Charité - Universitätsmedizin Berlin Campus Benjamin Franklin Aus der Klinik und Poliklinik für Zahn-, Mund- und Kieferheilkunde Geschäftsführender Direktor: Prof. Dr. R. J. Radlanski Abteilung für Experimentelle Zahn-, Mund- und Kieferheilkunde

Direktor: Prof. Dr. R. J. Radlanski

Effect of rapidly resorbable bone substitute materials and various dental implant surfaces on the temporal expression of the osteoblastic phenotype *in vitro*

Habilitationsschrift
zur Erlangung der Venia legendi
für das Fach Zahn-, Mund- und Kieferheilkunde
der Charité - Universitätsmedizin Berlin
Campus Benjamin Franklin

vorgelegt von

Dr. med. dent. Christine Knabe

Berlin

2004

To:

Paul

and

my parents, Gisela & Helmut Knabe

Words are inadequate to express my gratitude to you all.

Table of Co	ontents	3
Glossary of	f Abbreviations	8
General Int	roduction	11
Part I	Effect of rapidly resorbable bone substitute materials on osteoblastic cell differentiation <i>in vitro</i>	13
I/1	Introduction Part I	13
1/2	Materials and Methods	22
1/2.1	Test Materials	22
1/2.1.1	Test Materials Study A	22
1/2.1.2	Test Materials Study B	24
1/2.1.3	Test Materials Study C	26
1/2.2	Cell isolation and cultures	28
1/2.3	Cellular quantitative in situ hybridization assay (QISH)	30
1/2.4	Cellular quantitative immunocytochemistry assay	34

I/2.5	Statistical analysis	37
I/3	Results	37
I/3.1	Results Study A	37
1/3.2	Results Study B	42
1/3.3	Results Study C	47
1/4	Discussion	52
I/4.1	General Discussion Part I	52
1/4.2	Discussion Study A	54
1/4.3	Discussion Study B	56
1/4.4	Discussion Study C	57
1/4.5	General Discussion Part I (continued)	59
1/5	Conclusions Part I	69
Part II	Effect of various dental implant surfaces on the temporal	70
	expression of the osteoblastic phenotype in vitro	

II/1	Introduction Part II	70
II/1.1	Introduction Study D	70
II/1.2	Introduction Study E	73
II/2	Materials and Methods	76
II/2.1	Test Materials	76
II/2.1.1	Test Materials Study D	76
II/2.1.2	Test Materials Study E	79
11/2.2	Cell isolation and cultures	83
11/2.3	Cellular quantitative in situ hybridization assay (QISH)	84
11/2.4	Cellular quantitative immunocytochemistry assay	85
II/2.5.	Statistical analysis	85
II/2.6.	Scanning electron microscopy	86
II/3	Results	86
II/3.1	Results Study D	86
11/3.2	Results Study E	91

II/4	Discussion and Conclusions Part II	99
II/4.1	Discussion Study D	99
11/4.2	Conclusions Study D	109
II/4.3	Discussion Study E	109
11/4.4	Conclusions Study E	114
6	Summary	116
7	References	122
-		
0	A also avula de emanta	165
8	Acknowledgements	165
9	Appendix	168
APP	ENDIX A	
MATI	ERIALS AND METHODS	
A1:	ROUTINE CELL CULTURE	
	A1.1: Human bone-derived cell culture	168
4.0	A1.2: Maintenance of culture	169
A2:	CULTURE OF HBDC ON DIFFERENT SUBSTRATA COMPLIMENTARY DEOXYRIBONUCLEIC	169
Δ3.	COMPUNIENTARY DEOXYRIBONUCIEIC	

	ACID (cDNA) PROBES	170
A4:	ISOLATION OF DEOXYRIBONUCLEIC	
	ACID (cDNA) PROBES	171
	A4.1: Cell culture and harvesting	173
	A4.2: Plasmid purification	174
A5:	PHOTOBIOTIN® LABELING OF PROBES	176
A6:	DNA IN SITU HYBRIDIZATION (ISH) PROCEDURE	180
A7:	INDIRECT IMMUNOCYTOCHEMISTRY	184
A8:	SCANNING ELECTRON MICROSCOPY	189
APP	ENDIX B	
REA	GENTS	
B1:	Phosphate buffered saline (PBS)	190
B2:	Fixative	190
B3:	Reagents used in plasmid purification	191
B4:	Hybridization buffer	192
B5:	Reagents used in in situ hybridization	
	and in immunocytochemistry assays	192
B6:	Stain used in routine histology	194
B7:	Reagents used in cell culture	194
B8:	Reagents used in scanning electron microscopy (SEM)	195

Glossary of Abbreviations

Akt Protein Kinase B

ALP Alkaline phosphatase

AP-1 Activator protein 1

Asc-2-P L-Ascorbic acid 2-phosphate

BALP biotinylated alkaline phosphatase

BG Bioactive glass

Bioc Biocement D

BSA Bovine serum albumin

BSP Bone sialoprotein

cAMP Cyclic adenosine monophosphate

CDHA Calcium deficient hydroxyapatite

cDNA Complimentary deoxyribonucleic acid

Co Control

Col I Type I collagen

Col III Type III collagen

CTP Calcium titanium phosphate

CTZP Calcium titanium zirconium phosphate

CZP Calcium zirconium phosphate

DNase Deoxyribonuclease

ECM Extracellular matrix

EDTA Ethylendiaminetetra-acetic acid

(disodium edetate)

EDX Energy dispersive X-Ray analysis

Erk Extracellular signal-regulated kinase

FAK Focal adhesion kinase

Fn Fibronectin

GAPDH Glyceraldehyde-3-phosphate

dehydrogenase

GBR Guided Bone Regeneration

Grb2 Growth factor receptor-bound protein 2

GTP Guanosine triphosphate

HA Hydroxyapatite

HBDC Human bone-derived cells

HBSS Hanks' Balanced Salt Solution

ICP Ion-Coupled Plasma (ICP) analysis

ISH in situ hybridization

mAb Monoclonal antibody

MAPK Mitogen-activated protein kinase

MAS-NMR measurements ³¹P magic angle spinning-nuclear

magnetic resonance measurements

α-MEM Minimum Essential Medium

mRNA Messenger ribonucleic acid

NASICON Sodium superionic conductor

p-NP p-nitrophenyl

p-NPP p-nitrophenyl phosphate

NZP Sodium zirconium phosphate

OC Osteocalcin

ON Osteonectin

OP Osteopontin

pAb Polyclonal antibody

PMMA Polymethylmethacrylate

PI3K/Akt survival pathway Phosphatidylinositol-3-kinase/Protein

Kinase B survival pathway

QISH Quantitative *in situ* hybridization

RGD Arginine-glycine-aspartic acid

RNase Ribonuclease

SD Standard deviation

SEM Scanning electron microscopy

Shc Src-homology collagen

SOS Son of sevenless

SSC Sodium citrate solution

TCP Tricalcium phosphate ceramic

Ti Titanium

cp Ti Commercially pure titanium

Ti-6Al-4V Titanium-6-alumina-4-vanadium

TPS Titanium plasma-sprayed

XPS X-ray photoelectron spectroscopy

XRD Quantitative X-ray diffraction analysis

General Introduction

Over the last three decades implant dentistry has established itself as a key discipline within the science and clinical practice of dental medicine. The utilisation of endosseous implants for the rehabilitation of completely or partially edentulous patients has become a standard treatment modality in dentistry. In this context, there has been an ongoing effort to enhance and accelerate osseointegration of dental implants by optimizing their surface design. To design implant surfaces which elicit excellent cell and tissue responses, furthering our knowledge base regarding cell and tissue responses to specific materials characteristics is necessary.

Resorption of the alveolar ridge after tooth extraction frequently mandates site development by augmentation before implants can be placed. The use of biodegradable bone substitutes is advantageous for alveolar ridge augmentation, since it avoids second-site surgery for autograft harvesting. As a result, over the past decade there has been great demand and an ongoing search for synthetic, biodegradable bone substitute materials which degrade rapidly, but still stimulate osteogenesis at the same time.

The work presented here is part of ongoing research of which the overall goal is to obtain a fundamental understanding of the processes involved in tissue integration of endosseous implant materials at a molecular level. Developing this understanding has been hampered by the inadequacy of the experimental techniques that could be used. In recent years, though, methods have become available that make it possible to extend the boundaries of knowledge, and these studies have used some of these novel methods. Once these processes involved in tissue integration are understood, it should be possible to create a novel generation of implant materials in which the surface properties can be engineered so as to elicit

specific biological responses resulting in the enhancement of osteogenesis and thus enhanced bone formation. This way a totally new concept would be introduced to biomaterials research and development in implant dentistry. Rather than following an empirical approach by implanting new materials and then characterizing the tissue response, the knowledge about the molecular mechanisms of tissue integration can then be used to strategically design biomaterials with the goal to elicit the desired tissue responses.

In vitro osteogenic cell cultures have been proven to be valuable for initial biological testing of endosseous implant materials. The quantitative evaluation of the gene and protein expression of osteogenic markers by putative osteoblasts grown on different biomaterials can generate valuable information concerning the osteogenic capacity of an implant material. Methodologies employing in situ hybridization and immunocytochemical techniques permit study of the expression of markers of the osteoblast phenotype. Techniques to quantitatively relate the expression of bone-related mRNAs (messenger ribonucleic acids) to their respective proteins as a measure of phenotypic differentiation have recently been developed. In the present thesis, this methodology was used to determine how osteoblastic cell differentiation is influenced by novel endosseous implant materials. Thereby, the osteogenic potential of a range of novel bone substitute materials and various dental implant surfaces was assessed. The investigations of novel, rapidly resorbable bioactive bone substitute materials comprise part I of the thesis and the studies regarding various dental implant surfaces part II.