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In this paper we identify a previously unexplored type of topological defect in spiral spin liquids—the
momentum vortex—and reveal its dominant role in shaping the low-energy physics of such systems. Spiral
spin liquids are a class of classical spin liquids featuring subextensively degenerate ground states. They are
distinct from spin liquids on geometrically frustrated lattices, in which the ground-state degeneracy is extensive
and connected by local spin flips. Despite a handful of experimental realizations and many theoretical studies, a
concrete physical picture of their spin liquidity has not been established so far. In this paper, we study a 2D spiral
spin liquid model to answer this question. We find that the local momentum vector field can carry topological
defects in the form of vortices, which, however, have very different properties from the commonly known spin
vortices. The fluctuations of such vortices lead the system into a liquid phase at intermediate temperatures.
Furthermore, the effective low-energy theory of such vortices indicates their equivalence to quadrupoles of
fractons in a rank-2 U(1) gauge theory or, alternatively, to quadrupoles of disclinations in elasticity theory.
At very low temperatures, the system freezes into a glassy state in which these vortices form a rigid network
with straight-line domain walls. Our paper sheds light on the nature of spiral spin liquids and also paves the way
toward understanding their quantum limit.
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I. INTRODUCTION

A fascinating theme of condensed matter is emergence
[1]—from the Anderson–Higgs mechanism in superconduc-
tors, to topological defects in superfluid 3He, to gauge theories
in the description of frustrated magnets—each condensed
matter system is itself a different universe in a grain of sand.
In particular, spin liquids, both classical and quantum, have
been proven to be a fruitful field to search for exotic phases,
(classical analogs of) fractionalized excitations and topologi-
cal orders [2–11].

A peculiar class of spin liquids is the spiral spin liquid,
which features subextensively degenerate classical ground
states [12–14]. Each ground state is a spin spiral state with
a certain wave vector, and these ground-state wave vec-
tors form a ring (or other manifolds of lower dimension)
in the reciprocal lattice, instead of just isolated points in
conventional magnetic systems. They have a long history of
theoretical study [12–27], and have already been observed
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in a handful of materials, such as FeCl3 [28], Ca10Cr7O28

[29–34], Ba3NiSb2O9 [35,36] McSc2S4 [37–39], MgCr2O4

[40], CoAl2O4 [41], and NiRh2O4 [42,43].
However, a clear physical picture of their spin liquidity has

not been established to our knowledge. This is in contrast to
spin liquids from geometric frustration (e.g., in pyrochlore
spin ice systems), in which the ground-state degeneracy is
of local nature and, hence, the mechanism of fluctuations is
much better understood: The system can visit different clas-
sical ground states by flipping only a few spins, which can
be easily accomplished by thermal fluctuations. Spiral spin
liquids have a much smaller ground-state degeneracy and, as
a consequence, local manipulations are not sufficient to bring
the system into different ground states. It is already known that
in the thermodynamic limit, the spin configurations occupy all
the ground-state wave vectors. Yet, since changing from one
ground state spiral wave vector to another is a global action
on the spins, how exactly all the ground-state wave vectors
can be populated remains unclear.

In this paper, we thoroughly investigate the low-energy
behavior of 2D spiral spin liquids with XY spins to under-
stand their spin liquidity. We find that, besides the commonly
known spin vortices, there exists another type of topological
defect that corresponds to vortices in the local momentum
vector field on the coarse-grained lattice. These topological
defects, dubbed local momentum vortices, have very different
mathematical properties compared to spin vortices and play a

2643-1564/2022/4(2)/023175(20) 023175-1 Published by the American Physical Society

https://orcid.org/0000-0002-9242-1915
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.4.023175&domain=pdf&date_stamp=2022-06-01
https://doi.org/10.1103/PhysRevResearch.4.023175
https://creativecommons.org/licenses/by/4.0/


HAN YAN AND JOHANNES REUTHER PHYSICAL REVIEW RESEARCH 4, 023175 (2022)

crucial role in determining the low energy behavior of spiral
spin liquids.

At intermediate temperatures, our effective continuum the-
ory can be formulated in terms of the local momentum
vector field, and is found to be similar to that of elastic-
ity and scalar-charged rank-2 U(1) gauge theory [44–51].
The local momentum vector field plays the role of lattice
distortions in elasticity, and their vortices are identified as
vacancies/interstitials in elasticity or quadrupoles of fractons
[52,53]. The liquid phase can then be understood as a state
with mobile topological defects populating the system.

Proceeding to lower temperatures, the defects continuously
lose their mobility, leading to a glassy state, which we call a
rigid network of momentum vortices. In this network state,
the momentum vortices sit at the vertices, and the edges
connecting them are narrow domain walls between regimes
of different momenta. Particularly, due to the unusual low-
energy properties of momentum vortices, the domain walls
must be straight lines, establishing the rigidity of the network.
All these phenomena are thoroughly analysed and numeri-
cally demonstrated.

Our study of spiral spin liquids answers the key question of
their low-energy structure and reveals a previously unexplored
type of topological defect with unexpected connections to
fracton physics. It also paves the way for understanding the
quantum limit of these models [14,26,54], which may give
rise to quantum spin liquids. A particularly promising system
to realize the phases studied here, but under the additional
effects of quantum fluctuations, is the bilayer kagome mate-
rial Ca10Cr7O28 [29], which has recently been identified as a
quantum spin liquid candidate.

The main text is organized as follows: Section II intro-
duces the model, reviews known results of spiral spin liquids,
and depicts the overall picture for the results of this paper.
Section III explains in detail the phase realizing the rank-2
U(1) physics. Section IV explains the phase of rigid vortex
network. Finally, Sec. V provides a summary of this paper as
well as discussions of related physics and future directions.

II. THE SPIRAL SPIN LIQUID MODEL
AND ITS PHASE DIAGRAM

In this paper, our main focus is on 2D spiral spin liquids
whose T = 0 ground-state degeneracy is homotopic to a ring.
Our showcase example is the classical square lattice XY spin
model with couplings up to third-nearest neighbors.

However, this is not the only model exhibiting spiral spin
liquid physics. There are other models defined on the honey-
comb and triangular lattices with further neighbor couplings
[12,14,15,26] in 2D, and also on the diamond [38], face cen-
tered cubic [18,55,56], and body centered cubic [18] lattices
in 3D. A more general overview on the construction of these
models can be found in Refs. [25,26].

A. The square lattice XY spin model

The Hamiltonian for the square lattice XY spin model is
given by

Hsq-XY = J1

∑
〈i j〉1

Si · S j + J2

∑
〈i j〉2

Si · S j + J3

∑
〈i j〉3

Si · S j . (1)

Here, Si are normalized (|Si| = 1) classical XY (i.e., two-
component) spins and J1,2,3 are first, second, and third
nearest-neighbor couplings respectively, see Fig. 1(a). In the
region of parameters

J1 = −1, J3 = J2/2, J2 > 1/4, (2)

the ground states are spin spirals of momentum q,

Si = (cos(�(ri )), sin (�(ri )))

= (cos(q · ri + φ), sin(q · ri + φ)) (3)

where ri is the position of site i, and φ corresponds to a
global rotation of all spins [12]. Most importantly, the system
exhibits a degenerate set of ground-state spirals with momenta
q satisfying the condition

2 cos2(qx ) + 2 cos2(qy) + 4 cos(qx ) cos(qy) = 1

2J2
2

. (4)

The solutions q form a continuous 1D manifold isomorphic
to a loop around the Brillouin zone center. The shape of the
manifold depends on the value of J2, and is illustrated in
Fig. 1(c). In the limit of small

δ ≡ J2 − 1
4 � 1, (5)

the spiral contour shrinks and becomes circular, obeying
q = |q| = 4

√
δ, until for J2 < 1/4 a simple ferromagnet is

realized.
An important property of XY models with this type of

ground state degeneracy is that they exhibit two distinct types
of U(1) symmetries. The first one is the standard global U(1)
spin rotational symmetry, which is generated by a simulta-
neous rotation of all spins, �(ri ) → �(ri ) + α. The second
one is a U(1) symmetry in momentum space, which changes
the momentum q of a ground-state spiral along the contour
of solutions of Eq. (4). Note that this second symmetry is
in principle only a property within the exact ground-state
manifold. However, in the limit of small δ and small momenta
q where the system is approximately spherical, the effective
low-energy U(1) symmetry still stands.

The consequences of U(1) symmetry in spin space are
well understood. It can trigger a finite temperature Kosterlitz-
Thouless transition associated with a proliferation of spin
vortices [57,58]. On the other hand, the effective momentum
U(1) symmetry is much less studied. Previous works, mostly
focusing on numerics, have found that it gives rise to a spiral
spin liquid phase. In this context, the term “liquidity” refers
to the fact that in a spiral spin liquid the system thermally
fluctuates through the degenerate manifold of spiral states
(it is, hence, strongly correlated), but does not display any
type of long-range order (e.g., from order-by-disorder effects).
The precise mechanism behind such fluctuations is, however,
poorly understood and justifies the present study.

We emphasize that this mechanism causing the spin liquid
physics is very different from other better-understood classical
spin liquid models on frustrated lattices (e.g., pyrochlore spin
ice [4,59]). Those models are endowed with local zero modes
giving rise to an extensive ground-state degeneracy. Hence,
it is very intuitive that at small but finite temperatures, local
spin flips enable the system to visit the degenerate manifold
of ground states leading to a classical spin liquid phase. The
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FIG. 1. (a) Definition of the couplings J1, J2, and J3 on the square lattice. (b) Schematic phase diagram of the square lattice XY spin
model as a function of temperature. (c) Shape of the spiral contour in momentum space [i.e., solution of Eq. (4)] for varying J2 and J3 = J2/2.
[(d)–(g)] Examples for spin configurations in the four temperature regimes of the square lattice XY model: (d) rigid vortex network, (e) spiral
spin liquid, (f) pancake liquid, (g) paramagnet. The in-plane direction of the spins is color encoded. The spin states are obtained in Monte
Carlo simulations of a 400×400 square lattice XY model with δ = 0.03. The black circles in (d) mark the positions of spin vortices.

situation in spiral spin liquids is very different. Even though
the spiral ring degeneracy is subextensively large, a change
of momentum q is still a global operation associated with the
modification of a macroscopic number of spins. It is, hence, a
priori unclear how thermal fluctuations may induce a liquid-
like property in the system studied here.

B. Overall picture

Before we study spiral spin liquids in detail in the next
two sections, we present a sketch of the main results so that
the reader does not get lost in too many technical details.
Although in this paper we concentrate on the square lattice
XY model only, we expect our results to also apply to other
models with a spiral degeneracy.

First, our core result is the identification of topological
defects from the spiral ring U(1) symmetry (not the spin
rotation symmetry). In these topological defects, the spin con-
figuration �(r) (where � is the spins’ in-plane angle) varies
smoothly without singularities. However, the corresponding
coarse-grained momentum

q = ∇�(r), (6)

which takes its value only in the neighborhood of the spiral
ring [Fig. 1(c)] and varies in space, can have a nontrivial wind-
ing around a loop. As one would expect, these momentum
vortices (see Fig. 2 for two vortex configuration examples)
play a central role in shaping the low temperature physics.

Here, we also note that the properties of such momentum
vortices are very different from the commonly-known spin
vortices, due to the fact that in the absence of spin vortices,
the momentum field is subject to a curl-free condition. As we
will elaborate later, a peculiar consequence of this restriction
is that momentum vortices can only be realized with winding
numbers n � 1.

Our numerical Monte Carlo results for small δ indicate four
different temperature regimes, see phase diagram in Fig. 1(b)
and exemplary spin configurations in Figs. 1(d)–1(g). At large
temperatures a trivial paramagnet is realized where the spins
can be considered as uncorrelated [Fig. 1(g)]. Upon cooling,
the system first undergoes a crossover into a phase referred to
as pancake liquid in Ref. [24], see Fig. 1(f). While this regime
already shows a certain degree of correlations between spins,
the thermal fluctuations are too strong to restrict the momen-
tum to the spiral contour. As a result, spiral configurations do
not form, as is indicated by the absence of clear stripe-like
patterns in Fig. 1(f).

When decreasing the temperature further, the system
undergoes a transition at T = T ∗ into a regime with well-
defined spin spirals, which can be recognized as stripy
configurations in Figs. 1(d) and 1(e). The investigation and
characterization of the spiral regime at T < T ∗ represents
the main subject of our paper. Despite the common spi-
ral motif, the physical properties near the upper (T � T ∗)
and lower (T � T ∗) boundaries are distinctly different. We
refer to the two regimes at T < T ∗ as spiral spin liquid
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FIG. 2. Ideal examples of momentum (anti)vortices with wind-
ing numbers n = 1 (left column) and n = −1 (right column). The
top panel shows the momentum q = ∇�(r) configuration, and the
bottom panel shows the spin texture �(r).

(or alternatively as R2-U1/elasticity phase) and rigid vortex
network and discuss them separately in Secs. III and IV,
respectively.

In the spiral spin liquid phase [Figs. 1(e)] the local mo-
mentum q is approximately confined along the spiral contour,
however, the direction of q fluctuates strongly in real-space
and Monte Carlo time, establishing a liquid-like property.
Most importantly, momentum (anti )vortices with winding
numbers n = ±1 are clearly discernible and represent the key
source of fluctuations in this regime (for comparison, see
the ideal examples of momentum vortices with n = ±1 in
Fig. 2). The occurrence of momentum vortices prompts us to
analytically investigate their precise nature and contrast them
with spin vortices.

Another surprising property of the spiral spin liquid at
T � T ∗ is that its effective continuum theory for local mo-
mentum q can be mapped onto the elasticity theory of the
shear modulus. In turn, elasticity theory is known to be dual
to a rank-2 U(1) fracton tensor gauge theory [48,49] in which
immobile scalar fractons (i.e., charges of the gauge theory)
correspond to lattice disclinations and subdimensional fracton
dipoles are related to lattice dislocations. This justifies the
name R2-U1/elasticity phase. We show, however, that the
nature of the momentum degree of freedom q in our spiral
model and, particularly, the integer-quantized spin vortices do
not allow for the existence of isolated fractons and dipoles of
fractons. Instead, the momentum vortices of winding number
n = 1 correspond to fracton quadrupoles in R2-U1 theory,
or vacancies or interstitials in elasticity. Hence, the spiral
spin liquid phase can be effectively understood as a charge-
and dipole-free rank-2 U(1) tensor gauge theory. Similarly,
momentum vortices of winding number n < 0 can be under-

stood as higher multipoles of vacancies and interstitials. The
tensor gauge theory property of spiral spin liquids is also
investigated numerically by demonstrating the occurrence
of fourfold pinch points [60] in the electric-field correlator
(Fig. 8).

The spiral spin liquid exhibits both spatial fluctuations in
the momentum direction q/q and in the momentum ampli-
tude q (where q remains in the vicinity of the spiral contour,
q ≈ 4

√
δ). Since both variations in space cost energy, they

smoothly freeze out as one further decreases the temperature.
In our numerical results [see Fig. 1(d)] this freezing occurs via
the formation of spiral domains each characterized by a well-
defined momentum direction. In such states, the excitation
energy from spatial variations of q is completely concentrated
along narrow domain walls, which form a rigid network span-
ning the entire system. Most importantly, momentum vortices
correspond to the intersections of domains walls. The sys-
tem also exhibits thermally excited spin vortices, which are
marked by circles in Fig. 1(d). However, they are associated
with much larger excitation energies than momentum vor-
tices. No indications for a Kosterlitz-Thouless transition and a
binding into low-temperature vortex-antivortex pairs is found,
neither in spin- nor in momentum space. We explain this by
the special restrictions imposed on the effective degrees of
freedom such as the curl-free condition for q.

Our numerical results at the lowest simulated temperatures
also indicate that the domain wall network preferably forms
rectangular patterns. This can partially be explained by the
underlying square lattice nature of our model but is mainly
due to the antivortices (n = −1), which realize the lowest
excitation energy cost when four domain walls are radiat-
ing from the vortex core. Their characterization through the
number and precise arrangement of radiating domain walls
allows us to develop a general classification scheme for mo-
mentum vortices. Because of Mermin-Wagner theorem the
formation of rectangular domains associated with the break-
ing of momentum symmetry [U (1) → Z4] does not occur in a
finite-temperature transition but rather in a smooth crossover
separating the spiral spin liquid and the rigid vortex network
regimes. Particularly, with decreasing temperature the aver-
age domain size continuously increases while thermalization
and mobility of momentum vortices significantly slow down.
Besides the shear modulus term in the system’s continuum
theory, further contributions not allowed in elasticity theory
(such as a potential term for the momentum) become increas-
ingly important in this low-temperature regime. As a result, a
rank-2 U(1) gauge theory description is no longer appropriate,
which is also seen in the fading of the fourfold pinch points in
the electric field correlator (Fig. 8).

III. THE R2-U1/ELASTICITY PHASE

In this section, we discuss the properties of the spiral spin
liquid as well as its relation to a rank-2 U(1) gauge theory
and elasticity theory. Since fluctuations of momentum vor-
tices are the main driving force behind this phase, we start
discussing their precise nature and the constraints imposed by
the curl-free condition. At the end of the section, we confirm
our findings with numerical results.
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A. Vortices of local momentum vector field

Let us first qualitatively describe the arising of vortices
from the local momentum vector field. We view the lattice in
a coarse-grained way. Each coarse-grained block is over a few
lattice sites so that we can define the local momentum vector
q as the gradient of the spins’ in-plane angle �,

q = ∇�. (7)

At the same time the block is not too big so that the mo-
mentum vector effectively does not vary within the block.
In this way, we have defined a vector field q(r) of the local
momentum on the coarse-grained lattice.

At low temperatures, each momentum vector takes a value
from the spiral momentum ring, or at least within a narrow
region around it. Consequently, the configuration space of a
momentum vector at each individual coarse-grained block is
homotopic to a circle, so the winding number n of the mo-
mentum vector field is a well-defined topological quantity on
an arbitrary loop on the lattice. Examples of winding number
±1 vortices are shown in Fig. 2.

Momentum vortices are distinctly different from spin vor-
tices, which are defined in terms of spin winding along closed
loops. In fact, spin and momentum vortices are independent
of each other. Furthermore, unlike normalized spins, there
is no strict amplitude constraint on the momentum q. As a
consequence, momentum vortices can be realized on contin-
uously varying spin textures without any singularity. Another
drastic and, at a first glance, unexpected difference concerns
the possible winding numbers n of momentum vortices, which
we will elaborate on in the next subsection.

B. Curl-free constraint on momentum vortices

In the absence of spin vortices, � varies continuously on
every point of the system. So q(r) must obey the curl-free
condition

q(r) = ∇�(r) → ∇ × q(r) = ∇ × ∇�(r) = 0, (8)

by definition of q(r) [Eq. (7)]. This restriction on q(r) plays a
central role in determining the low-temperature properties of
spiral spin liquids.

If spin vortices are taken into consideration, then for any
loop (not directly passing through the spin vortex core), one
finds ∮

C
dl · ∇� = 2πns, (9)

where ns is the spin winding number. This implies that a
spin vortex at r′ is a point source of quantized curl for the
momentum vector field,

∇ × q(r) = 2πnsδ(r − r′). (10)

However, we are mostly concerned with the physics of spiral
spin liquids in the absence of spin vortices. In fact, our nu-
merical results demonstrate that spin vortices are associated
with much higher excitation energies than momentum vor-
tices. Hence, from now on, we assume the curl-free condition
[Eq. (8)] to be a constraint on the spiral spin liquid system.

FIG. 3. Classification of vortices with a background heat map of
the curl for the configurations plotted. (a) A focus around a singular-
ity. It has finite curl and finite divergence at the singularity point. The
integrated paths from the vector field converge at the singularity or to
infinity. (b) A center around a singularity. A center is a special limit
of focus. It has finite curl at the singularity point and no divergence.
The integrated paths from the vector field are exactly closed loops.
(c) An elliptic sector on the top-right quarter of the vortex. It has
finite curl in the sector. (d) A hyperbolic sector on the top-right
quarter of the vortex. It does not necessarily have nonzero curl in the
sector. (e) A parabolic sector on the top right quarter of the vortex. It
has zero curl in the sector. A vortex is either of class (a), (b), or has
several sectors, each belonging to (c), (d), or (e). Vortices of classes
focus (a), center (b), or containing an elliptic sector (c) are forbidden
by the curl-free condition.

The curl-free condition restricts the allowed configurations
of the momentum vortices. The result and its mathematical
deduction are first summarized below before elaboration:

(1) As a starting point, the momentum vector field has to
be curl free [Eq. (8)].

(2) In the neighborhood of a singular point, the vector field
cannot be of the types focus [Fig. 3(a)] or center [Fig. 3(b)].
It cannot have an elliptic sector [Fig. 3(c)] either, because
all such configurations require finite curl in space. The sin-
gular point can only have several hyperbolic [Fig. 3(d)] and
parabolic sectors [Fig. 3(e)], which can be curl free.

(3) Vortices of winding number n � 2 are forbidden, be-
cause they require at least one elliptic sector. Vortices of
winding number n � 1 are allowed, but their configuration is
still constrained by the condition above.

Two-dimensional vector fields and their vortex singular-
ities are a well-studied topic in topology as tangent vector
bundle sections in 2D, and also dynamical systems [61,62].
Around a vortex singularity (also known as critical point in
mathematical literature), the vector field configurations are
fully classified. One possibility is that it can be either a fo-
cus or a center [Figs. 3(a) and 3(b)], surrounding the entire
singularity. The other possibility is that the neighborhood of
the singularity is divided into a few sectors. Here, a sector
is defined such that at its boundaries the vector field q(r)
obeys q(r) ‖ r where the singularity is at r = 0. The vector
field configuration in each sector is independent from the
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FIG. 4. Vortices of winding numbers 2 and 3. The winding num-
ber 2 vortex has two elliptic sectors divided by the orange lines.
The winding number 3 vortex has four elliptic sectors. These two
examples demonstrate the Poincaré-Bendixon theorem [Eq. (11)]
and illustrate that they are forbidden in our systems due to their finite
curl.

neighboring ones (as long as continuity on the boundaries is
satisfied) and it can be either elliptic, parabolic, or hyperbolic.
[Fig. 3(c), 3(d), or 3(e)].

For focus and center configurations the winding number is
n = 1. For a singularity divided into several sectors, Poincaré-
Bendixon theorem [61,62] states that the winding number is

n = 1 + (e − h)/2, (11)

where e (h) is the number of elliptic (hyperbolic) sectors. This
completes the classification of all vortex configurations with a
point singularity.

Now we can examine the curl for each class of vortices.
First, it is straightforward to see that focus and center have
nonzero curl at the singularity, and hence are excluded in our
system. Second, the elliptic sector has nonzero curl in the
entire region. This can be seen by following the integration
path of the vector field [highlighted in red in Fig. 3(c)]. Since
such a path forms a closed loop starting and ending at the
singularity, and starting and ending vectors are rotated by a
finite angle, we know the enclosed region must have nonzero
curl. In particular, the singular point will have divergent curl.
Hence these sectors are forbidden too. Third, the hyperbolic
sector may have local nonzero curl but not necessarily, and is
therefore allowed in our system. Finally, the parabolic sector
is strictly curl free and allowed.

Now we can conclude on the vortex restrictions. First,
since all elliptic sectors are forbidden, and Poincaré-Bendixon
theorem states that vortices with winding numbers n � 2
require at least two elliptic sectors, such vortices are not
allowed (Fig. 4). Second, the only possible configuration for
vortices of winding number n = 1 is parabolic in the entire
neighborhood. Finally, vortices of winding number n � −1
are generally allowed, but they cannot have elliptic sectors,
and their hyperbolic sectors still need to be curl free.

Another interesting property is that the absence of curl
requires the vortices to carry a finite divergence distribution.
Here, we briefly discuss the divergence of the simplest vor-
tices with winding numbers ±1, since they are most common
in our numerical simulations. We note that the winding num-
ber 1 vortices carry a net positive or negative, unquantized
divergence, as shown in Fig. 5. The two types of winding
number 1 vortices cannot be smoothly transformed into each

FIG. 5. Momentum vortices of winding number 1 (top row) and
−1 (bottom row), and the heat map of divergence for these con-
figurations. The winding number 1 vortices carry a net positive or
negative divergence, while the winding number −1 vortices carry
quadrupoles.

other. Interestingly, the winding number −1 vortices carry a
dominant quadrupole of the divergence distribution (Fig. 5).
They can also carry a net scalar divergence and a dipole, but
these two quantities can be smoothly tuned to zero.

C. Hamiltonian in the continuum limit

The next ingredient to understand the low-energy behavior
of spiral spin liquids is the formulation of a continuum theory.
Assuming that the spins, denoted by their angle �(r), are
varying slowly on the lattice, we can rewrite the Hamiltonian
of Eq. (1) in the continuum limit. In the parameter regime of
Eq. (2), the Hamiltonian becomes

Hsq-XY = 1

2

⎛
⎝−

∑
a=±ex,±ey

+J2

∑
a=±ex±ey

+J2

2

∑
a=±2ex,±2ey

⎞
⎠

×
∑

r

cos (�(r) − �(r + a)). (12)

We then expand �(r + a) in a Taylor series,

�(r + a) =
∞∑

n=0

1

n!
(a · ∇)n�(r). (13)

After inserting Eq. (13) into Eq. (12), we expand the cosine,
keeping terms, which contain up to four derivatives in total,
which requires terms up to third orders in Eq. (13). The
continuum limit is performed by replacing

∑
r → ∫

d2r.
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Using q = ∇�, and denoting the 2×2 Hessian matrix Q
as

Qμν = ∂μ∂ν� = ∂μqν, (14)

where Greek indices denote Cartesian coordinates, μ, ν ∈
{x, y}, we obtain the Hamiltonian written in q only, with a
potential term and a stiffness term:

Hsq-XY = Hp + Hs (15)

where

Hp =
∫

d2r
[

1 + 4δ

16
q4 + δ

(
− 2q2 + 1

6

(
q4

x + q4
y

))]
,

Hs =
∫

d2r
[

(1 + 4δ)QμνCμνρσQρσ + δ

6

(
Q2

xx + Q2
yy

)]
,

(16)

with

Cμνρσ = 1

16
(δμρδνσ + δμσ δνρ − δμνδρσ ). (17)

Here, we have again defined δ = J2 − 1/4, δμν is the Kro-
necker delta, and Einstein summation rule is used on repeated
indices. Our notation indicates that Hsq-XY consists of two
terms, a potential term Hp, which determines the energy cost
of momentum q at each point. The other term Hs determines
the stiffness of q, i.e. the energy cost of spatially varying spiral
configurations.

It is worth noting that in the limit of small δ and small
momentum q, the model becomes rotationally symmetric:

Hp →
∫

d2r
(

1

16
q4 − 2δq2

)
,

Hs →
∫

d2r(QμνCμνρσQρσ ), (18)

where we have only kept the leading order in δ for each
power in q. This form makes it obvious that the potential term
acquires a standard symmetric Mexican hat shape.

We emphasize that Eq. (16) implicitly assumed that the
spin angle � varies smoothly in space. That is, the spin vortex
is not allowed, and the momentum vector q is always curl
free. In other words, we have dropped a term counting the
spin vortices, in form of

U (∇ × q)2 = U (εαβ∂α∂βφ)2 (19)

with a very large U , which is of much higher scale than any
coefficient in the field-theory Hamiltonian in Eq. (16).

D. Connection to elasticity and rank-2 U(1) theory

Let us now demonstrate the connection between our ef-
fective field theory of spiral spin liquids and rank-2 U(1)
theory/elasticity [44–51].

A spin vortex corresponds to a quantized point singularity
of the curl of q. Let us first assume that they do not appear in
the system such that q is curl free. Hence, we have

∂μqν = ∂νqμ → Qμν = Qμν, (20)

and we can rewrite Q as

Qμν = 1
2 (∂μqν + ∂νqμ). (21)

We note that by identifying the momentum vector q in
spiral spin liquids as the lattice distortion in elasticity,

q ↔ u, (22)

the matrix Q in Eq. (16) becomes the symmetric strain tensor
U :

Qμν ↔ Uμν = 1
2 (∂μuν + ∂νuμ). (23)

The term QμνCμνρσQρσ in Eq. (16) is the Hamiltonian of
elasticity with the shear modulus only, and does not contain
the compression modulus term [51].

After identifying the strain tensor, we can study the cor-
respondence of topological defects in the two systems. In
elasticity, the bond angle ∇×u is a periodic quantity [49]. By
definition it corresponds to ∇×q in spiral spin liquids, which
is the spin vortex density and is quantized as an integer instead
of being periodic.

The fundamental topological defects in elasticity are discli-
nations, which correspond to a winding of the periodic bond
angle [49]. Hence, its analog cannot appear in spiral spin
liquids, since ∇×q is not periodic. Similarly, dislocations b
as dipoles of disclinations, defined as bμ = ερσ ∂ρ∂σ uμ, do not
appear in spiral spin liquids neither.

It turns out that the winding number 1 momentum vortices
in spiral spin liquids correspond to quadrupoles of discli-
nations (or pairs of dislocations), which are vacancies or
interstitials (i.e., additional atoms squeezed in the lattice) in
elasticity. This is because inserting an additional atom in the
lattice makes the other atoms move radially away from it,
leading to a lattice distortion field u similar to our winding
number 1 momentum vortices, see Fig. 5. These objects have
vanishing disclination and dislocation densities. Instead they
are manifested as nonzero divergence of u(q), which is also

∇ · q = TrQ. (24)

Since the winding number 1 momentum vortices cannot have
any curl, the only possibility is to have one parabolic sector
in the entire region, which has divergent divergence at the
singularity. Examining the negative winding number vortices
in the same way, we find them to carry multipoles of ∇ · q, i.e.,
they are multipoles of vacancies or interstitials, see Fig. 5.

Utilizing the duality between elasticity and rank-2 U(1)
gauge theory discovered by Pretko, Radzihovsky [48], and
by Gromov [50], we can also establish a connection between
spiral spin liquids and rank-2 U(1) theory. The latter the-
ory is a generalization of Maxwell’s electromagnetism, by
upgrading the electric field to symmetric tensors, and mod-
ifying the definitions of charges, gauge fields, and magnetic
fields accordingly. A more detailed analysis can be found in
Refs. [44–47]. Here we only explain the part relevant to our
paper.

The mapping between the Hessian matrix in spiral spin
liquids and the symmetric tensorial electric field is given by

Qμν = εμρενσ Eρσ , or Eμν = εμρενσQρσ , (25)

where εμν is the Levi-Civita symbol. To see the existence of a
Gauss’s law, we notice that for smoothly varying q, the scalar

023175-7



HAN YAN AND JOHANNES REUTHER PHYSICAL REVIEW RESEARCH 4, 023175 (2022)

TABLE I. Connection between spiral spin liquids and elasticity/rank-2 U(1) gauge theory. By associating the local momentum vector q in
spiral spin liquids with the lattice distortion u in elasticity, various objects in the two types of systems can be identified and further linked to
scalar charged rank-2 U(1) gauge theory.

Spiral spin liquid Elasticity Rank-2 U(1) theory

local momentum q = ∇� lattice distortion u
symmetrized Hessian matrix Qμν = 1

2 (∂μqν + ∂νqμ) strain tensor Uμν = 1
2 (∂μuν + ∂νuμ) electric field εμρενσ Eρσ

Hamiltonian [Eq. (16)] shear modulus Hamiltonian electric field term
spin vortex ∇×q = 2πnsδ(r), quantized bond angle ∇×u = θ , periodic
nonexistent disclination, vortex of bond angle θ , scalar fracton
nonexistent dislocation, bμ = ερσ ∂ρ∂σ uμ, dipole of fractons
vortex of q, winding number 1 vacancies/interstitials quadruple of fractons, TrE
vortex of q, winding number −1, −2, ... multipoles of vacancies/interstitials higher multipoles of fractons

charge (fracton) is always zero in the entire space,

ρ ≡ ∂μ∂νEμν = ∂μ∂νεμρενσ (∂ρqσ + ∂σ qρ )/2 = 0, (26)

where we used ∂μ∂ρεμν = 0. The fracton scalar charges cor-
respond to disclinations in elasticity.

There is also a conservation law for dipoles of fractons (i.e.,
dislocations in elasticity):
∫

dr2xμρ =
∫

dr2xμ∂ρ∂σ Eρσ

= −
∫

dr2∂σ εμαεσβ (∂αqβ + ∂βqα )/2 = 0. (27)

Note that here, the first term vanishes because ∂σ εσβqβ =
∇×q=0, and the second term vanishes because εσβ∂σ ∂β =0.

Finally, the winding number 1 momentum vortices are
quadrupoles of fractons, and negative winding number mo-
mentum vortices are higher multipoles. A quadrupole of
fracton corresponds to vacancies or interstitials in elasticity,
and manifests as nonzero trace of the electric field, or diver-
gence of q (Fig. 5)

∇ · q = TrE. (28)

We summarize all the relations between spiral spin liquids,
elasticity theory, and rank-2 U(1) theory in Table I.

We have now established the effective theory that sheds
more light on the spiral spin liquid nature. It can be mapped
onto classical elasticity [rank-2 U(1) electrostatics] where
momentum vortices correspond to multipoles of vacancies or
interstitials (fractons). These objects are free to move around
in the lattice and lead to a spin liquid-like behavior. This
is also consistent with the fact that fractons (disclinations)
and dipoles of fractons (dislocations) have restricted mobility,
while quadrupoles do not. The correspondence between the
Hamiltonians is exact at the critical point

J1 = −1, J2 = 1/4, J3 = 1/8, (29)

but the spiral spin liquid effective theory gains addi-
tional terms (which are not of the shear modulus form
QμνCμνρσQρσ ) when δ �= 0, see Eq. (16).

Finally, we note that there is a different version of rank-2
U(1) construction via vortex-charge duality described in detail
by Ma and Pretko [63], which can be used as an alterna-

tive perspective to understand the emergence of rank-2 U(1)
physics in spiral spin liquid.

E. Numerical results

We now demonstrate how our analytical results on momen-
tum vortices in spiral spin liquids as obtained in the previous
subsections manifest in actual numerical simulations of the
J1-J2-J3 square lattice XY model. Here, we focus on an in-
termediate temperature regime, particularly on T � T ∗ where
T is low enough to enable spiral formation but not too small
such that spirals remain liquid due to thermal fluctuations. In
the next section, we will investigate the low-temperature rigid
vortex network regime.

Our classical Monte Carlo simulations are based on a
standard Metropolis algorithm for a quadratic system with
400×400 = 160 000 sites and periodic boundary conditions.
To reduce the autocorrelation times two third of all spin
updates are chosen as overrelaxation steps while the other
third are regular Monte Carlo updates. One Monte Carlo run
includes a total of 6×107 Monte Carlo steps during which the
system is cooled down from T = 2 to T = 0.005 (in units of
|J1| = 1) using an exponential cooling protocol. At various
selected temperatures, measurements of the energy, heat ca-
pacity, spin structure factor, and momentum distribution are
performed. Averages are taken over 10 independent Monte
Carlo runs.

We choose the parameter δ = J2 − 1/4 = 0.03 in all our
simulations below. This value turns out to be suitable for
illustrating the physics of momentum vortices, since the po-
tential term Hp in Eq. (16) has an almost perfectly rotation
symmetric Mexican hat shape (at least in the vicinity of the
valley), as shown in Fig. 6. For larger δ, the valley of the
Mexican hat potential would lose its circular shape, leading to
an entropic selection of discrete momenta, which counteracts
spiral spin liquid behavior. On the other hand, choosing this
parameter too small, the energy gain from spiral formation
relative to the ferromagnetic state would become negligible
such that spiral states only appear at very low temperatures.
For δ = 0.03, the classical ground states are spirals with q0 ≈
0.66, which corresponds to a spiral wave length of λ ≈ 9.5
lattice spacings.

Coming from the high-temperature side, the first pro-
nounced feature in the heat capacity (see Fig. 7) is a broad
shoulder at T ≈ 0.32, which marks the onset of magnetic
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FIG. 6. Energy per site Hp(q)/N [Eq. (16)] of homogeneous spi-
ral states with momentum q, also referred to as potential term in the
system’s continuum theory. Shown is the Mexican hat shape of this
potential for δ = 0.03 and two momentum directions, q = (qx, 0) or
symmetry related directions (blue) and q = (qx, qx )/

√
2 or symmetry

related directions (red).

correlations. Above this temperature, the system effectively
behaves as a paramagnet without any noticeable features in the
spin configurations [for an exemplary spin state see Fig. 1(g)
at T = 0.5].

For temperatures below the broad shoulder the system first
enters a regime where correlated spin patterns become visible
[see Fig. 1(f) obtained for T = 0.1], however, a clear spiral
formation does not yet take place. In the spin structure factor
S (k) defined as

S (k) = 1

N

∑
ri,r j

eik(ri−r j )〈Si · S j〉, (30)

this manifests in a broad and featureless peak, which roughly
fills the area enclosed by the valley of the Mexican hat poten-
tial [Fig. 8(b)], hence the name “pancake-liquid” in Ref. [24].
This property indicates that the system can access an ex-

FIG. 7. Heat capacity per site C(T ) as a function of temperature
T for δ = 0.03. The color bar in the top part of the figure indicates
the different temperature regimes with the same color scheme as in
the phase diagram of Fig. 1(b).

FIG. 8. Momentum-space properties of spin configurations from
classical Monte Carlo at δ = 0.03 in the intermediate tempera-
ture regime at T = 0.05 (left column) and T = 0.1 (right column).
[(a),(b)] The spin structure factor S(k) [Eq. (30)] for the states of
Figs. 1(e) and 1(f), respectively. [(c),(d)] The electric field correlator
CEE (k) [Eq. (31)] obtained by averaging over 10 independent Monte
Carlo runs.

tensive manifold of states in momentum space and that in
this subspace the potential term Hp(q) in Eq. (16) is largely
irrelevant. Since the potential term constitutes a key difference
to elasticity theory, its irrelevance implies that the system’s
behavior in this temperature regime is dictated by the analogy
to elasticity, i.e., fracton gauge theory. We demonstrate this
numerically by plotting the electric field correlation function

CEE (k) = 1

N

∑
ri,r j

eik(ri−r j )〈Exx(ri )Eyy(r j )〉. (31)

As excepted for a system subject to a generalized Gauss’s
law ∂μ∂νEμν = 0 the electric field correlator needs to obey
a specific projector form [60]:

〈Eμν (k)Eρσ (−k)〉 ∝
(

1

2
(δμρδνσ + δμσ δνρ ) − kμkνkρkσ

k4

)
,

(32)

so that

CEE (k) = 〈Exx(k)Eyy(−k)〉 ∝ −k2
x k2

y

k4
(33)
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shows a characteristic fourfold pinch point singularity
[Figs. 8(c) and 8(d)]. The pinch point pattern at T = 0.1 does
not exactly extend to the � point q = (0, 0), which is likely
due to a thermal broadening.

Lowering the temperature further, the heat capacity
shows a sharp peak at T = T ∗ = 0.08 associated with the
formation of spin spirals, see Fig. 1(e). Just below this peak
a large density of momentum vortices is observed, which are
intimately connected with spatial fluctuations of spin spirals,
establishing a liquid-like property. Particularly, the spin struc-
ture factor now has a ring-like shape indicating that amplitude
fluctuations of the spiral momentum are suppressed
[Fig. 8(a)]. On the other hand, fluctuations of the direction
of spiral momentum are still pronounced as evidenced by
the relatively even distribution of signal along the ring. Note
that the diameter of the ring is slightly smaller compared to
the valley of the Mexican hat potential. This reduction of the
momentum amplitude is characteristic for spin configurations
with spatially varying direction of q, which will be further
studied in Sec. IV C in the context of domain walls. Since
spatially varying momentum directions are the origin of
momentum vortices, we interpret the reduction of ring size
in Fig. 8(a) as indirect evidence for momentum vortices.
The increasing effect of the potential term in the low-energy
effective theory slightly reduces the intensity of the fourfold
pinch points in Fig. 8(c) but the decreasing influence of
thermal fluctuations sharpens the pattern at small k.

It is worth commenting on the nature of the phase transition
at T = T ∗ = 0.08. Because of Mermin-Wagner theorem the
continuous U (1) spin symmetry cannot be spontaneously bro-
ken at a finite temperature; it can only be broken algebraically,
which would correspond to a Kosterlitz-Thouless transition.
However, as we will argue based on our low-temperature re-
sults in Sec. IV D, we do not observe any indications for such
a transition. Spontaneous breaking of discrete time-reversal
symmetry is also excluded for a 2D XY model since it acts
as (Sx, Sy) → (−Sx,−Sy ), i.e., it is identical to a π rotation in
spin space, which, however, is a subgroup of the continuous
U (1) spin symmetry. In principle, U (1) momentum symmetry
could be broken across T ∗, which would correspond to a spiral
selection in the degenerate manifold. Particularly, since this
symmetry is not an exact continuous symmetry on all energy
scales but only an approximate one at small energies and small
δ, the breaking could even occur at a finite temperature. We
studied the behavior of order parameters near T ∗, which are
sensitive with respect to a complete breaking of U (1) mo-
mentum symmetry as well as a partial breaking U (1) → Z2

and U (1) → Z4. However, we do not observe any noticeable
features of such order parameters at T ∗, which also excludes
these types of transitions.

We, therefore, conclude that the phase transition at T ∗
is not associated with spontaneous symmetry breaking and,
therefore, is not described within the paradigm of phase
transitions according to Landau’s theory. In that respect, it
resembles a usual liquid/gas transition that does, likewise, not
involve any symmetry breaking. However, due to finite size
effects, the order of the phase transition cannot be reliably
determined based on the current data, and will be left for
future work.

Our spin configurations at T � T ∗ [Fig. 1(e)] indicate
that in this temperature regime the system forms short range
spirals whose momenta q are well defined on length scales
of a few spiral wave lengths. Beyond this distance spiral
momenta show pronounced real-space fluctuations without
any long-range patterns, reminiscent of a liquid-like property.
The system can gain much energy via this short range spiral
formation, as the spin configurations are now pinned near
the valley of the Mexican hat potential. This sudden energy
reduction manifests as a pronounced peak in the heat capacity.

IV. RIGID VORTEX NETWORK PHASE

As the temperature decreases, stricter energetic constraints
are imposed on the system’s spin configurations and the
question about the precise nature of energetically optimized
momentum vortices arises. We first analytically investigate
such low-energy momentum vortices via a spiral domain con-
struction where multiple domain walls are radiating from the
vortex core. Thereafter, we demonstrate that such vortices are
indeed found in low-temperature numerical simulations.

The overall emerging picture can be summarized as fol-
lows: At small temperatures, the Mexican hat potential term
Hp becomes dominant, and q at every point in space es-
sentially has to lie exactly on the spiral ring determined by
Eq. (4). Furthermore, the curl-free condition [Eq. (8)] requires
all domain walls to be straight lines. As a result, the system
freezes into a rectangular network of winding number ±1
momentum vortices.

A. Vortices without momentum amplitude variation

Let us now consider the case where the local momentum
vectors q(r) take values strictly on the spiral momentum ring
[Eq. (4)], except of singular lines (domain walls) and points
(vortices). For simplicity, we assume that the spiral momen-
tum ring is an exact circle (as is the case for δ � 1) so it can
be parametrized by an angle θ ,

q(r) = q0(cosθ (r), sin θ (r)). (34)

Incorporating Eq. (34) in the stiffness part of the Hamiltonian
[Eq. (16)] and assuming δ � 1, one obtains

Hs ∼
∫

d2r[(∇qx )2 + (∇qy)2] ∼
∫

d2r[∇θ (r)]2. (35)

Despite a similar structure, this continuum form should not
be confused with the conventional continuum model of a
classical XY magnet (without any spiral degeneracy) featur-
ing a Kosterlitz-Thouless transition. In our case θ (r) is still
constrained by the curl-free condition [cf. Eq. (8)], such that
the mechanisms behind the Kosterlitz-Thouless transition do
not apply anymore.

Instead, the zero-curl condition severely restricts the possi-
ble momentum vector field configurations. As we will show,
the nontrivial, relevant solutions all have a singularity point
(vortex core) and a few straight-line domain walls radiating
from it. These constructions are also motivated by our numer-
ical results, which show a rather accurate segmentation of the
system into spiral domains, see Fig. 1(d).

023175-10



LOW-ENERGY STRUCTURE OF SPIRAL SPIN LIQUIDS PHYSICAL REVIEW RESEARCH 4, 023175 (2022)

FIG. 9. Setup of three domains of different momenta and straight
line domain walls between them. The qi’s can be solved from
Eqs. (39), (40), and (41).

1. Single domain wall

Let us first consider a single domain wall that forms a
straight line of canting angle φ12 between two regions of
constant momentum. In these two regions labeled as 1 and
2, we have respectively,

qi = q0(cos θi, sin θi ), i = 1, 2. (36)

The curl-free law for the momentum field requires the projec-
tions of q1 and q2 in the direction of the domain wall to be the
same, which is

cos(θ1 − φ12) = cos(θ2 − φ12). (37)

In terms of the spin textures, this is just requiring the spins on
the two sides of the domain wall connect continuously. The
nontrivial solution is

θ2 = 2φ12 − θ1. (38)

For a given θ1, the momentum in region 2 has only one
solution. The corresponding momentum distribution and spin
texture is mirror symmetric regarding the domain wall. An im-
portant corollary from this conclusion is that the domain wall
between two regions of fixed momentum has to be straight.

2. Singularity with odd number of discrete domain walls

We now consider a singularity—which will turn out to be
a vortex of the momentum vector field—with several domain
wall branches radiating from it.

We start with the simplest case of a singularity with three
branches, as illustrated in Fig. 9. The momentum vectors and
slopes of domain walls are as labeled there.

The curl-free condition requires

θ1 + θ2 = 2φ12 + 2n12π, (39)

θ2 + θ3 = 2φ23 + 2n23π, (40)

θ3 + θ1 = 2φ31 + 2n31π, (41)

whose solutions are

θ1 = φ12 − φ23 + φ31 + n12π − n23π + n31π, (42)

θ2 = φ12 + φ23 − φ31 + n12π + n23π − n31π, (43)

θ3 = −φ12 + φ23 + φ31 − n12π + n23π + n31π. (44)

Although n12, n23, n31 can take any integer values, the only
two distinct solutions can be obtained by taking n12 = 0, 1
while keeping the other ni,i+1 zero. The two solutions are
simply related by globally reversing the directions of all the
momentum vectors.

This case can be generalized to all configurations with odd
numbers of branches. Given φi,i+1 and ni,i+1, finding θi sat-
isfying the curl-free condition is equivalent to solving linear
equations⎛

⎜⎜⎝
1 1 0 · · · 0
0 1 1 · · · 0
...

...
...

. . .
...

1 0 0 · · · 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

θ1

θ2
...

θm

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

2φ12 + 2n12π

2φ23 + 2n23π
...

2φm1 + 2nm1π

⎞
⎟⎟⎠. (45)

The solutions are guaranteed to exist and are unique (up to
reversing all momentum vectors), due to the fact that the m×m
matrix

Km ≡

⎛
⎜⎜⎝

1 1 0 · · · 0
0 1 1 · · · 0
...

...
...

. . .
...

1 0 0 · · · 1

⎞
⎟⎟⎠ (46)

always has a nonzero determinant

det Km �= 0, for odd m. (47)

We now illustrate the momentum field solutions for differ-
ent domain wall distributions. The cases of three domain walls
at different angles are shown in Fig. 10. There, we plotted the
momentum field solutions on top of heat maps of the local
energy density, and also the spin textures in separate panels. In
Fig. 10(a), the three domain walls are evenly distributed, and
the momentum vector field forms a vortex of winding number
1 with vanishing curl everywhere. In terms of the spin texture,
the contours of spins form triangle-shaped loops around the
center.

As we squeeze the three domain walls to one side of
the plane [Fig. 10(b)], a transition point is reached where
the winding number becomes ill defined. Further narrowing
down the angles of domain walls leads to a state illustrated in
Fig. 10(c), in which the momentum vector field forms a vortex
of winding number −1.

Another transition point is reached when the three domain
walls are squeezed into a quarter of the plane [Fig. 10(d)].
After the transition point, when all three domain walls are
confined within an angle of π/2, the momentum vector field
has zero winding number [Fig. 10(e)].

This observation can be generalized to any odd m. When
the domain walls are evenly distributed, the momentum vector
field forms a vortex of winding number 1. As one “squeezes”
the domain walls into a narrower angle, the momentum vec-
tor field can go through transitions into vortices of winding
numbers −(m − 1)/2 to 0.
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FIG. 10. Momentum vector field configurations with three domain walls radiating from a singularity. (a) Momentum vector field and
spin texture when the three domain walls are evenly distributed. Upper panel: Momentum vector field configuration represented by arrows,
on top of a heat map of local energy density. The momentum vector field forms a vortex of winding number 1. Lower panel: Spin texture
corresponding to the momentum vector field. (b) Momentum vector field and spin texture when the three domain walls are at angles 0, π/2,
π . The momentum vector field configuration is at a transition point where the winding number is ill defined. (c) Momentum vector field and
spin texture when the three domain walls are at angles 0, π/3, 2π/3. The momentum vector field configuration forms a vortex of winding
number −1. (d) Momentum vector field and spin texture when the three domain walls are at angles 0, π/4, π/2. The momentum vector field
configuration is again at a transition point where the winding number is ill defined. (e) Momentum vector field and spin texture when the three
domain walls are at angles 0, π/8, π/4. The momentum vector field configuration forms a vortex of winding number 0. The energy is in
arbitrary units.

3. Singularity with even number of discrete domain walls

Next we consider a singularity with an even number of
domain wall branches radiating from it. Again, determining
the momentum vector field is equivalent to solving Eq. (45).
However, the situation is different from the odd number case,
because

det Km = 0, for even m. (48)

More specifically, the matrix Km has m − 1 linearly indepen-
dent rows. The last row can be written as linear combination
of the first m − 1 rows

(Km)mi =
m−1∑
j=1

(−1) j+1(Km) ji. (49)

As a consequence, there could be infinitely many solutions if

φ12 − φ23 + · · · + φm−1,m − φm1 = nπ, (50)

and no solution if this condition is not met.
When there are solutions, one can treat θm as a free pa-

rameter, and then solve θ1, . . . θm−1 from the m − 1 linearly
independent equations. The solutions then form a 1D mani-
fold parametrized by θm.

For a clearer physical picture, we illustrate the cases with
four and six domain walls in Fig. 11 with varying parameter
θm. In the case of four domain walls, the momentum vector
field can form a vortex of winding number 1 [Fig. 11(a)], and
after the transition point [Fig. 11(b)] transforms into a vortex
of winding number −1 [Fig. 11(c)]. In the case of six domain
walls, the momentum vector field can also form a vortex of
winding number 1 [Fig. 11(d)], and after the transition point
[Fig. 11(e)] transforms into a vortex of winding number −2
[Fig. 11(f)].

The situation can be generalized to any even m. As the
parameter θm varies, the momentum vector field configuration
can transit from winding number 1 to −(m − 2)/2.

To summarize, we have analytically constructed all excita-
tions based on domain walls when q is restricted to be on the
spiral ring. We have found that the momentum vector field can
form vortices around singular points. A peculiar feature is that
the vortices can have any negative winding number n < 0 and
n = +1, but no winding number n > 1. This is a consequence
of the curl-free condition [Eq. (8)], which we have already
discussed in detail in Sec. III B.

Since domain walls are associated with an energy cost pro-
portional to their length, all vortices constructed here have the
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FIG. 11. Momentum vector field configurations with four and six domain walls radiating from a singularity. Upper panels: Momentum
vector field configuration represented by arrows, on top of a heat map of local energy density. Lower panels: Spin texture corresponding to
the momentum vector field. [(a)–(c)] Momentum vector field and spin texture when the four domain walls are evenly distributed. The domain
wall angles are fixed but there is a continuous set of solutions for the momentum vector field configuration. The momentum vector field forms
a vortex of winding number 1 in (a), and after going through a transition in (b), the winding number becomes −1 in (c). [(b)–(e)] Momentum
vector field and spin texture when six domain walls are evenly distributed. The momentum vector field forms a vortex of winding number 1 in
(a), and after going through a transition in (b), the winding number becomes −2 in (c).

property that their energy cost remains constant as a function
of distance from the core. This is in stark contrast to usual
spin vortices where the energy usually decays with 1/r2. As
is intuitively clear but will be discussed in more detail in
Sec. IV C, the excitation energy of a domain wall becomes
larger with increasing momentum difference across the do-
main wall. Consequently, the energetically cheapest vortex
with negative winding is the n = −1 vortex in Fig. 11(c) with
four domain walls arranged in angles of π/2.

In a real physical system, the momentum vector field q is
allowed to slightly deviate away from the ring associated with
a “potential energy cost”. This lead to a softening of the sharp
domain walls, and will be studied in detail in Sec. IV C. How-
ever, the key physics discovered here—that the low-energy
excitations are vortices of winding number smaller than or
equal to 1—is preserved, and plays a major role in determin-
ing the low-energy physics of the spiral spin liquid.

4. Smooth vortices

For the sake of completeness, here we treat the case where
the vector field q is analytic everywhere except of the vor-
tex core at r = 0. This will result in a smooth vortex with
winding number n = 1 [see Fig. 2 (left)], which does not
have the sharp domain walls discussed above. This case can
also be understood as the limit of infinitely many domain
walls, densely covering the entire plane. However, because all
negative winding number vortices are made of a singularity
and several straight line domain walls, the smooth winding

number n = 1 vortex is actually not observed in numerical
simulations due to its incompatibility with n � 1 vortices.

Let us denote the momentum field as q(r) = q(θ (r)) where
the polar angle θ = θ (r) defines the in-plane orientation of q,
see Eq. (34). The curl-free condition [Eq. (8)] then becomes

(∇θ ) × ∂θq = 0. (51)

Since we are constructing excited states, we first exclude
the trivial case ∇θ = 0. Notice that ∂θq ⊥ q, therefore the
condition in Eq. (51) implies that

∇θ ⊥ q (52)

must hold. Furthermore, at each point r0 �= 0 the gradient
∇θ (r0) is oriented perpendicular to the contour line of con-
stant θ (r) running through r0. This means that the momentum
field q(r) aligns in the direction of the contour line of constant
θ (r). It follows immediately that contours of constant θ (r)
must be straight lines; if they are bent, q would have different
orientations on different points of the contour, against the
property that the contour has constant θ (r).

In a field θ (r) with the property that lines of constant θ

are straight, a singularity at r = 0 implies that these lines
cross at r = 0. In other words, lines of constant θ (r) point
radially away from r = 0, which means q(r) ∼ er , where er

is the radial unit vector. Including the normalization of the
momentum yields the two solutions

q(r) = ±q0er . (53)
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FIG. 12. A hybrid momentum vector field configuration con-
structed by gluing parts of Fig. 2 (left) and Fig. 11(a) together.

One solution is illustrated in Fig. 2. These states correspond to
vortices in momentum space with a phase winding of n = +1,
as one would intuitively expect. Our proof shows that they are
the only viable states.

By taking this configuration as a given input state and
calculating its classical energy in a spiral spin liquid phase,
we find that its energy decays as 1/r2, just like for a usual
spin vortex. Note, however, that for a spin vortex, there is
the freedom to perform a global U (1) rotation of all spins.
This is different for a momentum vortex with n = +1, which
only allows for the Z2 transformation of globally inverting the
momentum, q → −q, leading to the two signs in Eq. (53).

Finally, we mention briefly that proper mixtures of smooth
and discrete domain wall configurations can also be con-
structed. For any discrete domain wall solution, if two radial
lines of momentum match with the solution of smooth domain
walls [Eq. (53)], the two solutions can be cut and pasted to-
gether to form a new solution. An example is given in Fig. 12,
where we take the right quarter of Fig. 11(a) and the rest of
Fig. 2 (left). However, for the same reason of compatibility
with negative winding number vortices, these hybrid vortices
do not actually occur in numerical situations.

B. Formation of rigid vortex network

Let us now zoom out to the entire lattice, and argue the
formation of a rigid vortex network.

First, vortices and straight line domain walls must form a
network. Assuming periodic boundary conditions, the entire
lattice will have vortices of both positive winding number,
which can only be 1, and negative winding numbers. The
negative winding number vortices do not have a smooth
configuration—they must have several branches of straight,
sharp domain walls radiating from the vortex cores. For this
reason, the positive winding number vortices cannot have
smooth configurations neither, as they are incompatible with
domain walls from the negative winding number vortices.
Hence, all vortices should have only straight-line domain
walls, which interconnect into a network. In this network, the
edges (links) are the domain walls, and the nodes (vertices)
are the vortices.

Furthermore, the configurations of vortices and domain
walls that can actually appear in the system are selected

by their energy cost, especially at very low temperatures.
Numerically, we find that vortices with four perpendicular
domain walls are the energetically most favorable ones. This
property results from a balance between positive and negative
winding number vortices: while winding number 1 vortices
usually prefer more domain walls to lower their energy, this
does not always apply to negative winding number vortices.
Therefore, a rectangular network of vortices and domain walls
is expected at low temperatures.

The vortex network is rigid. This can be deduced from the
analytical solutions for a given configuration of domain walls
[Eq. (45)]. Note that, around a vortex, the four domain wall
angles must satisfy Eq. (50) in order for a momentum vector
field solution to exist. If we move the positions of one or few
vortices, then for some of the neighboring vortices, only one
of the domain wall angles will change, which obviously will
violate the condition in Eq. (50). The movement of domain
walls or vortices must be of subsystem type at least. Hence,
the vortex network becomes highly rigid at low temperatures,
when the local momentum vectors are almost strictly on the
spiral ring and Eq. (50) is enforced.

In a system with a frozen rigid vortex network, it becomes
very difficult for the vortices to annihilate each other in order
to further reduce the system’s energy, since any movement
of vortices requires a global, cooperative change of the spin
configuration.

These arguments imply that Kosterlitz-Thouless-type be-
havior is not expected in our system. Fundamentally, this is
because of the curl-free condition [Eq. (8)] and the appearance
of vortices that break the momentum vector U(1) rotational
symmetry. Note that, although the ground state manifold has
such a degeneracy/symmetry, the excitations (momentum vor-
tices) do not. More specifically, this leads to the formation of
straight line domain walls, with an energy cost proportional
to their length, in stark contrast to usual spin vortices. These
differences significantly control the thermodynamic behavior
of the rigid vortex network phase, and make the Kosterlitz-
Thouless phase transition physics inapplicable.

C. Domain wall broadening

To make sure that our analysis in the previous section is
valid, we still have to address the question whether our as-
sumption that the momentum vector is strictly confined to the
spiral ring actually applies. We will see in this section that,
although sharp domain walls do not represent the exact
energetically optimal spin configurations in a real system,
reintroducing amplitude variations only broadens the domain
walls to a finite extend, at a scale much smaller compared to
the rigid vortex network. Consequently, the sharp domain wall
assumption can effectively be considered as valid.

Let us now study the finite broadening of domain walls
that happens in more realistic settings, when the momentum
vector field q is allowed to fluctuate away from the spiral ring.
Particularly, we will demonstrate that an energy-optimized
broadened domain wall has a simple analytic description in
the continuum limit. We will calculate the ideal form of the
rounded domain wall and show that it comes with a low
energy cost if the momentum difference across the domain
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FIG. 13. Optimization of a domain wall: A discontinuous,
nonoptimized domain wall (left) characterized by an angle α consists
of two homogeneous ground state spin spirals with momenta q+

and q− arranged symmetrically around the discontinuous line. Upon
optimization, lines of constant spin directions � become rounded and
the domain wall acquires a finite width �y (right).

wall is small. Note that this rounding is necessarily associated
with amplitude variations of the momentum.

We first specify the type of spin configuration that we
will describe with the help of our continuum model. Let us
start with a discontinuous (nonoptimized) horizontal domain
wall along the x axis, which separates two homogeneous spin
spirals with momenta q+ and q− in the upper and lower half
planes, respectively. Furthermore, we require that both spirals
are ground states, i.e., |q+| = |q−| = q0, where the ground
state momentum q0 follows from minimizing the potential
term Hp in Eq. (16) in the limit δ � 1, yielding q0 = 4

√
δ.

Since the spin configuration must be symmetric around the x
axis due to the curl-free condition (see Fig. 13), the Cartesian
components obey q+

x = q−
x and q+

y = −q−
y . In the following,

we will characterize the domain wall by α ∈ [0, π/2], which
is the angle enclosed by the x axis and q+ (or q−) such that

q±
x = q0 cos α = 4

√
δ cos α,

q±
y = ±q0 sin α = ±4

√
δ sin α. (54)

Without loss of generality we have fixed the sign q+
y > 0 in

this equation. With these definitions, α describes the strength
of the discontinuity where α = 0 stands for no domain wall
and α = π/2 corresponds to the maximal momentum jump
across the domain wall.

The above spin configuration is an excitation where all the
energy cost is concentrated along the infinitely narrow domain
wall. Upon optimization the energy will spread out into a
strip of finite width, and contours of constant spin angle �

become rounded (see Fig. 13). In the following, we will use
the continuum model in Eq. (16) to calculate the ideal mo-
mentum distribution q(r) = (qx(r), qy(r)) of this state. Most
importantly, the optimized momentum configuration is still
translation invariant along the x axes, such that lines of con-
stant � transform into each other by parallel shifts along the
x axes. As a result, the functional dependencies of q(r) reduce
to

q(r) ≡ q(y) = (qx, qy(y)), (55)

which means that qx is constant across the entire spin configu-
ration and qy is only a function of y such that the optimization
becomes an effective 1D problem. This also guarantees that
the curl-free condition [Eq. (8)] is not violated in the optimiza-
tion process. Using this property to simplify the continuum
model in Eq. (16) and exploiting Eq. (54) one finds that the
energy E per length l of the domain wall in leading order in δ

is given by

E

l
= 1

16

∫ +∞

−∞
dy

[−2
(
q+

y

)2
q2

y + q4
y + (∂yqy)2

]

=
∫ +∞

−∞
dyL. (56)

Here, terms constant in y are neglected (these terms, however,
may still have an α dependence). This functional needs to be
minimized with respect to qy(y) where the boundary condi-
tions follow from the fact that far away from the domain wall
the spin configurations are given by the initial homogeneous
spiral states with momenta q+ and q−:

lim
y→±∞ qy(y) = ±q+

y . (57)

Using Euler-Lagrange equation

∂qyL = ∂y∂∂yqyL (58)

this leads to the differential equation

∂2
y qy = −2

(
q+

y

)2
qy + 2q3

y . (59)

The solution respecting the boundary conditions in Eq. (57) is
found to have a simple form:

qy(q) = q+
y tanh(q+

y y). (60)

It is worth highlighting two properties of this result. First,
from the argument of the hyperbolic tangent, the width �y of
the optimized domain wall is given by

�y = 1

q+
y

= 1

4
√

δ sin α
, (61)

which indicates that domain walls with small α have a di-
verging width. On the other hand, amplitude variations of the
momentum are small in this limit such that, in total, these
domain walls are still energetically cheap. For a typical angle
α = π/4, which is realized for the domain walls of momen-
tum antivortices with the lowest possible energy one obtains
�y = 1/

√
8δ. Inserting δ = 0.03 as used in our numerics

yields a rather small width of �y ≈ 2 lattice constants. [It is,
of course, questionable whether our continuum model where
Eq. (13) is truncated still approximates the system reason-
ably well when momentum variations occur on such short
distances. Better estimates are expected for smaller δ.] Our
numerics results below confirm that domain walls are narrow
with a widths of only a few lattice spacings.

Second, it is instructive to calculate the maximal excitation
energies in the center of a domain wall at y = 0. To this end,
we compare the Lagrangian L in Eq. (56) (which provides the
energy per unit area, or equivalently, per site) at y = 0 [where
qy = 0 and ∂yqy = (q+

y )2] and at y → ∞ (where qy = q+
y and

∂yqy = 0). The maximal excitation energy per site of a domain
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wall with angle α then reads as

�Eα =
(
q+

y

)4

8
= 32δ2 sin4 α. (62)

The scaling �Eα ∼ α4, which holds for α � 1, implies re-
markably small excitation energies in the limit of vanishing
α. One may conclude that the formation of domain walls
with small α provides a natural source for low-energy thermal
fluctuations.

For a typical domain wall with α = π/4 the excitation
energy is given by �Eπ/4 = 8δ2. Comparing this value with
the local excitation energy of a trivial ferromagnetic state,
�Efm = 16δ2, which defines another characteristic energy
scale of the system, one realizes that �Eπ/4 cannot be consid-
ered small. The fact that such domain walls are still observed
at small temperatures (see below) is related to the fact that this
energy is confined to a narrow strip.

One may conclude that this confinement of energy repre-
sents the key property of domain walls and implies that they
remain well defined and narrow even far away from vortices.

D. Numerical results

Having discussed the physical properties of energy-
optimized momentum vortices and their domain wall
construction we now study their occurrence in our low-
temperature Monte-Carlo simulations at δ = 0.03.

Further decreasing the temperature in the spiral spin liquid
regime investigated in Sec. III E, the heat capacity (Fig. 7) re-
mains completely featureless below T ∗ = 0.08. This indicates
that all changes, which a spiral spin liquid undergoes when
cooling it down are smooth crossovers while sharp phase
transitions are not observed. Note that in the low temperature
limit, the heat capacity approaches C = 1/2, as is expected
for a XY model with one quadratic mode per site.

The most obvious qualitative change between T = 0.05
and T = 0.005 in Figs. 1(d) and 1(e) is that the spiral domains
become well-defined and the domain walls straighten, turning
into a network of rigid lines running through the entire sys-
tem. The intersections of domain walls define the locations
of momentum vortices, which have winding numbers n = 1
or n = −1. Note that in agreement with our analytical inves-
tigation of energy optimized spin configurations, all vortices
with n = −1 have four domain walls radiating from the center
with angles close to π/2 between them. As discussed above,
n = 1 vortices could in principle be constructed in a smooth
way without domain walls, see Fig. 2. However, due to their
incompatibility with n = −1 vortices we observe that in most
of our numerical outputs n = 1 vortices adapt the geometry
of n = −1 vortices and, likewise, show four domain walls
radiating from the core.

No binding effects between vortices and antivortices are
observed; on the contrary, with decreasing temperature, their
distance increases. We, hence, exclude the possibility of a
Kosterlitz-Thouless transition resulting from U(1) momentum
symmetry. The same applies to spin vortices, which are oc-
casionally seen in the numerical outputs, even at the lowest
simulated temperatures, see encircled spin configurations in
Fig. 1(d) (in the spin pattern of an ideal spiral state, a spin
vortex has a similar shape as a dislocation in a regular crystal).

FIG. 14. Momentum-space properties of spin configurations
from classical Monte Carlo with δ = 0.03 in the low-temperature
regime at T = 0.005. (a) shows the spin structure factor S(k)
[Eq. (30)] for the state in Fig. 1(d). (b) shows the electric field cor-
relator CEE (k) [Eq. (31)] obtained by averaging over 10 independent
Monte Carlo runs.

None of our independent Monte Carlo runs reveals a binding
into spin vortex-antivortex pairs.

In most of our low-temperature spin configurations from
Monte Carlo, the energetic preference of n = −1 vortices with
four domain walls leads to regular square-shaped patterns that
spread over the entire lattice. This goes long with the selection
of four momenta along the spiral ring, as is evident in the spin
structure factor at T = 0.005, see Fig. 14(a). In the case of a
perfect circular symmetric potential term Hp, these four mo-
menta could also occur at any rotated positions on the spiral
ring. However, the small deviations from rotation symmetry
at finite δ pin them along the cartesian qx and qy axes in
Fig. 14(a). For this reason, a finite-temperature spontaneous
breaking of U (1) momentum symmetry down to Z4 cannot
occur; rather the spiral selection is continuous as a function of
temperature. Even for a perfectly rotation invariant potential
Hp (i.e., in the limit δ → 0) a finite temperature transition
associated with spontaneous momentum symmetry breaking
U (1) → Z4 would be suppressed due to Mermin-Wagner the-
orem. Overall, the dominant effects of Hp and the momentum
pinning makes a description in terms of a rank-2 U(1) gauge
theory inaccurate and, consequently, the fourfold pinch points
in the correlator CEE (k) fade drastically, see Fig. 14(b).

To discuss the system’s behavior below the spiral tran-
sition at T = 0.08 in more detail, we show in Fig. 15 the
real-space momentum and energy distributions at T = 0.005
and T = 0.05. The formation of spiral patches and rigid
networks of domain walls is clearly visible when compar-
ing the local momentum directions in Figs. 15(a) and 15(b).
Furthermore, since domain walls have reduced momenta, the
network can be made visible by plotting the momentum am-
plitudes, see Figs. 15(c) and 15(d). While at T = 0.05 only
faint indications of domain walls are visible, they become very
pronounced at T = 0.005. The domain walls also show up as
lines of enhanced energy, see Fig. 15(e), however, in a less
pronounced way as in the momentum amplitude. [In order
to make the network of domains walls visible in the energy
a Gaussian smoothing of the data with a standard deviation
of σ = 3 lattice spacings has been performed in Figs. 15(e)
and 15(f).] The spin configuration in Fig. 15(f) also reveals

023175-16



LOW-ENERGY STRUCTURE OF SPIRAL SPIN LIQUIDS PHYSICAL REVIEW RESEARCH 4, 023175 (2022)

FIG. 15. Further details of the spin configurations from
Figs. 1(d) and 1(e) at T = 0.005 (left column) and T = 0.05 (right
column). [(a),(b)] The momentum orientation eq = q/|q|, [(c),(d)]
the momentum amplitude q = |q|, and [(e),(f)] the local energies per
site, smoothed by a Gaussian broadening with σ = 3 lattice spacings.
In (e) the momentum vortices and anitvortices are marked by their
winding numbers n = 1 and n = −1, respectively.

that momentum antivortices (n = −1) cost more energy than
momentum vortices (n = 1). This is because n = 1 vortices
can reduce their energy by realizing spin patterns with an
approximate circular symmetry near the vortex core. As an
additional consequence of this freedom, we observe that n = 1
vortices typically show larger deviations from π/2 angles
between their domain walls than n = −1 vortices. Clearly,
however, the excitations with the largest energy in Fig. 15(f)
are spin vortices, which appear as narrow and high peaks
in the energy landscape. This shows that topological defects
in spin and momentum space occur on two different energy
scales.

It should be emphasized, however, that at the lowest sim-
ulated temperatures (T ≈ 0.005) the typical time scales of

thermal relaxation become exceedingly large. This is because
of the rigidity of domain walls, which cannot undergo any
local moves but can only be modified when changing the spin
state over the entire lattice. Therefore, it is possible (or even
likely) that our numerically obtained low-temperature spin
configurations do not represent thermal equilibrium but are
rather metastable states.

In summary, our low-temperature Monte-Carlo results re-
veal a well-defined network of narrow domain walls with a
tendency for rectangular patterns minimizing the energy of
momentum antivortices. While the domain sizes grow with
decreasing temperature a transition into a phase where U (1)
momentum symmetry is spontaneously broken down to Z4 (or
lower symmetries) is not observed. In contrast to fluctuations
in momentum space, which take place on relatively small
energy scales, spin vortices appear as massive and locally
confined excitations.

V. SUMMARY AND DISCUSSION

In this paper, we have investigated the low-energy behavior
of spiral spin liquids and have identified various unexpected
properties and connections to other fields in physics. The key
reason for the nontrivial behavior of spiral spin liquids lies in
its effective U(1) degree of freedom, which corresponds to the
direction of the spiral momentum q on the degenerate ring-like
ground state manifold. Unlike the elementary spin degree of
freedom, the spiral momentum, which we define as a vector
field q(r) on a coarse-grained lattice, is subject to a curl-
free condition, ∇×q(r) = 0. This has drastic consequences
on the nature of excited spin configurations, particularly, we
prove that momentum vortices can only have winding num-
bers equal or smaller than one while higher-winding-number
vortex types are strictly forbidden.

Interestingly, even though the momentum field q(r) is di-
rectly related to the spin degree of freedom via q(r) = ∇�(r)
(where � is the spins’ in-plane angle) spin vortices and
momentum vortices are independent excitations where the
latter ones cost a much lower energy than the former. There
is, hence, a temperature regime where thermal fluctuations
mostly affect the momentum direction of spin spirals while
the momentum amplitude is fixed near the ground state ring,
leading to spin configurations with large densities of momen-
tum vortices, see Fig. 1(e). This is the spiral spin liquid regime
whose existence we have numerically demonstrated for the
classical square lattice J1-J2-J3 XY model.

We have further demonstrated that the precise mechanism
behind the momentum fluctuations in the spiral spin liquid
bears striking similarities with elasticity theory of crystals,
particularly, our low-energy continuum spin model can be
directly mapped onto the shear modulus term in elasticity.
However, due to the constrained nature of the momentum
field, the topological defects of crystals—disclinations and
dislocations—do not have any analogues in a classical spiral
spin liquid. Rather, a momentum vortex with positive winding
can be considered either as a bound pair of dislocations or
a quadrupole of disclinations. Given the mapping between
elasticity theory and rank-2 U(1) gauge theory for fractons one
may alternatively describe the low-energy behavior of spiral
spin liquids by a tensor gauge theory electrostatics subject to
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a generalized Gauss law. However, since deconfined charges
(i.e., fractons) and dipoles of charges are strictly absent in
spiral spin liquids, the thermal fluctuations of momentum
vortices follow the low-energy behavior of an electrostatics
tensor gauge theory where only fracton quadrupoles (or higher
multipoles) are present. We make this connection explicit by
numerically resolving the fourfold pinch points in the elec-
tric field correlator, which are characteristic for these fracton
theories.

Cooling down the spiral spin liquid, the fluctuations in the
momentum amplitude continuously freeze out. This freezing
is again controlled by the curl-free condition for q, which
dictates that the low-energy momentum antivortices must be
formed by the intersections of straight and narrow domain
walls separating regions of different momenta q. We devel-
oped a classification scheme for momentum vortices based on
the number of domain walls radiating from the vortex core and
found that vortices with winding n = −1 have the smallest
excitation energy when four domain walls with π/2 angles
between them emanate from the center. Even though momen-
tum vortices with n = 1 can in principle be constructed in a
smooth way without any domain walls they are incompatible
with n = −1 vortices when arranging both in the same sys-
tem. As a result, our low-temperature numerical simulations
show rigid networks of domain walls connecting momen-
tum vortices and antivortices where angles of π/2 between
momenta in adjacent domains are energetically preferred. In-
terestingly, in such a network state no local excitations can be
made in a way that domain walls are only modified, inserted
or deleted in a finite lattice region. The simplest low-energy
process of changing the domain wall configuration consists of
shifting a domain wall parallel to itself over its full length.
As a result of this nonlocal dynamics, equilibration times are
increasing significantly as the temperature is decreased such
that the system gets easily trapped in metastable states. A
typical observation in our numerical outputs is that the domain
wall network becomes more wide-meshed with decreasing
temperature.

Our paper sheds light on the nature of 2D spiral spin
liquids, and also opens gateways to analyzing a plethora of
related problems. First, its generalization to 3D is highly
nontrivial. The degenerate spiral ground-state wave vectors in
3D can form a 1D ring, a 2D sphere, a sphere with punctures
[37–39], or other manifolds with or without boundaries [25].
In each of these cases, the topological defects of momen-
tum vectors are different, and their classification will be an
indispensable step in understanding 3D spiral spin liquids.
Second, insights from this paper may help us to understand
the quantum version of spiral spin liquids. By identifying the

classical spiral spin liquid as the electrostatics of a rank-2 U(1)
theory, it is reasonable to speculate that the quantum model
will at least carry some features of these effective theories. We
note that our construction seems to have a natural extension to
the quantum model very similar to the higher-rank deconfined
quantum criticality studied by Ma and Pretko [63].

We also highlight that the local momentum vortices are
a new type of topological defect with a rather exotic curl-
free constraint. Their detailed properties await more in-depth
study. For example, while spin vortices are only topological
for XY spins, local momentum vortices are also well defined
for Heisenberg spins. They have already been observed in
studies of Heisenberg spiral spin liquid models on the hon-
eycomb lattice by Shimokawa and Kawamura [24]. Closely
related to this, the precise melting process of the rigid vortex
network as temperature increases represents an interesting
statistical physics problem.

Our theoretical study has direct applications in exper-
iment. Among various spiral spin liquid materials FeCl3

[28], Ca10Cr7O28 [29–34], McSc2S4 [37–39], MgCr2O4 [40],
CoAl2O4 [41], and NiRh2O4 [43], our theory is most rele-
vant to the 2D spin liquid materials FeCl3 and Ca10Cr7O28.
The material FeCl3 is a honeycomb lattice model, which
straight forwardly realizes the spiral spin liquid physics, and
the ring is clearly visible in neutron scattering experiments
[28]. Ca10Cr7O28 is a bilayer breathing kagome magnet, but
can be mapped to a honeycomb lattice model at low tem-
peratures, and exchange parameters place it very close to the
spiral spin liquid phase on the honeycomb model too [33,34].
This phase is essentially the same as the one studied in our
paper. The spiral ring in the spin structure factor [Fig. 8(a)]
has already been observed in neutron scattering [29,30]. More
direct experimental tests of our theory would be the search
for fourfold pinch points in the correlator defined in Eq. (32)
[Fig. 8(c)], or taking direct snapshot of spin configurations
using cutting-edge technology like electron holography [64].
Despite the challenges of such studies, we strongly believe
that the investigation of spiral spin liquids in real materials
represents a fruitful research direction.
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