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Abstract

We employ a recently developed variant of the functional renormalization group method
for spin systems, the so-called pseudo Majorana functional renormalization group, to
investigate three-dimensional spin-1/2 Heisenberg models at finite temperatures. We
study unfrustrated and frustrated Heisenberg systems on the simple cubic and pyrochlore
lattices. Comparing our results with other quantum many-body techniques, we demon-
strate a high quantitative accuracy of our method. Particularly, for the unfrustrated sim-
ple cubic lattice antiferromagnet ordering temperatures obtained from finite-size scaling
of one-loop data deviate from error controlled quantum Monte Carlo results by∼ 5% and
we confirm consistency of our data with established critical exponents ν and η of the
three-dimensional Heisenberg universality class. As the PMFRG yields results in good
agreement with QMC, but remains applicable when the system is frustrated, we next
treat the pyrochlore Heisenberg antiferromagnet as a paradigmatic magnetically disor-
dered system and find nearly perfect agreement of our two-loop static homogeneous
susceptibility with other methods. We further investigate the broadening of pinch points
in the spin structure factor as a result of quantum and thermal fluctuations and con-
firm a finite width in the extrapolated limit T → 0. While extensions towards higher
loop orders ` seem to systematically improve our approach for magnetically disordered
systems we also discuss subtleties when increasing ` in the presence of magnetic or-
der. Overall, the pseudo Majorana functional renormalization group is established as a
powerful many-body technique in quantum magnetism with a wealth of possible future
applications.
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1 Introduction

A wide spectrum of magnetic phenomena occurs in systems described by a Heisenberg model
[1] in which spin-1/2 operators Si located on lattice sites i are coupled via isotropic exchange
interactions Ji j ,

H =
∑

i< j

Ji jSiS j . (1)

In spite of the apparent simplicity of Eq. (1), the calculation of measurable quantities remains a
notoriously difficult problem, particularly in the most realistic case of three spatial dimensions.
Numerical methods, while indispensable and of steadily increasing power, either suffer from
an intrinsic bias, are limited in the quantitative accuracy of their predictions or are unfeasible
for the treatment of generic three-dimensional (3D) systems.

Besides more established approaches such as quantum Monte Carlo (QMC) [2], exact di-
agonalization [3], and density-matrix renormalization group (DMRG) [4], new concepts like
the functional renormalization group [5,6] are currently on the rise for spin systems, owing to
their flexibility and applicability to even complex coupling scenarios. While it is now possible
to directly treat the RG flow of spin-vertex functions [7], more established variants represent
spin operators in terms of auxiliary fermions. The pseudofermion functional renormalization
group (PFFRG) method [8–12] is particularly strong in calculating ground state spin corre-
lations while a more recent variant, the pseudo Majorana functional renormalization group
(PMFRG) approach [13] can even handle combined effects of quantum and thermal fluctua-
tions. On the other hand, these methods are sometimes associated with the weaknesses that
(i) they are in no simple way endowed with a parameter that systematically controls the ac-
curacy and (ii) rigorous benchmark tests with other methods are rarely possible. The recent
application of multiloop FRG extension [14, 15] to the PFFRG [16, 17] has made an impor-
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tant step forward concerning (i) by systematically increasing the loop order ` of diagrammatic
contributions to the vertex flow.

In this work, we tackle (ii) by exploiting the PMFRG’s capability of treating finite temper-
atures which opens up a plethora of further applications and opportunities for benchmarking.
We apply the PMFRG to two types of models; the first ones are unfrustrated 3D systems such as
the nearest-neigbor simple cubic lattice antiferromagnet where one expects a finite tempera-
ture transition to a magnetically ordered state. Details of these second-order phase transitions
such as the critical temperature and -exponents are well studied from QMC [18] which treats
unfrustrated models in a completely unbiased and error-controlled way. For the PMFRG, prob-
ing universal finite-size scaling [19] behaviors provides an optimal testbed and allows us to
demonstrate its beyond-mean-field character in a quantitative and rigorous way. Overall, we
find QMC results very well reproduced, which concerns the values of critical temperatures Tc,
the critical exponent for the correlation length ν which we confirm via a scaling collapse, and
the anomalous dimension η. An interesting byproduct of our results is the insight that the
system size parameter L which in PMFRG limits the range of spin-correlations can be used for
finite-size scalings in a similar way as the box-size in QMC.

The surprisingly accurate PMFRG results for magnetically ordered systems motivate us to
move on to a second type of models where frustration effects are strong enough to suppress
magnetic long-range order at low temperatures. As a paradigmatic geometrically frustrated
system, we investigate the nearest neighbor pyrochlore Heisenberg antiferromagnet [20],
which is known for its rich phenomenology related to spin ice systems. In this context, we also
partially tackle the aforementioned point (i) by extending the PMFRG with two-loop (` = 2)
corrections but leave even higher loop orders for future work. Since QMC is no longer applica-
ble to such systems due to the sign problem, possibilities for benchmark checks become rarer.
Whenever comparisons are possible, e.g. for the homogeneous susceptibility of the pyrochlore
antiferromagnet, our results show remarkable agreement with other numerical approaches.
We also investigate long-standing open problems in the field of quantum magnetism such as
the fate of pinch point singularities [21] in the pyrochlore Heisenberg antiferromagnet and
the possibility of a magnetically disordered low-temperature phase on the simple cubic lattice
with second neighbor interactions [22–27].

Overall, our results demonstrate that for unfrustrated systems the PMFRG is in quantitative
agreement with QMC, but has the additional advantage of being also applicable to frustrated
systems where the high accuracy is expected to persist. Therefore, besides the results pre-
sented below, we believe that our work has important implications for future investigations
of quantum magnetic systems, establishing the PMFRG as a flexible and powerful method,
applicable to both unfrustrated and frustrated systems. However, it is also worth emphasizing
that this work does not conclude the development of the PMFRG. Particularly, we expect that
multiloop extensions with ` ≥ 3 yield further important insights into quantum magnets and
may enable the exploration of lower temperature regimes which are not reachable within our
current implementation.

The paper is structured as follows: After a brief review of the PMFRG’s formalism in Sec-
tion 2, we study magnetic phase transitions on the simple cubic lattice using rigorous finite-size
scaling laws in Section 3. Subsequently, we turn to the strongly frustrated nearest-neighbor
pyrochlore model in Section 4 and investigate the static q = 0 spin susceptibility as well as
pinch point-like features in the spin structure factor. Here, we also discuss improvements to
the susceptibility introduced by two-loop corrections as well as measurements of the energy
per site and the specific heat capacity. Finally, we discuss the effects of two-loop corrections
more broadly in Section 5 and summarize our results in Section 6. Appendices are devoted to
more technical aspects.
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2 Pseudo-Majorana functional renormalization group

In this section, we briefly sketch the PMFRG approach. For a more in-depth introduction, we
refer to Ref. [13] and to our Appendices. Using the SO(3) Majorana representation of spins
S x

i = −iηy
i η

z
i , S y

i = −iηz
iη

x
i , Sz

i = −iηx
i η

y
i with {ηαi ,ηβj } = δi jδ

αβ [28, 29], the PMFRG
can be applied to Heisenberg systems [Eq. (1)]. At its core lies the solution of a (truncated) sys-
tem of functional renormalization group flow equations [5,30]which are differential equations
for the irreducible vertices as functions of a cutoff parameter Λ. In the present case, a smooth
cutoff is chosen which modifies the bare Green’s function as G0,Λ(ωn) = ΘΛ(ωn)G0(ωn) with

ΘΛ(ωn) =
ω2

n
ω2

n+Λ2 where ωn is a Matsubara frequency. However, we note that we found negli-

gible dependence of our results upon the choice of the cutoff function ΘΛ(ωn). Grouping site-,
flavor- and frequency indices together as 1 ≡ (i1,α1, iωn1

), the one-loop flow equations for
the interaction correction to the free energy Fint, the self energy Σ and the four-point vertex Γ
are

d
dΛ

FΛint =
1
2

Tr
�

ĠΛG0,Λ
�

GΛ
�−1
ΣΛ
�

, (2a)

d
dΛ
ΣΛ1,2 = −

1
2

∑

1′,2′
ĠΛ1′,2′Γ

Λ
1′2′,1,2 , (2b)

d
dΛ
ΓΛ1,2,3,4 = XΛ1,2|3,4 − XΛ1,3|2,4 + XΛ1,4|2,3 , (2c)

XΛ1,2|3,4 =
∑

1′,...,4′
ĠΛ1′,2′G

Λ
3′,4′Γ

Λ
1,2,1′,3′Γ

Λ
2′,4′,3,4 . (2d)

Here, GΛ is the cutoff modified version of the two-point Green’s function G1,2 = 〈η1η2〉 and
ĠΛ1,2 the single-scale propagator. In Eq. (2d), Katanin-type corrections [31] are included via

the replacement ĠΛ1,2→
d

dΛGΛ1,2. With certain approximations to the additional flow equation
for the six-point vertex, two-loop contributions can also be added, see Appendix B for details.
These equations are then solved numerically for the initial conditions ΓΛ→∞1,2,3,4 = Vi1α1,i2α2,i3α3,i4α4

,
where the interaction V is determined by the exchange couplings Ji j in the present case.

Since the Majorana spin representation introduces no unphysical states, Eq. (2) can be
used at arbitrary temperatures. However, as discussed in Ref. [13] the artificial degeneracy of
original spin states leads to a spurious Curie-type 1/T divergence of certain frequency com-
ponents of vertices. The truncation of the flow equation causes these divergencies to affect
the flow of frequency components related to spin correlations. Hence, unphysical results are
obtained at T � J . Below we demonstrate that this problem is significantly alleviated at finite
(and not too low) temperatures, such that our approach can still be faithfully applied in tem-
perature regimes where quantum and thermal fluctuations compete. The physical solution in
the zero-cutoff limit Λ= 0 allows for the computation of temperature-dependent observables
such as spin-spin correlations and -susceptibilities on the Matsubara axis,

χi j(iνn) =

∫ β

0

dτe−iνnτ
¬

Sz
i (τ)S

z
j (0)

¶

,

χq (iνn) =
1
N

∑

i, j

eiq(ri−r j)χi j(iνn) . (3)

The free energy per site f can be found via Eq. (2a). Hence, temperature dependent
thermodynamic quantities such as the energy per site, entropy and specific heat capacity are
available via derivatives of f (T ). Alternatively, the energy can be determined from the ex-
pectation value of the Hamiltonian, which can be written in terms of equal time spin-spin
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correlators [17]

〈H〉=
∑

i< j

Ji j




Si(0)S j(0)
�

, (4)

with



Si(0)S j(0)
�

=
∑

nχi j(iνn). Technical details of the numerical implementation are found
in Appendix C.

3 Simple cubic lattice

We start by investigating the capability of the one-loop PMFRG in systems with well established
magnetic long-range order. To this end, we study the Heisenberg model [Eq. (1)] on the
simple cubic lattice and set the nearest-neighbor antiferromagnetic coupling to J1 = 1. With
no further-neighbor couplings present, this model is unfrustrated and can be treated with
the quantum Monte Carlo method (QMC). Sandvik [18] found magnetic Néel order with an
ordering wavevector qN = (π,π,π) below a critical temperature TQMC

c = 0.946(1). Finite-size
scaling of the static Néel susceptibility χN computed for a cubic-box geometry with a linear size
of up to LQMC

box ≤ 16 and periodic boundary conditions confirmed that the transition is in the
classical 3D Heisenberg universality class with correlation length critical exponent ν = 0.71
and anomalous dimension η = 0.035 known from Monte-Carlo simulations of numerically
less demanding classical systems or the conformal bootstrap method, see e.g. [33]. The same
critical exponents can also be accessed within a FRG treatment of a classical bosonic order
parameter field theory [34,35].

In the following, we benchmark the one-loop PMFRG against the well-controlled QMC re-
sults. In contrast to QMC, the PMFRG treats formally infinite (translational invariant) systems
but introduces a cutoff-length L. Correlations between lattice sites with a distance larger than
L are neglected by setting the associated irreducible vertices Γ to zero. Consequently, conver-
gence in L cannot be expected if the system features large or even divergent correlation length
scales as, for example, close to a phase transition. While this effect has never been systemati-
cally studied in the context of PFFRG, here we turn it into an advantage and demonstrate that
in the spin-FRG context L can be used for finite-size scaling, just as the box size LQMC

box in the
context of QMC.

Our PMFRG results for the static (end-of-flow) Néel-susceptibility χN around T = 0.9 and
cutoff-lengths L = 6, 8,10,12, 14 are shown in Fig. 1(a). As expected, the missing conver-
gence of χN with L (except possibly at the largest T) indicates the presence of a correlation
length larger than Lmax = 14. Although this number seems modest we are treating about
4/3πL3

max ' 11494 sites correlated to a reference site, almost three times the maximal num-
ber of sites considered in the QMC analysis of Ref. [18].

In Fig. 1(b), we determine the critical temperature from the expected behavior
χN (T = Tc , L)/L2∝ L−η, which singles out the data trace for the critical temperature T = Tc
from the condition of vanishing curvature 1. We find Tc = 0.905(5), about 5% smaller than
the QMC reference value TQMC

c = 0.946(1). In principle η could be estimated independently
from the slope of the Tc-data trace. In practice, this is difficult due to the limited system sizes
in a quantum simulation and the numerically small value of η= 0.035, so that we are content
with showing consistency between the measured and predicted slope (dashed line). In con-
trast, the value of the correlation length exponent ν is easier to confirm. In Fig. 1(c) we check

1For all scaling plots, we re-define L = [3/(4πn)N]1/3 using the number N of sites correlated to the reference
site. The number of sites in unit volume is denoted by n, n = 1 for cubic- and n = 16 for the pyrochlore lattice.
This smoothens edge-effects for small L and yields better scaling plots.
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Figure 1: (a) Néel susceptibility from one-loop PMFRG in the antiferromagnetic
nearest-neighbor Heisenberg model on the simple cubic lattice for temperatures
around T = 0.9 and varying cutoff length L = 6,8, 10,12, 14. The number of posi-
tive Matsubara frequencies is Nw = 32. (b) Length-dependence of the susceptibility
from (a); the critical temperature can be identified from a pure power-law behav-
ior (no curvature in log-log plot). Adjacent curves have a temperature difference
of ∆T = 0.01, except of the black curve which has additionally been inserted for
T = 0.905. (c) Scaling collapse for the data using the established critical exponents
ν and η from the classical 3D Heisenberg universality class, the same with mean-field
exponents is shown in (d).
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Figure 2: Scaling plot of the cubic lattice susceptibility similar to Fig. 1, but for the J1-
J3 model with J3 = 0.4 (a) and the frustrated J1-J2 model with J2 = 0.1 (b). PMFRG
estimates for the critical temperatures follow from the unique crossing points of the
data traces.

the anticipated finite-size scaling behavior for temperatures T in the vicinity of Tc [18],

χN (L, T )∝ |T − Tc|−ν(2−η)g± (L|T − Tc|ν) . (5)

Using Tc as obtained above, our PMFRG data collapses into two branches of the scaling function
g± for T ≷ Tc . Importantly, the quality of this collapse decreases when mean-field exponents
are used, see Fig. 1(d). This indicates the beyond mean-field nature of the PMFRG, despite
the fact that fluctuations of the order parameter are not fully included due to the truncation
of the six-point and higher vertices. In more detail, the φ4 term in the effective field theory is
related to coarse-grained (connected) four-spin correlations, which naively would require the
eight-point Majorana correlators not included in our treatment which is limited to Majorana
four-point functions. However, we observe Sαi (τ1)S

β
i (τ2)∼ ηαi (τ1)η

β
i (τ2) due to a presence of

a constant of motion as explained in Ref. [36]. As a consequence, the PMFRG’s four-Majorana
correlators connect to four-spin correlators if the latter are bilocal, i.e. 〈SiSiS jS j〉. Despite
these considerations, we emphasize, however, that the strength of the PMFRG lies within its
capability to treat microscopic models of frustrated quantum magnets, and is not meant to
compete with established high-precision methods to extract critical exponents from effective
field theories, see the discussion above.

In this spirit, we proceed by involving additional couplings between next-nearest and next-
next-nearest neighbouring sites, J2,3. Here, J2 (J3) is a coupling between sites separated along
the face (body) diagonal of an elementary cube. The J1-J3 Heisenberg model is unfrustrated
and can again be studied with QMC [27]. The PMFRG susceptibility for the case J3 = 0.4
known to enter a Néel ordered phase, is shown in Fig. 2(a) and indicates a critical temperature
Tc = 1.875, again about 5% different from the QMC value TQMC

c = 1.7675.
Finally, we frustrate the system by a next-nearest neighbor coupling J2. In the classical case,

Monte-Carlo simulations [37] (with unit spin length) have found the phase diagram in Fig. 3,
see blue symbols. Increasing J2 from zero, the ordering temperature for Néel order decreases
until it reaches Tc ' 0.3 at J2 = 0.25 from where on a striped antiferromagnetic order with
wave vector (0,π,π) and equivalent types take over and the ordering temperature increases
again. In the quantum case of S = 1/2 spins, where QMC suffers from the sign problem,
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the phase diagram has been studied with a variety of methods like spin-wave theory [22,23],
spherically symmetric Green’s function approximation [24], differential operator technique
[25], coupled cluster method [26] and the PFFRG [27]. Despite all these efforts, no consistent
picture of the phase diagram has emerged. The qualitative question is if quantum fluctuations
suppress the classical magnetic order around J2 = 0.25 in favor of an intervening paramagnetic
phase at T = 0. The PFFRG, for example, qualitatively reproduces the classical result with a
finite break-down scale of the flow (see below) for all J2, see brown curve in Fig. 3 2. The
coupled cluster method, which infers ground state properties from extrapolation of observables
found for finite-size clusters, shows some indication for a tiny paramagnetic phase around
J2 ' 0.275.

In this challenging setting, we now demonstrate the capability of the PMFRG to tackle
frustrated systems by studying small J2 = 0.1, for which, according to the scaling plot in
Fig. 2(b), Néel order is detected below Tc = 0.435. This surprisingly small value of Tc (at
half the temperature estimated from the break-down scale of the PFFRG flow in Ref. [27])
might hint towards a larger paramagnetic region in the J2/J1-phase diagram of the model
than previously thought. Indeed, repeating the calculation of Tc for various J2 between zero
and 0.1, we extrapolate the observed linear-in-J2 behavior of Tc to find it vanishing around
J2,c ' 0.19 (red dots and red dashed line). Although this extrapolation has to be taken cau-
tiously, it seems to indicate the onset of a quantum disordered phase significantly below the
estimated value J2,c ' 0.275 from the coupled cluster method of Ref. [26]. Interestingly, the
scaling approach of the PMFRG susceptibility fails for larger J2 where no line-crossings could
be observed for the expected ordering wave vectors, despite the susceptibilities growing signif-
icantly with decreasing temperature (data not shown). We take this as an indication that the
first-order transition observed in the classical case [37] is still governing the quantum model.
We leave it to future work to analyze first-order transitions within the PMFRG and to further
investigate the exciting possibility that the paramagnetic quantum phase in the J1-J2 cubic
lattice antiferromagnet might be larger than previously thought.

To summarize this section, our results indicate that one-loop PMFRG is suitable to study
finite-temperature magnetic phase transitions in 3D frustrated and unfrustrated Heisenberg
systems. Although critical temperatures are a few percent off from QMC reference values, the
susceptibility data shows the expected scaling behavior at second-order phase transitions, a
strong indication for the beyond-mean-field nature of the PMFRG. In particular, there is no
breakdown of the flow or any divergence in the susceptibility at any temperature treated. This
is expected in the exact (or at least beyond-mean-field/RPA) treatment of an effectively finite-
sized system which should not show any spontaneous symmetry breaking. The observed scal-
ing behavior provides a significantly more accurate and rigorous approach to detect magnetic
phase transitions than previous PFFRG works where kinks in the renormalization group flow
have been used as a signature for ordering. Furthermore, estimates for critical temperatures
within PFFRG are complicated by the presence of unphysical states. Instead, critical temper-
atures were previously based on the approximate (i.e. mean-field-like) relation Tc = πΛc/2
between critical temperature and the divergence in the cutoff scale which may introduce er-
rors, particularly in the presence of strong quantum fluctuations. We thus firmly believe that
it is advantageous to obtain finite ordering temperatures for frustrated models from PMFRG
which operates explicitly at finite temperatures instead. In section Section 5, we will revisit
the applicability of this approach under the addition of two-loop corrections.

2In PFFRG, a paramagnetic phase is found by adding a finite J3 > 0, see Ref. [27]
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Figure 3: Finite temperature phase diagram of the simple cubic J1-J2 Heisenberg
antiferromagnet. The data for the classical model with unit spin length is reproduced
from Ref. [37] (blue), the transition to the Néel phase for J2 < 0.25 is second order,
while the striped phase for J2 > 0.25 is reached via a first order transition. The
PFFRG result reproduced from Ref. [27] is shown in brown. The one-loop PMFRG
results (red dots) for ordering temperatures are only available for the second-order
transition and at not too small temperatures; extrapolation to larger J2 (red dashed
line) yields J2,c ' 0.19 at T = 0.

4 Pyrochlore lattice

While the previous section demonstrated the PMFRG’s applicability to systems ordering mag-
netically, strongly frustrated and magnetically disordered models are also treatable. A promi-
nent example of a geometrically frustrated lattice is the pyrochlore network [20], defined
by a four-site basis arranged within an fcc lattice. Here, each site is placed at the vertex of
an arrangement of corner-sharing tetrahedra where the edges are given by nearest-neighbor
bonds [38]. The classical nearest-neighbor antiferromagnetic Heisenberg model features an
extensive ground state degeneracy as the lowest energy can be achieved by any state fulfilling
the constraint of a vanishing magnetization within each individual tetrahedron, often referred
to as a spin-ice rule [39–41]. The quantum versions of models with such a degeneracy are often
believed to evade magnetic long-range ordering at low temperatures and, as such, are promis-
ing candidates as hosts for quantum spin liquids. Recent studies confirm the non-magnetic
ground state of the nearest neighbor spin-1/2 pyrochlore antiferromagnet but suggest a spon-
taneous breaking of C3 and inversion symmetry [42–44] possibly indicating a valence-bond
solid. Yet, the predictions of magnetic monopole and emergent photon excitations resulting
from an underlying U(1) gauge structure remain a fascinating research perspective for related
models [45]. Arising from the local nature of the ground state constraint, an interesting fea-
ture is the observation of non-analytical points in the classical spin structure factor, so-called
“pinch points” (also referred to as “bow-ties”), at T = 0 within the hhl-plane [46–48].

Being well-suited to treat quantum systems at finite temperatures, we now investigate the
performance of the PMFRG in the case of the nearest-neighbor quantum spin-1/2 pyrochlore
antiferromagnet. In order to verify the quantitative reliability of our results, we start compar-
ing the static component of our spin susceptibility χ ≡ χ(q = 0) against DMRG [44] and dia-
grammatic Monte-Carlo [49] as well as the Padé approximant of the high-temperature series
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Figure 4: Uniform (q = 0) susceptibility for the pyrochlore antiferromagnet from
PMFRG as a function of temperature in comparison with diagrammatic Monte Carlo
(DMC) [49], density-matrix renormalization group [44] (DMRG, cluster sizes 32 and
48) and the Padé approximant of the high temperature series expansion [50].

expansion (HTSE) in Fig. 4 [50,51]. On the one-loop level our results differ from other meth-
ods by ∼ 10% at T ∼ J1 with further increasing differences for lower temperatures, indicating
a smaller accuracy than the one-loop results in Sec. 3. However, under the additional inclu-
sion of two-loop (` = 2) contributions our results are found to be in perfect agreement with
all other methods, remaining consistent with DMC even at temperatures as low as T ' 0.2.

Figure 5 shows the energy per site ε and the specific heat capacity c = dε
dT as functions of

the temperature. It can be seen that the energy computed from the PMFRG susceptibility via
Eq. (4) is generally consistent with the one derived from the PMFRG free-energy and HTSE,
although acquiring an unphysical negative slope (i.e. negative heat capacity) around T ® 0.3.
This is likely a first indicator of the aforementioned low-temperature divergence in the PMFRG
flow discussed above and in Ref. [13]. The energies obtained via the free energy, by contrast,
retain a positive slope down to lower temperatures but will ultimately behave similar due to
the free energy’s indirect coupling to the four-point vertex. Despite this observation, we stress
that the energy is not to be understood as a measure of accuracy in the variational sense and
as such is not bounded from below by the true energy. While a temperature below T ' 0.2J1
is currently not accessible, the finite temperature energy compares well with a recent many-
variable Monte Carlo (mVMC) study at T = 0 (dashed black line).

Finite-width pinch points

The spin susceptibility of the pyrochlore features bow-tie patterns in the hhl-plane, connected
to the existence of the classical ground state ice rule [48]. In Fig. 6 we show the static sus-
ceptibility [Eq. (3)] from two-loop PMFRG at T = 0.2 in the hhl-plane, which features a
pronounced peak structure around q = (0,0, 4π) (and symmetry-related points) where one
would classically expect the pinch points. In the classical case, the width of these peaks along
the [00l]-direction is known to vanish analytically in the T → 0 limit whereas thermal fluc-
tuations at T > 0 lift the non-analyticity of the pinch points. The associated finite width
σ ∼

p
T of the broadened peaks is a measure for how much the ice rule is violated at finite

temperatures [21,52,53].
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Figure 5: Energy per site (a) and specific heat capacity (b) as a function of temper-
ature for one-loop (` = 1) in blue and two-loop (` = 2) in red. An estimate of the
energy per site within PMFRG is accessible either from a derivative of the free en-
ergy (solid), Eq. (2a), or through the expectation value of H in terms of equal time
spin-correlators (dashed), Eq. (4). Additionally shown is the ground state energy
estimate from mVMC [43] and the specific heat capacity from DMRG and canonical
typicality on a 48- and 32-site cluster, respectively [44].

In a quantum system, thermal- and quantum fluctuations compete. Using the PMFRG, we
measure the full-width at half maximum (FWHM) of the peak along the [00l]-direction, see
Fig. 6(b). Although at low temperatures, we observe a straight line in a plot over

p
T , an

extrapolation to T = 0 results in a finite width at T = 0 where two-loop PMFRG predicts a
slightly smaller value than one-loop. It can be concluded that while the qualitative applicability
of the classical ice rule remains visible in the overall structure of the susceptibility, a full

p
T -

law without a constant offset is only correct for the classical model. Quantum effects not only
broaden the peak at T = 0 [54], but remain strong enough at finite temperatures to increase
deviations from the classical ice rule ground state.

5 Effect of two-loop contributions

As discussed above, deviations from exact results at low temperatures stem from the truncation
of the flow equations. In an attempt to partially correct the introduced errors, the two-loop
corrections represent certain contributions from the neglected six-point vertex, and the full
multiloop expansion can be more generally understood as a systematic way to iteratively re-
cover all diagrams contained in the parquet approximation [14,16,17,55–57]. However, the
effects of each additional loop order and the overall properties of loop-convergence are highly
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Figure 6: (a) Two-loop static susceptibility of the antiferromagnetic Heisenberg
model on the pyrochlore lattice in the [hhl]-plane (qx = qy = h) at T = 0.2 and
(b) full-width at half maximum along of the pinch point as a function of tempera-
ture. The inset shows the cut along the [00l] line of the susceptibility from (a).

nontrivial for a purely interacting model such as the Heisenberg Hamiltonian and require a
careful case-based numerical analysis.

Our results in Sec. 3 demonstrate that one-loop PMFRG allows one to accurately determine
critical temperatures and scaling behavior for second order magnetic phase transitions in 3D
quantum magnets. On the other hand, in strongly frustrated systems that remain magnetically
disordered at low temperatures such as the pyrochlore model investigated in the last section,
one-loop results are less accurate but two-loop corrections yield substantial improvements.
What remains to be discussed is how two-loop PMFRG performs when applied to magnetically
ordered systems.

To demonstrate the two-loop flow behavior in this case, we specifically consider the fer-
romagnetic (J1 = −1) nearest neighbor pyrochlore Heisenberg model but emphasize that the
results below are typical for systems that order magnetically. While as usual the susceptibil-
ity flows smoothly as a function of the cutoff Λ (see Fig. 7), the one-loop susceptibility scales
strongly with system size yielding a critical temperature Tc ' 0.685 in good agreement to QMC
(TQMC

c = 0.7182 [53]), see the crossing lines in Fig. 8. However, for ` = 2, no such scaling
and, hence, no magnetic order is found. The large quantitative difference between one-loop
and two-loop in the magnetically ordered case suggests the necessity for higher loop order
corrections, which we leave for future work.

Initially, it may appear surprising that the detection of magnetic order is problematic at
second loop order. However, a similar observation has been made in a recent multiloop PFFRG
study [16], where magnetic ordering tendencies in the flow are found to be strongly suppressed
at `= 2 but recovered at `= 3.

A deeper understanding of this behavior can be obtained by inspecting the diagrammatic
contributions in different loop orders. First recall that the four-point vertex flow is generated
by different coupling channels with distinct physical meanings. Particularly, the random-phase
approximation (RPA) terms enable the formation of magnetic long-range order, while all other
channels (here, for simplicity referred to as “ladder channels”) induce quantum fluctuations.
In multi-loop schemes these channels are inserted into each other, leading to a nested diagram
structure, see Fig. 7(b) for an example. The nesting is subject to the rule that a contribution
from a particular channel cannot be inserted into the same channel again, as this would yield
an overcounting of diagrams.

With this multiloop construction in mind, the RPA diagrams which in magnetically ordered
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Figure 7: (a) Ferromagnetic Heisenberg model on the pyrochlore lattice for T = 0.5,
well below the critical temperature Tc = 0.685 observed in Fig. 8: Flow of the uni-
form susceptibility χΛ obtained in the one-loop (thick) and two-loop (thin) PMFRG
as a function of the cutoff Λ for different maximum vertex lengths L. (b) Two-loop
contribution to the right hand side of the flow equation for Γ where a ladder diagram
(with external site indices k, j) is inserted into the RPA channel (with external site
indices i, j).

systems dominate the one-loop flow are dressed by ladder diagrams in two-loop. This strongly
suppresses magnetic order and explains our observation in Fig. 7. In turn, the third loop order
nesting can again be performed with RPA diagrams which would strengthen ordering effects.
Overall, one may, hence, expect an even-odd-effect of magnetic ordering tendencies in loop
order. We believe that this type of behavior is characteristic for systems where one coupling
channel (here, the RPA channel) dominates the physical behavior. The more systematic im-
provement upon increasing ` observed for the magnetically disordered antiferromagnetic py-
rochlore Heisenberg model can then be interpreted as a consequence of the fact that in this
case all channels contribute more equally. In both situations, an increase of loop order should
eventually yield more accurate results but possibly not in a monotonous way. The case `≥ 3,
however, is beyond the scope of the present work and will be left for future studies.

6 Conclusion

In this work, we applied the PMFRG to unfrustrated and frustrated 3D Heisenberg quantum
spin systems and demonstrated, based on a variety of different physical quantities, an aston-
ishing quantitative accuracy of this technique. Rigorous benchmark tests were performed by
comparing our results for the unfrustrated simple cubic lattice antiferromagnet with error con-
trolled QMC data. We found that the PMFRG can keep up with QMC’s performance for these
systems, producing errors of about 5% for the critical ordering temperatures and showing
overall consistency for the critical exponents ν and η. A special methodological feature of our
scaling strategy is its reference to a cutoff length L for spin correlations in an infinite system
but not to the size of a box containing the simulated spins.

We have also investigated frustrated systems such as the nearest neighbor pyrochlore anti-
ferromagnet and the J1-J2 simple cubic lattice antiferromagnet. While possibilities for quanti-
tative comparisons with other methods become rarer we found promising indications that the
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Figure 8: PMFRG (` = 1) results for the ferromagnetic Heisenberg model on the
pyrochlore lattice indicating a phase transition at Tc ' 0.685 in good agreement
with the QMC value TQMC

c = 0.7182 from Ref. [53].

PMFRG’s performance persists for magnetically disordered frustrated systems, at least when
including two-loop corrections. Particularly, we demonstrated this for the two-loop static and
homogeneous susceptibility of the nearest neighbor pyrochlore antiferromagnet where our
data is within the error bars of DMC over nearly the entire simulated temperature range. En-
ergies per site, which are no standard outputs of functional renormalization group approaches
and are, therefore, rarely studied, likewise, show good accuracies and seem consistent with
the ground state energies from other methods. We also made first attempts to characterize
ground state phases, e.g., an extrapolation of the width of pinch points in the nearest neigh-
bor pyrochlore antiferromagnet clearly shows a residual broadening in the limit T → 0 as
has previously been found with various other approaches [16,54,58]. Furthermore, ordering
temperatures drop surprisingly fast in the simple cubic lattice antiferromagnet upon adding
second neighbor interactions J2, possibly indicating a non-magnetic ground state regime.

Our work opens up a variety of possibilities for future applications of the PMFRG. Having
already implemented a two-loop scheme, the natural next step is the inclusion of higher loop
orders with ` ≥ 3. We expect that this eventually increases the accuracy of our approach
further, especially towards lower temperatures. However, our results for magnetically ordered
systems where one-loop scaling behavior is erased in a two-loop extension, implies a non-
trivial behavior in loop order ` such that convergence in ` might turn out to be technically
challenging. Note that similar observations have already been made with PFFRG [16,17]. We
argued that the accuracy in loop order for magnetically ordered systems might be subject to an
even-odd effect while magnetically disordered systems are expected to be more well-behaved
as a function of `.

An important advantage of the PMFRG over the PFFRG is that it allows the detection of
second order phase transitions in a completely unambiguous and rigorous way via finite-size
scaling. We, therefore, believe that the investigation of critical behaviors within PMFRG rep-
resents a promising future research direction. Interestingly, the absence of finite-size scaling
in the J1-J2 simple cubic Heisenberg model at J2 > 0.25 within one-loop PMFRG is consistent
with a first order transition in the corresponding classical model. The systematic detection of
first-order transitions from the PMFRG is currently beyond the capabilities of the method and
requires further investigation. Eventually, at zero temperature, the detection of quantum crit-
icality in two dimensions remains an open problem, particularly for Heisenberg models where
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the Mermin-Wagner theorem forbids any magnetic order at finite temperatures.
Concluding this work with a broader perspective, we emphasize that the PMFRG inherits

the same methodological flexibility that already characterizes the PFFRG. This means that
the method is amenable to arbitrary lattice geometries and two-body spin interactions. The
implementation of spin-anisotropic couplings also requires only moderate adjustments. In this
situation, applications to models for real magnetic materials beyond the ideal systems studied
here are well within reach.
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A Inclusion of the RPA

In order to investigate the PMFRG’s behaviour regarding a magnetic phase transition, we con-
sider the contributions of the RPA channel in the (one-loop) PMFRG flow equations. We can
do this mostly in analogy to Ref. [10], except that we now explicitly consider finite tempera-
tures. In the RPA approximation for PMFRG, we restrict ourselves to diagrams with internal
Majorana bubbles, i.e. site summations. As a result, the flow equations for the three types of
vertices as presented in Ref. [13] decouple from each other. As seen in Eq. (26) the only vertex
which is nonzero initially is the spin vertex Γc = Γx y x y ,

d
dΛ
ΓΛc i j(s, t, u) = T

∑

ω

ġΛ(ω)gΛ(ω+ s)
∑

k

�

ΓΛc ki (s,ω+ω1,ω+ω2) Γ
Λ
c k j

�

s,ω−ω3,ω−ω4

�

+ (ω1↔ω2,ω3↔ω4)
�

. (6)

Since the vertices of type Γa and Γb are vanishing, it follows that the self energy must be zero
as well and thus

gΛ(iωn) =
ωn

ω2
n +Λ2

,

ġΛ(iωn) = −
2Λ
ωn

g2(iωn) . (7)

Using that ΓΛ→∞c i j = −Ji j does not depend on any frequencies, we note that no dependence
on t and u is generated from Eq. (6). The dominant contribution is the static component
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ΓΛc i j(s = 0)≡ ΓΛc i j for which

d
dΛ
ΓΛc i j = −4Λ

∑

k

ΓΛc kiΓ
Λ
c k j T

∑

ω

(gΛ(ω))3

ω
,

d
dΛ
ΓΛc (k) = −4ΛΓΛc (k)

2T
∑

n

ω2
n

(ω2
n +Λ2)3

,

(8)

where in the second step a Fourier transform to momentum space has been performed. The
Matsubara sum may be evaluated exactly using the poles zp ≡ iωn = ±Λ to obtain

T
∑

n

ω2
n

(ω2
n +Λ2)3

=
∑

zp=±Λ
Res

�

z2

(z2 −Λ2)3
nF (z)

��

�

�

�

z=zp

=
sech2

�

βΛ
2

��

sinh(βΛ) + βΛ
�

βΛ tanh
�

βΛ
2

�

− 1
��

32Λ3
. (9)

Inserting this result into Eq. (8), the differential equation with ΓΛ→∞c (k) = −J(k) has the
exact solution

ΓΛc (k) = −
8J(k)Λ

2J(k) tanh
�

βΛ
2

�

+ βJ(k)Λsech2
�

βΛ
2

�

+ 8Λ
,

�

ΓΛ=0(k)
�−1
= −

1
4T
−

1
J(k)

, (10)

in the simplified case of a single site per unit cell.
Below a critical temperature TRPA

c = 1
4 J(k), the RPA-vertex from Eq. (10) diverges before

the end of the flow at Λ= 0 is reached. This result exactly equals the one derived in Ref. [10],
except here, no identification of Λc with Tc is necessary as Eq. (10) has been derived directly
for arbitrary temperatures. Figure 9 shows the flow of the RPA vertex in a nearest-neighbor
cubic lattice where TRPA

c = 1.5.
Interestingly, our full PMFRG solution is in stark contrast to bare RPA: While we could

show here that the RPA’s individually diverging contributions are contained in the PMFRG,
no divergence at finite Λ is observed, in favor of a finite and smoothly flowing susceptibility
as shown in Fig. 7. This beyond mean-field nature of the PMFRG, a result of the additional
contributions from other channels, is quite surprising: In the closely related PFFRG formal-
ism, a divergence of the RPA channel is often observed and, in particular, serves as the main
indicator for the onset of magnetic order. In Section 3, we demonstrated that the absence of
such an RPA-like divergence is extremely beneficial: The finite susceptibility which becomes
physical at Λ = 0 can be used in combination with a finite-size scaling analysis to obtain a
more accurate estimate of critical temperatures.

B Two-loop contributions within PMFRG

As detailed in previous works [55, 60], the one-loop FRG truncation can be extended by the
inclusion of two-loop corrections using approximations based on the flow equation of the six-
point vertex.

We start from the general form of the FRG flow equations, as found in Eq. (7.71) of Ref. [5]
and expand the summations, neglecting all contributions from vertices with an odd number
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Figure 9: RPA solutions as a function of the cutoff Λ from Eq. (10) for the nearest-
neighbor cubic lattice for different temperatures. The solution for the critical temper-
ature TRPA

c = 6
4 = 1.5 (yellow) diverges exactly atΛ= 0, while at lower temperatures,

the divergence is shifted to finite cutoffs.

of legs as well as the eight-point vertex. For Majorana systems, the exchange statistics implies
Z = −1 so that

d
dΛ
Γ 6 Λ

1,2,3,4,5,6 =
1
2

Tr
�

S1,2,3,4|5,6ĠΛΓ 4, Λ
5,6 GΛΓ 6, Λ

1,2,3,4 (a)

+ S1,2|3,4,5,6ĠΛΓ 6, Λ
3,4,5,6GΛΓ 4, Λ

1,2 (b)

+ S1,2|3,4|5,6ĠΛΓ 4, Λ
5,6 GΛΓ 4, Λ

3,4 GΛΓ 4, Λ
1,2

�

(c)

+O(V 4
int) . (11)

Bold quantities are matrices defined as
�

Γ 6, Λ
1,2,3,4

�

5,6
= Γ 6, Λ

5,6,1,2,3,4.

This expression further contains the symmetrization operator S which ensures that the
derivative of the six-point vertex is fully antisymmetric. Formally, it can be written as a sum
over all permutations of indices with the appropriate sign together with a prefactor to prevent
overcounting of already antisymmetric terms. For instance, the symmetrization S1,2,3,4|5,6 in
term (a) of Eq. (11) contains a summation over all permutations of the numbers 1 to 6 as well
as a prefactor 1

4!2! since the expression is already antisymmetric in the first four and the last
two indices. If we define the outer derivative ∂Λ which only acts on the explicit Λ-dependence
of two-point Green’s functions(treating ΣΛ as a constant), we may write this as

d
dΛ
Γ 6 Λ

1,2,3,4,5,6 =
1
2

∑

1′,...,4′

�

∂Λ
�

GΛ1′2′G
Λ
3′4′
�

S1,2|3,4,5,6Γ
6, Λ
2′,3′,3,4,5,6Γ

4, Λ
4′,1′,1,2

�

(12)

+
1
6

∑

1′,...,6′

�

∂Λ
�

GΛ1′2′G
Λ
3′4′G

Λ
5′6′
�

S1,2|3,4|5,6Γ
4, Λ
2′,3′,1,2Γ

4, Λ
4′,5′,3,4Γ

4, Λ
6′,1′,5,6

�

+O(V 4
int) .

The defining step of the two-loop scheme is to promote the partial derivative to a full one
which, in particular, also acts on vertex functions. The error generated by this step is of order
O(V 4) in the interaction and thus no larger than the error already present [55, 60]. The
resulting equation can be integrated as a function of Λ and leads to a self-consistent equation
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Figure 10: Two-loop approximation for the six-point vertex.

for Γ 6 for which in first iteration, we get

Γ 6 Λ
1,2,3,4,5,6 =

1
12

∑

1′,...,4′

∑

β1,...,β6

�

GΛ1′2′G
Λ
3′4′S1,2|3,4,5,6Γ

4, Λ
4′,1′,1,2

×
�

GΛβ1β2
GΛβ3β4

GΛβ5β6
S1′,2′|3,4|5,6Γ

4, Λ
β2,β3,2′,3′Γ

4, Λ
β4,β5,3,4Γ

4, Λ
β6,β1,5,6

��

(13)

+
1
6

∑

1′,...,6′

�

�

GΛ1′2′G
Λ
3′4′G

Λ
5′6′
�

S1,2|3,4|5,6Γ
4, Λ
2′,3′,1,2Γ

4, Λ
4′,5′,3,4Γ

4, Λ
6′,1′,5,6

�

+O(V 4
int) .

Figure 10 shows the diagrammatic form of this equation. While the first term is of fourth order
in the interaction and will not be considered explicitly, we note that some of its contributions
are precisely those generated by the Katanin substitution as detailed in Ref. [60].

In the same way, some of the derived two-loop contributions are equivalent to Katanin cor-
rections of the one-loop flow equations. Naturally, the next step will be to identify these terms
and omit them to prevent overcounting. Doing so requires explicitly evaluating all permuta-
tions generated by the symmetrization operator S. Initially, now using the shorthand notation
Γ 4→ Γ , we thus have

d
dΛ
ΓΛ1,2,3,4 ≡ Γ̇

Λ 1L
1,2,3,4 + Γ̇

Λ 2L
1,2,3,4 (14)

Γ̇Λ 2L
1,2,3,4 = −

1
12

∑

1′,2′
ĠΛ1′,2′

∑

β1,...,β6

��

GΛβ1β2
GΛβ3β4

GΛβ5β6

�

S1′,2′|1,2|3,4Γ
Λ
β2,β3,1′,2′Γ

Λ
β4,β5,1,2Γ

Λ
β6,β1,3,4

�

.

Here, Γ̇Λ 1L
1,2,3,4 refers to the three one-loop terms in Eq. (2c), which do not originate from the

six-point vertex.
Expanding the symmetrization naïvely generates 6! = 720 permutations, however many

of these are equivalent. Most importantly, all trivial permutations that exchange two indices
on the same vertex are divided out by definition of S. This means we only need to consider

720
2!·2!·2! = 90 terms. Since we do not want to include terms which are given by the Katanin
correction to the one-loop procedure, we will then neglect all diagrams in which a single
vertex is contracted by the single-scale propagator, i.e. those where 1′ and 2′ appear on the
same vertex. Hence, only 72 diagrams remain, 24 for each the s, t and u channel.

It is helpful to note that t and u channels are given by re-labeling external indices of the
s-channel, i.e. the first of the terms in Eq. (2c). Thus, we only need to consider the s-channel,
which is defined by a pairing of either the indices 1 and 2 on one of the vertices or 3 and 4.
Using the freedom to relabel internal site indices in the summation, only two distinct diagrams
remain, one where 1 and 2 appear together on a vertex and the other two appear separately
on the other two vertices and vice versa. In close analogy to the previous one-loop notation,
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Figure 11: One-loop and two-loop bubble functions from Eqs. (2d) and (16).

we may then define

Γ̇Λ 2L
1,2,3,4 = Y Λ1,2|3,4 − Y Λ1,3|2,4 + Y Λ1,4|2,3 , (15)

Y Λ1,2|3,4 = −
∑

1′,...,4′
GΛ1′,2′G

Λ
3′,4′

�

ΓΛ1,2,4′,2′X
Λ
3,3′|4,1′ + Γ

Λ
1′,3′,3,4XΛ2′,1|4′,2

�

, (16)

where Y Λ1,2|3,4 defines the s-channel of the two-loop bubble function and is antisymmetric un-
der permutations of the first and last two indices as visible from Fig. 11. Since Eq. (16) takes
an analogous expression as the one-loop equations, using pre-computed one-loop bubble func-
tions, computing the two-loop contributions amounts the same numerical complexity as the
one-loop terms and thus approximately doubles the numerical effort.

B.1 Parametrization

As usual, an efficient implementation requires the explicit parametrization of vertices in anal-
ogy to Ref. [13]. This parametrization is equivalent for both the one-loop (X ) and the two-loop
bubble-functions Y so that for brevity we shall only write the results for X explicitly. It is evi-
dent from their definitions that the bilocal property of vertices carries over to X and Y due to
the local nature of propagators. In the case of vertices, it is possible to re-arrange indices such
that they are always of the form ΓΛii j j , however, for X and Y only the first and last two indices
may be interchanged and hence we need to distinguish two distinct types of bubble-functions
upon real-space parametrization

XΛi j ≡ XΛii| j j ,

X̃Λi 6= j ≡ XΛi j|i j , X̃Λii = XΛii . (17)

Physically, XΛi j corresponds to an RPA-type contribution in which a summation over all sites
occurs. This can be seen from Fig. 11, where after external site indices are inserted, the
propagators carry an internal site index k which may differ from both i and j in contrast
to X̃ i j . Furthermore, energy conservation implies X (ω1,ω2|ω3,ω4) ∝ δω1+ω2+ω3+ω4,0 and
equally for Y which allows the usual definition via only three exchange frequencies s, t, u.
Subsequently, summations over flavors may be computed explicitly by making use of the global
SO(3) symmetry to distinguish three X -types Xa, X b, X c and four X̃ -type vertices X̃a, X̃ b, X̃ c , X̃d .
Here, the labels a . . . d are defined as sets of flavor indices:

a ≡ x x |x x b ≡ x x |y y c ≡ x y|x y d ≡ x y|y x . (18)
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All other combinations of flavors are either zero (e.g. the types x x |yz), or may be transformed
into the ones above via global SO(3) rotations (e.g. zz|x x → x x |y y). The d type channels
need to be defined since the first and last two indices may no longer be permuted separately
for X̃ type vertices. This finally allows us to write Eq. (16) as:

Γ̇Λ 2L
a i j (s, t, u) = Y Λa i j(s, t, u)− Ỹ Λa i j(t, s, u) + Ỹ Λa i j(u, s, t) , (19a)

Γ̇Λ 2L
b i j (s, t, u) = Y Λb i j(s, t, u)− Ỹ Λc i j(t, s, u) + Ỹ Λc i j(u, s, t) , (19b)

Γ̇Λ 2L
c i j (s, t, u) = Y Λc i j(s, t, u)− Ỹ Λb i j(t, s, u) + Ỹ Λd i j(u, s, t) , (19c)

where Ỹ Λd ii(s, t, u) = −Ỹ Λc ii(s, u, t) = −Y Λc ii(s, u, t) and the definitions of Ya etc. are given in
Appendix B.2.

B.2 Symmetries

For the numerical implementation of the X , X̃ , Y and Ỹ -terms, symmetries of the transfer
frequencies s, t and u are crucial. In analogy to Ref. [13], the identities summarized in Table 1
can be proven.

Table 1: Transformations of the frequency arguments under time reversal T and
specific permutations of indices in XΛ i j

1,2|3,4 and X̃Λ i j
1,2|3,4. The exchange 1↔ 2 would

change X c to the form X x y y x and X̃ to X ji|i j . Hence, the resulting symmetries take
the slightly different form in Eq. (23). Equivalent relations hold for XΛ → Y Λ and
X̃Λ→ Ỹ Λ.

Operation XΛµ, i j(s, t, u) X̃Λµ, i j(s, t, u)

1↔ 2 Xa/b(s, t, u) not allowed

↔−Xa/b(s, u, t)

T ◦ (1,3)↔ (2,4) s↔−s s↔−s , i↔ j

T ◦ (1,2)↔ (3,4) t↔−t , i↔ j t↔−t

T ◦ (1,2)↔ (4,3) u↔−u , i↔ j u↔−u , i↔ j

Finally, we prove an identity which eliminates the need of implementing a flow equation
for the d-type-bubble functions. With the starting equation Eq. (20a) being a result of global
SO(3) symmetry as proven in Ref. [13] we have:

ΓΛ, µ
x x x x =Γ

Λ, µ
x x y y +ΓΛ, µ

x y x y + Γ
Λ, µ
x y y x (20a)

⇒ XΛ, µ
x x |x x =XΛ, µ

x x |y y+XΛ, µ
x y|x y + XΛ, µ

x y|y x (20b)

⇒ Y Λ, µ
x x |x x =Y Λ, µ

x x |y y +Y Λ, µ
x y|x y + Y Λ, µ

x y|y x , (20c)

where µ≡ (i1, i2, i3, i4, ω1,ω2,ω3,ω4) refers to an arbitrary fixed set of site and frequencies,
noting that no use of permutation symmetry is made in the following. To demonstrate that
Eqs. (20b) and (20c) follow from Eq. (20a), the latter is inserted into the definitions of the
one-loop and two-loop channel functions Eqs. (2d) and (16). Using that propagators are di-
agonal and computing the flavor summation first before any site or frequency parametrization
is applied, we obtain

XΛ, µ
α1α2|α3α4

∼
∑

β1,β3

Γ
Λ, ν
α1α2|β3β1

Γ
Λ, ρ
β1β3|α3α4

. (21)
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Here, for convenience of notation, the propagators are kept only implicitly. After inserting
external flavor labels on the left, the summation can be carried out so that

XΛ, µ
x x |x x ∼ Γ

Λ, ν
x x x xΓ

Λ, ρ
x x x x + 2ΓΛ, ν

x x y yΓ
Λ, ρ
x x y y ,

XΛ, µ
x x |y y ∼ Γ

Λ, ν
x x y yΓ

Λ, ρ
x x x x + Γ

Λ, ν
x x x xΓ

Λ, ρ
x x y y + Γ

Λ, ν
x x y yΓ

Λ, ρ
x x y y ,

XΛ, µ
x y|x y ∼ Γ

Λ, ν
x y y xΓ

Λ, ρ
x y x y + Γ

Λ, ν
x y x yΓ

Λ, ρ
x y y x ,

XΛ, µ
x y|y x ∼ Γ

Λ, ν
x y x yΓ

Λ, ρ
x y x y + Γ

Λ, ν
x y y xΓ

Λ, ρ
x y y x . (22)

Equation (20b) may then be proven by inserting these expressions into it and subsequently
using Eq. (20a) on all occurring instances of Γ ν and Γρ to verify the equivalence of the left
and right hand sides. This procedure may be repeated for the definition of the two-loop con-
tributions to finally prove Eq. (20c).

As a result of this symmetry, we do not need to compute XΛc i j(s, u, t) and Y Λc i j(s, u, t) for

t > u and in particular no flow equation is required for X̃Λd and Ỹ Λd since Eq. (20b) can be
written as

XΛc i j(s, u, t) =
�

−XΛa i j + XΛb i j + XΛc i j

�

(s, t, u) , (23a)

X̃Λd i j(s, t, u) =
�

X̃Λa i j − X̃Λb i j − X̃Λc i j

�

(s, t, u) . (23b)

Explicit parametrization of bubble functions

Using the one-loop bubble functions X and X̃ from Ref. [13], the two-loop bubble functions
can be given explicity. In the equations below, the propagator is iGΛi (ω) =

ω
ω2+ωγi(ω)+Λ2 , with

γi(ω) = iΣi(ω). While the site index is kept here for generality, it can be dropped in the case
of lattices consisting of equivalent sites only.

Y Λa i j = −T
∑

ω

∑

k

Gk(ω)Gk(s+ω)
��

ΓΛa ki (s,ω+ω1,ω+ω2) X̃
Λ
a k j

�

ω−ω4, s,ω−ω3

�

+ ΓΛa k j

�

s,ω−ω3,ω−ω4

�

X̃Λa ki (ω+ω2, s,ω+ω1)
�

+ 2(ΓΛa → Γ
Λ
b , X̃Λa → X̃Λc )

�

, (24a)

Y Λb i j = −T
∑

ω

∑

k

Gk(ω)Gk(s+ω)
��

ΓΛb ki (s,ω+ω1,ω+ω2) X̃
Λ
a k j

�

ω−ω4, s,ω−ω3

�

+ ΓΛb k j

�

s,ω−ω3,ω−ω4

�

X̃Λa ki (ω+ω2, s,ω+ω1)
�

+ (ΓΛb → Γ
Λ
a , X̃Λa → X̃Λc ) + (X̃

Λ
a → X̃Λc )

�

, (24b)

Y Λc i j = −T
∑

ω

∑

k

Gk(ω)Gk(s+ω)
�

ΓΛc ki (s,ω+ω2,ω+ω1) X̃
Λ
b k j

�

ω−ω4, s,ω−ω3

�

+ ΓΛc k j

�

s,ω−ω4,ω−ω3

�

X̃Λb ki (ω+ω2, s,ω+ω1)

− ΓΛc ki (s,ω+ω1,ω+ω2) X̃
Λ
d k j

�

ω−ω4, s,ω−ω3

�

− ΓΛc k j

�

s,ω−ω3,ω−ω4

�

X̃Λd ki (ω+ω2, s,ω+ω1)
�

,

(24c)
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Ỹ Λa i j = −T
∑

ω

Gi(ω)G j(s+ω)
��

ΓΛa ji

�

ω−ω3, s,ω−ω4

�

X̃Λa ji (ω+ω2,ω+ω1, s)

+ ΓΛa ji (ω+ω1, s,ω+ω2) X̃
Λ
a ji

�

ω−ω4,ω−ω3, s
� �

+ 2(ΓΛa → Γ
Λ
c , X̃Λa → X̃Λd )

�

−T
∑

ω

G j(ω)Gi(s+ω)
��

ΓΛa i j (ω+ω2, s,ω+ω1)X
Λ
a i j

�

ω−ω4, s,ω−ω3

�

+ ΓΛa i j

�

ω−ω4, s,ω−ω3

�

XΛa i j (ω+ω2, s,ω+ω1)
�

+ 2(ΓΛa → Γ
Λ
c , XΛa → XΛc )

�

, (25a)

Ỹ Λb i j = −T
∑

ω

Gi(ω)G j(s+ω)
��

ΓΛc ji (ω+ω1, s,ω+ω2) X̃
Λ
a ji

�

ω−ω4,ω−ω3, s
�

+ ΓΛc ji

�

ω−ω3, s,ω−ω4

�

X̃Λa ji (ω+ω2,ω+ω1, s)
�

+ (ΓΛc → Γ
Λ
a , X̃Λa → X̃Λd ) + (X̃

Λ
a → X̃Λd )

�

−T
∑

ω

G j(ω)Gi(s+ω)
��

ΓΛa i j (ω+ω2, s,ω+ω1)X
Λ
c i j

�

ω−ω4, s,ω−ω3

�

+ ΓΛa i j

�

ω−ω4, s,ω−ω3

�

XΛc i j (ω+ω2, s,ω+ω1)
�

+ (ΓΛa → Γ
Λ
c , XΛc → XΛa ) + (Γ

Λ
a → Γ

Λ
c )
�

, (25b)

Ỹ Λc i j = T
∑

ω

Gi(ω)G j(s+ω)
��

ΓΛc ji (ω+ω1,ω+ω2, s) X̃Λb ji

�

ω−ω4,ω−ω3, s
�

+ ΓΛc ji

�

ω−ω3,ω−ω4, s
�

X̃Λb ji (ω+ω2,ω+ω1, s)
�

+ (ΓΛc → Γ
Λ
b , X̃Λb → X̃Λc )

�

−T
∑

ω

G j(ω)Gi(s+ω)
��

ΓΛb i j (ω+ω2,ω+ω1, s)XΛb i j

�

ω−ω4,ω−ω3, s
�

+ ΓΛb i j

�

ω−ω4,ω−ω3, s
�

XΛb i j (ω+ω2,ω+ω1, s)
�

+ (ΓΛb → Γ
Λ
c , XΛb → XΛc )

�

, (25c)

and as a consequence of Eq. (20c)

Ỹ Λd i j = Ỹ Λa i j(s, t, u)− Ỹ Λb i j(s, t, u)− Ỹ Λc i j(s, t, u) . (25d)

C Details on the numerical implementation

The solution of the flow equations amounts to the numerical integration of a large system of
coupled ordinary differential equations (ODE’s). The initial conditions are given as

Γ
Λ0
c i j(s, t, u) = −Ji j ,

γ
Λ0
i (ω) = Γ

Λ0
a i j(s, t, u) = ΓΛ0

b i j(s, t, u) = 0 , (26)

with Λ0 at least two orders of magnitude above the largest exchange coupling. To obtain a
finite system of equations, only the first Nω non-negative Matsubara frequencies are considered
(negative frequencies are related by symmetries). Matsubara sums over iωn are truncated
for |n| > Nw. The error made in this approximation is controlled since the contribution of
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large frequencies is typically small due to the vanishing propagator G(iωn) ∼ 1/iωn. For
four-point vertices, we must pay special attention to the fact that combinations of bosonic
Matsubara integers ns, nt , nu are (un-)physical if their sum ns + nt + nu is odd (even) [13].
Vertices with unphysical frequency arguments will never appear in flow equations and are
thus not computed. If one or more Matsubara integers are greater or equal to Nω, the vertex is
approximated by setting the associated index to either Nω−1 or Nω−2 such that ns+ nt + nu
is odd. This avoids the introduction of errors at the boundaries of our frequency range. For
the same reason, we also refrain from the alternative of interpolating between frequencies and
instead raise the number of positive frequencies until convergence is reached. Good results
are typically obtained at Nω = 32, particularly, for temperatures T ¦ 0.5. For the lowest
temperature treated, Tmin = 0.2, we found full convergence of the structure factor below
Nω = 64, while convergence of the energy per site required a higher number of Nω = 96. At
T = 0.2, the latter value corresponds to a maximum bosonic frequency of ≈ 120J1, more than
two orders of magnitude larger than the relevant energy scale.

Regarding the real space cutoff discussed in the main text, we report no significant de-
pendence on the particular choice of the cutoff. If the maximum vertex length is defined by
the number of nearest-neighbor bonds instead of an (isotropic) distance L, the same scaling
behaviour is observed.

Numerically, the flow equations were solved using adaptive, error-controlled methods
provided in the Julia package “DifferentialEquations.jl” [61]. To allow for accurate numer-
ical derivatives of the free energy, a relative tolerance ∼ 10−8 is required in which case the
Dormand-Prince(5) method was found to be most efficient.

References

[1] W. Heisenberg, Zur Theorie des Ferromagnetismus, Z. Physik 49, 619 (1928),
doi:10.1007/BF01328601.

[2] M. Suzuki, S. Miyashita and A. Kuroda, Monte Carlo simulation of quantum spin systems.
I, Progr. Theor. Phys. 58, 1377 (1977), doi:10.1143/PTP.58.1377.

[3] A. W. Sandvik, A. Avella and F. Mancini, Computational studies of quantum spin systems,
AIP Conf. Proc. 1297, 135 (2010), doi:10.1063/1.3518900.

[4] U. Schollwöck, The density-matrix renormalization group in the age of matrix product
states, Ann. Phys. 326, 96 (2011), doi:10.1016/j.aop.2010.09.012.

[5] P. Kopietz, L. Bartosch and F. Schütz, Introduction to the functional renormalization
group, Springer Berlin Heidelberg, ISBN 9783642050930 (2010), doi:10.1007/978-3-
642-05094-7.

[6] W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden and K. Schönhammer, Functional
renormalization group approach to correlated fermion systems, Rev. Mod. Phys. 84, 299
(2012), doi:10.1103/RevModPhys.84.299.

[7] J. Krieg and P. Kopietz, Exact renormalization group for quantum spin systems, Phys. Rev.
B 99, 060403 (2019), doi:10.1103/PhysRevB.99.060403.

[8] J. Reuther and P. Wölfle, J1−J2 frustrated two-dimensional Heisenberg model: Random
phase approximation and functional renormalization group, Phys. Rev. B 81, 144410
(2010), doi:10.1103/PhysRevB.81.144410.

23

https://scipost.org
https://scipost.org/SciPostPhys.12.5.156
https://doi.org/10.1007/BF01328601
https://doi.org/10.1143/PTP.58.1377
https://doi.org/10.1063/1.3518900
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1007/978-3-642-05094-7
https://doi.org/10.1007/978-3-642-05094-7
https://doi.org/10.1103/RevModPhys.84.299
https://doi.org/10.1103/PhysRevB.99.060403
https://doi.org/10.1103/PhysRevB.81.144410


SciPost Phys. 12, 156 (2022)

[9] C. Balz et al., Physical realization of a quantum spin liquid based on a complex frustration
mechanism, Nat. Phys. 12, 942 (2016), doi:10.1038/nphys3826.

[10] M. L. Baez and J. Reuther, Numerical treatment of spin systems with unrestricted spin
length S: A functional renormalization group study, Phys. Rev. B 96, 045144 (2017),
doi:10.1103/PhysRevB.96.045144.

[11] D. Roscher, F. Lasse Buessen, M. M. Scherer, S. Trebst and S. Diehl, Func-
tional renormalization group approach to SU(N) Heisenberg models: Momentum-
space renormalization group for the large-N limit, Phys. Rev. B 97, 064416 (2018),
doi:10.1103/PhysRevB.97.064416.
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