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1. Abstract

1.1 Abstract (Deutsch)

Einleitung: Chronische Herzinsuffizienz (CHF) ist weltweit eine der Hauptursachen fur
Morbiditat und Mortalitat, und ihre Pravalenz steigt in Industrielandern weiter an. Ein
wichtiger Aspekt des CHF-Managements besteht darin, sicherzustellen, dass Arzte
und Patienten Uber die erforderlichen Ressourcen verfigen, um die besten
Gesundheitsentscheidungen zu treffen. Prognostische Biomarker sind eine solche
Ressource. Das n-terminale natriuretische Peptide (NT-proBNP) ist als Goldstandard-
Biomarker fur die Prognose anerkannt. Einige Studien haben jedoch eine hohe
intraindividuelle Varianz und hohe Referenzdnderungswerte bei CHF-Patienten
berichtet. Metabolite Profiling oder Metabolomics kdnnen dazu beitragen, den Bedarf
an robusteren prognostischen Biomarkern zu decken. Das Cardiac Lipid Panel (CLP)
ist ein neu entdecktes Panel von Biomarkern auf Metabolitenbasis, von denen zuvor
gezeigt wurde, dass sie den diagnostischen Wert von NT-proBNP verbessern. Uber

den prognostischen Wert ist jedoch wenig bekannt.

Ziele: Wir haben versucht, die folgenden Fragen zu metabolomischen Biomarkern in

CHF zu beantworten:

» Welche metabolomischen Biomarker haben zuvor gezeigt, dass sie die Prognose von
CHF-Patienten verbessern, und um wie viel?

* Fugt das neuartige CLP einen prognostischen Wert fir die Vorhersage der 4-Jahres-
kardiovaskularen Mortalitat hinzu?

» Wie verhalt sich der CLP-Risiko-Score im Vergleich zu anderen etablierten

kardiovaskularen prognostischen Scores?

Methoden: Die durchgefiihrten Analysen waren systematische Uberpriifung und
Metaanalyse, gefolgt von zwei Teilstudien zur Ergebnisvorhersage der CIBIS-ELD-
Studie. Die CIBIS-ELD war eine doppelblinde, multizentrische Studie bei &lteren CHF-
Patienten, die randomisiert auf Bisoprolol und Carvedilol umgestellt wurde. Eine
gezielte ~metabolomische Analyse der drei CLP-Biomarker wurde an
Basisserumproben (n = 280) durchgefuhrt und ihr prognostischer Wert wurde nach 4

und 10 Jahren Follow-up bewertet.



Ergebnisse: Aus 19 Studien (45.420 Probanden, 5.954 Ereignisse) waren insgesamt
39 von 41 Metaboliten mit einer kombinierten EffektgréRe von 1,14 (1,07-1,20)
signifikant. Die durchschnittliche Anderung der c-Statistik nach Zugabe der Biomarker
betrug 0,0417 (SE 0,008). In der 4-Jahres-Follow-up-Studie erreichten 35 (18%)
Probanden den priméaren Endpunkt des kardiovaskuldren Todes. Die AUC fur das
Modell mit nur NT-proBNP betrug 0,86 und das Modell mit CLP plus NT-proBNP betrug
0,90. In der 10-Jahres-Follow-up-Studie erreichten 95 (34%) Probanden den priméren
Endpunkt. Die IAUC fir FRS betrug 0,53, SHFM 0,61, MAGGIC 0,68, BCN Bio-HF
0,72 und CLP 0,78.

Schlussfolgerung: Bei Patienten mit CHF verbesserte die Einbeziehung eines Panels

von 3 Biomarkern auf Metabolitenbasis in einen Risiko-Score den prognostischen
Nutzen von NT-proBNP und Ubertraf andere kardiovaskulare Risiko-Scores. Dieser
neuartige Ansatz verspricht eine Verbesserung der klinischen Risikobewertung bei
CHF-Patienten.

1.2 Abstract (English)

Background: Chronic heart failure (CHF) is a leading cause of morbidity and mortality
worldwide and its prevalence continues to rise in developed countries. An important
aspect of CHF management is to ensure that clinicians and patients have the
necessary resources to make the best health decisions. Prognostic biomarkers are
one such resource. N-terminal pro—B type natriuretic peptide (NT-proBNP) is
recognized as the gold standard biomarker for prognosis, but some studies have
reported a high intra-individual variance and high reference change values among CHF
patients. Metabolite profiling, or metabolomics, can help meet the need for more robust
prognostic biomarkers. The Cardiac Lipid Panel (CLP) is a newly discovered panel of
metabolite-based biomarkers that has previously shown to improve the diagnostic

value of NT-proBNP. However, little is known about its prognostic value.
Aim: We sought to answer the following questions concerning metabolomic biomarkers
in CHF:

¢ Which metabolomic biomarkers have previously shown to improve prognosis of
CHF patients, and by how much?

e Does the novel CLP add prognostic value for prediction of 4-year cardiovascular
mortality?



e How does the CLP risk score perform in comparison to other established

cardiovascular prognostic scores?

Methods: The performed analyses were systematic review and meta-analysis followed
by two outcome prediction sub-studies of the CIBIS-ELD trial. The CIBIS-ELD was a
double blind, multicenter trial in elderly CHF patients, randomized to bisoprolol and
carvedilol. A targeted metabolomic analysis of the three CLP biomarkers was performed
on baseline serum samples (n=280) and its prognostic value was evaluated at 4-year and

10-year follow up.

Results: From 19 studies (45,420 subjects, 5,954 events) a total of 39 of 41 metabolites
were significant with a combined effect size of 1.14 (1.07-1.20). The average change
in c-statistic after adding the biomarkers was 0.0417 (SE 0.008). For the 4-year follow
up study, 35 (18%) subjects met the primary endpoint of cardiovascular death. The
AUC for the model with NT-proBNP only was 0.86, and the model with the CLP plus
NT-proBNP was 0.90. For the 10-year follow up study, 95 (34%) subjects met the
primary endpoint. The IAUC for FRS was 0.53, SHFM 0.61, MAGGIC 0.68, BCN Bio-
HF 0.72, and CLP 0.78.

Conclusion: In patients with CHF, incorporating a panel of 3 metabolite-based
biomarkers into a risk score improved the prognostic utility of NT-proBNP and
outperformed other cardiovascular risk scores. This novel approach holds promise to

improve clinical risk assessment in CHF patients.



2. Background

Chronic heart failure (CHF) is a leading cause of morbidity and mortality and its
prevalence continues to rise, partly because of a shift in the age distribution and
improved care and treatment (1, 2). Clinicians should ensure that patients with CHF
have the necessary resources and knowledge to make the best health decisions.
Resources which support clinical decision-making, such as prognostic biomarkers,
could help in making such shared decisions. Amongst biomarkers widely used in CHF,
N-terminal pro—B type natriuretic peptide (NT-proBNP) is recognized as a standard
reference for both prognosis and diagnosis. Despite the widespread use of NT-
proBNP, some studies have reported a high intra-individual variance among patients
with CHF, along with high reference change values for this biomarker (3-5). Recently,
there has been an increase in the number of prognostic biomarkers being tested for
CHF such as growth differentiation factor-15 (GDF-15) (6, 7), high-sensitivity C-
reactive protein (hs-CRP) (8, 9), galectin-3 (Gal-3) (10, 11), and high-sensitivity
troponin T (hs-TnT) (12, 13). However, long-term follow-up studies are lacking, and

the added value of these markers is still under debate.

Metabolomic profiling, or metabolomics, can help meet the need for more
precise prognostic biomarkers. Metabolomics is the study of small-molecule
metabolites (<1,500 Da) that provides a snapshot of a deeper phenotype that reflects
the products of cellular metabolism and the effects of genomic, transcriptomic, and
proteomic variations. This approach provides a holistic signature of biochemical
activities that could be associated with diet, medication, and disease progression (14-
16). The advantages of metabolomics over the other omics technologies include its
high sensitivity and the smaller size of the number of endogenous molecules relative
to the number of genes, mMRNA, or proteins. One of the disadvantages of metabolomics
technology, is quantification. The signal intensity of any compound is affected by the
type of sample preparation and its molecular environment, therefore, results across
experiments may be heterogenous. Nevertheless, studies of metabolomic biomarkers
in CHF have been published previously that support the overall hypothesis that
circulating metabolites may be used for the diagnosis and prognosis of cardiovascular

disease patients (17-28).

Metabolomic biomarkers can be incorporated into a prognostic model, defined



as a formal combination of multiple predictors from which risk of a specific outcome
can be calculated for individuals. Prognostic models are abundant in the literature, and
the most popular ones include the SHFM (Seattle Heart Failure Model), FRS
(Framingham Risk Score), MAGGIC (Meta-analysis Global Group in Chronic Heart
Failure) and BCN Bio-HF (Barcelona Bio-Heart Failure Risk Calculator). The SHFM
score is the most thoroughly validated and contains the most predictor variables of the
four (29). The MAGGIC score (30) was developed from a dataset of over 39,000
patients across 30 studies and validated on more than 60,000 patients from 2 CHF
cohorts (31, 32). The FRS score was developed as a sex-specific risk score that can
be conveniently used to calculate incident cardiovascular disease (CVD) risk or risk of
individual CVD events (33). The BCN Bio-HF score contains 11 clinical variables which
includes the most biomarker variables (NT-proBNP, high-sensitivity cardiac troponin T
(hs-cTnT), high-sensitivity soluble ST2 (ST2)) and has been validated (34, 35). These
models all use common clinical variables for the prognosis of CHF patients and have
convenient online calculators. Although these scores have been validated, they have
not been widely adopted possibly because they are not routinely calculated in clinical
practice (36-38), have poor reliability at the individual patient level (31), or suffer from
a significant amount of missing data requiring imputation. Developing a score utilizing
metabolomic biomarkers in combination with conventional cardiovascular biomarkers

may improve result in an improved prognostic model.

Recently, a novel panel of metabolites known as the Cardiac Lipid Panel (CLP)
was found to improve the diagnostic performance over NT-proBNP alone (39). Details
of the CLP have been published previously (39). Briefly, the CLP is a biomarker panel
consisting of three specific metabolomics features: triacylglycerol (TAG)
18:1/18:0/18:0, phosphatidylcholine (PC) 16:0/18:2, and the sum of the 3 isobaric
sphingomyelin (SM) species SM d18:1/23:1, SM d18:2/23:0, and SM d17:1/24:1. Its
prognostic performance, however, is unknown. In this study, the predictive value of
the CLP was analyzed in elderly ambulatory patients with CHF at 4 year followup and

10 year follow up.

3. Aims

The presented work aimed to answer the following three questions:



1. Which metabolomic biomarkers have previously shown to improve prognosis of

CHF patients, and by how much?

2. Does the novel CLP add prognostic value for prediction of 4-year cardiovascular

mortality?

3. How does the CLP risk score perform in comparison to other established

cardiovascular prognostic scores?

4. Methods

Data used in this work was obtained from previously published metabolomics
studies of prognostic biomarkers, for Aim 1; and the CIBIS-ELD (The Cardiac
Insufficiency Bisoprolol Study in ELDerly) trial for Aims 2-3. CIBIS-ELD was an
investigator-initiated, multicenter trial (55 centers in four countries), 1:1 randomized,
double-blind phase 3 trial in CHF patients, which compared the tolerance of bisoprolol
and carvedilol (40). Patients were 65 years or older, and beta-blocker naive or on 1/4
of the guideline recommended target or equivalent dose at baseline. In total, 883
patients were enrolled and randomized to bisoprolol (10 mg/day target dose) or
carvedilol (25 mg b.i.d target dose) (40). For aims 2-3 a random sub-cohort (n=589)
was selected. Then selection for only those which passed sample quality control (41),
and had a sufficient amount of blood aliquot sample for metabolite profiling, resulting
in a final cohort of 280 cases. The final cohort was studied in a case-cohort design.
The primary outcome, cardiovascular death, was defined as death by myocardial
infarction, non-responding arrhythmia, asystole, chronic pump failure, or other cardiac

cause and verified by a blinded committee of cardiologists.

Aim 1: Systematic Review and Meta-analysis

To answer Aim 1, a systematic review and meta-analysis of metabolomic
biomarkers for CVD risk prediction was performed. The Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guideline was followed for the
systematic review and meta-analysis. Multiple layers of keyword search criteria were
used in the PubMed, Google Scholar, SCOPUS, and Web of Science databases from

January 2010 to July 2019. The inclusion and exclusion criteria were as follows:



Inclusion criteria:

. Human blood samples

. Prognosis of CVD outcomes

. Multivariate prediction models

. Discrimination or risk reclassification analysis of prediction models
. Mass spectrometry (MS) or Nuclear Magnetic Resonance (NMR)

approaches

Exclusion Criteria:

. Diagnostic biomarker studies

. Literature reviews

. Non-CVD Studies

. Articles published in languages other than English

Aim 2: CIBIS-ELD 4-year Follow up Study

To answer Aim 2, data from the CIBIS-ELD sub-cohort (n=280) at 4-year follow
up was used and the CLP biomarker panel and NT-proBNP was measured. A simple
score ranging from 0-4 was calculated using the three CLP biomarkers plus NT-
proBNP. Time-to-event analysis and discrimination analysis of 3 multivariate models
were performed:

e Model A: Clinical Variables
e Model B: Clinical Variables + NT-proBNP
e Model C: Clinical Variables + NT-proBNP + CLP
Risk reclassification was measured using the Net Reclassification Index (NRI) and

Integrated Discrimination Index (IDI).

Aim 3: CIBIS-ELD 10-year Follow up Study

To answer Aim 3, the same subjects from the CIBIS-ELD study were used but at
10-year follow-up. The CLP score prognostic performance was compared to four
traditional prognostic scores: FRS, MAGGIC, BCN-BioHF, and SHFM. Eachprognostic
score was calculated using the corresponding method proposed by the original authors
(29-31, 34). The CLP risk score was calculated the same way as the 4-year follow up

study and compared to the other scores using, time-to-event analysis, differences in
9



discrimination statistics, and cluster analysis.

Biomarker Measurements

Baseline blood samples were taken in standardized conditions by venous
puncture after a 20-minute resting period, centrifuged immediately and stored at -80
degrees Celsius. The samples were transferred on dry ice to a specialized
metabolomics lab for analysis. Targeted metabolite profiling was performed using a
commercially available kit. The kit uses a protocol based on a 1-phase extraction of the
blood samples followed by gas chromatography mass spectrometry (GC-MS) (Agilent
6890 GC coupled to an Agilent 5973 MS-System) and liquid chromatography tandem-
mass spectrometry (LC-MS/MS) (Agilent 1100 HPLC-System coupled to an Applied
Biosystems API4000 MS/MS-System) analysis as previously described (39). The
analytical protocol was designed for routine measurement in the clinical practice setting;
however, it is currently only available in specialized labs equipped with MS technology.
NT-proBNP was also measured from the same blood samples using commercially

available assays (Elecsys, Roche Diagnostics).

Statistical Analysis

Aim 1: Systematic Review and Meta-analysis

For the meta-analysis, the random-effects model was used because it
incorporates both within- and between-study components of variance. Heterogeneity
for effect sizes was estimated by the Cochran Q test and 12 statistic, with .30%
considered at least moderate heterogeneity. Publication bias was assessed by visual
inspection of funnel plots and regression test for funnel asymmetry, evaluating
skewness of the distribution of SEs around the effect estimates, using a significance
level of P < 0.05 to indicate significant asymmetry. Meta-analysis was conducted using
metan package for Stata 14.2 (StataCorp) with a two-tailed of 0.05 considered
statistically significant. Publication bias and heterogeneity was conducted using the R
3.5.0 (R Core Team, 2018) metafor package (v2.13.1; Gabry & Goodrich, 2016).

Aim 2: CIBIS-ELD 4-year Follow up Study

10



The CLP risk score was calculated as the sum of biomarkers above the Youden
index cut-off (42). There were 4 cut-off values, since four biomarkers are included in the
score, three from the CLP and one from NT-proBNP. Each cut-off was calculated using
Youden’s index of the predicted probability from the Cox regression. To evaluate the
predictive value of the CLP score, three multivariable prediction models were built using
Cox regression. The first model was built using only clinical covariates (Model A); then
NT-proBNP was added to the first model (Model B); finally, the CLP score was added
to Model B (Model C). The considered clinical covariates were: age, sex, BMI, New York
Heart Association (NYHA) class, creatinine, LDL cholesterol, triglycerides, left
ventricular ejection fraction (LVEF), history of diabetes, history of myocardial infarction,
smoking history, hypertension, hyperlipidemia, coronary artery disease, medication
including beta-blockers, aldosterone receptor blockers, ace inhibitors, anti-arrhythmic
agents, aspirin, calcium channel blockers, diuretics, glycosides, nitrates, statins,
sedative agents, vitamin K antagonists. To measure the discrimination of each model,
the AUC was calculated for Models A, B, and C. Differences in Uno’s concordance
statistics were calculated for hypothesis testing of the change in AUC of the three
models (43).

To measure risk re-classification, both continuous and categorical NRI were
calculated as well as IDI (44, 45). The categorical NRI used 3 risk categories of <60%,
60%-85% and >85% corresponding to low, intermediate, and high risk. The continuous
NRI does not depend on the choice of categories but allocates any change in predicted
risk in the correct direction (46). IDI measures the ability of the new model to increase

average sensitivity without reducing average specificity.

Aim 3: CIBIS-ELD 10-year Follow up Study

The same sub-cohort was analyzed at 10-year follow up. Cox Regression was
performed on each of the prognostic scores to measure their association with the
outcome. Harrell's c statistic (47) and IAUC were generated to assess the discrimination
of each score. The IAUC curves are computed as a weighted average of the AUC values
at all the event times, with the weights as the jumps of the Kaplan-Meier estimate of the
survivor function. Hypothesis testing of the change in IAUC was performed by
calculating the differences in concordance statistics (43). . Calibration (i.e., the

agreement between observed outcomes and predictions) of all models was assessed

11



graphically, with calibration plots. Analyses were performed using SAS statistical
software version 9.4 (SAS Institute, Inc., Cary, North Carolina) and JMP pro software

version 14, R software version 3.6.1, and Stata Statistical Software version 16 (48-51).

Hierarchical cluster analysis was performed using the 5 prognostic scores (CLP,
FRS, MAGGIC, BCN-BioHF, SHFM) as input to assess whether the risk scores could
be used partition subjects into different risk groups. Using this clustering technique,
similar prognostic score data from participants were grouped together, such that the
members in the same group were more similar to each other than the members in the
other groups. Comparisons of patient characteristics across risk clusters was performed
using Wilcoxon rank sum test for continuous variables; and Pearson’s chi-square test
(or Fisher’s exact test) or Mantel-Haenszel Chi-square test for categorical and ordinal
data, respectively. Kaplan-Meier curves were used to compare the survival distribution

across risk clusters.

5. Results

Aim 1: Systematic Review and Meta-analysis

The combination of search filters based on the inclusion/exclusion criteria
retrieved 604 articles from Pubmed, 52,700 from Google Scholar, 44,591 from
SCOPUS, and 663 from Web of Science. Among those there were 1,333 unique
abstracts reviewed and 1,311 were excluded. After final exclusions, 22 publications were
eligible for further analysis. The mean age per study ranged from 45 to 85 years. The
mean follow-up time ranged from 1 to 23 years and the number of participants ranged
from 67 to 8,101. The majority of studies used a cohort design in at least 1 of their
analyses, with only 2 exclusively using a case-control design (52, 53). Most studies used
a targeted metabolite profiling approach and only 4 studies used an untargeted
approach (19, 24, 52, 54). Most studies used MS technology with only 2 studies which
used exclusively NMR technology (24, 55), and 1 study which used both and then
measured the consistency between the two methods for biomarker associations with
CVD outcomes (28).

The meta-analysis included the effect sizes of 41 biomarkers from 18 studies

12



(45,420 subjects, 5,954 events). Figure 1 shows the forest plot of effect sizes and 95%
Cl of the selected metabolomic features and metabolite classes (subgroup analysis)
associated with fatal CVD outcomes. The combined effect for all the metabolites was
1.14 (1.07-1.20), but the heterogeneity was high (12 = 91.5% p < 0.0001). A total of 39
biomarkers were significantly associated with fatal CVD outcomes, of which 27 were
associated with a higher risk and 12 were associated with a lower risk. The median
number of metabolites used in each study’s prediction model was 4 and most initially
analyzed between 30 and 300 metabolites, except for 3 studies which focused on one
metabolite, TMAO, (17, 52, 56). The definition of CVD outcomes varied between studies;
15 studies used a composite outcome, and most studies had a mortality component
(n=20). The c-statistics/AUC for multivariate models including metabolomic biomarkers
ranged from 0.684 to 0.874, and the average change in c-statistics after adding the
metabolite biomarkers was 0.0417 (SE 0.008). The only subgroups with significant
combined effect sizes were acylcarnitines ES 1.15 (1.08-1.23), 12 = 23.4% (p=0.265),
and metabolite scores ES = 2.09 (1.49-2.93), 12 = 79.2% (p=0.001). Publication bias was

significant as the regression test indicated funnel plot asymmetry (p = 0.0020).

13



ES (95% Cl)  Weight

Biomarker
Glycerolipids [
Diacylglycerol 16:0_22:5 (Alshehry 2016) Ll 098(0.86,1.11) 2.75
Monoglyceride 18:2 (Ganna 2014) * 1.18(1.04,1.34) 276
Triacylglycerol 18:2_18:2_20:4 (Mundra 2018) e - 0.91(0.86,0.96) 3.08
Triacylglycerol 54:2 (Stegemann 2014) 1.22(1.03,1.44) 251
Subtotal (I-squared = 86.1%, p = 0.000) 1.05(0.91, 1.22) 11.10
Glycerophospholipids ]
Phosphatidylcholine 0-36:1 (Alshehry 2016) | e—p— 1.37(1.18,1.58) 264
Phosphatidyicholine O-36:5 (Alshehry 2016) ——l 0.84(0.73,0.97) 267
Lysophosphatidylcholine 18:2 (Ganna2014) * 1 0.81(0.71,0.92) 2.74
Lysophosphatidylcholine 18:1 (Ganna 2014) el ' 0.77(0.68,0.86) 2.81
Phosphatidylcholine 0-34:2 (Mundra 2018) * 0.93(0.87,0.98) 3.07
Phosphatidyicholine P-40:6 (Mundra 2018) * 1.10(1.00,1.20) 294
Phosphatidylcholine 0-36:1 (Mundra 2018) - 1.25(1.15,1.36)  2.97
Phosphatidylcholine P-36:2 (Mundra 2018) i 1.17(1.07,1.27) 297
Hydroxy-phosphatidylcholine C34:2 (Paynter 2018) * 1.40(1.15,1.70) 2.34
Phosp 365 2014) e 1.16(1.01.1.34) 2587
Trimethylamine N-oxide (Tang 2013) * 1.43(1.05,1.94) 169
Trimethylamine N-oxide (Tang 2014) L & 1.85(1.14,3.00) 1.00
Subtotal (I-squared = 91.1%, p = 0.000) = 1.09(0.98,1.23) 30.51
1
Sphingolipids 1
Sphingomyelin 34:1 (Alshehry 2016) I* 1.24 (1.09,1.42) 273
Sphingomyelin 28:1 (Ganna 2014) e 085(0.75.0.97) 275
Ceramide d18:1/18:0 (Havulinna 2016) = 1.24(1.11,1.33) 294
Ceramide(d18:1/16:0)/Ceramide(d18:1/24:0)Ratio (Laaksonen2016) I —*— 1.69(1.39,2.06) 233

Sphingomyelin 32:2 (Mundra 2018)
Subtotal (I-squared = 92.6%, p = 0.000)

0.92(0.83,1.03) 286
114(0.83,1.40) 13.60

Acylcamitines

Medium-long-chain acylcamitines (Rizza 2014)
Shert-chain dicarboxylacylcamitines (Shah 2010)
Medium-chain acylcarnitines (Shah 2012)
Short-chain dicarboxylacylcamitines (Shah 2012)
Long-chain dicarboxylacylcamnitines (Shah 2012)
Subtotal (I-squared = 23.4%, p =0.265)

k

1.77(1.11,2.81) 1.05
167(0.88,3.13) 067
1.12(1.04,1.21) 301
1.17(1.05,1.31) 284
1.14(1.05,1.25) 296
1.15(1.08,1.23) 10.53

' 3

Amino acids

Alanine (Rizza 2014)

Branched chain amino acids (Shah 2012)
Phenylalanine (Wurtz 2015)

Subtotal (I-squared = 90.8%. p = 0.000)

« Qs 2.18(1.17,4.07) 069
0.86(0.75,0.99) 289
1.18(1.12,1.24) 309
1.14(0.84, 1.54) 647

Metabolte Score

Metabolite Score tPS3 (Cheng 2015)
Amino Acid Score (Kume 2014)
Metabolite Score (Vaarhorst 2014)
Ceramide Score (Wang-Hu 2017)
Metabolite Score (Wang-Shiac 2017)
Subtotal (I-squared = 79.2%, p = 0.001)

3.06 (2.07, 4.52) 1.31
286(157,518) 073
1.58(1.18,2.12) 1.76
1.41(1.17,168) 243
260 (1.65,4.08) 109
209(149,293) 732

Om

Cholesterol Esters

Cholesterol Ester 24:0 (Mundra 2018)
Cholesterol Ester 16:1 (Stegemann 2014)
Subtotal (I-squared = 91.6%. p = 0.001)

087(0.79,097) 289
1.24(1.04,1.47) 248
1.03(0.73,1.46) 536

Fatty Acids

Fatty acids (Shah 2012)
Monounsaturated fatty acids (Wurtz 2015)
Omega-6 fatty acids (Wurtz 2015)
Polyunsaturated fatty acids (Wurtz 2015)
Docosahexaenoic acid (Wurtz 2015)
Subtotal (I-squared = 95.1%, p = 0.000)

1.19(1.06,1.35) 279
1.17 (1.11,1.24) 3.08
089(0.84,054) 3.08
0.88(0.82,093) 3.06
0.90(0.86,095) 3.10
0.99(0.87.1.12) 15.10

e |4
. . ’+._V*_

Overall (I-squared = 91.5%, p = 0.000)
NOTE: Weights are from random effects analysis

1.14(1.07,1.20)  100.00

Figure 1: Forest plot of effect sizes of metabolomic biomarkers and combined effect
sizes for subgroups in predicting CVD outcomes (McGranaghan et al., 2020)

Aim 2: CIBIS-ELD 4-year Follow up Study

Aim 2: Does the novel CLP add prognostic value for prediction of 4-year cardiovascular
mortality?

Mean patient age was 72.1 (4.9) years, 73.6% were men, 45% patients had heart
failure with reduced ejection fraction (HFrEF) (LVEF < 35%), 49% had heart failure with
mid-range ejection fraction (HFmEF) (LVEF 35-49%), 4% had heart failure with

preserved ejection fraction (HFpEF) (LVEF = 50%), and the majority of patients were in
14



NYHA functional class Il (67.5%). During the follow-up period (mean = 50 months, SD =
8; median = 46 months), 35 (13%) died from cardiovascular causes.

Figure 2 shows the measures of discrimination (AUC) for the 3 multivariable
models with a comparison to its preceding model to test the level of significance of the
change in AUC after adding the respective covariate(s). The AUC for Model A was 0.84
and that of Model B was 0.86 and the final adjusted Model C was 0.90. The difference in
AUC after adding the CLP score (Model B vs. C) was significant (p = 0.02), whereas the
difference after adding NT-proBNP to the clinical model (Model A vs. B) was insignificant
(p=0.47).
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=
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0.25
AUC p-value
|Clinical Variables 0.84
y |Clinical + NT-proBNP 0.86 047
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Clinical Variables
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Clinical + NT-proBNP + CLP |

Figure 2: Discrimination analysis of the CLP biomarker risk score for 4-year
cardiovascular mortality (McGranaghan et al., 2020)

The overall categorical NRI was 0.25 using the 3 risk categories 0-60%, 60-85%
and >85%, meaning 25% of subjects were re-classified into the respective correct risk
category after adding the CLP. Accordingly, 59% of the re-classified cases were down-
graded, and the other 41% were up-graded. Amongst patients experiencing events, the
overall categorical NRI was 0.60, with 33% of those down-graded and 67% up-graded.
For non-events, the categorical NRI was 0.19, with 70% of those down-graded and 30%
up-graded. The overall continuous NRI was 0.472 and the IDI was 0.019. The CLP
model (Model C) showed that its high-risk category contained predominantly subjects

who experienced an event (77%), whereas the respective fraction in the NT-proBNP
15



model (Model B) was only 42%.

Aim 3: CIBIS-ELD 10-year Follow up Study

Aim 3: How does the CLP risk score perform in comparison to other established
prognostic scores at 10 year follow up?

During the follow-up period (mean=81 months, SD=33; median=96 months), 95
(34%) patients met the primary outcome. Table 1 shows the Cox Regression results.
The CLP (HR =2.38, p<0.001), SHFM (HR = 2.01, p=0.002, and MAGGIC (HR =1.10,
p<0.001), and BCN Bio-HF (HR=1.09, P=0.0393) scores were significantly associated
with the outcome while FRS was not.

Score HR (95% CI) p value
SHFM 1.89 (1.29-2.807) 0.0017
FRS 1.02 (0.97-1.07) 0.5291
MAGGIC 1.10 (1.05-1.14) <.0001
BCN Bio-HF 1.09 (1.00-1.84) 0.0393
CLP 2.38 (1.95-2.92) <.0001

Table 1: Prognostic Scores and Hazard Ratios for Cardiovascular Mortality

Figure 3 shows the AUC change over time (IAUC) for the 5 prognostic scores with the
comparison of concordance statistics for hypothesis testing. The IAUC was 0.53, 0.61,
0.68, 0.72, and 0.78 for FRS, SHFM, MAGGIC, BCN Bio-HF, and CLP, respectively. The

models showed adequate calibration except for FRS (calibration curve slope = 0.894).
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Figure 3: Discrimination Performance for each Prognostic Score for 10-year
Cardiovascular Mortality (McGranaghan et al., 2021)

Three risk clusters were generated following hierarchal cluster analysis: low risk,
n=119; moderate risk, n= 44; high risk, n=117. Patients in the highest risk cluster were
older, with lower LVEF, higher NT-proBNP, and experienced a higher frequency of
events. Rates of mortality were: low risk cluster (20%), moderate risk cluster (27%) and
high-risk cluster (50%). All prognostic scores’ distributions were significantly different
across their respective risk clusters. Of the traditional risk scores, only SHFM and
MAGGIC, had its highest mean score in the high-risk cluster. The categorical CLP score
showed a skewed distribution of higher risk scores (3-4) in the moderate and high-risk
clusters. In the high-risk cluster, most subjects had CLP scores of 3-4. Figure 3 shows
the hierarchical cluster dendrogram mapped to illustrate the assignment of patients into
their respective clusters with the associated color map which shows the distribution of
each prognostic score within each cluster. We can infer from the cluster memberships

that the CLP risk score was better at dividing patients into their respective risk cluster.
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Figure 3: Hierarchal cluster dendrogram of three risk clusters illustrating the assignment

of patients into risk clusters based on the prognostic scores. Blue dendrogram indicates
the cluster 1 (low risk), n=119; Grey dendrogram indicates cluster 2 (moderate risk), n=
44, Red dendrogram indicates cluster 3 (high risk), n= 117 (McGranaghan et al., 2021)

6. Discussion

Recently the research of biomarkers has increased significantly since it has
consistently been shown that a combination of multiple molecules may be more precise
in targeting high risk patients. Research groups have reported on metabolomics based
clinical investigations to identify prognostic biomarkers, however there is a lack of a
centralized metabolite biomarker repository that can be used for meta-analysis and
biomarker validation. The aim of the meta-analysis was not to identify, nor to verify new
metabolomic prognostic markers, but to report metabolomic biomarkers that are
commonly associated with CVD events and assess their added predictive value to
provide a basis for comparison of a new biomarker panel (e.g. CLP) studied in Aims 2-3.
We found that lipid-based metabolic pathways are the primary focus in cardiovascular

metabolomic research and thus represent a valuable target potentially amenable to
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clinical use (57-59). The majority of studies measured metabolites using MS technology,
which enables higher resolution phenotyping of human blood samples compared to
other technologies such as NMR and is also the preferred method for analysing lipid-
related metabolic pathways. Metabolite scores were the best performing subgroup, but
this should be interpreted with caution since they showed high heterogeneity and were
developed in an unstandardized manner specific to the study’s sample. Data pre-
processing methods, including scaling and transformations, could be another source of
heterogeneity. The variety in statistical approaches show the need for clearer analytical

standards that should be applied in metabolite-based biomarker score development.

In the second part of the analysis, we showed that a metabolite-based score
based on a novel panel of lipid metabolites, known as the CLP, added prognostic value
for the prediction of long-term cardiovascular mortality over NT-proBNP alone. Using a
biomarker score rather than including the individual CLP biomarkers (n=3) in the model
was based on the meta-analysis findings in which the metabolic score subgroup
performed better compared to individual biomarkers. The predictive model results for the
CLP score were consistent with the meta-analysis as far as incremental prognostic value
added (AAUC). Adding the CLP to the NT-proBNP model yielded a significant change in
AUC and risk reclassification was improved as it correctly identified a higher proportion
of high-risk patients experiencing an event. Since NT-proBNP is a marker of elevated left
atrial pressures and volume overload, it may be of limited use in well compensated,
clinically stable heart failure patients. Application of a single biomarker such as NT-
proBNP for outcome prediction is primarily limited by insufficient specificity, resulting in a
high false positive rate or low positive predictive value (60, 61). A combination of several
metabolomic biomarkers into a panel or a score, may provide a better prognosis over
single biomarkers. Therefore, this marker may provide additional prognostic value and

more information at the metabolic level.

In the third part of the analysis, we compared the CLP risk score to other
conventional CVD risk scores, as we may have missed specific combinations of
predictor variables which are used in these scores. The CLP score showed the best
discrimination compared to the other 4 scores in predicting 10-year cardiovascular
mortality. This indicates that the biomarker information included in the CLP score could
more precisely classify high risk CHF patients than the information included in the 4

other risk scores. However, the biomarker information from the CLP is not as easily
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obtainable and these findings should first be validated in larger cohorts. In addition, none
of the other scores were originally developed for 10-year cardiovascular mortality, but we
are not aware of a score specific for predicting 10-year risk of cardiovascular death.
Nevertheless, the other risk scores could be improved by incorporating biomarkers. For
instance, NT-proBNP is a well-established biomarker and only BCN Bio-HF contained
this marker. BCN Bio-HF was the next best performing prognostic score after the CLP.
Following discrimination analysis, we performed cluster analysis to assess how well the
risk scores could partition subjects into different risk groups. The CLP score showed a
more uniform grouping of patients according to their risk score stratification while the
other scores showed a more heterogenous distribution across risk clusters. Several prior
studies have used similar clustering methods to identify clinically relevant patient
subgroups for CHF (62, 63). This approach is useful in defining relevant groups of
patients and could minimize the problems of multicollinearity while evaluating whether

the predictive variables are useful in separating these groups.

In addition to investigating the improvement of the prognostic performance of
cardiovascular outcomes, it is conceivable that metabolomics findings may also foster a
better understanding of the pathophysiology and biological mechanisms involved in the
development of CHF events. These studies’ findings are consistent with previous
research of such mechanisms. The CLP metabolites belong to three different lipid
subclasses, sphingomyelin (SM) phosphatidylcholine (PC), and triglycerides (TAG),
which have been found to be associated with cardiomyocyte stress/apoptosis (64),
intestinal microbial metabolism/inflammation (17), and coronary artery disease (65),

respectively.

Sphingomyelins and their hydrolysis by sphingomyelinase lead to increased
amounts of ceramide. Dysfunctional sphingomyelin and ceramide metabolism may lead
to or aggravate cardiovascular diseases via the generation of reactive oxygen species
(ROS) involved in the modulation of cell proliferation and apoptosis, neutrophil adhesion
to the vessel wall, and vascular tone (66). It was previously reported that lipid species
such as Cer-16 and SM-16 were associated with increased risk of heart failure (67).
Sigruener et al. reported that the sphingomyelin species SM 16:0, 16:1, 24:1 and 24:2
were associated with mortality [57]. The CLP biomarker panel consists of the sum of
three monosaturated fatty acid carrying SM species: SM d18:1/23:1, SM d18:2/23:0, SM
d17:1/24:1.

20



PC is the most abundant lipid in humans and is subjected to lipid peroxidation and
ROS formation (68). Myocardium suffers heavily from lipid peroxidation related injury
(69). PC carrying polyunsaturated fatty acids such as PC (16:0/18:2), which is a
component of the CLP panel, are at high risk for lipid peroxidation (70). Previous studies
have shown that lipid peroxidation and ROS generation are associated with cardiac
damage and increased risk of mortality. For example, it was found that higher
consumption of PC increased the risk of organ injury and cardiovascular mortality (71).
Natural antioxidants like a-tocopherol have shown to reduce such oxidative stress and
inflammation thereby preventing the progression of cardiac injury (72).

The molecules of TG regulate insulin-signaling pathways by activating
serine/threonine kinases, which suppress insulin receptors, and thus inducing peripheral
insulin resistance. It has previously been shown that insulin resistance leads to
inflammation and atherosclerosis (73). The relationship between total triglycerides and
insulin resistance and CVD risk are well established (74), however, the relationships
between individual serum TGs and insulin resistance is not. A previous study on
individual TGs revealed that serum TG molecules containing saturated and
monounsaturated fatty acids, such as TG(16:0/16:0/18:1) and TG(16:0/18:1/18:0), were
correlated with insulin resistance. The CLP consists of the saturated and monosaturated
fatty acid carrying TAG 18:1/18:0/18:0. These findings indicate that metabolomic studies
may help gain a deeper understanding of the molecular mechanisms of CVD.

In future studies we would like to further elucidate the prognostic utility of the CLP
and validate its clinical effectiveness by including a larger cohort with more women,
patients with early-stage CHF. Following these studies and regulatory approval, it is
possible that the CLP can be tested alongside NT-proBNP in the clinical setting for a
more precise risk assessment of CHF patients (Figure 5). More accurate risk
assessment and prognostic biomarkers in clinical practice could help to match the
intensity or type of therapy with an individual patient’s risk. The CHF patient visiting their
cardiologist is ordered the CLP test along with the standard NT-proBNP test. The tests’
output would classify the patient’s risk more precisely, supporting the physician’s
decision on how to adjust medication therapy or have a more informed discussion with
the patient. Currently, the CLP test must be performed at a specialized lab with MS

equipment since it is pending formal utilization review.
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Figure 5: Proposed patient flow for testing the CLP in addition to NT-pro-BNP
(McGranaghan et al., 2020)

7. Conclusions

Our findings demonstrate that the CLP risk score comprising a panel of 3 lipid-
based metabolomic features meaningfully improved the prediction of CV mortality and
outperformed traditional prognostic scores. Results for the improvement in prognostic
value were consistent with previous similar studies as shown in the systematic review
and meta-analysis. This the metabolomics approach may potentially translate into
clinical applications such as routinely applied risk stratification and targeted treatments
for CHF patients. The CLP score is a step in the direction of providing a more precise

decision support tool to assist clinicians and patients in managing their CHF treatment.
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Incremental prognostic value of a novel
metabolite-based biomarker score in congestive heart
failure patients
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Abstract

Aims The Cardiac Lipid Panel (CLP) is a newly discovered panel of metabolite-based biomarkers that has shown to improve
the diagnostic value of N terminal pro B type natriuretic peptide (NT-proBNP). However, little is known about its usefulness in
predicting outcomes. In this study, we developed a risk score for 4-year cardiovascular death in elderly chronic heart failure
(CHF) patients using the CLP.

Methods and results  From the Cardiac Insufficiency Bisoprolol Study in Elderly trial, we included 280 patients with CHF aged
>65 years. A targeted metabolomic analysis of the CLP biomarkers was performed on baseline serum samples. Cox regression
was used to determine the association of the biomarkers with the outcome after accounting for established risk factors. A risk
score ranging from 0 to 4 was calculated by counting the number of biomarkers above the cut-offs, using Youden index. During
the mean (standard deviation) follow-up period of 50 (8) months, 35 {18%) subjects met the primary endpoint of cardiovas-
cular death. The area under the receiver operating curve for the model based on clinical variables was 0.84, the second model
with NT-proBNP was 0.86, and the final model with the CLP was 0.90. The categorical net reclassification index was 0.25 using
three risk categories: 0-60% (low), 60-85% (intermediate), and >85% (high). The continuous net reclassification index was
0.772, and the integrated discrimination index was 0.104.

Conclusions  In patients with CHF, incorporating a panel of three metabolite-based biomarkers into a risk score improved the
prognostic utility of NT-proBNP by predicting long-term cardiovascular death more precisely. This novel approach holds prom-
ise to improve clinical risk assessment in CHF patients.
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Introduction population and improved treatment and care.™* Clinicians

should ensure that patients with CHF have the necessary
Chronic heart failure (CHF) is a leading cause of morbidity and  knowledge and resources to make the best health decisions.
mortality. Its prevalence continues to rise in developed coun-  Accurate and improved decision support methods, such as
tries, partly because of a shift in the age distribution of the tools to predict the risk of mortality and prognosis of
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patients, could help in making such shared decisions for treat-
ment plans and risk management strategies. Recently, there
has been an increase in the number of prognostic biomarkers
being tested for CHF such as growth differentiation factor-
15,34 high-sensitivity C-reactive protein,>® galectin-3,” and
high-sensitivity troponin T.2%*! However, the added value of
these markers is still under debate, and long-term follow-up
studies are lacking. Among biomarkers widely used in CHF,
N terminal pro B type natriuretic peptide (NT-proBNP) is rec-
ognized as a standard reference for diagnosis and prognosis.
Despite the clinical utility of NT-proBNP, some studies have
reported a high intraindividual variance and high reference
change values among patients with CHF.*>™*

Metabolomic profiling, or metabolomics, can help meet
the need for more robust prognostic biomarkers. This ap-
proach provides a holistic signature of biochemical activities
in humans by detecting and quantifying low-weight mole-
cules (<1500 Da) that could be associated with disease
progression.”>™’ Studies of predictive metabolomic bio-
markers in CHF have been published previously that support
the overall hypothesis that circulating metabolites may be
used for risk assessment of cardiovascular (CV) disease
patients'8202129 These studies appear promising, but valida-
tion and the additive value of these biomarkers are less
established.

In a discovery phase untargeted metabolomic study by
Mueller et al., comparing CHF patients to healthy controls,
a novel panel of metabolites known as the Cardiac Lipid Panel
(CLP) was found to improve the diagnostic performance over
NT-proBNP alone. Its prognostic performance, however, is
unknown. Details of the CLP have been published
previously.®° In brief, the CLP is a biomarker panel consisting
of three specific metabolomic features: triacylglycerol (TAG)
18:1/18:0/18:0, phosphatidylcholine (PC) 16:0/18:2, and the
sum of the three isobaric sphingomyelin (SM) species SM
d18:1/23:1, SM d18:2/23:0, and SM d17:1/24:1.

In this study, the prognostic value of the CLP was analysed
in elderly patients with CHF. We developed a risk score for
predicting 4-year CV death using cut-offs for the CLP, which
improved predictive value of the standard reference bio-
marker, and traditional risk factors.

Materials and methods
Study population

The study sample was randomly selected from the Cardiac In-
sufficiency Bisoprolol Study in Elderly (CIBIS-ELD) trial, a
multicentre, randomized, double-blind trial with >65-year-
old patients with stable CHF. Details of the CIBIS-ELD trial
have been published previously.>™*? In brief, elderly patients
with CHF were randomized in a 1:1 fashion to receive either
bisoprolol or carvedilol, up titrated every 2 weeks for

12 weeks and then followed for 4 years. We only considered
the baseline and 4-year follow-up time points for this study.
From the 589 subjects with available blood samplesfrom
CIBIS-ELD trial, patients were randomly selected and studied
in a case cohort design. Following random selection, the co-
hort was filtered down based on the feasibility of performing
the biomarker test, for instance if there was sufficient quan-
tity of blood aliquot sample available for analysis, and
whether blood samples passed quality assurance®, resulting
in a final set of 280 cases. The investigation conformed to
the principles outlined in the Declaration of Helsinki.3* The
ethics committees of all participating centres approved the
study protocol, and informed consent was signed by all par-
ticipants prior to study participation.

Metabolite profiling

The serum samples were collected in 2006-2007 at the time
of the CIBIS-ELD study initiation, stored at —80°C, and then
shipped on dry ice in 2014 to the metabolomics lab for anal-
ysis. Metabolite profiling of the serum samples was per-
formed using a kit developed for the routine measurement
of the CLP. The dedicated protocol was designed for utiliza-
tion in the clinical practice setting and based on a
one-phase extraction of the samples using gas chromatogra-
phy mass spectrometry (GC-MS), followed by liquid chroma-
tography tandem mass spectrometry (LC-MS/MS) analysis
as previously described.®® Sample and metabolite analysis
quality assurance is part of the analytical protocol, so the
metabolomic data that did not pass quality assurance were
not included in this study®®. The three CLP metabolomic fea-
tures were generated at baseline, only for the previously
mentioned samples.

Statistical analysis

Continuous variables were expressed as mean (standard devi-
ation) and compared using t-test or Mann-Whitney U test,
according to normal or non-normal distribution. Categorical
variables were expressed as number (%). Comparisons among
variables with more than two categories were performed
using Wilcoxon rank sum test for continuous variables and
Pearson’s xz test (or Fisher’s exact test) or Mantel-Haenszel
¥ test for categorical and ordinal data, respectively. All con-
tinuous predictor variables were log transformed to allow for
direct comparison. Survival time was calculated from baseline
until CV death or censoring at 4-year follow-up. Univariate
Cox regression was performed on the CLP components and
NT-proBNP, and multivariate Cox regression was also per-
formed to adjust for clinical covariates. The considered clini-
cal covariates were age, sex, body mass index, New York
Heart Association class, creatinine, LDL cholesterol, triglycer-
ides, left ventricular ejection fraction (LVEF), history of

ESC Heart Faifure 2020; 7: 3029-3039
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diabetes, history of myocardial infarction, smoking history,
hypertension, hyperlipidaemia, coronary artery disease, and
medication including beta-blockers, aldosterone receptor
blockers,  angiotensin-converting  enzyme  inhibitors,
anti-arrhythmic agents, aspirin, calcium channel blockers, di-
uretics, glycosides, nitrates, statins, sedative agents, and vita-
min K antagonists. Hazard ratios and 95% confidence
intervals were calculated for each univariate and multivariate
model. The survival function for each model was generated
using the predicted risk estimates following Cox regression.

To evaluate the predictive value of the CLP, three multivar-
iable prediction models were built using Cox regression. The
first model was built using the baseline clinical covariates only
(Model A). Then, NT-proBNP was added to the first model
(Model B). Finally, the CLP risk score was added to Model B
(Model C). The CLP risk score was calculated as the sum of
biomarkers above the Youden index cut-off.3® There were
four cut-off values, because four biomarkers are included in
the score, three from the CLP and one from NT-proBNP. Each
cut-off was calculated using Youden’s index of the predicted
probability from the Cox multivariate regression. Supplemen-
tal Data (Data S1) shows the equation for calculating the
Youden cut-off. Based on the Youden cut-off, a value of 1
or 0 was assigned if the biomarker was above/below the
cut-off value. A value of 1 was assigned in the direction of
higher risk, that is, if a biomarker was protective (hazard ra-
tio < 1), then a 1 value was assigned if the biomarker was be-
low the Youden cut-off and vice versa. Then, all four values
were summed to generate the final score for each subject.
To measure the discrimination of each model, the area under
the receiver operating curve (AUROC)and Harrell’s concor-
dance statistics were calculated for the 4-year survival of
Models A, B, and C. Differences in Uno’s concordance statis-
tics were calculated for hypothesis testing of the change in
AUROC of the three models.®®

To measure risk reclassification, both continuous and cate-
gorical net reclassification indexes (NRIs) were calculated as
well as integrated discrimination improvement (IDI).3738 The
categorical NRI used three categories of <60%, 60-85%,
and >85% corresponding to low, intermediate, and high risk,
respectively. The continuous NRI does not depend on the
choice of categories, but allocates any change in predicted
risk in the correct direction.®® IDI measures the ability of
the new model to increase average sensitivity without reduc-
ing average specificity.

For sensitivity analysis, we performed logistic regression in
addition to the Cox regression analysis, using the same inde-
pendent and dependent variables in order to assess whether
a different statistical model would yield similar results. We
also tested two additional outcomes: the first was major ad-
verse CV events defined as either myocardial infarction, tran-
sient ischaemic attack, stroke, or CV mortality, and the
second outcome was all-cause mortality. Comparison of re-
ceiver operating curves following logistic regression was done

using the Mann-Whitney U test.To test the sensitivity of NRI
variation in risk categories, we used the same number of risk
categories (n = 3) but readjusted the cut-off values using two
separate sets of cut-offs, which still corresponded to high,
medium, and low. The first set was 70% and 90% followed
by the second set of 80% and 95%. Statistical analysis was
performed using SAS software version 9.4 and R software
version 3.6.1.%90-%

Results
Baseline characteristics

Figure 1 shows the study rationale and selection of subjects
for this subcohort. The previously discovered CLP metabolites
found to improve diagnosis of CHF were studied to assess
their prognostic value. Table 7 shows the baseline character-
istics of the subsample population (n = 280) with a compari-
son to the source CIBIS-ELD cohort (n = 589). Mean patient
age was 72.1 (4.9) years, 73.6% were men, 45% patients
had heart failure with reduced ejection fraction (LVEF < 35%),
49% had heart failure with mid-range ejection fraction (LVEF
35-49%), 4% had heart failure with preserved ejection
fraction (LVEF > 50%), and the majority of patients were in
New York Heart Association functional class Il (67.5%). During
the follow-up period (mean = 50 months, standard
deviation = 8; median = 46 months), 35 (13%) died from CV
causes.

Prognostic performance and risk reclassification

Table 2 shows the univariate (unadjusted) and multivariate
(adjusted) models of the CLP risk score components. In the
unadjusted model, two of the three CLP biomarkers (PC and
SM) were significantly associated as well as NT-proBNP. In
the adjusted model, the same two CLP biomarkers remained
significant but NT-proBNP did not. Supporting Information,
Table 51 shows the the hazard ratios for the clinical variables
included in the adjusted model. Figure 2 shows the measures
of discrimination (AUROC) for the three multivariable models
with a comparison to its preceding model to test the level of
significance after adding the respective covariate(s), and
Supporting Information, Toble 52 shows Harrell’s concor-
dance statistics. The AUROC for Model A was 0.84, that of
Model B was 0.86, and the final adjusted Model C was 0.90.
The difference in AUROC after adding the CLP score (Model
B vs. C) was significant (P = 0.02), whereas the difference af-
ter adding NT-proBNP to the clinical model (Model A vs. B)
was insignificant (P = 0.47).

Figure 3 shows the number of subjects reclassified into
each risk category for Model A to B to C. Table 2 shows the
risk reclassification of Models B and C as percentages of total

ESC Heart Faifure 2020; 7: 3029-3039
DOI: 10.1002/ehf2.12928

45



3032

P. McGranaghan et al.

FIGURE 1 Study rationale for the prognostic biomarker study. AUC, area under the curve; CHF, chronic heart failure; CIBIS-ELD, Cardiac Insufficiency
Bisoprolol Study in Elderly; CLP, Cardiac Lipid Panel; IDI, integrated discrimination improvement; NRI, net reclassification index; NT-proBNP, N terminal
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pro B type natriuretic peptide.

Comparison of metabolomic profiles of CHF
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CLP Score components: Number of components Improvement of prognostic
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with events and non-events. Supporting Information, Table
SZa-b shows the frequency of cases per risk category strati-
fied by events and non-events from Models B and C. The
overall categorical NRI was 0.25 using the three risk catego-
ries 0-60%, 60-85% and >85%, meaning 25% of the subjects
were reclassified into the respective correct risk category af-
ter adding the CLP (Table 3). Accordingly, 59% of the

reclassified cases were downgraded, and the other 41% were
upgraded. Among patients experiencing events, the overall
categorical NRI was 0.60, with 33% of those downgraded
and 67% upgraded. For non-events, the categorical NRI was
0.19, with 70% of those downgraded and 30% upgraded.
The overall continuous NRI was 0.472 and the IDI was
0.019. The CLP model (Model C) showed that its high-risk
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Table 1 Baseline characteristics of the study participants compared with the source cohort

Characteristic n =280 n =589 P value
Age (years), mean + SD 72 +£49 72 +49 0.4190%
NYHA (117113, n 188/91 3741183 0.5424°
Male, n (%) 206 (74) 412 (71) 0.1389"
Body mass index (kg/mz), mean = SD 268 x34 26939 0.4298°
Heart rate (bpm), mean + SD 73 £ 13 747 £ 14 0.0031°
Systolic blood pressure {mm Hg), mean = SD 134 £ 19 134 £ 19 0.2490°
Diastolic blood pressure {mm Hg), mean + SD 81 £ 11 811 0.3402°
Laboratory, mean * SD
Serum creatinine (pmol/1} 106 + 29 107 + 43 0.0096"
Haemoglobin (g/dL) 24.4 £348 14 +2 0.0325°
Sodium (mmol/L) 141.4 £33 141 £ 6.9 0.0765°
Uric acid (umol/L} 2732 £ 196.4 343 £ 121 0.0218"
Cholesterol {(mmol/L} 55+x1.4 55+ 14 0.2743%
HDL cholesterol (mmol/L} 12+05 12+05 0.4051°
LDL chalesterol (mmol/L) 34+13 34 %12 0.348°
Triglycerides (mmol/L} 1.7 1.0 1.8+ 1.1 0.0283°
NT-proBNP (pg/mL) 793 (331-1765)" 873 (350-1931)° 0.0485°
Cardiac imaging, mean = SD
LVEF (%) 36+95 37+ 96 0.0899*
LvDed (mm) 58.8 £ 9.2 59.8 + 9.3 0.0082%
LVDes {mm) 455 £ 97 46.5 £ 10.2 0.0089°
LvVed (mL) 152.7 + 63.9 159 + 67.7 0.0344°
LvVes (mL) 1011516 105 + 54.1 0.0705%
LAes (mm) 453 £ 72 452 £ 7.2 0.453°
E/e’ b 11.1 = 85 0.0025"
E/A 1£08 1109 0.2928°
Deceleration time {ms) 226 = 80 225 £ 79 0.7198°
Comorhidities, n (%)
Diabetes 82 29) 146 (25) 0.023"
Hypertension 224 (80) 469 (80) 0.7941"
Coronary artery disease 200 (7 1) 392 (67) 0.0382"°
Smokers 125 (45) 257 (44) 0.7933"
Hyperlipidaemia 162 (58) 343 (59) 0.6822"
Medication, n (%)
ACE inhibitor 247 (88) 509 (87) 0.527°
ARB 115 (41) 240 (41) 0.9643"
Glycoside 59 (21) 101 (17) 0.0216"
Aspirin 216 (77) 433 (74) 0.1273"
Nitrate 146 (52) 253 (43) 0.001"
Anti-arrhythmic agent 42 (15) 88 (15) 0.9512"
Statin 114 (41) 231 (40) 0.6044"

P values are compared with the available 58% subjects from the CIBIS-ELD cohort, which included this cohort of 280 subjects.

ACE, angiotensin-converting enzyme; ARB, angiotensin receptor blocker; E/A, ratio of the early (E) to late (A) ventricular filling velocities; E/
¢, ratio between early mitral inflow velocity and mitral annular early diastolic velocity; HDL, high-density lipoprotein; LDL, low-density li-
poprotein; NT-proBNP, N-terminal pro—B-type natriuretic peptide; NYHA, New York Heart Association; LAes, left atrial end systole; LVEF,
left ventricular ejection fraction; LVDed, left ventricular diameter end diastole; LVDes, left ventricular diameter end systole; LVVed, left
ventricular volume end diastole; LvVes, left ventricular volume end systole.

“Wilcoxon rank sum test.

"Pearson’s x” test.

“‘Mantel-Haenszel y°.

*Median (interquartile range).

category contained predominantly subjects who experienced
an event (77%), whereas the respective fraction in the
NT-proBNP model (Model B) was only 42%.

Results were consistent in the sensitivity analysis using lo-
gistic regression. We found that the differences in AUROC
values pointed in the same direction as the Cox regression
models (Model C AUROC = 0.90 vs. Model B AUROC = 0.86,
P =0.02). The change in AUROC after adding NT-proBNP to
the clinical model {(Model A AUROC = 0.84) remained insignif-
icant (P = 0.47; Supporting Information, Figure 51). We found
similar results when testing the models using the two

additional outcomes, major adverse CV event and all-cause
mortality (Supporting Information, Figures 52 and S3). Read-
justment of risk categories using the two different sets of
cut-offs also showed similar results with the original set of
cut-off values. The overall NRI for the first set of 70% and
90% cut-offs was 0.28 (Supporting Information, Table 56),
and the second set of 80% and 90% cut-offs was 0.36 (Sup-
plemental Information, Toble 57). In addition, Model C was
still able to classify a higher proportion of cases with events
in the high-risk group than Model B in each scenario
(Supporting Information, Tebles 53-555).
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Table 2 CLP risk score components and HRs

CLP component Unadjusted HR (95% CI) P value Adjusted HR (95% Cl) P value
SM 0.36 (0.16-0.82) 0.0143 0.18 (0.04-0.76) 0.0039
PC 0.76 (0.64-0.89) 0.0007 0.53 (0.38-0.75) 0.0003
TAG 0.69 (0.47-1.02) 0.0644 0.67 (0.35-1.25) 0.2069
NT-proBNP 1.49 (1.12-1.99) 0.007 1.60 (0.975-2.625) 0.0630

Adjusted Cox proportional hazard model considers the following clinical covariates: age, sex, body mass index, New York Heart Associa-
tion class, creatinine, LDL cholesterol, triglycerides, left ventricular ejection fraction, history of diabetes, history of myocardial infarction,
smoking history, hypertension, hyperlipidaemia, coronary artery disease, beta-blockers, aldosterone receptor blockers,
angiotensin-converting enzyme inhibitors, anti-arrhythmic agents, aspirin, calcium channel blockers, diuretics, glycosides, nitrates,
statins, sedative agents, and vitamin K antagonists.

Cl, confidence interval; CLP, Cardiac Lipid Panel; HR, hazard ratio; NT-proBNP, N terminal pro B-type natriuretic peptide; SM, sum of the 3
isobaric sphingomyelin species: SM d18:1/23:1, SM d18:2/23:0, and SM d17:1/24:1; PC, phosphatidylcholine 16:0/18:2; TAG, triacylglyc-
erol 18:1/18:0/18:0.

FIGURE 2 Discrimination analysis of the CLP biomarker risk score for 4-year cardiovascular mortality. AUC, area under the curve; CLP, Cardiac Lipid
Panel; NT-proBNP, N terminal pro B type natriuretic peptide.
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Discussion detection and diagnosis of CHF.2® However, to the best of

our knowledge, the current study is first to estimate the prog-

In this post hoc analysis of the CIBIS-ELD trial analysing 280
elderly patients with CHF, we showed that a risk score based
on a novel panel of metabolites added prognostic value for
the prediction of long-term CV mortality. A previous study al-
ready had reported that the CLP may improve the early

nostic performance of the CLP. Risk prediction models allow
clinicians to accurately assess patient prognosis and facilitate
more effective risk stratification and, ideally, a personalized
treatment. Devising a more accurate biomarker panel for
CHF risk prediction may aid clinicians with the difficult
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FIGURE 3 Risk reclassification of subjects after adding N terminal pro B type natriuretic peptide to the clinical model followed by adding the Cardiac

Lipid Panel biomarker score.

Model A

Model B

Model C

Table 3 Risk reclassification of total subjects, cases, and non-cases after adding the CLP risk score to the NT-proBNP based model

Model B

Risk category Low Medium High Total

Model C Low 69% 12% 2% 83%

96%, 4% 84%, 16% 71%, 29%

Medium 5% 5% 1% 1%
71%, 29% 80%, 20% 100%, 0%

High 2% 3% 1% 6%
33%, 67% 25%, 75% 0%, 100%

Total 76% 20% 4% 100%

Percentage of subjects within each risk category of each Model A and B only. Events and non-events are proportions of the group total
and are comma separated with red denoting events and blue denoting non-events.

Model B is the clinical covariates + NT-proBNP, Model C is clinical covariates + NT-proBNP + CLP score. Total subjects, n = 280; total
events, n = 35.

The considered clinical covariates were age, sex, body mass index, New York Heart Association class, creatinine, LDL cholesterol,
triglycerides, left ventricular ejection fraction, history of diabetes, history of myocardial infarction, smoking history, hypertension,
hyperlipidaemia, coronary artery disease, and medication including beta-blockers, aldosterone receptor blockers,
angiotensin-converting enzyme inhibitors, anti-arrhythmic agents, aspirin, calcium channel blockers, diuretics, glycosides, nitrates,
statins, sedative agents, and vitamin K antagonists.

Categorical net reclassification index was calculated according to risk cut-offs of <60%, 60-85%, and =85% corresponding to risk cate-

gories low, medium, and high, respectively.

decisions surrounding the management of such high-risk pa-
tients. Conversely, identifying patients at lower risk may help
reassure both clinicians and patients.

In the current study, two out of the three CLP components
as well as NT-proBNP were independently associated with
the outcome, so our next step was to build a risk score using
these four companents. The CLP risk score showed improved
discrimination and risk reclassification in comparison with
NT-proBNP alone, which is the current reference standard.
Adding NT-proBNP to the clinical model slightly but

insignificantly improved discrimination, while adding the CLP
yielded a significant change in AUROC. Risk reclassification
was improved by adding the CLP as it correctly identified a
higher propartion of high-risk patients experiencing an event.
For non-events, the majority of reclassified cases (70%) were
downgraded. This indicates that added information of CLP
also aided the proper classification of low-risk patients. Al-
though both Models B and C misclassified some patients
who did not experience any event in the high-risk group,
the model with CLP had higher specificity as it classified
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35% more patients with an event into the high-risk group.
The continuous NRI also showed that Model C, compared
with Model B, produced higher (i.e. more accurate) risk esti-
mates for patients experiencing an event and lower risk esti-
mates for those who are not.

Application of a single biomarker such as NT-proBNP for
outcome prediction is primarily limited by insufficient speci-
ficity, resulting in a high false positive rate or low positive pre-
dictive value.*>* Because NT-proBNP is really a marker of
elevated atrial pressures and volume overload, it may be of
limited use in well-compensated, clinically stable heart failure
patients. Hence, supporting this marker at the metabolic level
may provide additional prognostic value and potentially phe-
notypic information.A combination of several metabolomic
features into a biomarker panel or a risk score may provide
a better prognosis utility over single biomarkers. A systematic
review?! reported that 6 out of 12 articles” 7 developed a
score by combining between 4 and up to 16 metabolites to
predict CV risk. Recently, Lanfear et al. identified and then
validated a panel of 13 circulating metabolites as a predictor
of mortality risk in HF patients after accounting for conven-
tional clinical risk factors and NT-proBNP levels.?® Another
prospective population-based study deriving a risk score from
four metabolites and validating this score in two cohorts
found improved risk reclassification of CHF patients using
the biomarker score, although discrimination was not signifi-
cantly enhanced.” A meta-analysis of 18 metabolomic pre-
diction studies of CV disease outcomes reported an average
change in c-statistic of 0.0417 (standard error 0.008) after
adding metabolite-based information, which is consistent
with our results. Of note, the metabolite score subgroup per-
formed best (n = 5 studies),* although publication bias and
heterogeneity were reported regarding variations in cohorts,
study design, and metabolite profiling approaches.

In addition to investigating the improvement of the prog-
nostic performance of CV outcomes, it is conceivable that
metabolomic findings may also foster a better understanding
of the pathophysiology and biological mechanisms involved in
the development of CHF events. Altered lipid metabolism and
dyslipidaemia are known to be associated with inflammation
and oxidative stress, which are primary drivers of the patho-
logical changes in CHF. The CLP metabolites belong to three
different lipid classes, sphingomyelin (SM) phosphatidylcho-
line (PC), and triglycerides (TAG), and may be involved in dif-
ferent dysregulated metabolic pathways in CHF such as cell
stress, inflammation, and atherosclerosis, although future
studies are needed to assess whether the CLP biomarkers
are representative of altered biological pathways. It has been
previously shown that pathway-specific biomarkers/scores
consisting of high-sensitivity C-reactive protein (inflamma-
tion), soluble urokinase plasminogen activator receptor (in-
flammation), fibrin degradation products (thrombosis), and
heat shock protein 70 (cell stress) significantly improved the
prediction of adverse cardiac events in high-risk populations.

These studies also reported similar increases in c-statistics as
this study after adding the pathway-specific biomarkers to
predictive models.*~18

The combination of the CLP's metabolomic features with
NT-proBNP may help overcome well-known limitations of
NT-proBNP regarding clinical risk factors like age, gender,
body mass index, and LVEF. A strength of this study is the
high mean age, because elderly patients are underrepre-
sented in CHF trials although CHF is responsible for a great
deal of morbidity and mortality in the aging population.*®
Moreover, study samples were derived from a
well-characterized cohort including high-quality assessment
of outcome events. In future studies, we would like to
further elucidate the prognostic utility of the CLP and
externally validate its clinical effectiveness by including a
larger cohort with more women and patients with early
stage CHF and testing different biological matrices (e.g.
plasma). Following these studies and regulatory approval,
it is conceivable that this biomarker panel can be tested
alongside the standard NTpro-BNP test in the clinical setting
for a more precise risk assessment of CHF patients
(Supporting Information, Figure S4).

Study limitations

Our findings can only be interpreted in the context of this
specific subcohort and the CLP metabolites, which limits the
generalizability of our findings. We were limited by the ability
to perform the CLP analysis on separate cohorts, but these
proof of concept data can be used as a reference point for ad-
ditional and larger validation cohorts in the future. The CLP
was originally discovered and intended as a diagnostic bio-
marker, and we cannot assume that it is also a powerful prog-
nostic algorithm as these are still preliminary findings needing
validation. Ideally, a prospective derivation validation design
using an untargeted metabolite profiling approach should
be used to discover a novel prognostic biomarker; however,
we were limited on available data and resources. Our findings
can only be interpreted as exploratory.

The sample selection criteria, based on the availability and
quality of blood samples, may have introduced selection bias
for subjects who were more willing or prone to have blood
withdrawn and may have excluded patients who were not
able to provide sufficient blood possibly due to other CV risk
factors, socio-economic status, or comorbidities. The serum
samples used in this study may have been affected by the
long-term storage prior to the CLP assay, as lipid parameters
are known to be subject to in vitro degradation. The guality
assurance methods used in this CLP protocol only apply to
the sample preparation and measurement requirements for
the identification and analysis of the CLP features and do
not adjust for any potential effects of prolonged storage. Al-
though NT-proBNP is the gold standard biomarker for CHF
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patients, we did not find a significant increase in prognostic
power after adding this biomarker to the clinical model, pos-
sibly due to the homogeneity of our population of elderly,
stable CHF patients, in which it may be of limited use given
the fact that NT-proBNP is a marker of volume overload
and elevated atrial pressures. Other common cardiac
biomarkers, such as troponins or C-reactive protein, should
also be evaluated for their incremental prognostic power
because a more comprehensive biomarker profile for
prognosis may be a better solution than including only CLP
plus NT-proBNP.

The samples from the population in this study may have
been affected by other medications or a combination of co-
morbidities that can affect the lipid metabolites in the CLP.
The cut-off values used to generate the CLP risk score using
Youden’s index are specific to this cohort and not universally
applicable, as a large validation cohort(s) would be required
to create a generalized equation that could be used in the
daily routine management of CHF. The NRI as well as the
IDI can be affected by the event rate, which is low in our
study.. Although all biomarkers were log transformed, they
were not normally distributed, which could affect the concor-
dance of the NRI and IDI. The choice of cut-offs for categori-
cal NRI to determine incremental predictive performance was
challenging, as there seems to be no standardized guideline
for choosing NRI cut-offs. We found that the NRI was sensi-
tive to changes in the definition of risk categories; however,
results did not differ in the sensitivity analysis.

Although this biomarker was developed for routine clinical
use, it is currently only available in specialized labs equipped
with mass spectrometry equipment.While the CLP is still a re-
search tool awaiting further translation to the routine lab, as
an ELISA test for example, this study represents the first step
towards that direction.

Conclusions

Our findings demonstrate that the CLP risk score comprising a
panel of three lipid-based metabolomic features meaningfully
improved the prediction of CV mortality and reclassified pa-
tients to their proper risk categories. This new panel of lipid
metabolites may complement currently used biomarkers
such as NT-proBNP. Thus, the metabolomics approach may
potentially translate into clinical applications such as rou-
tinely applied risk stratification and targeted treatments for
CHF patients.
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Performance of a cardiac lipid panel
compared to four prognostic scores
in chronic heart failure
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The cardiac lipid panel (CLP) is a novel panel of metabolomic biomarkers that has previously shown

to improve the diagnostic and prognostic value for CHF patients. Several prognostic scores have been
developed for cardiovascular disease risk, but their use is limited to specific populations and precision
is still inadequate. We compared a risk score using the CLP plus NT-preBNP to four commonly used
risk scores: The Seattle Heart Failure Model (SHFM), Framingham risk score (FRS), Barcelona bio-HF
(BCN Bio-HF) and Meta-Analysis Global Group in Chronic Heart Failure (MAGGIC) score. We included
280 elderly CHF patients from the Cardiac Insufficiency Bisoprolol Study in Elderly trial. Cox Regression
and hierarchical cluster analysis was performed. Integrated area under the curves (IAUC) was used

as criterium for comparison. The mean (5D) follow-up period was 81 (33) months, and 95 (34%)
subjects met the primary endpoint. The IAUC for FRS was 0.53, SHFM 0.61, BCN Bio-HF 0.72, MAGGIC
0.68, and CLP 0.78. Subjects were partitioned into three risk clusters: low, moderate, high with the
CLP score showing the best ability to group patients into their respective risk cluster. A risk score
composed of a novel panel of metabolite biomarkers plus NT-proBNP outperfermed cther common
prognostic scores in predicting 10-year cardiovascular death in elderly ambulatory CHF patients. This
approach could improve the clinical risk assessment of CHF patients.

The prevalence of chronic heart failure (CHF) in the western world continues to increase, especially in patients
older than 65 years’. CHF is a major burden on the health care system and is associated with high morbidity
and mortality, including a poor quality of life’. An important aspect of CHF management is to ensure that clini-
cians and patients with CHF have the necessary knowledge and resources to make the best health decisions. A
prognostic model is one such resource, defined as a formal combination of multiple predictors from which risks
of a specific outcome can be calculated for individual patients.

Prognostic models are abundant in the literature, and the most popular ones include the SHEM (Seattle Heart
Failure Model), FRS (Framingham Risk Score), MAGGIC (Meta-analysis Global Group in Chronic Heart Fail-
ure), and BCN Bio-HF (Barcelona Bio-Heart Failure Risk Calculator). The SHFM score is the most thoroughly
validated and contains the most predictor variables of the four®. The MAGGIC score* was developed from a
dataset of over 39,000 patients across 30 studies and validated on more than 60,000 patients using 2 large CHF
cohorts™5. 'The FRS score was developed as a sex-specific risk score that can be conveniently used to calculate

general cardiovascular disease (CVD) risk and risk of individual CVD events’. The BCN Bio-HF score contains 11
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clinical variables with the most biomarker variables [NT-proBNP, high-sensitivity cardiac troponin T (hs-¢TnT),
high-sensitivity soluble ST2 (ST2)] and has been externally validated™. These models all use common clinical
and demographic variables to predict the prognosis of CHF patients and have convenient online calculators.
Although these scores have been validated, they have not been widely adopted possibly because they are not
routinely calculated in clinical practice!®?, have poor reliability at the individual patient level®, suffer from a
significant amount of missing data requiring imputation.

Metabolomics is a rapidly growing field in biomarker profiling that could help meet the need for more robust
prognostic biomarkers. By applying nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry
(MS), it is now possible to analyze hundreds of metabolites from human samples such as blood, urine, saliva,
and tissue, which can elucidate the outcome of complex networks of endogenous and exogenous biochemical
reactions'®. This approach could provide a more comprehensive signature of biochemical activities that could
be associated with diet, medication, disease progression, and thus negative outcomes due to these complex
mechanisms!*'*. Previous studies have shown that metabolomic biomarkers can be used for risk prediction as
well as diagnosis of CHF 2%,

One promising metabolomic biomarker panel in CHF patients is the cardiac lipid panel (CLP) which is sup-
plemented by N-terminal pro-B-type natriuretic peptide (NT-proBNP). The CLP is consists of three specific
metabolomics features: triacylglycerol (TAG) 18:1/18:0/18:0, phosphatidylcholine (PC) 16:0/18:2, and the sum
ofthe 3 isobaric sphingomyelin (SM) species SM d18:1/23:1, SM d18:2/23:0, and SM d17:1/24:1. The diagnostic
value of CLP was first discovered in a study by Mueller and colleagues, where they compared CHF patients to
healthy controls, and found that CLP was able to improve the diagnostic performance over NT-proBNP alone?”.
The incremental prognostic value of the CLP was first assessed in a recent study which found it improved the
discrimination and risk assessment over NT-proBNP and clinical risk factors®.

The objective of this study was to compare the performance of a risk score composed of the CLP panel plus
NT-proBNP to the four commonly used traditional risk scores (SHFM, FRS, MAGGIC, BCN Bio-HF) to pre-
dict long-term cardiovascular mortality in ambulatory CHF patients. We hypothesized that the CLP risk score
would improve our ability to classify risk of cardiovascular death in comparison to the four validated clinical
risk prediction algorithms.

Results

Table 1 shows the baseline characteristics of the total population (n=280) as well as the variables included in each
score. Mean age of this sub-cohort was 72.1 (4.9) years, 26.4% were women, 45% patients had heart failure with
reduced ejection fraction (HFrEF) (LVEF < 35%), and most patients were in NYHA functional class IT (67.5%)
with the remaining in NYHA class III. Hypertension was present in 80% of participants and 45% were current or
former smokers; 29% had diabetes and 719% had CAD. During the follow-up period (mean =81 months, SD =33;
median= 96 months), 95 (34%) patients met the primary outcome. There were 30 (11%) patients who met the
secondary outcome of 3-year all-cause mortality. The sample selection criteria as well as the comparison of this
sub cohort’s baseline characteristics to the source cohort has previously been reported®, however, this study
analyzed 10 year follow up rather than the previously reported 4 year follow up.

All variables were available for each score except for the lymphocytes (%) variable in the SHFM score, which
was imputed as previously described. The SHFM model had the highest number of variables (n=17), followed
by MAGGIC (n=13), BCN Bio-HF (n=12), FRS (n=7), and CLP (n=4). There were 13 overlapping variables
which were included in at least 2 scores. The SHFM score included the most medication (n=6) and laboratory
(n=>5) variables, BCN Bio-HF is the only model with biomarker data (NT-proBNP) while MAGGIC included
the most clinical (n=7) and demographic variables (n=3).

Table 2 shows the univariate Cox Regression results. The CLP (HR=2.38, p <0.001), SHFM (HR=2.01,
p=0.002, MAGGIC (HR=1.10, p <0.001), and BCN Bio-HF (HR = 1.09, p = 0.0393) scores were significantly
associated with the outcome while FRS was not. The hazard ratios for the secondary endpoint of 3-year all-cause
mortality are shown in Supplemental Table 1. All scores had a higher HR than the primary outcome except for
CLP and FRS. Figure 1 shows the AUC change over time (IAUC) for the 5 prognostic scores with the comparison
of Und’s concordance statistics for hypothesis testing. The IAUC was 0.53, 0.61, 0.68, 0.72, and 0.78 for FRS,
SHFM, MAGGIC, BCN Bio-HF, and CLF, respectively. Harrell’s ¢ statistics at 10 year follow up show similar
results (Supplemental Table 2). The four traditional scores were all significantly different (p < 0.05) from the CLP
score according to the difference in concordance statistic (Supplemental Table 3). The incremental value of the
CLP to NT-proBNP is shown in Supplemental Figure 1, the NT-proBNP only IAUC was 0.71 while the CLP
score (which incorporates the CLP biomarkers plus NT-proBNP) was 0.78 (p=0.004). Discrimination analysis
of the secondary outcome of 3-year all-cause mortality showed the CLP IAUC lowered to 0.76, and only CLP vs
FRS remained significantly different (Supplemental Figure 2). The models showed adequate calibration except
for FRS (calibration curve slope =0.894) (Supplemental Figure 3).

Competing event analysis showed the SHFM, MAGGIC, and the CLP models remained significantly associ-
ated with cardiovascular death, and all scores showed less association to non-cardiovascular death (Supplemental
Table 4). The CIF curve, which accounted for non-cardiovascular mortality as a competing event, showed higher
cumulative incidence of cardiovascular mortality with higher CLP scores (Supplemental Figure 4).

Figure 2 shows the hierarchical cluster dendrogram mapped to illustrate the assignment of patients into their
respective clusters and the associated color map shows the range of each prognostic score and their distribution
within each cluster. Hierarchical clustering grouped the patients in separate clusters accounting for the noise
between smaller clusters. Each observation was treated as a unique cluster, and this method: (1) identified the two
similar or close clusters, and (2) merged the two most similar clusters. Using this clustering technique, similar
prognostic score data from participants were grouped together, such that the members in the same group were
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Total Prognestic score
Characteristic n=280 SHEM |FRS | MAGGIC BCN Bio-HE cLp
Age (years), meant 5D 73549 v v v v
NYHA (/D). 188/91 v v v
Male, n (%) 206 (74) v v i v
Body mass index (kg/m?), mean + 5D 268134 v
Heart rate (bprm), mean £5D 73£13.0
Systolicblood pressure (mm Hg), mean £ D 134£19 v % v
Diastolic bllood pressure (mm Hg), mean 8D 8l1£11
Years since first diagnosis of CHF 52256 v
Laboratory, mean £ D
Creatinine (pmal/L) 107£27.9 v
Hemoglobin (g/dL) 13415 v v
Sodim (mEq/L) 141423.3 1% 1%
Unicacid (pmol/L) 356£127 v
Total Chelesteral (mmolfL) 51%L6
HDL cholesterol (mmol/L) 12208 v
LDL cholestercl (mmol/L) 34113
Triglycerides (mmel/L) 17210
Lymphocytes (%)* v
NT-preBNP (pg/mL) 793 (331176537 v v
PC 1€:0/18:2 (ug/dl) 36,810 (32,435-40,01 5} v
TAG 181/180/18:0 (ugrdl) 121 (76,5-256.43F v
S d18:1/23:1, SM d18:2/23:0, 8M d17:1/24:1 (pgydl) 1342 (1134-1598) v
Cardiacimaging, mean  SD
LVEF (%) 36+£9.5 v v
LVDed (mm) 588292
LVDes (mm) 45549.7
LVVed (mL) 1527£639
L Ves (L) 1011516
Les (mm) 45372
Ef¢ 12£9.2
Era 1x08
Decelerationtime {ms) 22630
Comorbi dities, n. (%)
Diabetes 82029 v v
Hypertension 224 (80)
Coronaryartery discase 200 (71) v
Smokers 125 (45) v v
Hypedipideria 162 (58)
COPD 9(3) v
Medication, n (%)
ACE inhibitor 247 (8) v v
‘Allopurinol 0(0) v
ARE 115 (41 v v
Beta blodker 203 (73) v v
Diuretics 219 (78) v
Dinretic dose mg/kg per day 033%031 v
Glycoside 59 (21}
Aspirin 216 (77)
Mitrate 146 (52)
Antiarrhythmic sgent 42(15)
Statin 114 (41) v v

Table 1. Baseline characteristics of the study participants and variables included in each prognostic score. ACE,
angiotensin-converting enzyme; ARB, angiotensin receptor blocker; BCN Bio-HF, Barcelona Bio-Heart Failure
Risk Calculator; CLP, Cardiac Lipid Panel Risk Score; COPD, chronic obstructive pulmonary disease; E/A, ratio
of the early (E) to late (A) ventricular filling velocities; E/¢; ratio between early mitral inflow velocity and mitral
annular early diastolic velocity; FRS, Framingham Risk Score; LAes, left atrial end systole; LDL, low-density
lipoprotein; NYHA, New Yotk Heart Association; HDL, high-density lipoprotein; LVDed, left ventricular
diameter end diastole; LVDes, left ventricular diameter end systole; LV Ved, left ventricular volume end diastole;
LVEE left ventricular ejection fraction; LV Ves, left ventricular volume end systole; mg/kg, milligrams per
kilograms; MAGGIC, Meta-analysis Global Group in Chronic Heart Failure; N'Tpro-BNP, N-terminal pro-B-
type natrinretic; PC, phosphatidylcholine; SHEM, Seattle Heart Failure Model; SM, sphingomyelin; TAG,
triacylglycerol. *Imputed using the median, 31%, of the normal range 20-40%. TMedian (Interquartile Range).
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Score HR (95% CI) p value
SHFM 1.89 (1.29-2.807) 0.0017
FRS 1.02 (0.97-1.07) 0.5291
MAGGIC 1.10 (1.05-1.14) <.0001
BCN Bio-HF 1.09 (1.00-1.84) 0.0393
CLP 2.38 (1.95-2.92) <.0001

Table 2. Prognostic scores and univariate hazard ratios for cardiovascular mortality. Unadjusted Cox
proportional hazard models of 10-year outcome for cardiovascular mortality. Total subjects, n=280. Total
events, n=95. SHFM (Seattle Heart Failure Model), FRS (Framingham Risk Score), and MAGGIC (Meta-
analysis Global Group in Chronic Heart Failure), BCN Bio-HF (Barcelona Bio-Heart Failure Risk Calculator),
and Cardiac Lipid Panel Risk Score (CLP).

more similar to each other than the members in the other groups. We can infer from the cluster centres and
cluster memberships that CLP risk score was better at grouping patients with respect to their cardiovascular
mortality risk and associated clinical characteristics compared to the other four scores. The survival curves for
each risk cluster are shown in Fig. 3. Rates of mortality were: low risk cluster (20%), moderate risk cluster (27%)
and high-risk cluster (50%). Supplemental Figure 5 shows the constellation plot on a two-dimensional plane
with nodes and links to describe relationship among component nodes. This plot is an alternate depiction of the
dendrogram and illustrates the length between clusters and a balanced structure. Supplemental Figure 6 shows
the scatterplot matrix of all 4 scores and clusters to illustrate the relationships between each prognostic score
and risk cluster assignment.

Table 3 shows the cohort characteristics and the prognostic score distribution for each risk cluster. The three
clusters were: low risk, n=119; moderate risk, n=44; high risk, n=117. There were 11 out of the 50 cohort char-
acteristics significantly different across the 3 clusters. In particular, patients in the highest risk cluster were older,
with lower LVEEF, higher NT-proBINP, and experienced a higher frequency of events. The SHFM, BCN Bio-HE,
and CLP scoreswere significantly different across their respective risk clusters. Of the continuous risk scores
(FRS, SHFM, MAGGIC, BCN Bio-HF), only SHFM and MAGGIC, had its highest mean score in the high-risk
cluster. The categorical CLP score showed a skewed distribution of higher risk scores (3-4) in the moderate and
high-risk clusters. In the high-risk cluster, the majority of subjects were scored with CLP scores of 3-4.

The correlation of the CLP biomarkers TAG, PC, and SM were most correlated with the clinical character-
istics: triglycerides (r=0.531, p <0.001), total cholesterol (r=0.431, p<0.001), and LDL (r=0.502, p <0.001),
respectively (Supplemental Figure 7).

Discussion

We found that a risk score based on a novel panel of three metabolite-based biomarkers plus NT-proBNP
outperformed commeonly used traditional prognostic models for predicting cardiovascular mortality in elderly
ambulatory CHF patients. We first measured the association of each risk score with the outcome, followed by
discrimination analysis, then cluster analysis, and finally correlation analysis of the individual CLP biomarkers
with the clinical characteristics. In our study cohort, CLP score, showed the best discrimination compared to
the other 4 scores. This indicates that the biomarker information included in the CLP score could more precisely
classify high risk CHF patients than the information included in the 4 other risk scores. On the other hand,
the biomarker information from the CLP is not as easily attainable and no convenient calculator exists yet, as
these findings should first be validated in larger cohorts. Additionally, none of the other scores were originally
developed for 10-year cardiovascular mortality. To the best of our knowledge there is no score specific for pre-
dicting 10-year risk of cardiovascular death, but it is not uncommon to use the scores such as FRS to predict
different outcomes in similar studies® -3, Nevertheless, the other risk scores may be improved with the addition
of common biomarkers in their score calculation. For instance, NT-proBNP is a well-established biomarker
that is known to be associated with ventricular wall stress* and is considered the gold-standard biomarker in
CHF diagnosis and prognosis®. Only BCN Bio-HF contained NT-proBNP and it was the next best performing
progunostic score after the CLP.

We performed cluster analysis to assess how well the risk scores could partition subjects into different risk
groups, blinded to the study outcome. A strength of this approach is that clusters could define relevant groups
of patients and could mitigate the problems of multicollinearity while determining if the predictive variables are
useful in separating these groups. In our study, patients within each cluster varied along measures of age, labora-
tory parameters, days survived, as well as the prognostic scores. When comparing the score distributions across
the three risk clusters, the CLP score showed a more homogenous grouping of patients according to their risk
score stratification while the other scores showed a more heterogenous distribution across risk clusters. Several
prior studies have used similar clustering methods to identify clinically relevant patient subgroups for CHF*,
but we are not aware of previous studies using clustering methods to compare a novel biomarker score to other
conventional prognostic scores for CHE

The combination of the CLP’s metabolomic features with N'T-proBNP into a risk score may help overcome
limitations of using only traditional clinical risk factors. Furthermore, application of a single biomarker such
as NT-proBNP for outcome prediction is limited by insufficient specificity (low predictive value or high false
positive rate)’®”. Recently, it was reported that the CLP added incremental prognostic value to NT-proBNP in
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Figure 1. Discrimination performance for each prognostic score for 10-year cardiovascular mortality.
Integrated arca undet the curve (IAUC) for: SHIFM (Seattle Heart Failure Model), FRS (Framingham Risk
Score), and MAGGIC (Meta-analysis Global Group in Chronic Heart Failure), BCN Bio-HF (Barcelona Bio-
Teart Failure Risk Calculator), and Cardiac Lipid Panel Risk Score (CLP). Total subjects, n — 280; total events,
n=95. pvalues were calculated [rom the differences in concordance statistic in comparison to the CLP score,

predicting 4-year cardiovascular mortality™. We used the same method to calculate the CLP score for this study,
and we also confirmed that the CLP provided similar incremental value to NT-proBNP alone as previously found
in the 4-year study*".Using an aggregate score rather than individual biomarkers for risk prediction can help more
precisely stralify risk. A recenl meta-analysis of 18 metabolomic prognoslic biomarker studies for CVD found
those which incorporated a selection of metabolites into a score (n=>5 studies) had the best prognostic perfor-
mance rather than using the individual biomarker values'®. Another systematic review®” reported 6 studies?~*
developed a metabolite-based score to predict CVD risk with cach score composed between 4 and 16 biomarkers.

We have briefly mentioned the components of the CLP in the introduction section, in addition te improving
risk prediction, developing a biomarker-based risk score could also improve our understanding of the patho-
physiclogy and biological mechanisms involved in CHE In the bllowing paragraphs we would like to highlight
those mechanisms based on previous research. The CLP metabolites can be grouped into three different lipid
subclasses, sphingomyelin (SM) phosphatidylcholine (PC), and triglycerides (TAG), which have previously been
found to be associated with cardiomyocyte strcss/apnptnsis’m, intestinal microbial metabolism/inflaimmation!?,
and coronary artery disease!!, respectively. Sphingomyelins are localized in cell membranes and lipoproleins,
and their hydrolysis by sphingomyelinase leads to increased amounts of ceramide. Ceramide triggers the genera-
tion of reactive oxygen species (ROS) involved in the modulation of cell proliferation and apoptosis, neutrophil
adhesion to the vessel wall, and vascular tone. Dysfunctional sphingomyelin and ceramide metabolism may lead
Lo or aggravate cardiovascular diseases™. Lemaitre et al.** reported that lipid species such as Cer-16 and SM-16
were associated with increased risk of heart failure. Sigruener et al.* reported that the detection of sphingomy-
elin species SM 16:0, 16:1, 24:1 and 24:2 was increasingly associated with mortality in Ludwigshafen Risk and
Cardiovascular Health (LURIC) study. The CLP biomarker panel consists of the sum of three monosaturated
fatty acid carrying SM species: SM d18:1/23:1, SM d18:2/23:0, SM d17:1/24:1.

PC is the most abundant lipid in the human body and is subjected to chemical events like lipid peroxidation
and ROS formation®. Myocardium suffers heavily from lipid peroxidation related injury*®. PC carrying polyun-
saturated fatty acids such as PC (16:0/18:2) which is a component of the CLP panel, have increased risk for lipid
peroxidation®, Oxidative stress increases the formation of electrophilic aldehydes from native phospholipids
leading to formation of adducts with tissue or plasma proteins thereby aggravating the pathophysiology of car-
diovascular diseases™. Previous studies have shown that lipid peroxidation and ROS generation are associated
with cardiac damage and raises mortality. [ligher consumption of PC was found to increase the risk of organ
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Figure 2. lierarchal cluster dendrogram of three risk clusters. Assignment of patients into risk clusters based
on the prognostic scores. The clustering process can be viewed by reading the dendrogram [rom lefl to right.
Fach step consists of combining the two closest clusters into a single cluster. 'The joining of clusters is indicated
by horizontal lines that are connected by vertical lines. The horizontal position of the vertical line represents the
distance between the two clusters that are most recently joined to form the specified number of clusters. The
prognostic scores used for clustering were: SHEM (Seattle Heart Failure Model), FRS (Framingham Risk Score),
and MAGGIC (Meta-analysis Global Group in Chronic IHeart Failure), BCN Bio-IT (Barcelona Bio-Ileart
Failure Risk Calculator), and Cardiac Lipid Panel Risk Score (CLP). Each prognostic score was standardized to
the same scale (mean =0; SD = 1). Ward’s minimum variance method was used for clustering. Blue dendrogram
indicates the cluster 1 (low risk), n=119; Grey dendrogram indicates cluster 2 (moderate risk), n =44, Red
dendrogram indicates cluster 3 (high risk), n=117; Total subjects, n - 280.

injury and cardiovascular mortality*. Natural antioxidants like a-tocopherol have shown to reduce such oxida-
tive stress and resulting inflammation thereby preventing the progression of cardiac injury™”.

‘The molecules of TG are involved in the regulation of insulin-signaling pathways through the activation of
several serine/threonine kinases, which suppress insulin receptors, thus inducing peripheral insulin resistance.
Previous studies have shown that insulin resistance leads to inflammation and atherosclerosis®'. Although the
relationship between total triglycerides and insulin resistance and CVD risk are well established™, the rela-
tionships between individual serum TGs and insulin resistance is not well-established. Studies of individual
TGs may help better characterize insulin resistance and CVD better than total triglycerides. For instance, it
was previously found that saturated T'G 16:0 fatty acid was positively associated with fasting serum insulin
concentrations and that of essential 18:3 n-6 fatty acid was negatively associated™. Another study on indi-
vidual TGs revealed that serum TG molecules containing saturated and monounsaturated fatty acids, such as
TG(16:0/16:0/18:1) and TG(16:0/18:1/18:0), correlated positively, whereas those containing essential fatty acids,
such as TG(18:1/18:2/18:2), negalively with features of insulin resistance®!. The CLP consists of the saturated and
monosaturated fatty acid carrying TAG 18:1/18:0/18:0.

These findings indicate that metabolomic studies may help gain a deeper understanding of the molecular
mechanisms of CVD. ‘Therefore, more detailed metabolomic analysis would hopefully lead to the discovery or
further development of sensitive and specific lipid-based markers for cardiovascular risk.
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Figure 3. Kaplan Meier survival curves for 10-year cardiovascular mortality stratified by cach risk cluster. The
following scores were used to derive the risk clusters: SHEM (Seattle Heart Failure Model), FRS (Framingham
Risk Score), MAGGIC (Meta-analysis Global Group in Chronic [eart Failure), BCN Bio-I1I' (Barcelona
Bio-Heart Failure Risk Calculator), and Cardiac Lipid Panel Risk Score (CLP). Each prognoslic score was
standardized to the same scale (mean=0; SD=1). Total subjects, n=280; total events, n=95.

Study limitations

These proof-of-concept findings should be interpreted as hypothesis generating to be used as a reference for
validation studies on larger cohorts in the future. The homogeneity of this cohort, elderly patients with stable
CIII, may have had an impact on the performance of the prognostic scores. Due to the inclusion and exclusion
criteria of the CIBIS-ELD trial, these results may not have good external validity, and more research would be
needed to validate the results. Performance and comparison of the risk scores may be affected by the fact that
the models were designed using different endpoint definitions and cohorts. Risk categories that are clinically
relevant for one model’s definition may not apply to a different model. 'The MAGGIC score estimates risk of all-
cause mortality at one and at three years, the SHFM up to five years, and the BCN Bio-HF at one, two, and three
years, and the RS estimates risk of first CVD event, none of which were developed for the primary outcome
of this study of 10-year cardiovascular mortality. The SHEM score may have been aflected by the imputation of
lymphocytes % as well as the lack of patients taking allopurinol. The BCN-bio HF score was updated in 2018
which could provide better predictive value than the 2014 version used in this study. We were limited by the
availability of the data for the 2018 version of the BCN-bio 11T score, since it required more parameters such as
ARNi medication and number of HF hospitalizations in the previous year. The FRS was originally developed for
coronary artery disease and not CHF, which may explain its poor performance on this cohort. The CLP biomarker
kit was developed for routine use in the clinic; however, it is still a research biomarker panel pending regulatory
approval and musl be sent to a lab equipped with MS technology. Our findings are limited to this population of
clderly CHF patients and future validation studies should be performed to include a more heterogenous cohort
such as younger, more women, and early/ asymptomatic patients. Other common biomarkers such as ST2,
hs-CRP, and troponins should be compared to the CLP as they are more readily available and do not require
samples be sent Lo a specialized lab. The CLP panel was originally developed as a diagnoslic and early detection
biomarker for HFrEF, and clinicians and researchers should be cautious when using it as a prognostic tool, as
these are still preliminary findings.

Conclusion

In a cohort of ambulatory CHF patients, we have shown that the prognostic scores included in this study were
useful in stratifying patients into risk clusters. Our findings demonstrate that the CLP risk score comprising
a panel of 3 novel metabolomic biomarkers and NT-proBNP, could improve the prediction of cardiovascular
mortality over traditional prognostic scores. In the future, a broader array of biomarkers should be integrated
into a more comprehensive risk score that may improve discrimination potential and risk stratification and the
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Cluster 1 Cluster 2 Cluster 3

Low risk Moderate risk High risk
Characteristic n=119 n=44 n=117 p value
Age (years), mean + 8D 71£51 71442 7348 0.0058*
NYHA (I, n 83/36 359 71/46 0.1868°
Male, n (%} 91 (77) 29(66) 86 (74) 0.3979°
Body mass index (kg/m?*), mean + SD 27.0+3.0 27.0+3.4 26.6+3.9 0.4165*
Heart rate (bpm), mean + SD 73.8+26.7 7204109 732+12.6 0.9385*
Systalic blood pressure (mm Eg). 1364177 1374257 131169 00642*
Diastolic blood pressure (mm Hg), 82.9+109 787413.0 7954103 00485
mean+SD
Years since first diagnosis of CHF 53£59 5.0£4.5 5.3+£57 09737
Cardiac Death, n (%) 24 (20) 12 (27) 59 (50) <0.0001"
Laboratory, mean +SD
Serum creatinine (pumol/I} 103+26.7 104+26.7 113+28.7 0.0034*
Hemoglobin (g/dL) 13.6+14 134+1.1 134+17 0.1927*
Sodium (mmol/L) 14243.2 141+3.6 141+£3.2 0.6576*
Uric acid {pmol/L) 342+103 324+108 378+ 147 0.1084*
Total Cholesterol (mmol/L) 51+16 54+14 5.0+16 0.2022*
HDL cholesterol (mmol/L) 12+04 12+04 12+05 0.6042*
LDL cholesterol (mmol/L) 35+14 35+11 33+13 04337
Triglycerides (mmol/L) 17+09 1.7+0.9 1.8+1.0 0.5816*
Lymphocytes (%)* 31 31 31 N/A
NT-preBNP (pg/mL) 506.0 (236-1461)" 860 (369-1883)" 1094 (450-2059)" 00015
PC16:0/18:2 (ngrdl) 36,830 (33,035-40460)" | 35300(30,538-39,370) ' | 37,275(31,688-39,850) ' | 03678 *
TAG 18:1/18:0/18:0 (pgrdl) 131(91-253)" 107 (74-264) T 103 (72-253) 0.5739*
3%‘}};%%;&# d18:2/23:0, M 1433 (1181-1613) 1378 (1156-1688) * 1296 (1071-1529) * 0.1598*
Cardiac imaging, mean +SD
LVEF (%) 37.7+9.6 367+82 34.0+95 0.0046*
LVDed (mm) 57.8+9.2 59.6+8.1 59.5+9.5 0.2684*
LVDes (mm) 443+94 456+ 9.0 46.7+10.1 0.1422*
LVVed (mL) 147+57.5 16577 154+ 64.6 04697
LV Ves (mL) 95.9+47 109+60.7 104+£52.2 04449
Laes(mm) 44.6£6.9 45365 45977 0.3705*
Ele 11388 104291 13.0£95 0.0202*
E/A Lo+0.6 1.0+0.8 12409 0.2407*
Deceleration time (ms) 233+84.8 229+30.8 219+72.3 04823
Comotbidities, n (%)
Diabetes 29 (24) 11(25) 42{(36) 0.1195"
Hypertension 95 (80) 39(87) 90 (77) 0.2534°
Coronary artery disease 80 (67) 30(68) 90 (77) 0.2245°
Smokers 55 (46) 20 (46) 50 (43) 0.8592°
Hyperlipidemia 67(56) 26 (61) 69 (59) 0.8636°
COPD 2Q2) 2(5) 5d) 0.2143°
Medication, n (%)
ACE inhibitor 104 (87) 36(82) 107 (92) 0.2244°
Allopurinol 0(0) 0(0) 0(0) N/A
ARB 39 (33) 16(36) 60 (51) 0.0121%
Beta blocker 87 (73) 36(82) 80 (68) 0.2303"
Diuretics 53 (45) 23(52) 69(59) 0.0850%
Diuretic dose mg/kg, mean +SD 0.28+0.25 033035 0.36+0.34 03410
Glycoside 26 (22) §(18) 25(21) 0.8736°
Aspirin 92 (77) 33(75) 91 (78) 0.9309°
Nitrate 55 (46) 28(64) 63 {(54) 0.1262°
Antiarrthythmic agent 16 (13) 6(14) 20(17) 0.7075°
Statin 51 (43) 18 (41) 45 (39) 0.7894°
Continued
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Cluster 1 Cluster 2 Cluster 3

Low risk Moderate risk High risk
Characteristic n=119 n=44 n=117 pvalue
Prognostic scores
SHEM, Mean (SD) 11+£0.54 0.9+0.6 132405 <.0001*
FRS, Mean (SD) 20.1+4.1 20.6+4.5 20.1+4.0 0.6033*
MAGGIC, Mean (SD) 22.1£5.0 214438 227450 0.2092*
BCN Bio-HE Mean (SD} 0.83+0.17 0.34+0.13 0.76+0.2 <.0001*
CLE, n (%) <.0001°
0 6 (6) 1{3) 0(0)
1 3 (85) 24 (75) 4
2 4(4) 3(9) 13(12)
3 509 4(13) 77 (68)
4 0(0) 0{0) 19(17)

Table 3. Comparison of cohort characteristics and prognostic scores. Cohort characteristics and prognostic
score distribution across risk clusters. The prognostic scores used for clustering were: SHFM (Seattle Heart
Failure Model), FRS (Framingham Risk Score), and MAGGIC (Meta-analysis Global Group in Chronic
Heart Failure), BCN Bio-HF (Barcelona Bio-Heart Failure Risk Calculator), and Cardiac Lipid Panel Risk
Score (CLP). Each prognostic score was standardized to the same scale (mean=0; SD=1). Ward’s minimum
variance method was used for clustering. ACE, angiotensin-converting enzyme; ARB, angiotensin receptor
blocker; TAG, triacylglycerol 18:1/18:0/18:0; COPD, chronic obstructive pulmonary disease; E/A, ratio of
the early (E) to late (A) ventricular filling velocities; E/€] ratio between early mitral inflow velocity and mitral
annular early diastolic velocity; LAes, left atrial end systole; LDL, low-density lipoprotein; NYHA, New York
Heart Association; HDL, high-density lipoprotein; LV Ded, left ventricular diameter end diastole; LVDes, left
ventricular diameter end systole; LV Ved, left ventricular volume end diastole; LVEE, left ventricular ejection
fraction; LV Ves, left ventricular volume end systole; mg/kg, milligrams per kilograms; NTpro-BNE, N-terminal
pro-B-type natriuretic; PC, phosphatidylcholine; SM, sphingomyelin. *Wilcoxon rank sum test, "Pearson’s
chi-square test, “Mantel-Haenszel chi-square, *Imputed using the median, 31%, of the normal range 20-40%.
TMedian (Interquartile Range).

CLP offers a promise. The CLP score is a step in the direction of providing a more precise decision support tool
to assist clinicians and patients in managing their CHF treatment.

Methods

Study population. This study used a sub-cohort randomly selected from the Cardiac Insufficiency Biso-
prolol Study in Elderdy (CIBIS-ELD) trial, a multi-center, randomized, double-blind trial with = 65-year-old
patients being treated for CHE The original study design and results of the CIBIS-ELD trial have been published
previously™*”. Briefly, patients with CHF were randomized in a 1:1 fashion to receive two different beta-block-
ers, either bisoprolol or carvedilol, and up titrated every fortnight for 12 weeks and then followed at 10 years.
From this source cohort (n=883), there were n=>589 with available blood samples. Patients were randomly
selected and included in the analysis only if they passed quality control®®*® resulting in a final set of 280 cases.
The ethics committees of all participating centers approved the study protocol, and informed consent was signed
by all participants prior to study participation. The ethics committees include: Germany: Ethikkommission der
Charité on the 13th June 2007 (Amendment 5) (ref: 125/2004), Serbia: Ethics board of the University Hospital
on the 31st March 2006 (ref: 6108/18), Slovenia: The national medical ethics committee on the 2nd July 2007
(ref: KME 188/06/07). The investigation conformed to the principles outlined in the Declaration of Helsinki®".

Biomarker measurements. Targeted metabolite profiling of the serum samples which passed quality
control was performed at a specialized metabolomics lab using a commercially available kit. The kit uses a pro-
tocol based on a 1-phase extraction of the blood samples followed by gas chromatography mass spectrometry
(GC-MS) (Agilent 6890 GC coupled to an Agilent 5973 M5-System) and liquid chromatography tandem- mass
spectrometry (LC-MS/MS) (Agilent 1100 HPLC-System coupled to an Applied Biosystems API4000 MS/MS-
System) analysis as previously described”. The analytical protocol was designed for routine measurement in the
clinical practice setting; however, it is currently only available in specialized labs equipped with MS technology.
The samples were stored at —80 °C and transferred on dry ice prior to analysis. The three CLP metabolomic
features and N'T-proBNP measurements, were generated at baseline, only for the previously mentioned samples
(n=280). NT-proBNP was a measured using commercially available assays (Elecsys, Roche Diagnostics).

Calculating prognostic scores.  Each prognostic score was calculated using the corresponding method
proposed by the original authors (3-6). Only the scores which were developed in the follow-up time period,
2006-2016, were included in the analysis due to data availability. For calculating the SHFM score, % lymphocyte
was missing, and the median (31%) of the normal range (20-40%) was imputed for all subjects. For calculating
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the BCN Bio-HF score, the model with clinical variables plus NT-proBNP was used since ST-2 and hs-<TnT were
not available. The CLP risk score was calculated as the count of biomarkers above the Youden index cut-offs.
The Youden’s index calculates each biomarker’s optimal cut-off from the Cox regression. There were 4 cut-off
values, since four biomarkers are included in the score: three from the CLP and NT-proBNP. Based on the cut-
off, a value of 1 or 0 was assigned if the biomarker value was above/below the cut-off value, ot in the direction of
greater risk, then all 4 values were summed to generate the final score for each subject. The score ranged from 0
to 4, higher scores indicating higher risk. The primary outcome, cardiovascular death, was defined as death by
myocardial infarction, non-responding arthythmia, asystole, chronic pump failure, or other cardiac cause and
verified by a blinded committee of cardiologists.

Statistical analysis. Power and sample Size. 'The sample size was adjusted for an anticipated event rate of
0.34. A Cox regression of the log hazard ratio on a covariate with a standard deviation of 1.5 based on a sample
of 257 observations achieves 80% power at a 0.050 significance level to detect a regression coefficient equal to 0.2.
Adjusting for an anticipated loss to follow up rate of 10%, the final sample size would be 283.

Discrimination analysis and calibration. Categorical variables were expressed as number (%) and continuous
variables were expressed as mean (SD). The primary outcome was 10-year cardiovascular death, and the second-
ary outcome was 3 year all-cause death, since all scores except for FRS were developed for this outcome. Cox
Regression was performed on each of the prognostic scores, and hazard ratios and 95% confidence intervals were
calculated to assess their relationship with the outcome.

For the survival models, integrated area under the receiver operator curves (IAUC) and Harrell's ¢ statistic®
were calculated to assess the discrimination of each score in predicting the outcome. Hypothesis testing of the
change in discrimination was performed by calculating the differences in concordance statistics®. The IAUC
curves are computed as a weighted average of the AUC values at all the event times, with the weights as the
jumps of the Kaplan-Meier estimate of the survivor function. Calibration (ie., the agreement between observed
outcomes and predictions) of all models was assessed graphically, with calibration plots.

Competing event and cause-specific analysis was performed for all models with non-cardiovascular mortality
as the competing event. The cumulative incidence function (CIF) was calculated for the CLP which was stratified
by low (CLP score 0-1), moderate (CLP score 2), and high (CLP score 3-4) to assess CIF. The discrimination
analysis and competing event and cause-specific analysis were performed using SAS software version 9.4 of the
SAS System for Windows (SAS Institute, Inc., Cary, North Carolina)®. Calibration was analyzed using Stata
Statistical Software version 16%°.

Cluster analysis. Hierarchical cluster analysis was performed using Wards minimum variance method to
assess each prognostic scores ability to separate cases into risk groups. The distance between two clusters is the
ANOVA sum of squares between the clusters summed over all variables. Only the 5 risk scores used as the input
variables for the cluster analysis to examine how well they classified patients into a low, moderate, and high-risk
of cardiovascular mortality. Data was standardized (mean of 0 and SD of 1), to perform clustering. The clinical
characteristics and scores were compared across risk clusters. Comparisons among continuous variables were
performed using Wilcoxon rank sum test; and Pearsons chi-square test (or Fisher’s exact test) or Mantel-Haen-
szel Chi-square test for categorical and ordinal data, respectively. Kaplan-Meier curves were used to compare the
survival distribution across risk clusters. Survival time was calculated from baseline until cardiovascular death
or censoring at 10 year follow up. Cluster analysis was performed using JMP pro software version 14%, Kaplan-
Meier curves were generated using SAS software version 9.4 of the SAS System for Windows (SAS Institute, Inc.,
Cary, North Carolina)®.

Correlation analysis. To investigate potential relationships between the CLP biomarker values and common
clinical parameters, Pearsons correlation coefficients were calculated, significant at the 0.01 level (2-tailed). Cor-
relation analysis was performed using R software version 3.6.15".
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