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2.1   Overview

The empirical aspect of this thesis has two major goals.  One is to examine the appli-

cability and usefulness of the NF model in representing multivariate individual

differences in cognitive abilities in old and very old age.  This is pursued by applying

the model to the empirical data from the Berlin Aging Study (Baltes & Mayer, 1999)

and by a Monte Carlo simulation study that investigates the performance of the NF

model under various controlled conditions of simulated data sets with known true

parameter values.

The second goal is to explore and evaluate the importance of specific group

factors within the dedifferentiated factor space observed in old age.  This evaluation

includes comparisons of different factor models in terms of model fit, communalities

of the factors, ability of the models to capture the dimensionality of age-related

differences using different conceptualizations of the age relations, and predictive

relations of the multivariate cognitive space to selected external criterion variables

from other domains.  Before a detailed description of the variables and analyses, a

brief review of BASE and related published analyses is given.

2.1.1 About the Berlin Aging Study

The Berlin Aging Study (BASE; Baltes & Mayer, 1999) is a multidisciplinary

longitudinal study of the old and oldest old.  It involved a multidisciplinary

collaboration of the scientific fields of internal medicine and geriatrics, psychiatry,

psychology, and sociology.  The measures included in this study were selected to

represent a systemic–wholistic view of psychological functioning in old and very old

age (Baltes & Smith, 1997).  They range from detailed descriptions of family and

employment history, current economic situation and activities, medical anamnesis,

the inclusion of careful and detailed physical, psychiatric, neuropsychological, and

dental examinations, to a broad selection of psychological variables from the

domains of social relationships, self and personality, and intellectual functioning.

The study started with a large cross-sectional sample, stratified by age and gender,

with an age range of 70 to over 100 years.  At present, the longitudinal follow-ups

2. EMPIRICAL INVESTIGATIONS
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include five intake assessments and five intensive protocols over a period of about

eight years.

2.1.1.1 Previous Analyses of BASE Cognitive Ability Data With Hierarchical Models

In earlier publications on the structure of the cognitive abilities measured in BASE,

hierarchical models have been used (Lindenberger & Baltes, 1997).  Results showed

that due to high correlations of the first-order factors of reasoning, speed, memory,

fluency, and knowledge, a strong second-order general factor could be included in

the model.  The loadings of the first-order factors on this general factor were very

high, with magnitudes above .90.  The fact that most of the variance in cognitive

functioning could be explained by one general factor obviously can be seen as cross-

sectional support for the general process accounts.  However, it has also been

demonstrated that the loadings on the general factor still were significantly smaller

than 1.00.  It was acknowledged that this implied that each of the first-order factors

contained reliable specific variance—independent of the general factor2.  To this end,

Lindenberger and Baltes (1997) offered the interpretation that age-based

dedifferentiation operates at the second-order level while preserving the existence

and configuration of first-order abilities (Lindenberger & Baltes, 1997, p. 419).

Relating the hierarchical model structure to the age variable indicated a strong

age relation of the general factor and a weaker additional age relation of the first-

order perceptual speed factor, both mediated by sensory–sensorimotor functioning

(Lindenberger & Baltes, 1997).  No additional direct or indirect paths from age on

any of the other cognitive first-order factors were found to be significant.  Analyses

of six-year longitudinal information from BASE on a subset of the cognitive tasks

indicated multidirectionality of the age changes, with perceptual speed declining

faster than memory and fluency, and knowledge remaining fairly stable before

exhibiting a dramatic decline above age 95 (Singer, Verhaeghen, Ghisletta,

Lindenberger, & Baltes, 2003).

The cognitive battery of BASE has also been applied to a younger adult

sample (i.e., 25–69 years; Baltes & Lindenberger, 1997).  In this study, Baltes and

                                                  
2 It is important to note here that the residual variance in the first-order factors—after accounting for

the general factor—is not error variance.  Error variance is already removed at the level of indicator

variables by their variable-specific residual terms.  It follows that about one fifth of the first-order

factor variance is reliable specific variance (1 - .902 = .19).
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Lindenberger showed that the correlations among the five ability constructs and

sensory functioning were higher in the BASE sample than in the younger adult

sample.  These analyses, however, did not include structural models providing more

detailed descriptions of the relative importance of general versus specific sources of

variance at different ages.

So far, there has not been a systematic examination on the importance that

specific group factors might have for the description of individual differences in

cognitive functioning in old age.  Therefore, the central theme of the empirical

investigation presented here is to use the NF model to examine the role specific

factors play within the structure of cognitive abilities in an unbiased way.

Furthermore, the importance of specific factors for relating the multivariate space of

cognitive abilities to age and to theoretically important criterion variables is also

examined.

2.1.2 Motivations for the Selection of External Criterion Variables

The following section introduces the external criterion variables that were chosen

from BASE to analyze the relative contributions of general and specific factors.  These

variables were selected because relations to general and specific intelligence factors

could be expected based on the following rationales derived from theoretical

considerations and previous findings.

2.1.2.1 Education and Socioeconomic Status

Analyses of cross-sectional BASE data showed a strong effect of education and other

indexes of socioeconomic status on mean level of general intelligence, with no

differences of the observed age gradients between groups of high versus low

socio–economic status (SES) (Lindenberger & Baltes, 1997).  It was of interest to

examine the relation of SES to intelligence more closely by using the NF model.  It

could be expected that SES, and especially education, would show significant

relations to the specific knowledge factor—in addition to an effect of the general

factor—because of the major role that schooling and professional education play in

the acquisition of knowledge.
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2.1.2.2 Personality Factors

Research on the interrelations and interfaces between personality traits and cognitive

abilities has a long tradition (e.g., Ackerman, 1996; Cattell, 1971; Eysenck, 1994; see

also Sternberg & Ruzgis, 1994, for a collection of theoretical approaches).  In BASE,

short scales of the three major personality constructs of neuroticism, extraversion,

and openness to experience (Costa & McCrae, 1985; McCrae & Costa, 1997) were

included.  In a meta-analysis on the overlap of intelligence, personality, and interests,

Ackerman and Heggestad (1997) reported only a weak average positive correlation

of intelligence measures with extraversion and weak negative correlation with

neuroticism.  However, there was a medium-sized correlation between general

intelligence and openness (r = .33), which seemed to be predominantly due to a

correlation with the crystallized aspects of general intelligence (r = .30 with Gc;

r = .08, n.s., with Gf).  The openness trait describes a tendency of “proactive seeking

and appreciation of experience for its own sake; toleration for and exploration of the

unfamiliar” (Costa & McCrae, 1985) and can be subdivided into the facets of

openness to fantasy, aesthetics, feelings, actions, ideas, and values.  Why does this

construct correlate with ability measures of crystallized intelligence?

A key to explaining this relation lies in the finding that openness is strongly

related to the Typical Intellectual Engagement scale (TIE; Goff and Ackerman, 1992;

Rocklin, 1994), which is a composite measure of dispositions to engage in abstract

thinking, problem-oriented thinking, and reading.  TIE has repeatedly been shown to

correlate more highly with Gc than Gf.  Ackerman and Goff (1994) showed that the

relation of TIE and Openness is mainly produced by a strong correlation of TIE with

the Openness to ideas facet.  This facet mainly describes intellectual curiosity and the

tendency to think theoretically and analytically about issues (Costa & McCrae, 1985).

The Understanding subscale of the Personality Research Form (Jackson, 1984), another

measure of intellectual curiosity, is also strongly related to Gc, and only moderately

to Gf (Ashton, Lee, & Vernon, 2000).  It seems, therefore, that intellectual interest,

which has been found to be a stable trait characteristic, manifests itself in the

acquisition of crystallized abilities.  Based on the investment theory of intelligence

(Cattell, 1971) and supported by previous findings on younger adult samples

(Ackerman & Heggestad, 1997), it could be predicted that openness to ideas should

be related to general intelligence as well as to the specific factor of knowledge in old

age.  Elderly people have lived through a lifetime of opportunities to accumulate
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knowledge.  Therefore, the moderating effect of intellectual curiosity for the

investment of Gf into Gc should manifest in a correlation of knowledge and openness

to ideas in the BASE sample.

Cross-sectional and longitudinal evidence has consistently shown declines in

openness to experience across adulthood (e.g., Costa, McCrae, Zonderman,

Barabano, Lebowitz, & Larson, 1986; Costa & McCrae, 1988, 1997; McCrae et al.,

1999) and moderate correlations of openness with years of education (r = .28 in a

large national sample; see Costa et al., 1986).  Therefore, the mutual relations among

age, openness, and education also have to be considered in the analyses.

In BASE, the openness factor was measured by six items, of which only one

represented the openness to ideas facet (“I have a lot of intellectual curiosity”).  This

marker item could be used, in comparison to the other openness items, to examine

the relation of this construct and the intelligence factors of the NF model.

2.1.2.3 Sensory and Sensorimotor Functioning

The finding of a strong correlation between sensory and cognitive functioning (Baltes

& Lindenberger, 1997; Lindenberger & Baltes, 1994, 1997) and the formulation of the

common cause hypothesis have led to the application of SEM methods to test this

hypothesis with mediational models that incorporate a common cause factor

(Christensen et al., 2001).  Christensen et al.’s finding of specific negative age-

associated effects for visual functioning and grip strength—beyond a general effect

through the common cause factor—was interpreted by these authors as evidence

suggesting that more than one process operate concurrently.  As discussed in the

theoretical section, however, the method used by Christensen et al. is still prone to

produce biased results.  Therefore, it was of interest to conduct similar analyses with

BASE data, using a version of the NF model that includes sensory and sensorimotor

functioning as indicators of the general factor.  To represent the common cause

hypothesis, the NF model had to be adjusted to account for the theoretical three-

stratum hierarchical structure as shown in Figure 4, panel A.  This was accomplished

by including a common cause factor with loadings of all variables—in addition to a

general mechanic cognitive ability factor with loadings of all cognitive

variables—and specific factors for each cognitive ability and for the three

sensorimotor variables (Figure 4, panel B).  This model allowed the simultaneous

estimation of the amount of age-associated variance in each of the six latent factors.
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Figure 4. A:  Model with a common cause (CC) factor on top of a hierarchical structure of the

cognitive mechanics and variables of sensorimotor functioning.  B:  Nested factor representation of the

hierarchical common cause factor model.  g = general intelligence; R = reasoning; S = perceptual

speed; M = memory; Hear = auditory acuity; Vis = visual acuity; Bal = balance/gait; SM =

sensorimotor factor; AN = Analogies; LS = Letter Series; PR = Practical Problems; IP = Identical

Pictures; DL = Digit Letter; DS = Digit Symbol; PA = Paired Associates; AR = Activity Recall; MT =

Memory for Text.

2.1.2.4 Everyday Activities

In BASE, a broad assessment of everyday activities and capacities was also included.

An index of basic competence (BaCo) could be derived from items of the activities of

daily living (ADL) and instrumental activities of daily living (IADL) scales.  In

addition, a measure of expanded activities (ExCo) was build from information of the

Yesterday Interview (M. M. Baltes, Mayr, Borchelt, Maas, & Wilms, 1993). M. M. Baltes

et al. (1993) found BaCo to be more strongly related to health-related resources like

mobility, while the psychological resources could better predict the expanded
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activity index, especially by using a fluid intelligence factor as a predictor.  The large

number of activities that have been coded in the Yesterday Interview (see Appendix D)

allowed a further examination of this relationship between cognitive functioning and

everyday activities.  This was done by analyzing the relations of general and specific

cognitive ability factors to a selected subset of activities that could be expected to be

cognitively more challenging.

2.2   Research Hypotheses

Research questions and hypotheses concerning the empirical analyses of BASE data

could be subdivided into three sets.  Table 1 gives details of the hypotheses in these

three complexes.

Table 1 

Overview of Research Questions and Hypotheses

Existence of Specific Group Factors in a NF Structure

1. Given that is has been shown that specific variance of the first-order factors in a

hierarchical model exists (Lindenberger & Baltes, 1997), the application of the NF

model to the cognitive battery of BASE will show evidence of a strong general factor,

but also significant and substantial contributions of specific group factors

corresponding to the different ability constructs.

General and Specific Age Relations

2. Relating the NF structure to the chronological age variable will result in significant

specific age-associated influences.  It will not be possible to sufficiently explain the

observed age correlations for all ability constructs by just an age relation of the

general factor.  Rather, specific factors will show a pattern of age relations that

contrasts abilities that are differentially affected by cultural experiential factors or by

biological factors.

Relations of the General and Specific Factors to External Criterion Variables

3. The specific factors will show relations to the external criterion variables of

socioeconomic status, education, openness to experience, and expanded activities of

daily living, independent of the general factor.

4. Does a general common cause factor mediate all age-related variance of the cognitive

and sensorimotor variables?
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2.3   Method

2.3.1 Sample

Analyses in this article are based on data from the first cross-sectional measurement

occasion of BASE with the full intensive data protocol.  This protocol comprised 14

sessions with data collection in the disciplines of internal medicine, psychiatry,

sociology, and psychology.  The sample was stratified by age and gender, with 43

women and 43 men in each of six age brackets (70–74, 75–79, 80–84, 85–89, 90–94,

95+).  Sample size, therefore, was N = 516 (Age range: 70–103 years, M(Age) = 84.9

years).  Detailed information regarding BASE in terms of study design (Baltes,

Mayer, Helmchen, & Steinhagen-Thiessen, 1999), selectivity effects and generaliza-

bility issues (Lindenberger, Gilberg, Little, Nuthmann, Pötter, & Baltes, 1999), and on

prevalence and effects of dementia in the sample (Lindenberger & Reischies, 1999)

have been well documented elsewhere (Baltes & Mayer, 1999).  For a broad collection

of results from analyses of the cognitive battery in BASE, see Lindenberger and

Baltes (1997).

To extend the analyses comparing the nested factor structure of two

subsamples of BASE split at the age median into the context of covariance

dedifferentiation across the adult lifespan, a comparison sample of younger adults

(Age range: 25–69 years, M(Age) = 48.2 years, SD = 14.7, 58% women) was also used

(for further information on this sample, see Baltes & Lindenberger, 1997).

2.3.2 Cognitive Tasks

The BASE cognitive battery comprised 14 tasks measuring the five ability constructs

of: (a) reasoning (Analogies [AN], Letter series [LS], and Practical Problems [PR]);

(b) perceptual speed (Digit Letter [DL], Digit Symbol Substitution [DS], and Identical

Pictures [IP]); (c) memory (Activity Recall [AR], Memory for Text [MT], and Paired

Associates [PA]); (d) fluency (Category: Animals [CA], and Word Beginnings: Letter S

[WB]); (e) knowledge (Practical Knowledge [PK], Spot-a-Word [SW], and Vocabulary

[VC]).  A detailed description of the tasks can be found in Lindenberger, Mayr, and

Kliegl (1993), while information on procedures, task administration, and

psychometric properties for these tasks in the BASE sample is provided in

Lindenberger and Baltes (1997).
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2.3.3 External Criterion Variables

2.3.3.1 Socioeconomic Status

Socioeconomic status (SES) was modeled as a latent variable with the indicator

variables income, occupational prestige, social class index, and education (see

Lindenberger & Baltes, 1997; Mayer, Maas, & Wagner, 1999, for more information on

these variables).  The latent factor model had very good fit with χ2[2] = 2.26, RMSEA

= .016, CFI = 1.00; the standardized factor loadings were .70 for social class, .38 for

income, .78 for occupational prestige, and .67 for education.

2.3.3.2 Openness for Experience

Openness for experience was measured by a six-item scale with items taken from the

NEO (Costa & McCrae, 1985). The items could be classified as belonging to the

openness facets fantasy, actions, aesthetics, and ideas (see Table 4, for the items and

facets).  The total scale including all these items, however, had only low internal

consistency with Cronbach’s α = .54.

2.3.3.3 Activity Competence and Engagement

A basic activity competency index (BaCo) was created as an aggregate of

theparticipants’ subjective ratings of the activities of daily living items (ADL; Katz,

Ford, Moskowitz, Jackson, & Jaffee, 1963), and two items from the instrumental

activities of daily living (IADL; Lawton & Brody, 1969) index (see M. M. Baltes et al.,

1993).  Additional information about an expanded scope of engagement in activities

came from the Yesterday Interview, a modified version of the original version by Moss

and Lawton (1982; see M. M. Baltes et al., 1993, for details on the interview

procedure).  Responses of this interview were coded into 44 specific activity

categories (see Appendix D for a list of those categories).  For the analyses of these

activity codings, data of only 485 participants were used.  The remaining 31 subjects

were excluded because their recollection of the activities from the previous day was

questionable, which seemed mainly to be due to the presence of dementia.

Of the 44 coded activity durations, a subset had to be chosen for the analyses

relating activity to the NF model, because only a small number of activities showed

reliable correlation patterns to the cognitive ability tasks.  If no such pattern could be

observed, it would not make sense to apply SEM models to try to explain observed

covariance patterns of these variables.  The following, empirically driven, selection
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procedure was used.  Of all 44 activities, only those that had positive correlations

with at least three of the 14 cognitive tasks at a significance level of p < .01 were

chosen (Table D1 in Appendix D provides all correlations between the activity

categories and the cognitive tasks).  Of the ten tasks that met this criterion, two

additional ones had to be excluded (Regular paid work and Helping other person),

because they had extremely little variance, i.e., of the 485 subjects, more than 470

subjects had a value of zero. The eight remaining activity duration categories

referred to basic care, shopping, craft/needlework, self-treatment, writing, phone

calls and active and passive locomotion.

2.3.3.4 Sensory and Motor Performance Indicators

Sensorimotor performance was measured by three composite variables: an aggregate

of auditory acuity in several frequency bands in both ears, an aggregate of close and

distance visual acuity averaged over left and right eye, and a composite of the

Romberg stance and the Turn 360 tasks (see Lindenberger & Baltes, 1997, for additional

information on these measures).

2.3.4 Analyses and Structural Equation Models

2.3.4.1 Overview of Analyses

In a first step, the NF model was fitted to the whole BASE sample from the first

cross-sectional measurement occasion.  Then, multiple group models for the NF

structure were conducted to compare (a) two subsamples of BASE (i.e., split at the

age median), and (b) the full BASE sample with the younger adult sample.  A second

series of analyses was carried out to relate the chronological age variable to the

factors of the NF model.  In these analyses, age was conceptualized either as an

independent variable, correlate, or dependent variable.  To better understand the

complex pattern of age relations that resulted from these analyses, an oblique factor

model was also used to examine the age correlations of correlated first order factors

and their regression weights in predicting chronological age.  A third set of analyses

examined the relations of the general and specific factors to the external criterion

variables.
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2.3.4.2 Structural Equation Models

Most of the presented models were estimated with PROC CALIS (SAS Institute,

1989a).  The multiple group models were run with EQS 5.7b (Bentler & Wu, 1995),

and bootstrap control analyses were conducted with AMOS 4 (J. Arbuckle, 2000).  For

all SEM models, the Maximum Likelihood minimization criterion was used, together

with the Levenberg-Marquardt optimization technique of SAS PROC CALIS for most

analyses.  This optimization method, though computationally extensive, is usually

more reliable than the quasi-Newton or Newton–Raphson procedures used by other

SEM programs (SAS Institute, 1989a).

For the models using age as a correlate or dependent variable, the factor

variances of the NF model were fixed to one, and all factor loadings were freely

estimated.  Because the factor variances could not be fixed in the models with age as

a predictor variable, one of each factors’ loadings was set to one.  The two loadings of

the specific fluency factor were constrained to be equal3 to ensure identification of the

factor.

For the analyses relating the NF model to external criterion variables, the

measurement model was fixed, using the unstandardized solution of the NF model

without external variables.  Similar to the extension analysis in exploratory factor

analysis, this approach constrained the factors to be the same across analyses with

different criterion variables.  If the measurement model were not fixed, the factor

loadings might change considerably from one model to the other, because of

differences in the relations of the indicator variables to the external criterion.  This

would make the interpretation and comparison difficult, and would provide a less

conservative test of the predictive validities of the nested factors.  However, in

evaluating model fit, one has to adjust for the degrees of freedom gained by fixing

parameters to values estimated from empirical data in preceding models (R. S. Burt,

1976).

                                                  
3 Constraining the unstandardized loadings of the two fluency tasks on their specific factor to be equal

in order to achieve identification of the factor was seen as appropriate because the residual variance of

both tasks after accounting for the general factor were of similar size.  In separate analyses,

constraining the two loadings to explain an equal portion of variance independent of the general

factor led to very similar results.  Nonetheless, it should be noted that interpretations of the results for

the specific fluency factor should be more cautious than for the other factors.
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2.4   Results

2.4.1 Measurement Model With the Nested Factor Structure

As a first step, the NF model for the five theoretical constructs of the psychometric

battery was fitted to the total sample.  For each of the 14 task variables, one path to a

general, and one to its respective specific factor was specified.  Figure 5 shows the

measurement structure and standardized factor loadings for this model.  Loadings

on the general factor were all high, ranging from .61 to .84.  The specific loadings

were smaller, but still substantial with values from .20 to .49.  The fit of this model

was acceptable, with χ2[64] = 145.3, p < .001, RMSEA = .05, CFI = .98.

g

AN LS PR IP SW VC PKDL DS PA AR MT WB CA

R S M KF

.37 .44 .30 .31 .49 .39 .40 .21 .28 .43 .49 .20.31 .31

.67 .69 .73 .81 .81 .84 .66 .76 .61 .61 .76 .81.72 .81

Figure 5. Nested factor model with BASE data (N = 516).  g = General factor.  R = Specific

reasoning factor. S = Specific perceptual speed factor.  M = Specific memory factor.  F = Specific

fluency factor.  K = Specific knowledge factor. AN = Analogies; LS = Letter Series; PR = Practical

Problems; SW = Spot-a-Word; VC = Vocabulary; PK = Practical Knowledge; IP = Identical Pictures;

DL = Digit Letter; DS = Digit Symbol; WB = Word Beginnings; CA = Categories; PA = Paired

Associates; AR = Activity Recall; MT = Memory for Text. All factor loadings are standardized

estimates.

To test whether the specific factors were significant, separate analyses were

conducted, leaving out one of the specific factors at a time.  Each of these models

with one general and the four remaining specific factors are nested within the full

model, and therefore χ2-difference tests could be calculated.  These tests resulted in

χ2-differences of ∆χ2[3] = 77.6 for the specific reasoning, ∆χ2[3] = 164.2 for the specific

speed, ∆χ2[3] = 28.6 for the specific memory, ∆χ2[1] = 21.0 for the specific fluency, and

∆χ2[3] = 97.1 for the specific knowledge factors, respectively.  All these tests were

significant with p < .001.  Furthermore, each of the factor loadings on the specific
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factors was significant with p < .001.  Specifying a model with only a general and no

specific factors resulted in unacceptable model fit (χ2[77] = 687.4, p  < .001,

RMSEA = .12, CFI = .89), as did a model specifying only orthogonal group factors for

the five theoretical constructs (χ2[78] = 2002.4, p < .001, RMSEA = .22, CFI = .64).

A comparison of these results with the hierarchical models reported in

Lindenberger and Baltes (1997) showed that with the NF model, it was not necessary

to include correlated error terms for Digit Symbol and Digit Letter, and for Spot-a-

word and Vocabulary, respectively4.  The proportionality constraints implied by the

hierarchical model necessitated these adjustments to the measurement model.  The

NF model is more flexible in accounting for such similarities at the indicator variable

level, such that the empirical relations could be captured by the general and specific

factors.

It was informative to calculate communalities for the general and specific

factors to estimate their overall importance for the description of the multivariate

space defined by the 14 cognitive tasks.  Communalities were computed by squaring

and summing the standardized loadings on the different factors, and dividing the

resulting sums by the number of variables.  The communality for the general factor

was h2 = 54.8% and for all five specific together it was h2 = 13.3%.  This means that

about one fifth of the total variance that could be explained by the six factors of the

model was accounted for by the specific factors (cf. Lindenberger & Baltes, 1997).

The total communality of the NF model was also compared to the

communality of an oblique factor model to examine whether the inclusion of a

general factor did increase the total amount of variance explained.  The total

communality of the oblique factor model was 68.8%, indicating that this was not the

case.  Furthermore, an oblique factor model also showed acceptable fit (χ2[68] = 184.5,

p < .001, RMSEA = .06, CFI = .98), which could be further improved by allowing the

same correlated residual terms as for the hierarchical model (χ2[66] = 144.8, p < .001,

RMSEA = .05, CFI = .99).  The benefit of using a NF model, therefore, did not lie in

explaining additional variance of the indicator variables, but rather in representing

the structure in a way that allowed separating general from specific variance.

                                                  
4 Lindenberger and Baltes (1997) did include correlations of the error terms for these two pairs of

variables to significantly improve model fit.
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2.4.2 Age Differences in the Factor Structure

To test the assumption of the NF model structure being invariant across the age

range of BASE (i.e., 70 to 103), the BASE sample was split into two halves (N = 258

each) at the age median of 85.15.  Multiple group SEM methodology (Lee & Tsui,

1982) was used to test the NF model with parameters estimated separately for the

two groups against a model with equality constraints across groups.  The approach

used here deviated from the standard procedure for testing invariance of factor

structures, which proposes to run a sequence of models specifying configural,

incomplete, and complete measurement invariance (Meredith, 1993).  These models

put an increasing number of constraints on the factor-loading matrix, the factor

variance–covariance matrix, and the variance–covariance matrix of the unique or

error terms.  In the NF model, however, factor covariances are set to zero to begin

with, as the factors are defined to be orthogonal to each other.  In an oblique factor

model, information about dedifferentiation is contained in the covariances of the

factors.  In the NF model, this information is carried by the relative importance of the

general factor, as compared to the specific factors.  Fixing the factor variances to one,

the communalities of the general and specific factors, which are implied by the

standardized loadings, provide information about the potential dedifferentiation of

the structure.

The fit of the model with equality constraints on factor loadings across groups

was good (χ2[155] = 255.7; p < .001; CFI = .98; RMSEA = .04), and could only be

slightly improved by releasing the equality constraints (χ2[128] = 202.5; p < .001;

CFI = .98; RMSEA = .03; Appendix E provides parameter estimates for both groups).

A χ2-difference test of the two models indicated that this difference was significant

(∆χ2[27] = 53.15, p < .01).  However, rescaling this difference to the metric of an

RMSEA index (Browne & DuToit, 1992) resulted in a value of .04, which indicated

that the differences between the NF structures of the two age groups were only

minor.

Was the observed difference due to a general dedifferentiation of the structure

or to some more complex pattern of differences in single factor loadings?  This

question was approached by calculating communalities of the general and specific

factors in the different age groups.  Table 2 contains this information.  The

communality of the general factor was 46.8% in the young-old, and 49.1% in the old-

old group, while the total communality of the specific factors was 16.2% in the
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young-old, and 15.3% in the old-old group, an indication of only very slight

dedifferentiation within the BASE sample.  Comparing these results to the

communalities of the total BASE sample, which were 54.8% for the general, and

13.3% for the sum of the specific factors, showed how a reduction of age variance

reduces the relative strength of the general factor.

Why did there seem to be relative stability of the factor structure, as compared

to other studies examining this issue?  One explanation could be that most of the

“neo-integration” of the factor space takes place from adulthood to old age

(Lindenberger & Baltes, 1997), so that the factor space above the age of 70 is already

very much condensed and further dedifferentiation is hard to detect.  One way to

address this hypothesis was to compare the results for the BASE sample with a NF

representation of the same cognitive battery applied to the younger adult sample of

the Baltes and Lindenberger (1997) study.  As shown in Table 2, the communality of

the general factor in the younger sample was only 24.9%, as compared to the total

specific communality of 27.1%5.  On average, the specific factors, therefore, explained

more variance than the general factor in this sample, a clear demonstration of

dedifferentiation from the second to the third and fourth age (see Appendix E for

standardized factor loadings).

Table 2

Communalities of the General and Specific Factors in the Nested Factor Model for Different

Age Groups

Age Group N h2 (g) h2 (ΣSpecific) h2 (R) h2 (K) h2 (S) h2 (F) h2 (M)

20-69 171 .25 .27 .06 .07 .07 .04 .04

70-103 516 .55 .13 .03 .03 .04 .01 .02

70-85.1 258 .47 .16 .03 .03 .05 .03 .03

85.2-103 258 .49 .15 .04 .04 .05 .01 .03

Notes. h2 = Communality; g = General factor; ΣSpecific = Sum of the specific factors; R = Specific

factor of reasoning; K = Specific factor of knowledge; S = Specific factor of perceptual speed; F =

Specific factor of fluency; M = Specific factor of memory.

Because the statistical test for measurement invariance of the NF model indicated

only a slight difference in fit of the constrained and unconstrained models, and the

                                                  

5  Model fit of this model was very good with χ
2
[64] = 76.3; p = .14; CFI = .98; RMSEA = .03.
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comparison of communalities did not indicate general dedifferentiation of the

structure, it was concluded that the assumption of invariance of the NF model

structure holds within the BASE sample to a satisfying degree.  Analyses based on

the whole sample were therefore possible.

2.4.3 General and Specific Age Relations of the Nested Factor Structure

2.4.3.1 Age-as-a-Predictor Model

Including the age variable into the model by specifying statistical causal paths from

age to the general and all specific factors led to good model fit (χ2[72] = 158.7,

p < .001, RMSEA = .05, CFI = .98).  There was a strong age-associated effect on the

general factor (γ = -.69, Z = 8.97).  Additional significant effects were found for the

specific factors of knowledge: (γ = .56, Z = 3.96), fluency (γ = .48, Z = 2.78), and

memory (γ = .31, Z = 2.01)6.  The positive effects for knowledge, fluency, and memory

were of medium to strong effect sizes and counterbalanced the strong negative

general age effect.  Figure 6 shows the age-associated effects and the standardized

factor loadings of this model.

2.4.3.2 Age-as-a-Covariate Model

A model with age included as a covariate of the orthogonal general and specific

factors also showed good fit (χ2[72] = 161.1, p < .001, RMSEA = .05, CFI = .98).

Significant correlations with age were r = -.67 (Z = 13.73) for the General factor, and

r = .33 (Z = 4.84) and r = .24 (Z = 2.46) for the specific factors of knowledge and

fluency7, respectively.  Figure 7 shows these correlations, together with the

standardized factor loadings.  While the pattern of a strong negative age correlation

of the general factor and positive effects on the specific factors was very similar to
                                                  
6 A more appropriate test of the significance of individual parameters in a SEM model than that given

by the approximate Z values is given by separate likelihood ratio (LR) test for each parameter.  Such

LR tests are invariant over different parameterizations of a model (Gonzalez & Griffin, 2001).

Calculating those tests by comparing models with and without the parameter of interest included

resulted in highly significant LR-tests with ∆χ
2
[1] = 31.0 for the specific knowledge and ∆χ

2
[1] = 19.2

for the specific fluency factor, but an only marginally significant test of ∆χ
2
[1] = 3.3 for the specific

memory factor.
7 LR-tests for the specific age relations of the specific knowledge and fluency factors resulted in

significant values of ∆χ
2
[1] = 29.6 and ∆χ

2
[1] = 7.5, respectively.
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that observed with the age-as-a-predictor model, the specific effects were of smaller

magnitude.

g

AN LS PR IP SW VC PKDL DS PA AR MT WB CA

R S M KF

.37 .46 .31 .29 .48 .40 .43 .24 .28 .47 .58 .24.35 .35

.72 .75 .77 .84 .84 .86 .75 .81 .67 .78 .97 .90.82 .92

Age

.19 .08 .31* .48** .56***

-.69***

Figure 6. Directed age-associated effects on the factors of the nested factor model structure

(N = 516).  All factor loadings and regression weights are standardized estimates.  g = General factor.

R = Specific reasoning factor. S = Specific perceptual speed factor.  M = Specific memory factor.

F = Specific fluency factor.  K = Specific knowledge factor. AN = Analogies; LS = Letter Series;

PR = Practical Problems; SW = Spot-a-Word; VC = Vocabulary; PK = Practical Knowledge;

IP = Identical Pictures; DL = Digit Letter; DS = Digit Symbol; WB = Word Beginnings;

CA = Categories; PA = Paired Associates; AR = Activity Recall; MT = Memory for Text.

* p < .05, ** p < .01, *** p < .001.

Appendix F provides detailed information on comparing the unstandardized

factor loadings of the age-as-a-predictor model, the age-as-a-covariate model, and a

measurement model based on age-partialled covariances.  This comparison showed

that, indeed, the factor patterns for the age-partialled and the age-as-a-predictor

model were almost exactly the same, and that the difference between the age-as-a-

covariate and the age-as-a-predictor model lay in different loadings on the general,

but not on the specific factors.
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g

AN LS PR IP SW VC PKDL DS PA AR MT WB CA

R S M KF

.37 .45 .31 .30 .49 .40 .41 .22 .25 .42 .51 .20.31 .31

.67 .69 .73 .82 .81 .84 .66 .76 .61 .61 .76 .81.71 .81

Age

.04

-.67***

.01 .15 .24* .33***

Figure 7. Age correlations of factors in the nested factor model (N = 516).  All factor loadings

and correlations are standardized estimates. g = General factor.  R = Specific reasoning factor.

S = Specific perceptual speed factor.  M = Specific memory factor.  F = Specific fluency factor.

K = Specific knowledge factor. AN = Analogies; LS = Letter Series; PR = Practical Problems;

SW = Spot-a-Word; VC = Vocabulary; PK = Practical Knowledge; IP = Identical Pictures; DL = Digit

Letter; DS = Digit Symbol; WB = Word Beginnings; CA = Categories; PA = Paired Associates;

AR = Activity Recall; MT = Memory for Text.

* p < .05, ** p < .01, *** p < .001.

2.4.3.3 Age as a Dependent Variable

Building on the last model with age as a covariate of the orthogonal general and

specific factors, one can turn around the much-used equation with age as an

independent variable and treat chronological age as the dependent variable in a

regression analysis.  In such an approach, age differences are predicted by the factors

of the NF model.  Using only the general factor as a predictor of age accounted for

36% of the observed age variance, while a model with the general and the five

specific factors as predictors could explain 61%, an almost doubled amount of

variance!  To understand why the specific factors added such an impressive amount

of predictive power, one has to consider that because they are orthogonal to the

general factor and to each other, the square of their age correlations directly equals

the amount of incremental variance explained.  These results do not preclude the

possibility that other predictors might serve equally well in predicting age

differences.  However, they strongly emphasize the importance of considering

specific factors in addition to a general factor when the goal is to relate multivariate
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individual differences in cognitive functioning to individual differences in

chronological age.

2.4.3.4 Comparison With Oblique Factor Model

The age correlations of the specific factors in the NF model can be viewed as

necessary adjustments to an overly parsimonious model with only the general factor

being related to age.  Because the general factor in these models derives from the

finding that the first-order factors in an oblique factor model were highly correlated,

it is instructive to also use such an oblique factor model to predict chronological age

as a comparison to the results for the NF model presented in the last section.

If correlated factors are used to predict age in a multiple regression analysis,

the regression weights assigned to the factors differ considerably from the age

correlations of these factors (see Figure 8).  This is because multiple regression

analysis provides the best linear combination of the factors by taking into account

and adjusting for the pattern of common variances among all possible pairs of

factors.  To achieve this, the age-related portions of the common variance for all pairs

of factors have to be distributed among the factors.  Figure 8 shows that this resulted

in a pattern of regression weights that was similar to the pattern obtained for the age

correlations of the specific factors in a NF model.  While in the oblique factor model

the adjustments for common variance are reflected by the differences between age

correlations and regression weights, in the NF model the age correlations of the

specific factors adjust for the common variance that is captured by the general factor.

However, a comparison of the amount of age variance that could be explained by the

different models revealed that with the five oblique factors, only 40% of the age

variance was explained.  Furthermore, this model fitted worse than the NF model

(χ2[77] = 223.0, p < .001, RMSEA = .06, CFI = .97).  This showed that the NF model

allows for a representation of age-associated variance within a structure that captures

the multidimensionality and multidirectionality of cognitive age differences substan-

tially better than an oblique factor solution.
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Figure 8. Age correlations of the factors in an oblique factor (OF) model, regression weights for

a regression of age on oblique factors and for a regression on the specific factors in a nested factor

(NF) model.

2.4.4 Summary of Nested Factor Models and Their Relations to Age

The results presented so far afford three major conclusions.  First, there was reliable

specific variance contained in each ability construct that was independent of a

general factor.  Second, the amount of specific variance was less in older adults (age

70–103) than in younger adults (age 25–69).  However, there was no indication of

further dedifferentiation within the age range of the BASE sample.  These results

obtained with the NF model replicate the findings of Baltes and Lindenberger (1997)

and Lindenberger and Baltes (1997), who also reported the existence of specific first-

order factor variance that accounted for about one fifth of the total reliable variance

in a hierarchical model.  Third, the effects of age clearly had to be conceptualized as

multidirectional.  This could be shown by conceptualizing age as a predictor variable

as well as by correlating age with the general and specific factors, and by predicting

age differences with the orthogonal factors of the NF structure.  In each case, a

multidimensional representation captured important additional information about
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age-related variance and was superior to an oblique factor representation.  Analyses

reported in the next section were conducted to examine whether this multi-

dimensional representation provides an improved frame for examining relations to

additional external variables other than age.

2.4.5 Relations of General and Specific Factors to External Criterion Variables

2.4.5.1 Socioeconomic Status and Education

As shown in Table 3, the general factor of the NF model was significantly related to

all SES index variables.  This led to a strong correlation of the general factor with the

latent SES construct.  Independent of this general relation, the SES factor and its

indicators were also substantially correlated with the orthogonal specific factor of

knowledge.  Interestingly, years of education also had a significant positive relation

to the specific reasoning factor that was independent of the correlation with the

general factor.  Comparisons of models including correlations of the specific factors

with models that only contained a general factor correlation yielded significant χ2-

difference tests (see Table 3).  Analyses with age partialled out of the NF model and

the SES indicators also resulted in practically the same pattern of significant

correlations (see Appendix G).

Table 3

Correlations of General and Specific Factors in the Nested Factor Model With Indicators and

a Latent Factor of Socioeconomic Status

rAge g R K S F M ∆χ
2
[5]a

Income -.04 .29*** -.06 .19* .00 -.10 -.01 15.2

Social Class -.01 .28*** -.01 .26** .00 .01 -.09 25.7

Occupational Prestige -.08 .38*** .02 .25** -.04 .08 .00 23.1

Education -.14** .35*** .20* .28*** .03 .11 -.04 34.6

Latent Construct of SES -.09 .48*** .08 .37*** -.01 .07 -.05 41.4

Notes. a  χ
2
-difference test of model comparisons with models that only specified a correlation with

the general factor.  g = General factor; R = Specific factor of reasoning; K = Specific factor of

knowledge; S = Specific factor of perceptual speed; F = Specific factor of fluency; M = Specific factor of

memory.  Correlations in boldface were significant with * p < .05, ** p < .01, *** p < .001. 



92

2.1.1.2 Openness for Experience

The Openness scale had significant relations to the general factor and the specific

factor of memory (Table 4).  The relation to the specific knowledge factor, which

could be expected based on the metaanalytic findings of Ackerman and Heggestad

(1997), did not reach significance.  The analysis of the relations of the NF structure to

the individual items that went into the openness scale, however, provided further

insight into the relation of openness to the cognitive ability factors.  The Intellectual

curiosity item, indeed, correlated with the general as well as the specific knowledge

factor.  The relation of the openness sum scale to the memory factor mostly reflects

the significant correlation between this factor and the Daydreaming and Poetry items

(Table 4).  While it is difficult to explain the relation to the Daydreaming item, the

finding of a positive attitude towards poetry being related to the specific factors of

knowledge, fluency, and memory—and not to the general factor—is an example of

how focusing only on general factor variance might miss interesting and meaningful

relations.

Table 4

Correlations of General and Specific Factors in the Nested Factor Model With Items and Scale

Score of Openness for Experience From the NEO

Item content (Facet) rAge g R K S F M

„I don’t like to waste my time

daydreaming“  (Fantasy) a
.12** -.15** -.06 -.11 -.03 -.07 .19*

„Once I find the right way to do

something, I stick to it“ (Actions) b

.05 -.16** .07 -.10 -.11 -.17 .03

„Poetry has little or no effect on

me“ (Aesthetics) a
.03 -.03 -.03 .16* .14 .29** .29**

„I often try new and foreign

foods“ (Actions)

-.22*** .25*** .02 .03 .15 .18 .11

„I have a very active imagination“

(Fantasy)

-.15** .31*** -.12 .13 -.05 .02 -.01

„I have a lot of intellectual

curiosity“ (Ideas)

-.14** .33*** .03 .27*** -.03 .04 -.01

Openness scale -.10* .19*** -.04 .13 .04 .13 .22*

Notes. a Item wording was changed to a positive statement in the German version.  b Item was

reflected in the total scale score.  g = General factor; R = Specific factor of reasoning; K = Specific factor

of knowledge; S = Specific factor of perceptual speed; F = Specific factor of fluency; M = Specific factor

of memory.  Correlations in boldface were significant with * p < .05, ** p < .01, *** p < .001.
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Because openness has been found to be related to education in other studies

(McCrae & Costa, 1997), it was of interest to examine to what degree the observed

relations of education and openness with the cognitive factors were shared among

these two constructs.  The correlation of years of education with the intellectual

curiosity item was r = .23 (p < .001).  Therefore, both variables accounted for largely

independent portions of variance in the general and the specific knowledge factor.

The finding of a significant relation of education, but not of the intellectual curiosity

item, to the specific reasoning factor provided further evidence of both variables

capturing different aspects of antecedent influence on the development of individual

differences in cognitive functioning.  The pattern of significant correlations presented

in Table 4 was not changed when age was partialled out by using a NF model with

age as a predictor (see Appendix H).

2.1.1.3 Sensory and Sensorimotor Functioning

The NF model for the cognitive mechanics and the sensorimotor variables, with one

common cause factor, one general factor of cognitive mechanics, and the four specific

factors (see Figure 9) had good fit (χ2[33] = 55.8, p < .01, RMSEA = .04, CFI = .99).  The

sensorimotor variables had high loadings on the general, but also substantial

loadings on their specific factor.  Introducing age as a correlate of all factors into the

model resulted in a strong and significant correlation of r = -.60 (Z = 15.30) with the

common cause factor, and an even stronger correlation of r = -.70 (Z = 9.68) with the

specific sensorimotor factor, while the age correlations of the general and specific

cognitive factors were not significant.  Model fit was very good (χ2[40] = 51.3, p = .11,

RMSEA = .02, CFI = 1.00).  This showed that, even though the common cause factor

could not account for all age-associated variance in the sensorimotor variables, it

captured all age-associated variance of the cognitive variables.  The strong loadings

of the sensorimotor variables on this common cause factor support the notion of a

coupling of cognitive and sensory functioning in old age.
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g

AN LS PR IP Vis Hear BalDL DS PA AR MT

R S M SM

.38 .47 .33 .17 .42 .30 .43 .30 .35 .36 .35 .31

.66 .67 .72 .86 .86 .87 .63 .73 .57 .61 .54 .63

Age

.01 .05 -.01 -.62***

-.65***

Figure 9. Common cause factor model of reasoning (R), speed (S), memory (M), and visual

acuity (Vis), auditory acuity (Hear), and Balance/Gait (Bal) as indicators of a sensorimotor (SM)

factor.  All parameter values are standardized estimates.  AN = Analogies; LS = Letter Series;

PR = Practical Problems; IP = Identical Pictures; DL = Digit Letter; DS = Digit Symbol; PA = Paired

Associates; AR = Activity Recall; MT = Memory for Text.

* p < .05, ** p < .01, *** p < .001.

2.1.1.4 Basic and Expanded Activities

The seven selected activities were related to the NF model by predicting these

activities with the general and specific factors, while controlling for an index of basic

competency (BaCo), which is a composite of the six ADL and two IADL items (see M.

M. Baltes et al., 1993).  The BaCo index was included in the prediction model because

previous analyses have shown that BaCo was a good predictor of the expanded

competency (ExCo) sum score (M. M. Baltes et al., 1993; Marsiske, Klumb, & M. M.

Baltes, 1997).  Therefore, it was of interest to show the predictive validity of the

cognitive factors beyond the part of variance that could be explained by the basic

constraints in functioning captured by the BaCo index.

Results of the SEM models showed that for the activities of basic care,

shopping, and craft/needlework, none of the general and specific cognition factors

had a significant latent regression weight.  For the duration of self-treatment

activities, however, a significant correlation with the general factor of r = .30

(Z = 4.07) was found.  The activity of making phone calls was only significantly

related the specific memory factor (r = .25, Z = 2.38).  Passive and active locomotion
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also could—to some degree—be predicted by the cognitive ability factors.  Active

locomotion—walking, driving, or riding a bicycle—had a significant relation to the

general factor (r  = .18, Z = 2.49) and to the specific factor of reasoning (r = .19,

Z = 2.28).  Passive locomotion—public transport or being a passenger in someone

else’s car—was positively related to BaCo (r = .16, Z = 2.61) and had a negative

correlation with the specific knowledge factor (r = -.22, Z = 2.81).  While the ability to

drive a car or bicycle could be expected to be related to the attentional capacities that

are captured by the factors of general cognitive ability and reasoning, these results

cannot be unambiguously interpreted without further information about which

specific ways of transportation were used.  This also applies to passive locomotion,

where the need to take public transport might be a consequence of lower social

status, which, in turn, has already been shown to be related to the specific factor of

knowledge.

Very interesting were the results for the activity category of Writing.  As can be

seen in Figure 10, this activity was not significantly related to the BaCo index.  While

BaCo could be well predicted by the general factor, this factor did not contribute

significantly to the prediction of writing activities.  However, there were significant

positive prediction weights for the specific factors of speed (β = .30, Z = 3.64), fluency

(β = .31, Z = 2.68), and reasoning (β = .17, Z = 2.01).  Together, these three specific

factors accounted for 24% of variance.  Omitting these specific effects resulted in a

significant reduction of model fit (∆χ2[5] = 19.9, p < .01) and greatly attenuated the

total variance explained to R2 = .04, indicating that the specific effects amount to 20%

of explained variance.

2.1.6 Summary of Analyses of External Criterion Variables

Results from the analyses relating the NF model to external criterion variables have

shown significant and meaningful relations of the general and specific factors to

variables of socioeconomic background, personality constructs, and everyday

activities.  These analyses illustrate that moving away from aggregate variables on

the criterion side, such as the SES sum index, the openness scale score, or the ExCo

activity composite, opens the possibility to detect relations of specific cognitive

factors independent of the general factor, which has its strongest relations to

aggregated criterion variables.
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g

AN LS PR IP SW VC PKDL DS PA AR MT WB CA

R S M KF

.38 .44 .30 .31 .49 .38 .40 .21 .27 .43 .49 .20.30 .30

.67 .69 .73 .80 .81 .84 .65 .75 .60 .61 .76 .80.71 .79

Time Spent with Writing

.07

.07.31**.09.30***.17*

BaCo .05 

.58***

Figure 10. Prediction of the duration of writing activities in the Yesterday Interview with basic

competency (BaCo) and the nested factor model.  All factor loadings and regression weights are

standardized estimates. g = General factor.  R = Specific reasoning factor. S = Specific perceptual speed

factor.  M = Specific memory factor.  F = Specific fluency factor.  K = Specific knowledge factor.

AN = Analogies; LS = Letter Series; PR = Practical Problems; SW = Spot-a-Word; VC = Vocabulary; PK

= Practical Knowledge; IP = Identical Pictures; DL = Digit Letter; DS = Digit Symbol; WB = Word

Beginnings; CA = Categories; PA = Paired Associates; AR = Activity Recall; MT = Memory for Text.

* p < .05, ** p < .01, *** p < .001.

Using the NF model to represent the hypothesis of a common cause factor

showed that all age-associated variance of the cognitive mechanics and a large

portion of age-associated variance of the sensorimotor variables were contained in

the common factor.  However, the results also indicated the need to incorporate a

negative age relation of the specific sensorimotor factor.

2.1.7 Control Analyses

All results in the preceding section were based on parameter estimates derived from

the application of a theoretical model with latent unobservable variables to empirical

data.  The validity of these models and their parameter estimates depends on

whether the assumptions of these models are met.  Before interpreting the results, it

is therefore necessary to examine the validity of these assumptions.  This can be done

either by testing the assumptions directly or by running control analyses—that are
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based on different assumptions—and comparing these results to the initial findings.

The following control analyses will focus on the issues of missing data, distributional

assumptions, and parameter interdependency and sensitivity.

2.1.7.1 Potential Influence of Imputed Missing Values

In the original raw data of the BASE cognitive battery at the first measurement

occasion, 494 of the total 7224 data points (i.e., 516 subjects times 14 tests), or 6.8%

were missing.  These missing values were imputed with regression estimates

obtained by predicting missing values with a regression of observed scores on other

tests within the same ability constructs (e.g., predicting a missing value on Letter

Series by observed values on Analogies and Practical problems, weighted by regression

weights derived from the sample with complete observations; for a description of

this procedure, see Lindenberger and Baltes, 1997).  Analyses based on the imputed

data are less likely to lead to biased results than listwise deletion and comparisons of

analyses with and without imputed values obtained virtually identical results in the

analyses of Lindenberger and Baltes (1997).  However, the question of how much

potential influence this procedure might have for analyses using the NF model is still

an important issue to be investigated.  Specific factors might have been artificially

enhanced by the regression estimates for missing values, which could lead to

increased correlations among the respective indicator variables.  Therefore, two

kinds of control analyses were conducted to address this issue.

First, the NF model with age correlations was re-estimated for the sub-sample

that had complete observations for all 14 tests (N = 416).  This resulted in a NF

measurement model that was very much the same as in the analyses with the

imputed missing values (see Appendix J).  However, the age correlation of the

specific memory now was also significant (r = .20, Z = 2.14).  The age correlations of

the other factors were also very similar to the ones reported before (r = -.66, Z = 12.17

for the general factor; r = .39, Z = 5.35 for the specific knowledge factor, and r = .29,

Z  = 2.97 for the specific fluency factor).  The fit of the model was good with

χ2[72] = 147.11, p < .001, RMSEA = .05, CFI = .98.

Secondly, a different procedure for estimating missing data was used: the EM

algorithm (Dempster, Laird, & Rubin, 1977) as implemented in the SPSS 10.0 Missing

Values module.  This algorithm used all the available information on the 14 tests and

the age variable as well as the interrelations among these variables to get best
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estimates of the missing values.  With this data set, the age correlation of the specific

memory factor was again significant (r = .16, Z = 2.00).  The age correlations of the

other factors were r = -.67 (Z = 14.76) for the general factor, r = .36 (Z = 5.80) for the

specific knowledge factor, and r = .27 (Z = 3.01) for the specific fluency factor.  The fit

of the model was still acceptable, though slightly worse than with the regression

imputation data (χ2[72] = 190.95, p < .001, RMSEA = .06, CFI = .98; see Appendix J, for

the measurement model parameters).  Taken together, the results of the control

analyses with different ways of dealing with missing data did not indicate a potential

influence of the regression imputation procedure on the interpretation of the general

and specific factors in the analyses presented before.

2.1.7.2 Multivariate Normality Assumption of SEM Models

An important assumption of the maximum likelihood estimation techniques used in

SEM is that the data are drawn from a multivariate normal distribution.  One way to

test this assumption is to use Mardia’s estimate of multivariate kurtosis (Mardia,

1970), which is implemented in standard SEM programs.  The normalized value of

this index for the 14 cognitive tasks was 6.27.  While this value could be considered

relatively high, there are no established cut-off values and it is not clear how strongly

violation of the normality assumption—as indexed by this estimate of kurtosis—does

distort the results.  Therefore, bootstrap control analyses were used to explore this

issue further.  Bootstrapping (Efron & Tibshirani, 1993; Nevitt & Hancock, 2001) is a

method based on repeatedly re-running the analyses of interest on samples drawn

from the original sample.  It allows deriving standard errors for parameter estimates

when assumptions about the population distribution are violated.  In addition, the

comparison of the bootstrapped parameter estimates to the ones estimated for the

original sample provides an estimate of the bias that is produced by violation of the

distributional assumptions.  The only requirement to perform bootstrap analyses is

that the sample is representative for the population, an assumption quite tenable for

the first cross-sectional data set of BASE.

Bootstrap analyses were conducted with AMOS 4.0 (J. Arbuckle, 2000).  For

the NF model with age correlations, one thousand bootstrap samples were drawn.

Appendix K provides detailed results for this model.  The main finding was that

factor loadings did not change considerably and all loadings were highly significant.

The covariances of the nested factors with age were slightly stronger, in the positive
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as well as in the negative direction, while the corresponding standard errors were a

little larger than in the original analyses.  In general, the measurement model as well

as the pattern of age relations and significant results was very similar to the analyses

based on the normality assumption.  Therefore, possible violation of the distri-

butional properties in the current data set did not seem to influence results in any

important way.

Because the activity variable Writing was highly skewed, the model with the

nested factors predicting BaCo and Writing was also re-analyzed with a bootstrap

procedure.  As shown in Appendix L, again, the results were remarkably stable.  The

only slight difference was that the path from specific reasoning to Writing was only

marginally significant (p = .05) based on the bootstrap standard errors.

2.1.7.3 Sensitivity Analysis of the Estimates of General and Specific Age-Associated

Effects

To explore parameter interdependencies and the sensitivity of overall model fit to

changes in the parameter estimates of general and specific age-associated effects (Li,

Lewandowsky, & DeBrunner, 1996; see Appendix B for an introduction), a sensitivity

analysis was conducted.  Based on the NF model with age as covariate, a series of 31

models were estimated in which the value of the age correlation of the general factor

was fixed to standardized values ranging from -.50 to -.80 in steps of .01.  All other

parameters of the model were freely estimated.  The dependent variables of interest

in this manipulation were the resulting estimates for the age correlations of the

specific factors—indicating the degree of parameter interdependence—and the

model fit as indexed by the RMSEA—indicating sensitivity of the model to biased

values of the general factor correlation.  Figure 11 shows that there was some degree

of parameter interdependence among estimates of the age correlation of the general

and specific factors.  The higher the negative values for the general factor, the higher

were the positive values for the specific factors.  This inverse relation of the general

and specific age correlations was reflected in the correlations of the corresponding

parameter estimates, which ranged from -.41 to -.48 between the estimated age

correlations of the specific and the general factors.  Figure 11 also shows that the

specific factor correlations even changed from positive to negative as the general

factor correlation was fixed to smaller negative values.
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Figure 11. Sensitivity analysis of the age correlations in the nested factor model.  The bold arrow

denotes the point of the maximum likelihood estimates.  Around this point, the value of the general

factor age correlation was fixed to different values, and the estimates for the specific age correlations

changed accordingly.  The double-headed arrow denotes the range of the 95% confidence interval (CI)

of the general factor age correlation estimate.

The most important observation of this sensitivity analysis, however, was that

model fit was not very sensitive to changes in the estimates of the correlation

between the general factor and age.  If RMSEA values rounded to .05 are taken as

indication of good model fit, this correlation could take on any value between -.50

and -.80.  If RMSEA values smaller than .07 or .08 were interpreted as acceptable fit,

the model could even be driven, e.g., to a combination of a general correlation of -.25,

and negative age correlations of the specific factor ranging from .00 to -.38

(RMSEA = .066).  These results show the flexibility of a model with simultaneous

general and specific effects acting on the same variables in accounting for different

assumptions about the general effect.  What remained unchanged for all these

possible combinations of general and specific effects, however, is that a general effect

alone was not sufficient.

To examine this issue of parameter interdependencies and parameter

sensitivity further, a Monte Carlo simulation study was conducted.  This study had



101

the aim of investigating which characteristics of the study design and the empirical

composition of the indicator variables’ variance have an influence on how accurately

general and specific effects can be disentangled with the NF model.

2.5   Monte Carlo Simulation Study

To examine the hypothesis that the heterogeneity of the relative proportions of

general and specific variance in the indicator variables has an influence on the

parameter sensitivity and interdependence of the general and specific effect

estimates, a Monte Carlo simulation study was conducted.  This study was designed

to address the following questions.  First, how strongly does the heterogeneity of the

variance composition influence the standard errors of the estimates of the general

and specific effects?  Second, will the true age-associated effects be recovered with

the NF model if age correlations are specified for all specific factors in the model, but

not all of them do have true relations to age?  Third, how sensitive are common SEM

fit indices to the omission of specific effects of varying size from the model and does

the heterogeneity of the variance composition in the indicator variables have an

influence on the sensitivity of these fit indices?  Other variables, such as sample size

or number of indicator variables per factor, were also manipulated to compare their

relative impact on the dependent variables and to simulate a broad range of

practically relevant conditions.

2.5.1 Study Design and Method

The study was set up to manipulate sample size, number of indicator variables,

relative proportion of variance explained by the general factor, amount of

heterogeneity of general and specific variance composition, and effect size of the

specific effect as experimental factors.  As shown in Figure 12, the basic model was a

NF model with one general and three specific factors, which were each defined by

three indicator variables.  The age correlation of the general factor was set to -.71,

which means that half of the general factor’s variance was age-associated.  The

specific effect was simulated by an age correlation of the first specific factor, which

was varied across different experimental conditions in steps of .10 from +.30 to -.50.

This allowed the examination of how sensitive SEM fit indices are to the omission of

specific effects.
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Age

Specific effect:
-.50 to +.30

General effect: -.71

Figure 12. Basic design of the Monte Carlo simulation study.

Sample size was set to 125, 250, 500, and 1000 cases, respectively, to cover the

whole range from the minimum sample size necessary for SEM analyses up to an

ideal number not reached in the usual multivariate correlational studies on cognitive

aging.  The number of indicator variables per factor was set to either three or four.

This was done because it has been shown that larger numbers of indicators are

beneficial for the reliability of parameter estimates (Marsh, Hau, Balla, & Grayson,

1998).  Therefore, the number of indicators also could be an important factor for the

sensitivity and interdependence of the general and specific effect estimates.

The factor loadings were set up in a way that 80 percent of each variable’s

variance was reliable variance explained by the general and specific factors.  An

average of 40, 50, or 60 percent of the total variance was explained by the general

factor to simulate different degrees of dedifferentiation of the factor structure, i.e., the

general factor accounted for 50, 63.5, or 75 percent of the reliable variance.  Around

these average amounts of explained variance, disproportionality in the variance

composition was introduced by varying the relative magnitudes of general and

specific variance.  In the low disproportionality (LD) condition, the amount of

general variance for the first indicator of a factor was reduced by 2 percent, and

increased by 2 percent for the specific factor.  For the last indicator, a reversed

manipulation of increasing general and decreasing specific variance was done.  For

the one or two indicators in between, variance proportions were chosen as linear

interpolations between the two extremes (e.g., 48, 49.3, 50.7, and 52 percent for the

variance explained by the general factor in four indicator variables, accounting for an

average of 50 percent, and 32, 30.7, 29.3, and 28 percent for the variance explained by

the specific factor, accounting for an average of 30 percent).  In the medium and high
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disproportionality (MD and HD) conditions, the same manipulations were

conducted, but with a maximum decrease and increase of 6 and 10 percent for the

general and specific factor variances of the first indicator, respectively.

Population covariance matrices were calculated for each condition with a

program written in SAS IML (SAS Institute, 1989b) and SAS Macro Language (SAS

Institute, 1990).  Based on this population covariance matrix, samples of varying size

were repeatedly drawn from a multivariate normal distribution.  Model parameters

were estimated with SAS PROC CALIS (SAS Institute, 1989a).  Model estimation was

conducted twice for each sample.  Once with the specific effect included, and once

omitting the specific effect.  This within-sample manipulation tested the model’s

sensitivity to misspecifications as well as the precision of parameter estimation when

the correct model was used.

The experimental factors were completely crossed, resulting in a 4 (sample

size) x 2 (number of indicators) x 3 (general factor variance) x 3 (disproportionality) x

9 (magnitude of specific effect) x 2 (specification of specific factor in model) design.

For each of the 1296 cells, 50 replication samples were used, resulting in a total of

64800 single runs.  This study design followed a recent recommendation by Skrondal

(2000) to put more weight on a broad sampling of conditions than on replicating each

condition many times.  Appendix M provides the SAS program code that was used

to simulate the data files and to estimate the models.

To analyze the effects of the experimental manipulations on dependent

variables, the design was split into the 32400 runs with a correctly specified model,

and the other 32400 runs where the specific effects were omitted.  The dependent

variables for the correctly specified models were the number of Heywood cases

(negative error variance terms of the indicator variables), the number of improper

solutions (age correlation estimates outside the range of -1.00 to +1.00), and the

standard errors of the estimates for the general and specific age correlations.  For the

models with no specific effects specified, the dependent variable was the RMSEA fit

index.  This procedure tested whether the misspecification of models—i.e., specifying

only a general effect—could be detected by using the conventional cut-off criteria for

this fit index.
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2.5.2 Results

2.5.2.1 Heywood Cases and Improper Solutions

First, it is of interest to understand how much disproportionality of general and

specific variance across indicator variables influences the number of Heywood cases

and improper solutions encountered.  In practical applications such problems do

complicate, and sometimes even prevent, the interpretation of results.  As expected,

the results provided in Appendix N show that sample size had a significant impact

on the number of Heywood cases and improper solutions.  Number of indicators

only had a comparatively weak effect on the number of Heywood cases and no

significant effect on number of improper solutions.  Most interestingly, the

disproportionality of general and specific variance in the indicator variables showed

a strong negative correlation with the number of improper solutions and a weak

positive correlation with the number of Heywood cases (see Table 5).  The beneficial

effect of reducing the number of improper solutions shows that the parameter space

was much better behaved under conditions of more disproportionality.  While the

negative effect on the number of Heywood cases was difficult to explain, it did not

pose a problem because the relative frequency of such cases was less than 1 percent

even in the condition with high disproportionality.

Table 5

Influence of Disproportionality on the Number of Heywood Cases and Improper Solutions

Disproportionality χ2 [df]

Low Medium High

Heywood cases 35 46 82 22.4 [2]

Improper solutions 2338 372 41 3674.8 [2]

Total Number of Runs 10800 10800 10800

2.5.2.2 Standard Errors of the Effect Estimates

The next set of analyses targeted the effects of sample size, number of indicators, and

disproportionality on the standard errors of the estimates of general and specific

effects.  For these analyses, the runs in which the specific effects were specified were

selected, but excluding the runs in which Heywood cases and improper solutions

were encountered.  Appendix O provides ANOVA tables of these analyses.  Because

of the very large number of simulation runs, almost all of the possible main effects

and interactions were significant, although most of them had only small effect sizes.
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Therefore, only the most important findings are summarized here.  The dispro-

portionality factor had the strongest effect on the standard errors, followed by

sample size, and a weak effect of number of indicators (the effects of the average

variance explained by the general factor and the size of the specific effect are not

considered here, because they were only included to represent a broad variety of

empirical constellations).  Figure 13 shows that the main effect of increasing the

sample size from 125 to 1000 on the standard error of the specific effect was even

smaller than the contrast of low and high disproportionality.
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Figure 13. Standard error of the estimates of specific effects as a function of sample size and

disproportionality of general and specific variance components in the indicator variables.  Number of

indicator variables per factor were three.  DSP = Disproportionality.

2.5.2.3 Sensitivity of Model Fit to Omission of Specific Effects

The 32400 simulation runs in which the specific effect was not specified could be

used to examine how sensitive were the measures of overall model fit to the omission

of existing specific effects.  Figure 14 shows the RMSEA index as a function of the

size of the omitted specific effect, and the disproportionality of general and specific

variance in the indicator variables (under the condition of three indicator variables

per factor and a sample size of 500 to mimic the empirical situation in the BASE

sample).  One can see that, under the condition of low disproportionality, only

omitting specific effects that are stronger than about -.40, which was larger than the

empirical effects found in the BASE data, would indicate misfit of RMSEA > .05.

Under the condition of high disproportionality, omitted specific effects stronger than
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-.30 would lead to a RMSEA grater than .05.  These results clearly showed that

overall model fit criteria used with conventional cut-off values were not sensitive

enough to detect small to medium sized specific effects.  This underlines again the

importance of using simultaneous estimation procedures that allow including all

possible specific effects.  Otherwise, an acceptable fit of a model that only specifies a

general effect could lead to the conclusion that there is no need to further examine

specific effects.
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Figure 14. Model fit (RMSEA) as a function of the age correlation of the specific factor and the

disproportionality of the model in conditions with a sample size of 500, three indicators per factor,

and specific factor age correlations not included in the model.  DSP = Disproportionality.

2.5.3 Summary of Monte Carlo Study Results

Results from the Monte Carlo simulations gave evidence that the NF model is

capable of recovering the true general and specific effects—if a simultaneous

estimation procedure is used.  Parameters of specific effects that were not present did

yield estimates within the range of expected random variability around zero.  Results

from the analyses of misspecified models with omitted specific effects showed that

specifying only a general effect and taking overall model fit as a criterion can easily

lead to missing small or even medium sized specific effects.  Furthermore, it has been

demonstrated that higher disproportionality of the composition of general and

specific variance across the indicators of one specific factor leads to remarkably

smaller standard errors of the estimates of the general and specific effects and, as a
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related phenomenon, to fewer improper solutions.  Empirical disproportionality,

therefore, is an important property of the data that the SEM models have to be able to

capture.  As discussed, this is achieved by the NF model and precluded by the

constraints implied in the hierarchical model.  Finally, the simulation results also

indicated that it is highly desirable to have large sample sizes and several indicators

per latent construct.


