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Abstract. This work is devoted to investigating a compressible fluid system with low stratification, which is driven by fast
acoustic waves and internal waves. The approximation using a soundproof model is justified. More precisely, the soundproof
model captures the dynamics of both the non-oscillating mean flows and the oscillating internal waves, while filters out the
fast acoustic waves, of the compressible system with or without initial acoustic waves. Moreover, the fast-slow oscillation
structure is investigated.
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1. Introduction

1.1. Motivations

The rigorous justification of the anelastic and pseudo-incompressible models for atmospheric flows [3,
11,13] in the inviscid case remains a challenge for at least three technical reasons: First, under realistic
conditions for the troposphere, the compressible flow model involves three asymptotically separated time
scales, associated with advection (slow), internal gravity waves (intermediate), and acoustics (fast), re-
spectively. The two sound-proof models still involve the slow and intermediate scales, see [10], and thus
still depend on the scale separation parameter. In other words, the anelastic and pseudo-incompressible
models are not “limit models” in the classical sense, e.g., of low Mach number analysis. The technical
question to be rigorously answered therefore is: What is the relation between the compressible three-scale
and the sound-proof pseudo-incompressible (or anelastic) two-scale models.

Secondly, realistic atmospheric background states feature temperatures and local Brunt–Väisälä or
buoyancy frequencies that depend on the spatial position. This leaves the fast linear system describ-
ing acoustic and internal wave modes with non-constant, space-dependent coefficients. The control of
derivatives for non-constant coefficient systems using techniques of energy estimates is substantially more
difficult than it is in the constant coefficient case.

Thirdly, problems on the torus or in T
d (d ∈ 2, 3) are often technically easier to handle than bounded

domain problems, except when the bounded domain problem has a natural extension through certain
symmetries to the infinite or toroidal domain case. Owing to the presence of gravity, realistic atmospheric
flows always include a bottom boundary of the critical type that does not lend itself to domain extensions
that would preserve smoothness of solutions across the eliminated domain boundary.
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In this paper we make progress in addressing the first issue, i.e., model reduction from three to
two asymptotically separated scales, while we avoid the non-constant coefficient problem and irregular
behavior of solutions near the (bottom) boundary of the domain by introducing judicious simplifications
in the original model, designed to render the physics of the scale interactions largely intact: Let us
denote R the gas constant of the fluid, T the background temperature and g the typical gravitational
acceleration, respectively. Then by (i) considering a fluid layer much thinner than the pressure scale
height hsc = RT/g, we guarantee that the leading-order temperature, and with it the leading order
speed of sound, are constant. By (ii) assuming a particular vertical stratification of entropy (or potential
temperature), we guarantee that the buoyancy (or Brunt–Väisälä) frequency is constant as well (see
(H3) in page 6). This renders the linear fast system describing acoustic and internal waves with constant
coefficients. Finally, by (iii) letting the gravitational acceleration decay to zero smoothly towards the
top and bottom domain boundaries, while maintaining a constant buoyancy frequency by choice of the
entropy stratification, we obtain a problem that has a regular extension to a vertically periodic domain
problem [see (H1) and (H2) in page 6].

Under these conditions, our main results can be stated in an informal fashion as follows:

Theorem. Consider the full compressible model [ (17) in page 7] with both acoustic and internal waves,
and the pseudo-incompressible model [ (20) in page 7].

• Without initial acoustic waves, solutions of the compressible and pseudo-incompressible models re-
main asymptotically close over the slowest (advective) time scale as the small parameter representa-
tive of the Mach and Froude numbers vanishes. See Theorem 1 in page 8 for the detailed statement;

• Moreover, in the case with initial acoustic waves, the solutions of the pseudo-incompressible model
capture the dynamics of the mean flows and the internal waves in the compressible model. See
Theorem 2 in page 10 for more details.

More details are given in the following section describing the relation between the compressible model
(4) and the pseudo-incompressible system (20) through system (17).

An explanatory remark regarding our use of the notion of the “pseudo-incompressible” model is in
order: By the assumption of a shallow domain, the formal leading order divergence constraint emerging
from the pressure evolution equation is the incompressibility constraint ∇· v = 0 rather than the pseudo-
incrompressibility constraint ∇ · (Pv) = 0, where P (z) is a function of the vertical coordinate only. We
nevertheless speak of the pseudo-incompressible model in the last paragraph because we show in Sect. 4
that first order pseudo-incompressibility effects are important when closeness of the compressible and
soundproof approximations are to be maintained over the slow advective time scale. In fact, in that
section we study the intermediate model (51) in page 19, which we anticipate here in a notation similar
to that of [10] which is likely more familiar to readers of the meteorological literature,

Dv

Dt
+ ∇hπ = 0, (1a)

Dw

Dt
+ ∂zπ =

θ

εν
, (1b)

Dθ

Dt
=

Sε

εν
w, (1c)

divh (P εv) + ∂z(P εw) = 0. (1d)

where
D

Dt
= ∂t + v · ∇h + w ∂z , (2)

and

P ε(z) = 1 − ε ˜P ε(z) , Sε(z, θ) = Sε
0 + ενSε

ν(z)θ . (3)

The system in (1) captures part of the difference between incompressible and pseudo-incompressible
dynamics. Thus, the divergence control in (1d) represents weak deviations from the constraint divh v =



JMFM The Soundproof Model of an Acoustic–internal. . . Page 3 of 45    95 

0 of an incompressible flow that are due to the small but finite height of the flow domain. It is not
equivalent to the pseudo-incompressible system, however, as it does not include its baroclinic nonlinearity
which would be represented by pressure gradient terms (θε

0(z) + εμ+νθ)(∇hπ, ∂zπ) in (1a) and (1b).
Our main point in Sect. 4 will be to show that the weak deviation from incompressibility, even though
small, significantly improves the system’s agreement with the full compressible model relative to the
incompressible model.

1.2. Description of the Problem

To model a compressible flow under the influence of an external force (e.g., earth gravity), the compressible
Euler equations is considered. With low stratifications, the dimensionless system can be written as (see,
e.g., [5]),

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∂tρ + divh (ρv) + ∂z(ρw) = 0,

∂t(ρv) + divh (ρv ⊗ v) + ∂z(ρwv) +
1
ε2

∇hp = 0,

∂t(ρw) + divh (ρvw) + ∂z(ρww) +
1
ε2

∂zp +
1
ε
ρG(z) = 0,

∂tp + v · ∇hp + w∂zp + γp(divh v + ∂zw) = 0,

(4)

where ε ∈ (0, 1) denotes the small Mach number, and ρ, p, v, and w are the scalar density, the pressure
potential, the horizontal velocity field, and the vertical velocity, respectively. Here G(z) is the external
force, causing stratification. As ε → 0+, system (4) describes flows in the low Mach number region with
low stratification, i.e., the Boussinesq scale. The external force ρG(z) causes the flow to form stratification
as ε → 0+. One particular stratification profile considered in this paper is characterised by

∂zθ = O(εμ), μ ∈ (0, 1), (5)

where θ is the potential temperature defined by

θ := p1/γρ−1. (6)

In addition, the Exner pressure, defined by

� :=
γ

γ − 1
p

γ−1
γ , (7)

is commonly used in meteorological study ([9,10] etc.). Then (4) is equivalent to, described by the new
unknowns (�, θ, v, w),

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∂t� + v · ∇h� + w∂z� + (γ − 1)�(divh v + ∂zw) = 0,
∂tθ

−1 + v · ∇hθ−1 + w∂zθ
−1 = 0,

θ−1(∂tv + v · ∇hv + w∂zv) +
1
ε2

∇h� = 0,

θ−1(∂tw + v · ∇hw + w∂zw) +
1
ε2

∂z� +
1
ε
θ−1G(z) = 0.

(8)

In order the investigate the stratification with (5), the following ansatz is introduced:

� := �0 + ε�̃, θ−1 := θ−1
0 + εμG−1H0 + εμ+νG−1

˜H, (9)

where �0, θ0 are constant, and H0 = H0(z). Then from (8), one can derive, with

μ + 2ν = 1, (10)
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⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1
(γ − 1)�

(∂t�̃ + v · ∇h�̃ + w∂z�̃) +
1
ε
(divh v + ∂zw) = 0,

1
G∂z(G−1H0)

(∂t
˜H + v · ∇h

˜H + Gw∂z(G−1
˜H)) +

1
εν

w = 0,

θ−1(∂tv + v · ∇hv + w∂zv) +
1
ε
∇h�̃ = 0,

θ−1(∂tw + v · ∇hw + w∂zw) +
1
ε
(∂z�̃ + θ−1

0 G(z) + εμH0) +
1
εν
˜H = 0.

(11)

After denoting by

q̃ := �̃ + θ−1
0

∫ z

0

G(z′) dz′ + εμ

∫ z

0

H0(z′) dz′ (12)

and multiplying the first equation of (11) with �/�0, we arrive at
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1
(γ − 1)�0

(∂tq̃ + v · ∇hq̃ + w∂z q̃ − θ−1
0 Gw − εμH0w)

+
1
ε
(divh v + ∂zw) = −�−1

0 q̃(divh v + ∂zw)

+�−1
0 (divh v + ∂zw)(θ−1

0

∫ z

0
G(z′) dz′ + εμ

∫ z

0
H0(z′) dz′),

− 1
G∂z(G−1H0)

(∂t
˜H + v · ∇h

˜H + w∂z
˜H − ∂zG

G
˜Hw) − 1

εν
w = 0,

θ−1(∂tv + v · ∇hv + w∂zv) +
1
ε
∇hq̃ = 0,

θ−1(∂tw + v · ∇hw + w∂zw) +
1
ε
∂z q̃ +

1
εν
˜H = 0.

(13)

On the other hand, denote by

U :=

⎛

⎜

⎜

⎝

q̃
˜H
v
w

⎞

⎟

⎟

⎠

, LaU :=

⎛

⎜

⎜

⎝

divh v + ∂zw
0

∇hq̃
∂z q̃

⎞

⎟

⎟

⎠

, and LgU :=

⎛

⎜

⎜

⎝

0
−w
0
˜H

⎞

⎟

⎟

⎠

. (14)

Notice that operators La and Lg are anti-symmetric with respect to the L2-inner product and induce
oscillations, corresponding to acoustic waves and internal waves of solutions to system (13), respectively.

Unfortunately, in general, the anti-symmetry property does not hold for general boundary conditions
and systems with non-constant coefficients in more regular Sobolev space, for instance Hs, s > 0. This is a
major difficulty in the study of asymptotic limit of fast oscillation systems (see, e.g., [12]). To resolve this
difficulty is beyond the scope of this paper. Instead, we will introduce a system closely related to system
(13), which still captures the acoustic waves and the internal waves driven by La and Lg, respectively.
As explained in Sect. 1.1, we will assume the following hypothesis in this first work.
(H1) If one considers (13) in {(x, y, z) ∈ T

2 × 0.5T}, and assumes that G,H0 are odd in the z-variable,
then the following symmetry invariance holds:

q̃, ˜H, v, and w are even, odd, even, and odd, respectively,
with respect to the z-variable.

(SYM)

Therefore, by, in addition, assuming G,H0 to be smooth enough in T
3, one can consider (13) in T

3.
(H2) Noticing that in (13)2, the term ˜Hw∂zG/G becomes singular when G approaches 0. The function

∂zG
G is replaced by another function ˜G, which is odd with respect to the z-variable and smooth in

T
3. For the same reason, we replace G−1 in (9) by ˜G.

(H3) The Brunt–Väisälä frequency N, defined by,

N2 := −G∂z(G−1H0), (15)

is constant.
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Then, after denoting the positive constants

A :=
1

(γ − 1)�0
, B := − 1

G∂z(G−1H0)
, C := θ−1

0 , (16)

we introduce the following system: in T
3, with μ + 2ν = 1,

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

A∂tq̃ + Av · ∇hq̃ + Aw∂z q̃ +
1
ε
(divh v + ∂zw)

= ACGw + εμAH0w − �−1
0 q̃(divh v + ∂zw)

+�−1
0 (divh v + ∂zw)(C ∫ z

0
G(z′) dz′ + εμ

∫ z

0
H0(z′) dz′),

B∂t
˜H + Bv · ∇h

˜H + Bw∂z
˜H − 1

εν
w = B ˜G · ˜Hw,

ϑ∂tv + ϑv · ∇hv + ϑw∂zv +
1
ε
∇hq̃ = 0,

ϑ∂tw + ϑv · ∇hw + ϑw∂zw +
1
ε
∂z q̃ +

1
εν
˜H = 0,

(17)

where q̃, ˜H, v, w admit the symmetry (SYM), G, H0, ˜G are odd in the z-variable and smooth enough in
T
3, and ϑ = C + O(εμ) are given by

ϑ := C + εμ
˜GH0 + εμ+ν

˜G ˜H. (18)

System (17) is complemented with initial data

(q̃, ˜H, v, w)|t=0 = (q̃in, ˜Hin, vin, win). (19)

Accordingly, ([∂α
t q̃]in, [∂α

t
˜H]in, [∂α

t v]in, [∂α
t w]in), α ∈ N

+, are defined inductively after shifting spatial
derivatives to temporal derivatives using equations of (17).

Before stating our results, we would like to make a few perspective remarks. As one can see, in system
(17), the linear oscillator is given by

1
ε
La +

1
εν

Lg,

i.e., a combination of the acoustic oscillator and the internal wave oscillator. Moreover, since ν ∈ (0, 1),
as ε → 0+, the oscillation induced by 1

εLa is much faster than that of 1
εν Lg. This means that the acoustic

waves will be averaged out (or filtered out) before the internal waves. Owing to such a phenomena, we
propose a pseudo-incompressible/soundproof model, similar to [10]:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

divh vsp + ∂zwsp = 0,

B∂t
˜Hsp + Bvsp · ∇h

˜Hsp + Bwsp∂z
˜Hsp − 1

εν
wsp = B ˜G · ˜Hspwsp,

C∂tvsp + Cvsp · ∇hvsp + Cwsp∂zvsp + ∇hpsp = 0,

C∂twsp + Cvsp · ∇hwsp + Cwsp∂zwsp + ∂zpsp +
1
εν
˜Hsp = 0,

(20)

whose solutions will be an approximation to the solutions to system (17) minus the acoustic waves, with
or without initial acoustic waves.

Aside from the soundproof approximation, we would like to investigate how the mixture of acoustic
waves and internal waves with different frequencies affects the total oscillation of the system. To do so,
we will first consider a linear system associated with (17) and the corresponding eigenvalue problem. By
comparing the distribution of eigenvalues with that of eigenvalues associated with La, we have a more
precise description of how the internal waves intertwine with the acoustic waves at the level of eigenvalues.
Based on the understanding of the linear theory, we will discuss the fast-slow wave interaction of system
(17) in the end.

We would like to mention, our current study is strongly motivated by previous study on flows with
strong stratification (see, e.g., [9,10]), to which we refer readers for more metrological perspectives. A
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Table 1. Waves in the initial data

Waves in the initial data Theorem 1 Theorem 2

Mean flows ✓ ✓
Internal waves ✓ ✓
Acoustic waves ✗ ✓

recent paper [2] focuses on the soundproof model with stratification to better understand the internal
waves.

The justification of singular limits is rooted back to:
• Fast oscillation limit with only one parameter can be found in [15–17]. For geophysical purposes,

see for instance [6,7,12].
• Fast oscillation limit with several parameters linked together can be found in [18]. For geophysical

purposes, see, for instance, [4,5] for weak solutions, and [1] for strong solutions.
In this work, we do not perform fast oscillation limit. Instead, we want to prove that the non-oscillating

mean flows and the oscillating internal waves of solutions of two singular systems (the compressible and
pseudo-incompressible/soundproof models) remain asymptotically close over the slowest time scale. The
main theorems in this paper consider the initial data of the following types in the full compressible system
(17), as in Table 1:
and compare the solutions to those of the soundproof model (20). In both cases, we justify the rigidity of
capturing the dynamics of the mean flows and the internal waves of the full compressible system using
the soundproof approximation.

More precisely, our first result provides the comparison of solutions to the two singular systems in the
well-prepared data (without acoustic waves) case:

Theorem 1 (Mean flows + Internal waves). Let 0 < 2ν < 1. Denote the initial data to the intermediate
model (51), below in page 19, as

( ˜Hms,in, vms,in, wms,in) ∈ H3(T3),

and the initial data to the soundproof model (20) as

( ˜Hsp,in, vsp,in, wps,in) ∈ H3(T3),

satisfying the pseudo-incompressible and incompressible conditions (51)1 and (20)1, respectively. Then
there exist local-in-time solutions to the intermediate model (51), below, and the soundproof model (20),
denoted as

(pms(s), ˜Hms(s), vms(s), wms(s)) and (psp(s), ˜Hsp(s), vsp(s), wsp(s)),

respectively, in L∞((0, Tms+sp),H3(T3)) ∩ C([0, Tms+sp),H2(T3)) for some Tms+sp ∈ (0,∞).
Meanwhile, denote by

(q̃(s), ˜H(s), v(s), w(s))

the solution to compressible system (17) in Proposition 3, below, with initial data satisfying (23) for any
fixed σ ∈ (0, μ]. Then there exist Tapp ∈ (0,∞) and Capp ∈ (0,∞), depending only on the initial data
above, such that, for ε ∈ (0, 1),

sup
0≤s≤Tapp

∥

∥q̃(s) − εpsp(s), ˜H(s) − ˜Hsp(s), v(s) − vsp(s), w(s) − wsp(s)
∥

∥

L2(T3)

≤ Capp

(

εmax{μ−ν,μ−σ}

+
∥

∥ ˜Hms,in − ˜Hsp,in, vms,in − vsp,in, wms,in − wsp,in

∥

∥

L2(T3)

+
∥

∥q̃in − εpms,in, ˜Hin − ˜Hms,in, vin − vms,in, win − wms,in

∥

∥

L2(T3)

)

.

(21)
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Here pms, pms,in, and psp are given by solutions to elliptic problems (52) and (73), and can be estimated
as in (55) and (75), below in pages 19, 25, 20, and 25, respectively. Here, recall that μ + 2ν = 1.

The uniform-in-ε estimate of solutions to (20) and (51) can be found in (74), (75), (60), and (55),
respectively. In particular, with max{μ − ν, μ − σ} = max{1 − 3ν, 1 − 2ν − σ} > 0 and proper initial data
(so that the initial data on the right hand side of (21) is small), (21) provides the error estimates and
convergence rate of the soundproof approximation with “well-prepared” initial data.

The term εmax{μ−ν,μ−σ} in the error estimate (21) results from the comparison between the terms
(C + O(εμ))(∂tv, ∂tw) and C(∂tvms, ∂twms) in Sect. 4.2, which can be either written as

(C + O(εμ))(∂t(v − vms), ∂t(w − wms)) + O(εμ)(∂tvms, ∂twms)

or

C(∂t(v − vms), ∂t(w − wms)) + O(εμ)(∂tv, ∂tw).

See (66) and (70), respectively, for details. Since (∂tvms, ∂twms) 	 (∂tvsp, ∂twsp) 	 O(ε−ν) [as can be
seen through (20)] and (∂tv, ∂tw) 	 O(ε−σ) thanks to Proposition 3, this results in our freedom of choice
in the error estimate (21). For more details, we refer readers to the estimate of I3 in (68) in page 24 and
(72) in page 25 of the proof of the theorem.

Heuristically speaking, for larger ν ∈ [1/3, 1/2), the oscillating rates of the internal gravity waves and
the acoustic waves (if non-trivial, of O(ε−ν) and O(ε−1), respectively) are closer to each other. In order
to control the error εmax{μ−ν,μ−σ} = εmax{1−3ν,1−2ν−σ}, we need σ < μ = 1 − 2ν, i.e., smaller value
of σ (hence weaker acoustic waves in the full compressible system), to avoid strong interaction between
acoustic waves and internal waves in the full compressible system.

We would also like to point out that the constraint 0 < 2ν < 1 is physical [see the formal deviation
between (8) and (13)].

The second result will provide the convergence in the ill-prepared data (with acoustic waves) case:

Theorem 2. Mean flows + Internal waves + Acoustic waves Under the same assumptions as in Theorem
1, denote by U = (q̃, ˜H, v, w), the solution to (17), and write U = Umf

ε + Ugw
ε + Uaw

ε as the summation
of the mean flows, the internal waves, and the acoustic waves. Let (psp, Usp) = (psp, ˜Hsp, vsp, wsp) be
the solution to the soundproof approximation (20) with initial data capturing the initial mean flows and
internal waves of the full compressible system (17) [see (193) for the exact meaning of this statement].
Let Prd : (q̃, ˜H, v, w) 
→ ( ˜H, v, w) and {Tk}k∈N be the vector-dimension reduction and finite dimension
truncation defined in (145) and (163) of pages 45 and 48, respectively. Then for any positive integer K,
one has

sup
0<t<Tσ,mg

∥

∥TKPrd(Umf
ε + Ugw

ε )(t) − TKUsp(t)
∥

∥

2

L2 ≤ CK(O(ε2μ−2σ) + O(ε)) + Err, (22)

where Tσ,mg ∈ (0,∞) is the time of existence of solutions independent of ε and K, and Err is the
truncation error which vanishes uniformly-in-ε as K → ∞.

The physical rationale for the need to project out the pressure variable in the course of this estimate
is as follows: By the non-dimensionalization underlying the full compressible system in (17), the small
parameter ε is proportional to the Mach number. Then, under the assumption of initial velocities of
order unity, acoustic pressure amplitudes will be of order O(ε) for otherwise general initial data, see (9)
and, e.g., [7,8,14]. Similarly, internal waves inducing velocities of O(1) come with pressure perturbation
amplitudes of order O(ε2−ν), see [10], while slow, purely advective dynamics implies pressure amplitudes
of O(ε2) according to the classical scaling for incompressible flows. Therefore, when the contributions of
the superimposed acoustic, gravity wave, and mean flow modes to the velocity field are comparable (e.g.,
of order unity), then their contributions to the pressure field have decidedly different amplitude scaling
with δpaw � δpgw � δpmf . That is, there are scaling regimes within which the influence of acoustics on the
flow velocity and advected scalars is neglible compared to that of gravity waves and mean flow, although
the pressure perturbations are still dominated by the acoustic modes. In these regimes, the projected
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variables (H, v, w) in the full compressible and pseudo-incompressible solutions are asymptotically close,
whereas the pressure fields are not. Our theorem then states that the net effect of the larger acoustic
pressure fluctuations rigorously average out at leading order and over the pertinent advective time scale.
This generalizes related statements regarding acoustic averaging in the absence of gravity by Klainerman
and Majda [7].

To get existence of solutions to (17), we need uniform-in-ε a priori estimate, namely:

Proposition 3. Let 0 < 2ν < 1 and 0 < ε < 1. Suppose that (q̃in, ˜Hin, vin, win) in (19) satisfies
∑

α,β∈N, α+β≤3,
∂∈{∂x,∂y,∂z}

(

∥

∥[∂β(εσ∂t)αq̃]in, [∂β(εσ∂t)α
˜H]in
∥

∥

2

L2(T3)

+
∥

∥[∂β(εσ∂t)αv]in, [∂β(εσ∂t)αw]in
∥

∥

2

L2(T3)

)

≤ Cin,

(23)

for some Cin ∈ (0,∞) and σ ∈ (0, μ], where ([∂α
t q̃]in, [∂α

t
˜H]in, [∂α

t v]in, [∂α
t w]in), α ∈ N

+, are defined induc-
tively after shifting spatial derivatives to temporal derivatives using equations of (17). Let (q̃(s), ˜H(s), v(s),
w(s)) be the smooth solution to (17) with initial data (q̃in, ˜Hin, vin, win). Then there exist Tσ ∈ (0,∞),
depending only on Cin, such that

sup
0≤s≤Tσ

∑

α,β∈N, α+β≤3,
∂∈{∂x,∂y,∂z}

(

∥

∥(εσ∂t)α∂β q̃(s), (εσ∂t)α∂β
˜H(s)

∥

∥

2

L2(T3)

+
∥

∥(εσ∂t)α∂βv(s), (εσ∂t)α∂βw(s)
∥

∥

2

L2(T3)

)

≤ CCin,

with some constant C ∈ (0,∞), independent of ε.

We would like to mention that, with the a priori estimate, one can construct solutions locally in time
to (17), and also show the well-posedness, i.e., uniqueness and continuous dependency on initial data.
The construction and proof are standard, and we leave the details to readers.

After rescaling time at the same order, a uniform-in-ε estimate for a soundproof system similar to (20)
was obtained by the authors of [2, Theorem 2] under the assumption that the Brunt-Väisälä frequency N
is constant, i.e., (H3). In the case when N is not constant but depends on the vertical coordinate, z, the
existence time is of O(εν) as shown in [2, Theorem 1] for the soundproof system. Moreover, a vertical mode
decomposition based on modes obtained from the eigenfunctions of a Sturm-Liouville equation associated
with the background stratification is introduced, and a formal derivation of (partial differential) evolution
equations for these modes is provided. It is shown that the modes interact strongly with dispersive mixing
when N is not constant (see Proposition 4 in [2]). In contrast, when N is constant, the vertical modes
decouple (see their Proposition 5).

Notably, the vertical mode decomposition in [2] is not an eigenmode decomposition of the fast linear
system describing its internal wave dynamics as developed in Sect. 5.2 of the present paper (see also
[10]). In fact the eigenmodes of the fast system are sinusoidal in the horizontal direction and satisfy a
Sturm–Liouville equation that is parameterized by the horizontal wave number. For non-constant N, the
resulting vertical modes are not sinusoidal and their structure depends non-trivially on the horizontal
wave number. As a consequence, the projections of the solution onto just the eigenmodes of the hydrostatic
background in [2] will themselves be linear combinations of the eigenmodes of the full system and must
reveal dispersive behavior. Moreover, in this case the modes of the background system will also generally
be coupled, because their projection onto the eigenmodes of the full system will depend on the time
evolving horizontal structure of the solution.

The present analysis for the pseudo-incompressible model reduces to that of the incompressible system
studied in [2] for P ε = 1 in (1). It would be interesting to compare the detailed analytical steps and
accessible results when the solution decomposition in terms of a single family of vertical modes as invoked
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by Desjardins et al. [2] is replaced with a decomposition in terms of the full set of eigenmodes of the fast
system as worked out here. As demonstrated in [10], that approach could also be transferred to the full
compressible system (17) in which case the additional family of (even faster) acoustic eigenmodes and
their potential interactions with the internal wave and advective modes will have to be accounted for.

To prove Theorem 2, we need to understand the distribution of eigenvalues and need to have compar-
ison of eigenvectors, that is:

Proposition 4. The eigenvalues of operator La + ε1−νLg lie within the neighborhood of radius ε1−ν of
the eigenvalues of operator La. More precisely, let iω be an eigenvalue of La + ε1−νLg, then there exists
m ∈ {0, 1, 2, · · · }, such that

|ω±
ac,m|2 ≤ |ω|2 ≤ |ω±

ac,m|2 + ε2−2ν ,

where {iω±
ac,m}m∈{0,1,2,··· } are the eigenvalues of La. Therefore, the eigenvalues of the linear oscillating

operator

1
ε
La +

1
εν

Lg,

to system (17), with A = B = C = 1, can be classified into three families: mean flow frequency |ιmf | = 0;
internal wave frequency |ιgw| = O(ε−ν); perturbed acoustic wave frequency |ιaw| = O(ε−1).

In addition, with Fourier representations, one can obtain more detailed and sharper comparison on
the eigenvalues and eigenvectors, which are presented in Corollary 7 in page 43.

We refer readers to the representation of eigenvalue-eigenvector pairs to Proposition 5, below.
The rest of this paper is organized as follows. Section 2 will introduce some notations that have been

and will be used in this paper, as well as some classic nonlinear and commutator estimates. Section
3 is devoted to uniform-in-ε energy estimates of solutions to (17), and thus proves Proposition 3. In
Sect. 4, the rigidity of soundproof approximation is established, which proves Theorem 1. Notice that
due to the stratification, we will introduce an intermediate model, i.e., (51), to establish the soundproof
approximation. The aforementioned linear oscillating system is introduced in Sect. 5, where the eigenvalue
problem is investigated. Using the Fourier representation, the eigenvalue-eigenvector pairs are identified.
Thus Proposition 4 is proved. In Sect. 5.3, we further investigate the internal waves in the soundproof
model (20) and compare them with those in the compressible system (17). In Sect. 6, we discuss the
fast-slow wave interactions of nonlinear system (17), and establish Theorem 2.

2. Preliminaries

We assume that we are in T
3 all the time. We use the notation ∂ ∈ {∂x, ∂y, ∂z} throughout the rest of

the paper. The horizontal gradient, the horizontal divergence, and the horizontal laplacian operators are
defined by

∇h :=
(

∂x

∂y

)

, divh := ∇h·, and Δh := divh ∇h,

respectively. By adding a subscript in to any function u, we mean the initial data of u, i.e., u
∣

∣

t=0
= uin.

By A � B, it means there exists a generic constant C ∈ (0,∞), different from lines to lines, such that
A ≤ CB. Whenever we would like to emphasize the dependency of the generic constant C on certain
quantities, the depending quantities will be added as subscript, i.e., Cg means a constant depending on
g. For any norm

∥

∥

∥

∥

X
, we shorten the notation for norms of multiple functions as

∥

∥A,B
∥

∥

X
=
∥

∥A
∥

∥

X
+
∥

∥B
∥

∥

X
.

First, we introduce some nonlinear estimates, which are classic in the literature.
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Lemma 1. For s ∈ N
+,
∥

∥uv
∥

∥

Hs(T3)
≤ K

∥

∥u
∥

∥

Hη(T3)

∥

∥v
∥

∥

Hs(T3)
+
∥

∥u
∥

∥

Hs(T3)

∥

∥v
∥

∥

Hη(T3)
, (24)

where

η := max{[s/2], 2}, (25)

and K ∈ (0,∞) depends on s.

Proof. The proof is straightforward, after applying Leibniz’s formula, Hölder’s inequality, and the Sobolev
embedding inequality. Details are omitted here. �

Lemma 2. For s > 3/2, σ1, σ2 ∈ [0, s], σ1 + σ2 ≤ s, one has
∥

∥uv
∥

∥

Hs−σ1−σ2 (T3)
≤ K

∥

∥u
∥

∥

Hs−σ1 (T3)

∥

∥v
∥

∥

Hs−σ2 (T3)
, (26)

where K ∈ (0,∞) depends on s, σ1, σ2.

Proof. We sketch the estimate of
∥

∥∂αu∂βv
∥

∥

L2(T3)
, with α + β ≤ s − σ1 − σ2. After applying Hölder’s

inequality and the Sobolev embedding inequality, one has
∥

∥∂αu∂βv
∥

∥

L2(T3)
�
∥

∥∂αu
∥

∥

Lp(T3)

∥

∥∂βv
∥

∥

Lq(T3)

�
∥

∥u
∥

∥

Hm(T3)

∥

∥v
∥

∥

Hn(T3)
,

(27)

with certain
1
2

=
1
p

+
1
q
, p, q ∈ (2,∞]

1
p

− α

3
≥ 1

2
− m

3
,

1
q

− β

3
≥ 1

2
− n

3
.

(28)

In order to have a non-empty set of (p, q) in (28), we require further that

α ≤ m, β ≤ n, m + n ≥ α + β +
3
2
. (29)

One can check, with m = s − σ1 and n = s − σ2, (29) are satisfied with s > 3/2. Therefore, (26) follows
after taking the sum over α, β of (27). �

Next, we will introduce the some functional setups, and commutator estimates.
Let

∂α,β
σ :=

∑

∂∈{∂x,∂y,∂z}
(εσ∂t)α∂β . (30)

Denote by
∥

∥ · ∥∥
Hβ

α,σ
:=
∑

ι≤β

∥

∥∂α,ι
σ (·)∥∥

L2(T3)
. (31)

The hyperbolic energy is defined as

Eσ,s(·) :=
∑

α+β≤s

∥

∥ · ∥∥
Hβ

α,σ
. (32)

Now, we are ready to establish some commutator estimates. The following lemma presents the estimate
of [∂α,β

σ , f1∂t].

Lemma 3. For α + β ≥ 3,
∥

∥[∂α,β
σ , f1∂t]g1

∥

∥

L2(T3)
≤ Kε−σEσ,α+β(f1)Eσ,α+β(g1), (33)

where K ∈ (0,∞) depends only on α, β.
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Proof. It suffices to consider the estimate of
∥

∥∂α1,β1
σ f1∂

α2,β2
σ ∂tg1

∥

∥

L2(T3)
= ε−σ

∥

∥∂α1,β1
σ f1∂

α2+1,β2
σ g1

∥

∥

L2(T3)
,

with α1 + α2 = α, β1 + β2 = β, α1 + β1 ≥ 1.
(34)

Since α + β − 1 ≥ 2 > 3/2, applying (26) with

u = ∂α1,β1
σ f1, v = ∂α2+1,β2

σ g1,

s = α + β − 1, σ1 = α1 + β1 − 1, σ2 = α2 + β2,

leads to
∥

∥∂α1,β1
σ f1∂

α2+1,β2
σ g1

∥

∥

L2(T3)
�
∥

∥∂α1,β1
σ f1

∥

∥

Hα2+β2 (T3)

× ∥∥∂α2+1,β2
σ g1

∥

∥

Hα1+β1−1(T3)
≤ Eσ,α+β(f1)Eσ,α+β(g1).

(35)

Therefore (33) follows after summing over (α1, α2, β1, β2) in (34) and (35). �

Next, we are going to establish the estimate of [∂α,β
σ , f2∂], with ∂ ∈ {∂x, ∂y, ∂z}.

Lemma 4. With ∂ ∈ {∂x, ∂y, ∂z} and α + β ≥ 3,
∥

∥[∂α,β
σ , f2∂]g2

∥

∥

L2(T3)
≤ KEσ,α+β(f2)Eσ,α+β(g2), (36)

where K ∈ (0,∞) depends only on α, β.

Proof. The proof is very much similar to that of Lemma 3. Therefore we leave it to readers. �

In addition, we would like to provide some nonlinear estimates.

Lemma 5. For ι ≥ 2,

Eσ,ι(fg) ≤ KEσ,ι(f)Eσ,ι(g), (37)

where K ∈ (0,∞) depends only on ι.

Proof. Consider
∥

∥(εσ∂t)α1∂β1f · (εσ∂t)α2∂β2g
∥

∥

L2(T3)
,

with 2 ≤ α1 + α2 + β1 + β2 ≤ ι.
(38)

Applying (26) with

u = (εσ∂t)α1∂β1f, v = (εσ∂t)α2∂β2g,

s = α1 + α2 + β1 + β2, σ1 = α1 + β1, σ2 = α2 + β2,

leads to
∥

∥(εσ∂t)α1∂β1f · (εσ∂t)α2∂β2g
∥

∥

L2(T3)
�
∥

∥(εσ∂t)α1∂β1f
∥

∥

Hα2+β2 (T3)

× ∥∥(εσ∂t)α2∂β2g
∥

∥

Hα1+β1 (T3)
≤ Eσ,ι(f)Eσ,ι(g).

(39)

The estimates of the case when α1 + α2 + β1 + β2 = 0, 1 is straightforwards and thus is omitted here.
Therefore (37) follows after summing over (α1, α2, β1, β2). �
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3. Uniform a Priori Estimates

We are in the place to perform a priori energy estimates. That is, we will establish the Proof of Proposition
3 in this section. In particular, we will focus on the estimates of

∥

∥∂α,β
σ (q̃, ˜H, v, w)

∥

∥

L2(T3)
, with α + β = 3.

The case when α + β = 0, 1, 2 can be calculated in a similar, if not simpler, manner.
Applying ∂α,β

σ , α + β = 3, to (17) leads to
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

A∂t∂
α,β
σ q̃ + Av · ∇h∂α,β

σ q̃ + Aw∂z∂
α,β
σ q̃

+
1
ε
(divh ∂α,β

σ v + ∂z∂
α,β
σ w) = I1 + J1,

B∂t∂
α,β
σ
˜H + Bv · ∇h∂α,β

σ
˜H + Bw∂z∂

α,β
σ
˜H − 1

εν
∂α,β

σ w = I2 + J2,

ϑ∂t∂
α,β
σ v + ϑv · ∇h∂α,β

σ v + ϑw∂z∂
α,β
σ v +

1
ε
∇h∂α,β

σ q̃ = I3,

ϑ∂t∂
α,β
σ w + ϑv · ∇h∂α,β

σ w + ϑw∂z∂
α,β
σ w

+
1
ε
∂z∂

α,β
σ q̃ +

1
εν

∂α,β
σ
˜H = I4,

(40)

where

I1 := −A[∂α,β
σ , v · ∇h]q̃ − A[∂α,β

σ , w∂z]q̃,

J1 := AC∂α,β
σ (Gw) + εμA∂α,β

σ (H0w) − �−1
0 ∂α,β

σ [q̃(divh v + ∂zw)]

+ �−1
0 ∂α,β

σ [(divh v + ∂zw)(C
∫ z

0

G(z′) dz′ + εμ

∫ z

0

H0(z′) dz′)],

I2 := −B[∂α,β
σ , v · ∇h] ˜H − B[∂α,β

σ , w∂z] ˜H,

J2 := B∂α,β
σ ( ˜G · ˜Hw),

I3 := −[∂α,β
σ , ϑ∂t]v − [∂α,β

σ , ϑv · ∇h]v − [∂α,β
σ , ϑw∂z]v,

I4 := −[∂α,β
σ , ϑ∂t]w − [∂α,β

σ , ϑv · ∇h]w − [∂α,β
σ , ϑw∂z]w.

After taking the L2-inner product of (40) with 2∂α,β
σ q̃, 2∂α,β

σ
˜H, 2∂α,β

σ v, 2∂α,β
σ w, respectively, applying

integration by parts to the resultant equations, summing the resultant equations, and applying Hölder’s
inequality and the Sobolev embedding inequalities, one can write down

d

dt

(

A∥∥∂α,β
σ q̃

∥

∥

2

L2(T3)
+ B∥∥∂α,β

σ
˜H∥∥2

L2(T3)
+
∥

∥ϑ1/2∂α,β
σ v

∥

∥

2

L2(T3)

+
∥

∥ϑ1/2∂α,β
σ w

∥

∥

2

L2(T3)

)

�
(∥

∥divh v + ∂zw
∥

∥

H2(T3)

)

(
∥

∥∂α,β
σ q̃

∥

∥

2

L2(T3)
+
∥

∥∂α,β
σ
˜H∥∥2

L2(T3)
)

+
(∥

∥∂tϑ
∥

∥

H2(T3)
+
∥

∥divh (ϑv)
∥

∥

H2(T3)
+
∥

∥∂z(ϑw)
∥

∥

H2(T3)

)

× (∥∥∂α,β
σ v

∥

∥

2

L2(T3)
+
∥

∥∂α,β
σ w

∥

∥

2

L2(T3)

)

+
(∥

∥I1

∥

∥

L2(T3)
+
∥

∥J1

∥

∥

L2(T3)

)∥

∥∂α,β
σ q̃

∥

∥

L2(T3)

+
(∥

∥I2

∥

∥

L2(T3)
+
∥

∥J2

∥

∥

L2(T3)

)∥

∥∂α,β
σ
˜H∥∥

L2(T3)

+
∥

∥I3

∥

∥

L2(T3)

∥

∥∂α,β
σ v

∥

∥

L2(T3)
+
∥

∥I4

∥

∥

L2(T3)

∥

∥∂α,β
σ w

∥

∥

L2(T3)
.

(41)
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Now we present the estimates of Ij ’s and Jj ’s. Applying (36) yields that,
∥

∥I1

∥

∥

L2(T3)
�
∥

∥[∂α,β
σ , v · ∇h]q̃

∥

∥

L2(T3)
+
∥

∥[∂α,β
σ , w∂z]q̃

∥

∥

L2(T3)

� Eσ,3(v, w)Eσ,3(q̃).
(42)

The estimates of Ij , j ∈ {2, 3, 4}, are similar. In fact, since ϑ = C + O(εμ) as in (18), applying (33), (36),
and (37), one will arrive at

∥

∥I2, I3, I4

∥

∥

L2(T3)
� (εμ−σ + 1)

(

(Eσ,3( ˜H, v, w))3 + Eσ,3( ˜H, v, w)
)

. (43)

On the other hand, the estimates of Jj , j ∈ {1, 2}, are straightforward, thanks to (37), which are
∥

∥J1,J2

∥

∥

L2(T3)
� (Eσ,3(q̃, ˜H, v, w))2 + Eσ,3(q̃, ˜H, v, w). (44)

The rest terms on the right hand side of (41) can be handled in a similar manner. We record the estimates
below:

∥

∥divh v + ∂zw
∥

∥

H2(T3)
+
∥

∥∂tϑ
∥

∥

H2(T3)

+
∥

∥divh (ϑv)
∥

∥

H2(T3)
+
∥

∥∂z(ϑw)
∥

∥

H2(T3)

� (εμ+ν−σ + 1)
(

(Eσ,3(q̃, ˜H, v, w))2 + Eσ,3(q̃, ˜H, v, w)
)

.

(45)

Consequently, integrating (41) in the temporal variable yields,

A∥∥∂α,β
σ q̃

∥

∥

2

L2(T3)
(t) + B∥∥∂α,β

σ
˜H∥∥2

L2(T3)
(t) +

∥

∥ϑ1/2∂α,β
σ v

∥

∥

2

L2(T3)
(t)

+
∥

∥ϑ1/2∂α,β
σ w

∥

∥

2

L2(T3)
(t) ≤ A∥∥∂α,β

σ q̃in
∥

∥

2

L2(T3)

+ B∥∥∂α,β
σ
˜Hin

∥

∥

2

L2(T3)
+
∥

∥ϑ
1/2
in ∂α,β

σ vin
∥

∥

2

L2(T3)
+
∥

∥ϑ
1/2
in ∂α,β

σ win

∥

∥

2

L2(T3)

+ (εμ−σ + 1)
∫ t

0

(

[Eσ,3(q̃, ˜H, v, w)(s)
]4 +

[Eσ,3(q̃, ˜H, v, w)(s)
]2
)

ds.

(46)

While we only show (46) with α + β = 3, it holds with α + β = 0, 1, 2, which can be shown in a similar,
if not simpler, way. Therefore, one can conclude from (46) that,

sup
0≤s≤t

[Eσ,3(q̃, ˜H, v, w)(s)]2 ≤ C[Eσ,3(q̃in, ˜Hin, vin, win)]2

+ C(εμ−σ + 1)
∫ t

0

(

[Eσ,3(q̃, ˜H, v, w)(s)
]4

+
[Eσ,3(q̃, ˜H, v, w)(s)

]2
)

ds,

(47)

for some constant C, independent of ε. Recall that μ ∈ (0, 1). Consequently, for σ ∈ (0, μ], after applying
Grönwall’s inequality to (47), there exists Tσ ∈ (0,∞), depending only on Eσ,3(q̃in, ˜Hin, vin, win), such
that

sup
0≤s≤Tσ

Eσ,3(q̃, ˜H, v, w)(s) ≤ CEσ,3(q̃in, ˜Hin, vin, win), (48)

with some constant C ∈ (0,∞), independent of ε.
In particular, let σ = μ, and denote by T := Tμ. We have shown that

sup
0≤s≤T

Eμ,3(q̃, ˜H, v, w)(s) ≤ CEμ,3(q̃in, ˜Hin, vin, win), (49)

with some constant C ∈ (0,∞), independent of ε. Proposition 3 follows from (48).
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4. The Soundproof Approximation

In this section, we focus on the proof of our first main theorem, i.e., Theorem 1. As mentioned in the
introduction, the motivation of the soundproof approximation is due to the fact that the acoustic oscillator
La induces a faster oscillation than the internal wave oscillator Lg in system (17), which leads to faster
averaging of acoustic waves. Our soundproof model (20) preserves the internal gravity waves while filtering
out the acoustic waves. In particular, if initial data do not carry any acoustic waves, solutions driven
by (17) and (20) with the same initial data should produce solutions close to each other. Proving this
statement is the main objective of this section.

However, to achieve our goal, we will need to introduce an intermediate model in Sect. 4.1. This is
to handle the terms on the right hand side of (17) due to stratification, in contrast to [6,7]. Therefore,
the soundproof approximation is done in two steps: approximation by the intermediate model of (17) in
sects. 4.1 and 4.2; approximation by the soundproof model of the intermediate model in sects. 4.3 and
4.4.

4.1. The Intermediate Model

Here we analyse the intermediate model already introduced in the introduction in (1). In terms of the
current notation, we utilise the replacements

π =
pms

C , θ = −
˜Hms

C , Sε = − 1
C
(

1
B + εν

˜G ˜Hms

)

,

P ε = 1 − ε ˜P ε(z) ,
1

P ε

d ˜P ε

dz
= A(CG + εμH0) , (50)

together with the obvious replacements (v, w) = (vms, wms), and obtain
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

divh vms + ∂zwms = εA(CG + εμH0)wms,

B∂t
˜Hms + Bvms · ∇h

˜Hms + Bwms∂z
˜Hms − 1

εν
wms = B ˜G · ˜Hmswms,

C∂tvms + Cvms · ∇hvms + Cwms∂zvms + ∇hpms = 0,

C∂twms + Cvms · ∇hwms + Cwms∂zwms + ∂zpms +
1
εν
˜Hms = 0,

(51)

where pms is determined by, after calculating divh (φε(51)3) + ∂z(φε(51)4),

−
(

divh (φε∇hpms) + ∂z(φε∂zpms)
)

= C
(

φε(∇hvms)� : ∇hvms

+ 2φε∂zvms · ∇hwms + φε(∂zwms)2

− wms∂zφεdivh vms − (wms)2∂2
zφε

− wms∂zφε∂zwms

)

+
1
εν

∂z(φε
˜Hms),

∫

pms d�x = 0,

(52)

with

φε := φε(z) = e−εA ∫ z
0 (CG(z′)+εμH0(z

′)) dz′
. (53)

Notice that, (51)1 is equivalent to

divh (φεvms) + ∂z(φεwms) = 0. (54)
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We list some estimates of pms, induced by the elliptic estimates on (52):

∥

∥pms

∥

∥

H4(T3)
�
∥

∥vms, wms

∥

∥

2

H3(T3)
+

1
εν

∥

∥ ˜Hms

∥

∥

H3(T3)
, (55)

∥

∥∂tpms

∥

∥

H3(T3)
�
∥

∥vms, wms

∥

∥

H3(T3)

∥

∥∂tvms, ∂twms

∥

∥

H2(T3)

+
1
εν

∥

∥∂t
˜Hms

∥

∥

H2(T3)
. (56)

In addition, from (51)2, (51)3, and (51)4, one can establish that

∥

∥∂t
˜Hms

∥

∥

H2(T3)
�
∥

∥vms, wms

∥

∥

H2(T3)

∥

∥ ˜Hms

∥

∥

H3(T3)
+

1
εν

∥

∥wms

∥

∥

H2(T3)
, (57)

∥

∥∂tvms

∥

∥

H2(T3)
�
∥

∥vms, wms

∥

∥

H2(T3)

∥

∥vms

∥

∥

H3(T3)
+
∥

∥pms

∥

∥

H3(T3)
, (58)

∥

∥∂twms

∥

∥

H2(T3)
�
∥

∥vms, wms

∥

∥

H2(T3)

∥

∥wms

∥

∥

H3(T3)
+
∥

∥pms

∥

∥

H3(T3)

+
1
εν

∥

∥ ˜Hms

∥

∥

H2(T3)
. (59)

We point out here, the terms of O( 1
εν ), above, although singular, will be used later together with multiplier

ε or εμ (for instance, see I3 of (67), below), which corresponds to the error O(εμ−ν) in Theorem 1.
We claim that for any initial data ( ˜Hms,in, vms,in, wms,in) ∈ H3, satisfying the pseudo-incompressible

condition (51)1, there is Tms ∈ (0,∞), depending only on
∥

∥ ˜Hms,in, vms,in, wms,in

∥

∥

H3(T3)
, such that

sup
0≤s≤Tms

∥

∥ ˜Hms, vms, wms

∥

∥

H3(T3)
(s) ≤ C

∥

∥ ˜Hms,in, vms,in, wms,in

∥

∥

H3(T3)
(60)

where C ∈ (0,∞) is independent of ε. The proof of (60) follows from standard energy estimates. In fact,
applying ∂j , j = 0, 1, 2, 3, to (60), after taking the L2-inner product of the resultant equations with

2∂jpms, 2∂j
˜Hms, 2∂jvms, 2∂jwms,

respectively, one can conclude that the summation of the resultant estimates is, thanks to (55),

d

dt

(

B∥∥ ˜Hms

∥

∥

2

H3(T3)
+ C∥∥vms, wms

∥

∥

2

H3(T3)

)

≤ C
∥

∥ ˜Hms, vms, wms

∥

∥

3

H3(T3)

+ 2εA
3
∑

j=0

∫

∂j
(

(CG + εμH0)wms

)

∂jpms

≤ C
∥

∥ ˜Hms, vms, wms

∥

∥

3

H3(T3)
+ C

∥

∥ ˜Hms, wms

∥

∥

2

H3(T3)
,

(61)

where we have used the fact that 0 < ε < 1 and 0 < ν < 1. We would like to point out that, while we
have omitted the details in (61), the quadratic terms in (51) are handled in the same manner as in Sect.
3. Namely, we use the following commutator estimate: for β ≥ 3

∥

∥[∂β , f3∂]g3
∥

∥

L2(T3)
≤ K

∥

∥f3
∥

∥

Hβ(T3)

∥

∥g3
∥

∥

Hβ(T3)
, (62)

where K ∈ (0,∞). The proof of (62) is similar to that of (33), and thus is omitted here. In addition, after
the first inequality of (61), the coefficient ε in the second term guarantees that even though pms = O( 1

εν )
according to (55), there is no singular coefficient in the estimates. Thus (60) follows after applying
Grönwall’s inequality.
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4.2. Intermediate Approximation

We would like to compare the solutions to (17) and (51). Denote by

q̃ms,δ := q̃ − εpms,

˜Hms,δ := ˜H − ˜Hms,

vms,δ := v − vms,

wms,δ := w − wms.

(63)

Also, we use K1 to represent the total bound of solutions to (17) and (51), i.e., for any fixed σ ∈ (0, μ],

sup
0≤s≤T

Eσ,3(q̃, ˜H, v, w)(s) + sup
0≤s≤Tms

∥

∥ ˜Hms, vms, wms

∥

∥

H3(T3)
(s) ≤ K1, (64)

which are obtained in (48) and (60).
In this section, we prove

sup
0≤s≤Tms,δ

∥

∥q̃ms,δ, ˜Hms,δ, vms,δ, wms,δ

∥

∥

L2(T3)
(s)

≤ CK1

(∥

∥q̃ms,δ,in, ˜Hms,δ,in, vms,δ,in, wms,δ,in

∥

∥

L2(T3)
+ (ε + εmax{μ−ν,μ−σ})

)

.
(65)

Regime 1: μ − ν ≥ μ − σ. We first, by multiplying the first equation in (17) with �0/�, recalling � as
given in (9) and (12) [i.e., reversing the reformulation of the q̃ equation from (11) to (13)], system (17)
can be written as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

A�0�
−1∂tq̃ + A�0�

−1v · ∇hq̃ + A�0�
−1w∂z q̃

+
1
ε
(divh v + ∂zw) = A�0CG�−1w + εμA�0H0�

−1w,

B∂t
˜H + Bv · ∇h

˜H + Bw∂z
˜H − 1

εν
w = B ˜G · ˜Hw,

ϑ∂tv + ϑv · ∇hv + ϑw∂zv +
1
ε
∇hq̃ = 0,

ϑ∂tw + ϑv · ∇hw + ϑw∂zw +
1
ε
∂z q̃ +

1
εν
˜H = 0,

(17’)

After comparing (17’) and (51), one can derive that (q̃ms,δ, ˜Hms,δ, vms,δ, wms,δ) satisfies
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

A�0�
−1∂tq̃ms,δ + A�0�

−1v · ∇hq̃ms,δ + A�0�
−1w∂z q̃ms,δ

+
1
ε
(divh vms,δ + ∂zwms,δ)

= −εA�0

(

�−1∂tpms + �−1v · ∇hpms + �−1w∂zpms

)

+A�0CG(�−1 − �−1
0 )w + ACGwms,δ + εμA�0H0(�−1 − �−1

0 )w
+εμAH0wms,δ,

B∂t
˜Hms,δ + Bv · ∇h

˜Hms,δ + Bw∂z
˜Hms,δ − 1

εν
wms,δ

= −B(vms,δ · ∇h
˜Hms + wms,δ∂z

˜Hms

)

+B ˜G · ( ˜Hwms,δ + ˜Hms,δwms

)

,

ϑ∂tvms,δ + ϑv · ∇hvms,δ + ϑw∂zvms,δ +
1
ε
∇hq̃ms,δ

= C−1
(

εμ
˜GH0 + εμ+ν

˜G ˜H)∇hpms

−ϑvms,δ · ∇hvms − ϑwms,δ∂zvms,

ϑ∂twms,δ + ϑv · ∇hwms,δ + ϑw∂zwms,δ +
1
ε
∂z q̃ms,δ +

1
εν
˜Hms,δ

= C−1
(

εμ
˜GH0 + εμ+ν

˜G ˜H)(∂zpms +
1
εν
˜Hms

)

−ϑvms,δ · ∇hwms − ϑwms,δ∂zwms.

(66)
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Now, we consider the L2-inner product of equations in (66) with

2q̃ms,δ, 2 ˜Hms,δ, 2vms,δ, 2wms,δ,

respectively. After applying integration by parts and summing up the resultant equations, one can write
down that

d

dt

(

A�0

∥

∥�−1/2q̃ms,δ

∥

∥

2

L2(T3)
+ B∥∥ ˜Hms,δ

∥

∥

2

L2(T3)
+
∥

∥ϑ1/2vms,δ

∥

∥

2

L2(T3)

+
∥

∥ϑ1/2wms,δ

∥

∥

2

L2(T3)

)

=
4
∑

j=1

Ij ,

(67)

where

I1 :=
∫ (

A�0∂t(�−1)|q̃ms,δ|2 + ∂tϑ|vms,δ|2 + ∂tϑ|wms,δ|2
)

d�x,

I2 :=
∫ (

A�0

(

divh (�−1v) + ∂z(�−1w)
)|q̃ms,δ|2 + B(divh v + ∂zw

)| ˜Hms,δ|2

+
(

divh (ϑv) + ∂z(ϑw)
)(|vms,δ|2 + |wms,δ|2

)

)

d�x,

I3 := −2εA�0

∫

(

�−1∂tpms + �−1v · ∇hpms + �−1w∂zpms

)

q̃ms,δ d�x

+ 2εμC−1

∫

(

˜GH0 + εν
˜G ˜H)(∇hpms · vms,δ + ∂zpmswms,δ

+
1
εν
˜Hmswms,δ

)

d�x,

I4 := 2A�0

∫ (

CG(�−1 − �−1
0 )wq̃ms,δ + εμH0(�−1 − �−1

0 )wq̃ms,δ

+ CG�−1
0 wms,δ q̃ms,δ + εμH0�

−1
0 wms,δ q̃ms,δ

)

d�x

+ 2B
∫ (

−(vms,δ · ∇h
˜Hms

˜Hms,δ + wms,δ∂z
˜Hms

˜Hms,δ)

+ ˜G · ( ˜Hwms,δ
˜Hms,δ + ˜Hms,δwms

˜Hms,δ) d�x

− 2
∫

ϑ

(

vms,δ · ∇hvms · vms,δ + wms,δ∂zvms · vms,δ

+ vms,δ · ∇hwmswms,δ + wms,δ∂zwmswms,δ

)

d�x.

Owing to (9), (12), and (18),
∥

∥∂t(�−1), ∂tϑ
∥

∥

L∞(T3)
≤ εCK1

∥

∥∂tq̃
∥

∥

H2(T3)
+ εμ+νCK1

∥

∥∂t
˜H∥∥

H2(T3)
.

Therefore,

I1 ≤ CK1(ε
1−σ + εμ+ν−σ)

∥

∥q̃ms,δ, vms,δ, wms,δ

∥

∥

2

L2(T3)
.

Similarly,

I2 ≤ CK1

∥

∥q̃ms,δ, ˜Hms,δ, vms,δ, wms,δ

∥

∥

2

L2(T3)
,

and

I4 ≤ CK1

(∥

∥q̃ms,δ, ˜Hms,δ, vms,δ, wms,δ

∥

∥

2

L2(T3)
+ ε
∥

∥q̃ms,δ

∥

∥

L2(T3)

)

.
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To estimate I3, owing to (55), (56), (57), (58), and (59), after a tedious but straightforward calculations,
one can conclude that, since μ + 2ν = 1,

I3 ≤ CK1

(

ε
∥

∥∂tpms

∥

∥

H3(T3)
+ (ε + εμ)

∥

∥pms

∥

∥

H4(T3)

)∥

∥q̃ms,δ, vms,δ, wms,δ

∥

∥

L2(T3)

+ εμ−νCK1

∥

∥wms,δ

∥

∥

L2(T3)
≤ CK1(ε + εμ−ν)

∥

∥q̃ms,δ, vms,δ, wms,δ

∥

∥

L2(T3)
.

(68)

Therefore, one can conclude from (67) that, provided ε  1 small enough, for any t ∈ (0,min{T, Tms}],
since σ ≤ μ < 1,

d

dt

(

A�0

∥

∥�−1/2q̃ms,δ

∥

∥

2

L2(T3)
+ B∥∥ ˜Hms,δ

∥

∥

2

L2(T3)
+
∥

∥ϑ1/2vms,δ

∥

∥

2

L2(T3)

+
∥

∥ϑ1/2wms,δ

∥

∥

2

L2(T3)

)

≤ CK1

∥

∥q̃ms,δ, ˜Hms,δ, vms,δ, wms,δ

∥

∥

2

L2(T3)

+ CK1(ε + εμ−ν)
∥

∥q̃ms,δ, vms,δ, wms,δ

∥

∥

L2(T3)
.

Therefore, after applying Grönwall’s inequality, there exists Tms,δ ∈ (0,min{T, Tms}], depending only on
∥

∥q̃ms,δ,in, ˜Hms,δ,in, vms,δ,in, wms,δ,in

∥

∥

L2(T3)
,

such that

sup
0≤s≤Tms,δ

∥

∥q̃ms,δ, ˜Hms,δ, vms,δ, wms,δ

∥

∥

L2(T3)
(s)

≤ CK1

(∥

∥q̃ms,δ,in, ˜Hms,δ,in, vms,δ,in, wms,δ,in

∥

∥

L2(T3)
+ (ε + εμ−ν)

)

.
(69)

Here CK1 ∈ (0,∞) is a constant depending only on K1 given in (64).

Regime 2: μ − ν < μ − σ. Recalling that ϑ = C + O(εμ) as in (18), instead of (66), one can write down
the following system by rewriting the v and w components:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

The first and second equations as in (66)

C∂tvms,δ + Cv · ∇hvms,δ + Cw∂zvms,δ +
1
ε
∇hq̃ms,δ

=
(

εμ
˜GH0 + εμ+ν

˜G ˜H)(∂tv + v · ∇hv + w∂zv)
−Cvms,δ · ∇hvms − Cwms,δ∂zvms,

C∂twms,δ + Cv · ∇hwms,δ + Cw∂zwms,δ +
1
ε
∂z q̃ms,δ +

1
εν
˜Hms,δ

=
(

εμ
˜GH0 + εμ+ν

˜G ˜H)(∂tw + v · ∇hw + w∂zw
)

−Cvms,δ · ∇hwms − Cwms,δ∂zwms.

(70)

Then similar arguments as before will yield

sup
0≤s≤Tms,δ

∥

∥q̃ms,δ, ˜Hms,δ, vms,δ, wms,δ

∥

∥

L2(T3)
(s)

≤ CK1

(∥

∥q̃ms,δ,in, ˜Hms,δ,in, vms,δ,in, wms,δ,in

∥

∥

L2(T3)
+ (ε + εμ−σ)

)

.
(71)

Indeed, only the corresponding I3 estimate is different, where the control of

∇hpms · vms,δ + ∂zpmswms,δ +
1
εν
˜Hmswms,δ = O(ε−ν)

is replaced by

(∂tv + v · ∇hv + w∂zv) · vms,δ + (∂tw + v · ∇hw + w∂zw)wms,δ = O(ε−σ). (72)

Estimate (65) follows from (69) and (71).
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4.3. The Soundproof Model

For convenience of the reader, we recall that the soundproof model reads
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

divh vsp + ∂zwsp = 0,

B∂t
˜Hsp + Bvsp · ∇h

˜Hsp + Bwsp∂z
˜Hsp − 1

εν
wsp = B ˜G · ˜Hspwsp,

C∂tvsp + Cvsp · ∇hvsp + Cwsp∂zvsp + ∇hpsp = 0,

C∂twsp + Cvsp · ∇hwsp + Cwsp∂zwsp + ∂zpsp +
1
εν
˜Hsp = 0,

(20)

where psp is determined by

−Δpsp = C((∇hvsp)� : ∇hvsp + 2∂zvsp · ∇hwsp + (∂zwsp)2)

+
1
εν

∂z
˜Hsp,

∫

psp d�x = 0.
(73)

Then, following similar, if not simpler, arguments to those in Sect. 4.1 leads to the conclusion that: there
exists Tsp ∈ (0,∞), depending only on

∥

∥ ˜Hsp,in, vsp,in, wsp,in

∥

∥

H3(T3)
, such that

sup
0≤s≤Tsp

∥

∥ ˜Hsp, vsp, wsp

∥

∥

H3(T3)
(s) ≤ C

∥

∥ ˜Hsp,in, vsp,in, wsp,in

∥

∥

H3(T3)
, (74)

with some constant C ∈ (0,∞), independent of ε.
Now we list the estimate of psp, induced by the elliptic estimates on (73):

∥

∥psp
∥

∥

H4(T3)
≤ ∥∥vsp, wsp

∥

∥

2

H3(T3)
+

1
εν

∥

∥ ˜Hsp

∥

∥

H3(T3)
. (75)

4.4. Soundproof Approximation

Now we are ready to estimate the difference of solutions to (51) and (20). Denote by

psp,δ := pms − psp,

˜Hsp,δ := ˜Hms − ˜Hsp,

vsp,δ := vms − vsp,

wsp,δ := wms − wsp.

(76)

Also, we use K2 to represent the total bound of solutions to (51) and (20), i.e.,

sup
0≤s≤Tms

∥

∥ ˜Hms, vms, wms

∥

∥

H3(T3)
+ sup

0≤s≤Tsp

∥

∥ ˜Hsp, vsp, wsp

∥

∥

H3(T3)
≤ K2, (77)

which are obtained in (60) and (74).
After comparing (51) and (20), one can derive that (psp,δ, ˜Hsp,δ, vsp,δ, wsp,δ) satisfies

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

divh vsp,δ + ∂zwsp,δ = εA(CG + εμH0)wms,

B∂t
˜Hsp,δ + Bvms · ∇h

˜Hsp,δ + Bwms∂z
˜Hsp,δ − 1

εν
wsp,δ

= −B(vsp,δ · ∇h
˜Hsp + wsp,δ∂z

˜Hsp)
+B ˜G · ( ˜Hmswsp,δ + ˜Hsp,δwsp),

C∂tvsp,δ + Cvms · ∇hvsp,δ + Cwms∂zvsp,δ + ∇hpsp,δ

= −C(vsp,δ · ∇hvsp + wsp,δ∂zvsp),

C∂twsp,δ + Cvms · ∇hwsp,δ + Cwms∂zwsp,δ + ∂zpsp,δ +
1
εν
˜Hsp,δ

= −C(vsp,δ · ∇hwsp + wsp,δ∂zwsp).

(78)
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To write down the equation of psp,δ, instead of using (52) and (73), we first rewrite

vms · ∇h

(

vsp,δ

wsp,δ

)

+ wms∂z

(

vsp,δ

wsp,δ

)

= vsp,δ · ∇h

(

vsp,δ

wsp,δ

)

+ wsp,δ∂z

(

vsp,δ

wsp,δ

)

+
(

divh (vsp,δ ⊗ vsp) + ∂z(wspvsp,δ)
divh (wsp,δvsp) + ∂z(wspwsp,δ)

)

,

and then after applying
(

divh

∂z

)

to
(

(78)3
(78)4

)

,

one can derive that

− Δpsp,δ = εAC(CG + εμH0)∂twms + C
(

divh divh (vsp,δ ⊗ vsp)

+ divh ∂z(wspvsp,δ) + ∂zdivh (wsp,δvsp) + ∂2
z (wspwsp,δ)

+ divh (vsp,δ · ∇hvsp,δ) + divh (wsp,δ∂zvsp,δ) + ∂z(vsp,δ · ∇hwsp,δ)

+ ∂z(wsp,δ∂zwsp,δ)
)

+ C
(

divh (vsp,δ · ∇hvsp) + divh (wsp,δ∂zvsp)

+ ∂z(vsp,δ · ∇hwsp) + ∂z(wsp,δ∂zwsp)
)

+
1
εν

∂z
˜Hsp,δ,

∫

psp,δ d�x = 0.

(79)

Consequently, applying the standard elliptic estimate on (79) yields that
∥

∥psp,δ

∥

∥

L2(T3)
� ε
∥

∥∂twms

∥

∥

L2(T3)
+
∥

∥vsp,δ ⊗ vsp, wspvsp,δ

∥

∥

L2(T3)

+
∥

∥wsp,δvsp, wspwsp,δ, vsp,δ · ∇hvsp,δ, wsp,δ∂zvsp,δ

∥

∥

L2(T3)

+
∥

∥vsp,δ · ∇hwsp,δ, wsp,δ∂zwsp,δ, vsp,δ · ∇hvsp, wsp,δ∂zvsp
∥

∥

L2(T3)

+
∥

∥vsp,δ · ∇hwsp, wsp,δ∂zwsp

∥

∥

L2(T3)
+

1
εν

∥

∥ ˜Hsp,δ

∥

∥

L2(T3)

� CK2

(

1 + ε−ν
)∥

∥ ˜Hsp,δ, vsp,δ, wsp,δ

∥

∥

L2(T3)
+ CK2

(

ε + ε1−ν
)

,

(80)

where we have applied (55), (59), and the Sobolev embedding inequality in the last inequality.
Now we are ready to estimate the L2 norm of (psp,δ, ˜Hsp,δ, vsp,δ, wsp,δ). Indeed, after applying the

L2-inner product of equations in (78) with 2psp,δ, 2 ˜Hsp,δ, 2vsp,δ, 2wsp,δ, respectively, applying integration
by parts, and summing up the resultant equations, one has

d

dt

(

B∥∥ ˜Hsp,δ

∥

∥

2

L2(T3)
+ C∥∥vsp,δ, wsp,δ

∥

∥

2

L2(T3)

)

=
7
∑

j=5

Ij

where

I5 :=
∫

(divh vms + ∂zwms)
(

B| ˜Hsp,δ|2 + C|vsp,δ|2 + C|wsp,δ|2
)

d�x,

I6 := −2
∫ (

B(vsp,δ · ∇h
˜Hsp
˜Hsp,δ + wsp,δ∂z

˜Hsp
˜Hsp,δ)

+ C(vsp,δ · ∇hvsp · vsp,δ + wsp,δ∂zvsp · vsp,δ)

+ C(vsp,δ · ∇hwspwsp,δ + wsp,δ∂zwspwsp,δ)
)

d�x
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+ 2
∫

B ˜G · ( ˜Hmswsp,δ + ˜Hsp,δwsp) ˜Hsp,δ d�x,

I7 := 2εA
∫

(CG + εμH0)wmspsp,δ d�x.

Thanks to (80), one has

I7 ≤ CK2(ε + ε1−ν)
∥

∥ ˜Hsp,δ, vsp,δ, wsp,δ

∥

∥

L2(T3)
+ CK2(ε

2 + ε2−ν),

while the estimates of I5 and I6 are straightforward. Hence, we have shown that

d

dt

(

B∥∥ ˜Hsp,δ

∥

∥

2

L2(T3)
+ C∥∥vsp,δ, wsp,δ

∥

∥

2

L2(T3)

)

≤ CK2

∥

∥ ˜Hsp,δ, vsp,δ, wsp,δ

∥

∥

2

L2(T3)

+CK2(ε + ε1−ν)
∥

∥ ˜Hsp,δ, vsp,δ, wsp,δ

∥

∥

L2(T3)
+ CK2(ε

2 + ε2−ν).

Consequently, after applying Grönwall’s inequality, one can conclude that, there is Tsp,δ ∈ (0,min
{Tms, Tsp}], depending only on

∥

∥ ˜Hsp,δ,in, vsp,δ,in, wsp,δ,in

∥

∥

L2(T3)
, such that

sup
0≤s≤Tsp,δ

∥

∥ ˜Hsp,δ, vsp,δ, wsp,δ

∥

∥

L2(T3)
(s)

≤ CK2

(∥

∥ ˜Hsp,δ,in, vsp,δ,in, wsp,δ,in

∥

∥

L2(T3)
+ (ε + ε1−ν)

)

.
(81)

Here CK2 ∈ (0,∞) is a constant depending only on K2 given in (77). In particular, (65), (80), and (81)
imply that, since μ + 2ν = 1,

sup
0≤s≤min{Tms,δTsp,δ}

∥

∥q̃ − εpsp, ˜H − ˜Hsp, v − vsp, w − wsp

∥

∥

L2(T3)

≤ CK1,K2

(

εmax{μ−ν,μ−σ} +
∥

∥q̃ms,δ,in, ˜Hms,δ,in, vms,δ,in, wms,δ,in

∥

∥

L2(T3)

+
∥

∥ ˜Hsp,δ,in, vsp,δ,in, wsp,δ,in

∥

∥

L2(T3)

)

.

(82)

Theorem 1 follows from (55), (60), (74), (75), and (82)

5. Fast-slow Decompositions: the Linear Theory

Our goal is to decompose the solution to (17) into waves with different frequencies. Ideally, due the
appearance of two different scales of oscillation, we are expecting at least three waves.
(H4) To simplify our presentation, we will, from now on, assume that

A = B = C = 1. (83)

A linear system associated with (17) is introduced in this section, using two oscillation operators,
corresponding to the acoustic waves and the internal waves, respectively.

In addition, we will investigate an ε-dependent linear oscillation operator, associated with the linear
system, which can be treated as a perturbation of the acoustic wave operator. The eigenvalue-eigenvector
pairs associated with such oscillation operator will be investigated.

To be more precise, we introduce the following linear system:

∂tU +
1
ε
LaU +

1
εν

LgU = 0, (84)

where U,La, Lg are defined as in (14). Roughly speaking, 1
εLaU and 1

εν LgU are the driving forces of
acoustic waves and internal waves, respectively. One can immediately see from (84), that, as ε → 0+, the
oscillation induced by operator 1

εLa is faster than the one induced by 1
εν Lg, meaning that the acoustic



   95 Page 22 of 45 D. Bresch et al. JMFM

waves will oscillate faster and thus will be averaged out before the internal waves dissipate. This is exactly
why we can use the soundproof system (20) as an approximation to (17).

In the following subsections, we will investigate the acoustic waves, internal waves, and mean flows,
in the linear system (84).

5.1. Perturbed Acoustic Waves

In this subsection, we consider the following perturbed acoustic wave operator

Lε := La + ε1−νLg. (85)

Then (84) is equivalent to

∂tU +
1
ε
LεU = 0. (86)

Notice that Lε can be viewed as a perturbation of La. An ad hoc analysis will be that, the eigenvalues of
Lε lie within neighborhoods with width O(ε1−ν) of the eigenvalues of La. In particular, the eigenvalues
corresponding to the acoustic free vector fields lies in an neighborhood with width O(ε1−ν) of the origin.
In view of (86), one can decompose the eigenvalues of 1

εLε, corresponding to the wave decomposition
of solutions to (86), into three kinds: the zero eigenvalue; the eigenvalues of O(ε−ν) near the origin; the
eigenvalues of O(ε−1) (O(ε−1) ± O(ε−ν) to be more precise). We will refer the waves corresponding to
these three kinds of eigenvalues as the mean flows, the perturbed internal waves, and the perturbed
acoustic waves, respectively. In the following, we shall make the above ad hoc discussion rigid.

Let

V :=
{

U = (q̃, ˜H, v = (v1, v2)�, w)� ∈ C∞(T3;R5)|
Symmetry (SYM) is satisfied.

}

.
(87)

We first investigate kerLε, i.e., the space associated with the zero eigenvalue. Let

Pε,mf : V 
→ ker Lε. (88)

Then

ker Lε =
{

Uε,mf = (q̃ε,mf ,Hε,mf , vε,mf , wε,mf)� ∈ V|
q̃ε,mf = q̃ε,mf(z) ∈ C∞(T;R), ˜Hε,mf = −εν−1∂z q̃ε,mf ,

divh vε,mf = 0, wε,mf = 0
}

.

(89)

Denote by

Uε,mf = (q̃ε,mf , ˜Hε,mf , vε,mf , wε,mf)� = Pε,mf(U = (q̃, ˜H, v, w)�).

Then, to look for the representation of Pε,mf , we calculate the following functional: for any V = (a, b, ξ, η)�

∈ ker Lε

∥

∥V − U
∥

∥

2

L2(T3)
=
∫

(|q̃ − a|2 + |εν−1∂za + ˜H|2) d�x

+
∫

(|ξ − v|2 + |w|2) d�x.

Then Uε,mf should be the minimizer of the above functional subject to the condition Uε,mf ∈ ker Lε. Then
calculating the Euler-Lagrangian equations yields that Uε,mf = Pε,mf(U) is given by

˜Hε,mf ≡ −εν−1∂z q̃ε,mf ,

vε,mf ≡ v − ∇hψv,

wε,mf ≡ 0,
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where q̃ε,mf , ψv are solutions to

− ε2(ν−1)∂zz q̃ε,mf + q̃ε,mf − εν−1∂z

∫

˜H dxdy(z)

−
∫

q̃ dxdy(z) = 0,
∫

q̃ε,mf dz =
∫

q̃ d�x,

and Δhψv = divh v,

∫

ψv dxdy = 0.

(90)

We remind readers that ker Lε is nothing but the space of eigenfunctions corresponding to the zero
eigenvalue of Lε. Next we focus on the non-zero eigenvalue problem of Lε, i.e., the structure of (kerLε)⊥.
Since Lε is anti-symmetric, it suffices to investigate the pure imaginary eigenvalues with non-zero imagi-
nary part, i.e.,

iωUω = LεUω, ω �= 0, Uω = (q̃ω, ˜Hω, vω, wω)� ∈ V. (91)

We will not discuss the representations of the solutions to the eigenvalue problem in this section.
Instead, we would like to estimate the value of the eigenvalues, assuming we have found the eigenvalue-
eigenvector pairs. The exact quantity calculation will be postponed in the next section using Fourier
representation.

If q̃ε ≡ 0, then the eigenvalue problem (91) is reduced to

vε = 0, ∂zwε = 0, −ηwε = iω ˜H, η ˜H = iωw,

where, hereafter, η := ε1−ν , which yields Uε = 0 due to symmetry (SYM).
In the following, we assume, without loss of generality, q̃ε �≡ 0. Direct calculation of the eigenvalue

problem (91) shows that

− (ω2 − η2)Δhq̃ε − ω2∂zz q̃ε = ω2(ω2 − η2)q̃ε. (92)

Notice that when ω 	 η, (92) admits strong degeneracy.
In addition, we introduce the following eigenvalue problem:

− Δhq̃ac − ∂zz q̃ac = ω2
acq̃ac. (93)

In fact, (93) can be seen as the counter-part of (92) from (91) for La, i.e., the eigenvalue problem of
the acoustic operator. Unsurprisingly, (93) is just (92) when η = 0, at least formally. We denote the
eigenvalue-eigenfunction pairs of (93) as (ω±

ac,nq̃ac,n)|n=0,1,2,···, where ω±
ac,0 = 0, |ω±

ac,1| < |ω±
ac,2| < · · · ,

∫ |q̃ac,n|2 d�x = 1. Then it is easy to check
∫

q̃ac,mq̃ac,n d�x = δm,n,

∫

∇hq̃ac,m · ∇hq̃ac,n d�x =
∥

∥∇hq̃ac,m
∥

∥

2

L2(T3)
δm,n,

∫

∇hq̃ac,m · ∇hq̃ac,n d�x +
∫

∂z q̃ac,m∂z q̃ac,n d�x = |ω±
ac,m|2δm,n,

m, n ∈ ∪{0, 1, 2, . . .}.

(94)

Then, one can represent solution q̃ε to (92) as

q̃ε =
∑

n=0,1,2,···
Qnq̃ac,n, Qn ∈ R. (95)

After taking the L2-inner product of (92) with q̃ac,m, it follows that, thanks to (94),

Qm × [ω2(ω2 − η2) − ω2|ω±
ac,m|2 + η2

∥

∥∇hq̃ac,m
∥

∥

2

L2(T3)
] = 0,

for any m ∈ {0, 1, 2, · · · }.
Suppose that for some m, Qm �= 0. Then

ω2(ω2 − η2) − ω2|ω±
ac,m|2 + η2

∥

∥∇hq̃ac,m
∥

∥

2

L2(T3)
= 0. (96)
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We claim that

|ω±
ac,m|2 ≤ |ω|2 ≤ |ω±

ac,m|2 + η2. (97)

The rest of this section is devoted to the proof of (97). Notice that, if m = 0, we have ω±
ac,0 = 0,

∇hq̃ac,0 = 0, which implies ω = 0 or |ω| = η. In particular 0 ≤ |ω| ≤ η, i.e., (97) holds.
Without loss of generality, we assume that m ≥ 1 and |ω| > η, below. Since, from (94),

∥

∥∇hq̃ac,m
∥

∥

2

L2(T3)

≤ |ω±
ac,m|2, one has, from (96), that

ω2(ω2 − η2) ≥ |ω±
ac,m|2(ω2 − η2),

which implies

|ω| ≥ |ω±
ac,m|. (98)

On the other hand, (96) can be written as

ω2 − |ω±
ac,m|2 = η2

⎛

⎝1 −
∥

∥∇hq̃ac,m
∥

∥

2

L2(T3)

ω2

⎞

⎠ ≤ η2.

Together with (98), this proves (97).
Therefore, we have proved the following lemma:

Lemma 6. Let iω be an eigenvalue of operator Lε. Then, there exists m ∈ {0, 1, 2, · · · }, such that

|ω±
ac,m|2 ≤ ω2 ≤ |ω±

ac,m|2 + ε2−2ν ,

where {iω±
ac,m}m∈{0,1,2,··· } are the eigenvalues of La.

In particular, Lemma 6 confirms the ad hoc analysis at the beginning of this section.
We remark that, (96) can be solved explicitly for ω2. Indeed, there exist exactly two solutions (ω2)1

and (ω2)2 satisfying (97). We will make it more clear using Fourier representations in the next subsection.

5.2. Fourier Representations

Owing to the symmetry (SYM), we consider the follow Fourier expansion of U :

U =
∑

kh∈2πZ2,kz∈2πN+∪{0}

⎛

⎜

⎜

⎝

Q(kh,kz)e
ikh·x cos(kzz)

H(kh,kz)e
ikh·x sin(kzz)

V(kh,kz)e
ikh·x cos(kzz)

W(kh,kz)e
ikh·x sin(kzz)

⎞

⎟

⎟

⎠

, (99)

with

F(−kh,kz) = F(kh,kz), F ∈ {Q,H, V,W}.

Then, with η = ε1−ν  1, the eigenvalue problem (91) can be written as:
ω(kh,kz)Q(kh,kz) = kh · V(kh,kz) − ikzW(kh,kz),

ω(kh,kz)H(kh,kz) = iηW(kh,kz),

ω(kh,kz)V(kh,kz) = Q(kh,kz)kh,

ω(kh,kz)W(kh,kz) = ikzQ(kh,kz) − iηH(kh,kz).

(100)

We investigate the solutions to (100) in the following three cases:
Case 1: ω(kh,kz) = 0. Then if kh �= (0, 0), one can easily check that

⎛

⎜

⎜

⎝

Q(kh,kz)

H(kh,kz)

V(kh,kz)

W(kh,kz)

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

0
0

V(kh,kz)

0

⎞

⎟

⎟

⎠

, kh · V(kh,kz) = 0,
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or, equivalently,

⎛

⎜

⎜

⎝

Q(kh,kz)

H(kh,kz)

V(kh,kz)

W(kh,kz)

⎞

⎟

⎟

⎠

= ±|V(kh,kz)|

⎛

⎜

⎜

⎜

⎜

⎝

0
0

k⊥
h

|kh|
0

⎞

⎟

⎟

⎟

⎟

⎠

.

On the other hand, kh = (0, 0) imply that

⎛

⎜

⎜

⎝

Q((0,0),kz)

H((0,0),kz)

V((0,0),kz)

W((0,0),kz)

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

Q((0,0),kz)
kz

η
Q((0,0),kz)

V((0,0),kz)

0

⎞

⎟

⎟

⎟

⎠

= Q((0,0),kz)

⎛

⎜

⎜

⎜

⎝

1
kz

η
0
0

⎞

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎝

0
0

V((0,0),kz)

0

⎞

⎟

⎟

⎠

.

Case 2: |ω(kh,kz)| = |η|. If kz �= 0, it is easy to check that there is no non-trivial solution to (100). Thus
kz = 0, and one can find the following solution: |ω(kh,0)| = |η|  1, and

⎛

⎜

⎜

⎝

Q(kh,0)

H(kh,0)

V(kh,0)

W(kh,0)

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

0
H(kh,0)

0

−iH(kh,0)

ω(kh,0)

η

⎞

⎟

⎟

⎟

⎠

= H(kh,0)

⎛

⎜

⎜

⎜

⎝

0
1
0

−i
ω(kh,0)

η

⎞

⎟

⎟

⎟

⎠

,

kh �= (0, 0).

Case 3: ω(kh,kz) �= 0 nor |ω(kh,kz)| �= |η|. Then from (100), one can derive
(

(ω2
(kh,kz)

− η2)|kh|2 + ω2
(kh,kz)

|kz|2 − (ω2
(kh,kz)

− η2)ω2
(kh,kz)

)

× Q(kh,kz) = 0.
(101)

Notice that (101) is just the Fourier representation of (92). If Q(kh,kz) = 0, one can easily check from
(100), only when |ω(kh,kz)| = |η| or 0, there will be non-trivial solutions, which is already covered in the
previous case. Therefore, we focus on (101) when Q(kh,kz) �= 0, which leads to the algebraic equation

ω4
(kh,kz)

− (|kh|2 + |kz|2 + η2)ω2
(kh,kz)

+ η2|kh|2 = 0. (102)

Notice that (102) is nothing but (96). Thus, the solutions to (102) are given by

ω2
(kh,kz)

=
|kh|2 + |kz|2 + η2 +

√
A

2
, or

ω2
(kh,kz)

=
|kh|2 + |kz|2 + η2 − √

A

2

=
2η2|kh|2

|kh|2 + |kz|2 + η2 +
√

A
∈ [0, η2],

(103)

where A := (|kh|2+|kz|2+η2)2−4η2|kh|2 = (|kh|2−η2)2+|kz|4+2|kh|2|kz|2+2η2|kz|2 ≥ (|kh|2−η2)2 ≥ 0.
Then the solution to (100) is given by

⎛

⎜

⎜

⎝

Q(kh,kz)

H(kh,kz)

V(kh,kz)

W(kh,kz)

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

Q(kh,kz)

H(kh,kz)
1

ω(kh,kz)
Q(kh,kz)kh

−i
ω(kh,kz)

η
H(kh,kz)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,



   95 Page 26 of 45 D. Bresch et al. JMFM

with H(kh,kz) satisfies

kzH(kh,kz) = η

(

|kh|2
ω2
(kh,kz)

− 1

)

Q(kh,kz) and

η

(

1 −
ω2
(kh,kz)

η2

)

H(kh,kz) = kzQ(kh,kz).

(104)

If kz = 0, from (103) and (104),

ω2
(kh,0) = |kh|2 (

or ω2
(kh,0) = η2 (discarded)

)

with kh �= (0, 0) (otherwise it is covered in previous case), and thus

⎛

⎜

⎜

⎝

Q(kh,0)

H(kh,0)

V(kh,0)

W(kh,0)

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

Q(kh,0)

0

Q(kh,0)
kh

ω(kh,0)

0

⎞

⎟

⎟

⎟

⎟

⎠

.

We remark that for η small enough, in oder to reach the endpoint values of (103)2, i.e., |ω(kh,kz)| = 0or η,
the necessary condition will be kh = (0, 0) or kz = 0, respectively, while kh = (0, 0) is also a sufficient
condition for ωkh,kz

= 0.
In summary, we have established the following eigenvalue-eigenvector pairs to (91):

Proposition 5. There exist three classes of eigenvalue-eigenvector pairs to (91): the mean flows, the per-
turbed internal waves, and the perturbed acoustic waves. They are given as below: with kh ∈ 2πZ2 and
kz ∈ 2πN,
Mean flows: ω = 0 and the space of mean flows E0,ε is given by

E0,ε := Span

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Umf
1,(kh,kz)

:=

⎛

⎜

⎜

⎜

⎜

⎝

0
0

k⊥
h

|kh|e
ikh·x cos(kzz)

0

⎞

⎟

⎟

⎟

⎟

⎠

, kh �= (0, 0)

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

⊕ Span

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Umf
2,((0,0),kz)

:=

⎛

⎜

⎜

⎜

⎝

cos(kzz)
kz

η
sin(kzz)

0
0

⎞

⎟

⎟

⎟

⎠

,

Umf
j,((0,0),kz)

:=

⎛

⎜

⎜

⎝

0
0

cos(kzz)�ej−2

0

⎞

⎟

⎟

⎠

, �e1 =
(

1
0

)

, �e2 =
(

0
1

)

, j = 3, 4

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

(105)

Perturbed internal waves: ω = ±ωgw
(kh,kz)

where

ωgw
(kh,kz)

=
(

2η2|kh|2
|kh|2 + |kz|2 + η2 +

√
A

)1/2

(106)
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with A = (|kh|2 + |kz|2 + η2)2 − 4η2|kh|2, kh �= 0, kz �= 0, and the space of internal waves E±ωgw
(kh,kz),ε

is
given by

E±ωgw
(kh,kz),ε

:= Span

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Ugw
±,(kh,kz)

:=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

eikh·x cos(kzz)
η

kz

(

|kh|2
(ωgw

(kh,kz)
)2

− 1

)

eikh·x sin(kzz)

± 1
ωgw
(kh,kz)

kheikh·x cos(kzz)

∓i
ωgw
(kh,kz)

kz

(

|kh|2
|ωgw

(kh,kz)
|2 − 1

)

eikh·x sin(kzz)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

kh �= (0, 0), kz �= 0} .

(107)

Perturbed acoustic waves: ω = ±ωaw
(kh,kz)

where

ωaw
(kh,kz)

=

(

|kh|2 + |kz|2 + η2 +
√

A

2

)1/2

(108)

with A as above, (kh, kz) �= ((0, 0), 0), and the space of perturbed acoustic waves E±ωaw
(kh,kz),ε

is given by

E±ωaw
(kh,kz),ε

:= Span

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Uaw
±,(kh,kz)

:=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

eikh·x cos(kzz)
η

kz

(

|kh|2
(ωaw

(kh,kz)
)2

− 1

)

eikh·x sin(kzz)

± 1
ωaw
(kh,kz)

kheikh·x cos(kzz)

∓i
ωaw
(kh,kz)

kz

(

|kh|2
|ωaw

(kh,kz)
|2 − 1

)

eikh·x sin(kzz)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, kz �= 0

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

⊕ Span

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Uaw
±,(kh,0) :=

⎛

⎜

⎜

⎜

⎜

⎝

eikh·x

0

± 1
ωaw
(kh,0)

kheikh·x

0

⎞

⎟

⎟

⎟

⎟

⎠

, kh �= (0, 0)

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

.

(109)

Here η = ε1−ν .
Moreover, since Lε is anti-symmetric, it is easy to check

Umf
n,(kh,kz)

, Ugw
±,(kh,kz)

, Uaw
±,(kh,kz)

, n ∈ {1, 2, 3, 4},

(kh, kz) ∈ 2πZ2 × 2πN,

form orthogonal basis with respect to the complex L2-inner product.

5.3. Internal Waves in the Soundproof Model (20)

We have already known that in the full compressible system (17), the internal waves bear frequencies of
order O(ε−ν) from previous sections (see, e.g., Lemma 6 and Proposition 5). In this subsection, we would
like to investigate the internal gravity waves in the soundproof model (20), and provide a comparison
study with those in system (17).
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Denote by

Usp :=

⎛

⎝

˜Hsp

vsp
wsp

⎞

⎠ , and LspUsp :=

⎛

⎝

−wsp

0
˜Hsp

⎞

⎠ . (110)

Then we introduce the linear system associated with the soundproof model (20) as follows:

∂tUsp +
1
εν

LspUsp +

⎛

⎝

0
∇hpsp
∂zpsp

⎞

⎠ = 0, divh vsp + ∂zvsp = 0, (111)

with psp, ˜Hsp, vsp, wsp satisfying the same symmetries as q̃, ˜H, v, w, respectively, as in (SYM). We consider
the following eigenvalue problem:

iωspUsp = ηLspUsp +

⎛

⎝

0
∇h(εpsp)
∂z(εpsp)

⎞

⎠ , divh vsp + ∂zvsp = 0. (112)

Recalling η = ε1−ν , our scale of ωsp in (112) is the same as ω in (91), for the sake of convenience for
comparison. Direct calculation of (112) leads to the following differential equation:

(

1 − ω2
sp

η2

)

Δh(εpsp) − ω2
sp

η2
∂zz(εpsp) = 0. (113)

It is obvious that (113) changes types according to ω2
sp/η2 ∈ {0}, or (0, 1), or {1}, or (1,∞), respectively. In

particular, when ω2
sp/η2 ∈ (1,∞), (113) is a non-degenerate elliptic equation and has only 0 as the trivial

solution. However, when ω2
sp/η2 ∈ [0, 1], unlike (93), (113) is a (degenerate) hyperbolic-type equation.

In the rest of this subsection, we shall use the Fourier representations to persuade further investigation.
As in (99), let

εpsp =
∑

kh∈2πZ2,kz∈2πN

Psp,(kh,kz)e
ikh·x cos(kzz),

Usp =
∑

kh∈2πZ2,kz∈2πN

⎛

⎝

Hsp,(kh,kz)e
ikh·x sin(kzz)

Vsp,(kh,kz)e
ikh·x cos(kzz)

Wsp,(kh,kz)e
ikh·x sin(kzz)

⎞

⎠ ,

(114)

with

Fsp,(−kh,kz) = Fsp,(kh,kz), F ∈ {P,H, V,W}.

Without loss of generality, we also assume that Psp,(0,0) = 0.
Then (112) is equivalent to

iωsp,(kh,kz)Hsp,(kh,kz) = −ηWsp,(kh,kz),

iωsp,(kh,kz)Vsp,(kh,kz) = iPsp,(kh,kz)kh,

iωsp,(kh,kz)Wsp,(kh,kz) = ηHsp,(kh,kz) − kzPsp,(kh,kz),

ikh · Vsp,(kh,kz) + kzWsp,(kh,kz) = 0,

(115)

and (113) is equivalent to
((

1 −
ω2
sp,(kh,kz)

η2

)

|kh|2 −
ω2
sp,(kh,kz)

η2
|kz|2

)

Psp,(kh,kz) = 0. (116)
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Case 1: Psp,(kh,kz) = 0. Then it is easy to verify that, the nontrivial solutions to (115) are given by

|ωsp,(kh,0)| = η,

⎛

⎜

⎜

⎝

Psp,(kh,0)

Hsp,(kh,0)

Vsp,(kh,0)

Wsp,(kh,0)

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

0
Hsp,(kh,0)

0

−i
ωsp,(kh,0)

η
Hsp,(kh,0)

⎞

⎟

⎟

⎟

⎠

,

or ωsp,(kh,kz) = 0,

⎛

⎜

⎜

⎝

Psp,(kh,kz)

Hsp,(kh,kz)

Vsp,(kh,kz)

Wsp,(kh,kz)

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

0
0

Vsp,(kh,kz)

0

⎞

⎟

⎟

⎠

with kh · Vsp,(kh,kz) = 0.

Next, we focus on the cases when Psp,(kh,kz) �= 0. Then it must hold, from (116),
(

1 −
ω2
sp,(kh,kz)

η2

)

|kh|2 −
ω2
sp,(kh,kz)

η2
|kz|2 = 0. (117)

Case 2: kh = (0, 0). Solving (117) leads to either ωsp,(0,kz) = 0 or kz = 0. Then the nontrivial solutions
to (115) are given by

ωsp,(0,kz) = 0,

⎛

⎜

⎜

⎝

Psp,(0,kz)

Hsp,(0,kz)

Vsp,(0,kz)

Wsp,(0,kz)

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

Psp,(0,kz)
kz

η
Psp,(0,kz)

Vsp,(0,kz)

0

⎞

⎟

⎟

⎟

⎠

,

or |ωsp,(0,0)| = η,

⎛

⎜

⎜

⎝

Psp,(0,0)

Hsp,(0,0)

Vsp,(0,0)

Wsp,(0,0)

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

Psp,(0,0)

Hsp,(0,0)

0

−i
ωsp,(0,0)

η
Hsp,(0,0)

⎞

⎟

⎟

⎟

⎠

.

Case 3: kh �= (0, 0). Solving (117) leads to

ω2
sp,(kh,kz)

η2
=

|kh|2
|kh|2 + |kz|2 .

Then solving (115) yields

|ωsp,(kh,0)| = η,

⎛

⎜

⎜

⎝

Psp,(kh,0)

Hsp,(kh,0)

Vsp,(kh,0)

Wsp,(kh,0)

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

0
Hsp,(kh,0)

0

−i
ωsp,(kh,0)

η
Hsp,(kh,0)

⎞

⎟

⎟

⎟

⎠

(discarded),

or kz �= 0, |ωsp,(kh,kz)| =
η|kh|

√|kh|2 + |kz|2
,

⎛

⎜

⎜

⎝

Psp,(kh,kz)

Hsp,(kh,kz)

Vsp,(kh,kz)

Wsp,(kh,kz)

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Psp,(kh,kz)

η|kh|2
kzω2

sp,(kh,kz)

Psp,(kh,kz)

Psp,(kh,kz)

ωsp,(kh,kz)
kh

−i
|kh|2

kzωsp,(kh,kz)
Psp,(kh,kz)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

In summary, we have established the following eigenvalue-eigenvector pairs to (112):
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Proposition 6. The mean flows and the internal waves in the eigenvalue problem (112) for the soundproof
model are given as below: with kh ∈ 2πZ2 and kz ∈ 2πN,
Mean flows: ωsp = 0 and the space of mean flows Esp,0,ε is given by

Esp,0,ε := Span
{

εpmf
sp,1,(kh,kz)

:= 0,

Umf
sp,1,(kh,kz)

:=

⎛

⎜

⎜

⎝

0
k⊥

h

|kh|e
ikh·x cos(kzz)

0

⎞

⎟

⎟

⎠

, kh �= (0, 0)
}

⊕ Span

⎧

⎪

⎨

⎪

⎩

εpmf
sp,2,((0,0),kz)

:= cos(kzz), Umf
sp,2,((0,0),kz)

:=

⎛

⎜

⎝

kz

η
sin(kzz)

0
0

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

⊕ Span

⎧

⎨

⎩

εpmf
sp,j,((0,0),kz)

:= 0, Umf
sp,j,((0,0),kz)

:=

⎛

⎝

0
cos(kzz)�ej−2

0

⎞

⎠ ,

�e1 =
(

1
0

)

, �e2 =
(

0
1

)

, j = 3, 4
}

.

(118)

Internal waves: ωsp = ±ωgw
sp,(kh,kz)

where

ωgw
sp,(kh,kz)

:=
η|kh|

(|kh|2 + |kz|2)1/2
, (119)

with kh �= (0, 0) and kz �= 0, and the space of internal waves Esp,±ωgw
sp,(kh,kz),ε

is given by

Esp,±ωgw
sp,(kh,kz),ε

:= Span
{

εpgwsp,(kh,kz)
:= eikh·x cos(kzz),

Ugw
sp,±,(kh,kz)

:=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

η|kh|2
kz|ωgw

sp,(kh,kz)
|2 eikh·x sin(kzz)

± 1
ωgw
sp,(kh,kz)

kheikh·x cos(kzz)

∓i
|kh|2

kzω
gw
sp,(kh,kz)

eikh·x sin(kzz)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

kh �= (0, 0), kz �= 0
}

.

(120)

Here η = ε1−ν .

5.4. Comparison with Limit Cases

In this subsection, we will quantitatively compare the linear dynamics of several reduced systems stud-
ied in this work. (i) We compare the internal waves between the full compressible and the pseudo-
incompressible models as derived in Propositions 5 and 6 above. (ii) We compare the acoustic waves
generated by the pure acoustic operator in (121) alone and by the full fast mode operator of the com-
pressible system.

First, we summarize the eigenvalue-eigenvector pair of the pure acoustic system,

iωaUa = LaUa, Ua = (q̃a, ˜Ha, va, wa)� ∈ V. (121)

That is,
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Lemma 7. There exist two classes of eigenvalue-eigenvector pairs to (121); the incompressible flows and
the acoustic waves. They are given as below: with kh ∈ 2πZ2 and kz ∈ 2πN,

Incompressible flows: ωa = 0 and the space of incompressible flows Ea,0 is given by

Ea,0 := Span

⎧

⎪

⎪

⎨

⎪

⎪

⎩

U icf
a,1,((0,0),0) :=

⎛

⎜

⎜

⎝

1
0
0
0

⎞

⎟

⎟

⎠

, U icf
a,2,(kh,kz)

:=

⎛

⎜

⎜

⎝

0
eikh·x sin(kzz)

0
0

⎞

⎟

⎟

⎠

⎫

⎪

⎪

⎬

⎪

⎪

⎭

⊕

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

U icf
a,3,(kh,kz)

:=

⎛

⎜

⎜

⎜

⎜

⎝

0
0

k⊥
h

|kh|e
ikh·x cos(kzz)

0

⎞

⎟

⎟

⎟

⎟

⎠

,

U icf
a,4,(kh,kz)

:=

⎛

⎜

⎜

⎜

⎜

⎝

0
0

kz
kh

|kh|e
ikh·x cos(kzz)

−i|kh|eikh·x sin(kzz)

⎞

⎟

⎟

⎟

⎟

⎠

, kh �= (0, 0)

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

⊕

⎧

⎪

⎪

⎨

⎪

⎪

⎩

U icf
a,5,((0,0),kz)

:=

⎛

⎜

⎜

⎝

0
0

cos(kzz)�eh

0

⎞

⎟

⎟

⎠

, �eh =
(

1
0

)

or
(

0
1

)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

(122)

Acoustic waves: ωa = ±ωaw
a,(kh,kz)

where

ωaw
a,(kh,kz)

:= (|kh|2 + |kz|2)1/2, (kh, kz) �= ((0, 0), 0), (123)

and the space of acoustic waves Ea,±ωaw
a,(kh,kz)

is given by

Ea,±ωaw
a,(kh,kz)

:= Span

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Uaw
a,±,(kh,kz)

:=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

eikh·x cos(kzz)
0

± kh

ωaw
a,(kh,kz)

eikh·x cos(kzz)

± ikz

ωaw
a,(kh,kz)

eikh·x sin(kzz)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (kh, kz) �= ((0, 0), 0)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

. (124)

In the following, we will compare the eigenvalue-eigenvector pairs obtained in Proposition 6 and
Lemma 7 with those in Proposition 5.

Perturbed acoustic waves versus acoustic waves, i.e., (ωaw
(kh,kz),ε

, Uaw
±,(kh,kz)

) v.s. (ωaw
a,(kh,kz),ε

, Uaw
a,±,(kh,kz)

):
Direct calculation, from (108) and (123), shows that, for (kh, kz) �= ((0, 0), 0),

ωaw
(kh,kz)

= ωaw
a,(kh,kz)

+ η2 · |kz|2
2(|kh|2 + |kz|2)3/2

+ O(η4). (125)
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Meanwhile, owing to (109) and (124), one has, for kz �= 0,

Uaw
±,(kh,kz)

− Uaw
a,±,(kh,kz)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
η

kz

|kh|2 − (ωaw
(kh,kz)

)2

(ωaw
(kh,kz)

)2
eikh·x sin(kzz)

±kh

ωaw
a,(kh,kz)

− ωaw
(kh,kz)

ωaw
(kh,kz)

ωaw
a,(kh,kz)

eikh·x cos(kzz)

±i
(ωaw

(kh,kz)
)2ωaw

a,(kh,kz)
− |kh|2ωaw

a,(kh,kz)
− |kz|2ωaw

(kh,kz)

kzωaw
(kh,kz)

ωaw
a,(kh,kz)

eikh·x sin(kzz)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

−
(

η
kz

|kh|2 + |kz|2 + η3 kz|kh|2
(|kh|2 + |kz|2)3

)

eikh·x sin(kzz) + O(η5)

∓η2 · kh|kz|2
2(|kh|2 + |kz|2)5/2

eikh·x cos(kzz) + O(η4)

±η2 · i
kz(2|kh|2 + |kz|2)
2(|kh|2 + |kz|2)5/2

eikh·x sin(kzz) + O(η4)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

;

(126)

for kz = 0, kh �= (0, 0),

Uaw
±,(kh,0) − Uaw

a,±,(kh,0) =

⎛

⎜

⎜

⎝

0
0

O(η4))
0

⎞

⎟

⎟

⎠

. (127)

Perturbed internal waves versus internal waves, i.e.,
(

ωgw
(kh,kz)

, Ugw
±,(kh,kz)

)

v.s.

(

ωgw
sp,(kh,kz)

,

(

εpgwsp,(kh,kz)

Ugw
sp,±,(kh,kz)

))

:

Direct calculation, from (106) and (119), shows that, for kh �= (0, 0), kz �= 0,

ωgw
(kh,kz)

η
=

ωgw
sp,(kh,kz)

η
− η2 · |kh||kz|2

2(|kh|2 + |kz|2)5/2
+ O(η4). (128)

Meanwhile, owing to (107) and (120), one has,

Ugw
±,(kh,kz)

−
(

εpgwsp,(kh,kz)

Ugw
sp,±,(kh,kz)

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
η

kz

( |kh|2
|ωgw

(kh,kz)
|2 − |kh|2

|ωgw
sp,(kh,kz)

|2 − 1
)

eikh·x sin(kzz)

±
(

kh

ωgw
(kh,kz)

− kh

ωgw
sp,(kh,kz)

)

eikh·x cos(kzz)

∓i

[ |kh|2
kz

(

1
ωgw
(kh,kz)

− 1
ωgw
sp,(kh,kz)

)

−
ωgw
(kh,kz)

kz

]

eikh·x sin(kzz)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

−η · |kh|2
kz(|kh|2 + |kz|2)eikh·x sin(kzz) + O(η3)

±η · |kz|2kh

2|kh|(|kh|2 + |kz|2)3/2
eikh·x cos(kzz) + O(η3)

±iη · |kh|(2|kh|2 + |kz|2)
2kz(|kh|2 + |kz|2)3/2

eikh·x sin(kzz) + O(η3)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(129)
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Mean flows: It is obvious that Umf
j,(kh,kz)

=

(

εpmf
sp,j,(kh,kz)

Umf
sp,j,(kh,kz)

)

, j = 1, 2, 3.

In summary, we have proved the following:

Corollary 7. For (kh, kz) satisfying the corresponding restrictions, one has

E0,ε ≡ Esp,0,ε or equivalently

Umf
j,(kh,kz)

≡
(

εpmf
sp,j,(kh,kz)

Umf
sp,j,(kh,kz)

)

, j = 1, 2, 3, 4, (130)

0 < ωgw
sp,(kh,kz)

− ωgw
(kh,kz)

= O(η3), (131)
∣

∣

∣

∣

Ugw
±,(kh,kz)

−
(

εpgwsp,(kh,kz)

Ugw
sp,±,(kh,kz)

)∣

∣

∣

∣

= O(η), (132)

0 < ωaw
(kh,kz)

− ωaw
a,(kh,kz)

= O(η2), (133)

|Uaw
±,(kh,kz)

− Uaw
a,±,(kh,kz)

|= O(η), (134)

uniformly in (kh, kz). Here η = ε1−ν .

6. Fast-slow Waves Interactions: Soundproof Approximation With Ill-prepared Initial data

6.1. Nonlinear Equations

The Full Compressible System. With the understanding of the linear theory, we will discuss the nonlinear
theory of fast-slow waves decompositions in system (17). Notice that, under assumption (83), (17) can
be written as, with U = (q̃, ˜H, v, w)�, Lε as in (85),

∂tU +
1
ε
LεU + N (U) = M(U) + Kε(U), (135)

where

N (U) := v · ∇hU + w∂zU +

⎛

⎜

⎜

⎝

�−1
0 q̃(divh v + ∂zw)

− ˜G · ˜Hw
0
0

⎞

⎟

⎟

⎠

, (136)

M(U) :=

⎛

⎜

⎜

⎝

Gw + �−1
0

∫ z

0
G(z′) dz′(divh v + ∂zw)

0
0
0

⎞

⎟

⎟

⎠

, (137)

Kε(U) :=

⎛

⎜

⎜

⎝

εμH0w + εμ�−1
0

∫ z

0
H0(z′) dz′(divh v + ∂zw)

0
−(εμ

˜GH0 + εμ+ν
˜G ˜H)(∂tv + v · ∇hv + w∂zv)

−(εμ
˜GH0 + εμ+ν

˜G ˜H)(∂tw + v · ∇hw + w∂zw)

⎞

⎟

⎟

⎠

. (138)

With estimate (48) and proper initial data, one can assume that Kε(U) = O(εμ−σ) in suitable Sobolev
space (H2 for instance). In particular, we choose σ = μ/2, and thus Kε(U) will be considered as an error
term. For this reason, we write

∂tU +
1
ε
LεU + N (U) = M(U) + O(εμ−σ). (139)

(H5) Furthermore, to simplify the presentation, we assume

G = ˜G = sin(2πz). (140)
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We emphasise that with some modification, the following arguments work without assumption (H5). We
will adopt the notation (99) for our solutions U .

Let

Pmf
ε , Pgw

ε , and Paw
ε , (141)

be the L2-orthogonal projections to the spaces

Emf
ε := E0,ε, Egw

ε := ⊕kh 	=(0,0),kz 	=0E±ωgw
kh,kz

,ε,

and Eaw
ε := ⊕kz 	=0E±ωaw

(kh,kz),ε
⊕kh 	=(0,0) E±ωaw

(kh,0),ε
,

respectively, given in Proposition 5.

The soundproof system. Similarly, denote by Usp and Lsp as in (110). Under assumption (H4) and the
simplifying but not critical assumption (H5), (20) can be written as,

divh vsp + ∂zwsp = 0, (142)

∂tUsp +
1
εν

LspUsp +

⎛

⎝

0
∇hpsp
∂zpsp

⎞

⎠+ Nsp(Usp) = 0. (143)

Here, thanks to assumption (H5),

Nsp(Usp) := vsp · ∇hUsp + wsp∂zUsp +

⎛

⎝

− sin(2πz) · ˜Hspwsp

0
0

⎞

⎠ . (144)

Notice that equations (139) and (143) have different dimensions. In particular, (143) does not have
an evolutionary equation of psp, corresponding to the q̃-component of (139). For this reason, in order to
investigate the rigidity of the soundproof approximation, we denote the dimension reduction projection
Prd, defined as

Prd :

⎛

⎜

⎜

⎝

q̃
˜H
v
w

⎞

⎟

⎟

⎠


→
⎛

⎝

˜H
v
w

⎞

⎠ . (145)

Notice that Prd is a bounded operator in any Sobolev space. Moreover, from (136) and (144), one can
check that

PrdN (U) = Nsp(PrdU). (146)

6.2. Soundproof Approximation with Ill-prepared Initial Data

Compactness theory of solutions to (139) and finite dimension truncation. Denote by Sε(t) the solving
operator of ∂t + Lε, Lε as in (85); that is

∂tSε(t)U0 + LεSε(t)U0 = 0. (147)

Then Proposition 5 implies that

Sε(t)Uι = e−iωιtUι,

(ωι, Uι) ∈ {(0, Umf
j,(kh,kz)

), j = 1, 2, 3, 4, (±ωgw
(kh,kz)

, Ugw
±,(kh,kz)

),

(±ωaw
(kh,kz)

, Uaw
±,(kh,kz)

)
}

.

Then Sε(t) is an isometry from Hs(T3) to Hs(T3), ∀s. Let

Vε(t) := Sε

(

− t

ε

)

U(t), (148)
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where U(t) is the solution to (139). Then it follows from (139) and (147) that

∂tVε + Sε

(

− t

ε

)

N (U) = Sε

(

− t

ε

)

M(U) + O(εμ−σ). (149)

Owing to Proposition 3, it is straightforward to verify that, with the same initial data for (139) as stated
in the proposition,

sup
0≤t≤Tσ

(

∥

∥∂tVε(t)
∥

∥

2

H2(T3)
+
∥

∥Vε(t)
∥

∥

2

H3(T3)

)

� CCin, σ ∈ (0, μ]. (150)

With Proposition 5, we can write Vε as,

Vε = V mf
ε + V gw

ε + V aw
ε , (151)

with

V mf
ε :=

∑

kh 	=(0,0)

αmf
1,(kh,kz),ε

(t)Umf
1,(kh,kz)

+
∑

j=3,4, kz∈Z

αmf
j,((0,0),kz),ε

(t)Umf
j,((0,0),kz)

+ αmf
2,((0,0),0),ε(t)U

mf
2,((0,0),0)

+
∑

kz 	=0

αmf
2,((0,0),kz),ε

(t)ε1−νUmf
2,((0,0),kz)

, (152)

V gw
ε :=

∑

kh 	=(0,0),kz 	=0

αgw
±,(kh,kz),ε

(t)ε1−νUgw
±,(kh,kz)

, (153)

V aw
ε :=

∑

(kh,kz) 	=((0,0),0)

αaw
±,(kh,kz),ε

(t)Uaw
±,(kh,kz)

, (154)

where the factor ε1−ν plays the role of renormalization, such that for fixed k=(kh, kz), ε1−νUmf
2,((0,0),kz)

∣

∣

kz 	=0

and ε1−νUgw
±,(kh,kz)

∣

∣

kh 	=(0,0),kz 	=0
are O(1).

Notice that the coefficients α·
·,·,·(t)’s in (152)–(154) are equicontinuous thanks to (150). Then, recalling

(148), one has

U(t) = Sε(
t

ε
)Vε(t) = Umf

ε (t) + Ugw
ε (t) + Uaw

ε (t), (155)

with

Umf
ε := V mf

ε , (156)

Ugw
ε :=

∑

kh 	=(0,0),kz 	=0

e∓i
ω
gw
(kh,kz)
ε1−ν

t
εν αgw

±,(kh,kz),ε
(t)ε1−νUgw

±,(kh,kz)
, (157)

Uaw
ε :=

∑

(kh,kz) 	=((0,0),0)

e∓iωaw
(kh,kz)

t
ε αaw

±,(kh,kz),ε
(t)Uaw

±,(kh,kz)
. (158)

Meanwhile, let

Ugw :=
∑

kh 	=(0,0),kz 	=0

e∓i
ω
gw
sp,(kh,kz)

ε1−ν
t

εν αgw
±,(kh,kz),ε

(t)ε1−ν

(

εpgwsp,(kh,kz)

Ugw
sp,±,(kh,kz)

)

, (159)

Uaw :=
∑

(kh,kz) 	=((0,0),0)

e∓iωaw
(kh,kz)

t
ε αaw

±,(kh,kz),ε
(t)Uaw

a,±,(kh,kz)
. (160)

Notice that Ugw and Uaw are obtained by changing the basis corresponding to the perturbed internal and
acoustic waves in Ugw

ε and Uaw
ε to those corresponding to the non-perturbed ones, respectively. We don’t

need similar representation for Umf thanks to (130). However, to simplify the representation later on, we
denote

Umf := Umf
ε . (161)
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On the other hand, notice that N (U) = B(U,U), with bilinear form B(·, ·) defined by

B(U1, U2) := v1 · ∇hU2 + w1∂zU2 +

⎛

⎜

⎜

⎝

�−1
0 q̃1(divh v2 + ∂zw2)

− ˜G · ˜H1w2

0
0

⎞

⎟

⎟

⎠

, (162)

where Uj = (q̃j , ˜Hj , vj , wj)�, j = 1, 2. Then one can write

N (U) = N (Umf
ε + Ugw

ε )

+ B(Umf
ε + Ugw

ε , Uaw
ε ) + B(Uaw

ε , Umf
ε + Ugw

ε )

+ N (Uaw
ε ).

In addition, let Tk, k ∈ N
+, be a finite dimensional truncation defined as

TkU :=
∑

|kh|≤k,|kz|≤k

⎛

⎜

⎜

⎝

Q(kh,kz)e
ikh·x cos(kzz)

H(kh,kz)e
ikh·x sin(kzz)

V(kh,kz)e
ikh·x cos(kzz)

W(kh,kz)e
ikh·x sin(kzz)

⎞

⎟

⎟

⎠

(163)

for U in (99). For the sake of clear representation, we assume that Tk applies to Usp in a similar method.
Then thanks to the uniform estimates obtained in Proposition 3,

∥

∥U(t) − TkU(t)
∥

∥

H1(T3)
→ 0, as

k → ∞, and the convergence is uniform-in-ε. Therefore, to analyze N (U), it suffices to analyze N (TkU).
Let us begin with N (TkUaw

ε ). In particular, thanks to (124) and (134), by denoting TkU
aw = (Qk, 0,

∇hPk, ∂zPk)�, one has

N (TkUaw
ε ) = N (TkU

aw) + O(ε1−ν)

= N

⎛

⎜

⎜

⎝

⎛

⎜

⎜

⎝

Qk

0
∇hPk

∂zPk

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

+ O(ε1−ν) =

⎛

⎜

⎜

⎜

⎜

⎝

(∇Pk · ∇)Qk + �−1
0 QkΔPk

0
1
2
∇h|∇Pk|2

1
2
∂z|∇Pk|2

⎞

⎟

⎟

⎟

⎟

⎠

+ O(ε1−ν).
(164)

Moreover,

N (TkUaw
ε ) =

∑

|kh|,|kz|,|k′
h|,|k′

z|≤k

e
∓i(ωaw

a,(kh,kz)+ωaw
a,(k′

h
,k′

z))
t
ε

× e
∓i(ωaw

(kh,kz)−ωaw
a,(kh,kz)+ωaw

(k′
h

,k′
z)−ωaw

a,(k′
h

,k′
z))

t
ε αaw

±,(kh,kz),ε
αaw

±,(k′
h,k′

z),ε

× B(Uaw
±,(kh,kz)

, Uaw
±,(k′

h,k′
z)

)

+
∑

|kh|,|kz|,|k′
h|,|k′

z|≤k

e
∓i(ωaw

a,(kh,kz)−ωaw
a,(k′

h
,k′

z))
t
ε

× e
∓i((ωaw

(kh,kz)−ωaw
a,(kh,kz))−(ωaw

(k′
h

,k′
z)−ωaw

a,(k′
h

,k′
z)))

t
ε αaw

±,(kh,kz),ε
αaw

∓,(k′
h,k′

z),ε

× B(Uaw
±,(kh,kz)

, Uaw
∓,(k′

h,k′
z)

).

(165)

Therefore, the possible resonances are determined by (kh, kz), (k′
h, k′

z) such that ωaw
a,(kh,kz)

−ωaw
a,(k′

h,k′
z)

= 0,
i.e., |kh|2 + |kz|2 = |k′

h|2 + |k′
z|2, and

(ωaw
(kh,kz)

− ωaw
a,(kh,kz)

) − (ωaw
(k′

h,k′
z)

− ωaw
a,(k′

h,k′
z)

) =

{

O(ε4−4ν) if kz = k′
z,

O(ε2−2ν) if kz �= k′
z,

(166)

thanks to (125). We remark that, since ν < 1/2, (166) implies that there will be resonances in the second
term of (165). However, according to (164), these resonances will form a gradient in the momentum
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equations, and therefore will converge to the Lagrangian multiplier ∇psp in the soundproof model. In
fact, as we will see later, these resonances will not affect the dynamic of the soundproof waves. However,
the same cannot be said about the q̃ component, which does not exist in the soundproof model. We
further remark this in the end of this paper.

On the other hand, thanks to (130), (132), and (134), one has

N (TkUmf
ε + TkUgw

ε ) = N (TkU
mf + TkU

gw) + O(ε2−3ν) + O(ε2−2ν),

B(TkUmf
ε + TkUgw

ε , TkUaw
ε ) + B(TkUaw

ε , TkUmf
ε + TkUgw

ε )

= B(TkU
mf + TkU

gw, TkU
aw) + B(TkU

aw, TkU
mf + TkU

gw) + O(ε1−ν).

(167)

Moreover,

B(TkUgw
ε , TkUaw

ε ) =
∑

kh 	=(0,0),kz 	=0,(k′
h,k′

z) 	=((0,0),0),
|kh|,|kz|,|k′

h|,|k′
z|≤k

e
∓i(

ω
gw
(kh,kz)
ε1−ν

1
εν +ωaw

(k′
h

,k′
z)

1
ε )t

× B(Ugw
±,(kh,kz)

, Uaw
±,(k′

h,k′
z)

)

+
∑

kh 	=(0,0),kz 	=0,(k′
h,k′

z) 	=((0,0),0),
|kh|,|kz|,|k′

h|,|k′
z|≤k

e
∓i(

ω
gw
(kh,kz)
ε1−ν

1
εν −ωaw

(k′
h

,k′
z)

1
ε )t

× B(Ugw
±,(kh,kz)

, Uaw
∓,(k′

h,k′
z)

).

(168)

Notice that
ωgw

(kh,kz)

ε1−ν
1
εν − ωaw

(k′
h,k′

z)
1
ε = O( 1ε ), which implies that B(TkUgw

ε , TkUaw
ε ) oscillates in time with a

rate of O(1ε ), and thus weakly converges to zero as ε → 0+. Similar properties apply to B(TkUmf
ε , TkUaw

ε )+
B(TkUaw

ε , TkUmf
ε + TkUgw

ε ).

Compactness theory of solutions to (143) and finite dimension truncation. We refer to the property of
Usp such that divh vsp + ∂zwsp = 0 as the soundproof property. Also, let Pσ be the orthogonal projection
of vector fields into the space with the soundproof property.

Denote by Ssp(t) the solving operator of

∂t + Lsp +

⎛

⎝

0
∇hp
∂zp

⎞

⎠

in the space with the soundproof property, Lsp as in (110); that is

∂tSsp(t)Usp,0 + LspSsp(t)Usp,0 +

⎛

⎝

0
∇hp
∂zp

⎞

⎠ = 0 (169)

for some p (as the Lagrangian multiplier, which might be different from lines to lines, hereafter) and
divh (Ssp(t)Usp,0)vsp + ∂z(Ssp(t)Usp,0)wsp . Here (·)vsp and (·)wsp represent the vsp and wsp component,
respectively. Then Proposition 6 implies that

Ssp(t)Usp,ι = e−iωsp,ιt/ηUsp,ι,

(ωι, Uι) ∈ {(0, Umf
sp,j,(kh,kz)

), j = 1, 2, 3, 4, (±ωgw
sp,(kh,kz)

, Ugw
sp,±,(kh,kz)

)
}

.

We remind readers that our choice of scale in Proposition 6 implies that ωgw
sp,(kh,kz)

/η = O(1).
Then, it is easy to verify that Ssp(t) is an isometry from Hs

σ to Hs
σ, ∀s. Here Hs

σ represents the Hs

space with the soundproof property. Let

Vsp(t) := Ssp

(

− t

εν

)

Usp(t), (170)
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where Usp(t) is the solution to (143). Then it follows from (143) and (169) that

∂tVsp(t) + Ssp

(

− t

εν

)

PσNsp(Usp) = 0. (171)

Thanks to the estimate (74), it is straightforward to verify that, with the same initial data as in Theorem
1 for (143), one has

sup
0≤t≤Tapp

(

∥

∥∂tVsp(t)
∥

∥

2

H2(T3)
+
∥

∥Vsp(t)
∥

∥

2

H3(T3)

)

≤ Csp,in, (172)

for some Csp,in ∈ (0,∞) depending on the initial data.
Thanks to Proposition 6, we can write Vsp as,

Vsp = V mf
sp + V gw

sp , (173)

with

V mf
sp :=

∑

kh 	=(0,0)

αmf
1,(kh,kz),sp

(t)Umf
sp,1,(kh,kz)

+
∑

j=3,4, kz∈Z

αmf
j,((0,0),kz),sp

(t)Umf
sp,j,((0,0),kz)

+ αmf
2,((0,0),0),sp(t)Umf

sp,2,((0,0),0)
︸ ︷︷ ︸

=0

+
∑

kz 	=0

αmf
2,((0,0),kz),sp

(t)ε1−νUmf
sp,2,((0,0),kz)

, (174)

V gw
sp :=

∑

kh 	=(0,0),kz 	=0

αgw
±,(kh,kz),sp

(t)ε1−νUgw
sp,±,(kh,kz)

, (175)

Thanks to (172), the coefficients α·
·,·,·(t)’s in (174)–(175) are equicontinuous.

Then, one has

Usp(t) = Ssp(
t

εν
)Vsp(t) = Umf

sp (t) + Ugw
sp (t), (176)

with

Umf
sp := V mf

sp , (177)

Ugw
sp :=

∑

kh 	=(0,0),kz 	=0

e∓i
ω
gw
sp,(kh,kz)

ε1−ν
t

εν αgw
±,(kh,kz),sp

(t)ε1−νUgw
sp,±,(kh,kz)

. (178)

On the other hand, similarly as before, Nsp(Usp) = Bsp(Usp, Usp), with the bilinear form Bsp(·, ·)
defined by

Bsp(Usp,1, Usp,2) := vsp,1 · ∇hUsp,2 + wsp,1∂zUsp,2 +

⎛

⎝

− sin(2πz) · ˜Hsp,1wsp,2

0
0

⎞

⎠ . (179)

Similar to (146), one has, for Uj as in (162),

PrdB(U1, U2) = Bsp(PrdU1,PrdU2). (180)

Estimate of Prd(Umf
ε +Ugw

ε )−Usp. Let K ∈ N
+ be a fixed positive integer. Then thanks to the uniform

estimates obtained in Proposition 3 and (74), as mentioned before, (139) and (143) can be written as

∂tU +
1
ε
LεU + N (TKU) = M(TKU) + O(εμ−σ) + Err and (181)

∂tUsp +
1
εν

LspUsp +

⎛

⎝

0
∇hpsp
∂zpsp

⎞

⎠+ Nsp(TKUsp) = Err, (182)
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respectively, where Err represents the truncation error, satisfying
∥

∥Err
∥

∥

H1 → 0 uniformly-in − ε as K → ∞. (183)

Recalling (152), (155), (156), and (157), one has

∂tU
mf
ε +

1
ε
LεU

mf
ε =

∑

kh 	=(0,0)

∂tα
mf
1,(kh,kz),ε

(t)

(

εpmf
sp,1,(kh,kz)

Umf
sp,1,(kh,kz)

)

+
∑

j=3,4, kz∈Z

∂tα
mf
j,((0,0),kz),ε

(t)

(

εpmf
sp,j,((0,0),kz)

Umf
sp,j,((0,0),kz)

)

+ ∂tα
mf
2,((0,0),0),ε(t)

(

εpmf
sp,2((0,0),0)

Umf
sp,2,((0,0),0)

)

+
∑

kz 	=0

∂tα
mf
2,((0,0),kz),ε

(t)ε1−ν

(

εpmf
sp,2,((0,0),kz)

Umf
sp,2,((0,0),kz)

)

, (184)

∂tU
gw
ε +

1
ε
LεU

gw
ε =

∑

kh 	=(0,0),kz 	=0

e∓i
ω
gw
(kh,kz)
ε1−ν

t
εν ∂tα

gw
±,(kh,kz),ε

(t)ε1−νUgw
±,(kh,kz)

=
∑

kh 	=(0,0),kz 	=0

[

e∓i
ω
gw
sp,(kh,kz)

ε1−ν
t

εν + O(ε2−3ν)
]

∂tα
gw
±,(kh,kz),ε

(t)

× ε1−ν

[

(

εpgwsp,(kh,kz)

Ugw
sp,±,(kh,kz)

)

+ O(ε1−ν)
]

, (185)

∂tU
aw
ε +

1
ε
LεU

aw
ε =

∑

(kh,kz) 	=((0,0),0)

e∓iωaw
(kh,kz)

t
ε ∂tα

aw
±,(kh,kz),ε

(t)Uaw
±,(kh,kz)

=
∑

(kh,kz) 	=((0,0),0)

e∓iωaw
(kh,kz)

t
ε ∂tα

aw
±,(kh,kz),ε

(t)
[

Uaw
a,±,(kh,kz)

+ O(ε1−ν)
]

, (186)

thanks to (130), (131), and (132).
On the other hand, one can check from Proposition 6,

{

(Umf
sp,j,(kh,kz)

)j=1,2,3,4, U
gw
sp,±,(kh,kz)

}

forms
a orthogonal basis and satisfies the soundproof property. Denote by the projection operators to Span
{Umf

sp,j,(kh,kz)
} and Span{Ugw

sp,±,(kh,kz)
}, defined as

Pmf
sp,1,(kh,kz)

(·) := ProjSpan{Umf
sp,1,(kh,kz)}(·), kh �= (0, 0),

Pmf
sp,2,((0,0),kz)

(·) := ProjSpan{Umf
sp,2,((0,0),kz)}(·), kz �= 0,

Pmf
sp,j,((0,0),kz)

(·) := ProjSpan{Umf
sp,j,((0,0),kz)}(·), j = 3, 4,

Pgw
sp,±,(kh,kz)

(·) := ProjSpan{Ugw
sp,±,(kh,kz)}(·), kh �= (0, 0), kz �= 0.

(187)

Now we are ready to filter out the acoustic waves in (181) by projections. In the following, we always
assume |kh|, |kz|≤ K, and the restrictions on (kh, kz) as in (187) apply.

First, thanks to (124), (146), (164), (167), (184), (185), and (186), one can calculate that, recalling
0 ≤ 2ν ≤ 1,

Pmf
sp,j,(kh,kz)

PrdN (TKU) = Pmf
sp,j,(kh,kz)

Nsp(TKPrd(Umf + Ugw))

+ O(ε1−ν) + oscillation in time with rate O
(

1
ε

)

,

Pgw
sp,±,(kh,kz)

PrdN (TKU) = Pgw
sp,±,(kh,kz)

Nsp(TKPrd(Umf + Ugw))
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+ O(ε1−ν) + oscillation in time with rate O
(

1
ε

)

,

PrdM(TKU) = 0,

Pmf
sp,j,(kh,kz)

Prd

(

∂tU +
1
ε
LεU

)

= ∂tα
mf
j,(kh,kz),ε

Umf
sp,j,(kh,kz)

, j �= 2,

Pmf
sp,2,(kh,kz)

Prd

(

∂tU +
1
ε
LεU

)

= ∂tα
mf
2,(kh,kz),ε

ε1−νUmf
sp,2,(kh,kz)

,

Pgw
sp,±,(kh,kz)

Prd

(

∂tU +
1
ε
LεU

)

= e∓i
ω
gw
sp,(kh,kz)

ε1−ν
t

εν ∂tα
gw
±,(kh,kz),ε

ε1−νUgw
sp,±,(kh,kz)

+ O(ε2−3ν).

In particular, recalling Umf and Ugw in (161) and (159), similar calculation as in (184)–(186) for (∂t +
1
εν

Lsp)(TKPrd(Umf + Ugw)) yields that

∑

j=1,2,3,4,j′=+,−
|kh|,|kz|≤K

(

Pmf
sp,j,(kh,kz)

+ Pgw
sp,j′,(kh,kz)

)

Prd

(

∂tU +
1
ε
LεU

)

=
(

∂t +
1
εν

Lsp

)

(TKPrd(Umf + Ugw)) + CKO(ε2−3ν).

(188)

Therefore, denote by

Pmf+gw
sp,K :=

∑

j=1,2,3,4,j′=+,−
|kh|,|kz|≤K

(

Pmf
sp,j,(kh,kz)

+ Pgw
sp,j′,(kh,kz)

)

. (189)

Applying

Pmf+gw
sp,K Prd

to (181) yields, since 0 < 2ν < 1,
(

∂t +
1
εν

Lsp

)

(TKPrd(Umf + Ugw)) + Pmf+gw
sp,K Nsp(TKPrd(Umf + Ugw))

= CKO(ε1−ν) + CKO(εμ−σ) + oscillation in time with rate O
(

1
ε

)

+ Err.

(190)

On the other hand, with similar calculation as in (184) and (185), one can conclude that

TK

(

∂t +
1
εν

Lsp

)

Usp =
(

∂t +
1
εν

Lsp

)

TKUsp.

Consequently, applying Pmf+gw
sp,K to (182) yields
(

∂t +
1
εν

Lsp

)

TKUsp + Pmf+gw
sp,K Nsp(TKUsp) = Err. (191)

Here, although not exactly the same expression as before, Err satisfies (183).
Then, after subtracting (190) with (191), and taking the L2-inner product of the resultant equations

with 2(TKPrd(Umf + Ugw) − TKUsp), with similar calculation as in Sect. 4.4, we arrive at the estimate
d

dt

∥

∥TKPrd(Umf + Ugw) − TKUsp

∥

∥

2

L2 ≤ C∥∥TKPrd(Umf + Ugw) − TKUsp

∥

∥

2

L2

+ CKO(ε2−2ν) + CKO(ε2μ−2σ)

+ oscillation in time with rate O
(

1
ε

)

+ Err,

(192)
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where we use the fact that
∫ {

oscillation in time with rate O
(

1
ε

)}

· (TKPrd(Umf + Ugw) − TKUsp)
︸ ︷︷ ︸

oscillation at rate O( 1
εν )

d�x

= oscillation in time with rate O
(

1
ε

)

.

We would like to emphasize that it is important that we get an estimate with coefficient C independent
of K on the right hand side of (192). Otherwise when applying Grönwall’s inequality, below, it would
arrive at an estimate with uncontrollable Err. This is possible thanks to the soundproof property of
TKPrd(Umf + Ugw) − TKUsp and cancellation when applying integration by parts, as it is done in Sect.
4.4.

Then integrating (192) in time yields, since 2 − 2ν > 1, for 0 < t ≤ Tσ,mg < min{Tσ, Tsp} with some
Tσ,mg ∈ (0,∞),

∥

∥TKPrd(Umf + Ugw)(t) − TKUsp(t)
∥

∥

2

L2

≤ ∥∥TKPrd(Umf + Ugw)(0) − TKUsp(0)
∥

∥

2

L2

+
∫ t

0

C∥∥TKPrd(Umf + Ugw)(s) − TKUsp(s)
∥

∥

2

L2 ds

+ CK(O(ε2μ−2σ) + O(ε)) + Err.

(193)

We would like to remind readers that Ugw and Umf as in (159) and (161), thanks to (130), (131), and
(132), satisfy

TKPrdU
mf = TKPrdU

mf
ε and TKPrdU

gw = TKPrdU
gw
ε + CKO(ε2−3ν), (194)

and thus, since 4 − 6ν = 1 + 3(1 − 2ν) > 1,
∥

∥TKPrd(Umf + Ugw) − TKPrd(Umf
ε + Ugw

ε )
∥

∥

2

L2 = CKO(ε4−6ν) ≤ CKO(ε). (195)

Consequently, after choosing appropriate initial data for Usp which carries the initial mean flows and
internal waves, one can derive from (193) that

∥

∥TKPrd(Umf
ε + Ugw

ε )(t) − TKUsp(t)
∥

∥

2

L2 ≤ CK(O(ε2μ−2σ) + O(ε)) + Err, (196)

after applying Grönwall’s inequality and (195). We remind readers that Err satisfies (183). Thus from
(196), one can conclude Theorem 2.

6.3. Remarks

In Sect. 6.1, we introduce the dimension reduction operator Prd in (145), which is used in Sect. 6.2 to
prove Theorem 2; that is, the asymptotic behavior of the ˜H( ˜Hsp), v(vsp), w(wsp) components. However,
the asymptotic behavior of the q̃ component is not discussed.

In the case of well-prepared initial data, i.e., in Theorem 1, we choose initially q̃ and εpsp (equivalently
q̃in and εpms,in) close. In particular, since

∫

psp d�x = 0 in the soundproof system, the well-prepared initial
data should satisfy that

∫

q̃in d�x is close to zero, which is not the case for the ill-prepared initial data. In
particular,

∫

q̃ d�x = 0 is not a conservative property for the full system (135).
That is, the q̃ component is nontrivial in both the slow waves and fast waves in the case of ill-prepared

initial data (see, for instance, (164)). However, these nontrivial waves do not have influence on the
˜H( ˜Hsp), v(vsp), w(wsp) components of the mean flows and internal waves of the solutions to (135) [(143),
respectively]. In particular, there is no q̃ component in the solutions to (143). This is why our asymptotic
analysis works and has to be done after applying the dimension reduction Prd to system (135), in the
case of ill-prepared initial data.
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7. Appendix

Finally, although it is straightforward, we would like to record the representation of the waves decompo-
sition of the full compressible system. With the Fourier representations (99), we calculate the mean flow

part first. When kh �= (0, 0), noticing that |Umf
1,(kh,kz)

|2 = ς :=
∫ 1

0
cos2(kzz) dz =

{

1
2 if kz �= 0
1 if kz = 0

,

1
|Umf

1,(kh,kz)
|2
∫

U · Umf
1,(kh,kz)

c
d�x =

V(kh,kz) · k⊥
h

|kh| .

When kh = (0, 0), noticing that |Umf
2,((0,0),kz)

|2 = ς +
k2

z

η2
(1 − ς), |Umf

3,((0,0),kz)
|2 = |Umf

4,((0,0),kz)
|2 = ς,

1
|Umf

2,((0,0),kz)
|2
∫

U · Umf
2,((0,0),kz)

c
d�x =

η2Q((0,0),kz)ς + kzηH((0,0),kz)(1 − ς)
η2ς + k2

z(1 − ς)
,

1
|Umf

3,((0,0),kz)
|2
∫

U · Umf
3,((0,0),kz)

c
d�x = (V((0,0),kz))1,

1
|Umf

4,((0,0),kz)
|2
∫

U · Umf
4,((0,0),kz)

c
d�x = (V((0,0),kz))2

http://creativecommons.org/licenses/by/4.0/
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Therefore, the mean flow projection of U is given by

Umf
ε := Pmf

ε U =
∑

kh∈2πZ2\{(0,0)},kz∈2πN

V(kh,kz) · k⊥
h

|kh| Umf
1,(kh,kz)

+
∑

kz∈2πN

(

η2Q((0,0),kz)ς + kzηH((0,0),kz)(1 − ς)
η2ς + k2

z(1 − ς)
Umf
2,((0,0),kz)

+ (V((0,0),kz))1U
mf
3,((0,0),kz)

+ (V((0,0),kz))2U
mf
4,((0,0),kz)

)

.

(197)

Next, we calculate the internal wave part of U . Notice that for kh �= (0, 0), kz �= 0,

|Ugw
±,(kh,kz)

|2 =
1
2

(

1 +
|kh|2

(ωgw
(kh,kz)

)2

)

+
1
2

( |kh|2
(ωgw

(kh,kz)
)2

− 1
)2(η2 + (ωgw

(kh,kz)
)2

(kz)2

)

= 1 +
η2

(kz)2

( |kh|2
(ωgw

(kh,kz)
)2

− 1
)2

,

where ωgw
(kh,kz)

is given by (106). Here we have used the fact that
∫

Ugw
+,(kh,kz)

· Ugw
−,(kh,kz)

c
d�x = 0, which

yields

1
2

(

1 − |kh|2
(ωgw

(kh,kz)
)2

)

+
1
2

( |kh|2
(ωgw

(kh,kz)
)2

− 1
)2(η2 − (ωgw

(kh,kz)
)2

(kz)2

)

= 0.

In addition,

1
|Ugw

±,(kh,kz)
|2
∫

U · Ugw
±,(kh,kz)

c
d�x =

1

2 +
2η2

(kz)2

( |kh|2
(ωgw

(kh,kz)
)2

− 1
)2

×
[

Q(kh,kz) ± 1
ωgw
(kh,kz)

V(kh,kz) · kh

+
H(kh,kz)η ∓ iW(kh,kz)ω

gw
(kh,kz)

kz

( |kh|2
(ωgw

(kh,kz)
)2

− 1
)]

.

Therefore, the internal wave projection of U is given by

Ugw
ε := Pgw

ε U =
∑

kh∈2πZ2\{(0,0)},kz∈2πN+

1

2 +
2η2

(kz)2

( |kh|2
(ωgw

(kh,kz)
)2

− 1
)2

×
[

Q(kh,kz) ± 1
ωgw
(kh,kz)

V(kh,kz) · kh

+
H(kh,kz)η ∓ iW(kh,kz)ω

gw
(kh,kz)

kz

( |kh|2
(ωgw

(kh,kz)
)2

− 1
)]

Ugw
±,(kh,kz)

.

(198)

The calculation of the acoustic wave part of U is similar for kz �= 0, which is

1
|Uaw

±,(kh,kz)
|2
∫

U · Uaw
±,(kh,kz)

c
d�x =

1

2 +
2η2

(kz)2

(

(|kh|2
(ωaw

(kh,kz)
)2

− 1
)2
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×
[

Q(kh,kz) ± 1
ωaw
(kh,kz)

V(kh,kz) · kh

+
H(kh,kz)η ∓ iW(kh,kz)ω

aw
(kh,kz)

kz

( |kh|2
(ωaw

(kh,kz)
)2

− 1
)]

.

On the other hand, when kz = 0, kh �= (0, 0), we have |Uaw
±,(kh,0)|2 = 1 +

|kh|2
(ωaw

(kh,0))
2
, and

1
|Uaw

±,(kh,0)|2
∫

U · Uaw
±,(kh,0)

c
d�x =

Q(kh,0) ± kh · V(kh,0)

ωaw
(kh,0)

1 +
|kh|2

(ωaw
(kh,0))

2

.

Consequently, the perturbed acoustic wave projection of U is given by

Uaw
ε := Paw

ε U =
∑

kh∈2πZ2,kz∈2πN+

1

2 +
2η2

(kz)2

( |kh|2
(ωaw

(kh,kz)
)2

− 1
)2

×
[

Q(kh,kz) ± 1
ωaw
(kh,kz)

V(kh,kz) · kh

+
H(kh,kz)η ∓ iW(kh,kz)ω

aw
(kh,kz)

kz

( |kh|2
(ωaw

(kh,kz)
)2

− 1
)]

Uaw
±,(kh,kz)

+
∑

kh∈2πZ2\{(0,0)}

Q(kh,0) ± kh · V(kh,0)

ωaw
(kh,0)

1 +
|kh|2

(ωaw
(kh,0))

2

Uaw
±,(kh,0).

(199)

Here ωaw
(kh,kz)

is given as (108).
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Laboratoire de Mathématiques UMR5127 CNRS
Batiment le Chablais
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