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1. Abstract 

 
1.1 Abstract (Deutsch) 

 

Einleitung: Chronische Herzinsuffizienz (CHF) ist weltweit eine der Hauptursachen für 

Morbidität und Mortalität, und ihre Prävalenz steigt in Industrieländern weiter an. Ein 

wichtiger Aspekt des CHF-Managements besteht darin, sicherzustellen, dass Ärzte 

und Patienten über die erforderlichen Ressourcen verfügen, um die besten 

Gesundheitsentscheidungen zu treffen. Prognostische Biomarker sind eine solche 

Ressource. Das n-terminale natriuretische Peptide (NT-proBNP) ist als Goldstandard- 

Biomarker für die Prognose anerkannt. Einige Studien haben jedoch eine hohe 

intraindividuelle Varianz und hohe Referenzänderungswerte bei CHF-Patienten 

berichtet. Metabolite Profiling oder Metabolomics können dazu beitragen, den Bedarf 

an robusteren prognostischen Biomarkern zu decken. Das Cardiac Lipid Panel (CLP) 

ist ein neu entdecktes Panel von Biomarkern auf Metabolitenbasis, von denen zuvor 

gezeigt wurde, dass sie den diagnostischen Wert von NT-proBNP verbessern. Über 

den prognostischen Wert ist jedoch wenig bekannt. 

 
Ziele: Wir haben versucht, die folgenden Fragen zu metabolomischen Biomarkern in 

CHF zu beantworten: 

 
• Welche metabolomischen Biomarker haben zuvor gezeigt, dass sie die Prognose von 

CHF-Patienten verbessern, und um wie viel? 

• Fügt das neuartige CLP einen prognostischen Wert für die Vorhersage der 4-Jahres- 

kardiovaskulären Mortalität hinzu? 

• Wie verhält sich der CLP-Risiko-Score im Vergleich zu anderen etablierten 

kardiovaskulären prognostischen Scores? 

 
Methoden: Die durchgeführten Analysen waren systematische Überprüfung und 

Metaanalyse, gefolgt von zwei Teilstudien zur Ergebnisvorhersage der CIBIS-ELD- 

Studie. Die CIBIS-ELD war eine doppelblinde, multizentrische Studie bei älteren CHF- 

Patienten, die randomisiert auf Bisoprolol und Carvedilol umgestellt wurde. Eine 

gezielte metabolomische Analyse der drei CLP-Biomarker wurde an 

Basisserumproben (n = 280) durchgeführt und ihr prognostischer Wert wurde nach 4 

und 10 Jahren Follow-up bewertet. 
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Ergebnisse: Aus 19 Studien (45.420 Probanden, 5.954 Ereignisse) waren insgesamt 

39 von 41 Metaboliten mit einer kombinierten Effektgröße von 1,14 (1,07-1,20) 

signifikant. Die durchschnittliche Änderung der c-Statistik nach Zugabe der Biomarker 

betrug 0,0417 (SE 0,008). In der 4-Jahres-Follow-up-Studie erreichten 35 (18%) 

Probanden den primären Endpunkt des kardiovaskulären Todes. Die AUC für das 

Modell mit nur NT-proBNP betrug 0,86 und das Modell mit CLP plus NT-proBNP betrug 

0,90. In der 10-Jahres-Follow-up-Studie erreichten 95 (34%) Probanden den primären 

Endpunkt. Die IAUC für FRS betrug 0,53, SHFM 0,61, MAGGIC 0,68, BCN Bio-HF 

0,72 und CLP 0,78. 

 

Schlussfolgerung: Bei Patienten mit CHF verbesserte die Einbeziehung eines Panels 

von 3 Biomarkern auf Metabolitenbasis in einen Risiko-Score den prognostischen 

Nutzen von NT-proBNP und übertraf andere kardiovaskuläre Risiko-Scores. Dieser 

neuartige Ansatz verspricht eine Verbesserung der klinischen Risikobewertung bei 

CHF-Patienten. 

 
1.2 Abstract (English) 

 
Background: Chronic heart failure (CHF) is a leading cause of morbidity and mortality 

worldwide and its prevalence continues to rise in developed countries. An important 

aspect of CHF management is to ensure that clinicians and patients have the 

necessary resources to make the best health decisions. Prognostic biomarkers are 

one such resource. N-terminal pro–B type natriuretic peptide (NT-proBNP) is 

recognized as the gold standard biomarker for prognosis, but some studies have 

reported a high intra-individual variance and high reference change values among CHF 

patients. Metabolite profiling, or metabolomics, can help meet the need for more robust 

prognostic biomarkers. The Cardiac Lipid Panel (CLP) is a newly discovered panel of 

metabolite-based biomarkers that has previously shown to improve the diagnostic 

value of NT-proBNP. However, little is known about its prognostic value. 

Aim: We sought to answer the following questions concerning metabolomic biomarkers 
in CHF: 

 
• Which metabolomic biomarkers have previously shown to improve prognosis of 

CHF patients, and by how much? 

• Does the novel CLP add prognostic value for prediction of 4-year cardiovascular 

mortality? 
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• How does the CLP risk score perform in comparison to other established 

cardiovascular prognostic scores? 

 

Methods: The performed analyses were systematic review and meta-analysis followed 

by two outcome prediction sub-studies of the CIBIS-ELD trial. The CIBIS-ELD was a 

double blind, multicenter trial in elderly CHF patients, randomized to bisoprolol and 

carvedilol. A targeted metabolomic analysis of the three CLP biomarkers was performed 

on baseline serum samples (n=280) and its prognostic value was evaluated at 4-year and 

10-year follow up. 

 

Results: From 19 studies (45,420 subjects, 5,954 events) a total of 39 of 41 metabolites 

were significant with a combined effect size of 1.14 (1.07-1.20). The average change 

in c-statistic after adding the biomarkers was 0.0417 (SE 0.008). For the 4-year follow 

up study, 35 (18%) subjects met the primary endpoint of cardiovascular death. The 

AUC for the model with NT-proBNP only was 0.86, and the model with the CLP plus 

NT-proBNP was 0.90. For the 10-year follow up study, 95 (34%) subjects met the 

primary endpoint. The IAUC for FRS was 0.53, SHFM 0.61, MAGGIC 0.68, BCN Bio- 

HF 0.72, and CLP 0.78. 

 
Conclusion: In patients with CHF, incorporating a panel of 3 metabolite-based 

biomarkers into a risk score improved the prognostic utility of NT-proBNP and 

outperformed other cardiovascular risk scores. This novel approach holds promise to 

improve clinical risk assessment in CHF patients. 
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2. Background 
 

Chronic heart failure (CHF) is a leading cause of morbidity and mortality and its 

prevalence continues to rise, partly because of a shift in the age distribution and 

improved care and treatment (1, 2). Clinicians should ensure that patients with CHF 

have the necessary resources and knowledge to make the best health decisions. 

Resources which support clinical decision-making, such as prognostic biomarkers, 

could help in making such shared decisions. Amongst biomarkers widely used in CHF, 

N-terminal pro–B type natriuretic peptide (NT-proBNP) is recognized as a standard 

reference for both prognosis and diagnosis. Despite the widespread use of NT- 

proBNP, some studies have reported a high intra-individual variance among patients 

with CHF, along with high reference change values for this biomarker (3-5). Recently, 

there has been an increase in the number of prognostic biomarkers being tested for 

CHF such as growth differentiation factor-15 (GDF-15) (6, 7), high-sensitivity C- 

reactive protein (hs-CRP) (8, 9), galectin-3 (Gal-3) (10, 11), and high-sensitivity 

troponin T (hs-TnT) (12, 13). However, long-term follow-up studies are lacking, and 

the added value of these markers is still under debate. 

 
Metabolomic profiling, or metabolomics, can help meet the need for more 

precise prognostic biomarkers. Metabolomics is the study of small-molecule 

metabolites (<1,500 Da) that provides a snapshot of a deeper phenotype that reflects 

the products of cellular metabolism and the effects of genomic, transcriptomic, and 

proteomic variations. This approach provides a holistic signature of biochemical 

activities that could be associated with diet, medication, and disease progression (14- 

16). The advantages of metabolomics over the other omics technologies include its 

high sensitivity and the smaller size of the number of endogenous molecules relative 

to the number of genes, mRNA, or proteins. One of the disadvantages of metabolomics 

technology, is quantification. The signal intensity of any compound is affected by the 

type of sample preparation and its molecular environment, therefore, results across 

experiments may be heterogenous. Nevertheless, studies of metabolomic biomarkers 

in CHF have been published previously that support the overall hypothesis that 

circulating metabolites may be used for the diagnosis and prognosis of cardiovascular 

disease patients (17-28). 

 
Metabolomic biomarkers can be incorporated into a prognostic model, defined 
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as a formal combination of multiple predictors from which risk of a specific outcome 

can be calculated for individuals. Prognostic models are abundant in the literature, and 

the most popular ones include the SHFM (Seattle Heart Failure Model), FRS 

(Framingham Risk Score), MAGGIC (Meta-analysis Global Group in Chronic Heart 

Failure) and BCN Bio-HF (Barcelona Bio-Heart Failure Risk Calculator). The SHFM 

score is the most thoroughly validated and contains the most predictor variables of the 

four (29). The MAGGIC score (30) was developed from a dataset of over 39,000 

patients across 30 studies and validated on more than 60,000 patients from 2 CHF 

cohorts (31, 32). The FRS score was developed as a sex-specific risk score that can 

be conveniently used to calculate incident cardiovascular disease (CVD) risk or risk of 

individual CVD events (33). The BCN Bio-HF score contains 11 clinical variables which 

includes the most biomarker variables (NT-proBNP, high-sensitivity cardiac troponin T 

(hs-cTnT), high-sensitivity soluble ST2 (ST2)) and has been validated (34, 35). These 

models all use common clinical variables for the prognosis of CHF patients and have 

convenient online calculators. Although these scores have been validated, they have 

not been widely adopted possibly because they are not routinely calculated in clinical 

practice (36-38), have poor reliability at the individual patient level (31), or suffer from 

a significant amount of missing data requiring imputation. Developing a score utilizing 

metabolomic biomarkers in combination with conventional cardiovascular biomarkers 

may improve result in an improved prognostic model. 

 
Recently, a novel panel of metabolites known as the Cardiac Lipid Panel (CLP) 

was found to improve the diagnostic performance over NT-proBNP alone (39). Details 

of the CLP have been published previously (39). Briefly, the CLP is a biomarker panel 

consisting of three specific metabolomics features: triacylglycerol (TAG) 

18:1/18:0/18:0, phosphatidylcholine (PC) 16:0/18:2, and the sum of the 3 isobaric 

sphingomyelin (SM) species SM d18:1/23:1, SM d18:2/23:0, and SM d17:1/24:1. Its 

prognostic performance, however, is unknown. In this study, the predictive value of 

the CLP was analyzed in elderly ambulatory patients with CHF at 4 year follow up and 

10 year follow up. 

 
3. Aims 

 
 

The presented work aimed to answer the following three questions: 



8 
 

1. Which metabolomic biomarkers have previously shown to improve prognosis of 

CHF patients, and by how much? 

2. Does the novel CLP add prognostic value for prediction of 4-year cardiovascular 

mortality? 

3. How does the CLP risk score perform in comparison to other established 

cardiovascular prognostic scores? 

 

4. Methods 

 
 

Data used in this work was obtained from previously published metabolomics 

studies of prognostic biomarkers, for Aim 1; and the CIBIS-ELD (The Cardiac 

Insufficiency Bisoprolol Study in ELDerly) trial for Aims 2-3. CIBIS-ELD was an 

investigator-initiated, multicenter trial (55 centers in four countries), 1:1 randomized, 

double-blind phase 3 trial in CHF patients, which compared the tolerance of bisoprolol 

and carvedilol (40). Patients were 65 years or older, and beta-blocker naïve or on 1/4 

of the guideline recommended target or equivalent dose at baseline. In total, 883 

patients were enrolled and randomized to bisoprolol (10 mg/day target dose) or 

carvedilol (25 mg b.i.d target dose) (40). For aims 2-3 a random sub-cohort (n=589) 

was selected. Then selection for only those which passed sample quality control (41), 

and had a sufficient amount of blood aliquot sample for metabolite profiling, resulting 

in a final cohort of 280 cases. The final cohort was studied in a case-cohort design. 

The primary outcome, cardiovascular death, was defined as death by myocardial 

infarction, non-responding arrhythmia, asystole, chronic pump failure, or other cardiac 

cause and verified by a blinded committee of cardiologists. 

 
Aim 1: Systematic Review and Meta-analysis 

 
 

To answer Aim 1, a systematic review and meta-analysis of metabolomic 

biomarkers for CVD risk prediction was performed. The Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) guideline was followed for the 

systematic review and meta-analysis. Multiple layers of keyword search criteria were 

used in the PubMed, Google Scholar, SCOPUS, and Web of Science databases from 

January 2010 to July 2019. The inclusion and exclusion criteria were as follows: 
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Inclusion criteria: 

• Human blood samples 

• Prognosis of CVD outcomes 

• Multivariate prediction models 

• Discrimination or risk reclassification analysis of prediction models 

• Mass spectrometry (MS) or Nuclear Magnetic Resonance (NMR) 

approaches 

 
Exclusion Criteria: 

• Diagnostic biomarker studies 

• Literature reviews 

• Non-CVD Studies 

• Articles published in languages other than English 

Aim 2: CIBIS-ELD 4-year Follow up Study 

To answer Aim 2, data from the CIBIS-ELD sub-cohort (n=280) at 4-year follow 

up was used and the CLP biomarker panel and NT-proBNP was measured. A simple 

score ranging from 0-4 was calculated using the three CLP biomarkers plus NT- 

proBNP. Time-to-event analysis and discrimination analysis of 3 multivariate models 

were performed: 

• Model A: Clinical Variables 

• Model B: Clinical Variables + NT-proBNP 

• Model C: Clinical Variables + NT-proBNP + CLP 

Risk reclassification was measured using the Net Reclassification Index (NRI) and 

Integrated Discrimination Index (IDI). 

 
Aim 3: CIBIS-ELD 10-year Follow up Study 

 
 

 

To answer Aim 3, the same subjects from the CIBIS-ELD study were used but at 

10-year follow-up. The CLP score prognostic performance was compared to four 

traditional prognostic scores: FRS, MAGGIC, BCN-BioHF, and SHFM. Each prognostic 

score was calculated using the corresponding method proposed by the original authors 

(29-31, 34). The CLP risk score was calculated the same way as the 4-year follow up 

study and compared to the other scores using, time-to-event analysis, differences in 
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discrimination statistics, and cluster analysis. 

Biomarker Measurements 

Baseline blood samples were taken in standardized conditions by venous 

puncture after a 20-minute resting period, centrifuged immediately and stored at -80 

degrees Celsius. The samples were transferred on dry ice to a specialized 

metabolomics lab for analysis. Targeted metabolite profiling was performed using a 

commercially available kit. The kit uses a protocol based on a 1-phase extraction of the 

blood samples followed by gas chromatography mass spectrometry (GC-MS) (Agilent 

6890 GC coupled to an Agilent 5973 MS-System) and liquid chromatography tandem- 

mass spectrometry (LC-MS/MS) (Agilent 1100 HPLC-System coupled to an Applied 

Biosystems API4000 MS/MS-System) analysis as previously described (39). The 

analytical protocol was designed for routine measurement in the clinical practice setting; 

however, it is currently only available in specialized labs equipped with MS technology. 

NT-proBNP was also measured from the same blood samples using commercially 

available assays (Elecsys, Roche Diagnostics). 

 
Statistical Analysis 

 
 

Aim 1: Systematic Review and Meta-analysis 
 
 

For the meta-analysis, the random-effects model was used because it 

incorporates both within- and between-study components of variance. Heterogeneity 

for effect sizes was estimated by the Cochran Q test and I2 statistic, with .30% 

considered at least moderate heterogeneity. Publication bias was assessed by visual 

inspection of funnel plots and regression test for funnel asymmetry, evaluating 

skewness of the distribution of SEs around the effect estimates, using a significance 

level of P < 0.05 to indicate significant asymmetry. Meta-analysis was conducted using 

metan package for Stata 14.2 (StataCorp) with a two-tailed of 0.05 considered 

statistically significant. Publication bias and heterogeneity was conducted using the R 

3.5.0 (R Core Team, 2018) metafor package (v2.13.1; Gabry & Goodrich, 2016). 

 
 

Aim 2: CIBIS-ELD 4-year Follow up Study 
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The CLP risk score was calculated as the sum of biomarkers above the Youden 

index cut-off (42). There were 4 cut-off values, since four biomarkers are included in the 

score, three from the CLP and one from NT-proBNP. Each cut-off was calculated using 

Youden’s index of the predicted probability from the Cox regression. To evaluate the 

predictive value of the CLP score, three multivariable prediction models were built using 

Cox regression. The first model was built using only clinical covariates (Model A); then 

NT-proBNP was added to the first model (Model B); finally, the CLP score was added 

to Model B (Model C). The considered clinical covariates were: age, sex, BMI, New York 

Heart Association (NYHA) class, creatinine, LDL cholesterol, triglycerides, left 

ventricular ejection fraction (LVEF), history of diabetes, history of myocardial infarction, 

smoking history, hypertension, hyperlipidemia, coronary artery disease, medication 

including beta-blockers, aldosterone receptor blockers, ace inhibitors, anti-arrhythmic 

agents, aspirin, calcium channel blockers, diuretics, glycosides, nitrates, statins, 

sedative agents, vitamin K antagonists. To measure the discrimination of each model, 

the AUC was calculated for Models A, B, and C. Differences in Uno’s concordance 

statistics were calculated for hypothesis testing of the change in AUC of the three 

models (43). 

 
To measure risk re-classification, both continuous and categorical NRI were 

calculated as well as IDI (44, 45). The categorical NRI used 3 risk categories of <60%, 

60%-85% and >85% corresponding to low, intermediate, and high risk. The continuous 

NRI does not depend on the choice of categories but allocates any change in predicted 

risk in the correct direction (46). IDI measures the ability of the new model to increase 

average sensitivity without reducing average specificity. 

 
Aim 3: CIBIS-ELD 10-year Follow up Study 

 
 

The same sub-cohort was analyzed at 10-year follow up. Cox Regression was 

performed on each of the prognostic scores to measure their association with the 

outcome. Harrell’s c statistic (47) and IAUC were generated to assess the discrimination 

of each score. The IAUC curves are computed as a weighted average of the AUC values 

at all the event times, with the weights as the jumps of the Kaplan-Meier estimate of the 

survivor function. Hypothesis testing of the change in IAUC was performed by 

calculating the differences in concordance statistics (43). . Calibration (i.e., the 

agreement between observed outcomes and predictions) of all models was assessed 
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graphically, with calibration plots. Analyses were performed using SAS statistical 

software version 9.4 (SAS Institute, Inc., Cary, North Carolina) and JMP pro software 

version 14, R software version 3.6.1, and Stata Statistical Software version 16 (48-51). 

 
Hierarchical cluster analysis was performed using the 5 prognostic scores (CLP, 

FRS, MAGGIC, BCN-BioHF, SHFM) as input to assess whether the risk scores could 

be used partition subjects into different risk groups. Using this clustering technique, 

similar prognostic score data from participants were grouped together, such that the 

members in the same group were more similar to each other than the members in the 

other groups. Comparisons of patient characteristics across risk clusters was performed 

using Wilcoxon rank sum test for continuous variables; and Pearson’s chi-square test 

(or Fisher’s exact test) or Mantel-Haenszel Chi-square test for categorical and ordinal 

data, respectively. Kaplan-Meier curves were used to compare the survival distribution 

across risk clusters. 

 
 

5. Results 

 
Aim 1: Systematic Review and Meta-analysis 

 
 

The combination of search filters based on the inclusion/exclusion criteria 

retrieved 604 articles from Pubmed, 52,700 from Google Scholar, 44,591 from 

SCOPUS, and 663 from Web of Science. Among those there were 1,333 unique 

abstracts reviewed and 1,311 were excluded. After final exclusions, 22 publications were 

eligible for further analysis. The mean age per study ranged from 45 to 85 years. The 

mean follow-up time ranged from 1 to 23 years and the number of participants ranged 

from 67 to 8,101. The majority of studies used a cohort design in at least 1 of their 

analyses, with only 2 exclusively using a case-control design (52, 53). Most studies used 

a targeted metabolite profiling approach and only 4 studies used an untargeted 

approach (19, 24, 52, 54). Most studies used MS technology with only 2 studies which 

used exclusively NMR technology (24, 55), and 1 study which used both and then 

measured the consistency between the two methods for biomarker associations with 

CVD outcomes (28). 

 
The meta-analysis included the effect sizes of 41 biomarkers from 18 studies 
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(45,420 subjects, 5,954 events). Figure 1 shows the forest plot of effect sizes and 95% 

CI of the selected metabolomic features and metabolite classes (subgroup analysis) 

associated with fatal CVD outcomes. The combined effect for all the metabolites was 

1.14 (1.07-1.20), but the heterogeneity was high (I2 = 91.5% p < 0.0001). A total of 39 

biomarkers were significantly associated with fatal CVD outcomes, of which 27 were 

associated with a higher risk and 12 were associated with a lower risk. The median 

number of metabolites used in each study’s prediction model was 4 and most initially 

analyzed between 30 and 300 metabolites, except for 3 studies which focused on one 

metabolite, TMAO, (17, 52, 56). The definition of CVD outcomes varied between studies; 

15 studies used a composite outcome, and most studies had a mortality component 

(n=20). The c-statistics/AUC for multivariate models including metabolomic biomarkers 

ranged from 0.684 to 0.874, and the average change in c-statistics after adding the 

metabolite biomarkers was 0.0417 (SE 0.008). The only subgroups with significant 

combined effect sizes were acylcarnitines ES 1.15 (1.08-1.23), I2 = 23.4% (p=0.265), 

and metabolite scores ES = 2.09 (1.49-2.93), I2 = 79.2% (p=0.001). Publication bias was 

significant as the regression test indicated funnel plot asymmetry (p = 0.0020). 
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Figure 1: Forest plot of effect sizes of metabolomic biomarkers and combined effect 
sizes for subgroups in predicting CVD outcomes (McGranaghan et al., 2020) 

 
 

Aim 2: CIBIS-ELD 4-year Follow up Study 

 

Aim 2: Does the novel CLP add prognostic value for prediction of 4-year cardiovascular 
mortality? 

 
 

Mean patient age was 72.1 (4.9) years, 73.6% were men, 45% patients had heart 

failure with reduced ejection fraction (HFrEF) (LVEF < 35%), 49% had heart failure with 

mid-range ejection fraction (HFmEF) (LVEF 35-49%), 4% had heart failure with 

preserved ejection fraction (HFpEF) (LVEF ≥ 50%), and the majority of patients were in 
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NYHA functional class II (67.5%). During the follow-up period (mean = 50 months, SD = 

8; median = 46 months), 35 (13%) died from cardiovascular causes. 

Figure 2 shows the measures of discrimination (AUC) for the 3 multivariable 

models with a comparison to its preceding model to test the level of significance of the 

change in AUC after adding the respective covariate(s). The AUC for Model A was 0.84 

and that of Model B was 0.86 and the final adjusted Model C was 0.90. The difference in 

AUC after adding the CLP score (Model B vs. C) was significant (p = 0.02), whereas the 

difference after adding NT-proBNP to the clinical model (Model A vs. B) was insignificant 

(p = 0.47). 

 
 

Figure 2: Discrimination analysis of the CLP biomarker risk score for 4-year 
cardiovascular mortality (McGranaghan et al., 2020) 

 
The overall categorical NRI was 0.25 using the 3 risk categories 0-60%, 60-85% 

and >85%, meaning 25% of subjects were re-classified into the respective correct risk 

category after adding the CLP. Accordingly, 59% of the re-classified cases were down- 

graded, and the other 41% were up-graded. Amongst patients experiencing events, the 

overall categorical NRI was 0.60, with 33% of those down-graded and 67% up-graded. 

For non-events, the categorical NRI was 0.19, with 70% of those down-graded and 30% 

up-graded. The overall continuous NRI was 0.472 and the IDI was 0.019. The CLP 

model (Model C) showed that its high-risk category contained predominantly subjects 

who experienced an event (77%), whereas the respective fraction in the NT-proBNP 
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model (Model B) was only 42%. 

 
 

Aim 3: CIBIS-ELD 10-year Follow up Study 

 

Aim 3: How does the CLP risk score perform in comparison to other established 
prognostic scores at 10 year follow up? 

 
 

During the follow-up period (mean=81 months, SD=33; median=96 months), 95 

(34%) patients met the primary outcome. Table 1 shows the Cox Regression results. 

The CLP (HR =2.38, p<0.001), SHFM (HR = 2.01, p=0.002, and MAGGIC (HR =1.10, 

p<0.001), and BCN Bio-HF (HR=1.09, P=0.0393) scores were significantly associated 

with the outcome while FRS was not. 

 
 

Score HR (95% CI) p value 

SHFM 1.89 (1.29-2.807) 0.0017 

FRS 1.02 (0.97-1.07) 0.5291 

MAGGIC 1.10 (1.05-1.14) <.0001 

BCN Bio-HF 1.09 (1.00-1.84) 0.0393 

CLP 2.38 (1.95-2.92) <.0001 

 

Table 1: Prognostic Scores and Hazard Ratios for Cardiovascular Mortality 

 
 

Figure 3 shows the AUC change over time (IAUC) for the 5 prognostic scores with the 

comparison of concordance statistics for hypothesis testing. The IAUC was 0.53, 0.61, 

0.68, 0.72, and 0.78 for FRS, SHFM, MAGGIC, BCN Bio-HF, and CLP, respectively. The 

models showed adequate calibration except for FRS (calibration curve slope = 0.894). 
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Figure 3: Discrimination Performance for each Prognostic Score for 10-year 
Cardiovascular Mortality (McGranaghan et al., 2021) 

 
Three risk clusters were generated following hierarchal cluster analysis: low risk, 

n=119; moderate risk, n= 44; high risk, n=117. Patients in the highest risk cluster were 

older, with lower LVEF, higher NT-proBNP, and experienced a higher frequency of 

events. Rates of mortality were: low risk cluster (20%), moderate risk cluster (27%) and 

high-risk cluster (50%). All prognostic scores’ distributions were significantly different 

across their respective risk clusters. Of the traditional risk scores, only SHFM and 

MAGGIC, had its highest mean score in the high-risk cluster. The categorical CLP score 

showed a skewed distribution of higher risk scores (3-4) in the moderate and high-risk 

clusters. In the high-risk cluster, most subjects had CLP scores of 3-4. Figure 3 shows 

the hierarchical cluster dendrogram mapped to illustrate the assignment of patients into 

their respective clusters with the associated color map which shows the distribution of 

each prognostic score within each cluster. We can infer from the cluster memberships 

that the CLP risk score was better at dividing patients into their respective risk cluster. 
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Figure 3: Hierarchal cluster dendrogram of three risk clusters illustrating the assignment 

of patients into risk clusters based on the prognostic scores. Blue dendrogram indicates 

the cluster 1 (low risk), n=119; Grey dendrogram indicates cluster 2 (moderate risk), n= 

44, Red dendrogram indicates cluster 3 (high risk), n= 117 (McGranaghan et al., 2021) 

 
 

6. Discussion 

 
Recently the research of biomarkers has increased significantly since it has 

consistently been shown that a combination of multiple molecules may be more precise 

in targeting high risk patients. Research groups have reported on metabolomics based 

clinical investigations to identify prognostic biomarkers, however there is a lack of a 

centralized metabolite biomarker repository that can be used for meta-analysis and 

biomarker validation. The aim of the meta-analysis was not to identify, nor to verify new 

metabolomic prognostic markers, but to report metabolomic biomarkers that are 

commonly associated with CVD events and assess their added predictive value to 

provide a basis for comparison of a new biomarker panel (e.g. CLP) studied in Aims 2-3. 

We found that lipid-based metabolic pathways are the primary focus in cardiovascular 

metabolomic research and thus represent a valuable target potentially amenable to 
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clinical use (57-59). The majority of studies measured metabolites using MS technology, 

which enables higher resolution phenotyping of human blood samples compared to 

other technologies such as NMR and is also the preferred method for analysing lipid- 

related metabolic pathways. Metabolite scores were the best performing subgroup, but 

this should be interpreted with caution since they showed high heterogeneity and were 

developed in an unstandardized manner specific to the study’s sample. Data pre- 

processing methods, including scaling and transformations, could be another source of 

heterogeneity. The variety in statistical approaches show the need for clearer analytical 

standards that should be applied in metabolite-based biomarker score development. 

 
In the second part of the analysis, we showed that a metabolite-based score 

based on a novel panel of lipid metabolites, known as the CLP, added prognostic value 

for the prediction of long-term cardiovascular mortality over NT-proBNP alone. Using a 

biomarker score rather than including the individual CLP biomarkers (n=3) in the model 

was based on the meta-analysis findings in which the metabolic score subgroup 

performed better compared to individual biomarkers. The predictive model results for the 

CLP score were consistent with the meta-analysis as far as incremental prognostic value 

added (ΔAUC). Adding the CLP to the NT-proBNP model yielded a significant change in 

AUC and risk reclassification was improved as it correctly identified a higher proportion 

of high-risk patients experiencing an event. Since NT-proBNP is a marker of elevated left 

atrial pressures and volume overload, it may be of limited use in well compensated, 

clinically stable heart failure patients. Application of a single biomarker such as NT- 

proBNP for outcome prediction is primarily limited by insufficient specificity, resulting in a 

high false positive rate or low positive predictive value (60, 61). A combination of several 

metabolomic biomarkers into a panel or a score, may provide a better prognosis over 

single biomarkers. Therefore, this marker may provide additional prognostic value and 

more information at the metabolic level. 

 
In the third part of the analysis, we compared the CLP risk score to other 

conventional CVD risk scores, as we may have missed specific combinations of 

predictor variables which are used in these scores. The CLP score showed the best 

discrimination compared to the other 4 scores in predicting 10-year cardiovascular 

mortality. This indicates that the biomarker information included in the CLP score could 

more precisely classify high risk CHF patients than the information included in the 4 

other risk scores. However, the biomarker information from the CLP is not as easily 
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obtainable and these findings should first be validated in larger cohorts. In addition, none 

of the other scores were originally developed for 10-year cardiovascular mortality, but we 

are not aware of a score specific for predicting 10-year risk of cardiovascular death. 

Nevertheless, the other risk scores could be improved by incorporating biomarkers. For 

instance, NT-proBNP is a well-established biomarker and only BCN Bio-HF contained 

this marker. BCN Bio-HF was the next best performing prognostic score after the CLP. 

Following discrimination analysis, we performed cluster analysis to assess how well the 

risk scores could partition subjects into different risk groups. The CLP score showed a 

more uniform grouping of patients according to their risk score stratification while the 

other scores showed a more heterogenous distribution across risk clusters. Several prior 

studies have used similar clustering methods to identify clinically relevant patient 

subgroups for CHF (62, 63). This approach is useful in defining relevant groups of 

patients and could minimize the problems of multicollinearity while evaluating whether 

the predictive variables are useful in separating these groups. 

 
In addition to investigating the improvement of the prognostic performance of 

cardiovascular outcomes, it is conceivable that metabolomics findings may also foster a 

better understanding of the pathophysiology and biological mechanisms involved in the 

development of CHF events. These studies’ findings are consistent with previous 

research of such mechanisms. The CLP metabolites belong to three different lipid 

subclasses, sphingomyelin (SM) phosphatidylcholine (PC), and triglycerides (TAG), 

which have been found to be associated with cardiomyocyte stress/apoptosis (64), 

intestinal microbial metabolism/inflammation (17), and coronary artery disease (65), 

respectively. 

 
Sphingomyelins and their hydrolysis by sphingomyelinase lead to increased 

amounts of ceramide. Dysfunctional sphingomyelin and ceramide metabolism may lead 

to or aggravate cardiovascular diseases via the generation of reactive oxygen species 

(ROS) involved in the modulation of cell proliferation and apoptosis, neutrophil adhesion 

to the vessel wall, and vascular tone (66). It was previously reported that lipid species 

such as Cer-16 and SM-16 were associated with increased risk of heart failure (67). 

Sigruener et al. reported that the sphingomyelin species SM 16∶0, 16∶1, 24∶1 and 24∶2 

were associated with mortality [57]. The CLP biomarker panel consists of the sum of 

three monosaturated fatty acid carrying SM species: SM d18:1/23:1, SM d18:2/23:0, SM 

d17:1/24:1. 
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PC is the most abundant lipid in humans and is subjected to lipid peroxidation and 

ROS formation (68). Myocardium suffers heavily from lipid peroxidation related injury 

(69). PC carrying polyunsaturated fatty acids such as PC (16:0/18:2), which is a 

component of the CLP panel, are at high risk for lipid peroxidation (70). Previous studies 

have shown that lipid peroxidation and ROS generation are associated with cardiac 

damage and increased risk of mortality. For example, it was found that higher 

consumption of PC increased the risk of organ injury and cardiovascular mortality (71). 

Natural antioxidants like α-tocopherol have shown to reduce such oxidative stress and 

inflammation thereby preventing the progression of cardiac injury (72). 

 
The molecules of TG regulate insulin-signaling pathways by activating 

serine/threonine kinases, which suppress insulin receptors, and thus inducing peripheral 

insulin resistance. It has previously been shown that insulin resistance leads to 

inflammation and atherosclerosis (73). The relationship between total triglycerides and 

insulin resistance and CVD risk are well established (74), however, the relationships 

between individual serum TGs and insulin resistance is not. A previous study on 

individual TGs revealed that serum TG molecules containing saturated and 

monounsaturated fatty acids, such as TG(16:0/16:0/18:1) and TG(16:0/18:1/18:0), were 

correlated with insulin resistance. The CLP consists of the saturated and monosaturated 

fatty acid carrying TAG 18:1/18:0/18:0. These findings indicate that metabolomic studies 

may help gain a deeper understanding of the molecular mechanisms of CVD. 

 
In future studies we would like to further elucidate the prognostic utility of the CLP 

and validate its clinical effectiveness by including a larger cohort with more women, 

patients with early-stage CHF. Following these studies and regulatory approval, it is 

possible that the CLP can be tested alongside NT-proBNP in the clinical setting for a 

more precise risk assessment of CHF patients (Figure 5). More accurate risk 

assessment and prognostic biomarkers in clinical practice could help to match the 

intensity or type of therapy with an individual patient’s risk. The CHF patient visiting their 

cardiologist is ordered the CLP test along with the standard NT-proBNP test. The tests’ 

output would classify the patient’s risk more precisely, supporting the physician’s 

decision on how to adjust medication therapy or have a more informed discussion with 

the patient. Currently, the CLP test must be performed at a specialized lab with MS 

equipment since it is pending formal utilization review. 
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Figure 5: Proposed patient flow for testing the CLP in addition to NT-pro-BNP 
(McGranaghan et al., 2020) 

 

7. Conclusions 

Our findings demonstrate that the CLP risk score comprising a panel of 3 lipid- 

based metabolomic features meaningfully improved the prediction of CV mortality and 

outperformed traditional prognostic scores. Results for the improvement in prognostic 

value were consistent with previous similar studies as shown in the systematic review 

and meta-analysis. This the metabolomics approach may potentially translate into 

clinical applications such as routinely applied risk stratification and targeted treatments 

for CHF patients. The CLP score is a step in the direction of providing a more precise 

decision support tool to assist clinicians and patients in managing their CHF treatment. 
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