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Long as I remember the rain been comin’ down

Clouds of mystery pourin’ confusion on the ground

Good men through the ages tryin’ to find the sun

And I wonder, still I wonder, who’ll stop the rain?

John Fogerty





Abstract

Extreme precipitation events can have serious adverse consequences for the population.
Their severity and possible impacts are mainly determined by their intensity and dura-
tion. Therefore, when planning and operating water management systems or protecting
infrastructure from flooding, it is important to consider the frequency at which partic-
ularly intense or long-lasting heavy rainfall events can be expected. This information
is commonly summarized in intensity-duration-frequency (IDF) curves. The methods
used to estimate IDF curves are based on extreme value statistics, where the challenge is
modeling events of rarely occurring magnitude or those not even observed yet. A further
obstacle is the availability of data, since the time series of precipitation measurements
with a high temporal resolution are usually relatively short and the spatial coverage of
precipitation gauges is sparse. Therefore, the estimation of IDF curves is often associated
with considerable uncertainties. This is problematic, because overestimation leads to major
additional construction costs, while underestimation implies an unreasonable residual risk
of failure and might result in severe consequences.

Therefore, the objective of this work is to develop IDF models that allow for estimation
with reduced uncertainties. We achieve this by more efficient usage of the available data.
Thus, as a first step, we model the annual precipitation intensity maxima over a range
of durations simultaneously within one model. To this end, we use a duration-dependent
Generalized Extreme Value (d-GEV) distribution. We demonstrate that this results in a
significant reduction of uncertainties, especially in the estimation of the shape parameter.
This parameter determines the upper tail of the distribution and thus comprises information
on very rare, severe events.

Within our first study, we extend the d-GEV model by incorporating spatial variations
(in the form of covariates). This provides two advantages: on the one hand, we can combine
information from different stations, which leads to a further reduction of uncertainties. On
the other hand, we are able to spatially interpolate the IDF relationship, which allows
us to obtain estimates at any location within the study area, including locations without
observations. We analyze the performance of the model in a case study in detail. Our
results show that including spatial variations into the model improves the estimation of
rare events and yields reliable estimates at locations with little or no data. Using two
examples of heavy rainfall events in Berlin, we further demonstrate how the spatial d-GEV
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model can be applied to analyze the extremeness of events on different timescales and in
space. However, another result of our first study indicates a disadvantage of the d-GEV
model: it is not flexible enough to describe a wide range of durations, as it does not improve
the estimates for every duration. In our second study, we therefore investigate possible
extensions of the model and discuss for which applications certain enhancements might be
beneficial.
Since the d-GEV distribution is commonly applied to model annual maxima, only a

small fraction of the observations is used to estimate IDF curves. In our third study, we
implement seasonal variations into the model, allowing us to use monthly maxima, instead.
This again results in a significant reduction in uncertainties. Moreover, we can investigate
the influence of seasonal variations on the IDF curves. Our results suggest that especially
at stations with large differences in the seasonality of short and long-lasting extreme events,
the initial d-GEV model does not provide a good approximation. At these stations, the
flexible d-GEV model is clearly able to better describe the IDF relationship. Additionally,
modeling monthly instead of annual maxima allows for more reliable estimation of the shape
parameter, therefore, we are able to perform a more careful analysis of the dependence of
the shape parameter on duration.
The methods presented in this thesis not only serve to reduce uncertainties in the

estimation of IDF curves but also provide a consistent and parameter parsimonious
approach to model variations of extreme rainfall. Future studies can benefit from our
insights to investigate the influence of climate change on the intensity and frequency of
extreme events on different timescales with greater accuracy.
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Zusammenfassung

Extreme Niederschlagsereignisse können schwerwiegende Folgen für die Bevölkerung haben.
Ihre Stärke und möglichen Auswirkungen werden vor allem durch ihre Intensität und Dauer
bestimmt. Bei der Planung und dem Betrieb von wasserwirtschaftlichen Anlagen oder dem
Schutz der Infrastruktur vor Überschwemmungen ist es daher wichtig zu berücksichtigen,
mit welcher Häufigkeit besonders intensive oder lang anhaltende Starkregenereignisse zu
erwarten sind. Diese Informationen werden typischerweise in Intensitäts-Dauer-Frequenz-
Kurven (IDF-Kurven) zusammengefasst. Die zur Schätzung von IDF-Kurven verwendeten
Methoden basieren auf der Extremwertstatistik, wobei die Herausforderung darin besteht,
Ereignisse von sehr seltenem oder bisher nicht beobachtetem Ausmaß zu modellieren. Eine
weitere Schwierigkeit ist die Datenverfügbarkeit, da die Zeitreihen von Niederschlagsmessun-
gen mit einer hohen zeitlichen Auflösung in der Regel relativ kurz sind und die räumliche
Abdeckung von Messstationen eher gering ist. Daher ist die Schätzung von IDF-Kurven
meist mit erheblichen Unsicherheiten behaftet. Dies ist problematisch, da eine Überschät-
zung zu beträchtlichen zusätzlichen Baukosten führt, während eine Unterschätzung ein
unangemessenes Restrisiko des Versagens bedeutet und schwerwiegende Folgen nach sich
ziehen kann.

Das Ziel dieser Arbeit ist es daher, IDF-Modelle zu entwickeln, die eine Schätzung mit ge-
ringeren Unsicherheiten durch eine effizientere Nutzung der verfügbaren Daten ermöglichen.
In einem ersten Schritt modellieren wir die Jahreshöchstwerte der Niederschlagsintensität
über eine Reihe von Dauern gleichzeitig innerhalb eines Modells. Zu diesem Zweck verwen-
den wir eine dauerabhängige verallgemeinerte Extremwertverteilung (d-GEV). Wir zeigen,
dass dies zu einer deutlichen Verringerung der Unsicherheiten führt, insbesondere bei der
Schätzung des Formparameters. Dieser Parameter bestimmt das obere Ende der Verteilung
und enthält damit Informationen über sehr seltene, schwerwiegende Ereignisse.
In unserer ersten Studie erweitern wir das d-GEV-Modell durch die Einbeziehung

räumlicher Variationen (in Form von Kovariaten). Dies bietet zwei Vorteile: Zum einen
können wir Informationen von verschiedenen Stationen kombinieren, was zu einer weiteren
Verringerung der Unsicherheiten führt. Zum anderen sind wir in der Lage, die IDF-Beziehung
räumlich zu interpolieren, was es uns ermöglicht, Schätzungen an jedem beliebigen Ort
innerhalb des Untersuchungsgebiets zu erhalten, einschließlich Orten ohne Beobachtungen.
Wir analysieren die Leistung des Modells in einer Fallstudie im Detail. Unsere Ergebnisse

iii



zeigen, dass die Einbeziehung räumlicher Variationen in das Modell die Schätzung seltener
Ereignisse verbessert und auch an Orten mit wenigen oder keinen Daten zuverlässige
Schätzungen liefert. Anhand zweier Beispiele von Starkregenereignissen in Berlin zeigen wir
außerdem, wie das räumliche d-GEV-Modell zur Analyse der Ausprägung von Ereignissen
auf verschiedenen Zeitskalen und im Raum angewendet werden kann. Ein weiteres Ergebnis
unserer ersten Studie deutet allerdings auch auf einen Nachteil des d-GEV-Modells hin: Es
ist nicht flexibel genug, um einen weiten Dauerbereich zu beschreiben, da es die Schätzungen
nicht für jede Dauer verbessern kann. In unserer zweiten Studie untersuchen wir daher
mögliche Erweiterungen des Modells und erörtern, für welche spezifischen Anwendungen
bestimmte Erweiterungen von Vorteil sein können.

Die d-GEV-Verteilung wird üblicherweise zur Modellierung von Jahresmaxima verwendet,
wodurch nur ein kleiner Teil der beobachteten Starkregenereignisse zur Schätzung der
IDF-Kurven berücksichtigt wird. In unserer dritten Studie implementieren wir saisonale
Variationen in das Modell, so dass stattdessen monatliche Maxima verwendet werden
können. Dies führt erneut zu einer Reduktion der Unsicherheiten. Darüber hinaus können
wir den Einfluss der saisonalen Schwankungen auf die IDF-Kurven untersuchen. Unsere
Ergebnisse deuten darauf hin, dass insbesondere an Stationen mit großen Unterschieden
in der Saisonalität von kurz- und lang andauernden Extremereignissen das ursprüngliche
d-GEV-Modell keine gute Näherung darstellt. An diesen Stationen ist das flexible d-
GEV-Modell eindeutig besser geeignet, um die IDF-Beziehung zu beschreiben. Zudem
ermöglicht die Modellierung von Monats- anstelle von Jahresmaxima eine zuverlässigere
Schätzung des Formparameters, so dass wir eine sorgfältigere Analyse der Abhängigkeit
des Formparameters von der Dauer durchführen können.
Die in dieser Arbeit vorgestellten Methoden dienen nicht nur dazu, die Unsicherheiten

bei der Schätzung von IDF-Kurven zu verringern, sondern bieten auch einen konsistenten
und parametersparsamen Ansatz zur Modellierung von Variationen extremer Nieder-
schlagsintensitäten. Zukünftige Studien, die zum Beispiel das Ziel haben den Einfluss des
Klimawandels auf die Intensität und Häufigkeit von Extremereignissen auf verschiedenen
Zeitskalen mit größerer Genauigkeit zu erforschen, können von den erreichten Reduktionen
der Modellierungsunsicherheiten profitieren.
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Chapter 1
Introduction

Extreme meteorological events can potentially cause severe harm to the population. The
range of possible impacts from extreme precipitation includes flash floods and land slides,
dam failures and river flooding, as well as water pollution and agricultural damage (Bronstert
et al., 2018; Dotterweich, 2008; Hattermann et al., 2013; Knapp et al., 2008; Wake, 2013).
Therefore, heavy rainfall events are also likely to inflict considerable economic losses (e.g.,
Kreibich et al., 2014). The German Insurance Association recently reported that 1.3 million
damage incidents to residential buildings nationwide were caused by heavy rainfall between
2002 and 2017, resulting in total losses of around 6.7 billion euros (Schweda, 2019). A
recent example is the heavy rain event of 12-19 July 2021, which affected within Germany
not only the states of North Rhine-Westphalia and Rhineland-Palatinate, but also parts
of Bavaria and Saxony. The destructive event resulted in 180 fatalities. Furthermore,
reported property damage amounts to around seven billion euros and damage to railroads
and road networks is estimated to be at least two billion euros. After the event, there
was a month-long interruption in the supply of drinking water, electricity and gas in some
affected areas (Fial, 2021).

There are two factors that determine the amount of precipitation: intensity and duration,
as the heaviest precipitation occurs where the rainfall rate is the highest for the longest time.
Based on this simple concept, Doswell et al. (1996) derive the conditions that favor heavy
precipitation. Strong precipitation intensity is achieved by a high water vapor content
of the air combined with a rapid rate of ascent and high rainfall efficiency. All three of
these factors are amplified in warm convective precipitation processes, thus summer (or
warm season) convection tends to be associated with the greatest precipitation intensities.
Hence, these events are often the ones causing flash floods. The duration of precipitation
is influenced by the size and geometry of a precipitation field, as well as by its velocity.
The aforementioned extreme event of July 2021 was caused by a large precipitation field
with high precipitation intensities that moved comparatively slowly (Junghänel et al., 2021;
Schneider and Gebauer, 2021), ultimately leading to both flash floods and flooding of
several rivers. A further example illustrating the importance of rainfall duration is that
of the southern UK in the winter of 2000/2001, where high rainfall totals over a period
of several months, not necessarily caused by high rainfall intensities, led to groundwater
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Figure 1.1: Intensity-duration-frequency curves (a) and depth-duration-frequency curves (b) for the
station Berlin-Tempelhof. These are two different approaches to representing the same information.

flooding in many areas (Marsh and Dale, 2002).
Thus, information about the intensity and also the duration of a precipitation event

is needed to assess its severity and potential impacts. Further relevant information, for
example for the planning of buildings and infrastructure or the estimation of insurance
risk, is the frequency at which certain events occur. All three factors are linked by the
intensity-duration-frequency (IDF) relationship. It is often presented graphically in the
form of IDF curves by plotting precipitation intensity versus duration for a family of curves
representing specific frequencies or annual exceedance probabilities. Possible applications
of IDF curves include the design of e.g. urban drainage networks, pumping stations,
wastewater treatment plants and retention basins to estimate the risk of failure. The aim is
of course to avoid a failure due to the usually severe consequences, however, overestimation
of the risk is often associated with considerable additional construction costs.
To provide an example, Fig. 1.1 (a) displays the estimated IDF curves for the station

Berlin Tempelhof. The representation is usually either in single or double logarithmic
form. Another widely used representation are depth-duration-frequency (DDF) curves, as
shown Fig. 1.1 (b). Instead of the precipitation intensity, the precipitation amount in terms
of the depth per area is plotted. Since the precipitation intensity equals the amount of
precipitation per time interval, it is easy to convert from the one quantity to the other and
the included information is equivalent for both sets of curves. Therefore, throughout this
thesis, we limit ourselves to the intensity representation. The methodology of IDF curves
can also be applied to streamflow, which is usually labeled with the symbol Q, resulting in
flood-duration-frequency (QDF) curves (Javelle et al., 2002). The development of methods
for estimating IDF curves is an interdisciplinary field, involving different perspectives from
meteorologists and hydrologists, as well as mathematicians specializing in extreme value
statistics and engineers. For this reason, the literature offers many different approaches
to IDF curve modeling (e.g., Ariff et al., 2012; Hosking et al., 1985; Mélèse et al., 2018;
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Roksvåg et al., 2021; Stephenson et al., 2016; Van de Vyver, 2018). Consequently, different
countries often have different regulations for the calculation and practical application of
IDF curves (Lutz et al., 2020; Svensson and Jones, 2010).

A major challenge for estimating IDF curves is data availability, since estimations based
on limited data are associated with high uncertainties. This is a general issue when
modeling extreme events, as these events are by definition rare. With respect to extreme
precipitation, however, the available data are further limited by the scarcity of the spatial
coverage especially for observations with high temporal resolution (Courty et al., 2019).
There are large global differences, but even in Germany, with one of the superior networks
of gauge stations, data availability for modeling IDF curves poses difficulties. Therefore, a
focus of the ongoing research is the efficient use of available data to reduce uncertainties
(e.g., Koutsoyiannis et al., 1998; Lutz et al., 2020; Van de Vyver and Demarée, 2010), as
well as the generation of IDF curves at locations with little or no observational data (e.g.,
Gaur et al., 2020; Mailhot et al., 2013; Vandeskog et al., 2021).

Another key concern with respect to modeling extreme precipitation events is the ever-
growing realization that we live in a changing climate in which the frequency of extreme
precipitation events is expected to increase (e.g., Fischer et al., 2014; Meredith et al.,
2021; Trenberth et al., 2003). As previously addressed, the severity of precipitation events
depends, among other things, on the parameters of water vapor content of the air and
the movement of precipitation fields. Due to the increasing global mean temperature, the
water vapor content in the air increases as a warmer atmosphere can hold more moisture.
In contrast, the reduction of the meridional temperature gradient leads to a weakening
of the jet stream which might cause an increase in the frequency of persistent weather
situations (Davini and D’Andrea, 2020; Detring et al., 2021) where precipitation fields
tend to propagate slowly. These two effects indicate that the severity and frequency of
extreme precipitation events is likely to increase in the future. Many studies already suggest
observed changes in the characteristics of extreme precipitation events, mainly based on
daily precipitation records (Barbero et al., 2017; Scherrer et al., 2016; Westra et al., 2013;
Zeder and Fischer, 2020). These possible changes need to be considered when assessing
the risk of failure in infrastructure design. Furthermore, they might also generate the
requirement to adapt existing structures to a future climate. Therefore, another crucial
research objective is to incorporate non-stationarity and thus develop models that allow
predicting the relationship between precipitation intensity, duration and frequency for the
near future (Katz et al., 2002; Rootzén and Katz, 2013). Due to the high spatial and
temporal variability of precipitation, however, the prediction of future changes is associated
with large uncertainties (Moberg and Jones, 2005). Therefore, to address this objective, we
must first improve our understanding of factors influencing the variations in precipitation
intensity on different timescales.

The studies included in this thesis present consistent models for precipitation intensity,
which allow reducing the number of parameters and thus decreasing the uncertainties.
On this basis, it is possible to investigate the influence of additional parameters on the
intensity and frequency of extreme precipitation events more accurately and in greater
detail. Consequently, although throughout this thesis we assume a stationary climate,
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1 Introduction

the studies included are important steps towards predicting changes in the risks posed by
extreme precipitation events.

Objectives and Research Questions

The three studies included in this thesis listed on page v address the analysis of variations of
extreme precipitation on different timescales. A main objective is to improve the estimation
of IDF curves by more efficient use of the available data. For this purpose, we combine
different data – originating from different durations, stations or months – within one model.
We use a duration-dependent extreme value model in which we include spatial or seasonal
variations. Thereby, we also attempt to better understand the variations in precipitation
intensity and the underlying processes.

Study I aims to include precipitation observations of different durations and from different
stations simultaneously in the modeling of IDF curves. Thereby, we want to combine
knowledge from records of different lengths. Our research questions are:

• To what extent can we improve the estimation of IDF curves by combining observa-
tions of different stations and durations?

• Does this method provide reliable estimates of IDF curves at locations without
observations?

Study II focuses on the simultaneous use of data of different durations at a single station.
We aim to improve the model which describes the dependence of precipitation intensity on
duration. For this, we consider different levels of complexity to describe this relationship
and investigate:

• What modifications to the model lead to an improved performance?

Furthermore, we evaluate:

• Are we able to provide meaningful uncertainties for the estimated IDF curves?

Study III examines the seasonal variations of the IDF relationship. So far, methods for
estimating IDF curves have mostly neglected the seasonality of extreme events, as they
are not considered relevant for planning flood protection infrastructure which exists all
year round. However, there are two advantages of considering seasonality: First, it allows
the use of a larger amount of data on extreme events. On the other hand, since extreme
events on different timescales potentially occur in different seasons, it allows us to examine
in more detail the underlying processes that influence the IDF relationship. Our research
questions are:

• How does the IDF relationship evolve throughout the year?

• What differences occur among stations in this regard?
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• What are the consequences for the IDF curves that result from the more complex
seasonal model?

• Since using monthly maxima leads to a reduction of the uncertainties, what else can
we learn about the IDF relationship via this new approach?

Outline of the Thesis

In Part I of the thesis we provide the scientific background and context. Since this thesis
primarily addresses the development of methods, we focus on the introduction of statistical
methods for the estimation of IDF curves. In addition to the methods used in the studies,
we aim to provide an overview of the possible alternatives. We first outline the methods
used for statistical modeling of extreme precipitation in Chpt. 2. They do not enable
simultaneous modeling of data of different durations. The approach that we apply for this
purpose will be introduced in Chpt. 3. We aim to illustrate the advantages of a consistent
approach by comparing this method to the one currently used in Germany to provide
the official design values. We take a brief detour in Sec. 3.4 to touch upon the issue of
statistical modeling of dependent extreme values focusing on its relevance for IDF curves.
Part II contains the three studies. We briefly summarize the results of the studies with
respect to the formulated research questions in Part III. In addition, we provide further
material regarding the possible application of the developed methods as well as further
analysis to put the results of the studies into context. The thesis ends with suggestions for
future studies in the context of the presented research in Chpt. 8.2, where we outline two
promising ideas in detail and provide some first insights.
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Scientific Background
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Chapter 2
Statistical Models for Extreme Precipitation

This chapter introduces the basic concepts and methods for the statistical modeling
of extreme values used in the included studies and provides an overview of alternative
approaches.
The process of model building can generally be divided into the steps presented in

Fig. 2.1: Even before the model building starts, the first step is the identification of the
question to be addressed. The question defines what kind of observations need to be
collected and which model approach might be suitable. The steps of model selection
and verification are used to review the model. Model selection focuses on the choice of
meaningful predictors, while verification tests the suitability of the model in answering the
research question. Once a suitable model has been found, the model can finally be applied
to make predictions and provide answers to the question posed initially. However, the
model should not be considered as final, since new observations are constantly acquired,
which make it necessary to re-evaluate the individual steps. In the following, we will discuss

Figure 2.1: Scheme of necessary steps in the process of building a statistical model. Adapted from
Rust (2021).
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2 Statistical Models for Extreme Precipitation

the individual steps in detail, focusing on the statistical modeling of extreme precipitation.

2.1 Relevant Questions Concerning Extreme Precipitation
The principal question to be answered, especially from an engineering point of view, could
be formulated as:

(1) What amount of rainfall should we expect at a given location in a certain period of
time?

From a meteorological perspective, we are more concerned with questions like:

(2) Which drivers influence the frequency and intensity of heavy rainfall?

(3) What changes can be expected in the future?

The studies included in this thesis present methods that allow us to answer question (1)
with higher accuracy. They are, however, only a step towards addressing questions (2)
and (3). Moreover, the methods applied here allow us to consider only a small aspect
of assessing the hazards posed by extreme precipitation. Further relevant questions that
require methods beyond those addressed in the following are for example:

(4) What amount of rainfall should we expect for an entire catchment area in a certain
period of time?

(5) What are the impacts of a heavy precipitation event of a given magnitude on
infrastructure or society?

2.2 Precipitation Observations
Precipitation amount or intensity can be measured in situ, as well as determined by remote
sensing. Most of the studies on extreme value modeling of precipitation, as well as the
studies included here, are based on station data. Precipitation amount is reported in
volume per area with units of l/m2 or mm. However, station gauges do not actually
measure precipitation amount per 1m2 but have a smaller collecting area of typically
200 cm2. The gauges are based on either volume or weight recording. The volume can be
recorded manually, or by counting drops of a certain size, or via a tipping bucket (Löffler,
2012). The German Meteorological Service (DWD) currently operates 2238 precipitation
measuring stations in Germany.1 Figure 2.2 (a) presents their positions. At 1201 of these
stations, the precipitation volume is collected with a Hellmann gauge (see Löffler, 2012) and
measured manually once a day. At the remaining 1037 stations, the amount of precipitation
is recorded every minute with a digital measuring device.2 The digital gauges currently

1According to https://opendata.dwd.de/climate_environment/CDC/help/RR_Tageswerte_Beschreib
ung_Stationen.txt, as of 16 December 2021.

2According to https://opendata.dwd.de/climate_environment/CDC/help/zehn_min_rr_Beschreibun
g_Stationen.txt, as of 16 December 2021.
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Figure 2.2: Precipitation measuring stations from the DWD: (a) locations of currently operated
stations within Germany and (b) distributions of the length of all available time series with a
measuring period of 1 day (red) and 1min (blue). The inset shows a zoomed view of distribution of
the 1min data.

in use measure by determining the change in weight of the collection container after each
measurement interval. The stations with daily and one-minute measurement frequencies
differ in the length of their available time series. Figure 2.2 (b) shows the length of all
available time series3 as a violin plot, including stations that are no longer operated. The
median of the daily stations is about 50 years, even though 379 stations with a time series
of 100 years or longer exist. The station with the longest time series is Hohenpeißenberg in
Bavaria, which starts in 1781. In contrast, the median of the minute time series is 17 years
with time series of 30 years or slightly more available at 53 stations.

The spatial and temporal coverage of the official precipitation stations in Germany
is comparable to that in other European countries4 or in the U.S.5. In less accessible
and sparsely populated areas, the spatial coverage is lower (e.g., Dyrrdal et al., 2015;
Mekis et al., 2018). Furthermore, data availability is scarce in many low- to middle-income
countries, especially in the global south and the tropics (e.g., Liew et al., 2014; Van de Vyver
and Demarée, 2010). In contrast to gauging stations, remote sensing instruments such
as weather radars or satellites provide precipitation estimates with high spatio-temporal
resolution. Due to their limited records and the additional uncertainties associated with

3Missing values are not taken into account when calculating the time series length.
4See for example Switzerland https://www.meteoswiss.admin.ch/home/measurement-and-forecasting-

systems/land-based-stations/automatisches-messnetz.html, Sweden https://www.smhi
.se/data/meteorologi/ladda-ner-meteorologiska-observationer or Great Britain https:
//www.metoffice.gov.uk/research/climate/maps-and-data/uk-synoptic-and-climate-stations
(last access: 21 December 2021).

5See https://www.ncei.noaa.gov/maps/hourly/ (last access: 21 December 2021) for an overview of the
spatial coverage of precipitation gauges in the U.S. and also worldwide.
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2 Statistical Models for Extreme Precipitation

remote sensing, the possibility of using such precipitation data sets to develop IDF curves
has only recently emerged as a research topic (Goudenhoofdt et al., 2017; Marra et al.,
2017; Ombadi et al., 2018). Another possible data source could be reanalysis data (e.g.
Courty et al., 2019), however extreme precipitation events are typically underestimated in
these data sets (Hu and Franzke, 2020).

2.3 Modeling Approaches for Extremes
After formulating a problem and collecting observations, the next step is to find a model
which describes the data and is suitable for addressing the question. In some cases such
a model can be derived based on basic process properties. For example, for the number
of radioactive decay processes over time, the Poisson distribution is a valid model. It
describes the probability that a certain number of events take place under the assumption
that they occur at a constant mean rate and independently of each other (Coles, 2001,
Chpt. 2). However, such a derivation is often not possible, so that more complex processes
mostly require the empirical choice of models which describe the available data sufficiently
well. Yet, when considering extreme events, a further possibility arises: the use of limit
laws to approximate a model.

A widely used limit law in statistics is the Central Limit Theorem. It concerns the mean
value X̄n of n independent and identically distributed random variables Xi

X̄n = X1 + · · ·+Xn

n
.

When n→∞, the distribution of the mean value X̄n converges to a Normal distribution.
Therefore, for large n we can approximate the distribution of X̄n with a Normal distribution,
without having to know the distribution of the random variables Xi (Coles, 2001, Chpt.
2). The asymptotic theory of sample extremes can be considered as an analogue of the
Central Limit Theorem for the distribution of the maximum value

Mn = max{X1, ..., Xn}.

According to the Extreme Value Theorem or Fisher-Tippett-Gnedenko Theorem, if the
distribution of normalized maxima converges, then it converges to the Generalized Extreme
Value (GEV) distribution

G(z) =

 exp
{
−
[
1 + ξ

(
z−µ
σ

)]−1/ξ
}

, for ξ 6= 0

exp
{
− exp

[
−
(
z−µ
σ

)]}
, for ξ = 0

, (2.1)

defined on {z : 1 + ξ(z − µ) > 0} and with location parameter −∞ < µ < ∞, scale
parameter σ > 0 and shape parameter −∞ < ξ < ∞ (Coles, 2001, Chpt. 3). The
parameters µ and σ respectively control the position and the spread of the distribution, as
indicated by the probability densities in Fig. 2.3 (a-b). The parameter ξ determines the
behavior of the right tail. The three cases for ξ are illustrated in Fig. 2.3 (c). In case ξ = 0
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Figure 2.3: Probability density of the GEV distribution with different choices for (a) location µ,
(b) scale σ and (c) shape ξ parameters.

we obtain the Gumbel distribution with exponentially decreasing probability density. For
ξ > 0 the Fréchet distribution with polynomially decreasing tail results. In both cases, the
distribution exhibits no upper bound. In contrast, in the case ξ < 0 we obtain the Weibull
distribution, which possesses a finite upper endpoint.

Since the estimation of the shape parameter is associated with considerable uncertainties,
especially for small samples, it is not uncommon to use the special case of the Gumbel
distribution with a fixed parameter ξ = 0 when modeling extreme precipitation or runoff
(Grieser et al., 2007; Svensson and Jones, 2010). However, this approach causes two
complications: First, if the choice of ξ = 0 is inappropriate to describe the available data
sufficiently well, this will lead to bias in the prediction. Second, in the subsequent inferences
it is assumed that this choice for ξ is correct and the uncertainties arising from it are not
taken into account. This will be discussed in more detail in Sec. 3.1.1.

Block Maxima Approach The Extreme Value Theorem holds even if the random variables
are not independent, simply resulting in a slower convergence of the distribution. Thus, the
following approach to model extreme values emerges: the data are separated into blocks of n
observations. For large enough n, the distribution of the block maxima can be approximated
with a GEV distribution. The choice of block size is a typical trade-off between bias and
variance (Coles, 2001, Chpt. 3). If the blocks are too small, the GEV distribution is likely
not a good approximation of the distribution and the values estimated on the basis of this
model become biased. With increasing block size, the estimates are eventually based on
very few data points and thus have a high variance. In the geosciences, however, the choice
of block size is constrained by another consideration: Most of the variables of interest
exhibit seasonality. Thus, with a block size of less than one year, the maxima of the
different blocks may not have a common distribution making modeling more complicated.
Therefore, in geosciences, it is common to adopt a block size of one year. Although this
work is based on the use of the GEV distribution to model extreme precipitation events, in
the following, we will briefly introduce two complementary approaches.

Alternative Distributions for Block Maxima Hosking and Wallis (1997, Chpt. 5) propose
to test other distributions additionally to the GEV distribution, arguing that the conditions
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Figure 2.4: Probability density of the Generalized Extreme Value (GEV), Generalized Logistic
(GL), Generalized Normal (GN) and Pearson type III (P3) distributions, for different shape
parameters ξ, respectively. The parameters µ, σ and ξ are set to provide a good visualization of
similarities for the case ξ > 0 (dashed).

necessary to approximate the distribution of annual maxima with a GEV distribution
are not sufficiently fulfilled for variables such as runoff or precipitation. No asymptotic
justification for these other distributions exist, but they have been identified on an empirical
basis as being well suited for modeling the distribution of annual precipitation or runoff
maxima. The three-parameter distributions suggested by Hosking and Wallis (1997) as
possible candidates are the Generalizes Logistic (GL), Generalized Normal (GN) and
Pearson type III (P3) distributions, as defined in Table A.1 (Appendix). From their
respective probability densities, presented in Fig. 2.4, it becomes evident that all of these
distributions can be both left-skewed and right-skewed, similar to the GEV distribution,
depending on the choice of the shape parameter. In contrast, for the special case ξ = 0 all
three distributions yield a symmetric distribution. The National Oceanic and Atmospheric
Administration (NOAA) considers the distributions provided in Table A.1, among others,
to produce the Precipitation-Frequency Atlas of the United States (Perica et al., 2018). In
their approach, the distribution that best describes the observed data is selected based on
various tests.

Peaks over Threshold Approach Modeling annual maxima results in only one extreme
event per year being considered in the analysis, although several extreme events might
occur within one year. The available data on extreme events can therefore be used more
effectively if, instead of block maxima, the values above a certain threshold u are regarded
as extreme. In case of convergence, the limiting distribution of threshold exceedances for
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u→∞ is the Generalized Pareto distribution (GPD)

H(x− u) =

 1−
[
1 + ξ(x−u)

σ

]−1/ξ
, for ξ 6= 0

1− exp
(
−x−u

σ

)
, for ξ = 0

, (2.2)

defined on {x : x > u and ξ(x−u)/σ > 0} with scale parameter σ > 0 and shape parameter
−∞ < ξ < ∞ (Coles, 2001, Chpt. 4). Analogous to the GEV distribution, for ξ ≥ 0
the GPD has no upper limit, while for ξ < 0 an upper bound exists. The special case
ξ = 0 leads to an exponential distribution. As with the block maxima approach, the choice
of threshold represents a trade-off between bias and variance. The aim is to select the
threshold as low as possible, so that the GPD still represents a good approximation. There
are different methods for threshold selection: the mean residual life plot, the stability of
the estimated parameters (Coles, 2001, Chpt. 4) or the definition of an average number of
exceedances per year (Mailhot et al., 2013), to name just a few. The circumstance that
the choice of the threshold is to some degree subjective should not be considered as a
disadvantage of the peak over threshold (POT) approach, as the problem of choosing a
block size generally exists for the block maxima approach as well, except that the choice is
more restricted in the case of seasonality of the signal. Conversely, however, if seasonality
is present using the POT approach will still result in threshold exceedances originating
only from certain seasons, unless a seasonally varying threshold is adopted. Given its
higher efficiency, the POT approach is a frequently used alternative to the block maxima
approach when modeling extreme precipitation.

Nevertheless, since in this thesis we aim to study the relationship of precipitation intensity
and duration, the use of the POT approach is not necessarily suitable in our case. A
consistent POT model for the IDF relationship would require a different threshold for
each duration or rather a model for the threshold depending on duration. We will later
demonstrate how the inclusion of spatial or seasonal variations into a GEV model similarly
provides the opportunity to consider more data than just the annual maxima at a certain
station. Therefore, here we prefer the less complex block maxima approach to the POT
approach.

2.3.1 Parameter Estimation
With the exception of the GPD, the extreme value distributions presented above each
have the three parameters location µ, scale σ and shape ξ. Even if we assume that a
particular distribution describes the data well, the exact values for the parameters µ, σ
and ξ are unknown and need to be estimated on the basis of the observed data. An
estimation method should ideally yield unbiased, consistent, and efficient estimates. For
the presented distributions, numerous estimation methods are offered in the literature.
The most common methods used in hydrological applications are probability weighted
moments (PWM) (Hosking et al., 1985), L-moments (Hosking and Wallis, 1997), maximum
likelihood estimation (MLE) (Coles, 2001) or Bayesian inference (Stephenson, 2016). In the
following, we will briefly discuss these four methods with focus on the GEV distribution.
A comparison of estimation methods, including also methods which are rather unknown to
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the engineering community, based on their application to extreme wind speed modeling is
provided by Soukissian and Tsalis (2015).

PWM and L-moments

The PWM and L-moments methods are both based on the method of moments, which
can be considered as the simplest method of parameter estimation for many statistical
applications. Thereby, the distribution moments are mathematically equated with the
sample moments (Wilks, 2011, Chpt. 4). The first three moments of the cumulative
distribution function F (Z) of a random variable Z are: expected value E(Z) = m1,
variance Var(Z) = m2 and skewness g = m3/m

3/2
2 , defined using

m1 = E(Z) and mr = E[Z − E(Z)]r, r > 1, r ∈ N. (2.3)

For any specific distribution Eq. 2.3 results in relationships between the moments and the
parameters of the distribution. The most familiar example is the Normal distribution, where
the moments are expressed by the distribution parameters as: E(Z) = µ, Var(Z) = σ2 and
g = 0. For the GEV distribution, the moments as functions of the distribution parameters
are provided in Eqs. (A.5-A.9).
The moments can be estimated from the observations zi using, for example6

m̂1 = z̄ = n−1
n∑
i=1

zi and m̂r = n−1
n∑
i=1

(zi − z̄)r. (2.4)

Equating Eq. (2.3) with Eq. (2.4) results in a system of equations that can be solved for
the parameters of the distribution yielding the moment estimators. In the simple case of
the Normal distribution, the well known estimators µ̂ = z̄ and σ̂ =

{
n−1∑n

i=1(zi − z̄)2} 1
2

result. The moment estimators for the Gumbel parameters are provided in Eqs. (A.10-
A.10). However, for the moments estimators of the GEV parameters, there is no analytical
form. They can only be obtained by equating Eqs. (A.5-A.7) with Eq. (2.4) and solving
numerically for µ, σ and ξ.
Additionally, these estimators provide unreliable results for distributions with large

skewness like the GEV distribution and other previously presented distributions. Therefore,
the PWM and L-moments methods instead consider quantities that place a stronger weight
on the tail information (Hosking and Wallis, 1997, Chpt. 2). The probability weighted
moments are defined as

βr = E{Z · [F (Z)]r}, r ∈ N. (2.5)

An estimator for βr based on the observations zi is naturally

β̂r = n−1
n∑
i=1

zi · [F̂ (zi)]r, (2.6)

6The presented moment estimators m̂r for r > 1 are not unbiased. For other possible estimators see for
example Hosking and Wallis (1997, Chpt. 2).
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where the empirical distribution F̂ (zi) results from sorting the observations z1 ≤ z2 ≤ ... ≤
zn with7

F̂ (zi) = i

n+ 1 . (2.7)

Similar to the method of moments, expressing Eq. (2.5) for a specific distribution yield
relationships between βr and the parameters of the distribution. For an example, the
analytical expressions for βr for the GEV distribution are is given in Eqs. (A.12-A.13).
Again, equating Eq. (2.5) and (2.6) yields a system of equations that can be solved either
analytically or numerically for the distribution parameters to obtain their PWM estimators.

The L-moments introduced by Hosking (1990) are linear combinations of βr, providing
an easier relation of the L-moments to the parameters of the distribution. However, in
terms of parameter estimation, there is no difference between PWM and L-moments, since
they yield identical results (Rasmussen, 2001).

MLE

The maximum likelihood approach to parameter estimation is based on a reinterpretation
of the joint probability density fz1,...,zn(z1, ..., zn) of the observations zi. Instead of being
considered as the probability density of the observations for given parameter vector Θ, the
likelihood is a function of the parameters for a fixed set of observations

L(Θ|z1, ..., zn) = fz1,...,zn(z1, ..., zn; Θ). (2.8)

Hence, L is a measure of how strongly the observations support certain parameters values
(Coles, 2001, Chpt. 2). The parameter values for which the likelihood is maximized serve
as an estimate for the parameter vector

Θ̂ = arg max
Θ

L(Θ|z1, ..., zn). (2.9)

An analytical solution to this problem is rarely available, therefore, most of the time the
maximization problem has to be solved by numerical nonlinear optimization methods.
Instead of the likelihood, it is convenient to optimize the logarithmic form ln[L(Θ|z1, ..., zn)],
the so-called log-likelihood l(Θ|z1, ..., zn). Since the logarithm is monotonous, L and l
are maximized by the same parameter values. The general form of the likelihood and
log-likelihood results in

L(Θ|z1, ..., zn) =
n∏
i=1

f(zi; Θ), (2.10)

l(Θ|z1, ..., zn) =
n∑
i=1

ln [f(zi; Θ)] (2.11)

7Numerous different estimators for the empirical distribution F̂ (zi), also known as empirical cumulative
probability or plotting position, have been proposed in the literature (Guo, 1990).
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under the assumption that the observations are independent and equally distributed. Thus,
the log-likelihood of independent, GEV distributed realizations is

l(µ, σ, ξ|z1, ..., zn) =− n ln(σ)−
(

1 + 1
ξ

) n∑
i=1

ln
[
1 + ξ

(
zi − µ
σ

)]

−
n∑
i=1

ln
[
1 + ξ

(
zi − µ
σ

)]− 1
ξ

, (2.12)

l(µ, σ|z1, ..., zn) =− n ln(σ)−
n∑
i=1

(
zi − µ
σ

)
−

n∑
i=1

exp
[
−
(
zi − µ
σ

)]
(2.13)

for ξ 6= 0 and ξ = 0, respectively. Special considerations arising for example from the
restrictions on the parameters are discussed in Coles (2001, Chpt. 3). We address the
violation of the assumption of independent observations in Sec. 3.4.

Both the PWM and the MLE are consistent estimators and asymptotically multivariate
Normal distributed. However, the PWM estimator is superior to the MLE for small
samples regarding bias and mean-square error (Hosking et al., 1985). The properties for
small sample sizes are especially important in extreme value statistics, where it is common
that only few observations are available. Coles and Dixon (1999) argue that the superior
performance of the PWM is due to the restriction on the parameter ξ, which follows
from Eq. (A.12). They demonstrate that the small sample properties can be improved by
penalizing the likelihood for undesirable values of ξ > 1.

The major advantage of the MLE compared to other methods for parameter estimation is
its flexibility. Eq. 2.10 can be extended to model non-stationarity or influences of covariates,
which are common for environmental processes (Coles, 2001, Chpt. 6). In general, an
extension of the likelihood is possible if the distribution parameters Θi can be put into the
following form

Θj(X) = h−1
j (XTβj), (2.14)

with a specified link function hj(·), the parameter vector βj and the vector X containing
certain predictors. In the case of the GEV distribution we could imagine the example

Θ(X) =

 µ(X)
σ(X)
ξ(X)

 =

 β0 + β1X1 + β2X2
β3
β4

 , (2.15)

where only the location parameter varies along the predictor variables X1 and X2. Based
on the observations zi and the corresponding vector of observed values for the predictor
variables Xi we can obtain an estimate of the parameter vector β̂ simply by extending the
likelihood to

L(β|z1, ..., zn) =
n∏
i=1

g [zi;µ(Xi), σ(Xi), ξ(Xi)] , (2.16)

where g denotes the GEV density function. The extension basically implies that for every
observation zi there is now an individual set of parameters µi, σi and ξi. Therefore the
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general form of the likelihood for any distribution with the probability density f results as

L(β|z1, ..., zn) =
n∏
i=1

f (zi; Θi) , (2.17)

where the parameter vector Θ(X;β) is a function of the predictor vector X and the
parameter vector β.
This property of the likelihood is essential for the studies included in this thesis, as it

allows us to implement spatial and seasonal variations as well as the dependence of the
GEV parameters on duration into the model.

Bayesian inference

Unlike the two previous approaches, the goal of Bayesian inference is not to estimate a
specific value for each parameter. Rather, this method treats the elements of Θ as random
variables with a specific distribution

Θj ∼ Fj(λj), (2.18)

where λi is a vector of hyper parameters. Bayesian inference concerning Θ is expressed
in terms of the conditional probability density for Θ given the observations Z, which is
defined by Bayes’ theorem as

f(Θ|Z) = f(Z|Θ) · f(Θ)
f(Z) . (2.19)

In this context, f(Θ|Z) is called the posterior density, f(Z|Θ) is the likelihood, and f(Θ)
is the prior density of Θ (Stephenson, 2016). This prior density contains the beliefs we
have about Θ before we have seen the observations. For example, we may consider the
domain of the parameter values or results from previous studies.

The divisor is called marginal likelihood, where f(Z) =
∫
f(Z|Θ)f(Θ)dΘ. This integral

cannot be solved in most cases, especially in the field of extreme value statistics. However,
since it does not depend on Θ, it is a constant that only affects the scaling of the posterior
density, but not its overall form. The most commonly used method to obtain the posterior
density is Markov chain Monte Carlo (MCMC) simulation (Dyrrdal et al., 2015; Lutz et al.,
2020; Stephenson, 2016). It avoids the calculation of the term f(Z) by instead generating a
sample of parameter values from a converged Markov chain with the stationary distribution
f(Θ|Z). This way, a large sample of parameter values can be obtained from which f(Θ|Z)
can be estimated. Using this method we do not estimate a single set of parameter values,
but instead a large sample of possible values for Θ, thus, we do not obtain a single extreme
value distribution, but likewise a sample of possible distributions.

The Bayesian inference provides the major advantage that the uncertainties about
the parameters are directly included in the prediction, where a predictive distribution is
obtained instead of specific values. A drawback is that the MCMC method is extremely
computationally demanding. In recent studies, less computationally extensive methods to
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estimate f(Θ|Z) such as ABC8 (Erhardt and Sisson, 2016) or INLA9 (Vandeskog et al.,
2021) are also being applied for extreme value modeling.

The fact that an assumption must be made about the prior distribution of the parameters
can be interpreted as both an advantage or disadvantage. Since extreme value modeling is
often based on small data sets, the choice of prior can have a strong impact on the result.
On the other hand, it might be considered as an opportunity to incorporate additional
information external to the data into the model (Stephenson, 2016).

In the schematic representation in Fig. 2.1, the next steps in the model building process
are model selection and verification. These steps focus on the model performance and
thus the comparison of the predictions with the actual observations. Therefore, here it is
necessary to first discuss the prediction in more detail.

2.3.2 Prediction
Our motivation for modeling the statistics of extreme events is to be able to estimate
probabilities of rare and potentially damaging events, more specifically large amounts of
precipitation that can lead to flooding. Conversely, we want to estimate the amount or
intensity of precipitation that can be expected to occur with a specific probability within
a certain period of time. Using the block maxima approach with the GEV distribution,
we obtain this information by inverting Eq. 2.1. Using G(q) = p, we derive the quantile
function G−1(p) = qp as

qp =
{
µ− σ

ξ {1− [− ln(p)]−ξ} , for ξ 6= 0
µ− σ ln [− ln(p)] , for ξ = 0

, (2.20)

where qp is the value that will not be exceeded with probability p within a block, or
equivalently, that will be exceeded with probability 1− p (Coles, 2001, Chpt. 3). Thus, for
a block size of 1 year, p is the annual non-exceedance probability. It is common to refer
to return periods instead of annual probabilities, since statistically the value qp can be
expected to be exceeded on average once within the period T = 1/(1− p) . The quantile
qp might be called return level associated with a certain return period T . To clarify: An
annual non-exceedance probability of 0.99 is equivalent to an annual exceedance probability
of 0.01 or to a return period of 100 years. Thus, the 0.99 quantile is the same as the
100-year return level. However, the use of return periods is problematic for two reasons:
First, it can mislead users into believing that such an event is expected to occur exactly
once within the return period. This can lead to a false sense of security right after a flood
or to a “flood is due” thinking when no flood has occurred (Grounds et al., 2018). Second,
using return periods is only applicable in a stationary climate and becomes meaningless
when the annual exceedance probability changes over time.

Plotting the quantile qp (or return level) as a function of the non-exceedance probability p
or the corresponding return period T according to Eq. (2.20), yields a return level plot.

8Approximate Bayesian Computation
9Integrated Nested Laplace Approximation
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Figure 2.5: Return level plots of the GEV distribution for different cases of the shape parameter ξ.

If the p-axis is rescaled as p′ = − ln[− ln(p)], or similarly T ′ = − ln[− ln(1 − 1/T )] , the
curve provides a simple indication of the sign of the shape parameter ξ: a concave curve is
obtained for ξ > 0, a convex curve with asymptotic upper limit results from ξ < 0, and
in the special case ξ = 0 a linear increase with slope σ and intercept µ occurs. Fig. 2.5
provides a schematic representation of these three cases. In addition to the presentation of
the results, return level plots can be used for the verification of the model.

2.3.3 Uncertainties
Since results of statistical analyses are inherently uncertain, these results are only meaningful
if they are communicated along the magnitude of their uncertainty. This is particularly
relevant in extreme value statistics, where small changes of the model can have large effects
on the results when extrapolating. This is especially the case for uncertainties in the shape
parameter estimation, as indicated by Fig. 2.5.
In the case of Bayesian inference, a distribution is obtained for both parameter and

quantile estimation, leading to a straightforward derivation of uncertainties. When using one
of other presented methods for parameter estimation, uncertainty of estimated parameter
values or resulting quantile values θ̂ can be expressed in terms of confidence intervals (Coles,
2001, Chpt. 2). A confidence interval is defined by the limits θ̂l and θ̂u, so that

Pr(θ̂l < θ < θ̂u) = γ, (2.21)

where γ corresponds to the coverage probability. The choice of γ is arbitrary, with large
values yielding wider intervals. The values 0.95, 0.99 or 0.999 are commonly adopted. The
definition implies only that for a large number of repetitions of the process that produced
the data, 100 · γ% of the generated confidence intervals contain the true value θ. However,
usually only one realization and therefore only one confidence interval exists. In this case,
we cannot provide any information about the probability with which the true value θ lies
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within the estimated confidence interval. Still, the confidence interval informs how much
the estimated value θ̂ can vary due to sampling uncertainties. More narrow confidence
intervals therefore indicate that we can be more confident in the estimate.

It is important to note that the confidence interval usually only accout for the sampling
uncertainty and not for uncertainties that arise e.g., from the model assumptions. Therefore,
confidence intervals should always be considered as a lower bound. In this thesis, two
different methods are used to obtain confidence intervals. Namely, the delta method (Coles,
2001, Chpt. 2), which is based on the asymptotic normality of the MLE, and the bootstrap
method, which is based on repeated sampling of observations (Davison and Hinkley, 1997).
These methods are described in more detail in Chapter 4.2.5 and Appendix B.2. A more
explicit consideration of the coverage of confidence intervals for dependent data is included
in Chpt. 5.2.6.

2.4 Assessing the Model Performance

The goal of model selection is to identify relevant predictors and to avoid overfitting of the
data (Wilks, 2011, Chpt. 7.4). In contrast, verification, at least in the context used here,
serves to diagnose the prediction and thus to identify potential problems with the aim of
improving the model (Wilks, 2011, Chpt. 9). Despite these different goals, in both cases
we need to evaluate how the model performs. In other words, we are interested in how the
predictions compare to the actual observations. In the following we introduce graphical
methods as well as scoring rules applicable for this purpose.

Regardless of the applied method, low data availability remains the main problem when
evaluating extreme value models and naturally validation of the extrapolation to not yet
observed values can only be inferred on the basis of how well the model fits the already
observed data.

Graphical Methods To analyze whether the model is in good agreement with the data it
has been fitted to, it is advisable to use a graphical method. Therefore, (Coles, 2001, Chpt.
3) offers three techniques for model diagnosis, i.e. to compare the model predictions to the
observations: p-p (probability–probability) plot, q-q (quantile-quantile) plot and return
level plot. To provide an example, Figure 2.6 presents these three plots for a sampled data
set and two different models (a) and (b), respectively.

In the p-p plot, the predicted non-exceedance probabilities F (zi) are plotted against the
empirical probabilities F̂ (zi), which can be estimated from F̂ (zi) = i

n+1 (Eq. 2.7) based on
the sorted observations zi. This yields the points(

i

n+ 1 , F (zi)
)
, (2.22)

with i = 1, ..., n where in the context of fitting a GEV distribution F (zi) = G(zi, µ̂, σ̂, ξ̂).
In the q-q plot, on the other hand, the sorted observations zi are plotted against the
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Figure 2.6: The plots for model diagnosis inform, how well two different models (a) and (b)
represent the same data set. Detailed explanation follows from the text. 95 % confidence intervals
are presented as dashed lines.

predicted quantiles qi = F−1
(
F̂ (zi)

)
resulting in(

F−1
(

i

n+ 1

)
, zi

)
. (2.23)

In both cases, the goodness of fit is improved when the points are closer to the unit
diagonal.
To use the return level plot for the model diagnosis, the predicted probabilities are

plotted versus the return period as described in Sec. 2.3 - prediction as a line. When the
empirical probabilities of the observations are additionally shown as points at the positions(

− ln
[
− ln

(
i

n+ 1

)]
, zi

)
, (2.24)

the return level plot can be used to compare the model with the observations.
All three plots contain the same information, expressed on a different scale. The q-q plot

and especially the return level plot emphasize the upper tail of the distribution. Concluding
from the examples in Fig. 2.6, there is no reason to doubt the validity of model (a), while
the diagnostic plots for model (b) indicate a lack of fit. This is especially visible from the
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q-q plot and the return level plot, since the high values of the data are outside the 95 %
confidence intervals of the model predictions, which are shown as dashed lines. This is can
be attributed to a poor shape parameter estimate of model (b) in the presented example.

If we assume a GEV model with non-stationary distribution parameters, see Eq. (2.14),
the results can no longer be represented by a single return level plot, since different
observations might correspond to different parameter values. Producing a p-p or q-q plot
is still possible, but requires the transformation of the observations zi so that they all have
an identical distribution. One possibility is the transformation of the observations to the
standard Gumbel distribution with parameters µ = 0, σ = 1 and ξ = 0, which is achieved
by

z∗i = − ln

(1 + ξ̂i
zi − µ̂i
σ̂i

)−1/ξ̂i
 . (2.25)

The p-p and q-q plot can then be produced as described above, using z∗i and F (z∗i ) =
G(z∗i , 0, 1, 0).

Scoring Rules The presented graphical methods allow a comprehensive assessment of the
agreement between one model and the observations, but they have limited applicability
for the comparison of different models. Moreover, they require an individual review. As
a method for comparing several models, for example within a model selection routine, it
is therefore more suitable to summarize information on the model performance within a
score. For this purpose, numerous scoring rules exist, which differ depending on the type
of prediction (probabilistic or non-probabilistic) and observation (discrete or continuous).
However, modeling an extreme value distribution does not fit into a single category, since
we do obtain a probability distribution as a result, but the actual prediction is that of a
quantile value (return level).

When considering the prediction of quantiles qp, we are dealing with a non-probabilistic
forecast. One measure of the accuracy of such forecasts is, for example, the mean squared
error

MSE = 1
n

n∑
k=1

(qp,k − ok)2, (2.26)

where (qp,k, ok) is a pair of prediction and corresponding observation. However, we cannot
readily compute this or similar scores in this context because an observed value for the
actual quantile ok is not available.

Yet, there are two ways in which the MSE can still be used to evaluate quantile predictions.
First, when using simulation studies to compare two different models (Roksvåg et al., 2021).
In this case, data can be drawn from a known distribution. Therefore, the true value of the
quantile is also known and can be used as ok in Eq. (2.26). The second option, when using
observational data, is to estimate an empirical distribution F̂ , see Eq. (2.7), in order to
assign a non-exceedance probability p̂k = F̂ (ok) to each observation (Blanchet et al., 2016;
Van de Vyver, 2018). Thus, each observation ok can be compared to the model prediction
for the corresponding quantile qp̂k . In this case, the observations ok could also be regarded
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probability density is indicated in gray. The parameter values chosen for this example are µ = 0,
σ1 = 1, σ2 = 3, ξ1 = 0 and ξ2 = 0.2.

as empirical quantiles. This way of calculating the MSE is directly related to the q-q plot,
since it corresponds to the mean squared distance of the data points from the diagonal.

If we instead consider the complete extreme value distribution as the prediction, we can
consider scoring rules designed for probabilistic forecasts. To evaluate the forecasts of a
continuous distribution function F (·) and probability density function f(·), Wilks (2011,
Chpt. 9) provides two scoring rules: the Ignorance Score or also called Logarithmic Score

IS = − ln[f(o)] (2.27)

and the Continuous Ranked Probability Score

CRPS =
∫ ∞
−∞

[F (y)− Fo(y)]2 dy, (2.28)

where Fo is the step function

Fo(y) =
{

0 , y < o

1 , y ≥ o
(2.29)

that can be considered as the cumulative distribution function of the observation o (Dyrrdal
et al., 2015; Friederichs and Thorarinsdottir, 2012). Both scores are negatively oriented,
i.e., smaller values represent a better prediction.

Fig. 2.7 shows both scores for a range of observations. The IS reaches its minimum when
the observation o is equal to the mode, while the CRPS is minimal when o is equal to the
median of the distribution. Further differences of the scores depend on the distribution as
well as on the parameters. In the presented example, we can see that for ξ > 0, the CRPS
shows a stronger increase on the right side of the minimum. Therefore, we can conclude
that it penalizes observations in the upper tail of the distribution stronger than the IS.
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To evaluate the model performance based on n observation forecast pairs, we take the
average value for both scores as follows

IS = 1
n

n∑
k=1
− ln[fk(ok)], CRPS = 1

n

n∑
k=1

∫ ∞
−∞

[Fk(y)− Fok(y)]2dy. (2.30)

Here, the average Ignorance Score is proportional to the log-likelihood from Eq. (2.12), as
n · IS = l(µ, σ, ξ|o1, o2, ..., on).

The disadvantage of using IS and CRPS in the context of extreme value statistics is that
this way we can only draw a conclusion about the full probability distribution compared
to the data, but not about the prediction of a specific quantile. A score that combines the
advantages of the MSE and those of the IS and CRPS in this regard is the Quantile Score
(Bentzien and Friederichs, 2014; Fischer et al., 2019). Both the actual observation o and
the predicted quantile qp are included in the calculation of the Quantile Score

QS(p) = ρp(o− qp). (2.31)

Their difference u = o− qp is weighted by the check function

ρp(u) =
{
pu , u ≥ 0
(p− 1)u , u < 0.

(2.32)

Figure 2.8 presents QS for a range of observations for p = 0.5 and p = 0.9. It is evident
that in both cases observations that are far from the value of the predicted quantile qp
are penalized more. In the case of p = 0.5 the weights are symmetric, while for p = 0.9
observations above q0.9 are penalized stronger. The average QS is likewise used, when
considering multiple observation forecast pairs10

QS(p) = 1
n

n∑
k=1

ρp(ok − qp,k). (2.33)

10In the later chapters the term Quantile Score is used to refer to the average score QS.
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The QS is related to the CRPS, since the CRPS can be expressed as the integral

CRPS = 2
∫ 1

0
QS(p) dp = 2

∫ 1

0
ρp(o− qp) dp. (2.34)

This form of the CRPS also leads to another possibility of evaluation, where we do not
only examine a certain quantile, neither the whole distribution, but a certain region of the
distribution. This is interesting for extreme value statistics, since we might be particularly
interested in the upper tail of the distribution. To this end, it is possible to modify the
CRPS with a weighting function ω(p), in which case we obtain the so-called threshold
weighted CRPS (Gneiting and Ranjan, 2011)

twCRPS = 2
∫ 1

0
ω(p) · ρp(o− qp) dp. (2.35)

For example, a convenient choice for ω(p) is the step function

ω(p) =
{

0 , p < p0

1 , p ≥ p0
, (2.36)

since this yields a twCRPS, which considers only the upper part of the distribution
(Vandeskog et al., 2021)

twCRPS = 2
∫ 1

p0
ρp(o− qp)dp. (2.37)

The derivation of the twCRPS from Eq. (2.37) for a GEV distribution is provided in the
Appendix A.3.

So far, we have considered the scoring rules as a means of comparing the predictions
with the observations that were used to fit the model. However, for model selection and
verification, we are actually more interested in the model’s ability to represent not yet
observed data, or rather, observations that have not already been included in the parameter
estimation. That is what is called the out-of-sample performance. For this purpose, it is
necessary to split the data. The part that is used to fit the model is called the training
set and an independent part upon which the model performance is evaluated – e.g., using
one of the presented scores – is referred to as the test or validation set. If the data is split
into exactly one training set and one test set, the method is called hold-out. In practice,
however, this method leads to unstable results. To avoid this, the data should be split
several times so that a score can be calculated for multiple test sets. A more stable result
can then be obtained by averaging the scores of the individual test sets. This procedure is
called cross-validation (Hastie et al., 2009, Chpt. 7.10).
Arlot and Celisse (2010) provide a detailed description of cross-validation in the context of
model selection. They also give an overview about the various strategies for partitioning
the data.

The presented methods for assessing the out-of-sample performance are relevant for both
model selection and verification. In the following, we will briefly discuss some strategies
that are unique to the individual procedures.
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Model selection The aim of model selection is to choose from a set of possible predictor
variables only those that are sufficient to produce a good predictive equation. For this
purpose, different models need to be compared on the basis of a criterion. In the included
studies, we use a cross-validated score function. Nevertheless, the cross-validation method
tends to be computationally demanding, especially for a large set of possible models. In
that case, there are other criteria proposed in the literature, which are based on the
likelihood (Eq. 2.10) and do not involve cross-validation (Kim et al., 2017). For example,
one such criterion is the Akaike Information Criterion (AIC)

AIC = − ln(L) + 2k, (2.38)

where the first term is proportional to the log-likelihood and thus a measure of the in-sample
performance of the model. The second term is proportional to the number of parameters k.
Hence, models with many predictors are penalized without requiring explicit estimation of
the out-of-sample performance.
As it is in most cases not feasible to compare all possible models, a strategy is needed

to identify a reasonably good model. The most commonly used procedure is stepwise
regression (Wilks, 2011, Chpt. 7.4). In forward selection, only the predictor that leads
to the largest improvement is added to the model in each iteration step. Similarly, in
backward elimination, the least important predictor is removed in each iteration step.
The process stops when the model can no longer be improved, or after a fixed number of
iterations. Hastie et al. (2009) provide an extensive overview of other possible strategies.
They also present newer, more efficient methods, such as least absolute shrinkage and
selection operator (LASSO) or boosting (Messner et al., 2017) , which combine parameter
estimation and model selection in one step. However, the application of these methods
in extreme value statistics has only recently emerged (e.g., Koh, 2021; Steinheuer and
Friederichs, 2020).

Verification When determining the out-of-sample performance for a single model using
a cross validated score as described above, the result is not very intuitive. Instead, it
is helpful to compare the calculated score SM with that of a reference model SR. This
comparison can be presented as a skill score. The general form of a skill score is

SS = SM − SR
Sperf − SR

, (2.39)

where Sperf is the value of the score that is achieved with a perfect prediction. In the
case of the scores presented in Eqs. (2.26-2.37) respectively Sperf = 0. The skill score can
be interpreted as the percentage of improvement of the model score over the reference
score towards the perfect model, where if SM = Sperf then SS = 1. For SS = 0 there is no
improvement of the model over the reference and for SS < 1 the model even represents a
deterioration (Wilks, 2011, Chpt. 9). However, due to the definition of SS no statement
about the strength of the deterioration is possible, since SS ∈ (−∞, 1].
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2.4 Assessing the Model Performance

In the context of the presented work we propose using a skill index (Ulrich et al., 2020),
defined as

SI =


SM−SR
Sperf−SR , SM ≤ SR

− SR−SM
Sperf−SM , SM > SR.

(2.40)

This way, SI ∈ [−1, 1]. Thus, the degradation of the model with respect to the reference in
the case SM > SR can be interpreted in the same way as the improvement, when SM ≤ SR.
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Chapter 3
Modeling the Relationship Between Precipitation Intensity and
Duration

The studies included in this thesis focus on models for precipitation intensity as a function
of duration and frequency, or non-exceedance probability. The extreme value models
presented in Sec. 2.3 can only be used to describe extreme precipitation for one se-
lected duration. We illustrate this concept with data from an example station: we
can model the annual maxima at the station Bever-Talsperre for the different durations
d ∈ {1, 4, 8, 16, 32, 60, 120, 240, 480, 960, 1440}min by fitting a separate GEV distribution
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Figure 3.1: Modeling annual maxima at station Bever-Talsperre by applying a separate GEV
model for each duration. The estimated GEV parameters µ, σ and ξ, as well as selected quantiles
are presented depending on duration. For this example we use data from 1968-2018, i.e., 51 annual
maxima are available for each duration.
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for each duration. In Fig. 3.1 (a-c) the estimated GEV parameters are presented versus
duration. The resulting quantiles for the non-exceedance probabilities p ∈ {0.5, 0.9, 0.99}
are shown in Fig. 3.1 (d-f), likewise depending on duration.
To arrive at an IDF model, we need to account for the dependence of intensity on

duration. Within a univariate framework, it is possible to introduce this dependence either
directly at the quantile level, or at the parameter level. However, the implementation
at the quantile level requires the use of successive models to 1) estimate the quantiles of
interest for a range of durations and 2) model their dependence on duration. Moreover,
applying separate models for the dependence of certains p quantiles on duration can lead
to inconsistent results, i.e. crossing of quantiles. In other words, for example, for certain
durations, the 0.9 quantile might have a higher values than the 0.99 quantile. This can be
resolved by applying a post processing procedure (Roksvåg et al., 2021).
It is therefore beneficial to implement the dependence on duration at the parameter

level. Both the approach currently used to produce the official IDF curves provided by the
German Meteorological Service (DWD) as well as the approach of a duration-dependent
GEV (d-GEV), which is used in the studies included in this thesis, achieve the variation of
precipitation intensity with duration by treating the distribution parameters as functions
of duration. However, the official approach consists of several successive steps, while the
d-GEV approach allows to model the maxima of different durations simultaneously within
one model step. In the following, we will present and compare both approaches using
precipitation observations from two selected example stations.

3.1 Application of Separate Sequential Models Following
German Regulations

In Germany, the estimation of return levels (quantiles) for given durations and return
periods (annual non-exceedance probabilities) used as a basis for hydraulic engineering
design is provided by the German Meteorological Service (DWD) via the KOSTRA atlas
(DWD). It contains estimated return levels for the durations 5min up to 72 h and the
return periods 1 year to 100 years on a 8 × 8 km2 grid for entire Germany. At first, the
return levels are determined station-based at locations with relatively long time series. In a
subsequent step, a regionalization is carried out in order to provide full spatial coverage for
Germany. The methods used to estimate return levels at individual stations are regulated
by the Merkblatt DWA A-531 of the German Association for Water, Wastewater and
Waste1 (DWA, 2017). We will abbreviate this method as DWA approach hereafter. This
approach consists of three steps:

1. The parameters of the extreme value distribution are estimated separately for selected
durations in the considered duration range.

2. The dependence of the parameters on the duration is modeled. For this purpose, the
duration range is divided into smaller sub-ranges, for each of which an individual

1Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (DWA)
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model is applied.

3. The models for the duration sub-ranges are adjusted to prevent discontinuities at
the boundaries.

A more detailed description of the methods used in each of the three steps is provided in
the following sections.

3.1.1 First Step: Separate Extreme Value Model for Each Duration

To model the extreme value distribution of a selected duration, the guideline requires using
either the POT approach or the block maxima approach with an annual block size. To
reduce the number of parameters and the resulting uncertainties, the shape parameter of
the extreme value distributions should be fixed to zero. Thus, the threshold exceedances
are modeled using the exponential distribution and the annual maxima are modeled using
the Gumbel distribution, which do not allow for heavy tail behavior. Since this thesis is
focused on the block maxima approach, the following explanations refer only to modeling
annual maxima using the Gumbel distribution. However, the subsequent model steps of the
DWA approach described in Section 3.1.2 remein the same for modeling annual maxima as
well as threshold exceedances.

The Gumbel distribution is obtained by estimating location µ and scale σ parameters
from the observed annual maxima. The DWA guideline leaves the choice of estimation
method to the user, but recommends a graphical method basen on linear regression in
the return level plot (see Secs. 2.3 and 2.4). For reasons of consistency with the other
approaches in this thesis we will instead use the maximum likelihood estimator (Eq. 2.9)
for the examples presented in the following.
To compare the GEV and the Gumbel distribution regarding the process of parameter

estimation and the uncertainties involved, we use observations from the two stations Bever-
Talsperre and Berlin-Tempelhof. The observed annual maxima of precipitation intensity
for different durations are shown in Figs. 3.2 (d) and 3.3 (d). At both stations, longer time
series are available for the duration d ≥ 1day than for the sub-daily durations.

The estimated parameters of the GEV distribution for each duration are shown in gray
in Figs. 3.2 (a-c) and 3.3 (a-c), respectively, along with their bootstrapped 95% confidence
intervals. It is evident that there is considerable uncertainty associated with the estimation
of the shape parameter ξ, especially for short time series.

In Figs. 3.2 (e) and 3.3 (e), the 0.99 quantiles, i.e. 100-year return levels, resulting from
the estimated GEV parameters are shown along their 95% confidence intervals in gray.
This highlights how the uncertainties in the parameter estimation affect the uncertainties
of the derived quantiles. To give an example, we can consider the estimated 0.99 quantile
for a duration of one hour. At station Berlin-Tempelhof only 25 years of observations are
available for the sub-daily durations. The 95% confidence intervals of the estimated 0.99
quantile based on this data range from 28mm/h to 120mm/h. However, for the station
Bever-Talsperre with sub-daily time series of 51 years, the 95% confidence intervals span
a more acceptable range from 25mm/h to 48mm/h. Hence, unless sufficiently long time

33



3 Modeling the Relationship Between Precipitation Intensity and Duration

0.5

1.0

2.0

5.0

10.0

20.0

50.0

100.0

 

 
µ 

[m
m

h−
1 ]

GEV
Gumbel

(a)

 

0.2

0.5

1.0

2.0

5.0

10.0

20.0

50.0

 

 
σ 

[m
m

h−
1 ]

(b)

 

−0.4

−0.2

0.0

0.2

0.4

0.6

 

 ξ

0.02 0.1 1 10 24 100

Duration [h]

(c)

 

0.5
1.0
2.0

5.0
10.0
20.0

50.0
100.0
200.0

500.0

 

 
In

te
ns

ity
  [

m
m

h−
1 ]

0.02 0.1 1 10 24 100

Duration [h]

(e)

 

0.5
1.0
2.0

5.0
10.0
20.0

50.0
100.0
200.0

500.0

 

 

0.02 0.1 1 10 24 100

Duration [h]

In
te

ns
ity

  [
m

m
h−

1 ]

(d)

 

Annual Maxima
2

4

6

8

 

R
et

ur
n 

Le
ve

l  
[m

m
h−

1 ]

2 10 100 1000

Return Period [a]

(f)

 

Figure 3.2: Modeling annual precipitation intensity maxima at station Berlin-Tempelhof by
applying separate extreme value models for each duration. The annual maxima (d) are modeled
using the GEV distribution (gray) and the Gumbel distribution (red), where ξ = 0. Both models
are compared with respect to the estimated distribution parameters µ, σ and ξ (a-c) and 0.99
quantiles (e) for each duration. The return level plot (f) serves to asses the goodness of fit of both
models for the selected duration of 24 h. Error bars and shaded areas represent the bootstrapped
95% confidence intervals.

series are available, the separate application of the GEV for each duration does not lead to
meaningful quantiles.
Therefore, the DWA guideline specifies limiting the distribution to the Gumbel dis-

tribution with ξ = 0. The parameter estimates as well as the 0.99 quantile along with
the bootstrapped 95% confidence intervals for each duration under the assumption ξ = 0
are shown in red for both stations in Figs. 3.2 (a-e) and 3.3 (a-e), respectively. The
restriction of the distribution mostly leads to only a minor reduction in the uncertainties
in the estimation of µ and σ. However, the uncertainties of the resulting 0.99 quantile
are significantly reduced due to constraining the shape parameter. The 95% confidence
interval of the 0.99 quantile at a duration of one hour ranges from 30mm/h to 48mm/h at
Berlin-Tempelhof and from 32mm/h to 42mm/h at Bever-Talsperre. Therefore, fixing the
shape parameter seems to be a reasonable measure to reduce the uncertainties associated
with the quantile estimation.

However, the clear disadvantage of this method is that the Gumbel distribution is not
necessarily a suitable model for the annual maxima of a particular station. Berlin-Tempelhof
serves as a good example for a station where the constraint ξ = 0 seems unjustified. From
Fig. 3.2 (c) it is evident that the estimated values of ξ (gray) mostly deviate considerably
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Figure 3.3: As Fig. 3.2 but for station Bever-Talsperre.

upward or downward from the fixed value of zero. As an example of how fixing the shape
parameter to a possibly unsuitable value affects the quantile estimation, we can take a look
at the return level plot for the duration of 24 h presented in Fig. 3.2 (f). Shown in black are
the empirically estimated return periods for the observed annual maxima. Shown in gray
and red are the estimated return levels as a function of return period for the GEV model
and the Gumbel model, respectively. The shaded areas each represent the 95% confidence
intervals. While fixing the shape parameter substantially reduces the uncertainties, the
Gumbel model is no longer able to describe the upper tail of the distribution of the annual
maxima. In this case, this results in a severe underestimation of the return levels for larger
return periods. In contrast, the assumption ξ = 0 seems to be well fitting for the station
Bever-Talsperre. The return level plot for d = 24h in Fig. 3.3 (f) illustrates that the
constraint of the model results in a significant reduction of the uncertainties, while the
Gumbel model is still able to describe the data sufficiently well in this case.

3.1.2 Modeling Duration-Dependence in a second and third step

After separately estimating the Gumbel distribution for each duration, it is necessary to
model the dependence on duration. The purpose of this is partly to obtain return levels
for arbitrary durations, but primarily to ensure monotonically decreasing precipitation
intensities with duration and with decreasing return period. Therefore, the duration
dependence is modeled on the level of the distribution parameters. To this end the DWA
guideline specifies the two-step method described below.
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Figure 3.4: Parameter estimates for µ (top) and σ (bottom) obtained from steps one (red circles),
two (left: green, dashed line) and three (right: blue line) of the DWA approach for station Bever-
Talsperre. The insets (c) and (d) serve for better visibility of the discontinuity resulting from step
two (green, dashed line) at d = 1h. Another discontinuity occurs at d = 24h. Error bars and
shaded areas represent the bootstrapped 95% confidence intervals.

Second Step: Separate Models for Duration Sub-Ranges

For modeling the duration dependence, the complete duration range is first divided into
smaller sub-ranges. The DWA guideline suggests for example the following subdivision:

d1 ≤ 1 h (3.1)
1 h < d2 ≤ 12 h (3.2)

12 h < d3. (3.3)

In each of the three domains, a separate model is fitted for the dependence of the parameters
µ and σ on duration. The following two-parameter models are considered to be suitable
for both parameters φ ∈ {µ, σ}:

φ(d) = a1 − b1 · ln d (3.4)
lnφ(d) = a2 − b2 · ln d (3.5)

φ(d) = a3
d+ b3

, (3.6)

with non-negative parameters ai and bi. Figure 3.4 (a-b) shows the values for the parameters
µ and σ estimated in the first step (red dots) and the second step (green dashed line) for
the station Bever-Talsperre. In this example, for both parameters the model from Eq. (3.6)
was selected for the first duration sub-range and the model from Eq. (3.5) was chosen for
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3.1 Application of Separate Sequential Models Following German Regulations

the remaining sub-ranges. The figure show that the method can lead to a good description
of the dependence of the parameters on the duration. However, the uncertainties of the
parameters estimated in the second step2 remain comparable to the uncertainties of the
first step, since the second step of the model builds on the results of the first step.

Third Step: Adjusted Models for Complete Duration Range

A third model step is necessary since fitting separate models for the duration sub-ranges
results in discontinuities of the parameter values at the boundaries of the ranges. Fig-
ure 3.4 (c-d) illustrates the discontinuities at d = 1 h resulting from the second model step
(green, dashed). Accordingly, two possible values φ1(db) 6= φ2(db) exist for each parameter
at the boundaries of the sub-ranges db ∈ {1, 24} h. In order to obtain a continuous model
for the parameters depending on duration, first, the parameter values at the boundaries of
the sub-ranges are fixed to the mean values

φ(db) = φ1(db) + φ2(db)
2 . (3.7)

Subsequently, the selected models from Equations (3.4-3.6) are fitted again for each sub-
range under the condition that the models must pass through the fixed points φ(db).
Therefore, the parameters a and b are uniquely determined for the middle duration sub-
range, while they must be re-estimated for the first and third range. The resulting models
for the parameters µ and σ, which are continuous over the entire duration range, are shown
in Fig. 3.4 (c-f) as blue solid lines. The uncertainties are slightly smaller than in the second
model step because the models are constrained by the fixed points.

3.1.3 Disadvantages of Applying Separate Sequential Models

The separate use of sequential models to estimate IDF curves entails several drawbacks.
A major problem of this approach is the large number of parameters that have to be
estimated. Table 3.1 lists the parameters for each model step. In the given example of
the Bever-Talsperre a total of 40 parameters results. Generally, such a large number of
estimated parameters yields considerable uncertainties. In the presented approach, these
uncertainties are substantially reduced by restricting the model through assuming the
Gumbel distribution with ξ = 0 in the first model step. It has already been discussed that
the assumption ξ = 0 is not appropriate for all stations.
Furthermore, the separate estimation of the distribution parameters for each duration

results in inefficient use of the available data. The estimation of the distribution parameters
for one duration is always based exclusively on the existing data for this duration. Especially
for short time series, this leads to large uncertainties in the estimation of µ and σ in the
first model step. The following model steps are then based entirely on the uncertain results
of the first step. Finally, the precipitation intensity can be expected to be a smooth,

2In our analysis, the uncertainties presented for the second and third step include the uncertainties that
already arise in previous steps.
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3 Modeling the Relationship Between Precipitation Intensity and Duration

Table 3.1: Number of parameters that require estimation in each step of the DWA approach. In
the presented examples the number of durations nd = 15.

Step Number of Parameters Description

1 2 · nd = 30 µ, σ for each duration
2 2 · 2 · 3 = 12 a, b for each parameter and duration range – to

obtain fixed points φ(db)
3 2 · 2 · 2 = 8 a, b for each parameter and two duration ranges

i.e. continuous and differentiable function of duration for a chosen annual exceedance
probability. However, this is not the case here due to the division of the duration range.

3.2 Consistent Estimation Within Single Model Step
The above-mentioned drawbacks of applying separate sequential models suggest the need
to consider a consistent model for precipitation intensity as a function of return period, or
rather annual non-exceedance probability p and duration d. Koutsoyiannis et al. (1998)
propose using a duration-dependent extreme value distribution, where the dependence
of the distribution parameters is inserted into the distribution function. For the block
maxima approach, a duration-dependent GEV (d-GEV) distribution results, which enables
describing the annual maxima of all durations simultaneously. Koutsoyiannis et al. (1998)
propose the following assumptions about the dependence of the GEV parameters on
duration:

σ(d) = σ0(d+ θ)−η, (3.8)
µ(d) = µ̃ · σ(d), (3.9)
ξ(d) = const., (3.10)
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Figure 3.5: Estimates for parameters µ, σ and ξ when using a seperate GEV distribution for each
duration (gray circles) and the duration-dependent GEV distribution (orange line) to model annual
precipitation intensity maxima at station Berlin-Tempelhof. Error bars and shaded areas represent
the bootstrapped 95% confidence intervals.
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Figure 3.6: Probability density g(z, d) of the duration-dependent GEV distribution (Eq. 3.12) as
function of intensity z and duration d.

where the parameters σ0, µ̃, θ, η are non-negative and further restricting 0 < η < 1.
Figure 3.5 illustrates that the assumptions (3.8- 3.10) lead to a suitable description of the
GEV parameters with respect to duration for the station Berlin-Tempelhof.
Inserting the assumptions into Eq. (2.1) for ξ 6= 0 results in the d-GEV distribution

G(z, d; µ̃, σ0, ξ, θ, η) = exp
{
−
[
1 + ξ

(
z

σ0(d+ θ)−η − µ̃
)]−1/ξ

}
, (3.11)

where we name the five parameters: modified location µ̃, scale offset σ0, shape ξ, duration
offset θ and duration exponent η. Figure 3.6 illustrates how the resulting probability
density g(z, d) evolves with duration. The probability density narrows and shifts toward
smaller intensity values as duration increases. The relationship between precipitation
intensity I and duration d for a certain non-exceedance probability p results directly as
the quantile qp(d) of the distribution:

Ip(d) = qp(d) = 1
(d+ θ)η

(
µ̃σ0 −

σ0
ξ

[
1− {− log (p)}−ξ

])
. (3.12)

Rewriting Eq. 3.12 as

Ip(d) = ω(p, µ̃, σ0, ξ)
(d+ θ)η (3.13)

allows to interpret how the resulting IDF curves are influenced by the parameters: while
µ̃, σ0 and ξ describe the relationship between precipitation intensity and non-exceedance
probability, θ and η control the dependence on duration. More specifically, µ̃, σ0 and ξ
define the distance of the curves and their intensity offset, while η determines the slope for
longer durations d ≥ 1h and θ the curvature for short durations d ≤ 1h when plotted in
double logarithmic representation. This is visualized in Fig. 3.7.
Consequently, only five parameters need to be estimated when applying the d-GEV

model. To estimate the parameter vector φ = (µ̃, σ0, ξ, θ, η)T , the maximum likelihood
method given in Eq. (2.12) can easily be extended in the following way:

L(φ|Z) =
∏
d∈D

∏
n∈N

g(zn,d, d;φ), (3.14)
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Figure 3.7: IDF curves obtained from the duration-dependent GEV for three non-exeedance prob-
abilities p1, p2 and p3 width p1 < p2 < p3 and different values of the parameters φ ∈ {µ̃, σ0, ξ, θ, η},
where φ1 < φ2.

with the vector Z containing all observed maxima zn,d for different years n and durations
d. Thus, the annual maxima of all durations are considered collectively to estimate the
parameters through φ̂ = arg max{L(φ|Z)}. This leads to a distinct reduction in the
uncertainties of the estimated values µ̂(d), σ̂(d) and in particular ξ̂ compared to applying
a separate GEV distribution for each duration, as can be observed in Fig. 3.5. This is
especially beneficial since it allows us to include information from the daily observations,
for which longer time series are available, to model the sub-daily durations with more
limited data availability.
However, we need to remark that Eq. 3.14 is only valid under the assumption of

independent observations. This assumption is clearly violated, since a dependence between
the maxima of different duration within one year exists. The problem of considering the
dependence between durations when applying the d-GEV approach will be discussed in
more detail in Sec. 3.4.

3.3 Comparison Between Both Approaches

From the previous sections we can conclude that the two described methods for the estima-
tion of IDF curves are rather different. To compare them, we present the 0.99 quantiles (i.e.
100-year return levels) estimated by both methods for the example stations Bever-Talsperre
and Berlin-Tempelhof in Fig. 3.8. Furthermore, we compare the results of both models with
values from the GEV model estimated separately for each duration, which are indicated by
gray dots. Considering the uncertainties (shaded areas and bars), we observe that both
IDF models, the DWA approach and the d-GEV approach, result in a reduction of the
uncertainties with respect to the separately applied GEV model.

The application of separate successive models in the DWA approach requires the estima-
tion of 40 parameters. On the contrary, results of the d-GEV approach are based on the
estimation of only 5 parameters. Despite what could be expected from the large difference
in the number of parameters between the two models, they yield somewhat comparable
uncertainties. This is due to their different treatment of the shape parameter. As we have
seen, the estimation of the shape parameter is associated with considerable uncertainties,
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Figure 3.8: Estimates 0.99 quantile depending on duration using a separate GEV model for each
duration (gray circles), the DWA approach (blue line) and the d-GEV approach (orange line) at the
stations Bever-Talsperre (a-b) and Berlin-Tempelhof (c-d). Error bars and shaded areas represent
the bootstrapped 95% confidence intervals.

especially for short time series, since it determines the upper tail of the distribution and
thus the very rare events. In the DWA approach, the shape parameter is fixed to ξ = 0. As
a result, the uncertainties in the quantile estimation are drastically reduced. In contrast, in
the d-GEV model the shape parameter is estimated taking into account the annual maxima
of all durations. Using more data similarly leads to a major reduction of uncertainties.
However, the reduction of uncertainties in the DWA approach can be considered more

or less artificial. By defining the shape parameter, other possible models for describing
the data are excluded, while it is not always guaranteed that the choice of ξ = 0 leads to
a suitable model. As we can see from Fig. 3.5 (c), considering the data of all durations
results in a positive value for ξ. Therefore fixing ξ = 0 leads to a severe underestimation of
the 0.99 quantile for most durations at this station when compared to the GEV estimates
(gray circles), as shown in Fig. 3.8 (c). For this station, the d-GEV model presented in
Fig. 3.8 (d) appears to be suitable, as it yields results similar to those obtained by modeling
each duration separately with a GEV distribution (gray).
For the station Bever-Talsperre on the other hand, the DWA approach provides the

better results, see Fig. 3.8 (a) and (b). The choice of ξ = 0 seems to be appropriate for
this station and the DWA approach is able to sufficiently model the dependence of the
0.99 quantile on the duration. A clear deficit of the d-GEV approach can be identified in
this case: the model is less flexible, which causes underestimation in the range of small
durations d ≤ 15min and overestimation in the range between 1h < d ≥ 24 h. This
limitation of the d-GEV model results from the assumptions for the dependence of the
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3 Modeling the Relationship Between Precipitation Intensity and Duration

Table 3.2: Advantages and disadvantages of the d-GEV approach for modeling annual precipitation
maxima of a range of durations when compared to the DWA approach.

Advantages Disadvantages

• parameter parsimony • strong restrictions for µ(d) and σ(d)
• efficient use of data • less flexible than DWA approach
• pool information between durations • assumption of independence
• reduced uncertainties for ξ̂ between maxima of different durations
• allow ξ 6= 0, i.e. other than Gumbel
• straightforward extension

to include spatial variations

parameters on the duration (Eqs. 3.8-3.10), which severely restrict the model. However,
the higher flexibility of the DWA approach is achieved by dividing the duration range into
three smaller sub-ranges. This contradicts the idea of a consistent model for all durations.
To still be able to use the data efficiently and pool information between durations it would
be more reasonable to revise the assumptions in Eqs. (3.8-3.10) and to extend the number
of parameters. This idea is explored in Study II (Chpt. 5) of this thesis.
Finally, there is one additional advantage of the d-GEV approach compared to the

DWA approach: In order to obtain spatial coverage for the entire country, the station-based
values resulting from the DWA approach are spatially interpolated using yet another model.
Therefore, these values are based on four successively applied models. In contrast, the
d-GEV model can be extended relatively straightforward to model the spatial variations
and the duration dependence simultaneously within one model, as presented in Study I
(Chpt. 4) of this thesis. The summary in Table 3.2 clearly indicates that the benefits of
the d-GEV approach outweigh the disadvantages.

3.4 Dependence Between Maxima of Different Durations
In the previous section, the d-GEV (Eq. 3.11) was introduced for simultaneous modeling
of precipitation intensity maxima of a range of durations. We can estimate the parameters
of this distribution using the maximum likelihood method as shown in Eq. (3.14), based
on the assumption that the maxima of different durations are independent. However,
this assumption is not justified since, given a measurement interval di, the time series
for durations n · di with n ∈ N are generated by aggregating the original measurement
time series. Therefore, we can expect that the block maxima M of neighboring durations,
for example d1 = 1min and d2 = 2min, are strongly dependent, as they were very likely
generated by the same precipitation event and therefore

Pr{M(d2) ≤ z |M(d1) ≤ z} 6= Pr{M(d2) ≤ z}. (3.15)

To account for this dependence we need to use a multivariate model, such as the Copula
approach (Ariff et al., 2012) or a max-stable process (Tyralis and Langousis, 2019). We
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investigated the implications of considering the dependence between maxima of different
durations using a max-stable process on the model performance (Jurado et al., 2020). As
our study is not comprised in this thesis, but is closely related to the discussed papers, its
methods and main findings are briefly touched upon in this section. The essential question
of the study is illustrated in the graphical abstract in Fig. 3.9.

3.4.1 Max-Stable Processes

Max-stable processes are commonly used to model spatial extremes. Although Jurado et al.
(2020) use a max-stable process in a temporal context, to explain the basic concepts we
will refer to the original spatial idea, as it offers a somewhat simpler interpretation. As
mentioned before, Eq. (3.14) or Eq. (2.16), which can be used to model spatial variations
of GEV parameters, are based on the assumption of independent maxima. To demonstrate
how this independence can be understood, we provide the following example: Let us
assume a random GEV distributed variable Z(x, y) ∼ G(µ(x, y), σ, ξ), where the location
parameter varies in space with µ = β0 + β1x+ β2x

2 + β3y + β4y
2. The point-wise 100-year

return levels, or 0.99 quantiles, resulting from this model are presented in Fig. 3.10 (a).
Although the parameters and thus the quantiles of the distribution change smoothly in
space, this is not the case when considering a single realization z(x, y) of the model as
shown in Fig. 3.10 (b). At each point (x, y), the value of z is independent of the value of
the surrounding points, which does not lead to a smooth spatial process. When we employ
such a model for precipitation, we must be aware that individual realizations of the model
do not provide realistic spatial structures resembling precipitation fields.

We can consider max-stable processes as the equivalent of the GEV distribution for the
multivariate case. As described in Sec. 2.3, the distribution of block maxima converges to
the GEV distribution in the case of convergence. We can motivate this with the argument
that only the GEV distribution is max-stable, which means that the operation of taking
maxima from samples of size n > 1 leads to an identical distribution apart from a change in
scale and location (Coles, 2001, Chpt. 3). This relationship is illustrated in Fig. 3.11 (a-b),

Figure 3.9: Graphical abstract of the study by Jurado et al. (2020), comparing the performance
of a max-stable process with that of a d-GEV when estimating IDF curves.
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Figure 3.10: Realizations of different spatial models, all providing the same point-wise 100-year
return levels, or 0.99 quantiles presented in (a). The models are: (b) GEV distribution with spatial
covariates assuming independence, (c) Smith process and (d) Schlather process.

where each set of gray circles represents a sample of the GEV distribution presented in
(a). The maxima of these samples (red circles) likewise follow a GEV distribution (b).
We can extend this approach analogously to stochastic processes. A stochastic process
is max-stable if the maximum of n > 1 independent copies of this process is again a
stochastic process from the same family. This is illustrated in Fig. 3.11 (c-e): (c) shows a
realization of a max-stable process. The same realization is presented together with four
other realizations (dashed) of the same process in (d). Finally, (e) shows the maximum
of all five realizations at each location x. If we compare (c) and (e), it is not difficult to
assume that both are realizations of processes from the same family. By analogy with
the Extreme Value Theorem, it follows that the maximum of a sequence of independent
copies Y1(x), Y2(x), ... of a stochastic process converges to a max-stable process in the
case of convergence. Therefore, we can assume that max-stable processes are likely to be
good candidates to model max{Y1(x), Y2(x), ..., Yn(x)}, provided n is large enough (Ribatet
et al., 2016).

A relevant difference to the Extreme Value Theorem is, however, that the GEV distribu-
tion is the only univariate distribution which is max-stable, or expressed differently: the
GEV family includes all three univariate max-stable distribution families Gumbel, Fréchet
and Weibull. No such general formulation exists for max-stable processes. It is therefore
necessary to select a family of max-stable processes for modeling, which is appropriate for
the problem at hand (see e.g., Davison et al., 2012; Sebille et al., 2017). Figure 3.10 (c-d)
shows a realization of two different max-stable processes, the Smith process (c) and the
Schlather process (d), where the point-wise return levels of both processes are identical
to those of the independent model depicted in (a). Contrary to the independent model,
the values z(x, y) of the realizations of the max-stable processes vary smoothly in space.
However, the Smith model is too simplistic to provide a good representation of precipitation
fields. Realizations of the Schlather model, on the other hand, seem to be capable to
resemble precipitation fields.
To model environmental extremes (Asadi et al., 2015; Thibaud et al., 2016), and more

specifically extreme precipitation (Davison et al., 2012; Sebille et al., 2017), a commonly
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Figure 3.11: Illustrating the property of max-stability: (a-b) of a distribution and (c-e) of a
stochastic process. More detailed explanation is provided in the text.

used max-stable process is the Brown-Resnick process. In Figs. 3.12 (a) and (c) one
realization of two different Brown-Resnick processes in one dimension is shown. The two
processes differ regarding their dependence characteristics. To describe the dependence we
need to find a dependence measure. One possible measure is the extremal coefficient θ,
which can take values θ ∈ [1, 2] in the bivariate case. The meaning of θ is best illustrated in
the following definition using the conditional probability of two events, one at the location
x and one in a certain distance h (Ribatet et al., 2016)

Pr{Z(x+ h) ≤ z |Z(x) ≤ z} = Pr{Z(x+ h)}θ(h)−1 (3.16)

=
{

1 , complete dependence
Pr{Z(x+ h)} , independence.

The extremal coefficient for the Brown-Resnick process is (Tyralis and Langousis, 2019)

θBR(h) = 2 Φ
[√

1
2

(
h

ρ

)α]
, (3.17)

where α and ρ are the smooth and range parameters, respectively and Φ(·) is the standard
Normal distribution (see Eq. A.3). The extremal coefficients of the Brown-Resnick processes
used in the example are shown in Fig. 3.12 (b) and (d) as function of the distance h,
respectively. In both cases, θ reaches approximately the same value for large distances h,
but θ increases much more rapidly in case (b) than in (d). Thus, for locations x and x+ h
closer together, there is a stronger dependence in case (d). Considering the realizations of
the max-stable processes, this is reflected in stronger fluctuations of the realization shown
in (a).
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Figure 3.12: Dependence measure exemplified by two different Brown-Resnick process (red and
blue): (a) and (c) present one realization of the respective processes, (b) and (d) show the extremal
coefficient θ as function of the distance h of two locations x. Apart from the distance, θ depends
on the smooth α and range ρ parameter of the Brown-Resnick process.

3.4.2 Applying a Max-Stable Process as IDF Model
So far, we have considered max-stable processes in the spatial context. However, the
variables (x, y) can likewise describe other coordinates, such as time. Tyralis and Langousis
(2019) have proposed a so-called duration space, which uses the duration d as a unidimen-
sional coordinate analog to x. This way, we can use max-stable processes to model the
maxima of different durations with explicit consideration of their dependence. In the study
by Jurado et al. (2020), we investigated whether this method is suitable for the estimation
of IDF curves and compared its performance with that of the independent d-GEV model.

Main Findings The results of the conducted simulation study show that, if the assumptions
of the max-stable process model are fulfilled, accounting for the dependence leads to an
improvement especially when estimating quantiles with high non-exceedance probabilities
and in the case of strong dependence. However, when applied to observations the explicit
modeling of the dependence had only a minor impact on the model performance, despite the
higher complexity of the model. For the 6 stations considered in the case study, we found
that modeling the dependence mostly led to minor improvement for durations 1 h < d . 48 h
but to a minor disadvantage for longer durations. The study does not provide any
information about sub-hourly durations since these were not included in the analysis.

Considering the distance h in the duration space, we found that the euclidean distance
he = |dj − di| does not provide an adequate distance measure, as it led to different
dependence characteristics for shorter durations compared to longer durations. As an
alternative measure we suggest to use the logarithmic distance hl = ln(dj)− ln(di) under
which the assumption of isotropic dependence seems to be more reasonable. Even though
the logarithmic distance appears to be the better choice for modeling the dependence

46



3.4 Dependence Between Maxima of Different Durations

between durations, the usage of both distance measures resulted in very similar quantile
estimates. This again leads us to the conclusion that the model for the dependence does
not considerably affect the quantile estimates. We suspect that it has a stronger impact on
the resulting uncertainties, however, comparing the uncertainty estimates was beyond the
scope of the study.

In conclusion, the assumption of independent maxima appears to be an acceptable choice
when the aim is merely to provide pointwise quantile estimates. Davison et al. (2012)
came to a similar conclusion when analyzing different models for the spatial dependence of
precipitation extremes.
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Abstract
Given that long time series for temporally highly resolved
precipitation observations are rarely available, it is necessary to
pool information to obtain reliable estimates of the distribution
of extreme precipitation, especially for short durations. In
this study, we use a duration-dependent Generalized Extreme
Value distribution (d-GEV) with orthogonal polynomials of
longitude and latitude as spatial covariates, allowing us to pool
information between durations and stations. We determine the
polynomial orders with step-wise forward regression and cross-
validated likelihood as a model selection criterion. The Wupper
River catchment in the West of Germany serves as a case study
area. It allows us to estimate return level maps for arbitrary
durations, as well as intensity-duration-frequency curves at any
location—also ungauged—in the research area. The main focus
of the study is evaluating the model performance in detail using
the Quantile Skill Index, a measure derived from the popular
Quantile Skill Score. We find that the d-GEV with spatial
covariates is an improvement for the modeling of rare events.
However, the model shows limitations concerning the modeling
of short durations d ≤ 30min. For ungauged sites, the model
performs on average as good as a Generalized Extreme Value
distribution with parameters estimated individually at the
gauged stations with observation time series of 30–35 years
available.
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4 Estimating IDF Curves Consistently over Durations with Spatial Covariates

Figure 4.1: Graphical abstract illustrating the order of the methods used in this study to obtain,
e.g., return level maps of various durations.

4.1 Introduction
Extreme precipitation events are often associated with hazards such as flooding and the
resulting damage. In Germany, many destructive floods have occurred in recent decades,
i.e., the Elbe floods in 2002 and 2013. Weather conditions favoring the occurrence of
heavy rainfall events are likely to increase with global warming (Hattermann et al., 2013)
in Germany as well as in many places worldwide (Seneviratne et al., 2012). Therefore,
it becomes even more important to adequately estimate occurrence probabilities of pre-
cipitation amounts and intensities, as this information is needed for the design of water
management systems. These range from urban drainage systems to river and creek design
and retention basins. Therefore different stakeholders need information on the occurrence
of extreme precipitation for different durations. Consequently, it is necessary to understand
the relationship between precipitation intensity, duration, and exceedance-probability.

For a single location, this relationship can be represented graphically in intensity-duration-
frequency (IDF) curves, a commonly used tool for the design of hydrological structures
(Chow, 1953). However, there is no uniform procedure for estimating IDF curves, and
different countries have different regulations for which method to use. In Germany, IDF
curves for the entire state region are currently provided by KOSTRA-DWD (DWD, online),
a project of the German Meteorological Service. The KOSTRA-DWD IDF curves are the
results of a multi-step procedure and a set of different strategies for different ranges of
durations (Junghänel et al., 2017). In the USA, the National Weather Service provides
estimates of precipitation frequency via an online portal (NOAA, online). These estimates
are based on a regional frequency analysis (Hosking and Wallis, 1997; Perica et al., 2018).
The model used by the Swiss Weather Service is based on a seasonal Bayesian approach
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(Fukutome et al., 2018). The results are also made available online (MeteoSwiss, online).
Recent developments also suggest a wide range of methods, such as the use of radar data
(Goudenhoofdt et al., 2017), cluster analysis to group stations (Olsson et al., 2019) or
support-vector machines to estimate extreme events based on reanalysis data (Gaur et al.,
2020).

In statistics, the definition of extreme events is based on their rare occurrence. Their
statistical analysis is therefore based on small samples and it is necessary to use those
efficiently in order to extrapolate from observed to unobserved levels of intensity. Extreme
value theory provides several approaches to this problem (for an introduction, see Coles
(2001)). In geosciences, the block-maxima approach is popular. This approach is based on
modeling the probability distribution of block-maxima (e.g., monthly or annual maxima)
with a Generalized Extreme Value (GEV) distribution. The longer the time series are,
the more reliable the estimates are. Even if relatively long time series of 50 years or more
exist at many places in Germany for daily precipitation sums, similarly long time series
for observations at shorter durations are still an exception, since recording at such high
frequencies is based on relatively new technology. Therefore, pooling existing information
across duration can be beneficial.

In this study, we model both spatial variations of the probability distribution as well as
its dependence on the accumulation duration in a consistent way. This approach allows us
to include data of several gauge stations and a range of durations simultaneously in our
estimation and hence makes efficient use of the available data. Instead of modeling the
probability distribution individually for different precipitation durations, Koutsoyiannis
et al. (1998) proposed a duration-dependent distribution based on empirical dependencies of
distribution parameters on duration. This approach provides the advantages of parameter
parsimony and the direct availability of estimates for all durations within the interval
considered. This was already employed in previous studies (Lehmann et al., 2013; Ritschel
et al., 2017; Van de Vyver and Demarée, 2010). Similar to the studies of Blanchet et al.
(2016); Lehmann et al. (2013); Stephenson et al. (2016), who used a single model for a
wide range of durations, we model a duration range spanning from one minute to five days.
Thereby, we aim to transfer knowledge from the long durations, for which long time series
exist, to the short durations.
Extending the model to include spatial variations not only provides the opportunity

to estimate the IDF relationship for several locations simultaneously, but we expect that
pooling information from several stations will reduce the uncertainties of parameter estima-
tion, especially for stations with short observation time series. Many different statistical
methods are used to model the spatial variation of the IDF relationship. The most straight-
forward way would be the spatial interpolation of the estimated distribution parameters,
as done in (Blanchet et al., 2016). A commonly used approach is regional frequency analy-
sis, which combines data from stations with similar characteristics (Hosking and Wallis,
1997). In contrast, spatial variations can be modeled in a single step, using Bayesian Hier-
archical Models (BHM) (Davison et al., 2012; Dyrrdal et al., 2015; Lehmann et al., 2013),
Vector Generalized Linear Models (VGLM) (Fischer et al., 2019; Van de Vyver, 2012), or
Vector Generalized Additive Models (VGAM) (Yee and Stephenson, 2007), which simplifies
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the estimation of uncertainties. The BHM’s provide the uncertainty estimates directly,
while for VGLM’s and VGAM’s, they can be obtained using, for example, the bootstrap
method (Mélèse et al., 2018). Fischer et al. (2019) used a GEV to model daily precipitation
sums and showed that the inclusion of Legendre polynomials for longitude, latitude, and
altitude as covariates in location, scale and shape parameter contributed to a considerable
improvement of the model compared to station-wise modeling.
Here we use the idea of Koutsoyiannis et al. (1998) in the framework of VGLMs to

combine the modeling of multiple durations and spatial variations by integrating orthogonal
polynomials of longitude and latitude as covariates to describe the spatial variability of the
parameters of a duration-dependent GEV (d-GEV).

We expect that this will allow us to provide estimates for all durations within the range
that is used for parameter estimation and, to a certain extend, also to extrapolate beyond.
Furthermore, we obtain IDF relations at ungauged sites and improve the estimates for
locations and durations with existing but short time series. To verify these assumptions,
we test the approach in the study area of the Wupper catchment in the West of Germany
and use the Quantile Skill Score (Bentzien and Friederichs, 2014) in a cross-validation
setting (Wilks, 2011) to evaluate the model performance for a range of return periods and
individually resolved for all durations. We focus on two research questions:

1. Under which conditions is the spatial d-GEV approach an improvement compared to
the separate application of the GEV for each duration and station?

2. Does the spatial d-GEV approach provide reliable estimates at ungauged sites?

In Section 4.2, we describe the data on which the study is based and the methods used
for modeling, i.e., parameter estimation, model selection, estimation of confidence intervals
and verification. The verification results are presented in Section 4.3.1. Return level maps
and IDF curves are provided in Section 4.3.2. The results are discussed in Section 4.4, the
last section summarizes methods, results and conclusions.

4.2 Methods
We integrate spatial covariates for the parameters of a duration-dependent GEV (d-GEV)
to model extreme precipitation, both in space and over a range of durations. As a case
study, we use data form the area of the Wupper River catchment. The covariates for the
d-GEV parameters are selected through step wise forward regression and the model results
are then verified using the Quantile Skill Score. Finally, confidence intervals for the IDF
curves can be obtained using the bootstrap method. This section presents the data and
describes the methods used throughout this study.

4.2.1 Data

We carry out a case study in an area surrounding the catchment of the Wupper River
in North Rhine-Westphalia in western Germany. For this purpose we use precipitation
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Figure 4.2: Study area containing 92 gauge stations with different measurement periods. The
black line borders the Wupper catchment. Gauges marked white are those used as example
stations (Schwelm (square) and Solingen-Hohenscheid (diamond)). The altitude is coded along
a grey scale and stems from http://www.diva-gis.org/gdata, river shapes come from https:
//www.openstreetmap.org.

measurements from 92 gauge stations, shown in Figure 4.2. The Wupper River is a right
tributary of the Rhine with a length of 116 km, whereby the Wupper catchment, represented
by a black line, has a moderate area of 813 km2. As the area extends from the Cologne-
Bonn lowlands in the west to the Bergisches Land in the east, different altitudes are well
represented by the stations and a great variability in topographic shapes is covered.

The used gauge stations are operated by two different institutions: the German Meteo-
rological Service (DWD) (https://opendata.dwd.de/climate_environment/CDC/obs
ervations_germany/climate/; DWD CDC, 2019, 2021) and the Wupperverband (WV)
(https://www.wupperverband.de/). The station properties are summarized in Table 4.1.
Notably, the measuring intervals at the respective stations differ.

Observations were accumulated to multiples of their original measuring interval, resulting
in time series for 15 different durations: 1, 4, 8, 16, 32 min, 1, 2, 3, 8, 16 h and 1, 2, 3, 4, 5
days. For each station the annual maxima of these respective time series were considered.
Whereby, years with more than a total of 20 days of missing values were discarded. For
gauge stations that are within 250m of each other and do not vary more than 10m in
height, the measurements were grouped, to avoid very high correlations of the annual
maxima. For stations that are grouped together, only those available values per year
resulting from the higher measurement frequency were taken into account. Hence our data
set contains a total of 24,304 annual precipitation maxima for all stations and durations
combined. We provide the annual maxima as a data set online as supplementary material.
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Table 4.1: Properties of precipitation gauge stations.
Provider Number of Stations Measuring Interval Device Length of Time Series

DWD 69 1 day Hellmann 9–121 years
DWD 17 1 min Pluvio 5–14 years
WV 6 1 hour Pluvio 38 years

4.2.2 d-GEV as a Model for Annual Maxima for Different Durations

Extreme value theory (EVT) provides methods for the statistical description of the tail of
probability distributions and thus allows to estimate probabilities of very rare or even not
yet observed events. The following descriptions are based on the introduction by Coles
(2001). The basis of EVT is the Fischer-Tippett-Gnedenko Theorem, which essentially
states that under certain assumptions the probability distribution of block maxima can be
approximated by the Generalized Extreme Value (GEV) distribution. More precisely, for
n independent and identically distributed copies Xi of a random variable X, we define the
block-maximum as

Mn = max{X1, ..., Xn}. (4.1)

If for block-size n→∞ the distribution of the properly normalized Mn converges to a
non-degenerate distribution, then for a finite but large n the non-exceedance probability

Pr{Mn ≤ z} ≈ G(z), (4.2)

can be modeled with the Generalized Extreme Value distribution (GEV)

G(z;µ, σ, ξ) = exp
{
−
[
1 + ξ

(
z − µ
σ

)]−1/ξ
}
, (4.3)

defined on {z : 1 + ξ(z − µ)/σ > 0}, with location parameter ∞ < µ <∞, scale parameter
σ > 0 and shape parameter −∞ < ξ < ∞, ξ 6= 0. Therefore the GEV can be used to
model the annual precipitation intensity maxima for a certain precipitation duration d,
e.g., daily precipitation sums.

Station-Wise Model for a Range of Durations (d-GEV)

In order to describe the relationship between precipitation intensity, duration and frequency,
(i.e., non-exceedance probability), it is necessary to model the precipitation intensity maxima
over a range of durations. The classical approach consists of two sequential model steps
(Chow et al., 1988; Singh, 1992). The first step is to separately estimate an extreme value
distribution, e.g., the GEV, for a certain number of durations. In the next step, certain
selected quantiles of the individual distributions are fitted using an empirical function with
two to three parameters, which describes the relationship between intensity and duration.
A detailed summary of frequently used empirical functions can be found
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in (García-Bartual and Schneider, 2001). Koutsoyiannis et al. (1998) demonstrated that
all these empirical models are special cases of the more general form with 4 parameters

qp = ω

(dν + θ)η , (4.4)

with intensity quantile qp corresponding to the non-exceedance probability p, duration d and
with the non-negative coefficients ω, ν, θ, η, where νη ≥ 1. They showed furthermore that
the assumption ν = 1 is a sufficiently good approximation, resulting in a three parameter
IDF model.
Their proposal is to implement Equation (4.4) with ν = 1 directly into the parameters

of the used extreme value distribution, to estimate the IDF curves in a considerably more
consistent approach. Thus, an extreme value distribution is obtained in one step that is
valid for a whole range of durations. We follow the ideas of Koutsoyiannis et al. (1998) for
the dependence of the GEV (Equation (4.3)) parameters on duration:

σ(d) = σ0(d+ θ)−η, (4.5)
µ(d) = µ̃ · σ(d), (4.6)
ξ(d) = const. (4.7)

The dependence of location and scale parameters on duration is described using duration
offset θ ≥ 0 and duration exponent 0 < η ≤ 1. Furthermore, σ0 > 0 can be interpreted as
a scale offset, since it indicates the scale parameter of the GEV distribution at d = 1− θ.
Re-parameterizing the location µ̃ = µ(d)/σ(d) and inserting relation Equation (4.5) into
Equation (4.3) results in a duration-dependent Generalized Extreme Value distribution
(abbreviated as d-GEV)

G(z, d; µ̃, σ0, ξ, θ, η) = exp
{
−
[
1 + ξ

(
z

σ0(d+ θ)−η − µ̃
)]−1/ξ

}
. (4.8)

This model describes the distribution of precipitation block maxima for a whole range of
durations, with only two additional parameters than the GEV for one single duration.
The distribution’s quantiles qd,p for a duration d, corresponding to the non-exceedance

probabilities p, are equal to intensity-duration-frequency (IDF) relationships

qd,p = µ̃σ0
(d+ θ)η + σ0

ξ(d+ θ)η
[
1− {− ln (p)}−ξ

]
. (4.9)

Whereby the parameters θ and η, respectively, describe the curvature for short durations
and the slope for longer durations of the resulting IDF curves shown in a double-logarithmic
plot. Hence, we can use the d-GEV to model annual precipitation intensity maxima at a
single station over a range of durations simultaneously. In the following we will call this
approach station-wise d-GEV. Its advantage is the reduction of the number of parameters
needed to be estimated. More precisely, 3nd + 3nq parameters would be required to model
nq IDF curves using Equation (4.4) with ν = 1. This is because we would first have to
estimate the three parameters of the GEV distribution (Equation (4.3)) for a number of
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durations nd and then the three parameters of Equation (4.4) for each quantile. In contrast,
we only need to estimate five parameters to model the distribution for all durations as well
as the dependency of any quantile on duration in one step using the d-GEV (Equation (4.8))
Additionally, we consider a special case for time series with sampling interval d ≥ 1h

(e.g., hourly or daily): As the curvature (departure of a straight line) of the IDF relation
shown in a double-logarithmic plot is only visible for small durations d < 1h, we assume
θ = 0 (i.e., no curvature) for durations d ≥ 1 h. Consequently, for gauges with observations
sampled at hourly or longer sampling interval, θ is not estimated but set to zero.

Adding Spatial Covariates

The station-wise d-GEV approach already enables interpolation and pooling of information
across durations. We further extend this approach in the framework of vector generalized
linear models (VGLM) (Yee and Stephenson, 2007), to additionally allow for interpolation
and pooling of information between gauge stations. We therefore model the spatial
variations of every d-GEV parameter φ ∈ {µ̃, σ0, ξ, θ, η} using a generalized linear model
(GLM) of the form

lφ(φ) = φ0 +
I∑
i=1

βφi xi, (4.10)

with the parameter specific link function lφ(·), intercept φ0 and regression coefficients βφi
and the covariates xi. We implemented a function for parameter estimation based on
maximizing the likelihood for the d-GEV with spatial covariates. This function is available
as package IDF for the R environment (R Core Team, 2020; Ulrich and Ritschel, 2019).
Typically the choice of a link function ensures parameters to be positive or be within a
predefined range. Here, we implemented intervals for parameter directly into the optimizer
and thus used the identity lφ(φ) = φ as link function for all parameters.

Following Fischer et al. (2019), we intended to use orthogonal polynomials of longitude,
latitude and altitude as covariates for the d-GEV parameters to model the spatial variations.
However, since the area of our investigation is small and longitude and altitude are highly
correlated in this area, we only use orthogonal polynomials of longitude and latitude.
These polynomials are produced using the function poly from the package stats in the R
environment (R Core Team, 2020). We also add interactions resulting from the products
of the respective terms. This yields the following model for each d-GEV parameter

φ = φ0 +
J∑
j=1

βφj Pj(lon) +
K∑
k=1

γφk Pk(lat) +
J∑
j=1

K∑
k=1

δφj,k Pj(lon)Pk(lat). (4.11)

Considering the size of the study area, we expect that a maximum order of J = K = 6 is
sufficient to model the spatial variations within. We maximize the likelihood to obtain
estimates of the intercepts φ0 and regression coefficients βφj , γ

φ
k , δ

φ
j,k.

Equation (4.11) models the spatial variation (with longitude and latitude) of d-GEV
parameters; in general, it takes on different values for different stations s as longitude and
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latitude vary with station location. This results in a different d-GEV distribution at every
station s (and in between stations at arbitrary locations (lon,lat)).
Assuming independent observations (even across durations) leads to a factorization of

the likelihood for the parameters given the observations Z

L(µ̃,σ0, ξ,θ,η | Z) =
∏
s∈S

∏
d∈D

∏
n∈N

g(zs,d,n, d | µ̃s, σ0s , ξs, θs, ηs), (4.12)

where g is the probability density function of the d-GEV, Z is a vector containing annual
maxima for different stations s, durations d and years n and µ̃, σ0 ,ξ ,θ and η are vectors
containing the d-GEV parameters at each station. Strictly speaking, Equation (4.12) is
only valid under the assumption that the observations in Z are independent. We are
aware that there is some asymptotical dependence between the annual maxima at nearby
stations (for an overview on the topic, see (Davison et al., 2012) ), as well as between
the annual maxima for different durations (Jurado et al., 2020; Tyralis and Langousis,
2019). However, Jurado et al. (2020) showed that the use of a model for IDF curves
that accounts for asymptotical dependence between durations had a limited improvement
on the performance of predicted return levels, with the increased model complexity of a
max-stable process. Davison et al. (2012) also suggests that spatial dependencies can be
neglected for the estimation of point-wise return levels. Throughout our study, we will
assume independence between the annual maxima of different durations and neighboring
stations.

To obtain a parsimonious model, we use a selection procedure to determine which of the
regression coefficients in Equation (4.11) are actually needed.

4.2.3 Model Selection

Choosing J = K = 6 in Equation (4.11) as the maximum order of the orthogonal
polynomials for modeling the five d-GEV parameters results in 48 terms in the predictor
(covariates) and thus for the 5 parameters yielding 25·48 possible models. Hence, the model
selection is a challenging and also crucial task. We apply a step-wise forward regression,
where we iteratively add one covariate to each of the parameters in a predefined order. If
the addition of the covariate to the parameter model results in a better score, the model
is augmented with this covariate. Since the d-GEV parameters are not independent of
each other, the order in which the covariates are added strongly influences the result of the
model selection. We chose the sequence θ → η → σ0 → µ̃→ ξ, according to the order in
which the parameters occur in Equations (4.5)–(4.7). However, this is just one of many
possible options that could be considered. A more efficient strategy for model selection
based on boosting (Pasternack et al., 2021) is currently under investigation for this use
case.

We use the cross-validated likelihood as a criterion for model selection. For this purpose,
we carry out a k-fold cross-validation with a small number of folds k = 2, as suggested
by Arlot and Celisse (2010). To ensure independence of the cross-validation sets and equal
distribution of data from different stations and durations, the cross-validation subsets are
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Figure 4.3: Final model selection result. For each d-GEV parameter, the added covariates are
shown as colored boxes, according to the order of their selection.

drawn from every other year. The forward selection is stopped when the cross-validated
likelihood stops increasing.
This approach results in a model with 24 coefficients in total. The covariates selected

for each of the d-GEV parameters, are presented in Figure 4.3 along with the order of
their selection. The parameters differ greatly in the number of covariates. From the large
number of covariates in η we conclude that this parameter varies particularly strongly in
space.

4.2.4 Verification

Since estimates of the maxima distributions’ tail (upper quantiles) are particularly important
in this case, we evaluate the performance of the d-GEV model through cross-validation
using the Quantile Score (QS) (Bentzien and Friederichs, 2014). This score allows a detailed
analysis for individual non-exceedance probabilities. The QS associated with exceedance
probability p is the weighted mean difference between observations on and the modeled
quantile qp

QS(p) = 1
N

N∑
n=1

ρp(on − qp), (4.13)

where the check loss function ρp is defined as

ρp(u) =
{
pu , u ≥ 0
(p− 1)u , u < 0.

(4.14)

Therefore, QS ≥ 0, is negatively oriented with optimal value at zero. Thus the model
performance can be examined for any non-exeedance probability p ∈ (0, 1). However, the
result may be less reliable when only few data are available for the verification of high
probabilities (upper quantiles).
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We use two different verification strategies: (1) to assess the performance in detail, we
calculate QS at each station s for a certain duration d and probability p

QSs,d(p) = 1
|Ys,d|

∑
y∈Ys,d

ρp(os,d,y − qs,d(p)) , (4.15)

where |Ys,d| is the cardinality of Ys,d, the set of years the score is evaluated for; (2) for an
overview of model performance in the study area, we average QS over stations

QSd(p) = 1
Sd

Sd∑
s=1

QSs,d(p) , (4.16)

where Sd is the number of stations, for which a time series for duration d exists. With a k-
fold cross-validation experiment, we assess the model’s out-of-sample performance using
Equation (4.15) (Hastie et al., 2009; Wilks, 2011). Hence, we partition the data into k
sets Ys,d containing each nval = |Ys,d| = 3 years of data. This results in a varying number
of sets depending on the length of the time series. Successively, each set is used once for
validation, the remaining for training. Therefore, the number of years used for training
also depends on the length of the time series. For the station-wise model the training set
consists of the remaining years of data at the station under investigation; for the spatial
model the training set additionally contains all observations from all other stations.

Finally, we compare the cross-validated score of the model QSM with the cross-validated
score of a reference model QSR using the Quantile Skill Score (QSS) (Wilks, 2011)

QSSM (p) = QSM (p)−QSR(p)
0−QSR(p)

= 1− QSM (p)
QSR(p)

. (4.17)

with QSs,d(p) (cf. Equation (4.15)) to evaluate QSS at each station s and QSd(p) (cf.
Equation (4.16)) to assess performance across the study area. QSSM (p) ∈ (−∞, 1] is
positively oriented and optimal at 1, representing the gain in performance (QSM (p) −
QSR(p)) relative to the difference between a perfect and the reference model (0−QSR(p)).
If, however, the model performs worse than the reference, QSS is negative and the

interpretation less intuitive. We thus define a Quantile Skill Index (QSI) as a combination
of the model’s skill with respect to a reference QSSM (p) and the skill of the reference with
respect to the model QSSR(p)

QSI(p) =
{
QSSM (p) ,QSM (p) ≤ QSR(p)
−QSSR(p) ,QSM (p) > QSR(p) .

(4.18)

Positive values still indicate a gain with respect to the reference while negative values now
indicate a gain of the reference with respect to the model. Now, we have QSI ∈ [−1, 1].
In the following, we distinguish between the QSI calculated using the QS for each station
QSs,d(p) and the QS averaged over stations QSd(p) by referring to the later one as average
QSI and using the notations QSIs,d(p) and QSId(p), respectively. As reference we always
use the GEV for annual maxima at each station and duration separately.
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4.2.5 Confidence Intervals

We obtain 95% confidence intervals for the estimated IDF relation at a given station s,
by applying the ordinary non-parametric bootstrap percentile method (Davison and
Hinkley, 1997). In a simulation study (see Appendix B.2), we compare the coverage of the
95% confidence intervals for the estimated quantiles derived through both the bootstrap
percentile and the delta method (Coles, 2001) under the assumption of no dependence
between block maxima. We find that the coverage for the delta method intervals depends
on the duration and probability of the quantile, for which the confidence intervals are
estimated. In most cases, the coverage deviates strongly (upwards or downwards) from the
nominal 95%. The bootstrapped confidence intervals, on the other hand, show a consistent
behavior for different durations and probabilities with a reasonable coverage for large
enough sample sizes (see Figure B.1).

4.3 Results
We will first present the results of the verification. We use different variations of the
methods presented in Section 4.2.4 to assess different aspects of the model performance.
We then address the estimation of quantiles for spatial maps of return levels, IDF curves
at selected stations; both with their associated uncertainty.

4.3.1 Model Performance

Addressing the two questions posed in Section 4.1, we investigate model performance using
variations of the cross-validation experiment described in Section 4.2.4. An overview is
given in Table B.1.

Overall Performance

We calculate QSId(p) (cf. Equation (4.18)) using the mean quantile score over all stations
QSd(p) (Equation (4.16)) to asses the overall performance in the whole study area. We
furthermore obtain QSId(p) for both, the station-wise d-GEV approach and the spatial
d-GEV approach, to be able to compare them.
For a detailed assessment, we use QSId(p) for all durations used and for the range of
non-exceedance probabilities p ∈ {0.5, 0.8, 0.9, 0.95, 0.98, 0.99, 0.995} associated with re-
turn periods T = {2, 5, 10, 20, 50, 100, 200} years. Results are presented in Figure 4.4 for
both, the station-wise d-GEV (upper panel) and the spatial d-GEV (lower panel). Both
approaches show similar results. Overall, for probabilities p ∈ {0.5, 0.8, 0.9} we see no
or only a small improvement, while higher probabilities show improvements in model
performance. This suggests that, since the station-wise and the spatial d-GEV approach
make more use of the available data, they are both better for modeling rare events than
the approach of modeling each duration at every station separately. Deviations from this
pattern occur: First, strongly negative QSI values are observed for short durations d < 1 h
in a sequence of probabilities. Since this effect is apparent for both approaches, it is thought
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Figure 4.4: Average Quantile Skill Index QSId(p) for different durations d and probabilities p.
Upper panel: station-wise d-GEV. Lower panel: spatial d-GEV. Positive values (red) indicate
an improvement compared to the quantile estimates obtained by modeling each station and
duration separately.

to be due to insufficient modeling of the curvature of the IDF curves in this range using
the d-GEV. Second, for durations d ≥ 24h the station-wise d-GEV approach leads to a
loss of skill at almost all probabilities, and the spatial approach also shows a lower skill
compared to the shorter durations. As mentioned in Section 4.2.1, the length of the time
series varies strongly for different measurement intervals: where most stations with daily
measurements have longer time series than stations with a shorter measurement intervals.
We thus assume that the different behavior for longer durations d ≥ 24h stems from the
longer time series of daily observations used to train the model. In the subsequent section
we examine this assumption in more detail.

Dependence on Time Series Length

A slightly modified verification method investigates the effect of time series length used
for training. We divide each times series such that the series available for training at a
particular station all have a fixed length ntrain. These are then used to train the model
at this station. To this end, each station’s data is split into blocks of years containing
ntrain + nval years each. Depending on the length of the time series for each station and
duration, this will result in a varying number of blocks bs,d. Again, k-fold cross-validation
is used in each block to assess performance as previously described. The resulting bs,d
cross validated scores at each station are then averaged to obtain QSs,d(p). Thereafter, the
analysis again follows as described in Section 4.2.4.
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Figure 4.5: Dependence of the spatial d-GEV model performance on length of the training time
series. Upper panel: Average Quantile Skill Index QSId(p) for different durations d and probabilities
p as seen in Figure 4.4 but rotated. Different columns represent QSId(p) for different numbers
of years in the training set n. Lower panel: Boxplot of the Quantile Skill Index QSIs,d(p) with
probability p = 0.99 dependent on the length of the training time series.

The resulting QSId(p), obtained for different numbers of years nt available to train the
model at a certain station, is presented in the upper panel of Figure 4.5. Advantage and
disadvantage of the spatial d-GEV is represented through colors red and blue, respectively;
white indicates a situation with insufficient data to evaluate QSId(p). The two main
features identified in Figure 4.4 recur: (i) an increase of QSId(p) with larger p for all
nt and (ii) a disadvantage of the spatial d-GEV for durations d < 1h for a range of
probabilities. Additionally, we observe a gradual decrease of the QSId(p) with nt. Leading
to the advantage of the spatial model in modeling rare events becoming smaller in each step
until the average QSI fluctuates around zero. This indicates that there is approximately the
same number of stations with gain as with loss in skill. This approach therefore provides us
with the length of the time series of a station, up to which it is beneficial to use the spatial
d-GEV model, instead of a separate GEV model for each time series. As an example, the
QSIs,d(p) for p = 0.99 is shown in Figure 4.5 in the lower panel as a boxplot for various nt.
From this we can see that for nt = 35 there are about as many stations with the spatial
d-GEV being superior as stations where it is inferior to the reference model.
An alternative representation of the QSIs,d(p) is shown in Figure 4.6 for p = 0.99 and

selected values for d and nt. Since the values for the QSI vary strongly, it is more difficult
to detect the relationships between QSIs,d(p) , d , p and nt in this form of presentation.
However, this way it is easier to observe that even with a large positive average QSI,
negative QSI values can occur at individual stations. We further notice that for individual
stations the sign of the QSI can be opposite for different durations. The average QSI
decreases with increasing nt, as more stations with negative QSI appear and the values at
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Figure 4.6: Quantile Skill Index QSIs,d(p) for the spatial d-GEV approach with probability
p = 0.99 for durations d = 1h (upper panel) and d = 24h (lower panel) at all stations, for the
number of training years n = {10, 15, 20, 25} (different columns). Colored dots indicate superiority
of the spatial d-GEV (red) or inferiority (blue), while gray circles show stations without an estimate.

the stations with positive QSI become smaller.

Ungauged Sites

Model performance at ungauged sites can be assessed by disregarding all values at a certain
station for training. Afterwards, the estimates at the location of the station excluded are
compared to the actual observations. This procedure is carried out for each of the stations
in the research area. However, we can only use this approach for the spatial model and
not for the station-based reference model. Even though one might consider to compare
the spatial d-GEV model to another spatial modeling approach, here we continue to use
the GEV applied separately for each duration and station as reference model to keep the
performance of the reference model as consistent as possible. We use the method described
in the previous section to train the reference model with a fixed number of years at the
station under investigation. Although the spatial d-GEV model is always trained on all
available data except for the excluded station, we compare the model and reference with
the same validation data set in each cross-validation step. Figure 4.7 shows the results
for the average QSI with every column representing a different reference model associated
to the number of years used for training, but the spatial d-GEV model in each column is
trained on identical data.

This provides us with an approximate estimate of what is comparable to the performance
of the spatial model at ungauged sites. Therefore we conclude that in our study area
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Figure 4.7: Average Quantile Skill Index QSId(p) at ungauged sites for different durations d and
probabilities p, similar to Figure 4.5. For the spatial d-GEV the data at the respective stations are
omitted for fitting, while the reference model uses a different number of years n in the training set
(different columns.)

the estimates of higher quantiles p ≥ 0.98 at ungauged sites is on average as good as
the estimates based on the GEV for a station with measurements for 30–35 years. The
comparison with Figure 4.5 reveals a strong similarity of the results. From this we conclude
that adding nt years of data at one station only has a minor effect on the estimates of the
spatial model on average. The differences between the columns in Figures 4.5 and 4.7 thus
originate mainly from differences in the reference model.

4.3.2 Quantile Estimation and Uncertainty

The spatial d-GEV allows for estimating the quantiles of the extreme value distribution at
arbitrary locations in our research area for arbitrary durations. Hence we are able to provide
return level maps for any desired duration. The 100-year and 20-year return level maps for
the durations 5, 30min and 1 h are presented in Figure 4.8. With increasing duration, we
observe a shift of the spatial patterns from a minimum in the center of the catchment to
a west-east gradient (d ≥ 1h). In the Wupper catchment area there are three prominent
weather conditions that occur together with precipitation: convective conditions from
south-east and south-west and advective conditions from north-west. The gradient in the
intensity of extreme precipitation of 1 h or longer is plausible regarding the main direction
of advective weather conditions and the increase in elevation towards the east in the study
area. In contrast, the intensity patterns of the shorter events appear to be unrelated to the
weather conditions mentioned above. The spatial variations in the precipitation intensity
are larger for the short durations and the more rare events. Even though a number of
stations placed in the surroundings of the catchment area were included into the modeling,
high gradients can still be detected at the boundaries, resulting from extrapolation.

In addition to the return level maps, classical IDF curves can be obtained at any location
in the study area. Exemplary, Figure 4.9 shows the IDF curves for the station Solingen-
Hohenscheid. The curves represent p ∈ {0.5, 0.75, 0.99}, corresponding to return periods
T ∈ {2, 4, 100} years, together with their 95% confidence intervals. The observations—
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plots.

shown as boxplots—are well represented by the modeled IDF curves. To directly relate the
estimated quantiles to the verification, the values of the QSI for this station are also shown
in the upper panel. The QSI at this station exhibits similar structures as the average QSI.
In the case of this station, the negative QSI values in the range 2 min to 4 h coincide with
an underestimation of the respective quantiles by the spatial d-GEV. This suggests that
the model lacks flexibility for this range of durations. However, the Quantile Score for
these durations might not be very meaningful due to the limited amount of data.

The bootstrap confidence intervals are rather narrow across all durations. They represent
the sampling uncertainty, assuming an adequate model has been selected for the data.
The width of the intervals indicates that the uncertainty of the estimates is larger for
shorter durations. Figure 4.10 compares the confidence intervals at small durations for
the station-wise d-GEV and the spatial d-GEV at two example stations. At station
Solingen-Hohenscheid data is measured at one minute intervals and at station Schwelm
at hourly intervals. As a result of the increased data availability the confidence intervals
based only on the uncertainties of the parameter estimation are smaller for the spatial
model than for the station-wise model. The spatial d-GEV is additionally able to estimate
the quantiles even for durations smaller than the measurement interval, based on the data
of neighboring stations with relatively low uncertainties. This information is not available
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Figure 4.9: IDF-curve estimate for Solingen-Hohenscheid (marked with white square in Figure 4.2)
(lower panel) obtained by using the spatial d-GEV (black dashed lines) and their 95% confidence
intervals (colored areas). Observations are shown as boxplots, where the width of the box is
proportional to the number of data points available at a certain duration. The upper panel shows
the corresponding QSI values at that station following the presentation of Figure 4.4.

using the station-wise model.

4.4 Discussion

Since the QSI varies strongly between individual stations and individual durations, the
assessment of the model performance and its presentation is challenging. However, the
averaged QSI presented in Figure 4.4 allows for some conclusion. We find that the average
QSI for the spatial d-GEV is strongly positive for upper quantiles (large non-exceedance
probabilities p ≥ 0.98). From this, we conclude that the spatial d-GEV approach is an
improvement for modeling rare events since it benefits from the increased data availability
at neighboring sites. However, for a range of smaller durations d ≤ 32min, the skill
decreases for both the station-wise d-GEV and the spatial d-GEV model, compared to the
reference which is based on individual GEV for stations and durations. This suggests that
the d-GEV does not describe the variations in this range of small durations sufficiently
well. Figure 4.9 presents the QSI together with the IDF estimates for gauge Solingen-
Hohenscheid; this figure suggests that the negative QSI values in the range of 2min to
4h are related to an underestimation of the quantiles in this range. This supports the
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Figure 4.10: Bootstrapped 95% confidence intervals for IDF-estimates at the example stations
Solingen-Hohenscheid and Schwelm (marked in Figure 4.2), using the station-wise d-GEV (left
column) and the spatial d-GEV approach (right column).

assumption that the d-GEV is not sufficiently flexible in this range and a more complex
model might be necessary, as suggested in (e.g., Van de Vyver (2018)). Nevertheless, we
only used time series with a maximum of 14 years to investigate the model performance
for sub-daily durations and thus cannot exclude the possibility that the effect may occur
due to insufficient data.
Moreover, the average QSI is lower for durations d ≥ 1h. We believe this is due to a

larger data availability for these durations and thus longer time series are available to
train the reference model. This is supported by investigating the influence of time series
length, where a fixed number of years nt is used to train the model for each duration and
at each station (cf. Figure 4.5). We observe a gradual decrease in the average QSI with the
length of the training time series. We conclude that the advantage of the spatial d-GEV
model over the station-wise GEV model is reduced for longer time series; The pooling of
information becomes less important. We find that for a length of about 35 years, there
are about as many stations with the spatial d-GEV being superior as stations where it is
inferior to the reference model. This implies that in case of a single gauge with a long time
series, the spatial d-GEV approach cannot outperform single site estimates for individual
durations. However, due to the lack of data, we are unable to make any statements about
the behavior of the estimates for d < 1 h with nt. This information would be particularly
helpful for these durations, as here often only short time series are available. Moreover, even
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with a strongly positive average QSI, negative values of the QSI for individual stations, and
durations, occur. Yet, Fischer et al. (2019) showed that even for long time series with more
than 50 years of observations, a GEV model with spatial and seasonal covariates performed
better than separate models for each month and station at almost all stations investigated.
Therefore, the major improvement of the model by adding spatial and seasonal covariates
is not directly applicable to the spatial d-GEV model.
However, a large advantage of the d-GEV model is its ability to interpolate between

durations and stations at the level of distribution parameters and it is therefore possible to
obtain estimates for durations and sites for which no measurements exists in a consistent
way. This advantage has been disregarded in the verification process, where we used
a separate model for individual durations and stations as a reference model. From the
results presented in Figure 4.7, we infer that the model performance at ungauged sites is
comparable to that of a separately applied GEV for an available time series of 30–35 years,
at least for high quantiles p ≥ 0.98. Therefore we conclude that the spatial d-GEV model
provides reliable estimates at ungauged sites. However, the available time series for d ≤ 1 h
are again not long enough to investigate the model performance at ungauged sites for this
range of small durations in this way.

4.5 Summary

In this study, we model annual precipitation maxima simultaneously in space and across
durations. To this end, we integrate orthogonal polynomials of longitude and latitude as
spatial covariates into the duration-dependent GEV proposed by Koutsoyiannis et al. (1998).
This allows for a parameter parsimonious description compared to modeling of individual
stations and durations, efficient use of existing data, and the pooling of information between
stations and durations. We specifically model a wide range of durations from one minute to
5 days in order to investigate to what extent knowledge can be transferred from long obser-
vation time series and whether estimates for stations or durations with fewer observations
benefit from this. We investigate this model in the Wupper catchment with the main focus
on evaluating the model performance. Model validation is based on techniques from forecast
verification: we use a variant of the Quantile Skill Score, the Quantile Skill Index (QSI).
In the presentation used here, this score allows a detailed analysis of the model performance
for different non-exceedance probabilities and durations, simultaneously. As a reference
model that is not based on any empirical relationship between intensity and duration,
the GEV is used to model precipitation maxima independently at individual stations and
durations.

We find that using the spatial d-GEV improves the modeling of rare events of all durations,
as it benefits from greater data availability. Accordingly, this model is advantageous for
stations with short time series and does not necessarily improve the estimation if a longer
time series is available. We also find that the d-GEV model is most likely not flexible
enough to model the whole range of durations sufficiently and that a model with additional
parameters (e.g., (Van de Vyver, 2018)) might be necessary. Therefore we recommend
reducing the duration range in cases where the aim is exclusively the description of short
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durations d ≤ 1h. Future studies will also explore the use of more flexible models to
describe the whole range of durations. We expect that the estimation of further additional
parameters for the duration dependence in these more flexible models will benefit from a
spatial covariates setting.
Since this approach allows us to interpolate between stations and durations, spatial

maps of return levels can be readily obtained for any duration, as well as IDF curves
for any location in the research area. The bootstrap method provides 95% confidence
intervals representing the sampling uncertainty. For the d-GEV with spatial covaiates,
these uncertainties are smaller than for the station-wise d-GEV, since the spatial model
can draw information from both neighboring sites and durations. Uncertainties from the
model selection are not considered. For a reliable estimation of the uncertainties, Mélèse
et al. (2018) suggests a Bayesian Hierarchical Model. In the return level maps we observe
that the spatial patterns change from a minimum in the center of the catchment for short
durations to a west-east gradient for long durations. This is likely related to the main
north-west direction of advective weather conditions in the study area and might be also
linked to the orography.
In this work, we assume that there is no dependence between observations of different

durations. This seems to be reasonably well justified as reported in another study which
investigates the effect of including this dependence explicitly using a max-stable process
for six stations in the same research area ((Jurado et al., 2020) in this issue). We
also assume that there is no dependence between observations at neighboring stations;
this dependence could also be modeled using a max-stable process Davison et al. (2012);
Stephenson et al. (2016). We use the assumption that the IDF relationship does not vary
in time. However, we plan to account for the temporal variations of the IDF relationship
by a straightforward extension of the spatial d-GEV model with further covariates in
future studies. Nevertheless we could demonstrate that the approach presented here allows
obtaining reasonable estimates of return levels for any arbitrary duration or location within
the study domain, performing particularly well for rare events.

Supplementary Materials: The following are available online at http://www.mdpi.com
/2073-4441/12/11/3119/s1 .
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Abstract
Assessing the relationship between the intensity, duration, and frequency
(IDF) of extreme precipitation is required for the design of water manage-
ment systems. However, when modeling sub-daily precipitation extremes,
there are commonly only short observation time series available. This
problem can be overcome by applying the duration-dependent formulation
of the Generalized Extreme Value (GEV) distribution which fits an IDF
model with a range of durations simultaneously. The originally proposed
duration-dependent GEV model exhibits a power-law-like behaviour of
the quantiles and takes care of a deviation from this scaling relation
(curvature) for sub-hourly durations (Koutsoyiannis et al., 1998). We
suggest that a more flexible model might be required to model a wide
range of durations (1 min to 5 days). Therefore, we extend the model
with the following two features: i) different slopes for different quantiles
(multiscaling) and ii), the deviation from the power law for large dura-
tions (flattening), which is newly introduced in this study. Based on
the quantile skill score, we investigate the performance of the resulting
flexible model with respect to the benefit of the individual features (curva-
ture, multiscaling and flattening) with simulated and empirical data. We
provide detailed information on the duration and probability ranges for
which specific features or a systematic combination of features leads to
improvements for stations in a case study area in the Wupper catchment
(Germany). Our results show that allowing curvature or multiscaling
improves the model only for very short or long durations, respectively,
but leads to disadvantages in modeling the other duration ranges. In
contrast, allowing flattening on average leads to an improvement for
medium durations between 1 h and 1 d, without affecting other duration
regimes. Overall, the new parametric form offers a flexible and enhanced
performance model for consistently describing IDF relations over a wide
range of durations, which has not been done before as most existing stud-
ies focus on durations longer than one hour or day and do not address
the deviation from the power law for very long durations (2-5 days).
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5.1 Introduction

The number of heavy precipitation events has increased significantly in Europe (Kundzewicz
et al., 2006; Tank and Können, 2003) and worldwide (Hartmann et al., 2013). Such events
are related to flooding and other hazards which can cause severe damage to agriculture
and infrastructure (Brémond et al., 2013). The impact of extreme precipitation depends
on the temporal scale of the event. Short intense convective precipitation exhibits different
characteristic consequences than long-lasting, mostly stratiform, precipitation. Examples
for events on different timescales of minutes to hours, days, and weeks are pluvial or
flash floods (Braunsbach, Germany, May 2016), river flooding (Elbe, Germany, 2013), and
groundwater flooding (Leicestershire, UK, March 2017), respectively.
The definition of precipitation extremes is based on the occurrence probability and is

quantified using quantiles (return levels) and associated occurrence probabilities, often
expressed as return periods in a stationary interpretation. Quantitative estimations of
quantiles and associated probabilities mostly follow one of two popular methods, namely (1)
block maxima and their description with the Generalized Extreme Value (GEV) distribution
— a heavy-tailed and asymmetric distribution — or (2) threshold exceedances and a
description with the generalized Pareto distribution (GPD; e.g., Coles, 2001). Typically,
annual precipitation maxima of different timescales are used to describe extreme rainfall
events. Both GEV and GPD can be used to model the extreme precipitation of a certain
timescale. A common problem for short timescales, i.e., the scarce availability of data
with high measurement frequency, can be overcome by modeling several timescales at once.
Different timescales can be represented as durations over which the precipitation rate is
aggregated and averaged. Most frequently, daily precipitation sums are reported but hourly
or 5-minute aggregation are also common.
A way to describe the characteristics of extremes for various durations (timescales)

are intensity-duration-frequency (IDF) curves, which describe the relationship between
extreme precipitation intensities, their duration (timescale), and frequency (occurrence
probability or average return period). These relations have been known since the mid-20th
century (Chow, 1953) and have become popular among hydrologists and meteorologists. In
estimating these curves, one tries to exploit the assumption of a smooth intensity-frequency
relationship across different durations. This helps for interpolating between durations, and
it can also improve the estimation for short durations, as shorter time series are often
available for those.
Historically, a set of GEV distributions is sought individually for a set of durations

(e.g., 5min, 1h, 12h, 24h, and 48h) leading to quantile (return level) estimates for specified
probabilities (return periods) for all durations considered. In a second step, for a given
probability a smooth function is estimated by interpolating associated quantiles across
durations (García-Bartual and Schneider, 2001). However, by using a duration-dependent
extreme value distribution (d-GEV) (see the first examples in Menabde et al., 1999; Nguyen
et al., 1998), IDF estimation can be carried out in one step within a single model. To
achieve this, GEV parameters are defined as functions of duration. This approach prevents
the crossing of quantiles across durations and is, thus, considered consistent. Moreover, the
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data are used more efficiently, which simplifies the extension of the model, e.g., the inclusion
of large-scale covariates at a later stage. This will enable first insights into physical effects
beyond the pure statistical evaluation of precipitation.

It is widely agreed that precipitation intensities for given exceedance probabilities follow
a power-law-like function (scaling) across duration (Burlando and Rosso, 1996; Gupta and
Waymire, 1990; Veneziano and Furcolo, 2002) with higher intensities for short durations.
For a range of very short durations (d ≤ 1 h), the scaling assumption does not hold, because
maxima from different durations often originate from the same event. This leads to a
curvature of IDF curves, where intensity no longer follows a power law with decreasing
duration. Bougadis and Adamowski (2006) approached this issue by using two different
duration exponents for small durations and for other durations. A more smooth transition
can be achieved by including the curvature as a duration offset in the parameters of
the GEV distribution without explicitly distinguishing between short and long durations.
Koutsoyiannis et al. (1998) used a model with five parameters to describe the complete IDF
relation for different probabilities (return periods) and across durations. The underlying
idea is based on a reparameterization of the GEV and its three characteristic parameters
of location µ, scale σ, and shape ξ. While shape ξ is held constant for all durations d, it is
further assumed that the ratio between location and scale µ/σ remains constant across
duration d (for details, see Sect. 5.2.3).
Ulrich et al. (2020) built on the approach of Koutsoyiannis et al. (1998) and extended

it to a spatial setting with covariates for the d-GEV parameters. Although using both
consistent modeling and spatial pooling improves model performance, the need for more
flexibility of the IDF curves in longer durations is emphasized and will be addressed in
the present study. Therefore, we aim to look for new parameterization of the IDF curve’s
duration dependence by combining the existing approaches of multiscaling and duration
offset and also extending it by a new parameter, namely the intensity offset.
The commonly used variant of the d-GEV with five parameters (Koutsoyiannis et al.,

1998) might not be flexible enough for a wide range of durations from minutes to several
days. A first approach for extending the d-GEV addresses the simple scaling relation.
This model assumes a scaling that is independent of the exceedance probability (return
period). However, relaxing this assumption leads to so-called multiscaling, which allows for
different scaling-like behavior for different exceedance probabilities (return periods). This
is achieved by introducing another parameter η2, as in Eqs. 5.8 and 5.10 in Sect. 5.2.3.
Then, the ratio between location and scale is not constant anymore. Multiscaling is found
to be effective for durations longer than 1 h (Burlando and Rosso, 1996; Veneziano and
Furcolo, 2002). Van de Vyver (2018) employs the multiscaling approach in a Bayesian
setting. On a global scale different scale parameters have been investigated by Courty et al.
(2019). None of the named studies combine multiscaling with curvature for short durations
but focus on only one of these aspects, while our study is aiming for a combination and
analysis of three different features.
In this study, we compare different ways to parameterize IDF curves, including the

features of multiscaling and duration offset. In addition, we present a new d-GEV parameter,
the intensity offset, which accounts for the deviation from the power law and the flattening
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of IDF curves for long durations. To our knowledge, this comprehensive analysis of different
features has not been conducted before. Section 5.2 lists the data sources and introduces
the different features and their modeling equations, as well as the verification methods,
to analyze modeling performance. In Sect. 5.3, the cross-validated verification results of
all features are shown with respect to modeling performance of different return periods
and durations. For verification, we perform a case study using rainfall gauge data from a
catchment in Germany. IDF curves that include all analyzed features are presented for
selected stations.

5.2 Data and Methods

We use precipitation measurements in an area in and around the catchment of the river
Wupper in western Germany. In order to compare different models for the d-GEV, we use
the quantile skill index (QSI) introduced in Ulrich et al. (2020) within a cross-validation
setting. For the resulting IDF curves, we obtain confidence intervals using a bootstrapping
method and test their coverage with artificial data with known dependence levels in a
simulation study. The data and all necessary methods are explained in the following
section.

5.2.1 Station-Based Precipitation Data

Precipitation sums for the minute, hour, and day are provided by Wupperverband and the
German Meteorological Service (DWD CDC, 2019, 2021). Rain gauges are located in and
around the catchment of the river Wupper in North Rhine-Westphalia, Germany. In total,
115 stations are used. Data from two measuring devices with a distance below 250m are
combined into one station each in order to obtain a longer time series, thus resulting in
a total of 92 grouped stations. However, in cases where measurement series are grouped
together, it is common to have measurements from both instruments for a certain period
of time. Thus, when merging, we decided to use only the observations with the higher
measuring frequency for the analysis. For example, when combining two time series with
hourly and daily data, respectively, the time series of all aggregation levels (durations) are
obtained from the hourly data for the overlapping period. This choice is made because
24-h values from an hourly measurement frequency might show higher intensities since the
24-hour window is shifted hour by hour in order to find the annual maximum. On the
other hand, 24-h values from the daily measurement frequency are recorded for a fixed
day block, i.e., from 8:00 to 7:59 LT (local time). A test of robustness was performed (not
shown) to assess how the estimated IDF curves are affected by the choice of measurement
frequency which is preserved during the time of overlap when merging the time series. For
this purpose, two IDF curves were created, i.e., (1) choosing the maxima from a higher
measurement frequency and (2) choosing the maxima from a lower measurement frequency.
In most cases, there was no relevant difference between both methods.
Years with more than 10% of missing values are disregarded. Some years contain

measurement artifacts, where identical rainfall values were repeated over several time
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Figure 5.1: Left: Number of stations according to the temporal resolution. Right: Station location
(circles) with data availability (circle area size) by temporal resolution (color). The red line within
the map of Germany indicates the Wupper catchment boundary.

steps. After consulting the data maintainers, these years are removed before the analysis.
The data exhibit heterogeneity in terms of the temporal frequency and the length of the
resulting time series. Figure 5.1 presents the availability of data over time (left) and space
(right) for three possible temporal resolutions. More specifically, minute data have been
available since 1968, whereas daily records range back to 1893.

Time series for different durations are obtained from an accumulation over a sample of
durations as follows:

d ∈ {1 min, 4 min, 8 min, 16 min, 32 min, 1 h, 2 h, 4 h, 8 h, 16 h, 24 h, 48 h, 72 h, 96 h, 120 h}
(5.1)

respectively, as done by Ulrich et al. (2020). In the following, numerical values are presented
in hours. We use only the annual maxima of these time series to model the distribution of
extreme precipitation. The original precipitation time series are accumulated with the R
package IDF (Ulrich and Ritschel, 2021). The data set with annual maxima can be found
online and supports the findings of this study (Fauer et al., 2021b).
The set of durations d is chosen such that small durations are presented with smaller

increments than larger durations. In a simulation study, we tested whether using a different
set of durations with a stronger focus on short durations affects the results, but no such
effect could be found (see Appendix C.3).

Minute measurements might be less accurate when only a small number of rain drops is
recorded and measured intensity is affected by sampling uncertainty. However, for events
that are identified as annual maxima, we expect the rain amount to be large enough so
that a higher sampling uncertainty compared to larger measurement accumulation sums
can be neglected.

5.2.2 Generalized Extreme Value Distribution
One of the most prominent ideas of extreme value statistics is based on the Fisher-Tippett-
Gnedenko theorem, which states that under suitable assumptions, maxima drawn from
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sufficiently large blocks follow one of three distributions. These distributions differ in their
tail behavior. The GEV distribution comprises all three cases in one parametric family
and is widely used in extreme precipitation analysis as follows (Coles, 2001):

G(z) = exp
{
−
[
1 + ξ

(
z − µ
σ

)]−1/ξ }
. (5.2)

Here, the non-exceedance probability G for precipitation intensity z depends on the
parameters location µ, scale σ > 0, and shape ξ 6= 0, with z restricted to 1+ξ(z−µ)/σ > 0.
The non-exceedance probability can be expressed as a return period, e.g., for an annual block
size T (z) = 1/(1−G(z)) years. Consequently, return values for a given non-exceedance
probability 0 < p < 1 can be calculated by solving Eq. (5.2) for z, as follows:

z = ([− ln{p}]−ξ − 1)σ
ξ

+ µ. (5.3)

Water management authorities and other institutions rely on return values for different
durations. However, the GEV distribution in the form of Eq. (5.2) is limited to one
selected duration at a time. One way to account for that need is to model each duration
separately and then, in an independent second step, interpolate the resulting quantiles
(return levels) across duration d, as done in the KOSTRA atlas (DWD, online) of the
German Meteorological Service (DWD). One huge disadvantage of this method is that
quantile crossing can occur, meaning that quantiles (intensities) associated with smaller
exceedance probabilities can have higher values than quantiles from larger exceedance
probabilities in some duration regimes. To solve this problem, Nguyen et al. (1998),
Koutsoyiannis et al. (1998), and Menabde et al. (1999) proposed a distribution with
parameters depending on duration d; there is thus only one single model required to
obtain consistent (i.e., non-crossing) duration dependent quantiles (return values). Another
advantage is the involvement of data from neighboring durations in the estimation of GEV
parameters. For the modeling of short-duration rainfall, often very little data are available
than for longer durations d ≥ 24 (one day). Thus, in this setting, information from long
durations has the potential to increase modeling performance for short durations as well.

5.2.3 Duration Dependence
There are multiple empirical formulations for the relationship between intensity z and
duration d. Koutsoyiannis et al. (1998) proposed a general form with five parameters for
IDF curves. Therefore, a reparameterization and extension of the GEV is needed with the
following:

σ(d) = σ0(d+ θ)−η (5.4)
µ(d) = µ̃σ(d) (5.5)

ξ = const. (5.6)

G(z) = exp
{
−
[
1 + ξ

(
z

σ0(d+ θ)−η − µ̃
)]−1/ξ }

. (5.7)
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Figure 5.2: IDF curve examples showing the visualization of different IDF curve features. (a)
Curvature for short durations. (b) Multiscaling. (c) Curvature for short durations, flattening for
long durations, and multiscaling.

Here, µ̃ is the rescaled location parameter, θ is the duration offset, and η the duration
exponent. Scale σ follows a two-parameter power law (scaling relation) of duration d, with
scale offset σ0 being constant for all durations. For d � θ, it is justified to disable the
duration offset feature by setting duration offset θ = 0. The resulting IDF curves (Fig. 5.2a)
have two main features. (1) The curves follow a power law for a wide range of durations
d > 1 (1 h), and the power law exponent (slope in a double logarithmic plot) is described
by a duration exponent η and is equal for all probabilities. (2) The deviation from the
power law (or curvature) for d < 1 (one hour) is described by the duration offset θ.
When applying the GEV separately to every duration out of a set of durations and

interpolating in a second independent modeling step, the number of parameters equals three
GEV parameters times the number of selected durations plus at least three parameters
for interpolating every quantile. For the set of durations chosen here, and for evaluating
five quantiles, this implies estimating 15× 3 + 5× 3 = 60 parameters. For the consistent
approach, estimation is reduced to only five d-GEV parameters, i.e., µ̃, σ0, ξ, θ, and η. A
smaller parameter set is less likely to overfit the data and enables us to better investigate
underlying physical processes.

Models can be further improved by adding the multiscaling feature (Burlando and Rosso,
1996; Gupta and Waymire, 1990; Van de Vyver, 2018) which introduces different slopes,
depending on the quantile (or associated probability). Figure 5.2b) presents how this
feature affects the IDF curves. In order to highlight the effect of the multiscaling, we set
θ = 0, resulting in no deviation from a power law (curvature) for short durations. The
multiscaling feature is added at the cost of one additional parameter η2 (second duration
exponent) in the model, as follows:

σ(d) = σ0d
−(η+η2) (5.8)

µ(d) = µ̃σ0d
−η. (5.9)

Using only the curvature feature, Ulrich et al. (2020) reported decreasing performance in
consistent modeling for longer durations d ≥ 24 (1 d) when compared to using separate
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GEV models for each duration. Our attempt aims at more flexibility in the IDF curve
in the long-duration regime. Therefore, we combine both features, curvature (duration
offset) and multiscaling (second duration exponent), and add a new parameter τ , the
intensity offset, which allows for a slower decrease of intensity for very long durations
d� 24 (Fig. 5.2c). This effect will be called flattening in the following:

σ(d) = σ0(d+ θ)−(η+η2) + τ, (5.10)
µ(d) = µ̃(σ0(d+ θ)−η + τ). (5.11)

Summarizing this section, the following three different features were presented: (1) cur-
vature, described by the duration offset parameter θ, (2) multiscaling, using a second
duration exponent η2, and (3) flattening with the intensity offset τ , which is introduced
in this study. In the following, we use the notation IDFc for a model including only the
curvature feature, i.e., η2 = 0 and τ = 0, IDFm for a model including only the multiscaling
feature, i.e., θ = 0 and τ = 0, and IDFf for a model including only the flattening feature,
i.e., θ = 0 and η2 = 0. Feature combinations are denoted as, e.g., IDFcmf for all features.
The plain duration-dependent model without curvature, multiscaling, and flattening is
denoted as IDF.

5.2.4 Parameter Estimation

Parameters of the d-GEV distribution are estimated by maximizing the likelihood (maxi-
mum likelihood estimation – MLE) under the assumption of independent annual maxima.
Jurado et al. (2020) showed that independence is a reasonable assumption in many cases,
especially for long durations. Their study was performed on an earlier version of the
same data set that was used in this study. Moreover, Rust (2009) showed that in strongly
dependent time series convergence towards the GEV distribution is slower. But, assuming
an appropriate choice of model, dependence does not play a large role. We use the negative
log-likelihood L, to avoid using products of small numbers, as follows:

L(µ̃, σ0, ξ, θ, η, η2, τ | Z) =
N∑
n=1

∑
d∈D
− ln (G(zn,d, d | µ̃, σ0, ξ, θ, η, η2, τ)) , (5.12)

with the number of data points N , the duration set D, data points for each duration zn,d,
and the characteristic parameters of the modified d-GEV µ̃, σ0, ξ, θ, η, η2, τ . The sum of L
over all data points Z is minimized with the R package optim() function (R Core Team,
2020). The R package IDF (Ulrich and Ritschel, 2021), which was already used for the
accumulation, also provides functions for fitting and plotting IDF curves. Its functionality
was extended in the context of this study and now provides options for both multiscaling
and flattening in IDF curves.

Finding reasonable initial values for d-GEV parameters in the optimization process was
a major challenge during parameter estimation, because optimization stability strongly
depends on the choice of initial values. Details about this procedure can be found in
Appendix C.1.
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5.2.5 Quantile Skill Index

After estimating GEV parameters, quantiles q (return levels) can be predicted for a chosen
non-exceedance probability p (or return period T , with T = 1/(1− p)), using Eq. 5.3. To
verify how well a modeled quantile q of a given probability p represents extremes in the
data, we use the quantile score (QS) as follows (Bentzien and Friederichs, 2014; Koenker
and Machado, 1999):

QS(p) =
N∑
n

ρp(zn − q), (5.13)

with a small score indicating a good model. Here, ρp is the tilted absolute value function,
also known as the so-called check function. For high non-exceedance probabilities p, it
leads to a strong penalty for data points that are still higher than the modeled quantile
(zn > q), as follows:

ρp(u) =
{
pu , u > 0
(p− 1)u , u ≤ 0

(5.14)

with u = zn − q. Using this approach, the QS allows for detailed verification for each
probability p and duration d separately, by predicting a quantile intensity for a given p
and d and comparing it with data points zn,d of duration d.
To compare different IDF models in terms of the QS, we require another verification

measure. The quantile skill score QSS compares the quantile score QSM of a new IDF
model M with the quantile score QSR of a reference IDF model R as follows:

QSSM |R = 1−QSM/QSR. (5.15)

The QSS takes values −∞ < QSS ≤ 1 with QSS = 1 for a perfect model. Positive values
QSSM |R > 0 are associated with an improvement of M over R. In case the model M is
outperformed by the reference R, the resulting QSS is negative QSSM |R < 0. In this case,
its value is not easily interpretable. This issue is acknowledged by the quantile skill index
(QSI) suggested by Ulrich et al. (2020). In the case of QSSM |R < 0, reference R and
model M are exchanged and −QSSR|M is used for negative values of the QSI, as follows:

QSI =
{

1−QSM/QSR , QSM ≤ QSR
QSR/QSM − 1 , QSM > QSR.

(5.16)

The QSI has a symmetric range and indicates either (1) a good skill over the reference
when leaning clearly towards 1, (2) little or no skill when being close to 0, or (3) worse
performance than the reference when leaning clearly towards -1.
In this study, the quantile score was calculated in a cross-validation setting. For each

station, the available years with maxima are divided into ncv non-overlapping blocks of 3
consecutive years. Then, for each cross-validation step i, one block is chosen as testing set,
and all the other blocks are used as training data set. For the remaining cross-validation
steps, this procedure is repeated with another block chosen as testing set in each step until
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all blocks have been used as testing sets exactly once. The cross-validated QS is obtained
by averaging the score of all cross-validation steps as follows:

QScv = 1
ncv

ncv∑
i=1

QSi. (5.17)

Then, the QSI is derived from the averaged cross-validated QS of the model, QScv
M , and

the averaged cross-validated QS of the reference, QScv
R , according to Eq. (5.16). If a year

was assigned to the training or testing data set, then all available accumulation durations
are used for training or testing, respectively, to avoid dependence between the test and
validation set.

In order to compare individual model features, we will use the mentioned models without
this specific feature as a reference in the following.

5.2.6 Bootstrapping and Coverage

To provide an estimate of the uncertainty of the intensity quantile estimates in IDF
curves, we obtain 95% confidence intervals using a bootstrapping method. To account
for dependence between annual maxima of different durations we apply the ordinary
non-parametric bootstrap percentile method (Davison and Hinkley, 1997) as follows.
Please note that, in this paragraph, the empirical quantiles used for the confidence

intervals should not be confused with the intensity quantiles, which describe the return
level and are referred to as quantiles as well. For each station, we draw a sample of years
(with replacement) from the set of years with available data. This way, for a chosen year,
all maxima from this year are used, and we expect that sampling in this way maintains the
dependence structure of the data. We then estimate the parameters of the d-GEV, which
is used to calculate the intensity quantile that is connected to a certain non-exceedance
probability (see Eq. 5.3). We obtain a distribution of the estimated intensity quantiles by
repeating this process 500 times. From this distribution, we use the empirical 0.025 and
0.975 quantiles to obtain the upper and lower bounds of the 95% confidence interval of
intensity quantiles.
We conduct a simulation study to examine whether the derived confidence intervals

provide reasonable coverage despite the dependence between the annual maxima of different
durations. Therefore, we simulate 500 samples of data, each with a size of n = 50 years,
with a known dependence between durations. In a first case, samples with no dependence
between durations are obtained by drawing random values from a d-GEV distribution.
Further details on the simulated data can be found in Appendix Sect. C.2. In a second case,
to obtain data with dependence between durations, we use the R package SpatialExtremes
to simulate values from a Brown-Resnick simple max-stable process with known dependence
parameters. We use the range and smooth parameter (ρ, α) ∈ {(1, 0.2), (120, 1), (60, 1)} for
(1) a weak dependence, (2) a strong dependence, and (3) a dependence found for Wupper
catchment (Jurado et al., 2020), respectively. We transform the simulated data from having
Fréchet margins to d-GEV margins with the chosen parameters, as done by Jurado et al.
(2020), and adjust them to the hourly scale used in this study. Then, for the artificial
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data, confidence intervals are obtained by bootstrapping with 500 repetitions, as described
above. For better understanding, this results in a total of 500x500x50 data points and
500 confidence intervals. The ratio of samples in which the confidence intervals cover the
true intensity z and the total number of samples (500) is called the coverage. It can be
calculated for each duration and probability separately.

5.3 Results

Results are presented in the following order: (1) modeling performance is verified with the
QSI for the three different IDF curve features, i.e., curvature, multiscaling and flattening. (2)
IDF curves with all three features are shown for two rain gauges. Curves are presented with
a 95% confidence interval, as created by a bootstrapping method. (3) The trustworthiness of
this bootstrapping method applied to the new model with all three features is investigated
with a coverage analysis, based on simulated data.

5.3.1 Model Validation

The QSI is used to compare the quantile score of a model with that of a reference. In order
to specifically investigate the influence of a single model feature, we use these features
in a model and compare with a reference without this specific feature; e.g., QSIIDFc|IDF
gives the performance for a model including only curvature against the plain reference
without curvature, or QSIIDFcmf |IDFmf gives the performance for the full model including
curvature, multiscaling, and flattening against a reference with multiscaling and flattening
and without curvature (see Sect. 5.2.3).
Figure 5.3 shows the QSI for an IDF model including each of the three features of

curvature, multiscaling and flattening (columns) combined with no other, one other, or
both other features (rows) against a reference model which differs only in the one feature
under investigation (labels on top of the columns). For each QSIIDF1|IDF2 , one panel is
provided in Fig. 5.3. Models and references are listed in Table C.2 in Appendix C.5. In
this way, the potential performance of each feature, e.g. curvature, is analyzed and is
denoted as e.g., curvature skill. QSI values between -0.05 and 0.05 are considered as being
an indicator of no relevant difference between model performances.

The curvature (duration offset θ 6= 0) for short durations can be explained by a stronger
connection between the annual maxima of different durations, which tend to originate
from the same event. Usually, the most intense phase of a heavy precipitation event lasts
for several minutes, and aggregated maxima do not differ much on this scale. Based on
this idea, curvature influences the IDF curve’s shape only for very short durations below
one hour (Fig. 5.2a). The consistently positive QSI values for d = 1/60 (one min) for
the curvature skill support this theory. These results show that this duration regime
d = 1/60 is much better modeled with the curvature, compared to models without this
feature. However, the slope for medium durations, described by the duration exponent (see
Fig. 5.2b), is steeper when using curvature compared to models that do not use curvature.
So, for medium and long durations, models perform equally well or worse when curvature
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Figure 5.3: Quantile skill index (QSI) of the three features (columns) for four different cases (rows)
where the investigated feature is combined with no other (upper row), one other (second and third
row), or both other features (lower row) in model and reference. Column titles indicate the feature
switched on in the model and switched off in the reference. The slightly opaque labels in the panels
indicate which model and reference is used (see also Table C.2). Dots show whether the average
length of the time series over all stations is longer than the return period T = 1/(1− p) (here shown
as probability p) and indicate the verification trustworthiness. Black lines are derived from the
number of years of the station with the longest time series. The verification for rare events (upper
part of each panel) above the black line has to be treated carefully because the data do not cover
this time period. For this verification plot, only stations that provide data on a minute scale were
used.

is used than reference models without curvature, in most cases, on average (see the blue
regimes in Fig. 5.3a). In the absence of multiscaling (rows 1 and 3), a further performance
increase could be found for durations between 8 hours and 5 days.
Multiscaling allows for different slopes of different p quantiles on a double logarithmic

scale. Figure 5.3b shows that this feature increases modeling performance mainly for long,
but also for some sub-hourly, durations when estimating quantiles for small non-exceedance
probabilities. Not using curvature enables a small multiscaling skill gain for sub-hourly
durations (rows 1 and 3 in Fig. 5.3b). An explanation could be that multiscaling tends to let
IDF curves associated with different return periods diverge for short durations and converge
for long durations. This behavior might interfere with the duration offset’s introduction of
curvature in short durations. Furthermore, the presence of curvature leads to a slightly
smaller skill increase for durations longer than 16 hours (rows 2 and 4 in Fig. 5.3b). This
effect agrees with the results from the curvature skill verification (Fig. 5.3a), where it was
shown that curvature improves modeling performance only for very short durations and
has no or a negative effect on medium and long durations.

The intensity offset τ is a new feature, first introduced in this study, which addresses the
empirically observed slower decrease in intensity for very long durations, called flattening.
In the case where curvature is enabled in both model and reference (rows 2 and 4 in
Fig. 5.3c), the flattening feature improves modeling performance slightly for the shortest
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Figure 5.4: Quantile skill index for data with an hourly resolution. The visualization scheme
follows that of Fig. 5.3. Here, all models were trained and tested for durations d≥ 1. Here, all
stations were considered, regardless of the temporal resolution.

duration of 1 minute and strongly for medium durations between 2 hours and 1 day. Here,
the flattening might compensate for the loss in skill that we observe for medium durations
for models with curvature. In these cases, there is a slight loss in skill for very long
durations. In cases where curvature is not used, flattening is not needed as it provides no
clear skill. An explanation for the flattening of the IDF curves in long durations could
be seasonal effects, with annual maxima of short or long durations occurring more often
in the summer or winter months, respectively. These effects are currently under further
investigation.

When modeling only the durations d ≥ 1 (one hour) of all available stations, the models
are rather indifferent towards parameterization (Fig. 5.4). Here, multiscaling and flattening
show some skill improvements for long and medium durations, respectively, similar to that
in Fig. 5.3, but to a much smaller extent when compared to a data set which uses the
whole range of durations from 1 minute to 5 days for both training and testing (Fig. 5.3).

We conclude that the choice of parameters depends on the study purpose. When focusing
on long ranges of durations, we recommend using features like curvature, multiscaling and
flattening. If the focus lies on long durations, or the data do not provide a sub-hourly
resolution, simple scaling models might be sufficient. These recommendations are further
elaborated on in the discussion in Sect. 5.4.

5.3.2 IDF Curves

Figure 5.5 shows IDF curves for the stations Bever and Buchenhofen, where a long
precipitation series is available (51 years with minute resolution and 76 years with daily
resolution in Bever and 19 and 77 years in Buchenhofen, respectively). The difference
in available years for different durations has an impact on the width of 95% confidence
intervals, with uncertainty being larger when little data are available. Noticeably, confidence
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Figure 5.5: IDF curves for two example stations within the Wupper catchment. Empirical
quantile estimates are denoted with the plus signs (+). Confidence intervals are obtained from a
bootstrapping procedure.

intervals for both stations for p = 0.99 and d = 1/60 have a wide range over more than 100
mm/h. Considering that the 100-year return level was not observed in either station, a
wide confidence interval range was expected. For p ≤ 0.8 in Bever, the confidence intervals
remain narrow, even on a minute scale.

5.3.3 Coverage

Confidence intervals in Fig. 5.5 are obtained from a bootstrapping procedure. In the
formulation of the likelihood, we assume the maxima of different durations to be independent.
This assumption might not be justified especially for short durations (see Jurado et al.,
2020), and thus, this dependence must be taken into account when estimating uncertainties.
Disregarding the dependence would result in an underestimation of the uncertainty. To
account for this effect, all annual maxima of each year — for all considered durations —
are always included jointly into a bootstrapping sample. We assume that this procedure
preserves the dependence structure between durations. To investigate this assumption, we
calculate the coverage of simulated data (see Appendix C.2) from (1) a d-GEV distribution
without dependence and a Brown-Resnick max-stable process with (2) a typical dependence
for the Wupper station (Jurado et al., 2020) and (3) a rather weak and (4) strong dependence
between durations (Fig. 5.6). In the first case without any dependence, the displayed
coverage does completely agree with the 95% confidence interval, without any respect to
duration or frequency (probability). When using dependence on a weak or strong level, the
coverage is smaller but still around 90%. This can be interpreted as an underestimation of
uncertainty to a small extent, by the confidence intervals in case of a high dependence. The
true dependence of durations was not investigated in this study and could be lower. That
said, these results suggest that bootstrapping is a suitable tool for estimating confidence
intervals in the presented context.
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Figure 5.6: Bootstrapping coverage. Using a Brown-Resnick max-stable process, the coverage was
determined in order to investigate the reliability of 95% confidence intervals from bootstrapping. A
total of three different levels of dependence were used.

5.4 Discussion

In this study, we show that model performance can be increased when the flattening of IDF
curves in the long-duration regime is taken into account. We assume that this behavior
arises from seasonal effects. That means that the annual maxima of different durations
may not follow the same scaling process. However, this topic is currently under further
investigation (Ulrich et al., 2021b).
The analyzed features — curvature, multiscaling, and flattening — were seen in the

results to have a different impact on modeling performance, depending on the duration
and return period. All features are able to improve the model for certain regimes, but
depending on the problem that is approached, features should be chosen accordingly. If
the focus is on a small timescales of minutes, then the curvature skill is important for a
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good modeling result. When curvature is used and medium to long timescales are also of
importance, then the flattening feature should be used. This helps to compensate for the
deterioration due to curvature over longer durations. Multiscaling is a good choice, if a loss
in skill for short durations can be accepted in exchange fora simultaneous improvement at
long durations, regardless of which other features are requested.
The skills of the features depend on another feature’s presence. This dependence is

strongest for the flattening, which can only improve the model when curvature is used.
The modeling performance of the curvature depends less on the presence of other features.
The same applies to the multiscaling feature.

These suggestions hold for models that are supposed to cover a wide range of timescales
from minutes to days. For data with hourly or more coarse temporal resolution, the skill
gain from using the features is much smaller. Here, flattening can improve the model
slightly on a daily timescale and multiscaling only improves modeling long durations a
little bit but leads to a slight reduction in skill for the hourly timescale.
Additional parameters give the model more flexibility. Including τ in the model allows

one to reduce deviations between model and data points particularly for long durations.
This, in turn, opens the possibility to vary the remaining parameters such that deviations
between model and data points can be reduced in other (e.g. short) duration regimes.
Conversely, this also holds when including θ. In this way, a parameter that changes the
curve in long durations can increase the modeling performance in other durations and even
slightly decrease model performance in long durations in certain cases. In Fig. 5.7, IDF
curves for two models are compared for a chosen station (Bever). The model that includes
flattening (IDFcmf) is able to follow the empirical quantiles in long durations as well as the
model without flattening (IDFcm). However, flattening gives the model the opportunity to
better follow the empirical quantiles in medium durations between 4 h and 1 d which is in
accordance with the results in Fig. 5.3c.
The parametric form of the IDF relation is based on three modifications to a simple

power law which are motivated by our understanding of the rainfall process:, namely
curvature (e.g. Koutsoyiannis et al., 1998) for small durations addressing limits to rainfall
intensity, multiscaling (e.g. Van de Vyver, 2018) taking care of a varying scaling behavior
for events of different strength, and flattening (suggested here) resulting from a mixing of
convective and stratiform generated precipitation extremes from different seasons in the
climate regime under study. Our contribution is to combine these modifications into a
flexible parametric form capable of describing various effects related to rainfall processes.
The resulting model is based on empirical grounds and it can be shown to improve the
description over simple power law models. Other modifications are possible. To our
knowledge, there is no theoretical justification for these forms which can be derived from
first principles for rainfall processes. Since our results might apply only to the geographical
region under investigation, further studies are necessary to find out whether the found
model performances of the different features are generally applicable. The character of the
shape parameter ξ with respect to duration is still unclear, since no linear or log-linear
duration dependence could be found as with the location and scale parameters µ and σ. A
possible approach would be to let the shape parameter vary smoothly across durations in
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Figure 5.7: IDF curve for Bever. A comparison of a model with flattening (IDFcmf) and a model
without flattening (IDFcm). Empirical quantile estimates are denoted with the plus signs (+).

a non-parametric manner but to penalize its deviation from the median over all durations
(Bücher et al., 2021). However, the scarce data availability hampers a more complex
estimation of the shape parameter.

5.5 Summary and Outlook

The aim of this study is to compare and suggest new parametric forms of consistent IDF
curves that are applicable to a large range of durations from minutes to several days
and, therefore, cover events from short-lived convective storms to long-lasting synoptic
events. The dependence on duration is implemented in the location and scale parameter
and allows for three features, i.e., curvature, multiscaling, and flattening. The analysis of
these features enables us to understand more about the underlying physical effects beyond
the subject of return periods and provides more flexible IDF curves that are suitable for
a wide range of durations. The results of our simulation study show that we are able to
provide reasonable estimates of uncertainty using bootstrapping and also with regard to
dependence between durations.

Our findings agree with Veneziano and Furcolo (2002), who found that simple scaling was
adequate for modeling short durations, and multiscaling was adequate for long durations.
Moreover, our conclusion that curvature improves the modeling of short durations indirectly
agrees with Bougadis and Adamowski (2006), who used different slopes for durations longer
or shorter than 1 hour, respectively, and concluded that linear scaling does not hold for
small durations.

Consistent modeling using the d-GEV enables the use of fewer parameters. In this way,
the model can be easily extended, e.g. using physically relevant atmospheric covariates.
Thus, improving the parameterization of the d-GEV is crucial to leading the path for
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further steps. In future studies we plan to include spatial covariates into the estimation of
the newly proposed d-GEV parameters, including intensity offset, in order to use data from
different locations more efficiently. Also, the concept of non-stationary precipitation with
respect to IDF curves is important to consider (see Cheng and AghaKouchak, 2014; Ganguli
and Coulibaly, 2017; Yan et al., 2021) since extremes are expected to vary due to climate
change. For example, Benestad et al. (2021) found a model that enables downscaling of
24-h measurement data to shorter durations without assuming stationarity. However, we
think that implementing atmospheric large-scale covariates (as in Agilan and Umamahesh,
2017) into the flexible d-GEV model proposed here would allow for a better understanding
of the underlying processes. We plan to use this approach to investigate the change in
characteristics of extreme precipitation due to climate change in future studies. While
the choice of method depends on the study target, different approaches have been taken
to create IDF curves, as in Bezak et al. (2016), who used copula-based IDF curves and
reported that IDF curves might be sensitive to the choice of method. This is important to
consider when deciding on the appropriate way to create IDF curves. Moreover, the origin
of flattening in annual maxima for long durations is currently investigated in more detail
(Ulrich et al., 2021b).

The analysis of the performance shows that the new parametric form of the duration-
dependent GEV suggested here, together with the bootstrap-based confidence intervals,
offers a consistent, flexible, and powerful approach to describing the intensity-duration-
frequency (IDF) relationships for various applications in hydrology, meteorology, and other
fields.
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Abstract
We model monthly precipitation maxima at 132 stations in
Germany for a wide range of durations from 1min to about
6 d using a duration-dependent Generalized Extreme Value
(d-GEV) distribution with monthly varying parameters. This
allows for the estimation of both monthly and annual intensity–
duration–frequency (IDF) curves: (1) The monthly IDF curves
of the summer months exhibit a more rapid decrease of intensity
with duration, as well as higher intensities for short durations
than the IDF curves for the remaining months of the year.
Thus, when short convective extreme events occur, they are
very likely to occur in summer everywhere in Germany. In
contrast, extreme events with a duration of several hours up to
about 1 d are conditionally more likely to occur within a longer
period or even spread throughout the whole year, depending
on the station. There are major differences within Germany
with respect to the months in which long-lasting stratiform
extreme events are more likely to occur. At some stations the
IDF curves (for a given quantile) for different months intersect.
The meteorological interpretation of this intersection is that
the season in which a certain extreme event is most likely to
occur shifts from summer towards autumn or winter for longer
durations. (2) We compare the annual IDF curves resulting
from the monthly model with those estimated conventionally,
that is, based on modeling annual maxima. We find that
adding information in the form of smooth variations during
the year leads to a considerable reduction of uncertainties. We
additionally observe that at some stations, the annual IDF
curves obtained by modeling monthly maxima deviate from
the assumption of scale invariance, resulting in a flattening in
the slope of the IDF curves for long durations.
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6 Modeling Seasonal Variations of Extreme Rainfall on Different Timescales in Germany

6.1 Introduction

Extreme precipitation events can potentially cause significant damage (Barredo, 2009;
Davenport et al., 2021; Linnerooth-Bayer and Amendola, 2003), depending on their duration
and spatial extent: extreme convective events can lead to flash floods, while long-lasting
stratiform precipitation may lead to river flooding. In recent years, floods and landslides
following heavy precipitation have become increasingly frequent in many European countries
(Bronstert, 2003; Paprotny et al., 2018), and weather conditions favoring the occurrence
of heavy rainfall events are expected to further increase due to anthropogenic climate
change (Hartmann et al., 2013; Hattermann et al., 2013, and references therein). However,
in addition to regional differences, changes in the frequency and intensity of extreme
precipitation in Europe have been found to also differ between different storm types,
namely convective and stratiform events (Berg et al., 2013), as well as between different
seasons (e.g., Kunz et al., 2017; Moberg and Jones, 2005; Łupikasza, 2017, and references
therein). Hence, it is critical to research and improve our understanding of the occurrence
of extreme precipitation events on different timescales as well as in different seasons in
order to detect and interpret changes in seasonality in a consistent way.
The characteristics of extreme precipitation on different timescales can be summarized

in terms of intensity–duration–frequency (IDF) curves. These are a standard tool in
hydrology for designing hydrological structures and managing water supplies (Durrans,
2010). IDF curves are basically probability distributions for extreme values of precipitation
intensity for a range of durations, or more precisely aggregation times. Thus, they provide
the relationship between precipitation intensity and duration for selected occurrence
frequencies (i.e. exceedance probabilities or return periods). Since differences exist in
the storm characteristics of different seasons, it is essential to provide information on
precipitation extremes on a seasonal basis. Even though a seasonal resolution may not
be relevant for planning or adjusting hydrological structures, it could be beneficial for
stakeholders managing water storage. In addition, a seasonal approach allows for a more
detailed examination of the underlying mechanisms that influence the IDF relationship,
considering that extreme events with different durations may occur in different seasons.
However, while studies exist that investigate seasonality in extreme precipitation of a
selected duration (e.g., Fischer et al., 2018, 2019; Maraun et al., 2009; Rust et al., 2009) or
also in flood frequency (e.g., Durrans et al., 2003; Kochanek et al., 2012; Rottler et al.,
2020), there are few studies regarding seasonal IDF curves (Durrans, 2010; Willems, 2000).

Extreme value theory offers several approaches to describe the occurrence probability of
extreme events (for an introduction, see Coles, 2001). There are numerous applications of
extreme value statistics in hydrology and climatology (e.g., Davison and Gholamrezaee, 2012;
Friederichs, 2010; Katz et al., 2002; Lazoglou et al., 2019; Papalexiou and Koutsoyiannis,
2013; Sebille et al., 2017), making use of two commonly accepted concepts: the block
maxima approach and the peaks over threshold (POT) approach. For the block maxima
approach, the observed time series is divided into blocks of equal length and the probability
distribution of the maxima of these blocks is modeled using a Generalized Extreme Value
(GEV) distribution. For the peaks over threshold (POT) approach, on the other hand,

92



6.1 Introduction

the distribution of exceedances above a chosen threshold is modeled using a generalized
Pareto distribution (GPD), potentially allowing for the use of more data. However, while a
sufficient block size has to be selected for the block maxima approach, the POT approach
requires the choice of a suitable threshold. In the context of this study, it would be
necessary to choose a threshold that varies seasonally as well as with duration, therefore
we consider the block maxima approach to be the more suitable choice.

Since extreme events are by definition rare, the estimation of quantiles (return levels)
corresponding to small exceedance probabilities (return periods) is always associated
with the problem of limited data. When modeling IDF curves, the limitations of the
observations are firstly the spatial coverage and secondly the temporal resolution (Courty
et al., 2019). For example, the German Meteorological Service (DWD) operates a relatively
dense weather station network, so that many long observation time series exist for daily
precipitation measurements. However, fewer stations provide sub-daily measurements and,
in addition, considerably shorter time series are available at these stations, since operating
instruments with hourly or minute by minute measurement intervals has only been feasible
without considerable maintenance for a few decades. The situation is similar in many other
countries (see e.g., Dyrrdal et al., 2015; Olsson et al., 2019). The objective in modeling
sub-daily extreme precipitation events is therefore to use the available data most efficiently,
i.e. to pool the information where possible. Hence, in this study we aim to combine different
information on extreme precipitation within one model, namely information on different
durations as well as seasonal variations.
In order to assess extreme precipitation observations of different aggregation times

simultaneously, it is possible to use a duration-dependent extreme value distribution
(Koutsoyiannis et al., 1998; Lehmann et al., 2013; Van de Vyver, 2018; Van de Vyver and
Demarée, 2010). In the context of the block maxima approach, a duration-dependent
GEV (d-GEV) distribution is derived by implementing empirical dependencies of the GEV
parameters on duration. Thus, we are able to directly obtain quantile estimates for all
durations within the considered interval while additionally reducing the uncertainties of
the estimation by combining information of different durations (Ulrich et al., 2020). To
the best of our knowledge, this approach has so far only been used with an annual block
size. This means that only the annual maxima of each aggregation time are used, and
therefore large amounts of data are neglected for the analysis. However, when modeling
daily precipitation sums, monthly block sizes have been shown to be sufficient to model
extreme precipitation in the midlatitudes (Coles, 2001; Maraun et al., 2009; Rust et al.,
2009). Naturally, it would be possible to model the block maxima separately according
to the month of their occurrence, but the choice of a more complex model that explicitly
includes the intra-annual variations results in a substantial reduction in the number of
parameters that need to be estimated. This can be accomplished by adding smooth periodic
functions as covariates for the GEV parameters (Fischer et al., 2018, 2019). Fischer et al.
(2018) demonstrated that this approach provides more precise quantile estimates than
using an annual block size as it allows for the use of more data.
In this study, we implement monthly covariates analogously for the parameters of the

d-GEV distribution. Hence, we model intra-annual variations of extreme precipitation for a
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wide range of durations from one 1min to approximately 6 days at 132 stations in Germany.
This not only allows us to estimate and compare IDF curves of different months, but we
also expect to obtain more reliable annual IDF curves due to the more efficient use of the
available data. Furthermore, we anticipate that accounting for seasonality and reducing
uncertainties in parameter estimation will provide a better understanding of the underlying
processes. Hence, we expect to gain new insights into the empirical dependencies of GEV
parameters on duration, which are in turn relevant for the modeling of annual maxima.
This study addresses the following research questions:

• How does the IDF relationship at different stations in Germany evolve throughout
the year?

• To what extent do the annual IDF curves based on monthly and annual maxima
differ?

• Does explicit modeling of seasonal variations allow allow us to draw conclusions
aimed at improving the modeling of annual maxima?

The remainder of this study is organized as follows: In Sect. 6.2, we present the data and
methods on which this study is based. We address both the methods used for modeling as
well as for comparing the different models. We then present and discuss the respective
results regarding our research questions in Sect. 6.3. We close with our conclusions in
Sect. 6.4.

6.2 Methods
We aim to model the intra-annual variations of extreme precipitation on different timescales.
For this purpose, we use observations with high temporal resolution from stations in
Germany. We use a duration-dependent GEV (d-GEV) distribution with monthly covariates
to describe the monthly maxima over a range of durations collectively in one model. Thereby,
appropriate models for the intra-annual variations of the d-GEV parameters are selected
through stepwise forward regression. This approach allows us to examine how the IDF
curves vary throughout the year in different areas of Germany. From this seasonal model,
we can derive annual IDF curves as well. We compare these annual IDF curves with those
resulting from directly modeling the annual maxima via a verification procedure using the
quantile skill index. Finally, we verify whether modeling monthly maxima allows for a more
precise estimate of the relationships between GEV parameters and duration. Therefore,
we model each duration separately using the GEV distribution with monthly covariates.
Details of the data as well as all methods involved are described in the following section.

6.2.1 Data
We use precipitation measurements at 132 stations in Germany that provide a temporal
resolution of 1min. Their locations are presented in Fig. 6.1. The majority (129) of
these stations are operated by the German Meteorological Service (DWD). The data were
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Figure 6.1: Map of Germany with positions of all 132 stations considered. Colors represent the
length of the available time series with minute resolution. The longest observation period of 51 years
exists for station Bever-Talsperre (dark blue).

obtained via the Climate Data Center (https://opendata.dwd.de/climate_environme
nt/CDC/ observations_germany/climate, last access: 5 March 2021). The available time
series at these stations range from 19 to 28 years (Fig. 6.1 yellow and green). Additionally
we use three stations operated by the Wupperverband (https://www.wupperverband.de,
last access: 11 June 2021) with time series ≥ 44 years (Fig. 6.1 blue). The station
Bever-Talsperre with the longest observation period of 51 years is used as example station.
The observations were accumulated to the following durations: d ∈ 2{0,1,2,..,13}min =

{1, 2, 4, ..., 8192} min, with the longest duration 8192min ≈ 5.7 days, thus, resulting in 14
time series per station. Of each time series, we consider both the monthly and annual
maxima. Blocks are excluded from the analysis if they contain more than 10% missing
values.

6.2.2 Modeling Annual Maxima of Different Durations

The challenge in modeling extremes is to estimate probabilities of very rare events or those
not even observed yet. Here, we apply the block maxima approach which is commonly used
for this purpose. It is based on the Fisher–Tippett–Gnedenko theorem, which essentially
states that under certain assumptions the probability distribution of block maxima can be
modeled by the Generalized Extreme Value (GEV) distribution (Coles, 2001).

More precisely, let X1, ...Xn be a sequence of n random variables which are independent
and identically distributed (iid), with an unknown distribution. We denote the maximum
of this sequence as

Mn = max{X1, ..., Xn}. (6.1)

In the limit of large block sizes n, the non-exceedance probability can be approximated by
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the Generalized Extreme Value (GEV) distribution

Pr{Mn ≤ z} ≈ G(z), (6.2)

if for n → ∞ the distribution of properly rescaled Mn converges to a nondegenerate
distribution. The GEV distribution

G(z;µ, σ, ξ) = exp
{
−
[
1 + ξ

(
z − µ
σ

)]−1/ξ
}

(6.3)

is defined on {z : 1 + ξ(z − µ)/σ > 0} and has three parameters: location parameter
−∞ < µ < ∞, scale parameter σ > 0, and a shape parameter −∞ < ξ < ∞. Thus, the
position and width of the distribution are specified by µ and σ, respectively, whereas ξ
determines the right tail behavior, resulting in bounded right tails for ξ < 0 and polynomial
decay for ξ > 0. In the case ξ = 0 Eq. (6.3) is interpreted in the limit of ξ → 0, leading to
the Gumbel distribution, with an exponentially decaying tail.

The GEV distribution is thus likely to be a well suited model for the distribution of annual
precipitation intensity maxima of one selected aggregation duration. In order to model the
distribution for different durations simultaneously, Koutsoyiannis et al. (1998) proposed
that the empirical relationship between precipitation intensity and duration can be directly
used to model the parameters of the GEV distribution depending on duration, which
leads to a duration-dependent GEV (d-GEV) distribution G(z, d;µ(d), σ(d), ξ(d)). The
relationship between precipitation intensity I and duration d for a chosen non-exceedance
probability p corresponds to the quantile qp(d) of the d-GEV distribution:

Ip(d) = qp(d) = µ(d)− σ(d)
ξ(d)

[
1− {− ln(p)}−ξ(d)

]
; (6.4)

hence IDF curves can be estimated in a consistent way (Ulrich et al., 2020). For the empirical
dependence of the parameters on duration, we follow the assumptions of Koutsoyiannis
et al. (1998):

σ(d) = σ0

(
d

1 h + θ

)−η
, (6.5)

µ(d) = µ̃ · σ(d), (6.6)
ξ(d) = const., (6.7)

with re-parameterized location parameter −∞ < µ̃ < ∞, scale offset σ0 > 0, duration
offset θ ≥ 0 and duration exponent 0 < η ≤ 1. These assumptions are commonly used
(Lehmann et al., 2013; Ritschel et al., 2017; Stephenson et al., 2016; Van de Vyver, 2015),
however, it may be beneficial to introduce additional parameters (Fauer et al., 2021a; Van
de Vyver, 2018). By inserting assumptions (6.5)-(6.7) into Eq. (6.3), we obtain the d-GEV
distribution with five parameters

G(z, d; µ̃, σ0, ξ, θ, η) = exp
{
−
[
1 + ξ

(
z

σ0(d+ θ)−η − µ̃
)]−1/ξ

}
, (6.8)

which constitutes a model for the distribution of annual precipitation maxima for a range
of durations.
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6.2.3 Modeling Monthly Maxima
According to the Fisher–Tippett–Gnedenko-Theorem, the GEV distribution is an adequate
model for block maxima if the block size is sufficiently large. For geophysical applications,
such as modeling extreme precipitation, it is common to choose a block size of 1 year,
as explicit modeling of seasonality is thereby avoided. However, this results in two
major disadvantages: large portions of the data are lost for the analysis if only the
annual maxima are used, and the assumption that precipitation events originate from
an identical distribution is violated if a distinct intra-annual cycle exists. Therefore, the
use of a smaller block size is worth considering. Multiple studies suggest that the GEV
distribution is well suited to model monthly block maxima of daily precipitation sums in
the midlatitudes (Fischer et al., 2018; Maraun et al., 2009; Rust et al., 2009). Similarly, we
use monthly maxima to model extreme precipitation of different durations: either with
separate models for each duration using the GEV (Eq. 6.3) or simultaneously by using
the d-GEV distribution (Eq. 6.8). Inspection of the quantile-quantile (q-q) plots indicates
that the d-GEV distribution is a reasonable approximation for the distribution of monthly
maxima at the regarded stations. The q-q plots for station Bever-Talsperre with respect to
each month are shown in Fig. D.1.

To account for any form of variability in the GEV model (Eq. 6.3), the GEV parameters
ϕ ∈ {µ, σ, ξ} can be modeled as linear functions of covariates xi within the framework of
vector generalized linear models (VGLMs) (Yee and Stephenson, 2007)

lϕ (ϕ(xi)) = ϕ0 +
I∑
i=1

βϕi xi, (6.9)

where ϕ0 represents the intercept and βϕi are the regression coefficients. The choice of the
parameter specific link function lϕ(·) can ensure that parameters stay within a predefined
range. However, we employ the identity lϕ(ϕ) = ϕ as link function for all parameters.
Following Fischer et al. (2018), the intra-annual variations of the GEV parameters can be
modeled as a periodic functions of the day of the year (doy) using a series of harmonic
functions with a fundamental period of 1 year:

ϕ(doy) = ϕ0 +
J∑
j=1

[
αϕj cos

(2πj · doy
365.25

)
+ βϕj sin

(2πj · doy
365.25

)]
, (6.10)

where J is the maximum order of harmonic functions. To obtain the parameters for each
month, Eq. (6.10) is evaluated at the corresponding center days of each month. We model
the seasonal variations of the d-GEV distribution in exactly the same way. Essentially, this
means that each of the parameters ϕd-GEV ∈ {µ̃, σ0, ξ, θ, η} can be expressed in the form
of Eq. (6.10).

6.2.4 Parameter Estimation
The parameters of the GEV distribution can be estimated from a time series of observed
block maxima. For this purpose, we apply the widely used maximum likelihood estimator
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(MLE) (Coles, 2001). Thus, the parameters are chosen by optimizing the likelihood

L(φ | Z) =
∏
n∈N

g(zn;φ), (6.11)

where the parameter vector φ = (µ, σ, ξ)T contains the unknown GEV parameters, the
vector Z consists of the observed maxima zn for different blocks (years/ months) n and
g(zn;φ) is the probability density function of the GEV distribution. This can be applied
analogously for the d-GEV distribution:

L(φ | Z) =
∏
d∈D

∏
n∈N

g(zn,d, d;φ). (6.12)

Whereas in this case the parameter vector φ = (µ̃, σ0, ξ, θ, η)T , Z now contains all observed
maxima zn for different blocks (years/ months) n and durations d and g(zn,d, d;φ) is the
probability density function of the d-GEV distribution. A benefit of the MLE is that it
can be easily extended in the case of using covariates to model the parameters (Eq. 6.10).
The parameter vector then contains the parameter intercepts ϕ0 and regression coefficients
αϕj and βϕj for each parameter in the case of both GEV and d-GEV distribution.

Since the logarithm of the likelihood reaches the maximum at the same value, but is easier
to calculate, the parameters are estimated by optimizing the log-likelihood numerically

φ̂ = arg max
φ
{ ln[L(φ | Z)] }. (6.13)

It is possible to derive the uncertainty of the parameter estimates, i.e., the variance-
covariance matrix, via the Fisher information matrix estimated in this process.

Nevertheless, Eqs. (6.11) and (6.12) are only valid if the block maxima are independent of
each other. The assumption that maxima of different years or also months are independent
is reasonable. However, a dependency exists between the maxima of different durations.
Jurado et al. (2020) have shown that accounting for asymptotic dependence between
durations yields a modest improvement in the estimation of quantiles of short durations
d ≤ 10h, but comes at the cost of increased model complexity. We therefore decide to
neglect the dependence between durations when estimating the d-GEV parameters using
Eq. (6.12). Yet, the dependence between durations is taken into account when estimating
the uncertainties of the quantiles using the bootstrap method (see Sect. 6.2.6).

6.2.5 Model Selection

To obtain a parsimonious model, we use a selection procedure consisting of two steps: in
the first step, we determine for which of the GEV/ d-GEV parameters the modeling of the
intra-annual variations is not appropriate and which should therefore remain constant. In
the second step, we select which terms of the harmonic series in Eq. (6.10) are actually
needed in order to model the nonconstant parameters.
When modeling intra-annual variations of GEV parameters, the shape parameter ξ

is often assumed to be constant (Fischer et al., 2018; Maraun et al., 2009; Rust et al.,
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2009). This is justified by the fact that ξ controls the tail of the distribution, and thus the
estimation of ξ is already associated with large uncertainties. Hence, adding additional
coefficients to the estimation of ξ is only reasonable if there are sufficient data available.
Fischer et al. (2019) demonstrated that modeling the intra-annual variations of ξ can
indeed improve the GEV model. However, their model is able to combine the observations
of many stations – due to additional spatial covariates – and therefore the amount of data
on which the estimation is based is increased. Since in contrast we employ separate models
for each station, we choose the shape parameter to remain constant ξ(doy) = ξ0. For the
parameters µ(doy) and σ(doy), a variation in the form of Eq. (6.10) is adopted.
To be consistent, we also use a constant shape parameter in the d-GEV case. The

estimation of the duration offset parameter θ is likewise associated with considerable
uncertainties, because it is strongly influenced by the estimation of the parameters η and
σ0. Eq. (6.5) clearly indicates this effect. Therefore, we choose for θ to remain constant
θ(doy) = θ0 as well. The parameters µ̃(doy), σ0(doy) and η(doy) are allowed to vary
periodically throughout the year according to Eq. (6.10).
For the maximum order of the harmonic series in Eq. (6.10), we choose J = 4. This

results in a maximum of eight regression coefficients αϕj and βϕj for each nonconstant
parameter. Thus, in the GEV case one would obtain one model per duration containing
3 + 2 · 8 = 19 parameters and in the d-GEV case one model describing all durations
simultaneously with 5 + 3 · 8 = 29 parameters to be estimated. To reduce this number to a
level where the model describes the variations sufficiently well without overfitting, we apply
a stepwise forward regression. For both the GEV model and the d-GEV model, we use the
same methods to select the necessary predictor terms: as model selection criterion we use
the cross-validated log-likelihood. For this purpose, the observations are divided into a
training set and a test set, and ln[L(φ | Z)] is computed as in Eqs. (6.11) and (6.12), where
the parameter vector φ is estimated based on the training set and the observations Z
originate from the test set. We choose a small number of folds k = 2, as recommended for
cross-validation with the aim of model selection (Arlot and Celisse, 2010). Thus, the data
are divided into two sets, each of which is used once as a training and once as a test set. In
the first step of the stepwise regression, we compare all possible models that can result from
the addition of the cosine term with j = 1 as covariate for the nonconstant parameters.
This yields four possible models for the GEV case, listed in Table 6.1, and analogously eight
models for the d-GEV case. The model resulting in the maximum cross-validated likelihood
is retained for the next model selection step. In this next step we similarly identify the

Table 6.1: All possible models in the first step of the stepwise regression (GEV case) with ω = 2π
365.25

µ(doy) σ(doy) ξ(doy)
µ0 σ0 ξ0
µ0 + αµ1 cos (ω · doy) σ0 ξ0
µ0 σ0 + ασ1 cos (ω · doy) ξ0
µ0 + αµ1 cos (ω · doy) σ0 + ασ1 cos (ω · doy) ξ0
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Figure 6.2: Estimated d-GEV parameters µ̃, σ0, ξ, θ and η (a-e) for station Bever-Talsperre:
through applying one separate d-GEV model for each month (blue dots) and by modeling all month
simultaneously using a d-GEV model with monthly covariates (green lines). The error bars and
shaded areas show the 95% confidence intervals obtained via the estimated Fisher information
matrix.

nonconstant parameters for which the addition of the sine term with j = 1 results in an
improvement of the model. We proceed to the maximum order J = 4 accordingly.

For the station Bever-Talsperre, the resulting estimated d-GEV parameters are presented
in Fig. 6.2. For comparison, the estimated parameters resulting from using a separate
model for each month are shown as well. In the case of the station Bever-Talsperre,
model selection yields a model with 16 parameters to be estimated. This represents a
large parameter reduction compared to using one separate d-GEV model per month with
5 · 12 = 60 parameters. From Fig. 6.2 we can note that the choice to keep the parameters
ξ and θ constant seems to be justified. In addition, the parameters σ0 and η show a clear
variation throughout the year. The estimates of the separate models per month and the
d-GEV model with covariates agree well for these two parameters. In the case of the
modified location parameter µ̃, the variations are not as pronounced as for σ0 and η, so it
might be possible to model this parameter as constant as well. However, following Eq. (6.6),
setting µ̃(doy) = const. would enforce the annual cycle of the location parameter µ(d) and
the scale parameter σ(d) to be in phase for any fixed duration d. Based on the results of
an exploratory analysis, see Supplement D.3, we conclude that the assumption of phase
equality of µ(d) and σ(d) for each duration may be too restrictive. Therefore, we decide to
allow variations in µ̃(doy) throughout the year.

6.2.6 Obtaining IDF Curves

When modeling the annual maxima with the d-GEV distribution according to Eq. (6.8),
we can derive IDF curves that correspond to the annual exceedance probabilities using
Eq. (6.4). Likewise, when modeling monthly maxima using the d-GEV distribution with
monthly covariates (Eq. 6.10), Eq. (6.4) yields separate IDF curves for each month of the
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year. These correspond to the probabilities that a certain intensity will not be exceeded
within a specific month. To distinguish between these two types of IDF curves, we refer to
them as annual and monthly IDF curves, respectively.
However, we can also derive annual IDF curves, i. e. quantiles of the distribution of

annual maxima, from modeling the monthly maxima. Assuming the maxima of all months
in a year as independent, the non-exceedance probability p of an intensity level qp,d within
1 year is derived from its monthly non-exceedance probabilities as

p =
12∏
m=1

Gm(qp,d;µm, σm, ξm), (6.14)

for a fixed duration d. Therefore, to obtain the quantiles of the distribution of annual
maxima, we numerically solve Eq. (6.14) for qp,d, where qp,d is the quantile corresponding
to the exceedance probability 1− p, sometimes interpreted as the return level associated
with the return period 1/(1− p). We compute qp,d for the entire duration range to yield
the annual IDF curves.
We determine the uncertainties of the estimated IDF curves using the ordinary non-

parametric bootstrap percentile method (Davison and Hinkley, 1997). In this process, a
sample is first created from the data by drawing with replacement. This sample is used
to estimate the model parameters, from which a certain intensity quantile dependent on
duration Ip(d) is then calculated using Eq. (6.4). By repeating this process R = 500 times,
we obtain a distribution of intensity quantiles. Finally, the empirical 0.025 and 0.975
quantiles of the bootstrap distribution are used as the lower and upper bounds of the 95%
confidence interval for Ip(d). We assume that considering an appropriate sampling strategy,
this method accounts for the dependence between maxima of different durations. For this
purpose, all maxima from a particular year are jointly sampled, thus we obtain a sample of
n years matching the length of the station time series. Fauer et al. (2021a) demonstrated
in a sampling experiment that the coverage of the 95% confidence intervals obtained in this
manner stays adequate, even when the dependence of the maxima of different durations is
increased.
To visualize the differences between the annual IDF curves resulting from the different

models, it can be useful to compare the parameters of the respective distributions of
annual maxima. Unfortunately, these are only directly available when modeling the annual
maxima. However, we can assume that the distribution of the annual maxima resulting
from modeling the monthly maxima is for each duration again a GEV distribution, due to
its max stability property. Thus, we estimate the GEV parameters of the distribution of
annual maxima by firstly using Eq. (6.14) to estimate the quantiles in the range p ∈ [0, 1]
and through inversion obtaining p(qp,d). We then fit the GEV distribution to p(qp,d) using
the nonlinear least-squares method to estimate µd, σd and ξd

p(qp,d) ∼ exp
{
−
[
1 + ξd

(
qp,d − µd

σd

)]−1/ξd
}
. (6.15)

The uncertainties of the estimates of µd, σd and ξd are likewise determined using the
described bootstrap method.
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6.2.7 Verification
We apply a verification procedure in order to assess the estimated quantiles, i.e. IDF
curves. At a given station, we aim to compare the annual IDF curves obtained by modeling
the monthly maxima with those obtained by modeling the annual maxima. We model
the monthly maxima using the d-GEV distribution with monthly covariates according to
Eqs. (6.8) and (6.10). We abbreviate this model as monthly d-GEV in the following. For
modeling the annual maxima, we use the d-GEV distribution (Eq. 6.8) and abbreviate this
model as annual d-GEV.

To provide a detailed analysis we follow Ulrich et al. (2020), who suggest a verification
strategy that allows the estimated quantiles for each duration d and probability p to be
examined separately. The approach is based on the comparison of the observations on with
the modeled quantile qp via the quantile score (QS) (Bentzien and Friederichs, 2014):

QS(p) = 1
N

N∑
n=1

ρp(on − qp), where ρp(u) =
{
pu , u ≥ 0
(p− 1)u , u < 0,

(6.16)

where the check-loss function ρp(u) is evaluated at u = on−qp. To obtain the out-of-sample
performance of the model, QS is evaluated in a cross-validation setting (Wilks, 2011). For
this purpose, we split the available time series at a station into ny sets, corresponding to
the length of the time series in years, by removing the maxima of all durations of a specific
year y for each set. The model parameters and thus the quantile qp,d are estimated based
on the remaining data. The quantile score for a cross-validation set is calculated from qp,d
and the respective omitted observed annual maximum od,y. Therefore, the cross-validated
quantile score results in:

QScv(p, d) = 1
ny

∑
y∈Y

ρp(od,y − qp,d). (6.17)

To compare the score of the monthly d-GEV QSmcv with that of the annual d-GEV QSacv,
we use the quantile skill index (QSI) (Ulrich et al., 2020) that is based on the quantile skill
score (Wilks, 2011):

QSI(p, d) =

1−QSmcv(p, d)/QSacv(p, d) ,QSmcv(p, d) ≤ QSacv(p, d)

−1 + QSacv(p, d)/QSmcv(p, d) ,QSmcv(p, d) > QSacv(p, d) .
(6.18)

Therefore, QSI ∈ [−1, 1], where negative values indicate a superior performance of the
annual d-GEV model, whereas positive values indicate a superior performance of the
monthly d-GEV model.

6.3 Results and Discussion
We first show the results for the monthly IDF curves at the station Bever-Talsperre. Based
on the probability that the annual p quantile is exceeded within a certain month, we
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Figure 6.3: The 0.9 quantiles for station Bever-Talsperre for each month (a) and for various
durations (b). The durations shown correspond to the durations d ∈ 2{0,1,2,...,13} min discussed in
Sect. 6.2.1. Shaded areas represent the 95% confidence intervals obtained via the bootstrap method.

investigate the seasonal variations of the IDF relationship across Germany. We present
the results in detail for six selected stations. Furthermore, we examine the annual IDF
curves resulting from modeling monthly maxima and compare them to those obtained from
modeling annual maxima. We present the resulting annual IDF curves together with the
verification results for three example stations. Since the annual IDF curves derived from
the monthly maxima deviate from our original assumptions about the duration dependence,
we finally investigate the dependence of the estimated GEV parameters on duration using
annual and monthly maxima, respectively. We focus in detail on the shape parameter.

6.3.1 Intra-Annual Variations

We obtain quantile estimates, i.e. IDF curves, for each month using the d-GEV distribution
(Eq. 6.8) with monthly covariates (Eq. 6.10), through Eq. (6.4). In the case of the monthly
IDF curves, p indicates the probability that the value of the p quantile will not be exceeded
within a given month. The 0.9 quantile for each month dependent on duration is shown in
Fig. 6.3 (a) for the station Bever-Talsperre. The IDF curves exhibit a steeper slope in the
summer months (pink) than in the autumn and winter months (blue). This is related to the
duration exponent η, which exhibits higher values in summer than in winter (Fig. 6.2 (e)).
This result matches the findings of Willems (2000) who determined the rate of exponential
decline β of intensity with duration (equivalent to η) for different seasons and likewise
found that β exhibits the smallest values in the winter season. For short durations d ≤ 1 h
the intensities reach their maximum in the summer months and their minimum in the
winter months. This corresponds to the scale offset parameter σ0, which similarly peaks
in summer (Fig. 6.2 (b)). In contrast, the intensity maximum of long durations d ≥ 24h
occurs in winter and the minimum in spring and summer, since the curves for different
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Figure 6.4: Probability of the annual 0.9 quantile q0.9,d being exceeded in a given month. Dots
indicate the probability that q0.9,d is exceeded in a certain month, while each point in a line can be
interpreted as the probability that q0.9,d is exceeded within the surrounding block of 30 days. To
illustrate the interpretation: the product of all probability values presented as dots for a chosen
duration results in the annual exeedance probability 1− p = 0.1. Therefore, dividing the probability
values by 0.1 yields the conditional probability of exceeding q0.9,d in a given month. For reasons of
visual clarity, confidence intervals are not presented. Station names are listed at the top of each
plot, while the numbers indicate their positions in Fig. 6.5.

months intersect at d ≈ 8 h. The annual variation of the intensity for the different durations
is presented in Fig. 6.3 (b). It is evident that the intensity maximum shifts from summer
for the short durations (purple/ blue) through autumn into winter for the long durations
(light green/ yellow). Here, only the quantiles of the monthly distributions for p = 0.9
are shown. However, the monthly quantiles for other probability values exhibit the same
behavior. The intersection of the IDF curves and the resulting change in seasonality for
different durations is not generally present at all stations in the investigated duration range.
However, since different duration exponents of the curves in summer and winter occur at
all stations, we suspect that at all stations, given sufficiently long durations, the intensity
maximum moves into winter eventually.
Due to the exponential decrease of intensity with duration, a comparison of the p

quantiles of different durations is only possible on a logarithmic intensity scale. However,
the interpretation of a logarithmic axis is often difficult. Therefore, in addition to the
monthly 0.9 quantiles presented in Fig. 6.3, we will also consider the probabilities that the
annual 0.9 quantile is exceeded within a given month. To do this, we first use Eq. (6.14)
to calculate the annual quantiles qp,d (return values) from the monthly non-exceedance
probabilities. Based on this, we calculate the probability that qp,d will be exceeded within
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Figure 6.5: Maximum probability of the annual 0.9 quantile qp,d being exceeded in 1 month
and months when the maximum occurs at each of the considered stations for three different
durations. Dividing the probability values by the annual exceedance probability 1− p = 0.1 yields
the conditional probability. Therefore a value of Prmax = 5% can be interpreted as 50% of the
exceedances of qp,d occurring in a single month.
Numbers indicate the locations of example stations, presented in more detail in Fig. 6.4.

a given month. Fig. 6.4 (upper left) presents the probabilities that the annual 0.9 quantile
q0.9,d (10-year return value) for different durations will be exceeded within a given month at
the Bever station. This depiction is a useful complement to Fig. 6.3, since the probabilities
for different durations vary on a linear scale, unlike the intensities. The monthly exceedance
probability for short durations d < 1 h (purple/ blue) exhibits a sharp peak with a maximum
in July. The probability that q0.9,<1 h is exceeded in the months November to April is
approximately zero. This means that extreme events of short duration, i.e. caused by
convective precipitation cells, are likely to occur in summer while the probability of these
events occurring in the months October to April is very small. This is consistent with the
results for one station in Belgium (Willems, 2000). In the transition to longer durations,
the probability decreases in July, while a second maximum occurs in December to January.
For durations of about 8 h to 17 h, this results in an extended period of time ranging from
June to February, during which the probability shows similarly elevated values. For the
long durations d > 48 h (light green/ yellow), the probability again has one clear maximum,
which occurs in December to January. The probability of q0.9,>48 h being exceeded in the
months April to June is relatively low in this case. Therefore, these long-lasting extreme
events, i.e. frontal events, are more likely to occur in late autumn or winter.

To investigate the intra-annual variations across Germany, we calculate the probability
that the annual p quantile is exceeded in a given month for each station. We present the
results for p = 0.9 in Fig. 6.5, whereby a different choice of p yields very similar results.
We summarize the information on a map by indicating the maximum probability (size
of the dots), as well as the month in which the maximum occurs (color of the dots). To
a certain extent, the maximum probability provides information about the shape of the
curve: A high maximum probability is associated with a narrow probability peak. This
implies that the probabilities in the remaining months of the year are comparatively small.
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In contrast, a small maximum probability suggests that there are other months in the year
with similar probability values.

From Fig. 6.5 (a) it is evident that for short durations the probability peaks in summer
at every station, specifically in July at most stations. There are also some stations where
the maximum occurs in June or August. Noticeably, the stations where the maximum
is in August are all located on the North Sea coast. Furthermore, at most stations the
maximum probability is greater than 3%, which indicates a narrow probability peak in
summer for short durations. When comparing the maximum probabilities with those at
d = 24h (Fig. 6.5 (b)), we find that the maximum probability decreases considerably at
almost all stations, thus, broadening the time window within which the annual 0.9 quantile
is more likely to be exceeded. At most stations, the maximum occurs in the period from
June to September. At six stations, however, the maximum is reached in December or
January. These stations are all located at higher altitudes (Mittelgebirge). Figure 6.5 (c)
for d = 120 h reveals a comparatively heterogeneous spatial distribution, both in terms of
the maximum probability and the months in which the maximum occurs. At most stations
in Germany the maximum still lies between June and September, however, the number
of stations with maximum probability between November and January is considerably
increased in the west of Germany, especially in higher regions.

Regarding the month with the highest probability in the case of long durations, we derive
a rough division of the stations within Germany into three types. For each type we choose
two stations, for which we present the probabilities in detail in Fig. 6.4. We separate the
stations into those with maximum in late autumn and winter (1,2), between September
and October (3,4), and in summer (5,6). The locations of the stations are indicated by
numbers in Fig. 6.5.
Station (1) is Bever-Talsperre, which has already been discussed in detail. Similarly

to (1), the maximum at the station Saarbrücken-Ensheim (2) also shifts from summer
for short durations into late autumn to winter for long durations. The stations differ,
however, insofar as the maximum probability for short durations at station (2) in July
varies only slightly from the probability in the months of June and September. In addition,
the probability for long durations remains rather high in summer, in contrast to station (1).
Stations that show a similar shift of the maximum exceedance probability, from summer
for short durations to late autumn or winter for long durations, are located exclusively in
the western half of Germany and also occur mostly at higher altitudes. The exception are
two stations in northern Germany. The location of these stations coincides well with the
results of Fischer et al. (2018). They explain the increased occurrence of longer-lasting
extreme events in these regions in late autumn and winter with the stronger westerly winds
during these months, which cause particularly high precipitation amounts on the windward
sides of the mountain chains (Mittelgebirge) due to the forced uplift of the air. However,
this study is based on daily precipitation sums. The fact that when modeling several
durations simultaneously, the seasonal variations are observed at longer durations than
when modeling a single duration might be due to the smoothing of the seasonal signal.

As examples for stations where the maximum occurs in September or October, for long
durations, we present the monthly exceedance probabilities for Cuxhaven (3) and List auf
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Sylt (4). At both stations the width of the probability peak increases for long durations
while its maximum shifts. This shift is more pronounced at station (3). The probabilities in
the interval between December and May are relatively low at both stations for all durations.
Some stations of this type are located scattered throughout Germany. However, a clear
cluster of these stations exists on the North Sea coast. This group is also characterized
by extreme convective precipitation events occurring most likely in August, which could
be related to the water temperature in this region reaching its maximum during this
month. Accordingly, a possible explanation for the high probability of long-lasting heavy
precipitation in the following months might be that extratropical cyclones transport air,
which was warmed over the North Sea and thus features a high water content, into this
region.

Examples of stations where the probability maximum for all durations occurs in summer
are Berlin-Tempelhof (5) and Mühldorf (6). An essential difference to the stations (3)
and (4) is that in this case a second maximum occurs in winter for long durations. At
station (6) this second maximum is even almost as high as the one in summer for d > 120 h.
Stations of this type occur everywhere in Germany, but are the prominent station type
in the eastern half of Germany. The example stations (5) and (6) show a very distinct
behavior for the probabilities with increasing duration. At most of the other stations
of this type the signal for longer durations is less clear, as sometimes several maxima
occur, or the summer maximum might be shifted by 1 or 2 months. However, the common
characteristics of these stations continue to be the maximum for all durations occurring
in the period between May and October and the probability for long durations showing
similarly increased values throughout several months of the year.

The monthly exceedance probability is a useful indicator of the months from which the
annual maxima of different durations originate. For all stations, the peak of the probability
is relatively narrow for short durations, with the maximum in summer. The probability
that the annual 0.9 quantile occurs in one of the other seasons is negligible. This fact
contradicts the assumption of the block maxima approach that precipitation intensities are
identically distributed within the block of 1 year. In other words, a block size of 1 year
for short durations results in a much smaller effective block size of about 4 to 6 months.
With respect to longer durations, the stations differ greatly, but it can be generally stated
that the effective block size increases for long durations. Thus, the annual maxima at a
station for different durations originate from effective blocks of different sizes, which might
even be in different seasons, depending on the station’s location. This effect is further
emphasized in Fig. D.2. Modeling the monthly maxima, on the other hand, avoids this
problem. Therefore, in the following section we compare the annual IDF curves derived
from annual maxima with those derived from monthly maxima.

6.3.2 Annual IDF Curves
We obtain the annual IDF curves and their confidence intervals from modeling annual
and monthly maxima, using the respective methods described in Sect. 6.2.6. We compare
the estimated quantiles from both models along with the QSI described in Sect. 6.2.7.
Figure 6.6 presents the IDF curves (lower panels) together with the QSI (upper panels) for
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Figure 6.6: Annual IDF curves for three example stations estimated via two models: modeling
annual maxima with the d-GEV distribution and modeling monthly maxima using the d-GEV
distribution with monthly covariates. The shaded areas represent the respective 95% confidence
intervals. The distributions of the observed annual maxima are shown as box-and-whisker plots,
where the whiskers cover the complete data range. In the upper panels the corresponding QSI
values are presented, indicating the comparison of the models’ performances, where positive values
indicate an increase in the skill of the monthly d-GEV model compared to the annual d-GEV
model.

three example stations. In addition to the station Bever-Talsperre (1), with the longest
time series, we present the results for the stations Saarbrücken-Ensheim (2) and Cuxhaven
(3), since these three stations cover a broad spectrum in terms of differences between the
quantile estimates obtained by both models as well as their uncertainties. The QSI is used
to compare the performance of both models. Positive values (red) indicate an increase
in the skill of the monthly d-GEV model compared to the annual d-GEV model, while
negative values (blue) indicate that the annual model is superior. The result of the QSI may
be less reliable if the length of the time series T is shorter than the period corresponding
to the non-exceedance probability p = 1− 1/T being verified. Therefore, we indicate the
length of the time series available for verification by dots in the upper panels in Fig. 6.6.

For the station Bever-Talsperre, the IDF curves resulting from the two different models
are almost identical over a long duration range d < 8 h. Therefore, in this duration range,
the models’ performances differ only marginally, indicated by |QSI| ≤ 0.05 for almost all
probabilities. For high probabilities p ≥ 0.98, the QSI suggests a slightly better performance
of the monthly model for durations 4 min ≤ d . 2h. At d ≈ 8h the IDF curves of the
monthly model start to deviate from those of the annual model. More precisely, the IDF
curves of the monthly model no longer exhibit a power law behavior for d > 8 h but decrease
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more gradually. Due to the larger differences in the IDF curves, the models performances
vary considerably (|QSI| > 0.05) in this range. However, the sign of the QSI differs for
d . 34h and d & 68h: for d . 34h, the data are better represented by the annual model,
as indicated by the negative values of the QSI in this range. For d & 68h and p ≥ 0.95,
however, the monthly model is a considerable improvement over the annual model. This is
evident both from the strongly positive QSI values in this range as well as directly from
the data, shown as box-and-whisker-plots, as the maximum of the observations extends
above the modeled 0.99 quantile. The models do not differ much with respect to the width
of the 95% confidence intervals.
At station Saarbrücken-Ensheim, the differences in the IDF curves of the two models

are more pronounced throughout the entire duration range: the estimated quantiles of
the monthly model are higher for very small and very large durations, but lower in the
range 8 min . d . 48h than those of the annual model. Thus, again the monthly model
does not comply with a power law. The QSI indicates that the monthly model is mostly
an improvement, except for smaller probabilities at longer durations. Since this station
provides a shorter time series than station Bever-Talsperre, i.e. only 24 years, the 95%
confidence intervals of the annual model are wider, especially for short durations and high
probabilities. This indicates that the monthly model benefits from utilizing more data
regarding the uncertainties.
This appears even more prominent at the Cuxhaven station. Since the high-resolution

time series at this station covers only 19 years, the uncertainties of the annual model are
considerably wider than those of the monthly model. The estimates of the monthly model
for the 0.9 quantile and the 0.99 quantile are below the respective estimates of the annual
model. The estimates for the 0.5 quantile differ only slightly. The quantiles of the monthly
model roughly parallel those of the annual model for longer durations. Thus, the monthly
model does not deviate essentially from a power law at this station. The QSI does not
provide a clear indication regarding which model better represents the data but fluctuates
between positive and negative values. This seems to be in agreement with the observations.
The spread of the boxes and whiskers first increases and then decreases over duration. As
a result, in the duration ranges with narrower box-and-whisker plots, the monthly model
better represents the data, especially for higher quantiles, while the annual model is more
suitable particularly for 8 min ≤ d . 1 h, where the boxes and whiskers are rather broad.

Overall, we find that the differences between the annual and the monthly model are very
heterogeneous for individual stations. However, two general statements can be made:

1. Modeling monthly maxima provides a clear improvement in terms of the quantile
estimates’ uncertainties, especially for stations with short observational time series.

2. Although a power-law behavior for long durations is assumed for the monthly IDF
relations, the resulting annual IDF curves can deviate from this behavior and are
therefore more flexible.

This deviation from a simple power law behavior for long durations is consistent with the
findings of Willems (2000), who observes a decrease in the rate of exponential decline of
intensity with increasing duration. We observe this decrease to be particularly pronounced
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Figure 6.7: Annual GEV parameters µ, σ and ξ for station Bever-Talsperre estimated via four
different models along with bootstrapped 95% confidence intervals shown as error bars and shaded
areas.

at the station Bever-Talsperre, where we also find a clear shift of the seasons in which
extreme events of different durations occur. We therefore suspect that the lower slope of
the annual IDF curves at long durations is related to this shift. Since we aim to better
understand this deviation from the original assumptions in Eqs. (6.5)-(6.7), in the following
section we examine the relationships between the GEV parameters and duration that follow
from modeling monthly maxima.
In terms of model performance, we likewise cannot draw general conclusions. At some

stations, such as Cuxhaven, we find that modeling monthly maxima improves the estimates
of the annual IDF curves for almost all probabilities and durations. However, at many
stations the improvement in the estimation is limited to a selected range of probabilities
and durations, and there are also stations at which the estimated quantiles of the monthly
model are always worse than those of the annual model. Since the objective of this study
is to model the seasonal variations at all stations by applying a uniform framework, the
model selection was performed identically for all stations, e.g. choosing θ(doy) = const.
and ξ(doy) = const.. This results in varying quality of representation of the parameters at
different stations. We expect that parameter estimation for rare events should generally
improve, as the introduction of smooth variation during the year allows for the inclusion of
additional information. Therefore we assume that with more focus on estimating the IDF
curves of a single station, and thus a more targeted choice of model selection approach
and initial conditions, the model performance of the monthly model at this station can be
considerably improved.

6.3.3 Duration Dependence

To model the IDF relationship, we have so far assumed that the GEV parameters depend
on duration according to Eqs. (6.5)-(6.7). This results in a power law behavior, or so-called
simple scaling, of intensity with duration except for short durations d < 1 h. The curvature
of the IDF curves for short durations (in a double-logarithmic plot) is controlled by the
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parameter θ. Fig. 6.3 (a) illustrates that the IDF curves for each month follow this imposed
pattern. However, the resulting annual IDF curves, shown in Fig. 6.6 in green, deviate
from this behavior and thus from the assumptions in Eqs. (6.5)-(6.7). To investigate this
deviation in more detail, we estimate the annual GEV parameters resulting from modeling
monthly maxima, using nonlinear regression according to Eq. (6.15) separately for each
duration. We use the obtained parameters only to compare them with those estimated
directly from modeling the annual maxima. They are not intended as a basis of any further
analysis. We compare the following four models:

• modeling annual maxima using
– a separate GEV distribution for each duration (annual GEV)
– one d-GEV distribution (annual d-GEV)

• modeling monthly maxima using
– a separate GEV distribution with monthly covariates for each duration (monthly

GEV)
– one d-GEV distribution with monthly covariates (monthly d-GEV).

The annual GEV parameters µ, σ and ξ estimated via these models are presented depending
on duration for the station Bever-Talsperre in Fig. 6.7 including their respective 95%
confidence intervals. Although the uncertainties of the parameters estimated directly from
the annual maxima can be derived using the Fisher information matrix, for comparability,
the uncertainties of the parameter estimates are obtained using the bootstrap method
described in Sect. 6.2.6 for all models.
For the location parameter µ (Fig. 6.7 (a)), the estimates of both annual models (red

squares and black line) agree well, i.e. µ follows a power-law for durations d ≥ 1h, while
the curve decreases more gradually for shorter durations. The estimates of the monthly
models (purple triangles and green line) are consistent with those of the annual models
for durations d . 24h, however, both monthly models agree on a slower decline of µ for
longer durations d & 24h and thus a deviation from simple scaling. We observe quite
a similar behavior of the model estimates for the scale parameter σ (Fig. 6.7 (b)): the
estimates of all models agree relatively well for short durations d . 1 h and both monthly
models show an upwards deviation from simple scaling for longer durations d & 24h.
However, the estimates of both GEV models (squares and triangles) deviate noticeably
from simple scaling towards smaller values in the range 1 h . d . 24h. Regarding the
uncertainties for the estimates of µ and σ, the annual GEV model (red) is associated with
the largest uncertainties. By considering more data, the parameters can be estimated more
accurately using the monthly GEV model (purple). Similarly, the annual d-GEV model
(black) exhibits considerably smaller uncertainties than the annual GEV model because
here the addition of data from other aggregation levels leads to a more confident estimate.
Consequently, the joint use of data from all months and durations in the monthly d-GEV
model results in the smallest uncertainties regarding parameter estimation. The estimates
for µ and σ obtained from all four models agree relatively well at most of the other stations
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(not presented). Similar to the station Bever-Talsperre, at several stations the estimates
of the monthly models show an upward deviation from simple scaling for long durations.
The estimates are associated with considerably larger uncertainties for most other stations,
where shorter time series are available.

The shape parameter ξ determines the tail of the distribution and its estimation is
therefore subject to relatively large uncertainties depending on the length of the time series.
This is similarly the case for the station Bever-Talsperre (Fig. 6.7 (c)) with a time series of
51 years, where the estimates of ξ based on annual maxima of a single duration (red squares)
vary in the range 0.09 to 0.4, but since the 95% confidence intervals are very broad, it is
challenging to derive a relationship between ξ and duration. For the d-GEV we therefore
assume a constant shape parameter (Eq. 6.7), which for the annual d-GEV model (black
line) is estimated to be 0.11. Compared to the separate estimates of the annual GEV for
each duration (red squares), this value appears reasonable. Additionally, the uncertainties
decrease significantly when modeling the annual maxima of all durations simultaneously.
For the monthly d-GEV, ξ is also assumed to remain constant over duration for each month.
In addition, we hypothesize that ξ does not change throughout the year either, as described
in Sect. 6.2.5. Interestingly, ξ(d) resulting from the monthly d-GEV model (green line)
nevertheless deviates slightly from being constant. The estimated values are slightly higher
than those of the annual d-GEV model and vary between 0.12 and 0.14, with the minimum
at about d ≈ 17h. Similarly to µ and σ, the uncertainties of the monthly d-GEV model
(green) for the estimation of ξ are even smaller than those of the annual d-GEV model
(black). When we model the monthly maxima for each duration separately, we benefit from
being able to estimate the shape parameter with smaller uncertainties without constraining
the relation between ξ and duration. Thus, we observe a distinct variation of ξ estimated
via the monthly GEV model (purple triangles) over duration. The estimated values exhibit
a minimum, similar to those of the monthly d-GEV model (green line), at d ≈ 8 h and vary
in the range -0.08 to 0.24. To evaluate this result, we can visually examine the distribution
of annual maxima for different durations, seen in Fig. D.2 and in Fig. 6.6 (bottom left) as
box-and-whisker plots. It is noticeable that the observations for d ≈ 8h actually cover the
smallest range, thus agreeing with the results for the shape parameter.
Since the shape parameter estimates of the four different models vary substantially at

the individual stations, we summarize the information for all stations in Fig. 6.8. For each
model, the distribution of the estimated value over all stations is plotted with respect to
duration. We observe that ξ estimated using the annual GEV model (red) varies widely
among stations. The model seems to only provide estimates in a reasonable range at 75%
of the stations based on the small amount of data. The median of all stations appears
to oscillate around a constant value. For the annual GEV model (black), the range in
which the estimates vary among stations is narrower, but implausibly high values still
occur at some stations. The median is consistent with the median of the annual GEV
model (red). In comparison, the range in which the estimated values of the monthly
d-GEV model (green) vary is much smaller and the values are within a reasonable range
at all stations. Although in this model ξ is assumed to be constant over duration and
months, we see a subtle decrease in the median with duration. Likewise, the variation for
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Figure 6.8: Distribution of shape parameter ξ estimated using four different models (columns) at
all 132 stations. The shaded areas present the percentage of stations for which the estimated value
lies within the respective range while the line depicts the median value.

ξ between individual stations is smaller for the monthly GEV model (purple) than for
either of the annual models (red and black). Additionally, we can see a clear decrease of
the shape parameter with duration for this model, since in this case no relation between ξ
and duration is predefined.

To summarize, we find that modeling the monthly maxima allows new conclusions to
be drawn about the behavior of the parameters of the distribution of annual maxima
depending on duration. Instead of using the more complex modeling of monthly maxima to
estimate annual IDF curves, one might also try to implement the resulting characteristics
directly into the model for annual maxima. We find that for some stations the location
µ and scale σ parameters deviate from the assumption of simple scaling toward higher
values for long durations. Fauer et al. (2021a) showed that this behavior of the parameters
can be modeled by an additional parameter τ , called intensity offset. They report that
the addition of this parameter for the stations of the Wupper catchment, in which the
example station Bever-Talsperre is located, leads on average to an improved estimation of
the annual IDF curves for medium to long durations. Regarding the shape parameter ξ,
we observe that the reduced uncertainties in the estimation of ξ, resulting from modeling
monthly maxima, allow for further investigation of the dependence of ξ on duration. We
find that ξ decreases with duration when taking the average of the investigated stations in
Germany, reaching values around zero for most stations at long durations. We believe that
this finding provides a good basis to explore a potentially more suitable formulation of ξ(d)
in future studies. We could imagine that the explicit modeling of this decrease of ξ yields
similar results to assuming a different duration exponent for the parameters µ and σ of the
d-GEV, so called multiscaling (Gupta and Waymire, 1990; Van de Vyver, 2018). Possibly
the latter implementation could be beneficial, since the estimation of these parameters is
associated with less uncertainty than that of ξ.
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6 Modeling Seasonal Variations of Extreme Rainfall on Different Timescales in Germany

6.4 Conclusions
This study focuses on modeling the intra-annual variations of extreme precipitation on
different timescales. For this purpose, we employ a duration-dependent Generalized
Extreme Value (d-GEV) distribution with monthly covariates. Using this approach allows
for the following:

• investigation of seasonal variations in the intensity–duration–frequency (IDF) rela-
tionship,

• the obtaining of more reliable estimates for the annual IDF curves by utilizing
information on extreme events more efficiently,

• a better understanding of the underlying processes, i.e., the dependence of the
parameters on the duration.

Regarding the seasonal variations, we find that everywhere in Germany the short
convective extreme events are most likely to occur in the summer months, whereas there
are regional differences for the seasonality of long-lasting stratiform extreme events. Our
findings will allow future studies to identify meaningful factors accounting for these regional
differences.

Furthermore, our results show that the annual IDF curves based on the monthly maxima
constitute a major improvement in terms of uncertainties of the estimates. Using the
quantile skill index (QSI), we compare the performance of the models based on the annual
and monthly maxima and show that, for some stations, modeling the monthly maxima
also leads to a considerable improvement in this regard. A limitation of this study is
the strict assumptions that are imposed on the seasonal variations of the distribution
parameters. Subsequent studies should therefore investigate the degree to which relaxing
these assumptions might further improve the performance of the model based on monthly
data. For example, in the framework of a vector generalized additive model (Yee and
Stephenson, 2007) it would be possible to model these smooth variations in a nonparametric
form. Based on our results, it might be beneficial to model the monthly maxima for
obtaining annual IDF curves, when there are large differences in the seasonality of extreme
events on different timescales, such as at the station Bever-Talsperre, or for stations where
only short observation time series are available. However, it must be considered that
a misspecification of the seasonal variations of the parameters can lead to poor results.
Moreover, modeling monthly precipitation maxima with the GEV may not be possible in
regions with very small precipitation amounts during some months of the year. Therefore,
the applicability of the model to the data should always be verified.
Finally, we can demonstrate that at some stations the annual IDF curves based on

the monthly maxima deviate from the assumption of scale invariance for long durations.
We illustrate that this behavior can be captured by a different parameterization of the
location and scale parameter. For future research, it might be of interest to compare
the monthly model employed in this study with an annual model that uses different
parameterization, e.g., the one proposed by Fauer et al. (2021a). Moreover, by including
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additional information in the form of smooth variations during the year, we observe that
the shape parameter decreases with duration when averaged over all stations. Based on
this result, future research should investigate whether the assumption of a constant shape
parameter is appropriate for a wide range of durations from minutes to several days, or
whether a more appropriate explicit relationship can be identified.

In conclusion, the use of monthly maxima can be beneficial in several respects when
estimating IDF curves, even when information on seasonal variations is not required.

Code and data availability: The station data are mostly publicly available via the Climate
Data Center of the DWD (https://opendata.dwd.de/climate_environment/CDC/o
bservations_germany/climate/1_minute/precipitation/historical/; DWD CDC,
2019). We provide the monthly maxima for 14 aggregation times at all 132 stations,
serving as the basis for the analysis, online (https://doi.org/10.5281/zenodo.5025657;
Ulrich et al., 2021a). The statistical analysis was performed using the package IDF for
the R environment (R Core Team, 2020; Ulrich et al., 2020). The package is available
for download at https://cran.r-project.org/web/packages/IDF (Ulrich and Ritschel,
2021).
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Chapter 7
Synthesis

The main focus of the presented studies was the combined use of observations from different
stations or months over a range of durations, and therefore using available data more
efficiently. In the following, we will summarize the findings regarding our research questions,
starting with the results of Study I. Additionally, we present the application of the methods
developed in this study to the analysis of selected extreme events. Subsequently, we
summarize the results of Studies II and III and discuss conclusions that arise for modeling
the relationship between precipitation intensity, duration and frequency.

7.1 Study I: Summary and Application

The objective of this study was to incorporate precipitation data of different durations and
different stations simultaneously in the modeling of IDF curves. For this purpose, we used
the d-GEV distribution with spatial covariates. We expected that this would enable the
transfer of knowledge from longer to shorter records. We tested the approach in the study
area of the Wupper River Catchment in the West of Germany. Our first research question
was:

Under which conditions is the spatial d-GEV approach an improvement compared to
the separate application of the GEV distribution for each duration and station?

To address this question, we compared the out-of-sample performance of the spatial d-GEV
model with that of separately fitted GEV distributions for individual stations and durations
based on the Quantile Score. We found that, on average, the skill of the model depends on
both the non-exceedance probability p and the duration. The skill increases with increasing
p. This is consistent with our expectations, since events with higher p occur less frequently.
It is therefore beneficial to apply models which utilizes more data on these rare events. The
dependence of skill on duration can be explained in two ways: Firstly, the d-GEV model
appears to lack the flexibility to model the precipitation intensity equally well over the
entire duration range. This leads to a loss of skill in the middle of the duration range at
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most stations. Based on this result, we investigated possible parameterizations to improve
the flexibility of the d-GEV model in Study II. Secondly, we observed a decrease in skill for
daily durations. We could show that this is due to the longer time series available for these
durations. This mainly results in an increase of the performance of the reference model.
If a long enough time series is available, the separate application of the GEV model can
be advantageous, since this model is based on fewer assumptions. For stations with short
time series, however, the advantage of combining different data using the spatial d-GEV
model is beneficial.

Using the spatial d-GEV model is not only convenient for pooling information, but it also
allows us to spatially interpolate and thus estimate IDF curves at any location within the
study area. Therefore, we also aimed to investigate:

Does the spatial d-GEV approach provide reliable estimates at ungauged sites?

We tested the model’s ability to predict quantiles for ungauged locations by comparing
its performance with that of a seprarate GEV model for each duration at these locations.
We found that the average skill of the d-GEV model at ungauged locations depends on
the length of the time series available for the reference model. Thus, we could assess that
the estimated quantile values of the spatial d-GEV model at ungauged locations are on
average comparable with those of applying a GEV model to 30 to 35 annual maxima. We
can therefore assume that the model provides reliable estimates for ungauged locations,
and use it to provide IDF curves for each location, or spatial return level maps for each
duration. On the other hand, we can also associate an exceedance probability (or return
period) to the magnitude of an observed event for each duration and at each point in space
based on this model. We provide an example of this type of application hereafter.

7.1.1 Spatial Analysis of Selected Heavy Rainfall Events as an Application of
the d-GEV with Spatial Covariates

In this section, we focus on Berlin as in the summers of 2017 and 2019 the city was
repeatedly hit by heavy rain, which led to pluvial flooding. In both years, disruptions to
traffic and everyday life as well as major property damage occurred. The following event
analysis is published as part of the report of a task force within the DFG Research Training
Group Natural hazards and risks in a changing world (NatRiskChange) to investigate the
hazards and vulnerability of the Berlin population to heavy rainfall (Berghäuser et al.,
2021). In addition to the assessment from a meteorological perspective, the report contains
an evaluation on the impacts on citizens and their impairments due to heavy rain as
well as the topics of warning, emergency, precautionary measures and risk perception.
For the following analysis of heavy rainfall events in Berlin, we model annual maxima of
precipitation intensity for different durations from stations in Berlin and Brandenburg
using the methods from Chpt. 4. Complementary details on the data and methods used are
provided in Appendix E. Based on the spatial model, we can estimate return level maps for
arbitrary durations, or IDF curves for each point, as described in Section 4.3.2, for Berlin
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Figure 7.1: Estimated point-wise return level maps for durations d ∈ {24 h, 30min, 5min} (differ-
ent columns) for the non-exceedance probability p = 0.99 corresponding to the average return period
of 100 years. Dots indicate the positions of the stations (1) Berlin-Tegel and (2) Berlin-Kaniswall.

and the surrounding area. These are presented in the following section. However, we can
further apply the spatial model to estimate annual exceedance probabilities, i.e. average
return periods, of specific events. We analyze two selected events from 2017 and 2019,
which are described in Section 7.1.1 using radar-based and station data. A comparison of
the selected events based on their estimated annual exceedance probabilities for different
durations follows in Section 7.1.1.

Estimated Return Levels for the Berlin Area

The 100-year return level maps for the durations 24h, 30min and 5min for Berlin and
the surrounding area are provided in Figure 7.1. In contrast to the Wupper catchment
(compare Figure 4.8), for Berlin we can see that all durations exhibit a similar spatial
pattern with intensity increasing towards the southeast. We can further illustrate the
differences in precipitation intensity for different durations within Berlin by comparing
the example stations Berlin-Tegel (1) and Berlin Kaniswall (2), which are located about
34 km apart. The positions of both stations are marked by dots in Figure 7.1. The IDF
curves for both stations are shown in Figure 7.2. Differences between the stations occur
mainly for high non-exceedance probabilities and short durations. However, the differences
are smaller than the margins of the respective 95% confidence intervals. Additionally, a
comparison with the results for the Wupper catchment in Section 4.3.2 indicates that
precipitation intensities in the Berlin area for short durations are considerably higher than
in the Wupper catchment area.
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Figure 7.2: Estimated IDF-curves for Berlin-Tegel and Berlin-Kaniswall with 95% confidence
intervals (shaded areas). Vertical dashed lines indicate the durations for which return level maps
are provided in Fig. 7.1.

Description of the Selected Events

In Berlin, flooding due to heavy precipitation that exceeds the capacity of the city’s sewage
systems often occurs as a result of convective rainfall in summer. Convective events are
caused by the rapid rise and cooling of warm and humid air masses, leading to the formation
of high clouds. As a result, heavy rain occurs on a rather small scale and for a short
period of time, but with very high precipitation intensities. Throughout the summer in
2019, several thunderstorms, all caused by single convective cells, led to local flooding in
Berlin. The most intense event that year occurred on 2 August 2019 and mainly affected
the city center. In 2017, a notable heavy rain event happened from 29 to 30 June 2017.
However, this event was not a typical convective event with local heavy rainfall. Instead,
the collision of cold air from the north and warm moist air from the Mediterranean region
led to a widespread rise of the warm moist air and thus to the formation of extensive rain
fields. Apart from Berlin, Potsdam, Oranienburg, Leegebruch and other towns in the north
of Berlin were also affected by the event. We describe both events1 with respect to the
following questions:

• Which weather situation led to the extreme precipitation in each case?

• How much precipitation occurred in Berlin in which period of time?

• What were the impacts of the events?

For this, we consider precipitation intensities derived from radar reflectivities and pre-
cipitation measurements at stations of the DWD (see Appendix E.1). Additionally, the
description follows the analyses of the Berliner Wetterkarte (Gebauer, 2017; Gebauer et al.,
2017; Niketta, 2017, 2019).

1The event description is in non-chronological order, as the August 2019 event could be considered a more
typical convective heavy rainfall event than the event in June 2017.
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Figure 7.3: Accumulated precipitation for the convective heavy rainfall event (2 August 2019, top
row) for the duration of 3 h and the large-scale heavy rainfall event (29-30 June 2017, bottom
row) for the duration of 24 h. Presented are, in each case, the cumulative precipitation amounts at
individual gauging stations (left), and the amount of total precipitation for the respective duration
of the event, derived from radar-based data (right). The location of the stations used are indicated
by dots in the maps on the right. The station in Potsdam is outside the area of the map. The
station Berlin-Tegel did not record during both events.

Convective Heavy Rain Event in the Afternoon of 2 August 2019 Prior to this event,
in the morning of 2 August 2019, an upper-level trough moved from the North Sea in a
southeasterly direction over the Netherlands and interacted with an existing low-pressure
system over northern Russia. The resulting rise of warm, moist air masses in central and
northern Germany led to favorable conditions for the formation of local thunderstorms.
In the afternoon, strong thunderstorms developed over the Berlin area, locally causing

intense rainfall, with inner-city areas being particularly affected. The strong spatial
heterogeneity can be observed in Figure 7.3 (top right), which presents the three-hour
accumulated precipitation (based on radar data) in the period between 3 and 6 p.m. The
event was not well recorded by the measuring stations of the DWD, shown in Figure 7.3
(top left), because the highest precipitation amounts occurred in between the stations.
Apart from Tempelhof (light green) and Staaken (green), the stations recorded almost no
precipitation. At the Tempelhof station, a total of 35.3 mm rain occurred, the majority of
it within half an hour. Even greater amounts were reported by measuring stations of other
providers. For example, 49.5 mm were recorded by station of the Institute of Meteorology
of FU Berlin in the district of Tiergarten. The Berliner Wasserbetriebe even reported
almost 59 mm (Niketta, 2019) within one hour at a measuring station in Wedding. Both
stations are located in the dark blue region in central Berlin in Figure 7.3 (top right).
The intense rainfall led to flooding of the streets and disruption of traffic in the center
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of Berlin. In Berlin Tiergarten, the water height reached up to half a meter in some areas.
The Berlin fire department was sent out on more than 150 weather-related operations,
mostly due to water damage in buildings and on roads.2

Large-scale heavy rainfall event on 29 and 30 June 2017 In the days before the event,
an upper-level trough was located over western Europe, which on the one hand transported
very warm moist air masses from the Mediterranean region towards central eastern Europe
and, on the other hand, brought cooler maritime air from the North Atlantic to western
Europe. On the night of the 29 June, a small low-pressure system formed on the ground
level over the Czech Republic at the air mass boundary between very warm and humid
air over Poland and cooler maritime air over Germany. Within the next 12 hours, the low
pressure area strengthened considerably and moved to northwestern Poland. The resulting
severe uplift of warm and humid air led to the formation of a widespread precipitation field
with embedded thunderstorms moving from Poland over northeastern Germany around
noon.
The event affected many areas in Berlin and was a lot less heterogeneous than the

event in August 2019. It lasted from 29 June to 2 July 2017, with about 90% of the total
precipitation falling within the first 24 hours, i.e. from 9 a.m. on 29 June to 9 a.m. on
the following day. The development of these 24 hours can be reconstructed well from the
cumulative precipitation sums at the Berlin measuring stations of the DWD, shown in
Figure 7.3 (bottom left). At 9 a.m. on 29 June, the first thunderstorm cells from the
direction of Poland hit the southeastern border of Berlin. In the following four hours, this
first of two successive precipitation fields moved over most parts of Berlin. Already at noon,
precipitation values of more than 20 mm were measured at several stations within Berlin.
After a break of a few hours around 4 p.m., another large precipitation field reached the
north of Berlin and Brandenburg. It was not only larger, but also more persistent than the
previous one, and is responsible for the majority of the measured precipitation amounts.
In the early morning hours of 30 June 2017 the precipitation finally weakened into a light
drizzle. In total, the most precipitation in Berlin occurred in the north-west of the city, as
can be seen in Fig. 7.3 (bottom right). However, the maximum values were in this case also
not recorded by one of the stations of the DWD, since the station Tegel was not recording
during the event. The nearby FU station Tegel-Forstamt measured 221.4 mm within the
first 24 hours (Gebauer et al., 2017). Although within Berlin, high precipitation sums
occurred mostly due to the long duration of the precipitation, the event also exhibited
characteristics of convective events similar to the August 2019 event in some locations.
For example, at the station in Potsdam 40 mm of precipitation occurred in the two hours
between 11 a.m. and 1 p.m.
The persistent heavy rain led to flooding of numerous streets, allotments as well as

subway stations and basements in the center of Berlin. The Berlin fire department reported
more than 1,800 weather-related operations. The region in and around Oranienburg in the
north of Berlin was also affected severely. Moreover, in addition to the precipitation falling

2As reported by https://www.berlin.de/wetter/nachrichten/5854048-3722621-starke-gewitter-
feuerwehr-rueckt-zu-150-.html, last accessed: 4 November 2021.
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Figure 7.4: Annual exceedance probabilities or average return periods for the two heavy rainfall
events from 2 August 2019 (top row) and from 29-30 June 2017 (bottom row) for different
durations of the events (different columns). The marked locations A (Tiergarten) and B (Volkspark
Jungfernheide) are the locations where maximum precipitation intensities occurred in 2019 and
2017, respectively.

directly into the water bodies, the wastewater from sewer systems caused rivers such as
the Spree and Havel to rise considerably (Gebauer et al., 2017).

Estimated annual exceedance probabilities of both events

In the following section, the selected extreme precipitation events described in Sec. 7.1.1
are compared based on their estimated annual exceedance probabilities in the Berlin area
for different durations.
Figure 7.4 presents the estimated annual exceedance probabilities or average return

periods of the maximum precipitation intensities that occurred during the events in the
Berlin area for the three different durations d = {1, 3, 24} h. For the event of 2 August 2019
(upper panel), we can conclude that extreme precipitation intensities occurred only for short
durations and, moreover, only very localized. Precipitation intensities with exceedance
probabilities of 1% or less can be observed at only two grid cells within Berlin. The strong
spatial heterogeneity is illustrated by the fact that just few kilometers away from the
location with maximum intensities, the annual exceedance probabilities reach merely 50%
or less. The characteristics of the event from 29-30 June 2017 (lower panel) are quite
opposite. In this event, no extreme precipitation intensities occurred on short timescales.
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Figure 7.5: Estimated IDF curves at locations A (left) and B (right) (see Fig. 7.4). The black
lines show the maximum precipitation intensities dependent on duration that occurred during the
heavy rainfall events of 29-30 June 2017 (dashed) and 2 August 2019 (solid) at both locations.

In contrast, for the duration of 24h in a large area in the north of Berlin, the maximum
precipitation intensities that occurred are exceeded with a probability of 1% or less within
one year. Hence, the average return periods in this area are 100 years or more. This reflects
that the event caused extreme precipitation amounts in a large area due to its persistence.
When focusing on individual locations, we can analyze the events in more detail with

regard to different timescales. The different characteristics of the two events, in terms
of duration and spatial extent, are especially highlighted when comparing the annual
exceedance probabilities of the precipitation intensities that occurred at points A and B
(marked in Figure 7.4). These are the locations where the greatest precipitation intensities
occurred in 2019 (A) and 2017 (B), respectively, within Berlin when considering the total
duration of the events. The distance between the locations is 6.7 km. Figure 7.5 depicts
the annual exceedance probabilities of the precipitation intensities that occurred during
the events for both locations along with the IDF curves. From the intersection of the
event intensities with the IDF curves we can identify for which durations the occuring
precipitation intensities were extreme. Again, we find opposite characteristics for both
events: For the 2019 event, the exceedance probabilities of the precipitation intensities for
a duration of 1 − 2h are about 1% at location A. For longer durations, the exceedance
probability decreases considerably. On the other hand, at nearby location B, the event
does not reach an exceedance probability of 50 % for any duration. This corresponds to
an average return period of less than two years. On the contrary, the 2017 event was
not extreme on short timescales at both locations. For a duration of two hours, the
precipitation intensities reach an exceedance probability of 10%, which corresponds to an
average return period of 10 years. However, for durations d ≥ 5 h precipitation intensities
with an exceedance probability of less than 1% occured at location B. Likewise, at location
A the exceedance probabilities for the longer durations d > 8 h are about 1%.

To summarize, the two events were very different in terms of their spatial extent and
duration. Locally, both events led to comparable flooding and damage in Berlin. However,
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in the 2017 event, the affected area was much larger. The fact that both events exhibit the
most extreme precipitation intensities on sub-daily timescales emphasizes the relevance of
generating reliable estimates of IDF curves for these durations. In addition, the example of
the event analysis presented can be used to illustrate the need to include spatial variations
into IDF models: Both events were not recorded properly within Berlin by the measuring
stations of the DWD. This is consistent with the results of Lengfeld et al. (2020). The study
indicates that only a small proportion of the hourly heavy rainfall events that occurred in
Germany in the period from 2001 to 2018 were captured by the rain gauge station network.
In contrast, a large proportion of the daily events were recorded. The radar-based data
allow us to understand the spatial and temporal evolution of the events. Although it would
also be possible to use radar data to estimate the point-wise return levels, this poses new
challenges, notably the limited record lengths. Therefore, for these estimates we rely on
station data, whereby the shorter time series of sub-daily observations are combined with
the longer time series of daily observations. Thus, a spatial model is necessary to analyze
the occurred precipitation intensities at each point in the area of interest. The second and
more crucial reason is that, as we have seen, especially smaller thunderstorm cells tend to
pass between precipitation gauge stations. The spatial pooling of data makes it possible
that extreme events that were recorded by one station are also included in the estimation
of IDF curves of surrounding stations.

7.2 Studies II and III: Summary and Comparison

As seen in Chpt. 3.2 and the results of Study I, for some stations the d-GEV model, as
defined in Eq. (3.11), lacks flexibility to describe the precipitation intensity over a wide
duration range from minutes to several days sufficiently well. Therefore, we investigated
possible extensions to this model and their impact on model performance in Study II.
Study III analyzes seasonal variations in the IDF relationship and their impact on IDF
curves. Study III thus provides possible explanations for the deviations of the observations
from the d-GEV model. Both studies are related in this respect. We will start by
summarizing the results of the individual studies and then discuss the implications arising
jointly from both studies.

Study II considers the extension of the d-GEV model with two additional parameters to
provide a more flexible dependence of intensity on duration. The d-GEV model is based
on the assumption of a power law, i.e. simple scaling, for the decrease of intensity with
duration, although a deviation from this for sub-daily durations is allowed. We refer to this
feature as curvature. We studied two additional parameters that enable a different scaling
of the intensity for events of different magnitude and a deviation from simple scaling for
long durations. These additional features are referred to as multiscaling and flattening. In
this respect, the study address the following research question:
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Which of the features curvature, multiscaling and flattening leads to an improved
performance of the d-GEV model?

We examined the average model performance in the study area of the Wupper Catchment
resulting from the use of the three different model features. We have found that all three
features lead to an improvement of the model in a specific duration regime. As expected,
allowing curvature improves the modeling of very short durations of a few minutes. However,
it also results in a decrease in model performance in the middle of the duration range. We
could show that the flattening feature is able to compensate this decrease in performance.
A model with flattening but without curvature leads to no change in model performance.
Therefore, it seems appropriate to use these two features in combination. Surprisingly,
allowing flattening does not improve the model performance in the range of long durations,
although this is the range where this feature is expected to alter the model. We could show
that this is caused by the joint estimation of all parameters. The use of flattening thus
leads to a change in the estimated values of the other parameters as well. The result being
that the model performance is improved in the middle duration range, while it slightly
decreases in the long duration regime. With respect to multiscaling, we found that while
this feature significantly improves the model performance in the long duration regime, it
leads to a deterioration of the same magnitude in the sub-hourly duration range. When
the sub-hourly observations are not included in the model, none of the features lead to
a relevant improvement of the model. Therefore, the use of the features depends on the
particular objective of the model.

Another result of the study is related to the coverage of the estimated confidence intervals.
In Study I, we compared two different approaches to estimating confidence intervals for
quantiles of the d-GEV distribution, namely the delta method and the non-parametric
bootstrap method. We were able to show in a sampling experiment that the bootstrap
method, in contrast to the delta method, provides reasonable coverage. However, we only
investigated the coverage under the assumption of independence between the maxima of
different durations. In Study II, we therefore investigated the coverage for sampled data
with known dependence, and asked:

Does the non-parametric bootstrap method yield confidence intervals with the as-
sumed coverage in the case of dependent data when an appropriate sampling strategy
is applied?

We assumed that by sampling all data of one year collectively, the dependence structure of
the data would be taken into account in the bootstrap method. We tested this assumption
in a sampling experiment, where we generated random data with known dependence using
a max-stable Brown-Resnick process. The confidence intervals estimated on the basis of
these data using the described sampling strategy exhibit slightly lower coverage than the
assumed 95%. Thus, we conclude that the provided confidence intervals underestimate the
uncertainties due to the dependence of the data to a small extent.
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Study III explores seasonal changes in the IDF relationship by modeling monthly maxima
using harmonic functions of the month as covariates in the parameters of the d-GEV
distribution to represent the seasonal cycle. First, this approach allows the use of more
data on extreme events. In addition, we expected to gain insights into how the different
processes that cause extreme precipitation in different seasons affect the modeling of IDF
curves. Therefore, we first investigated:

How does the IDF relationship at different stations in Germany evolve throughout the
year?

We could show that primarily the parameters σ0 and η of the d-GEV distribution vary
throughout the year. These parameters determine the intercept and the slope of the IDF
curves in double logarithmic representation. We found that at all investigated stations
in Germany the IDF curves are steeper in summer than in the remaining months, i.e. in
summer the strongest decrease of intensity with duration exists. The different intercepts of
the curves provide information about the months with maximum precipitation intensities
for short durations. We observed that the intensity maximum for short durations occurs in
summer at all stations. Regarding the intensity maximum for long durations, however, we
found differences between the stations. For a better understanding of how the monthly
IDF relationships differ among stations, we studied this topic from another perspective, by
asking:

During which months of the year are annual maxima of different durations more likely
to occur?

To investigate this, we calculated the probability that the annual 0.9 quantile is exceeded
within a given month. As expected, we found that the short convective extreme events
occur almost exclusively in summer everywhere in Germany. At the majority of stations,
the long-lasting extreme events also occur most likely in summer. However, often these
events are similarly likely to occur in other seasons, as the exceedance probabilities possess
comparable values during other months of the year. Stations where long-lasting extreme
events are most likely to occur in winter were found to be mainly located in high altitude
regions in the western half of Germany. We suspect that this is related to the stronger
westerly winds in these months, which can lead to increased precipitation on the windward
sides of the mountains. At stations along the North Sea coast, long-lasting extreme events
are most likely to occur in late summer to autumn, which is likely to be related to the warm
surface water temperatures interacting with increasingly colder air masses and stronger
winds at the beginning of autumn.

We have found that the IDF relationship varies throughout the year. Additionally, similar
to Study I, the use of covariates in this seasonal context allows including more data into
the model. This led us to the question:
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To what extent do the annual IDF curves based on monthly and annual maxima differ?

As expected, we found that the use of monthly maxima significantly reduces the uncertainties
of the estimated quantiles. This is particularly relevant for stations with shorter time
series. In addition, the seasonal d-GEV model allows a more flexible relationship of
precipitation intensity and duration. In this context, we observed a deviation of the IDF
curves from a power law at some stations, especially for long durations. This deviation is
similar to the one caused by the flattening feature investigated in Study II. We observed
this deviation primarily at the previously mentioned stations at higher elevations, where
maximum precipitation intensities shift from summer for short durations into winter for
long durations. We therefore assume that the flattening feature is caused by pronounced
differences in the seasonality of short and long extreme events. When comparing the
seasonal and the annual d-GEV models in terms of model performance, we find that the
seasonal model leads to an improvement only at some stations. We suspect that for stations,
where the seasonal model results in a worse description of the annual data, the model
assumptions for the dependence of the d-GEV parameters on the month might be to strict
or not valid.

Since we found that accounting for seasonality can lead to a deviation from the d-GEV model
as defined in Eq. (3.11), we also investigated what differences result for the dependence of
the GEV parameters on duration. Thus, our final research question stated:

Does explicit modeling of seasonal variations allow us to draw conclusions aimed at
improving the modeling of annual maxima?

Concerning location and scale parameters to describe annual maxima, we found a deviation
from the assumptions of the d-GEV distribution given in Eqs. (3.8-3.9) at some stations. It
may be possible that these deviations can be described using the extensions to the d-GEV
model discussed in Study II. The estimation of the shape parameter ξ is associated with
large uncertainties, especially for short time series. It is therefore difficult to detect a
relationship between ξ and duration. However, taking seasonality into account leads to a
significant reduction of these uncertainties. This allowed us to investigate the relationship
between ξ and duration with more clarity. Our results indicate that the assumption of
a constant shape parameter does not seem to be justified. Instead, on average over all
stations, ξ is positive decreases with duration.

7.2.1 Comparison of Results and Implications for Flexible IDF Curves
In Study III, we observed a deviation of the IDF curves from the simple scaling assumption
for long durations, especially at stations exhibiting substantial differences in the seasonality
of short and long lasting extreme events. At these stations, the different slope and intercept
of the IDF curves for different months causes the curves to cross. Therefore, we assume
that the deviation for long durations can be explained by the intersection of the IDF curves
for different seasons.
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Figure 7.6: Example data consisting of sampled maxima from two groups (red and blue circles)
with estimated IDF curves for each group (red and blue lines). IDF curves for the maxima of the
joined groups were estimated from all data using the d-GEV distribution with covariates (black
lines) and from only the respective maxima of both groups using the flexible d-GEV model (purple).

Do pronounced seasonal differences in the IDF relationship cause a deviation from the
simple scaling assumption for long durations?

To examine this idea in a simplified form, we take a basic example where block maxima
can originate from only two different groups. The groups could be interpreted as two
seasons or two different processes causing extreme events, i.e. convective and stratiform
precipitation. To do this, we specify an IDF relationship for each group such that the IDF
curves of the groups intersect analogously to the results from Study III. For each Group,
we draw a random sample for a range of durations. In Fig. 7.6, these samples are shown as
red and blue circles. We can apply one model to both groups by treating the group as a
covariate, comparable to the d-GEV with monthly covariates. The estimated IDF curves
for each group are shown as red and blue lines in Fig. 7.6. The IDF curves that result
jointly for both groups, effectively the annual IDF curves, are shown in black. For the
upper and lower end of the duration range, the annual IDF curves correspond to those
of the individual groups, because in both regimes only one of the two groups contributes
to the annual maxima. This results in a bending of the annual IDF curves in the middle
of the duration range. This example confirms our assumption that a deviation from the
d-GEV model can be caused by such seasonal differences.

In Study III, we proposed the use of the flexible d-GEV model as an alternative to explicitly
account for seasonality. Therefore, we briefly assess:

Does modeling annual maxima with a flexible d-GEV model produce comparable results
to modeling monthly maxima using the d-GEV distribution with monthly covariates?

We first explore this using the example shown in Fig. 7.6. For this purpose, we take the
maximum value of both groups for each index. This corresponds to the annual maxima.
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From these data, we estimate the parameters of the flexible d-GEV distribution (Eqs. 5.3,
5.10-5.11) under the assumptions τ 6= 0 and η2 = 0. The resulting IDF curves are shown
in purple in Fig. 7.6 (right panel). We can see that the IDF curves of the monthly model
and those of the flexible annual model are very similar. The flexible d-GEV model allows
a smoother transition between the regions of shorter and longer durations. The curves can
be expected to diverge when extrapolating to longer durations. Since this example is a very
exaggerated representation of the seasonal variations found in Study III, we can assume
that the flexible d-GEV model may provide even better agreement for actual observations.
To investigate this assumption, we compare the annual flexible d-GEV model with the

monthly d-GEV model at three stations for which we found pronounced seasonal differences
between short and long lasting events in Study III. These are the stations Bever-Talsperre
and Saarbrücken-Ensheim, which already served as example stations in the study, and
additionally the station Schmücke, which is located in the Thuringian Forest, a mountain
range in central Germany. Fig. 7.7 shows the estimated annual IDF curves of both models
together with their respective 95% confidence intervals for the three stations. The top row
presents the QSI, see Eq. (6.18), for a range of non-exceedance probabilities and durations,

 

 

0.5
0.8
0.9

0.95
0.98
0.99

0.995

P
ro

ba
bi

lit
y

Bever−Talsperre

 

 
In

te
ns

ity
 [m

m
h−

1 ]

0.5

1.0

2.0

5.0

10.0

20.0

50.0

100.0

200.0

0.02 0.2 1 4 24 120

Duration [h]

p−quantile

0.99
0.9
0.5

Model

flexible d−GEV
monthly d−GEV

 

 

Saarbrücken−Ensheim

 

 

0.02 0.2 1 4 24 120

Duration [h]

 

 

Schmücke

 

 

0.02 0.2 1 4 24 120

Duration [h]

−0.3

−0.2

−0.1

−0.05

0

0.05

0.1

0.2

0.3

Q
S

I

Figure 7.7: Comparing the annual IDF curves estimated by modeling annual maxima with the
flexible d-GEV model (purple) and by modeling monthly maxima using the d-GEV distribution with
monthly covariates (green) for three example stations. The shaded areas represent the respective
95% confidence intervals. The distributions of the observed annual maxima are shown as box-
and-whisker plots, where the whiskers cover the complete data range. In the upper panels the
corresponding QSI values are presented for comparison of the models’ performances, where positive
values indicate an increase in the skill of the monthly d-GEV model compared to the annual flexible
d-GEV model. Dots represent the non-exceedance probability p corresponding to length T of the
available time series used for verification where T = 1/(1− p).

132



7.2 Studies II and III: Summary and Comparison

with positive values indicating the monthly model outperforming the annual model and
negative values representing the opposite. For station Bever-Talsperre, we observed the
strongest deviation of the monthly model (green) from simple scaling at long durations
in Study III. Here, the flexible d-GEV model (purple) shows an even stronger deviation
in the form of pronounced bending of the IDF curves in the range between 1 h and 120 h.
From the QSI we can conclude that the deviation in this range has a positive effect on the
model performance in the mid duration range. This result is consistent with the results
on the effect of the flattening feature on model performance from Study II. In the short
duration range, the IDF curves of the flexible d-GEV model also exhibit stronger curvature.
In this range, the QSI does not provide clear information regarding which model performs
better. In contrast to Bever-Talsperre, the flexible d-GEV model shows weaker flattening
than the monthly model at the stations Saarbrücken-Ensheim and Schmücke. At both
stations, the regions where the monthly model outperforms the annual model predominate.
In conclusion, this implies that although the flexible d-GEV model is generally capable
to reproduce the shape of the curves described by the monthly model, the parameter
estimation based on annual maxima at the three example stations leads to different results.
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Chapter 8
Summary and Outlook

8.1 Summary
The aim of this thesis was the development of methods for a more efficient use of available
data in the context of extreme precipitation modeling. In this regard, the studies included
in this thesis identify possibilities to pool knowledge from different sources to assess the
relationship between precipitation intensity, duration and frequency. This is especially
relevant when considering extreme precipitation of short duration, since measurement data
are usually scarce for the analysis of these events.
To this end, in a first step we have demonstrated the feasibility of modeling annual

maxima of different durations simultaneously using a duration-dependent GEV distribution.
We used the approach of Koutsoyiannis et al. (1998) in which assumptions about the
dependence of the GEV parameters on the duration are directly implemented into the
distribution to obtain one duration-dependent GEV (d-GEV) distribution. We presented
the advantages of this approach in comparison to applying separate models in sequence.
The main strengths of the d-GEV model are its parameter parsimony and the resulting
reduction of uncertainties in the parameter estimation, especially for the shape parameter.
However, we also found that for some stations the initial assumptions of Koutsoyiannis
et al. (1998) do not provide a sufficiently flexible description of precipitation intensity
as a function of duration, when considering a wide range of durations from minutes to
several days. We addressed this problem in Study II of this thesis. For this purpose, we
extended the d-GEV model by two parameters and tested how increased flexibility affects
model performance. We were able to show that the inclusion of additional parameters
improves the model in specific regions of the duration range and concluded that the choice
of parameterization should depend on the objective of the model.
In Studies I and III, we demonstrated how the d-GEV model can be extended using

covariates. We applied this approach to pool knowledge not only between different
durations but also between different stations (Study I) or between different months of the
year (Study III). Both covariate models therefore allow the more efficient use of larger data
sets and result in a reduction of uncertainties in the estimation of quantiles. In both cases,
their use has been identified as particularly beneficial in situations of low data availability,
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i.e., when modeling rare events as well as durations or stations with only short time series
available.
In addition, both models provide further advantages: The d-GEV model with spatial

covariates presented in Study I allows the estimation of IDF curves at any location within
the research area and the generation of return level maps for arbitrary durations. We were
able to verify that the model provides reliable estimates at ungauged sites. Furthermore,
we could apply the model to analyze two recent extreme events that led to flooding and
damage in the Berlin area. Thus, we have demonstrated that it is possible to use the
spatial d-GEV model in combination with radar-based estimates of event intensities for a
detailed analysis of their frequency both in space and over the duration of an event. In the
cases of the selected events, the extreme precipitation intensities were to a large extent
not recorded by the DWD stations, which further illustrates the main advantages of the
spatial d-GEV model, namely the possibility of spatial interpolation and the consideration
of measurements at neighboring stations.
The seasonal d-GEV model applied in Study III enables the modeling of monthly

maxima rather than annual maxima, using covariates to explicitly account for intra-annual
variations. This allowed us to investigate the IDF relationship in different seasons and
thus to some extent with respect to different precipitation generating processes. Our
results indicate that short convective extreme events occur almost exclusively in summer
everywhere in Germany, while the seasonality of long-lasting, mostly stratiform events
depends on location. Especially the altitude, the distance to the coast and the mean wind
direction seem to be influential parameters. We also found that the seasonal d-GEV model
results in a notable deviation from the assumption of simple scaling for long durations,
especially at stations with strong differences in the seasonality of short and long-lasting
extreme events. We could attribute this to the crossing of the monthly IDF curves at
these stations. We suspected that modeling monthly maxima with the seasonal d-GEV
model as well as modeling annual maxima with the flexible d-GEV could lead to similar
results in these cases. However, testing at three example stations did not confirm our
hypothesis. Finally, modeling monthly maxima by taking into account the intra-annual
variations leads to a significant reduction of uncertainties in the estimation of the shape
parameter. We could use this advantage to analyze the dependence of the shape parameter
on duration. Our results suggest that the assumption of a constant shape parameter over
duration may not be reasonable and a different parametrization for this parameter appears
to be required.
In conclusion, pooling information does not only allow for more reliable estimates but

also provides a deeper understanding of the characteristics of extreme precipitation events
on different time scales and possible influences on their variability.

8.2 Outlook

This work constitutes a step towards the goal of developing efficient statistical methods to
model extreme precipitation events and assessing their possible consequences. As expected,
many research questions remain and likewise new questions emerge from the acquired
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insights. Therefore, in the following section, we present some directions in which the
research presented here may be continued.

Alternatives for Modeling the Duration Dependence A main objective of the presented
work has been the pooling of information to provide more reliable estimates where data is
scarce, such as for sub-daily extreme precipitation events. In order to combine information
within one model, it is necessary to specify certain model assumptions, e.g. assumptions
for the relationship between intensity and duration. We have demonstrated that model
assumptions that are too strict prevent an improvement in model performance, even though
they allow the model to utilize more data. We have identified one possible solution, which
is to adopt more complex models with additional parameters. Another interesting option
could be to describe the change in intensity with duration using a non parametric model.
One way to do this would be via a generalized additive model (Yee and Stephenson, 2007).
This approach is similar to the presented d-GEV model, but instead of assuming empirical
relationships for the dependence of GEV parameters θ ∈ µ, σ, ξ on duration d, sums of
unspecified smooth functions fθi (d) are adopted

θ(d) = θ0 +
∑
i

fθi (d). (8.1)

The challenges here are the uncertain degree of smoothness, extrapolation and interpreta-
tion.

Another possibility involves the use of a penalized maximum likelihood estimator (PMLE)
(Bücher et al., 2021; Coles and Dixon, 1999). This parameter estimation method results
from subtracting a penalty term Ω(Θ) ≥ 0 from the log-likelihood l (Eq.2.11) yielding

Θ̂Ω = arg max
Θ

[ l(Θ|z1, ..., zn)− Ω(Θ) ] . (8.2)

The penalty term can be seen as a certain assumption or so called expert knowledge,
that has to be considered within the parameter estimation. A simple example adopted
by Bücher et al. (2021) to illustrate the applicability of the estimation method to flood
frequency analysis is based on the assumption of a certain value for the shape parameter
ξ = ξc. We can incorporate this assumption into the parameter estimation by choosing the
penalization term Ω(Θ) = λ(ξ − ξc)2, where the hyperparameter λ ≥ 0 determines how
much confidence is placed in the assumption. The estimator then yields

Θ̂Ω(λ) = arg max
Θ

[
l(Θ|z1, ..., zn)− λ(ξ − ξc)2

]
, (8.3)

where for λ = 0 the ordinary ML estimator results, while λ =∞ yields ξ̂ = ξc. An optimal
value for λ can be determined based on the out-of-sample performance of the model. The
PMLE approach therefore offers the possibility to similarly implement assumptions for
the dependence of the parameters on the duration. In this respect, the straightforward
way would be to use the d-GEV assumptions from Eqs. (3.8-3.10). We could for example
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implement these assumptions into the estimation of the GEV parameters µd, σd and ξd for
a range of durations d by using the penalty term Ω(Θ) = Ωσ + Ωµ + Ωξ with

Ωσ = λσ
∑
d

{
σd −

[
σ0(d+ θ)−η

]}2 (8.4)

Ωµ = λµ
∑
d

{µd − µ̃σd}2 (8.5)

Ωξ = λξ
∑
d

{ξd − ξc}2 (8.6)

in Eq. (8.2), where µ̃, σ0, θ, η and ξc are values that have to be previously defined. If those
values are set to the maximum likelihood estimates of the d-GEV model and in the limit
λ→∞, we again obtain the d-GEV model. A reduction of λ therefore leads to a relaxation
of the d-GEV assumptions.
In a preliminary analysis, we tested this type of penalization using the annual maxima

of the station Bever-Talsperre. In the example presented in Fig. 8.1 we choose a constant
value for the hyperparameter λξ = 100 and thus only assess the influence of the strength of
the penalization terms Ωσ and Ωµ by increasing λσ = λµ = λ1. The plots (b-d) respectively
present the estimated parameters µd, σd and ξd for a range of durations d and different
values of λ1. The dashed lines indicate the parameter values for which the penalization
terms would reduce to zero. Since the estimates for µd are already fairly close to the dashed
line for λ1 = 0 (purple dots), we observe little change for this parameter when increasing λ1.
In contrast, for σd, this leads to a reduction at short durations d < 1 h and an increase at
intermediate durations 1 h < d . 24 h. Interestingly, this changes in σd affect the estimated
values for ξd. For this parameter, we can see a slight fluctuation around the constant value
ξc (dashed line) for λ1 = 0 (purple dots), with stronger deviations occurring at longer
durations. Penalization of σd leads to an increase of ξd at short durations and a reduction
at medium durations and thus to a compensation of the behavior of σd. Nevertheless,
we obtain a slight change in the resulting quantiles for the ranges of short and medium
durations, as can be seen from Fig. 8.1 (e). We investigate the influence of λ1 on the
model performance by comparing the QS of the model to the reference model with λ1 = 0
for a range of durations and non-exceedance probabilities. The resulting QSI values are
displayed in Fig. 8.1 (a). We find that increasing λ1 leads to an improvement of the model
(QSI>0) in the range of short durations especially for higher non-exceedance probabilities.
For medium durations, however, increasing λ1 leads to a deterioration of the model. In
the presented example, it would be possible to choose a smaller value of λ1 ≤ 2 so that
the improvement of the model for short durations outweighs the deterioration for medium
durations.
We can conclude that it is of interest to further investigate the use of the PMLE

method both for the estimation of IDF curves and to better understand the dependence
of GEV parameters on duration. In the presented example the penalization terms are
based on assumptions of parametric equations for the parameters. However, less restrictive
assumptions, such as smoothness or a monotonic behavior, could also be implemented and
might even lead to more promising results. As seen in Study III, the assumption ξ =const.
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might not be justified and a better assumption could be that ξ decreases with duration.
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Figure 8.1: First analysis of the applicability of the PMLE method for the estimation of IDF
curves using the penalization terms in Eqs. (8.4-8.6) with λσ = λµ = λ1 and λξ = 100. Parameter
estimates (b-c) and quantiles (e) for non-exceedance probabilities p ∈ 0.99, 0.9, 0.5 (solid, dashed,
dotted) are presented for different choices of λ1. Panel (a) provides the QSI as measure of the
model performance for different values of λ1, when compared to the reference model with λ1 = 0.

Therefore, this kind of non parametric penalization seems especially interesting for the
shape parameter. Disadvantages of the PMLE method for the estimation of IDF curves
are that the obtained IDF curves are not necessarily consistent, i.e. a crossing of quantiles
may occur, and an interpolation between the durations is no longer possible.

Combination of Station Data and Radar-Based Estimates The d-GEV model allows
simultaneous modeling of long daily and shorter sub-daily measurement time series. We
demonstrated that this more efficient use of data leads to more reliable estimates, especially
for rare events. However, we have seen from two case studies in Berlin that extreme
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precipitation events are not necessarily captured by gauging stations. The study of
(Lengfeld et al., 2020) points out that especially the short convective events are to a
large extent not recorded by measuring stations. Several studies on the estimation of
IDF curves based on radar data were recently performed (Goudenhoofdt et al., 2017;
Haberlandt and Berndt, 2016; Marra et al., 2017), as radar data have the advantage of a
high spatial coverage. Yet, the available time series are relatively short. Therefore, it would
be considerably advantageous to combine the two data sources for the estimation of IDF
curves to benefit from both the spatial coverage of radar data and the long measurement
time series especially for daily observations at gauging stations. Thus, future studies
should investigate the suitability of models for the spatial IDF relationship based on such
a combined data set.

Consideration of Non-Stationarity A major aspect that has not been addressed in the
present work is the extent to which the intensity and frequency of extreme precipitation
events evolve in a changing climate. However, we expect that the monthly d-GEV model
proposed in Study III is well suited for detailed future investigations. We have performed
a preliminary analysis to suggest how to proceed further in this direction using the
developed methods. For this purpose, we have divided the time series of the station data
used in Study III into running time windows of 15 years. Fitting the monthly d-GEV
model separately to the data within each time window can provide us with a first idea
of how the IDF curves change over time. For this type of analysis, the monthly d-GEV
model is advantageous, since dividing the total available time period into smaller time
windows represents a reduction in the data available to estimate the parameters. Thus,
the uncertainty of the estimates increases. But as we observed in Study III, modeling
monthly maxima represents a significant reduction in uncertainties when modeling shorter
time series compared to modeling annual maxima. In addition, the monthly d-GEV model
allows us to analyze potential changes in seasonality, or monthly exceedance probabilities,
over time.

Our exploratory analysis indicates an increase in the frequency of extreme precipitation
events within the last 30 years at many of the considered stations. Only for a small part of
the stations a decrease in frequency can be observed. In Fig. 8.2 we provide the results of
the analysis for three example stations to illustrate the different behavior at individual
stations. We present the IDF curves for the time windows in different colors in the left
column. The remaining columns show the monthly exceedance probabilities of the annual
0.9 quantile calculated on the basis of the full available time period for the time windows
and for different durations. At the station Berlin-Tempelhof (a) we observe an increase
in intensity of the quantiles over the whole duration range. Likewise, we find a steady
increase in the monthly exceedance probabilities. The seasonality of the extreme events
remains unchanged over time. Also for the station Schmücke in the Thuringian Forest (b)
we find an increase in intensity of the quantiles for short durations. For longer durations,
however, a decrease in intensity occurs at this station, so that the IDF curves as a whole
become steeper over time. Looking at the monthly exceedance probabilities, it is noticeable
that the decrease in intensity for long durations is mainly due to a change in seasonality.
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Figure 8.2: IDF curves and monthly exceedance probabilities of the annual 0.9 quantile for different
15 year time windows (colors) and different durations (as indicated in the top) at the stations
Berlin-Tempelhof (a), Schmücke (b) and Ummendorf (c). For the monthly exceedance probabilities,
the annual 0.9 quantile is calculated on the basis of the full available time period. The available time
series at the three stations differ, only the station Berlin-Tempelhof covers the period of 1993-2020.

In this context, extreme events of longer duration occur less frequently in winter over time.
Likewise, we observe a slight increase in the exceedance probabilities in summer. For the
station Ummendorf in Saxony-Anhalt (c) we observe a decrease in the intensities, as well
as the monthly exceedance probabilities over time for all durations.
Continuing this analysis appears rather promising. Next steps should deal with the

analysis of longer time series. In addition, it is important to investigate to what extent
the changes over time are within the sampling uncertainties. Two other questions that
could be studied through this approach are: What is the spatial distribution of stations
with different temporal trends? Can the trends be explained by the occurrence of single
events of large magnitude? A subsequent step should explore explanatory predictors for
the temporal changes in the distribution parameters. This would finally allow the temporal
variations to be implemented directly into the model in the form of further covariates
to not only assess the observed changes but instead also allow predictions about future
developments.
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The issue of non-stationarity also raises questions that go beyond the field of statistical
modeling of IDF curves. So far, the planning of hydrological structures has been based
on return levels associated with specified average return periods. However, in the case
of non-stationary intensity and frequency of extreme precipitation events, this concept is
no longer applicable. Therefore, future studies must address the development of concepts
to communicate changing annual exceedance probabilities on an interdisciplinary basis.
More research is required on how to apply the results of non-stationary models and their
associated uncertainties to the design of hydrologic structures. Although some concepts
have been developed (e.g., Read and Vogel, 2015; Rootzén and Katz, 2013), they are still
far from being implemented in operational use.
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A.1 Possible Distribution Functions for Maxima

Hoskin and Wallis suggest the Generalized Logistic (GL), Generalized Normal or sometimes
called Lognormal (GN) and Pearson type III (P3) distributions in addition to the GEV
distribution for modeling annual maxima of precipitation and streamflow. Each of these
distributions has three parameters: location −∞ < µ <∞, σ < 0 scale, and −∞ < ξ <∞
shape. The cumulative distribution functions F (x), as well as the name of the distribution
in the special case ξ = 0 are provided in Table A.1. We define

y1 =
{
ξ−1 ln[1 + ξ(x− µ)/σ] , ξ 6= 0
(x− µ)/σ , ξ = 0 (A.1)

on the range {x : 1 + ξ(x− µ) > 0} and

y2 =
√
α(x− µ)/σ − α, with α = 4/ξ2 (A.2)

on the range {x : y2 · ξ > 0}. Furthermore Φ(·) is the standard Normal distribution

Φ(x) =
∫ x

−∞
exp(−t2/2)/

√
2π dt, (A.3)

Γ(·) denotes the gamma function and Γi(·, ·) the incomplete gamma function

Γ(α) =
∫ ∞

0
tα−1 exp(−t) dt, Γi(α, x) =

∫ x

0
tα−1 exp(−t) dt. (A.4)
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Table A.1: Definition of cumulative distribution functions according to Hoskin and Wallis.

Name Distribution Function case ξ = 0

GEV F (x) = exp[− exp(−y1)] Gumbel
GL F (x) = 1/[1 + exp(−y1)] Logistic
GN F (x) = Φ(y1) Normal

P3 F (x) =


Γi(α, y2)/Γ(α) , ξ > 0
Φ[(x− µ)/σ] , ξ = 0
1− Γi(α,−y2)/Γ(α) , ξ < 0

Normal

A.2 Moment and PWM Estimators for the GEV Parameters
For the GEV distribution the following relationships between the moments and the
parameters result for ξ 6= 0:

E(Z) = µ− σ

ξ
[1− Γ(1− ξ)], ξ < 1, (A.5)

Var(X) = σ2

ξ2 [Γ(1− 2ξ)− Γ2(1− ξ)], ξ <
1
2 , (A.6)

g = sign(ξ)Γ(1− 3ξ)− 3Γ(1− ξ)Γ(1− 2ξ)− Γ3(1− ξ)
[Γ(1− 2ξ)− Γ2(1− ξ)]3/2

(A.7)

and for the special case of ξ = 0:

E(Z) = µ+ σγ (A.8)

Var(X) = π2

6 σ
2, (A.9)

with the gamma function Γ(·) as defined in Eq. (A.4) and Eulers’ constant γ (Soukissian
and Tsalis, 2015; Wilks, 2011, Chpt. 4).

Equating Eqs. (A.8-A.9) with Eq. (2.4) results the moment estimators for the parameters
of the Gumbel distribution:

σ̂ =
√

6 m̂2
π

(A.10)

µ̂ = m̂1 − γσ̂. (A.11)

The analytical expressions for the probability weighted moments of the GEV are in the
case ξ 6= 0 (Coles and Dixon, 1999)

βr = (r + 1)−1
{
µ− σ

ξ

[
−(r + 1)ξΓ(1− ξ)

]}
, ξ < 1 (A.12)

and in the case ξ = 0, i.e., the Gumbel distribution (Mahdi and Cenac, 2005)

βr = (r + 1)−1 {µ− σ [ln(r + 1) + γ]} . (A.13)
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A.3 Threshold weighted CRPS for a GEV distribution
We show the derivation the threshold weighted CRPS for a GEV distribution only for the
case ξ 6= 0.
Friederichs and Thorarinsdottir (2012) derive the CRPS for a GEV distribution, starting
with Eq. (2.34) and the definition of the QS (Eq. 2.31)

CRPSGEV = 2
∫ 1

0
QS(p) dp

= 2
∫ 1

0
ρp
[
z − F−1

GEV(p)
]
dp

= −
{
z − µ+ σ

ξ

}
{1− 2FGEV(z)}

− σ

ξ

{
2ξ Γ [1− ξ]− 2 Γi [1− ξ,− ln (FGEV(z))]

}
, (A.14)

where z is the observation, FGEV(z) and F−1
GEV(p) are the GEV distribution (see Eq. 2.1)

and its quantile function (see Eq. 2.20) and Γ(·) and Γi(·, ·) are the gamma and incomplete
gamma functions as defined in Eq. (A.4). An important step in their derivation is solving
the two integrals ∫ 1

x1
[− ln(p)]−ξ dp = Γi [1− ξ,− ln(x1)] (A.15)∫ 1

x2
p [− ln(p)]−ξ dp = 2ξ−1Γi [1− ξ,−2 ln(x2)] . (A.16)

Eq. (A.15) can be shown by substituting t = − ln(p) and for Eq. (A.16) the necessary
substitution is t = −2 ln(p). When inserting both relationships to obtain Eq. (A.14), the
lower limits of the integrals are x1 = FGEV(z) and x2 = 0, respectively.

To derive the threshold weighted twCRPS (Eq. 2.37) for a GEV distribution, we follow
their derivation, first, writing the QS as

QS(p) = p
[
z − F−1(p)

]
−H [p− F (z)] ·

[
z − F−1(p)

]
, (A.17)

using the Heaviside step function

H(x) =
{

0 , x < 0
1 , x ≥ 0.

(A.18)

Inserting this into Eq. (2.37) for the case of a GEV distribution results to

twCRPSGEV(φ) = 2
∫ 1

φ
ρp
[
z − F−1

GEV(p)
]
dp

= 2
∫ 1

φ
p
[
z − F−1

GEV(p)
]
dp︸ ︷︷ ︸

A

− 2
∫ 1

φ
H [p− FGEV(z)] ·

[
z − F−1

GEV(p)
]
dp︸ ︷︷ ︸

B

.

(A.19)
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We separately solve the terms A and B. Starting with A, expanding, inserting the GEV
quantile function (Eq. 2.20) and using Eq. (A.16), where x2 = φ leads to

A = z
(
1− φ2

)
− 2

∫ 1

φ
pF−1

GEV(p) dp (A.20)

= z
(
1− φ2

)
− 2

∫ 1

φ
p

{
µ− σ

ξ

[
1− (− ln(p))−ξ

]}
dp (A.21)

= z
(
1− φ2

)
−
(
µ− σ

ξ

)(
1− φ2

)
− σ

ξ
2ξ Γi [1− ξ,−2 ln(φ)] . (A.22)

To solve term B we define
φ′ = max {φ, FGEV(z)} . (A.23)

Inserting Eq. (A.18), Eq. (A.23), Eq. (2.20) and using Eq. (A.15) with x1 = φ′ results in

B = 2
∫ 1

φ′
z − F−1

GEV(z) dp (A.24)

= z(2− 2φ′) + 2
∫ 1

φ′
F−1

GEV(z) dp (A.25)

= z(2− 2φ′) + 2
∫ 1

φ′
µ− σ

ξ

[
1− (− ln(p))−ξ

]
dp (A.26)

= z(2− 2φ′) +
(
µ− σ

ξ

) (
2− 2φ′

)
+ 2σ

ξ
Γi
[
1− ξ,− ln(φ′)

]
. (A.27)

Finally, inserting A (Eq. A.22) and B (Eq. A.27) into Eq. (A.19) leads to the twCRPS for
the GEV distribution

twCRPSGEV(φ) =
{
z − µ+ σ

ξ

}{
−1 + 2φ′ − φ2

}
− σ

ξ

{
2ξ Γi [1− ξ,−2 ln(φ)] + 2 Γi

[
1− ξ,− ln

(
φ′
)]}

. (A.28)
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B.1 Overview of Verification Variations
We performed the model verification with small variations in the cross-validation methods,
to asses different aspects of the model performance:

1. the overall performance

2. the dependence of the model performance on the length of the time series used for
training the model

3. the model performance at ungauged sites.
Table B.1 provides an overview of the differences in the cross-validation sets used for

training and validation in all three cases for the spatial d-GEV and the reference model,
the GEV applied separately for each station and duration.

Table B.1: Cross-validation sets used for training and validating the spatial d-GEV and the
reference model (GEV). N represents the complete length of the time series and varies for different
durations and stations, while nt is a fixed number of years for each time series.

Overall Performance Dependence on Time Series Length Ungauged Sites
Training Validation Training Validation Training Validation

sp
at
ia
l

d-
G
E
V station (N − 3) years 3 years nt years 3 years - 3 years

remaining stations all data - all data - all data -

G
E
V station (N − 3) years 3 years nt years 3 years nt years 3 years

remaining stations - - - - - -

B.2 Coverage of Confidence Intervals
We conduct a simulation study to investigate the coverage of the 95% confidence intervals
computed with the delta method and the bootstrap method. Both methods are briefly
explained in the following.
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Using the delta method, the variance of an estimated quantile qd,p (see Equation (4.9)
can be calculated as follows (Coles, 2001):

Var(q̂d,p) ≈ ∇qTd,pV∇qd,p, (B.1)

where V is the variance-covariance matrix of the parameter estimations (ˆ̃µ, σ̂0, ξ̂, θ̂, η̂) and
∇qd,p is the gradient

∇qd,p =
(
∂qd,p
∂µ̃

,
∂qd,p
∂σ0

,
∂qd,p
∂ξ

,
∂qd,p
∂θ

,
∂qd,p
∂η

)T
. (B.2)

Assuming that the maximum likelihood estimator q̂d,p follows a Normal distribution,
the confidence intervals can be calculated from the variance Var( ˆqd,p). However, this
assumption may be poor. To take into account the dependence of the maxima of different
durations and stations in the estimation of uncertainties, the delta method can be adjusted
accordingly (Van de Vyver, 2012). In this case, however, we did not apply this adjustment,
since we verified the coverage only for confidence intervals estimated from independent
maxima.

A common and simplistic method for estimating confidence intervals without the assump-
tion of normality is bootstrapping. Here we apply the ordinary non-parametric bootstrap
percentile method. Therefore, firstly a sample is created by drawing from the data with
replacement, and then the model parameters are estimated. From those, we calculate
the resulting return levels. By 1000 repetitions of this process, we obtain a distribution
of return levels. We estimate the lower and upper bound of the confidence interval from
the empirical 0.025 and 0.975 quantiles of the distribution of return levels. When we
apply the bootstrap method to the observations in the study area, we sample the years
by randomly drawing with replacement. Therefore all available maxima for a given year
are used collectively in the bootstrap sample. We expect that in this way the dependency
structure of the observations is taken into account.
To analyze the coverage of both described methods, we proceed as follows: We draw

random values from a d-GEV distribution with the parameters µ̃ = 3, σ0 = 5, ξ = 0.06, θ =
0.05, η = 0.7 to get a sample of size n. The parameters are chosen to be comparable to those
estimated for individual stations in the research area. However, in this sample the maxima
are independent of each other, contrary to what we expect for the observations. For this
sample, the 95%-confidence intervals are estimated for a given quantile qd,p using both
methods. Then it is tested whether the actual value for qd,p is included in the estimated
confidence intervals. This process is repeated 1000 times. Finally, the coverage of the
confidence interval is estimated from the relative frequency of how often the actual value
was within the confidence interval. The results are presented in Figure B.1. The coverage
for the delta method intervals varies with duration and probability and deviates strongly
from 95%. The bootstrapped confidence intervals, on the other hand, show a reasonable
behavior.

150



B.2 Coverage of Confidence Intervals

Index

N
A

● ● ● ● ● ● ● ●●

● ● ● ● ●
● ●

● ● ●
●

● ● ● ●
● ● ● ●

●
● ● ●● ● ● ● ●
● ● ●

p=
 0

.9
9

Bootstrap−Method

0.80

0.85

0.90

0.95

1.00

C
ov

er
ag

e

Index

N
A

●
●

● ● ●
● ● ●

●
● ● ● ● ● ● ●●
● ● ● ●

● ● ●
● ● ● ● ● ● ● ●● ● ● ●

●
● ● ●

p=
 0

.9
5

0.80

0.85

0.90

0.95

1.00

C
ov

er
ag

e

Index

N
A

●
●

● ● ● ● ● ●● ● ● ● ● ● ● ●●
● ● ● ● ●

● ●● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ●

p=
 0

.9

0.80

0.85

0.90

0.95

1.00

C
ov

er
ag

e

Index

N
A

● ●
●

● ●
● ● ●●

● ● ● ● ● ● ●
●

● ● ● ● ● ● ●● ● ●
● ●

● ● ●
● ● ● ● ● ● ● ●

p=
 0

.5

0.02 0.13 0.53 2 8 24 72

Duration [h]

0.80

0.85

0.90

0.95

1.00

C
ov

er
ag

e

Index

N
A

●

●

●
● ● ● ● ●

●
●

● ●
● ● ● ●

●

●
● ● ● ●

● ●

●
●

● ● ● ●
● ●

Delta−Method

Index

N
A

●
●

● ●
●

●

●

●

● ●

●
●

● ●

●

●

●
●

● ●
● ●

●
●

●
●

●
● ● ●

●

●

Index

N
A

● ●

●

●

●

●

●

●

● ●

●
●

● ●

●

●

● ●

●

●

● ●

●

●

● ●

●

●

● ●

●

●

Index

N
A

● ●
●

●

●

● ● ●

● ● ●

●

● ●
● ●

● ● ●

●

● ● ● ●

● ● ●

●

●

● ●
●

0.02 0.13 0.53 2 8 24 72

Duration [h]

1

● ● ● ● ●

Sample size

20 40 60 80 100

Figure B.1: Coverage of Confidence Intervals, obtained by the bootstrap method (left column)
and the delta method (right column). The coverage was calculated by re-sampling from a known
d-GEV distribution 1000 times. Different colors indicate different sample sizes, which correspond
to the length of the time series in years in this context. Different rows represent different non-
exceedance probabilities p, whereby the confidence intervals were examined for the corresponding
quantile estimates.
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C.1 Initial Values
The estimation of d-GEV parameters was conducted with the R base optim() function (R
Core Team, 2020) and the Nelder-Mead method. The quality of the fitted model depends
on the initial values passed to the function. Each optimization i was repeated m times
with different initial values that are derived through different techniques. The sets of
initial functions, i.e., si ∈ {µ̃′, σ′0, ξ′, θ′, η′, η′2, τ ′}, were collected as suggestions, and the
individual parameters were named with version indices (v1, v2, etc.). All suggestions
were subsequently used as initial values in the model, and the suggestion which led to
the smallest negative log likelihood was selected. Table C.1 gives an overview of the
combinations of initial values.
All initial-value techniques were based on the same first step. An individual GEV

distribution was fitted to each duration d separately, with moment estimators as initial
values (Coles, 2001), and the three GEV parameters of location µ, scale σ, and shape ξ were
stored for each duration. In the next step, a function was fitted to each of the parameters
with respect to the duration. Since we assumed no dependence of the shape parameter on
the duration, we chose ξ′v1 = median(ξ) for all suggestions. According to Eqs. (5.4) and
(5.5), we fitted ln(σ(d)) and ln(µ(d)) as a function of ln(d) in a linear regression with a
simple slope and y intercept as follows:

ln(σ(d)) ∼ −(η + η2) ln(d) + ln(σ0) (C.1)
ln(µ(d)) ∼ −η ln(d) + (ln(σ0) + ln(µ̃)) (C.2)

with given σ(d), µ(d), and d. From this fit, we extracted σ′0,v1 = exp(ln(σ0)) (Eq. C.1),
µ̃′v1 = µ̃ (combine Eqs. C.1 and C.2), η′v1 = η, and η′2,v1 = η2. For the most simple
suggestion of initial parameters, we chose θ′v1 = 0 and τ ′v1 = 0. In the next steps, we further
elaborated the ways of finding good initial values. Version 2 of the duration exponents
η′v2 and η′2,v2 were found, using only d≥1 h, because the slope is mainly characterized by
this duration regime. This is the second set of suggestions for initial values, together with
version 1 of the other parameters.
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Table C.1: Overview of initial value combinations (suggestions). The initial values for the param-
eters µ̃′

v1, σ′
0,v1 and ξ′

v1 are the same in all combinations.

Suggestion no. Version
θ′ η′1 η′2 τ ′

1 v1 v1 v1 v1
2 v1 v2 v2 v1
3 v2 v1 v1 v1
4 v2 v2 v2 v1
5 v1 v1 v1 v2
6 v1 v2 v2 v2
7 v2 v1 v1 v2
8 v2 v2 v2 v2

Another initial duration offset θ′v2 could be estimated by fitting a nonlinear squares
regression (R function nls) as follows:

ln(σ(d)) ∼ −(η + η2) ln(d+ θ) + ln(σ0) (C.3)
ln(µ(d)) ∼ −η ln(d+ θ) + ln(σ0µ̃) (C.4)

with given σ(d), µ(d), and d. The mean of both estimates for θ was used for θ′v2. These
functions were less stable and provided worse initial values for σ′0 and µ̃′ than Eq. (C.1)
and C.2. That is why we used them only for estimating initial θ′v2 in the nls function and
not for estimating initial µ̃, σ0, η1, or η2. The new initial estimate θ′v2 was combined with
η′v1 and η′2,v1 in one set (suggestion 3) and with η′v2 and η′2,v2 in another set (suggestion 4).
The same nls function was used for an estimation of the initial τ ′v2, taking only d≥1 h

and no duration offset (curvature), as follows:

ln(σ(d)) ∼ ln(σ0d
−(η+η2) + τ) (C.5)

ln(µ(d)) ∼ ln(σ0µ̃d
−η + τ) (C.6)

with given σ(d), µ(d), and d. Again, the mean of both estimates of τ was used as τ ′v2. To
define suggestions 5-8, this second version of τ ′ was combined with θ′v1, η′v1, η′2,v1 or θ′v1,
η′v2, η′2,v2 or θ′v2, η′v1, η′2,v1 or θ′v2, η′v2, η′2,v2. The different combinations of initial value
versions are listed again in Table C.1.

C.2 Simulated Data
For the coverage analysis in Sect. 5.3.3 and Appendix C.3 about duration sample choice,
we did not use the original data set but simulated data from a d-GEV distribution. The
simulated data were drawn, according to Eqs. (5.3), (5.10), and (5.11), with a random
number 0 < p < 1 and the parameters µ̃ = 3.2, σ0 = 5.8, ξ = 0.21, θ = 0.089, η = 0.78,
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C.3 Influence of Duration Sample Choice

η2 = 0.09, and τ = 0.10. These values were based on realistic parameter values from station
data, fitted for the features of curvature, multiscaling, and flattening. When disabling one
or more of the features, the values of all the parameters will change. For the coverage
analysis, the true quantile intensity z could be calculated directly, using these parameters
and Eqs. (5.3), (5.10), and (5.11).

C.3 Influence of Duration Sample Choice
We investigate how the choice of durations that are used to train the model influences
the model performance. Since the number of training data points is much higher for
long durations d ≥ 24 (one day), there is a possibility that these duration regimes are
overrepresented in the training phase, and thus, model performance is worse for short
durations. To account for this effect, the model is trained twice, (1) with simulated maxima
(Appendix C.2) and the set of aggregated durations that was used for analysis in this study
(Eqs. 5.1) and (2) with simulated annual maxima of a different set of durations that focuses
more on short durations (numerically in hours) as follows:

d2 ∈ {1, 2, 3, ..., 15, 16, 18, 20, ..., 30, 32, 33, 36, 39, ..., 57 min, (C.7)
1, 2, 3, ..., 6, 8, 10, 12, 15, 16, 18, 21 h, 1, 3, 5 d}.

In this way, there is more training data for short durations available, which might shift the
model’s performance focus to other duration regimes. However, it is important to note
that this is only an artificial increase in available data, since the additional data points do
not contain substantial new information.

The model with the new artificial training data set (Eq. C.7) is now verified against the
same model with the previously used artificial data set (Eq. 5.1) with the following results:
all QSIs are below 0.05 for all durations d and all quantiles q ∈ {0.5, 0.8, 0.9, 0.95, 0.98}
(not shown). Thus, the results do not indicate that the choice of accumulation duration
significantly influences how well the model performs for certain duration regimes.
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C Supporting Information for Study II (Chpt. 5)

C.4 Model Diagnosis
In order to evaluate whether the GEV distribution is an appropriate choice for this
analysis, we provide quantile-quantile (QQ) plots (Fig. C.1) for the stations of Bever and
Buchenhofen, as chosen in Sect. 5.3.2. While for Buchenhofen all values follow the angle
bisecting line, for Bever only a few outlying events, which all correspond to higher quantiles,
leave the confidence intervals. However, their number is small compared to the number of
shown data points. So, we conclude that the GEV distribution is a suitable assumption in
our case.
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Figure C.1: QQ plots for selected stations. Confidence intervals were obtained by simulating
transformed Fréchet distributed values from the model distribution and extracting a 95% interval.
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C.5 Overview of Reference Models for Verification

C.5 Overview of Reference Models for Verification
In Sect. 5.3.1, the feature skill was evaluated by comparing models with a reference where
the considered feature is disabled. For clarification, Table C.2 lists the models and reference
models that were used in Figs. 5.3 and 5.4, together with the parameter restriction to zero,
if applied. These specifications refer to Eqs. (5.10) and (5.11).

Table C.2: Overview of models and references for verification.
Column (title); Model features and parameters Reference features and parameters
row (number)

Curvature
1 IDFc IDF

θ 6= 0, η2 = 0, τ = 0 θ = 0, η2 = 0, τ = 0
2 IDFcm IDFm

θ 6= 0, η2 6= 0, τ = 0 θ = 0, η2 6= 0, τ = 0
3 IDFcf IDFf

θ 6= 0, η2 = 0, τ 6= 0 θ = 0, η2 = 0, τ 6= 0
4 IDFcmf IDFmf

θ 6= 0, η2 6= 0, τ 6= 0 θ = 0, η2 6= 0, τ 6= 0

Multiscaling
1 IDFm IDF

θ = 0, η2 6= 0, τ = 0 θ = 0, η2 = 0, τ = 0
2 IDFcm IDFc

θ 6= 0, η2 6= 0, τ = 0 θ 6= 0, η2 = 0, τ = 0
3 IDFmf IDFf

θ = 0, η2 6= 0, τ 6= 0 θ = 0, η2 = 0, τ 6= 0
4 IDFcmf IDFcf

θ 6= 0, η2 6= 0, τ 6= 0 θ 6= 0, η2 = 0, τ 6= 0

Flattening
1 IDFf IDF

θ = 0, η2 = 0, τ 6= 0 θ = 0, η2 = 0, τ = 0
2 IDFcf IDFc

θ 6= 0, η2 = 0, τ 6= 0 θ 6= 0, η2 = 0, τ = 0
3 IDFmf IDFm

θ = 0, η2 6= 0, τ 6= 0 θ = 0, η2 6= 0, τ = 0
4 IDFcmf IDFcm

θ 6= 0, η2 6= 0, τ 6= 0 θ 6= 0, η2 6= 0, τ = 0
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Appendix D
Supporting Information for Study III (Chpt. 6)

D.1 Model Diagnosis for Station Bever-Talsperre
The distribution of monthly maxima for a range of durations is modeled using the d-
GEV distribution. We visually inspect, whether the d-GEV distribution is a reasonable
approximation for the distribution of monthly maxima at the considered stations using
quantile-quantile (q-q) plots. As an example, we present the q-q plots for the station
Bever-Talsperre with respect to each month in Fig. D.1. The different aggregation times are
indicated by different colors. We find that the d-GEV distribution describes the monthly
maxima sufficiently well for each month. There are few outliers that correspond to the
limits of the duration range, i.e. very short or very long durations.
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Figure D.1: Diagnostic q-q plots of the d-GEV model for each month at station Bever-Talsperre.
The observations and the modeled quantiles are transformed to standard Gumbel G(µ = 0, σ =
1, ξ = 0) to remove the duration dependency. Dashed lines represent 95% confidence intervals.
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D.2 Annual Maxima Station Bever-Talsperre

0.5

1.0

2.0

5.0

10.0

20.0

50.0

100.0

200.0

Duration [h]

In
te

ns
ity

 [m
m

h−
1 ]

0.02 0.2 1 4 24 120

● ● ● ● ●

●

●
●

●
●

●

●

●
●

● ● ● ● ●
●

●

●

●
●

●
●

●
●

● ● ● ● ● ●

●

●

●
●

●
●

●
●

● ● ● ●
●

●
●

●

●

●
●

●

●
●

● ● ●
●

●

●

●

●

●

●
●

●
●

●

● ● ● ●
●

●

●

●

●

●
●

●
●

●

● ● ● ● ●
●

●
●

●

●
●

●

●

●

● ● ●
●

●

●
●

●
●

●

●

●
●

●

● ● ● ● ●
●

●

●
●

●

●

● ●

●

● ● ●
●

●
●

●

●

●

●

●
●

●
●

● ● ● ● ●

●

●

●

●
●

●
●

●
●

●
● ● ● ●

●

●

● ●
●

●
●

●
●

● ●
●

●
● ●

●

●

●
●

●

●
●

●

● ● ● ●
●

●

●

●

●
●

●

●

●

●

● ● ● ●
●

●

●

●
●

●
●

●
●

●

● ● ●
●

●
●

●

●

●

●
● ●

●

●

● ● ● ●

●

●

●

●

●
●

●
●

●

●

● ● ●
●

●
●

●

●

●

●
●

●
●

●

● ● ●
●

●
●

●
●

●
●

●
●

●

●

● ● ● ● ●

●

●

●

●
●

●

●
●

●

● ●
● ●

●

●

● ●

● ● ●

●
●

●

● ● ● ●
●

●

●

●
●

●

●
● ●

●

● ●
●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

● ● ●
●

●

●

●

●
●

●
●

●

●
●

● ●
● ●

●
●

●

●

●
●

●

●

●
●

● ● ● ●
●

●

●

●
● ●

●
●

●

●

●
●

●

●
●

●
●

●
●

● ●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●
●

● ● ●
●

●

●
●

● ●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
● ●

●

●
●

● ●
●

● ●
●

●

●

●
●

●
●

●

●

●
● ●

● ● ●

●
●

●

●
●

●
●

●

●

● ●
●

●

●

●

●
●

●

●
●

●
●

● ●
● ● ●

●

●

●
●

●

●
●

●
●

● ● ●
●

●
●

●

●

●
●

●
●

● ●

● ● ●
●

●
●

●
●

●

●
● ●

●

●

● ● ● ● ●

●

●

●

●
●

●
● ●

●

● ● ●
●

●

●

●

●

●

●

●
●

●
●

● ● ●
●

●

●
●

●
●

●

●

●
●

●

● ● ●
●

●

●

●
●

●

●

●
●

● ●

● ● ●
●

●

●

●

●
●

●
●

●
●

●

● ● ● ●
●

●

●

●

●

● ●
●

●

●

● ● ●
●

●
●

●

●
●

●
●

●
● ●

● ● ● ●
●

●

●

●

●
●

●
●

●
●

● ● ● ● ●

●

●

●

●

●

●

●
●

●

● ● ●
●

●
●

●
●

●

●

●
●

●

●

● ● ● ●
●

●

●

●

●

● ● ● ●
●

● ● ●
●

●

●

●

●
●

●
● ● ●

●

● ● ● ●
●

●

●

●

●
●

● ● ●
●

● ● ● ●
●

●

●

●

●

●
●

● ● ●

● ●
●

●
●

●

●

●

● ● ● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

Month

Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec

Figure D.2: Annual intensity maxima for different durations at station Bever-Talsperre. The
months in which the respective maxima occurred are represented by colors.

The annual maxima of different durations for the station Bever-Talsperre are presented
in Fig. D.2. The colors indicate the month in which the respective maxima occurred. It
is evident that at this station the maxima of short durations occur mostly in summer,
while from d & 8h the maxima originate from different seasons, especially autumn and
winter. This is in agreement with the results presented in Fig. 4 (top left). In addition, we
find that the span of the data exhibits a minimum at d ≈ 8 h. This is consistent with the
minimum value of the shape parameter ξ at this duration observed in Fig. 7 (c).

D.3 Phase Difference in Seasonal Variations of Location and
Scale Parameter

From the parameter estimates of µ̃ in Fig. 2, it can not be clearly determined whether
modeling variations of µ̃ throughout the year is a reasonable choice. Since the modified
location parameter is defined as µ̃ = µ(d)/σ(d), setting µ̃(doy) = const. would result in not
allowing a phase difference in the annual cycle of the location parameter µ and the scale
parameter σ for any fixed duration d. Maraun et al. (2009) investigated this relationship
for daily precipitation sums in the UK and found that this assumption is not justified,
because the annual cycles of these two parameters are slightly out of phase. We investigate
this in an exploratory analysis by modeling the individual durations. For this purpose, we
model the monthly maxima of each duration separately using a GEV distribution with
monthly covariates. Fig. D.3 shows the resultig parameter estimates µ and σ for some
durations at station Bever-Talsperre in the first two columns as lines. For comparison, the
estimates resulting from separately modeling the maxima of each duration and month with
a GEV distribution are shown as dots. The right column presents the resulting estimates
for µ/σ for each duration. Since µ/σ shows a clear variation for each duration, we conclude
that assuming no phase shift in the annual cycle of µ and σ for each duration may restrict
the model too much.

160
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Figure D.3: Parameter estimates for fixed durations modeling monthly maxima using (1) a GEV
with monthly covariates (purple lines) and (2) a separate GEV model for each month (dots). The
error bars and shaded areas show the 95% confidence intervals obtained via the estimated Fisher
information matrix.
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Appendix E
Supporting Information for Chapter 7

E.1 Station Data Used to Estimate the IDF Relationship

To model the spatial variations of precipitation intensity in Berlin and the surrounding
area, we use precipitation data from DWD stations in Berlin and Brandenburg. We only
consider gauge stations where measurements with a minutely measurement frequency are
available. In Berlin and Brandenburg this results in 50 stations, the locations of which
are presented in Figure E.1. At each of these stations, we use all available data with the
measurement frequencies: minutely, 10-minutely, hourly, and daily, and combine them into
one time series per station. The length of the time series is different for different stations
and measurement frequencies. Some time series for daily precipitation sums begin before
the year 1900, while the measurements with minutely resolution are only available since
approximately the mid-1990s.
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Figure E.1: Locations of all 50 stations within Berlin and Brandenburg used for the analysis. The
gray scale indicates the altitude, obtained from http://www.diva-gis.org/gdata.
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E Supporting Information for Chapter 7

E.2 Radar-Based Data for the Analysis of Selected Events
In order to analyze a precipitation event, particularly with respect to its spatial extent, a
gridded precipitation data set is required. We use the product RADKLIM provided by the
DWD, which is derived from measurements of the German radar network [30]. The 5-minute
precipitation rates estimated based on the radar data are adjusted to measurements from
gauge stations and subjected to quality control by the DWD [29]. The data are available
on a grid with a size of 1 km x 1 km in polar stereographic projection and cover the period
2001 to 2019. For the analysis of the events discussed here, the radar product for the
periods 29.06. - 30.06.2017 and 02.08.2019 was projected onto a regular grid and cropped
to the Berlin area.

E.3 Spatial d-GEV Model
To estimate IDF curves and return level maps, we apply the methods described in Sec-
tions 4.2.2-4.2.5 to the data set of annual maxima at stations in Berlin and Brandenburg
described in Section E.1. However, we adopt a modification for the spatial covariates of the
d-GEV distribution (Eq. 4.11). In addition to longitude and latitude, we use the altitude
of the stations as covariates, as suggested by Fischer et al. (2019). This results in the
following model for each d-GEV parameter φ ∈ {µ̃, σ0, ξ, θ, η}:

φ = φ0 +
J∑
j=1

αφj Pj(lon) +
K∑
k=1

βφk Pk(lat) +
L∑
l=1

γφl Pl(alt) +
J∑
j=1

K∑
k=1

δφj,k Pj(lon)Pk(lat)

+
J∑
j=1

L∑
l=1

εφj,l Pj(lon)Pl(alt) +
K∑
k=1

L∑
l=1

ζφk,l Pk(lat)Pl(alt), (E.1)

with the intercept φ0 and regression coefficients αφj , β
φ
k , γ

φ
l , δ

φ
j,k, ε

φ
j,l, ζ

φ
k,l and orthogonal

polynomials P (·) of the covariates with the maximum order of J = K = L = 6.
Based on the spatial d-GEV model for Berlin and Brandenburg, the annual exceedance

probabilities of the selected events for different durations are estimated as follows: The
event data, described in Section E.2, are aggregated at each grid point to time series
for a range of durations between 5min and 48h with d ∈ {5, 10, 15, ..., 2880}min. For
each duration and grid point, the maximum precipitation intensity of the time series is
considered. The annual non-exceedance probability p = G(z, d) for intensity z follows from
Eq. 4.8, where the annual exceedance probability is 1− p and the average return period is
1/(1− p).
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