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Abstract

Regular emergence of novel pathogens is one of the greatest threats to global health.

DNA and RNA sequencing enable detection of new viruses and microbes, but standard

approaches for computational analysis of sequencing data rely on predefined lists of

known agents. New pathogens, with genomes highly divergent from available references,

remain difficult to recognize.

This problem can be alleviated by training classifiers predicting whether a given

sequencing read originates from a possibly novel pathogen. I show that deep neural

networks invariant to DNA reverse-complementarity markedly outperform alternatives

based on other machine learning algorithms and homology detection by sequence align-

ment. This holds for both bacteria and viruses. I introduce new methods enabling

analysis and visualization of the learned patterns, as well as identification of sequences,

genes and genomic regions associated with high pathogenic potential. Modified ResNet

architectures combined with real-time mapping of short reads can accurately recognize

both known and novel threats as the sequencer is running. Analogous models also work

for short fragments of long reads, corresponding to just 0.5 s of sequencing time. I then

describe a manually curated database of fungal pathogen genomes facilitating detection

of novel threats with both machine learning and alternative approaches. I use learned

numerical representations of the genomes in the database to visualize the relationship

between taxonomy and the pathogenic phenotype. Finally, I employ the developed neural

architectures to classify reads sampled from mixtures of different novel bacteria, viruses,

and fungi.

The methods presented here are implemented in the DeePaC and DeePaC-Live pack-

ages. They can be easily reused for training, evaluation, and deployment of deep neural

networks for DNA and RNA sequences. Although the main focus is placed on iden-

tification of emerging pathogens from sequencing data, presented approaches could

also be used to screen synthetic sequences and detect engineered threats. The trained

networks are capable of predicting abstract, complex traits directly from sequences,

without directly relying on close taxonomic matches. In the future, similar ’phenotype

models’ could find many alternative applications in rapid diagnostics, public health and

synthetic biology.
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1 Introduction

1.1 Novel pathogens: a global issue

Possible emergence of novel, deadly pathogens has long been considered a realistic,

serious and growing threat (Bryan et al., 1994; Lederberg et al., 1992; Morens & Fauci,

2020; Ndow et al., 2019; L. H. Taylor et al., 2001; M. E. J. Woolhouse et al., 2001;

M. Woolhouse & Gaunt, 2007; M. E. J. Woolhouse & Gowtage-Sequeria, 2005). The

frequency at which new infectious diseases emerge has been rising since the 1940s,

even when reporting bias is taken into account (K. E. Jones et al., 2008). Precise

definitions of pathogen emergence (or re-emergence) are often difficult to apply due to

lack of sufficient historical data, and a certain degree of subjectivity remains (M. E. J.

Woolhouse & Gowtage-Sequeria, 2005). Nevertheless, zoonotic diseases originating

from wildlife have been identified as the greatest threat of all emerging infectious

diseases (EIDs), with a potential to affect public health at a planetary scale (K. E. Jones

et al., 2008).

RNA viruses are reported to be the most numerous group of pathogens appearing in

new human populations, switching hosts or rapidly growing in incidence, most probably

due to their high mutation rates (M. E. J. Woolhouse & Gowtage-Sequeria, 2005; M. E. J.

Woolhouse et al., 2005). This has led to predictions that while, in general, the future

emergence of new pathogens is expected and most probably just a matter of time,

novel, zoonotic RNA viruses are the most likely to cause dangerous outbreaks or even

pandemics (M. Woolhouse & Gaunt, 2007). There are multiple examples of such events

occurring in the past; the global epidemic of human immunodeficiency virus (HIV) has

claimed millions of lives since the virus was first identified. The pandemics caused by

novel strains of influenza A in the 20th century (especially the ’Spanish’ flu pandemic

of 1918) were comparably deadly, and the first two decades of the 21st century were

marked by the ’swine flu’ pandemic and the outbreaks of novel SARS-CoV-1 and MERS

coronaviruses. At the same time, epidemics of Zika and Ebola viruses in the 2010s have

shown that previously known threats are still difficult to contain. Respiratory viruses

such as influenza or coronaviruses have been suggested to be especially likely to cause

new pandemics (Nuzzo et al., 2019). Those predictions came true during my work on

3



1. Introduction

this thesis, when the SARS-CoV-2 virus emerged, causing the COVID-19 pandemic. The

virus has quickly adapted, and the World Health Organization has already designated five

Variants of Concern (Alpha, Beta, Gamma, Delta and Omicron) by the end of November

2021. Their increased transmissibility, virulence, or resistance towards the preventive,

diagnostic or therapeutic measures introduced to contain the virus emphasize how fast

pathogen evolution can be. Novel agents are bound to arise – either in the form of new

strains of previously known threats or as members of entirely new taxa.

This applies to other pathogen groups as well. DNA viruses are also capable of

host switching (M. E. Woolhouse et al., 2016). This includes members of the family

Poxviridae, such as its smallpox-causing member, the Variola virus (M. Woolhouse &

Gaunt, 2007). While the new squirrelpox virus recently isolated in Berlin did not cause

any symptoms in exposed humans (Wibbelt et al., 2017), its discovery highlights the

still unexplored diversity of this clinically important clade. Further, bacteria, rather than

RNA viruses, have been reported as the underlying cause of most new EID ’events’

(K. E. Jones et al., 2008). This apparent discrepancy is actually a consequence of

the operating definitions used – the authors counted each novel drug-resistant strain

as a separate ’event’, highlighting the dangerous rise of antibiotic resistance. New

bacterial strains may also become more virulent, as shown by the example of the 2011

enterohaemorrhagic Escherichia coli (EHEC) epidemic in Germany (Frank et al., 2011).

Their emergence is often facilitated by increasing human exposure and population

density, as well as by fast evolution of bacteria, especially due to horizontal gene transfer

(K. E. Jones et al., 2008; Trappe et al., 2016; Vouga & Greub, 2016). Environmental

changes, including climate change, could also play a role, as suggested for bacterial

(Vouga & Greub, 2016), vector-borne (K. E. Jones et al., 2008; J. A. Patz et al., 2005)

and fungal pathogens (Casadevall et al., 2019; Garcia-Solache & Casadevall, 2010). This

included Candida auris – a fungus which, since its emergence in 2009, has been named

one of the most urgent, drug-resistant threats (Casadevall et al., 2019; CDC, 2019).

Further, accidental or deliberate release of dangerous pathogens could lead not only

to localized outbreaks but potentially also to a deadly pandemic (Nuzzo et al., 2019).

Known, unmodified agents can be used as bioweapons (Riedel, 2004), and could possibly

also emerge via either laboratory escape or even a vaccine challenge trial (Holmes et

al., 2021; Rozo & Gronvall, 2015). Recent developments in the field of synthetic

biology have raised concerns that even more virulent threats could be created and used

for malicious purposes by either bioterrorists or state actors (Nuzzo et al., 2019). A

report by National Academies of Sciences, Engineering, and Medicine (2018) classifies

making existing viruses more dangerous as an issue of mid-to-high concern. Analogous

modification of bacteria is identified as a matter of the highest concern, along with

4



1.1 Novel pathogens: a global issue

re-creation of known viral pathogens, proven to be possible by the synthesis of a close

relative of the Variola virus the same year (Noyce et al., 2018). In addition to that, strains

modified through gain-of-function (GoF) research, intended to enhance preparedness

for future emerging infectious diseases (EIDs), could cause epidemics (or pandemics)

of their own if spread outside of a secure laboratory. Controversial GoF studies have

been published for both influenza and coronaviruses, leading to calls for a moratorium

on creating potential pandemic pathogens (Herfst et al., 2012; Imai et al., 2012; Lipsitch

& Inglesby, 2014). Several years later, the emergence of SARS-CoV-2 added another

dimension to those considerations. While the zoonotic origin of the virus has been

assumed from the early days of the pandemic (P. Zhou et al., 2020), the ’lab leak’

hypothesis attracted considerable media attention and has also been discussed in the

scientific literature, although as of early 2022, it remains unproven and described as

unlikely (Andersen et al., 2020; Holmes et al., 2021; Lytras et al., 2021; Relman, 2020).

Irrespective of whether novel pathogens arise with or without human intervention,

detecting them faces similar challenges. Targeted diagnostic assays specialize in report-

ing markers of previously known agents. Therefore, only open-view methods, such as

those based on DNA or RNA sequencing, can be expected to detect pathogens highly

divergent from all known ones (Calistri & Palù, 2015; Lecuit & Eloit, 2014). Standard

computational tools used to analyze the resulting data rely on matching the obtained se-

quences with genomes of known pathogens, usually based on some measure of sequence

similarity. Similar approaches can also be used to assess risks associated with synthetic

sequences, also as a form of computational screening performed before their synthesis

(Carter & Friedman, 2015; Diggans & Leproust, 2019; National Academies of Sciences,

Engineering, and Medicine, 2018; National Research Council, 2010). However, depen-

dence on curated lists of potentially dangerous agents leads to a crucial vulnerability,

as pathogens sufficiently different from the known ones may remain undetected. This

highlights the importance of using a comprehensive and appropriate reference database,

a problem also known in other related fields, such as taxonomic classification of metage-

nomic reads (Piro et al., 2020). On the other hand, generalization to novel species or

strains could also be explicitly addressed by the development of improved, specialized

computational approaches. In this thesis, I will mainly focus on the applications of

deep learning as a promising alternative to methods based on sequence alignment or

homology, especially in the context of classification of unassembled next-generation

sequencing (NGS) reads and read fragments for fast detection of novel pathogens. I will

also stress the importance of the appropriate data setup, including data curation and the

underlying assumptions, which affect both the previously existing and newly-developed

approaches.

5



1. Introduction

1.2 Pathogen detection using high-throughput
sequencing

1.2.1 DNA and RNA sequencing: a brief overview

The genetic information of all known cellular organisms and DNA viruses is encoded in

their DNA, a polymer consisting of four nucleotide types, each containing one of the nu-

cleobases: adenine, cytosine, guanine or thymine. Those are conventionally represented

as one of four letters: A, C, G or T, with an ’unknown’ nucleotide designated by an N.

In RNA, used to store the genomic information of RNA viruses, thymine is generally

replaced with uracil (U). Many complex processes, including nucleotide modification

(in both DNA and RNA), post-transcriptional and post-translational regulation, as well

as effects dependent on genome organization and chromatin accessibility (in eukaryotes),

contribute to the final expression of the encoded genes, giving rise to the complex bio-

logical system of a cell or a virus. At the same time, an agent contained in a sample can

be successfully identified based on its genome via next-generation sequencing (NGS)

(Calistri & Palù, 2015; Lecuit & Eloit, 2014). Although multiple competing sequencing

technologies exist, in this work I will focus on two platforms arguably most relevant

for the pathogen detection tasks. Illumina sequencing is an established, highly accurate

technique producing short reads of up to around 300 base pairs (bp), depending on

the instrument (Goodwin et al., 2016). It is efficient and scalable, with low-error rates

facilitating pathogen identification down to the strain level. Although it can only directly

sequence DNA, reliable RNA sequencing protocols exist.

A more recent platform by Oxford Nanopore Technologies (ONT) is a type of long-

read sequencing commonly generating reads up to two orders of magnitude longer than

Illumina, with record lengths measured in millions of base pairs (Amarasinghe et al.,

2020). This comes at the cost of lower accuracy, throughput and cost-efficiency, although

rapid progress on all those fronts could change this in the future. It is also possible

to sequence RNA directly. Another crucial advantage of Nanopore sequencing is that

some of the instruments can be very small, allowing for easy setup of mobile labs and

fast analyses in the field. This has been demonstrated for molecular surveillance during

the Ebola outbreak of 2015 (Quick et al., 2016), in situ metagenomics analyses of both

clinical and environmental samples (Latorre-Pérez et al., 2020), and even sequencing

runs onboard the International Space Station (Castro-Wallace et al., 2017). Finally,

ONT sequencing supports real-time analyses by design, which can speed up diagnostics

in time-critical applications (Quick et al., 2016) or be used to selectively sequence

the organisms of interest (Loose et al., 2016; Ulrich et al., 2022). On the other hand,

6



1.2 Pathogen detection using high-throughput sequencing

approaches for real-time analysis of Illumina runs have also been developed (Lindner

et al., 2017; Loka et al., 2019; Tausch, Loka, et al., 2018).

1.2.2 Mapping and alignment-based pipelines

The generated reads correspond to fragments of the original genome with unknown

order. They can be analyzed directly or first assembled into contigs – longer, continuous

sequences, reconstructing the most probable order of available subsequences. However,

assembly is a difficult problem, especially in the metagenomic context, when multiple

different species are present in the sample (Breitwieser et al., 2017). In this thesis, I will

focus on direct analysis of unassembled reads – this approach is especially suited for

supporting real-time pathogen detection and risk assessment procedures for synthetic

oligonucleotides. Nevertheless, I will also show that the developed methods can be

successfully used on assembled contigs and full genomes as well.

One of the standard methods of analysis used for biological sequences of any length

relies on aligning the query sequence to a database of known references, aiming to detect

possible homology between them. BLAST (Altschul et al., 1990; Altschul et al., 1997;

Camacho et al., 2009) remains one of the most popular sequence alignment tools over

30 years after the original publication (Alser et al., 2021). There are many flavours

of BLAST, appropriate for alignments between nucleotide, protein, and translated nu-

cleotide sequences, as well as for either relatively closely related or dissimilar sequences

(Camacho et al., 2009). While variants such as blastn or discontiguous megablast are

especially fit for comparisons of nucleotide sequences across (potentially novel) species,

BLAST can be computationally inefficient on large query sets corresponding to samples

of millions to billions NGS reads (Deneke et al., 2017). For this reason, specialized read

mappers are usually used to align the reads to reference genomes. Bowtie2 (Langmead &

Salzberg, 2012) and BWA (H. Li & Durbin, 2010), including the BWA-MEM algorithm

(H. Li, 2013), are the most popular aligners for Illumina reads, even though multiple

alternatives have been developed in the last decades (Alser et al., 2021). HiLive and

HiLive2 (Lindner et al., 2017; Loka et al., 2019) are special-purpose Illumina mappers

enabling real-time analysis during an Illumina sequencing run, which is crucial for some

of the use-cases presented in this thesis. Aligners designed with long-read sequencing

technologies in mind, such as minimap2, can process the corresponding reads at least an

order of magnitude faster, although they can perform slightly worse than BWA-MEM on

short reads (Alser et al., 2021; H. Li, 2018). A broad overview of over 100 different read

alignment tools, including the algorithmic details, has been presented in a recent review

by Alser et al. (2021).
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All those methods can be used for pathogen detection and risk assessment, as a match

to a reference genome of a known pathogen may suggest its presence in the analyzed

sample. However, spurious assignments are also possible, so a single match should not

be treated as definitive evidence. On the other hand, in clinical samples, the number

of reads originating from the causative agent may be extremely low, so the presence

of a pathogen may be reflected in only a handful of matches (Andrusch et al., 2018).

Further, the host reads usually greatly outnumber the viral, bacterial or fungal reads,

and additional contaminants may be present. Therefore, read mapping is often used as

only one of multiple steps in larger, specialized pathogen identification pipelines, such

as SURPI (Naccache et al., 2014), Clinical PathoScope (Byrd et al., 2014), PathoScope

2.0 (Hong et al., 2014), Sigma (Ahn et al., 2015) or PAIPline (Andrusch et al., 2018).

PathoLive (Tausch, Loka, et al., 2018) extends this to real-time pathogen detection

during Illumina sequencing runs. As all these tools rely on read alignment results, they

are indirectly affected by all the strengths and weaknesses of the underlying algorithms.

1.2.3 Taxonomic classification and profiling in metagenomics

Clinical samples containing mixtures of host, microbial and viral reads are a type of

metagenomic samples. Hence, many of the problems related to pathogen detection and

identification are special cases of more general challenges in computational metage-

nomics. For example, Sigma (Ahn et al., 2015) uses a probabilistic model to estimate

relative abundances of strains present in the sample. This task is of interest not only in the

context of pathogen detection but also in taxonomic profiling of metagenomic samples

in general. Related approaches, relying on statistical analysis of read alignment results,

include GAAS (Angly et al., 2009), GRAMMy (Xia et al., 2011), TAMER (Jiang et al.,

2012), GASiC (Lindner & Renard, 2013), TAEC (Sohn et al., 2014), and Centrifuge

(D. Kim et al., 2016). Other tools specialize in differential abundance analyzes (Fischer

et al., 2017), filtering-out unlikely references based on their coverage profiles (Dadi et al.,

2017), finding protein matches (Menzel et al., 2016; Mirdita et al., 2021; Steinegger &

Söding, 2017; von Meijenfeldt et al., 2019), or enable estimating a measure of genomic

distance between previously unknown candidate organisms and the known references

(Lindner & Renard, 2015). MEGAN (Huson et al., 2007) can be viewed as a precursor

of all those methods, as it also post-processes sequence alignment output. If a read can

be matched to multiple leaves in a taxonomic tree, resulting ambiguities are resolved

by assigning it to the lowest common ancestor (LCA) of those leaves. Alternatively, a

top-down approach based on the concept of the deepest uncommon descendant can also

be used (Piro et al., 2016).
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Another category of taxonomic profilers, such as GOTTCHA (Freitas et al., 2015),

mOTUs (Milanese et al., 2019; Sunagawa et al., 2013) and MetaPhlAn (Beghini et al.,

2021; Segata et al., 2012; Truong et al., 2015), uses databases of unique markers to

detect signatures of the taxa present in the sample. This improves the processing speed,

which is often important for large samples, but also leads to an increased risk of missing

the organisms sequenced with low coverage (presumably due to their low abundance), or

unrepresented in the marker database. Those problems can be alleviated using taxonomic

classifiers assigning reads to taxa based on full reference genomes, but not necessarily

relying on read mappers or BLAST. An efficient and popular group of tools, including

Kraken (Wood et al., 2019; Wood & Salzberg, 2014), CLARK (Ounit et al., 2015), and

ganon (Piro et al., 2020), counts occurrences of taxa-specific k-mers within each read

to assign it to the best-matching node in the taxonomy tree. More specialized tools

enable correcting for low coverage of less abundant pathogens (Breitwieser et al., 2018),

abundance estimation (J. Lu et al., 2017) and even real-time taxonomic classification

of reads produced by the sequencer (Tausch, Strauch, et al., 2018). Finally, k-mer

frequencies can be used as input for machine learning approaches such as NBC (G.

Rosen et al., 2008; G. L. Rosen & Lim, 2012; G. L. Rosen et al., 2011) or PhymmBL

(Brady & Salzberg, 2009), and k-mer embeddings have been used in the long short-term

memory network (LSTM) architecture of DeepMicrobes (Liang et al., 2020) and the

convolutional neural network (CNN) of CNN-RAI (Karagöz & Nalbantoglu, 2021). On

the other hand, GeNet (Rojas-Carulla et al., 2019) encoded DNA inputs as sequences of

integers.

The sheer number of available tools makes comparing them a difficult challenge.

The Critical Assessment of Metagenome Interpretation (CAMI) initiative is intended to

alleviate this problem by offering a unified benchmarking platform, including a separate

clinical pathogen detection challenge in its second round (Meyer et al., 2021; Sczyrba

et al., 2017). A broader overview of the field has been also presented in recent reviews

by Breitwieser et al. (2017) and Sun et al. (2021). In this thesis, I will present deep

learning approaches for detection of novel pathogens. In this context, machine learning

and alignment-based algorithms have been shown to outperform k-mer based taxonomic

classifiers (Deneke et al., 2017). Therefore, the main benchmarking focus will be placed

on comparing the newly developed methods with state-of-the-art sequence aligners and

machine learning models, even though computationally efficient k-mer based methods

are also widely used in the field, at least for detecting previously known organisms.
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1.3 Deep learning in genomics

1.3.1 Predictive models in regulatory genomics

Before finding applications in a wide range of computational biology problems, including

metagenomics and pathogen identification, deep learning (LeCun et al., 2015) has been

successfully used in eukaryotic regulatory genomics. DeepBind (Alipanahi et al., 2015),

DeepSEA (J. Zhou & Troyanskaya, 2015) and Basset (Kelley et al., 2016) have shown

the capabilities of CNNs using DNA or RNA sequences as inputs, predicting protein

binding sites and regulatory effects of non-coding variants. This has sparked intense

research interest, with a focus on human genomics (e.g. Greenside et al. (2018), Kelley

(2020), Kelley et al. (2018), Nair et al. (2019), Quang and Xie (2016, 2019), and

Zeng et al. (2016)), summarized in a comprehensive review by Eraslan et al. (2019).

Recent developments include predictions at base pair resolution (Avsec, Weilert, et al.,

2021) and exploring the potential of Transformer architectures (Avsec, Agarwal, et al.,

2021). Although those approaches are tailored for problems in eukaryotic regulatory

genomics (and as such, the challenges they deal with differ from those encountered in

metagenomics or pathogen detection), multiple design choices are compatible with DNA

or RNA-based predictive tasks in general.

Many applications rely on supervised models (often CNNs) predicting molecular

phenotypes from DNA sequence inputs. The sequences are usually supplied using

a distributed orthographic representation, where each nucleotide is one-hot encoded,

i.e., represented as a numerical vector of length 4, where a single element (at an index

dependent on the particular nucleotide type) is equal to 1, and the other elements are 0.

This representation is often simply called ’one-hot encoding’ for short, even though the

one-hot vectors correspond to sequence elements, not the sequences themselves. This

can be easily extended to the RNA alphabet (Budach & Marsico, 2018), and unknown

nucleotides (Ns) can be represented as all-zero vectors. As a given DNA sequence

and its reverse-complement are often expected to result in identical outputs, the final

outputs can be unified by designing a DNA-specific architecture accounting for this

fact (Alipanahi et al., 2015; R. C. Brown et al., 2018; Onimaru et al., 2020; Quang &

Xie, 2019; Shrikumar et al., 2017b). A comparison of existing approaches to enforcing

reverse-complement equivariance in CNNs has been recently presented by H. Zhou et al.

(2022). Other possible representations of DNA inputs include encoding read coverage in

synthetic images (Poplin et al., 2018), transforming the sequences into their chaos game

representation (CGR) (Löchel et al., 2020; Löchel & Heider, 2021; Rizzo et al., 2016)

or using k-mer embeddings (Liang et al., 2020), although they are less frequently used
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in the context of regulatory genomics. DNABERT, a k-mer based pre-trained language

model, is a notable exception (Ji et al., 2021).

1.3.2 Interpretability and feature attributions

Interpretability of machine learning models is an important factor in their evaluation,

especially if the model’s predictions may have a large, direct impact on human lives.

This is especially true for applications in biomedical research. Deep learning is often

described as a ’black box’, and the same criticism can be applied to other popular

machine learning algorithms (Rudin, 2019). Rudin (2019) proposes a strict distinction

between explainable and interpretable models, with the former defined as standard

’black box’ models, explained post-hoc by another model, while the latter are designed

to be inherently interpretable. However, this classification has not been universally

accepted, and many papers use those two terms interchangeably. Here, I will use the

term ’interpretability’ also in the meaning of explainability of ’black box’ networks,

following Lundberg and Lee (2017) and Shrikumar et al. (2017a).

Notably, whether a trained model is interpretable depends not only on the algorithm

used but also on the particular domain and task. Rudin (2019) defines a ’black box’

model as ’a function that is too complicated for any human to comprehend’. This is

a reasonable and intuitive definition, but it follows that interpretability must be, to a

large extent, subjective. Even the very concept of ’understanding’ has been an object of

intense philosophical and psychological studies (Grimm, 2021). It could be argued that

to ’understand’ a function, one should understand not only ’how’ or ’why’ the outputs

are assigned to its inputs, but also the meaning of inputs and outputs themselves. This

consideration has some far-reaching implications for explainability of neural networks

in genomics.

More specifically, in contrast to structured tabular data, images or text samples,

relevant patterns in raw biological sequences may be difficult to notice even for experts.

Depending on the particular task and sequence representation, models or explanations

that would be understandable in other contexts often remain opaque. For example,

random forests are sometimes considered to be more interpretable than neural networks

due to their reliance on relatively simple decision trees, and the importance of individual

input features can be evaluated using Gini importance Deneke et al. (2017). However, if

the input features are k-mer frequencies and the predicted labels correspond to a bacterial

phenotype, several open questions remain. Why is a particular k-mer important for the

final decision of the model? How much ’understanding’ do we gain by knowing that the
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’GGA’ trimer is the most important ’marker’ of bacterial pathogenicity according to the

trained model?

This example is not intended to criticize the efforts of making machine learning models

for genomics more interpretable. On the contrary – it highlights an important problem,

which makes those efforts especially valuable. Given the wealth and complexity of

genomic data, we often do not know what patterns to look for a priori. Even in the context

of regulatory genomics, where many important sequence motifs have been identified, a

lot of research effort is invested into discovering new biological rules: new patterns or

new regulatory ’grammars’, governing the interactions between individual transcription

factor binding sites. For this reason, some ’black box’ models are trained not primarily

for their predictive performance, but rather to be a source of useful explanations (Almeida

et al., 2021; Avsec, Weilert, et al., 2021; L. Chen & Capra, 2020). This may be even more

important in the context of predicting an abstract phenotype such as pathogenicity or host

range from short reads or read fragments originating from taxonomically distant genomes.

In this particular case, it is not immediately clear what would even constitute a reasonable

pattern to look for (except for direct sequence similarity to parts of reference genomes),

so building an inherently interpretable model could prove challenging. Training a ’black

box’ model and providing some explanations for its behaviour is more feasible. However,

even in this case, evaluating the obtained explanations remains difficult.

The need for visualization of discovered patters has been stressed already in the early

days of deep learning for genomics. DeepBind’s convolutional filters were represented

as sequence logos based on most-activating subsequences (Alipanahi et al., 2015), and

the most-relevant subsequences influencing DeepSEA outputs were identified via in

silico saturated mutagenesis (J. Zhou & Troyanskaya, 2015). This was followed by

studies visualising important regions of the input with saliency maps (Simonyan et al.,

2014), as direct optimization is usually challenging due to the discrete nature of the

DNA and RNA sequences (Lanchantin et al., 2016; Lanchantin et al., 2017). Further

improvements were brought by a family of general-purpose, backpropagation-based

approaches such as layer-wise relevance propagation (LRP) and Integrated Gradients

(Bach et al., 2015; Sundararajan et al., 2016), as well as their multiple enhancements

(e.g. Jha et al. (2020) and Montavon et al. (2019)). DeepLIFT (Shrikumar et al., 2017a)

is conceptually similar to LRP, as it propagates activation differences between a given

input and a ’reference input’. It is also one of the best examples of methods developed

for applications in computational biology, which is now widely used across the broader

deep learning field. Another approach, LIME, relies on learning an interpretable model

that will approximate the behaviour of the original model in the proximity of a given

input (Ribeiro et al., 2016). LRP, DeepLIFT and LIME all assign a score of importance
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to each of the input features, and they can be expressed in a more unified framework as

examples of additive attribution methods (Lundberg & Lee, 2017).

1.4 Machine learning for viral and microbial
bioinformatics

1.4.1 Recent developments

Applications of machine learning in genomics are not restricted to human (or eukary-

otic) genomics, although some authors do treat those terms interchangeably, without

mentioning applications to viral and microbial data (Eraslan et al., 2019; R. Li et al.,

2021). Rule-based models (Drouin et al., 2016; Drouin et al., 2019; MacDonald & Beiko,

2010; Tamura & D’haeseleer, 2008), regression (Aun et al., 2018; Lees et al., 2018;

Lees et al., 2020; Lees et al., 2016) and support-vector machines (SVMs) (Feldbauer

et al., 2015; Weimann et al., 2016) have been used to predict multiple phenotypes from

bacterial genomes. Antimicrobial resistance is a group of phenotypes that attracted

a lot of attention, as the emergence of resistant strains has led to a long-term public

health crisis (Levy & Marshall, 2004; Neu, 1992; Piddock, 2012; Ventola, 2015). A

broad overview of currently available prediction methods has been recently summarized

by X. Li et al. (2021). For some pathogens, such as Mycobacterium tuberculosis (the

causative agent of tuberculosis), the resistance is usually conferred by single-nucleotide

polymorphisms (SNPs), and can be predicted from whole-genome sequencing (WGS)

data by random forests, linear models and neural networks with seemingly comparable

performance (M. L. Chen et al., 2019; Gröschel et al., 2021; Lees et al., 2020). For

many other species, presence of certain genes is the most important factor. Therefore,

detecting novel antibiotic resistance genes is needed as well. Neural networks, k-nearest

neighbours (kNN) classifiers, logistic regression, and ensemble models can be useful in

this case (Arango-Argoty et al., 2018; Z. Wang et al., 2021). This problem is connected

to the broader field of protein function prediction, where deep learning has also proven

useful (Gligorijević et al., 2018; Gligorijević et al., 2021; Kulmanov & Hoehndorf, 2020;

Villegas-Morcillo et al., 2021; You et al., 2021). SVMs, random forests and neural

networks have also been shown to predict if bacterial proteins are virulence factors,

even though they may perform a wide range of different functions (Gupta et al., 2014;

Rentzsch et al., 2020; R. Xie et al., 2021). Finally and most importantly for the work

presented here, this line of research can also be scaled to predict whether novel bacteria

could be human pathogens (Barash et al., 2018; Deneke et al., 2017).
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Viral host range prediction is a conceptually similar problem. Bacteriophage hosts can

be inferred using alignment or k-mer based measures of distance to both other viruses and

prospective hosts, as phage sequences tend to be similar to the sequences of their hosts.

An overview of different methods has been presented by R. A. Edwards et al. (2016), and

similar approaches have also been developed since (Ahlgren et al., 2017; Galiez et al.,

2017; Villarroel et al., 2016; W. Wang et al., 2020; Zielezinski, Barylski, et al., 2021;

Zielezinski, Deorowicz, et al., 2021). Random forests have been used by M. Zhang et al.

(2017) and Boeckaerts et al. (2021) to predict the hosts based on nucleotide composition

and phage receptor-binding protein sequences, respectively. Leite, Brochet, et al. (2018)

presented a small, shallow neural network relying on protein features and later explored

better-performing ensemble models and one-class learning approaches (Leite, Lopez,

et al., 2018). Recently presented PredPHI (M. Li et al., 2020) and HoPhage (Tan et al.,

2021) used deep learning, with the latter explicitly evaluating the feasibility of inferring

hosts directly from metagenomic reads. Phage lifestyle (virulent of temperate) can also

be predicted with both random forests and neural networks (Hockenberry & Wilke, 2021;

McNair et al., 2012; S. Wu, Fang, et al., 2021).

Simple nucleotide composition features have been successfully used to predict the

hosts of eukaryotic viruses as well (Kapoor et al., 2010). Classical machine learning

models have been presented for influenza A (Eng et al., 2014; Xu et al., 2017) and coron-

aviruses (Tang et al., 2015). H. Li and Sun (2018) used a similar approach for both those

virus groups, as well as rabies lyssaviruses. Deep neural networks of VIDHOP (Mock

et al., 2020) can predict the host directly from genome sequences and were evaluated

on influenza A, rabies lyssaviruses and rotavirus A datasets, outperforming previous

approaches where direct comparisons were possible. Furthermore, they supported a

wider range of possible hosts and yielded accurate predictions also for inputs as short as

Illumina sequencing reads. Gałan et al. (2019) presented SVMs and regression models

focusing on novel viruses without taxonomic assignment, but they require long input se-

quences and only fairly broad host categories (bacteria, plants, vertebrates, or arthropods)

are supported. Z. Zhang et al. (2019) designed kNN classifiers detecting novel human

viruses and tested them also on inputs of just several hundred bp. In contrast, Babayan

et al. (2018) analyzed full genomes of human viruses and predicted their unknown

reservoirs or vectors with gradient boosting machines. Recently, Mollentze et al. (2021)

presented host prediction models trained on a dataset of 36 viral families and evaluated

on both a wider selection of held-out viruses and SARS-CoV-2 data. The COVID-19

pandemic has sparked an intensified interest in studies assessing zoonotic potential of

coronaviruses specifically (Brierley & Fowler, 2021; Q. Guo et al., 2021; Q. Guo et al.,

2020; Qiang et al., 2020; Wardeh et al., 2021). A related line of research aiming to
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predict interactions between viral and human proteins (Eid et al., 2016; X. Yang et al.,

2019; X. Zhou et al., 2018) has also been affected by both the turn towards deep learning

and the current importance of SARS-CoV-2 (Lanchantin et al., 2021; Liu-Wei et al.,

2021).

In the metagenomic context, detecting bacteriophage sequences is often needed,

especially given the abundance, diversity and ecological significance of bacterial viruses

(Roux, Enault, et al., 2015; Roux, Hallam, et al., 2015). Modern approaches have used

random forests (Amgarten et al., 2018; J. Guo et al., 2021; Zheng et al., 2019), simple

neural networks (Kieft et al., 2020) and deep learning (Auslander et al., 2020; Fang et al.,

2019; Miao et al., 2021; Ren et al., 2020; Tampuu et al., 2019). In the phage taxonomic

classification task, graph convolutional networks (J. Shang et al., 2021) have been shown

to outperform clustering-based (Bin Jang et al., 2019) and alignment-based methods. A

CNN-based, hierarchical model has also been proposed for simultaneous detection and

taxonomic classification of RNA virus reads (J. Shang & Sun, 2020), while classical

machine learning algorithms have been used for subtyping of HIV, dengue, influenza A,

hepatitis B, and hepatitis C (Remita et al., 2017; Solis-Reyes et al., 2018).

Those problems are related to taxonomic classification of bacterial reads as well.

Promising results have been reported for neural networks of DeepMicrobes (Liang et al.,

2020) and GeNet (Rojas-Carulla et al., 2019). A new generation of methods follows

the recent turn towards self-supervised, pre-trained models that have originated in the

natural language processing field (T. Brown et al., 2020; Devlin et al., 2019; Vaswani

et al., 2017) and has also influenced computer vision research (Dosovitskiy et al., 2021).

BERTax (Mock et al., 2021) supports eukaryotic, bacterial, archaeal and viral sequences,

relying on a Transformer model based on the BERT architecture (Devlin et al., 2019).

A classifier using BERTax embeddings outperformed all other benchmarked tools on

the set of most divergent sequences and combined with a database-based approach,

MMSeqs2 (Mirdita et al., 2021; Steinegger & Söding, 2017), it was the best method

overall. In turn, LookingGlass (Hoarfrost et al., 2020) uses a self-supervised LSTM

model and a window of only 100bp to train embedding for sequences as short as an

Illumina read. It has been shown to facilitate a range of downstream tasks such as

predicting the correct translation frame, oxidoreductase activity and optimal enzyme

temperature directly from unassembled reads. A similar approach was used to predict

mutational escape for influenza haemagglutinin, HIV-1 envelope glycoprotein, and the

Spike protein of SARS-CoV-2 (Hie et al., 2021). Another Transformer based on protein

clusters has been recently reported to improve detection of bacteriophage contigs (J.

Shang et al., 2022). Pre-trained protein embeddings of ProtBert (Elnaggar et al., 2021)
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have also been used in a taxonomic classification pipeline for NGS reads (Voigt et al.,

2021).

1.4.2 Opportunities and challenges

Machine learning approaches have been successfully deployed in many subfields of

microbial and viral bioinformatics, with many applications specifically in metagenomics

and genomics. In recent years, many new deep learning approaches have been developed;

the work presented in this thesis was a part of this wider research effort. Deep neural

networks can often be more expressive than other models, allowing them to learn

complex relationships between the genotype and a prediction target, such as a phenotype

of interest or a taxonomic unit. This, in turn, facilitates generalization to sequences highly

divergent from those seen during training. In contrast to classical machine learning

algorithms, CNNs, LSTMs and Transformers do not necessarily need manual feature

engineering, which enables discovering new patterns that a human expert would not

explicitly consider. An increased research effort on interpretability of the learned models

could therefore lead to new, biologically or even clinically relevant discoveries, as in the

case of deep learning in human regulatory genomics.

On the other hand, developing and evaluating methods improving explainability is

challenging, especially if the ground truth is not available. For microbial and viral data,

this is often the case to an even greater extent than in human genomics, as multiple

different, diverse taxa have to be taken into account, and many remain understudied or

undiscovered. Further, despite the best efforts from the community, the datasets may still

be sparsely annotated, incomplete, and difficult to curate and integrate. In general, the

proper handling of data is arguably more important than the algorithm used; a selection

of potential pitfalls has been recently summarized by Whalen et al. (2021). Importantly,

the crucial assumption of machine learning, that the data is independent and identically

distributed (i.i.d.), is usually broken. The training and test sets may be characterized

by differing distributions of input features x (covariate shift) or target variables y (prior

probability shift); the conditional probabilities P(x|y) and P(y|x) may differ between

the sets as well (Storkey, 2009; Whalen et al., 2021; K. Zhang et al., 2013). This can

make generalization difficult and has been extensively studied in the field of domain

adaptation. What is more, data imbalance is often an additional problem, and due to the

inherent sampling bias present in the available databases, it is not always clear what the

’representative’ ratios of class members should be. The datasets must be constructed

carefully to avoid data leakage between training and test sets; this may take the form

of dividing the sets based on the sequence similarity between the data points or testing
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on representatives of taxonomic units unseen in training. In any case, the data setup is

crucial for modelling the target biological task. On the other hand, searching for proper

neural architectures and representations has also been an area of intensive research, as

the design choices known from other fields of application are not always optimal for

metagenomic, viral and microbial data. This applies even to the closely related field of

deep learning for regulatory genomics, where, for example, large receptive fields are

needed. Hence, dilated convolutions have been adopted in CNN models (Avsec, Weilert,

et al., 2021; Kelley, 2020), and recently presented Enformer architectures were reported

to detect sequence elements 100kb apart (Avsec, Agarwal, et al., 2021). Receptive field

size is not as crucial for classifying short reads or even metagenomic contigs, which are

often 1–2 orders of magnitude shorter.

Finally, machine learning models can also be used to generate and optimize DNA,

RNA and protein sequences, maximizing their desired activity (Alley et al., 2019;

Angermueller et al., 2019; Anishchenko et al., 2021; Biswas et al., 2021; Brookes et al.,

2019; Gupta & Kundaje, 2019; Gupta & Zou, 2019; Linder et al., 2019; Ovchinnikov

& Huang, 2021; Schreiber et al., 2020; Sinai et al., 2020; J. Wang et al., 2021). This

has profound consequences for the field of synthetic biology, enabling computational

design of novel proteins with target functions, but also opening new avenues for dual-use

research. The risks associated with novel sequences can be difficult to evaluate (Diggans

& Leproust, 2019; National Academies of Sciences, Engineering, and Medicine, 2018),

but risk prediction models generalizing to previously unseen regions of the sequence

space could help alleviate this problem. Such approaches could be related to previously

published approaches for predicting bacterial pathogenic potentials (Deneke et al., 2017)

and viral host range (Mock et al., 2020; Z. Zhang et al., 2019), or rely on protein function

prediction, like the recently proposed SeqScreen framework (Balaji et al., 2021).

1.5 Thesis outline

The overarching theme of this work is the development of new, deep learning approaches

for predicting pathogenic or infectious potentials directly from nucleic acid sequences.

The final goal is to enable detection of novel pathogens, for which standard tools –

relying on homology detection or taxonomic classification – are not enough (Figure 1.1).

Although I place the main focus on use-cases based on next-generation sequencing, the

methods presented here could in principle be used to screen synthetic sequences as well.

In the following chapters, I describe four parts of the project, each corresponding to

a more specific prediction task and introducing crucial methodological developments.

Each chapter is thought to be relatively self-contained and understandable without
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reading the others. At the same time, they are arranged in the intended order of reading,

with each chapter building upon the previous ones, extending the methodology and

presenting new results.

Chapter 2 introduces DeePaC, a deep learning approach for pathogenic potential

prediction. It demonstrates the superior performance of neural networks in the task

of predicting whether DNA sequences (next-generation sequencing reads or genomes)

originate from novel bacterial pathogens. Further, it presents the deepac python

package, supporting easy and flexible design, training, and evaluation of multiple neural

architectures for DNA sequence inputs, with an additional emphasis on guaranteeing

invariance to DNA reverse-complementarity. This is accompanied by a command-line

tool facilitating inference with the trained models and integration with bioinformatic

pipelines without requiring deep learning expertise from the end user. I conceptualized

the project with Bernhard Renard and support from Robert Rentzsch. I also implemented

deepac and the supplementary R scripts, some of which were based on R scripts by

Carlus Deneke originally used for the development and evaluation of PaPrBaG (Deneke

et al., 2017). Finally, I collected the data, performed all experiments presented in the

paper and wrote the manuscript with feedback from all authors. Anja Seidel performed

preliminary, proof-of-concept evaluation of the reverse-complement parameter sharing

convolutional neural networks (RC-CNNs) using another implementation focusing

exclusively on CNNs (Shrikumar et al., 2017b). This included showing the first evidence

of the benefits of input dropout. Her work was a part of her Master’s thesis (Seidel,

2018). Robert Rentzsch’s insights helped design the data mining strategy employed in

the scripts. Bernhard Renard offered advice, supervision and support at all stages of the

project. The chapter is based on the following article:

Bartoszewicz, J. M., Seidel, A., Rentzsch, R., & Renard, B. Y. (2020).

DeePaC: predicting pathogenic potential of novel DNA with reverse-complement

neural networks. Bioinformatics, 36(1), 81–89. https://doi.org/10.1093/

bioinformatics/btz541

I also presented the results in a poster at the Intelligent Systems for Molecular Biology

2019 conference.

Chapter 3 presents an application of DeePaC to another task – predicting if the input

sequences originate from human or non-human viruses. We also introduce a new method

of convolutional filter visualization, presenting the information content of each input

nucleotide along its contributions to the final prediction of the network. We show

how mapping predictions and feature attributions back to the individual residues of

input sequences allows exploring the network’s behaviour at the genome, gene and
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Figure 1.1: Overview of the proposed family of approaches, implemented in the DeePaC package and its plugins. 1.1A: Standard approach. Sample
bacterial, viral, or fungal reads produced by the sequencer are mapped against known pathogen and non-pathogen genomes. This can also be
done in real time, as the sequencer is running. Alternative methods (e.g. k-mer based taxonomic classifiers) can be used instead of sequence
alignment. 1.1B: Extended approach. Reads without clear matches (unmapped or low-quality alignments) are passed to a previously trained
model, which predicts whether they originate from an agent with a potentially pathogenic phenotype, possibly in real time as well. Putative
pathogen reads can then be used for downstream analysis.
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protein structure level (including SARS-CoV-2 and its Spike protein). Finally, we

integrate those interpretability tools with the main deepac codebase, supporting both

programmatic and command-line usage. The interpretability part of the project was

jointly conceptualized by all authors. Anja Seidel implemented and evaluated prototype

interpretability scripts for the RC-CNN implementation of Shrikumar et al. (2017b).

This was described in her Master’s thesis (Seidel, 2018). I reimplemented crucial

parts for compatibility with the deepac implementation of RC-CNNs and RC-LSTMs,

developed them further, integrated them with the rest of the package and extended the

approach to the protein structure level. I also introduced the partial Shapley values

to formalize our method of filter visualization and performed all analyses. The viral

infectious potential prediction task was jointly conceived by Bernhard Renard and me. I

compiled the viral host-range dataset with its subsets, performed all experiments, and

wrote the manuscript with feedback from all authors. Bernhard Renard supervised and

supported the project with helpful comments and advice at all times. The chapter is

based on the following article:

Bartoszewicz, J. M., Seidel, A., & Renard, B. Y. (2021a). Interpretable

detection of novel human viruses from genome sequencing data. NAR

Genomics and Bioinformatics, 3(lqab004). https://doi.org/10.1093/nargab/

lqab004

I also presented the results in a workshop paper with an accompanying poster:

Bartoszewicz, J. M., Seidel, A., & Renard, B. Y. (2021b). Interpretable

prediction of the infectious potential of novel viruses. ICLR 2021 AI for

Public Health Workshop

Chapter 4 focuses on a more difficult version of the tasks presented in chapters 2

and 3 – detecting novel pathogens in real-time, as the sequencer is still running, and

combining deep learning predictions with HiLive2, a real-time Illumina mapper (Loka

et al., 2019). We use deeper architectures – residual networks (ResNets) invariant to

reverse-complementarity – for high accuracy on very short Illumina read fragments

without sacrificing the performance on full-length reads. We also show that analogous

models work well for Nanopore data, outperforming the baseline approach (mapping the

full, finished reads) by a significant margin on fragments corresponding to just 0.5s of se-

quencing time. In experiments modelling the pre-pandemic state of knowledge, we show

drastically increased SARS-CoV-2 detection rates from incomplete reads, regardless of

the sequencing technology used. I conceived the project with Bernhard Renard. Ulrich

Genske evaluated the original DeePaC neural networks, trained some of the models
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used in hyperparameter tuning, and implemented the scripts aggregating, processing and

plotting the results. This was a part of his Bachelor’s thesis (Genske, 2019). He also set

up the Nanopore read simulation workflow and simulated the training and validation

sets of bacterial Nanopore reads. I prepared all other presented datasets, designed,

implemented and trained the reverse-complement ResNets, created the DeePaC-Live

plugin linking DeePaC with HiLive2, benchmarked our models against alternatives and

wrote the manuscript with feedback from all authors. Bernhard Renard supported and

supervised the work throughout the project. The chapter is based on the following article:

Bartoszewicz, J. M., Genske, U., & Renard, B. Y. (2021a). Deep learning-

based real-time detection of novel pathogens during sequencing. Briefings

in Bioinformatics, (bbab269). https://doi.org/10.1093/bib/bbab269

I also presented the results in a poster at the Intelligent Systems for Molecular Biology

2021 conference, a spotlight talk at Machine Learning in Computational Biology 2021,

and two workshop papers with accompanying posters:

Bartoszewicz, J. M., Genske, U., & Renard, B. Y. (2021b). Real-time

pathogenicity prediction during genome sequencing of novel viruses and

bacteria. ICLR 2021 Machine Learning for Preventing and Combating

Pandemics Workshop

Bartoszewicz, J. M., Genske, U., & Renard, B. Y. (2021c). Real-time

pathogenicity prediction during genome sequencing of novel viruses and

bacteria. Machine Learning in Computational Biology 2021

Finally, chapter 5 focuses on the third of the important pathogen groups considered in

this thesis – fungi. We compile a manually curated database of pathogenic fungal species

and their genomes, labelled with their corresponding host groups. We then apply the

modified ResNet architecture introduced in chapter 4 to predict if fungal DNA sequences

originate from species with a human host or from non-human pathogens, causing disease

exclusively in plants or non-human animals. We also develop and visualize full genome

representations using models trained with isolated reads only. Finally, we extend our

approach to a multi-class scenario, where – under some simplifying assumptions – we

can predict if an NGS read originates from a novel bacterial, viral or fungal pathogen,

or from a harmless negative class of bacterial commensals and non-human viruses.

Ferdous Nasri compiled a preliminary version of the database and ran pilot analyses

with read-wise BLAST, as well as some simpler CNN architectures on the fungal dataset.

Her work was the basis of her Master’s thesis (Nasri, 2020). I conceived the project

with Bernhard Renard, constructed and curated the final database as described here,
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implemented the multi-class version of ResNets and performed all presented experiments.

Melania Nowicka and I worked together on the visualization of the dataset structure.

She designed, implemented and evaluated the scripts for training and plotting the UMAP

embeddings; I had the idea to use the averaged read representations, added cosmetic

changes to the scripts and performed the analyses presented in the paper. I wrote

the manuscript with conceptual contributions by Ferdous Nasri and feedback from all

authors. Bernhard Renard supervised and supported all parts of the project. The chapter

is based on the following article:

Bartoszewicz, J. M., Nasri, F., Nowicka, M., & Renard, B. Y. (2022).

Detecting DNA of novel fungal pathogens using ResNets and a curated

fungi-hosts data collection. bioRxiv. https://doi.org/10.1101/2021.11.30.

470625

Jakub Bartoszewicz and Ferdous Nasri contributed equally.

Our preliminary results have been presented by Ferdous Nasri in a poster at the Intelligent

Systems for Molecular Biology 2021 conference.
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2 Predicting bacterial pathogenic
potential with DeePaC

Summary

We expect novel pathogens to arise due to their fast-paced evolution, and new species

to be discovered thanks to advances in DNA sequencing and metagenomics. Moreover,

recent developments in synthetic biology raise concerns that some strains of bacteria

could be modified for malicious purposes. Traditional approaches to open-view pathogen

detection depend on databases of known organisms, which limits their performance

on unknown, unrecognized, and unmapped sequences. In contrast, machine learning

methods can infer pathogenic phenotypes from single NGS reads, even though the

biological context is unavailable. We present DeePaC, a Deep Learning Approach to

Pathogenicity Classification. It includes a flexible framework allowing easy evaluation

of neural architectures with reverse-complement parameter sharing. We show that

convolutional neural networks and LSTMs outperform the state-of-the-art based on both

sequence homology and machine learning. Combining a deep learning approach with

integrating the predictions for both mates in a read pair results in cutting the error rate

almost in half in comparison to the previous state-of-the-art.

This chapter is based on Bartoszewicz et al. (2020), which is a joint work with Anja

Seidel, Robert Rentzsch and Bernhard Y. Renard. A detailed description of the authors’

contributions can be found in section Thesis outline.

2.1 Background

2.1.1 Motivation

Our globalized world enables fast transmission of causative agents over great distances,

and bacterial pathogens evolve quickly. Virulence genes may be easily exchanged

between many bacterial species, leading to the emergence of new biological threats.

In 2011, for example, a strain of Escherichia coli that acquired Shiga-toxin producing

genes caused a major outbreak killing 53 people (Frank et al., 2011).
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2. Predicting bacterial pathogenic potential with DeePaC

Since DNA sequencing has become the state-of-the-art in open-view pathogen de-

tection (Calistri & Palù, 2015; Lecuit & Eloit, 2014), new pipelines and algorithms are

needed to efficiently and accurately process the wealth of data resulting from every run.

The number of sequences deposited in public databases grows exponentially, and a new

challenge is to design computational tools for dealing with big sets of very divergent

sequences (Piro et al., 2020). Furthermore, up to a trillion microbial species may be

inhabiting the planet (Locey & Lennon, 2016). If this debated estimate (Willis, 2016) is

correct, about 99.999% of the microbial biodiversity remains to be discovered. Both yet

unknown and newly-emerging organisms may pose a public health threat. The risks are

difficult to anticipate, but quick assessment is mandatory.

Recent developments in the field of synthetic biology have raised concerns about

the possibility of creating new biological threats in the lab, either by accident or for

malicious purposes. The National Academies of Sciences, Engineering, and Medicine

(2018) identify genetic modification of existing bacteria to make them more dangerous

as an issue of the highest concern. New methods for sequence-based classification of

potential pathogens must be developed to safeguard future biosecurity and biosafety

alike (National Research Council, 2010). Approaches based on comparing sequences

to a reference database to detect previously known organisms are insufficient. This is

especially important for shorter sequences, like NGS reads or synthetic oligonucleotides.

The latter are often not screened before synthesis due to high computational cost and low

accuracy of the predictions (Carter & Friedman, 2015; National Academies of Sciences,

Engineering, and Medicine, 2018).

Assessing and mitigating risks based on the DNA sequence alone should involve

computational methods able to recognize relevant patterns and generate predictions

for novel sequences. Therefore, machine learning based approaches are a promising

alternative to the traditional sequence analysis tools. For example, deep convolutional

networks can be used to predict the lab of origin of the plasmids available in the Addgene

repository (Nielsen & Voigt, 2018). This could help track a biological threat back to its

source in case of a malicious attack or accidental release. Deneke et al. (2017) presented

PaPrBaG, a random forest approach for predicting whether an Illumina read originates

from a pathogenic or a non-pathogenic bacterium and showed that it generalizes to novel,

previously unseen species. They introduce the concept of a pathogenic potential to

differentiate between predicted probabilities of a given phenotype and true pathogenicity,

which can only be realized in the biological context of a full genome and a specific host.

In this work, we present DeePaC, a Deep Learning Approach to Pathogenicity

Classification. We focus on the scenario of pathogen detection from next-generation
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sequencing data. However, the method presented here can in principle be used also for

other sequences of similar length, both natural and synthetic.

2.1.2 Computational tools for pathogen detection

Taxonomy-dependent

Read-based pathogen detection methods may be roughly divided in two categories.

Taxonomy-dependent approaches directly rely on lists and databases of known pathogens,

aiming at assigning sequences to taxonomic categories. Read mappers, for example

BWA (H. Li & Durbin, 2010) and Bowtie2 (Langmead & Salzberg, 2012) fall into this

category. Live mapping approaches such as HiLive and HiLive2 (Lindner et al., 2017;

Loka et al., 2019) can even map the reads in real time, as the sequencer is running,

leading to a drastic reduction in total analysis time.

In general, read mappers specialize in the computationally efficient alignment of NGS

reads to reference genomes with high specificity. For this reason, they are routinely used

for the detection of known pathogens, but do not perform well when a sample contains

organisms absent from the reference index. Specialized pipelines (Andrusch et al., 2018;

Hong et al., 2014) use read mappers in conjunction with additional filtering steps for

accurate diagnostics for clinical samples. BLAST (Altschul et al., 1990) offers much

more sensitive alignment, appropriate for between-species comparisons, but at the cost

of much lower throughput.

Metagenomic profiling tools may also be used as taxonomy-dependent pathogen

detection methods. Kraken (Wood & Salzberg, 2014) builds a database of unique 31-

mers to assign reads to their corresponding taxonomic units. Ambiguities are resolved by

returning the lowest common ancestor. MetaPhlAn2 (Truong et al., 2015) uses around 1

million clade-specific marker genes to detect sequences matching its reference genomes.

MicrobeGPS (Lindner & Renard, 2015) identifies potentially unknown organisms present

in a metagenomic sample and estimates genomic distances between them and known

references. NBC (G. Rosen et al., 2008; G. L. Rosen et al., 2011), a naïve Bayes

classifier, is a machine learning based method trained to recognize taxa based on their

k-mer frequency profiles.

Taxonomy-agnostic

Taxonomy-agnostic methods strive to predict phenotypes directly from DNA sequences,

without performing any taxonomic assignment. They are not entirely independent of

taxonomy, however, as they must be trained on available references. This may lead to
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bias with regard to the over- and underrepresented taxa in a training set. One goal of

the taxonomy-agnostic approaches is to minimize that bias and offer relatively accurate

predictions even for novel and divergent sequences. In contrast, the taxonomy-dependent

methods are entirely based on the correspondence between a phenotype and a taxonomic

classification.

As NBC allows constructing a custom reference database, it may also be used in a

taxonomy-agnostic manner. However, it is outperformed by PaPrBaG (Deneke et al.,

2017), a random forest approach using a wide range of k-mer and peptide-based features.

Despite being a read-based method, it can also be used to predict a phenotype from a

whole genome. Any long sequence may be fragmented into read-length subsequences. A

mean over all the predictions constitutes the final prediction by majority vote. Although

this approach is limited to detecting relatively local patterns and cannot use a wider

genomic context, it may be useful in practice. Barash et al. (2018) used PaPrBaG,

PathogenFinder (Cosentino et al., 2013) and their original tool BacPaCS to predict labels

for novel genomes recently deposited in the PATRIC database (Wattam et al., 2017).

2.1.3 Deep neural networks for DNA sequences

Deep learning (LeCun et al., 2015) has been successfully used on genomic data to

detect genome accessibility (Kelley et al., 2016) or transcription factor binding sites

and disease-associated variants (Alipanahi et al., 2015; Greenside et al., 2018; Quang

& Xie, 2016; Zeng et al., 2016; J. Zhou & Troyanskaya, 2015). Budach and Marsico

(2018) implemented convolutional neural networks (CNNs) and long short-term memory

networks (LSTMs) in a recently published package, pysster.

Identical predictions for a given ’strand’ and its reverse-complement can be enforced

by passing them both through a network and merging the predictions for each of the

strands with a scalar or element-wise operation. Merging may be based for example

on the maximum function (Alipanahi et al., 2015; Qin & Feng, 2017) or averaging

the results (Quang & Xie, 2019). The resulting networks have a branched architecture

resembling Siamese networks.

Shrikumar et al. (2017b) showed that using standard CNNs leads to inconsistent

predictions, and that even data augmentation with reverse-complement sequences cannot

mitigate the problem. They developed a solution based reverse-complement parameter

sharing between pairs of convolutional filters. A limitation of this method is that it is only

directly applicable to convolutional networks. Analogous approaches were independently

proposed by several groups (Cohen & Welling, 2016; Kopp & Schulte-Sasse, 2017;

Onimaru et al., 2020), and extended with Bayesian dropout (R. C. Brown et al., 2018).
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2.2 Methods

2.2.1 Data preprocessing

IMG dataset

Similarly to Deneke et al. (2017), we accessed the IMG/M database (I.-M. A. Chen et al.,

2019) on April 17, 2018, and followed the procedure described to identify pathogenic and

non-pathogenic bacteria with a human host. Briefly, we filtered the database searching

for keywords resulting in the unambiguous assignment of a given strain to one of

the classes. Previous research successfully used both permanent draft and finished

genomes in a similar setting. We decided to include draft genomes in our dataset,

too, as their quality is similar to the quality of permanent drafts. For seven species

of well-known pathogens (Campylobacter jejuni, Clostridioides difficile, Clostridium

botulinum, Francisella tularensis, Listeria monocytogenes, Staphylococcus aureus, and

Staphylococcus epidermidis), we found between one and two non-pathogenic strains and

multiple pathogenic strains; we removed the non-pathogenic strains from further analysis.

For E. coli, we found multiple strains of both labels. We decided that a study focusing on

pathogens should be rather more than less sensitive to this particularly diverse species,

especially since some strains may lead to dangerous outbreaks, like the EHEC epidemic

in Germany in 2011 (Frank et al., 2011). Therefore, we also removed the non-pathogenic

strains of E. coli from the final dataset. The procedure yielded a collection of 2,878

strains (2,796 pathogens and 82 non-pathogens) described by data including species

names, National Center for Biotechnology Information (NCBI) Bioproject IDs, and

class labels. We then linked the Bioproject IDs with GenBank assembly accession

numbers found in the GenBank assembly summary file downloaded on April 17, 2018

as well. We downloaded the assemblies and selected one strain per species at random to

avoid skewing the model’s performance towards species with many sequenced strains

available.

Species-level validation

This resulted in a list of 446 species (389 pathogens and 57 non-pathogens), with a

genome of a single strain representing each species. We assigned 80% of the species to

the training set, and 10% to the validation and test sets each, keeping the ratios between

pathogens and non-pathogens the same in all sets. Note that the true distribution of

pathogenic and non-pathogenic species is unknown. The observed imbalance is just a

result of a bias towards studying pathogens and does not reflect reality. Therefore, using
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an imbalanced test set would only propagate the bias of the source database. Since we

are equally interested in accurate predictions for both classes, we use a balanced test set.

Using the Mason read simulator with the Illumina error model (Holtgrewe, 2010) and

a custom R script, we simulated 10 million single-end Illumina reads per class from

the training set and 1.25 million reads per class from the validation set, thus balancing

the number of data points in both classes. We simulated 1.25 million paired reads per

class from the test set, allowing us to evaluate the classification performance in both the

single-end and the paired-end setting. This amounts to 80%, 10%, and 10% of all reads

assigned to each of the sets, respectively. Read length was set to 250 base pairs (bp) in

all cases, representing what is routinely available using an Illumina MiSeq device; for

read pairs, we used a mean fragment length of 600 with a standard deviation of 60.

While this data preprocessing procedure results in a balanced training dataset, the mean

coverage of pathogen and non-pathogen genomes is drastically different. To explore an

alternative way of solving the class imbalance problem, we also simulated an imbalanced

training set, where the total of 20 million training reads was simulated with equal mean

coverage from all the training genomes, regardless of their labels. This dataset was then

used to train ten networks using a class-weighted loss function. PaPrBaG, constituting

the state-of-the-art in machine learning based pathogenicity prediction, does not support

error weighting. For BLAST, a method based on sequence homology, this distinction

does not apply at all, as its reference database is constructed over whole genomes.

However, this does not influence our final results; the class-weighted networks were

outperformed by those trained on a balanced set and were not selected as our final

models.

Read-level validation

Note that in our primary dataset, we placed separate species in training and validation

sets to explicitly force our classifiers to predict pathogenic potentials of reads originating

from novel species. A simpler approach would comprise simulating the reads first, and

then assigning them to the training and validation sets. However, this would lead to

solving a similar, but different biological problem (classifying reads originating from

known organisms). To explicitly test those assumptions, we generated a version of the

training and validation set where reads from the same species occur in both training and

validation sets. In this setting, the test set remained the same as above, so it would be

possible to compare the effects of read-level and species-level validation.
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Temporal hold-out data

We accessed the IMG/M database again on January 17, 2019 and preprocessed it as

described above. We identified three new species passing the filters applied. All of

them were pathogens belonging to the Pantoea genus, which is absent from our original

dataset. We downloaded the genomes and simulated paired reads as described above.

To keep the mean coverage at a similar level to the coverage of the original test set, we

simulated 100,000 reads in total. While this supporting dataset is small, it is useful as a

case study in conjunction with the results of evaluation on the more diverse main dataset.

Real data case study

To test the performance of our classifier on data from a real sequencing run, we searched

the Short Read Archive (SRA) database for sequencing runs performed for a well-known

pathogenic species Staphylococcus aureus. This species was not present in the training

set (it had been randomly assigned to the validation set). We considered runs performed

on the Illumina platform with paired-end reads of length 250. Note that in the case

of real sequencing reads, the true read length may vary, and some of the reads were

significantly shorter. We accessed the archive SRX4814864, originating from a lesion

swab from an Italian paediatric hospital (Manara et al., 2018). We downloaded the data

from the corresponding run SRR7983698 as unclipped FASTA files.

BacPaCS dataset

Finally, we downloaded all the data used by Barash et al. (2018) in the assessment

of their BacPaCS method. We accessed the PATRIC database (Wattam et al., 2017)

by the IDs provided by Barash et al. (2018), copying their training and test sets for

direct comparability. The original training set consists of 17,811 genomes of pathogens

and 3,274 genomes of non-pathogens, while the test set contains 60 pathogens and 40

non-pathogens. Importantly, those genomes do not represent unique species, and the

number of strains per species varies greatly. However, following Barash et al. (2018), we

treated each strain as a separate entity and used all of them in the analysis. We randomly

reassigned 10% of the original training genomes to the validation set, so our BacPaCS

training set comprised of 90% of the original. The test set was left unchanged. The read

simulation was then performed exactly the same as for the species-level validation.
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2.2.2 Reverse-complement networks

DNA encoding and reverse-complementarity

We use distributed orthographic representations of DNA sequences, a method based on

one-hot encoding of every nucleotide in the sequence. Namely, a sequence is converted

into a 2D binary tensor, where one dimension represents the position of a given nucleotide

in the sequence, and the other represents the one-letter nucleotide code as a one-hot

encoded vector. For example, adenine is represented by the vector (1,0,0,0) and thymine

by (0,0,0,1). Unknown nucleotides may be encoded as (0,0,0,0). Note that reversing the

sequence tensor along both axes results in the reverse-complement.

We design networks with two separate branches processing each of the input ori-

entations, respectively. Each of the branches consists of identical layers, and all the

parameters are shared between each pair of layers. We propose two variants of this

architecture. In the full RC-networks, input to the deeper layers consists of concatenated

outputs of both the forward and reverse-complement versions of the previous layer.

The output of the RC layer is flipped before concatenating, so that the channels i and

n − 1 − i in the final tensor correspond to the same feature on opposing strands. Note

that in this case, a full RC-CNN is equivalent to the RC-CNNs proposed by Shrikumar

et al. (2017b). In the second variant, dubbed a Siamese RC-architecture, each of the

branches functions separately before the merging layer. That means that the input to a

deeper layer is just the output of the previous layer in a branch. We tested both variants

using CNNs, bidirectional LSTMs and hybrid networks with both convolutional and

LSTM layers, but they are in principle compatible with any other neural architecture.

We note that forward and reverse-complement representations can be merged by any

element-wise operation on the 1D output tensors. Similarly to Shrikumar et al., 2017b,

we place the dense layers (and the output layer) after representation merging. Apart

from summation, we considered two alternative merging functions (note that averaging

and adding the representation vectors are essentially equivalent). The max function

implements the Gödel t-conorm, corresponding to the OR operation in Gödel fuzzy

logic. Even though the activations are not restricted to the interval [0,1], high output

values can be interpreted as finding a motif on either of the two strands. The Hadamard

product is the product t-norm corresponding to the AND operation in the product fuzzy

logic. Here, high values may be understood as finding a motif on both strands at the

same time. During hyperparameter tuning, we considered all three methods of strain

representation merging. Although the differences were small, summation of forward and

reverse-complement feature vectors yielded the best performance overall.
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Species-level and paired reads predictions

One of the major challenges of pathogenic potential prediction from single reads is

the lack of biological context. However, if all the reads in a sample originate from

the exact same organism, we can predict the pathogenic potential of that organism by

a majority vote. In the context of probabilistic estimates of the class label (returned

by both PaPrBaG and our neural networks), we can implement that as a simple mean

over predictions for all the individual reads. For BLAST, we can just assign the label

predicted for the majority of reads.

Building upon this idea, we can boost read-based performance if we consider read

pairs, assumed to originate from the same organism even in metagenomic samples.

To this end, we average predictions for the corresponding pairs in our test set. The

classifiers may still predict pathogenic potentials for isolated sequences if so desired.

We can integrate binary predictions (e.g. returned by BLAST), taking into account the

missing and conflicting predictions for some of the reads. We treat missing predictions

as undefined values and implement the accept anything operator of ternary logic. It

returns a positive label if and only if one of the input values is positive, and the other is

not negative. Conversely, it returns a negative label if and only if one of the input values

is negative, and the other is not positive. The result is undefined when both inputs are

undefined, or in the case of conflicting input values.

Hyperparameter tuning

We used Keras 2.2.4 and TensorFlow 1.12. We tested a total of 243 different architectures.

All were initialized with He weight initialization (He et al., 2015) or Glorot initialization

(Glorot & Bengio, 2010) for the recurrent and feedforward layers respectively, and

trained with the Adam optimizer (Kingma & Ba, 2014). We used dropout regularization

(Srivastava et al., 2014), including input dropout (interpreted as setting a random fraction

of nucleotides to Ns). We also applied batch normalization (Ioffe & Szegedy, 2015)

to some of the RC-CNNs and tested the effect of adding an L2 regularization term in

RC-LSTMs . In addition, we trained traditional CNNs and LSTMs without RC parameter

sharing, equivalent to the networks that can be implemented with the pysster package

(Budach & Marsico, 2018). Finally, we selected the best CNN and the best LSTM model,

and prepared a simple ensemble classifier by averaging the predictions of those two

models. The selected RC-CNN model consists of 2 convolutional and 2 dense layers

with 512 and 256 units, respectively; it was trained with an input dropout rate of 0.25

and without batch-normalization. The best RC-LSTM has one layer of 384 units, and
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was trained with the input dropout rate of 0.2. For a more detailed description of the

tuning process, see section A.1.

Read-level validation

Generalization from one set of reads to another set of reads should be relatively easy

when both sets originate from the same species. However, we expected that even very

high read-level validation accuracy would not translate into high test accuracy (see

section 2.2.1). After the primary tuning procedure described in the previous sections, we

selected the architecture obtaining the highest training accuracy, as we assumed little

overfitting would be seen at the validation stage in this setting. We trained the network

using read-level validation and evaluated it on our primary test set containing reads from

species absent in both validation and training sets.

2.2.3 Benchmarking

PaPrBaG

To benchmark our method against the state-of-the-art in pathogenic potential prediction,

we trained PaPrBaG random forests on our training set and evaluated them on our

test set. We used two different feature settings for PaPrBaG. The original authors

extracted more than 900 features from each of the reads, including k-mer frequencies

and a selection of amino-acid and peptide features inferred by a ’least STOPs’ heuristic.

However, they show that the translation-based features contribute relatively little to the

final classification decision. Therefore, we decided to use both the original feature set

and a reduced set comprising the DNA features only.

BLAST

BLAST was shown (Deneke et al., 2017) to achieve the best read-by-read performance

among alternatives to machine learning approaches for predicting pathogenic potential.

It outperformed both the mapping-based Bowtie2 and Pathoscope2, which builds on the

former, as well as two different variants of the k-mer based Kraken (Hong et al., 2014;

Langmead & Salzberg, 2012; Wood & Salzberg, 2014). All three failed to classify most

of the reads. Furthermore, BLAST achieved better classification results than a naïve

Bayes classifier (NBC) with a word length of 15 (G. L. Rosen et al., 2011).

For each test read, we performed a search against the database containing all the

training genomes and took a label of the best hit for each of the test reads as a predicted

label for that read. We also tested a variant of this approach using all the available strains
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of the training species to build the database. In both cases, we use the discontiguous

megablast task (-task dc-megaBLAST), a cutoff E-value of 10 and the default

parameters.

BacPaCS

Finally, we compared our approach to BacPaCS, Pathogenfinder, and PaPrBaG using

the original BacPaCS test dataset. Without any further tuning, we selected one CNN

and one LSTM architecture which worked best on our data. We retrained them both

using the BacPaCS training data. Since the BacPaCS dataset treats strains, not species,

as the primary entities (and is used by the authors to predict labels for new strains

of species present in the training set), the classifier designed by Barash et al. (2018)

can be treated as specialized in predicting pathogenic potentials for known species.

Therefore, we assumed that the architecture used for read-based validation would yield

high performance, and retrained it on the BacPaCS data as well. We evaluated the

networks in a single-species sample setting and compared the results to the originally

presented performance metrics for BacPaCS and Pathogenfinder.

Assessing PaPrBaG, Barash et al. (2018) used the random forests trained on the

original PaPrBaG dataset. This may lead to inaccurate estimates of the classification

error, as the labels they mined from the PATRIC database differ from the labels that

the original PaPrBaG forests used. This problem is exacerbated by the imbalance

between the number of strains per species in the BacPaCS test dataset. For example,

strains of Acinetobacter baumannii alone constitute 30% of the non-pathogens in the set.

Fusobacterium periodonticum amounts to another 10%. Importantly, both of those two

species were treated as pathogens in the original PaPrBaG dataset, but are assigned a

non-pathogenic label based on the PATRIC metadata. One should therefore expect that

the original PaPrBaG forests will predict wrong labels for a significant fraction of the

test set if not retrained using the labels extracted by Barash et al. (2018) for their training

set. Therefore, we retrained PaPrBaG on the original BacPaCS dataset for an accurate

comparison to our networks.

2.3 Results

2.3.1 Reverse-complementarity constraint

We show predictions for each read in the test set against predictions for its reverse-

complement in Figure 2.1. Note that the reads are simulated from either of the strands

at random. Even though the predicted pathogenic potentials are highly correlated
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(a) CNN (b) RC-CNN

(c) LSTM (d) RC-LSTM

Figure 2.1: Prediction distributions for traditional (2.1a, 2.1c) and reverse-complement
networks (2.1b, 2.1d). Predictions for each of the reads (x-axis) are plotted against
the predictions for reverse-complements of the same reads (y-axis). The RC-
architectures guarantee identical predictions for both strands, which can be strikingly
divergent for the traditional LSTM.

(Spearman’s ρ > 0.999, p < 10−6) and identically distributed (p > 0.999, two-sample

KS test) for both orientations, they are not equal. The differences are striking, especially

for the LSTM model. For the RC neural networks, the predictions are guaranteed to

be exactly the same. Interestingly, the prediction distributions are very different for the

CNN and LSTM models. We can only speculate that this could be related to the specific

properties of the architectures – while the CNNs assume translational invariance and

hence focus on localized sequence motifs, the LSTMs are able to also detect long-range

relationships between more distant fragments of a read.
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2.3.2 Pathogenic potential prediction from NGS reads

Single reads

We present the results of evaluation on single NGS reads in Table 2.1. The values

given are calculated over the complete test set, treating each read as a separate entity.

Precisely, we can calculate the performance measures for the sets of ’left’ and ’right’

mates separately and then compute the mean for any given measure. Results obtained

for the ’left’ and ’right’ half of the set did not differ from those presented in Table 2.1 by

more than 0.001.

As previously shown (Deneke et al., 2017), BLAST fails to classify some of the

reads at all. To compare its performance to the machine learning approaches, we define

accuracy as the ratio of correct predictions to the number of all data points in a set.

Therefore, missing predictions are counted as false positives or false negatives depending

on the ground truth label. The fraction of classified reads is presented in the last column.

The neural networks clearly outperform both BLAST and PaPrBaG in terms of

prediction accuracy. The traditional deep learning architectures performed worse than

their reverse-complement counterparts (data not shown). However, the differences in

validation accuracy were below 0.01. Figure 2.1 compares the prediction distributions

of standard and RC-networks, showing the importance of employing the RC models,

especially for LSTMs .

The RC-CNN model achieves the highest positive predictive value (precision), and

the RC-LSTM is the most sensitive. The RC-CNN+LSTM ensemble model aims at a

trade-off between those two performance measures. Integrating signals contained in

both mates significantly boosts the performance of all the evaluated methods (Table 2.2).

In this case, the RC-CNN achieves the highest accuracy. Compared to the previous

state-of-the-art (PaPrBaG with original settings, single reads only), it cuts the error rate

almost in half (21.9% vs. 11.3%).

A full RC-CNN with 2 convolutional and 2 dense layers of 512 and 256 units, batch

normalization and no input dropout achieved the highest training accuracy and was used

for read-level validation. As expected, it performs much worse, even though it achieved

an impressive validation accuracy of 0.956. Somewhat surprisingly, it still outperforms

both PaPrBaG and BLAST. It is important to note that for all the other methods, the

validation accuracy was much lower than test accuracy. It ranged from 57.4 (BLAST) to

78.4 (RC-LSTM) and 78.7 (RC-CNN+LSTM). We hypothesize that this is because the

species randomly assigned to the training set are more closely related to the species in

the test set than to those in the validation set. We comment on this problem further in the

Discussion.
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Table 2.1: Classification performance on single reads. PaPrBaGDNA is a variant of PaPrBaG
using DNA-based features only. By default, we use the training set to build the BLAST reference
database. BLASTAll uses all available strains of the training species. RC-CNNRead-val was
trained using read-level validation. RC-CNN+LSTM is the average of RC-CNN and RC-LSTM
predictions. Acc. – accuracy, Prec. – precision, Rec. – recall, Spec. – Specificity, AUC – area
under the ROC curve, AUPR – area under the precision-recall curve, Pred. – prediction rate.

Classifier Acc. Prec. Sens. Spec. AUC AUPR Pred.

PaPrBaG 78.1 75.6 83.0 73.2 85.9 84.4 100.0

PaPrBaGDNA 78.2 75.2 84.1 72.3 86.1 84.7 100.0

BLAST 66.5 84.5 81.8 51.2 n/a n/a 75.1

BLASTAll 67.2 83.5 83.8 50.7 n/a n/a 76.5

RC-CNNRead-val 79.0 73.3 91.1 66.8 88.0 85.8 100.0

RC-CNN 84.4 82.5 87.4 81.5 91.8 91.8 100.0

RC-LSTM 83.8 77.8 94.6 73.0 91.6 88.8 100.0

RC-CNN+LSTM 84.8 79.4 94.1 75.6 92.9 92.2 100.0

Time performance

The prediction speed is difficult to compare, as PaPrBaG can only run on a central

processing unit (CPU), and our neural networks are most efficiently used on graphics

processing units (GPUs). Both can be trivially parallelized depending on the number

of devices available. We measured the time PaPrBaG needed for a complete prediction

task (feature extraction and prediction itself) on a single Intel(R) Xeon(R) E7-4890 v2

CPU. The original version of PaPrBaG was able to classify 107 reads/s, and 47% of that

time was used for feature extraction. The DNA-only version classified up to 167 reads/s,

and most of the speed-up came from the reduction of feature extraction time (which was

25% of the total elapsed time). The classification performance was nearly identical.

The reverse-complement neural networks were tested on a single, consumer-level GPU

(RTX 2080 Ti). We measured the time of prediction from sequences already converted

to binary tensors, as the conversion step may be performed independently on separate

CPU devices. The selected RC-LSTM model can predict up to 1817 reads/s and the

RC-CNN reaches a speed of 4010 reads/s. Using this rapid architecture, a million-read

sample may be processed in just over 4 minutes, even on a desktop computer.

Single-species samples

The evaluation scenario presented in Table 2.3 models sequencing a pure, single-species

isolate, when it can be assumed that all reads originate from the same genome. Af-
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Table 2.2: Classification performance on read pairs.

Classifier Acc. Prec. Rec. Spec. AUC AUPR Pred.

PaPrBaG 82.2 78.9 87.8 76.5 89.8 88.5 100.0

PaPrBaGDNA 82.2 78.5 88.7 75.7 90.1 89.0 100.0

BLAST 70.0 84.1 86.6 53.5 n/a n/a 79.4

BLASTAll 70.4 82.9 88.3 52.5 n/a n/a 80.5

RC-CNN 88.7 86.8 91.3 86.1 94.8 94.7 100.0

RC-LSTM 86.6 80.4 96.7 76.4 93.6 90.9 100.0

RC-CNN+LSTM 87.8 82.4 96.2 79.4 94.8 94.0 100.0

ter averaging the pathogenic potentials over whole genomes, BLAST, PaPrBaG, and

RC-CNN performed equally well, with just one false positive and one false negative.

The RC-LSTM and RC-CNN+LSTM ensemble models predict one more false positive,

which is reflected in their drastically lower specificity. This is in line with the previous

results suggesting that those models are more sensitive, even though they do not manage

to limit the number of false negatives to zero. Note that the set contained 39 pathogen

and only 6 non-pathogen genomes. A bigger and more balanced dataset would allow

more reliable error estimates, but collecting more data that could be used in a rigorous,

automated data preprocessing workflow poses a non-trivial challenge. It is nevertheless

important to evaluate prediction accuracy also on single-organism samples, as this is

one of the possible applications of the proposed method (Barash et al., 2018; Deneke

et al., 2017). Validation balanced accuracy ranged from 80.8 (All-strains BLAST) to

89.1 (BLAST, RC-LSTM). Interestingly, the RC-LSTM and RC-CNN+LSTM ensemble

models achieved higher balanced accuracy on the validation set than on the test set. This

may reflect the different evolutionary distances between the members of each of the sets,

as discussed for the single-read predictions.

2.3.3 Temporal hold-out

For the temporal hold-out test, we predicted labels for reads originating from Pantoea

brenneri, Pantoea septica, and Pantoea conspicua, which were labelled pathogenic

based on the metadata extracted from the IMG/M database. They were not available

when we prepared our training, validation, and primary test sets. Species-wide, the

labels were predicted correctly for all three genomes by both BLAST and the reverse-

complement networks (Table 2.4). The RC-LSTM and the RC-CNN+LSTM ensemble

model performed best, but the RC-CNN outperformed BLAST as well. PaPrBaG was
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Table 2.3: Classification performance on single-species samples. Balanced accuracy (BAcc.)
is the mean of recall (Rec.) and specificity (Spec.).

Classifier Acc. BAcc. Prec. Rec. Spec. AUC AUPR

PaPrBaG 95.6 90.4 97.4 97.4 83.3 93.2 98.8
PaPrBaGDNA 95.6 90.4 97.4 97.4 83.3 93.2 98.8
BLAST 95.6 90.4 97.4 97.4 83.3 n/a n/a

BLASTAll 95.6 90.4 97.4 97.4 83.3 n/a n/a

RC-CNN 95.6 90.4 97.4 97.4 83.3 94.0 98.9
RC-LSTM 93.3 82.1 95.0 97.4 66.7 89.7 97.8

RC-CNN+LSTM 93.3 82.1 95.0 97.4 66.7 92.3 98.5

Table 2.4: Temporal hold-out, read pairs.

Classifier Acc. Prec. Rec. Pred.

BLAST 88.1 100.0 88.1 88.3

BLASTAll 89.5 100.0 89.5 89.6

RC-CNN 98.4 100.0 98.4 100.0

RC-LSTM 99.2 100.0 99.2 100.0

RC-CNN+LSTM 99.2 100.0 99.2 100.0

not used here, as it consistently underperformed in comparison to the deep learning

approaches in the previous tests. As mentioned in section Data preprocessing, this dataset

is too small to yield reliable error estimates, and the temporal hold-out should only be

interpreted as a case study supporting the other results. The Pantoea genus was absent

from the training database when the training set was compiled; accurate predictions for

a novel genus (while trained at the species level) suggest successful generalization.

2.3.4 Real-data results

One of the defining characteristics of real sequencing runs is that the reads generated are

not all of the same length. Since the neural networks require a constant input length, we

pad the sequences shorter than 250bp with zeroes (interpreted as Ns). If any sequence

is longer than this threshold, it is trimmed. This may be a problem for the CNNs

with average pooling, as multiple zero-entries significantly lower the activations after a

pooling layer. Therefore, we expected those architectures to achieve lower accuracy than

the RC-LSTMs on a real dataset. Note that this problem does not apply to RC-CNNs with

max pooling. However, those performed worse than their average-pooling counterparts
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Table 2.5: Performance on real data, read pairs.

Classifier Acc. Prec. Rec. Pred.

BLAST 74.6 100.0 74.6 75.0

BLASTAll 78.7 100.0 78.7 79.0

RC-CNN 90.0 100.0 90.0 100.0

RC-LSTM 98.4 100.0 98.4 100.0

RC-CNN+LSTM 98.2 100.0 98.2 100.0

in the tuning and validation step. As they essentially work as motif detectors, we suspect

that they are more prone to overfitting. We present the results in Table 2.5.

Although the RC-CNN suffers from lower accuracy compared to the RC-LSTM and

RC-CNN+LSTM ensemble models, it still outperforms BLAST by a large margin. Based

on the prediction speed we can name the RC-CNN our rapid model, and the RC-LSTM

our sensitive model. Their predictions may be aggregated with the RC-CNN+LSTM

ensemble model, with almost no additional computation, for a boost in sensitivity at a

smaller precision cost.

2.3.5 BacPaCS dataset results

We present the results of the evaluation performed on the BacPaCS dataset in Table 2.6.

The RC-networks outperform all of the other methods in terms of balanced accuracy.

PaPrBaG’s specificity is much higher after retraining (see section 2.2.3). This is also

reflected in balanced accuracy, which in this case is even higher than BacPaCS’s. The

RC-CNN architecture selected based on our primary dataset turns out to be the most

specific architecture when trained on the BacPaCS dataset. As expected, the best overall

performance is achieved by an RC-CNN with batch normalization and without input

dropout, as observed for read-level validation (see section 2.2.2).

2.4 Discussion

2.4.1 Evolutionary distances and pathogenicity

Given the difficulty of the task, the reverse-complement networks offer impressive per-

formance. They are able to predict a high-level, abstract phenotype (namely, pathogenic

potential) from isolated reads, without any additional biological context. They also

outperformed the traditional deep learning architectures in the tuning and validation step.

However, all of the evaluated tools show a noticeable gap between validation and test
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Table 2.6: Performance on the BacPaCS dataset. Balanced accuracy is the mean of recall and
specificity.

Classifier Balanced accuracy Recall Specificity

BacPaCS 70 92 48

Pathogenfinder 46 63 28

PaPrBaG (Barash et al., 2018) 53 100 5

PaPrBaG (retrained) 77 72 83

RC-CNN 81 70 93
RC-LSTM 80 75 85

RC-CNN+LSTM 81 72 90

RC-CNN+BN 84 78 90

accuracy. We assume that this is a result of the species-level division of the data into the

training, validation and test sets – it must be more difficult to predict correct labels for

the validation data than for the test data. We hypothesize that the species assigned to the

test set must be more similar (in terms of evolutionary distance) to the training species

than the validation species. This discrepancy would be therefore a result of treating

all the species as separate, independent entities, as if the sequence similarities between

individual genomes (and the corresponding reads) were uniform. This is not biologically

correct; closely related species have similar genomes, and horizontal transfer of genetic

elements (including virulence factors) introduces local similarities.

Pathogenic and non-pathogenic strains may belong to the same species. However,

the extracted labels are actually consistent among individual strains for a vast majority

of the species in the IMG/M database. Seven well-known pathogens had between one

and two non-pathogenic strains that were ignored in the further analysis. We select one

strain per species to avoid skewing the performance towards species with more strains

available. As expected, we found multiple E. coli strains of both classes. We decided to

only consider pathogenic ones, so we assume our models to classify any E. coli sample

as exhibiting pathogenic potential. While this may be seen as a major limitation of the

proposed method, it only affects a single species in the dataset. It also reflects the great

phenotypic diversity of E. coli. Importantly, this problem does not apply to the models

trained on the BacPaCS dataset, which includes multiple independently labelled strains

per species. DeePaC performs very well also in this setting.

We resort to the oversimplification of treating species as independent since balancing

the read sets to account for sequence similarity is not trivial. The same approach was used

by PaPrBaG (Deneke et al., 2017). In turn, BacPaCS (Barash et al., 2018) uses individual
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strains as primary biological entities, which leads to similar problems. Nevertheless,

both approaches do achieve satisfactory results. In fact, Deneke et al. (2017) have shown

that PaPrBaG outperforms taxonomy-dependent methods (BLAST, Kraken, Bowtie2 and

Pathoscope2) in two challenging cases: when species belonging to the same genus have

different phenotypes, and when a genus is completely absent from the training set (as

in our temporal hold-out). This suggests that read-based, taxonomy-agnostic methods

like DeePaC and PaPrBaG are actually more robust to the oversimplified assumption

of uniform evolutionary distances between species. A future outlook could include

investigating in detail how sequence similarities and differences in labels within each

taxonomic rank influence the predictions, as well as which parts of a given genome lead

to the most confident predictions.

More exact estimates of the classification error could be obtained using nested cross-

validation, but this was not computationally feasible – a single training epoch may take

up to 6 hours on a state-of-the-art GPU for some of the most demanding architectures.

We trained multiple networks in parallel on multiple nodes of a cluster, but performing

even simple 10-fold cross-validation would require a drastic reduction of the number of

architectures covered. This would be undesirable, as no baseline deep learning model for

pathogenic potential prediction was available prior to this study. Multiple combinations

of hyperparameter values had to be tested. Therefore, we assume that the accuracy

of BLAST, a sensitive alignment-based approach, reflects sequence similarities (and

presumed evolutionary distances). This means that a method more accurate than BLAST

generalizes well. In addition, we test the classifiers on independent data. Our approach

consistently outperforms both BLAST and PaPrBaG. It also fares better than BacPaCS,

Pathogenfinder, and PaPrBaG when tested on the original BacPaCS data.

2.4.2 Predictions from single reads

The results above may be counter-intuitive. Virulence factors are often encoded on

pathogenicity islands or mobile genetic elements. While the genome assemblies used

in this study often include plasmids (which can hence be detected by the models), it

is impossible to guarantee that none was missed. Moreover, the same organism may

cause disease in one person and not in the other – for those very reasons, we can only

predict pathogenic potentials, not a pathogenic phenotype directly. All this context is

unavailable in an NGS read. It is not even possible to reliably detect open reading frames;

comparing PaPrBaG to PaPrBaGDNA proves that attempting to infer putative peptide

sequences only introduces noise. Nevertheless, the evaluation clearly shows that the

read-based approaches do work. Surprisingly, DeePaC outperforms BacPaCS, which
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predicts pathogenic potentials from whole proteomes, treating the most relevant genes as

input features (Barash et al., 2018). Apparently, predicting pathogenic potentials based

on isolated reads and aggregating the predictions with a simple mean results in accurate

phenotype predictions – also when multiple strains of each species are considered.

This could be related to the texture-bias of CNNs. Brendel and Bethge (2019) have

recently shown that splitting an image into receptive fields as small as 17 × 17 px, and

subsequent averaging of the class predictions for each of the patches results in high

accuracy predictions on the ImageNet dataset. A similar effect may be seen in the

pathogenic potential prediction task. A genome is split into short reads, but the local

sequence patterns are sufficient to predict a phenotypic label even though establishing a

mechanistic link between a read and the phenotype is improbable. Averaging the results

leads to confident predictions for whole genomes in single-organism samples.

2.4.3 The definition of a pathogen

It is important to define human pathogens in a reliable and consistent way. However, it

is also by no means a trivial task. We do not differentiate between the level of danger

individual organisms may pose – dangerous, biosafety level 3 select-agents are put in

the same category as opportunistic pathogens causing relatively mild and easily-treated

infections. Classifying the risk posed by unrecognized DNA at a higher resolution is

an interesting avenue for further research; it is however likely to be challenging due

to a comparatively small number of very dangerous bacterial species. We recognize

that what constitutes a pathogen is an open problem, and different definitions may

be interesting for different purposes. For processing big datasets, the labels must be

extracted automatically using handcrafted rules compatible with a particular source

database. It is therefore immensely important to be aware of the underlying assump-

tions, as they will be reflected in the final classification decisions of a trained model.

We note that comparing models trained using incompatible labels may result in unre-

liable error estimates, especially if organisms for which the labels differ constitute a

substantial fraction of the test set. We recommend sharing the metadata describing

the training organisms along the trained models. For this study, they are available at

https://gitlab.com/rki_bioinformatics/DeePaC.

2.4.4 A flexible framework for RC-constrained classification

DeePaC is easily extensible and may be used as a generalized framework for building

reverse-complement neural architectures beyond the applications described here. It is not

constrained to the read length used here or the pathogenic potential prediction task; any
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label or value may be used as a prediction target. For predicting a categorical phenotype

directly from NGS reads, we suggest that the target label should be a relatively abstract,

general feature. Phenotypes dependent on single genes or small sets of genes will most

probably be very difficult to predict from whole-genome sequencing reads. The variant

of the RC configuration (full, Siamese or none) may be easily switched, so the framework

can also be applied to tasks where the RC-constraint is not important. RNA sequences

can be analyzed, provided that they are converted to binary tensors using the appropriate

alphabet.

2.4.5 Conclusions

We show that the RC-networks outperform the previous state-of-the-art on both simu-

lated and real sequencing data, accurately predicting pathogenic potentials from isolated

NGS reads. The trained models can be used to predict pathogenic potentials for un-

known, unrecognized and novel (e.g. synthetic) DNA sequences with a simple script,

also if they do not originate from an Illumina sequencing run. It is also possible to

filter a read set based on a user-defined threshold to select only the reads for which a

network yields confident predictions. This may be used as a crude pre-filter, where the

reads with the highest pathogenic potential may be further investigated in downstream

analysis. The code, the models trained, and example configuration files are available at

https://gitlab.com/rki_bioinformatics/DeePaC.
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3 Viral host range prediction and
interpretability

Summary

Viruses evolve extremely quickly, so reliable methods for viral host prediction are

necessary to safeguard biosecurity and biosafety alike. Novel human-infecting viruses

are difficult to detect with standard bioinformatics workflows. Here, we predict whether

a virus can infect humans directly from NGS sequencing reads. We show that deep

neural architectures significantly outperform both shallow machine learning and standard,

homology-based algorithms, cutting the error rates in half and generalizing to taxonomic

units distant from those presented during training. Further, we develop a suite of

interpretability tools and show that it can also be applied to other models beyond the

host prediction task. We propose a new approach for convolutional filter visualization

to disentangle the information content of each nucleotide from its contribution to the

final classification decision. Nucleotide-resolution maps of the learned associations

between pathogen genomes and the infectious phenotype can be used to detect regions

of interest in novel agents, for example the SARS-CoV-2 coronavirus, unknown before it

caused a COVID-19 pandemic in 2020. All methods presented here are implemented as

easy-to-install packages enabling analysis of NGS datasets without requiring any deep

learning skills, but also allowing advanced users to easily train and explain new models

for genomics.

This chapter is based on Bartoszewicz, Seidel, and Renard (2021a), which is a joint

work with Anja Seidel and Bernhard Y. Renard. A detailed description of the authors’

contributions can be found in section Thesis outline.

3.1 Background

3.1.1 Motivation

Within a globally interconnected and densely populated world, pathogens can spread

more easily than they ever had before. As the recent outbreaks of Ebola and Zika viruses
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have shown, the risks posed even by these previously known agents remain unpredictable

and their expansion hard to control (Calvignac-Spencer et al., 2014). What is more, it is

almost certain that more unknown pathogen species and strains are yet to be discovered,

given their constant, extremely fast-paced evolution and unexplored biodiversity, as well

as increasing human exposure (Trappe et al., 2016; Vouga & Greub, 2016). Some of

those novel pathogens may cause epidemics (similar to the SARS and MERS coronavirus

outbreaks in 2002 and 2012) or even pandemics (e.g. SARS-CoV-2 and the ’swine flu’

H1N1/09 strain). Many have more than one host or vector, which makes assessing and

predicting the risks even more difficult. For example, Ebola has its natural reservoir

most likely in fruit bats (Leendertz et al., 2016), but causes deadly epidemics in both

humans and chimpanzees. As the state-of-the-art approach for the open-view detection

of pathogens is genome sequencing (Calistri & Palù, 2015; Lecuit & Eloit, 2014), it

is crucial to develop automated pipelines for characterizing the infectious potential

of currently unidentifiable sequences. In practice, clinical samples are dominated by

host reads and contaminants, with often less than a hundred reads of the pathogenic

virus (Andrusch et al., 2018). Metagenomic assembly is challenging, especially in

time-critical applications. This creates a need for read-based approaches complementing

or substituting assembly where needed.

Screening against potentially dangerous subsequences before their synthesis may also

be used as a way of ensuring responsible research in synthetic biology. While potentially

useful in some applications, engineering of viral genomes could also pose a biosecurity

and biosafety threat. Two controversial studies modified the influenza A/H5N1 (’bird

flu’) virus to be airborne transmissible in mammals (Herfst et al., 2012; Imai et al., 2012).

A possibility of modifying coronaviruses to enhance their virulence triggered calls for

a moratorium on this kind of research (Lipsitch & Inglesby, 2014). Synthesis of an

infectious horsepox virus closely related to the smallpox-causing Variola virus (Noyce

et al., 2018) caused a public uproar and calls for intensified discussion on risk control in

synthetic biology (Thiel, 2018).

3.1.2 Current tools for host range prediction

Several computational, genome-based methods exist that allow predicting the host

range of a bacteriophage (a bacteria-infecting virus). A selection of composition-based

and alignment-based approaches has been presented in an extensive review by R. A.

Edwards et al. (2016). Prediction of eukaryotic host tropism (including humans) based

on known protein sequences was shown for the influenza A virus (Eng et al., 2014).

Support-vector machines based on word2vec representations were shown to outperform
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homology searches with BLAST and hidden Markov models in the same task, but lost

their advantage when applied to nucleic acid sequences directly (Xu et al., 2017). Two

recent studies employ k-mer based, kNN classifiers (H. Li & Sun, 2018) and deep

learning (Mock et al., 2020) to predict host range for a small set of three well-studied

species directly from viral sequences. While those approaches are limited to those

particular species and do not scale to viral host range prediction in general, the Host

Taxon Predictor (HTP) (Gałan et al., 2019) uses logistic regression and SVMs to predict

if a novel virus infects bacteria, plants, vertebrates or arthropods. Yet, the authors argue

that it is not possible to use HTP in a read-based manner; it requires long sequences of at

least 3,000 nucleotides. This is incompatible with modern metagenomic NGS workflows,

where the DNA reads obtained are at least 10–20 times shorter. Another study used

gradient boosting machines to predict reservoir hosts and transmission via arthropod

vectors for known human-infecting viruses (Babayan et al., 2018).

Z. Zhang et al. (2019) designed several classifiers explicitly predicting whether a new

virus can potentially infect humans. Their best model, a kNN classifier, uses k-mer

frequencies as features representing the query sequence and can yield predictions for

sequences as short as 500 base pairs (bp). It also worked with 150bp-long reads from

real DNA sequencing runs, although in this case, the reads originated also from the

viruses present in the training set (and were therefore not ’novel’).

3.1.3 Deep learning for genomics

While DNA sequences mapped to a reference genome may be represented as images

(Poplin et al., 2018), a majority of studies uses a distributed orthographic representation,

where each nucleotide {A, C, G, T} in a sequence is represented by a one-hot encoded

vector of length 4. An ’unknown’ nucleotide (N) can be represented as an all-zero vector.

CGR and its extension, the frequency matrix CGR (FCGR) are promising alternatives

able to encode an arbitrary sequence in an image-like format. FCGR has been used to

encode genomic inputs for deep learning approaches, including full bacterial genomes

(Rizzo et al., 2016) and coding sequences of HIV for the drug resistance prediction task

(Löchel et al., 2020). In this study, we use one-hot encoding with Ns as zeroes, which

was previously shown to perform well for raw NGS reads (Bartoszewicz et al., 2020)

and abstract phenotype labels.

CNNs and LSTMs have been successfully used for a variety of DNA-based prediction

tasks. Early works focused mainly on regulation of gene expression in humans (Alipanahi

et al., 2015; Kelley et al., 2016; Quang & Xie, 2016; Zeng et al., 2016; J. Zhou &

Troyanskaya, 2015), which is still an area of active research (Avsec, Weilert, et al.,
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2021; Greenside et al., 2018; Nair et al., 2019). In the field of pathogen genomics,

deep learning models trained directly on DNA sequences were developed to predict host

ranges of three multi-host viral species (Mock et al., 2020) and to predict pathogenic

potentials of novel bacteria (Bartoszewicz et al., 2020). DeepVirFinder (Ren et al., 2020)

and ViraMiner (Tampuu et al., 2019) can detect viral sequences in metagenomic samples,

but they cannot predict the host and focus on previously known species. For a broader

view on deep learning in genomics we refer to a recent review by Eraslan et al. (2019).

Interpretability and explainability of deep learning models for genomics are crucial

for their widespread adoption, as it is necessary for delivering trustworthy and actionable

results. Convolutional filters can be visualized by forward-passing multiple sequences

through the network and extracting the most-activating subsequences (Alipanahi et al.,

2015) to create a position weight matrix (PWM) which can be visualized as a sequence

logo (Crooks et al., 2004; Schneider & Stephens, 1990). Direct optimization of input

sequences is problematic, as it results in generating a dense matrix even though the

input sequences are one-hot encoded (Lanchantin et al., 2016; Lanchantin et al., 2017).

This problem can be alleviated with Integrated Gradients (Jha et al., 2020; Sundararajan

et al., 2016) or DeepLIFT, which propagates activation differences relative to a selected

reference back to the input, reducing the computational overhead of obtaining accurate

gradients (Shrikumar et al., 2017a). If the bias terms are zero and a reference of all-

zeros is used, the method is analogous to layer-wise relevance propagation (Bach et al.,

2015). DeepLIFT is an additive feature attribution method, and may used to approximate

Shapley values if the input features are independent (Lundberg & Lee, 2017). TF-

MoDISco (Shrikumar et al., 2019) uses DeepLIFT to discover consolidated, biologically

meaningful DNA motifs (transcription factor binding sites).

3.1.4 Contributions

In this paper, we first improve the performance of read-based predictions of the viral host

(human or non-human) from NGS sequencing reads. We show that reverse-complement

(RC) neural networks (Bartoszewicz et al., 2020) significantly outperform both the

previous state-of-the-art (Z. Zhang et al., 2019) and the traditional, alignment-based

algorithm – BLAST (Altschul et al., 1990; Camacho et al., 2009), which constitutes a

gold standard in homology-based bioinformatics analyses. We show that defining the

negative (non-human) class is non-trivial and compare different ways of constructing

the training set. Strikingly, a model trained to distinguish between viruses infecting

humans and viruses infecting other chordates (a phylum of animals including vertebrates)

generalizes well to evolutionarily distant non-human hosts, including even bacteria. This
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suggests that the host-related signal is strong, and the learned decision boundary separates

human viruses from other DNA sequences surprisingly well.

Next, we propose a new approach for convolutional filter visualization using partial

Shapley values to differentiate between simple nucleotide information content and the

contribution of each sequence position to the final classification score. To test the

biological plausibility of our models, we generate genome-wide maps of ’infectious

potential’ and nucleotide contributions. We show that those maps can be used to visualize

and detect virulence-related regions of interest (e.g. genes) in novel genomes.

As a proof of concept, we analyzed one of the viruses randomly assigned to the test

set – the Taï Forest ebolavirus, which has a history of host-switching and can cause

serious disease. To show that the method can also be used for other biological problems,

we investigated the networks trained by Bartoszewicz et al. (2020) and their predictions

on a genome of a pathogenic bacterium Staphylococcus aureus. The authors used this

particular species to assess the performance of their method on real sequencing data.

Finally, we studied the SARS-CoV-2 coronavirus, which emerged in December 2019,

causing the COVID-19 pandemic (F. Wu et al., 2020).

3.2 Materials and Methods

3.2.1 Data collection and preprocessing

VHDB dataset

We accessed the Virus-Host Database (Mihara et al., 2016) on July 31, 2019 and

downloaded all the available data. We note that all the reference genomes from NCBI

Viral Genomes are present in VHDB, as well as their curated annotations from RefSeq.

Additional, manually curated records in VHDB extend on metadata available in NCBI.

More non-reference genomes are available, but considering multiple genomes per virus

would skew the classifiers’ performance towards the more frequently resequenced ones.

The original dataset contained 14,380 records comprising RefSeq IDs for viral se-

quences and associated metadata. Some viruses are divided into discontiguous segments,

which are represented as separate records in VHDB; in those cases, the segments were

treated as contigs of a single genome in further analysis. We removed records with

unspecified host information and those confusing the highly pathogenic Variola virus

with a similarly named genus of fish. Following Z. Zhang et al. (2019), we filtered out

viroids and satellites, which are classified as subviral agents and not bona fide viruses

(King et al., 2012; Lefkowitz et al., 2018). Note that even though they require helper

viruses for replication, this step did not affect ubiquitous adeno-associated viruses and
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large virophages, which are well established within the viral taxonomy in the families

Parvoviridae and Lavidaviridae, respectively. Human-infecting viruses were extracted

by searching for records containing ’Homo sapiens’ in the ’host name’ field. Note

that VHDB contains information about multiple possible hosts for a given virus where

appropriate. Any virus infecting humans was assigned to the positive class, also if other,

non-human hosts exist. In total, the dataset contained 9,496 viruses (grouped in 7503

species), including 1,309 human viruses (393 species). We considered both DNA and

RNA viruses; RNA sequences were encoded in the DNA alphabet, as in RefSeq.

Defining the negative class

While defining a human-infecting class is relatively straightforward, the reference neg-

ative class may be conceptualized in a variety of ways. The broadest definition takes

all non-human viruses into account, including bacteriophages (bacterial viruses). This

is especially important, as most of the known bacteriophages are DNA viruses, while

many important human (and animal) viruses are RNA viruses. One could expect that the

multitude of available bacteriophage genomes dominating the negative class could lower

the prediction performance on viruses similar to those infecting humans. This offers

an open-view approach covering a wider part of the sequence space, but may lead to

misclassification of potentially dangerous mammalian or avian viruses. As they are often

involved in clinically relevant host-switching events, a stricter approach must also be

considered. In this case, the negative class comprises only viruses infecting Chordata (a

group containing vertebrates and closely related taxa). Two intermediate approaches con-

sider all eukaryotic viruses (including plant and fungal viruses), or only animal-infecting

viruses. This amounts to four nested host sets: ’All’ (8,187 non-human viruses, 7110

species), ’Eukaryota’ (5,114 viruses, 4275 species), ’Metazoa’ (2,942 viruses, 2351

species) and ’Chordata’ (2,078 viruses, 1530 species). Auxiliary sets containing only

non-eukaryotic viruses (’non-Eukaryota’), non-animal eukaryotic viruses (’non-Metazoa

Eukaryota’) etc. can be easily constructed by set subtraction.

For the positive class, we randomly generated a training set containing 80% of the

genomes, and validation and test sets with 10% of the genomes each. Importantly, the

nested structure was kept also during the training-validation-test split: for example,

the species assigned to the smallest test set (’Chordata’) were also present in all the

larger test sets. The same applied to other taxonomic levels, as well as the training and

validation sets wherever applicable.
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Read simulation

We simulated 250bp long Illumina reads following a modification of a previously

described protocol (Bartoszewicz et al., 2020) and using the Mason read simulator

(Holtgrewe, 2010). First, we only generated the reads from the genomes of human-

infecting viruses. Then, the same steps were applied to each of the four negative class

sets. Finally, we also generated a fifth set, ’Stratified’, containing an equal number of

reads drawn from genomes of the following disjunct host classes: ’Chordata’ (25%),

’non-Chordata Metazoa’ (25%), ’non-Metazoa Eukaryota’ (25%) and ’non-Eukaryota’

(25%).

In each of the evaluated settings, we used a total of 20 million (80%) reads for training,

2.5 million (10%) reads for validation, and 2.5 million (10%) paired reads as the held-out

test set. Read number per genome was proportional to genome length, keeping the

coverage uniform on average. Viruses with longer genomes were therefore represented

by more reads than shorter viruses. On the other hand, their sequence diversity was

covered at a similar level. This length-balancing step was previously shown to work well

for bacterial genomes of different lengths (Bartoszewicz et al., 2020; Deneke et al., 2017).

While the original datasets are heavily imbalanced, we generated the same number of

negative and positive data points (reads) regardless of the negative class definition used.

This protocol allowed us to test the impact of defining the negative class, while using

the exact same data as representatives of the positive class. We used three training and

validation sets (’All’, ’Stratified’, and ’Chordata’), representing the fully open-view

setting, a setting more balanced with regard to the host taxonomy, and a setting focused

on cases most likely to be clinically relevant. In each setting, the validation set matched

the composition of the training set. The evaluation was performed using all five test

sets to gain a more detailed insight into the effects of negative class definition on the

prediction performance.

Human blood virome dataset

Similarily to Z. Zhang et al. (2019), we used the human blood DNA virome dataset

(Moustafa et al., 2017) to test the selected classifiers on real data. We obtained 14,242,329

reads of 150bp and searched all of VHDB using blastn (with default parameters) to

obtain high-quality reference labels. If a read’s best hit was a human-infecting virus, we

assigned it to a positive class; the negative class was assigned if this was not the case.

This procedure yielded 14,012,665 ’positive’ and 229,664 ’negative’ reads.
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Virus-level and species-level predictions

In this study, we focus on predicting labels for reads originating from novel viruses.

What constitutes a ’novel’ biological entity is an open question – a novel virus does not

necessarily belong to a novel species (Gorbalenya et al., 2020). If a given viral isolate

clusters with a known group of isolates, it is considered to be the same virus; if it does

not, it may be assigned a distinct name and considered novel (Gorbalenya et al., 2020).

This is separate from its putative taxonomic assignment. Assigning a novel virus to a

novel or a previously established species is performed pursuing a wider set of criteria,

and the criteria for delineating distinct species differ between viral families (Gorbalenya

et al., 2020; King et al., 2012; Lefkowitz et al., 2018; Simmonds & Aiewsakun, 2018).

In most cases, species are perceived as human constructs rather than biological entities,

and host range often is explicitly one of the defining features (Gorbalenya et al., 2020;

Van Regenmortel, 2018), rendering reasoning based on cross-species homology searches

inherently difficult.

The most prominent example of this problem is the SARS-CoV-2 virus, which is

a novel virus within a previously known species (Severe acute respiratory syndrome-

related coronavirus). Other members of this species include the human-infecting SARS-

CoV-1, but also multiple related bat SARSr-CoV viruses (e.g. SARSr-CoV RaTG13 or

Bat SARS-like coronavirus WIV1). Importantly, SARS-CoV-2 is not a strain of SARS-

CoV-1; those two viruses share a common ancestor (Gorbalenya et al., 2020). This

echoes similar problems related to pathogenic potential prediction for novel bacterial

pathogens. A novel bacterium may be defined as a novel strain or a novel species

(Bartoszewicz et al., 2020), and the classifiers must be trained according to the desired

definition.

As the 2020 pandemic has shown, different viruses of the same species can differ

wildly in their infectious potential and the broader impact on human societies. Therefore,

threat assessment must be performed for novel viruses, not only novel taxa; different

related viruses are non-redundant. At the same time, redundancy below this level (i.e.

multiple instances of the same virus) must be eliminated from the dataset to ensure

the reliability of the trained classifier. VHDB tackles this problem by collecting and

annotating reference genomes – each virus in the database is a separate entity with its

own ID in NCBI Taxonomy. This virus-level approach was previously used by Z. Zhang

et al. (2019). We show that homology-based algorithms underperform in this setting

already, suggesting that machine learning is indeed required to accurately predict labels

for novel viruses even if other members of the same species are present in the training

database.

52



3.2 Materials and Methods

Nevertheless, a more difficult alternative – predictions for reads of viruses belonging

to completely novel species – is a related and potentially equally important task. For

bacterial datasets, species novelty can be modelled by selecting a single representative

genome per species (Bartoszewicz et al., 2020). As the SARS-CoV-2 example shows,

this is often not possible for viruses. To assess our approach in this stricter setup, we re-

divided the VHDB dataset into training, validation and test sets, ensuring that all viruses

of a given species were assigned to only one of those subsets. This effectively models

a ’novel species’ scenario while also reflecting within-species phenotype diversity. We

recreated the species-wide versions of the ’All’ and ’Chordata’ datasets by assigning 80%,

10% and 10% of the species to the training, validation and test datasets, respectively. We

resimulated the reads as outlined above and compared the performance of the machine

learning and homology-based approaches achieving the highest accuracy in the simpler

’novel virus’ setting (see section 3.3.2).

3.2.2 Training

We used the DeePaC package (Bartoszewicz et al., 2020) to investigate RC-CNN and RC-

LSTM architectures, which guarantee identical predictions for both forward and reverse-

complement orientations of any given nucleotide sequence and have been previously

shown to accurately predict bacterial pathogenicity. Here, we employ an RC-CNN

with two convolutional layers with 512 filters of size 15 each, average pooling and 2

fully connected layers with 256 units each. The LSTM used has 384 units (section A.2,

Figure A.1). We use dropout regularization in both cases, together with aggressive

input dropout at the rate of 0.2 or 0.25 (tuned for each model). Input dropout may be

interpreted as a special case of noise injection, where a fraction of input nucleotides is

turned to Ns. Representations of forward and reverse-complement strands are summed

before the fully connected layers. As two mates in a read pair should originate from the

same virus, predictions obtained for them can be averaged for a boost in performance.

If a contig or genome is available, averaging predictions for constituting reads yields

a prediction for the whole sequence. We used Tesla P100 and Tesla V100 GPUs for

training and an RTX 2080 Ti for visualizations.

We wanted the networks to yield accurate predictions for both 250bp (our data,

modelling a sequencing run of an Illumina MiSeq device) and 150bp long reads (as in

the Human Blood Virome dataset). As shorter reads are padded with zeros, we expected

the CNNs trained using average pooling to misclassify many of them. Therefore, we

prepared a modified version of the datasets, in which the last 100bp of each read were

turned to zeros, mocking a shorter sequencing run while preserving the error model.
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Then, we retrained the CNN which had performed best on the original dataset. Since

in principle, the Human Blood Virome dataset should not contain viruses infecting

non-human Chordata, a ’Chordata’-trained classifier was not used in this setting.

3.2.3 Benchmarking

We compare our networks to the kNN classifier proposed by Z. Zhang et al. (2019), the

only other approach explicitly tested on raw NGS reads and detecting human viruses in

a fully open view setting (not focusing on a limited number of species). We use the real

sequencing data that they used (Moustafa et al., 2017) for an unbiased comparison.

We trained the classifier on the ’All’ dataset as described by the authors, i.e. using

non-overlapping, 500bp-long contigs generated from the training genomes (retraining on

simulated reads is computationally prohibitive). We also tested the performance of using

BLAST to search against an indexed database of labelled genomes. We constructed

the database from the ’All’ training set and used discontiguous megablast to achieve

high inter-species sensitivity. For NGS mappers (BWA-MEM (H. Li & Durbin, 2010)

and Bowtie2 (Langmead & Salzberg, 2012)), the indices were constructed analogously.

Kraken (Wood & Salzberg, 2014) was previously shown to perform worse than both

BLAST and machine learning when faced with the read-based pathogenic potential

prediction task for novel bacterial species (Deneke et al., 2017). Its major advantage –

assigning reads to lowest common ancestor (LCA) nodes in ambiguous cases – turns

into a problem in the infectivity prediction task, as transferring labels to LCAs is often

impossible (Deneke et al., 2017). Therefore, we focus on alignment-based approaches

as the most accurate alternative to machine learning in this context.

Note that both alignment and kNN can yield conflicting predictions for the individual

mates in a read pair. What is more, BLAST and the mappers yield no prediction at all

if no match is found. Therefore, similarly to Bartoszewicz et al. (2020), we used the

accept anything operator to integrate binary predictions for read pairs and genomes. At

least one match is needed to predict a label, and conflicting predictions are treated as if

no match was found at all. As the NGS mappers are very precise by design, we treat all

obtained matches as relevant and count them separately, but still propagate the label if

only one read in a pair was successfully aligned. Missing predictions lower both true

positive and true negative rates.
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3.2.4 Precision for conflicting predictions

Further, because of frequent conflicting predictions for each of the mates, precision

(positive predictive value, PPV) is not trivial to define for read pair classification with

kNN. In the binary classification context, PPV it is often defined as (Equation 3.1)

PPV =
TP

TP + FP
(3.1)

where TP is the number of true positives, and FP is the number of false positives. In

a standard binary classification task, this can also be expressed as (Equation 3.2)

PPV =
TP

TP + N − TN
=

TPR × Prev
TPR × Prev + (1 − TNR)× (1 − Prev)

(3.2)

where N is the number of all negatives positives, TN is the number of true negatives,

TPR and TNR are the true positive and true negative rates (or recall and specificity),

and Prev is prevalence, or the ratio of positive to negative samples in the dataset. For a

balanced dataset (Equation 3.3), Prev = 1 − Prev = 0.5, and

PPV =
TP

TP + FP
=

TPR
TPR + 1 − TNR

(3.3)

Note that when missing predictions are present, those two expressions are no longer

equivalent. This leads to two competing versions of generalized precision compatible

with missing predictions. We will call the first version ’binary precision’ (BPPV, Equa-

tion 3.4), as it ignores the missing predictions and considers only two subsets of the

negative samples N – true negatives TN and false positives FP.

BPPV =
TP

TP + FP
(3.4)

The second version, ’ternary precision’ (TPPV, Equation 3.5), as it considers all three

subsets of the set of all negative samples: true negatives TN, false positives FP and

missing negatives MN, i.e. the negative samples for which no label was successfully

assigned. The denominator is the sum of the number of true positives and the number of

negatives that were not correctly recognized as such. This preserves the relationships

between sensitivity, specificity and precision (see the proof in section A.2).

TPPV =
TP

TP + N − TN
=

TPR
TPR + 1 − TNR

=
TP

TP + FP + MN
(3.5)
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Note that if no missing predictions are present, BPPV = TPPV = PPV. Therefore,

both values are justified generalizations of precision to a scenario with missing predic-

tions. Importantly, while BPPV is similar to the more direct definition of PPV, its values

may suggest overly optimistic estimates of a classifier’s performance, as it is not affected

by missing predictions at all. In contrast, TPPV treats missing negative predictions

as if they were indeed false positives. This may make sense in the case of kNN for

read pairs, where all ’missing’ predictions are in fact pairs of contradicting predictions

yielded by the classifier. Using the BPPV may obscure the fact that the classifier is

intuitively imprecise, i.e. many of its individual positive calls are not trustworthy, and

that it actually yields a (potentially low-quality) prediction for each individual read.

On the other hand, for BLAST or the mappers, where the lack of matches is the main

source of missing predictions, BPPV is safe to use since the missing prediction are

’truly’ missing. Since BPPV may be more familiar due to its similarity to a more direct

definition of precision, we will use the term ’precision’ for BPPV in the context of both

homology-based approaches and kNN. However, in this chapter, we will additionally

report TPPV in the latter case.

3.2.5 Filter visualization

Substring extraction

In order to visualize the learned convolutional filters, we downsample a matching test

set to 125,000 reads and pass it through the network. This is modelled after the method

presented by Alipanahi et al. (2015). For each filter and each input sequence, the authors

extracted a subsequence leading to the highest activation and created sequence logos from

the obtained sequence sets (’max-activation’). We used the DeepSHAP implementation

(Lundberg & Lee, 2017) of DeepLIFT (Shrikumar et al., 2017a) to extract score-weighted

subsequences with the highest contribution score (’max-contrib’) or all score-weighted

subsequences with non-zero contributions (’all-contrib’). Computing the latter was

costly and did not yield better quality logos.

We use an all-zero reference. As reads from real sequencing runs are usually not

equally long, shorter reads must be padded with Ns; the ’unknown’ nucleotide is also

called whenever there is not enough evidence to assign any other to the raw sequencing

signal. Therefore, Ns are ’null’ nucleotides and are a natural candidate for the reference

input. We do not consider alternative solutions based on GC content or dinucleotide

shuffling, as the input reads originate from multiple different species, and the sequence

composition may itself be a strong marker of both virus and host taxonomy (R. A.

Edwards et al., 2016). We also avoid weight-normalization suggested for zero-references

56



3.2 Materials and Methods

(Shrikumar et al., 2017a), as it implicitly models the expected GC content of all possible

input sequences and assumes no Ns present in the data. Finally, we calculate average

filter contributions to obtain a crude ranking of feature importance with regard to both

the positive and negative classes.

Partial Shapley values

Building sequence logos involves calculating the information content (IC) of each

nucleotide at each position in a prospective DNA motif. This can be then interpreted as a

measure of evolutionary sequence conservation. However, high IC does not necessarily

imply that a given nucleotide is relevant in terms of its contribution to the classifier’s

output. Some sub-motifs may be present in the sequences used to build the logo, even if

they do not contribute to the final prediction (or even a given filter’s activation).

To test this hypothesis, we introduce partial Shapley values. Intuitively speaking, we

capture the contributions of a nucleotide to the network’s output, but only in the context

of a given intermediate neuron of the convolutional layer. More precisely, for any given

feature xi, intermediate neuron yj and the output neuron z, we aim to measure how xi

contributes to z while regarding only the fraction of the total contribution of xi that

influences how yj contributes to z. Although similarly named concepts were mentioned

before as intermediate computation steps in a different context (Matejczyk & Michalak,

2015; Nix & Kantarciouglu, 2012), we define and use partial Shapley values to visualize

contribution flow through convolutional filters. This differs from recently introduced

contribution weight matrices (Avsec, Weilert, et al., 2021), where feature attributions are

used as a representation of an identified transcription factor binding site irreducible to a

given intermediate neuron.

Using the formalism of DeepLIFT’s multipliers (Shrikumar et al., 2017a) and their

reinterpretation in SHAP (Lundberg & Lee, 2017), we backpropagate the activation

differences only along the paths ’passing through’ yj. In Equation 3.6, we define partial

multipliers µ
(yj)
xiz and express them in terms of Shapley values ϕ and activation differences

w.r.t. the expected activation values (reference activation). Calculating partial multipliers

is equivalent to zeroing out the multipliers mykz for all k ̸= j before backpropagating

myjz further.

µ
(yj)
xiz = mxiyj myjz =

ϕi(yj, x)ϕj(z, y)
(xi − E[xi])(yj − E[yj])

(3.6)
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We define partial Shapley values φ
(yj)

i (z, x) analogously to how Shapley values can

be approximated by a product of multipliers and input differences w.r.t. the reference

(Equation 3.7):

φ
(yj)

i (z, x) = µ
(yj)
xiz (xi − E[xi]) =

ϕi(yj, x)ϕj(z, y)
yj − E[yj]

(3.7)

From the chain rule for multipliers (Shrikumar et al., 2017a), it follows that standard

multipliers are a sum over all partial multipliers for a given layer y. Therefore, Shapley

values as approximated by DeepLIFT are a sum of partial Shapley values for the layer y
(Equation 3.8).

ϕi(z, x) = mxiz(xi − E[xi]) = ∑
j

φ
(yj)

i (z, x) (3.8)

Once we calculate the contributions of convolutional filters for the first layer, φ
(yj)

i (z, x)
for the first convolutional layer of a network with one-hot encoded inputs and an all-

zero reference can be efficiently calculated using weight matrices and filter activation

differences (Equation 3.9-Equation 3.10). First, in this case we do not traverse any

non-linearities and can directly use the linear rule (Shrikumar et al., 2017a) to calculate

the contributions of xi to yj as a product of the weight wi and the input xi. Second, the

input values may only be 0 or 1.

ϕi(yj, x) = wixi =

wi, if xi = 1

0, otherwise
(3.9)

φ
(yj)

i (z, x) =
wiϕj(z, y)
yj − E[yj]

(3.10)

The resulting partial contributions can be visualized along the IC of each nucleotide

of a convolutional kernel. To this end, we design extended sequence logos, where each

nucleotide is coloured according to its contribution. Positive contributions are shown in

red, negative contributions are blue, and near-zero contributions are grey. Therefore, no

information is lost compared to standard sequence logos, but the relevance of individual

nucleotides and the filter as a whole can be easily seen. Colour saturation is limited

by the reciprocal of a user-defined gain parameter, here set to nm, where n equals the

number of input features xi (sequence length) and m equals the number of convolutional

filters yj in a given layer.
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3.2.6 Genome-wide phenotype analysis

We create genome-wide phenotype analysis (GWPA) plots to analyze which parts of a

viral genome are associated with the infectious phenotype. We scramble the genome into

overlapping, 250bp long subsequences (pseudo-reads) without adding any sequencing

noise. For the highest resolution, we use a stride of one nucleotide. For S. aureus, we

used a stride of 125bp. We predict the infectious potential of each pseudo-read and

average the obtained values at each position of the genome. Analogously, we calculate

the average contributions of each nucleotide to the final prediction of the convolutional

network. Finally, we normalize raw infectious potentials into the [−0.5, 0.5] interval

for a more intuitive graphical representation. We visualize the resulting nucleotide-

resolution maps with IGV (Thorvaldsdóttir et al., 2013). For protein structures, we

average the scores codon-wise to obtain contribution scores per amino acid and visualize

them with PyMOL (DeLano et al., 2002).

For well-annotated genomes, we compile a ranking of genes (or other genomic

features) sorted by the average infectious potential within a given region. In addition

to that, we scan the genome with the learned filters of the first convolutional layer to

find genes enriched in subsequences yielding non-zero filter activations. We use Gene

Ontology to connect the identified genes of interest with their molecular functions and

biological processes they are engaged in.

3.3 Results

3.3.1 Negative class definition

Choosing which viruses should constitute the negative class is application dependent and

influences the performance of the trained models. Table A.1 summarizes the prediction

accuracy for different combinations of the training and test set composition. The models

trained only on human and Chordata-infecting viruses maintain similar, or even better

performance when evaluated on viruses infecting a much broader host range, including

bacteria. This suggests that the learned decision boundary separates human viruses from

all the others surprisingly well. We hypothesize that the human host signal must be

relatively strong and contained within the Chordata host signal. Dropout rate of 0.2

resulted in the highest validation accuracy for CNNStr-150 and LSTMStr. A rate of 0.25

was selected for the other models.

Adding more diversity to the negative class may still boost performance on more

diverse test sets, as in the case of CNN trained on the ’All’ dataset (CNNAll). This model

performs a bit worse on viruses infecting hosts related to humans, but achieves higher
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3. Viral host range prediction and interpretability

Table 3.1: Classification performance in the fully open-view setting (all virus hosts), read
pairs. Bowtie2, BWA-MEM and BLAST yield no predictions for over 35%, 19% and 10% of
the samples, respectively. Ternary precision (TPPV) for the kNN is markedly lower (57.8) than
the precision value presented in the table due to many conflicting predictions for individual reads
in a pair. Best performance in bold.

Accuracy Precision Recall Specificity

CNNAll (ours) 89.9 93.9 85.4 94.4
LSTMAll (ours) 86.4 89.0 83.0 89.8

kNN 57.1 86.7 52.1 62.0

Bowtie2 58.6 99.2 59.2 58.0

BWA-MEM 72.8 98.9 73.9 71.8

BLAST 80.6 98.4 79.1 82.2

accuracy than the ’Chordata’-trained models and the best recall overall. Rebalancing

the negative class using the ’Stratified’ dataset helps to achieve higher performance on

animal viruses while maintaining high overall accuracy. The LSTMs are outperformed

by the CNNs, but they can be used for shorter reads without retraining (see sections 3.2.2

and 3.3.2).

3.3.2 Prediction performance

We selected LSTMAll and CNNAll for further evaluation. We used a single consumer-

grade RTX 2080 Ti GPU to measure inference speed. The CNN classifies 5000 reads/s

and the LSTM 1855 reads/s. Analyzing ten million reads takes only 33 minutes using the

faster model; linear speed-ups are possible if more GPUs are available. Therefore, the

trained models achieve the high-throughput necessary to analyze NGS datasets. Table 3.1

presents the results of a benchmark using the ’All’ test set. Low performance of the kNN

classifier (Z. Zhang et al., 2019) is caused by frequent conflicting predictions for each

read in a read pair. In a single-read setting it achieves 75.5% accuracy, while our best

model achieves 87.8% (Table A.2). Although BLAST achieves high precision, it yields

no predictions for over 10% of the samples. CNNAll is the most sensitive and accurate.

As expected, standard mapping approaches (BWA-MEM and Bowtie2) struggle with

analyzing novel pathogens – they are the most precise but the least sensitive. Our

approach outperforms them by 15–30%.

Although we focus on the extreme case of read-based predictions, our method can

also be used on assembled contigs and full genomes if they are available, as well as on
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Table 3.2: Classification performance (all hosts), whole available genomes. Negative class is
the majority class. BAcc. – balanced accuracy, Rec. – recall, Spec. – specificity. BLAST (reads)
and our networks use read-wise majority vote or output averaging to aggregate predictions over
all reads from a genome. kNN (genome) and BLAST (genome) use contig-wise majority vote.
kNN (contigs) and BLAST (contigs) represent performance on individual contigs treated as
separate entities. kNN (reads) was not used, as high conflicting prediction rates made read-wise
aggregation impracticable.

BAcc. Rec. Spec. AUPR

Genomes

CNNAll (ours) 91.7 89.3 94.2 91.2
LSTMAll (ours) 86.3 96.2 76.4 85.8

BLAST (reads) 90.3 85.5 95.1 n/a

kNN (genome) 82.8 93.9 71.6 n/a

BLAST (genome) 90.5 86.3 94.6 n/a

Contigs
kNN (contigs) 83.0 94.3 71.6 n/a

BLAST (contigs) 88.4 87.1 89.7 n/a

Table 3.3: Classification performance on the human blood virome dataset. Positive class is
the majority class. BAcc. – balanced accuracy, Rec. – recall, Spec. – specificity.

BAcc. Rec. Spec. AUPR

CNNAll-150 (ours) 96.8 97.3 96.2 >99.9
LSTMAll (ours) 91.8 88.2 95.5 >99.9
kNN 83.1 80.9 85.4 99.5

read sets from pure, single-virus samples. We note that assembly itself does not yield any

labels, and a follow-up analysis (via alignment, machine learning or other approaches)

is required to correctly classify metagenomic contigs in any case. We ran predictions

on contigs without any size filtering with both kNN and BLAST (Table 3.2). We

present performance measures for both individual contigs and whole-genome predictions

based on the contig-wise majority vote. We compare them to BLAST with read-wise

majority vote (Deneke et al., 2017) and to read-wise average predictions of our networks,

analogous to presented previously for bacteria (Bartoszewicz et al., 2020). Our method

outperforms BLAST by 1.2% and kNN by 8.9%, even though they have access to the full

biological context (full sequences of all contigs in a genome), while we simply average

outputs for short reads originating from the contigs.
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3. Viral host range prediction and interpretability

Table 3.4: Classification performance, novel species. Top: read pairs (see Table 3.1). BLAST
yields predictions for only 64.3% of the pairs. Bottom: whole available genomes or contigs –
negative class is the majority class (see Table 3.2). BAcc. – balanced accuracy (equal to accuracy
for the balanced paired-read dataset), Rec. – recall, Spec. – specificity. BLAST (reads) and
our networks use read-wise majority vote or output averaging to aggregate predictions over all
reads from a genome. BLAST (genome) uses the contig-wise majority vote. BLAST (contigs)
represents performance on individual contigs treated as separate entities. Note that low precision
is heavily affected by class imbalance, and that the performance of CNNSP-All for whole genomes
can be further improved by retuning of the classification threshold (see Table 5.3).

BAcc. Prec. Rec. Spec.

Read pairs
CNNSP-All (ours) 74.6 87.0 57.9 91.4
BLAST 47.1 94.1 17.8 76.4

Genomes

CNNSP-All (ours) 64.9 31.0 40.6 89.1

BLAST (reads) 61.8 46.8 30.2 93.5
BLAST (genome) 64.0 44.9 36.5 91.5

Contigs BLAST (contigs) 57.9 37.9 33.6 82.1

We benchmarked our models against the human blood virome dataset used by Z.

Zhang et al. (2019). Our models outperform their kNN classifier. As the positive

class massively outnumbers the negative class, all models achieve over 99% precision.

CNNAll-150 performs best (Table 3.3). However, the positive class is dominated by

viruses that are not necessarily novel. The CNN was more accurate on training data, so

we expected it to detect those viruses easily.

Finally, we repeated the analysis in the ’novel species’ scenario. Classifying novel

viral species when restricted to Chordata-infecting viruses is too challenging for practical

purposes (Table A.3). Read-wise predictions are not much better than random guesses

for both BLAST and CNNs. Low precision of BLAST shows that it often recovers

wrong labels even when it does find a match – sequence similarity is not a reliable

predictor of the infectious potential in this setting. Even if a whole genome is available,

overall accuracy is low. This looks very different in the fully-open view scenario

(Table 3.4). The CNN trained on the species-wise division of the ’All’ dataset (CNNSP-All)

outperforms BLAST by a wide margin in the read-wise setting. Strikingly, CNNSP-All

predictions based on a single read pair achieve higher accuracy than BLAST predictions

using whole genomes, mainly due to their significantly higher recall. What is more,

pooling predictions from all the reads originating from a given genome does not improve

overall CNNSP-All accuracy any further (note that this problem is addressed in chapter 5,

Table 5.3). As CNNSP-All does not reliably outperform its Chordata-trained analogue
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(a) (d)

(b) (e)

(c) (f)

Figure 3.1: Nucleotide contribution logos of example filters. 3.1a: Second-highest mean
contribution score (CNNAll). Error bars correspond to Bayesian 95% confidence
intervals. 3.1b: Lowest mean contribution score (CNNAll). 3.1c: Gaps resembling
a codon structure, extracted from Bartoszewicz et al. (2020). Consensus sequence:
CAWCNNCNNCNNCNN. 3.1d-3.1f: Analogous logos created with the DeepBind-
like ’max-activation’ approach. Our ’max-contrib’ logos visualize contributions of
individual nucleotides, including counter-contributions.

on the ’Chordata’ dataset (CNNSP-Cho, Table 3.4), we suspect that its relatively high

accuracy on the ’All’ dataset is caused by its high sensitivity while maintaining good

specificity on non-Chordata viruses. However, classification accuracy is still noticeably

lower than for the virus-level classification scenario. The virus-level models are not

optimized for entirely novel species, effectively treating them as out-of-distribution

samples. This suggests that they might overfit to (potentially new) viruses of known

species. Therefore, all predictions for novel agents, whether based on machine learning

or sequence homology, must be handled with caution.
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3.3.3 Filter visualization

Over 84% of all contributing first-layer filters in CNNAll have positive average contribu-

tion scores. We comment more on this fact in section 3.4.3. For CNNAll, the average

information content of our motifs is strongly correlated nucleotide-wise with IC of

DeepBind-like logos (Spearman’s ρ > 0.95, p < 10−15 for all contributing filter pairs

except one). The difference in average IC is negligible (0.04 bit higher for ’max-contrib’,

Wilcoxon test, p < 10−15). Therefore, our contribution logos represent analogous ’mo-

tifs’, while extracting additional, nucleotide-level interpretations. For exactly one filter,

’max-contrib’ and ’max-activation’ scores are not correlated. A deeper analysis reveals

that this particular filter is activated by stretches of 0s (Ns) – it is the only filter with a

positive bias, and almost all of its weights are negative (with one near-zero positive).

Therefore, an overwhelming majority of its maximum activations are in fact padding

artefacts. On the other hand, regions of unambiguous nucleotide sequences result in

high positive contributions, since they correspond to a lack of filter activation, where an

activation is present for the all-N reference. In fact, for over 99.9% of the reads, positive

contributions occur at every single position. We suspect that the filter works as an

’ambiguity detector’. Since Ns are modelled as all-zero vectors in the one-hot encoding

scheme used here, the network represents ’meaningful’ (i.e. unambiguous) regions of the

input as a missing activation of the filter. This is supported by the fact that the filter lacks

any further preference for the specific non-zero nucleotide type. Since sequence logos

presented here ignore ambiguous (i.e. noninformative) nucleotides, their ICs for this filter

are near-zero, preventing meaningful visualization. On the other hand, this ambiguity

seems to play a role in the final classification decision, as contribution distributions are

well-separated for both classes (Figure A.2). We speculate that this could be caused by

the lower quality of the non-pathogen reference genomes, but understanding how exactly

this information is used would require further investigation, including feature interac-

tions at all layers of the network. Importantly, only the contribution analysis reveals the

relevance of the filter beyond simple activation and nucleotide overrepresentation. The

choice of the reference input is crucial.

In the Figure 3.1 we present example filters, visualized as ’max-contrib’ sequence

logos based on mean partial Shapley values for each nucleotide at each position. All

nucleotides of the filters with the second-highest (Figure 3.1a) and the lowest (Fig-

ure 3.1b) score have relatively strong contributions in accordance with the filters’ own

contributions. However, we observe that some nucleotides consistently appear in the

activating subsequences, but the sign of their contributions is opposite to the filter’s

(low-IC nucleotides of a different colour, Figure 3.1c). Those ’counter-contributions’
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may arise if a nucleotide with a negative weight forms a frequent motif with others

with positive weights strong enough to activate the filter. We comment on this fact in

section 3.4.3. Some filters seem to learn gapped motifs resembling a codon structure (Fig-

ure 3.1c). We extracted this filter from the original DeePaC network predicting bacterial

pathogenicity (Bartoszewicz et al., 2020) where the counter-contributions are common,

but we find similar filters in our networks as well (Figure A.3). We scanned a genome of

S. aureus subsp. aureus 21200 (RefSeq assembly accession: GCF_000221825.1) with

this filter and discovered that the learned motif is indeed significantly enriched in coding

sequences (Fisher exact test with Benjamini-Hochberg correction, q < 10−15). It is also

enriched in a number of specific genes. The one with the most hits (sraP, q < 10−15) is a

serine-rich adhesin involved in the pathogenesis of infective endocarditis and mediating

binding to human platelets (Y.-H. Yang et al., 2014). The filter seems to detect serine

and glycine repeats in this particular gene (Figure A.4), but a broader, cross-species,

multi-gene analysis would be required to fully understand its activation patterns. An

analogous analysis revealed that the second-highest contributing filter (Figure 3.1a) is

overall enriched in coding sequences in both Taï Forest ebolavirus (q < 10−15, Ref-

Seq accession: NC_014372) and SARS-CoV-2 coronavirus (q = 5.6 × 10−5, RefSeq

accession: NC_045512.2). The top hits are the nucleocapsid (N) protein gene of SARS-

CoV-2 and the VP35 ebolavirus gene encoding a polymerase cofactor suppressing innate

immune signalling (q < 10−15).

3.3.4 Genome-wide phenotype analysis

We created a GWPA plot for the Taï Forest ebolavirus genome. Most genes (6 out

of 7) can be detected with visual inspection by finding peaks of elevated infectious

potential score predicted by at least one of the models (Figure 3.2a). Intergenic regions

are characterized by lower mean scores. Noticeably, most nucleotide contributions

are positive, and low non-negative contributions coincide with regions of negative

predictions. Taken together with the surprisingly good generalization of Chordata-trained

classifiers and the dominance of positive filters discussed above, this suggests that our

networks work as positive class detectors, treating all other sequences as ’negative’ by

default. Indeed, the reference sequence of all Ns is predicted to be ’non-pathogenic’

with a score of 0.

We ran a similar analysis of S. aureus using the built-in DeePaC models (Bartoszewicz

et al., 2020) and our interpretation workflow. While a viral genome usually contains

only a handful of genes, by compiling a ranking of 870 annotated genes of the analyzed

S. aureus strain, we could test if the high-ranking regions are indeed associated with
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Figure 3.2: Taï Forest ebolavirus and coronavirus genomes. Top: score predicted by LSTMAll. Middle: score predicted by CNNAll. Heatmap:
nucleotide contributions of CNNAll. Bottom, in blue: reference sequence. 3.2a: Taï Forest ebolavirus. Genes that can be detected by at least
one model are highlighted in black. 3.2b: SARS-CoV-2. Whole genome and sequences encoding the spike protein (S), envelope protein (E)
and nucleocapsid protein (N).
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Figure 3.2: (continued) Taï Forest ebolavirus and coronavirus genomes. 3.2c: SARS-CoV-2 Spike protein gene, a small peak (positions 22,595–22,669,
dashed line in Figure 3.2b) within the receptor-binding domain (predicted by CD-search, positions 22,517–23,185). Top: score predicted by
LSTMAll. Middle: score predicted by CNNAll. Heatmap: nucleotide contributions of CNNAll. Bottom, in blue: reference sequence. Binding
to the receptor is crucial for entry to the host cell. Local host adaptation could help switch hosts between the animal reservoir and humans.
3.2d: GWPA plot of the SARSr-CoV RaTG13 virus scored by the CNNAll model. The pattern of predicted infectious potentials is roughly
similar to its relative, SARS-CoV-2 (Figure 3.2b). Regions of elevated infectious on the right end of the plot correspond to E, M, and N
genes; the wide red region in the middle is collocated with ORF1b. Homologous regions in SARS-CoV-2 are scored highly as well.

67



3. Viral host range prediction and interpretability

pathogenicity (Table A.4). Indeed, out of three top-ranking genes with known biological

names and Gene Ontology terms, sarR and sspB are directly engaged in virulence, while

hupB regulates the expression of virulence-involved genes in many pathogens (Stojkova

et al., 2019). In contrast to the viral models, both negative and positive contributions are

present (Figure A.5), and the model’s output for the all-N reference is slightly above

the decision threshold (0.58). Even though the network architecture of the viral and the

bacterial model are the same, the latter learns a ’two-sided’ view of the data. We assume

this must be a feature of the dataset itself.

Figure 3.2b presents a GWPA plot for the whole genome of the SARS-CoV-2 coron-

avirus, successfully predicted to infect humans, even though the data was collected at

least 5 months before its emergence. Interestingly, its mean infectious potential (0.57 as

scored by CNNAll) is relatively close to the decision threshold, while its closest known

relative, a bat-infecting SARSr-CoV RaTG13, is actually falsely classified as a human

virus with a slightly lower mean infectious potential (0.55). What is more, the gene

encoding the spike protein, which plays a significant role in host entry (F. Li, 2016),

has a mean score slightly above the threshold for SARS-CoV-2 (0.52) and below the

threshold for RaTG13 (0.49). As shown in the GWPA plots of both viruses (Figure 3.2b

and Figure 3.2d), regions that the network has learned to associate with the infectious

phenotype are distributed non-uniformly and tend to cluster together. This suggests that

low-confidence mean prediction for those viruses is not a result of random guessing,

but genuine ambiguity present in the data – and the misclassification of RaTG13 could

be indicative of a general zoonotic potential of SARS-related coronaviruses. In the

Figure 3.2b, we highlighted the score peaks aligning the spike protein gene (S), as well

as the E and N genes, which were scored the highest (apart from an unconfirmed ORF10

of just 38aa downstream of N) by the CNN and the LSTM, respectively. Correlation

between the CNN and LSTM outputs is significant, but species-dependent and moderate

(0.28 for Ebola, 0.48 for SARS-CoV-2), which suggests they capture complementary

signals.

Figure 3.2c shows the nucleotide-level contributions in a small peak within the

receptor-binding domain (RBD) of the S protein, crucial for recognizing the host cell.

The domain location was predicted with CD-search (Marchler-Bauer et al., 2017) using

the default parameters. The maximum score of this peak is noticeably higher for SARS-

CoV-2 (0.87) than for its analogue in RaTG13 (0.67). Figure 3.3 presents the RBD in the

structural context of the whole S protein (PDB ID: 6VSB, (Wrapp et al., 2020)), as well

as in complex with a SARS-neutralizing antibody CR3022 (PDB ID: 6W41, (Yuan et al.,

2020)). The high score peak roughly corresponds to one of the regions associated with

reduced expression of the RBD (Starr et al., 2020), located in the core-RBD subdomain.
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It covers over 71% of the CR3022 epitope, as well as the neighbouring site of the N343

glycan. The latter is present in the epitope of another core-RBD targeting antibody, S309

(Pinto et al., 2020). All the per-residue average contributions in the region are positive

(Figure A.6), even in the regions of lower pathogenicity score, in accordance with the

results presented in Figure 3.2c.

(a) (b) (c)

(d) (e)

Figure 3.3: Predicted infectious potentials plotted over the SARS-CoV-2 spike glycoprotein
receptor-binding domain. 3.3a-3.3c: Top and side view of the spike protein. Three
receptor-binding domains (RBDs) are colored in blue, white and red according to
the predicted infectious potential of the corresponding genomic sequence. One of
the domains is in the ’up’ conformation. Red regions corresponding to the peak in
Figure 3.2c are located in the core-RBD subdomain. 3.3d: RBD in complex with a
SARS-neutralizing antibody CR3022 (green). The red region covers over 71% of
the CR3022 epitope, but spans also to the neighbouring fragments, including the
site of the N343 glycan (carbohydrate in red stick representation). This is a part of
the epitope of another neutralizing antibody, S309. 3.3e: Cartoon representation of
Figure 3.3d. The red region is centered on two exposed α-helices surrounding the
core β-sheet (lower score, white).
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3.4 Discussion

3.4.1 Accurate predictions from short DNA reads

Compared to the previous state-of-the-art in viral host prediction directly from NGS

reads (Z. Zhang et al., 2019), our models drastically reduce the error rates. This holds

also for novel viruses not present in the training set. The generalization of virus-level

Chordata models to other host groups is a sign of a strong, ’human’ signal. We suspect

our classifiers detect the positive class treating all other regions of the sequence space

as ’negative’ by default, exhibiting traits of a one-class classifier even without being

explicitly trained to do so. We find further support for this hypothesis: the networks

learn many more ’positive’ than ’negative’ filters, and regions of near-zero nucleotide

contributions (including the null reference sample) result in negative predictions. As this

effect does not occur for bacteria, we expect it to be task- and data-dependent. While we

ignore the simulated quality information here, investigating the role of sequencing noise

will be an interesting follow-up study. Although the data setup is crucial in general, the

modelling step is also important, as shown by our comparison to the baseline kNN model.

The RC-nets are relatively simple, but they are invariant to reverse-complementarity and

perform better than random forests, naïve Bayes classifiers and standard NN architectures

in another NGS task (Bartoszewicz et al., 2020).

In the paired read scenario, the previously described kNN approach fails, and standard,

alignment-based homology testing algorithms cannot find any matches in more than 10%

of the cases, resulting in relatively low accuracy. On a real human virome sample, where

the main source of the negative class reads is most likely contamination (Moustafa et al.,

2017), our method filters out non-human viruses with high specificity. In this scenario,

the BLAST-derived ground-truth labels were mined using the complete database (as

opposed to just a training set). In all cases, our results are only as good as the training

data used; high-quality labels and sequences are needed to develop trustworthy models.

Ideally, sources of error should be investigated with an in-depth analysis of a model’s

performance on multiple genomes covering a wide selection of taxonomic units. This

is especially important as the method assumes no mechanistic link between an input

sequence and the phenotype of interest, and the input sequence constitutes only a small

fraction of the target genome without a wider biological context. Still, it is possible

to predict a label even from those small, local fragments. A similar effect was also

observed for image classification with CNNs (Brendel & Bethge, 2019). Virulence arises

as a complex interplay between the host and the virus, so the predictions reflect only an

estimated potential of the infectious phenotype. This mirrors the caveats of bacterial
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pathogenic potential prediction (Bartoszewicz et al., 2020), including the considerations

of balancing computational cost, reliability of error estimates, size and composition of

the reference database. Even though deep learning outperforms the standard homology-

based methods, it is still an open question whether it captures ’functional’ signals

or just a more flexible sequence similarity function. By the very nature of machine

learning and sequence comparison in general, we expect similar viruses to yield similar

predictions; in principle this could be used to assess the risk of a host-switching event.

The interpretability suite presented here aims at shedding some light on this question,

but more research is needed.

3.4.2 Dual-use research and biosecurity

While we focused on the NGS-based prediction scenario, our models could in principle be

used to screen DNA synthesis orders for potentially dangerous sequences in the context

of cyberbiosecurity in synthetic biology. Since standard, homology-based approaches

like BLAST are not enough to guarantee accurate screening at a reasonable cost (Diggans

& Leproust, 2019; National Academies of Sciences, Engineering, and Medicine, 2018;

National Research Council, 2010), machine learning methods are a promising solution.

This has been suggested before for the bacterial DeePaC models (Bartoszewicz et al.,

2020), and is applicable to the viral networks presented here as well.

However, this line of research can raise questions about possible dual-use. O’Brien

and Nelson (2020) suggested that while the intended purpose of pathogenic potential

prediction is to mitigate biosecurity threats, it could actually enable designing new

pathogens to cause maximal harm. The importance of this concern is difficult to overstate,

and it must be addressed. If an ML-guided, genome-wide phenotype optimization tool

existed, it would indeed be a classical dual-use technology not unlike more established

computer-aided design approaches for synthetic biology – potentially dangerous, but

offering tremendous benefits (e.g. in agriculture, medicine or manufacturing) as well.

However, the models presented here do not allow biologically sensible optimization

of target sequences. For example, we find meaningless, low-complexity sequences of

mononucleotide repeats corresponding to global maxima (infectious potential of 1.0).

These artefacts highlight the fact that only some generally undefined regions of the

theoretically possible sequence space are biologically relevant. What is more, we operate

on short sequences constituting minuscule fractions of the whole genome with all its

complexity. Although successful deep learning approaches for both protein (Alley et al.,

2019; Biswas et al., 2021; Brookes et al., 2019) and regulatory sequence design (Gupta

& Kundaje, 2019; Gupta & Zou, 2019; Linder et al., 2019; Schreiber et al., 2020) do
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exist, moving from read-based classification to genome-wide phenotype optimization

would require considerable research effort, if possible at all. This would entail capturing

a wealth of biological contexts well beyond the capabilities of even the best classification

models currently available.

3.4.3 Nucleotide contribution logos

Visualizing convolutional filters may help to identify more complex filter structures

and disentangle the contributions of individual nucleotides from their ’conservation’

in contributing sequences. Counter-contributions suggest that the information content

and the contribution of a nucleotide are not necessarily correlated. Visualizing learned

motifs by aligning the activating sequences (Alipanahi et al., 2015) would not fully

describe how the filter reacts to presented data. It seems that the assumption of nucleotide

independence – which is crucial for treating DeepLIFT as a method of estimating Shapley

values for input nucleotides (Lundberg & Lee, 2017) – does not hold in full. Indeed,

k-mer distribution profiles are frequently used features for modelling DNA sequences (as

shown also by the dimer-shuffling method of generating reference sequences proposed

by Shrikumar et al. (2017a)). However, DeepLIFT’s multiple successful applications in

genomics indicate that the assumption probably holds approximately. We see information

content and DeepLIFT’s contribution values as two complementary channels that can

be jointly visualized for better interpretability and explainability of CNNs in genomics.

Filter enrichment analysis enables even deeper insight into the inner workings of the

networks. We generate activation data for hundreds to thousands of species, genes

and filters. Yet, aggregation and interpretation of those results beyond case studies is

non-trivial, and a promising avenue for further research.

3.4.4 Genome-scale interpretability

Mapping predictions back to a target genome can be used both as a way of investigating

a given model’s performance and as a method of genome analysis. GWPA plots of

well-annotated genomes highlight the sequences with erroneous and correct phenotype

predictions at both genome and gene level, and nucleotide-resolution contribution maps

help track those regions down to individual amino acids. On the other hand, once a

trusted model is developed, it can be used on newly emerging pathogens, as the SARS-

CoV-2 virus briefly analyzed in this work. Therefore, we see GPWA applications in both

probing the behaviour of artificial neural networks in pathogen genomics and finding

regions of interest in weakly annotated genomes. What is more, the approach could

be easily co-opted to genome-wide activation analyses of any arbitrary, intermediate
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neuron. The methods presented here may also be applied to other biological problems,

and extending them to other hosts and pathogen groups, multi-class classification or gene

identification is possible. However, experimental work and traditional sequence analysis

are required to truly understand the biology behind host adaptation and distinguish true

hits from false positives.

3.4.5 Conclusions

We presented a new approach for predicting a host of a novel virus based on a sin-

gle DNA read or a read pair, cutting the error rates in half compared to the previous

state-of-the-art. For convolutional filters, we jointly visualize nucleotide contributions

and information content. Finally, we use GWPA plots to gain insights into the mod-

els’ behaviour and analyze a recently emerged SARS-CoV-2 virus. The approach

presented here is implemented as a python package and a command-line tool easily

installable with Bioconda (Grüning et al., 2018) (conda install deepacvir,

requires setting up Bioconda), Docker (docker pull dacshpi/deepac) or pip

(pip install deepacvir). Detailed installation instructions, a user guide and the

main codebase (including the interpretability workflows presented here) are available

at https://gitlab.com/dacs-hpi/DeePaC. Source code of the plugin shipping the trained

models, config files describing the architectures used and the models themselves are

available at https://gitlab.com/dacs-hpi/DeePaC-vir. The datasets of simulated reads with

associated metadata are hosted at https://doi.org/10.5281/zenodo.4312525.
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4 Detecting novel pathogens in real
time with DeePaC-Live

Summary

Novel pathogens evolve quickly and may emerge rapidly, causing dangerous outbreaks or

even global pandemics. Next-generation sequencing is the state-of-the-art in open-view

pathogen detection, and one of the few methods available at the earliest stages of an

epidemic, even when the biological threat is unknown. Analyzing the samples as the

sequencer is running can greatly reduce the turnaround time, but existing tools rely

on close matches to lists of known pathogens and perform poorly on novel species.

Machine learning approaches can predict if single reads originate from more distant,

unknown pathogens, but require relatively long input sequences and processed data from

a finished sequencing run. Incomplete sequences contain less information, leading to a

trade-off between sequencing time and detection accuracy. Using a workflow for real-

time pathogenic potential prediction, we investigate which subsequences already allow

accurate inference. We train deep neural networks to classify Illumina and Nanopore

reads and integrate the models with HiLive2, a real-time Illumina mapper. This approach

outperforms alternatives based on machine learning and sequence alignment on simulated

and real data, including SARS-CoV-2 sequencing runs. After just 50 Illumina cycles,

we observe an 80-fold sensitivity increase compared to real-time mapping. The first

250bp of Nanopore reads, corresponding to 0.5 s of sequencing time, are enough to yield

predictions more accurate than mapping the finished long reads. The approach could

also be used for screening synthetic sequences against biosecurity threats.

This chapter is based on Bartoszewicz, Genske, et al. (2021a), which is a joint work

with Ulrich Genske and Bernhard Y. Renard. A detailed description of the authors’

contributions can be found in section Thesis outline.
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4.1 Background

4.1.1 Motivation

The SARS-CoV-2 coronavirus emerged in late 2019, causing an outbreak of COVID-19,

a severe respiratory disease, which quickly developed into a global pandemic of 2020.

This virus of probable zoonotic origin (P. Zhou et al., 2020) is a terrifying example of how

easily new agents can spread. What is more, many more novel pathogens are expected

to emerge. They evolve extremely quickly due to high mutation rates or horizontal gene

transfer, while human exposure to the vast majority of unexplored microbial biodiversity

is rapidly growing (Trappe et al., 2016; Vouga & Greub, 2016). New biosafety threats

may come as novel bacterial agents like the Shiga-toxigenic Escherichia coli strain that

caused a deadly epidemic in 2011 (Frank et al., 2011). Outbreaks of previously unknown

viruses can be even more severe. This is not limited to coronaviruses like SARS-CoV-1,

MERS and SARS-CoV-2. Novel strains of the Influenza A virus caused four pandemics

in less than a hundred years (from the ’Spanish flu’ of 1918 until the ’swine flu’ of

2009), killing millions of people. Even known pathogens may be difficult to control, as

proven by the outbreaks of Zika and Ebola in the 2010s (Calvignac-Spencer et al., 2014).

Importantly, many viruses can switch between more than one host or evolve silently in

an animal reservoir before infecting humans. This happened before to HIV, Ebola, many

dangerous strains of the Influenza A virus and the coronaviruses mentioned above.

If an outbreak involves a new, unknown pathogen, targeted diagnostic panels are not

available at first. Open-view approaches must be used and next-generation sequencing

(NGS) is the method of choice (Calistri & Palù, 2015; Lecuit & Eloit, 2014). A swift

response is crucial, and analyzing the samples during the sequencing run, as the reads

are produced, greatly improves turnaround times. This can be achieved by design

using long-read sequencing like ONT. However, lower throughput and high error rates

of those technologies impede their adoption for pathogen detection. Scalability, cost-

efficiency and accuracy of Illumina sequencing still make it a gold standard, although

it may change in the future with the establishment of improved ONT protocols and

computational methods (Loka et al., 2019).

4.1.2 Real-time analysis of Illumina sequencing data

Analyzing Illumina reads during the sequencing run poses unique technical and algorith-

mic challenges. The DRAGEN system relies on field-programmable gate arrays (FPGAs)

to speed up the computation and can be combined with specialized protocols to detect

clinically relevant variants in the human genome but depends on finished reads (Miller
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et al., 2015). An alternative approach is to use the general-purpose computational in-

frastructure and optimize the algorithms for fast and accurate analysis of incomplete

reads as they are produced, during the sequencing run. HiLive (Lindner et al., 2017)

and HiLive2 (Loka et al., 2019) are real-time mappers, performing on par with the

traditional mappers like Bowtie2 (Langmead & Salzberg, 2012) and BWA (H. Li &

Durbin, 2010) with no live-analysis capabilities. However, as read mappers are designed

for fast and precise sequence alignment, they are expected to miss most of the reads

originating from genomes highly divergent from the available references. Therefore,

even though existing live-analysis tools and associated pipelines do cover standard read-

based pathogen detection workflows, their performance on novel agents is limited by

their dependence on databases of known species. The same problem applies to sequence

alignment and taxonomic classification in general, also outside of the real-time analysis

context (National Research Council, 2010). In this work, we show that using deep

learning to predict if a read originates from a human pathogen is a promising alternative

to mapping the reads to known references if the correct reference genome is not yet

known or unavailable. We also investigate the trade-offs between sequencing time and

classification performance.

4.1.3 Read-based detection of novel pathogens

Deneke et al. (2017) have shown that methods like read-mapping (Langmead & Salzberg,

2012) (with optional additional filtering steps of PathoScope2 (Hong et al., 2014)),

BLAST (Altschul et al., 1990; Camacho et al., 2009) or Kraken (Wood & Salzberg,

2014), which all try to assign target sequences to their closest taxonomic matches, fail to

yield any predictions for a significant fraction of reads originating from novel pathogens.

BLAST was the best of those approaches, missing the least reads and achieving the

highest accuracy. More complex detection workflows like PathoScope2 (Hong et al.,

2014), Sigma (Ahn et al., 2015) or KrakenUniq (Breitwieser et al., 2018) depend on

assigning individual reads to taxa by mapping or k-mer matching, so necessarily suffer

from the same problems. In contrast, taxonomy-agnostic methods try to reduce their

database dependency by assigning putative phenotypes directly to analyzed sequences,

deliberately omitting the taxonomic classification step. For example, a naïve Bayes

classifier based on k-mer frequency features can be trained to classify reads directly

into arbitrary classes (G. L. Rosen et al., 2011). However, in the context of detecting

novel bacterial pathogens, a random forest approach of PaPrBaG (Deneke et al., 2017)

performs much better. Z. Zhang et al. (2019) used a kNN classifier to develop a similar

method for detection of human-infecting viruses. An analogous deep learning approach,
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DeePaC, outperforms the traditional machine learning algorithms on both novel bacteria

(Bartoszewicz et al., 2020) and viruses (DeePaC-vir (Bartoszewicz, Seidel, & Renard,

2021a)), offering an additional level of interpretability on nucleotide, read and genome

levels. A similar method (Mock et al., 2020) focuses on detailed predictions for a small

set of three viral species and cannot be used in an open-view setting. Preliminary work

by Q. Guo et al. (2020) supports it, but the code, models or installables are not available

yet at the time of writing, so the method cannot be reused. What is more, the ’novelty’

of the viruses in the corresponding test set is difficult to assess – it can contain genomes

of viruses present in the training set, as long as they were resequenced after 2018. While

pathogenicity prediction methods using contigs, whole genomes or protein sets as input

also exist, this work focuses on read-based classification to offer real-time predictions

and avoid delays necessitated by assembly pipelines. However, read-based methods have

been shown to perform well also for full genomes and assembled contigs, achieving

similar or better performance than alignment-based approaches (Bartoszewicz, Seidel, &

Renard, 2021a; Bartoszewicz et al., 2020; Deneke et al., 2017). This mirrors successful

adoption of CNNs using raw DNA sequences as inputs in other fields ranging from

regulatory genomics (Alipanahi et al., 2015; Eraslan et al., 2019; J. Zhou & Troyanskaya,

2015) to viral bioinformatics (Q. Guo et al., 2020; Mock et al., 2020; Ren et al., 2020)

and biosecurity (Nielsen & Voigt, 2018).

4.2 Methods

4.2.1 Data preparation

In this chapter, we will use the term subread in a special sense: the first k nucleotides

of a given sequencing read (in other words, a prefix of a read). The original DeePaC

and DeePaC-vir datasets (Bartoszewicz, Seidel, & Renard, 2021a; Bartoszewicz et

al., 2020) consist of 250bp simulated Illumina reads in fastq format. The training,

validation, and test sets contain reads originating from different species of pathogenic

(including opportunistic pathogens) or commensal bacteria labelled using the IMG

database (I.-M. A. Chen et al., 2019). The DeePaC-vir dataset is built in an analogous

way using different viruses mined from the Virus-Host Database (Mihara et al., 2016).

Three alternative versions of the viral dataset are available, differing in the negative class

definition. We used the fully open-view ’All’ dataset, containing all viruses available

in VHDB. In all cases, the training set contained 20 million single reads, the validation

set contained 2.5 million single reads and the test set – 2.5 million paired-end reads.

This setup allows training models correctly handling single, isolated reads, but also
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testing their performance on read pairs. All sets were balanced with regard to the class

distribution and contained a mixture of reads originating from multiple different species.

Most importantly, the training, validation and held-out test sets contain different viruses

or bacterial species, so that generalization to ’novel’ agents (i.e. unseen in training)

can be explicitly evaluated. For more details regarding the dataset generation, we refer

the reader to the corresponding publications (Bartoszewicz, Seidel, & Renard, 2021a;

Bartoszewicz et al., 2020).

We used the test datasets to generate corresponding subread datasets with subread

lengths between 25 and 250 (full read) with a step of 25. Every subread of every subread

set had a corresponding subread in all the other sets. Therefore, we explicitly model new

information incoming during a sequencing run, as each subread length k corresponds to

the kth cycle. To generalize over a large spectrum of possible subread lengths, we built

mixed-length training and validation sets by randomly choosing a different k for every

read in a set. In this setup, all integer values of k between 25 and 250 were allowed.

As Bartoszewicz, Seidel, and Renard (2021a) have previously presented both 250bp

and 150bp-trained reverse-complement CNN classifier for viruses, we also generated an

analogous 150bp subread bacterial dataset, and used it to train a corresponding CNN.

To test the performance of the bacterial models on real sequencing data, we analyze

reads coming from a real sequencing run of a pathogenic bacterium Staphylococcus

aureus. This species was not present in the training set (it had been randomly placed in

the validation set), so it models a ’novel’ pathogen without a known reference genome.

The same species was used previously by Bartoszewicz et al. (2020) to assess the original

version of DeePaC; here, we focus on analyzing the sequences as they are generated

by the sequencer as opposed to predicting for full reads after the sequencing run is

finished. To this end, we downloaded an SRA archive of 251bp-long paired-end reads

(accession number SRR5110368) sequenced with an Illumina MiSeq device (Manara

et al., 2018). To evaluate the viral models, we downloaded an archive of 151bp-long

paired-end SARS-CoV-2 reads originating from a COVID-19 positive human from San

Diego county (SRR11314339). We use untrimmed reads with the quality information

to generate Illumina base call file (BCL) files as they would be internally generated by

the sequencer. We then run HiLive2 on the BCL data to map the reads to the training

reference database; HiLive2 output is then parsed and passed to the models. However,

we ignore the last cycle of each mate when generating HiLive2 output and subsequent

analyses, as the bad quality of this last nucleotide makes it generally unreliable. We select

the predictor that achieves the highest average accuracy on the DeePaC or DeePaC-vir

dataset and compare it to the standard, mapping-based real-time analysis with HiLive2

alone.

79



4. Detecting novel pathogens in real time with DeePaC-Live

4.2.2 ResNets and hybrid classifiers

We investigated two architectures shown previously to perform well in the pathogenicity

or host range prediction task – a reverse-complement CNN consisting of 2 convolutional

layers and 2 fully-connected layers and a reverse-complement bidirectional LSTM. For

more design details and the description of the reverse-complement variants of convolu-

tional and LSTM layers, we refer the reader to Bartoszewicz, Seidel, and Renard (2021a)

and Bartoszewicz et al. (2020). Those architectures guarantee identical predictions for

sequences in their forward and reverse-complement orientations in a single forward

pass. Previous work (Bartoszewicz, Seidel, & Renard, 2021a; Bartoszewicz et al.,

2020) has shown that they were more accurate than alternative machine learning and

homology-based approaches for the read-based pathogenic or infectious potential predic-

tion task. However, as short subread sequences convey less information, we expected

the subread classification problem to be more challenging than in the case of relatively

long 250bp reads. We suspected that deeper, more expressive networks could perform

better. Therefore, we implemented a new architecture – a reverse-complement ResNet

extending the previous work with skip connections (He et al., 2016) while satisfying the

reverse-complementarity constraint.

We considered 18- and 34-layer ResNet variants where all convolutional layers of

a standard ResNet (including size-1 convolutions in skip connections) are replaced

with reverse-complement convolutions (Bartoszewicz et al., 2020). We trained them

for a maximum of 30 epochs, using early stopping with a patience of 10 epochs (see

section A.3, Table A.6, Figure A.7 for architecture details). For all models, we used

input dropout, which may be understood as switching a random fraction of the input

nucleotides to Ns. As generating subreads already discards some sequence information,

we retuned the input dropout rate for the bacterial models, testing the values of 0.2 and

0.25. For the viral models, it was already shown that the dropout rate of 0.25 works

better even in the case of 150bp subreads; we therefore only considered the higher value.

We compared the CNN, LSTM and ResNet models trained on the mixed-length datasets;

in addition to that we also considered the bacterial CNN trained on 150bp subreads

analogous to the viral CNNAll-150 from Bartoszewicz, Seidel, and Renard (2021a). The

ResNet-18 trained with an input dropout rate of 0.25 achieved the highest accuracy on

the bacterial mixed-length validation set and was selected for further evaluation. For

viruses, the ResNet models were the best as well – although the ResNet-34 was the most

accurate in absolute terms, the error rate improvement over the 18-layer variant was

negligible (<0.5%) while the computational cost (measured in wall-clock time of both

training and inference) was roughly twice as high. Since inference speed is crucial for
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the application presented here, we decided to select the equally accurate but faster and

more efficient ResNet-18. For Nanopore data, we retrained only the CNNs, LSTMs and

ResNets-18, omitting the ResNet-34 architectures.

Finally, we create hybrid classifiers, which first extract reads mappable to known

references with HiLive2 and then predict the phenotype for the remaining unmapped

reads using the ResNet (see Figure 4.1). This enables identification of the closest relatives

of the analyzed pathogen, while still predicting labels for reads missed by the mapper.

The reads associated with the pathogenic or infectious phenotype may then be extracted

and used in downstream analysis.

To capture Illumina reads as they are generated by a sequencer, we use HiLive2’s

BCL file conversion and real-time mapping capabilities (Lindner et al., 2017; Loka et al.,

2019). Our workflow, called DeePaC-Live, consists of three asynchronously callable

modules. The sender module watches the HiLive2 output directory, detecting BAM files

with both mapped and unmapped reads. By default, it selects only the unmapped reads

for further analysis, but this can be adjusted by the user to focus on either mapped reads,

or all sequenced reads. The output of the sender module may be automatically sent

over to a remote server (e.g. a GPU-equipped machine) using the Secure File Transfer

Protocol (SFTP). Data privacy issues should be kept in mind.

The receiver module may operate on the remote or local machine depending on

the available infrastructure. It captures the sender’s output and uses a selected deep

neural network to predict pathogenic potentials (standard sigmoid output scores between

0 and 1) for all the selected reads. Then, it filters them according to a predefined

decision threshold (typically 0.5), outputting separate files for reads associated with

a pathogenic and non-pathogenic phenotype. Finally, the optional refiltering module

allows reanalyzing the prediction with an alternative threshold (e.g. to select only the

highest-confidence predictions) and averaging the outputs of multiple receiver modules

to create a simple ensemble classifier.

Note that DeePaC-Live supports easy substitution of the underlying neural network

of any custom Keras model, allowing future improvements in the architecture details

and real-time predictions for tasks other than pathogenicity prediction. We also support

seamless integration with the built-in DeePaC (Bartoszewicz et al., 2020) and DeePaC-

vir (Bartoszewicz, Seidel, & Renard, 2021a) models, although we recommend using the

newer, updated models, especially in the real-time analysis scenario. As the prediction

functions of DeePaC were not optimized for fast inference, we added a possibility to

adjust the inference batch size to fully utilize the computing power of a given GPU.

We set the batch size to 1536, being the highest multiple of 512 that would not cause

out-of-memory errors for any of the tested models. While the batch size could be further
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increased for the CNN and ResNet-based networks used in this study, this did not speed

up inference any more.

4.2.3 Benchmarking

Bacteria

We compare the ResNets and hybrid classifiers to the original DeePaC models, as well

as an alternative random forest approach, PaPrBaG (Deneke et al., 2017). We trained

a DNA-only PaPrBaG forest (Bartoszewicz et al., 2020) on the mixed-length bacterial

dataset. For both machine learning approaches, we average the predictions for both

mates of a read pair for a boost in accuracy (Bartoszewicz et al., 2020).

In addition to that, we evaluate two alignment-based methods – HiLive2 in the ’very-

accurate’ mode (Lindner et al., 2017; Loka et al., 2019) and dc-megablast (Camacho

et al., 2009) with an E-value cutoff of 10 and the default parameters. A successful

match to a pathogen reference genome is treated as a positive prediction; a match to

a non-pathogen is a negative. In case of multiple matches, the top hit is selected. We

build the HiLive2 FM-index and the BLAST database using all the genomes used for

training read set generation. If BLAST aligns two mates of a read pair to genomes

with conflicting labels (i.e. one pathogen and one non-pathogen), we treat them both

as missing predictions. For HiLive2, we treat them separately, as the high precision of

HiLive2 warrants considering all the obtained matches as relevant. If only one mate

has a match, we propagate the match to the other mate. We calculate the performance

measures taking all the reads in the sample into account. Hence, missing predictions

affect both true positive and true negative rates.

Viruses

We use an analogous approach to evaluate the classification performance on reads

originating from novel viruses. However, since PaPrBaG is a method developed for

bacterial genomes, we benchmark the models against a k-nearest neighbours (kNN)

virus host classifier (Z. Zhang et al., 2019). We train the kNN as described by the

authors, using non-overlapping 500bp long ’contigs’ generated from the source genomes.

Training based on simulated reads was not possible due to high computational cost,

but Z. Zhang et al. (2019) showed that a model trained this way can be used to predict

pathogenic potentials of short NGS reads. As kNN yields binary predictions, we integrate

them using the same approach we use for BLAST. Finally, we compare the models to

the original DeePaC-vir models.
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Figure 4.1: DeePaC-Live workflow, including real-time mapping with HiLive2, classification with ResNets, and optional downstream analysis
with BLAST. Mapping and prefiltering can be performed on the same machine as prediction and annotation, but the prefiltered reads can also
be sent to a GPU-equipped remote server. Green: An Illumina sequencer generates the binary BCL files. They are captured by HiLive2, which
maps the reads to an index of known references. Blue: The core of the workflow, implemented in the DeePaC-Live package. HiLive2 output
is captured by the sender module, which selects a subset of reads for further analysis. Selecting the unmapped reads (default) corresponds to
the hybrid classifier (HiLive2+ResNet); selecting both mapped and unmapped reads means that all reads will be classified with the ResNet.
Alternatively, other inputs in fasta or bam format can be used instead (e.g. basecalled Nanopore reads). The receiver module performs
classification of incoming reads with the appropriate ResNet (which can be substituted for another classifier if necessary) and outputs files
filtered by the predicted class. Purple: optional follow-up analysis with BLAST, as performed for the Illumina SARS-CoV-2 sequencing run.
Putative pathogen reads can be annotated by manually passing them to BLAST using an appropriate database.
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Real Illumina runs

We evaluate the workflow on real data from Staphylococcus aureus (SRA accession:

SRR5110368, Manara et al. (2018)) and SARS-CoV-2 novel coronavirus (SRR11314339)

sequencing runs. The virus was not present in the training database, as it had not yet

been discovered when the DeePaC-vir datasets were compiled. S. aureus was also

absent from the corresponding training set and was previously used to evaluate DeePaC

(Bartoszewicz et al., 2020). To showcase how the approach can be used for rapid

detection of novel biological threats, we test the performance of the classifiers after

just 50 sequencing cycles. As the predictions of the deep learning approaches do not

offer any information about the closest known relative of a novel pathogen, we extend

the workflow using BLAST on reads prefiltered by the models. This enables a drastic

increase in the pathogen read identification rate while also providing insight into their

biological meaning. Using BLAST on full NGS datasets is usually not feasible because

of the computational cost. What is more, it has been previously shown (Bartoszewicz,

Seidel, & Renard, 2021a; Bartoszewicz et al., 2020; Deneke et al., 2017) that machine

learning approaches perform better in pathogenic potential prediction tasks. Therefore,

we see the combination of a filtering step with a BLAST follow-up as an in-depth

analysis of the subreads of interest while discarding the potentially non-informative

ones.

Nanopore

Finally, we predict infectious potentials from more noisy subreads of Nanopore long

reads. To this end, we resimulated the bacterial and viral datasets using the exact same

genomes and the context-independent model of DeepSimulator 1.5 (Y. Li et al., 2020).

We set the target average read length to 8kb and discarded reads shorter than 250bp. Then,

we extracted 250bp-long subreads for training and evaluation of the classifiers, but kept

full reads for benchmarking against minimap2 (H. Li, 2018), a popular Nanopore mapper.

We chose 250bp as this allows fair comparison with other models and corresponds to

information available after ca. 0.5 s (Rang et al., 2018). Successful predictions after such

a short time could be used together with real-time selective sequencing (Loose et al.,

2016) to enrich the samples in reads originating from pathogens and save resources. We

trained new models for the bacterial and viral Nanopore datasets and compared them

with minimap2 and models trained on 250bp Illumina reads. Evaluation of minimap2

was performed analogously to HiLive2’s, selecting the representative alignment if a

chimeric match was found. In addition to the simulated data prepared as explained above,
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we also used two real SRA datasets: a SARS-CoV-2 isolate (SRR11140745, collected

on 14 Feb 2020) and a clinical S. aureus sample (SRR8776887, Dilthey et al. (2020)).

4.3 Results

4.3.1 Subread models

In Illumina paired-end protocols, the barcodes are sequenced after the first mate, making

live-demultiplexing possible but problematic. Changing the barcode sequencing order is

not trivial, as initial clustering requires sufficient sequence diversity in the first several

cycles. A possible workaround uses asynchronous paired-end sequencing protocols

(Loka et al., 2019), sacrificing the first read’s length for faster demultiplexing and

relying on the second mate to compensate for the lost information. We tested the

models in 100 settings corresponding to different lengths of the first mate (modelling

different length-time trade-offs) and the second mate (modelling incoming information

after demultiplexing). As shown in the Figure 4.2, the previous state-of-the-art for the

bacterial dataset (Bartoszewicz et al., 2020) is outperformed by the ResNet trained on

mixed-length subreads across most of the spectrum of read length combinations. For

the longest read pairs, where the sum of read lengths is 400bp or more, accuracy is

slightly lower. For the read pairs with a total length below 375bp, the ResNet performs

better. This could be related to the old model being explicitly optimized for 250bp-long

sequences. Performance of the DeePaC-vir’s 250bp-trained CNN (Bartoszewicz, Seidel,

& Renard, 2021a) collapses for viral reads shorter than 200bp, while the ResNet trained

on the mixed-length reads maintains accuracy higher than 80% for reads as short as

50bp. What is more, the ResNet slightly outperforms the previous state-of-the-art also

on full-length reads, with accuracy over 90% for pairs of 225bp or more.

4.3.2 Hybrid models

Table 4.1 and Figure 4.3 present classification performance over the whole sequencing

run (all cycles for both mates) for the bacterial dataset. The highest accuracy is achieved

by the ResNet-based hybrid classifier. High recall of DeePaC (CNN) is actually an

artefact – its predictions for shorter subreads are extremely imprecise (precision for 25bp

is 50.6%), suggesting that the network simply classifies an overwhelming majority of

short subreads as positive regardless of their actual sequence. This effect does not occur

for the hybrid classifier, suggesting that although it achieves the second-highest true

positive rate overall, it is likely the most sensitive method useful in practice.
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(a) DeePaC (CNN), bacteria
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(b) ResNet, bacteria
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(c) DeePaC (CNN), viruses
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(d) ResNet, viruses
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Figure 4.2: Accuracy heatmaps for different lengths of reads in a read pair. Protocols with
asynchronous read lengths (a shorter first mate) allow earlier demultiplexing during
the sequencing run. Varying the length of the second mate models obtaining new
information during sequencing. The black line corresponds to an arbitrarily set 80%
accuracy threshold. The baseline (dashed red line) is the accuracy of each model
on 250bp single reads. Crossing the baseline means that the additional sequence
information of the second mate contains useful signal, rather than just noise hurting
the final predictions. DeePaC (CNN) models were trained on 250bp reads and
ResNet on 25–250bp subreads. The accuracy matrices are almost symmetric (with
negligible deviations), proving that the models’ performance is on average identical
for the first and the second mate.
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Table 4.1: Average performance on reads from novel bacterial species across the whole
sequencing run. The hybrid classifier combining HiLive2 and ResNet achieves the highest
accuracy. Recall of DeePaC (CNN) is inflated by its unreliable predictions for short subreads.
HiLive2 is the most precise method.

Accuracy Precision Recall

HiLive2+ResNet 83.6 80.0 89.8

ResNet 82.1 79.2 86.7

DeePaC (CNN) 79.3 75.6 91.4
DeePaC (LSTM) 79.7 75.2 87.0

PaPrBaG 74.5 72.7 78.1

BLAST 60.8 84.8 76.1

HiLive2 22.2 97.3 36.3

For the viral dataset, the ResNet performs slightly better than HiLive2 even on the

reads that HiLive2 is able to map. If only the mapped reads are considered, the ResNet

correctly labels 90.7% of them, compared to 89.8% for HiLive2 itself. The effect is

especially strong for reads 50bp and longer, where the average accuracy of the ResNet

rises to 91.8%, while HiLive2’s stays the same. It seems to stem mainly from increased

sensitivity of the deep learning approach (89.3% for reads over 50bp, compared to 81.8%

for HiLive) at some cost in precision (95.3% and 99.2%, respectively).

This is most probably why the ResNet has higher accuracy than the hybrid classifier

also when unmapped reads are considered, as presented in Table 4.2 and Figure 4.4. It is

also the most sensitive prediction method overall. The hybrid classifiers offer a good

trade-off between accuracy and precision. As in other real-time analysis tasks (Loka

et al., 2019; Tausch, Strauch, et al., 2018), the latter is high even for very short subreads

(Figure A.8).

4.3.3 Runtime

To estimate the sample size that can be analyzed in real-time after parsing or mapping

with HiLive2, we measured how many reads per second could be processed by the

pathogenicity prediction methods compared in this study. Then, we calculated the

number of predictions feasible in a time-frame corresponding to 25 cycles (with wall-

time per cycle as in Loka et al. (2019)). In the Table A.7 we present how many reads

can be analyzed with no delays if the output is produced every 25 cycles, together with

more detailed information on the hardware used and the effect of adjusting the inference

batch size. The 18-layer ResNet is faster than the original DeePaC models and only
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Figure 4.3: Accuracy for the bacterial dataset. Only the tools achieving more than 60%
average accuracy are shown (we omit HiLive2). For BLAST, accuracy values below
50% are not shown. Cycle numbers for the second mate are shifted by 8 due to an 8nt-
long simulated barcode present in the BCL files, which is removed at mapping and
prediction time. PaPrBaG underperforms even though it was retrained specifically
for a subread classification scenario. The mapping approach, represented by HiLive2,
is the most precise. The low accuracy of both BLAST and HiLive2 reflects a high
missing prediction rate (crossing 80% for HiLive2 at cycles 225–250), although
BLAST performs better due to its less strict and more sensitive alignment criteria.
Combining HiLive2 with the ResNet results in the best average accuracy overall.

Table 4.2: Average performance on reads from novel viruses across the whole sequencing
run. ResNet alone achieves the highest accuracy and is the most sensitive method overall, while
HiLive2 is the most precise.

Accuracy Precision Recall

HiLive2+ResNet 85.9 93.1 77.6

ResNet 86.5 90.5 81.5
DeePaC (CNN-150) 84.8 92.3 75.6

DeePaC (CNN) 62.5 48.0 26.7

DeePaC (LSTM) 79.0 90.0 66.0

kNN 60.7 61.7 54.1

BLAST 73.2 97.2 73.7

HiLive2 51.1 99.2 50.3
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Figure 4.4: Accuracy for the viral dataset. Only the tools achieving more than 60% average
accuracy are shown (we omit HiLive2). For BLAST and kNN, accuracy values below
50% are not shown. DeePaC (CNN-150) corresponds to DeePaC-vir’s CNNAll-150.
DeePaC (CNN) trained on 250bp reads is omitted due to its subpar performance on
reads shorter than 200bp (see Table 4.2 and Figure 4.2c). Cycle numbers for the
second mate are shifted by 8 due to an 8nt-long simulated barcode present in the
BCL files, which is removed at mapping and prediction time. The kNN classifier
performs worse than BLAST even for the first mate. Its performance collapses as
the second mate is introduced due to many conflicting predictions for both mates,
resulting in missing predictions for many read pairs. The ResNet has the best average
accuracy overall.

marginally slower than optimized CNNs and LSTMs, analyzing over 56 million reads in

the given time-frame (5656 reads/s). This is over 6 times faster than the best non-deep

learning based method for both bacteria and viruses, at a much lower cost in terms

of computational resources. This prediction speed is enough to guarantee real-time

predictions for Illumina iSeq 100, MiniSeq and MiSeq devices, with a maximum of 4

and 25 million reads per run. For sequencers with even higher maximum throughput,

like the obsolesced HiSeq and newer NovaSeq 550 machines (with up to 400 million

reads per run), further speed-up is possible by distributing the computation across more

than one GPU. Multiple receiver instances can be easily assigned to dedicated GPUs

to handle different barcodes, cycles or both in parallel. ResNet training time for the

maximum of 30 epochs corresponded to 48h on two Tesla V100 GPUs; trained models

are available for future use (see ’Data availability’).

4.3.4 Real sequencing data

We benchmarked the best bacterial model on data from a real S. aureus sequencing

run. As this dataset contains reads from just one ’novel’ pathogen (a species that was
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not present in the training database), the true positive rate (recall) and accuracy are

equivalent. The hybrid HiLive2+ResNet classifier crosses the 90% threshold just after 75

cycles (when the true positive rate equals 89.8%) and reaches 98.8% in the last analyzed

cycle (Figure A.9). HiLive2 is only able to identify 5.8% of the reads at its best cycle,

which drops down to 2.0% at the end of the sequencing run, when longer sequences are

analyzed.

We further evaluated the approach on data from a real SARS-CoV-2 sequencing

run. Note that the training database did not contain a SARS-CoV-2 reference genome,

mimicking the pre-pandemic state of knowledge. In this setting, we used BLAST as an

example follow-up analysis of the reads filtered with the hybrid classifier or the pure

deep learning approach after just 50 cycles (Table 4.3). As in the case of the open-view

DeePaC-vir dataset, the neural network itself performs better than the hybrid classifier,

being more accurate even on the reads mappable with HiLive2. More specifically,

HiLive2 suffers from a high false negative rate of 96.3% even when only the mapped

reads are considered, which is probably because it was designed for mapping against

known references. The ResNet is substantially more accurate on the same reads (with a

recall of 10.9%, compared to HiLive2’s 0.6%). Because of that, omitting the mapping

functionality of HiLive2 (and using it just for parsing the BCL files generated by the

sequencer) results in better performance. Notably, even the spurious non-pathogenic

identifications of HiLive2 can be useful – 99.7% of the mapped reads are identified as

originating from coronaviruses, and 90.5% are identified as bat coronaviruses, including

the Rhinolophus (horseshoe bat) coronaviruses and bat SARS-like viruses, which are

probably closely related to SARS-CoV-2.

Similar identifications can be made with BLAST on the much larger set of ResNet-

filtered subreads. As the deep learning models consistently outperform BLAST, we use

them as predictors to extract subreads of interest. A BLAST follow-up analysis annotates

the selected 50bp subreads with their closest taxonomic matches (which may include

non-pathogens) wherever a match is found. Alternatively, we can create a consensus

predictor by treating BLAST as a confirmatory analysis to focus only on subreads which

are predicted to originate from the positive class and have a positive BLAST match. In

the latter case, we observe a significant enrichment in sequences more similar to the

pathogenic SARS-CoV-1 virus. 99.3% of the subreads identified as ’pathogenic’ by the

consensus ResNet+BLAST workflow are matched with human SARS viruses present

in the training database, while the number of identified subreads is almost 15 times

higher than for HiLive2 alone. The results suggest that predictions of the ResNet, even

without a BLAST follow-up, are also reliable, while offering a recall rate 80 times higher

than HiLive2. However, further analysis steps (with BLAST or other approaches, e.g.
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Table 4.3: Reads identified as pathogenic from the SARS-CoV-2 sequencing run. The ResNet
alone is able to identify the most reads, but cannot annotate them with matches to the closest
known references. It is more accurate than HiLive2 even on the reads that the latter is able to map,
which explains why it performs better than the HiLive2+ResNet hybrid classifier. Combining
HiLive2 or BLAST with the ResNet identifies taxonomic signals while extracting more reads
than pure mapping. BLAST output can be used to annotate the reads with the closest taxonomic
match only (annot.), or to form a consensus predictor (cons.) by selecting subreads assigned to
the pathogenic class by both the ResNet and BLAST.

Recall Annot. rate

HiLive2 0.6 0.6%

HiLive2+ResNet 41.0 0.6%

ResNet 51.3 0.0%

HiLive2+ResNet+BLAST (annot.) 41.0 27.7%

ResNet+BLAST (annot.) 51.3 37.9%
HiLive2+ResNet+BLAST (cons.) 6.8 6.8%

ResNet+BLAST (cons.) 9.3 9.3%

taxonomic classifiers) are required to gain more fine-grained insights into the origin of

ResNet-filtered reads.

4.3.5 Synthetic biology and biosecurity

The high performance of the models suggests that the protocol could be useful also

beyond the sequencing context, e.g. to improve screening workflows for safe and secure

synthetic biology, where new methods are needed as engineering of modified pathogens

becomes increasingly realistic. Host range of viral pathogens can be deliberately modi-

fied (Herfst et al., 2012; Imai et al., 2012), and a virus similar to the Variola virus (the

cause of smallpox and a bioweapon) was synthesized (Noyce et al., 2018; Thiel, 2018).

Lipsitch and Inglesby (2014) speculated on modifications increasing the pathogenicity

of coronaviruses. On the other hand, a report by the National Academies of Sciences,

Engineering, and Medicine (2018) sees virulence-enhancing manipulation of existing

bacteria as the issue of the highest concern. Computational screening of ordered se-

quences is a standard, but challenging precaution measure used by the DNA synthesis

industry; evaluation of novel sequences requires significant computational resources and

expert analysts.

Standard screening approaches rely on homology-based pipelines for pathogen detec-

tion and functional annotation (Balaji et al., 2021; Diggans & Leproust, 2019). As they

depend on sequence alignment against databases of known threats, it suffers from the

91



4. Detecting novel pathogens in real time with DeePaC-Live

same problems as other taxonomy-dependent pathogen detection methods. Evaluating

sequences shorter than 200bp is usually not feasible due to high false positive rates and

the computational burden; a PhD-level proficiency in bioinformatics is required to both

implement the pipelines and analyze the results (Diggans & Leproust, 2019). Taken

together, those challenges warrant investigating deep learning alternatives to traditional

workflows.

Comprehensive evaluation of such systems is challenging, as even attempting to design

synthetic DNA encoding novel, harmful functions would not be ethically admissible.

Importantly, the screening must work well also for known threats, where evaluation

is easier. Assessing performance on novel sequences can only be done indirectly, by

removing relevant sequences from the underlying database. This approach has been

previously mentioned in Bartoszewicz, Seidel, and Renard (2021a) and Bartoszewicz

et al. (2020), where the potential of deep learning as a better alternative to purely

homology-based identification was first shown, and is also used here. We note that

after the completion of this work, an analogous approach was also presented to test the

performance of the independently developed SeqScreen pipeline, explicitly focusing

on biosecurity applications (Balaji et al., 2021). SeqScreen extends homology-based

pathogen sequence identification with predicting the functions of proteins to which

successful homology hits have been found.

Our models deliver high accuracy and precision for sequences well below the estab-

lished 200bp limit, and their false positive rates can be lowered even more if a decision

threshold higher than the default 0.5 is used. Given the inference speed of the classifiers,

we envision a system where the suspicious sequences are filtered with DeePaC-Live and

piped into a follow-up analysis akin to BLAST, lowering the computational burden of

sequence alignment and improving the performance.

4.3.6 Nanopore reads

Finally, we evaluated the Nanopore models to investigate possible applications to noisier

long-read sequencing technologies (Table 4.4). The Nanopore-trained ResNets achieved

higher validation accuracy than the CNNs and LSTMs trained on the same data and were

selected for further evaluation. As expected, mapping with minimap2 is the most precise

method, and Illumina-trained neural networks of DeePaC underperform in this context.

Noisy reads are especially challenging for Illumina-trained LSTMs. Their precision and

true positive rates become unstable, resulting in relatively low accuracy. Using Nanopore

error models for training promotes more robust models. Strikingly, the first 250bp of

a read are enough for the ResNets to noticeably outperform minimap2, even when it
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Table 4.4: Performance on Nanopore data. Minimap2 was evaluated on both full reads and
250bp subreads. ResNets were trained on Nanopore data with identical species composition
as the Illumina data used for DeePaC CNNs and LSTMs, and evaluated on 250bp subreads.
Minimap2 yields no matches for between 13% (viruses, full length) and 69% (bacteria, 250bp)
of the reads.

Accuracy Precision Recall

Bacteria

ResNet 78.5 73.4 89.3

DeePaC (CNN) 77.8 73.1 87.8

DeePaC (LSTM) 73.7 66.5 95.7
minimap2 (250bp) 30.5 97.2 46.6

minimap2 (full) 66.7 91.4 79.7

Viruses

ResNet 88.5 90.3 86.4
DeePaC (CNN) 81.4 84.0 77.6

DeePaC (LSTM) 78.5 92.3 62.1

minimap2 (250bp) 59.3 99.2 61.8

minimap2 (full) 80.2 98.9 82.4

uses whole reads. This holds for real data as well. When the correct reference is not

yet available (as before the pandemic), minimap2 recalls 66.9% of full-length S. aureus

reads and only 9.9% of full SARS-CoV-2 reads, compared to 94.7% and 52.7% for the

ResNets respectively (Table A.8).

These results suggest that the classifiers can find applications in selective sequencing

workflows, enabling targeted analysis of reads originating from novel pathogens while

discarding potentially less-interesting non-pathogen reads. Although a given read could

contain sequences matching to pathogen references located after the initial 250bp, the risk

of premature termination seems to be mitigated by the classifier’s superior performance,

especially in the case of novel viruses. This risk can be further adjusted to the user’s needs

by selecting an alternative classification threshold, manipulating the expected sensitivity,

precision and false positive rates as shown by the receiver operating characteristic (ROC)

and precision-recall curves (Figure A.10).

4.4 Discussion

4.4.1 Predictions for subreads and real-time detection

All the limitations of the previously described read-based methods of pathogenic potential

prediction (Bartoszewicz, Seidel, & Renard, 2021a; Bartoszewicz et al., 2020; Deneke
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et al., 2017; Z. Zhang et al., 2019) apply to this study too. The models presented

here assign probability-like scores to DNA and RNA sequences without establishing

a mechanistic link between a given sequence and the predicted phenotype. This is,

however, an advantage of the proposed approach as well. By resigning from speculation

on that link (e.g. by sequence alignment to known relatives), models trained on carefully

selected data outperform the traditional methods in terms of both prediction speed and

accuracy, yielding predictions for all sequences in the sample. Any assumptions and

biases affecting the labels will be reflected by the trained classifier. While this is also the

case for read alignment and k-mer based classification, they do not require retraining

after a database update. On the other hand, as the classifiers generalize well to sequences

absent from the training database, they may be updated less frequently while maintaining

the desired performance.

A separate question is whether the captured signal has any underlying functional

meaning, or is purely taxonomic in nature. BLAST, as a sensitive method of homology

detection, is a gold standard for finding taxonomic relationships. Therefore, it could be

assumed that outperforming BLAST is a sign of learning more than just evolutionary

distances. On the other hand, the very nature of read-based predictions renders any

broader biological context inaccessible – the analyzed sequences are simply too short to

contain reliable peptide-level features (Bartoszewicz et al., 2020; Deneke et al., 2017),

let alone information about the structural or functional characteristics of the encoded

proteins (or intergenic regions). However, interpretability workflows like Genome-Wide

Phenotype Potential Analysis (Bartoszewicz, Seidel, & Renard, 2021a) have shown that

read-based pathogenicity prediction models assign high pathogenic potentials to reads

originating from genes engaged in virulence, also specifically in the case of S. aureus.

What is more, they show that regions of higher pathogenic potential are non-uniformly

distributed in both bacterial and viral genomes with ’peaks’ of elevated potential aligning

with relevant genes. This suggests that even though detecting pathogenicity islands or

virulence factors directly is not possible, reads associated with the pathogenic phenotype

do originate from important regions of interest. On the other hand, one can expect

similar sequences to yield similar predictions. This makes distinguishing between

closely related pathogens and non-pathogens challenging, as shown previously for

SARS-CoV-2 and its relative, RaTG13 (Bartoszewicz, Seidel, & Renard, 2021a). The

problem can be explicitly modelled by including related viruses infecting different hosts

(as in the DeePaC-vir dataset used in this study) or by training classifiers targeting novel

strains of known bacterial species (Bartoszewicz et al., 2020). Nevertheless, occasional

misclassifications of similar sequences are a real possibility that has to be kept in mind.

This also applies to alignment-based and k-mer based approaches.
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The accuracy achieved by the models clearly shows that predicting if a read comes

from a bacterial pathogen or a human-infecting virus is indeed possible, even if there

is no reference genome available. This may actually be a form of texture bias – CNNs

have been shown to correctly classify images based on fragments of as little as 17x17

pixels (Brendel & Bethge, 2019). Here, a local DNA or RNA pattern is often predictive

of the phenotype label assigned to the genome. However, the models do not return any

information on the closest possible match, which is generally necessary in any pathogen

detection task. In this study, we proposed to solve this problem by combining the

deep learning approach with an alignment-based one. Alternative methods of taxonomic

classification could be used instead – based on either k-mers or machine learning. Kraken

(Wood & Salzberg, 2014), a k-mer approach, was outperformed by both BLAST and

PaPrBaG (Deneke et al., 2017). Nevertheless, we can imagine that using a well-trained

taxonomic classifier, preferably one yielding at least putative species-level predictions

for every read, would be a very useful tool for follow-up analyses of reads prefiltered

with the models. On the other hand, since the reads associated with pathogenicity are

often co-localized within relevant genomic features (Bartoszewicz, Seidel, & Renard,

2021a), assembly of the filtered reads could recover longer contigs corresponding to

genes or perhaps even gene clusters.

A combination of mapping and ResNets could also form a part of more complex

real-time pathogen detection workflows like PathoLive (Tausch, Loka, et al., 2018). For

example, PAIPline (Andrusch et al., 2018) identifies pathogens in metagenomic and

clinical samples via mapping and a BLAST follow-up analysis, but can only start the

analysis after the sequencing is finished. Exchanging Bowtie2 (Langmead & Salzberg,

2012) for HiLive2 with a hybrid classifier directing potentially informative reads to the

BLAST confirmatory step could serve as a backbone of an extended, real-time version

of the pipeline. Alternatively, PathoLive could be extended with ResNet and BLAST

follow-up steps. To fully handle metagenomic samples, the classifiers would have to

be retrained in a multi-class setting encompassing a broader spectrum of clinically

relevant pathogen groups. On the other hand, if there are reasons to believe that the

disease-causing agent is a virus or a bacterium, the models presented here may suffice.

As our classifiers rely on either BAM or fasta input, they are not necessarily dependent

on HiLive2 and can be used in combination with alternative approaches to accelerated

sequencing analysis, for example the DRAGEN system. Nanopore-trained models

perform relatively well despite higher sequencing noise, and we imagine incorporating

pathogenicity prediction into real-time selective sequencing workflows (Loose et al.,

2016). Since 250bp subreads are enough to make predictions more accurate than possible
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with mapping even fully sequenced reads, it would be possible to terminate sequencing

of some reads quickly to focus on sequencing those originating from pathogens.

4.4.2 Conclusions

We present a new workflow for real-time prediction of the pathogenic potential of novel

bacteria and viruses, accessing the intermediate files of an Illumina sequencer. Deep

learning models specialized in inference from incomplete short- and long-read sequenc-

ing data outperform alternatives on both simulated and real reads. Combining deep

learning with homology search recovers reads originating from novel pathogens without

sacrificing performance on known agents, highlighting close relatives. The protocol

could also be used for sequence-based tasks beyond NGS analysis, for example as a

screening system for synthetic DNA sequences difficult to evaluate before. The work-

flow is available as a command-line tool and a Python package, DeePaC-Live. It can be

installed with Bioconda (Grüning et al., 2018), Docker or pip. The code and installation

instructions are available at https://gitlab.com/dacs-hpi/deepac-live (real-time inference

and HiLive2 integration) and https://gitlab.com/dacs-hpi/deepac (ResNet training and

data preprocessing). The datasets are hosted at https://doi.org/10.5281/zenodo.4456857

along the trained models and config files describing the model architecture and hyperpa-

rameters (https://doi.org/10.5281/zenodo.4456008).
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5 Fungal host prediction and detecting
multiple pathogen classes

Summary

Emerging pathogens are a growing threat, but large data collections and approaches

for predicting the risk associated with novel agents are limited to bacteria and viruses.

Pathogenic fungi, which also pose a constant threat to public health, remain understudied.

Relevant, curated data remains comparatively scarce and scattered among many different

sources, hindering the development of sequencing-based detection workflows for novel

fungal pathogens. No prediction method working for agents across all three groups

is available, even though the cause of an infection is often difficult to identify from

symptoms alone. We present a curated collection of fungal host range data, comprising

records on human, animal and plant pathogens, as well as other plant-associated fungi,

linked to publicly available genomes. We show that the resulting database can be used to

predict the pathogenic potential of novel fungal species directly from DNA sequences

with either sequence homology or deep learning. We develop learned, numerical repre-

sentations of the collected genomes and show that human pathogens are separable from

non-human pathogens. Finally, we train multi-class models predicting if next-generation

sequencing reads originate from novel fungal, bacterial or viral threats. The presented

data collection enables accurate detection of novel pathogens from sequencing data. It is

also a comprehensive resource that can find use beyond this particular task. This can

include possible applications in proteomics and genomics, employing both machine

learning and direct sequence comparison.

This chapter is based on Bartoszewicz et al. (2022), which is a joint work with

Ferdous Nasri, Melania Nowicka and Bernhard Y. Renard. Jakub Bartoszewicz and

Ferdous Nasri contributed equally. Jakub Bartoszewicz compiled the final version of

the database and performed all analyses presented here. A detailed description of the

authors’ contributions can be found in section Thesis outline.
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5.1 Background

Many species of fungi are dangerous plant, animal, or human pathogens. Importantly,

even usually harmless opportunists can be deadly in susceptible populations. For ex-

ample, Candida albicans causes common, relatively benign infections like thrush and

vulvovaginal candidosis, affecting up to 75% of women at least once in their lifetime and

often re-occurring multiple times (Sobel, 2007). It is also frequently found in healthy

humans without leading to any disease, and has been reported to be capable of stable

colonization (Raimondi et al., 2019). However, invasive Candida infections, especially

bloodstream infections, can reach mortality rates of up to 75%, rivaling those of bacterial

and viral sepsis (G. D. Brown et al., 2012). A related species, Candida auris, has been

first recognized in a human patient in 2009 (Satoh et al., 2009) and quickly became one

of the most urgent threats among the drug-resistant pathogens (CDC, 2019), reaching

mortality rates of up to 60% (Spivak & Hanson, 2018). It might have originally been a

plant saprophyte which has adapted to avian, and then also mammalian hosts, possibly

prompted by climate change (Casadevall et al., 2019). Strikingly, it seems to have

emerged in three different clonal populations on three continents at the same time, for

reasons that currently remain unexplained (Lockhart et al., 2017).

Despite their importance, research on fungal pathogens is consistently neglected

and underfunded (“Stop neglecting fungi”, 2017). Even though fungal infections are

estimated to kill 1.6 million people a year, they remain understudied and underreported

(Chowdhary et al., 2016; Huseyin et al., 2017; “Stop neglecting fungi”, 2017). Estimates

suggest that between 1.5 million (Hawksworth, 2001) and 5.1 million (Blackwell, 2011),

or even 6 million (D. L. Taylor et al., 2014) different species of fungi exist, but only a

small fraction of them has been sequenced.

This poses a major challenge especially for pathogen detection workflows based on

next-generation sequencing (NGS). Standard methods are based on recognition of known

taxonomic units by homology detection, using either sequence alignment (Ahn et al.,

2015; Altschul et al., 1990; Andrusch et al., 2018; Camacho et al., 2009; Hong et al.,

2014; Langmead & Salzberg, 2012; H. Li, 2018; H. Li & Durbin, 2010; Naccache

et al., 2014), k-mer based approaches (Breitwieser et al., 2018; Piro et al., 2020; Wood

et al., 2019) or combinations thereof (Piro et al., 2017). This in turn requires curated

databases of fungal, as well as bacterial, viral, and other species labelled with information

regarding the corresponding pathogenic phenotype or host information. Limited host

information is available in the NCBI Genome browser (Sayers, Beck, et al., 2021),

Database of Virulence Factors in Fungal Pathogens (T. Lu et al., 2012) and the U.S.

National Fungus Collections Fungus-Host Database (Farr & Rossman, 2021). Those

98



5.1 Background

resources are partially complementary, and none of them encompasses all the available

data. What is more, multiple literature sources describe fungal pathogens and their hosts

without referring to the corresponding genomes, even if they are indeed available in

databases such as GenBank (Sayers, Cavanaugh, et al., 2021) or FungiDB (Basenko et al.,

2018), which store genomic data without clear-cut host annotation. The ENHanCEd

Infectious Diseases Database (EID2) (Wardeh et al., 2015) aims to detect all ’carrier’-

’cargo’ relationships, not limited to fungi or pathogens specifically, although it does

contain fungal pathogens as well. It relies on automatically mining the ’host’ field in

NCBI Taxonomy (Schoch et al., 2020) and finding co-occurrences of species names in

articles indexed by PubMed (Sayers, Beck, et al., 2021), providing links to the associated

nucleotide sequences. This method is efficient and scalable, but automated processing

based on a concise set of simplifying assumptions may sometimes lead to spurious

results. Many ’cargo’ and ’carrier’ species can be mentioned in the same paper even

though one is not really a host of the other. This is often the case in literature reviews,

articles discussing phylogenetic classification, or taxonomy updates, and holds also

for this work. The ’host’ field in a database as large as NCBI Taxonomy may also

contain outdated, inaccurate or incomplete information. For example, Pneumocystis

jirovecii, the causative agent of deadly pneumocystis pneumonia, was previously called

Pneumocystis carinii. While the latter name is now reserved for a species infecting

exclusively rats and not humans (Stringer et al., 2002), records in NCBI Taxonomy (and,

possibly by consequence, EID2) still list humans as the hosts of P. carinii at the time of

writing. What is more, many sequences included in EID2 are not genome assemblies,

but single genes, which are not enough for open-view fungal pathogen detection based

on shotgun sequencing. For this and similar applications, a new resource is needed. It

should be based on three complementary sources: manually confirmed labels mined

from the large, general-purpose databases, specialized, fungal databases accumulating

biologically relevant evidence for each label, and literature.

In this work, we compiled a collection of metadata on a comprehensive selection of

fungal species, annotated according to their reported pathogenicity towards humans,

non-human animals, and plants. We also include plant-associated fungi without a clear

pathogen annotation. We store the metadata in a flat-file database and link them to

the corresponding representative or reference genomes, if available. To showcase the

possible applications of the database, we model a scenario of novel fungal pathogen

detection. While to our knowledge, this is a first systematic evaluation of feasibility

for the novel fungal pathogen detection task, we note that it mirrors similar problems

in bacterial and viral genomics (Barash et al., 2018; Bartoszewicz, Seidel, & Renard,

2021a; Bartoszewicz et al., 2020; Bergner et al., 2021; Brierley & Fowler, 2021;
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Deneke et al., 2017; Gałan et al., 2019; Q. Guo et al., 2021; Mock et al., 2020; Tang

et al., 2015; Wardeh et al., 2021; Z. Zhang et al., 2019). We expect new agents

to emerge due to environmental changes, host-switching events and growing human

exposition to the unexplored diversity of potentially harmful fungi, as shown by the

example of C. auris. What is more, advances in recombinant DNA assembly allow

construction of whole synthetic fungal chromosomes and genomes (Burgess, 2017;

Dai et al., 2020; Richardson et al., 2017), as well as optimization of yeast strains with

new phenotypes (Luo et al., 2018; Szymanski & Calvert, 2018). Genetic modifications

of filamentous fungi also grow in popularity (Amores et al., 2016; Martins-Santana

et al., 2018). As some of them are dangerous pathogens (Chowdhary et al., 2016), this

may lead to the development of new dual-use applications and potential bioterrorism

risks. Biosecurity and biosafety regulations are supported by computational screening of

ordered, potentially novel, sequences at DNA sequencing facilities, using adaptations of

methods developed originally for pathogen detection from sequencing data (Balaji et al.,

2021; Bartoszewicz, Genske, et al., 2021a; Diggans & Leproust, 2019).

Therefore, we evaluate if detecting homology between previously unseen species and

their known relatives accurately predicts if a novel fungus is capable of colonizing and

infecting humans. BLAST (Altschul et al., 1990; Camacho et al., 2009) represents the

gold standard in pathogen detection via taxonomic assignment to the closest relative.

Although read mappers or k-mer based taxonomic classifiers are more computationally

efficient on large NGS datasets (Alser et al., 2021; Breitwieser et al., 2017; Ye et

al., 2019), BLAST has been shown to be more accurate in similar tasks of detecting

novel bacterial and viral pathogens (Bartoszewicz, Seidel, & Renard, 2021a; Deneke

et al., 2017). However, convolutional neural networks of the DeePaC package have

been proven to outperform BLAST in both those scenarios (Bartoszewicz, Seidel, &

Renard, 2021a; Bartoszewicz et al., 2020) for both isolated NGS reads and full genomes,

and a recently presented variant of residual neural networks (ResNets) outperforms

all alternatives on short NGS reads and their fragments (Bartoszewicz, Genske, et al.,

2021a). Therefore, we also train a similar ResNet to predict if a novel fungal DNA

sequence originates from a potential human pathogen. We then develop trained numerical

representations of all genomes in the database and show the separation of potential human

pathogens and non-human pathogens. Finally, as previously presented models were

limited exclusively to bacteria or viruses, we extend our neural networks to a multi-

class setting, which we envision to be applicable in open-view, clinical scenarios with

only minimal assumptions regarding a novel, previously undiscovered causative agent.

Following the convention introduced previously for bacteria (Deneke et al., 2017) and

viruses (Bartoszewicz, Seidel, & Renard, 2021a), we focus on the pathogenic potential
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Table 5.1: Key information on each species included in the database.

Name Species name, GenBank organism name and infraspecific name for the representative genome.

NCBI TaxID Taxonomic identifiers of the species and the representative genome in the NCBI Taxonomy database.

Assembly accession & nameGenBank assembly accession number and assembly name for the representative genome.

Pathogenicity & host group Manually curated information regarding pathogenicity and the relevant host groups.

Putative host group Automatically extracted information suggesting a host group. Includes non-pathogenic associations.

Label sources References to resources used to label the species for all host groups and evidence levels.

Source name and TaxID Species name and TaxID as mentioned in the first resource used to label it.

Assembly Level Assembly level of the representative genome.

Sequence release date Sequence release date as reported in GenBank.

FTP path GenBank FTP path to the representative genome.

Label date Date of adding the species to the database or updating its labels.

of the analyzed species, rather than the pathogenicity itself. This distinction captures the

fact that the pathogenic phenotype may or may not be manifested depending on specific

host-pathogen interactions; whether this happens cannot be fully predicted outside the

context of a particular host. We can only predict if a given sequence originates from a

species that could cause disease under some circumstances (i.e. its pathogenic potential),

not whether an invasive infection actually occurred.

5.2 Data description

The database presented here is designed to facilitate sequence analysis and machine-

learning approaches to pathogen detection. Therefore, we use the concept of a ’positive’

and a ’negative’ class, where the former corresponds to the species pathogenic to humans,

and the latter can be defined in many ways depending on the downstream task. In our

showcase of example applications of the database, we focus on pathogens (and hence

our negative class consists of non-human animal and plant pathogens), but we include

more records in the database for future use. More specifically, we collect metadata on

species infecting humans, animals or plants, supplemented with information on other

plant-associated species. To this end, we integrate multiple literature and database

sources, relying on manual curation, but also including the automatically extracted data

for future reference. Table 5.1 summarizes the data we collected for each species.

First, we accessed the Database of Virulence Factors in Fungal Pathogens (DFVF) (T.

Lu et al., 2012) on October 9, 2021. The database contains records on virulence factors

of a wide selection of fungal species together with their NCBI TaxIDs and information

on their hosts and the disease caused. It also includes separate parts for animal and plant

pathogens. We searched the records for all proteins in the database; if the ’Disease’ or

’Disease host’ fields contained the word ’human’, we added the corresponding species
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to the list of human pathogens. We added the remaining species from the animal part

of the database to the list of animal pathogens. Finally, we put all species mentioned

in the plant part of the database on the list of plant pathogens, irrespective of whether

humans were also mentioned as a possible host. For all those species, we also extracted

the TaxID. As some of those TaxIDs corresponded to taxa below the species level, we

linked them to their species-level ancestors in the NCBI Taxonomy tree. This resulted in

a list of unique, labelled species names and species-level TaxIDs. Note that as DFVF

was built using manual curation of text-mining results, we treat the obtained records as

manually curated as well.

Further, we searched the Taxonomy database (Schoch et al., 2020) using the query

’"host human"[Properties] AND Fungi [orgn]’, obtaining a list of species with a putative

human host and their TaxIDs. We then used a comprehensive selection of literature

reviews and comparative studies (Bombassaro et al., 2020; Brunner-Mendoza et al.,

2019; Chowdhary et al., 2014; Colombo et al., 2011; Dellière et al., 2020; Franzen &

Müller, 2001; Han & Weiss, 2017; Hu et al., 2015; Jančič et al., 2015; Kjærbølling et al.,

2018; Köhler et al., 2015; Kwon-Chung et al., 2017; Paulussen et al., 2017; Prakash

et al., 2017; Seyedmousavi et al., 2018; L. H. Taylor et al., 2001; Teixeira et al., 2017)

to collect additional evidence and extend the collected list of human pathogens. We

manually extracted the species names and searched the NCBI Taxonomy (including

synonyms) to link them to their names as reported in Taxonomy and the respective

species-level TaxIDs. In both cases (searching with extracted TaxIDs or species names),

we handled the possibility of multiple, ambiguous matches by preferring exact name

matches to any of the synonymous names recorded in Taxonomy. If this was not possible

(e.g. because of additional annotations in the ’name’ field in Taxonomy), we considered

matches where the first two words exactly match the query name, and varieties of a query

species (i.e. matches containing the abbreviation ’var.’). If no exact match was found, we

selected the first record containing the query species name. We ignored species hybrids

and formae speciales, excluded the organism names explicitly expressing taxonomic

ambiguity (marked with ’sp.’, ’cf.’ or ’aff.’), and filtered out fungal viruses. If the species

name was not mentioned in Taxonomy at all, we still included it in the database along

with its associated host group label. This will enable easy extension of the database in

the future, as more fungal sequences become available.

Similarly, we consulted the literature on animal (Bałazy et al., 2008; Becnel &

Andreadis, 2014; Chandler et al., 2000; Cissé et al., 2021; Evans et al., 2011; Franzen &

Müller, 2001; Gerson et al., 2008; Han & Weiss, 2017; Leonhardt et al., 2018; Lovett &

St. Leger, 2017; Rehner & Buckley, 2005; Schulenburg & Félix, 2017; Seyedmousavi

et al., 2018; Seyedmousavi et al., 2015; Y. Shang et al., 2015; Smith, 2006; St. Leger &
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Wang, 2020; Sung et al., 2007; Teixeira et al., 2017; van der Geest et al., 2000; S. Wu,

Toews, et al., 2021) and plant pathogens (Barbara & Clewes, 2003; Costa et al., 2021;

Coutinho et al., 2017; Doehlemann et al., 2017; Gurung et al., 2015; D. R. Jones &

Baker, 2007; S. W. Kim et al., 2012; W. Kim et al., 2019; Leonhardt et al., 2018; Schardl

et al., 2013; Stukenbrock et al., 2012; Vacher et al., 2008) and linked the results to the

respective species TaxIDs wherever possible. Further, we accessed the Fungal Databases

of the Germplasm Resources Information Network (GRIN). On October 9, 2021, we

searched for all records with ’Homo sapiens’ as a host (Farr & Rossman, 2021). We also

added the species listed in the Nomenclature Fact Sheets for plant-associated fungi with

quarantine importance and the Fungal Diagnostic Fact Sheets of invasive and emerging

fungal pathogens (Farr & Rossman, 2021) to the list of plant-pathogenic species, and

searched NCBI Taxonomy as described earlier.

We then linked the resulting lists of species TaxIDs with their representative of

reference genomes in Genbank, accessed on October 9, 2021. Further, we selected all

species with available genomes, but without a label assigned by any of the sources used.

On the same day, we manually searched the GRIN Fungal Database for each of those

species, allowing for synonyms. We checked the ’Host, ’Disease’, and ’Notes’ fields; if

the disease of a plant or animal host was clearly described, we added the query species

to the appropriate list. If no disease was mentioned for a confirmed plant host, we added

the species to a list of plant-associated fungi.

Next, we used the EID2 database (Wardeh et al., 2015) to extract species with putative

human, animal, or plant hosts. Note that those labels were collected automatically and

are therefore prone to errors. Moreover, they do not consist of pathogens only, and may

include commensals or symbionts. We nevertheless added them to our database for

completeness, albeit noting that they represent only a putative, automatically extracted

carrier-cargo relationship, rather than a manually confirmed, true pathogenic potential

of a species. The same, ’putative’ category includes human-hosted species found in

NCBI Taxonomy and GRIN, unless confirmed in other literature sources as well. We

then selected all species with a putative human host and manually searched the Atlas of

Clinical Fungi (de Hoog et al., 2020) with their names and synonyms noted in NCBI

Taxonomy, also considering additional species referred to in the search results. If the

Atlas confirmed a species to be a pathogen, we added it to the appropriate category. Note

that only three of the human-hosted species (all belonging to the genus Malassezia) were

clearly described as human commensals without any reports of causing disease (and

hence, we excluded them from our list of pathogens). In cases when the Atlas mentioned

two names to be synonyms, even though NCBI Taxonomy listed them as two separate

species, we followed the nomenclature suggested by the Atlas. We retained both records
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to explicitly reflect this in the database, keeping one name unlabelled and linking it to

the main record with an appropriate annotation regarding the synonym TaxID and name.

Finally, we linked all labelled species to their GenBank genomes, if available.

After 12 weeks, we updated the database by extracting the records on reference and

representative fungal genomes present in GenBank on January 2, 2022, selecting those

with accession numbers and TaxIDs not already present in our database, and filtering

the organism names as described above. We then linked the 67 new genomes to the

previously collected metadata (29 of those species were absent from the first version of

the database), and manually searched GRIN following the same procedure as for the

main part of the database. If a human host was mentioned, we added the corresponding

putative label to the appropriate list. Finally, we checked all putative human host labels

in the Atlas of Clinical Fungi (de Hoog et al., 2020). The update added 27 new labelled

genomes, including 12 plant-associated fungi without proven pathogenic labels. One

plant pathogen and four plant-associated species were absent from the first version of

the database. We used the added pathogen genomes for our temporal benchmark.

The database contains 14,555 records in total. In the following parts of the manuscript,

we will focus on what we will call the core database, comprising metadata on genomes

of 954 manually confirmed pathogens (including 332 species reported to cause disease

in humans), available on October 9, 2021. This forms a collection of species most

relevant to the pathogen detection task, belonging to 6 phyla, 37 classes, 82 orders and

182 families. A ’temporal benchmark’ subset contains 15 further pathogens (including

one infecting humans), collected in a database update on January 2, 2022. We also

include records on 486 plant-associated fungi. The supplementary part of the database

contains information on 481 putatively labelled genomes, 1,147 unlabelled species with

available genomes, 8 synonyms (with 6 alternative genomes) derived from the Atlas of

Clinical Fungi (de Hoog et al., 2020), 885 labelled species without genomes (including

284 species without TaxIDs) and 10,579 putatively labelled species without genomes

(including 9 without TaxIDs). This subset will enable easy updating of the database in

the future, as more genomes of already labelled species are sequenced. It also serves

as a record of all screened genomes and species to ensure reproducibility and facilitate

future extensions (e.g. adding new data or sources of evidence). Figure A.11 presents

the logical relations between the genomes with manually confirmed labels and genomes

for which putative labels could be found in EID2.
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5.3 Methods

5.3.1 Training, validation and test sets

While we envision a wide range of possible applications of the database, we present an

example use-case that allows taking advantage of the wealth of collected data – detection

of novel fungal pathogens from NGS data. The core of the database contains 332

genomes of human pathogens (including opportunists), forming the positive class. The

negative class comprises 622 species not reported to infect humans; this includes 565

plant pathogens and 58 non-human animal pathogens. To evaluate the performance of the

selected pathogenic potential prediction methods, we divided the corresponding genomes

into non-overlapping training, validation and test sets. In this setup, the training set is

used as a reference database for the methods based on sequence homology and to train

the neural networks, while the performance metrics are calculated on the held-out test

set. The validation set is used for hyperparameter tuning and to select the best training

epoch. While evaluating performance on genuinely unknown species is by definition

impossible, we effectively model the ’novel species’ scenario by testing on a wide range

of sequences removed from the database.

We manually placed two clinically important pathogens – Candida auris (a recently

emerged threat (CDC, 2019; Satoh et al., 2009)) and Aspergillus fumigatus (a causative

agent of aspergillosis, reaching up to 95% mortality rates (G. D. Brown et al., 2012))

– in the test set. We also added two non-human pathogens: Pyricularia oryzae (syn.

Magnaporthe oryzae; voted the most important fungal pathogen by a panel of almost 500

fungal pathologists (Dean et al., 2012) as it causes up to 30% of global rice production

losses (Skamnioti & Gurr, 2009)) and Batrachochytrium dendrobatidis (blamed for

recent decline of 500 amphibian species and complete extinction of 90 of them (Scheele

et al., 2019)). The rest of the species were assigned randomly. Overall, we placed 10% of

all species in test and validation sets each, while the remaining 80% formed the training

set.

To model the task of predicting pathogenic potentials from NGS samples, we simulated

training, validation and test reads using Mason (Holtgrewe, 2010). First, we generated

10 million single reads, 1.25 million single reads, and 1.25 million paired reads per

class for the training, validation and test sets respectively, keeping the number of reads

per genome proportional to each genome’s length. This mirrors the protocol used for

bacteria (Bartoszewicz et al., 2020) and viruses (Bartoszewicz, Seidel, & Renard, 2021a),

resulting in equal mean coverage for all genomes. A side effect of such an approach

is that reads originating from longer genomes could be over-represented compared to
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those from shorter or incomplete genomes, possibly causing generalization problems

for trained machine learning models. To tackle this issue, we also simulated a second

version of the training set, where the number of reads per genome is proportional to

a logarithm of a given genome’s length. We call this version of the training set the

’logarithmic-size’ set to differentiate it from the previous (’linear-size’) approach. Note

that while the ’logarithmic-size’ training set may help balance the resulting classifiers’

performance, in a real sample, we expect the coverage to be approximately equal for

equally abundant species. Therefore, we only used the ’linear-size’ versions of validation

and test sets. In both cases, the datasets maintain the 8-1-1 proportions on both read and

genome levels, with a total count of 25 million reads per class.

A crucial difference compared to previous pathogenic potential prediction studies is

that fungal genomes are orders of magnitude longer than bacterial or viral ones. While the

procedure mentioned above produced a mean coverage of 1.82 for the bacterial dataset

presented in (Bartoszewicz et al., 2020), it results in a mean coverage of only 0.15

on our data. We expected this could cause training problems, as the machine learning

models would only have access to a small fraction of the overall sequence diversity

of the training set. Therefore, we also simulated ’high-coverage’ versions of both the

’linear-size’ and ’logarithmic-size’ training sets. In this setup, we increased the total

number of training reads to 240 million, compared to 20 million for the ’low-coverage’

versions described before. The ’high-coverage’ versions keep the mean coverage of 1.82.

As the reads were simulated randomly, we expected the ’low-coverage’ validation and

test sets to be representative, and correctly model a common case of low abundance of

the target pathogen compared to other DNA sources in the sample (e.g. the host). We

therefore used only ’low-coverage’ validation and test sets. In summary, we generated

four versions of the training read set and one version of the validation and test set

each. The datasets contain the same number of reads for each of the classes and can be

easily reused for future machine learning and benchmarking applications. Finally, we

simulated a temporal test set based on the genomes added to GenBank up to 12 weeks

after the main part of the database was compiled. We generated 625,000 reads using the

’linear-size’ setup and balancing the number of reads per class; the average coverage

matched our main test set.

5.3.2 Pathogenic phenotype prediction

Next, we evaluated the feasibility of pathogenic potential prediction for novel fungal

species. We used a ResNet architecture implemented in the DeePaC package, previously

shown to outperform alternatives based on deep learning, traditional machine learning

106



5.3 Methods

and sequence homology in the context of novel bacteria and viruses (Bartoszewicz,

Genske, et al., 2021a). Briefly, the architecture consists of 17 convolutional layers of

between 64 and 512 filters (with the filter size of 7 for the first layer and 5 for the

following layers) using skip connections, followed by a global average pooling layer and

a single-neuron output layer with sigmoid activation. It returns an output score between

0 and 1, where a threshold of 0.5 is used by default as a boundary between ’positive’ and

’negative’ predictions. The network uses batch normalization and input dropout, which

can be understood as randomly switching a predefined fraction of input nucleotides in

training samples to Ns. It also guarantees identical predictions for any given sequence

and its reverse-complement via parameter sharing. For more details, we refer the reader

to the corresponding publication (Bartoszewicz, Genske, et al., 2021a).

As previous research reported that the input dropout rate is an important hyperpa-

rameter (Bartoszewicz, Genske, et al., 2021a; Bartoszewicz, Seidel, & Renard, 2021a;

Bartoszewicz et al., 2020), we investigated two different values – the default 0.25

and 0 (no dropout). To this end, we trained the networks using the ’linear-size’ and

’logarithmic-size’ versions of the low-coverage training set for the default maximum of

30 epochs with an early stopping patience of 10 epochs, selecting the epoch and input

dropout rate resulting in the highest accuracy on the validation set. We then retrained the

networks using the selected input dropout rates and both versions of the high-coverage

training set.

As shown in (Bartoszewicz et al., 2020), predictions for two reads in a read pair can

be averaged, improving prediction accuracy; training the networks on single reads allows

to use them for both single reads and read pairs. Further, averaging over predictions for

all reads originating from the same organism (e.g. for classification of whole genomes or

single-species samples) has been demonstrated to yield accurate species-level predictions

(Bartoszewicz et al., 2020; Deneke et al., 2017). We adapted those steps to our models as

well. However, since the networks are explicitly trained for read-based classification only,

the default classification threshold may be suboptimal for the genome-wise classification

scenario. Therefore, we hypothesized that it should be retuned for optimal performance

according to a preselected metric, e.g. balanced accuracy. To test this assumption

on a fully independent dataset first, we used the ’novel viral species’ dataset from

Bartoszewicz, Seidel, and Renard (2021a) and their convolutional neural network (CNN)

without any retraining. We selected the threshold optimizing the balanced accuracy on

the appropriate validation set, rounded to two decimal places. We compared the original

and retuned models and applied the procedure resulting in the better test set performance

to our fungal models.
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To classify novel fungal sequences based on their closest taxonomic matches, we used

BLAST (Altschul et al., 1990; Camacho et al., 2009) as described for bacterial data in

(Bartoszewicz et al., 2020). The reference database was created from the training set

genomes. We used discontiguous megablast with an E-value cutoff of 10 and default

parameters, selecting the label of the top hit (’pathogenic to humans’ or not) as a

predicted label for each query sequence. Note that if no hits are found, no prediction

can be returned for a given read. This lowers the true positive and true negative rates,

defined as the ratios of correct positive or negative predictions to all reads in the positive

or negative class, respectively. For read pairs, a single match is enough to assign a label

to a pair, but conflicting matches result in no prediction. Similarly to Bartoszewicz,

Seidel, and Renard (2021a), we considered two approaches for generating species-level

predictions. First, we found BLAST matches of contigs from the test set, using a

majority vote over all contigs belonging to the same species to assign a corresponding

label. Second, we used the majority vote over predictions for all reads originating from

a given species. The latter case is especially relevant for a use-case of a sequencing

sample containing a single species, and is more directly comparable to the genome-level

evaluation of the ResNet.

5.3.3 Genome representations and dataset structure

To visualize the structure of the dataset as learned by the trained classifier, we developed

numerical representations for the collected genomes. This poses a challenge, as the

networks are trained on reads rather than full genomes. However, we observe that

final outputs of the network can be averaged over all reads originating from a single

genome to generate a prediction for the genome in question (Bartoszewicz et al., 2020).

Analogously, we can average the activations of the intermediate layers to construct

vector representations for whole genomes based on the corresponding reads. Note that

averaging the activations of the penultimate layer is approximately equivalent to using a

full genome as input (assuming full coverage), as our architecture uses global average

pooling just before the output layer.

More formally, by averaging the activations of the penultimate layer for a set of reads

belonging to the same genome and passing the output to the final layer, we obtain the

value s(E[z]), where s(x) = 1/(1 + e−x) is the sigmoid activation and z = w⊤h + b,

for the penultimate activation vector h, weights of the last layer w and its bias b. Note

that this is not mathematically equivalent to E[s(z)], or the expected output of the

network for reads originating from a given genome, which was used for the genome-

level predictions in previously published literature (Bartoszewicz, Seidel, & Renard,
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2021a; Bartoszewicz et al., 2020), as well as in this study. However, we suspected that

although usually s(E[z]) and E[s(z)] are not identical, those terms could have similar

values in practice, as they both express a notion of aggregating information contained

in individual reads to yield a prediction for a full genome. If this is the case, mean

activations E[h] for a set of reads originating from the same genome can be used as

if they were the internal genome representations of our species-level classifiers, even

though the models rely on aggregated read-level predictions E[s(z)]. To investigate the

relationship between s(E[z]) and E[s(z)], we performed additional experiments.

Note that E[s(z)] represents averaging in in the space of predicted probabilities

(’proba’-average), while s(E[z]) is averaging in the logit space (’logit’-average). To

check if s(E[z]) ≈ E[s(z)], we plotted the ’logit’-average predictions for each species

against their ’proba’-average equivalents. As any effects found could be dataset-

dependent, we perform this not only on the fungal validation and test sets, but the

’novel viruses’ dataset used for the DeePaC-vir networks (and also for our multi-class

classifiers). Further, we use simulated logit values (z) to gain deeper insight into the

relationship between both versions of read averaging. To accurately model the problem

of aggregating predictions for individual species in the context of binary classifications,

we first defined two classes, ’0’ and ’1’. We then simulated 100 ’species’ belonging to

each class. Each species S is described by a distribution of logit values z ∼ N (µS, σ2
S),

where µS and σS are the mean and standard deviation of z for that particular species

and N is the normal distribution. To generate µS and σS for each species, we sample

from additional distributions: µS ∼ N (µc, σ2
c ) and σS ∼ Hal f Normal(µσ, σ2

σ), where

Hal f Normal is the half-normal distribution and c is the class index for classes ’0’ and

’1’. Note that for simplicity, we sample σS from the same distribution irrespective of

the species’s class. Finally we generate 1000 values of z per species (corresponding to

1000 reads) and plot the ’logit’-averages s(E[z])] against the ’proba’-averages E[s(z)].
Hence, to each species belonging to a given class, we assign its own mean and standard

deviation used to generate read representations according to the species’s class. First, we

perform two experiments using the following parameters:

• µ0 = −3, µ1 = 3, σ0 = σ1 = 2, µσ = 0.25, σσ = 0.25

• µ0 = −3, µ1 = 3, σ0 = σ1 = 2, µσ = 3, σσ = 1

This models two well-separated classes, and the only difference between the two settings

is the distribution of within-species variances of z.

We then test if the relationship between ’logit’- and ’proba’-average changes if no

separable classes are present in the dataset. To this end, we perform two additional

experiments with only one ’class’, ’0’:
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• µ0 = 0, σ0 = 3, µσ = 0.25, σσ = 0.25

• µ0 = 0, σ0 = 3, µσ = 3, σσ = 1

Finally, we investigate if any effects found could be conditional on the presence of a

species-level signal, i.e. on differences in the distribution of z for each species S. We

generate 100,000 values of z ∼ N (µr, σ2
r ), where µr = 0 and σr = 20, and assign the

’reads’ to 100 simulated ’species’ arbitrarily (first 1000 reads to the first species, second

1000 reads to the second species, etc.). We also repeat the experiment simulating 5000

’reads’ per ’species’ (corresponding to a 5-fold increase in coverage).

Assuming that s(E[z]) ≈ E[s(z)] (see Figures A.12-A.13), we extracted penultimate

activations for all simulated reads in the low-coverage, ’linear-size’ training, validation

and test sets. We then used the averaged activation vectors for each species to map the

distances between them as learned by our networks. The last convolutional layer has

512 filters, but we removed the filters for which activations were equal to zero for all

samples in the dataset and used UMAP (McInnes et al., 2020) to embed the resulting

representations in a 2-dimensional space for visualization. We used the Euclidean

distance metric with a minimum possible distance of 0.1 and a neighbourhood size of 15.

The inputs had been randomly shuffled beforehand to avoid artefacts that can appear if

an embedding is learned based on representations ordered by class.

5.3.4 Multi-class evaluation

Finally, we investigated an application requiring merging the ’positive’ subset of our

database with previously available resources for pathogenic potential prediction in

bacteria and viruses (Bartoszewicz, Genske, et al., 2021a; Bartoszewicz, Seidel, &

Renard, 2021a; Bartoszewicz et al., 2020). We aimed to integrate the separate classifiers

for fungi, bacteria and viruses into a single, multi-class model capable of predicting

whether unassembled NGS reads originate from (possibly novel) pathogens present

in a human-derived sample. To this end, we extended the DeePaC package adding

the multi-class classification functionality. The resulting architectures differ from the

previously described ResNets (Bartoszewicz, Genske, et al., 2021a) only by the output

layer, which has as many units as the number of considered classes and uses a softmax

activation. They use the default input dropout rate, as required by the addition of viral

and bacterial data. We train the models for 50 epochs due to the increased difficulty of

the task.

We note that in practice, only human-hosted fungi are expected to be found in clinical

samples. In this context, a slightly constrained view is admissible: we assume that only
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human-pathogenic fungi, human-hosted bacteria (pathogenic or commensal), human

viruses and non-human viruses (mainly bacteriophages) will be present in the sample.

Further, bacteriophage sequences tend to be very similar to the sequences of their

bacterial hosts (Zielezinski, Barylski, et al., 2021; Zielezinski, Deorowicz, et al., 2021)

and difficult to differentiate, but both commensal bacteria and non-human viruses can be

viewed here as a joint ’negative’ (i.e. harmless) class. Hence, learning a precise decision

boundary between them can be omitted. Human reads can be ignored, as they can be

relatively easily filtered out with traditional methods based on read mapping of k-mers

(Ahmed et al., 2021; Loka et al., 2018; Wood et al., 2019).

Therefore, we fused the previously published datasets used in DeePaC (Bartoszewicz,

Genske, et al., 2021a) for bacteria (pathogens vs. commensals) and viruses (human vs.

non-human) with the ’positive’ (human-pathogenic) class of our database. As the original

datasets contain only 12.5 million reads per class (with the same 8-1-1 proportion of the

training, validation and test sets, stratified by bacterial species or virus), we used the

low-coverage versions of our ’positive’ read sets, matching this number. We also merged

the original negative classes (commensal bacteria and non-human viruses) into a joint

non-pathogen class, downsampling accordingly. Further, the original datasets contain

reads of between 25 and 250bp instead of 250bp only, which makes the problem more

challenging, but increases robustness on very short sequences (Bartoszewicz, Genske,

et al., 2021a). To make our fungal reads compatible with this setup, we randomly

shortened the reads in our validation and low-coverage training sets to 25–250bp. We

only used the test sets of 250bp in order to highlight the upper performance limit of the

resulting classifier.

The final result is a dataset divided into 4 classes: nonpathogenic bacteria and non-

human viruses, bacterial pathogens, human-infecting viruses, and human-pathogenic

fungi, in either the ’linear-size’ or the ’logarithmic-size’ variant. Each of the classes

contains 12.5 million reads divided into the training, validation and test subsets while

keeping separate species or viruses in each of the subsets. This is intended to model

a scenario of analyzing a clinical sample containing a mixture of previously unseen

pathogens and non-pathogens, while keeping the task feasible by resigning from differ-

entiating between bacteriophages and commensal bacteria, as well as fungi with human

and non-human hosts. Note that even in this case, the ’negative’ part of the presented

database is useful, allowing us to constrain our view to a curated set of clinically relevant

fungi only.

Using this dataset, we trained two models including all four classes (using the ’linear-

size’ or the ’logarithmic-size’ variant of the fungal training set). We further evaluated

the one resulting in higher validation accuracy and a simple ensemble averaging the
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predictions of both models. Then, we trained a 3-class model including only the bacterial

and viral classes. This allows us to measure the ’difficulty’ of integrating the fungal

dataset with the others within a single network in terms of resulting differences in pre-

diction accuracy on the original DeePaC datasets. By comparing the performance of our

models to the performance of the original binary classifiers (Bartoszewicz, Genske, et al.,

2021a), we can disentangle the ’difficulty’ of adding the fungal class from the ’difficulty’

of integrating the bacterial and viral classes, and assess how much performance is ’lost’

by using a more open-view classifier. Note that in the case of the purely viral dataset,

spurious assignments to the bacterial pathogens class may be treated as detection of

bacteriophages infecting the bacterial species of this class, and hence reassigned into

predictions for the non-pathogen class by adding the predicted probabilities for both

classes. This effectively merges the non-pathogen and bacterial pathogen classes at test

time when appropriate, but still keeps the possibility to use the trained networks in a

fully open-view setting (with all classes) without the need for retraining. We performed

an additional comparison to BLAST with a pre-selected training database (bacterial for

bacteria (Bartoszewicz et al., 2020), viral for viruses (Bartoszewicz, Seidel, & Renard,

2021a)). This resulted in an estimated upper bound on the performance of non-machine

learning approaches on those datasets (as extending the training database with irrelevant

reference genomes can only lower BLAST’s performance). Finally, we also evaluated the

neural networks on the full dataset of all four classes, reporting performance measures

for each class separately and the ’macro’ average performance over all of them.

5.4 Results

5.4.1 Fungal pathogenic potential prediction

The networks trained without input dropout achieved higher validation accuracy com-

pared to those trained with dropout, and the ’logarithmic-size’ training set resulted in

higher accuracy than the ’linear-size’ set in all cases. As expected, the ’high-coverage’

training set also improved performance, although the training time of around 8h45’ per

epoch on four Tesla V100 GPUs was much higher than around 45 minutes per epoch

for the ’low-coverage’ variant on the same hardware. The best network, trained on the

high-coverage, ’logarithmic-size’ dataset without dropout, required 8 days of training on

four Tesla V100 GPUs and was selected for further evaluation. Proper retuning of the

classification threshold for species-level predictions appears to be a necessary step for

an independent, viral dataset (Table 5.3), so we also retuned the threshold (0.46 instead

of the default 0.5) for the respective fungal ResNet setup.
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Table 5.2: Classification performance comparison between BLAST and the ResNet model
on single reads, read pairs and genomes from the test dataset. The best performance value for
each performance metric (row) and setting is displayed in bold. Read datasets are balanced, and
the differences in performance for the first and second mate were negligible for all metrics. In
genome datasets, negative class is the majority class. We use BLAST as shown in Bartoszewicz
et al. (2020); since this only returns binary labels, AUC and AUPR are not defined. Overall,
BLAST is much more precise, but the ResNet yields only slightly less accurate predictions for
all reads, even those impossible to match with BLAST, in a fraction of the time. AUC and AUPR
are marginally higher (95.2 and 90.2) for the genome-level ResNet if only first mates are used
compared to using both mates (95.1 and 90.1). Other metrics are equal, and the computation
time is 50% lower. BAcc. – balanced accuracy (equivalent to accuracy on read sets), Prec. –
precision; Rec. – recall, Spec. – specificity, AUC – area under the ROC curve, AUPR – area
under the precision-recall curve, Time (CPU) – prediction time on 2x AMD EPYC 7742 (256
threads), Time (GPU) – prediction time on 1x Tesla V100 GPU (not possible for BLAST), Pred.
– prediction rate.

BAcc. Prec. Rec. Spec. AUC AUPR

Single reads
ResNet 64.7 65.8 61.3 68.1 70.9 72.0

BLAST 66.2 92.6 61.1 71.3 - -

Read pairs
ResNet 68.5 69.8 65.1 71.9 75.7 76.5

BLAST 69.7 94.5 62.3 77.2 - -

Genomes

ResNet 88.4 77.5 91.2 85.7 95.1 90.1

BLAST (reads) 90.3 90.6 85.3 95.2 - -

BLAST (contigs) 89.5 87.8 85.3 93.7 - -

Time (CPU) Time (GPU) Pred.

Single reads
ResNet 25 min. 3 min. 100.0
BLAST 181 min. - 77.6

Read pairs
ResNet 50 min. 6 min. 100.0
BLAST 362 min. - 79.8

Genomes

ResNet 25–50 min. 3–6 min. 100.0
BLAST (reads) 181–362 min. - 100.0
BLAST (contigs) 2190 min. - 100.0
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Table 5.3: Classification threshold tuning for full available genomes on the ’novel viral
species’ dataset of DeePaC-vir (Bartoszewicz, Seidel, & Renard, 2021a). Average prediction
over all reads from a genome are used as a prediction for a given species. BLAST (reads)
corresponds to a majority vote over all reads from a genome, and BLAST (genome) to the
majority vote over all contigs. The negative class is more numerous in the dataset, which affects
the precision values. The retuned classifier uses the threshold of 0.45 instead of the default 0.5
and achieves the best balanced accuracy. BAcc. – balanced accuracy, Prec. – precision; Rec. –
recall, Spec. – specificity.

BAcc. Prec. Rec. Spec.

CNN (retuned) 75.9 31.1 70.8 81.1

CNN (Bartoszewicz, Seidel, & Renard, 2021a) 64.9 31.0 40.6 89.1

BLAST (reads) 61.8 46.8 30.2 93.5
BLAST (genome) 64.0 44.9 36.5 91.5

Table 5.4: Classification performance comparison between BLAST and the ResNet model
on single reads and read pairs from the temporal dataset. The best performance value for
each performance metric (row) and setting is displayed in bold. While the read number per
class is balanced, the dataset is small and extremely imbalanced on the genome level – only a
single human pathogen genome and 14 non-human pathogen genomes were added to GenBank
in the time window of our temporal benchmark. Therefore, the presented results are not fully
representative, and the higher performance of the ResNet on read pairs cannot be guaranteed
in general. However, the overall results are similar to those obtained for our main held-out test
dataset. BAcc. – balanced accuracy (equivalent to accuracy on read sets), Prec. – precision, Rec.
– recall, Spec. – specificity, AUC – area under the ROC curve, AUPR – area under the PR curve,
Pred. – prediction rate.

BAcc. Prec. Rec. Spec. AUC AUPR Pred.

Single reads
ResNet 68.9 69.6 66.9 70.8 74.9 74.6 100.0
BLAST 71.2 87.4 81.3 61.2 - - 82.6

Read pairs
ResNet 74.2 74.6 73.4 75.1 81.8 82.1 100.0
BLAST 71.9 87.4 77.5 66.3 - - 80.1
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Overall, prediction accuracy for reads and read pairs is suboptimal for both BLAST

and the ResNet, probably reflecting the extreme difficulty of the task (Table 5.2). The

error estimates based on the held-out test dataset are consistent with the results of the

temporal benchmark Table 5.4. The difference in performance for the first and second

mate of the read pairs is negligible; we present the mean values. Interestingly, while

BLAST’s accuracy on the test set is higher, its accuracy on the validation set is lower by

a similar margin (61.6%, compared to 63.3% for the ResNet). While this comparison

should not be overinterpreted, as the ResNet epoch maximizing validation accuracy

was chosen, those results suggest that the performance differences between the two

approaches are small and could be dependent on a particular composition of species

in the test set. Although this could be explicitly tested using a nested cross-validation

scheme, such a setup would be computationally prohibitive.

We do not observe much overfitting (the single read training accuracy for the selected

epoch is 68.9%), which suggests that the unsatisfactory performance is a form of

underfitting. However, we speculate that even those predictions could be useful in some

circumstances. The high precision of BLAST proves that its positive predictions are

trustworthy. On the other hand, the ResNet offers only slightly worse accuracy, but

for all reads in the sample (BLAST finds no matches for over 20% of reads even if

read pairs are used). What is more, the ResNet can process 1.25 million reads in just 3

minutes on a single GPU, while BLAST needs over three hours and 256 threads on a

high-performance computing node for the same task. The ResNet is slower when used

on CPUs, but still outperforms BLAST more than sevenfold. This is very important

in practice, as screening of large NGS datasets must be performed quickly to remain

feasible. For this reason, BLAST is usually too slow for NGS analysis. Note that in this

work, it represents the upper bound on accuracy of homology-based approaches; faster

alternatives like NGS mappers or k-mer approaches have been shown to underperform

in the pathogenic potential tasks for other pathogen groups (Bartoszewicz, Seidel, &

Renard, 2021a; Deneke et al., 2017).

Both methods perform much better on full genomes, suggesting that the main perfor-

mance bottleneck is the total amount of information (total sequence length) available as

input. This is consistent with previous observations (Bartoszewicz, Seidel, & Renard,

2021a; Bartoszewicz et al., 2020; Deneke et al., 2017), although more drastic than in

the case of bacteria or viruses. Interestingly, BLAST’s precision is actually a bit lower

for full genomes than for reads, while the ResNet becomes more precise when more

information (more reads) is considered. Contrary to what was reported for viruses,

using raw, unassembled reads improves BLAST’s performance compared to relying on

assembled contigs. A probable reason is that when a majority vote over all contigs is
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taken, all contigs have the same voting weight, which means that the ratio of voting

weight to sequence length can be much higher for short contigs of potentially lower

quality than for the very long ones. In contrast, when reads are used, all regions of the

genome weight the same. Using contigs also markedly increases the processing time.

This slowdown is probably best explained by the computational difficulty of the local

alignment of long contigs compared to a low-coverage set of representative reads. All

approaches correctly classify the single human pathogen in the temporal benchmark

dataset, but the ResNet achieves higher specificity (92.9) than read-based (78.6) and

contig-based BLAST (85.7).

Despite the low coverage, the test set seems to be indeed representative. The genome-

wide predictions are equally accurate if all test reads are used, and when only a half of

the dataset (corresponding to either the first or the second mate) is analyzed. Therefore,

computations can be sped up by considering first mates only, as they are enough to

deliver an accurate prediction. Strikingly, this is the case even though they correspond to

a mean coverage below 0.08. As a result, the read-based ResNet yields only slightly less

accurate predictions than contig-based BLAST, but requires 700-fold less time if a GPU

is used.

Both BLAST and the ResNet correctly predict C. auris and A. fumigatus to be

pathogens, even though they were kept in the held-out test dataset unused during training.

P. oryzae is also recognized as a member of the negative class. The ResNet (but

not BLAST) incorrectly classifies B. dendrobatidis, a deadly amphibian pathogen, as

able to infect humans. This prediction could be in principle indicative of a hidden

zoonotic potential that could be realized under some yet unreported circumstances (e.g.

in susceptible individuals or tissues). However, without further evidence, we assume this

is simply an error of the model – perfect generalization is rarely possible, even though,

as noted in Table 5.2, the prediction performance of the ResNet on full genomes is still

high. It is possible that the erroneous prediction for B. dendrobatidis is caused by the

underrepresentation of related species in the training set, as the core database contains

only two other species of the same order, Chytridiomycota, hindering the classifier from

correctly modelling their pathogenic potential.

5.4.2 Read-based genome representations

As shown in Figure A.12a and Figure A.12b, the values of s(E[z]) and E[s(z)] are

indeed similar for both the validation and test set. They are highly correlated (Spearman’s

ρ > 0.99, p < 10−15) and linearily dependent. This justifies using E[h] as our genome

representations. However, for the ’novel viruses’ dataset, the relationship actually
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resembles a sigmoid function (Figure A.12c). To investigate the relationship between

the two versions of read averaging, we performed further experiments using simulated

logit values z. In the binary classification case, if σS is low, the relationship between

’logit’- and ’proba’-averages is linear (Figure A.13a), and if σS is high, the relationship

is sigmoid (Figure A.13b). We suggest an intuitive explanation of this effect. High

within-species variance leads to many large absolute values of z within a given species.

Note that extreme outliers disproportionately influence the mean, or E[z]. The sigmoid

function applied before averaging ’squashes’ those extreme values, diminishing their

influence. This explains why s(E[z]) values tend to be more extreme than E[s(z)]). The

effect is stable even if no separable classes are present in the dataset. Strikingly, we can

easily reproduce the linear (Figure A.13c) and sigmoid (Figure A.13d) behaviour just by

manipulating the within-species variance.

What is more, the effect requires a species-level signal to be present, i.e. each species

must have its own mean and standard deviation assigned. If the distributions of z are the

same for each species, the differences in E[s(z)] are expected to be minimal. However,

if the variance of z is extremely high, sampling effects can cause large dispersion of

s(E[z]). As shown in Figure A.13e, ’logit’-averaging indeed causes spurious, high-

confidence predictions in this setting (since µr = 0, correct predictions should be

close to 0.5). Those are most probably artefacts caused by the extreme values of some z
outliers. ’Proba’-averaging is more robust in this case and correctly yields low confidence

predictions close to 0.5. Note that this can also be understood as the ’logit’-averaging

amplifying noise generated by sampling effects. Therefore, the problem can be at least

partially mitigated with higher read numbers per genome – if we increase the number of

’reads’ per ’species’, we see the expected decrease in effect strength (Figure A.13f). In

general, higher sensitivity of ’logit’-averaging could also be useful in some applications,

depending on the levels of different sources of variance in the dataset.

Note that even in the settings with high within-species variance, where the relation-

ship between s(E[z]) and E[s(z)] becomes sigmoid, its approximate monotonicity is

maintained (Spearman’s ρ > 0.98, p < 10−15 for both Figure A.13b and Figure A.13d).

This suggests that even in this case, E[h] could potentially be used as genome represen-

tations. However, one must exercise caution – the the steeper the sigmoid relationship,

the more distorted the distances between such representations would become. In our

fungal dataset, the within-species variance is seemingly low enough to guarantee a linear

relationship, so this problem does not affect it.
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5.4.3 The landscape of fungal pathogenicity

Good overall accuracy of the ResNet is reflected in the visualization of learned genome

representations for the entirety of the core database. Figures 5.1-5.3 present UMAP

embeddings of the extracted representations for all labelled genomes, i.e. a sum of the

training, validation and test datasets. Although some noise is present, the positive and the

negative class are mostly separated. As shown in Figure 5.1, several clusters of human

pathogens and non-human pathogens are present. The ResNet correctly recovers most of

the labels, including many of the ’positive’ members of the otherwise ’negative’ clusters

(Figure 5.2). Classification errors seem to originate from an interpolation based on

neighbouring data points – within clusters, the predicted labels are more homogeneous

than the ground truth annotations. This is expected, as the clusters represent similarity

in the space of learned representations. The network should in general assign similar

labels to inputs similar in this space. In contrast, BLAST works analogously to a k-

nearest neighbours classifier in the input sequence space (finding the single closest match

for each query). The ResNet, interpolating between multiple data points, may be less

efficient in modelling situations where a small set of ’negative’ data points is embedded

within a larger ’positive’ cluster of similar species, or vice versa. This hypothesis is

supported by the visualization of BLAST-predicted labels in the learned representation

space (Figure A.14). BLAST recovers mixed, contrasting labels within clusters more

accurately, and its errors seem to be more evenly distributed across the space. At the same

time, its slightly lower sensitivity is especially visible within the diverse Sordariomycetes

class placed in the right-most cluster.

The clusters themselves are noticeably related to the taxonomic units represented in the

database (Figure 5.3). The number of units at most levels of taxonomy poses a challenge

for intuitive visualization of the dataset structure. Nevertheless, some correspondence

between cluster membership, label and the taxonomic rank of a class is clearly visible

(note that the ’class’ as a taxonomic term is distinct from the concept of a positive

or negative class in machine learning). This extends also the the lower and higher

taxonomic ranks of order and phylum, respectively (Figure A.15-Figure A.16). On the

other hand, this is importantly not a simple one-to-one mapping. Some orders of one class

may belong to different clusters. For example, the orders Chaetothyriales, Eurotiales

(including the genus Aspergillus) and Onygenales all belong to the class Eurotiomycetes

(Figure 5.3, in red), but are members of four different clusters, with Eurotiales split

into two (Figure A.15). Even more strikingly, the left-most cluster contains at least one

member of all six phyla, with two most noticeable groups corresponding to the orders

Saccharomycetales and Mucorales in phyla Ascomycota and Mucormycota, respectively
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Figure 5.1: UMAP embeddings of the learned genome representations for the core database;
true labels. Each point represents a genome of a single species, coloured by its
ground-truth label. The learned representations offer a way of visualizing the core
database along the relevant labels for each genome.

(Figures 5.3, A.15, A.16). 89% of the members of both those orders are at least

opportunistic human pathogens; this includes Candida species in Saccharomycetales

and causative agents of mucormycosis, also known as the ’black fungus’, in Mucorales.

Therefore, we hypothesize that the grouping represents a cluster of ’conserved’ potential

pathogens, relatively easy to classify with an acceptable accuracy. A common signal

at the functional level or technical artefacts could be alternative explanations; they are

however less likely due to the large phylogenetic distance on one side, and a consistent

grouping of almost all species from those well-represented orders on the other.

5.4.4 Multi-class models

For the final evaluation of our database, we focused on a generalized version of the

pathogenic potential prediction task. Here, we aimed to develop a model capable of

classifying NGS reads originating from novel viruses, bacterial and fungal species into

appropriate pathogen and non-pathogen classes. We trained the multi-class ResNets

on data including four classes (human-pathogenic fungi, bacterial pathogens, human
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Figure 5.2: UMAP embeddings of the learned genome representations for the core database;
labels predicted by the ResNet (retuned threshold). Each point represents a
genome of a single species, coloured by its predicted label. The ResNet correctly
classifies most of the genomes. Its predictions within clusters are more homogeneous
than the ground truth, but many ’positive’ members of otherwise ’negative’ clusters
are detected.

viruses and non-pathogens) as described in section Multi-class evaluation. The network

trained on the dataset containing the ’logarithmic-size’ version of the fungal positive

class achieved slightly better validation accuracy and was selected for further evaluation,

but the difference was small (<0.5%). We then evaluated a simple ensemble of both

4-class ResNets.

First, we used the DeePaC datasets consisting of bacteria and viruses to compare

the 4-class models to a classifier including the three non-fungal classes only, as well

as the original binary ResNets (Bartoszewicz, Genske, et al., 2021a) and BLAST. This

procedure allows us to a) measure the effect of integrating the fungal dataset with the

bacterial and viral data in one task, and b) disentangle the effects of adding the fungal

data from the effects of merging the bacterial and viral datasets. We expected the

fungal sequences to be relatively easy to differentiate from the others, but whether the

ResNet architecture would be expressive enough to accurately represent all those diverse

sequences was unclear.

120



5.4 Results

Figure 5.3: UMAP embeddings of the learned genome representations for the core database;
taxonomic rank: class. The clusters are related, but not fully reducible to the
taxonomic classification of the analyzed species. In general, related species are close
to each other in this space, but some taxonomic units are distributed among more
than one cluster (e.g. Eurotiomycetes, in red), and some clusters contain members of
distant taxa (e.g. the left-most cluster).
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Table 5.5: Performance of the multi-class classifiers on non-fungal datasets, read pairs.
The 4-class classifier has been trained to detect non-pathogenic bacteria and non-human viruses,
bacterial pathogens, human-infecting viruses, and human-pathogenic fungi. The 2-class clas-
sifiers are the original DeePaC ResNets (Bartoszewicz, Genske, et al., 2021a) for bacteria and
viruses accordingly. We use BLAST as shown in Bartoszewicz, Seidel, and Renard (2021a)
and Bartoszewicz et al. (2020); since this only returns binary labels, AUPR is not defined. The
multi-class models do not assume a purely bacterial or viral sample, so they are more flexible
than the 2-class networks – a single classifier can be used for both datasets without retraining,
although a minor cost in performance should be expected of a more general approach. For the
viral dataset, assignments to the bacterial pathogens class may be assumed to actually reflect
bacteriophages infecting those bacteria due to high bacteriophage-host sequence similarity, and
reassigned accordingly (’reass.’). The multi-class models and the specialized binary classifiers
perform comparably well, even though the latter can only be used in very specific situations.
BLAST, using an appropriate reference database and representing the estimated upper bound on
performance of homology-based approaches, is outperformed by a significant margin. Acc. –
accuracy, Prec. – precision; Rec. – recall, Spec. – specificity, AUPR – area under the PR curve
(calculated for the respective positive class).

Acc. Prec. Rec. Spec. AUPR

Bacteria

4-class ensemble (ours) 85.1 84.1 87.2 83.0 88.3

2-class 87.3 83.6 92.7 81.8 89.0
BLAST 70.0 84.1 86.6 53.5 -

Viruses

4-class ensemble, reass. (ours) 89.6 95.3 89.3 90.0 98.1
2-class 90.3 94.7 85.5 95.2 97.2

BLAST 80.6 98.4 79.1 82.2 -

As shown in Table A.9, integrating the fungal dataset with three bacterial and viral

classes indeed does not negatively influence the prediction accuracy. The main challenge

in multi-class pathogenic potential prediction seems to be actually differentiating between

bacteriophages and the pathogenic bacteria that they infect. The multi-class networks

confuse 18–21% of viral non-pathogen reads for pathogenic bacteria. However, their

accuracy is still similar to BLAST’s, even though BLAST was used with a purely

viral reference database, and hence would always classify ambiguous bacterial or viral

sequences as viral. This problem is unrelated to the fungal database presented here,

and can be circumvented by assuming that spurious assignments to bacteria should be

reassigned to bacteriophages in the case of a purely viral dataset (see section Multi-

class evaluation). The resulting networks achieve accuracy similar to that of the simple

binary classifiers, while still being capable of multi-class predictions for more complex

datasets. They also outperform BLAST, which represents the estimated upper limit on

the accuracy of pathogen detection by finding the closest taxonomic matches, by a wide

margin (Table 5.5).
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Table 5.6: Performance on the multi-class dataset, read pairs. The 4-class classifier includes
the fungi class along the three viral and bacterial classes included in the 3-class classifier. The best
performance for each class is marked in bold. In this setting, the true positive rate corresponds
to the rate of correct assignments within a given class. Hence, recall is equal to accuracy for
each class. We use the F1 score as an additional measure. As expected, BLAST’s predictions
are very precise, since when it finds a match, it is usually a relevant one. This does not hold for
the non-pathogen class, which could indicate confusion between bacteriophage and bacterial
pathogen reads. Our classifier significantly outperforms BLAST in terms of recall and prediction
accuracy for all classes. BLAST, representing the estimated upper bound on performance of
homology-based approaches, yields no predictions for 12.5% of all read pairs. Acc. – accuracy,
F1 – F1 score, Prec. – precision, Rec. – recall, AUPR – area under the precision-recall curve.

Acc. F1 Prec. Rec. AUPR

All classes
4-class ens. (ours) 87.6 87.7 87.7 87.6 93.4

BLAST 78.3 84.0 90.6 78.3 -

Non-pathogens
4-class ens. (ours) 77.4 78.7 80.1 77.4 86.7

BLAST 66.5 71.6 77.5 66.5 -

Path. bacteria
4-class ens. (ours) 87.2 85.1 83.2 87.2 90.4

BLAST 83.8 87.5 91.6 83.8 -

Human viruses
4-class ens. (ours) 90.9 93.7 96.7 90.9 98.4

BLAST 78.9 87.9 99.2 78.9 -

Fungi
4-class ens. (ours) 95.0 92.9 90.9 95.0 97.9

BLAST 84.1 88.9 94.2 84.1 -

The fungal dataset can be integrated with the other classes without causing any signif-

icant performance hits on the full, multi-class dataset as well (Table A.10). Consistently

with the other results, performance is lower on the non-pathogen class, since many

bacteriophage reads can be confused with pathogenic bacteria. While this issue requires

further research, we expect future solutions to remain compatible with our database. The

4-class ensemble achieves the most balanced performance on non-pathogen data, the

best recall on fungal reads and is also the most accurate overall, cutting the average error

rate by over 40% compared to BLAST (Table 5.6). The results show that using the data

collected in our database, we can efficiently extend previously developed pathogenic

potential methods to be compatible with a metagenomic setting including fungi, without

assuming a purely bacterial or viral sample as it was done previously (Bartoszewicz,

Genske, et al., 2021a).
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5.5 Discussion

5.5.1 Database of pathogenic fungi and their hosts

Fungal pathogens have been under-studied compared to human-infecting bacteria and

viruses, leading to repeated calls for more research in this area (Huseyin et al., 2017;

“Stop neglecting fungi”, 2017). What is more, a large part of the research effort has

been focused on plant pathogens due to their agricultural significance. A subset of them

could in principle also have an unreported or undetected ability to infect a human host.

An analogous problem also applies to incomplete data regarding pathogenicity towards

non-human animals or plants. For this reason, we do not claim that species not listed as

potential pathogens are indeed non-pathogens. In our database, we include confirmed

labels alongside appropriate sources; in case of lack of evidence, we treat the respective

label as missing. It is therefore possible that some of the fungi currently labelled as ’non-

human pathogens’ would have to be reclassified as the state of science evolves. This may

be especially important as it has been suggested that the ongoing climate change will lead

to more frequent host-switching events, including expansion of host range to mammals,

which are usually relatively resistant to fungal infections (Garcia-Solache & Casadevall,

2010). Even though the very goal of the presented classifiers is to generalize to newly

emerging species, large, comprehensive datasets are crucial – often more important

than the actual analysis method used. This has been shown before for metagenomic

data (Piro et al., 2020) and likely applies to the tasks analyzed here as well. Therefore,

extending the database to include more species, as more genomes are sequenced in the

future, could facilitate the downstream tasks. To support future extensions, we include

all considered species in the database – even those without assigned TaxIDs, genomes,

or labels (in the case of screened GenBank genomes). This broadens the scope of the

data from 1,455 labelled genomes to over 14,500 records, enabling easy labelling of

newly published genomes and minimizing the workload needed for the addition of new,

non-redundant records. It is also possible to link the species TaxIDs to taxa below the

species level. However, it should be kept in mind that the fungal taxonomy is in constant

flux – taxa previously considered variants of a single species may be reclassified into

separate species in the future. While automatically curated databases like EID2 (Wardeh

et al., 2015) are relatively easy to update and scale, we note that they may be prone to

errors introduced by the automated protocol used. Manual curation is not fully error-free

either, but we see it as a necessary step to maximize the quality of the collected labels.

Both approaches are complementary and may be best suited for different use-cases.
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5.5.2 Application to pathogenic potential prediction

We show that both BLAST and ResNet can accurately predict if a fungus is a human

pathogen based on its genome. However, the task remains inherently difficult – a DNA

sequence by itself, outside of the context of the host, can be probabilistically associated

with a certain trait, but the trait itself is only realized in the biological system comprising

of both the host and the colonizing microbe as a whole. Therefore, we intentionally

include opportunistic pathogens in the ’positive’ class of human pathogens. These

considerations mirror challenges previously described for other pathogen classes (Bar-

toszewicz, Genske, et al., 2021a; Bartoszewicz, Seidel, & Renard, 2021a; Bartoszewicz

et al., 2020; Deneke et al., 2017).

Given the limited information content of a short NGS read, predicting if a fungus can

infect humans directly (and only) from reads is therefore an extremely challenging task.

The read-level performance is admittedly low for predicting a fungal host. More expres-

sive neural architectures could possibly help alleviate this problem, but it is also possible

that prediction accuracy known for other pathogen classes is simply impossible for fungi,

for example due to the higher complexity of eukaryotic genomes with abundant regions

of non-coding DNA. On the other hand, multi-class networks detecting fungal, bacterial

or viral pathogens yield satisfactory accuracy under some simplifying assumptions. We

envision that the networks trained using the database can be applied to predict pathogenic

potentials of short metagenomic reads, as previously suggested for purely bacterial and

viral datasets (Bartoszewicz, Genske, et al., 2021a). Although we only evaluate them

on simulated reads, this has been shown to approximate performance on real datasets

very well (Bartoszewicz, Genske, et al., 2021a; Bartoszewicz, Seidel, & Renard, 2021a;

Bartoszewicz et al., 2020). Further work could extend the presented multi-class setup to

Nanopore reads, as shown for bacterial and viral models (Bartoszewicz, Genske, et al.,

2021a), enabling selective sequencing of mixed-pathogen samples.

5.5.3 Data visualization and genome representations

We show that full genomes can be represented by aggregating representations of reads

originating from each genome. In addition to that, we observe that coverage as low as

0.08 is enough to correctly classify a species. Taken together, those two facts warrant a

view of a species genome as a distribution generating subsequences (i.e. reads) origi-

nating from it; such a distribution can also be considered in an abstract representation

space. This concept is very similar to that of a k-mer spectrum, where an empirical

distribution of k-mers is used as a signature of a longer sequence to enable alignment-free

comparisons (Zielezinski et al., 2017), including being used as input features for machine
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learning approaches as in Deneke et al. (2017). However, k-mer spectra operate in the

sequence space only.

Classifiers based on aggregated representations are approximately equivalent to classi-

fiers based on aggregated predictions, although this relation is modulated by the standard

deviation of the respective, genome-specific distribution. A somewhat related effect was

reported in the context of competing design choices for neural networks equivariant to

DNA reverse-complementarity – models averaging the predictions for both DNA strands

were found to be approximately equivalent to models applying a sigmoid transformation

to an average of logits (H. Zhou et al., 2022). The probabilistic view of genome repre-

sentations presented here deserves deeper investigation; this could potentially lead to the

development of useful embeddings also for whole, multi-species samples.

Finally, the trained representations allowed us to visualize the taxonomic diversity

of the database along its phenotypic landscape. As expected, the apparent fungal host-

range signal seems to be related to, but not fully reducible to the fungal taxonomy.

It can be captured by finding the closest taxonomic matches, as well as by a neural

network, avoiding direct taxonomic assignment for a more assumption-free view of

fungal pathogenicity. This suggests that both methods should generalize well to novel

species sequenced in the future. At the same time, a stark dataset bias is clearly visible,

with many more genomes available for some taxonomic units than for others in the same

rank. Future sequencing projects focusing on underrepresented taxa could help build a

more fine-grained view of the pathogenicity landscape presented here.

5.5.4 Reuse potential and implications

Although in this work, we focus on using the collected data in a pathogenic potential

prediction task, the database can find future applications beyond this particular problem.

For example, we imagine that fungal genomes could be scanned for regions associated

with their ability to colonize and infect humans, as shown previously for bacteria and

viruses (Bartoszewicz, Seidel, & Renard, 2021a). This approach uses sliding windows

of the same size as the NGS reads used for training; high-scoring sequences tend to be

clustered together and often colocalized with virulence-related genes. Even though our

binary fungal host classifiers achieved relatively low per-read accuracy, we speculate that

finding contiguous regions of elevated pathogenic potential could be a way to identify

potentially relevant genes, also for novel and weakly annotated species. On the other

hand, the multitude of genomic features present in fungal genomes, often including

intron features and regions without obvious functional annotation, renders the validation

of such an approach a challenging project on its own. This could be perhaps facilitated
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by focusing exclusively on coding regions, which should in principle carry a stronger

phenotype-related signal, at the risk of omitting potentially relevant, non-coding (e.g.

regulatory) elements. Building such a gene-based classifier could be a future application

of the presented dataset.

We imagine that, depending on annotation quality, genomes collected here could be

a valuable resource for functional and comparative genomics of fungi. As a source

of curated labels, it could also support applications of proteomics to fungal pathogen

research. For example, computational metaproteomics and proteogenomics approaches

enable analysis of microbial communities based on mass spectrometry data and can be

co-opted for pathogen detection workflows independent of DNA sequencing (Renard

et al., 2012; Schiebenhoefer et al., 2019; Schiebenhoefer et al., 2020).

5.5.5 Conclusions

We compiled a comprehensive database of fungal species linked to their host group

(human, non-human animal or plant), evidence for their pathogenicity, and publicly

available genomes. To showcase the potential uses of the dataset, we benchmark the

two most promising approaches to fungal pathogenic potential prediction: a deep neural

network capable of fast inference directly from fungal DNA sequences, and the gold

standard in homology-based pathogen identification – BLAST. We also extended our

approach to a multi-class scenario, integrating collected fungal data with bacterial and

viral datasets. The database, hosted at https://zenodo.org/record/5846345, can be

reused for future research on fungal pathogenicity based on both machine learning and

other methods of computational biology. The models, read sets and code are available

at https://zenodo.org/record/5711877, https://zenodo.org/record/5846397, and

https://github.com/dacs-hpi/deepac.
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6 Summary and Conclusions

6.1 Summary

The 20th century has brought many unprecedented achievements in the fight against

infectious diseases, including the eradication of smallpox with successful public health

and vaccination programmes (Fenner, 1982), or the discovery of penicillin (Fleming,

1929) and the antibiotic revolution that followed. However, new challenges arose as

well. Many of them, such as the rise of antibiotic resistance (Levy & Marshall, 2004;

Neu, 1992; Piddock, 2012; Ventola, 2015), increased human exposition to zoonotic

agents (K. E. Jones et al., 2008), and possibly also pathogen emergence facilitated by

climate change (Casadevall et al., 2019; Garcia-Solache & Casadevall, 2010; K. E.

Jones et al., 2008; J. A. Patz et al., 2005; Vouga & Greub, 2016), have been at least

indirectly exacerbated (if not directly caused) by human actions. This is difficult to avoid

– the constant evolutionary arms race between the pathogens and their hosts leads to a

cycle of adaptation and counter-adaptation, as suggested by the Red Queen hypothesis

(Van Valen, 1973). In this view, the competition between species is assumed to be a

zero-sum game. If the pathogen becomes more virulent, its fitness may increase at the

expense of the host. The host then faces stronger selective pressure to develop improved

defence mechanisms; if it becomes resistant, its fitness increases at the expense of the

pathogen. Red Queen dynamics have been studied for host-pathogen relationships in

particular (Brockhurst et al., 2014; Papkou et al., 2019), including the specific context of

mammalian hosts and SARS-related coronaviruses both before and after the discovery

of SARS-CoV-2 (H. Guo et al., 2020; Sironi et al., 2015). Hence, more novel pathogens

should be expected to emerge, especially given the high pace of viral and microbial

evolution (K. E. Jones et al., 2008; Trappe et al., 2016; Vouga & Greub, 2016; M. E. J.

Woolhouse & Gowtage-Sequeria, 2005; M. E. J. Woolhouse et al., 2005), and the human

actions facilitating host-switching events (K. E. Jones et al., 2008). What is more, many

potential pathogens remain undiscovered – over 100,000 new RNA viruses have been

recently identified by mining already available data, which is still several orders of

magnitude less than the estimated number of distinct viruses on Earth (Edgar et al.,

2022). Some of the previously unknown agents may cause deadly outbreaks or possibly
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pandemics. The risk that a new pathogen would be accidentally or deliberately produced

by human research activities must be accounted for as well, as it could escape the

confined laboratory environment or even be used as a bioweapon by a malicious actor.

DNA and RNA sequencing are the state-of-the-art techniques for open-view pathogen

detection and, as such, are suited particularly well for identification of novel threats.

However, the computational analysis of obtained data may be challenging, especially if

the relevant genome is not present in the reference database. In this thesis, I presented

a collection of deep learning methods predicting pathogenic or infectious potentials

associated with unknown agents directly from DNA or RNA sequences, without the

need of finding the best taxonomic match.

To this end, I first introduced DeePaC, a python package enabling training and

evaluation of various deep neural networks for DNA inputs, especially large datasets

of millions of short, read-like sequences. It supports simplified design of multiple

architectures, including CNNs and LSTMs as presented in chapter 2, ResNets, ResNeXts

(S. Xie et al., 2017), as well as the encoder parts of Transformers (Vaswani et al., 2017)

and Performers (Choromanski et al., 2021) for supervised tasks. The command-line

interface and the supplied default configurations make the tool accessible for all users

without the need to reimplement the code or redesign the architectures. Model definition

relies on human-readable config files that facilitate performing hyperparameter sweeps,

benchmarking various design choices on multiple machines (possibly in different network

environments) and allow defining models invariant to DNA reverse-complementarity

with just a simple parameter change, setting DeePaC apart from other deep learning

libraries for biological sequence inputs developed independently in parallel (Budach &

Marsico, 2018; K. M. Chen et al., 2019; Kopp et al., 2020). In chapter 2, I showed that

those architectures indeed outperform the previous state-of-the-art in bacterial pathogenic

potential prediction using machine learning (Deneke et al., 2017), as well as homology

detection based on matching the input reads to the closest possible reference genomes.

What is more, predictions can be easily aggregated across individual mates in a read pair

for a reliable boost in prediction accuracy.

However, since novel biological threats can originate from many different pathogen

groups, classifiers focused exclusively on bacteria are not enough. Therefore, I used the

streamlined model development capabilities of DeePaC to train new networks differenti-

ating between reads originating from human-infecting viruses and reads of non-human

viruses. Even though an approach originally designed for bacteria was not guaranteed

to work for viruses due to their very different biology, the trained models have indeed

proven to outperform all alternatives, including sequence alignment and a kNN classifier

independently developed by (Z. Zhang et al., 2019). In contrast to the bacterial dataset,
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where CNNs and LSTMs worked comparatively well, CNN was the preferred architec-

ture. Initially suboptimal results for full genomes of novel viral species (as opposed

to novel viruses of previously known species, such as e.g. SARS-CoV-2) presented in

chapter 3 can be improved by tuning the decision threshold, as shown in chapter 5. At

this stage of the work, DeePaC was also extended with a suite of interpretability tools

facilitating model debugging and visualizing relevant patterns in input sequences. This

enabled a brief analysis of the SARS-CoV-2 virus once it emerged after the models

had already been developed. However, benchmarking of interpretability approaches

is notoriously difficult, especially since the ground truth is often not available, as in

the case of the pathogenic or infectious potential prediction tasks. In the future, the

preliminary evaluation of the suite presented here should be scaled-up beyond a small

set of selected examples.

As novel pathogen detection is a time-critical application, I focused on predictions

for unassembled reads, which can be then extended to contigs or whole genomes. This

avoids the potentially challenging assembly step, but in the case of standard Illumina

protocols, still requires waiting for the preprocessed reads, which can usually be accessed

only after the sequencing run has finished. Previously published tools can perform read

mapping (Lindner et al., 2017; Loka et al., 2019), host read filtering (Loka et al.,

2018), taxonomic classification (Tausch, Strauch, et al., 2018), and detection of known

pathogens (Tausch, Loka, et al., 2018) in real time, as the sequencer is running. However,

incomplete read fragments accessible in intermediate sequencing cycles (called subreads

in this thesis) are up to an order of magnitude shorter than the combined length of

mates in a finished read pair. This makes the problem of real-time pathogenic potential

prediction much more challenging than its full-read counterpart. To maximize prediction

accuracy for the shortest subreads without sacrificing performance on finished reads,

I introduced a new data setup and a version of the ResNet architecture invariant to

reverse-complementarity. The improved models detect subreads probably originating

from bacterial or viral pathogens, which can be used for downstream, in-depth analysis.

Although the neural networks outperform sequence alignment by a wide margin also in

this context, I propose a more complex pipeline, where the reads most similar to known

references are aligned using a specialized read mapper (Loka et al., 2019), unmapped

reads are filtered using a previously trained ResNet, and putative pathogen reads are

re-analyzed with BLAST. As a result, both known and novel pathogens can be efficiently

detected and assigned to their closest taxonomic matches. BLAST re-analysis can

also be viewed as an additional level of interpretability, adding an explicit connection

between the neural network’s predictions and available reference genomes. Alternative

ResNets trained on simulated Nanopore data enable predictions for 250bp subreads,
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corresponding to about 0.5 s sequencing time. In the future, they could be integrated

with tools like ReadBouncer (Ulrich et al., 2022), a recent, more efficient alternative to

the original Read Until framework for selective sequencing (Loose et al., 2016). This

will enable filtering out reads originating from non-pathogens and focusing on putative

pathogen reads. Further, although potential applications for screening of synthetic

sequences were already suggested in chapters 2 and 3, the subread-trained ResNets

presented in chapter 4 achieve stable accuracy also for sequences below 200bp, making

oligonucleotide screening feasible.

On the other hand, those models are still binary classifiers, assuming that the analyzed

sample consists of either only bacterial or viral reads. This is not realistic in the clinical or

metagenomic context. Distinguishing viral from bacterial reads with one of the available

methods (e.g. Auslander et al. (2020), Fang et al. (2019), Miao et al. (2021), Ren et al.

(2020), and Tampuu et al. (2019)) could be the first step of a multi-model pipeline, but

the development of a single, multi-class network enables detecting potential threats

in a single, computationally efficient step. Further, it allows extending the predictive

capabilities of the classifiers to a third major pathogen group – fungi. This is necessary, as

determining the group a putative novel pathogen belongs to from symptoms alone can be

extremely challenging. The first step – compiling the relevant training and testing dataset

– was more difficult for fungi than for bacteria and viruses. Available data was scarce and

often not machine-readable. Therefore, a new database of fungal pathogens, their host

groups and reference genomes had to be manually curated, as described in chapter 5. The

model trained to differentiate novel human-pathogenic fungi from plant, and non-human

animal pathogens is much faster than BLAST and works similarly well; both methods are

highly accurate on whole genomes but underperform on isolated reads. A possible reason

is that some specific aspects of fungal biology (perhaps shared with other eukaryotes, e.g.

long stretches on non-coding DNA) make inference from reads too difficult. On the other

hand, future advancements could improve read-level predictions to a more satisfactory

level, just as DeePaC models outperformed previous machine learning approaches on

bacterial and viral data. Importantly, in patient-derived samples, only human-colonizing

fungi can be expected to be present. Relying on this assumption, I present classifiers

detecting human-infecting fungi, viruses and bacteria, and differentiating them from non-

human viruses (e.g. bacteriophages) and non-pathogenic, commensal bacteria. Finally,

genome embeddings based on average per-read activations enable visualization of the

dataset structure and offer additional insight into the inner workings of the fungal host

range classifier. As expected, related genomes cluster together, but the clusters are not

fully reducible to the underlying taxonomy and seem to also be affected by the ability to

infect humans conserved in some of the taxa. The developed representations support
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the view of a genome as a distribution of reads, which can be considered not only in the

raw sequence space, but also in the latent space of trained, intermediate features (and

presumably, any given space of results of some transformation of the input sequences).

A similar perspective has been implicitly used already by PaPrBaG (Deneke et al., 2017)

and the models described in chapters 2 and 3, where genome-level predictions were

derived from average per-read outputs.

In summary, I presented a collection of related deep learning approaches for detection

of novel bacterial, viral and fungal pathogens, either after or during sequencing, with

a possible application also to fully synthetic sequences. Neural networks excel where

traditional methods based on finding taxonomic matches often fail – when the relevant

reference genome is missing, as in the case of encountering a novel biological threat.

They scale well from read fragments as short as 50bp to full genomes, with accuracy con-

sistently rising as more input information becomes available. In practice, a combination

of standard tools based on k-mers or sequence alignment with the deep learning models

introduced here (and an optional assembly step, if feasible) would most probably work

best, offering insights derived from homology detection and taxonomic classification,

while also detecting threats impossible to find with traditional methods.

6.2 Outlook

Although the main objectives of this work have been completed, several aspects re-

main that should be improved upon by future research. H. Zhou et al. (2022) have

recently benchmarked a wide range of strategies for ensuring equivariance to reverse-

complementarity in deep neural networks for regulatory genomics. They also describe

a class of ’post-hoc’ conjoined models – ’standard’ models trained using a dataset

augmented with reverse-complement sequences, for which the outputs are averaged

across the forward and reverse-complement orientations of each input at inference

time. Surprisingly, post-hoc conjoined CNNs seem to often perform slightly better than

reverse-complement parameter sharing architectures (called full RC-CNNs in chapter 2),

which may be due to optimization difficulties rather than overfitting or differences in rep-

resentational capacity (H. Zhou et al., 2022). Training and evaluating post-hoc conjoined

networks (not limited to CNNs) is readily possible using the DeePaC command-line

interface, so future projects could easily test if the improvements seen for transcription

factor binding site detection and profile prediction tasks apply to raw viral and microbial

sequencing data as well.

DeePaC supports also more complex architecture design choices that have not been

described in detail here, including ResNet bottlenecks (He et al., 2016), the cardinality
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dimension of ResNeXts (S. Xie et al., 2017), and the attention modules of Transformers

(Vaswani et al., 2017) and Performers (Choromanski et al., 2021). These have not been

comprehensively benchmarked, as preliminary tests suggested that they offered no or

only minor improvements in prediction accuracy, at the cost of substantially increased

computation time. Dilated convolutions (Yu & Koltun, 2016) are also implemented,

although their use in genomics is usually motivated by the need of extending the receptive

fields of the trained CNNs (Avsec, Weilert, et al., 2021; Kelley, 2020), a consideration

less crucial for relatively short inputs of maximum 250bp used here. Inclusion of

some ’modernized’ CNN design choices, similar to the modifications introduced in the

ConvNeXt architecture (Liu et al., 2022) and the timm library (Wightman et al., 2021),

could further improve accuracy. A wide neural architecture search, combined with an

appropriate hyperparameter sweep and ideally a nested cross-validation scheme with

multiple training runs per fold, would probably identify improved designs. However,

this procedure would be very expensive, while the obtained performance boost could

still be small.

Another promising avenue is to consider alternative representations of the input se-

quences, such as FCGR, summarized in a recent review by Löchel and Heider (2021).

This would enable using sequences of arbitrary length as inputs, but since existing

solutions use one vertex per nucleotide type (A, C, G, T), strategies for proper encoding

of ambiguous nucleotides (N) should be investigated first. The potential of representing

genomes (or metagenomes) as a distribution of reads in an abstract space should be

explored further as well. Pre-trained sequence embeddings can be learned using language

models, a class of methods originally developed for natural language processing tasks.

This could entail a slight modification of either BERTax (Mock et al., 2021), originally

trained on 1.5kb-long eukaryotic, bacterial, archaeal, and viral sequences, or Looking-

Glass (Hoarfrost et al., 2020), which was developed for bacterial and archaeal reads.

The behaviour of self-attention heads in Transformer models similar to BERTax can be

visualized, which would add another dimension to the interpretability suite described in

chapter 3. However, the limitations of the methods implemented in DeePaC would still

apply.

More specifically, interpreting the predictions for each sample (i.e. read) is not feasible

for the use-cases discussed here, focusing on rapid filtering of millions of sequences.

To debug a classifier and assess if it is indeed trustworthy, one has to either aggregate

relevance scores over hundreds of thousands of input sequences or analyze selected

genomes of interest. What is more, the ground truth is largely missing. Rich genome

annotations are only available for a subset of the most well-studied species. Even in

those cases, only an indirect link between the nucleic acid sequence and the pathogenic
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phenotype can be established (e.g. with a Gene Ontology term indicating that a given

gene is engaged in virulence). This does not apply exclusively to deep neural networks –

decisions of models such as random forests or kNN using k-mer frequencies as inputs are

often difficult to explain, as the features themselves do not necessarily have any inherent

biological meaning. Interpretability of any machine learning model must be viewed

critically, and the risk of delivering misleading or even harmful explanations must be

taken into account (see e.g. Lipton (2017) and Rudin (2019)). Alignment algorithms and

taxonomic classifiers relying on exact matching of long k-mers are more interpretable

(as they indicate easily measurable sequence similarity to the closest taxonomic match)

but offer less accurate predictions. Combining homology detection with predictions of

a neural network, as shown in chapter 4, helps to circumvent this problem. However,

an in-depth, statistically sound investigation of the patterns driving the decisions of

the presented ResNets would elucidate the still not fully clear relationship between the

pathogenic potential scores and taxonomy. This will help establish more trust in the

models, which could then be used to detect regions of interest in unannotated genomes.

Further, while DeePaC-Live can use the models trained here for novel pathogen

detection during Illumina sequencing (see chapter 4), an analogous pipeline for ONT

sequencing is missing. Integration of the Nanopore-trained ResNets with selective

sequencing workflows similar to Read Until (Loose et al., 2016) or ReadBouncer (Ulrich

et al., 2022) will require the development of additional software modules connecting

the read mapping, pathogenic potential prediction and pore unblocking steps. Efficient

real-time mapping has been shown for both base-called reads (H. S. Edwards et al.,

2019; Payne et al., 2021) and raw, electrical signals (Kovaka et al., 2021); uncalled

squiggles can also be used as input for deep learning models distinguishing human

from bacterial DNA (Bao et al., 2021). Neural networks analogous to presented here

could be trained to detect novel pathogens directly from Nanopore signals. On the

other hand, a more modular design separating the base calling and prediction steps

would facilitate building complex and flexible pipelines, where individual tools can be

exchanged or tuned for a particular task. Models operating in sequence, rather than

electrical signal space, could also be more robust to changes in the sample preparation

and sequencing protocols. A benchmark of different design choices should also consider

potential differences in detection accuracy between cDNA and direct RNA sequencing

of RNA viruses. This is especially important since direct sequencing of even very long,

full-length viral genomes has recently become possible, as shown for HCoV-229E, a

human coronavirus (Viehweger et al., 2019). Perhaps in the future, DeePaC-like models

will be able to use whole viral genomes as input, without the need for assembly. This

will likely require further advancements in lowering the Nanopore sequencing error rates,
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as well as redesigning the neural architectures to efficiently handle longer inputs, e.g.

using dilated convolutions or Transformer blocks (Avsec, Agarwal, et al., 2021). As the

nanopore-based, single-molecule protein sequencing technologies develop (Alfaro et al.,

2021; Brinkerhoff et al., 2021), methods analogous to the ones presented here could

possibly be used also for peptide reads.

One of the important advantages of Nanopore sequencing over the short-read alterna-

tives is that ONT devices are portable enough to be deployed in mobile labs for outbreak

surveillance. This has been demonstrated for viral, bacterial and fungal pathogens (Y.

Wang et al., 2021), so the Nanopore-trained models presented in chapter 4 should be

extended to a multi-class setting introduced in chapter 5. New models could use a wider

range of input sequence lengths and ideally also consider other eukaryotic pathogens,

formerly classified as ’Protozoa’. Since protozoans constitute a smaller fraction of

human pathogen species than the three major groups discussed in this work (K. E. Jones

et al., 2008), preparing training, validation and test datasets will be likely even more

challenging and labour-intensive than for fungi. However, this problem could be al-

leviated using transfer learning if some of the features learned in the context of other

pathogen groups are relevant also for protozoan classification. Alternatively, a joint

class of eukaryotic pathogens including both human-infecting fungi and Protozoa can be

considered, as in a clinical sample, only parasitic species can be expected (see chapter 5).

An analogous classifier for Illumina data will also be a useful extension of the already

trained models.

This highlights the flexibility of deep learning approaches for biological sequences

in general and the DeePaC package specifically – many different host-pathogen and

sequence-phenotype relationships can be modelled. Prediction of antimicrobial resis-

tance, or at least selective sequencing of resistance-related genes, could be a future

application. However, only a minority of reads can be expected to actually convey any

relevant information, rendering the problem quite challenging unless assembled contigs

or long reads are considered. Further, specialized classifiers trained on selected viral

species (Q. Guo et al., 2021; Q. Guo et al., 2020; Mock et al., 2020) offer more precise

predictions for the taxon they were trained on, and could possibly even yield mechanistic

insights into the biology of the virus in question. Abstract phenotypes can also be pre-

dicted beyond the context of the human host. Accurately identifying bacteriophage hosts

(M. Li et al., 2020; Tan et al., 2021) and whether they are virulent or temperate (S. Wu,

Fang, et al., 2021) would facilitate the development of phage therapeutics. Non-medical

applications may be impactful as well. Building simple models predicting mycorrhizal

relationships between plants and fungi has been suggested by Lilleskov and Parrent

(2007) – with DeePaC, classifiers distinguishing plant symbionts from pathogens from
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sequence alone can be evaluated. The same applies to plant growth promoting bacteria,

as specialized databases are available and phenotype prediction using BLAST and hidden

Markov models has been proposed (S. Patz et al., 2021). Interpretability tools may assist

with identifying genes most relevant for the phenotype of interest.

In the long-term perspective, deep neural networks could be used to optimize the target

phenotypes and suggest edits or candidate sequences for wet-lab validation. Recognizing

parts of the input that are crucial for the final prediction enables sequence design and

optimization. This can be done using human insights by combining predictive models

with one of the interpretability methods (as suggested for example by Zhao et al. (2021)

in the context of plant regulatory genomics). Alternatively, a predictor can be used as an

oracle supplying values of an objective function for sequences produced by a generative

model (Brookes et al., 2019; Gupta & Kundaje, 2019; Gupta & Zou, 2019; Hawkins-

Hooker et al., 2021; Linder et al., 2019, 2020; Riesselman et al., 2018; Schreiber et al.,

2020; Shin et al., 2021; Sinai et al., 2018), so that the sequences can be optimized

automatically. The latter class of approaches has grown popular in the protein design

field, although alternatives based on Bayesian optimization, evolutionary algorithms

and reinforcement learning also exist (Sinai & Kelsic, 2020; Sinai et al., 2020; Z. Wu

et al., 2021; K. K. Yang et al., 2019). Computer-aided design of whole genomes using

deep learning is not currently possible; the search space of genome-length sequences

is immense. What is more, models capable of this would have to represent a whole

distribution of complex biological systems (that the genomes correspond to) well enough

to both predict the phenotype and suggest novel, biologically feasible sequences. On

the other hand, the work presented here suggests that capturing complex phenotypes

(at least in the predictive context) is indeed possible to some extent. If learning-based

optimization of whole genomes becomes achievable in the future, deep ’phenotype

models’ conceptually similar to the ones presented here could facilitate design and

engineering of new therapeutic phages, plant growth-promoting bacteria, perhaps even

attenuated viruses for vaccine research or eukaryotic genomes. As language models

can predict viral mutational escape at the protein level (Hie et al., 2021), genome-level

phenotype models could improve preparedness for virus variants that have not been

observed yet. However, this would also be a classic example of a dual-use technology

– a powerful tool that could save or improve millions of lives, but also a potential

threat in the hands of a malicious actor. The models discussed in this thesis do not

have such capabilities, but the balance of benefits and risks posed by synthetic biology,

especially in the context of its convergence with artificial intelligence research, should be

continuously monitored and evaluated. Relevant risk assessment frameworks have been

proposed for example by National Academies of Sciences, Engineering, and Medicine
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(2018) and O’Brien and Nelson (2020). Quantitative biorisk models such as the one

presented by Sandberg and Nelson (2020) are also flexible enough to integrate automated

computational design as one of the steps in a risk chain. Finally, approaches such as

DeePaC are intended to help mitigate the risks by improving the accuracy of screening

against potentially dangerous synthetic sequences.

Deep learning and representation learning for biological sequences are rapidly growing

fields, widely adopted since the works of Alipanahi et al. (2015), Kelley et al. (2016), and

J. Zhou and Troyanskaya (2015) popularized CNNs for regulatory genomics. Although

DeePaC was one of the first published applications in NGS for pathogen genomics,

it is only one of many contributions to the larger wave of research employing neural

networks to solve a plethora of different problems in bioinformatics and computational

biology. In particular, related methods are being used for other specific tasks in viral

and microbial bioinformatics, and the COVID-19 pandemic has stimulated this line of

research even more. The emergence of the next novel pathogen is most probably just

a matter of time; interpretable, learning-based approaches can help us prepare better,

respond faster, or – in the context of synthetic biology – possibly even mitigate the risks

before they materialize. Reference-free phenotype prediction directly from genomes or

their fragments can also find many applications beyond the tasks discussed here.
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A.1 Predicting bacterial pathogenic potential with
DeePaC

Hardware

Each of the networks was trained on between one and four GPUs (GTX 980, GTX 1080

Ti, or RTX 2080 Ti) depending on hardware availability at a given time point. CUDA

9.0 was used on machines equipped with the GTX-line cards, but the RTX 2080 Ti card

required CUDA version 10.0.

Hyperparameter tuning: RC-LSTM

All networks were trained with the Adam optimizer (Kingma & Ba, 2014) using the

default parameters and a batch size of 512. We finished the training after a maximum of

15 epochs or earlier if the validation accuracy did not improve for 10 consecutive epochs.

We used dropout regularization (Srivastava et al., 2014) with a dropout rate of 0.5 after

all recurrent and dense layers, and input dropout in most of the architectures. For the

bidirectional RC-LSTMs, we tested the following parameter combinations for both the

full and the Siamese variant:

• sum merge, 1 layer, 128–512 units, input dropout rate: 0, 0.1–0.3

• max merge, 1 layer, 384 units, input dropout rate: 0.1–0.3

• product merge, 1 layer, 384 units, input dropout rate: 0.1–0.3

• sum merge, 2 layers, 384 units, input dropout rate: 0.1–0.3

The input dropout rate was varied with step of 0.05 unless stated otherwise, and the

number of units was adjusted with a step of 128. In addition, we trained two traditional

LSTMs without RC parameter sharing, with 256–384 units and an input dropout of 0.2.
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Hyperparameter tuning: RC-CNN

For the RC-CNN architectures, we used 64–512 units in the convolutional layers and 64–

256 units in the dense layers. Six unit number combinations were generated by alternate

doubling of one of those values at each step, starting with the number of convolutional

units. We tested the following networks with sum merge, filter size of 15 and input

dropout rates of 0 and 0.2–0.3 unless stated otherwise:

• full-RC, max pooling, 1 conv. and 1 dense layers

• full-RC, average pooling, 1 conv. and 1 dense layers

• full-RC, max pooling, 2 conv. and 2 dense layers

• full- and siam-RC, average pooling, 2 conv. and 2 dense layers

• full-RC, average pooling, 3 conv. and 3 dense layers, input dropout rate 0.2–0.25

We also applied batch normalization (Ioffe & Szegedy, 2015) to the RC-CNNs with 2

convolutional and 2 dense layers of 512 and 256 units (hereafter: 2x2-XL), and tested

changing the filter size to 7 or 11 by training full RC-CNNs with the same layout. In

addition, we trained two traditional CNNs without RC parameter sharing. One was a

2x2-XL architecture with the input dropput of 0.25, and the other was a 1x1 max pooling

network with 256 convolutional and 128 dense units. Finally, we evaluated hybrid full

and Siamese RC-networks with a convolutional layer of 512 units and filter size of 7, 11

or 15, followed by a recurrent layer of 384 units, trained with the input dropout of 0.2.

Those networks were trained for just 10 epochs due to high computational cost.

Loss function and training sets

We use binary cross-entropy for all training runs. We tested the effect of adding an L2

regularization term while training both the full and Siamese RC-LSTMs with sum merge,

1 layer of 384 units and an input dropout rate of 0.2. We used regularization rates of

10−2, 10−3 and 10−5. Next, we tested using an imbalanced training set and weighting

the errors by the inverse of the relative class frequency. To this end, we trained full

and Siamese RC-LSTMs with sum merge, 1 layer of 384 units and input dropout rates

between 0.1 and 0.3.
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A.2 Viral host-range prediction and interpretability

Architectures and training

For viral host-range prediction, we use the architectures previously selected via hy-

perparameter tuning for the bacterial dataset. We use the sigmoid activation for the

output layer and the ReLU activation after the fully-connected (FC) layers and RC-

Convolution blocks (A.1a, dashed lines). The RC-LSTM blocks (A.1b, dashed lines)

use the default combination of activation functions for the LSTM layers as implemented

in the tf.keras library. We also use dropout after the input (p=0.25), convolutional,

recurrent and FC layers (p=0.5). Padding is handled automatically by Keras so that the

input length does not change after convolutions. Note that the nucleotide dimension is

the channel dimension (the input shape is sequence length x number of channels), and

we use 1D convolutions. Hence, convolutions, padding and pooling have no vertical

dimension. The merging FC layers sum representations for corresponding channels in

the ’forward’ and ’reverse-complement’ orientation.

Virus-level models were trained on Tesla P100 GPUs using early stopping with a

patience of 10 epochs for a default maximum of 14 epochs (corresponding to maxi-

mum 80h wall-time on this GPU). Species-level model were trained on Tesla V100

GPUs; as convergence took longer we allowed a maximum of 160h (corresponding to

a triple increase in maximum epochs). A trained model can be used for either single

reads or read pairs; in the latter case we run predictions separately for both mates and

the average the final outputs. More in-depth description of the reverse-complement

architectures can be found in Bartoszewicz et al., 2020. The architectures presented in

Figure A.1a and Figure A.1b can be reproduced using the deepac-vir train -r

and deepac-vir train -s commands, respectively; input data can be supplied

using the -T, -t, -V and -v flags. Config files can be retrieved using deepac-vir

templates, modified and used with deepac train -c to train custom models.

More details are available in the user user guide.
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(a) (b)

Figure A.1: Simplified plots of the full reverse-complement architectures used in this study.
We omit the batch dimension for clarity.
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Non-negative precision

Proof of Equation 3.5. Let TP be the number of true positives, TN – the number of true

negatives, FP – the number of false positives and FN – the number of false negatives.

If missing predictions are present, the total number of positives P = TP + FN + MP,

where MP is the number of missing positives, or those positives for which no prediction

was returned. Analogously, N = TN + FP + MN, where MN is the number of

missing negatives. For a perfectly balanced set, P = N and TP + FN + MP =

TN + FP + MN. Assuming a balanced set,

TPPV =
TPR

TPR + 1 − TNR

=
TP

TP+FN+MP
TP

TP+FN+MP + 1 − TN
TN+FP+MN

=
TP

TP + TP + FN + MP − TNTP+TNFN+TNMP
TN+FP+MN

=
TP

TP + TPFP+TPMN+FNFP+FNMN+MPFP+MPMN
TN+FP+MN

=
TP

TP + TP(FP+MN)+FN(FP+MN)+MP(FP+MN)
TN+FP+MN

=
TP

TP + (TP+FN+MP)(FP+MN)
TN+FP+MN

=
TP

TP + FP + MN

=
TP

TP + N − TN

Note that due to rounding effects in per-genome coverage calculation, the number of

positive and negative reads in the simulated datasets may be slightly different. However,

those differences are negligible and orders of magnitude smaller than the size of the

dataset (Prev ≈ 0.50). Therefore, we treat the datasets as perfectly balanced, ignoring

the prevalence correction from Equation 3.2.
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Table A.1: Classification accuracy depending on the negative class definition, read pairs.
Euk. – Eukaryota dataset; Met. – Metazoa dataset, Cho. – Chordata dataset, Str. – Stratified
dataset, X-150 – first 150bp of each read in X. Training set in subscript of the model name;
test set in column headers. Recall (Rec.) is identical in all cases, as the positive class remains
unchanged. Best performance in bold. CNNAll achieves best overall accuracy.

All Euk. Met. Cho. Str. Rec.

CNNAll 89.9 85.9 83.3 78.6 88.1 85.4
CNNCho 84.9 84.2 83.6 82.4 84.6 71.7

CNNStr 88.2 86.4 85.1 82.7 87.4 78.8

CNNAll-150 89.4 85.5 82.9 78.4 87.7 83.2

CNNStr-150 88.2 86.3 84.9 82.5 87.3 78.3

LSTMAll 86.4 78.2 74.1 65.5 82.6 83.0

LSTMCho 82.8 81.9 80.8 80.0 82.4 70.6

LSTMStr 85.8 82.2 79.6 75.2 84.2 76.3

Table A.2: Classification performance in the fully open-view setting (all virus hosts), single
reads. Acc. – accuracy, Prec. – precision, Rec. – recall, Spec. – specificity. BLAST yields no
predictions for over 12% of the samples. Best performance in bold.

Acc. Prec. Rec. Spec.

CNNAll (ours) 87.8 89.9 85.2 90.4
LSTMAll (ours) 84.7 86.0 82.8 86.5

kNN 75.5 76.3 73.9 77.1

BLAST 78.4 98.3 79.2 77.6
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Table A.3: Classification performance, novel species of Chordata-infecting viruses. Top:
paired reads. BLAST yields predictions for only 56.6% of the pairs. Bottom: whole available
genomes or contigs – negative class is the majority class. BAcc. – balanced accuracy (equal to
accuracy for the balanced paired-read dataset), Rec. – recall, Spec. – specificity. BLAST (reads)
and our networks use read-wise majority vote or output averaging to aggregate predictions over
all reads from a genome. BLAST (genome) uses contig-wise majority vote. BLAST (contigs)
represents performance on individual contigs treated as separate entities. Note that low precision
is heavily affected by class imbalance, and the results for genomes can be further improved by
retuning the classification threshold (see chapter 5, Table 5.3)).

BAcc. Prec. Rec. Spec.

Read pairs
CNNSP-Cho (ours) 58.2 60.6 47.1 69.3
CNNSP-All (ours) 56.5 56.3 57.9 55.1

BLAST 37.1 65.8 19.1 55.1

Genomes

CNNSP-Cho (ours) 54.0 42.3 22.9 85.0
CNNSP-All (ours) 50.3 32.8 40.6 60.0

BLAST (reads) 57.5 47.9 35.4 79.5

BLAST (genome) 58.0 49.3 38.5 77.5

Contigs BLAST (contigs) 51.6 42.2 37.1 66.2

Table A.4: Gene ranking for S. aureus (top 3 out of 870). hupB is indirectly engaged in
virulence. Our method detects functionally relevant genes using the original DeePaC RC-CNN
model.

Rank Gene Score Biological Process

1 sarR 0.644 Virulence
2 hupB 0.642 DNA condensation

3 sspB 0.637 Virulence

145



A. Appendix

(a)

(b)

Figure A.2: Contribution histograms of selected filters. A.2a: The ’ambiguity detector’ with
the highest mean contribution score. A.2b-A.2d: Filters presented in Figure 3.1.
A.2b: Second-highest mean contribution score. Contributions are higher for the
positive class.
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(c)

(d)

Figure A.2: (continued) Contribution histograms of selected filters. A.2b-A.2d: Filters
presented in Figure 3.1. A.2c: Lowest mean contribution score. Positive class reads
are ’penalized’ with stronger negative contributions than the negative class reads.
A.2d: Oscillating filter from the original, bacterial DeePaC RC-CNN. Symmetric
contribution distribution suggests that the contributions of the filter are context-
dependent, although positive on average.
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(a) (b)

(c) (d)

Figure A.3: Example oscillating filters with a codon-like structure, extracted from
the CNNAll model. Consensus sequences: AYSANSNNGNNCATG
(A.3a), TYNTNNRNNACARSG (A.3b), TTGTNMATNNTTKNN (A.3c),
ACNRNNGANNNNGAN (A.3d).
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(a)

(b)

(c)

Figure A.4: Activations of filter 219 (original DeePaC RC-CNN) in the sraP gene of S.
aureus subsp. aureus 21200. Top, in red: filter hits. Bottom, in blue: reference
sequence annotation (contig 19). A.4a: sraP, a serine-rich adhesin for platelets, the
top hit gene in the enrichment analysis for filter 219. Serine-rich repeat regions
cover over 71% of the sequence. A.4b: An example stretch of filter 219 activations
in a serine-rich repeat region. The filter seems to detect the serine repeats. A.4c: An
example stretch of filter 219 activations in a non-repeat region. The filter seems to
detect a local glycine repeat.
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Figure A.5: GWPA of S. aureus subsp. aureus 21200. Top: score predicted by the original DeePaC RC-CNN. Heatmap: nucleotide contributions.
Bottom, in blue: reference sequence annotation. Negative contributions marked with blue, positive contributions in red. A.5a: sarR gene,
with the highest average pathogenicity score. A.5b: Contig 18, with sarR location marked with black bars. Neighbouring higher peaks
belong to putative genes lacking ground truth annotation.
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(a) (b) (c)

(d) (e)

Figure A.6: Average nucleotide contribution scores per residue. This figure is analogous to
Figure 3.3, which presents the average predicted pathogenic potential. A.6a-A.6c:
Top and side view of the SARS-CoV-2 spike glycoprotein. Three receptor-binding
domains (RBDs) are colored according to the per-residue average contribution score
of the corresponding genomic sequence. Since all contributions are positive, the
color gradient is dominated by different shades of red. One of the domains is in
the ’up’ conformation. Darker red regions corresponding to the peak in Figure 3.2c
are located in the core-RBD subdomain. A.6d: RBD in complex with a SARS-
neutralizing antibody CR3022 (green). The darker red region covers over 70% of the
CR3022 epitope, but spans also to the neighboring fragments, including the N343
glucosaminylation site (carbohydrate in red stick representation). This is a part of
the epitope of another neutralizing antibody, S309. A.6e: Cartoon representation of
Figure A.6d. The red region is centered on two exposed α-helices surrounding the
core β-sheet (lower score, light red).

151



A. Appendix

A.3 Detecting novel pathogens in real time with
DeePaC-Live

In this study, we use modified ResNet architectures presented in Table A.6 and Fig-

ure A.7. The reverse-complement convolution blocks (RC-Conv) output feature maps

in the forward and reverse-complement orientations, represented as small arrows be-

tween blocks (the ’forward’ and ’reverse-complement’ streams). The skip connec-

tions (larger arrows) maintain invariance to reverse-complementarity by either sim-

ply summing the outputs of two layers (as in a standard ResNet) or by applying a

size-1 RC-convolution if the layer dimensions do not match (similarly to how a stan-

dard ResNet uses standard size-1 convolutions). Note that in contrast to a standard

ResNet, all convolutional layers are 1D-convolutions, since the inputs are one-hot

encoded nucleotide sequences. The first dashed rectangle corresponds to the conv2

stage in Table A.6, and the second dashed rectangle represents stages conv3-conv5.

The architecture presented here can be reproduced using the deepac train -c

config.ini command, where config.ini is one of the config files available at

https://doi.org/10.5281/zenodo.4456008 along the trained models. deepac is installed

automatically with deepac-live. The necessary training and validation datasets (see

Table A.5) are hosted at https://doi.org/10.5281/zenodo.4456857.
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Table A.5: A summary of the datasets used in this study. Simulated datasets have been
prepared based on datasets of Bartoszewicz, Seidel, and Renard (2021a) and Bartoszewicz et al.
(2020). Subread test sets with read lengths between 25 and 250 (step of 25) were generated based
on the original simulated Illumina test sets; we only list the them once in the table for clarity. All
simulated datasets are hosted on Zenodo, and the real datasets are available in the SRA database
(see Zenodo IDs and SRA accession numbers in the last column).

content technology positive reads negative reads ID / accession

Bacteria (train.)Illumina (sim.) 10M 10M 4456857

Bacteria (val.) Illumina (sim.) 1.25M 1.25M 4456857

Bacteria (test) Illumina (sim.) 2x0.625M 2x0.625M 3678563

Viruses (train.) Illumina (sim.) 10M 10M 4456857

Viruses (val.) Illumina (sim.) 1.25M 1.25M 4456857

Viruses (test) Illumina (sim.) 2x0.625M 2x0.625M 4312525

Bacteria (train.)Nanopore (sim.) 10M 10M 4456857

Bacteria (val.) Nanopore (sim.) 1.25M 1.25M 4456857

Bacteria (test) Nanopore (sim.) 1.25M 1.25M 4456857

Viruses (train.) Nanopore (sim.) 10M 10M 4456857

Viruses (val.) Nanopore (sim.) 1.25M 1.25M 4456857

Viruses (test) Nanopore (sim.) 1.25M 1.25M 4456857

S. aureus Illumina 2x1.1M 0 SRR5110368

SARS-CoV-2 Illumina 2x517.3k 0 SRR11314339

S. aureus Nanopore 83.4k 0 SRR8776887

SARS-CoV-2 Nanopore 396.4k 0 SRR11140745

Table A.6: ResNet architecture details. Conv1 and first layers of stages conv3-conv5 use a
stride of 2, and all other layer use the stride of 1. Stages 2–5 consist of multiple layers with the
same filter width and number of filters. Batch normalization is used after all hidden layers. After
the convolutions, we use global average pooling and a fully-connected output layer.

stage ResNet-18 ResNet-34

conv1 filter width:7, filters:64 filter width:7, filters:64

conv2 [filter width:5, filters:64] x 4 [filter width:5, filters:64] x 6

conv3 [filter width:5, filters:128] x 4 [filter width:5, filters:128] x 8

conv4 [filter width:5, filters:256] x 4 [filter width:5, filters:256] x 12

conv5 [filter width:5, filters:512] x 4 [filter width:5, filters:512] x 6

pool global average pooling global average pooling

out 1-unit fully-connected 1-unit fully-connected
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Figure A.7: A simplified visualization of the 18-layer variant of the reverse-complement
ResNet used in this study (see Table A.6). We omit the batch dimension for clarity.
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Figure A.8: Precision for the viral dataset. We compared HiLive2’s stable performance to the
viral hybrid classifier and the ResNet alone, which achieved precision comparable
to alignment-based approaches. The hybrid classifier crosses a 90% threshold at
cycle 75 (90.1%), while never plunging below 80% even for the earliest cycles.
What is more, all of the HiLive2-mapped reads are included in the hybrid classifier’s
predictions, so no information is lost by employing the extended approach. The high
precision resulting from combining the real-time mapper with the deep learning
classifier suggests that the associations of reads and a pathogenic phenotype are
trustworthy even at the early stages of the sequencing run, getting even more reliable
as more information is gained. Precision approaches HiLive2’s, especially for the
later cycles.

Figure A.9: Recall (true positive rate) for the S. aureus sequencing run. As this is a pure
pathogen sample, recall is equal to accuracy. A combination of HiLive2 and ResNet
correctly identifies 98.8% of the read pairs after the last cycle, and 94.9% on average
over the whole run. For this particular species, the performance of the ResNet itself
is only marginally worse (98.1% after the last cycle and 94.0% on average).
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Table A.7: Inference speed in reads per second and reads per sequencing time of 25 cycles.
This is an inherently difficult comparison, as inference with neural networks can be accelerated
with GPUs, while other methods cannot. We used a desktop computer equipped with a consumer-
grade GPU to benchmark the throughput of deep learning approaches, and a 128-core machine
with 500GiB RAM for the other methods. All runtimes were calculated for single 250bp reads.
Running PaPrBaG on more than 8 cores was not possible due to high memory consumption (over
400GiB, compared to less than 4GiB for the CNNs, LSTMs and ResNets). BLAST database size
influences alignment time. Therefore, we present separate runtimes for the bacterial (BLASTBac)
and viral (BLASTVir) dataset. Top four models (bold) offer relatively similar performance,
crossing the arbitrary threshold of 5000 classified reads per second on a single consumer-grade
GPU. CNN (adj.) and LSTM (adj.) differ from the previously published DeePaC versions only
by the adjusted inference batch size.

Device Reads/s Reads/25c

CNN (adj.) 1x Nvidia RTX 2080 Ti 6313 63.1M
LSTM (adj.) 1x Nvidia RTX 2080 Ti 5896 58.9M
ResNet 1x Nvidia RTX 2080 Ti 5656 56.5M
DeePaC (CNN) 1x Nvidia RTX 2080 Ti 5000 50.0M
ResNet-34 1x Nvidia RTX 2080 Ti 2880 28.8M

DeePaC (LSTM) 1x Nvidia RTX 2080 Ti 1855 18.5M

PaPrBaG 8x Intel Xeon E5-4667 v4 @ 2.20GHz 906 9.0M

BLASTVir 100x Intel Xeon E5-4667 v4 @ 2.20GHz 833 8.3M

kNN 100x Intel Xeon E5-4667 v4 @ 2.20Ghz 37 0.3M

BLASTBac 100x Intel Xeon E5-4667 v4 @ 2.20GHz 160 1.6M

Table A.8: Performance on real Nanopore data. Minimap2 was evaluated on both full reads
and 250bp subreads. ResNets were trained on Nanopore data with identical species composition
as the Illumina data used for DeePaC CNNs and LSTMs. and evaluated on 250bp subreads. Mean
sequencing time and maximum sequencing time per read correspond to estimated sequencing
times for the mean read length and maximum read length in a dataset (assuming the sequencing
speed of 500bp/s).

Recall Mean seq. time Max. seq. time

S. aureus

ResNet 94.7 0.5 s/read 0.5 s/read

minimap2 (250bp) 3.3 0.5 s/read 0.5 s/read

minimap2 (full) 66.9 15.9 s/read 107.2 s/read

SARS-CoV-2

ResNet 52.7 0.5 s/read 0.5 s/read

minimap2 (250bp) 4.6 0.5 s/read 0.5 s/read

minimap2 (full) 9.9 1.3 s/read 12.7 s/read
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(a) ROC curve, bacteria

(b) PR curve, bacteria

Figure A.10: ROC and PR curves for Nanopore-trained ResNets evaluated on the bacterial
and viral Nanopore test sets. Note that if a user wishes to retune the classification
threshold according to custom optimality criteria, we would advise reevaluating
the selected threshold on another, separate held-out dataset. Alternatively (if this
not possible), one can select the threshold using the validation set (available at
https://doi.org/10.5281/zenodo.4456857), and then perform the final evaluation
with a fixed threshold on the test set.
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(c) ROC curve, viruses

(d) PR curve, viruses

Figure A.10: (continued) ROC and PR curves for Nanopore-trained ResNets evaluated on
the bacterial and viral Nanopore test sets. Note that if a user wishes to retune
the classification threshold according to custom optimality criteria, we would
advise reevaluating the selected threshold on another, separate held-out dataset.
Alternatively (if this not possible), one can select the threshold using the validation
set (available at https://doi.org/10.5281/zenodo.4456857), and then perform the
final evaluation with a fixed threshold on the test set.
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A.4 Fungal host prediction and detecting multiple
pathogen classes

(a) Core database

(b) Core database + genomes of plant-associated species

Figure A.11: A Venn diagram of the manually confirmed labels and putative labels from
EID2 (Wardeh et al., 2015) for all labelled genomes. HP – human pathogens
(manually curated); NHP – non-human pathogens (manually curated); NHH –
species with a non-human host (manually curated); HH (Wardeh et al.) – species
with a putative human host (EID2); NHH (Wardeh et al.) – species with a putative
non-human host (EID2).
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(a) Fungal validation dataset

(b) Fungal test dataset

Figure A.12: Comparison of relationships between ’logit’-average and ’proba’-average
predictions. Real data.
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(c) Viral test dataset

Figure A.12: (continued) Comparison of relationships between ’logit’-average and ’proba’-
average predictions. Real data.
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(a) Two classes, well separated, low within-species variances

(b) Two classes, well separated, high within-species variances

Figure A.13: Comparison of relationships between ’logit’-average and ’proba’-average
predictions. Simulated z values.
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(c) No class distinction, low within-species variances

(d) No class distinction, high within-species variances

Figure A.13: (continued) Comparison of relationships between ’logit’-average and ’proba’-
average predictions. Simulated z values.
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(e) No species signal, extremely high per-read variance

(f) Analogous to Figure A.13e, increased coverage

Figure A.13: (continued) Comparison of relationships between ’logit’-average and ’proba’-
average predictions. Simulated z values.
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Figure A.14: UMAP embeddings of the learned genome representations for the core
database; labels predicted by BLAST. Training species are present in the refer-
ence database, so predicting labels for them is easy (99.9% accuracy).
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Figure A.15: UMAP embeddings of the learned genome representations for the core
database; taxonomic rank: order.
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Figure A.16: UMAP embeddings of the learned genome representations for the core
database; taxonomic rank: phylum.
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Table A.9: Effects of integrating multiple classes on the classification performance on non-
fungal datasets, read pairs. The 4-class classifier includes the human-pathogenic fungi class
along the three viral and bacterial classes included in the 3-class classifier. The 2-class classifiers
are the original DeePaC ResNets (Bartoszewicz, Genske, et al., 2021a) for bacteria and viruses
accordingly. For the viral dataset, assignments to the bacterial pathogens class may be assumed to
actually reflect bacteriophages infecting those bacteria due to high bacteriophage-host sequence
similarity. Classifiers reassigning the bacterial assignments into non-pathogen class based on
this assumption are listed as ’reass.’. Integrating fungi into the classifiers does not significantly
impact the overall accuracy. Differentiating between non-human viruses and bacteria is more
challenging. The ’reassigning’ classifiers perform on par with the binary classifiers, and multi-
class networks are somewhat less accurate on the bacterial data, still outperforming BLAST by
a significant margin (see Table 5.5). Acc. – accuracy, Prec. – precision; Rec. – recall, Spec. –
specificity, AUPR – area under the precision-recall curve (calculated for the respective positive
class).

Acc. Prec. Rec. Spec. AUPR

Bacteria

4-class ensemble 85.1 84.1 87.2 83.0 88.3

4-class 83.6 80.9 89.0 78.1 88.6

3-class 84.0 80.6 89.7 78.2 90.0
2-class 87.3 83.6 92.7 81.8 89.0

Viruses

4-class ensemble 81.4 94.3 90.9 71.8 98.1
4-class 79.0 93.4 91.2 66.7 97.9

3-class 81.9 93.3 91.1 72.7 97.8

4-class ensemble, reass. 89.6 95.3 89.3 90.0 98.1
4-class, reass. 89.6 94.7 89.6 89.7 97.9

3-class, reass. 91.8 95.1 88.1 95.4 97.8

2-class 90.3 94.7 85.5 95.2 97.2
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Table A.10: Effects of integrating multiple classes on the classification performance on
the multi-class dataset, read pairs. The 4-class classifier includes the fungi class along the
three viral and bacterial classes included in the 3-class classifier. The best performance for each
class is marked in bold. In this setting, the true positive rate corresponds to the rate of correct
assignments within a given class. Hence, recall is equal to accuracy for each individual class. We
use the F1 score as an additional measure. Integrating fungi into the classifiers does significantly
impact the overall accuracy for any of the non-fungal classes, and the 4-class ensemble offers a
more balanced performance on putative non-pathogen reads than the single-network alternative.
The metrics labelled as ’All classes’ were calculated for all four classes for the 4-class models,
and for the three relevant classes for the 3-class model. Acc. – accuracy, F1 – F1 score, Prec. –
precision, Rec. – recall, AUPR – area under the precision-recall curve.

Acc. F1 Prec. Rec. AUPR

All classes

4-class ensemble 87.6 87.7 87.7 87.6 93.4

4-class 86.6 86.7 86.8 86.6 92.8

3-class 85.5 85.6 85.8 85.5 92.4

Non-pathogens

4-class ensemble 77.4 78.7 80.1 77.4 86.7

4-class 72.5 76.7 81.5 72.5 85.3

3-class 75.5 78.6 81.8 75.5 87.6

Path. bacteria

4-class ensemble 87.2 85.1 83.2 87.2 90.4

4-class 89.0 83.8 79.1 89.0 90.4

3-class 89.7 84.2 79.3 89.7 91.1

Human viruses

4-class ensemble 90.9 93.7 96.7 90.9 98.4

4-class 91.2 93.4 95.7 91.2 98.1

3-class 91.1 93.6 96.3 91.1 98.5

Fungi
4-class ensemble 95.0 92.9 90.9 95.0 97.9
4-class 93.7 92.2 90.7 93.7 97.4
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Zusammenfassung

Das regelmäßige Auftreten neuer Krankheitserreger ist eine der größten Bedrohungen
für die globale Gesundheit. DNA- und RNA-Sequenzierung ermöglichen den Nachweis
neuer Viren und Mikroben, aber die Standardansätze für die computergestützte Analyse
von Sequenzierungsdaten beruhen auf vordefinierten Listen bekannter Erreger. Neue
Pathogene, deren Genome stark von den verfügbaren Referenzen abweichen, bleiben
schwer zu erkennen.

Dieses Problem kann durch das Training von Klassifikatoren gemildert werden, die
vorhersagen, ob ein bestimmter Sequenzierungs-Read von einem möglicherweise neuen
Krankheitserreger stammt. In dieser Arbeit zeige ich, dass tiefe neuronale Netze, die
invariant gegenüber der DNA-Rückwärtskomplementarität sind, Alternativen, die auf
anderen Algorithmen des maschinellen Lernens und der Homologieerkennung durch Se-
quenzabgleich basieren, deutlich übertreffen. Dies gilt sowohl für Bakterien als auch für
Viren. Ich stelle neue Methoden vor, die eine Analyse und Visualisierung der gelernten
Muster sowie die Identifizierung von Sequenzen, Genen und genomischen Regionen
mit hohem pathogenen Potenzial ermöglichen. Modifizierte ResNet-Architekturen in
Kombination mit Echtzeit-Alignierungen von kurzen Reads können sowohl bekannte
als auch neuartige Bedrohungen bei laufendem Sequenziervorgang genau erkennen.
Ähnliche Modelle funktionieren auch für kurze Fragmente langer Reads, die nur 0,5 s
Sequenzierungszeit entsprechen. Anschließend beschreibe ich eine manuell kuratierte
Datenbank mit Genomen pathogener Pilze, welche die Erkennung neuartiger Bedrohun-
gen sowohl durch maschinelles Lernen als auch durch alternative Ansätze erleichtert.
Ich verwende die erlernten numerischen Repräsentationen der Genome in der Daten-
bank, um die Beziehung zwischen der Taxonomie und dem pathogenen Phänotyp zu
visualisieren. Schließlich setze ich die entwickelten neuronalen Architekturen ein, um
Reads zu klassifizieren, die aus Mischungen verschiedener neuartiger Bakterien, Viren
und Pilze stammen.

Die vorgestellten Methoden sind in den Paketen DeePaC und DeePaC-Live imple-
mentiert. Sie können leicht für das Training, die Bewertung und den Einsatz von tiefen
neuronalen Netzen für DNA- und RNA-Sequenzen wiederverwendet werden. Obwohl
der Schwerpunkt auf der Identifizierung neu auftretender Krankheitserreger anhand von
Sequenzierungsdaten liegt, könnten die vorgestellten Ansätze auch für das Screening
synthetischer Sequenzen und die Erkennung manipulierter Bedrohungen verwendet
werden. Die trainierten Netze sind in der Lage, abstrakte und komplexe Eigenschaften
direkt aus Sequenzen vorherzusagen, ohne dabei auf enge taxonomische Übereinstim-
mungen angewiesen zu sein. In Zukunft könnten ähnliche "Phänotypmodelle" viele
alternative Anwendungen in der Schnelldiagnostik, der öffentlichen Gesundheit und der
synthetischen Biologie finden.
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