

En´2k
r0 pΦq

|S|2 ` |J |2dvolдt dt

ď 2rC0

¨

˝

1

r 20

ż t0

t0´
r 20
4π

ż

Bt2cn,k r0 px0q

eдpψ qdvolдt dt `

¨

˝

ż

B¨
2cn,k r0

px0q

eдpψ qdvolд

˛

‚pt0 ´
r 2

4π
q

˛

‚,

where rC0 is as in Lemma .., whence the le-hand side is finite, since 2cn,kr0 ď R.
Secondly, again by Lemma ..,
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ż

Bt
Rn´2k
r0 ptq

px0q

eдpψ qp¨,tq

t0 ´ t
dvolдt

ď
Rn´2k
r0 ptqn´2k

t0 ´ t
¨

rC0

rn´2k
0

¨

¨

˝

1

r 20

ż t0

t0´
r 20
4π

ż

Bt2cn,k r0 px0q

eдpψ qdvolдt dt `

¨

˝

ż

B¨
2cn,k r0

px0q

eдpψ qdvolд

˛

‚pt0 ´
r 2

4π
q

˛

‚

(.)

for each t P st0 ´ r 20 exp

ˆ

´
1

2pn ´ 2kq

˙

{4π
looooooooooooomooooooooooooon

“:dn,k

,t0r Ă

ı

t0 ´
r 20
4π ,t0

”

. In light of the fact that, by (HB),

ď

tP

ȷ

t0´
r 20
4π ,t0´dn,k r 20

„

Bt
Rn´2k
r0 ptq

px0q ˆ ttu “ En´2k
r0 pΦq X pr´1

2

ˆ

st0 ´
r 20
4π
,t0 ´ dn,kr

2
0 r

˙

is relatively compact inM ˆ st0 ´ δ ,t0r, it suffices to show that

ż t0

t0´dn,k r 20

ż

Bt
Rn´2k
r0 ptq

px0q

eдpψ qp¨,tq

t0 ´ t
dvolдt dt

is finite, which, by (.), is guaranteed if

ż t0

t0´dn,k r 20

Rn´2k
r0 ptqn´2k

t0 ´ t
dt

is finite. We know from the computation of Example .. (HB) leading to (.) that

ż t0

t0´
r 20
4π

Rn´2k
r0 ptqn´2k

t0 ´ t
dt “

ˆ

pn ´ 2kqr 20
2π

˙n{2´k ż 8

0
sn{2´k exp

´

´

´n

2
´ k

¯

s
¯

ds,

which is finite.
Finally, by the Cauchy-Schwarz inequality and Young’s inequality,

ˇ

ˇ

ˇ
eдpψ qpBtφ ` |∇φ|2q ´

⟨
ι∇φψ ,S

⟩
´
⟨
ι∇φJ ,ψ

⟩ˇ
ˇ

ˇ

ď eдpψ q
`

|Btφ| ` |∇φ|2
˘

` |∇φ| ¨ |ψ | ¨ |S| ` |∇φ| ¨ |ψ | ¨ |J |

ď eдpψ q
`

|Btφ| ` 3|∇φ|2
˘

`
1
2

`

|S|2 ` |J |2
˘

.

us, we need only show that eдpψ q p|Btφ| ` 3|∇φ|2q is in L1
´

En´2k
r0 pΦq

¯

. Now, by Proposition
..,

|Btφ| ` 3|∇φ|2 ď
7dt px ,x0q2

4pt0 ´ tq2
`

n

2pt0 ´ tq
`

µr 2

4pt0 ´ tq

ď
7

4pt0 ´ tq2
Rn´2k
r0 ptq2 `

n

2pt0 ´ tq
`

µ

4pt0 ´ tq
Rn´2k
r0 ptq2

on En´2k
r0 pΦq so that, by Lemma ..,

ż

Bt
Rn´2k
r0 ptq

px0q

eдpψ qp¨,tq ¨
`

|Btφ| ` 3|∇φ|2
˘

dvolдt
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ď
rC0

rn´2k
¨ cptq

¨

˝

1

r 20

ż t0

t0´
r 20
4π

ż

Bt2cn,k r0 px0q

eдpψ qdvolдt dt `

¨

˝

ż

B¨
2cn,k r0

px0q

eдpψ qdvolд

˛

‚pt0 ´
r 2

4π
q

˛

‚

(.)

for each t P
‰

t0 ´ dn,kr
2
0 ,t0

“

, where

cptq “
7

4pt0 ´ tq2
Rn´2k
r0 ptqn´2k`2 `

n

2pt0 ´ tq
Rn´2k
r0 ptqn´2k `

µ

4pt0 ´ tq
Rn´2k
r0 ptqn´2k`2.

As before, it suffices to show that c is summable over
‰

t0 ´ dn,kr
2
0 ,t0

“

. Now, the middle term in
the expression for c was already shown to be summable on this interval. On the other hand, since
Rn´2k
r0 ptq ď cn,kr0 and

Rn´2k
r0 ptq2

pt0 ´ tq2
“ ´2m log

ˆ

4πpt0 ´ tq

r 20

˙

,

which is summable over st0 ´
r 20
4π ,t0r, it is clear that the first and last terms in the expression for

cptq are also summable over this interval. □

eorem ... Let Φ be as in Example .. (withm “ n ´ 2k). Suppose that the integral

ż t0

t0´ R2

16π c2n,k

ż

BtR px0q

eдpψ qdvolдt dt (.)

is finite for some R ą 0, where cn,k “

b

n´2k
2π e . en there exist an r0 ą 0 depending on the local

geometry ofM about px0,t0q, δ and R, and a function ξ P Cpst0 ´ 1,t0sq with ξ pt0q “ 0 depending on
the geometry ofM such that for 0 ă r1 ă r2 ă r0, the identity

»

—

–

1

rn´2k

ĳ

En´2k
r pΦq

exppξ ptqq

´

eдpψ qpBtφ ` |∇φ|2q ´
⟨
ι∇φψ ,ι∇φψ ´ δ∇ψ

⟩
´
⟨
ι∇φJ ,ψ

⟩¯
dvolдt dt

fi

ffi

fl

r“r2

r“r1

ě

ż r2

r1

¨

˚

˝

n ´ 2k

rn´2k`1

ĳ

En´2k
r pΦq

exppξ ptqq ¨

´

|J |
2

` |S|
2
¯

dvolдt dt

˛

‹

‚
dr

holds. In particular, the quantity

1

rn´2k

ĳ

En´2k
r pΦq

eξ ptq
´

eдpψ q
`

Btφ ` |∇φ|2
˘

´
⟨
ι∇φψ ,ι∇φψ ´ δ∇ψ

⟩
´
⟨
ι∇φJ ,ψ

⟩¯
dvolдt dt

is monotone nondecreasing in r .

Remark ... r0 is as in Lemma .. and ξ is given by (.) below.

Remark ... Note that

. If n ě 4, tωt “ rω ` aptqutPst0´δ ,t0r is a family of connections on a principal bundle P Ñ Mn

evolving by the Yang-Mills flow according to the setup of §. and the integral (.) is finite
forψ “ Ωω , then this identity holds and reads
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»

—

–

1
rn´4

ĳ

En´4
r pΦq

exppξ ptqq

´

eдpΩωqpBtφ ` |∇φ|2q ´
⟨
ι∇φΩ

ω ,Bta ` ι∇φΩ
ω
⟩¯

dvolдt dt

fi

ffi

fl

r“r2

r“r1

ě

ż r2

r1

¨

˚

˝

n ´ 4
rn´3

ĳ

En´4
r pΦq

exppξ ptqq
ˇ

ˇBta ` ι∇φΩ
ω
ˇ

ˇ

2 dvolдt dt

˛

‹

‚
dr ,

and

. If n ě 2, u : Mn ˆ st0 ´ δ ,t0r Ñ N Ă RK evolves by the harmonic map heat flow according
to the setup of §., where N is isometrically embedded in RK , and the integral (.) is
finite forψ “ du, then this identity holds and reads

»

—

–

1
rn´2

ĳ

En´2
r pΦq

exppξ ptqq

´

eдpduqpBtφ ` |∇φ|2q ´
⟨
ι∇φdu,Btu ` ι∇φdu

⟩¯
dvolдt dt

fi

ffi

fl

r“r2

r“r1

ě

ż r2

r1

¨

˚

˝

n ´ 2
rn´1

ĳ

En´2
r pΦq

exppξ ptqq
ˇ

ˇBtu ` ι∇φdu
ˇ

ˇ

2 dvolдt dt

˛

‹

‚
dr .

us, these identities yield local analogues of the Chen-Struwe and Chen-Shen formulæ(cf. §.).

Proof of eorem ... Let r0 be as in Lemma ... We first note that, by Proposition ..,

Btφ ` ∆φ ` |∇φ|2 `
1
2
trдh `

k

t0 ´ t
ď

ˆ

nµ

2
`

C4d
t px0, ¨q

2

t0 ´ t

˙

ď

ˆ

nµ

2
´ 2pn ´ 2kqC4 log

ˆ

4πpt0 ´ tq

r 20

˙˙

“: aptq

on En´2k
r0 pΦq, whereC4 is a constant depending only on the local geometry about px0,t0q. Similarly,

by Proposition .., the inequalities

Ht0φ ě

ˆ

´
Cdt px0, ¨q

2

2pt0 ´ tq
`
λ´8

2

˙

д

ě

ˆ

´pn ´ 2kqC log

ˆ

4πpt0 ´ tq

r 20

˙

`
λ´8

2

˙

д “: bptqд

hold. Since a and b are continuous and summable on st0 ´ δ ,t0r, we may appeal to Corollary ..,
keeping Remark .. in mind and noting that since the integral (.) is finite, the integrals of
Corollary .. all exist by Lemma ... To compute ξ , note that

apuq ´ 2kbpuq “

ˆ

nµ

2
´ 2pn ´ 2kqC4 log

ˆ

4π

r 20

˙

` 2kpn ´ 2kqC log

ˆ

4π

r 20

˙

´ kλ´8

˙

looooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooon

“:a

` 2pn ´ 2kq pkC ´C4q
looooooooooomooooooooooon

“:b

logpt0 ´ uq,

whence,

ξ ptq “

ż t0

t
a ´ 2kb “ pa ´ bqpt0 ´ tq ` bpt0 ´ tq logpt0 ´ tq, (.)

whence the result follows. □
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We now turn our aention to the case where M is static. We again prove a lemma ensuring
finiteness of the integrals we consider.

Lemma ... Let pM ,дq be a static compact Riemannian manifold and P :“ n´2kPpx0,t0q as in Ex-
ample ... If the integral

ż t0

t0´ R2

16π c2n,k

ż

BR px0q

eдpψ qdvolдt dt

is finite for some R ą 0, where cn,k “

b

n´2k
2π e , then the quantities

ˆ

px ,tq ÞÑ
eдpψ qpx ,tq

t0 ´ t

˙

, eдpψ q
`

Btρ ` |∇ρ|2
˘

´
⟨
ι∇ρψ ,S

⟩
´
⟨
ι∇ρJ ,ψ

⟩
, |J |2 and |S|2

are in L1pEr q for

r ď r0 :“ mint
1
2

´

2p4πδq´
n´2k

2 ` 1
¯´1{pn´2kq

,

¨

˚

˝

1

1 `
2n´2k`1cn´2k

n,k

Rn´2k

˛

‹

‚

1{pn´2kq

, r0 of Example ..u,

where ρ “ log P.

Proof. From Example .. (HB) and Example .. (HB), we know that

En´2k
r0 pPq Ă En´2k

rr0
pΦq Ă Bcn,k ¨rr0px0qˆst0 ´

rr 20
4π
,t0r, (.)

where

rr0 “

¨

˝

2
1

rn´2k
0

´ 1

˛

‚

1{pn´2kq

,

and Φ is as in Lemma .., whence we see that ψ is defined on En´2k
r0 pPq, i.e. that En´2k

r0 pPq Ă

Bcn,k rr0px0q ˆ st0 ´ δ ,t0r provided

r0 ă

´

2p4πδq´
n´2k

2 ` 1
¯´1{pn´2kq

,

which is guaranteed in view of our choice of r0. Moreover, since

r0 ă

¨

˚

˝

1

1 `
2n´2k`1cn´2k

n,k

Rn´2k

˛

‹

‚

1{pn´2kq

,

wehave that cn,krr0 ď R. Now, by (.), we immediately see that, since
´

px ,tq ÞÑ eдpψ qpx ,tq ¨ 1
t0´t

¯

,

|S|2 and |J |2 are in L1
´

En´2k
rr0

pΦq

¯

and thus also in L1
´

En´2k
r0 pPq

¯

. As for the remaining function,
we estimate as in Lemma ..:

ˇ

ˇ

ˇ
eдpψ q

`

Bt ρ ` |∇ρ|2
˘

´
⟨
ι∇ρψ ,S

⟩
´
⟨
ι∇ρJ ,ψ

⟩ˇ
ˇ

ˇ

ď eдpψ q
`

|Bt ρ| ` 3|∇ρ|2
˘

`
1
2

`

|S|2 ` |J |2
˘

.
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Now, by the computation in Example .. (HB),

|∇ρ|2 ď
constpgeom,n,kq

t0 ´ t
¨

ˆ

1 ´ logp
4πpt0 ´ tq

r 20

˙

and

|Btρ| ď constpgeom,n,kq ¨

ˆ

1
t0 ´ t

ˆ

1 ` log

ˆ

4πpt0 ´ tq

r 20

˙˙

` |∇ρ|2
˙

.

We note that

´
1

t0 ´ t
log

ˆ

4πpt0 ´ tq

r 20

˙

“
Rn´2k
r0 ptq2

2pn ´ 2kqpt0 ´ tq2

so that it suffices to establish that the integral

ĳ

En´2k
r0 pPq

eдpψ q ¨
Rn´2k
r0 ptq2

pt0 ´ tq
dvolдt dt

is finite, but it was shown in Lemma .. that
ˆ

eдpψ q ¨
Rn´2k
r0 ptq2

pt0´tq

˙

P L1
´

En´2k
rr0

pΦq

¯

so that this

also follows from (.). □

eorem ... Let pM ,дq be a static compact Riemannian manifold and P :“ n´2kPpx0,t0q as in
Example .., where k P NX r0, n2 r. Suppose that the integral

ż t0

t0´ R2

16π c2n,k

ż

BtR px0q

eдpψ qdvolдt dt (.)

is finite for some R ą 0, where cn,k “

b

n´2k
2π e . en there exist an r0 ą 0 depending on the local

geometry ofM about px0,t0q, δ and R, and a function ξ P Cpst0 ´ 1,t0sq with ξ pt0q “ 0 depending on
the geometry ofM such that for 0 ă r1 ă r2 ă r0, the identity

»

—

–

1

rn´2k

ĳ

En´2k
r pPq

exppξ ptqq

´

eдpψ qpBtρ ` |∇ρ|2q ´
⟨
ι∇ρψ ,ι∇ρψ ´ δ∇ψ

⟩
´
⟨
ι∇ρJ ,ψ

⟩¯
dvolдt dt

fi

ffi

fl

r“r2

r“r1

ě

ż r2

r1

¨

˚

˝

n ´ 2k

rn´2k`1

ĳ

En´2k
r pPq

exppξ ptqq ¨

´

|J |
2

` |S|
2
¯

dvolдt dt

˛

‹

‚
dr

holds, where ρ “ log P. In particular, the quantity

1

rn´2k

ĳ

En´2k
r pPq

eξ ptq
´

eдpψ q
`

Bt ρ ` |∇ρ|2
˘

´
⟨
ι∇ρψ ,ι∇ρψ ´ δ∇ψ

⟩
´
⟨
ι∇ρJ ,ψ

⟩¯
dvolдt dt

is monotone nondecreasing in r . If secM ě 0 and dRic ” 0, then ξ ” 0.

Remark ... r0 is as in Lemma .. and ξ is as in (.).

Remark ... Note that
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. If n ě 4, tωt “ rω ` aptqutPst0´δ ,t0r is a family of connections on a principal bundle P Ñ Mn

evolving by the Yang-Mills flow according to the setup of §. and the integral (.) is finite
forψ “ Ωω , then this identity holds and reads

»

—

–

1
rn´4

ĳ

En´4
r pPq

exppξ ptqq

´

eдpΩωqpBt ρ ` |∇ρ|2q ´
⟨
ι∇ρΩ

ω ,Bta ` ι∇ρΩ
ω
⟩¯

dvolдt dt

fi

ffi

fl

r“r2

r“r1

ě

ż r2

r1

¨

˚

˝

n ´ 4
rn´3

ĳ

En´4
r pPq

exppξ ptqq
ˇ

ˇBta ` ι∇ρΩ
ω
ˇ

ˇ

2 dvolдt dt

˛

‹

‚
dr ,

and

. If n ě 2, u : Mn ˆ st0 ´ δ ,t0r Ñ N Ă RK evolves by the harmonic map heat flow according
to the setup of §., where N is isometrically embedded in RK , and the integral (.) is
finite forψ “ du, then this identity holds and reads

»

—

–

1
rn´2

ĳ

En´2
r pPq

exppξ ptqq

´

eдpduqpBtρ ` |∇ρ|2q ´
⟨
ι∇ρdu,Btu ` ι∇ρdu

⟩¯
dvolдt dt

fi

ffi

fl

r“r2

r“r1

ě

ż r2

r1

¨

˚

˝

n ´ 2
rn´1

ĳ

En´2
r pPq

exppξ ptqq
ˇ

ˇBtu ` ι∇ρdu
ˇ

ˇ

2 dvolдt dt

˛

‹

‚
dr .

us, these identities yield local analogues of Hamilton’s formulæ (cf. §.).

Proof of eorem ... We work on En´2k
r0 pPq where r0 is as in Lemma ... By eorem ..,

Ht0ρ ě ´F

˜

1 ` log

˜

B

p4πpt0 ´ tqq
n
2 ´k

¸

´ ρ

¸

д

ě ´F

˜

1 ` log

˜

B

p4πpt0 ´ tqq
n
2 ´k

¸¸

д ´ pF pn ´ 2kq log r0
loomoon

ď0

qд

on En´2k
r0 pPq so that the inequalities (.) are satisfied by P with

a ” 0 and

bptq “ ´F

˜

1 ` log

˜

B

p4πpt0 ´ tqq
n
2 ´k

¸¸

p“ 0 if secM ě 0 and dRic “ 0q .

Moreover, it is clear that both a and b define continuous, summable functions on st0 ´ δ ,t0r and,
adopting the notation of Corollary ..,

ξ ptq “ 2kF
ż t0

t
1 ` log

ˆ

B

4π

˙

´
n ´ 2k

2
logpt0 ´ uqdu

“ pt0 ´ tq ¨

ˆ

1 ` log

ˆ

B

4π

˙

´
n ´ 2k

2
plogpt0 ´ tq ´ 1q

˙

(.)

In light of the finiteness of the finiteness of the integral (.), we may appeal to Lemma .. to
apply Corollary .. exactly as in eorem .., which establishes the result. □







Monotonicity of Localized Singular Area of a Submanifold Evolving by Mean
Curvature Flow

In this chapter we establish a local monotonicity identity for embeddings evolving by the mean curvature
flow using the heat balls of Chapter  in a similar manner to Chapter . is identity then leads to monotonic-
ity formulæ in various cases where M is curved, thus furnishing a generalization of the local monotonicity
formula of Ecker []. e various terms arising in the formula should be compared to those arising in the
formula of [] (eorem ..).

7.1. Review. We recall the local formula of Ecker [] which served as motivation for the
identityof §..

Let tFt : Nm Ñ RnutPst0´δ ,t0r (t0 P R, δ0 ą 0) be a smooth one-parameter family of embeddings
evolving by mean curvature (cf. §.) and set

Er px0,t0q “M X

"

px ,tq P Rn ˆ s´8,t0r : Φpx ,tq ą
1
rm

*

for px0,t0q P Rn ˆ R, where

M “
ď

tPst0´δ0,t0r

Ft pN q ˆ ttu

is the spacetime track of tFt utPst0´δ0,t0r and

Φpx ,tq “
1

p4πpt0 ´ tqq
m
2
exp

ˆ

|x ´ x0|
2

4pt ´ t0q

˙

.

It was shown by Ecker [] that if Ft is well-defined in a cylinder of the form BRpx0q ˆ st0 ´ ε,t0r
in an appropriate sense, then the identity

d
dr

¨

˚

˝

1
rm

ĳ

Er px0,t0q

u
`

|p∇φqT |2 ` |H |2φr
˘

dHmdt

˛

‹

‚

“
n

rn`1

ĳ

Er px0,t0q

ˆ

u
ˇ

ˇH ´ p∇φqK
ˇ

ˇ

2
´ φr

ˆ

d
dt ´ ∆

˙

u

˙

dHm dt , (.)

holds for sufficiently small r , where dHm denotesm-dimensional Hausdorff measure, φ “ logΦ,
φr “ φ`m log r andu P C2,1pRnˆI ,Rq. It is evident that ifu ” 1, then we obtain the monotonicity
formula

d
dr

¨

˚

˝

1
rm

ĳ

Er px0,t0q

`

|p∇φqT |2 ` |H |2φr
˘

dHmdt

˛

‹

‚
ě 0,

which is a local analogue of Huisken’s monotonicity formula (cf. eorem ..). Note that all
of the quantities appearing here are considered onM Ă Rn ˆ st0 ´ δ0,t0r, as opposed to being
considered on N ˆ st0 ´ δ0,t0r.

7.2. Local monotonicity identities. Let pM ,tдt utPst0´δ0,t0rq be an evolving Riemannian
manifold with Btд “ h and tFt “ F p¨,tq : Nm Ñ pMn ,дt qutPst0´δ0,t0r a family of embeddings

In our case, we assume that pF , pr2q : N ˆ I Ñ M ˆ I is proper in place of this.


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evolving by mean curvature flow such that pF ,pr2q : N ˆ st0 ´ δ0,t0r Ñ M ˆ st0 ´ δ0,t0r is proper
(cf. §. for notation and setup), and let Φ P C2,1 pD,Ñ R`q withD Ă M ˆ I be such that Emr pΦq

is a heat ball for r ă r0 (cf. §.). As in Chapter , writeHt0 f for the matrix Harnack expression

∇2 f `
1
2
h `

д

2pt0 ´ tq

of f P C2,1pDq.
e following theorem should be considered a local analogue of Magni, Mantegazza and Tsatis’

generalization [] of Huisken’s monotonicity formula (eorem ..).

eorem ... If u P C2,1pEmr0 pΦqq and u
t0´t φ P L1

`

Emr0 pΦq
˘

, then

»

—

–

1
rm

ĳ

Emr pΦq

u

„

|∇Itφ|2 `

ˆ

| rH |2 ´
1
2
trIF˚

t h

˙

φnr

ȷ

dvolIt dt

fi

ffi

fl

r“r2

r“r1

“

ż r2

r1

¨

˚

˝

m

rm`1

ĳ

Emr pΦq

´u ¨

ˆ

Btφ ` ∆дtφ ` |∇дtφ|2 `
1
2
trдh `

n ´m

2pt0 ´ tq

˙

´ φmr ¨ pBt ´ ∆Iqu ` u
ˇ

ˇ

rH ´∇Kφ
ˇ

ˇ

2
` u ¨ trK

дHt0pφqdvolIt dt

˛

‹

‚
dr (.)

for 0 ă r1 ă r2 ă r0 provided both spacetime integrands are in L1
`

Emr0 pΦq
˘

. If u ě 0, then the
condition u

t0´t φ P L1
`

Emr0 pΦq
˘

may be lied so that the the identity (.) holds with ě in place of “.

Remark ... As with eorem .. (cf. Remark ..), this identity implies a monotonicity for-
mula if Φp¨,tq “ pt0 ´ tq

n´m
2 Pp¨,tq for a positive subsolution P of the backward heat equation and

ifHt0φ ď 0, which in particular holds for pM ,дt q ” pRn ,δq taken with Φp¨,tq “ pt0 ´ tq
n´m

2 Pp¨,tq
with P being the standard heat kernel on Rn .

Remark ... If u is bounded on Emr0 pΦq and Φ is either the (suitably weighted) formal backward
heat kernel (cf. Example ..) or, if M is static and compact, the (suitably weighted) canonical
backward heat kernel concentrated at px0,t0q (cf. Example ..), then the estimates of Examples
.. (HB) and .. (HB) immediately imply that the integrals of (.) (see eorems .. and
..). In particular, if pM ,дt q ” pRn ,δq, we recover (.) up to the choice of working in N ˆ

st0 ´ δ0,t0r orM ˆ st0 ´ δ0,t0r.

Proof of eorem ... We first assume that up¨,tq ” 0 for t P rτ0,t0r. Just as in the proof of
eorem .., we first approximate:

„

1
rm

J rq

ˆ

u ¨

„

|∇Itφ|2 ` φmr ¨

ˆ

| rH |2 ´
1
2
trIF˚

t h

˙ȷ˙ȷr“r2

r“r1

“

ż r2

r1

m

rm`1 J
r
q

ˆ

´u ¨

„

|∇Itφ|2 ` φmr ¨

ˆ

| rH |2 ´
1
2
trIF˚

t h

˙ȷ˙

dr

`

ż r2

r1

1
rm

d
dr J

¨
q

ˆ

u ¨

„

|∇Itφ|2 ` φm¨ ¨

ˆ

| rH |2 ´
1
2
trIF˚

t h

˙ȷ˙

dr .

Wenote that, sinceu vanishes near t0, each individual term in the approximate integrals is summable
over Emr0 pΦq, thus allowing us to freely separate these integrals.

To calculate the laer integral, we note that, by eorem ..,
Recall that Φ “ Φ ˝ pF , pr2q : pF , pr2q´1pDq Ñ R`.
In particular, each term represents a continuous function supported in Emr0 pΦq X pr´1

2 p
‰

t0 ´ δ0, 1
2 pt0 ` τ0q

“

q, a rel-
atively compact set in N ˆ st0 ´ δ0r.





d
dr J

¨
q

´⟨
u∇Itφ,∇Itφ

⟩¯
“ ´

m

r
J rq pdivIpu∇Itφqq “ ´

m

r
J rq p
⟨
∇Itu,∇Itφ

⟩
` u∆Iφq

whilst, by eorem ..,

d
dr J

¨
q

ˆ

φm¨ ¨

ˆ

| rH |2 ´
1
2
trIF˚

t h

˙˙

“
m

r
J rq

ˆ

| rH |2 ´
1
2
trIF˚

t h

˙

` op1q

as q Ñ 8, where the remainder may be bounded from above uniformly in r . us, by Lemma ..
and the dominated convergence theorem, taking the limit q Ñ 8 in the above yields

»

—

–

1
rm

ĳ

Emr pΦq

u ¨

„

|∇Itφ|2 ` φmr ¨

ˆ

| rH |2 ´
1
2
trIF˚

t h

˙ȷ

dvolIt dt

fi

ffi

fl

r“r2

r“r1

“

ż r2

r1

¨

˚

˝

m

rm`1

ĳ

Emr pΦq

´u ¨

ˆ

|∇Itφ|2 ` φmr ¨

ˆ

| rH |2 ´
1
2
trIF˚

t h

˙˙

´
⟨
∇Itu,∇Itφ

⟩

´ u∆Iφ ` u ¨

ˆ

| rH |2 ´
1
2
trIF˚

t h

˙

dvolIt dt

˛

‹

‚
dr ,

Now, by Proposition ..

∆Iφ “ ∆дφ ´ trK
д ∇2дφ `

⟨
Ć∇дtφ, rH

⟩
.

On the other hand, we note that

|∇Itφ|2 “ | Ć∇дtφ |2 ´ |∇Kφ|2

and

trдh “ trIF˚
t h ` trK

д h.

Proceeding with these identities in mind,

“

ż r2

r1

¨

˚

˝

m

rm`1

ĳ

Emr pΦq

´u ¨

ˆ

Btφ ` ∆дφ ` |∇дtφ|2 `
1
2
trдh

˙

´ uφmr ¨

ˆ

| rH |2 ´
1
2
trIF˚

t h

˙

` u ¨ Btφ ´
⟨
∇Itu,∇Itφ

⟩
` u

´

| rH |2 ` |∇Kφ|2 ´

⟨
Ć∇дtφ,H

⟩
¯

` utrK
д

ˆ

∇2φ `
1
2
h

˙

dvolIt dt

˛

‹

‚
dr . (.)

Now, together with Proposition .. and the identities

Btφ “ Btφ ´

⟨
Ć∇дtφ, rH

⟩
and Btφ “ Btφ

m
r , an application of eorem .. yields
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ĳ

Emr pΦq

u ¨ BtφdvolIt dt “

ĳ

Emr pΦq

u ¨ Btφ
m
r ´ u ¨

⟨
Ć∇дtφ, rH

⟩
dvolIt dt

“

ĳ

Emr pΦq

´Btu ¨ φmr ` u ¨ φmr

ˆ⟨
rH , rH
⟩

´
1
2
trIF˚

t h

˙

´ u
⟨
Ć∇дtφ, rH

⟩
dvolIt dt .

On the other hand,

trK
д

д

2pt0 ´ tq
“

n ´m

2pt0 ´ tq
.

Proceeding from (.) with these two identities in mind and completing the square in rH and ∇Kφ
and writing

Lφ “ Btφ ` ∆дφ ` |∇дtφ|2 `
1
2
trдh `

n ´m

2pt0 ´ tq
,

we obtain,

“

ż r2

r1

¨

˚

˝

m

rm`1

ĳ

Emr pΦq

´u ¨

´

Lφ
¯

´ u ¨ φmr ¨

ˆ

| rH |2 ´
1
2
trIF˚

t h

˙

´ Btu ¨ φmr ` u ¨ φmr ¨

ˆ⟨
rH , rH
⟩

´
1
2
trIFastt h

˙

´ u
⟨
Ć∇дtφ, rH

⟩

´
⟨
∇Itu,∇Itφ

⟩
` u ¨ | rH ´∇Kφ|2 ` u

⟨
rH ,∇Kφ

⟩
` utrK

дHt0pφqdvolIt dt

˛

‹

‚
dr

“

ż r2

r1

¨

˚

˝

m

rm`1

ĳ

Emr pΦq

´u ¨ Lφ ` u| rH ´∇Kφ|2 ` u ¨ trK
дHt0pφq

´ Btu ¨ φmr ´
⟨
∇Itu,∇Itφ

⟩
dvolIt dt

˛

‹

‚
dr .

Now, it is clear that

⟨
∇Itu,∇Itφ

⟩
“ divI

´

φmr ¨ ∇Itu
¯

´ φmr ¨ ∇Itu

which, together with eorem .., implies that

ĳ

Emr pΦq

´
⟨
∇Itu,∇Itφ

⟩
dvolIt dt “

ĳ

Emr pΦq

φmr ¨ ∆Iu dvolIt dt

which establishes the result in the case where u vanishes close to t0.
Now, consider ul : pF ,pr2q´1pDq Ñ R defined by ul px ,tq “ χl pt0 ´ tq ¨ upx ,tq. e above

implies that

»

—

–

1
rm

ĳ

Emr pΦq

χl pt0 ´ tq ¨ u

„

|∇Itφ|2 `

ˆ

| rH |2 ´
1
2
trIF˚

t h

˙

φmr

ȷ

dvolIt dt

fi

ffi

fl

r“r2

r“r1
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“

ż r2

r1

¨

˚

˝

m

rm`1

ĳ

Emr pΦq

χl pt0 ´ tq ¨

ˆ

´u ¨

ˆ

Btφ ` ∆дtφ ` |∇дtφ|2 `
1
2
trдh `

n ´m

2pt0 ´ tq

˙

´φmr ¨ pBt ´ ∆Iqu ` u
ˇ

ˇ

rH ´∇Kφ
ˇ

ˇ

2
` u ¨ trK

дHt0pφq

¯

dvolIt dt

˛

‹

‚
dr

`

ż r2

r1

¨

˚

˝

m

rm`1

ĳ

Emr pΦq

u ¨
1

t0 ´ t
φmr ¨ χ 1

l pt0 ´ tq ¨ pt0 ´ tqdvolIt dt

˛

‹

‚
dr . (.)

Since 0 ď χl pt0 ´ tq ď 1, the first two integrands may be bounded in absolute value from above
by the absolute values of the corresponding integrands occurring in the statement of this theorem,
which are assumed summable. us, we may pass to the limit l Ñ 8 in the first two integrals
of identity (.) as in the proof of eorem .., and if 1

t0´t φ
m
r P L1

`

Emr0 pΦq
˘

, then, also as in the
proof of eorem ..,

ˇ

ˇ

ˇ

ˇ

u ¨
1

t0 ´ t
φmr ¨ χ 1

l pt0 ´ tq ¨ pt0 ´ tq

ˇ

ˇ

ˇ

ˇ

ď C ¨

ˇ

ˇ

ˇ

ˇ

u

t0 ´ t
φmr

ˇ

ˇ

ˇ

ˇ

P L1
`

Emr0 pΦq
˘

,

allowing us to apply the dominated convergence theorem, which implies that the last integral on
the right-hand side vanishes in the limit l Ñ 8, since χ 1

l pt0 ´ tq ¨ pt0 ´ tq
lÑ8
ÝÝÝÑ 0. Finally, if u ě 0,

we may discard the laer integral on the right-hand side by estimating it from below by 0, since
χ 1
l ě 0, wherefore the aforementioned limits involving the remaining integrals may be taken, thus
establishing the result. □

7.3. Applications. As was the case in Chapter  with Dirichlet-type flows, we may not know
toomuch about the integrability of the Harnack term. However, wemaymore carefully go through
the steps of the proof of eorem .. in order to derive a monotonicity identity nonetheless.

eorem ... Suppose u P C2,1pEmr0 pΦq,R`q and the bounds

Btφ ` ∆дtφ ` |∇дtφ|2 `
1
2
trдh `

n ´m

2pt0 ´ tq
ď aptq

Ht0pφq ě bptqд (.)

hold on Emr0 pΦq with a,b P Cpst0 ´ δ0,t0rq X L1pst0 ´ δ0,t0rq and summable over Emr0 pΦq. en the
inequality

»

—

–

1
rm

ĳ

Emr pZq

u

„

|∇It ζ |2 `

ˆ

| rH |2 ´
1
2
trIF˚

t h

˙

ζmr

ȷ

fi

ffi

fl

r“r2

r“r1

ě

ż r2

r1

¨

˚

˝

m

rm`1

ĳ

Emr pZq

´ζmr ¨ pBt ´ ∆Iqu ` u
ˇ

ˇ

rH ´∇Kζ
ˇ

ˇ

2 dvolIt dt

˛

‹

‚
dr

holds for 0 ă r1 ă r2 ă r0 whenever the two spacetime integrands are summable over Emr0 pZq, where
Z : Emr0 pΦq Ñ R` is defined such that Zpx ,tq “ exppξ ptqqΦpx ,tq with ξ ptq “

şt0
t a ´ pn ´ mqb,

ζ “ logZ , ζmr “ logpZrmq and rr0 “ r0 expp´
sup |ξ |

m q.

Proof. Since a and b are summable over st0 ´δ0,t0r, it is clear that ξ is bounded so that, by Example
.., Emr pZq is a heat ball for r ă rr0 and Em

rr0
pZq Ă Emr0 pΦq.

Now, we first assume as in the proof of eorem .. that u vanishes close to t0. Under this
assumption, we may apply this theorem to the Emr pZq:
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»

—

–

1
rm

ĳ

Emr pZq

u

„

|∇It ζ |2 `

ˆ

| rH |2 ´
1
2
trIF˚

t h

˙

ζ nr

ȷ

dvolIt dt

fi

ffi

fl

r“r2

r“r1

“

ż r2

r1

¨

˚

˝

m

rm`1

ĳ

Emr pZq

´u ¨

ˆ

Btζ ` ∆ζ ` |∇It ζ |2 `
1
2
trдh `

n ´m

2pt0 ´ tq

˙

´ ζmr ¨ pBt ´ ∆Iqu ` u
ˇ

ˇ

rH ´∇Kζ
ˇ

ˇ

2
` u ¨ trK

дHt0pζ qdvolIt dt

˛

‹

‚
dr .

Applying the bounds for φ, noting that Btζ “ Bt ξ ` Btφ, ∇ζ “ ∇дtφ and Ht0pζ q “ Ht0pφq, we
obtain

»

—

–

1
rm

ĳ

Emr pZq

u

„

|∇It ζ |2 `

ˆ

| rH |2 ´
1
2
trIF˚

t h

˙

ζ nr

ȷ

dvolIt dt

fi

ffi

fl

r“r2

r“r1

ě

ż r2

r1

¨

˚

˝

m

rm`1

ĳ

Emr pZq

´u pBt ξ ` a ´ pn ´mqbq ´ ζmr ¨ pBt ´ ∆Iqu ` u
ˇ

ˇ

rH ´∇Kζ
ˇ

ˇ

2 dvolIt dt

˛

‹

‚
dr ,

but Bt ξ “ pn´mqb´a so that we obtain the claimwheneveru vanishes near t0. e approximation
argument in the proof of eorem .. then establishes the inequality for more general u. □

Wemay now deduce local monotonicity formulæ from the preceding identity, first startingwith
the case where pM ,дq is evolving and of locally bounded geometry about px0,t0q. e following
should be considered a generalization of Ecker’s local monotonicity formula [] and ultimately a
local analogue of the monotonicity formula that would follow as a consequence of Magni, Man-
tegazza and Tsatis’ formula [].

eorem ... Let pM ,дq be an evolving Riemannian manifold with locally bounded geometry about
px0,t0q and let Φ be as in Example ... Suppose u P C2,1pEmr0 pΦq,R`q X L8pEmr0 pΦqq satisfies

pBt ´ ∆Iqu ď 0.

en there exist an r0 ą 0 depending on the geometry of M and δ , and a function ξ P Cpst0 ´ 1,t0sq
with ξ pt0q “ 0 depending on the geometry ofM such that for 0 ă r1 ă r2 ă r0, the identity

»

—

–

1
rm

ĳ

Emr pZq

u

„

|∇It ζ |2 `

ˆ

| rH |2 ´
1
2
trIF˚

t h

˙

ζmr

ȷ

dvolIt dt

fi

ffi

fl

r“r2

r“r1

ě

ż r2

r1

¨

˚

˝

ĳ

Emr pZq

u|H ´ ∇Kζ |2dvolIt dt

˛

‹

‚
dr

holds, i.e. the quantity

1
rm

ĳ

Emr pZq

u

„

|∇It ζ |2 `

ˆ

| rH |2 ´
1
2
trIF˚

t h

˙

ζmr

ȷ

dvolIt dt

is monotone for r P s0, rr0r, where Z : Emr0 pΦq Ñ R` (r0 as in Example ..) is defined such that
Zpx ,tq “ exppξ ptqqΦpx ,tq, ζ “ log Z and ζmr “ logpZrmq.

Remark ... More explicitly, ξ is given by (.) andrr0 by r0 expp´
sup |ξ |

m qwhere r0 is as in Lemma
.. (with k “ n´m

2 ).
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Proof. We proceed as in eorem .. in order to apply the eorem ... To this end, by Lemma
.., whose proof is valid for k “ n´m

2 , the necessary inequalities for φ hold on Emr0 pΦq (r0 as in
Lemma ..) with

aptq “
nµ

2
´ 2mC4 log

ˆ

4πpt0 ´ tq

r 20

˙

and

bptq “ ´mC log

ˆ

4πpt0 ´ tq

r 20
`
λ´8

2

˙

,

and these define summable continuous functions on st0 ´1,t0r. Moreover, they are summable over
Emr0 pΦq, since we may write

ĳ

Emr0 pΦq

aptqdvolIt dt ď

ż t0

t0´
r 20
4π

aptq ¨

ż

Bt
Rmr0 ptqpx0q

dvolIdt ,

and the inner integral is bounded from above by eorem ...
us, let ξ and rr0 be as in eorem ... To apply this theorem, it suffices to show, since u is

bounded on Emr0 pΦq Ą Em
rr0

pZq, |∇It ζ | ď | Ă∇ζ | and |H ´ ∇Kζ |2 ď 2
´

| Ă∇ζ |2 ` | rH |2
¯

, that

| Ă∇ζ |2, | rH |2 and
ˆ

| rH |2 ´
1
2
trIF˚

t h

˙

ζmr

are summable over Em
rr0

pZq. Now, the first function is summable by virtue of the fact that Em
rr0

pZq.
As for the second, this follows from Example .. (HB). Finally, to handle the last function, we
go back to the proof of eorem .. and note that, J rr0q denoting the approximate integral over
Em
rr0

pZq,

J rr0q pBtζ q “ J rr0q p| rH |2ζm
rr0

q ´ J rr0q p
1
2
trIF˚

t hζ
m
rr0

q ` op1q (.)

as q Ñ 8. Since the geometry of M is locally bounded in a neighbourhood of pF ,pr2q
´

Em
rr0

pZq

¯

,
1
2 trIF

˚
t h is bounded on Em

rr0
pZq so that, by Remark .., the second term on the right-hand side of

(.) is uniformly bounded in q. On the other hand, by (HB), the le-hand side of (.) is bounded
uniformly in q so that, overall, |J rr0q p| rH |2ζm

rr0
q| is uniformly bounded in q. Taking the limit q Ñ 8,

summability follows from the dominated convergence theorem. □

Restricting ourselves to the static compact case, we obtain the following analogue of Ecker’s
local monotonicity formula, which should be viewed as a localized version of Hamilton’s nonlocal
formula [].

eorem ... Let pM ,дq be a static compact Riemannian manifold and let P be as in Example ...
Suppose u P C2,1pEmr0 pΦq,R`q X L8pEmr0 pΦqq satisfies

pBt ´ ∆Iqu ď 0.

en there exist an r0 ą 0 depending on the geometry of M and δ , and a function ξ P Cpst0 ´ 1,t0sq
with ξ pt0q “ 0 depending on the geometry ofM such that the identity

»

—

–

1
rm

ĳ

Emr pZq

u

„

|∇It ζ |2 `

ˆ

| rH |2 ´
1
2
trIF˚

t h

˙

ζmr

ȷ

dvolIt dt

fi

ffi

fl

r“r2

r“r1

ě

ż r2

r1

¨

˚

˝

ĳ

Emr pZq

u|H ´ ∇Kζ |2dvolIt dt

˛

‹

‚
dr

(.)
e constants C and C4 depend only on the local geometry of M about px0, t0q as in Propositions .. and ...
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holds, i.e. the quantity

1
rm

ĳ

Emr pZq

u

„

|∇It ζ |2 `

ˆ

| rH |2 ´
1
2
trIF˚

t h

˙

ζmr

ȷ

dvolIt dt

is monotone for r P s0, rr0r, where Z : Emr0 pPq Ñ R` (r0 as in Example ..) is defined such that
Zpx ,tq “ exppξ ptqqPpx ,tq, ζ “ log Z and ζmr “ logpZrmq. If secM ě 0 and dRic ” 0, then ξ ” 0.

Remark ... More explicitly, ξ is given by (.) andrr0 by r0 expp´
sup |ξ |

m qwhere r0 is as in Lemma
.. (with k “ n´m

2 ).

Proof of eorem ... We proceed as ineorem .. in order to applyeorem ... By Lemma
.., whose proof is valid for k “ n´m

2 , we have that the inequalities (.) hold on Emr0 pPq (r0 as in
Lemma ..) with

a ” 0 and

bptq “ ´F

ˆ

1 ` log

ˆ

B

p4πpt0 ´ tqqm{2

˙˙

p“ 0 if secM ě 0 and dRic “ 0q ,

where the constants are those of eorem ... ese define summable continuous functions on
st0 ´1,t0r just as in the preceding theorem and they are furthermore summable over Emr0 pPq in light

of the argument in the preceding theorem and the inclusion Emr0 pPq Ă Emv0
pΦq for v0 “

ˆ

2
1

pr0qm ´1

˙

(cf. the inclusion (.) in Lemma ..).
Now, let ξ and rr0 be as in eorem ... Note that, since Em

rr0
pZq Ă Emr0 pPq Ă Emv0

pΦq and the
rightmost set is a heat ball, the integrands of (.) are summable by the proof of eorem ...
eorem .. now applies. □



A

Analytical Auxiliaries

Auxiliary Functions

In this section we present some auxiliary functions that are used in a few constructions.

Example A. (Approximation to χs0,8r). Let χ P C2pR, r0,1sq be defined by the following graph:

..

1

.
1
2

.
1

It is clear that

. χr1,8r ď χ ď χr 1
2 ,8r, and

. |χ 1| ď C ¨ χs 1
2 ,1r for some C ą 0.

Now, let

tχm P C8pR, r0,1squmPN

be defined such that χmpxq “ χp2mxq. Clearly

χm
mÑ8
ÝÝÝÝÑ χs0,8r ptwise

and

|x χ 1
mpxq| “ |2mx | ¨ |χ 1p2mxq| ď C ¨ |2mx | ¨ χs 1

2 ,1rp2
mxq ď Cχs2´pm`1q,2´m rpxq

mÑ8
ÝÝÝÝÑ 0. □

Example A.. Define η : RÑ r0,8r by

s ÞÑ ηpsq “ p1 ´ sq4` .

η is smooth on Rzt1u and C3 on R, whence it may easily be verified that

η1psq “ ´4 p1 ´ sq3`

and

η2psq “ 12 p1 ´ sq2` . □

Inequalities of Note

e following inequality from [] is useful for proving nonlocal monotonicity formulæ:

Lemma A.. If x ,y ą 0, then

x
´

1 ` log
´y

x

¯¯

ď 1 ` x logy







B

Some Comparison Geometry

Let pMn ,дq be a Riemannian manifold. We collect a few technical lemmata which describe the
local behaviour of distance functions on M . To this end, fix p P M and let r : Up Ñ R` be the
distance function at p defined by r :“ distpp, ¨q, where Up is Mztpu minus the cut locus of p. Set
Br :“ ∇r P ΓpTM|Up q and let dr P ΓpT ‹M|Up q be the element dual to Br . We write the metric д in
polar form, treating Br as the radial direction, i.e. such that

д “ dr b dr ` дr , (B.)

where ιBrдr “ 0.

eorem B. (Hessian Comparisoneorem [, eorem , p. ]). If k ď secд ď K inUp , then

pfK ˝ rq ¨ дr ď ∇2r ď pfk ˝ rq ¨ дr inUp ,

where fs : R` Ñ RY t˘8u is defined such that for r ą 0

fs prq “

$

’

&

’

%

?
´s cothp

?
´srq, s ă 0

1
r , s “ 0
?
s cotp

?
srq, s ą 0

.

We shall also need to know how volumes may be compared. To this end, we fix an R-vector
space isomorphism A : Rn Ñ TpM such that, for every v,w P Rn , ⟨v,w⟩ “ pдp ,Av b Awq. e
map

ϑp :“ expp ˝ A : Vp Ă Rn Ñ M

then yields exponential coördinates about p, where Vp “ pexpp ˝ Aq´1pUpq.

eorem B. (Volume Comparisoneorem [, Lemma , p. ]). If Ric ě pn ´ 1qk inUp , then

pϑ˚
p dvolдqpxq ď qk p|x |qn´1dvoleuclpxq,

for every x P Vp , where qk : R` Ñ R is defined such that for r ą 0

qk prq “

$

’

&

’

%

1?
´kr

sinhp
?

´krq, k ă 0

1, k “ 0
1?
kr

sinp
?
krq, k ą 0

.

For the purposes of estimating certain quantities continually appearing in this thesis, we shall
need some very basic properties of the tfsusPR and tqsusPR.

Proposition B.. If s ą 0 and γ P

ı

0, π?s

”

, then there exists a constantC “ Cps,γ q such that

|1 ´ r fs prq| ď Cr 2

on s0,γ s. If s ă 0, then there exists an absolute constantC ą 0 such that

1 ´ r fs prq ą ´Csr 2.


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Proof. First suppose s ą 0. Note that

sup
rPs0,γ s

ˇ

ˇ

ˇ

ˇ

1 ´ r fs prq

r 2

ˇ

ˇ

ˇ

ˇ

“ s ¨ sup
rPs0,Ms

ˇ

ˇ

ˇ

ˇ

ˇ

1 ´
?
sr cotp

?
srq

p
?
srq

2

ˇ

ˇ

ˇ

ˇ

ˇ

“ s ¨ sup
xPs0,γ

?
ss

ˇ

ˇ

ˇ

ˇ

1 ´ x cotx
x2

ˇ

ˇ

ˇ

ˇ

,

whence it suffices to establish the finiteness of the rightmost quantity. Let q : s0,π r Ñ R qpxq “

x cotx . It is clear that q is smooth on its domain. Now, fix x P s0,γ
?
sr and ε Ps0,xr. By Taylor’s

theorem with remainder,

qpxq “ qpεq ` q1pεqpx ´ εq `
q2ptq

2
px ´ εq2

for some t P rε,xs. Now, note that

lim
yŒ0

qpyq “ lim
yŒ0

cosy ¨
y

siny
“ 1.

On the other hand,

q1pyq “
siny cosy ´ y

sin2 y
“

sinp2yq

2 ´ ε

sin2 y
“

opy2q

sin2 y

yŒ0
ÝÝÝÑ 0.

Finally,

q2pyq “
2py cosy ´ sinyq

sin3 y
“

2pyp1 ´
y2

2 ` opy3qq ´ y `
y3

6 ` opy4qq

sin3 y

“ ´
4
6

y3

sin3 y
`

opy4q

sin3 y

yŒ0
ÝÝÝÑ ´

4
6
,

whence C :“ 1
2 sups0,γ

?
sr |q2| ă 8. Estimating the above expansion then yields:

|1 ´ qpxq| ď |1 ´ qpεq| ` |q1pεqpx ´ εq| `C|x ´ ε|2
εŒ0
ÝÝÑ C|x |2.

For the case s ă 0, we proceed in a similar manner, except we show that

sup
xPs0,8r

ˇ

ˇ

ˇ

ˇ

1 ´ x cothx
x2

ˇ

ˇ

ˇ

ˇ

ă 8

and 1 ´ x cothx ă 0. We thus consider q : s0,8r Ñ R defined by qpxq “ x cothx which is again
smooth on its domain. We again apply Taylor’s theorem. Firstly,

lim
yŒ0

qpyq “ lim
yŒ0

coshy ¨
y

sinhy
“ 1.

Secondly,

q1pyq “
coshy sinhy ´ y

sinh2 y
“

opy2q

sinh2 y

yŒ0
ÝÝÝÑ 0.

Moreover,

q2pyq “
2py coshy ´ sinhyq

sinh3 y
“

2
3

¨
x3

sinh3 y
`

opy4q

sinh3 y

yŒ0
ÝÝÝÑ

2
3
,





whence it is clear, using the same argument as above, that |1 ´ qpxq| ď D|x |2 for x Ps0,zs for any
z P R`, where D “ Dpzq P R`. On the other hand,

1 ´ qpyq

y2
“

1 ´ y ¨ e4y`1
e4y´1

y
“

1
y

´
e4y ` 1
e4y ´ 1

yÑ8
ÝÝÝÑ 0,

whence it follows that 1´qpxq

x 2 is uniformly bounded for x P s0,8r.
Finally, a quick computation shows that q1 ě 0 so that q ě 1, establishing the result. □

Proposition B.. Extend qs to a function r0,8r Ñ R by seing qs p0q “ 1 for every s P R. en qs
is continuous.

Proof. is is clear, since limuŒ0
sinhu
u “ limuŒ0

sinu
u “ 1. □
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p¨, ¨q, see canonical bilinear pairing
pRn ,δq, 
C , 
C3, 
C4, 
Hd∇ , see heat operator on sections
Lp , 
N , positive integers
∆∇, see Hodge Laplacian
Γp¨q, 
H , see matrix Harnack expression
I, see first fundamental form
Λ, see exterior algebra
Λk , see kth exterior product
Ppx0,t0q, see canonical backward heat kernel
χ , 
δ , 
η, 
ι, see interior product
κ´8, 
κ8, 
λ´8, 
λ8, 
R`, positive numbers
Dr1,r2 , 
pr, see projection
eдpψ q, see Dirichlet energy density
h, 
j0, 
kth exterior product bundle, 
kth exterior product space, 

canonical backward heat kernel, 
canonical bilinear pairing, 

Dirichlet energy density, 

energy-momentum tensor, 
evolving (Riemannian) manifold, 
evolving Riemannian metric, 
exterior algebra, 

first fundamental form, 
flow of Dirichlet type, 
formal backward heat kernel, 

rH , see mean curvature
harmonic map heat flow, 
heat ball

definition, 
formal, 

heat operator on sections, 
Hodge Laplacian, 

Ⅱ, see second fundamental form
interior product, 

matrix Harnack expression, 
mean curvature

definition, 
flow, 

Φfml, see formal backward heat kernel
projection, vi
proper, vi

second fundamental form, 
static (Riemannian) manifold, 
static metric, 
static problem of Dirichlet type, 
summable function (or n-form), v

T
д
ψ , see energy-momentum tensor

Yang-Mills (heat) flow, 


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