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Abstract: Immunotoxins do not only bind to cancer-specific receptors to mediate the elimination of
tumor cells through the innate immune system, but also increase target cytotoxicity by the intrinsic
toxin activity. The plant glycoside SO1861 was previously reported to enhance the endolysosomal
escape of antibody-toxin conjugates in non-hematopoietic cells, thus increasing their cytotoxicity
manifold. Here we tested this technology for the first time in a lymphoma in vivo model. First, the
therapeutic CD20 antibody obinutuzumab was chemically conjugated to the ribosome-inactivating
protein dianthin. The cytotoxicity of obinutuzumab-dianthin (ObiDi) was evaluated on human
B-lymphocyte Burkitt’s lymphoma Raji cells and compared to human T-cell leukemia off-target
Jurkat cells. When tested in combination with SO1861, the cytotoxicity for target cells was 131-fold
greater than for off-target cells. In vivo imaging in a xenograft model of B-cell lymphoma in mice
revealed that ObiDi/SO1861 efficiently prevents tumor growth (51.4% response rate) compared to
the monotherapy with ObiDi (25.9%) and non-conjugated obinutuzumab (20.7%). The reduction
of tumor volume and overall survival was also improved. Taken together, our results substantially
contribute to the development of a combination therapy with SO1861 as a platform technology to
enhance the efficacy of therapeutic antibody-toxin conjugates in lymphoma and leukemia.

Keywords: targeted toxins; immunotoxins; obinutuzumab; anti-CD20; dianthin; glycosylated
triterpenoids; endosomal escape; controlled drug release; cancer treatment; endocytosis

Key Contribution: B-cell non-Hodgkin lymphoma disseminated tumors were successfully treated
with a targeted ribosome-inactivating protein in combination with an endosomal escape enhancer.

1. Introduction

The cluster of differentiation-20 (CD20) is a surface protein mainly found on B-
lymphocytes that is important for the differentiation and development of B-cells into
plasma cells [1]. Increased expression of CD20 has been detected in patients with certain
types of B-cell lymphoma and leukemia, making it an attractive target for antibody-based
therapies [1]. Obinutuzumab (Gazyvaro®, Gazyva®) is a humanized and glycoengineered
monoclonal IgG1 antibody against the CD20 type II epitope [2]. It is mainly applied
for the treatment of chronic lymphatic leukemia in combination with chlorambucil, and
follicular lymphoma in combination with bendamustine [3–5]. The type II mechanism
of action together with glycoengineering of obinutuzumab results in augmented direct
signaling-induced cell death as well as antibody-dependent cell-medicated cytotoxicity
(ADCC) and phagocytosis (ADCP) while complement-dependent cytotoxicity (CDC) is
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diminished [4,6]. This distinguishes obinutuzumab from classical type I anti-CD20 mono-
clonal antibodies, such as rituximab and ofatumumab. Obinutuzumab initiates cell death
through a non-apoptotic pathway that is dependent on actin rearrangement, lysosomal
permeabilization, and reactive oxygen species generation. This pathway may potentially
be exploited to eliminate malignant cells, which are refractory to conventional immunother-
apy [7]. The immunogenic cell death is characterized by the release of damage-associated
pattern molecules, such as heat shock protein 90 and adenosine triphosphate, and en-
hances the immune response by inducing dendritic cell maturation and subsequent T-cell
activation [8].

Nevertheless, resistance to obinutuzumab-induced ADCC is a major problem for
effective treatment. This is presumably caused by abnormal Fas signaling and can be
overcome by combination therapies [9,10]. There are a large number of completed and
ongoing studies of phase 1 to 3 with obinutuzumab to enable the application in further
clinical indications and to increase efficacy by combining it with other anti-cancer drugs
including acalabrutinib, bendamustine, chlorambucil, duvelisib, entospletinib, ibrutinib,
idasanutlin, pixantrone, tirabrutinib, and venetocla [4,11–13]. For instance, 229 patients
were included in a phase 3 study comparing obinutuzumab in combination with either
chlorambucil or ibrutinib. At a median follow-up of 45 months, combination with ibrutinib
significantly prolonged progression-free survival versus combination with chlorambucil
(median not reached versus 22 months, p < 0.0001) [14].

An alternative to the combined application of an antibody with a toxic drug is the con-
jugation of both components to create antibody-drug conjugates (ADCs) or immunotoxins.
There is no clear definition of these terms, and they are sometimes used as synonyms, but
it has become commonly understood that ADCs are chemical conjugates of antibodies or
derivatives thereof with cytotoxic small molecule drugs, while immunotoxins are antibod-
ies that are chemically conjugated or genetically fused to protein toxins mainly obtained or
derived from plant or bacterial origin [15,16]. The cytotoxic payload in ADCs can be linked
via non-cleavable and cleavable linkers. Non-cleavable linkers have the advantage of being
more resistant against degradation, and thus provide higher stability than cleavable linkers,
while the latter are typically cleaved under particular environmental conditions of the
cell, e.g., pH of endosomes, facilitating cytosolic entry [17]. In immunotoxins, the major
function of the antibody is to specifically target the cancer cells, which does not exclude
that the antibody also has effector functions, such as inducing apoptosis, CDC, and ADCC,
as in the case of rituximab [18]. It has been reported that the ability of the antibody to bind
to target cells and to interact with the innate immune system is not altered after chemical
conjugation to toxins [19,20]. Therefore, the presence of an additional protein toxin can
result in a higher efficacy than observed for sole antibodies that, in most cases, do not have
the capacity for cell killing on their own, finally providing the potential for lower doses
and less adverse events than observed for obinutuzumab [21].

An engineered immunotoxin (MT-3724) comprised of a modified cytotoxic Shiga-
like toxin and a CD20-specific single-chain variable fragment [22] is currently tested in
a clinical trial (NCT02361346). A more promising group of protein toxins is represented
by type 1 ribosome-inactivating proteins (RIPs) such as saporin, dianthin, or gelonin that
consist of a single catalytically active polypeptide chain (A chain), and are optimally suited
for the design of targeted toxins since these toxins do not possess a natural cell-binding
domain [23–26]. There are hundreds of RIPs and derived targeted toxins known [27,28].

The specific binding of immunotoxins to the receptors on target cells first triggers
the mechanisms of action related to the antibody. In the case of obinutuzumab, ADCC
is expected to be initiated after binding. Afterwards, immunotoxins are internalized by
receptor-mediated endocytosis and enter into the endolysosomal trafficking pathway [29].
Here, the major problem comes to light: if the toxin remains entrapped in the endolyso-
somes, the toxin will be degraded, and the efficacy of the immunotoxins will be reduced [30].
Therefore, solutions are required that support the toxin moiety in escaping from the en-
dolysosomes and entering the cytosol where it can cause cell death. Certain structurally
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specific plant glycosides are able to substantially enhance the endosomal escape of bio-
logical macromolecules [31]. One of them, SO1861, was shown to enhance the cytosolic
uptake of both proteins and DNA, which can be present in soluble form, bound to magnetic
nanoparticles, or polyplexed [32–35]. When the effector molecule reaches late endosomes
and lysosomes, the low pH environment triggers the endosomal escape mediated by
SO1861 [36]. The molecular mode of action is not known, but there are hints that the
glucuronic acid functions as pH sensor. It is postulated that SO1861 mediates, once the glu-
curonic acid is protonated, a cholesterol depletion of the endosomal membranes, resulting
in a loss of integrity [31,37].

To date, SO1861 has been investigated in vivo in mouse models only for targeted
epidermal growth factor toxins to target solid non-metastatic tumors [32,38,39]. Immuno-
toxins have solely been examined in vitro in combination with SO1861. In a first study,
immunotoxins that were created by chemically cross-linking the therapeutic antibodies
cetuximab (anti-human epidermal growth factor 1) and trastuzumab (anti-human epi-
dermal growth factor 2) to saporin caused specific enhanced cytotoxicity on tumor cells
after co-application of SO1861 [20]. In a second study, the antibodies HB2 (anti-CD7),
BU12 (anti-CD19), 4KB128 (anti-CD22), OKT10 (anti-CD38), and DF1513 (anti-CD71) were
covalently attached to saporin, and the resulting immunotoxins exhibited augmented cyto-
toxicity in the presence of plant glycosides as well [40]. Rituximab had also already been
coupled to saporin to create an immunotoxin. Some studies on Raji and D430B cells were
conducted without endosomal escape enhancers [26,41,42] and another showed a 700-fold
enhancement on Ramos cells in the presence of SO1861 [43]. To the best of our knowledge,
immunotoxins of obinutuzumab or other anti-CD20 antibodies such as ofatumumab, tosi-
tumomab, and ibritumomab conjugated to RIPs are not yet described. Only an in-silico
study of an immunotoxin composed of ofatumumab and the apoptosis inducing enzyme
granzyme B is available [44].

In the present study, we tested for the first time the combination of an immunotoxin
and SO1861 in a metastatic mouse cancer model. The stability and the rate of recombinant
protein expression of dianthin encouraged us to use this ribosome-inactivating protein for
conjugation with obinutuzumab. The objective of our study was to evaluate the therapeutic
potential of obinutuzumab when applied as an immunotoxin in the presence and absence
of an endosomal escape enhancer.

2. Results
2.1. Production of Obinutuzumab-Dianthin (ObiDi)

Dianthin was covalently coupled to obinutuzumab via N-succinimidyl-3-(2-pyridyldithio)
propionate (SPDP) and 4-(N-maleimidomethyl)cyclohexane-1-carboxylic acid 3-sulfo-N-
hydroxysuccinimide ester (Sulfo-SMCC). The combination of these two cross-linkers intro-
duces a non-cleavable covalent bond between the two proteins resulting in the formation
of the immunotoxin ObiDi (Appendix A Figure A1). Although chemical cross-linking is an
accepted and worldwide applied procedure, the major problem is the undirected reaction,
which can result in large unusable aggregates. The balance between low conjugation yield
and high aggregation was determined by the reaction conditions such as temperature,
incubation time, and molar ratios of antibody, toxin, and cross-linker.

After first attempts of chemical conjugation, SDS-PAGE revealed that ObiDi appeared
as defined conjugates with different drug-to-antibody ratios (DAR) (DAR 1–3 for the ratio
of dianthin molecules per single obinutuzumab molecule), and in addition, as undefined
aggregates at much higher molecular masses on the top of the gel. Unconjugated obin-
utuzumab was also visible while only minor amounts of dianthin were observed. After
optimizing the reaction conditions in a large number of cycles, we were able to produce
conjugates with a high content of DAR 1 and only minor amounts of aggregates. The
next task was the removal of free obinutuzumab and free dianthin. In the first step, ObiDi
was separated from unconjugated obinutuzumab and a part of unconjugated dianthin by
cation exchange chromatography (Figure 1a). The elution profile showed a broad peak of
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non-bound material (flow throw) and mainly two distinct peaks. The smaller first peak
represents unconjugated obinutuzumab whereas the larger sharp peak corresponds to
the conjugate.
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against the His-tag of dianthin so that it was ensured that the protein detected at a high 

Figure 1. Purification of ObiDi. Step 1: Cation exchange chromatography to get rid of the parental
antibody. (a) Elution profile (milli-absorbance at 280 nm versus elution volume, blue line) of the
cation exchange chromatography with an optimized salt step gradient for elution. The two main
peaks contained obinutuzumab (fractions no. 2–6) and ObiDi (fractions no. 7–9), red line. The green
line represents the programmed gradient of NaCl (0–100% of buffer B) where buffer A is 20 mM
HEPES buffer at pH 7.4 and buffer B is buffer A containing 2.0 M NaCl. The brown line represents
the factual conductivity as a result of the salt gradient. (b) The fractions 1–9 obtained by cation
exchange chromatography (a) were evaluated by (b) SDS-PAGE and (c) Western blotting with a
His-tag-HRP antibody under non-reducing conditions. The different proteins are indicated by red
arrows. Lane 1: obinutuzumab; lane 2: dianthin; lane 3: molecular mass marker; lane 4: obinu-
tuzumab and dianthin after chemical conjugation but before cation exchange chromatography; lane 5:
obinutuzumab and dianthin after chemical conjugation and after cation exchange chromatography
(flow through). Unconjugated antibody does not contain a His-tag and can therefore not be visualized
in the presented Western blot providing evidence that the high molecular mass bands represent
conjugate. The conjugation reaction mixture (raw material) is too diluted to visualize the conjugate
with Coomassie staining.

The presence of ObiDi in fractions 7−9 was confirmed by SDS-PAGE and the corre-
sponding Western Blot (Figure 1b,c). The antibody used in the Western blot was directed
against the His-tag of dianthin so that it was ensured that the protein detected at a high
molecular mass of >200 kDa is the conjugate and not free antibody. However, free dianthin
is still visible in fractions 7–9 in the Western blot, which can affect experiments with the
conjugate in cell culture and in mice. Therefore, in a second step, ObiDi was separated
from unconjugated dianthin by protein-A affinity chromatography. Here, unconjugated di-
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anthin was directly eluted in the flow through whereas the purified immunoconjugate was
clearly observed in fractions 3 and 4 after evaluation by SDS-PAGE and Western blotting
(Figure 2). These fractions mainly contained ObiDi with DAR 1 and were then used for all
further experiments on Raji and Jurkat cells and thereafter in the mouse lymphoma model.
Yields were highly variable, as minute changes in reaction conditions resulted in significant
losses due to aggregation (too much cross-linking) or insufficient conversion (too little
cross-linking). Ultimately, the yield was between 1% and 10% related to the quantity of
antibodies used. The enzymatic activity of conjugated dianthin was not determined here
but is known to be reduced to 45–60% of the initial free dianthin [24,45–47], which is not
crucial as cytotoxicity is maintained.
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Figure 2. Purification of ObiDi. Step 2: Protein-A affinity chromatography to get rid of free dianthin.
The conjugate obtained from cation exchange chromatography (lane “Elution from IEC”) was ap-
plied to the column and elution fractions E1 to E7 were collected. All samples were evaluated by
(a) SDS-PAGE and (b) Western blotting with a His-tag-HRP antibody under non-reducing condi-
tions. A conjugate of ObiDi with DAR 1 is visible in elution fractions E3 and E4. Free dianthin was
successfully removed.

2.2. Cytotoxicity of ObiDi on Raji and Jurkat Cell Lines

The cytotoxic effects of obinutuzumab, dianthin, and the conjugate ObiDi were eval-
uated in the presence of the endosomal escape enhancer SO1861 on Raji target cells and
compared to off-target Jurkat cells. We started our experiments in the presence of SO1861
by treating the cells with free dianthin (Figure 3a) to investigate the undirected sensitivity of
these different cell lines against this toxin. At the highest applied concentration of 100 nM,
the cell viability of Raji cells was reduced to 25% compared to almost 0% for Jurkat cells.
The concentration at which dianthin caused 50% growth inhibition (IC50) compared to the
untreated control was calculated to 0.051 nM for Raji cells compared to 0.004 nM for Jurkat
cells. This means that the off-target cells are about 10-fold more sensitive to ligand-free
dianthin than the target cells. It is notable that this difference has nothing to do with
the target receptor CD20 expression because dianthin does not carry a ligand here. The
observed uptake of dianthin can potentially occur unspecifically via macropinocytosis and
phagocytosis [48,49] by the binding of dianthin to low-density lipoprotein receptor-related
proteins and subsequent clathrin-mediated endocytosis, as observed for the homologous
protein saporin [50,51], or through receptor-independent endocytosis [52]. Once inside
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the cell, dianthin can be released from acidic compartments into the cytosol mediated by
SO1861, which may explain the cytotoxicity of free dianthin. Due to the different genetic
background and metabolism of Raji and Jurkat cells including type and rate of endocytosis,
intracellular transport, and degradation potential, target receptor-independent uptake of
dianthin can be substantially different from cell line to cell line. This has already been
shown for a number of adherent cells [32] and is not of relevance for the tumor treatment
for mainly two reasons. First, it is expected that the conjugates are relatively stable in serum
so that free dianthin is cleaved off only in very small amounts, and second, the unspecific
uptake is predominantly restricted to small proteins such as dianthin (30 kDa) and does
not occur for large proteins as the conjugate (see below). For the conjugate, binding to the
target receptor is much more important for successful uptake.
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Figure 3. Undirected cytotoxicity of dianthin in the presence of the endosomal escape enhancer
SO1861. Raji and Jurkat cells (20,000 cells/well) were seeded into a 96-well plate and allowed to grow
for 24 h. They were then treated with (a) dianthin or (b) non-conjugated dianthin simply mixed with
obinutuzumab. All proteins were applied at concentrations ranging from sub-femtomolar to upper
nanomolar range. SO1861 was added at a final concentration of 1 µg/mL one hour before. Cells
were incubated for 72 h in the presence of the compounds. Finally, cell proliferation was measured
by an XTT assay and obtained values referred to untreated cells. Points in the graphs represent the
mean ± SD of three biological experiments (n = 3) each one of them conducted in technical triplicate.

When obinutuzumab was applied together with non-conjugated dianthin, i.e., simply
mixed, there was no significant difference observed in the IC50 values (Figure 3b). This
means that there is no effective interaction between these two proteins and that free
obinutuzumab does not contribute to an additional effect. This is confirmed by the mono-
application of free obinutuzumab that does not show any cytotoxicity, either on Raji or
on Jurkat cells (Figure 4a). The observation that obinutuzumab does not exhibit cytotoxic
effects on target Raji cells is not surprising given the absence of human immune cells to
mediate ADCC in this experiment. However, we have demonstrated in previous studies
that antibodies as part of immunoconjugates, e.g., coupled to dianthin, retain their ability for
ADCC when human immune cells are present [20]. Nevertheless, when the conjugate ObiDi
was applied in the presence of SO1861, the IC50 for Raji cells was reduced to 0.0094 nM
compared to an IC50 of 1.232 nM for Jurkat cells, pointing out that the cytotoxicity for
target cells was 131-fold greater than for off-target cells. Two important conclusions can be
drawn from these results. First, there is a clear therapeutic window for the treatment with
ObiDi/SO1861 exhibiting an optimum at 100 pM where full toxicity is observed for target
cells and no cytotoxicity for off-target cells. Second, the unspecific toxicity of dianthin for
off-target cells is reduced due to the conjugation with the antibody.
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2.3. Efficacy of ObiDi/SO1861 in a Lymphoma Mouse Tumor Model

The decisive question of the presented treatment method is, however, whether it also
works in the living organism. Four mouse groups were included in the study, mock-treated
control, monotherapy with toxin-free obinutuzumab as well as therapy with the conjugate
ObiDi in the absence and presence of SO1861. The mice were inoculated with luciferase-
producing Raji cells. This allowed us to visualize and track individual metastases over the
whole period of the experiment. In a first experimental setting, we started treatment of
the mice one day after tumor cell injection as described in many publications with similar
objectives [53–55]. The aim of such type of experiment is to show that the appearance of
detectable metastases is blocked or retarded, resulting in longer life span of the animals.
When we applied this mouse model, already toxin-free obinutuzumab was very potent
so that no tumors appeared in any of the animals of either group (except for the mock-
treated control). Thus, this treatment regimen was not suitable to show superiority of
ObiDi/SO1861 compared to obinutuzumab. The only conclusion that we obtained from
this experiment is that neither the conjugation with dianthin nor the co-application with
SO1861 obviously hampers the treatment with obinutuzumab. Therefore, we changed the
procedure and did not start treatment before 14 days after tumor inoculation (Appendix A
Figure A2). At that time, a large number of metastases of different sizes and locations were
already observed in the animals (Figure 5).

We followed the growth and regression of individual metastases (ObiDi/SO1861,
n = 35; ObiDi, n = 27; Obi, n = 29; PBS, n = 14) in all mice, and conducted a qualitative
analysis (no remission, partial remission, complete remission) and quantitative analysis
(regression to growth ratio). Metastases were identified as a single metastasis when they ap-
peared as such in the image view because the image did not allow us to distinguish if it was
a real single metastasis, two merged metastases, or two single metastases that overlapped in
the projection. In all types of analyses, we clearly observed superiority of the ObiDi/SO1861
technique compared to the monotherapy with ObiDi. ObiDi in absence of SO1861 was only
slightly better than the monotherapy with the parent antibody obinutuzumab.
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Figure 5. Examples for live imaging of metastases during treatment with either (a,b) ObiDi/SO1861,
ObiDi, PBS or (c) obinutuzumab with (a,c) dorsal and (b,c) ventral view. The change in size of single
metastases was quantified by using an IVIS Lumina imaging system 5 min after injecting luciferin
intraperitoneally. The total flux values that correlate directly with tumor mass were measured weekly
as indicated on the right side of the panels. The † indicates week of death.

The combination therapy of ObiDi with the endosomal escape enhancer SO1861 clearly
prevents metastases growth better (51.4% response rate) than the monotherapy with ObiDi
(25.9%) and obinutuzumab alone (20.7%) (Figure 6a). Continuous tumor regression was
observed 4.6-fold more often in the combination therapy than in monotherapy with ObiDi
and was not observed at all in sole obinutuzumab therapy. Partial regression of more
than 50% was detected 3.1-fold more often in ObiDi/SO1861 than in ObiDi treatment,
and was also not observed at all in obinutuzumab treatment. When looking at the total
tumor quantity development expressed as the total regression to growth ratio during the
whole observation period, ObiDi/SO1861 resulted in a 6.5-fold better tumor regression
than ObiDi and a 10.6-fold better regression compared to obinutuzumab alone (Figure 6b).
The ratio of 0.2 for the combination therapy nevertheless indicates that the total tumor
growth was greater than tumor regression, however, it must be taken into consideration
that the therapy started at a stage where the mice already had many metastases in the whole
body, and a few of them developed quickly, thus substantially contributing to an increase
in tumor mass. Six weeks after the beginning of the treatment, the overall survival rate was
71% for mice treated with ObiDi/SO1861, 57% for mice treated with ObiDi alone, 16% for
those treated with obinutuzumab, and 14% for non-treated animals. Thus, in contrast to
the immunotoxin, toxin-free obinutuzumab has no effect on survival when the treatment
started not before 14 days after tumor cell inoculation, indicating that obinutuzumab is
only highly effective when applied at an early stage of tumor cell proliferation. One mouse
treated with ObiDi/SO1861 was completely cured and remained tumor free until the end
of experiment.
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Table 1. Blood parameter of mice treated with ObiDi/SO1861 compared to untreated mice.

Parameter Untreated ObiDi/SO1861

alanine aminotransferase 46.7 ± 17.6 U/L 59.3 ± 22.5 U/L
asparagine aminotransferase 329.3 ± 180.4 U/L 248.3 ± 187.8 U/L

glutamate dehydrogenase 12.7 ± 5.1 U/L 16.3 ± 6.0 U/L
cholinesterase 5837.7 ± 223.4 U/L 6588.0 ± 548.4 U/L

creatinine 0.3 ± 0.0 mg/dL 0.2 ± 0.1 mg/dL
ferritin n.d. 1 n.d. 1

1 n.d.: not detectable.
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3. Discussion

The scientific community has been aware of immunotoxins for over 50 years. As early
as 1970, Moolten and Cooperband described the selective destruction of target cells by a
diphtheria toxin that was conjugated to antibodies directed against mumps antigens present
on mumps-infected cells [56]. Six years later, Moolten et al. had already precisely defined
the preconditions for effective immunotoxins and already recognized the importance
of endosomal escape when they stated that intracellularly active toxins conjugated to
antibodies must “undergo an internalization process that brings them, undegraded, to
their intracellular sites of action” [57]. In the early 1980s, a variety of immunotoxins were
developed [58] and some of them have also found their way into clinical studies [59].
Nevertheless, no ADCs or immunotoxins have been approved by the competent authorities
in the last century (denileukin diftitox was approved in 1999, but was a cytokine conjugate
and not an ADC), and only one ADC (gemtuzumab ozogamicin) was approved in the first
decade of the current century. Progress in antibody design and production, and of site-
specific conjugation techniques, led to the approval of 12 ADCs with small molecule drugs
but only one immunotoxin (moxetumomab pasudotox) with a protein toxin as effector
(truncated Pseudomonas exotoxin PE38) to date [60], indicating that endosomal escape is
still a problem for the use of very efficient biological macromolecules.

At the beginning of this century, endosomal escape had come into the focus of con-
trolled drug delivery techniques. The number of publications (PubMed) increased con-
tinuously from 27 in the period of 2002–2004 to 449 from 2019–2021. Various strategies
have been investigated to make endosomes permeable for effector molecules. This includes
the use of lysosomotropic agents, calcium channel antagonists, carboxylic ionophores,
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cell-penetrating peptides, and light-induced techniques [61]. A further option is the use
of specific glycosides [31]. A glycoside with high endosomal escape enhancer poten-
tial is SO1861. The general effect was already observed in previous studies, mainly in
growth-factor-targeted toxins [32,38,39], but also in immunotoxins applying the clinical
antibodies rituximab, cetuximab, and trastuzumab, and other antibodies directed against
CD22, CD25, and calcitonin receptor [20,25,33,43]. In contrast to the growth factor toxins,
SO1861 was never tested in vivo together with immunotoxins, and in no case in a metastatic
tumor model.

The importance of the endosomal escape step was also shown for saporin, a RIP
very similar to dianthin [62]. Geden et al. demonstrated that dimethylsulfoxide and
lipopolyamines, which are known to disrupt the integrity of endosomal membranes, facili-
tated the rapid release of saporin from endosomes to the cytosol, while diphtheria toxin,
ricin, or the catalytic A chain of ricin were not affected [63]. The same lack of the escape
effect was also observed for SO1861 with ricin A chain and truncated versions of diphtheria
toxin and Pseudomonas exotoxin A [46], indicating that the escape effect is restricted to spe-
cific cellular compartments and that intracellular trafficking of toxins essentially determines
which toxins can benefit from endosomal escape enhancers.

We selected a disseminated cancer model with luciferase expressing Raji cells allow-
ing quantitative measurement of single metastases. The target antigen CD20 is highly
expressed on Raji cells while absent on Jurkat control cells [64]. Currently, there are
four approved anti-tumor antibodies against CD20 on the market, obinutuzumab, ibritu-
momab, ofatumumab, and rituximab, and one further antibody, ocrelizumab, is approved
to treat multiple sclerosis [60]. Obinutuzumab exhibits enhanced binding to low affinity
immunoglobulin gamma Fc region receptor III and can induce in vitro an ADCC activity
that is 35 to 100 times greater than that of ofatumumab and rituximab [65,66]. Clinical
studies with obinutuzumab monotherapy showed up to 62% to 67% overall response rates
but no significant differences in progression-free survival [67,68]. Therefore, obinutuzumab
was combined with various other substances as described in the introduction. For instance,
treatment with obinutuzumab in combination with chlorambucil increased progression-free
survival to 27.7 months compared to the 16.3 months observed for rituximab/chlorambucil,
and the rates of complete response were higher (20.7% versus 7.0%) [69]. Such success
suggests that further emphasis should be placed on the use of obinutuzumab. On the other
hand, treatments with obinutuzumab are also accompanied by adverse events including
thrombocytopenia, infusion related reactions, cardiac events, and hepatotoxicity [21,60]
and the efficacy also still has a large potential for improvement. ADCs and immunotox-
ins have the general potential to reach this goal with immunotoxins being even better
when the problem of endolysosomal accumulation and degradation of the payload can be
adequately addressed.

In the present study, we therefore produced an immunotoxin consisting of obinu-
tuzumab and the ribosome-inactivating protein dianthin and tested the conjugate in the
presence and absence of the endosomal escape enhancer SO1861. Dianthin is a protein
toxin with high efficacy inside cells but low toxicity in the circulation and is therefore well
suitable for targeted tumor therapies [24]. The conjugate was compared with the obinu-
tuzumab monotherapy. There are various factors that can affect the target and off-target
cytotoxicity of the immunotoxin including the nature of the receptor, the specific epitope
on the receptor, the level of receptor expression on target cells and off-target cells, the inter-
nalization process of the antibody-receptor complex, intracellular sorting/routing, the rate
of endocytosis and recycling, the lysosomal activity, and endosomal escape [29,36,70–72].
Here, we cannot distinguish all these issues, but it is striking that ObiDi is around 300-fold
less toxic for non-target Jurkat cells than free dianthin indicating that the small protein toxin
dianthin can be unspecifically taken up by mechanisms such as pinocytosis while ObiDi
cannot. Unspecific uptake of dianthin by Raji cells thus appears to be the explanation why
the increase in cytotoxicity by ObiDi is only 5-fold compared to dianthin. Other issues such
as a slow internalization rate of the CD20 target receptor might also play a role [73]. In vivo,
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it was observed that 30 µg of saporin, a RIP homologous to dianthin, is well tolerated by
mice [74], indicating that free dianthin generated by cleavage of ObiDi is neglectable as
the maximum amount of released dianthin is 0.3 µg if all conjugates have been split. The
endosomal escape enhancer SO1861 itself is also non-toxic at the applied dose of 15 µg.
Previous studies showed that SO1861 is well tolerated until doses of 100 µg, while 200 µg
is lethal due to hemolytic effects [38].

Our results further demonstrate that the conjugation neither affects the binding activity
of obinutuzumab nor the enzymatic activity in a sustainable manner. Moreover, our results
clearly indicate that the combination of the conjugate ObiDi with SO1861 led to a synergistic
improvement in the regression of CD20-sensitive metastases. As regards the slightly better
efficacy of ObiDi compared to obinutuzumab in vivo, the experiments in the current study
provide no hints as to which part of the toxic effect can be attributed to ADCC and which
part to dianthin. Hypothetically, it could be the case that ADCC is completely lost in ObiDi
treatment, and the toxic effect is fully caused by dianthin. However, it is most likely that
both effects play a role. On the one hand, in a previous study, we already provided evidence
that modified trastuzumab and cetuximab mediate efficient toxin delivery while ADCC is
retained in target cells [20]. On the other hand, the drastic improvement of efficacy in the
presence of SO1861 can only be explained by successful cytosolic delivery of catalytically
active dianthin. Likewise known from previous studies [32,75,76], the enhancement by
SO1861 was much higher on target cells than on off-target cells, resulting in a broadening
of the therapeutic window. This allowed us to save treatment without observable drug-
related adverse effects at low doses of 1.8 µg conjugate per application. All observed
symptoms and early deaths were attributed to insensitive fast-growing metastases, mostly
in the central nervous system. As early start of treatment resulted in complete suppression
of tumor growth in all treatment groups (except mock-treated control), the potential of
obinutuzumab alone appears to be high for tumors in early stages, while the superiority of
the ObiDi/SO1861 therapy is particularly evident in advanced tumors.

4. Conclusions

In the present study, we focused on the efficacy of a therapeutic approach combining
the endosomal escape enhancer function of the glycosylated triterpenoid SO1861 with
the cytotoxic function of the antibody-targeted protein toxin obinutuzumab-dianthin to
develop a new platform technology for the treatment of lymphoma and leukemia. Our
results clearly demonstrated in vivo in a metastatic mouse tumor model that the application
of ObiDi/SO1861 is substantially superior to the monotherapy with the conjugate ObiDi
and the monotherapy with the parent antibody obinutuzumab. This study therefore
suggests the usage of the ribosome-inactivating protein dianthin and SO1861 as a promising
strategy to augment the efficacy of therapeutic antibodies in the treatment of lymphoma and
leukemia, which should not be limited to obinutuzumab, thus opening further perspectives.

5. Materials and Methods
5.1. Recombinant Expression and Purification of Dianthin

The plasmid 6×His-tag-dianthin-pET11d [46] coding for dianthin was transformed
into Escherichia coli Rosetta 2(DE3) pLysS Competent Cells (Novagen, San Diego, CA, USA).
Bacteria were scaled up to a 2.0-L-culture with an optical density at 600 nm of 0.9 and ex-
pression of dianthin was induced by the addition of isopropyl β-D-1-thiogalactopyranoside
(AppliChem, Darmstadt, Germany). Protein expression lasted for 3 h at 37 ◦C and 200 rpm.
Bacteria were centrifuged at 5000× g and 4 ◦C for 5 min, resuspended in PBS and further
purified by Ni-NTA chromatography (Protino Ni-NTA agarose, Macherey-Nagel, Düren,
Germany), as described previously [77,78]. A bicinchoninic acid assay (Pierce/Thermo
Scientific, Waltham, MA, USA) served to determine the protein concentration of the
dianthin solution.
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5.2. Chemical Conjugation and Purification of ObiDi

Purified dianthin was chemically conjugated to obinutuzumab (Gazyvaro®, Hoffmann-
La Roche, Basel, Switzerland) through a covalent binding introduced by the linkers N-
succinimidyl-3-(2-pyridyldithio) propionate (SPDP, Pierce/Thermo Scientific) and
4-(N-maleimidomethyl)cyclohexane-1-carboxylic acid 3-sulfo-N-hydroxysuccinimide ester
(Sulfo-SMCC, Pierce/Thermo Scientific). First, 5.0 mg of obinutuzumab was dialyzed
against phosphate-buffered saline (PBS) supplemented with 1 mM EDTA, 0.02% (w/v)
sodium azide, pH 7.5. In parallel, 1.0 mg of dianthin was dialyzed against the same buffer.
SPDP was added at a final concentration of 20 mM in Milli Q type 1 pure water to dianthin.
Sulfo-SMCC was added at a final concentration of 14.7 mM to obinutuzumab solutions
and again both solutions were dialyzed against the same buffer as before. Dithiothreitol
(150 mM final concentration) was added only to the dianthin solution and reduction oc-
curred for 30 min at 25 ◦C. Subsequently, dithiothreitol was removed from the dianthin
solution by gel filtration (PD-10 desalting column, GE Healthcare, Uppsala, Sweden). Both
obinutuzumab and dianthin solutions were mixed resulting in a molar ratio of 1:1 and the
cross-linking reaction was allowed to occur for 18 h at 8 ◦C.

ObiDi solution was concentrated to a volume of 5 mL and the buffer was changed
to 20 mM HEPES pH 7.4 by an Amicon Ultra-15 (Merck Millipore, Carrigtwohill, Ireland)
with 10,000 Da as nominal molecular mass limit (NMML). ObiDi was separated from
unconjugated obinutuzumab and a part of unconjugated dianthin by cation exchange
chromatography (SP High performance sepharose, GE Healthcare, Danderyd, Sweden).
Bound proteins were eluted with a gradient of 1.5% to 10% of 2 M NaCl, 20 mM HEPES
buffer with a constant flow rate of 0.5 mL/min at 18 ◦C. Fractions with protein content
were analyzed by SDS-PAGE [7.5% (w/v) gel] under non-reducing conditions.

In a second step, the obtained ObiDi solution was separated from unconjugated
dianthin by protein-A affinity chromatography according to the manufacturer’s instructions
(Invitrogen). ObiDi purified via protein-A agarose was again concentrated by an Amicon
Ultra-15 with 10,000 Da NMML and stored at 4 ◦C for its subsequent use.

5.3. Cell Culture

Luciferase expressing Raji cells (human B-cell Burkitt’s lymphoma) were described
previously [79]. Jurkat cells were purchased from the American Type Culture Collection
(Manassas, VA, USA). Cells were cultured in RPMI-1640 medium with phenol red (PAA
Laboratories, Pasching, Austria) supplemented with 20% fetal bovine serum (BioChrom KG,
Berlin, Germany) and 1% penicillin/streptomycin (Gibco/Invitrogen, Karlsruhe, Germany).
Cells were grown in humidified incubators at 5% CO2 and 37 ◦C.

5.4. Cytotoxicity Evaluation by XTT End-Point Assay

Cytotoxicity of ObiDi alone or in combination with SO1861 was evaluated on the
CD20 positive Raji cell line and CD20 negative Jurkat cell line by the sodium 3′-[1-
(phenylaminocarbonyl)-3,4-tetrazolium]-bis(4-methoxy6-nitro)benzene sulfonic acid hy-
drate (XTT, Serva Electrophoresis, Heidelberg, Germany) assay. Cells were seeded in a
96-well plate (20,000 cells/well) in 100 µL of RPMI-1640 medium without phenol red
supplemented with 20% fetal bovine serum and 1% penicillin/streptomycin. After 24 h of
cell proliferation, either 25 µL/well medium or 25 µL/well medium containing SO1861 at
a final concentration of 1 µg/mL was added. Furthermore, 25 µL/well medium containing
immunotoxin (ObiDi), obinutuzumab or dianthin was added at final concentrations from
0.1 fM to 100 nM. Raji and Jurkat cells were incubated in the presence of the compounds
for further 72 h and finally cell proliferation was determined applying the XTT assay. A
solution (50 µL/well) of XTT at 1 mg/mL and of phenazine-methosulfate (Serva Elec-
trophoresis, Heidelberg, Germany) at 8 µg/mL was pipetted to the cells and the 96-well
plate was incubated at 37 ◦C for 2 h. Absorbance was measured directly from the media
at 450 nm by the SpectraMax 340PC Absorbance Microplate Reader (Molecular Devices,
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Sunnyvale, CA, USA). Untreated cells served as control and were set to 100% viability. IC50
values were calculated by four-parameter regression analysis using GraphPad Prism.

5.5. Raji B-Cell Lymphoma Xenotransplantation Model

Eight-week-old female SCID CB17 mice (Charles River Laboratories, Germany) were
inoculated intravenously with luciferase-expressing Raji lymphoma cells (0.25 × 106) in
100 µL PBS. Paralysis of the hind legs or weight loss of >20% in the course of the experiments
were used as end points. All animal experiments have been performed according to the
institutional guidelines with permission from the competent authorities. The mice were
housed in individually ventilated cages under a constant day and night cycle (12 h each)
and had free access to water and animal feed. All animals were monitored daily for
well-being during the entire experiment.

5.6. Immunotherapy of B-Cell Lymphoma Xenograft-Bearing Mice

Mice transplanted with luciferase-expressing Raji cells were randomly divided into
groups of 6–8 animals. Two different settings were applied, (a) start of treatment one day
after tumor cell inoculation as frequently described in the literature and (b) start of treatment
two weeks later. Mice received either (i) 15 µg SO1861 in 100 µL PBS subcutaneously into the
neck in combination with 1.8 µg ObiDi in 100 µL PBS intraperitoneally 1 h later, (ii) 1.8 µg
ObiDi as in experiment (i), (iii) 1.8 µg obinutuzumab in 100 µL PBS intraperitoneally or
(iv) 100 µL PBS as mock-treated control. The therapy lasted four weeks with alternating
treatment intervals of 3 and 4 days.

5.7. Bioluminescent Imaging of Tumor Development

Tumor development was quantified by in vivo imaging using an IVIS Lumina imaging
system (Caliper-Life-Science, Waltham, MA, USA). Mice were anesthetized with isoflurane.
Luciferin (Biosynth, Staad, Switzerland) was injected intraperitoneally with 375 mg/kg
body weight and mice imaged 5 min later. Total flux values that correlate directly with
tumor mass were measured weekly. Images were analyzed with Living Image 2.0 software
(Caliper-Life-Science).

5.8. Hematological Analysis

Four days after two treatments with 15 µg SO1861 in 100 µL PBS s.c. and 10 µg ObiDi
in 100 µL PBS i.p. approximately 1.2 mL of blood was collected by cardiac puncture in
isoflurane-anesthetized pretreated mice and compared with non-treated animals (n = 3).
Blood was collected in S-Monovette (Sarstedt, Nümbrecht, Germany) 1.2-mL K3 EDTA
sterile tubes and was analyzed by Labor 28 GmbH, Berlin, Germany, for blood parameters
analysis, including cholinesterase, ferritin, glutamate dehydrogenase (GLDH), asparagine
aminotransferase (ASAT), alanine aminotransferase (ALAT) and creatinine.

5.9. Isolation of SO1861

SO1861 was gained from the dried roots of the common soapwort Saponaria officinalis L.
by methanol extraction and further purified by high-performance liquid chromatography,
as described elsewhere [38,43,80].
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phoma model. At day –14, SCID CB17 mice received luciferase-transduced Raji cells (0.25 × 106)
intravenously. Two weeks later, mice received either (i) 15 µg SO1861 in 100 µL PBS subcutaneously
into the neck in combination with 1.8 µg ObiDi in 100 µL PBS intraperitoneally 1 h later, (ii) 1.8 µg
ObiDi as in experiment (i), (iii) 1.8 µg Obinutuzumab in 100 µL PBS intraperitoneally or (iv) 100 µL
PBS as mock-treated control. The mice were alternately treated every three and four days for
four weeks. The live imaging to visualize tumors was conducted every week for six weeks.
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