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Abstract

Designing materials with desired properties is essential to developing new materials for today’s chal-
lenges. Historically, new materials have been discovered through trial and error. Nowadays, materials
can be simulated and designed on the computer before they are synthesized in the laboratory. However,
despite increasingly powerful computational resources and automatized experiments, this process is
still comparatively demanding.

Given the anticipated potential diversity of materials, a brute-force search for candidate materials
with desired properties is impractical. In recent years, algorithms for building statistical models,
especially machine learning, have been used to estimate properties from available materials data.
These models relate a set of materials properties – the so-called features of the data set – to a property
of interest. Because there is no standardized procedure for selecting a set of features related to a
property of interest, materials data sets can have hundreds to thousands of features. As a result,
models are often complex, placing high demands on computational resources.

This thesis proposes a systematic approach to reduce the number of features prior to statistical
modeling and a framework for automatically constructing and estimating the prediction uncertainty of
statistical models. The information-theoretic approach presented first allows a ranking of the identified
features by quantifying the relevance of features in terms of their mutual dependence to the property
of interest. Whereas traditional methods work well for discrete data, a method for continuous data
is developed for the application to materials data. A framework for feature identification is designed
that can be applied to information-theoretic methods as well as to machine-learning algorithms. The
framework is based on the branch-and-bound algorithm and iteratively combines sets of features with
the goal of identifying the features related to a property of interest with either the highest mutual
dependence or the best prediction performance.

Examples with known as well as empirically identified feature-property relationships are used to
compare the information-theoretic method and the developed framework with established methods.
The framework is then applied to actual materials data sets. The information-theoretic method is
robust in the presence of inter-correlated features and is stable with increasing numbers of data
samples, but requires more data to identify the same set of features than machine-learning algorithms
for feature identification. Generated machine-learning models therefore resulted in higher prediction
errors. The same framework, but using machine-learning algorithms, required fewer features to
achieve a comparable prediction performance to the models reported in the literature.

The framework identifies different sets of features that leads to an ensemble of statistical models
with similar prediction performance. A number of additional tools are developed to further identify
feature inter-correlations and to estimate the prediction error within a probabilistic tolerance. These
tools can be used to assess the limitations of the generated models in predicting the desired property
of new materials, to determine which materials cannot be predicted, and to find the features related
to the property of interest in a model-independent framework for feature identification and model
construction.





Zusammenfassung

Das Design von Materialien mit gewünschten Eigenschaften ist für die Entwicklung neuer Materiali-
en für heutige Herausforderungen von entscheidender Bedeutung. Historisch gesehen wurden neue
Materialien hauptsächlich durch Versuch und Irrtum entdeckt. Heutzutage können Materialien am
Computer simuliert und entworfen werden, bevor sie im Labor synthetisiert werden. Doch trotz immer
leistungsfähigerer Rechenressourcen und automatisierter Experimente ist dieser Prozess vergleichs-
weise anspruchsvoll.

Angesichts der Vielfalt an Materialien ist eine Suche durch simples Ausprobieren von Kandidaten-
materialien mit gewünschten Eigenschaften ungeeignet. In den letzten Jahren wurden Algorithmen
zur Erstellung statistischer Modelle verwendet, darunter Maschinelles Lernen, um Materialeigenschaf-
ten aus verfügbaren Daten zu schätzen. Diese Modelle setzen einen Menge von Materialeigenschaften
– die sogenannten Features des Datensatzes – in Beziehung zu der gesuchten Eigenschaft. Da es kein
standardisiertes Verfahren zur Auswahl der Features in Bezug auf die interessierende Eigenschaft
gibt, können Materialdatensätze Hunderte bis Tausende von Features aufweisen. Infolgedessen sind
erstellte statistische Modelle oft komplex und stellen hohe Anforderungen an die Rechenressourcen
dar.

In dieser Doktorarbeit wird ein systematischer Ansatz entwickelt, um die Anzahl der Features
vor der statistischen Modellierung zu reduzieren, sowie ein Framework, um statistische Modelle
automatisch zu erstellen und deren Vorhersageunsicherheit abzuschätzen. Der vorgestellte informati-
onstheoretische Ansatz quantifiziert zunächst die Relevanz von Features in Bezug auf ihre gegenseitige
Abhängigkeit zur gesuchten Eigenschaft, was eine Rangfolge der identifizierten Features ermöglicht.
Weil herkömmliche Methoden nur für diskrete Daten geeignet sind, wird eine Methode für kontinuier-
liche Daten entworfen und auf Materialdaten angewendet. Darauf aufbauend wird ein Verfahren zur
Identifizierung von Features entwickelt, das sowohl auf informationstheoretische Methoden als auch
auf maschinelle Lernalgorithmen angewendet werden kann. Das Verfahren basiert auf dem Branch-
and-Bound-Algorithmus und kombiniert iterativ Teilmengen von Features mit dem Ziel, die Features
mit der höchsten gegenseitigen Abhängigkeit oder der besten Vorhersageleistung zu identifizieren.

Anhand von Beispielen mit bekannten sowie empirisch ermittelten Feature-Eigenschafts-
Beziehungen wird die informationstheoretische Methode und das entwickelte Framework mit eta-
blierten Methoden verglichen. Das Framework wird dann auf konkrete Materialdaten angewendet.
Die informationstheoretische Methode ist robust bei untereinander korrelierten Features und ist sta-
bil mit zunehmender Anzahl von Datenproben, benötigt aber mehr Datenproben zur Identifizierung
derselben Anzahl an Features als maschinelle Lernalgorithmen zur Feature-Identifizierung. Die dar-
aus generierten Machine-Learning-Modelle führen daher zu höheren Vorhersagefehlern. Das gleiche
Framework, aber unter Verwendung von maschinelle Lernalgorithmen, benötigte weniger Features,
um eine vergleichbare Vorhersageleistung wie bei den in der Literatur beschriebenen Modellen zu
erzielen.



Das Framework identifiziert verschiedene Teilmengen von Features, die zu einem Ensemble von
statistischen Modellen mit ähnlicher Vorhersageleistung führen. Eine Reihe von zusätzlichen Werk-
zeugen wurde entwickelt, um Feature-Interkorrelationen zu identifizieren und den Vorhersagefehler
innerhalb einer probabilistischen Toleranz abzuschätzen. Diese Werkzeuge werden verwendet, um
Einschränkungen der generierten Modelle bei der Vorhersage der gewünschten Eigenschaft neuer
Materialien zu beurteilen, um festzustellen, welche Materialien nicht vorhergesagt werden können,
und um Features zu finden, die mit der gewünschten Eigenschaft in einem modellunabhängigen
Framework für die Feature-Identifikation und Modellkonstruktion zusammenhängen.



Nomenclature

Symbols
𝑌 Property of interest
𝑋 , 𝑋 ′ A single feature of the data set D

®𝑋 = {𝑋1, . . . , 𝑋𝑛} A set of 𝑛 features of the data set D
®𝑋 Feature vector, shorthand notation for ®𝑋 = {𝑋1, . . . , 𝑋𝑛}
𝑓 : ®𝑋 → 𝑌 A mapping (i.e., a statistical model) between the features ®𝑋

of the data set D and the property of interest 𝑌

| ®𝑋 | Cardinality of a feature subset ®𝑋 , i.e., the number of features (𝑖 = 1, . . . , 𝑛)
in ®𝑋

®𝑋 \ 𝑋𝑖 Feature subset without the 𝑖th-feature
𝐽 ( ®𝑋, ®𝑋 ′) Jaccard similarity (coefficient) between two feature subsets ®𝑋 and ®𝑋 ′

𝑝, 𝑃 Probability and cumulative (probability) distribution
𝑃′ Residual cumulative (probability) distribution (𝑃′ = 1 − 𝑃)
Ê Empirical estimator of a quantity E

𝛼 Confidence level ∈ [0, 1]
𝜖 Significance level = 1 − 𝛼

Abbreviations
i.i.d. Independent and identically distributed

Acronyms
ML Machine learning
CV Cross validation
FS Feature selection

GBDT Gradient-boosting decision trees
RFE Recursive feature elimination
TCMI Total cumulative mutual information
SISSO Sure-independence screening and sparsifying operator
TB3 Tolerance-based branch-and-bound (algorithm)
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Chapter 1

Computational materials discovery and design

Materials discovery and design is essential to developing new materials for today’s challenges ranging
from catalysts and superconductors to batteries and renewable energy sources [1–4]. Historically, new
materials have been discovered through phenomenological observations in metallurgy and mineralogy
and were often found by pure serendipity, trial-and-error approaches, or by analogies to existing
systems. Nowadays, materials can be simulated and designed on the computer before they are
synthesized in the laboratory. Such computationally-guided design and synthesis of materials have
become characteristic for the present and past decade joining experiment, theory, and computation to
comprise a fundamental framework for materials science and engineering referred to as the “fourth
paradigm of science” [5, 6].

1.1 Motivation

The nascent field of materials informatics combines materials science and engineering with informatics
to develop new techniques for computationally-guidedmaterials discovery and design [6–9]. Materials
informatics aims at facilitating data acquisition, storage, management, and dissemination of materials
data [10, 11] and at systematically searching the space of possible materials to discover and design
new compounds with optimized properties [12]. In recent years, automated workflows have been
adopted to materials science [13–24], using conventional tools (such as density-functional theory [25,
26]) to calculate materials properties or structures based on quantum mechanics [27–29]. To date,
millions of properties and structures have been computedwhich can be accessed through extensive and
centralized materials databases [30–37]. However, even though materials databases are constantly
growing at unprecedented rates, taken together, they only cover a tiny fraction of the anticipated
potential diversity to be as large as a googol1 of theoretical materials [38, 39]. As a result, neither
the storage nor the screening of all possible materials for new applications are viable. Therefore,
alternative approaches must find promising candidate materials for the targeted applications from
limited theoretical, simulated, and experimental data.
1A googol is the large number represented as one followed by 100 zeros (10100).
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1.2 Scope and contents of the thesis

Over the past two decades, statistical tools have become indispensable in the materials-science pipeline
of materials discovery and design [4, 40–43], in reducing the inherently time-consuming and costly
process of developing and manufacturing new materials [9, 44–46]2. In particular, artificial intelli-
gence [49, 50] and its sub-field machine learning [51, 52] are increasingly being used to accelerate
the search for new materials and to estimate materials properties, driven by a growing infrastruc-
ture of data-science tools for generating, testing, and refining scientific models. Unique to machine
learning is the identification of candidate materials based on statistical correlations of a portion of
characterized materials, whose models improve as more data are obtained from further calculations
or experiments. This process of generating mathematical models, whose prediction performance
improves with the availability of data [53, 54], makes machine learning ideally suited for tasks where
conventional tools fail due to the combinatorial explosion of the materials-space exploration or to the
explosion in the computational or experimental cost and time.

The accelerated search for materials is a collaborative effort of experimental validation and in-
tegration of theory, simulations, and experiment. Among the major challenges are the quantitative
characterization of the materials with respect to the property of interest [55], the development of
general-purpose machine-learning algorithms [56], and the robust estimation of the properties of
interest from the limited amount of materials data [57, 58]. So far, machine learning is applied on
a case-by-case basis, requiring expertise and a careful analysis of the materials data set. In addition,
there are potential risks with relatively small and heterogeneous data sets that are confined to a partic-
ular domain of the materials space: Due to inherent assumptions of the machine-learning algorithms,
this can lead to limited predictive capabilities of generated machine-learning models [59].

This thesis addresses some of the challenges of materials discovery and design by proposing a
systematic data-driven and model-independent framework to identify the set of the features that are
multivariately and non-linearly related to a property of interest (e.g., materials properties3) prior to
statistical modeling. The framework includes a novel method (total cumulative mutual information,
Section 3.3.3, and the tolerance-based branch-and-bound algorithm, Section 4.1) for identifying these
sets of features and uses these sets to automatically construct machine-learning models. In addition,
the framework uses conformal prediction [60–64] to estimate the model’s prediction uncertainties
(Section 4.3) and includes a novel method for estimating the prediction capabilities of machine-
learning models (referred to as credibility, Section 4.4), along with tools for identifiying multivariate
non-linear feature relationships within a probabilistic tolerance (Section 4.2).

The focus of the thesis is the extensive and systematic search of a set of features related to the
materials properties of interest, the construction of reliable machine-learning models, and the relation
of the identified feature sets to the prediction performance of the generated models. Throughout
this thesis, available materials data are used to investigate different feature-identification methods
and to compare their prediction performance with established machine-learning approaches. The
main theme is to uniquely characterize each material by a set of features through the use of tabulated

2The typical time span to just discover a new material is in the range of 6–12 months [47], whereas the time span between
the discovery of a material to an actual application typically takes more than 20 years [48].
3These are input properties used to numerically identify the material and estimate the property of interest.
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and easily accessible materials properties defined at varying levels of complexity [55, 65, 66]: from
the microscopic level based on molecular or atomic properties to higher-level structural properties,
emergent properties at the macroscopic level, and environmental conditions such as temperature and
pressure. The key is to establish a mapping between the features of the data set and the properties
of interest to find the relevant features that are related to the property of interest from a larger set
of candidate features, to get a comprehensive understanding of the feature-property relationships,
and to determine where the model fails or succeeds even if the model may operate on unphysical
principles [67, 68].

1.3 Thesis structure

The structure of this thesis is as follows (Fig. 1.1):
Chapter 2 introduces the concepts used in the thesis (Section 2.1) and highlights some of the recent

developments in materials science (Sections 2.2 and 2.4): the application of high-throughput methods
to first-principles calculations, the emergence of materials databases, and the application of machine
learning in the context of materials discovery and design. First-principles calculations are based on
solving the Schrödinger equation of a quantum-mechanical system within a set of approximations⁴.
For electronic-structure calculations, density-functional theory is one of the most accurate theories to
compute (ground-state) materials properties from quantum mechanics. Its mathematical foundation
and a brief history are summarized in Section 2.2. Despite computationally intensive first-principles
calculations and costly experiments, high-throughput approaches have generated large amounts of
theoretical as well as experimental data that are increasingly being stored in materials databases
[30–37] (Section 2.3). To harness and use these data in scientific applications other than those
for which the first-principles calculations or experiments were performed, alternative methodologies
from statistics and computer science are used to identify patterns based on existing data to construct
mathematical models for estimating the targeted properties of interest. The application of statistics
and computer-science methodologies to materials science is outlined in Section 2.4 and the existing
challenges and limitations are discussed in Section 2.6.

Despite the substantial impact statistics and methodologies from computer science have had on
materials science and other fields, there is not yet a consensus on best practices for computational
materials discovery and design. Furthermore, in a field where predictions about the behavior of
materials have historically been based purely on the fundamental laws of physics (as given by the
rigorous theoretical foundation of quantum mechanics and the Schrödinger equation [69]), there
is a great interest in gaining insight into the machine-learning models to understand the models’
predictions and to find empirical relationships for designing new materials.

Typically, the set of features used to characterize each material in a data set depends on the prop-
erty of interest and therefore requires expertise and knowledge of the materials classes as well as of the
targeted application. Chapter 3 discusses the representation of materials and the challenges therein,
i.e., the quantitative characterization of the materials via features of the data set and the identifica-
tion of features related to a property of interest. Because the materials representation may comprise

⁴Born-Oppenheimer approximation, Hartree or Hartree-Fock approximation, choice of exchange-correlation functional, etc.
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Chapter 1
Computational materials discovery
and design

Chapter 2
Foundations and challenges in
computational materials science

Density functional theory (DFT)

High-throughput first-
principles calculations

Fundamentals of
machine learning in
materials science

Challenges in
materials science

Chapter 3
Optimizing materials representation: techniques for identifying relevant features

Feature selection Information theory

Mutual information

(Total) cumulative mutual
information

Search strategies

Machine learning

Chapter 4
A framework for feature
identification and model construction

Feature identification

Feature-dependence maps

Uncertainty estimation of
machine-learning models

Identification of
anaomlous materials

Chapter 5
Computational materials-science
applications

Crystal-structure prediction of
octet-binary compound

semiconductors

Structural property predictions
of perovskites

Elastic property predictions of
inorganic crystalline compounds

Chapter 6
Conclusions & outlook

Fig. 1.1. A schematic illustration of the structure of the thesis. The framework and tools proposed in the dashed
boxes (which are developed as part of this thesis and are applied in Chapter 5) represent new aspects compared
to previous works.

many features, which practically cannot be explored combinatorially by enumeration, a reduction of
the number of features is an essential part of an efficient data-driven materials-science pipeline for
materials-space exploration, visualization, and understanding of the statistical relationships in the
data. Section 3.1 gives a brief overview of existing feature-reduction techniques to either select a
small subset of potentially related features to the property of interest [70–72] or to project features
onto a lower dimensional manifold of the materials space [73–82]. Feature-reduction techniques
are optimization problems and as such are closely related to information-theoretic concepts such
as mutual information [83, 84] and the Kullback-Leibler divergence [85]. An information-theoretic
approach is outlined in Section 3.2 to identify the features related to the properties of interest by
minimizing the Kullback-Leibler divergence between a subset of the features of the data set and the
targeted material’s property [86–89]. Based on this, an information-theoretic method (TCMI) is
developed in Section 3.2.5 to identify both linear and non-linear correlations without assuming any
explicit form of the feature-property relationship in the data (cf., [90]). Because information theory
is based on a rigorous mathematical framework for feature identification, TCMI has the potential to
significantly reduce the number of features required to accurately estimate the properties of interest,
while providing a better understanding of the statistical relationships in the data and the generated
statistical models.

A general problem is to find the optimal set of features to accurately estimate the property of in-
terest. Because the search is of combinatorial complexity and therefore cannot be solved exhaustively,
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an efficient optimization strategy is crucial to finding optimal or close to optimal (i.e, sub-optimal)
solutions. In Section 3.4, the branch-and-bound algorithm [91–93] is highlighted, a combinatorial
optimization search algorithm that uses a so-called feature-selection criterion to enumerate the space
of all feature-subset combinations, thereby saving time in discarding subsets whose feature-selection
criterion cannot be improved [94–96]. The branch-and-bound algorithm requires a monotonically in-
creasing feature-selection criterion like the information-theoretic approach presented in Section 3.2.5.
Because the branch-and-bound algorithm has been proven to be useful in the discovery of non-linear
functional dependences [97, 98], an information-theoretic feature-selection method is proposed based
on TCMI. Advantages and disadvantages of TCMI and the branch-and-bound algorithm are discussed
in Section 3.5 by comparing the feature-subset search with TCMI to established feature-selection on
three examples with known as well as empirically identified feature-property relationships.

To actually compare feature subsets in a data-driven framework and relate them to the prediction
performance of a machine-learning model, it is beneficial to extend the principles of information theory
and the feature-subset search to machine learning. In Chapter 4, the branch-and-bound algorithm
is generalized to be applicable to both information-theoretic methods as well as to machine-learning
algorithms. Unlike information-theoretic methods, most machine-learning algorithms are sensitive to
strongly dependent or multi-collinear related features [99]. Pairwise linear-correlation heat maps and
multivariate feature-dependence maps [100] are essentially used in all materials-science applications
to identify such feature correlations. In Section 4.2, a new approach is presented to combine feature-
dependence maps with the developed feature-identification framework to quickly identify non-linear
and multivariate dependent features. As such, it goes beyond pairwise interactions and therefore
avoids drawing errorneous conclusions on the relationship between features or between a set of
features and the property of interest.

The prediction performance of a machine-learning model is commonly expressed in terms of a
single metric such as the root-mean-squared error or the Pearson’s coefficient of determination [101].
While a single metric is useful for estimating the goodness-of-fit of a model, it does not provide any
information about the error between the model’s prediction and the actual value in estimating the
property of interest of new materials. For this reason, a quantification of the model’s uncertainty
is indispensable for estimating the robustness and reliability of machine-learning models, especially
when neither knowledge about the underlying relationship nor extensive model validations are avail-
able [102–104]. Rather than incorporating an error model into the machine-learning algorithm such
as in Bayesian statistics in deep learning [105–107] or Gaussian Process Regression [108, 109], the
approach presented in this thesis directly estimates the underlying distribution of model errors either
from an ensemble of machine-learning models generated from feature-subset search [52] or from the
machine-learning model itself [60–64]. Because both type of methods are sensitive to the choice of
training data, a resampling strategy is applied to robustly estimate the model’s uncertainty.

In Section 4.4, a heuristic measure is developed, called credibility, to identify materials for which
there is insufficient data to reliably estimate the properties of interest. Credibility is calculated by
comparing the prediction of a new material to known values of similar materials in the data set.

Chapter 5 links all the presented and developed methods into a model-independent framework
for feature identification and model construction. The framework for feature identification and model
construction is designed to automatize the model creation and to enable a data-driven identification
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and characterization of features related to the property of interest. Therefore, three increasingly
challenging materials-science applications are reviewed in Chapter 5 to discuss and demonstrate the
challenges of identifying relevant features in materials science and to investigate the applicability of
the developed feature-identification framework for the quantitative prediction of the crystal structure
of octet-binary compound semiconductors (Section 5.2.1), the prediction of structural properties of
perovskites (Section 5.2.2), and the prediction of elastic properties of inorganic crystalline compounds
(Section 5.2.3).

Finally, Chapter 6 concludes with a discussion of the presented and developed methods, the frame-
work, and yet unanswered questions to be tackled in future research. These include the optimization
of the information-theoretic feature-identification methods to large materials data sets, the applica-
tion of the developed framework to a wider range of materials-science applications, and the accurate
modeling of the statistical trends in the data with machine learning.



Chapter 2

Foundations and challenges in materials
design

The number of all hypothetical and realizable materials results in a combinatorial explosion of compu-
tational and experimental demands. The goal of materials design is therefore to optimize materials
properties and to find candidate materials for desired applications, e.g., by using first-principles
calculations, experiments, or statistical methods.

First-principlesmethods determine themicroscopic properties of a system based on the Schrödinger
equation [69], the fundamental equation in quantum mechanics. Because the Schrödinger equation
can be solved exactly only for systems with a small number of electrons (𝑁 < O(10) [110]), solu-
tions of the Schrödinger equation for larger systems are usually approximated. Nevertheless, these
approximations are consistent as a whole [29] and have found widespread applications in chemistry
and physics to compute total energies, thermodynamic properties, structures, and energy spectra of
molecules or crystalline materials [111].

First-principle methods and experimental efforts complement each other in the search for new
materials: In contrast to experiments, where each structure of a material needs to be synthesized and
tested, first-principles methods can optimize the material’s structure while determining the (ground-
state) properties of a material. Because not all atomic configurations in the search are stable and thus
synthesizable, experiments, in turn, can be used to validate results from first-principles calculations
and to provide useful information about the stability of the materials.

The collection, assimilation, and dissemination of first-principles calculations and experimental
data to and from materials databases enable entirely new approaches to the analysis, screening,
and prediction of novel materials [9]. Statistical methods, such as machine learning, estimate the
property of interest from available data. These methods can be used to identify potential trends
in the data and to discover new materials. As such, they have the potential to rationalize high-
throughput characterization of materials, the prediction of materials properties, and the extraction
of qualitative and quantitative rules based on available data. In particular, data-driven approaches
can be utilized whenever properties are difficult to measure or to calculate, for properties of interest
whose fundamental equations are not (yet) known, or a direct solution of the fundamental equations is
unlikely [112]. In these cases, machine learning can be seen as an intermediate step for understanding
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Constituents A
Composition C
Structure S

Materials properties P
(e.g., electronic structure)

Direct design
(experiments and simulations)

ACS → P(ACS)

Inverse design
(statistical modeling)

P(ACS) → ACS

Fig. 2.1. Schematic representation of the direct and inverse design approach in materials science. Adapted
from reference [47].

the physical problem at hand until fundamental equations can be derived from a more general physics-
based model.

Data-driven approaches are about to become standard tools for scientists and engineers who are
experienced in generating large amounts of data through experiment and theory. However, first-
principles methods are comparatively demanding and experiments are relatively time intensive. Thus,
accurate predictive models are required to reliably estimate the property of interest and to describe
the underlying physical relationship from a limited amount of materials data. Ideally, these models
are based on available parameters or properties of the material that are faster to compute and easier
to obtain than the property of interest itself [55, 65].

2.1 Principles of materials design

There are two different approaches to searching for new materials: materials discovery and materials
design. Both approaches identify candidate materials from a wide range of atomic configurations of
known and hypothetical materials. The atomic configuration of a material is given by its constituents
𝐴 (i.e, atoms 𝑍𝑖 and their positions ®𝑟𝑖), composition 𝐶 (i.e., chemical composition ®𝑠𝑖), and structure
𝑆 (i.e, lattice constants {𝑎, 𝑏, 𝑐} and angles {𝛼, 𝛽, 𝛾} for crystalline solids) [47]. Whereas materials
discovery surveys a large space of candidate materials with desired properties of interest, materials
design either optimizes the property of interest based on (synthesizable) candidate materials [39] or
allows to determine the composition and structure of a material that possess a set of desired properties.
By definition, materials discovery always precedes materials design: First, candidate materials need
to be identified, before they can be optimized for actual applications.

Direct materials design

In direct materials design, the property of interest 𝑃 is calculated based on the atomic configura-
tion 𝐴𝐶𝑆 of the candidate material (cf., Fig. 2.1). Using first-principles methods or experiments for



2.2. First-principles calculations 9

determining the property of interest of candidate materials, the large majority of search methods
probe the materials space of atomic configurations either by random sampling [113], evolutionary
algorithms [114, 115], thermodynamic principles [116–121], or by molecular-dynamic simulations
[122, 123]. Because the exploration of particular atomic configurations scales exponentially with the
number of atoms 𝑁 [124], a direct materials design with these methods may not always be practical.
Be it because the search problem cannot be expressed in the required form for applying the particular
method or the existence of local optima hinders a global optimization and as such the search for
candidate materials with optimal properties.

Inverse materials design

Instead of starting from composition and structures to predict the properties of a given material,
inverse design [47, 125, 126] seeks to identify which compositions and structures produce materials
that possess a set of desired properties (Fig. 2.1). This optimization problem involves two steps:
The first step is to determine compositional and structural constraints to identify materials whose
properties are close to the property of interest. And the second step is to iteratively refine the set
of identified materials to match the specified requirements, either by screening material databases,
conducting experiments, or by performing first-principles calculations. In practice, this design princi-
ple (re)uses available data to guide the search for candidate materials, thus involving very often (but
not necessarily) fewer evaluations of first-principles calculations or experimental measurements than
direct material design.

2.2 First-principles calculations

First-principle or ab initio methods are based on the atomic species, charges, and positions, i.e., the
atomic configuration of a material and its structure [47]. They can be represented as a mapping
𝑃 : 𝐴𝐶𝑆 ↦→ ℝ𝑑 of the atomic configuration 𝐴𝐶𝑆 = {𝑎, 𝑏, 𝑐;𝛼, 𝛽, 𝛾; ®𝑟1, ®𝑟2, . . . , 𝑟𝑁 ; ®𝑠1, ®𝑠2, . . . , 𝑠𝑁}
(Fig. 2.1) to materials behaviors (magnetism, superconductivity, etc.) and functionalities (chemi-
cal reactivity, etc.). Essentially, they determine the properties of materials by approximating the
Schrödinger equation [69], which contains all the information to describe the microscopic properties
of a system, the allowed energies, stresses, and forces.

A quantum-mechanical system containing 𝑁 electrons and 𝑀 nuclei has 4𝑁 + 3𝑀 degrees of free-
dom resulting from the 3𝑁 spatial coordinates, ®𝑟 = {®𝑟𝑖=1...𝑁}, and 𝑁 spin coordinates, ®𝜎 = {®𝜎𝑖=1...𝑁},
of the electrons and the 3𝑀 spatial coordinates, ®𝑅 = { ®𝑅𝑖=1...𝑀}, of the nuclei, respectively. Because
the computational requirements of solving the Schrödinger equation increases exponentially with
the number of electrons (and atoms), practical implementations involve a series of approximations.
Within the Born-Oppenheimer approximation [127], the electronic relaxation to an external pertur-
bation is assumed to be much faster than the ionic motion of the nuclei. As a result, electrons can be
considered as basically moving in a constant external field generated by the positively charged nuclei
at fixed positions. The electronic and nuclear contributions can be solved independently. For the total
energy, the kinetic energy term of the nuclei can be set to zero, whereas the Coulomb repulsion term
for the nuclei enters the total energy as a constant. The electronic contribution needs to be further
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Properties of the system

Fig. 2.2. The properties of a material can be determined by solving the Schrödinger equation of the electrons and
nuclei (left). A formally equivalent method is the solution of the Kohn-Sham equations of non-interacting inde-
pendent fictitious Kohn-Sham electrons (right). Although formally exact, approximations in density-functional
theory limit the accuracy of the Kohn-Sham orbitals and hence the electron density. Commutative diagrams
below each of the plots show the relations between the quantum-mechanical quantities: the wave functions
Ψ and Ψ0, the external potential 𝑉, and the electron density 𝑛 obtained from the Schrödinger equation, on
the one hand, and the Kohn-Sham orbitals 𝜙𝑖, the Kohn-Sham 𝑉KS, and the electron density 𝑛 obtained from
density functional theory, on the other hand. Adapted from reference [135].

approximated [110]. One such approximation is the Hartree approximation [128, 129], which treats
electrons independently, i.e., as non-interacting one-particle electron systems, but violates the Pauli
exclusion principle. The Hartree-Fock approximation [130–132] respects the Pauli exclusion princi-
ple by using an anti-symmetrized ansatz of the electronic wave function, but neglects correlations
between electrons. More accurate approaches further account for the repulsion between the elec-
trons (post-Hartree-Fock methods such as second/fourth order perturbation [133] or coupled cluster
theory [134]), which however more and more computationally demanding with increasing number
of electrons1.

Rather than solving the electronic Schrödinger equation directly, density-functional theory (DFT)
determines the ground-state properties of a system using a formally equivalent description of the
Schrödinger equation as a spatially-dependent electron density of non-interacting fictitious electrons
(Fig. 2.2).
1The precision of more accurate methods is associated with higher computational requirements. Even without considering
the computational requirements of additional methods, a scaling law of O(𝑁3) already impedes DFT calculations for large
systems (𝑁 > 1000 atoms).
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Based on the Hohenberg-Kohn theorems2 [25], the formalism of DFT states that the ground-
state electronic wave function and resultant microscopic properties of an electron system are uniquely
determined by the electron density alone. Within this formalism (as given by the Kohn-Sham equations
of DFT [26]) the intractable many-electron problem of interacting electrons can be transformed into
a set of 𝑁 tractable one-particle problems of non-interacting electrons that are moving in an effective
external potential (Fig. 2.2). The electronic kinetic energy and the electron-electron interaction of the
many-electron problem of interacting electrons can be split into two terms: a non-interacting term of a
fictitious electron system and a non-classical correction term, which contains all contributions arising
from the interactions, exchange, and Coulomb correlation of electrons (via the so-called exchange-
correlation functional3). In practice, the exact form of exchange-correlation functional is not known
and therefore needs to be approximated, e.g., with the local-density approximation [26]. All the
various existing approximations of the exchange-correlation functional can be summarized in the
so-called Jacob’s ladder [136], a hierarchy where the accuracy of the density-functional calculation
increases with increasing computational costs of the exchange-correlation functional.

The electron density of the system can then be obtained by solving the Kohn-Sham equations.
By virtue of the Hohenberg-Kohn theorem, all terms in the Kohn-Sham equations can be expressed
as explicit functions of the electron density (with the exception of the kinetic term of the fictitious
electron system). Therefore, to solve the Kohn-Sham equations, one starts from an initial estimate of
the electronic density and solves the Kohn-Sham equations iteratively until convergence.

In the search of new materials, first-principles methods including DFT are typically used in a
computational funnel: at each level, selection criteria (stability, costs, environmental sustainability,
etc.) rule out materials and progressively more computationally intense methods determine candidate
materials in a multi-objective optimization [137].

2.3 Materials databases

The rapid development of computer technologies and the improvement of computational algorithms
has resulted in substantial time savings in performing first-principles calculations for hundreds or
thousand of atomic configurations. The pace at which the properties of new materials are determined
with latest generation of computers enables the systematic variation of atomic configurations, the
screening of materials, and the storage of materials data in large and centralized materials databases
(Tab. 2.1).

These materials databases grant access to completely new approaches for analyzing, screening,
and predicting the properties of novel materials. Because data management places high demands
on storage space and computing power, tools and concepts help to organize and standardize the
collection, assimilation, and dissemination of materials data to and from materials databases. For
example, software tools like pymatgen [151], the atomic simulation environment (ASE) [20], or
the automated interactive infrastructure and database (AiiDA) [21–23] facilitate the generation of
2The first Hohenberg-Kohn theorem states the ground-state electronic wave function can be uniquely described by the
electronic density. The second theorem states that the ground-state energy can be obtained by minimizing the electronic
energy with respect to the electron density.
3A functional takes functions as arguments rather than a list of variables.
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Name and URL Description #Materials Refs

Theoretical and computational structures and properties
AFLOWLIB
(http://aflowlib.org)

High-throughput materials repository for
electronic-structure and property
calculations with online applications for
automating first-principles calculations.

~3000000 [16, 17, 33]

Computational
Materials Repository
(https://
cmr.fysik.dtu.dk)

Repository for collecting, storing, and
retrieving data from electronic structure
codes and property calculations from a
diverse set of applications.

~60000 [32, 138, 139]

Materials Project
(https://
materialsproject.org)

Online platform for materials exploration
on known and predicted materials, which
provides open-source analysis tools for
materials discovery and design.

~700000 [13, 15, 35]

NOMAD
(https://encyclopedia.
nomad-coe.eu/gui/)

Repository to host, organize, and share
materials data of a wide range of electronic
structure codes through a unified metadata
language and data analytics tools.

~10000000 [37, 140]

Open Quantum
Materials Database
(http://oqmd.org)

Database with calculated thermodynamic
and structural properties of inorganic
crystal structures.

~560000 [18, 19, 36]

NREL Materials
Database (https://
materials.nrel.gov)

Computational materials database for
renewable energy applications.

~230000 [34, 141–143]

Citrination (https://
citrination.com)

A materials informatics platform combining
materials data and analytics tools for
materials development and design.

~n/a [144, 145]

Experimental structures and properties
Crystallography
Open Database (http:
//crystallography.net)

Crystal structures of organic, inorganic,
metal-organics compounds and minerals,
excluding biopolymers.

~410000 [30, 146, 147]

ICSD (https://
icsd.fiz-karlsruhe.de)

Database of experimental inorganic,
metal-organic, and theoretical structures.

~210000 [148, 149]

SpringerMaterials
(https://materials.
springer.com)

Curated, comprehensive, and
multidisciplinary collection of materials and
chemical properties with extensive coverage
of all major topics in materials science and
related disciplines.

~300000 [31]

Tab. 2.1. A list of publicly accessible materials databases and data infrastructures (commercial and non-
commercial). A more detailed overview is available in reference [150]. Numbers of materials data reflect
the status as of September 2021.

http://aflowlib.org
https://cmr.fysik.dtu.dk
https://cmr.fysik.dtu.dk
https://materialsproject.org
https://materialsproject.org
https://encyclopedia.nomad-coe.eu/gui/
https://encyclopedia.nomad-coe.eu/gui/
http://oqmd.org
https://materials.nrel.gov
https://materials.nrel.gov
https://citrination.com
https://citrination.com
http://crystallography.net
http://crystallography.net
https://icsd.fiz-karlsruhe.de
https://icsd.fiz-karlsruhe.de
https://materials.springer.com
https://materials.springer.com
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hundreds of new first-principles computations. Managements tools such as fireworks [14] distribute
these tasks on high-performance computers with massively parallel architectures, while data concepts
such as the FAIR principle [11], in addition, help ensure that materials data are findable, accessible,
interoperable, and reusable [10].

To identify materials with the desired properties, a database search is performed based on filter
criteria of available properties of a material. These can be observables (e.g., atomic properties), pa-
rameters of the system (e.g., environments, temperature, pressure), or materials properties at various
length scales and of different degrees of complexity (e.g., thickness of the material, resistivity, elastic-
ity). Because these quantities do not necessarily have to be derived from first-principles calculations,
statistical tools such as machine learning can be used to reduce or bypass time-intensive steps in the
materials search at the expense of an accurate physical understanding of the problem.

2.4 Machine learning

Data-driven approaches rationalize materials discovery and design through effective methods for
generating atomic configurations, managing materials databases and utilizing materials data to direct
materials search. These statistical approaches have been used in biology [152] and chemistry [153] for
decades. Recently applied to materials science [7, 154], they have shown promise as a tool in modern
materials simulations [42, 112, 155–160], e.g., for the crystal-structure prediction of octet-binary
compound semiconductors [55, 161], prediction of band gaps and formation energies [66, 162–164],
elastic constants [165, 166], superconducting temperatures [167, 168], renewable-energy materials
[169], stability of materials [170, 171], or the identification of spin-driven thermoelectric materials
[172]. Therefore, first-principles methods are increasingly combined with approximate methods to
estimate the properties of a material, such as using machine learning to screen larger materials spaces.

Machine learning, which is a branch of artificial intelligence⁴, is capable of building statistical
models to estimate a property of interest. The term “machine” means that such models can be created
automatically without human intervention. The term “learning” refers to the model improving with
more data. Machine learning can be either supervised or unsupervised. Unsupervised machine
learning analyzes the data to find groups of similar materials, transforms the data to reduce the
number of variables in a model (dimensionality reduction), or can identify statistical outliers in the
data. Supervised machine learning instead optimizes the outcomes of a statistical model based on
predefined objectives. Both types of machine learning can be used to reduce the complexity of a
materials search. Whereas unsupervised learning is often used to visualize the different classes of
materials, supervised learning is used to estimate the property of interest based on a large number of
materials properties.

Machine learning is primarily used in inverse materials-design approaches, e.g., to screen well-
defined chemical-structural classes of materials for desired properties. Provided that the data set is
representative in the sense that yet unexplored materials are in the same chemical-structural class
⁴The term “artificial intelligence” was coined by John McCarthy for a conference in 1956 at which the logic theorist
[173, 174] was presented as the first program of artificial intelligence. Written by Allen Newell, Herbert A. Simon, and
John Shaw it was deliberately designed to perform automated reasoning to prove 38 of the first 52 theorems in Whitehead’s
and Russell’s Principia Mathematica.



14 2.4. Machine learning

x

y
a.)

x

y
b.)

x

y
c.)

Statistical modeling Training data set Test data set

Fig. 2.3. A fit of three different functions (dotted lines) to the same set of training data (dots). While the
polynomial (a) and piecewise-linear (b) function exactly reproduce the training data (but not the test data), a
machine-learning algorithm like linear regression constructs a statistical model 𝑓linear that minimizes the error
𝜀 of the fit 𝑦 = 𝑓linear(𝑥) + 𝜀 based on the test data not being used for model construction.

as the materials in the data set, creating a mapping between the properties of a material and the
property of interest can be reduced to building a supervised machine-learning model to accurately
estimate the property of interest [56]. The mapping can then be used to make predictions, without
having to perform expensive experiments or first-principles calculations through the use of tabulated
and easily accessible materials properties defined at varying levels of complexity [55, 66].

Mathematically, such a supervised-learning problem can be expressed as a function 𝑓 that maps a
set of input variables ®𝑋 = {𝑋1, . . . , 𝑋𝑑} to the property of interest ®𝑌 , i.e., 𝑓 : ®𝑋 ↦→ 𝑌 . Input variables
that determine materials behavior are referred to as features, while combinations or derived features
in a statistical model are called the fingerprints [112, 175] or the descriptors [55, 161, 176] of a
material.

The function 𝑓 is exact. In actual materials-science applications though, where it is expected that
the fundamental equations are not known, the function 𝑓 is inherently approximate. First, because
calculations and measurements are subject to error. And second, the data set may not include all of
the features necessary to relate the essential physics and chemistry to the property of interest. The
mapping of 𝑓 is therefore modeled as a statistical relationship 𝑓 (referred to as the machine-learning
model) with respect to a property of interest 𝑌 ,

𝑌 = 𝑓 ( ®𝑋) + 𝜀 , (2.1)

where 𝜀 is an error term assumed to be independent of ®𝑋 [51, 52]. At the core of the statistical
modeling is the approximation of the exact mapping 𝑓 with the machine-learning model 𝑓 : ®𝑋 → 𝑌 :
The machine-learning model is optimized to reduce the prediction error (e.g., |𝑌 − 𝑌 |) based on a set
of materials data, that have not been used for model construction (Fig. 2.3).

Unlike fitting, which just interpolates between data samples (Fig. 2.3a-b.), machine learning
involves fitting and regularization to build a model of the overall statistical trend in the data (Fig. 2.3c.).
Because these models often come with inherent assumptions, they have additional parameters that
can be tuned to optimize predictions on new data (via a so-called hyper-parameter optimization), such
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as simplifying the functional form or the number of evaluations, i.e., the complexity of the generated
machine-learning model.

2.5 A typical machine-learning pipeline for materials science

The statistical modeling of feature-property relationships needs curated materials data. Provided
there are sufficient data from first-principles calculations and experiments, the modeling withmachine
learning proceeds in three steps: data acquisition, data representation, and data modeling (Fig. 2.4).
Each step is interdependent and often requires multiple iterations to build accurate predictive models.

Data acquisition and curation

In the data-acquisition step, materials data are pre-processed. They are checked for accuracy, in-
consistencies, or missing materials. Because the generation of materials data from first-principles
calculations or experiments is an expensive and time-consuming process, a representative materials
data set for the investigated chemical-structural class of materials includes as few materials as possible,
while covering a wide range of atomic configurations or compositions. It may be that more materials
data are needed at a later stage or that the prediction performance of the generated statistical model
is not sufficient. In these cases, experiments or first-principles calculations are performed to expand
and iteratively refine the data set.

Materials representation and transformation

In the materials-representation step, each material in the data set is mapped to a set of features that
are faster to compute and easier to obtain than the property of interest and allow to reverse the
materials-design process [55, 65]. Ideally, these features quantitatively relate the essential physical
and chemical properties of atomic configurations or compositions to the property of interest and can
be used to uniquely characterized the specified materials.

Which set of features best model the property of interest, is specific to the property of interest and
the materials classes under study [56, 177]. A wide range of physical and chemical attributes can
be considered for this purpose, such as the structure, composition, and properties of the constituent
elements [55, 162, 178–181], or the quantitative representation of the atomic environment [166, 181–
187].

Using these attributes, features can be constructed for materials with any number of constituents,
including statistics on stoichiometric, elemental, or electronic-structure properties [56, 188, 189].
However, the more features a data set contains, the higher the computational requirements for con-
structing statistical models. Multi-collinearity, i.e., the interrelationships between features, may
further degrade the prediction performance of a machine-learning model. As such, a candidate list
of features is often selected based on expertise, intuition, and trial-and-error. Because the materi-
als representation has a great impact on the prediction performance of a machine-learning model
(Fig. 2.4), this step requires dedicated methodological approaches such as genetic programming
[190], compressed sensing [191], or information science [192] to identify features that are relevant
for estimating the property of interest.
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Fig. 2.4. The machine-learning pipeline in materials science starts with available and curated materials data
(1), continues with the representation of materials (2), the systematic construction of machine learning models
(3), and ends with accurate predictions of desired materials properties ®𝑃. Adapted from reference [112].

Data modeling and machine-learning algorithms

In the data-modeling step, a machine-learning model is constructed based on the candidate list of
features. The machine-learning model is then used to estimate the property of interest for new ma-
terials. The most popular algorithms for generating machine-learning models are linear regression
[51], kernel-ridge regression [193, 194], support-vector machines [195, 196], Gaussian-process re-
gression [108, 109], symbolic regression based on compressed sensing [51, 52, 55, 161, 191, 197],
decision trees [198, 199], and deep neural networks [12, 105–107, 200]. The actual choice depends
on computational requirements, which kind of mapping relates the features to the property of interest,
and whether the property of interest is continuous (regression problem) or discrete (classification
problem) [51, 52].

An integral part of the data-modeling step is the evaluation of the machine-learning model on data,
that have not been used for model construction: either by partitioning the data set into subsets or by
applying the model on new data. A common technique to partition the data into subsets (training and
validation) is resampling. Resampling [52] builds a model for each training data set and evaluates it
on the validation data set. Two well-known resampling methods are cross-validation [52, 201] and
(out-of-sample) bootstrapping⁵ [203–205].

Both methods provide estimates of the model’s predictive ability that would not be available
from building the model once using the initial data set. There are different types of cross validation
(cf., [201, 206]). The most frequently used cross-validation technique is k-fold cross validation. In
k-fold cross validation, data are systematically partitioned into 𝑘 complementary subsets (sampling

⁵The term “bootstrapping” can be traced back to a newspaper from the Workingman’s Advocate in 1834 [202], which
serves as a figurative paraphrase for an apparently impossible task of pulling oneself up by the straps of one’s boots. In
the context of statistics and machine learning, bootstrapping means to iteratively improve the accuracy of a particular
estimator or statistical-learning method.
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Fig. 2.5. Common resampling techniques for estimating the prediction performance, i.e., the prediction error,
on new data: cross-validation [52, 201] (bottom left) and bootstrapping [203–205] (bottom right). Both
techniques split the available data into a training (T) and a validation data set (V). While the training set
is used to construct a machine-learning model, the validation set is used to evaluate the model’s predictive
performance. Training and validation sets can be partitioned, e.g., into 𝑘 complementary subsets (𝑘-fold cross-
validation) or drawn from the data set with replacement (bootstrapping). Due to sampling with replacement,
not all samples from the initial data set may be included in the bootstrap partitions.

without replacement), where 𝑘− 1 subsets are used for building the model, and the remaining subset
for validating the model’s prediction performance. In the bootstrap method, samples are drawn
randomly with replacement for building the model, while using the remaining samples for validating
the model. However, the bootstrap method (Fig. 2.5b) results in higher estimates of the prediction
error than 𝑘-fold cross validation (Fig. 2.5a). Furthermore, using it requires the generation of a larger
number of partitions to evaluate a model’s prediction performance and hence the bootstrap method
is more computationally demanding than 𝑘-fold cross validation. K-fold cross validation is therefore
typically used to estimate the prediction performance of a model by combining (e.g., averaging) the
validation results from all partitions. Bootstrapping, in contrast, is used for purposes other than
validation; in particular, to estimate a wide range of summary statistics from the set of independent
samples of the data set, to quantify the uncertainty of a statistical variable or model, or to compute
confidence intervals associated with a particular estimator or statistical-learning method.

2.6 Challenges and limitations of machine learning in materials
science

One of the major criticisms of machine learning is the use of machine-learning models as black
boxes and the resulting lack of insights in guiding the search for and designing new materials. The
fundamental challenge in identifyingmaterials with desired properties is therefore to build an accurate
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statistical model to describe the underlying physical relationship in terms of features that are related
to the property of interest (i.e., the relevant features of the data set).

One of the limitations of applying machine learning to materials science is the availability of data
sets large and diverse enough to represent the classes of materials under study. Typically, published
data sets are confined to particular atomic configurations or contain only a subset of materials from
the search of materials with desired properties [8, 207]. Furthermore, due to the inherently statistical
nature of machine learning, there is a high risk of applying these models to the prediction of materials
properties for which there was insufficient data for statistical modeling [112, 208]. Applying machine-
learning models to new data, therefore requires at least an estimate of the error made in a single
prediction [159, 209, 210] or to define a domain of applicability of the machine-learning model
[208]. Unfortunately, this pragmatic view on the modeling of feature-property relationships is not
widespread in materials science because the estimation of uncertainties in the model predictions
(cf., Section 4.3) or the definition of a domain of applicability are far from trivial. A paradigm
shift is required to generate these models and uncertainties in a standardized framework. Rather
than developing machine-learning models and combining multiple methods to optimally predict the
property of interest for each application, a framework using existing and newly developed methods
is designed in the following chapters that is independent of the machine-learning method itself.

2.6.1 Feature identification

When machine learning is applied to data sets with many features, the computational cost of the
learning algorithm dramatically increases, and in the case of multi-collinear features, the predictions
of machine-learning models can degrade significantly [84, 99, 160]. This is often referred to as the
“curse of dimensionality” [211]. The curse of dimensionality describes the interplay between the
number of samples and features, the relationships between the features, and the complexity of the
machine-learning model. The smaller the data set and the more features it contains, the stronger
the impact of the curse of dimensionality on the prediction performance of the generated machine-
learning models. The focus of the thesis is therefore to identify the set of features that are related to
the property of interest. This problem is addressed by reducing the number of features in a data set
prior to statistical modeling.

Despite the large diversity of approaches in the literature, there is no systematic route to identify
relevant features and to construct accurate machine-learning models from a large set of features.
Although there are first approaches of automated methods without the need to curate a list of relevant
features for the prediction of material properties [15, 212, 213], they require prior knowledge of the
material’s structure. Other methods [39, 214, 215] are designed to predict the material’s structure,
but are only applicable to a single or a limited number of materials classes. Finally, many statistical-
modeling algorithms (such as compressed-sensing implementations [55, 197] or regression-tree-based
approaches [216]) implicitly select features that are, however, difficult to relate to the property of
interest and can lead to erroneous scientific conclusions when used with many features. This thesis
therefore investigates possible approaches based on information theory, but also develops methods
that use both information theory and machine learning in a common search strategy to identify the
relevant features for estimating the property of interest.
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2.6.2 Uncertainty estimation

Machine-learning models are inherently statistical. Further, implicit model assumptions or the limited
flexibility of the machine-learning models may negatively impact the prediction performance. Because
these models estimate the property of interest pointwise based on a set of features, but commonly
the prediction performance is only estimated globally, it is not clear how well they approximate the
actual value of the property of interest of a new material. The materials-science examples in this
thesis show that predictions of machine-learning models can differ significantly from the actual value.
Globally estimated prediction performances, e.g., with resampling methods, are therefore not suitable
for assessing individual predictions with machine learning.

Uncertainty estimates provide an interval for the error made in each individual predictions. Gaus-
sian process regression [108, 109] and deep neural networks [105–107] are two commonly used
machine-learning algorithms that provide uncertainty estimates either based on Bayesian probabilities
or on distributions from the internal parameters of the model. However, these methods only estimate
the uncertainty in the model’s prediction, but not the difference between the model’s prediction and
the actual value of the property of interest. Moreover, with these methods it is difficult to identify
individual materials that cannot be accurately predicted by the machine-learning model. In this thesis,
conformal prediction [62–64] is used to determine precise levels of confidence for machine-learning
predictions within a probabilistic tolerance and a heuristic is developed to identify individual materials
which cannot be predicted well by the machine-learning models.





Chapter 3

Optimizing materials representation:
techniques for identifying relevant features

The set of features for predictive modeling of materials data from first-principles calculations or exper-
iments is usually selected by knowledge, intuition, and many trials; often without demonstrating that
these features are actually related to the property of interest [155, 217–220]. Ghiringhelli, Vybiral
et al. [55, 161] therefore drew attention to the critical role of the features: By formulating the identi-
fication of feature combinations related to the property of interest as a compressed-sensing problem
[191, 219, 221–224], Ghiringhelli, Vybiral et al. [55] used the least absolute shrinkage and selection
operator (LASSO) [225] to pre-select candidate-feature combinations and to construct mathematical
models with symbolic regression and the lowest number of candidate features (LASSO+�1 regular-
ization followed by an �0-regularized symbolic regression). The number of feature combinations and
the correlations within, however, limit this approach to data sets with a maximum of about 10–15
features, if no pre-selection of promising candidate-feature combinations is to be made [55]. In
Refs. [176, 197] the same idea was employed by using the sure-independence screening and sparsi-
fying operator (SISSO) [197]. SISSO iteratively selects candidate-feature combinations, effectively
reducing the residual error to the property of interest (cf., Appendix A.1). A symbolic regression model
is then constructed based on these candidate-feature combinations through a linear least-squares fit.
In contrast to LASSO, SISSO can deal with (inter-)correlated features and billions of candidate-feature
combinations. However, since both compressed-sensing methods rely on combining features, they
can quickly become computationally demanding, even for a small number of initial features of the
data set.

Given the complexity of feature-property relationships and the infinite number of possible materi-
als, so far no general and systematic approach has been established to reduce the set of initial features
®𝑋 by identifying the relevant set of features ®𝑋 ′ ⊆ ®𝑋 to the property of interest 𝑌 .

This chapter, therefore, addresses the representation of materials and the challenges in developing
a feature-selection workflow for the identification of features that are related to the properties of
interest (i.e., the relevant features of the data set). The fundamental challenge is to find the features
related to a certain property or function using a score, which allows the identified features to be
ranked and ordered by relevance prior to applying machine learning for generating statistical and
predictive models. The chapter starts with an outline of dimensionality-reduction techniques [226,
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227], i.e., techniques to reduce the number of features of the data set prior to relating the features
to the property of interest. These techniques are independent of a mathematical model and thus
can reduce the number of features and the computational requirements of subsequent analyses, as in
machine learning. Dimensionality reduction is carried out either through the creation and utilization
of combination of features1 (feature extraction [227]) or the selection of a subset of features directly
from the set of the data (feature selection [71, 72]).

Feature selection can be seen as a combination of a search technique for proposing new feature
subsets and a feature-selection measure for scoring the subsets. Various feature-selection algorithms
have been proposed [228–230] and several feature-selection measures have been extensively explored
[231–235], but none of these methods is applicable to real-valued features such as encountered in
materials science without introducing additional parameters in the relevance quantification of feature
subsets. Because feature selection is an optimization problem that resembles that of information-
theoretic concepts [236], a non-parametric, deterministic information-theoretic method is developed,
called total cumulative mutual information (TCMI) [90]. TCMI is designed to quantify the cumulative
mutual dependence between a set of features and the property of interest for real-valued features.

To identify the subset of features related to the property of interest, TCMI needs to be applied to
each feature-subset combination in the data set. The score obtained by TCMI can then be used to
rank the feature subsets in descending order of their strength of cumulative mutual dependence, with
the strongest cumulative mutual dependence determining the most relevant set of features. There
are several search strategies to identify the optimal feature subset [92, 229, 237–239], ranging from
exact solvers such as an exhaustive search, to heuristic, and stochastic solvers [72, 91–96, 229, 236,
237, 240–243]. Exact solvers are generally impractical for data sets with a large number of features
(due to the exponential time needed to solve the optimization problem). Sub-optimal solvers (greedy,
heuristic, or stochastic algorithms), by contrast, may not find the optimal subset of features related
to the property of interest. Branch-and-bound [91–96] can be used as an optimal or sub-optimal
solver [92, 239]. TCMI is therefore used with branch-and-bound to identify the features related to the
property of interest, and its performance is compared with existing methods for identifying relevant
features.

3.1 Dimensionality reduction

The identification and characterization of materials-property relationships between the features of the
data and the target property is one of the fundamental challenges in computational materials science
(Section 2.6). Especially in high-dimensional materials spaces [244–246], which cannot practically be
explored exhaustively, a reduction of the initial number of features can often alleviate the challenging
phenomenon of the “curse of dimensionality” [211] and speed up the model construction [247] either
by selecting a small subset of features or by projecting features onto a lower dimensional materials
space. Such dimensionality-reduction techniques are an essential part of a successful data-mining
pipeline for efficient feature-space exploration, visualization, and an understanding of the statistical
relationships present in the data.

1So-called derived or transformed features.
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3.1.1 Feature extraction

Describing the relationship of a specific property or function in terms of a set of available physical
parameters or materials properties (i.e., the features of the data set) is central to creating accurate
predictive models. However, it is often not clear which features are related to the property of interest,
nor is it feasible to manually enumerate all features for the construction of machine-learning models
with the lowest prediction error.

There are not many machine-learning algorithms that can identify relevant features for the sta-
tistical modeling. Kernel-ridge regression [193, 194] and Gaussian-process regression [108, 109],
for instance, cannot. The class of methods that transform the data for effective machine learning
and implicitly identify candidate features from the initial set of features, is called representation
learning [248]. Two examples are deep neural networks [12, 105–107, 200] and symbolic regression
(whether via stochastic optimization [51, 52] or compressed sensing [55, 161, 197]). For this reason,
numerous available physical parameters and materials properties are assembled and used to construct
machine-learning models.

This approach has two major drawbacks: First, only a small number of features may actually
be related to the property of interest, and second, many features may be statistically interrelated,
resulting in both sensitive and unnecessarily complex machine-learning models and higher demands
on computational resources. One approach to reduce the number of features is feature extraction2.
Feature extraction projects the high-dimensional problem onto a lower dimensional (latent) materials
space (Fig. 3.1). It involves the generation of a new set of transformed features based on combina-
tions of the initial features of the data set. Many machine-learning algorithms implicitly perform
feature extraction during model construction. Common supervised feature-extraction methods are
the aforementioned deep neural networks and symbolic regression, but also gradient-boosting deci-
sion trees [249–252]. Common unsupervised feature extraction methods are principal component
analysis [73–75]), multi-dimensional scaling [76, 77, 80, 82], and manifold learning [78–82]. Since
the newly created features are expected to retain the relationships of the initial set of features, feature
extraction is often used for data visualization [80–82, 175] and for building predictive models from
the reduced representation instead of the full initial set of features (Fig. 3.1).

3.1.2 Feature selection

A materials representation is based on available training data as well as a performance measure and
may contain features or combinations of features not related to the property of interest. Whereas
feature extraction transforms the initial set of features into a new reduced feature set, feature selection
[71, 72] identifies a subset of features of the data set with respect to a property of interest without
changing them. Feature selection thus has the advantage over feature extraction of quantifying the
relevance of individual physical parameters or materials properties of the initial set of features relative
to the property of interest [70]. Feature selection is based on the terms of relevance and redundancy
[72, 253, 254]: whereas redundant features are related to other features in the data set and hence can

2Feature extraction is also referred to as feature construction [236] or dimensionality reduction [227].
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Fig. 3.1. Dimensionality reduction reduces the high-dimensional materials space (a.) to a lower dimensional
materials space (b.). Shown is a classification problem using feature extraction, which transforms the input
features ®𝑋 = {𝑋1, . . . 𝑋𝑑} into a combination of features set ®𝐷 = {𝐷1(𝑥1, . . . , 𝑋𝑑), 𝐷2(𝑥1, . . . , 𝑋𝑑)} and thus
improves the separability of the two materials classes.

be replaced with other features in the model, relevant features cannot be removed without degrading
the prediction performance of a machine-learning model3.

Feature-selection methods reduce the risk of modeling spurious relationships between the features
and the property of interest by discarding features that are not related to the property of interest.
They work on problems with a large number of features and lead to an efficient representation of the
data set with reduced computational costs of machine-learning algorithms and less complex predictive
models [236]. Formally, the problem of feature selection is to find an optimal subset ®𝑋∗ ⊆ ®𝑋 of input
features ®𝑋 = {𝑋1, . . . , 𝑋𝑑} with cardinality 𝑑 subject to maximizing a feature-selection criterion Q

with respect to a property of interest 𝑌 ,

Q(𝑌 ; ®𝑋∗) = max
®𝑋′⊆ ®𝑋, | ®𝑋′ | ≤𝑑

Q(𝑌 ; ®𝑋 ′) ⇔ ®𝑋∗ = argmax
®𝑋′⊆ ®𝑋, | ®𝑋′ | ≤𝑑

Q(𝑌 ; ®𝑋 ′) . (3.1)

As such, feature selection combines a search strategy for exploring feature subsets with an evaluation
measure for scoring the feature subsets.

Search strategies

The simplest approach to test each possible set of optimality from the initial set of features ®𝑋 is an
exhaustive search. An exhaustive search strategy explores the complete set of feature combinations⁴∑𝑑
𝑘=1

(𝑑
𝑘

)
= 2𝑑 − 1, and as such is prohibitive for high-dimensional data sets due to cost and time

constraints of computer resources⁵ [72]. Therefore, many sub-optimal feature-selection methods have
been proposed to find feature subsets close to the optimal representation while balancing accuracy
and speed. For example, an intuitive approach adopted by the sequential forward selection [95,
3The set of relevant features is also called the Markov blanket of a data set [255].
⁴The empty subset is excluded in feature selection.
⁵The problem of searching for the optimal feature subset is non-deterministic polynomial-time (NP)-hard [256, 257].
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Fig. 3.2. The three classes of feature-selection methods differ in how the relevance of feature subsets is es-
timated. While filters (a.) use criteria that are independent of the machine-learning algorithm to assess the
relevance of a feature subset, wrappers evaluate the relevance of a feature subset based on a predefined
machine-learning algorithm (b.) and embedded methods simultaneously optimize materials representation
and prediction performance of a machine-learning model (c.), e.g., through regularization [51, 225, 261].

229, 240] or backward elimination [241] starts with either an empty or a full subset of features and
gradually adds or removes one feature at a time, respectively. Other strategies, such as greedy or
randomized search, generate new feature subsets based on both input features and those already
selected [190, 237] and are widely used for the simulation of physical processes in metallurgy and
biology [159, 214, 258, 259].

An optimal search strategy that has not yet received much attention, is branch-and-bound [91–
96]. Branch-and-bound combines both optimality and speed [92, 239] and guarantees to find the
global or local optimum (i.e., by limiting the search depth or space to the 𝑘-best performing feature
subsets). Because branch-and-bound implicitly performs an exhaustive search, it is guaranteed to find
the optimal feature subset. In contrast to sub-optimal strategies, the branch-and-bound algorithm
requires a monotonically increasing feature-selection criterion for finding the optimal feature subset
by combinatorially enumerating the set of all features and stopping at feature subsets, whose feature-
selection criterion cannot be improved (cf., Section 3.4).

Feature-selection criteria and classification of feature-selection methods

Different feature-selection criteria impose different requirements on the optimality condition of a
feature subset, which is why the optimal feature subset of one feature-selection criterion may differ
from that of another criterion and are therefore often difficult to compare [236]. All feature-selection
algorithms can be categorized into three groups, depending on how the relevance of a feature subset
is estimated [72, 260]: filters, wrappers, and embedded methods (Fig. 3.2).

Filter methods Filter methods [236] identify and evaluate feature subsets solely on the basis of
available data and independent of a machine-learning algorithm. They are used as a processing step
to quantify the relevance of feature subsets and to rank them by their strength prior to statistical
modeling (Fig. 3.2a). Because filter methods use different optimization criteria than machine-learning
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models generated from these subsets, supervised machine-learning models may not always reach
the lowest possible error in estimating the property of interest [236]. Examples include similarity
[260], statistical [101, 262], distance [228, 231, 232], dependency [233], consistency [234], and
information measures [230, 235].

Wrapper methods Wrapper methods [72] evaluate the relevance of a feature’s subset based on the
prediction performance of a supervised machine-learning model generated with this subset (Fig. 3.2b).
As a result, wrapper methods identify the best-performing feature subset for a supervised machine-
learning algorithm based on a given search strategy [228, 236, 260]. Common wrapper methods are
recursive feature elimination [263] and genetic algorithms [122, 238, 264].

Embedded methods Lastly, embedded methods [265] simultaneously perform feature selection
and modeling by optimizing the objective function of the machine-learning algorithm (Fig. 3.2c).
The most common machine-learning algorithms used as embedded methods are the least-absolute
shrinkage and selection operator [225, 261] (and recently the sure-independence screening and
sparsifying operator [197]) and decision-tree algorithms such as random forest [266] or gradient
boosting [249–252, 267, 268] (cf., Appendix A).

3.2 Materials representation with information theory

The construction of an optimal set of features requires feature-selection methods that are able to
identify a wide range of relationships in the data. Ideally, such feature-selection methods estimate the
relevance of a set of features from a limited number of data samples and rank the features according
to their relevance for predicting the property of interest [236].

Targeted to best identifying the set of features for predicting the property of interest, embedded
filter-selection methods automatically perform feature selection during model construction, while
wrapper methods evaluate the relevance of a set of features tailored to a specific machine-learning
algorithm (Fig. 3.2). In data sets with a large number of features [244–246], however, wrapper
and embedded methods are computationally demanding⁶. In contrast, filter methods decouple the
feature-subset search from the model generation, often providing a means to identify feature subsets
based on a feature-selection criterion within a rigorous mathematical theory of feature relevance.
Filter methods can therefore in principal be applied to data sets with a large number of features, in
contrast to wrapper or embedded methods, which are mainly computationally limited (i.e., they are
more expensive than filter methods) by the underlying machine-learning algorithm for evaluating the
relevance of feature subsets.

Not all filter-based feature-selection criteria are suitable for materials-science problems, especially
when multiple features are jointly related to the property of interest. For example, feature-selection
criteria such as Pearson’s 𝑅 or Spearman’s rank 𝜌 correlation [101, 269], and distance-correlation
measures [270–272] are limited to bivariate relationships and can only identify specific types of
dependencies (e.g., monotonic relationships). In contrast, feature-selection criteria based on kernel
⁶This is often referred to as the “curse of dimensionality” [211].
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Fig. 3.3. Commutative diagram of a materials representation between features ®𝑋 and a property of interest 𝑌
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defined by their joint probability distribution 𝑝(®𝑥, 𝑦).

density estimation [273, 274] or 𝑘-nearest neighbor estimation [275] are intrinsically dependent on
the scale of the features and implicitly assume that relationships between features and the property
of interest are smooth and differentiable. The prevailing filter-based feature-selection criterion is
mutual information (Sec. 3.2.3). Mutual information [83, 84] describes the features and the target
property as probability distributions (Fig. 3.3) to quantify the statistical dependence between a set
of features and the property of interest [235]. Mutual information is based on the concept of entropy
from information theory [83, 84] and has found applications in many areas of science ranging from
quantum information [276] and the understanding of black holes in physics [277] to genetic structures
in biology [278], electronic structures or chemical reactivity in chemistry [279], andmachine learning
[280, 281].

Most of the feature-selection criteria including mutual information are only defined for discrete
and categorical features such as quantum numbers or materials classes. However, in many applica-
tions (such as in materials science) most features are real-valued, continuous quantities⁷. Although
extensions have been proposed [282–290], essentially all approaches depend on the scale of the
features, making it difficult to assess and to compare the relevance of different feature subsets: a
rescaling of the features into standard SI units, for example, can completely result in a different rele-
vance score of feature (subsets) than using the features as-is without any pre-processing of the data
set⁸. Therefore, based on a variant, namely cumulative mutual information [291], a non-parametric
information-theoretic feature-selection criterion is developed in the following that is applicable to
continuous features and can be applied to materials data (Secs. 3.2.5 and 3.3.3).

3.2.1 Entropy, mutual information, and Kullback-Leibler divergence

Entropy and mutual information are used in communication theory for data compression and com-
pressed sensing [191, 221, 223, 224, 292], but more recently have found applications in materials
⁷Continuous features are real-valued quantities as opposed to discrete features, which are ordinal. Both are numerical
features for which a distance metric can be defined. Categorical and nominal features must first be converted to a numerical
feature before they can be used in data-science applications.
⁸Consider an equal-width binning of continuous features into discrete features. Depending on the scaling of the feature, it
is possible that all values of this feature are assigned to one and the same bin only, thereby resulting in a feature with zero
relevance.
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science [192, 293, 294]. By maximizing the entropy⁹ [295, 296], an optimal representation of the
target property can be realized by identifying a set of features, whose mutual dependence is maximal
with respect to a property of interest 𝑌 (Fig. 3.3).

3.2.2 Kullback-Leibler divergence

The principle of maximum entropy can be turned into a score, where mutual information and related
information-theoretic methods such as Kullback-Leibler divergence1⁰ 𝐷KL [85, 297] quantify the
relevance of a feature subset in terms of the strength of themutual dependence in a normalized range11.
Mathematically, this is done by expressing the features and the property of interest as probability
distributions and searching for a set of features, whose (joint) probability distribution makes the
fewest assumptions about the shape and distribution of the property of interest (Fig. 3.3). Using
Kullback-Leibler divergence, for instance, the relevance for each feature subset ®𝑋 can be quantified
by measuring the dissimilarity between two distributions, 𝑈 ( ®𝑋, 𝑌 ) and 𝑉 ( ®𝑋, 𝑌 ),

𝐷KL(𝑈 ( ®𝑋, 𝑌 ) | |𝑉 ( ®𝑋, 𝑌 )) =
∑︁
𝑦∈𝑌

∑︁
®𝑥∈𝑋

𝑈 (®𝑥, 𝑦) log 𝑈 (®𝑥, 𝑦)
𝑉 (®𝑥, 𝑦) ≥ 0 . (3.2)

Kullback-Leibler divergence 𝐷KL is zero if and only if the two distributions are identical,

𝐷KL(𝑈 ( ®𝑋, 𝑌 ) | |𝑉 ( ®𝑋, 𝑌 )) = 0 ⇔ 𝑈 ( ®𝑋, 𝑌 ) ≡ 𝑉 ( ®𝑋, 𝑌 ) , (3.3)

and is positive otherwise. Using the joint probability distribution as 𝑈 and the marginal distribution as
𝑉, Kullback-Leibler divergence provides a simple means to compare and rank the relevance (=mutual
dependence) of different feature subsets with respect to a property of interest: if Kullback-Leibler
divergence is zero (𝐷KL = 0), subsets of features are totally unrelated to the property of interest.
If Kullback-Leibler divergence is positive (𝐷KL > 0), its value is increasingly larger the stronger the
features are related to the property of interest.

3.2.3 Mutual information

Mutual information is a special case of Kullback-Leibler divergence and relates the joint probability
distribution 𝑈 ( ®𝑋, 𝑌 ) ≡ 𝑝(®𝑥, 𝑦) of discrete variables (=features and target) to the product of their
marginal distributions 𝑉 ( ®𝑋, 𝑌 ) ≡ 𝑝(®𝑥)𝑝(𝑦) [83, 84],

𝐼(𝑌 ; ®𝑋) =
∑︁
𝑦∈𝑌

∑︁
®𝑥∈𝑋

𝑝(𝑦, ®𝑥) log 𝑝(𝑦, ®𝑥)
𝑝(𝑦)𝑝(®𝑥) ≡ 𝐷KL(𝑝(𝑦, ®𝑥) | |𝑝(𝑦)𝑝(®𝑥)) . (3.4)

The joint probability distribution is the probability of the co-occurrence of the feature values (𝑦,
®𝑥) ∈ (𝑌, ®𝑋) (Fig. 3.4). The marginal distribution is the probability distribution of a single variable
⁹Jaynes [295] showed that the concept of entropy in statistical mechanics is equivalent to the concept of entropy in
information theory.
1⁰In information theory, Kullback-Leibler divergence is often referred to as relative entropy [84].
11The Kullback-Leibler divergence is in the range [0, 1], where “zero” indicates statistical independence, “one” functional
dependence, and anything in between the relative strength of dependence between the features and the property of
interest [235].
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a.) H(Y ) H(X )

I(Y ; X )H(Y |X ) H(X |Y )

I(Y ; X ) =
∑

y ,~x
p(y , ~x) log p(y , ~x)

p(~x)
= H(Y )− H(Y |X )

b.)
Y \X x1 · · · xj · · · xm

y1 p(y1, x1) · · · • · · · p(y1, xm) p(y1)
... ... ... ... ...
yi • p(yi , xj) • p(yi)
... ... ... ... ...

yn p(yn, x1) · · · • · · · p(yn, xm) p(yn)
p(x1) · · · p(xj) · · · p(xm)

Fig. 3.4. Schematic representation of all information-theoretical quantities required for the calculation ofmutual
information of two variables {𝑌, 𝑋}. Panel a.) depicts the relationship between Shannon entropies, 𝐻 (𝑋) and
𝐻 (𝑌 ), conditional Shannon entropies, 𝐻 (𝑌 | ®𝑋) and 𝐻 ( ®𝑋 |𝑌 ), and mutual information 𝐼(𝑌 ; ®𝑋) in a Venn-like
diagram [300, 301], whereas b.) displays 𝑋 in 𝑌 as a contingency table to directly compute the marginal
probability distributions, 𝑝(𝑦) and 𝑝(𝑥), and joint probability distribution 𝑝(𝑦, 𝑥), from 𝑋 and 𝑌 .

in the subset { ®𝑋, 𝑌 }, integrating out all other variables from the joint probability distribution. Under
the assumption of independence, i.e., when the variables ®𝑋 and 𝑌 are statistically uncorrelated, the
product of the marginal and joint probability distributions are identical and mutual information is
zero, 𝐼(𝑌 ; 𝑋) = 0. The greater the dependence between ®𝑋 and 𝑌 , the more different are the joint
and marginal probability distributions and the higher is mutual information, 𝐼(𝑌 ; 𝑋) ≥ 0. Mutual
information increases monotonically with the cardinality of the feature’s subset ®𝑋 ′ ⊆ ®𝑋 ,

𝐼(𝑌 ; ®𝑋 ′ \ 𝑋) ≤ 𝐼(𝑌 ; ®𝑋 ′) ∀𝑋 ∈ ®𝑋 . (3.5)

One immediate consequence of Eq. 3.4 is the invariance of mutual information under coordinate
transformations ( ®𝑋 → ®𝑋 ′ and 𝑌 → 𝑌 ′) such as translations and re-parameterization that preserve
the order of ®𝑋 and 𝑌 [235, 297, 298]. Mutual information is therefore ideally suited if features are
dimensional quantities and whose rescaling should not affect the mutual dependence to the property
of interest. Mutual information is also invariant under the addition of variables ®𝑍 that are unrelated
with ®𝑋 and 𝑌 , 𝑝( ®𝑋, ®𝑍, 𝑌 ) = 𝑝( ®𝑋, 𝑌 )𝑝( ®𝑍) [299]. As such, it provides a reliable mutual-dependence
estimate, even when only a small number of features are actually mutually related to the property of
interest in the data set.

Mutual information, 𝐼(𝑌 ; ®𝑋) = 𝐻 (𝑌 ) − 𝐻 (𝑌 | ®𝑋), is linearly related to the Shannon entropy 𝐻 (𝑌 )
and conditional Shannon entropy 𝐻 (𝑌 | ®𝑋) [302] (Fig. 3.4). The Shannon entropy 𝐻 (𝑌 ) is a measure
of the uncertainty on the occurrence of a feature value 𝑦 whose probability 𝑝(𝑦) is described by 𝑦 ∈ 𝑌 ,

𝐻 (𝑌 ) = −
∑︁
𝑦∈𝑌

𝑝(𝑦) log 𝑝(𝑦) . (3.6)
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Conditional Shannon entropy quantifies the amount of uncertainty about the value of 𝑦 ∈ 𝑌 in the
presence of the distribution ®𝑋 ,

𝐻 (𝑌 | ®𝑋) = −
∑︁
𝑦∈𝑌

∑︁
®𝑥∈𝑋

𝑝(𝑦, ®𝑥) log 𝑝(𝑦 | ®𝑥) , (3.7)

with 𝑝(𝑦 | ®𝑥) = 𝑝(𝑦, ®𝑥)/𝑝(®𝑥) as the conditional probability of 𝑦 given ®𝑥 ∈ ®𝑋 . Whereas Shannon entropy
is bounded from below (𝐻 (𝑌 ) ≥ 0), conditional Shannon entropy has values in a range bounded by
𝐻 (𝑌 ), 0 ≤ 𝐻 (𝑌 | ®𝑋) ≤ 𝐻 (𝑌 ). Conditional Shannon entropy is zero, 𝐻 (𝑌 | ®𝑋) = 0, if variables ®𝑋 and 𝑌
are completely dependent and is maximal, 𝐻 (𝑌 | ®𝑋) = 𝐻 (𝑌 ), if variables are statistically independent
(=totally unrelated) of each other. Thus, mutual information is bounded from below by 𝐼(𝑌 ;𝑌 ) = 0
and restricted to the interval 0 ≤ 𝐼(𝑌 ; ®𝑋) ≤ 𝐻 (𝑌 ). In order to use mutual information for comparing
the feature relevance of a feature set ®𝑋 to describe the property of interest 𝑌 , mutual information is
normalized12 [298],

𝐷(𝑌 ; ®𝑋) = 𝐼(𝑌 ; ®𝑋)
𝐻 (𝑌 ) =

𝐻 (𝑌 ) − 𝐻 (𝑌 | ®𝑋)
𝐻 (𝑌 ) . (3.8)

The normalized mutual information (Eq. 3.8), hereafter referred to as fraction of information13 can
be used to evaluate the relevance of different feature subsets with respect to the same property of
interest. This dependence score is in the range [0, 1], where “zero” and “one” represent statistical
independence and functional dependence, respectively (i.e., the larger the score, the stronger the
mutual dependence and the higher the relevance of a subset).

Unfortunately, mutual information and fraction of information are only defined for discrete fea-
tures1⁴. Although mutual information can be generalized to continuous features by using differential
entropy [84],

𝐼(𝑌 ; ®𝑋) =
∫
𝑦∈𝑌

∫
𝑥∈ ®𝑋

𝑝(𝑦, ®𝑥) log 𝑝(𝑦, ®𝑥)
𝑝(𝑦)𝑝(®𝑥) 𝑑

®𝑥 𝑑𝑦 , (3.9)

the existence of the probability distributions for ®𝑋 and 𝑌 are still needed to determine the mutual
dependence between a set of features and the property of interest given 𝐼(𝑌 ; ®𝑋).

3.2.4 From probability to cumulative distributions

Probability distributions for continuous features are generally difficult to compute and therefore re-
quire approximations. A plethora of approaches have been presented in the literature to estimate
continuous features by generalizing mutual information: multivariate maximal correlation analy-
sis [282], maximal information coefficient [283], universal dependency analysis [284, 285], and
mutual-information-based feature-selection algorithms originally developed for discrete data [286–
290]. However, all approaches quantize continuous features based on clustering [275, 291, 303, 308],

12There are multiple possibilities to normalize mutual information [303, 304].
13Depending on the research field, fraction of information is also known as coefficient of constraint [305], uncertainty
coefficient [306], or proficiency [307].

1⁴Discrete features are ordinal quantities as opposed to continuous features, which are real-valued. Both are numerical
features for which a distance metric can be defined. Categorical and nominal features must first be converted to a numerical
feature before they can be used in data-science applications.
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∫∫
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Fig. 3.5. A schematic diagram of the isomorphism between probability (a.) and cumulative distributions (b.)
and their respective information-theoretical measures of dependence. Left: mutual information (Section 3.2.3).
Right: cumulative mutual information (Section 3.2.5).

discretization [286, 309–312], or density estimation [313–317] and implicitly introduce additional
parameters to transform continuous into discrete features. However, all of these parameters need to
be redetermined depending on the number of features and the subset of features. In practice, such
approaches are therefore extremely dependent on the applied parameter set and are sensitive to the
scale of the features1⁵. As a result, approaches generalizing mutual information based on quantifying
continuous features are unstable in the identification of mutual dependent features and hence are
difficult to apply to materials-science data.

Because probability distributions from continuous features cannot be easily obtained, the basic
idea of cumulative mutual information [291] and the dependence measure developed in this thesis
(total cumulative mutual information, TCMI) is to express the features of the data set as cumulative and
residual cumulative distributions (Fig. 3.5). The cumulative distribution 𝑃 (and residual cumulative
distribution 𝑃′ ≈ 1− 𝑃) of a variable 𝑋 evaluated at 𝑥 describe the probability that 𝑋 takes on a value
less than or equal to 𝑥 (or a value greater than or equal to 𝑥, respectively),

𝑃(𝑥) := 𝑃(𝑋 ≤ 𝑥) , 𝑃′(𝑥) := 𝑃(𝑋 ≥ 𝑥) = 1 − 𝑃(𝑋 < 𝑥) . (3.10)

Cumulative and residual cumulative distributions are defined for both continuous and discrete vari-
ables. They are monotonically increasing and decreasing, respectively, i.e., 𝑃(𝑥1) ≤ 𝑃(𝑥2) or 𝑃′(𝑥1) ≥
𝑃′(𝑥2), ∀𝑥1 ≤ 𝑥2, with limits

lim
𝑥→−∞

𝑃(𝑥) = 0
lim
𝑥→∞

𝑃(𝑥) = 1 ,
lim

𝑥→−∞
𝑃′(𝑥) = 1

lim
𝑥→∞

𝑃′(𝑥) = 0 . (3.11)

1⁵Sensitivity in the feature range implies that a rescaling of a feature, e.g., changing the unit, leads to a completely different
solution of the algorithm.
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Cumulative distributions are more regular and less sensitive to statistical noise than probability dis-
tributions [318, 319]. If the derivatives exist, the probability distribution of continuous and discrete
variables can be determined from the cumulative distribution by differentiation,

𝑝(𝑥) = 𝑑𝑃(𝑥)
𝑑𝑥

⇔ 𝑃(𝑥) =
∫ 𝑥

−∞
𝑝(𝑥 ′) 𝑑𝑥 ′ , (3.12a)

𝑝(𝑥) = 1 − 𝑑𝑃
′(𝑥)
𝑑𝑥

⇔ 𝑃′(𝑥) =
∫ ∞

𝑥

𝑝(𝑥 ′) 𝑑𝑥 ′ . (3.12b)

Similar to probability distributions, cumulative and residual cumulative distributions are invariant
under a change of variables and re-parameterizations, but only under those that preserve the order
of the feature values in ®𝑋 and 𝑌 . For instance, cumulative distribution are invariant under positive
monotonic transformations 𝑇 : ℝ→ ℝ,

𝑃(𝑥) = 𝑃(𝑇 (𝑥)) ∨ 𝑃(𝑥) = 𝑃(𝑇 (𝑥))
∀𝑥 ∈ 𝑋 : 𝑥 ↦→ 𝑇 (𝑥) such that 𝑥1 < 𝑥2 ⇒ 𝑇 (𝑥1) < 𝑇 (𝑥2) .

(3.13)

such as translations or scalings of the features, while in all other cases of invertible or non-invertible
maps [320] the order of the original elements of the variables is changed and with it the cumulative
distribution.

3.2.5 Cumulative mutual information

Based on cumulative distributions, cumulative mutual information (Fig. 3.5b.) quantifies the inherent
mutual dependence expressed in the joint cumulative distribution 𝑃(®𝑥, 𝑦) := 𝑃( ®𝑋 ≤ ®𝑥, 𝑌 ≤ 𝑦) of
variables ®𝑋 and 𝑌 relative to the product of their marginal cumulative distributions 𝑃(®𝑥) and 𝑃(𝑦),

I(𝑌 ; ®𝑋) =
∫
𝑦∈𝑌

∫
®𝑥∈ ®𝑋

𝑃(𝑦, ®𝑥) log 𝑃(𝑦, ®𝑥)
𝑃(𝑦)𝑃(®𝑥) 𝑑

®𝑥 𝑑𝑦

= 𝐷KL(𝑃(𝑦, ®𝑥) | |𝑃(𝑦)𝑃(®𝑥)) .
(3.14)

Cumulative mutual information, I(𝑌 ; ®𝑋), is monotonically increasing with increasing mutual depen-
dence of ®𝑋 and 𝑌 and is zero, if and only if ®𝑋 and 𝑌 are statistically uncorrelated (i.e., under the
independence assumption of random variables). Similar to mutual information (Eq. 3.4), cumulative
mutual information (Eq. 3.14) determines the degree of mutual dependence (=relevance) as the
reduction in the uncertainty of 𝑌 given ®𝑋 , i.e., I(𝑌 ; ®𝑋) = H(𝑌 ) − H(𝑌 | ®𝑋). Cumulative mutual
information is linearly related to cumulative entropy H(𝑌 ) [318, 319, 321–323] and conditional
cumulative entropy H(𝑌 | ®𝑋),

H(𝑌 ) = −
∫
𝑦∈𝑌

∫
®𝑥∈ ®𝑋

𝑃(𝑦, ®𝑥) log 𝑃(𝑦) 𝑑®𝑥 𝑑𝑦 (3.15a)

H(𝑌 | ®𝑋) = −
∫
𝑦∈𝑌

∫
®𝑥∈ ®𝑋

𝑃(𝑦, ®𝑥) log 𝑃(𝑦 | ®𝑥) 𝑑®𝑥 𝑑𝑦 , (3.15b)
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where 𝑃(𝑦 | ®𝑥) = 𝑃(𝑦, ®𝑥)/𝑃(®𝑥) is the conditional cumulative distribution of 𝑦 ≤ 𝑌 given ®𝑥 : ∀𝑥𝑖 ≤ 𝑋𝑖,

𝑋𝑖 ∈ ®𝑋 . The conditional entropy has values in the range of 0 ≤ H(𝑌 | ®𝑋) ≤ H(𝑌 ), where the
minimum value, H(𝑌 | ®𝑋) = 0, is reached only if the variables ®𝑋 and 𝑌 are completely dependent and
H(𝑌 | ®𝑋) = H(𝑌 ) if the variables ®𝑋 and 𝑌 are independent.

Bounds restrict cumulative mutual information to a closed interval 0 ≤ I(𝑌 ; ®𝑋) ≤ H(𝑌 ) with
an upper bound dependent on 𝑌 . Using the normalized variant, hereafter referred to as fraction of
cumulative information,

D(𝑌 ; ®𝑋) := I(𝑌 ; ®𝑋)
H(𝑌 ) =

H(𝑌 ) −H(𝑌 | ®𝑋)
H(𝑌 ) , 0 ≤ D(𝑌 ; ®𝑋) ≤ 1 , (3.16)

the relevance of different feature subsets with respect to the same property of interest can be deter-
mined without requiring to introduce additional parameters or to discretize continuous features.

3.3 Empirical estimation of cumulative mutual information

Mutual and cumulative mutual information (Eqs. 3.4 and 3.14) quantify the relevance of a subset of
features based on the assumption of smooth and differentiable probability or cumulative distributions,
respectively. Due to the limited availability of data, however, the exact functional shape of the proba-
bility or cumulative distributions is not directly accessible and hence must be inferred from the data.
The estimation [324, 325] of these distributions from a limited amount of data, from the so-called
empirical estimates Ê, is therefore a crucial step in quantifying the mutual dependence of a set of
features 𝑋 ∈ ®𝑋 and the property of interest 𝑌 .

From a statistical point of view, an empirical estimate Ê consists of a set of independent and iden-
tically distributed (i.i.d.) drawn samples ®𝑍 = {(𝑦1, 𝑥1), (𝑦2, 𝑥2), . . . , (𝑦𝑁 , 𝑥𝑁)}, (𝑦𝑖, 𝑥𝑖) ∈ (𝑌, 𝑋) from
an unknown population of 𝑋 and 𝑌 . The goal is to estimate a probability 𝑝̂ or cumulative distribution
𝑃̂ that is most likely to have generated the set of available samples ®𝑍. Using the maximum likelihood
estimate [326, 327], the probability distribution 𝑝̂(𝑍 = 𝑧) or cumulative probability distribution
𝑃̂(𝑍 ≤ 𝑧) can be obtained by counting the frequency of occurring feature values,

𝑝̂(𝑍 = 𝑧) = 1
𝑁

𝑁∑︁
𝑖=1

1𝑧𝑖=𝑧 or 𝑃̂(𝑍 ≤ 𝑧) = 1
𝑁

𝑁∑︁
𝑖=1

1𝑧𝑖≤𝑧 , 𝑧 ∈ 𝑍, 𝑍 ∈ {𝑌, 𝑋} , (3.17)

where 1𝐴 denotes the indicator function that is one if 𝐴 is true, and zero otherwise. The maximum
likelihood estimate has a number of attractive limiting properties: for example, it is invariant under
transformations and converges pointwise to the actual value of E, Ê(𝑧) → E(𝑧), for every value of
𝑧 ∈ 𝑍 as 𝑁 →∞ [328, 329]. As such, it provides an unbiased estimate with respect to the underlying
population as the sample size increases to infinity [327].

3.3.1 Empirical estimators

It should be noted that empirical estimators have so far been defined in the literature only for mu-
tual information. Empirical estimators for cumulative (conditional) entropy and mutual information
therefore need to be derived in order to use them for TCMI in Section 3.3.3.
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Empirical cumulative entropy

The maximum likelihood estimate of the cumulative entropy H(𝑌 ) (Eq. 3.15a) is called the em-
pirical cumulative entropy [291, 318]. It can be obtained by calculating the empirical cumulative
distributions 𝑃̂ according to Eq. 3.17,

𝑃̂(𝑦𝑖) =
|{𝑦 ≤ 𝑦𝑖 | 𝑦 ∈ 𝑌 }|

𝑁
. (3.18)

Empirical cumulative entropy can be calculated from the set of sample data with linear time complexity
O(𝑁),

Ĥ(𝑌 ) = −
𝑁−1∑︁
𝑖=1

Δ𝑦𝑖 𝑃̂(𝑦𝑖) log 𝑃̂(𝑦𝑖) = −
𝑁−1∑︁
𝑖=1
(𝑦𝑖+1 − 𝑦𝑖) 𝑃̂(𝑦𝑖) log 𝑃̂(𝑦𝑖) , (3.19)

where 𝑦𝑖 denotes all the values of the property of interest𝑌 occurring in the data set 𝑦0 < 𝑦1 < · · · < 𝑦𝑁
in sorted order of 𝑌 1⁶.

Empirical conditional cumulative entropy

Similar to empirical cumulative entropy (Eq. 3.15b), conditional cumulative entropy can be estimated
by

Ĥ(𝑌 ; ®𝑋) = −
𝑁−1∑︁
𝑖=1

𝑁−1∑︁
𝑗=1

Δ𝑦𝑖Δ®𝑥 𝑗 𝑃̂(𝑦𝑖, ®𝑥 𝑗) log 𝑃̂(𝑦𝑖 | ®𝑥 𝑗)

= −
𝑁−1∑︁
𝑖=1

𝑁−1∑︁
𝑗1=1

. . .

𝑁−1∑︁
𝑗𝑑=1

(
𝑦𝑖+1 − 𝑦𝑖

) (
𝑥
(1)
𝑗1+1 − 𝑥

(1)
𝑗1

)
. . .

(
𝑥
(𝑑)
𝑗𝑑+1 − 𝑥

(𝑑)
𝑗𝑑

)
𝑃̂(𝑦𝑖, ®𝑥 𝑗) log 𝑃̂(𝑦𝑖 | ®𝑥 𝑗) ,

(3.20)

where 𝑃̂(𝑦𝑖, ®𝑥 𝑗) denotes the joint cumulative distribution of 𝑦𝑖 ∈ 𝑌 , ®𝑥 𝑗 ∈ ®𝑋 , ®𝑋 = {𝑋1, . . . 𝑋𝑑}, and
𝑥
(𝑘)
𝑖
∈ 𝑋𝑘 is the 𝑖 component of the 𝑘-th feature of the data set (𝑘 = 1, . . . 𝑑). In contrast to the

empirical cumulative entropy, the empirical conditional cumulative entropy has exponential time
complexity O(𝑁𝑑) and thus becomes computationally demanding for data sets with a large number
of features 𝑑 and data samples 𝑁.

Empirical cumulative mutual information

Based on the empirical and conditional cumulative entropy (Eqs. 3.19 and 3.20), the empirical estimate
of cumulative mutual information Î(𝑌 ; ®𝑋) (cf., Eq. 3.14) used for TCMI can be derived as

Î(𝑌 ; ®𝑋) =
𝑛−1∑︁
𝑖=1

Δ𝑦𝑖 𝑃̂(𝑦𝑖) log 𝑃̂(𝑦𝑖) −
1
𝑛

𝑛−1∑︁
𝑖, 𝑗=1

Δ𝑦𝑖 𝑃̂(𝑦𝑖, ®𝑥 𝑗) log 𝑃̂(𝑦𝑖 | ®𝑥 𝑗) , (3.21)

1⁶The order of samples 𝑦1 ≤ . . . ≤ 𝑦𝑁 , 𝑦 ∈ 𝑌 is also called the order statistics of 𝑌 .
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where Δ𝑦𝑖 = |𝑦𝑖+1 − 𝑦𝑖 | is defined as the difference between two consecutive values of the property of
interest 𝑌 in sorted order. Similarly, the empirical estimate for the fraction of cumulative information
(cf., Eq. 3.16) is given by

D̂(𝑌 ; ®𝑋) = 1 − 1
𝑛

[
𝑛−1∑︁
𝑖, 𝑗=1

Δ𝑦𝑖 𝑃̂(𝑦𝑖, ®𝑥 𝑗) log 𝑃̂(𝑦𝑖 | ®𝑥 𝑗)
/

𝑛−1∑︁
𝑖=1

Δ𝑦𝑖 𝑃̂(𝑦𝑖) log 𝑃̂(𝑦𝑖)
]
. (3.22)

3.3.2 Adjustment of empirical estimators for small sample sizes

Empirical estimators for mutual information are known to assign stronger dependences for larger
subsets of features than for smaller ones regardless of the underlying relationship [330]. Especially
for small data sets with a large number of features, empirical estimators for mutual information never
reach their theoretical maximum (functional dependence) or minimum (statistical independence)
[304, 331]. This has the consequence of incorrectly identifying features as relevant that are not
related to 𝑌 . A correction of empirical estimators based on mutual information is usually done by
subtracting the actual value of the empirical estimator Êwith respect to the average Ê0 of the estimator,

Ê∗(𝑌 ; ®𝑋) = Ê(𝑌 ; ®𝑋) − Ê0(𝑌 ; ®𝑋) . (3.23)
The average Ê0 vanishes for a large number of samples Ê0(𝑌 ; ®𝑋) → 0 as 𝑛 → ∞ in case there is
an exact functional dependence between ®𝑋 and 𝑌 [332]. However, Ê0 is generally greater than zero
when the number of data samples is limited and can become as large as the empirical estimator Ê

when the number of data samples is very small. Ê0 can therefore be interpreted as a correction term
for comparing the empirical estimates of different feature subsets on a common baseline: In general,
if the value of the correction term is large, more data samples are needed to reliably estimate a
dependence with respect to a property of interest. If the value of correction term is small, the adjusted
empirical estimator either indicates a strong mutual dependence between a set of features ®𝑋 and a
property of interest 𝑌 (high Ê∗(𝑌 ; ®𝑋)) or a weak mutual dependence, if the features of the data set
are not suited to estimate 𝑌 (low Ê∗(𝑌 ; ®𝑋)).

A non-zero expected value of an empirical estimator is equivalent to the mean, if the empirical
estimator is computed multiple times based on random permutations of all features independently
for each data sample,

Ê0(𝑌 ; ®𝑋) :=
1
|M|

∑︁
𝑀∈M

Ê(𝑌𝑀; ®𝑋𝑀) , (3.24)

where 𝑀 ∈ M is a specific realization of such a permutation. The underlying intuition is that
the actual value of the empirical estimator Ê may be caused by spurious (random) dependences.
Therefore, by considering all random permutations of all features independently for each data sample,
the spurious contribution of the empirical estimator can be factored out and an adjusted unbiased
empirical estimator obtained. The permutations can be computed by enumeration, which however
is impractical. An alternative description is provided by a hypergeometric model of randomness1⁷
[330, 334]. Such a model describes the permutation of variables as probability distributions, where
the average can be calculated separately for each sample in the data set.
1⁷Also known as permutation model [333].
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Y\X 𝑋1 · · · 𝑋 𝑗 · · · 𝑋𝑐
𝑌1 𝑛11 · · · · · · · 𝑛1𝑐 𝑎1
...

...
...

...
...

𝑌𝑖 · 𝑛𝑖 𝑗 · 𝑎𝑖
...

...
...

...
...

𝑌𝑟 𝑛𝑟1 · · · · · · · 𝑛𝑟𝑐 𝑎𝑟
𝑏1 · · · 𝑏 𝑗 · · · 𝑏𝑐

Fig. 3.6. An 𝑟 × 𝑐 cumulative contingency table M related to a specific realization of the joint cumulative
distribution 𝑃(𝑦𝑖, 𝑥 𝑗) given rowmarginal 𝑎𝑖 and columnmarginal 𝑏 𝑗 of two variables 𝑋 and𝑌 with rowmarginals,
𝑎𝑖 =

∑𝑐
𝑗=1 𝑛𝑖 𝑗, and column marginals, 𝑏 𝑗 =

∑𝑟
𝑖=1 𝑛𝑖 𝑗. The two cumulative marginal sum vectors 𝑎 = [𝑎𝑖] and

𝑏 = [𝑏 𝑗] are constant and satisfy the fixed marginals condition, ∑𝑟
𝑖=1 𝑎𝑖 =

∑𝑐
𝑗=1 𝑏 𝑗 = 𝑁, where 𝑁 is the number

of data samples.

A hypergeometric model of randomness has already been discussed in the literature for mutual
information [294, 304, 330, 334]. In the following, the hypergeometric model of randomness is ex-
tended to cumulative mutual information. Because the derivation is almost verbatim to the derivation
of the hypergeometric model for mutual information, detailed proofs will be omitted.

The expected value of cumulative mutual information between all permutations of two variables
𝑋 and 𝑌 with |𝑌𝑖 | = 𝑎𝑖, 𝑖 = 1, . . . , 𝑟 and |𝑋 𝑗 | = 𝑏 𝑗, 𝑗 = 1, . . . , 𝑐 equals

Î0(𝑌 ; 𝑋 |𝑀) = Î0(𝑎, 𝑏|𝑀 = [𝑛𝑖 𝑗] 𝑖=1· · ·𝑟𝑗=1· · ·𝑐) = −
𝑟−1∑︁
𝑖=1

𝑐∑︁
𝑗=1

Δ𝑦𝑖(𝑀)
𝑛𝑖 𝑗

𝑛
log

𝑛𝑖 𝑗

𝑏 𝑗
. (3.25)

Equation 3.25 can be interpreted as an 𝑟 × 𝑐 cumulative contingency table, 𝑀 = [𝑛𝑖 𝑗] 𝑖=1· · ·𝑟𝑗=1· · ·𝑐 (Fig. 3.6),
with 𝑛𝑖 𝑗 being a specific realization of the joint cumulative distribution 𝑃(𝑦𝑖, 𝑥 𝑗) given row marginal
𝑎𝑖 and column marginal 𝑏 𝑗.

By rearranging the sums in Eq. 3.25 and expressing the sum over the entire permutation of variable
values as a sum over all permutations of possible values of 𝑛𝑖 𝑗, the expected value of cumulative mutual
information can be written as

Î0(𝑌 ; 𝑋) = −
∑︁
𝑀∈M

𝑟−1∑︁
𝑖=1

𝑐∑︁
𝑗=1

Δ𝑦𝑖(𝑀)
𝑛𝑖 𝑗

𝑛
log

𝑛𝑖 𝑗

𝑏 𝑗
P(𝑌 ; 𝑋 |𝑀)

= −
𝑟−1∑︁
𝑖=1

𝑐∑︁
𝑗=1

∑︁
𝑛𝑖 𝑗

Δ𝑦𝑖(𝑛𝑖 𝑗, 𝑎𝑖, 𝑏 𝑗 |𝑀) ·
𝑛𝑖 𝑗

𝑛
log

𝑛𝑖 𝑗

𝑏 𝑗
P(𝑛𝑖 𝑗, 𝑎𝑖, 𝑏 𝑗 |𝑀) , (3.26)

where P(𝑛𝑖 𝑗, 𝑎𝑖, 𝑏 𝑗 |𝑀) is the probability to encounter an associative cumulative contingency table
subject to fixed marginals. This probability, with the cell at the 𝑖-th row and 𝑗-th column equals to
𝑛𝑖 𝑗, is identical to the hypergeometric distribution,

P(𝑛𝑖 𝑗, 𝑎𝑖, 𝑏 𝑗 |𝑀) = P(𝑏 𝑗 − 𝑛𝑖 𝑗, 𝑟 − 1, 𝑟 − 𝑖, 𝑏 𝑗 − 1) =
(
𝑟 − 𝑖
𝑏 𝑗 − 𝑛𝑖 𝑗

) (
𝑖 − 1
𝑛𝑖 𝑗 − 1

)/ (
𝑟 − 1
𝑏 𝑗 − 1

)
. (3.27)
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The hypergeometric distribution describes the probability of 𝑏 𝑗 − 𝑛𝑖 𝑗 successes in 𝑏 𝑗 − 1 draws without
replacement where the finite population consists of 𝑟 − 1 elements, of which 𝑟 − 𝑖 are classified as
successes andP(𝑛𝑖 𝑗, 𝑎𝑖, 𝑏 𝑗 |𝑀) is evaluated in the range max(0, 𝑖+𝑏 𝑗−𝑟) ≤ 𝑛𝑖 𝑗 ≤ min(𝑖, 𝑏 𝑗). Likewise,
the difference Δ𝑦𝑖(𝑀) between two consecutive values of the property of interest can be described
by a binomial distribution,

Δ𝑦𝑖(𝑛𝑖 𝑗, 𝑎𝑖, 𝑏 𝑗 |𝑀) =
1
N

𝑘max∑︁
𝑘=1

(
𝑟 − 𝑘 − 1
𝑏 𝑗 − 2

) (
𝑦(𝑖+𝑘) − 𝑦(𝑖)

)
, (3.28)

where the upper limit is given by 𝑘max = min(𝑛 − 𝑏 𝑗 + 1, 𝑟 − 𝑖) and N is the normalization constant:

N=

𝑘max∑︁
𝑘=1

(
𝑟 − 𝑘 − 1
𝑏 𝑗 − 2

)
. (3.29)

Putting all these terms together, the expected cumulative mutual information (Eq. 3.25) under the
assumption of the hypergeometric model of randomness is

Î0(𝑌 ; 𝑋) = −
𝑟−1∑︁
𝑖=1

𝑐∑︁
𝑗=1

∑︁
𝑛𝑖 𝑗

Δ𝑦𝑖(𝑀 |𝑛𝑖 𝑗, 𝑎𝑖, 𝑏 𝑗)
𝑛𝑖 𝑗

𝑛
log

(
𝑛𝑖 𝑗

𝑏 𝑗

)
·

(𝑟 − 𝑖)!(𝑖 − 1)!(𝑏 𝑗 − 1)!(𝑟 − 𝑏 𝑗)!
(𝑏 𝑗 − 𝑛𝑖 𝑗)!(𝑟 − 𝑖 − 𝑏 𝑗 + 𝑛𝑖 𝑗)!(𝑛𝑖 𝑗 − 1)!(𝑖 − 𝑛𝑖 𝑗)!(𝑟 − 1)! . (3.30)

The empirical estimator for cumulative mutual information can then be defined as

Î∗(𝑌 ; ®𝑋) = Î(𝑌 ; ®𝑋) − Î0(𝑌 ; ®𝑋) , (3.31)

D̂∗(𝑌 ; ®𝑋) = Î∗(𝑌 ; ®𝑋)
Ĥ(𝑌 )

= D̂(𝑌 ; ®𝑋) − D̂0(𝑌 ; ®𝑋) (3.32)

where Î∗(𝑌 ; ®𝑋) is the adjusted empirical cumulative mutual information, D̂∗(𝑌 ; ®𝑋) is the adjusted
fraction of empirical cumulative information, and Î0(𝑌 ; ®𝑋) is the expected cumulative mutual infor-
mation under the independence assumption of random variables.

3.3.3 Total cumulative mutual information

The empirical estimation of (cumulative) mutual information (Eq. 3.22), and especially its adjusted
variant (Eq. 3.23), provides a non-parametric deterministic measure to estimate the relevance of a
set of features that is statistically related to the property of interest.

The information-theoretic dependence measure developed here is based on the empirical estima-
tion of cumulative mutual information. Referred to as total cumulative mutual information (TCMI), it
computes the empirical estimate of cumulative mutual information using the cumulative (𝑃̂(𝑍 ≤ 𝑧))
and residual cumulative distributions (𝑃̂′(𝑍 ≥ 𝑧) = 1− 𝑃̂(𝑍 < 𝑧), Eq. 3.10) to quantify the strength of
dependence, i.e., relevance of a feature set, in terms of two empirical dependence measures (Eq. 3.22):
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D̂∗(𝑌 ; 𝑋) defined on the empirical cumulative distribution 𝑃̂ and D̂′∗(𝑌 ; 𝑋) defined on its residual 𝑃̂′
(Eq. 3.10),

D̂∗(𝑌 ; ®𝑋) = D̂(𝑌 ; ®𝑋) − D̂0(𝑌 ; ®𝑋) , D̂(𝑌 ; ®𝑋) =
[
Ĥ(𝑌 ) − Ĥ(𝑌 | ®𝑋)

]
/Ĥ(𝑌 ) (3.33a)

D̂′∗(𝑌 ; ®𝑋) = D̂′(𝑌 ; ®𝑋) − D̂′0(𝑌 ; ®𝑋) , D̂′(𝑌 ; ®𝑋) =
[
Ĥ′(𝑌 ) − Ĥ′(𝑌 | ®𝑋)

]
/Ĥ′(𝑌 ) . (3.33b)

Both measures, D̂∗(𝑌 ; 𝑋) and D̂′∗(𝑌 ; 𝑋), estimate the dependence and provide lower and upper
bounds on the mutual dependence of a feature subset (cf., Eq. 3.10). As the sample size increases to
infinity, both measures converge to the same value. However, due to the limited number of data sam-
ples and the necessary correction of the dependence measures (Section 3.3), D̂∗(𝑌 ; 𝑋) and D̂′∗(𝑌 ; 𝑋)
are different in practice. TCMI is therefore defined as the average mutual dependence of a feature
subset with respect to the property of interest as given by

〈D̂∗TCMI(𝑌 ; ®𝑋)〉 :=
D̂∗(𝑌 ; ®𝑋) + D̂′∗(𝑌 ; ®𝑋)

2 . (3.34)

TCMI shares the same properties as cumulative mutual information (cf., Sec. 3.2.5): it is a determin-
istic, non-parametric measure which is invariant under positive monotonic transformations (Eq. 3.13)
and increases monotonically with the cardinality of the feature’s subset (cf., Eq. 3.5). It can therefore
be applied to continuous features without having to introduce additional parameters, that would
otherwise affect the dependence estimates when features are rescaled. As TCMI is further corrected
using a baseline (Sec. 3.3.2), the features related to the property of interest can be determined in-
dependently of the sample size, the actual functional form of the feature-property relationship, or
the number of features in a data set. The exponential computational complexity in the calculation
of the dependence score (Sec. 3.3) may limit the current implementation of TCMI to data sets with
very few samples or features. TCMI’s applicability to data sets with larger numbers of features will
be examined in the following chapters. The focus of Section 3.5 provides a first comparison between
TCMI and other feature-identification methods on simple data sets. In Chapter 5, TCMI is finally
investigated for its application to materials-science problems.

3.4 The branch-and-bound algorithm

The identification of the strongest mutual dependence (i.e., highest relevance) of feature subsets with
respect to a property of interest, requires to estimate the mutual dependence of all feature-subset com-
binations of a data set by a search strategy that is efficient in practice. Optimal feature-selection search
strategies (Eq. 3.1) are combinatorial optimization problems for constructing efficient representations
independent of a machine-learning model. In particular, they enable parallel experimentations with
existing feature-identification methods to identify the optimal feature set ®𝑋∗ = {𝑋∗1 , . . . , 𝑋∗𝑟 } ⊆ ®𝑋 ,

®𝑋∗ = argmax
®𝑋′∈ ®𝑋

Q(𝑌 ; ®𝑋 ′) , (Eq. 3.1 of Section 3.1.2)

where ®𝑋 = {𝑋1, . . . , 𝑋𝑑} is the set of initial features and Q : ®𝑋 → 𝑌 is the feature-selection criterion
that establishes a mapping between a subset of features ®𝑋 ′ ⊆ ®𝑋 and the property of interest 𝑌 .
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The most widely used algorithm for addressing combinatorial optimization problems is branch
and bound. Branch and bound [91, 92] implicitly enumerates the space of all possible feature subsets
(the branching aspect), thereby saving time in discarding subsets whose feature-selection criterion
cannot be improved [94–96] (the bounding aspect). The branch-and-bound algorithm requires a
feature selection criterion Q that is independent of the ordering of the feature subset and increases
monotonically as the number of features in a feature subset ®𝑋 ′→ ®𝑋 gradually increases [91, 92],

Q(𝑌 ; ®𝑋 ′) ≤ Q(𝑌 ; ®𝑋) , if ®𝑋 ′ ⊆ ®𝑋 . (3.35)

As an explicit enumeration is usually not possible due to the exponentially increasing number of
potential feature subsets for data sets with many features, an essential part in the branch-and-bound
algorithm is the use of bounds to search parts of the feature space only implicitly. For example, if
feature subsets ®𝑋1, ®𝑋2, · · · , ®𝑋𝑘 are obtained by sequentially adding features from the set of features ®𝑋
one by one,

®𝑋1 ⊆ ®𝑋2 ⊆ · · · ⊆ ®𝑋𝑘 , ®𝑋𝑘 ⊆ ®𝑋 , (3.36)
the monotonically increasing feature-selection criterion Q and monotonically decreasing bounding
criterion Q [94, 237] ensure that

Q( ®𝑋1) ≥ Q( ®𝑋2) ≥ · · · ≥ Q( ®𝑋𝑘) as compared to Q( ®𝑋1) ≤ Q( ®𝑋2) ≤ · · · ≤ Q( ®𝑋𝑘) . (3.37)

The combinatorial (NP)-hard optimization problem [256, 257] can then be turned into a P-hard
(convex) optimization problem, if the bounding criterion is the maximum value of a feature-selection
criterion found so far in the search, i.e., Q(𝑌 ; ®𝑋∗) ≡ max ®𝑋∗⊆ ®𝑋 Q(𝑌 ; ®𝑋∗), such that

Q(𝑌 ; ®𝑋 ′) < Q(𝑌 ; ®𝑋∗) ⇒ Q(𝑌 ; ®𝑋 ′) < Q(𝑌 ; ®𝑋∗) , ∀| ®𝑋 ′ | ≥ | ®𝑋∗ | . (3.38)

Equation 3.38 implies that all feature subsets with more features than ®𝑋 ′ have a smaller value in the
feature-selection criterion Q than ®𝑋∗,

Q(𝑌 ; ®𝑋 ′ ∪ ®𝑋 ′′) ≤ Q(𝑌 ; ®𝑋∗) ∀®𝑋 ′′, ®𝑋 ′ ⊆ ®𝑋 , (3.39)

As a result of the suboptimality test (Eqs. 3.37 and 3.39), all feature subsets with a smaller value in the
bounding criterion than the current best value of the feature-selection criterion can be discarded in the
search [91–93, 95]. In this way, only promising candidate feature subsets are evaluated for optimality,
thereby saving time in discarding subsets whose feature-selection criterion cannot be improved and
are guaranteed to be sub-optimal1⁸ [92, 237].

To solve the combinatorial optimization problem, branch-and-bound iteratively builds a search
tree 𝑇 of feature subsets ®𝑋 ′ ⊆ ®𝑋 with increasing subset cardinality [94, 96] (Fig. 3.7 and Alg. 3.1).
Initially the tree contains only the empty subset, ®𝑆0 = ∅. At each iteration (steps 1 to 7 in the example
of Fig. 3.7), unexplored feature-subset combinations are generated by augmenting the subset ®𝑆𝑘 ⊆ ®𝑋
with one feature 𝑋 ∈ ®𝑋 at a time, e.g., ®𝑆1 = ®𝑆0 ⊕ 𝑋 , and then are added to 𝑇 (branching step).

1⁸Other feature-selection techniques based on artificial intelligence guarantee the optimum solution only in case of an
exhaustive search [237].
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Fig. 3.7. Example of a depth-first tree search strategy of the branch-and-bound algorithm [91, 92, 94–96] to
find the optimal subset of features. Shown is the tree traversal going from top to down and left to right (step 1
to 7), the feature-selection bounding criterion Q̄ (top right or left of the circles), the feature-selection criterion
Q (bottom right or left of the circles), and feature subsets (labels at the bottom of the circles). The current-best
feature subset in the iterative search is represented by a star. The sequence of exploration of feature subsets is
displayed inside the circles. Anytime the bounding criterion in some internal nodes is less than the current-best
feature-selection criterion, i.e., ∀®𝑋𝑘, Q̄(𝑌 ; ®𝑋𝑘) ≤ Q(𝑌 ; ®𝑋∗), sub-trees can be pruned (indicated by the scissors
symbol) and computations be skipped (depicted as dotted circles of feature subsets).

The expansion and combination of the feature subsets in the search space can be represented
as paths (connection of lines) and nodes (circles) of a search tree (Fig. 3.7). While traversing the
tree from the root (the empty subset) down to terminal nodes (the feature subsets) from left to
right, the feature-selection criterion Q, the bounding criterion Q, and the currently best subset ®𝑋∗ :=
argmax𝑘 Q(𝑌 ; ®𝑋𝑘) are calculated for each of the feature subsets ®𝑋𝑘. Anytime the feature-selection
criterion of a subset is found to be larger than the currently best subset ®𝑋∗, the bounding criterion
is updated and the current values of Q(𝑌 ; ®𝑋𝑘), Q(𝑌 ; ®𝑋𝑘), and ®𝑋∗ := ®𝑋𝑘 are stored (selection step).
Whenever the bounding criterion is found to be less than the current-best feature-selection criterion,
i.e., ∀®𝑋𝑘, Q(𝑌 ; ®𝑋𝑘) ≤ Q(𝑌 ; ®𝑋∗), sub-trees can be pruned and computations can be skipped (bounding
step) [94, 96]. In step 1 of Figure 3.7, for example, the branch-and-bound algorithm searches for
the best pair of features that have a higher feature-selection criterion Q than ®𝑆1. The feature subset
®𝑆2 = {𝑋1, 𝑋2} has the highest feature-selection criterion of all pairs of features. Its value Q2 and
bounding function Q̄2 are therefore used to prune further feature subsets. Because all subsets with
three features have lower bounding criteria than the current best feature-selection criterion Q2 (feature
subset ®𝑆2), these feature subsets can be ignored by the branch-and-bound algorithm. At this step, the
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Data: Features ®𝑋 , target 𝑌
Result: Optimal features ®𝑋∗ ⊆ ®𝑋

1 function branch_and_bound(𝑌 , ®𝑋):
2 ®𝑆0 = ∅;
3 subsets = {®𝑆0};
4 optimal = ®𝑆0;
5 bound = Q(𝑌 ; optimal);
6 while subsets do
7 ®𝑆𝑘−1 = subsets.𝑝𝑜𝑝(0) ;
8 for 𝑋𝑖 ∈ ®𝑋 \ ®𝑆𝑘−1 do
9 ®𝑆𝑘 = ®𝑆𝑘−1 ⊕ 𝑋𝑖;

10 Compute Q(𝑌 ; ®𝑆𝑘) and Q(𝑌 ; ®𝑆𝑘);
11 // Check suboptimality condition (I) (Eqs. 3.37 and 3.39)

12 if Q(𝑌 ; ®𝑆𝑘) < bound then
13 continue;
14 // Check suboptimality condition (II)

15 if Q(𝑌 ; ®𝑆𝑘) < Q(𝑌 ; ®𝑆𝑘−1) then
16 subsets = subsets ∪ {®𝑆𝑘};
17 // Update optimal feature subset and bound

18 if Q(𝑌 ; ®𝑆𝑘) > Q(𝑌 ; optimal) then
19 optimal = ®𝑆𝑘;
20 bound = Q(𝑌 ; ®𝑆𝑘);

21 return optimal;

Algorithm 3.1: A pseudo-code listing of the branch-and-bound algorithm [94, 96].

feature subset with all four features does not need to be evaluated as its bounding criterion is the
lowest of all feature subsets.

Then, the algorithm returns to the previous feature subset and evaluates the next unexplored
feature-subset combination for expansion. The same applies if all combinations have been evaluated
for a given feature subset. In step 3 (Fig. 3.7), for example, the algorithm backtracks and evaluates Q
and Q̄ for the feature subset ®𝑆3 = {𝑋1, 𝑋3}. Again, the feature subset {𝑋1, 𝑋3, 𝑋4} has a lower Q̄ than
Q∗ ≡ Q2 and thus can be ignored. The algorithm backtracks and evaluates Q̄ of the remaining feature
subset {𝑋1, 𝑋4}. Because the bounding criterion is lower than Q∗, it cannot be an optimal solution of
the feature-subset search, and is henceforth pruned. In step 4, the algorithm backtracks, evaluates
Q and Q̄ for the feature subset ®𝑆4 = {𝑋2} and skips further calculations as all 𝑛-tuples containing
the feature 𝑋2 have a lower Q̄ than Q∗. The algorithm backtracks again and computes all 𝑛-tuples of
feature subsets containing the feature 𝑋3 (step 5). In step 6, the branch-and-bound algorithm finds a
subset (𝑆6 = {𝑋3, 𝑋6}) with a higher Q̄ and Q, that now becomes the optimal feature subset 𝑋∗ ≡ 𝑆6
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of the search, while the feature-selection Q∗ ≡ Q6 and bounding criterion Q̄∗ ≡ Q̄6 are updated and
used for subsequent evaluations. Finally, Q̄ and Q are computed for the remaining feature subset
𝑆7 = {𝑋4} and tested for optimality.

Once the entire tree has been examined (step 7, Fig. 3.7), the search terminates and the best
feature subset as well as a ranking of feature subsets in descending order of the feature-selection
criterion value is returned. Since feature subsets are discarded only if Equation 3.39 is fulfilled, the
feature subset with the highest feature selection-criterion that best solves the combinatorial optimiza-
tion problem (Eq. 3.1) is returned (called the optimal feature subset, here: the feature subset 𝑆6),
while all other feature subsets with the highest value of the feature-selection criterion within each
path (i.e., the terminal nodes) are referred to as sub-optimal feature subsets (in the example these
are the feature subsets 𝑆2, 𝑆3, 𝑆4, and 𝑆7).

The computational complexity of the branch-and-bound algorithm is largely determined by two
factors: the branching factor 𝑏 and the depth 𝐷 of the tree [96]. The branching factor is the maximum
number of generated feature-subset combinations at each level 𝑙 of the tree and can be estimated
by the central binomial coefficient 𝑏 ≤ max𝑙=1,...,𝐷

(𝑑
𝑙

)
≈

( 𝑑
𝑑/2

)
, if ®𝑋 has 𝑑 features. The depth 𝐷 of

the tree is given by the largest cardinality of the feature subset, represented as the longest path in
the tree 𝑇 from the root to a terminal node. Thus, any branch-and-bound algorithm has worst-case
O(𝑀𝑏𝑑) computational time complexity, where 𝑀 is the time needed to evaluate the feature-selection
criterion for a feature-subset combination in the tree. However, due to the suboptimality condition
(Eq. 3.39) the algorithm is extremely efficient in practice [92].

In summary, the search strategy, the branching, and the pruning rules are crucial for the efficiency
of the branch-and-bound algorithm [94, 96]. For example, a common branching strategy keeps track
of explored feature subsets, so that feature subsets are only evaluated once and more promising
feature subsets are evaluated first. The pruning rules ensure that regions of the search space are
discarded, whenever the feature-selection criterion cannot be improved (Eq. 3.39), while the search
strategy determines the order in which feature subsets are explored. For example, feature subsets with
the highest feature-selection criterion can be evaluated first (best-first search strategy) or only the
𝑛-most promising feature subsets (beam search), which, however, leads to a sub-optimal solution of
feature subsets [237]. Another possibility is to evaluate all feature subsets at the same level of the tree
(breath-first search strategy), i.e., same feature-subset cardinality, or evaluate a feature subset until
all combinations are exhausted and the next feature subset is explored (depth-first search strategy).
All strategies differ in terms of their time complexity and memory requirements [226] and, with the
exception of the beam search, lead to the same optimal feature subset.

3.5 Comparison of feature-selection methods

The success of a feature-selection workflow in materials science hinges on the reliable identification
and characterization of relationships between a set of features and a property of interest to build
predictive machine-learning models for targeted materials-science applications (Section 2.6). Because
typical data sets in computational materials science can have hundreds to thousands of features, the
following feature-selection workflow is designed to approach the task as a search problem (Eq. 3.1) and
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Fig. 3.8. Idealized stages of a feature-selection workflow for materials science. First, materials data of 𝑛 samples
and 𝑑 features ®𝑋 = {𝑋1, . . . , 𝑋𝑑} are preprocessed and partitioned into smaller sets of 𝑛𝑖 ≤ 𝑛 samples. Second,
dimensionality reduction is performed on the partitioned data sets and the most stable and relevant features
®𝑋∗ ⊆ ®𝑋 of size 𝑑∗ = | ®𝑋∗ | are identified. In the last step, a machine-learning model is created from the identified
features ®𝑋∗ and applied to predict the materials-science property of interest.

to construct amaterials representation with reduced computational complexity for predictivemodeling.
This workflow provides a ranked list of feature subsets from a systematic search (Section 3.1.2) and
evaluates the relevance of these subsets (Section 3.1.2) based on a specified feature-selection criterion
[71, 236].

3.5.1 The workflow

A general feature-selection workflow for materials science comprises the identification of relevant
features, a stability analysis of the identified features, and the final creation of a predictive machine-
learning model (Fig. 3.8). The goal of such a feature-selection workflow is to identify a set of features
related to the property of interest 𝑌 . It involves capturing the underlying statistical relationships in
the data and to create statistical models whose prediction performance is similar to or even better
than building a model using all the initial features of a data set. Currently, most of the works [55, 161–
168, 171, 172, 177, 179, 335] either construct and select features heuristically by expertise, intuition,
or trial-and-error without actually systematically analyzing their relevance. Consequently, a pipeline
of statistical tools is proposed to evaluate the relevance of feature subsets, not limited to materials-
science data sets.

As it is computationally prohibitive for non-deterministic polynomial (NP)-hard materials-science
problems to search the whole space of possible feature subsets, one usually has to settle for approxi-
mations or search heuristics, which are generally not valid for every data set [336]. Therefore, it is
suggested to apply branch-and-bound [91–96] that combines both optimality and speed [92, 239]
and has proven to be efficient in the discovery of non-linear functional dependences [97, 294]. Branch-
and-bound guarantees to find the optimal subset of features from a feature-selection criterion without
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evaluating all possible subsets (Section 3.1.2). It requires a monotonically increasing feature-selection
criterion [92] such as total cumulative mutual information (TCMI, Section 3.3.3).

In the following, TCMI with branch-and-bound is compared with common feature-selection tech-
niques. Three examples are discussed where there is sufficient knowledge to empirically relate the
features of the data set to the targeted materials property (concrete data set) or the relevant features
are directly accessible (bivariate normal distribution, Friedman regression data set). The comparison
and benchmarking include filter methods such as Pearson’s 𝑅 [101] and Spearman’s rank 𝜌 correlation
[269], wrapper methods such as recursive feature elimination [263] and embedded methods using
machine-learning algorithms such as random forests [266], gradient boosting [249–252, 267, 268],
and the sure-independence screening and sparsifying operator [197].

3.5.2 Feature-selection methods

Pearson’s and Spearman’s coefficient of determination Pearson’s 𝑅 and Spearman’s rank 𝜌
correlation quantify the strength of linear and monotonic correlations between two variables (e.g.,
between two features or one feature and the property of interest). As it can be assumed that relation-
ships between materials properties are rarely linear or bivariate, the Pearson’s 𝑅2 : (𝑌, 𝑋) → [0, 1]
and Spearman’s 𝜌2 : (𝑌, 𝑋) → [0, 1] coefficient of determination may not be able to identify all
relevant features of a data set. Besides, to have a feature-selection criterion, one has also to define
a threshold for pruning and decide which feature to prune1⁹. Both of these are arbitrary. Pearson’s
𝑅 and Spearman’s rank 𝜌 correlation are therefore only used to analyze the data set for non-linear
pairwise monotonically related variables.

Total cumulative mutual information (TCMI) TCMI is an information-theoretic dependence mea-
sure that satisfies the monotonicity condition of the branch-and-bound algorithm (Eq. 3.35). Its score
can therefore be used with branch-and-bound to efficiently identify the strongest mutual-dependent
feature subsets to the property of interest. Because TCMI relates the strength of a dependence to
the dependence of the same set of features under the independence assumption of random variables
(Eq. 3.32), its expected value can be utilized to define a bounding criterion by estimating the adjusted
variants of empirical (cumulative) mutual information by an upper bound, i.e., Î∗(𝑌 ; ®𝑋) ≤ I

∗(𝑌 ; ®𝑋)
and D̂∗(𝑌 ; ®𝑋) ≤ D

∗(𝑌 ; ®𝑋), where

I
∗(𝑌 ; ®𝑋) = 1 − Î0(𝑌 ; ®𝑋) , (3.40a)

D
∗(𝑌 ; ®𝑋) = I

∗(𝑌 ; ®𝑋)
Ĥ(𝑌 )

≡ 1 − D0(𝑌 ; ®𝑋) . (3.40b)

Feature-selection and bounding criterion can then be instantiated with

Q(𝑌 ; ®𝑋) ≡ 〈D̂∗TCMI(𝑌 ; ®𝑋)〉 , Q(𝑌 ; ®𝑋) ≡ 1 − 〈D∗TCMI(𝑌 ; ®𝑋)〉 , (3.41)

1⁹It is to be noted that alternatives to Pearson’s 𝑅 and Spearman’s rank 𝜌 correlation, such as the normalized mutual
information [84], also require the specification of a threshold and are therefore not suitable for feature identification.
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where 〈D∗TCMI(𝑌 ; ®𝑋)〉 denotes the estimated residual empirical cumulative mutual information under
the assumption of independent random variables (Eq. 3.40),

〈D∗TCMI(𝑌 ; ®𝑋)〉 :=
D̂0(𝑌 ; ®𝑋) + D̂′0(𝑌 ; ®𝑋)

2 , 0 ≤ 〈D∗TCMI(𝑌 ; ®𝑋)〉 ≤ 1 . (3.42)

By using branch-and-bound, an optimal feature subset ®𝑋∗ ⊆ ®𝑋 is identified that has the largest joint
mutual dependence with 𝑌 . The joint mutual dependence is intrinsically related to the relevance
of a feature subset (Secs. 3.2.2 and 3.3.3). As there are possibly many feature subsets that are
statistically equivalent in their joint mutual dependence, i.e., they have the score 〈D̂∗TCMI(𝑌 ; ®𝑋 ′)〉 close
to the optimal subset ®𝑋∗, all these subsets might be equally suited to estimate 𝑌 . Therefore, in the
experiments below, all features of the topmost feature subsets are considered relevant, if the difference
between the score of the subset 〈D̂∗TCMI(𝑌 ; ®𝑋 ′)〉 and the optimal feature subset 〈D̂∗TCMI(𝑌 ; ®𝑋∗)〉 is
smaller than 0.01, i.e.,

ΔTCMI(𝑌 ; ®𝑋∗, ®𝑋 ′) = 〈D̂∗TCMI(𝑌 ; ®𝑋∗)〉 − 〈D̂∗TCMI(𝑌 ; ®𝑋 ′)〉 ≤ 0.01 . (3.43)

The value 0.01 can be considered as a convergence threshold (here the score must increase by at least
more than 1% to be considered a new optimal feature subset). A high value results in terminated the
search for the (sub-)optimal feature set too early, a low value leads to an unnecessarily long evaluation
time.

Optimal feature subsets may be only weakly related to the property of interest. Therefore feature
subsets are considered relevant, only if the value 〈D̂∗TCMI〉 is larger than or equal to the midpoint of
the total range of the score, 〈D̂∗TCMI(𝑌, ®𝑋∗)〉 ≥ 0.5. This threshold is based on the assumption that the
correction term is smaller than the joint mutual dependence (Sec. 3.3.2) and is used in the following
to decide whether an actual mutual relationship can be reliably determined or not2⁰.

Recursive feature elimination (RFECV) Recursive feature elimination [263] is a greedy feature-
selection method used to eliminate multivariate dependences between features [236, 337]. It is based
on backward elimination to first assign weights to features by constructing a machine-learning model
(e.g., support-vector machines [195, 196], random forests [266], linear regression [51]), to then
remove the features with the lowest weights, and finally to recursively consider smaller subsets of
features until the model with the lowest prediction error is identified. In the examples below, recursive
feature elimination is combined with the random-forest algorithm [266] to find the optimal feature
subset for a machine-learning model. The optimal subset of relevant features is obtained with 10-fold
cross-validation (Section 2.5).

Gradient-boosting decision trees with permutation feature importance (FS-GBDT) Ensem-
ble machine-learning methods such as random forest [266] and gradient boosting [249–252] are
machine-learning models based on decision trees [198, 199] (cf., Appendix A.2). They estimate a
2⁰Instead of using a threshold, one could also sequentially create a statistical model from the identified feature subsets in
decreasing order of the score and simply select the feature subset that generates the statistical model with the highest
prediction performance (cf., Sec. 5.2).
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feature’s relevance by using an inbuilt feature-importance measure similar to TCMI and the baseline
adjustment for information-theoretic measures (Eq. 3.23). A widely-known feature-importance mea-
sure, called permutation feature importance, randomly permutes each feature 𝑋 ∈ ®𝑋 and compares
the resulting model performance before and after permuting 𝑋 [266, 338]. A feature is considered
relevant, if the model performance decreases significantly with the permuted feature, i.e., when the
feature is related to the property of interest. A feature is considered redundant if the prediction
performance of the model remains unaffected, i.e., when the property of interest is independent of
the feature or the feature is multi-collinear related to another feature in the feature subset. In the
examples below, permutation feature importance is computed with gradient boosting [252, 267, 268]
using scikit-learn [44] and the rfpimp21 package [100].

Feature selection using the sure-independence screening and sparsifying operator (FS–
SISSO) The sure-independence screening and sparsifying operator (SISSO) [197] combines sym-
bolic regression with compressed sensing [191] to create billions of candidate feature combinations
prior to selecting those that are suitable for estimating the property of interest (cf., Appendix A.1).
Originally designed for generating deterministic symbolic-regression models based on algebraic op-
erations of analytical functions, SISSO has since been used to relate the selected features or feature
combinations of the model to the property of interest [340–344]. However, the relevance of features
or feature combinations may be tightly coupled to the created SISSO model and the chosen parameter
settings (cf., Sec. 3.1.2). Therefore, a hyper-parameter optimization is performed to identify the
relevant features of a data set by finding the model with the optimal parameter settings (cf., Sec-
tion 2.4). In all experiments, relevant features are determined with 10-fold cross-validation using all
of the available algebraic operators (cf., Appendix A.1). The number of symbolic-regression terms is
determined by applying the operator set recursively up to three times (rung ≤ 3)22, while keeping
only those terms with a maximum of maxcomplexity = 522 features and subs_sis = 30022 feature
combinations in each iteration (cf., Appendix A.1).

3.5.3 Examples

Practical examples from materials science face the problem of statistically modeling a relationship
between a set of features and a targeted property without knowing the underlying process that
generated the data. Idealized examples by contrast are often oversimplified and therefore have
difficulties in capturing the complexity of materials data. Unfortunately, there are no materials-
science data sets that can be used to compare different feature-selection methods on the basis of a
common ground truth. Therefore, three examples focusing on different aspects of feature identification
are discussed to evaluate the feature-selection methods for their applicability to materials-science
applications. In the first example, the feature-selection methods have to identify the two out of ten
features to accurately model a bivariate normal distribution. The second example focuses on the
identification of interrelated relevant features. The third example examines methods for selecting
features based on experimentally collected materials data where the underlying relationships between
21The eli5 package [339] provides similar functionality and can be used instead of the rfpimp package [100].
22The name refer to the setting defined in the Fortran code of the SISSO paper [197].
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Fig. 3.9. Bivariate normal probability distribution with mean ®𝜇 =
[
0; 0

]
and covariance matrix Σ =[

1 0.5; 0.5 1
]
. A scatter plot with 500 data samples is shown with contour lines of equal probability den-

sities (®𝑥; ®𝜇, Σ) ∈ {0.01, 0.02, 0.05, 0.08, 0.13}.

the features and the property of interest are not directly known, but sufficient knowledge exists to
empirically relate the features of the data set to the targeted materials property.

Bivariate normal distribution

The identification of a bivariate normal distribution in a high-dimensional space focuses on the ability
of TCMI and feature-selection techniques to identify non-linear relationships even when other unre-
lated features are present in the data set. For this purpose, 𝑛 = 500 samples are drawn from a bivariate
normal distribution (Fig. 3.9a.) with zero mean ®𝜇 =

[
0; 0

]
and covariance matrix Σ =

[
1 0.5; 0.5 1

]
,

N(®𝑥; ®𝜇, Σ) = 1
√
4𝜋2 det Σ

exp
[
−12 (®𝑥 − ®𝜇)

ᵀ
Σ−1(®𝑥 − ®𝜇)

]
, ®𝑥 =

[
𝑋1; 𝑋2

]
. (3.44)

Likewise, 𝑛 samples each from a univariate normal and scalar exponential, logistic, triangular, uniform,
Laplace, Rayleigh, Poisson, and Weibull distribution are drawn and added to the list of available
features, all with zero mean 𝜇 = 0 and identity covariance matrix Σ = 1. In total, the data set consists
of 11 features ®𝑋 = {𝑋1, 𝑋2, . . . 𝑋11}, of which only ®𝑥 = {𝑋1, 𝑋2} are related to 𝑌 = N(®𝑥; ®𝜇, Σ). Tests
are performed on 50, 100, 200 and 500 data samples in order to investigate the dependence of the
feature-selection criterion on the number of data samples. Results are reported in Tab. 3.1.

In terms of Pearson’s or Spearman’s rank correlation coefficient, none of the features 𝑋𝑖 ∈ ®𝑋 have
coefficients of determinations higher than 1% with respect to the bivariate normal distribution 𝑌 , i.e.,
𝑅2(𝑌, 𝑋𝑖) < 0.01 or 𝜌2(𝑌, 𝑋𝑖) < 0.01. As there are no features in the data set that are pairwise non-
linear monotonically related to 𝑌 , the challenge of feature-selection methods is therefore to identify
the features 𝑋1 and 𝑋2 from their non-linear relationship to 𝑌 .
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# Dependence
Measure

Features
X1 X2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋9 𝑋10 𝑋11

50
sa
m
pl
es TCMI X∗ X∗

RFECV X X
FS-GBDT X X
FS-SISSO X X X

10
0
sa
m
pl
es TCMI X∗ X∗

RFECV X X
FS-GBDT X X X X X
FS-SISSO X X X X X

20
0
sa
m
pl
es TCMI X X

RFECV X X
FS-GBDT X X X X X
FS-SISSO X X X

50
0
sa
m
pl
es TCMI X X

RFECV X X
FS-GBDT X X
FS-SISSO X X

Tab. 3.1. A table of identified feature (subsets) for the prediction of the bivariate normal distribution obtained
by total cumulative mutual information (TCMI, Section 3.3.3), recursive feature elimination (RFECV) [263],
gradient boosting (FS-GBDT) [249–252], and the sure-independence screening and sparsifying operator (FS-
SISSO) [197] for different number of data samples. The relevant features of the bivariate distribution are
typeset in bold (X1 and X2). Features of the data set also include the normal 𝑋3, exponential 𝑋4, logistic 𝑋5,
triangular 𝑋6, uniform 𝑋7, Laplace 𝑋8, Rayleigh 𝑋9, Poisson 𝑋10, and Weibull 𝑋11 distribution. Features marked
with an asterisk (X∗) have a TCMI value smaller than 〈D̂∗TCMI〉 < 0.5.

TCMI, RFECV, FS-GBDT, and FS-SISSO correctly identify the relevant feature subset ®𝑋∗ = {𝑋1,
𝑋2} of the bivariate normal distribution as the number of data samples increases to 500 (Tab. 3.1).
Using only 50 data samples, RFECV is the only method that correctly identifies 𝑋1 and 𝑋2 as relevant.
Between 50 and 500 data samples, FS-GBDT as well as FS-SISSO identify a superset ®𝑋 ′ of the relevant
feature subset ®𝑋∗ = {𝑋1, 𝑋2}. TCMI requires slightly more data samples than any of the other feature-
selection methods (more than 100 data samples) as its score is intrinsically linked to the strength of
the mutual dependence between the features and the property of interest: TCMI starts with a score
close to independence for 50 data samples and increases slowly to a score of 〈D̂∗TCMI〉 = 0.6 for 500
data samples, indicating that more samples than 500 are needed for TCMI to actually reliably identify
the relevant features of this data set.

Friedman regression data set

The second feature-selection problem addresses the identification of relevant features in the presence
of multi-collinear features by using the Friedman regression data set [347]. The data set has five
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Fig. 3.10. Graphical representation of the Friedman data set [347]. Shown are the cross-sections of the target
function (Eq. 3.45) with the five relevant features 𝑋1, . . . , 𝑋5 as contours or lines and the distribution of the
500 data samples in the six-dimensional hypercube 𝑋𝑖 ∈ [0, 1].

relevant features 𝑋1, . . . , 𝑋5 that are randomly generated from univariate uniform distributions of
which three features are non-linearly and two features are linearly related to the response 𝑌 = 𝑓 ( ®𝑋),

𝑌 = 10 sin(𝜋𝑋1𝑋2) + 20(𝑋3 − 0.5)2 + 10𝑋4 + 5𝑋5 + 𝜖 . (3.45)

Here, 𝜖 is an error term (cf., Eq. 2.1) that is modeled as the standard normal deviate N(0, 1). The
function is evaluated on the hypercube, 𝑋𝑖 ∈ [0, 1] (Fig. 3.10). Originally, five univariate uniform
distributions 𝑋6, . . . , 𝑋10 unrelated to 𝑌 were added to increase the number of the features in the data
set. In this example, Eq. 3.45 is considered with four redundant features 𝑋11, . . . , 𝑋14 in addition,
which are strongly correlated with 𝑋1, . . . , 𝑋4 and were generated by 𝑔(𝑋𝑖) = 𝑋𝑖 +N(0, 0.025).

Again results show that none of the features are highly pairwise non-linear monotonically related
with the property of interest in terms of Pearson’s or Spearman’s coefficient of determination (𝑅2(𝑌,
𝑋𝑖), 𝜌2(𝑌, 𝑋𝑖) ≤ 0.4) and that TCMI, RFECV, FS-GBDT, and FS-SISSO correctly identify all of the
relevant features as the number of data samples increases to 500 (Tab. 3.1). More specifically, TCMI
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# Dependence
Measure

Features
X1 X2 X3 X4 X5 𝑋6 𝑋7 𝑋8 𝑋9 𝑋10 𝑋11 𝑋12 𝑋13 𝑋14

50
sa
m
pl
es TCMI X∗ X∗ X∗

RFECV X X
FS-GBDT X X X
FS-SISSO X X X X X X X

10
0
sa
m
pl
es TCMI X X X

RFECV X X X X X X X
FS-GBDT X X X X X X X X
FS-SISSO X X X X X

20
0
sa
m
pl
es TCMI X X X X X

RFECV X X X X X X X X
FS-GBDT X X X X X X X X X
FS-SISSO X X X X X X

50
0
sa
m
pl
es TCMI X X X X X X X X X

RFECV X X X X X X X X X
FS-GBDT X X X X X X X X X
FS-SISSO X X X X X X X

Tab. 3.2. Identified features for predicting the response function (Eq. 3.45) of the Friedman regression data
set [347] obtained by total cumulative mutual information (TCMI, Section 3.3.3), recursive feature elimination
(RFECV) [263], gradient boosting (FS-GBDT) [249–252], and the sure-independence screening and sparsifying
operator (FS-SISSO) [197] for different number of data samples. Features marked with an asterisk (X∗) are
from a feature subset with a TCMI value smaller than 〈D̂∗TCMI〉 < 0.5. The relevant features of the Friedman
regression data set are typeset in bold (𝑋1 − 𝑋5). This data set also has four redundant features (𝑋11 − 𝑋14)
and five irrelevant features (𝑋6 − 𝑋10).

identifies less relevant features with the same number of data samples as compared to the other
feature-selection techniques. Incidentally, repeating the experiment with a different randomization of
the data samples also shows that TCMI is unstable with less than 100 data samples, whereas RFECV,
FS-GBDT and FS-SISSO are unstable in the feature selection with less than 500 data samples. In
particular with data sets less than 200 data samples, they identify redundant features and sometimes
one of the unrelated features 𝑋6, . . . , 𝑋9 as relevant. This feature-selection instability is due to the
fact that the identification task is not unique and the features 𝑋1𝑖, 𝑖 ∈ {1, 2, 3, 4} are collinear
related to 𝑋𝑖. As such, collinear features are interchangeable in their relevance and only one of the
two features is needed to effectively estimate the target property 𝑌 . Whereas this issue plays no
role in the statistical modeling of the feature-property relationships, it poses serious problems in
the identification of relevant features and therefore may require to remove multi-collinear features
prior to machine learning, e.g., with feature-dependence maps [100] possibly in combination with
minimal-redundancy-maximal-relevance schemes [230].
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Fig. 3.11. Histogram (frequency counts) of the statistical distributions of the features 𝑋1 . . . 𝑋8 and the target
property 𝑌 in the concrete compressive strength data set [350, 351].

High-performance concrete

In this example, the behavior of concrete structures under external loads is studied using the com-
pressive strength, the most fundamental property of concrete. Concrete consists of Portland cement,
water, and an aggregate (sand, gravel, or crushed stones) and is one of the most widely used and
versatile building materials in the world [348]. The making of high-performance concrete includes
supplementary cementitious materials, such as fly ash (a coal combustion product), blast furnace slag
(a by-product of iron and steel production), and chemical admixtures to improve the flow character-
istics of concrete, such as superplasticizers. As high-performance concrete is a composite material
that exhibits a strongly non-linear relationship with compressive strength, it is of great importance to
build a predictive model to estimate the compressive strength for specific applications.

A total of eight features ®𝑋 = {𝑋1, . . . , 𝑋8} (Fig. 3.11) and 𝑛 = 1030 data samples from 17 different
sources were compiled and tested to estimate the compressive strength of high-performance concrete
[350, 351]. Although the underlying relationships between the ingredients and the compressive
strength are not known, this data set is relatively well understood: cement 𝑋1, water 𝑋2, blast-furnace
slag 𝑋6, and curing time 𝑋8 are the most relevant features in estimating the compressive strength
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# Dependence
Measure

Features
𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8

50
sa
m
pl
es TCMI X∗ X∗ X∗ X∗ X∗

RFECV X X X X
FS-GBDT X X X X X X
FS-SISSO X X X X X X X

10
0
sa
m
pl
es TCMI X X X X X X

RFECV X X X X
FS-GBDT X X X X X X
FS-SISSO X X X X X X

20
0
sa
m
pl
es TCMI X X X X X X X X

RFECV X X X X X
FS-GBDT X X X X X X
FS-SISSO X X X X X X X

50
0
sa
m
pl
es TCMI X X X X X X X X

RFECV X X X X X X X X
FS-GBDT X X X X X X X X

FS-SISSO X† X† X† X†

Tab. 3.3. Identified features for the prediction of the compressive strength of high performance concrete [350,
351] obtained by total cumulative mutual information (TCMI, Section 3.3.3), recursive feature elimination
(RFECV) [263], gradient boosting (FS-GBDT) [249–252], and the sure-independence screening and sparsifying
operator (FS-SISSO) [197] for different number of data samples. The features in the dataset are: cement 𝑋1,
water 𝑋2, fine aggregate (sand) 𝑋3, coarse aggregate (gravel, crushed stone) 𝑋4, superplasticizer 𝑋5, blast-
furnace slag 𝑋6, fly ash 𝑋7, and curing time 𝑋8. Features marked with an asterisk (X∗) are from a feature
subset with a TCMI value smaller than 〈D̂∗TCMI〉 < 0.5. Features marked with a dagger (X†) are from a SISSO
model 𝑓SISSO with a Pearson’s coefficient of determination of 𝑅2(𝑌, 𝑓SISSO( ®𝑋∗)) < 0.9.

of high-performance concrete [348, 350, 351]. Furthermore, lower water content in relation to the
cement content leads to a stronger concrete [352]. However, studies have also shown that all features
are strongly multi-collinear interrelated [348]. It is thus not surprising that TCMI, RFECV, and FS-
GBDT identify all features of the data set as relevant as the number of data samples increases to
500 (Tab. 3.3), whereas FS-SISSO emphasizes the relevance of cement, water, slag, and curing time.
Feature identification therefore faces the challenge that multi-collinear features can seriously impact
the performance of these methods (i.e., larger feature subsets must be evaluated) and these also may
prevent the identification of feature subsets with fewer features than present in the data set (as in the
case of TCMI, RFECV, and FS-GBDT).

Using machine-learning algorithms for feature identification also show that a feature identification
may be effected by materials which cannot be reliably estimated by a global statistical model such
as with symbolic regression. When searching for relevant features, it is then seen that the prediction
performance of a global model decreases significantly as the number of data samples increases. This
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is apparent, for example, for FS-SISSO: the prediction performance of the generated SISSO model
degrades significantly from 𝑅2(𝑌, 𝑓SISSO( ®𝑋∗)) = 0.92 for 200 data samples to 𝑅2(𝑌, 𝑓SISSO( ®𝑋∗)) = 0.8
for 500 data samples. The reason is that the top 10% of materials with the largest prediction errors
(which cannot be accurately represented by the SISSO model) are characterized by an average 2.4
times higher age, 1.6 times higher slag, and 1.6 times lower fly ash content than the other materials in
the data set. Since a hyperparameter optimization is performed for FS-SISSO (by varying the number
of symbolic regression terms and the number of features in each term), a symbolic regression model
is selected for 500 data samples that has a smaller number of terms and features than for 200 data
samples. Applying a feature-selection method to real (material) data sets therefore faces the challenge
that, due to different groups or classes of material, a hyperparameter optimization during feature
identification potentially leads to models with lower prediction performance the more data samples
are used. Therefore, when different groups or classes of materials are likely to be present in a data set
and the feature-identification method needs to be hyperoptimized, local models or dedicated methods
using data-mining tools such as subgroup discovery [353–356] must be utilized when searching for
the relevant features of the property of interest.

3.6 Discussion

Feature identification is an important part of a successful data-mining pipeline to identify the features
that are related to the property of interest [228]. These features can then be used to build less complex
statistical models with lower computational costs for statistical estimation than building a model from
the full set of initial features of a data set.

Since it is difficult to identify the features related to the property of interest based on a non-linear
combination with feature extraction [227], feature selection [71, 72] is used to identify the relevant
features from the initial set of features (Section 3.1). Feature-selection strategies can be categorized
into three groups, depending on how the relevance of a feature subset is estimated [72, 260]: filters,
wrappers, and embedded methods (Fig. 3.2). Targeted to best identifying the set of features for the
property of interest, embeddedmethods [265] simultaneously perform feature selection during model
construction, while wrapper methods [72] evaluate the relevance of a set of features tailored to a
specific machine-learning algorithm. In data sets with a large number of features [211, 244–246],
however, both embedded and wrapper methods are computationally demanding and are sensitive to
multi-collinear features [99, 357] (Section 3.5). In contrast, filtermethods can identify feature subsets
independently of a machine-learning model, thus providing the freedom to choose a machine-learning
algorithm that best works for the prediction of a property of interest [86–89] (Section 3.2).

Typical data sets can have hundreds to thousands of features. For most problems, the number of
features for an optimal feature subset varies considerably with the number of data samples and the
property of interest [51, 52]. Therefore, a manual identification of possible candidate feature subsets
is often not feasible. Branch-and-bound [91–94, 96] has been proven to be efficient in the search
of candidate feature subsets [97, 294] and guarantees to find the optimal set of features, without
evaluating all possible subsets (Section 3.1.2). It requires a feature-selection criterion that satisfies
the monotonicity condition in [92]. Because most evaluation metrics for machine learning are non-
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monotonically increasing and the search for relevant features resembles that of information-theoretic
concepts, total cumulative mutual information (TCMI, Section 3.3.3) was developed as a monotonic
increasing feature-selection criterion. TCMI combined with branch-and-bound finds the optimal set of
features by quantifying the mutual dependence between a set of features and the property of interest.
Applied to each feature-subset combination in the data set, it can be used to rank the feature subsets
in descending order of their strength of mutual dependence.

Three examples focusing on different aspects of feature identification were discussed and TCMI
was compared with existing methods for identifying relevant features based on machine learning
(RFECV, FS-GBDT, FS-SISSO). In all three examples, the relationship between the features and the
property of interest were either sufficiently known through empirically relating the features of the
data set to the targeted materials property (concrete data set) or the relevant features were directly
accessible (bivariate normal distribution, Friedman regression data set). Feature-selection methods
couldcan therefore be compared and tested for their applicability based on a common ground truth. All
tested feature-selection methods produce consistent results as the number of data samples increases.
However, as the examples have shown, machine learning-based feature-selection methods are sensitive
to multi-collinear features (Tabs. 3.2 and 3.3): RFECV, FS-GBDT, and FS-SISSO may select features
that are not relevant at all (bivariate distribution, Tab. 3.1) and FS-SISSO has the tendency to omit
redundant features, especially when the data set is small (Friedman regression data set Tab. 3.2,
concrete data set Tab. 3.3). The investigated feature-selection methods based on machine learning
therefore provide no reliable indicator of the relevance of all features in a data set.

In contrast, TCMI is intrinsically linked to the mutual dependence of the features and the property
of interest and performs similarly well to established feature-selection methods (Section 3.5). In
particular, the score of TCMI provides an indicator of the quality of the identified feature (subsets)
and enables an assessment of when more data samples or better descriptive features are needed
(Sec. 3.3.2). Especially when the cardinality of the feature subsets is high and the relevance scores
are low, TCMI indicates that regardless of the machine-learning algorithm, better descriptive features
are needed for a given application.

In some cases like in the bivariate normal distribution, TCMI identifies the relevant features of the
data set with a smaller amount of data than FS-GBDT or FS-SISSO, but requires more data samples
than RFECV. However, in the Friedman regression data set, TCMI is the only method that falsely
assigns relevance to unrelated features with only 50 data samples, albeit with a low dependence
score. In the concrete data set, TCMI first identifies a set of features with a low dependence score,
but then identifies all features as relevant with less number of data samples than RFECV or FS-GBDT.
TCMI successively identifies more features as relevant as the number of data samples increases, but
requires larger amount of data to identify the same number of relevant features than the investigated
feature-selection methods based on machine learning (RFECV, FS-GBDT, FS-SISSO). In the worst
case, this results in machine-learning models, which potentially have larger prediction errors than
models created with features from feature-selection methods using machine learning. In contrast,
RFECV, FS-GBDT, and FS-SISSO have been shown to identify the related features to the property of
interest with the least number of data samples. However, identified relevant features in RFECV, FS-
GBDT, and FS-SISSO vary considerably (Tabs. 3.2 and 3.3), especially when there are multi-collinear
features [99] and the data sets are small (Tabs. 3.1 and 3.3). The number of data samples and the
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interrelationships between features therefore largely determine the applicability of feature-selection
methods. A framework is therefore developed in the next chapter to reliably relate the relevance
of a feature subset to the prediction performance of statistical models independent of the applied
feature-selection algorithm.





Chapter 4

A framework for feature identification and
model construction

Feature identification is a multi-faceted combinatorial optimization problem of the search strategy,
the feature-selection method, and the assessment of the relevance of features and feature subsets
[260]. Therefore, a framework is developed to provide a relevance and uncertainty estimation of
possible feature subsets on the basis of a limited number of materials within a probabilistic tolerance.
The framework is explained in the following and its application is discussed in the next Chapter
(Chapter 5). The extensive and systematic search for features related to the property of interest
within an automated framework for machine learning is a combination of available methods and new
approaches

• for applying feature identification independently of the feature-selection algorithm,
• for visualizing multivariate statistical relationships of multivariate features,
• for estimating the uncertainty of statistical models using prediction intervals for each new

prediction of the models,
• for identifying so-called anomalous materials whose property of interest cannot be accu-

rately estimated by a statistical model based on the set of available data samples.
As discussed in Section 3.1.2: there are three types of feature-selection methods: filter, wrapper, and
embedded methods. All methods have their own advantages and disadvantages in identifying the
relevant features for a specific application. Filter methods, on the one hand, have the advantage of
identifying features without making assumptions about the actual feature-property relationships in
the data. However, machine-learning models built on the identified sets of features from filter methods
can have very little predictive power. First, because feature identification and model construction
are two completely different tasks [243, 358–360]. And second, because the feature sets identified
may not contain all the features that a machine learning algorithm needs to create the most accurate
model from the set of data (cf., Section 3.5).

Wrapper and embeddedmethods, on the other hand, identify the related features to the properties
of interest based on an evaluation measure of a machine-learning model (e.g., from the Pearson’s
coefficient of determination, root-mean-squared error, etc.). Therefore, wrapper and embedded
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Filter methods
(e.g., information measures such as mutual
information, total cumulative mutual informa-
tion) model-agnostic

Q(Y ; ~X) ≡ 〈D̂∗TCMI(Y ; ~X)〉, . . .

D̂∗
TCMI - estimated empirical cumulative

mutual information

Optimal feature subset ~X ∗TCMI, . . .

~X ∗TCMI, . . .

Wrapper methods
(e.g., recursive feature elimination)

model-dependent

Q(Y ; ~X) ≡ L(Y , fML(~X))

fML - machine-learning algorithm
L - evaluation metric (loss function)

Optimal feature subset ~X ∗ML
+ highly predictive model
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← Optimization →
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Fig. 4.1. A flow diagram of the proposed feature-selection workflow with filter and wrapper methods using the
same search strategy, namely the branch-and-bound algorithm [91, 92] (Section 3.4), for identifying relevant
feature subsets for the prediction of the properties of interest.

methods are more efficient than filter methods in terms of identifying feature-property relationships
for the statistical modeling of the data. However, the limited availability of data and multivariate
features may complicate the identification of related features to the properties of interest withmachine
learning (Section 2.6). Especially when the data sets contain a very small number of samples1, while
having a large number of features (as is the case in most of materials science), machine-learning
algorithms may therefore provide insufficient results.

To actually compare identified feature subsets in a common framework applicable to filter and
wrapper methods, in this thesis, a search strategy is proposed that uses the same search strategy
independently of the feature-selection criterion (Fig. 4.1). As the branch-and-bound search algorithm
(Section 3.4) is in general not limited to information-based measures [361], it is adapted for use with
a machine-learning algorithm to identify the set of features related to a property of interest.

A machine-learning-based feature selection with the branch-and-bound algorithm has the advan-
tage of constructing machine-learning models with a successively increasing number of features and
time complexity in the evaluation. As the evaluation with machine-learning models is performed from
simple to more complex feature subsets, optimal feature subsets can be found quickly with accurate
predictive capabilities, avoiding potential problems with (non-linear) interrelated features [59, 362]
or high-dimensional materials spaces [211, 244–246]. The identified feature subsets can then be used
to assess and optimize the materials representation (Chapter 3), to visualize non-linear statistical
relationships in the data (Section 4.2), or to build an ensemble of statistically equivalent models to
robustly and reliably predict the property of interest within a probabilistic tolerance (Sections 4.3
and 4.4).
1The size of the data set is estimated by its ratio to the number of features. An exact number of samples is therefore difficult
to estimate. As a rough estimate, data sets with less than 1000 data samples can always be considered small.
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The prediction performance of a machine-learning model is commonly expressed in terms of a
single metric (such as the root-mean-squared error, mean-absolute error, etc.) using resampling tech-
niques (Section 2.5) such as cross-validation [52, 201] or bootstrapping [203–205]. However, a single
metric, while useful for estimating the goodness-of-fit of the model, does not provide any information
about the actual error between the model’s prediction and the property of interest [363]. Hence, it can
be expected that the model’s prediction may vary significantly from the actual value of the property
of interest in regions for which there are not enough data (cf., [208]). Consequently, an uncertainty
estimate is desirable and even necessary in many materials-science applications [104] to evaluate the
consistency of the model with the data [364], to increase the reliability and credibility of the model’s
estimations [102, 103], and to identify regions of the materials space that are underrepresented or
are promising to explore [363, 365]. There are a number of ad hoc approaches for generating un-
certainty estimates. For instance, Gaussian process regression [108, 109] and deep neural networks
[105–107] are two commonly used machine-learning algorithms that provide uncertainty estimations
either based on Bayesian probabilities or on distributions from the internal parameters of the model.

A general methodology applicable to any machine-learning algorithm for estimating the uncer-
tainty of individual statistical-model predictions is conformal prediction (cf., Section 4.3.1). Conformal
prediction [62–64] uses the same set of data as for statistical modeling to determine precise levels
of confidence for new predictions within a probabilistic tolerance – and can therefore be employed
not only to identify regions of the materials space that are underrepresented or cannot be accurately
modeled by the specified machine-learning models, but also to identify materials which are potentially
subject to some other mechanism of the materials behavior (cf., Section 4.4).

This chapter lays out the foundations for developing a common framework (Section 5.1) for
identifying relevant features and building data-driven statistical models (Section 5.2). It introduces
and discusses practical algorithms to measure the relevance of feature subsets with information
measures or machine-learning algorithms (Alg. 4.1), to quantify multivariate feature relationships
(Section 4.2), to estimate the uncertainty in the predictive modeling (Alg. 4.2), and to identify ma-
terials whose property of interest are difficult to estimate based on a generated statistical model
(Alg. 4.3). Section 4.1 starts by extending the branch-and-bound algorithm to non-monotonic increas-
ing feature-selection criteria (cf., Section 3.4). In order to visualize multivariate feature relationships,
feature-dependence maps are introduced in Section 4.2 and combined with the developed model-
agnostic feature-identification method as described in Section 4.1. The uncertainty of the predictive
modeling, discussed in Section 4.3, is based on a conformal prediction [60–64, 366] to estimate the
range of a prediction within a probabilistic tolerance. Based on that, materials can be identified whose
property of interest cannot be accurately predicted by a statistical model. To this end, a heuristic is
devised in Section 4.4 to determine how different a material is compared to a set of other materials in
a data set. The complete framework is then discussed in more detail in the next Chapter (Chapter 5)
along with practical applications from materials science (Section 5.2).
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4.1 A general feature-identification workflow for materials science

In materials-science applications with hundreds and thousands of features, dimensional-reduction
techniques (Section 3.1) are often a necessary step in modeling complex relationships in the data.
There are applications where the focus of dimensionality reduction (cf., Section 3.1) is primarily on
reducing the computational cost and the prediction error of the machine-learning models to accelerate
the screening of new materials. These applications include recommendation systems2 and high-
throughput approaches in which machine-learning algorithms are used in a calculation funnel, where
at each level selection criteria (stability, costs, environmental sustainability, etc.) rule out materials
and progressively more computationally or experimental intense methods are used to determine
candidate materials in a multi-objective optimization [137]. The search for the relevant features for a
particular application or a machine-learning algorithm with dimensional reduction (more specifically
feature selection, cf., Section 3.1.2) instead requires relating the (constructed) features to the property
of interest via a mathematical expression or a statistical model based on the features of a data set.
The crucial point is that a feature identification prior to statistical modeling should not significantly
degrade the prediction performance of amachine-learningmodel, as otherwise existing and potentially
important feature-property relationships may not be captured and the machine-learning model may
not be applicable to new data.

As with all other feature-selection criteria for filtermethods, informationmeasures identify relevant
features independent of the machine-learning model (Fig. 4.1). However, the identified features
may not necessarily be related to the prediction performance (or errors) of the generated machine-
learning models (especially if the machine-learning algorithm makes assumptions about the data
that are not reflected in the filter method). In addition, information measures may require more
data than machine-learning algorithms to identify the same features related to the properties of
interest (cf., Section 3.5). Since in data-driven materials-science applications the amount of data is
often limited and the feature relationships are multifaceted and intricate, information measures –
despite providing a non-parametric and deterministic characterization of statistical relationships in
the data on the basis of a rigorous mathematical theory of feature relevance (Section 3.2) – may not be
practical. In contrast, wrapper methods using machine-learning algorithms are capable of estimating
the properties of interest even with small amounts of data and of performing dimensionality reduction,
while optimizing the machine-learning model for the specific materials-science application under
consideration [55, 59, 161, 191, 197, 221, 223, 224, 292]. However, machine-learning algorithms
are typically heuristic in that they usually do not guarantee that all features required in the statistical
modeling are actually statistically related to the property of interest (cf., Section 3.5). This is because
the relevance of strongly related features can be spread across multi-collinear features and therefore
features of lower relevance may appear stronger related to the property of interest for the machine-
learning algorithm than the actual related features of the data set [99].

Multi-collinear features are frequently encountered in computational materials science: most
often, features are constructed from elemental or structural properties of a compound, which are
implicitly determined by the Kohn-Sham equations using the atomic species, charges, and positions
2Recommendation systems based on active learning [102–104] can identify candidate materials even if the feature repre-
sentation is not optimal or machine-learning models are not highly accurate [58, 103, 367, 368].
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as the only physically relevant input variables (cf., Section 2.2). It is therefore desirable to apply a
feature-identification method that closely links the identification of related features to the prediction
performance of the machine-learning model, even in the presence of multi-collinear features. As with
TCMI, this is an optimization problem that can be addressed by utilizing the same search search
strategy as in Section 3.1.2 in a common framework for feature selection, henceforth referred to as
the feature-identification framework for computational materials science.

4.1.1 The algorithm

The foundation of the feature-identification framework for computational materials science is a gen-
eralization of the branch-and-bound algorithm to non-monotonic feature selection criteria (cf., Sec-
tion 3.4). The proposed novel approach to generalize branch-and-bound algorithm is applicable to
any information-theoretic method and machine-learning algorithm for identifying the subset of fea-
tures related to the property of interest (cf., Section 5.2). Based on the branch-and-bound algorithm
(cf., Alg. 3.1), the generalized algorithm evaluates all possible feature combinations, starting with an
empty set and successively enlarging the feature subset for as long as the feature-selection criterion
increases within a probabilistic tolerance. The feature-selection criterion of the original branch-and-
bound algorithm must be a monotonically increasing function (Eq. 3.35). However, many of the
objective criteria, such as for machine-learning algorithms, are non-monotonically increasing, which
leads to the pruning of potential solutions in the feature-subset search [237, 361]. Therefore, the
presented generalized branch-and-bound algorithm introduces a tolerance threshold for the feature-
selection criterion to continue the search beyond otherwise infeasible subsets (i.e., those which have
a lower value of the bounding criterion than the feature-selection of the current best feature subset
in the search, cf., Section 3.4).

The idea of introducing a tolerance parameter for the branch-and-bound algorithm is not new.
Under the concept of approximate monotonicity, Foroutan & Sklansky [361] proposed a modified
branch-and-bound algorithm that uses a tolerance parameter to compensate for the deviations from the
monotonicity of the feature-selection criterion. Based on this, Siedlecki & Sklansky [237] suggested to
compute the expected value of the feature-selection criterion as a function of the iteratively enlarged
feature-subsets to avoid early pruning of feature subsets and to continue searching in those parts of the
search space that would otherwise be skipped by using the original branch-and-bound algorithm. In
both approaches, however, the tolerance threshold is an externally adjustable parameter that is often
not known in advance. In contrast to setting a fixed threshold of the tolerance parameter [237, 361],
the presented algorithm (hereafter referred to as the tolerance-based branch-and-bound algorithm,
TB3) automatically adjust the tolerance parameter in the search by employing resampling techniques
(Section 2.5) and statistical hypothesis tests.

In the context of a machine-learning-based feature selection, the branch-and-bound algorithm
generalized to non-monotonic feature-selection criteria can be stated as follows (cf., Eq. 3.1): Given
a 𝑑-dimensional feature set ®𝑋 = {𝑋1, . . . , 𝑋𝑑}, a target property 𝑌 , a user-defined objective function
G, and a machine-learning algorithm 𝑓 : ®𝑋 ↦→ 𝑌 , the TB3-algorithm uses the objective function G

to define a lower bound of Gbased on the Student’s t-test [369] at a given confidence level 𝛼. The
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TB3-algorithm first computes the mean of the objective function G (similar to Siedlecki & Sklansky
[237]),

〈G(𝑌, 𝑓 ( ®𝑋))〉 := 1
|R|

∑︁
𝑅∈R

G(𝑌(𝑅) , 𝑓 ( ®𝑋(𝑅) )) , (4.1)

obtained by applying a resampling technique R to partition the data set into multiple sets of i.i.d.
samples, {𝑌(𝑅) , ®𝑋(𝑅) } ⊆ {𝑌, ®𝑋}. Based on that, the TB3-algorithm computes the confidence interval
of G,

G𝛼± (𝑌, 𝑓 ( ®𝑋)) := 〈G(𝑌, 𝑓 ( ®𝑋))〉 ±
𝑡1−𝛼/2√︁
|R|

sdevG(𝑌, ®𝑋) , (4.2)

where “𝑡” is the Student’s t distribution from the Student’s t-test [369], 𝛼 ∈ [0, 1] is the confidence
level, and “sdevG” is the sample standard deviation3 of G,

sdevG(𝑌, ®𝑋) =

√√√
1

|R| − 1

|R |∑︁
𝑅=1

(
G(𝑌(𝑅) , 𝑓 ( ®𝑋(𝑅) )) − 〈G(𝑌, 𝑓 ( ®𝑋))〉

)2
. (4.3)

The confidence level mainly affects the computational complexity of the algorithm. The higher the
confidence level, the more feature subsets are evaluated in the search and the more likely the optimal
feature subset is found. Accordingly, the difference between the original branch-and-bound algorithm
and the TB3-algorithm presented here is that the TB3-algorithm guarantees that the optimal feature
subset is found, but only within a probabilistic tolerance 𝛼.

The features related to a property of interest are then determined by searching for the optimal
subset of features ®𝑋∗ ⊆ ®𝑋 by maximizing⁴ the feature-selection criterion Gwith respect to a machine-
learning algorithm 𝑓 (cf., Section 3.4),

〈G(𝑌, 𝑓 ( ®𝑋∗))〉 = max
®𝑋′⊆ ®𝑋, | ®𝑋′ | ≤𝑑

〈G(𝑌, 𝑓 ( ®𝑋 ′))〉 ⇒ ®𝑋∗ = argmax
®𝑋′⊆ ®𝑋, | ®𝑋′ | ≤𝑑

G(𝑌 ; 𝑓 ( ®𝑋 ′)) . (4.4)

Equation 4.4 can be solved with the branch-and-bound algorithm (Alg. 3.1), where the feature-
selection and bounding criterion for the TB3-algorithm are defined as follows:

Q(𝑌 ; ®𝑋) ≡ 〈G(𝑌, 𝑓 ( ®𝑋))〉 , Q(𝑌 ; ®𝑋) ≡ G𝛼− (𝑌, 𝑓 ( ®𝑋)) . (4.5)

Similar to the suboptimality test of the branch-and-bound algorithm (Eq. 3.39), a tolerance-based
suboptimality condition for the TB3-algorithm can be derived. The tolerance-based suboptimality

3The confidence interval is estimated based on the (corrected) sample standard deviation, usually denoted as 𝑠 =
√︃∑

𝑖 (𝑥𝑖−𝑥)2
𝑁−1 .

Unlike the population standard deviation (population = all possible observations), the sample standard deviation is
calculated on a subset of samples of the population, where 𝑥𝑖, 𝑖 = 1, . . . , 𝑁 are the observed values and 𝑥 is the mean of
these observations. Its deviation is greater than that of the standard deviation of the population, but converges to this
value the more data samples 𝑁 are used for 𝑠.
⁴Most optimization problems in machine learning minimize a cost function (usually some kind of error). Here, the feature-
selection criterion is maximized to find the strongest relationship between a set of features and the property of interest.
Maximization problems can always be recast into minimization problems and vice versa depending on how the optimization
function is defined.
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condition under approximate monotonicity combines the feature-selection criterion and bounding
criterion into one condition,

Q(𝑌 ; ®𝑋 ′) − Q(𝑌 ; ®𝑋 ′) ≥ Q(𝑌 ; ®𝑋 ′′) − Q(𝑌 ; ®𝑋 ′′) , ®𝑋 ′ ⊆ ®𝑋 ′′ ⊆ ®𝑋 , (4.6)

where the respective parent feature subset ®𝑋 ′′ is used instead of the current best subset ®𝑋∗ in the
search (cf., Eq. 3.37).

The corresponding algorithm (Alg. 4.1) proceeds by repeated sampling from the training data
(Section 2.5), the construction of the machine-learning models, as well as the calculation of the
mean 〈G〉 (feature-selection criterion) and the lower confidence bound G𝛼− (bounding function) of
the model’s prediction performance with samples that were not used for model construction (line 9).
There are two tests for the tolerance-based suboptimality condition (Eq. 4.6) to ensure that Eq. 3.39
holds (line 14 and 16). The first test prunes feature subsets whose mean of the objective function
(Q = 〈G〉) of the current feature subset ®𝑋 ′′ is lower than the lower confidence bound (Q = G𝛼−) of its
parent feature subset ®𝑋 ′,

Q(𝑌 ; ®𝑋 ′′) < Q(𝑌 ; ®𝑋 ′) , ®𝑋 ′ ⊆ ®𝑋 ′′ ⊆ ®𝑋 , (4.7)

i.e., when subsets are statistically different at a confidence level of 𝛼 as given by the Student’s t-test
[369]. The second test then prunes feature subsets ®𝑋 ′′ whose lower confidence bound either is smaller
than Q of its parent feature subset ®𝑋 ′,

Q(𝑌 ; ®𝑋 ′′) < Q(𝑌 ; ®𝑋 ′) , (4.8)

or its mean objective function (Q = G) is equal to its parent feature subset within a specified conver-
gence threshold 𝜖, ��Q(𝑌 ; ®𝑋 ′′) − Q(𝑌 ; ®𝑋 ′)

�� < 𝜖 , 𝜖 > 0 . (4.9)
Both tests ensure that as the number of features increases, the feature-selection criterion converges
to its maximum value (i.e., its sample standard deviation becomes smaller) and the feature subsets
become more strongly related to the property of interest.

Unlike the original branch-and-bound algorithm (Section 3.4 and Alg. 3.1), there is no upper
bound for the objective function 〈G〉. Therefore the TB3-algorithm (Eq. 4.4) requires more feature-
subset evaluations than the original branch-and-bound algorithm. This has to be taken into account
when searching for the relevant features in high-dimensional materials spaces or when many fea-
tures are only weakly related to the properties of interest. Tests have shown that the TB3-algorithm
can in principle be applied to thousands of features (cf., Section 5.2.3). However, an efficient and
flexible machine-learning algorithm is needed to quickly sift through the still large space of possible
combinations features subsets.

There are effectively two parameters for the TB3-algorithm: the confidence level 𝛼 and the con-
vergence threshold 𝜖. While the confidence level 𝛼 specifies the probability with which the optimal
feature subset should be identified, the convergence threshold 𝜖 is used to discard feature subsets that
contribute only marginally to the prediction performance of the model, thus saving computational
resources. Setting the convergence threshold 𝜖 to a reasonable choice can therefore dramatically
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Data: Features ®𝑋 , target 𝑌
Input: Resampling technique R, objective function G, machine-learning algorithm 𝑓 ,

confidence 𝛼, threshold 𝜖 + parameters of R as well of 𝑓
Result: Optimal features ®𝑋∗ ⊆ ®𝑋

1 function tolerance_based_branch_and_bound(𝑌 , ®𝑋 , R, G, 𝑓 , 𝛼, 𝜖):
2 ®𝑆0 = ∅;
3 subsets = {®𝑆0};
4 optimal = ®𝑆0;
5 while subsets do
6 ®𝑆𝑘−1 ∈ subsets; // Select subset from list

7 subsets = subsets \ ®𝑆𝑘−1; // Remove subset from list

8 for 𝑋𝑖 ∈ ®𝑋 \ ®𝑆𝑘−1 do
9 ®𝑆𝑘 = ®𝑆𝑘−1 ∪ {𝑋𝑖};

10 // Estimate tolerance parameter for objective function (Eq. 4.2)

11 Compute Q(𝑌 ; ®𝑆𝑘−1) ≡ 〈G(𝑌, 𝑓 ( ®𝑆𝑘−1))〉 and Q(𝑌 ; ®𝑆𝑘−1) ≡ G𝛼− (𝑌, 𝑓 ( ®𝑆𝑘−1));
12 Compute Q(𝑌 ; ®𝑆𝑘) and Q(𝑌 ; ®𝑆𝑘);
13 // Check suboptimality condition (I)

14 if Q(𝑌, ®𝑆𝑘) < Q(𝑌 ; ®𝑆𝑘−1) then
15 // Check suboptimality condition (II)

16 if Q(𝑌 ; ®𝑆𝑘) > Q(𝑌 ; ®𝑆𝑘−1) and |Q(𝑌 ; ®𝑆𝑘) − Q(𝑌 ; ®𝑆𝑘−1) | > 𝜖 then
17 subsets = subsets ∪ {®𝑆𝑘};
18 // Update optimal feature subset

19 if Q(𝑌 ; ®𝑆𝑘) > Q(𝑌 ; optimal) then
20 optimal = ®𝑆𝑘;

21 return optimal;

Algorithm 4.1: A pseudo-code listing of the TB3-algorithm presented in this thesis.

lower the computational requirements. In general, the convergence threshold can be set to zero, but
a reasonable choice is to set 𝜖 to the allowed tolerance of the objective function 〈G〉, i.e., to terminate
the feature-subset search once the mean value of the objective function 〈G〉 does not improve by a
value of 𝜖.

4.1.2 The framework

Based on the feature-subset search within a probabilistic tolerance, the proposed feature-identification
framework can be used with any objective function from an information measure or an evaluation
metric from the data-science community such as the Pearson’s coefficient of determination 𝑅2 [101]
or the root-mean-squared error (RMSE). While the objective function of information measures can be
applied directly such as for TCMI (Eq. 3.34), a machine-learning model must be generated for every
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feature subset in the search prior to evaluating a metric on this model. A metric such as the RMSE
in the TB3-algorithm would optimize the subset of features to yield the lowest prediction errors for
an underlying statistical model, while the Pearson’s coefficient of determination 𝑅2 would yield the
highest correlation between the set of features and the property of interest. The RMSE therefore
focuses on the model’s predictions, while the 𝑅2 to identify the features that might be related to the
property of interest. The use of Pearson’s coefficient of determination 𝑅2 for feature identification is
thus particularly suited to relate the features to the property of interest.

The feature-selection and bounding criterion can be determined with an unbiased estimate of
the expected model performance [51] via cross-validation [52, 201] or any other resampling scheme
(Section 2.5). K-fold cross-validation, for example, partitions the data set of 𝑁 samples into 𝐾 approx-
imately equal-sized (≈ 𝑁/𝐾), non-overlapping subsets ®𝑋 (𝑘) of which the 𝑘-th partition is used for
validating the model performance (as an independent test set from the joint distribution of ®𝑋 and 𝑌)
and the remaining (𝑘 − 1)-partitions ( ®𝑋 (𝑘) := ⋃

𝑖≠𝑘
®𝑋 (𝑘)) are used for creating the machine-learning

model 𝑓𝑘 (cf., Section 2.5). The set of values of the objective function G,

RCV( 𝑓 , G) =
{
G(𝑌 (𝑘) , 𝑓𝑘 ( ®𝑋 (𝑘) )) | 𝑘 = 1, . . . , 𝐾

}
(4.10)

is then averaged over all folds (𝑘 = 1, . . . , 𝐾),

〈G(𝑌, 𝑓 ( ®𝑋))〉 = 1
|RCV |

∑︁
𝑅∈RCV

G(𝑌(𝑅) , 𝑓 ( ®𝑋(𝑅) )) ≡
1
𝐾

𝐾∑︁
𝑘=1

G(𝑌 (𝑘) , 𝑓𝑘 ( ®𝑋 (𝑘) )) . (4.11)

The sample standard deviation is then determined from

sdevG(𝑌, ®𝑋) =

√√√
1

𝐾 − 1

𝐾∑︁
𝑘=1

(
G(𝑌 (𝑘) , 𝑓𝑘 ( ®𝑋 (𝑘) )) − 〈G(𝑌, 𝑓 ( ®𝑋))〉

)2
(4.12)

for each of the tested feature subsets in the search. Due to the probabilistic nature of the suboptimality
test (Eq. 4.5), the TB3-algorithm not only returns the optimal non-redundant subset of relevant
features ®𝑋∗, but also allows to construct a confidence-based aggregation of sub-optimal feature sets
into a redundant subset of features ®𝑋◦ similar to TCMI (Section 3.5),

®𝑋◦ :=
⋃
®𝑋′⊆ ®𝑋

{ ®𝑋 ′ | 〈G(𝑌, 𝑓 ( ®𝑋 ′))〉 ≥ G𝛼− (𝑌, 𝑓 ( ®𝑋∗))
}
, (4.13)

i.e., into a set of feature subsets whose feature-selection criteria are statistically equivalent at a
confidence level of 𝛼. The union of all these feature subsets therefore describe the set of which all
statistically equivalent feature subsets can be obtained. Equation 4.13 implies that there may actually
be no single optimal feature subset in the search (if ®𝑋∗ ≠ ®𝑋◦), but rather a set of (non-)optimal feature
subsets that can be used equivalently to construct a statistical model. These subsets of features can
have completely different features and be completely distinct from each other. A single statistical
model can then be created from the union of all these feature subsets, or multiple machine-learning
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models from the set of statistically equivalent feature subsets, depending on whether a single model
or an ensemble of models is needed for an application.

4.1.3 Evaluation studies

To demonstrate the efficiency of the feature identification with the tolerance-based branch-and-bound
(TB3) algorithm, the same examples from Section 3.5 are reviewed and analyzed, all based on a
common ground truth of known or empirically identified feature subsets. Machine learning models
for these evaluation studies are created using the gradient-boosting decision tree (GBDT) algorithm
[249–252] (cf., Appendix A.2) as the feature-selection criterion⁵. The analysis is performed by creating
a machine-learning model for every feature subset in the search using the Pearson’s coefficient of
determination 𝑅2 [101] to determine the prediction performance of the generated GBDT model.
Because GBDT algorithms [249–252] are known to be extremely sensitive in modeling multivariate
relationships [357], the performance of the GBDT model is monitored and the model-creation process
terminated as soon as there is no improvement in the objective function of a held-out data set during
model construction (Appendix A.2). Results are summarized in Tab. 4.1.

Overall, the TB3-algorithm identifies all relevant and redundant features of the data sets at a con-
fidence level of 𝛼 = 0.95, thereby increasing the prediction performance of the generated machine-
learning model which has a greater impact on smaller data sets than on larger data sets. Except
for cases with a comparably small amount of data samples or machine-learning models with high
prediction errors, the algorithm never identifies features unrelated to the property of interest either
in the optimal minimal non-redundant feature subset ®𝑋∗ or in the redundant feature subset ®𝑋◦. Slight
deviations in model performances between ®𝑋∗ and ®𝑋◦ were all within the error bounds or the con-
vergence threshold 𝜖 = 0.01 (i.e., the allowed variance in the Pearson’s coefficient of determination
𝑅2 [101] of the cross-validation), showing that adding more features to the feature subsets neither
increase the prediction performance of the cross-validated machine-learning models nor the features
provide any additional information for the estimation of the properties of interest.

Concerning the identification of optimal feature subsets, it is interesting to note that all possible
feature combinations of 𝑋1, . . . 𝑋4 and 𝑋11, . . . , 𝑋14 of the Friedman regression data set [347] are
identified including 𝑋5 and that an optimal feature subset consists of no more than five features
(cf., Section 3.5.3). Likewise, in the high-performance concrete data set [350, 351] four to five
features are found – cement 𝑋1, water 𝑋2, blast-furnace slag 𝑋6, and curing time 𝑋8 – in different
variations and in combination with the other features (cf., Section 3.5.3). Moreover, in both case
studies, all of the topmost feature subsets exhibit similar model performances (𝑅2 ≈ 0.91) with
differences less than the convergence threshold 𝜖. Though, the redundant feature subsets become as
large as the total number of features of the data set at a confidence level of 𝛼 = 0.95, the optimal
minimal non-redundant feature subset ®𝑋∗ and the redundant feature set ®𝑋◦ for 500 data samples
are consistent with the findings in Section 3.5. For example, a feature identification with the TB3-
algorithm shows that all features are relevant in the high-performance concrete data set with the

⁵A more thorough evaluation of different machine-learning algorithms for feature identification applied to materials-science
applications is discussed in the next 5.
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Dataset: features (Section 3.5) Score (Pearson’s 𝑅 [101])
� # data samples | relevant features (®𝑿∗, ®𝑋◦) 𝑅2(𝑌, ®𝑋∗) 𝑅2(𝑌, ®𝑋◦) 𝑅2(𝑌, ®𝑋) Δ𝑅2

Bivariate normal distribution data set: 𝑋1, . . . , 𝑋11 [11 features]
Efficiency: Evaluation of 75 feature subsets out of 2,047 feature combinations (4%).
50 X1, X2, 𝑋3 , 𝑋4 , 𝑋5 , 𝑋6 , 𝑋7 , 𝑋8 , 𝑋9 ,𝑋10 ,𝑋11 0.06 -0.41 -0.42 +0.48

100 X1, X2 0.90 0.90 0.76 +0.14
200 X1, X2 0.96 0.96 0.92 +0.04
500 X1, X2 0.99 0.99 0.98 +0.01

Friedman regression data set [347]: 𝑋1, . . . , 𝑋14 [14 features]
Efficiency: Evaluation of 625 feature subsets out of 16,383 feature combinations (4%).
50 X1, 𝑋2, 𝑋3, X4, 𝑋5, 𝑋6 , . . . , 𝑋10 , 𝑋11, X12, X13, 𝑋14 0.38 0.17 0.17 +0.11

100 𝑋1, X2, 𝑋3, X4, 𝑋5, 𝑋9 , X11, X12, X13, 𝑋14 0.67 0.67 0.59 +0.08
200 X1, 𝑋2, X3, X4, X5, 𝑋8 , 𝑋9 ,𝑋10 , 𝑋11, X12, 𝑋13, 𝑋14 0.79 0.74 0.73 +0.06
500 X1, X2, X3, X4, X5, 𝑋11, 𝑋12, 𝑋13, 𝑋14 0.92 0.91 0.89 +0.03
High-performance concrete data set [350, 351]: 𝑋1, . . . , 𝑋8 [8 features]
Efficiency: Evaluation of 193 feature subsets out of 255 feature combinations (76%).
50 𝑋1, 𝑋2, X3, 𝑋4, X5, X6, X8 0.66 0.62 0.62 +0.04

100 X1, X2, X3, 𝑋4, 𝑋5, 𝑋6, X8 0.83 0.81 0.81 +0.02
200 X1, X2, X3, 𝑋4, 𝑋5, 𝑋6, X8 0.93 0.92 0.92 +0.01
500 X1, 𝑋2, X3, X4, 𝑋5, X6, X8 0.91 0.91 0.91 +0.00

Tab. 4.1. Feature identification with the TB3-algorithm and a gradient-boosting machine-learning algorithm
[249–252] (cf., Appendix A.2) at a confidence level of 𝛼 = 0.95 and a convergence threshold of 𝜖 = 0.01. Shown
are the identified redundant feature subsets ®𝑋◦ for each of the data sets from Section 3.5. The circled features
are known to be not relevant and therefore were misidentified by the algorithm (cf., Section 3.5). Features
typeset in bold denote the optimal feature subsets ®𝑋∗. The table also shows the average prediction performance
of the model obtained with repeated 10-fold cross-validation (5 rounds) utilizing either the identified optimal
non-redundant set of features ®𝑋∗, the redundant set of features ®𝑋◦, or the full set of features ®𝑋 for different
number of data samples. The difference in model performance in the last column refers to the comparison with
a model from the optimal feature subset ®𝑋∗ and from all features ®𝑋 of the data set, Δ𝑅2(𝑌, ®𝑋∗ ↔ ®𝑋) ≡ 𝑅2(𝑌,
®𝑋∗) − 𝑅2(𝑌, ®𝑋). The reported search efficiency refers to a feature identification with 500 data samples.

exception of fly ash (𝑋7); however, a non-redundant feature set can already be obtained from four
out of eight features as found out by the TB3-algorithm and FS-SISSO method.

The efficiency of the TB3-algorithm for 500 data samples (Tab. 4.1) exemplifies that only a small
fraction of all possible feature subset combinations need to be evaluated to identify a set of features
that is best suited for a machine-learning model. Even in the extreme case in the high-performance
concrete data set, where it is expected that all features are relevant, the TB3-algorithm does not have
to evaluate all feature subsets due to effective pruning in the search (Alg. 4.1). This even applies to
a smaller number of data samples, although the efficiency decreases due to spurious relationships
while reducing the number of data samples. For example, with only 50 data samples the ratio of
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evaluated feature subsets⁶ in the bivariate normal distribution is 0.08 (instead of 0.04). For the
Friedman regression data set it is 0.11 (instead of 0.04) and in the high-performance concrete data
set it is 0.81 (instead of 0.76). Given that almost all features in the high-performance concrete data
set are relevant, pruning has only little effect on the exponential time complexity in the search for
the optimal feature subset. Therefore, the efficiency of the TB3-algorithm depends strongly on the
extent to which the features are related to each other and to the property of interest. In general, the
fewer related features are in the data set, the more efficient the TB3-algorithm becomes.

4.1.4 Summary

Based on the feature-subset search within a probabilistic tolerance, the proposed TB3-algorithm
combines the efficiency of the feature-subset search from data-mining tools with the capability of
statistical modeling of feature-property relationships from machine learning. As the best subset of
features is chosen only from the mean objective function 〈G〉, the TB3-algorithm returns an optimal
subset with a minimum number of features and the lowest variance in the errors of model predictions.
Here, the tolerance parameter (Eq. 4.2) is not only used to efficiently prune the search space and
discard feature subsets, whose prediction performance already degrades due tomulti-collinear features
[99, 357]). It also generates error bounds for the relevance of feature subsets and for a redundant set
of features in the search (Eq. 4.13). Thus, the advantage of introducing a tolerance parameter in the
search is to enable a robust identification of relevant features, that are optimal or close to optimal for
the specified machine-learning algorithm, while providing a more complete picture of the statistical
relationships present in the data.

The point is that with a feature-identification method like TB3, simpler models with fewer features
can be created with the same prediction performance as models constructed on the full set of features.
Because models should not be more complex than necessary (according to Occam’s razor [370]),
simpler models should be preferred. These models can in turn be used to better analyze and visualize
the statistical trend in the data and to derive a more physics-based model. Identifying the relevant
features prior to statistical modeling would therefore result in statistical models that are more likely
to capture the underlying statistical trend in the data than complex models and that are more likely
to be applicable to new data (e.g., new materials). Clearly, the additional computational effort for
data sets with very few features does not justify the use of the TB3-algorithm (as in the experiments
above using the examples from Section 3.5). However, the more features a data set has, the more
efficient the TB3-algorithm is (cf., Section 5.2).

The experiments from Section 3.5 showcase that the TB3-algorithm is effective in reducing the
dimensionality (Section 3.1) of the data set, while remaining close to the optimal and in some cases
globally optimal solution (Tab. 4.1). In particular, the efficiency of the TB3-algorithm suggests that
TB3 can in principle be used even when other feature-identification methods are no longer applicable
(cf., Section 5.2.3 as one example of the next Chapter). However, experiments also show that the
efficiency of the algorithm strongly depends on the number of data samples and the actual relation-
ships between the features and the property of interest. Overall, the risk of identifying unrelated
features is higher for smaller data sets than for larger data sets; therefore, a reliable identification
⁶The lower the ratio of evaluated feature subsets, the more efficient the feature-subset search becomes.
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of relevant features at a specified confidence level 𝛼 requires not only the construction of highly
predictive machine-learning models from a reduced feature set but also a deeper understanding of
feature-property relationships in the data.

4.2 Feature-dependence maps of materials data

Statistical relationships between the features and the property of interest are often analyzed with the
Pearson’s 𝑅 [101] or Spearman’s 𝜌 [269] coefficient of determination by computing the pairwise-linear
correlation of features. A generalization to non-linear and multivariate dependences are feature-
dependence maps [100]. Similar to pairwise-linear correlation maps, feature-dependence maps
visualize feature interactions as heat maps and require an accuracy measure that quantifies the
dependence between a feature subset ®𝑋 ′ and the dependent feature 𝑋 . The main difference to
pairwise-linear correlation maps is how feature interactions are computed. For feature-dependence
maps, the accuracy measure acts as a dependence score, which has a value of 1 if a feature 𝑋 is
completely dependent on the other features ®𝑋 ′ and 0 if there is no such dependence. Here, a feature
𝑋 is said to be dependent on other features ®𝑋 ′ ⊆ ®𝑋 \ 𝑋 , if a statistical model can be created with ®𝑋 ′ to
estimate 𝑋 . As such, feature interactions are not necessarily symmetric when interchanging ®𝑋 ′↔ 𝑋

and therefore are sensitive to arbitrary (injective, surjective, and bijective) relationships of non-linear
and multivariate dependences in the data.

4.2.1 Examples

Feature-dependence maps can be generated by creating a statistical model 𝑓 : ®𝑋 \ 𝑋 → 𝑋 for every
feature 𝑋 ∈ ®𝑋 in the data set⁷. Hence, feature-dependence maps can be combined with the developed
feature-identification framework (Section 4.1.2) to quickly identify dependent features of the data
set based on the feature-selection criterion of the feature-subset search. Figure 4.2 shows the feature-
dependence maps for the three evaluation studies from Section 3.5, which were computed with the
gradient-boosting decision tree (GBDT, Appendix A.2) algorithm as the feature-selection criterion for
the TB3-algorithm (cf., Section 4.1.1).

Feature-dependence maps can also be created with any other feature-identification method, in-
cluding methods designed for specific machine-learning algorithms [100] (Fig. 4.3). For example,
the feature-dependence maps of the three feature-identification methods from Section 3.5 – re-
cursive feature elimination [263] with random forest [266] (RFECV), gradient-boosting decision
trees [252, 267, 268] with permutation feature importance [266, 338] (FS-GBDT), and the sure-
independence screening and sparsifying operator (FS-SISSO) [197, 371] show very similar, though
not always correct, dependences between the features of the data set (Fig. 4.3). In the Friedman
regression data set, FS-GBDT is close to the ground truth: features 𝑋1, . . . , 𝑋4 are strongly linearly
correlated with 𝑋11, . . . , 𝑋14 and the target 𝑌 is a function of 𝑌 = 𝑓 (𝑋1, . . . , 𝑋5) or of the respective
correlated features 𝑋11, . . . , 𝑋14. FS-SISSO correctly identifies some dependences, but still finds spuri-
ous relationships, possibly due to the relatively small number of data samples, while RFECV suggests
⁷The creation of a statistical model, 𝑓 : ®𝑋 → 𝑌 , for the property of interest 𝑌 might also be of interest and is therefore
included in these maps.
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a.) Bivariate normal distribution
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b.) Friedman regression
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Fig. 4.2. Feature-dependence maps of the three evaluation studies from Section 3.5 using 500 data samples:
bivariate normal distribution (a.), Friedman regression (b.), and high-performance concrete (c.). The feature-
dependence maps were created with the TB3-algorithm (Section 4.1) using 500 data samples and a gradient-
boosting machine-learning algorithm [249–252] (Appendix A.2) at a confidence level of 𝛼 = 0.95 and a
convergence threshold of 𝜖 = 0.01. Shown in the first column (Dep.) is the score of the dependency; this is the
Pearson’s 𝑅 coefficient of determination [101] of the 10-fold cross-validated machine-learning model using the
identified features. The dependence of the target properties are also shown in the last row.

that features are more dependent on each other than they actually are. This result is to be expected:
feature identification based on variable-importance measures of the machine-learning algorithms are
sensitive to multi-collinear features [372].

In particular, RFECV and FS-SISSO have the tendency to remove relevant features in the presence
of collinear related features [373, 374] (as can be seen in the case of the property of interest 𝑌). As
long as at least only one of the multi-collinear features is identified, the redundant and unrelated
features have no direct impact on the predictive performance of the statistical models. However, it
could be that not all relevant features are identified with either method, so that the statistical models
created would lead to significantly larger prediction errors (similar to using information-theoretic
methods prior to statistical model). Generating feature-dependence maps and building statistical
models therefore require feature-identification methods, such as the TB3-algorithm, that are reliable
in relating the features to the property of interest and, in particular, are robust in the presence of
multi-collinear features.

4.2.2 Summary

Feature-dependence maps can be seen as a diagnostic tool to identify multivariate inter-correlated
features in the data set. Combined with a model-agnostic feature-identification method such as the
TB3-algorithm, the identification of related features with different machine-learning algorithms can
be compared. For example, by replacing the three feature-identification methods from Section 3.5
with the TB3-algorithm, the same feature-dependence maps can be obtained (Fig. 4.2 as compared to
Fig. 4.3). In particular, the TB3-algorithm can be used to identify features that are useful for estimating
other properties of interest or are not related to any other feature in a data set and therefore may
play an important role in building accurate statistical models for the property of interest. Thus, rather
than expending time trying to intuit the relevant features with a feature-identification method specific
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Fig. 4.3. Feature-dependence maps from the Friedman regression data set [347] using 500 data samples
obtained with a.) gradient-boosting decision trees [249–252] and permutation feature importance [266, 338]
(FS-GBDT), b.) recursive feature elimination [263] and random forests [266] (RFECV), and c.) with the sure-
independence screening and sparsifying operator [197, 371] (FS-SISSI) as described in Section 3.5.2. The
hyperparameters of all machine-learning models were optimized prior to feature identification (cf., Section 3.5)
using 10-fold cross-validation [52, 201] (Section 2.5). The reported metric is the Pearson’s 𝑅 coefficient of
determination [101] of the 10-fold cross-validated machine-learning models. Features 𝑋1, . . . , 𝑋4 must be
strongly linearly correlated with 𝑋11, . . . , 𝑋14 respectively and the target 𝑌 must be a function of 𝑌 = 𝑓 (𝑋1,
. . . , 𝑋5) or of their correlated features 𝑋11, . . . , 𝑋14.

to a machine-learning algorithm, the TB3-algorithm can be utilized as a standardized procedure to
automatically create feature-dependence maps and to identify redundant feature sets for generating
statistical models and for ensuing data-analysis tasks [249, 375–377], with the model’s prediction
performance as the only criterion for feature identification (cf., Section 5.2 of the next Chapter).

4.3 Uncertainty estimation of machine-learning models

The prediction performance of a machine-learning model is estimated based on data samples that
have not been used for model construction. The performance measure often comes in form of a single
evaluation metric such as the root-mean-squared error, the mean absolute error, or the Pearson’s
coefficient of determination [101] estimated with one of the available resampling techniques (cf., Sec-
tion 2.5). This produces an average error statistics of the whole model. However, as machine-learning
models are inherently statistical and only approximate the property of interest to a limited extent
(cf., Section 2.4), the errors between a model’s prediction and the actual value of the property of
interest can be quite large (cf., Section 5.2). Hence, it can be expected that the model’s prediction may
vary significantly from the actual value of the property of interest. Predictions of machine-learning
models cannot be trusted in particular: when there are not enough data samples available, the explo-
ration and screening of new materials drives the materials search into regions for which there are not
enough data samples (cf., [208]), or when the models are applied to new data, e.g., to new materials
(cf., [208, 363]). An uncertainty estimate expressed in terms of a prediction interval is therefore de-
sirable and even necessary in many materials-science applications to identify regions of the materials
space that are promising to explore [102–104, 363–365] (cf., Section 5.2). Sutton, Boley et al. [208]
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proposed a method for identifying regions of a materials space in terms of a symbolic description, for
which a machine-learning model is applicable. These descriptions can be used to qualitatively identify
which materials are likely to have a low prediction error based on the underlying machine-learning
model. However, a new material within these regions could still have a machine-learning prediction
that is significantly different from the actual value of the property of interest. In addition, the domain
of inapplicability, i.e., the region where the machine-learning model is likely to fail, may be more
promising in the context of materials discovery and design to search for new materials that exhibit
a rare or otherwise uncommon materials behavior. The following rationale is therefore to define an
uncertainty estimate for individual machine-learning predictions in order to identify materials which
cannot be accurately predicted and as such are promising to explore for the analysis, screening, and
prediction of novel materials.

An uncertainty estimate is an interval of the error made in each individual prediction. The un-
certainty in the model’s predictions can be estimated through the generation of a distribution of
predictions with either machine-learning algorithms (logistic regression [51, 52], Gaussian process
regression [108, 109, 365], deep neural networks [12, 105–107, 200], random forests [378], etc.),
or statistical methods [103, 364, 379–383]. Most of these methods increase the computational re-
quirements of the statistical modeling (e.g., random forest, resampling techniques, and statistical
methods), while some of them, namely Gaussian process regression [108, 109] and deep-neural
networks (using dropout as a Bayesian approximation [107, 384]) are expensive in the estimation of
the prediction error of the property of interest. Furthermore, some methods may need large amount
of data (e.g., deep-neural networks), while others make assumptions about the data or the errors
(e.g., statistical regression or Gaussian process regression). The problem: For practical data sets,
knowledge about the distribution that generated the data is usually not available and therefore needs
to be assumed. In the best case, the assumptions are correct, so that an error model provides reliable
prediction intervals. However, all these models assume that data samples are i.i.d. generated from
the underlying distribution⁸. In practical materials-science applications though, new materials are
usually synthesized from variations of promising candidate materials. As such materials data often
contain a disproportionate number of samples from specific materials classes or compositions and
consequently are rarely i.i.d. [8, 207, 385].

Resampling strategies estimate uncertainties in terms of an ensemble of machine-learning models
constructed on distinct partitions of the training data to provide both a mean and a variance for further
evaluations of the materials space (Fig. 4.4). They can be applied to any machine-learning algorithm
and provide error bounds for uncertainty estimations, where the prediction interval estimates the
range in which the property of a newmaterial falls at a given confidence level𝛼 (Fig. 4.4). A confidence
level of 𝛼 = 0.95, for example, means that the actual values of the property of interest are expected to
be within the estimated respective prediction intervals of the constructed machine-learning model in
95% of all the predictions. However, ensemble models may perform poorly on certain materials or in
underrepresented materials spaces, i.e., regions of the materials space with only very number of data
samples [112, 208]. Moreover, ensemble-based model predictions can be misleading especially if the

⁸In fact, the i.i.d. assumption is a standard assumption in machine learning [51, 52].



4.3. Uncertainty estimation of machine-learning models 73

Da
ta

se
t:

~ Z
=

(Y
,
~ X

)

Data partition
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Fig. 4.4. Illustration of an ensemble model to estimate the uncertainty of machine-learning predictions. Shown
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and the prediction on new data ®𝑋 ′. Each machine-learning model of the ensemble provides a point prediction 𝑌𝑖
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Depending on the confidence level, the actual value may or may not be included in the prediction interval.

machine-learning predictions are highly correlated due to unfortunate partitioning or heterogeneous
data.

The framework described here therefore employs a relatively new method, called conformal
prediction [60–64]. Conformal prediction is a model-independentmethod for estimating the reliability
ofmachine-learning predictions and for estimating prediction intervals for newmaterials. In contrast to
existing methods for uncertainty estimation (e.g., Bayesian inference or logistic regression), conformal
prediction requires no additional assumption on the machine-learning model to estimate the error
bounds of the model’s predictions. It further lessens the i.i.d. requirements for data sampling under
the so-called exchangeability condition [60, 62, 63] by assuming that samples need only to be drawn
from the same distribution. In addition, it requires minimal computational costs for the estimation
of the prediction intervals and provides statistical guarantees (i.e., within a probabilistic tolerance)
by relating the size of the prediction intervals to the performance of the machine-learning model,
independent of the machine-learning algorithm [62–64].

4.3.1 Conformal prediction

Conformal prediction addresses the weakness of many traditional machine-learning algorithms to
provide reliable uncertainty estimates for machine-learning predictions on new data [60–64, 366].
Reliable uncertainty estimates means that, at a confidence level of 𝛼, the actual values are within the
error bounds of the machine-learning’s predictions with a probability 𝑃 at least 𝛼%⁹ [386]. Having

⁹𝛼% := 𝛼 · 100%
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observed a sequence of data1⁰, where each sample 𝑧𝑖 ∈ ®𝑍 is a pair (𝑦𝑖, ®𝑥𝑖), 𝑖 = 1, . . . , 𝑛 of features
®𝑥𝑖 ∈ ®𝑋 and a property of interest 𝑦𝑖 ∈ 𝑌 ,

®𝑍 := (𝑌, ®𝑋) = {𝑧1, . . . , 𝑧𝑛} = {(𝑦1, ®𝑥1), . . . , (𝑦𝑛, ®𝑥𝑛)} , (4.14)

a conformal predictor is thus an estimator built on top of a traditional machine-learning algorithm,
𝑓 : ®𝑋 → 𝑌 , that outputs a prediction region Γ (a prediction interval in the case of regression or a set
of predicted labels in the case of classification) for a new data sample ®𝑥𝑛+1 at a given confidence level
𝛼. The probability 𝑃 that the actual value of the property of interest 𝑌 is within the prediction region
Γ and confidence level 𝛼 is then given by,

𝑃(𝑦𝑛+1 ∈ Γ1−𝛼) ≥ 𝛼 . (4.15)

The 𝛼 parameter is a tolerance error: the smaller it is, the greater the probability that the actual value
of the property of interest is contained within the estimated prediction region Γ.

Exchangeability

A conformal predictor is based on the exchangeability condition which provides statistical guarantees
that the probability of error, i.e., 𝑦𝑛+1 ∉ Γ1−𝛼, does not exceed its significance level 𝜖 = 1 − 𝛼 for any
confidence level 𝛼 and any prediction region Γ. The exchangeability condition [62, 63] states that
variables 𝑧1, . . . , 𝑧𝑛 are exchangeable, if for any permutation 𝜋 of the set {1, . . . , 𝑛}, the variables
𝑤𝑖 = 𝑧𝜋(𝑖) have the same joint probability distribution as 𝑧𝑖 [62–64],

𝑃(𝑧1, . . . , 𝑧𝑛) = 𝑃(𝑧𝜋(1) , . . . , 𝑧𝜋(𝑛) ) = 𝑃(𝑤1, . . . , 𝑤𝑛) ,
∀ permutations of 𝜋 = {1, . . . , 𝑛} .

(4.16)

In other words, the samples 𝑧𝑖 can be drawn in any order and need not be drawn independently as
long as they are drawn from the same distribution [62–64, 387].

By design, a conformal predictor with a confidence level of 𝛼 = 0.95 (significance level 𝜖 = 0.05)
should contain the actual values of the property of interest in 95% of all cases (cf., Eq. 4.15). A
conformal predictor that satisfies Equations 4.15 and 4.16 is said to be valid [60–64, 366]. The
validity of a conformal predictor can be tested statistically by varying the confidence level between 0
and 1 to ensure that the uncertainty estimates are consistent across multiple confidence levels. This
process is called calibration and the resulting curve should therefore correspond to a linear line from
0 to 1. Deviations from this line leads to reported error rates that are higher than expected. However,
with diverse data sets of different materials and structures, and a larger number of samples in a data
sets, conformal predictors are expected to be always valid [62] (cf., Section 5.2).

Definition

Conformal prediction defines a nonconformity measure 𝐴 to quantify how different a new sample ®𝑥𝑛+1
is with respect to all the other samples in a data set ®𝑍. It then determines the size of the prediction
region Γ based on a statistical hypothesis test of the nonconformity measure. The nonconformity

1⁰In the literature on conformal prediction, the training set is represented as a multiset ®𝑍 = *𝑧1, . . . , 𝑧𝑛+ – a so-called bag –
without any internal order of the elements.
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measure is a real-valued function, 𝐴 : ®𝑍× ®𝑍′→ ℝ, created on the data set ®𝑍 and evaluated on a second
data set ®𝑍′. The measure assigns a numerical score ®𝛼 = (𝛼1, . . . , 𝛼𝑛), the so-called nonconformity
score, to each sample 𝑧𝑖 of ®𝑍,

𝛼𝑖 = 𝐴({𝑧1, . . . , 𝑧𝑖−1, 𝑧𝑖+1, . . . , 𝑧𝑛}, 𝑧𝑖) = Δ(𝑦𝑖, 𝐷{𝑧1,...,𝑧𝑖−1,𝑧𝑖+1,...,𝑧𝑛 } (®𝑥𝑖)) , (4.17)

where Δ : 𝑌 ×𝑌 → ℝ refers to a discrepancy measure and 𝐷 : ®𝑍 × 𝑋 → 𝑌 to the conformal predictor
of the data set. 𝑌 is the actual value of the property of interest and 𝑌 is the estimated value for the
property of interest. The discrepancy measure is constructed based on all samples of ®𝑍 except 𝑧𝑖 and
is applied to ®𝑥𝑖. A nonconformity measure can be any evaluation metric from machine learning. In
principle, it can be the average of all samples of ®𝑍 or, in regression, the absolute error, e.g.,

𝛼𝑖 = Δ(𝑦𝑖, 𝑓 (®𝑥𝑖)) = |𝑦𝑖 − 𝑓 (®𝑥𝑖) | , 𝑖 = 1, . . . , 𝑛 . (4.18)

The underlying intuition is that new data samples that are less similar to the data samples of a data set
should lead to less confident estimates. As the nonconformity measure can be scaled, the numerical
value of 𝛼𝑖 does not, by itself, quantifies how different a sample 𝑧𝑖 is relative to the other samples
𝑧𝑘 of a data set ®𝑍. A suitable method for this comparison is to compute the proportion of samples
greater than the nonconformity score of 𝑧 𝑗 for each of sample 𝑧𝑖 = (𝑦𝑖, ®𝑥𝑖) ∈ ®𝑍 in the data set ®𝑍,

𝑝 𝑗 =
|{𝑖 = 1, . . . , 𝑛 : 𝛼𝑖 ≥ 𝛼 𝑗}|

𝑛
. (4.19)

Equation 4.19 is called the p-value for 𝑧 𝑗 and ranges from 1/𝑛 to 1. The p-value indicates whether 𝑧 𝑗
is conforming or not: If the p-value is small (close to its lower bound 1/𝑛), 𝑧 𝑗 is nonconforming, i.e.,
𝑧 𝑗 is different from all other samples and has a large nonconformity score 𝛼 𝑗. If ithe p-value is large
(close to its upper bound 1), 𝑧 𝑗 is similar to the other data samples of ®𝑍 and has a small nonconformity
score 𝛼 𝑗. Hence, a sample 𝑧 𝑗 = (𝑦 𝑗, ®𝑥 𝑗) that conforms with 𝑧𝑖 ∈ ®𝑍 at a confidence level 𝛼 has a p-value
greater than 1 − 𝛼. The level of confidence determines the amount of conformity (as measured by
the p-value). Generally speaking, lower nonconformity scores 𝛼 𝑗 are equivalent to high conformity.
The higher the conformity, the more likely the machine-learning model can accurately predict the
property of interest of that sample.

In case of a new data sample ®𝑥𝑘 whose actual value 𝑦𝑘 is not known, a statistical hypothesis test
needs to be performed to estimate the value of the property of interest 𝑌 of that sample. To this end,
each possible value 𝑦 ∈ 𝑌 is tested as a possible candidate of the sample 𝑧𝑘 = (𝑦, ®𝑥𝑘),

𝑝
𝑦

𝑘
=
|{𝑖 = 1, . . . , 𝑛 : 𝛼𝑖 ≥ 𝛼𝑦𝑘}|

𝑛
, 𝛼

𝑦

𝑘
= Δ(𝑦, 𝑓 (®𝑥𝑘)) , ∀𝑦 ∈ 𝑌 . (4.20)

Given that any other value 𝑦 ∈ 𝑌 than 𝑦𝑘 would result in larger nonconformity scores (Eq. 4.17) and
lower p-values (Eq. 4.20), only the values that conform to the data set ®𝑍 and therefore are close to
𝑦𝑘 have a p-value of 𝑝𝑦

𝑘
> 1 − 𝛼 at a confidence level 𝛼. Conversely, this means that samples whose

property of interest cannot be predicted well by the conformal predictor have a low p-value. Based
on these considerations, it is possible to introduce a (heuristic) measure in Section 4.4 to identify
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materials that are either not sampled from the same distribution or are promising to synthesize in a
real materials-science application.

The corresponding prediction region of the conformal predictor 𝐷 is generated by the p-values
from Equation 4.20. It is the set of all values 𝑦, that fulfill the criterion 𝑝

𝑦

𝑘
> 1 − 𝛼,

Γ1−𝛼({𝑧1, . . . , 𝑧𝑘−1, 𝑧𝑘+1, . . . , 𝑧𝑛}, ®𝑥𝑘) = {𝑦 ∈ 𝑌 : 𝑝𝑦
𝑘
> 1 − 𝛼} . (4.21)

Under the assumption that the samples are exchangeable (Eq. 4.16), the probability that 𝑦 𝑗 is in the
region Γ1−𝛼 at confidence level 𝛼 is given by [62]

𝑃(𝑦 𝑗 ∈ Γ1−𝛼({𝑧1, . . . , 𝑧 𝑗−1, 𝑧 𝑗+1, . . . , 𝑧𝑛}, ®𝑥 𝑗)) ≥ 𝛼 , (4.22)

where the corresponding prediction region is given by

𝑦 𝑗 ∈
[
min Γ1−𝛼(®𝑥 𝑗),max Γ1−𝛼(®𝑥 𝑗)

]
. (4.23)

Conformal prediction regions are approximately constant across all data samples 𝑧𝑖 ∈ ®𝑍 [388]. To
generate tighter prediction regions for samples that are more reliable than others, nonconformity
measures (Eq. 4.17) can be normalized 𝛼𝑖 → 𝛼𝑖, for instance with the nearest-neighbor method [62–
64]. Normalization can be subject to the “curse of dimensionality” [389, 390]. It is therefore critical to
reduce the number of features in a machine-learning model with dimensionality-reduction techniques
(Section 3.1) or the TB3-algorithm (Section 4.1) prior to estimating the prediction uncertainty of new
samples.

Inductive conformal prediction

Equations 4.20 and 4.21 estimate the prediction interval of the conformal predictor 𝐷 for a new sample
®𝑥𝑛+1 on all previous samples in the data set ®𝑍. This is known as transductive conformal prediction [60].
Transductive conformal prediction requires to update the nonconformity scores 𝛼𝑖 and to reconstruct
the conformal predictor each time a new sample 𝑧𝑛+1 = (𝑦𝑛+1, ®𝑥𝑛+1) is added to the data set [62, 63].
A more efficient approach, that constructs the conformal predictor only once is inductive conformal
prediction [62, 391, 392].

Inductive conformal prediction requires to construct a conformal predictor on a subset of the data,
on a so-called proper training set ®𝑍𝑡 = (𝑌𝑡, ®𝑋𝑡) = {𝑧1, . . . , 𝑧𝑚}, and to compute the nonconformity
scores,

𝛼 𝑗 = Δ(𝑦 𝑗, 𝑓 (®𝑥 𝑗)) , 𝑦 𝑗 ∈ ®𝑍𝑐 , (4.24)
of the inductive conformal predictor on a separate data set, on a so-called calibration set ®𝑍𝑐 = (𝑌𝑐,
®𝑋𝑐) = {𝑧𝑚+1, . . . , 𝑧𝑛} (Alg. 4.2). The constructed inductive conformal predictor is then applied on
a test set ®𝑋 = {𝑥𝑛+1, . . . , 𝑥𝑛+𝑙} of which each value of 𝑦 𝑗 ∈ 𝑌𝑐 is tested as a possible hypothesis for
the actual value 𝑦𝑛+𝑙 of the sample ®𝑥𝑛+𝑙 ∈ ®𝑋 and checked for (non-)conformity via the p-value as in
Equation 4.20,

𝑝
𝑦

𝑛+𝑙 =
|{ 𝑗 = 𝑚 + 1, . . . , 𝑛 : 𝛼 𝑗 ≥ 𝛼𝑦𝑛+𝑙}|

𝑛 − 𝑚 + 1 ∀𝑦 ∈ ®𝑌𝑐 . (4.25)
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Data: Data set ®𝑍 = (𝑌, ®𝑋) = {𝑧1, . . . , 𝑧𝑛}, 𝑧𝑖 = (𝑦𝑖, ®𝑥 𝑗)
Input: Test sample ®𝑥𝑛+1, machine-learning algorithm 𝑓 , confidence level 𝛼
Result: Prediction region Γ1−𝛼(®𝑥𝑛+1)

1 function conformal_prediction(®𝑥𝑛+1, ®𝑍, 𝑓 , 𝛼):
2 // Setup conformal prediction

3 Split data ®𝑍 into training 𝑖 = {1, . . . , 𝑚} and calibration set 𝑗 = {𝑚 + 1, . . . , 𝑛};
4 Construct confidence predictor 𝑓 on training set ®𝑍𝑡 = {𝑧1, . . . , 𝑧𝑚};
5 Compute nonconformity scores 𝛼 𝑗 = Δ(𝑦 𝑗, 𝑓 (®𝑥 𝑗)) on calibration set ®𝑍𝑐 = {𝑧𝑚+1, . . . , 𝑧𝑛};
6 // Compute prediction range Γ1−𝛼(®𝑥𝑛+1) = {𝑦 𝑗 ∈ 𝑌 : 𝑝𝑦 𝑗

𝑛+1 > 1 − 𝛼}
7 for 𝑦 𝑗 ∈ ®𝑌𝑐 do
8 𝛼

𝑦 𝑗
𝑛+1 = Δ(𝑦 𝑗, 𝑓 (®𝑥𝑛+1));

9 𝑝
𝑦 𝑗
𝑛+1 =

|{𝑘 = 𝑚 + 1, . . . , 𝑛 : 𝛼𝑘 ≥ 𝛼𝑦 𝑗𝑛+1}|
𝑛 − 𝑚 + 1 ;

10 if 𝑝𝑦 𝑗
𝑛+1 > 1 − 𝛼 then

11 Add 𝑦𝑖 to the prediction set Γ1−𝛼(®𝑥𝑛+1);

12 return Γ1−𝛼(®𝑥𝑛+1);

Algorithm 4.2: A pseudo-code listing of the conformal prediction algorithm presented in this
work.

Considering that the prediction region of the inductive conformal predictor at confidence level 𝛼 is
formed from a statistical hypothesis test, where the most unlikely values 𝑦 𝑗 are rejected at confidence
level 𝛼, the prediction region is

Γ1−𝛼({𝑧1, . . . , 𝑧𝑛}, ®𝑥𝑛+𝑙) = {𝑦 ∈ ®𝑌𝑐 : 𝑝𝑦𝑛+𝑙 > 1 − 𝛼} , (4.26)

and the validity of the prediction region ensures that

𝑃(𝑦𝑛+1 ∈ Γ1−𝛼({𝑧1, . . . , 𝑧𝑛}, ®𝑥𝑛+1)) ≥ 𝛼 , (4.27)

from which a prediction interval can be derived as in Equation 4.23.

4.3.2 The algorithm

The introduction of a calibration set ®𝑍𝑐 adds some randomness to inductive conformal prediction.
Therefore, in order to stabilize the prediction regions, the uncertainty estimation needs be repeated
and the data randomly split at each iteration. There are two variants, namely aggregated [393, 394]
and cross-conformal prediction [395], which use either bootstrapping or cross-validation to reduce
the variance in the estimation of the nonconformity scores and the p-values (Eqs. 4.24 and 4.25) of
the prediction intervals. However, both variants have their limitations: aggregated conformal predic-
tion uses about 63% of the data samples [201], while cross-conformal prediction lacks theoretical
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Fig. 4.5. The proposed setup for uncertainty estimation with conformal prediction for new data (out-of-sample
predictions) and for samples of the training data (in-sample predictions). For out-of-sample predictions, 𝑛 is set
to 1 and the test set equals the samples of the new data, while the data set is split𝑚 times into a training set and
a calibration set to create the machine-learning model, to estimate the prediction region via the nonconformity
scores, and to determine the prediction interval. For in-sample predictions, the same procedure is repeated 𝑛
times with different samples of the data set and the prediction interval determined for samples being part of
the test set.

guarantees for the prediction regions, i.e., Equation 4.26 cannot be guaranteed [395]. Therefore, an
extension of inductive conformal prediction is developed to guarantee reliable uncertainty estimates
while stabilizing the prediction intervals by repeatedly constructing the machine-learning model and
applying conformal prediction at each iteration, as shown in Figure 4.5.

The setup depicted in Figure 4.5 can be used to estimate the prediction intervals for the samples of
the data set (in-sample predictions) or new samples (out-of-sample predictions). In-sample prediction
involves randomly partitioning the data set 𝑚 times into a training, calibration, and a test set, and
repeating the procedure 𝑛 times with different samples in the test set at each iteration. Out-of-sample
prediction only involves splitting the data 𝑚 times into a training set and a calibration set, which are
then used to estimate the prediction regions of all new samples of a separate test set.

The setup is similar to in-sample conformal inference [388], which considers only balanced splits
of the data set into two halves (𝑛 = 2) at the expense of less accurate predictive models. In contrast,
the proposed setup in this thesis (Fig. 4.5) imposes no restrictions on the splits and stabilizes the
prediction regions by randomly splitting the training data multiple times into a proper training set ®𝑍𝑡
and a calibration set ®𝑍𝑐 of i.i.d. data samples, while ensuring valid prediction intervals (cf., Eq. 4.26
and [62, 388]). Here, the size of the calibration set is set between 15-30% [396] of the training
data, but always greater than or equal to the floor of the inverse of the significance level minus
one, | ®𝑍𝑐 | ≥ b 1

1−𝛼 − 1c, to provide sufficient support for the chosen confidence level and to avoid
discretization errors in estimating the p-values of the nonconformity scores (Eq. 4.25) [397]. The
proper training set is then used to generate the conformal predictor (machine-learning model), while
the calibration set is used to calculate the nonconformity scores (cf., Eqs. 4.17 and 4.24). Finally, using
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both the conformal predictor from the training and the nonconformity scores from the calibration set,
the conformal-prediction regions of the remaining data samples in the test set are determined. This
procedure is repeated 𝑛 times to stabilize the prediction regions of the conformal prediction given
different splits of the data set. This approach has the advantage that, first, any resampling technique
can be used (Section 2.5) and, second, reliable estimates can be obtained for the prediction regions
of all samples within the training data and on new samples.

The most time-intensive part is the robust estimation of the prediction regions: the setup depicted
in Fig. 4.5 has a time complexity of O(𝑚) for out-of-sample predictions and O(𝑚 · 𝑛) for in-sample
predictions. However, to avoid excessively long execution times due to the creation of different
conformal predictors, machine-learning models can also be created prior to conformal prediction. The
prerequisite for this is that the machine-learning model is created on different partitions of the training
data and the model is evaluated for data that have not been used for model construction (as is typically
the case, when the prediction performance of these models is evaluated). The predictions are then
used for calibrating the model and estimating the prediction intervals of the samples in the test set.
Since this approximation requires cross-validating the machine-learning model only once, uncertainty
estimates can be determined at minimal additional cost as compared to performance evaluations of the
model. Furthermore, the approximation has been shown to provide tighter prediction intervals in the
evaluation studies of Section 3.5 than creating the machine-learning model multiple times, while still
guaranteeing reliable uncertainty estimates (Tab. 4.2 and Sec. 5.2). Lastly, the approximation enables
the application of conformal prediction as a post hoc analysis tool to existing machine-learning models,
which makes it attractive to provide prediction intervals without having to rebuild the statistical
models again.

4.3.3 Examples

To identify regions of the materials space that cannot be adequately predicted by the specifiedmachine-
learning models, the data sets in Chapter 3 are analyzed to showcase the uncertainty estimation on
simple examples. For all three data sets, the data are randomly split into a training set, consisting
90% of the data and a test set encompassing the remaining 10% of the data, and the procedure is
repeated 𝑛 = 50 times. Furthermore, the training set is randomly split 𝑚 = 100 times into a proper
training set ®𝑍𝑡 and a calibration set ®𝑍𝑐, where the calibration set size is set to 20% of the size of
the data used for conformal prediction, or the floor of

( 1
1−𝛼 − 1

)
× 100% in case of small data sets,

whichever is larger. The proper training set is then used to create the underlying machine-learning
model, while the calibration set is used to estimate the prediction intervals of the remaining data
samples in the test set. As the underlying machine-learning model, the gradient-boosting decision
trees algorithm [249–252] (cf., Appendix A.2) is used and as nonconformity score the maximum
absolute error |𝑦 − 𝑦 | between the actual 𝑦 and the predicted value 𝑦. The prediction region is then
obtained by cross-validating the model and normalizing the prediction intervals using the 𝑘-nearest
neighbors algorithm [62–64] and the Python package nonconformomist [398] for three different
levels of confidence: 𝛼 = [0.5, 0.8, 0.95]. In addition, the prediction bands of all three confidence
levels are determined as convex hulls of the respective prediction intervals and samples are highlighted
whose actual values are outside the prediction interval at a confidence level of 𝛼 = 0.95. Results are
shown in (Fig. 4.6).
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Fig. 4.6. Parity plots of actual values 𝑦 versus in-sample predictions 𝑦 including prediction bands at confidence
levels 𝛼 = [0.5, 0.8, 0.95] (solid, dashed, dotted) and uncertainty estimations obtained by conformal prediction
with a gradient-boosting machine-learning algorithm [249–252] (cf., Appendix A.2) for the three data sets –
a.) bivariate Gaussian distribution, b.) Friedman regression data set, and c.) high-performance concrete – as
discussed in Chapter 3. Highlighted are all samples whose actual values are outside the prediction interval at a
confidence level of 𝛼 = 0.95. The plots above and right of the parity plots show the distribution of the the size of
prediction intervals (diagram above the parity plot, Δ) and the maximum absolute error between the predicted
𝑦 and actual value of 𝑦 (diagram right of the parity plot, 𝜀 = |𝑦 − 𝑦 |). The numbers in the boxes display the
mean values (Δ̄, 𝜀), while the maximum errors are given in the texts below or to the left of the diagrams. For
comparisons of model performance and prediction intervals, the Pearson’s coefficient of determination (𝑅2)
between the actual values 𝑦 and the predictions 𝑦 is also reported.
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In the Friedman and high-performance concrete data sets (Fig. 4.6b. and c.), the prediction
intervals are roughly constant. Constant prediction intervals are an indicator that each sample in the
data set can be predicted equally well by the machine-learning model. If a prediction interval in a
region is larger than in others, it means that the region is underrepresented or the samples cannot be
adequately represented by the machine-learning model relative to the other samples. For example,
the prediction intervals of the bivariate Gaussian distribution (Fig. 4.6a.) tend to be slightly larger
for small values than for larger values. This is to be expected and is due to the addition of noise
to the simulated data set, which affects smaller values comparatively more than larger values. The
prediction intervals also provide an estimate of the tendency of the errors. In the three examples
above, the machine-learning model of the bivariate Gaussian data set slightly overestimates smaller
values, while in the Friedman regression and the high-performance concrete data set, larger values
are slightly underestimated by the machine-learning models (Fig. 4.6b. and c.).

In all three data sets, the size of the prediction interval [−Δ, +Δ] is approximately equal to the
maximum absolute error and therefore includes most of the actual values. This is a consistency
condition. In fact, conformal prediction includes the actual values within a probabilistic tolerance
of at least 𝛼% of the training data, emphasizing the validity of the prediction intervals as a whole
(Tab. 4.2).

Depending on the confidence level, it can be observed that high confidence levels lead to large
prediction intervals. This phenomenon, termed as confidence-efficiency trade-off [62, 64], has the
consequence that prediction intervals are fairly large and high confidence levels results in higher
uncertainty in the model’s predictions [386]. In the context of uncertainty estimation, the confidence-
efficiency trade-off provides an important diagnostic tool to assess the reliability of the machine-
learning models at various confidence levels. For the case studies as discussed in Chapter 3, the
prediction bands of different confidence levels show that even with a relatively low confidence 𝛼 = 0.5,
most of the actual values of the samples are covered by the prediction bands of the underlying machine-
learning model. From this it can be concluded that the gradient-boosting machine-learning models are
capable of efficiently modeling the underlying relationships of the data, thereby providing confidence
that the actual values of the predictions are contained with probability at least 𝛼 on average in the
estimated prediction intervals from conformal prediction. However, the sizes of the prediction intervals
demonstrate that, despite good model performances, the prediction capabilities are limited. While
in the bivariate Gaussian distribution the size of the prediction interval is about 1% of the range of
the property of interest, the size of the prediction intervals in the Friedman and high-performance
concrete data set is about 10% of the range, indicating a high uncertainty at a confidence level of
𝛼 = 0.95. For the last two data sets it might be worthwhile either to increase the amount of data
(through experiments or simulations) or to try out other machine-learning models, depending on the
required accuracy of the application.

4.3.4 Summary

To estimate the uncertainty of machine-learning predictions, conformal prediction was employed to
compute in-sample prediction intervals of a test set based on splitting the data and using the remaining
samples for generating the machine-learning models and the prediction region. The basic idea of using
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Data set Validity (%) / Prediction interval (Δ)
Confidence level (𝛼): 0.50 0.80 0.95

Bivariate normal distribution data set 66.8% / 0.009 90.6% / 0.016 98.4% / 0.028
Friedman regression data set [347] 57.0% / 1.0 84.6% / 1.9 96.4% / 3.2
High-performance concrete data set [350,
351]

56.4% / 2.4 84.2% / 5.7 96.0% / 12.0

Tab. 4.2. Validity of conformal prediction of the three data sets discussed in Chapter 3 and their respective
prediction interval at three different confidence levels 𝛼 = [0.5, 0.8, 0.95]. Validity denotes the probability
that a model’s estimate is within the prediction interval (Eq. 4.22), while the prediction interval denotes the
uncertainty of a single (point) estimate.

conformal prediction is to define an uncertainty estimate for individual machine-learning predictions
and to identify materials which cannot be predicted well by the machine-learning model and as such
are promising to explore for the analysis, screening, and prediction of novel materials. The validity of
a conformal predictor can be tested statistically by varying the confidence level between 0 and 1 to
ensure that the uncertainty estimates are consistent across multiple confidence levels. Higher error
rates indicate that conformal prediction is either applied to too few samples or that some samples are
not drawn from the same distribution and thus exhibit an entirely different materials behavior.

Unique to conformal prediction is that it can be combined with any machine-learning algorithm,
requires minimal additional computational costs as compared to the performance assessments of the
model, and that no parameterizations of the model are needed to obtain reliable uncertainty estimates
at a given confidence level [62, 63, 399]. They are two caveats of conformal prediction. First, as
conformal prediction is based on the exchangeability condition (Eq. 4.16), all samples in a data set
must come from the same distribution. Second, there is a trade-off between the size of the prediction
intervals and the confidence level 𝛼: the lower the confidence level is, the greater the probability that
the actual value of the property of interest is contained within the estimated prediction interval, but
the larger the prediction intervals. As the uncertainty estimate is dependent on the confidence level
and the prediction performance of the machine-learning model, this means that confidence levels
can be adjusted to filter out materials whose target property is below or above some user-defined
thresholds [386] or to analyze which samples cannot be predicted by a machine-learning model
(cf., Sections 4.4 and 5.2).

4.4 Identification of anomalous materials

The fact that conformal prediction [60–64] produces valid prediction regions at specified confidence
levels (cf., Section 4.3.1) can be exploited to determine how different a material is relative to a set
of other materials [400, 401]. This difference can be expressed by the non-conformity score and the
p-value of conformal prediction (Eqs. 4.18 and 4.19),

𝑝
𝑦

𝑛+1 =
|{𝑘 = 1, . . . , 𝑛 : 𝛼𝑘 ≥ 𝛼𝑦𝑛+1}|

𝑛
< 𝜖 , 𝛼

𝑦

𝑛+1 = Δ(𝑦𝑛+1, 𝑓 (®𝑥𝑛+1)) . (4.28)
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Equation 4.28 states that the p-value of any material with features ®𝑥𝑛+1 and target property 𝑦𝑛+1 below
the significance level of 𝜖 = 1 − 𝛼 does not conform well to other materials 𝑧𝑖 = (𝑦𝑖, ®𝑥𝑖) ∈ ®𝑍 in the
data set. Such a material is termed anomalous. An anomalous material is therefore a material with a
large nonconformity score and a large prediction error of the machine-learning model. Anomalous
materials should not be confused with outliers in statistics. Although both describe data samples that
differ significantly from other samples in the data set, outliers can be attributed to variability in the
measurement or experimental error whereas anomalous materials not.

Equation 4.28 can be seen as a statistical hypothesis test: with a probability of at least𝛼%materials
are classified as anomalous because their actual value is not within the estimated prediction interval
of the machine-learning model and with a probability of at most 𝜖% = 100% − 𝛼% materials are
erroneously identified as anomalous because the exchangeability assumption of the training data is
violated. This happens, for example, if the training data are not representative for the modeling of the
property of interest, there are only very few other materials with similar features to the anomalous
material, or the actual values of the property of interest are generated by a different mechanism (or
distribution) than the training data (cf., Section 4.3.1).

Equation 4.28 requires the determination of the actual value of property of interest of each new
sample in a data set. Therefore, an anomalous material can only be determined from the available
data and cannot be used to screen the materials space for materials whose property of interest cannot
be accurately estimated by the underlying machine-learning model. Further, Equation 4.28 considers
only the error of the machine-learning prediction 𝑓 (®𝑥𝑛+1) relative to the actual value 𝑦𝑛+1 and not
the distance of the sample 𝑧𝑛+1 = (𝑦𝑛+1, ®𝑥𝑛+1) relative to the other samples 𝑧𝑖 ∈ ®𝑍 in a data set. In
particular, this means that an anomalous material is characterized only by the property of interest
and not by its properties. Therefore, a heuristic is proposed in the following to classify materials as
anomalous, when the actual sample is also anomalous in its features ®𝑥𝑛+1 and when the actual value
of the property of interest has not yet been determined. This heuristic, called credibility (Alg. 4.3),
can help to efficiently identify materials whose property of interest cannot be accurately estimated,
or when more samples are needed to reliably predict the property of interest.

4.4.1 The algorithm

The identification of anomalous materials is closely related to outlier [402] and conformal-anomaly
detection [400, 401]. Both methods determine whether or not a sample was generated from the same
distribution of the training data. While outlier detection utilizes order statistics and determinants
[403], machine-learning algorithms such as random forest [404], clustering methods [405, 406],
or density-based estimators [407–409], and makes assumptions about the data, conformal-anomaly
detection calculates the p-value as in Equation 4.28 by taking the difference between the machine-
learning prediction 𝑓 (®𝑥𝑛+1) and the actual value of 𝑦𝑛+1 of a sample 𝑧𝑛+1 = (𝑦𝑛+1, ®𝑥𝑛+1) relative to the
set of other samples in the training data 𝑧𝑖 ∈ ®𝑍. Because the p-value indicates when a material is non-
conforming relative to the training data [400, 401], conformal-anomaly detection is thus equivalent
to identifying the materials whose actual values of the property of interest cannot be predicted by the
machine-learning model.

To identify an anomalous material 𝑧𝑛+1, outlier and conformal-anomaly detection require the
knowledge of the property of interest 𝑦𝑛+1. As the property of interest 𝑦𝑛+1 is often not known in
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advance, the proposed heuristic in this thesis estimates the probability that the actual value of a
material’s property of interest is within the prediction interval as obtained by conformal prediction.
The idea is to compute the p-value based on the machine-learning’s prediction 𝑓 (®𝑥𝑛+1) relative to
the 𝑘-nearest neighbor samples with similar feature values by using the median of their properties of
interest as an initial estimate (Alg. 4.3).

Without having to determine the actual value 𝑦𝑛+1 of a new sample 𝑧𝑛+1 = (𝑦𝑛+1, ®𝑥𝑛+1), the
heuristic, first, estimates the prediction region of the property of interest Γ1−𝛼(𝑧𝑛+1) (line 12 of
Algorithm 4.3) and, second, checks whether the range 𝑟(®𝑥𝑘) of the values of the property of interest
of nearest-neighbor samples 𝑧𝑘 (line 13) overlaps with the prediction region of 𝑧𝑛+1, i.e., 𝑟(®𝑥𝑘) ∩
Γ1−𝛼(®𝑥𝑛+1) ≠ ∅. Then, whenever the p-value of 𝑧𝑘 is less than 1 − 𝛼 or 𝑟(®𝑥𝑘) does not overlap with
Γ1−𝛼(®𝑥𝑛+1), 𝑧𝑘 is anomalous relative to the data set in terms of its feature values and its property of
interest. If indeed 𝑃(𝑟(®𝑥𝑘) ∈ Γ1−𝛼(®𝑥𝑛+1)) > 𝛼, then the p-value (line 16–19) is determined according
to Equation 4.28 and again tested on nonconformity with Equation 4.28 and the machine-learning
prediction 𝑦𝑛+1 (line 23).

The outcome of this heuristic can be turned into a score, hereafter referred to as credibility, by
repeating the procedure with random partitions of the data and averaging over all hypothesis tests,

Π1−𝛼(®𝑥𝑛+1) =
1
𝑁

𝑁∑︁
𝑛=1

1(𝑝𝑦
𝑛+1 > 1 − 𝛼 ∧ Γ1−𝛼(®𝑥𝑛+1) ∩ 𝑟(®𝑥𝑘) ≠ ∅) , (4.29)

where 1(𝐴) is the indicator function that is one if 𝐴 is true and zero otherwise. Equation 4.29 indicates
how well a material’s property of interest can be predicted based on the available set of data and
the generated machine-learning model: a high credibility indicates a high probability of finding the
actual value within the prediction interval, whereas a low credibility indicates an anomalous material
whose property of interest cannot be accurately estimated by the machine-learning model.

4.4.2 Examples

Applying the credibility measure (Eq. 4.29) to all three data sets from Chapter 3, no anomalous data
samples (or materials) can be found at a confidence level greater than 𝛼 > 0.9. Although anomalous
data samples or materials can be found at (much) lower confidence levels, these data samples or
materials cannot be verified as there are either no anomalous samples in the data set (bivariate
normal distribution, Friedman regression data set) or it is not known which materials in the high-
performance concrete data set are subject to different materials behavior. Therefore, to showcase
the heuristic on a simple example, the gradient-boosting decision trees (GBDT) algorithm [249–252]
(cf, Appendix A.2) is applied on a linear relationship 𝑓 (𝑥) = 𝑥+𝜀with noise 𝜀 between a feature 𝑥 and
the property of interest 𝑦 ≡ 𝑓 (𝑥). For this purpose, 200 samples were generated ®𝑍 = {(𝑥1, 𝑦1), . . . ,
(𝑥200, 𝑦200)}, the data randomly split 𝑚 = 50 times into a proper ®𝑍 and a calibration set ®𝑍𝑐, and the
procedure repeated for every sample 𝑧𝑘 ∈ ®𝑍 in the data set to compute the prediction interval Γ1−𝛼
and the credibility Π1−𝛼 as in Alg. 4.3. To identify anomalous materials, a total of ten samples were
randomly selected, excluded from the model construction, and 𝑦 perturbed in the range of [−𝑦, 𝑦]
to varying degrees. The corresponding results of the machine-learning predictions in relation to the
actual values of the data set at a confidence level 𝛼% = 90% are shown in Figure 4.7.
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Data: Data set ®𝑍 = (𝑌, ®𝑋) = {𝑧1, . . . , 𝑧𝑛}, 𝑧𝑖 = (𝑦𝑖, ®𝑥 𝑗)
Input: Machine-learning algorithm 𝑓 , nearest-neighbor estimator 𝑔, confidence level 𝛼

+ parameters of 𝑓 as well as of 𝑔
Result: true if material 𝑧𝑘 is anomalous, false otherwise.

1 function identify_anomalous_materials(𝑧𝑘, 𝑓 , 𝑔, 𝛼):
2 credibility = 0;
3 anomalous = false;
4 for 𝑖 = 1, . . . , 𝑁 do
5 Split data ®𝑍−𝑘 = {𝑧 𝑗 | 𝑗 ≠ 𝑘} randomly into training ®𝑍𝑡 and calibration set ®𝑍𝑐;
6 // Conformal prediction

7 Construct confidence predictor 𝑓 on training set ®𝑍𝑡;
8 Construct nearest-neighbor estimator 𝑔 on calibration set ®𝑍𝑐;
9 Compute nonconformity scores 𝛼 𝑗 = Δ(𝑦 𝑗, 𝑓 (®𝑥 𝑗)) on calibration set ®𝑍𝑐;

10 // Estimate prediction interval and nearest-neighbor samples

11 ®𝑍NN ← k-nearest neighbors obtained from 𝑔(®𝑥𝑘);
12 𝑟Γ =

[
min Γ1−𝛼(®𝑥𝑘),max Γ1−𝛼(®𝑥𝑘)

]
;

13 𝑟𝑘 =
[
min𝑦 ®𝑍NN,max𝑦 ®𝑍NN

]
;

14 // conformal-anomaly detection
15 𝑝𝑘 = 0;
16 if 𝑟𝑘 ∩ 𝑟Γ ≠ ∅ then
17 𝑦𝑘 = median Γ1−𝛼(®𝑥𝑘);
18 𝛼𝑘 = Δ(𝑦𝑘, 𝑓 (®𝑥𝑘));
19 𝑝𝑘 = |{ 𝑗 = 1, . . . , | ®𝑍𝑐 | : 𝛼 𝑗 ≥ 𝛼𝑘}|

/
| ®𝑍𝑐 |;

20 // Check hypothesis of an anomalous material
21 if 𝑝𝑘 > 1 − 𝛼 then
22 credibility← credibility + 1;
23 if credibility/𝑁 < 1 − 𝛼 then
24 anomalous = true;
25 return anomalous;

Algorithm 4.3: A pseudo-code listing of the presented algorithm for identifying anomalous
materials in materials-science applications.

Overall, the GBDT algorithm accurately models the linear trend of the functional relationship
𝑓 (𝑥) (as expected) with a Pearson’s coefficient of determination of 𝑅2 = 0.96 and a root-mean-
squared error of RMSE = 0.01. As depicted in Fig. 4.7, the samples with the perturbed values
are randomly distributed in the target-property domain with eight samples within and two samples
outside the prediction band of the training data. The credibility Π1−𝛼 supports the results of the
visual inspection: all samples outside the prediction bands have a low credibility, while the samples
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Fig. 4.7. Identification of anomalous materials illustrated by the example of a linear dependence 𝑓 (𝑥) = 𝑥 + 𝜀
between the feature 𝑥 and the target property of interest 𝑦 ≡ 𝑓 (𝑥). Shown is the prediction performance of
a gradient-boosting decision trees algorithm [249–252] (Appendix A.2) on 200 samples with added noise 𝜀,
prediction intervals (error bars), the prediction band (dotted line), and the credibility Π of each sample at
confidence level of 𝛼 = 0.90. The plots above and right of the parity plots show the distribution of the the
size of prediction intervals (diagram above the parity plot, Δ) and the maximum absolute error between the
predicted 𝑦 and actual value of 𝑦 (diagram right of the parity plot, 𝜀 = |𝑦 − 𝑦 |). The numbers in the boxes
display the mean values (Δ̄, 𝜀), while the maximum errors are given in the texts below or to the left of the
diagrams. To identify anomalous materials, a total of ten samples were randomly selected and 𝑦 perturbed
in the range of [−𝑦, 𝑦] to varying degrees (circles). As visualized, samples outside the prediction band, not
enclosed in the prediction intervals of the other samples, or that cannot be estimated from samples with similar
features are shown to have low credibility scores. Of the ten samples with perturbed values (circles), this is
true for three samples that cannot be estimated with the machine-learning model at the specified confidence
level of 𝛼 = 0.90 (cf., Section 4.3.1).

within the prediction bands (with the exception of one sample) and the training data have a high
credibility. The two samples outside and the one sample inside the prediction band, have been verified
to be anomalous (Π < 1 − 𝛼): both samples were strongly under- and overestimated, respectively, by
the machine-learning model and have actual values and features that are anomalous relative to the
training data.

Although the calculation of credibility on this simplified example allows only very few conclu-
sions to be drawn for material-science applications, it is to be noted that none of the anomalous
materials have large prediction intervals as compared to the rest of the samples. This is because the
machine-learning model was not constructed on any of the anomalous materials, thereby significantly
underestimating the size of the prediction interval. Therefore, the size of the prediction interval
cannot and should not be used as an indicator for materials whose property of interest cannot be
accurately estimated by the underlying statistical model. The example shows: to identify anomalous
materials the features and the property of interest of a new material should be set in relation to



4.5. Discussion 87

the other materials in the data set. Therefore, in large and complex material data sets, the concept
of credibility has the potential to help explore the materials space and to identify materials whose
property of interest cannot be predicted by the machine-learning model (cf., Section 5.2).

4.4.3 Summary

Credibility (Eq. 4.29) identifies materials whose property of interest cannot be well predicted by the
machine-learning model, either because the materials are not representative for the modeling of the
property of interest or there are not enough data to reliably predict the property of interest. These
materials are termed anomalous and are characterized by a low credibility that can be calculated
solely on the basis of a training data set and the features of a new sample (Alg. 4.3). Anomalous
materials result in biased machine-learning models that underestimate or overestimate the property
of interest of a material (Fig. 4.6). The aim is to understand why machine-learning models may not
accurately model the property of interest of these materials in order to identify possible limitations
of the machine-learning models.

In the context of materials, anomalous materials may have a rare or otherwise uncommon target
property or behave differently than similar materials or structures. In a simple, yet illustrative case
study, all anomalous materials were successfully identified. Given that a single case study has limited
validity in a field with a diverse set of materials data, the proposed heuristics should be seen as a
diagnostic tool to understand and to identify potential problems with the generated machine-learning
models, especially when the actual values of new samples are not known. Nonetheless, the introduction
of a heuristic, that can identify materials whose properties of interest are difficult to estimate, opens
up new opportunities to isolate specifically which materials require further investigations or a more
thorough analysis of the constructed machine-learning models.

4.5 Discussion

The identification of relevant feature subsets is a new concept for automatizing feature selection and
model construction. It combines filter, wrapper, and embedded methods in a common framework for
materials science (Section 4.1). The framework comprises not only a feature-selection workflow to
reduce and optimize the feature representation of materials, but also the creation of statistical models
that perform well on new data. As the identification of features related to the property of interest
requires highly predictive models [358], special focus was put on the applicability of the framework
to be independent of any specific feature-selection criterion (cf., Section 4.2).

The strength of the proposed feature-identification framework with the TB3-algorithm is to ef-
fectively reduce the number of features in a data set (Section 3.1), to identify the optimal minimal
non-redundant feature subset, and, without additional computational cost, to provide an aggregated
set of redundant features (Eq. 4.13). The main disadvantage is that the computing time of the TB3-
algorithm may increase exponentially with more feature interactions. Tests have shown that the
TB3-algorithm can in principle be applied to thousands of features (cf., Section 5.2.3). However, an
efficient and flexible objective function is needed to quickly sift through the still large space of possi-
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ble combinations of relevant features subsets. Whereas filter methods may potentially miss relevant
features in the construction of predictive models, wrapper and embedded methods tightly couple
the identification of feature subsets with the prediction performance of the machine-learning model.
Experiments demonstrate that the found (redundant) feature subsets using wrapper methods do not
degrade the prediction performance of the constructed machine-learning models. Furthermore, the
identified feature subsets are not only optimal for a machine-learning algorithm (Tab. 4.1), but are
also close or identical to the ground truth of the evaluated data sets (Chapter 3). Unrelated features
have been identified in none of the examples by the TB3-algorithm in combination with highly predic-
tive machine-learning models. In the case of small data sets and machine-learning models with only
moderate predictive performance, however, unrelated features were identified as relevant leading to
spurious relationships in the characterization of the property of interest. Therefore, the chance of
identifying unrelated features using machine learning is higher for smaller data sets than for larger
data sets, and is higher the lower the model’s prediction performance.

Critical factors in identifying the features related to the property of interest are multi-collinear
features and strong relationships between the features and the property of interest. A deeper under-
standing of these feature relationships was achieved with the TB3-algorithm and feature-dependence
maps of materials data (Section 4.2). Feature-dependence maps [100] visualize feature interac-
tions as heat maps and can be created with any feature-identification method, including various
variable-importance measures designed for specific machine-learning algorithms. Examples indicate
that a single-best model as provided by a single machine-learning algorithm, constructed from the
features of the variable-importance measure or from a minimal non-redundant feature subset, may
not adequately represent the relationships in the data. This has the consequence that relationships
between features may remain undetected or may even be erroneously identified (Section 4.2). The
framework therefore utilizes the TB3-algorithm as a standardized procedure for automatically gen-
erating feature-dependence maps from the identified redundant feature subsets. The generation of
feature-dependence maps with the TB3-algorithm has the advantage that the algorithm is not only
model-agnostic but also takes into account the multiplicity of feature subsets with the same predictive
performance (Eq. 4.13). The results are feature-dependence maps within a probabilistic tolerance,
which can be used as a diagnostic tool to identify related features in the data set or to further analyze
the statistical relationships in the data with post hoc analysis techniques [249, 375–377].

The reliability of feature-dependence maps is closely related to the prediction performance of
machine-learning models. The prediction performance of a machine-learning model is commonly
quantified by a single evaluation metric on data that have not been used for model construction.
As has been shown, a single metric, while useful for estimating the goodness-of-fit of the model,
neither provides information about the quality of model outputs [363] nor an error estimation in
regions with only few training data. Consequently, an uncertainty estimate is desirable and even
necessary in many materials-science applications (Section 4.3). Although it is possible to estimate
the uncertainty of the model outputs by making assumptions about the model, the distribution of
the data or the errors, or through the generation of a distribution of predictions – for example with
resampling techniques – it cannot be guaranteed that the predictions are reliable, e.g., that in 95%
of the cases the actual value of the property of interest is within the uncertainty estimation at a
confidence level of 𝛼 = 0.95 [363, 366]. Conformal prediction [62–64] is a general methodology
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that is applicable to any machine-learning algorithm and provides guaranteed uncertainty estimates
within a probabilistic tolerance. The most time-intensive part is the robust estimation of the prediction
intervals. Therefore, an approximation has been proposed that estimates the prediction intervals based
on the machine-learning predictions of the data that have not been used for model construction. The
uncertainty estimates can be determined at minimal additional cost as compared to the regeneration
of the statistical models on different partitions of the data set, while providing tighter prediction
intervals and guaranteeing reliable uncertainty estimates at a specified confidence level. In general,
the size of the prediction interval depends on the confidence level: higher confidence levels lead to
larger prediction intervals. However, the confidence level can be adapted for specific needs in order
to obtain precise uncertainty estimates for the prediction of new materials [386].

Uncertainty estimates from conformal prediction hold on average: In the worst case the actual
values are still outside the prediction intervals, but only for no more than 𝜖% = 100% − 𝛼% of the
samples. A heuristic was proposed that identifies those materials whose properties of interest are
outside the prediction interval or which are difficult to predict by the machine-learning model. This
heuristic can be determined solely on the basis of the training data, the features of the material
(Alg. 4.3), and without knowledge of the actual value of the property of interest for that material.
In a proof-of-concept study with known ground truth, the introduced heuristic credibility measure
successfully identified all materials exhibiting a rare or otherwise unusual property of interest relative
to the available data used for modeling the feature-property relationship. As results on such a simple
example do not allow to generalize the concept of identifying anomalous materials to materials data
with unknown ground truth, the proposed heuristic should be considered primarily as a diagnostic
tool to understand and identify potential difficulties with the generated machine-learning models
when applied to new data.





Chapter 5

Computational materials-science applications

The identification of relevant feature subsets from a large set of candidate features is central to the
creation of accurate machine-learningmodels for a given class ofmaterials (cf., Chapter 4). The success
of such a feature identification depends on clean and curatedmaterials data, knowledge of hypothetical
relevant features of the underlying physical processes (cf., Section 3.1), and the machine-learning
algorithm to identify the features that are related to the properties of interest (cf., Section 4.1).

So far, recent studies have identified relevant features either heuristically by means of construct-
ing feature subsets iteratively [55, 161], selecting them on the basis of predefined criteria [171,
172, 177, 179], or introducing them without extensively and systematically analyzing their relevance
[162, 163, 165–168, 335]. In contrast, the developed feature-identification framework (Chapters 3
and 4) has the potential to automatize the model creation and to enable a data-driven identification
and characterization of related features to the property of interest. Therefore, three materials-science
applications with increasing number of data samples and features are analyzed to discuss and demon-
strate the challenges of identifying relevant features in materials science and to investigate the appli-
cability of the developed feature-identification framework for the quantitative prediction of the crystal
structure of octet-binary compound semiconductors [55, 161], the prediction of structural properties
of perovskites [410, 411], and the prediction of elastic properties of inorganic crystalline compounds
[166, 412].

Applying the developed framework on available materials data has several advantages. First, all
three data sets are characterized by clean and curated materials data. Second, prior knowledge of
relevant features of the target properties enables a direct comparison of the developed framework
with established machine-learning approaches. And third, all three applications are challenging in
terms of feature identification, which includes the analysis of a small data set, the determination of
feature dependences, and the systematic generation of predictive machine-learning models.
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5.1 Conceptual framework

The automatic identification of relevant features and the systematic generation of machine-learning
models comprises several steps, in the following, formalized as a model-agnostic protocol for feature
identification and model construction (Fig. 5.1). One of the key components in the data-driven
identification and characterization of relevant feature subsets is the tolerance-based branch-and-
bound algorithm (TB3, Section 4.1). The TB3-algorithm (Alg. 4.1) identifies a ranked list of relevant
feature subsets to optimize the materials representation for a given machine-learning algorithm. As
such, identified feature subsets are model dependent. First, because of determining the relevant
feature subsets by using a machine-learning model as the feature-selection criterion in the feature-
subset search (Section 3.1.2 and Section 3.5). And second, because of inherent assumptions in the
machine-learning algorithm that influence the exploration of relevant feature subsets.

With regard to a model-independent understanding of the materials-science problem, the question
arises whether relevant feature subsets can be identified with a different machine-learning algorithm
for feature identification and model creation other than the use of filter methods1. The possibility to
identify relevant feature subsets independent of the machine-learning algorithm is hereafter referred
to as transferability. For simplicity, transferability is determined on the basis of the Jaccard similarity
[413] or equivalently the Tanimoto2 coefficient [414],

𝐽 ( ®𝑋, ®𝑋 ′) = |
®𝑋 ∩ ®𝑋 ′ |
| ®𝑋 ∪ ®𝑋 ′ |

=
| ®𝑋 ∩ ®𝑋 ′ |

| ®𝑋 | + | ®𝑋 ′ | − | ®𝑋 ∩ ®𝑋 ′ |
, 0 ≤ 𝐽 ( ®𝑋, ®𝑋 ′) ≤ 1 , (5.1)

between the identified non-redundant sub-optimal feature subsets ®𝑋, ®𝑋 ′ of two different feature-
identification methods. The Jaccard similarity (coefficient) ranges from a model-independent feature
identification (𝐽 ( ®𝑋, ®𝑋 ′) ≈ 1) to a model-dependent identification (𝐽 ( ®𝑋, ®𝑋 ′) ≈ 0), e.g., if feature
subsets are not representative for the actual statistical relationship or implicit assumptions about the
machine-learning algorithm prohibit the identification of relevant feature subsets.

To this end, feature-property relationships are analyzed in a three-stage approach by first identify-
ing the relevant features, second by generating machine-learning models based on these features, and
finally by evaluating the model’s prediction performance with a machine-learning model employing
fixed (hyper-)parameter settings to enable model inter-comparisons (Fig. 5.1). In particular, feature-
property relationships are examined by utilizing diagnostic tools such as feature-dependence maps
on the data set (Section 4.2). A comparison of different feature-identification methods is performed
to identify common and most frequently identified features. Even though these methods may, in
principle, operate differently (e.g., information-based feature selection versus feature-identification
methods using machine-learning algorithms such as SISSO or GBDT3), common identified features
are a strong indication of the relevance of features used to evaluate the relevance of each feature (sub-

1This assumes that machine-learning algorithms are able to model arbitrary relationships in the data.
2The Jaccard and Tanimoto coefficients are identical in that they are defined by the ratio of the intersection and union. It
was first proposed by Jaccard [413] and was later formulated independently again by Tanimoto [414].
3Symbolic regression models such as SISSO depend on the number and combination of operators (cf., Appendix A.1).
Ensemble of decision trees such as GBDT rely on the number and depth of the generated trees (cf., Appendix A.2). As such,
identified features are implicitly dependent on the parameters (and hyper-parameters) of the machine-learning model.
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Fig. 5.1. Conceptual framework of the proposed feature identification and model construction ranging from the
feature-subset search of relevant features, an analysis of themost frequently identified features, the identification
of feature dependencies, the construction of statistical models, the estimating of the prediction uncertainty,
materials-property predictions, and the application of the generated machine-learning models to new data.

set) and the transferability of each machine-learning model. Further, ensemble-based and conformal
prediction (Section 4.3.1) are employed to estimate the prediction errors of the machine-learning
models and to identify materials, whose properties of interest are difficult to estimate (Section 4.4).

5.1.1 Feature identification

The three-stage approach has two major advantages. First, feature-property relationships can be ana-
lyzed independently from feature identification and, second, a more flexible machine-learning model
can be used for feature identification than for model construction. For example, a piecewise-constant
machine-learning algorithm such as the GBDT algorithm [249–252, 267, 268] (cf., Appendix A.2) gen-
erally makes fewer assumptions on the statistical relationships than symbolic-regression algorithms
(cf., Appendix A.1); unlike symbolic regression algorithms, they do not imply an algebraic functional
relationship between the features and the property of interest and hence can identify a larger number
of statistical relationships in the data. Moreover, piecewise-constant machine-learning algorithms
are generally faster than symbolic-regression algorithms in the modeling of statistical relationships,
hence saving expensive computational resources when searching for the relevant features in the data
set. This is especially useful when the feature-identification is more computationally demanding than
building a machine-learning model based on all the features of the data set. The performance of
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the GBDT and SISSO algorithm for feature identification is therefore investigated in detail on the
octet-binary compound semiconductors [55], perovskites [411], and inorganic crystalline compounds
data set [166, 412], using each algorithm (referred to as TB3-GBDT and TB3-SISSO, respectively) to
search for the (sub-)optimal and redundant sets of relevant features prior to analyzing feature-property
relationships, transferability, and relevant feature subsets of the data set.

For both feature-identification methods, TB3-GBDT and TB3-SISSO, the Pearson’s determination
coefficient 𝑅2 [101] of the generated machine-learning model is maximized to identify the relevant
feature subsets of the data set (thereby minimizing the root-mean-squared error of the generated
machine-learning models). Mean and standard deviation are estimated by means of 10-fold cross-
validation on the remaining fold not being used for feature identification.

For TB3-SISSO, a symbolic-regression model is built with at most three terms (desc_dim ≤ 3⁴)
by applying the operator set Υ =

{
• + •, • − •, • × •, •/•, | • − • |, •−1, •2, •3, •1/3, exp(−•), exp •, ln •,√

•
}
recursively up to three times (rung ≤ 3⁴), while keeping only those terms with a maximum of

maxcomplexity = 5⁴ features and subs_sis = 300⁴ feature combinations in each iteration. (cf., Ap-
pendix A).

For TB3-GBDT, the LightGBM [252, 267, 268] algorithm is used – a modification of the GBDT
algorithm to improve the efficiency and scalability of the machine-learning model. GBDT models are
constructed iteratively with 90% of the data (subsample = 0.9⁵, subsample_freq = 1⁵) to subsequently
reduce the overall prediction error of the GBDT model, performing a maximum of 2000 iterations
(n_estimators⁵) with a shrinkage factor (learning_rate⁵) of 𝛾 = 0.1. In each iteration, decision trees
are built based on a splitting criterion to find the feature 𝑋 ∈ ®𝑋 = {𝑋1, . . . , 𝑋𝑑} that best separates the
samples of the data (cf., Appendix A). Decision trees are tree-like models consisting of nodes (features)
and leaves (predictions). A minimum of 1% of the data in each leaf node (min_child_samples⁵) was
used in the applications for predicting the property of interest. In addition, the squared residuals
and the model complexity (eval_metric = [l1, l2_root]⁵) of the LightGBM machine-learning models
were monitored to terminate the model optimization, once either the �1- or �2-norm [52, 249] has
not improved in the last 200 iterations (early_stopping_rounds⁵).

5.1.2 Prediction performance of identified feature subsets

The evaluation of optimal and redundant feature subsets is based on the prediction performance of the
generated machine-learning model, i.e., on the accuracy to estimate the property of interest on new
data. In principle, any machine-learning algorithm is applicable, but among the machine-learning
algorithms available to date, flexible and universally applicable algorithms are recommended for
creating predictive machine-learning models. Since the creation of a physics-based model and the
modeling of feature-property relationships in the data are substantially facilitated by an accurate
and deterministic machine-learning model, the SISSO algorithm [176, 197] is used as the reference
machine-learning algorithm for estimating the prediction performance of identified feature subsets
with the TB3-algorithm (TB3-GBDT and TB3-SISSO, Section 4.1), with total cumulative mutual in-

⁴The names refer to the settings defined in the Fortran code of the reference [197].
⁵All names in the parentheses refer to the parameters in the documentation of the LightGBM package (https://lightgbm.
readthedocs.io/) [252, 267, 268].

https://lightgbm.readthedocs.io/
https://lightgbm.readthedocs.io/
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formation (TCMI, Section 3.3.3), and with the three feature-identification methods discussed in Sec-
tion 3.5: recursive feature elimination [263] using random forest (RFECV) [266], gradient-boosting
decision trees using permutation feature importance (FS-GBDT) [252, 266, 338], and feature selec-
tion through hyper-parameter optimization (rung = [1, 2, 3]⁴, maxcomplexity = [3, 5, 10]⁴) of a
10-fold cross-validated SISSO model (cf., Section 2.5, FS-SISSO).

In the following, the prediction performance for each of the identified feature subsets is estimated
by partitioning the data set into 10 folds (10-fold cross validation), using 9 folds to generate a SISSO
model and the remaining fold to estimate the mean accuracy (Pearson’s coefficient of determination
𝑅2 [101]) and the root-mean-squared error (RMSE) using the generated model. In practice, the
dimension of the SISSO model and the recursive application of the operator set are hyper-optimized
(Section 2.5). However, in order to compare and benchmark different feature-identification methods
and subsets in the following, these hyper-parameters are fixed. For themodel construction the operator
setΥ =

{
•+ •, •− •, •× •, •/•, | •− • |, •−1, •2, •3, •1/3, exp(−•), exp •, ln •,√•

}
is applied, where the number

of terms in the symbolic expression is set to desc_dim = 3⁴, the number of operator combinations
is set to maxcomplexity = 10⁴, the number of feature combinations is limited to rung = 3⁴, and
subs_sis = 100⁶ combinations were evaluated at each SIS step [197].

In addition to the estimation of the prediction performance, a frequency analysis of the identified
feature subsets is performed. The same identified features subsets are also used to estimate the
minimum number of features (the smallest feature-subset cardinality) required to construct a machine-
learning model without degrading its prediction performance. More specifically, the minimum number
of features is heuristically determined with the help of feature-dependence maps (Section 4.2) and
identified feature subsets with the smallest feature-subset cardinality, whose predictive performance
are similar or better than that of a machine-learning model constructed with the full set of features.

5.1.3 Feature-dependence maps

Feature-dependence maps facilitate the identification of multivariate non-linear related features and
the most promising property of interest for a given machine-learning algorithm (Section 4.2). In
particular, they can be used to analyze the interrelationships between features (independent of a
particular property of interest) and to visualize statistical relationships of potentially related features
in the data (cf., Section 5.2). The generation of feature-dependence maps can be time-consuming,
especially when applied to large data sets with hundreds or even thousands of features. However, not
all dependences between the features must necessarily be determined. For instance, if compositional
or general-purpose features (Sec. 2.5) are used, the relationships between most of the features are
known or can be computed once with TB3-algorithm.

In the framework, feature-dependence maps are generated with the TB3-algorithm using either
GBDT or SISSO as the feature-selection criterion (Section 4.1). Essentially, a feature-subset search
is performed with a convergence threshold of 𝜖 = 0.01 (cf., Section 4.2) for each feature of the data
set at a confidence level of 𝛼 = 0.95 (Section 4.1). Within this probabilistic tolerance level, the set

⁶The number of expressions used for generating the models mostly determines the computational requirements. The large
the number, the higher the computational payload and the longer it needs to build the models.
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of identified features are then visualized as blocks in the feature-dependence maps, which represent
the interactions between features and between features and the property of interest.

5.1.4 Model construction

Due to the limited availability of materials data and the implicit assumptions in the statistical modeling
of relationships, a feature identification possibly identifies many feature-subset combinations in the
search (cf., Chapter 4). It is therefore expected that a search for the optimal feature subset leads
to a multiplicity of competing machine-learning models with distinct relevant feature subsets, but
similar prediction performances (Section 4.1). Because the TB3-algorithm generates a ranked list of
minimally non-redundant feature subsets without additional computational cost, competing machine-
learning models of identified minimally non-redundant feature subsets can be tested statistically for
similar prediction performance.

The most commonly used method to compare the prediction performance of two machine-learning
models is the 5x2-cv paired t-test [415]. The paired 5x2-cv t-test splits the data set into two sets and
repeats the splitting five times, using both sets alternately to construct the model and evaluate the
prediction performance (5-times repeated 2-fold cross-validation, Section 2.5). The variance of the
differences is then compared by performing a hypothesis tests (using the Student’s t-test [369]) and
whenever the feature subsets of the tested machine-learning model have a statistical similar prediction
performance as the feature subsets of the best-performing machine-learning model at a confidence
level of 𝛼 ≤ 0.95, both models and feature subsets are considered statistically equivalent.

5.1.5 Uncertainty estimation

The multiplicity of competing machine-learning models can be considered as an ensemble of machine-
learning models with different feature subsets, but similar prediction performances. These machine-
learning models in turn can be constructed on the same partitions of the data set and evaluated on
data that have not been used for model construction – to provide both a mean and a variance for each
(point) prediction and predictions interval with statistical guarantees (Section 4.3). The developed
framework for feature identification and model construction facilitates the combination of competing
machine-learning models into an ensemble of machine-learning models so as to improve the overall
performance of the machine-learning algorithm and to account for the various statistical relationships
in the data [416].

The ensemble mean and prediction intervals can either be used to direct the search for new
materials [58, 103, 160, 367, 368] or to estimate the prediction error of the ensemble machine-
learning models [360, 363, 378]. In the framework, the ensemble average of the machine-learning
predictions and the prediction intervals are determined as the 𝛼th-percentile (𝛼 = [0.5, 0.8, 0.95])
of the different model predictions on the same set of data (Section 4.3). Specifically, the materials
data that are not being used for the model construction are used to estimate the in-sample prediction
intervals [60–64] (Section 4.3.2) by randomly splitting the materials data 𝑚 = 100 times into a
proper training set and a calibration set, while repeating the procedure 𝑛 = 50 times for each material
in the data set (cf., Fig. 4.5). As will be shown explicitly, the prediction errors based on the ensemble
mean and prediction intervals do not provide any statistical guarantees about the uncertainty of
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the model’s predictions (Section 4.3). Hence, prediction intervals are computed using conformal
prediction [62–64] at three different confidence levels 𝛼 = [0.5, 0.8, 0.95] with the setup as described
in Section 4.3.1.

5.1.6 Anomalous materials

While conformal prediction provides statistical guarantees about the prediction intervals, it does not
provide any information about the prediction error of machine-learning predictions on new data
(referred to as reliability). Therefore, the developed feature-identification and model-construction
framework uses the credibility measure defined in Section 4.4 to identify materials, whose properties
of interest are difficult to estimate (Eq. 4.29). Based on the materials data, credibility is computed
based on the Algorithm 4.3 in the same step as the prediction intervals, e.g., by randomly splitting
the materials data 𝑚 = 100 times into a proper training set and a calibration set, while repeating the
procedure 𝑛 = 50 times for each material in the data set at confidence levels of 𝛼 = [0.5, 0.8, 0.95].

The lower the credibility, the more difficult it becomes to estimate the materials’ properties of
interest. Below a specified threshold (Π ≤ 1−𝛼) these materials are classified as anomalous, meaning
they are either not representative for the modeling of the target properties or they cannot be described
by the specified set of materials data at a confidence level of 𝛼. The aim is to understand why machine-
learning models may not accurately model the property of interest of these materials in order to
identify possible limitations of the machine-learning models (cf., Section 4.3).

5.2 Datasets

The developed framework for feature identification and model construction aims to automate the
model creation in materials-science applications and to enable a data-driven identification and charac-
terization of related features to the property of interest using machine learning. In the following, three
materials-science applications are reviewed to study the applicability of the developed framework
for feature identification and model construction. Common to all materials-science applications is
the availability of clean and curated materials data and the representation of the materials problem
by properties of the constituent elements excluding atomic interactions (Section 2.5). However, it is
emphasized that the developed framework is neither limited to the choice of materials representation
nor to the investigated materials-science applications.

5.2.1 Octet-binary compound semiconductors

Octet-binary compound semiconductors are AB-type materials formed by groups of I/VII, II/VI, III/V,
and IV/IV elements of two atomic species. They are known to crystallize in a wide range of crystal
structures. Since 1970, a plethora of methods have been developed to qualitatively predict the stability
of octet-binary compound semiconductors and the preferred crystal structure based on their energy
differences [55, 161, 197, 418–426]. To date, octet-binary compound semiconductors are among the
most thoroughly characterized materials classes in materials science and are therefore ideally suited
to benchmark and test the developed feature-identification and model-construction framework. In the
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Fig. 5.2. A periodic table of elements of the 82 octet-binary compound semiconductors data set [55, 161] and
the two analyzed crystal structures: rock salt and zinc blende. Highlighted are elements that occur in the crystal
structures as cations (A) or anions (B). Pairs with a full valence shell are connected by arrows.

following, the quantitative estimation of the energy differences between fourfold (e.g., zinc blende)
and sixfold (e.g., rock salt) crystal structures (cf., Fig. 5.2) are investigated in greater detail.

The data set

Predicting the crystal structure and stability of octet-binary compound semiconductors on the basis
of their chemical composition has been a challenge for materials science for more than half a century
[417, 427]. One of the reasons for this is that the energy differences from related crystal structures
of octet-binary compound semiconductors are less than 0.001% of the total energy of a single atom
and therefore require very accurate predictions [55, 426].

Recently, Ghiringhelli, Vybiral et al. [55, 161] investigated a total of 82 octet-binary compound
semiconductors to quantitatively predict the energy difference Δ𝐸 = 𝐸RS − 𝐸ZB of rock-salt and zinc-
blende crystal structures using machine learning. They calculated the total energy of rock-salt and
zinc-blende crystal structures within the framework of the density-functional theory [25, 26] and the
local-density approximation exchange-correlation functional [428], but stressed that the approach
is neither limited to the type of exchange-correlation functional nor to the crystal structure and
machine-learning algorithm (cf., Section 2.2).

In their work, Ghiringhelli, Vybiral et al. focused on creating predictive models that were faster
to compute and easier to obtain than the target property Δ𝐸 itself [55]. To this end, they iteratively
constructed a candidate list of features from seven electro-chemical atomic properties of each atomic
species 𝐴/𝐵 such as the atomic ionization potential IP, electron affinity EA⁷, the energies of the

⁷The ionization potential (IP) and electron affinity (EA) were calculated from the free, isolated, spinless and spherically
symmetric atom, via the half occupied Kohn-Sham orbital of the half positive (negative) charged atom.
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highest-occupied and lowest-unoccupied Kohn-Sham levels, H and L, and the maximum of the radial
probability densities of the valence 𝑠-, 𝑝-, and 𝑑-orbitals, 𝑟𝑠, 𝑟𝑝, and 𝑟𝑑 , respectively.

To uniquely determine the materials representation, the features of the constituent elements A/B
in the features were ordered such that the element A had the smallest Mulliken electronegativity
EN(A) < EN(B), where EN = −(IP + EA)/2. Because the ordering of the elements resulted in
machine-learning models that were not symmetric with respect to the exchange of atomic species
𝐴 and 𝐵, this thesis additionally investigates the influence of the Mulliken electronegativity as an
additional feature in estimating the energy difference Δ𝐸 of octet-binary compound semiconductors.

The main difficulty of using this data set for the prediction of the energy difference between
rock-salt and zinc-blende crystal structures is the small number 82 materials relative to the moderate
number of 16 features. In addition, the data set contains only very few materials with high energy
differences, such as boron nitride (Δ𝐸BN = 1.71 eV) and diamond (Δ𝐸CC = 2.64 eV) as compared
to the 95% of the data which have energy differences of less than Δ𝐸 ≤ 0.80 eV. As a consequence,
the energy difference Δ𝐸 has the form of a highly skewed non-Gaussian distribution, leading to
a potential bias in identifying relevant features and constructing machine-learning models. Due
to the small number of materials structures, the analysis is further complicated by issues of the
“curse of dimensionality” [389, 390] (Section 2.6) such as spurious relationships between features
(Fig. 5.5), high sensitivity to multi-collinear features (Tab. 5.1), and large variations in the predictive
performance of machine-learning models (Tabs. 5.2 and 5.3).

Feature identification

Tests were performed on three randomly chosen subsets of 20, 41, and 82 octet-binary compound
semiconductors to identify the relevant features for the energy difference Δ𝐸 between rock-salt and
zinc-blende crystal structures. Feature-identification methods from Chapter 3 (TCMI, RFECV, FS-
GBDT, and FS-SISSO) and the developed feature-identification framework from Chapter 4 (TB3-
GBDT and TB3-SISSO) were used to identify the related features to the predict the energy difference
between rock-salt and zinc-blende crystal structures. Results are reported in Table 5.1 and machine-
learning models were finally built with the SISSO algorithm using fixed hyper-parameter settings
[197] (cf., Sections 5.1.2 and A.1).

Overall, there is a clear trend of increasing prediction performance with increasing number of data
samples and larger feature-subset cardinalities. With the exception of FS-GBDT (which is affected
by issues with the permutation feature importance [266, 338] and spurious relationships between
features), all investigated feature-identification methods (TCMI, RFECV, FS-SISSO, TB3-GBDT, TB3-
SISSO) achieve similar prediction performance on the complete data set with a Pearson’s coefficient of
determination of about 𝑅2 ≈ 0.95 and a root-mean-squared error of about RMSE ≈ 80meV. Remark-
ably, feature-identification methods not only show a high variability in the relevance of individual
features, but identified features also vary considerably across different subsets of data samples. Both
of these results indicate that statistical relationships between the energy difference Δ𝐸 and the iden-
tified feature (subsets) are highly non-linear and therefore are computationally difficult to identify.
Although octet-binary compound semiconductors can in principle be uniquely determined by two
atomic properties⁸, the investigated feature-identification methods identify almost all features of both

⁸By definition, octet-binary compound semiconductors are uniquely determined by the atomic charges Z(A) and Z(B)
[418, 419], neither of which is included in the data set.
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# Dependence
Measure

Features Performance
# Relevant features 𝑅2 RMSE [meV]

20
sa
m
pl
es
∗

TCMI 8 H(A), L(A), r𝑑(A), EA(B), EN(B), L(B),
r𝑝(B), r𝑠(B)

1.00±0.00 452±380

RFECV 2 r𝑝(A), r𝑠(A) 1.00±0.00 174±88
FS-GBDT 2 r𝑑(A), r𝑝(A) 1.00±0.00 168±88
FS-SISSO 7 EN(A), r𝑝(A), r𝑠(A), EA(B), EN(B), H(B),

IP(B)
1.00±0.00 148±84

TB3-GBDT – –/– –/–
TB3-SISSO – –/– –/–

41
sa
m
pl
es

TCMI 7 EA(A), EN(A), L(A), r𝑝(A), EA(B), IP(B),
r𝑠(B)

0.84±0.15 86±34

RFECV 7 EA(A), L(A), r𝑑(A), r𝑝(A), r𝑠(A), H(B),
r𝑝(B)

0.76±0.25 134±88

FS-GBDT 3 EA(A), r𝑑(A), r𝑝(A) 0.81±0.25 111±41
FS-SISSO 9 EA(A), IP(A), L(A), r𝑝(A), r𝑠(A), H(B),

L(B), r𝑝(B), r𝑠(B)
0.80±0.18 111±61

TB3-GBDT 16 EA(A), EN(A), H(A), IP(A), L(A), r𝑑(A),
r𝑝(A), r𝑠(A), EA(B), EN(B), H(B), IP(B),
L(B), r𝑑(B), r𝑝(B), r𝑠(B)

0.85±0.16/
0.88±0.11

123±106/
84±49

TB3-SISSO 16 EA(A), EN(A), H(A), IP(A), L(A), r𝑑(A),
r𝑝(A), r𝑠(A), EA(B), EN(B), H(B), IP(B),
L(B), r𝑑(B), r𝑝(B), r𝑠(B)

0.85±0.16/
0.91±0.13

123±106/
87±67

82
sa
m
pl
es

TCMI 8 EN(A), H(A), IP(A), r𝑝(A), EA(B), EN(B),
L(B), r𝑑(B)

0.94±0.05 97±44

RFECV 12 EN(A), IP(A), L(A), r𝑑(A), r𝑝(A), r𝑠(A),
EA(B), EN(B), H(B), L(B), r𝑑(B), r𝑝(B)

0.95±0.06 63±22

FS-GBDT 6 EN(A), L(A), r𝑝(A), r𝑠(A), EN(B), r𝑑(B) 0.86±0.16 424±627
FS-SISSO 12 EA(A), EN(A), H(A), IP(A), L(A), r𝑝(A),

r𝑠(A), EA(B), EN(B), H(B), IP(B), r𝑝(B)
0.95±0.05 82±73

TB3-GBDT 12 EA(A), EN(A), IP(A), L(A), r𝑑(A), r𝑝(A),
r𝑠(A), EA(B), EN(B), IP(B), r𝑝(B), r𝑠(B)

0.94±0.05/
0.92±0.10

72±32/
97±41

TB3-SISSO 16 EA(A), EN(A), H(A), IP(A), L(A), r𝑑(A),
r𝑝(A), r𝑠(A), EA(B), EN(B), H(B), IP(B),
L(B), r𝑑(B), r𝑝(B), r𝑠(B)

0.94±0.06/
0.91±0.13

92±69/
92±62

Reference [197] 12 EA(A), EN(A), H(A), IP(A), L(A), r𝑝(A),
r𝑠(A), EA(B), EN(B), H(B), IP(B), r𝑝(B)

0.95±0.05 81±72

Energy difference Stats: Δ𝐸 = [−0.38 , 2.64] eV mean = 0.11 eV std = 0.44 eV

Tab. 5.1. Prediction performance of identified redundant feature subsets (normal face) and optimal non-
redundant feature subsets (bold face) of different feature-identification methods for estimating the energy
difference Δ𝐸 between rock-salt and zinc-blende crystal structures: total cumulative mutual information (TCMI,
Section 3.3.3), recursive feature elimination [263] using random forest (RFECV) [266], gradient-boosting
decision trees using permutation feature importance (FS-GBDT) [252, 266, 338], SISSO using 10-fold cross-
validation and hyper-parameter optimization (FS-SISSO) [197] (cf., Section 2.5), and the tolerance-based
branch-and-bound algorithm (TB3) with GBDT and SISSO as feature-selection criterion (Section 4.1). Predic-
tion performances were estimated using SISSO by means of 10-fold cross-validation (cf., Section 5.1). Reported
are the mean 𝑥 and standard deviation Δ𝑥 as 𝑥 ± Δ𝑥 of the Pearson’s coefficient of determination 𝑥 = 𝑅2 [101]
and the root-mean-squared error (𝑥 = RMSE). The RMSE is in units of millielectronvolts (meV). The reported
prediction performance from Ref. [197] is also shown. ∗ In the case of 20 samples, the 𝑅2 performance statistic
could not be reliably determined due to the small size of test samples (cf., [429]).
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atomic species as relevant. This discrepancy is further reflected in the feature-subset cardinalities
of the redundant and minimal non-redundant feature subsets of the TB3-algorithm using the GBDT
or the SISSO algorithm as the feature-selection criterion (Section 4.1): while the redundant feature
subsets include almost all features of the data set, the minimal non-redundant feature subsets require
3–4 features in order to predict the energy difference between rock-salt and zinc-blende crystal struc-
tures as accurately as a machine-learning model created with all features (Tab. 5.1). In contrast, a
feature identification with the GBDT algorithm (FS-GBDT) identifies about 2–6, RFECV about 2–12,
TCMI about 2–7 and FS-SISSO about 7–12 features as relevant. Whereas FS-GBDT and RFECV tend
to identify features of atomic species 𝐴 only, they were outperformed by TCMI and FS-SISSO. In
terms of accuracy and feature-subset cardinality (cf., Section 3.5), TCMI has lower prediction errors
as FS-SISSO, while TB3-GBDT and TB3-SISSO consistently yield the best prediction performance and
the smallest feature-subset cardinality.

It is to be noted that the identified feature subsets of the TB3-GBDT algorithm do not necessarily
lead to the same feature subsets as the identified feature subsets of the TB3-SISSO algorithm, i.e., the
transferability of identified (sub-optimal) feature subsets is limited when different machine-learning
algorithms are used for the search and model construction. A comparison (Fig. 5.3) shows that in
all 9 non-redundant feature subsets identified by TB3-GBDT and 49 non-redundant feature subsets
identified by TB3-SISSO, only three of the identified feature subsets are found by both methods:
{EA(A), r𝑝(A), IP(B)}, {H(A), r𝑠(A), EN(B)}, and {r𝑠(A), EA(B), r𝑝(B)}. This corresponds to a Jaccard
similarity coefficient of 0.05, which can be explained by the fact that the limited availability of
materials data in the data set leads to differences in the identification of feature subsets of multi-
collinear features (Fig. 5.3, no. 4 and 14).

A frequency analysis (Fig. 5.4) shows that (although different machine-learning algorithms and
hence different feature-selection criteria were used⁹) the atomic radii r𝑠(A), r𝑝(A) are the most fre-
quent selected features for estimating the energy difference between rock-salt and zinc-blende crystal
structures, followed by the radius r𝑝(B), the Mulliken electronegativity EN(B) and related features
(IP, EA) of both atomic species. These results are in agreement with prior investigations, where
the atomic radii {r𝑠(A), r𝑝(A), r𝑠(B), r𝑝(B)} [418, 419]1⁰ and the feature subset {EA(B), IP(B), r𝑠(A),
r𝑝(A), r𝑑(A), r𝑠(B), r𝑝(B)} [55, 161] have been identified as relevant. In fact, the atomic radii are
⁹As a reminder, wrappermethods identify the relevant features based on the selectedmachine-learning algorithm andmodel.
The identification of features as such is thus significantly influenced by the model parameters used. It therefore requires
the determination of an appropriate set of parameters for each model in order to compare different feature-identification
methods (cf., Sec. 5.1).
1⁰John & Bloch [418] uses the difference between the total effective core radii of atoms A and B (𝑟𝜎) against the corre-
sponding s-p hybridization of both sites (𝑟𝜋) to separate the crystal structures of binary compounds,

𝑟𝜎 =
�� (r𝑝(A) + r𝑠(A)) − (

r𝑠(B) + r𝑝(B)
) �� , 𝑟𝜋 =

(
r𝑝(A) − r𝑠(A)

)
+

(
r𝑝(B) − r𝑠(B)

)
.

Zunger [419] uses the difference between the total effective core radii of atoms A and B and the sum of the orbital
non-locality of the s- and p-electrons on each site,

𝑟𝜎 =
�� (r𝑝(A) + r𝑠(A)) − (

r𝑠(B) + r𝑝(B)
) �� , 𝑟𝜋 =

��r𝑝(A) − r𝑠(A)
�� + ��r𝑝(B) − r𝑠(B)

�� .
Both, definitions use different values for r𝑠 and r𝑝: John & Bloch [418] derived the atomic positions from the “Pauli-force”
model potential introduced by Simons [430], whereas Zunger [419] derived the atomic radii from the screened density-
functional atomic pseudo-potentials. In comparison, Ghiringhelli, Vybiral et al. [55] computed the atomic radii using
density-functional theory [25, 26] within the local-density approximation [428]. As for some elements (carbon, nitrogen,
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1 {rs(A), EA(B), rs(B)}
2 {EN(A), rs(A), rp(B)}

3 {EN(A), rs(A), rs(B)}
4 {EN(A), rs(A), IP(B)}

5 {rd (A), rs(A), rp(B)}
6 {L(A), rp(A), rp(B)}

7 {IP(A), rp(A), IP(B)}
8 {rs(A), EA(B), rp(B)}

9 {rs(A), EN(B)}
10 {EA(A), rp(A), IP(B)}

11 {rp(A), EN(B)}

12 {EN(A), H(A), IP(A), rp(A),
rs(A), IP(B)}

13 {EN(A), rd (A), rp(A),
EA(B), rp(B), rs(B)}

14 {H(A), rp(A), rs(A), IP(B),
rp(B)}

15 {EN(A), rp(A), EN(B),
rd (B), rp(B)}

16 {H(A), rp(A), rs(A), H(B),
rp(B)}

17 {IP(A), rd (A), rp(A), EA(B),
rs(B)}

18 {H(A), IP(A), rp(A), rs(A),
IP(B)}

19 {EN(A), rd (A), rp(A),
EN(B), rp(B)}

20 {EN(A), IP(A), rp(A),
EA(B), rs(B)}

21 {IP(A), rp(A), rs(A), IP(B),
rp(B)}

22 {H(A), rp(A), H(B), IP(B),
rp(B)}

23 {IP(A), rp(A), IP(B), L(B),
rp(B)}

24 {H(A), rp(A), IP(B), rs(B)}
25 {H(A), IP(A), rp(A), rp(B)}
26 {EA(A), EN(A), rp(A),

rp(B)}
27 {H(A), rp(A), EN(B),

rp(B)}
28 {rd (A), rp(A), rd (B), rp(B)}
29 {EN(A), IP(A), rp(A),

rp(B)}
30 {rd (A), rp(A), rp(B), rs(B)}
31 {H(A), rp(A), EN(B), rs(B)}
32 {rd (A), rp(A), IP(B), rs(B)}
33 {H(A), IP(A), rp(A), IP(B)}

34 {rd (A), rs(A), H(B), rs(B)}
35 {H(A), IP(A), rp(A), rs(B)}
36 {IP(A), rp(A), EA(B),

rs(B)}
37 {rp(A), EN(B), IP(B),

rp(B)}
38 {rd (A), rp(A), IP(B), rp(B)}
39 {rd (A), rp(A), IP(B), L(B)}
40 {L(A), rp(A), rs(A), rp(B)}
41 {H(A), rp(A), EA(B),

IP(B)}
42 {EN(A), rp(A), EA(B),

rs(B)}
43 {EN(A), rd (A), rp(A),

rs(B)}
44 {EN(A), H(A), rp(A),

rp(B)}
45 {rp(A), rs(A), L(B), rp(B)}
46 {rd (A), rp(A), EN(B),

rp(B)}
47 {rp(A), rs(A), rp(B), rs(B)}
48 {EN(A), rs(A), H(B), rs(B)}
49 {rd (A), rp(A), H(B), rp(B)}
50 {H(A), rp(A), IP(B), rp(B)}
51 {EN(A), rd (A), rp(A),

rp(B)}
52 {H(A), rp(A), rs(A), rs(B)}
53 {rd (A), rp(A), rs(A), rs(B)}
54 {H(A), rp(A), H(B), rp(B)}
55 {rd (A), rs(A), EA(B), rs(B)}
56 {H(A), rs(A), EA(B), rs(B)}
57 {rp(A), EA(B), rp(B)}
58 {rp(A), rd (B), rp(B)}
59 {rp(A), H(B), rs(B)}
60 {EA(A), rp(A), rp(B)}

61 {IP(A), rp(A), rp(B)}
62 {rp(A), EN(B), rs(B)}
63 {rp(A), rs(A), rp(B)}
64 {H(A), rs(A), rp(B)}
65 {rp(A), rd (B), rs(B)}
66 {IP(A), rs(A), H(B)}
67 {rp(A), H(B), rp(B)}
68 {EA(A), rp(A), rd (B)}
69 {L(A), rp(A), EN(B)}
70 {rs(A), IP(B), rs(B)}
71 {EN(A), rs(A), EN(B)}
72 {L(A), rp(A), IP(B)}
73 {rd (A), rp(A), IP(B)}
74 {rp(A), EA(B), EN(B)}
75 {rs(A), H(B), rs(B)}
76 {rp(A), EA(B), H(B)}
77 {H(A), rp(A), EN(B)}
78 {rs(A), H(B), rp(B)}
79 {rs(A), EN(B), rs(B)}
80 {EA(A), rs(A), rs(B)}
81 {EA(A), rs(A), H(B)}
82 {L(A), rs(A), H(B)}
83 {rs(A), EA(B), rs(B)}
84 {rd (A), rs(A), IP(B)}
85 {L(A), rs(A), rd (B)}
86 {EN(A), rp(A), IP(B)}
87 {rp(A), rs(B)}
88 {rp(A), rp(B)}
89 {rp(A), rd (B)}
90 {rp(A), IP(B)}
91 {rs(A), rp(B)}
92 {rp(A), EA(B)}

TB
3-
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D

T
TB

3-
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SS
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TB3-GBDT (1–6) TB3-GBDT ∩ TB3-SISSO (7–11) TB3-SISSO (11–92)

Fig. 5.3. Identified minimally non-redundant (sub-optimal) feature subsets of the tolerance-based branch-and-
bound algorithm (TB3) with GBDT or SISSO as the feature-selection criterion (Section 4.1). Shown is the
intersection and union of the two feature-identification methods corresponding to a Jaccard index of 0.06. It
should be noted that due to the different machine-learning algorithms, a direct comparison between TB3-GBDT
and TB3-SISSO may not be appropriate. The numbering is used for referencing purposes.
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Fig. 5.4. Heat-map of most frequent selected or occurring features in identified (redundant) feature subsets
of the investigated feature-identification methods (cf., Section 5.1). The size and color reflect the frequency of
the features (= relevance). A frequency analysis of identified minimal non-redundant feature subsets of the
tolerance-based branch-and-bound algorithm (TB3) with GBDT and SISSO is also performed and shown for
reference.

closely related to the pseudo-potential of an atom and thus determine the total energy of a material,
while the electronegativity and electron affinity are a measure of the attractive interaction between
a valence electron and the atomic nucleus and thus determine the type of bonding (e.g., covalent or
ionic bonding).

Results further confirm that feature subsets are not symmetric with respect to the exchange of
atomic species 𝐴 and 𝐵, e.g., that features of both atomic species do not appear symmetrically in
the identified feature subsets (cf., [55]). In particular, there is a general tendency to assign greater
relevance to the features of atomic species 𝐴 than to those of atomic species 𝐵. For instance, L(A) is
more frequently selected than L(B). This asymmetry is independent of whether or not the Mulliken
electronegativity has been identified in the minimal non-redundant feature subsets and can be ex-
plained by the fact that the atomic species 𝐴 constrains the electro-chemical properties of the atomic
species 𝐵. A symmetrization of the features was explicitly constructed and tested, but resulted in
the same identification of the atomic radii (r𝑠, r𝑝) and the Mulliken electronegativity (EN) as the
most relevant features of the data set. Thus, even though the Mulliken electronegativity is not part
of many of the identified minimal non-redundant feature subsets, it still plays an important role in
the statistical description of the energy difference of rock-salt and zinc-blende crystal structures of
octet-binary compound semiconductors.

oxygen, and fluorine) the atomic radius r𝑠 is larger than r𝑝, Ghiringhelli, Vybiral et al. used the absolute differences and
sums of the atomic radii,

𝑟𝜎 =
��r𝑝(A) + r𝑠(A)�� − ��r𝑠(B) + r𝑝(B)�� , 𝑟𝜋 =

��r𝑝(A) − r𝑠(A)
�� + ��r𝑝(B) − r𝑠(B)

�� .
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Fig. 5.5. Feature-dependence maps of the octet-binary compound semiconductor data set [55, 161] created
with the tolerance-based branch-and-bound algorithm (TB3) and two different machine-learning algorithms:
(a) gradient-boosting decision trees (GBDT) [249–252, 267, 268] and (b) the sure-independence screening and
sparsifying operator (SISSO) [197]. Feature-dependence maps were created at a confidence level of 𝛼 = 0.95
and a convergence threshold of 𝜖 = 0.01 (cf., Section 4.2). The score(=strength) of the dependence is shown
in the first column (Dep.). The score is the Pearson’s 𝑅 coefficient of determination [101] of the 10-fold cross-
validated machine-learning models based on the identified features (colored boxes). The dependence of the
energy difference between rock-salt and zinc-blende crystal structures (Δ𝐸) is given in the last row.

Feature dependences

In comparison to the minimally non-redundant feature subsets found by the tolerance-based branch-
and-bound algorithm (TB3, Tab. 5.1), redundant feature subsets consist of almost all features of the
data set. This indicates that there are many interactions between the features and the energy differ-
ence of rock-salt and zinc-blende crystal structures. Indeed, the feature-dependence maps generated
with TB3-GBDT and TB3-SISSO reveal a block-like structure of feature interactions between atomic
features for each of the atomic species 𝐴 or 𝐵 (Fig. 5.5). A more detailed analysis of the identified
non-redundant feature subsets identifies not only physical relationships such as H − L ∝ IP − 𝐸𝐴
[161] or EN = −(IP+EA)/2, but also completely dependent features such as r𝑝 with r𝑠 or the electron
affinity EA(B) to features of atomic species 𝐴 or vice versa (Fig. 5.5). These findings are not surpris-
ing as the atomic properties of each atomic species 𝐴/𝐵 implicitly depend on the atomic charge Z
(and therefore are necessarily related) and the inherent ordering of the atomic species in ascending
order of the Mulliken electronegativity constrains the electro-chemical properties of constituent ele-
ments A/B. Feature-dependence maps further reveal a relation between the electron affinity (EA) of
atomic species 𝐵 to estimate the atomic properties of atomic species 𝐴. The set of atomic properties
is therefore not independent (Fig. 5.5).
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Differences in the feature-dependence maps of the GBDT or the SISSO algorithm are due to small
fluctuations in the cross-validated prediction performances of identified non-redundant sub-optimal
feature subsets. For example, in the TB3-GBDT search, the highest occupied molecular orbital H of
the atomic species 𝐵 can be almost completely estimated by the Mulliken electronegativity EN(B)
or the ionization potential alone IP(B) (𝑅2 = 0.99). However, the prediction performance slightly
improves (Δ𝑅2 = +0.01), once a second feature from the atomic species 𝐵 is added. Similarly, L and
r𝑑 are dependent of both atomic species in the TB3-SISSO search: the prediction performance of L
and r𝑑 are slightly better (Δ𝑅2 = +0.02) when features of the respective other atomic species are
present in the minimally non-redundant feature subsets.Although the electron affinity (EA) can in
principle be expressed by any other combination of elemental properties of the same atomic species,
the TB3-algorithm only identifies the electron affinity as a function of the Mulliken electronegativity
(EN) and the ionization potential (IP) alone. This is due to the fact, that the TB3-algorithm searches
for the optimal minimally non-redundant feature subsets. Thus, feature subsets with larger feature-
subset cardinalities, but same prediction errors, cannot be identified and hence are not included in
the feature-dependence maps.

A comparison of the TB3-GBDT and TB3-SISSO feature-dependence maps otherwise shows a
qualitatively good agreement in the feature dependences: both feature-dependence maps have a
block-like structure of feature interactions and the energy difference between rock-salt and zinc-
blende crystal structures is a non-linear function of the atomic species, Δ𝐸 = Δ𝐸(𝑍𝐴, 𝑍𝐵) (Fig. 5.5).
As the features also implicitly dependent on the atomic charges 𝑍, it is to be expected that Δ𝐸 can be
accurately estimated by at least two features, one from each atomic species 𝐴/𝐵. Indeed, identified
minimally non-redundant feature subsets for the prediction of Δ𝐸 always consist of at least one feature
from each atomic species 𝐴/𝐵. Especially TB3-SISSO and TB3-GBDT (Fig. 5.3) further suggest that
the electron affinity EA(B) is important in the estimation of Δ𝐸 due to strong statistical correlations
to both atomic species.

Statistical models

The prediction performance of identified non-redundant sub-optimal feature subsets of TB3-GBDT
and TB3-SISSO are summarized in Tabs. 5.2 and 5.3. Machine-learning models can accurately predict
the energy differences between rock-salt and zinc-blende crystal structures of octet-binary compound
semiconductors with an 𝑅2 > 0.9. Yet, they are characterized by large standard deviations (of up to
50% of the actual values) in the cross-validation prediction performance. The high variance suggests
that the performance of the model may be limited by the small amount of materials data, or that the
relationship cannot be accurately modeled by an analytic relationship with the present features.

GBDT algorithms [249–252, 267, 268] are known to have issues with modeling very few data
samples [243, 358–360, 431]. As such, machine-learning models constructed with feature subsets
identified by the TB3-GBDT algorithm (or using the GBDT algorithm for modeling) have larger pre-
diction errors (RMSE ≈ 100meV, 𝑅2 ≈ 0.91) than machine-learning models with the TB3-SISSO
algorithm (RMSE ≈ 80meV, 𝑅2 ≈ 0.95, Tabs. 5.2 and 5.3).

Prediction performances of constructed machine-learning models from both methods are compara-
ble to prior investigations [55, 161, 197] (all with an approximately cross-validated RMSE ≈ 80meV
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# Features GBDT SISSO
+ Model 𝑅2 RMSE [meV] 𝑅2 RMSE [meV]

1 EN(A), r𝑠(A), IP(B) 0.85±0.13 138±123 0.91±0.08 106±39

Δ𝐸 = − 0.256 ·

(
3
√︁
𝐸𝑁 (𝐴) + 3

√︁
𝐼𝑃(𝐵)

)
𝐸𝑁 (𝐴)

𝑟𝑠 (𝐴)4
− 699 ·

(
ln

(
𝑟𝑠 (𝐴)

) )2 exp(𝐸𝑁 (𝐴) + 𝐼𝑃(𝐵))
+ 0.0892 ·

(
𝐸𝑁 (𝐴) − 𝐼𝑃(𝐵) + ln

(
𝐸𝑁 (𝐴)

) (
𝐸𝑁 (𝐴) + 𝐼𝑃(𝐵)

) )
− 0.688

2* r𝑠(A), EA(B), r𝑝(B) 0.81±0.26 142±140 0.92±0.10 97±41

Δ𝐸 =3.96 ·
√︁
𝑟𝑝(𝐵)

exp (𝑟𝑠 (𝐴))
(
𝑟𝑝(𝐵)3 + 𝑟𝑠 (𝐴)3

) + 0.159 · 𝑟𝑝(𝐵) + 𝑟𝑠 (𝐴)
𝑟𝑠 (𝐴)2

(
exp

(
𝐸𝐴(𝐵)

)
+ exp

(
−𝑟𝑠 (𝐴)

) )
− 1.03 ·

𝑟𝑠 (𝐴)2
(
𝑟𝑝(𝐵) − 𝑟𝑠 (𝐴)

)
ln

(
𝑟𝑝(𝐵)

)
𝐸𝐴(𝐵)3 − 0.974

3 IP(A), r𝑝(A), EN(B) 0.85±0.15 145±171 0.86±0.12 232±402

Δ𝐸 =0.0475 · 𝐸𝑁 (𝐵)3

𝑟𝑝(𝐴)2 3
√︃
exp

(
𝐸𝑁 (𝐵)

) + 0.0539 · 𝑟𝑝(𝐴)
ln

(
𝑟𝑝(𝐴)

) · ���� 𝐸𝑁 (𝐵)𝐼𝑃(𝐴) −
𝐼𝑃(𝐴)
𝐸𝑁 (𝐵)

����
− 0.0221 ·

���� 𝐸𝑁 (𝐵) + 𝐼𝑃(𝐴)ln
(
𝑟𝑝(𝐴)

) − 𝐸𝑁 (𝐵) 𝐼𝑃(𝐴
𝐸𝑁 (𝐵) − 𝐼𝑃(𝐴)

���� − 0.469

4 r𝑝(A), EN(B) 0.83±0.18 157±177 0.85±0.13 125±052

Δ𝐸 =0.0454 · 𝐸𝑁 (𝐵)3

𝑟𝑝(𝐴)2 3
√︃
exp

(
𝐸𝑁 (𝐵)

) − 0.233 · exp
(
− 1
𝐸𝑁 (𝐵) ln

(
𝑟𝑝(𝐴)

) )
+ 4.12e-06 · 𝑟𝑝(𝐴)3𝑟𝑝(𝐴) exp

(
𝑟𝑝(𝐴)

)
· 𝐸𝑁 (𝐵) ln

(
𝐸𝑁 (𝐵)

)
− 0.307

5 EN(A), r𝑠(A), r𝑝(B) 0.84±0.12 143±117 0.82±0.13 251±262

Δ𝐸 =3.86 ·
√︁
𝑟𝑝(𝐵)

exp
(
𝑟𝑠 (𝐴)

) (
𝑟𝑝(𝐵)3 + 𝑟𝑠 (𝐴)3

) + 0.45 · ���� (ln(
𝑟𝑠 (𝐴)

) )2 − ln
(
𝑟𝑠 (𝐴)

)
𝑟𝑝(𝐵)

𝑟𝑠 (𝐴)

����
+ 3.85e-06 ·

(
exp

(
𝐸𝑁 (𝐴)

) )2
ln

(
𝑟𝑠 (𝐴)

)
𝐸𝑁 (𝐴)𝑟𝑠 (𝐴)

− 0.385

6* EA(A), r𝑝(A), IP(B) 0.86±0.10 137±126 0.83±0.16 149±87

Δ𝐸 = − 0.243 ·
ln

(
𝐸𝐴(𝐴) − 𝐼𝑃(𝐵)

) 3
√︁
𝐼𝑃(𝐵)

𝑟𝑝(𝐴)2
− 0.646 ·

exp
(
−𝑟𝑝(𝐴)

)
− ln

(
𝑟𝑝(𝐴)

)
𝐸𝐴(𝐴) 𝐼𝑃(𝐵)

− 6.74e-05 ·
exp

(
−𝑟𝑝(𝐴)

)
ln

(
𝑟𝑝(𝐴)

)√︃
exp

(
𝐼𝑃(𝐵)

) − 0.389

(continues on next page)
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(continued from previous page)

7 EA(A), r𝑝(A), EN(B) 0.86±0.13 143±168 0.86±0.19 131±106

Δ𝐸 =0.0467 · 𝐸𝑁 (𝐵)3

𝑟𝑝(𝐴)2 3
√︃
exp

(
𝐸𝑁 (𝐵)

) + 0.383 · exp(−𝑟𝑝(𝐴)) − ln
(
𝑟𝑝(𝐴)

)
𝐸𝐴(𝐴)𝐸𝑁 (𝐵)

− 0.0106 ·
���� 𝐸𝐴(𝐴)2ln

(
𝑟𝑝(𝐴)

) − 𝐸𝑁 (𝐵)2

exp
(
𝑟𝑝(𝐴)

) ���� − 0.378

8 IP(A), r𝑠(A), EN(B) 0.85±0.20 135±165 0.85±0.19 134±74

Δ𝐸 =0.199 ·
(
ln

(
𝐸𝑁 (𝐵)

) )2
𝑟𝑠 (𝐴)3

√︁
𝑟𝑠 (𝐴)

− 185 · exp
(
𝐼𝑃(𝐴)𝑟𝑠 (𝐴)

)
·
���� 𝐸𝑁 (𝐵)𝐼𝑃(𝐴) −

𝐼𝑃(𝐴)
𝐸𝑁 (𝐵)

����
+ 0.0377 ·

ln
(
𝑟𝑠 (𝐴)

)
𝐸𝑁 (𝐵) 𝐼𝑃(𝐴)

(
exp

(
𝐼𝑃(𝐴)

)
+ exp

(
−𝐸𝑁 (𝐵)

) ) − 0.164

9* H(A), r𝑠(A), EN(B) 0.85±0.20 134±16 0.85±0.26 116±53

Δ𝐸 =0.0265 · 𝐸𝑁 (𝐵)3

𝑟𝑠 (𝐴)3 3
√︃
exp

(
𝐸𝑁 (𝐵)

) + 0.052 · ���� 𝐻 (𝐴)2
𝐸𝑁 (𝐵) − 𝐻 (𝐴) − ln

(
𝑟𝑠 (𝐴)

) (
𝐻 (𝐴) + 𝐸𝑁 (𝐵)

) ����
− 3.55e-06 · 𝐸𝑁 (𝐵)3 ln

(
𝑟𝑠 (𝐴)

) (
exp

(
−𝐻 (𝐴)

)
+ exp

(
𝑟𝑠 (𝐴)

) )
− 0.434

Tab. 5.2. Ranked list of statistical equivalent symbolic-regression models for the prediction of the energy
difference Δ𝐸 between rock-salt and zinc-blende crystal structures in ascending order of the SISSO [197]
prediction errors (RMSE - ΔRMSE). Shown is the prediction performance of identified, best-performing, non-
redundant, sub-optimal feature subsets of the tolerance-based branch-and-bound algorithm (TB3) using the
gradient-boosting decision trees (GBDT) algorithm [249–252, 267, 268] as feature-selection criterion Sections
3.1.2 and 4.1). For comparison, 10-fold cross-validated (cf., Section 5.1) prediction performances of GBDT
and the sure-independence screening and sparsifying operator (SISSO) [197] are reported in terms of the
mean 𝑥 and standard deviation Δ𝑥 as 𝑥 ± Δ𝑥 of the Pearson’s coefficient of determination 𝑥 = 𝑅2 [101] and
the root-mean-squared error (𝑥 = RMSE). The RMSE is in units of millielectronvolts (meV). Feature subsets
marked with an asterisk (*) are identified by TB3 using SISSO as the feature-selection criterion (cf., Tab. 5.3).

# Features GBDT SISSO
+ Model 𝑅2 RMSE [meV] 𝑅2 RMSE [meV]

1 EA(A), r𝑝(A), r𝑝(B) 0.83±0.15 144±126 0.95±0.04 71±38

Δ𝐸 =1.08 ·
(
𝑟𝑝(𝐴) + 𝑟𝑝(𝐵)

)
3
√︁
𝑟𝑝(𝐴)

(
𝑟𝑝(𝐴)3 + 𝑟𝑝(𝐵)3

) + 0.0555 · ����√︃exp
(
𝑟𝑝(𝐴)

)
− exp (𝐸𝐴(𝐴))

exp
(
−𝑟𝑝(𝐵)

) ����
− 0.0669 ·

����exp(−𝐸𝐴(𝐴))𝑟𝑝(𝐵)𝑟𝑝(𝐴)
−

��exp(𝑟𝑝(𝐵)) − exp
(
−𝐸𝐴(𝐴)

) ������ − 0.405

2 L(A), r𝑝(A), r𝑠(A), r𝑝(B) 0.77±0.28 161±145 0.95±0.04 64±23

Δ𝐸 =5.76 ·
exp

(
−𝑟𝑠 (𝐴)

)
𝑟𝑝(𝐵)2 exp

(
𝑟𝑝(𝐴)/𝑟𝑝(𝐵)

) − 0.586 · 𝐿(𝐴)𝑟𝑝(𝐵)
(
𝑟𝑝(𝐵) − 𝑟𝑠 (𝐴)

)
·
���� 𝐿(𝐴)𝑟𝑝(𝐴)

− 𝐿(𝐴)
𝑟𝑠 (𝐴)

����
− 0.0288 ·

��𝑟𝑝(𝐵) − ��𝑟𝑝(𝐵) − 𝑟𝑠 (𝐴)����
exp

(
𝐿(𝐴)

) 3
√︁
𝐿(𝐴)

− 0.218

(continues on next page)
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3 IP(A), r𝑝(A), EN(B), r𝑠(B) 0.83±0.21 145±156 0.94±0.04 81±32

Δ𝐸 =1.72 ·
3
√︁
𝑟𝑠 (𝐵)

𝑟𝑝(𝐴)3 + 𝑟𝑠 (𝐵)3
+ 0.729 ·

𝐼𝑃(𝐴)3
��𝑟𝑝(𝐴) − 𝑟𝑠 (𝐵)��

exp
(
𝐸𝑁 (𝐵)

)
+ exp

(
−𝐼𝑃(𝐴)

)
− 5.43 ·

��𝑟𝑠 (𝐵) − (
𝑟𝑝(𝐴) − 𝑟𝑠 (𝐵)

) �� 𝑟𝑝(𝐴)
exp

(
𝑟𝑝(𝐴)

)
𝐸𝑁 (𝐵)

− 0.0817

4 r𝑝(A), EA(B), r𝑝(B) 0.77±0.29 152±138 0.94±0.04 75±26

Δ𝐸 =2.39 ·
exp

(
−𝑟𝑝(𝐴)/𝑟𝑝(𝐵)

)
𝑟𝑝(𝐵)2

√︁
𝑟𝑝(𝐴)

− 0.0452 ·
(
𝑟𝑝(𝐴)3

)3 exp(𝐸𝐴(𝐵)𝑟𝑝(𝐴))
+ 0.533 ·

���� 3
√︃
exp

(
−𝑟𝑝(𝐴)

)
−

(
exp

(
𝐸𝐴(𝐵)

)
+ exp

(
−𝑟𝑝(𝐵)

) ) ���� − 0.277

5 IP(A), r𝑝(A), r𝑝(B) 0.84±0.13 139±130 0.94±0.05 81±24

Δ𝐸 =2.21 ·
exp

(
−𝑟𝑝(𝐴)/𝑟𝑝(𝐵)

)
𝑟𝑝(𝐵)2

√︁
𝑟𝑝(𝐴)

− 0.00105 ·
(
𝐼𝑃(𝐴)2

)3 exp(𝐼𝑃(𝐴))
exp

(
−𝑟𝑝(𝐵)

)
− 3.24e-05 ·

(
𝑟𝑝(𝐴) − 𝑟𝑝(𝐵)

)3
𝐼𝑃(𝐴)3 𝐼𝑃(𝐴)𝑟𝑝(𝐵) + 0.067

6 r𝑑(A), r𝑝(A), r𝑠(B) 0.80±0.18 153±118 0.93±0.04 93±48

Δ𝐸 =1.48 ·
𝑟𝑑 (𝐴) − 𝑟𝑝(𝐴)��𝑟𝑑 (𝐴) − 𝑟𝑝(𝐴)�� (𝑟𝑝(𝐴)3 + 𝑟𝑠 (𝐵)3) − 0.081 ·

��𝑟𝑠 (𝐵) − ��𝑟𝑝(𝐴) − 𝑟𝑠 (𝐵)���� 𝑟𝑑 (𝐴)(
𝑟𝑑 (𝐴) − 𝑟𝑝(𝐴)

)
𝑟𝑝(𝐴)

− 0.0826 ·
�����exp(𝑟𝑠 (𝐵)) − exp

(
−𝑟𝑠 (𝐵)

)
−

��𝑟𝑑 (𝐴) − 𝑟𝑠 (𝐵)����𝑟𝑑 (𝐴) − 𝑟𝑝(𝐴)��
����� − 0.129

7 r𝑝(A), r𝑠(A), r𝑝(B) 0.71±0.48 171±154 0.95±0.06 84±47

Δ𝐸 =1.91 ·
√︁
𝑟𝑝(𝐵)𝑟𝑠 (𝐴)

𝑟𝑝(𝐴)
(
𝑟𝑝(𝐵)3 + 𝑟𝑠 (𝐴)3

) + 0.172 · ���� 𝑟𝑠 (𝐴)2𝑟𝑝(𝐴)
− exp

(
𝑟𝑝(𝐵)

)
·
��𝑟𝑝(𝐴) − 𝑟𝑠 (𝐴)������

+ 0.0495 ·
��𝑟𝑝(𝐵) + 𝑟𝑝(𝐵) + 𝑟𝑠 (𝐴) − exp

(
𝑟𝑠 (𝐴)

)
·
��𝑟𝑝(𝐴) − 𝑟𝑠 (𝐴)���� − 0.559

8 H(A), IP(A), r𝑝(A), r𝑝(B) 0.84±0.14 142±138 0.93±0.06 137±205

Δ𝐸 =1.91 ·

(
3
√︁
𝑟𝑝(𝐵)

)2
𝑟𝑝(𝐴)3 + 𝑟𝑝(𝐵)3

− 0.0174 ·
(
𝐻 (𝐴) 𝐼𝑃(𝐴)

)3
𝑟𝑝(𝐵) exp

(
𝐼𝑃(𝐴)

)
+ 0.232 · exp

(
−

����𝐻 (𝐴)𝑟𝑝(𝐵)
− 𝐼𝑃(𝐴)
𝑟𝑝(𝐴)

����) − 0.101

(continues on next page)
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9 H(A), r𝑠(A), r𝑝(B) 0.85±0.12 136±122 0.93±0.06 139±149

Δ𝐸 =1.41 ·
√︁
𝑟𝑝(𝐵)/𝑟𝑠 (𝐴)

𝑟𝑝(𝐵)3 + 𝑟𝑠 (𝐴)3
+ 1.16 ·

���� 3
√︃
exp

(
𝐻 (𝐴)

)
−

(
exp

(
𝐻 (𝐴)

)
+ exp

(
−𝑟𝑠 (𝐴)

) ) ����
− 0.00618 ·

(
𝑟𝑝(𝐵) − 𝑟𝑠 (𝐴)

)2
𝑟𝑝(𝐵)2

exp
(
𝐻 (𝐴)

) − 0.422

10 r𝑑(A), r𝑝(A), r𝑑(B), r𝑝(B) 0.80±0.19 153±124 0.93±0.06 83±31
........

Δ𝐸 =3.89 ·
(
𝑟𝑑 (𝐴) − 𝑟𝑝(𝐵)

)
𝑟𝑝(𝐵)

𝑟𝑑 (𝐴)
(
𝑟𝑝(𝐴)3 + 𝑟𝑝(𝐵)3

) − 0.324 ·
����� 𝑟𝑑 (𝐵) ·

��𝑟𝑑 (𝐴) − 𝑟𝑝(𝐵)��
𝑟𝑑 (𝐴)

−
𝑟𝑑 (𝐵) ·

��𝑟𝑝(𝐴) − 𝑟𝑝(𝐵)��
𝑟𝑝(𝐴)

�����
+ 0.0935 ·

���� ln(
𝑟𝑝(𝐴)

)
𝑟𝑝(𝐴)

𝑟𝑑 (𝐴)
−
𝑟𝑝(𝐵)
𝑟𝑑 (𝐵

+
𝑟𝑝(𝐵)
𝑟𝑝(𝐴)

���� − 0.245

24* r𝑠(A), r𝑝(B), EA(B) 0.81±0.26 142±140 0.92±0.10 97±41
........

Δ𝐸 =3.96 ·
√︁
𝑟𝑝(𝐵)

exp
(
𝑟𝑠 (𝐴)

) (
𝑟𝑝(𝐵)3 + 𝑟𝑠 (𝐴)3

) + 0.159 · 𝑟𝑝(𝐵) + 𝑟𝑠 (𝐴)
𝑟𝑠 (𝐴)2

(
exp

(
𝐸𝐴(𝐵)

)
+ exp

(
−𝑟𝑠 (𝐴)

) )
− 1.03 ·

𝑟𝑠 (𝐴)2
(
𝑟𝑝(𝐵) − 𝑟𝑠 (𝐴)

)
ln

(
𝑟𝑝(𝐵)

)
𝐸𝐴(𝐵)3 − 0.974

43* EA(A), r𝑝(A), IP(B) 0.86±0.10 137±126 0.83±0.16 149±087
........

Δ𝐸 = − 0.243 ·
ln

(
𝐸𝐴(𝐴) − 𝐼𝑃(𝐵)

) 3
√︁
𝐼𝑃(𝐵)

𝑟𝑝(𝐴)2
− 0.646 ·

exp
(
−𝑟𝑝(𝐴)

)
− ln

(
𝑟𝑝(𝐴)

)
𝐸𝐴(𝐴) 𝐼𝑃(𝐵)

− 6.74e-05 ·
exp

(
−𝑟𝑝(𝐴)

)
ln

(
𝑟𝑝(𝐴)

)√︃
exp

(
𝐼𝑃(𝐵)

) − 0.389

50* H(A), r𝑠(A), EN(B) 0.85±0.20 134±16 0.85±0.26 116±53

Δ𝐸 =0.0265 · 𝐸𝑁 (𝐵)3

𝑟𝑠 (𝐴)3 3
√︃
exp

(
𝐸𝑁 (𝐵)

) + 0.052 · ���� 𝐻 (𝐴)2
𝐸𝑁 (𝐵) − 𝐻 (𝐴) − ln

(
𝑟𝑠 (𝐴)

) (
𝐻 (𝐴) + 𝐸𝑁 (𝐵)

) ����
− 3.55e-06 · 𝐸𝑁 (𝐵)3 ln

(
𝑟𝑠 (𝐴)

) (
exp

(
−𝐻 (𝐴)

)
+ exp

(
𝑟𝑠 (𝐴)

) )
− 0.434

Tab. 5.3. Ranked list of statistical equivalent symbolic-regression models for the prediction of the energy
difference Δ𝐸 between rock-salt and zinc-blende crystal structures in ascending order of the SISSO [197]
prediction errors (RMSE - ΔRMSE). Shown is the prediction performance of identified, best-performing, non-
redundant, sub-optimal feature subsets of the tolerance-based branch-and-bound algorithm (TB3) using the
sure-independence screening and sparsifying operator (SISSO) [197] as feature-selection criterion Sections
3.1.2 and 4.1). For comparison, 10-fold cross-validated (cf., Section 5.1) prediction performances of SISSO
and the gradient-boosting decision trees (GBDT) algorithm are reported in terms of the mean 𝑥 and standard
deviation Δ𝑥 as 𝑥 ± Δ𝑥 of the Pearson’s coefficient of determination 𝑥 = 𝑅2 [101] and the root-mean-squared
error (𝑥 = RMSE). The RMSE is in units of millielectronvolts (meV). Feature subsets marked with an asterisk
(*) are also identified by TB3 using GBDT as the feature-selection criterion (cf., Tab. 5.2). In terms of prediction
performance, TB3-SISSO outperforms TB3-GBDT (cf., Tab. 5.2).
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cf., Tab. 5.1)11, but depend on less than half of the features. According to Occam’s razor [370], sim-
pler models are preferable to more complex models. Feature identification can thus help reduce the
number of features prior to statistical modeling and create statistical models that are more likely to
capture the underlying relationships in the data.

Results further show that feature subsets including the atomic radii r𝑠 and r𝑝 (cf., Fig. 5.4) are
among the best-performing feature subsets. This also applies to the feature subset suggested by John &
Bloch [418, 419] – though with only three atomic radii r𝑠(A), r𝑝(A), r𝑝(B) (Tab. 5.3, #7) as the subset
with all four atomic radii of the 𝑠- and 𝑝-orbitals turned out not to improve the Pearson’s coefficient
of determination in the subspace search (𝑅2 = 0.93 ± 0.07, RMSE = (99 ± 68)meV as compared to
𝑅2 = 0.95± 0.06, RMSE = (84 ± 47)meV). Tests have shown that none of the feature subsets with a
feature-subset cardinality 4 ≤ 𝑛 ≤ 7 resulted in a lower prediction error as the optimal non-redundant
feature subset found by the TB3-algorithm (cf., Tabs. 5.2 and 5.3). As a consequence, the feature
subset proposed by Ghiringhelli, Vybiral et al. [55, 161] was not found by the TB3-algorithm, although
this feature set in principle consists of many of the relevant features as identified by the frequency
analysis (cf., Fig. 5.4).

Common to TB3-GBDT andTB3-SISSO is the feature subset {r𝑠(A), EA(B), r𝑝(B)} (Tab. 5.2, #2 and
Tab. 5.3, #24 or Tab. 5.3, #4 given the strongly linear correlation between r𝑠 and r𝑝) in agreementwith
the most frequently identified relevant features (Fig. 5.4) and the results from the feature-dependence
maps (Fig. 5.5). Given that a symbolic-regression model based on features subsets common to the
TB3-GBDT algorithm, TB3-SISSO algorithm, and the most frequently identified features performs
well, is a strong indicator of a model-independent identification of relevant features. However, it is to
be emphasized that all symbolic-regression models of identified non-redundant sub-optimal feature
subsets with TB3-GBDT and TB3-SISSO are statistically equivalent and none of the feature subsets
is superior in terms of prediction performance at a confidence level of 𝛼 = 0.95. In fact, identified
non-redundant sub-optimal feature subsets clearly indicate that there are many competing machine-
learning models with distinct feature subsets but similar prediction performances (Chapter 4). As
each statistical machine-learning model and feature subset represents a potential physical relationship
in the data, there is no optimal feature subset and a single-best machine-learning model (cf., [358])
from which the energy difference between rock salt and zinc blende can be statistically determined.
These results emphasize that the energy difference is a non-linear function of features of both atomic
species and that there is no unique description for the quantitative prediction of the energy difference
of octet-binary compound semiconductors data set (cf., Tab. 5.1 and Fig. 5.5). Yet, the multiplicity of
machine-learning models facilitates a combination of competing machine-learning models to improve
the overall performance of the machine-learning algorithm. Such an ensemble of machine-learning
models is known to be more robust [416] and reliable in terms of estimating the uncertainty in the
model predictions [360, 363, 378], while using all statistically equivalent machine-learning models
for model predictions (cf., [358]).

11The generation of a symbolic-regression model based on the SISSO algorithm took one day to complete on one (only
identified relevant features) or on three nodes (with all features of the data set) respectively, each with two Intel Xeon
E5-2698 v3 processors (= 32 cores/node) and without hyper-threading.

https://ark.intel.com/content/www/us/en/ark/products/81060/intel-xeon-processor-e5-2698-v3-40m-cache-2-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/81060/intel-xeon-processor-e5-2698-v3-40m-cache-2-30-ghz.html
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� Algorithm (TB3-. . . ) Ensemble prediction Conformal prediction

Confidence level (𝛼) Validity (𝛼̂) Mean (Δ) Max (Δ) Validity (𝛼̂) Mean (Δ) Max (Δ)
a.) Full octet-binary compound semiconductors data set

GB
DT

0.50 0.46 0.05 0.54 0.46 0.05 0.13
0.80 0.72 0.09 1.29 0.87 0.13 0.34
0.95 0.82 0.12 2.19 0.96 0.31 0.77

SI
SS

O 0.50 0.55 0.05 0.44 0.52 0.04 0.10
0.80 0.91 0.09 0.81 0.88 0.10 0.25
0.95 0.94 0.14 1.33 0.99 0.35 0.85

b.) Same data set with the top-most 5th-percentile of Δ𝐸 of octet-binary compound
semiconductors not being used for model construction

GB
DT

0.50 0.20 0.05 0.63 0.52 0.08 0.24
0.80 0.46 0.08 0.79 0.87 0.19 0.56
0.95 0.65 0.11 1.06 0.98 0.49 1.63

SI
SS

O 0.50 0.37 0.05 0.57 0.52 0.06 0.26
0.80 0.77 0.10 0.97 0.85 0.15 0.64
0.95 0.93 0.16 1.58 0.96 0.45 1.98

Tab. 5.4. Validity of ensemble and conformal prediction obtained from TB3-GBDT and TB3-SISSO at three
different confidence levels 𝛼 = [50%, 80%, 95%], where the confidence level of the ensemble prediction was
computed as the 𝛼th-percentile of the ensemble predictions. The validity (𝛼̂) denotes the probability that the
actual value 𝑥 of the underlying process is inside the prediction interval 𝑥 ∈ [𝑥− Δ̄, 𝑥+ Δ̄] (Eq. 4.22) of a (point)
prediction 𝑥 with uncertainty ±Δ̄ (Δ̄ = Mean(Δ) ≤ Max(Δ)). Shown are the performance statistics of the full
octet-binary compound semiconductors data set (a) and the same data set with the top-most 5th-percentile of
Δ𝐸 of octet-binary compound semiconductors not being used for model construction (b).

Uncertainty estimation

Uncertainty estimates based on an ensemble of machine-learning models take advantage of the fact
that the prediction mean and uncertainty can be computed as the average and the 𝛼th-percentile
of the different model predictions on the same set of data (Section 4.3). However, ensemble-based
uncertainty estimates on small data sets are often biased, under-estimate the actual prediction error,
and do not guarantee a reliable estimation of the prediction uncertainty on (new) data (Figs. 5.6
and 5.7 and Tab. 5.4). This can be seen for example in Fig. 5.6a., where the actual values of 44, 23,
and 15 materials are outside the (50th, 80th, 95th)-percentile prediction intervals of the ensemble
prediction. In contrast, prediction intervals based on conformal prediction have a statistical guarantee
that in about 𝛼% of the cases the actual values of the target property are within the prediction interval
at a confidence level of 𝛼% (Tab. 5.4).

Clearly, the validity (i.e., the percentage of actual values outside the prediction interval) of the
conformal prediction [62–64] is violated at a confidence level of 𝛼 = 0.50 of the TB3-GBDT ensemble.
Though this effect is not observed at higher confidence levels, a violation of the validity (Eqs. 4.22
and 4.27) is a strong indicator of a non-exchangeable data set (Section 4.3.1). Non-exchangeability
implies that the materials of the data set are not randomly selected and the accuracy of the machine-



112 5.2. Datasets

learningmodel is significantly determined by the choice of training data. In fact, the large deviations of
the symbolic-regression models (Tabs. 5.2 and 5.3), the proportional ensemble-based prediction errors
to the energy difference between rock-salt and zinc-blende crystal structures (Fig. 5.6a. and c.), and
the low credibility of zinc blende compounds such as boron nitride (BN) or diamond (CC) (Fig. 5.6b.
and d.) corroborate the necessity to include crystal structures with a high energy difference into the
training set to accurately model the octet-binary compound semiconductor data set (e.g., 𝑅2 ≈ 0.98,
RMSE ≈ 80meV). Conversely, the exclusion of octet-binary compound semiconductors12 with energy
differences above the 95th-percentile in the data set results in at least 50% larger prediction errors
(𝑅2 ≈ 0.96, RMSE ≈ 134meV) and twice as large prediction intervals at the same validity (Tab. 5.4).
Still, due to the very good extrapolation capabilities of the symbolic-regression models, there is a clear
trend in the model predictions and a correct identification of boron nitride and diamond as the most
stable zinc-blende crystal structures (cf., [161]).

It is to be noted that ensemble-based prediction errors are smaller than conformal-based prediction
errors at the same confidence level 𝛼, but are as large as conformal-prediction intervals at the same
validity 𝛼̂ (Tab. 5.4). As conformal prediction can be further characterized by a lower maximum
prediction error Δ, lower variances in prediction errors, and statistical guarantees [363, 366] of
the prediction uncertainties, conformal prediction provides a more robust estimate of the model’s
prediction errors than ensemble-based prediction.

Anomalous materials

One of the key advantages of conformal prediction is the identification of anomalous materials from
the full set of data (Section 4.4). Anomalous materials are characterized by a low credibility, namely
regions of the materials space that are underrepresented or cannot be adequately estimated by the
specified machine-learning models [386]. For example, at a confidence level of 𝛼 = 0.95 there are
two materials that are classified as anomalous (Fig. 5.6): boron nitride (BN) and diamond (CC). Both
materials exhibit large prediction errors (Δ ≥ 0.3 eV and 𝜀 ≥ 0.4 eV) and are therefore difficult to
estimate from the ensemble of machine-learning models: both with models based on all materials
data (Fig. 5.6) and with models generated with materials from the lower 95th percentile of the energy
difference (Fig. 5.7). Although boron nitride and diamond are not classified as anomalous at all
confidence levels (especially when the top 5th-percentile of the materials is excluded), diamond and
boron nitride are truly anomalous: Due to their small atomic sizes and fourfold strong, non-polar
covalent bonds [432], they are not only the two most-stable zinc-blende crystal structures in the data
set, but are also the hardest naturally occurring and abundant materials on Earth [433–435].

Summary

From the analysis of the octet-binary compound semiconductors data set, the following conclusion
can be drawn: Due to the small number of materials in the data set, machine-learning predictions
are characterized by large prediction errors and strong feature interactions between the features
of each atomic species 𝐴/𝐵. Although octet-binary compound semiconductors can in principle be

12Germanium carbide (GeC), boron arsenide (BAs), boron phosphide (BP), boron nitride (BN), and diamond (CC).
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Fig. 5.6. Ensemble prediction performance of machine-learning models from TB3-GBDT and TB3-SISSO to
estimate the energy difference Δ𝐸 between rock-salt and zinc-blende crystal structures. Shown are the prediction
bands (50th, 80th, 95th-percentiles of model predictions), the credibility Π (Eq. 4.29) at a confidence level
of 𝛼 = 0.95, the distribution of the prediction errors (diagram above the parity plot, Δ), and the errors of the
machine-learning model (diagram right of the parity plot, 𝜀 = |Δ𝐸− Δ̂𝐸 |). The numbers in the boxes report the
mean value, while the maximum errors are shown below or left of the diagrams. Units are in electronvolt (eV).
Predictions outside the prediction intervals are depicted as squares and anomalous materials as diamond-shape
symbols.
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Fig. 5.7. Ensemble prediction performance of machine-learning models from TB3-GBDT and TB3-SISSO to
estimate the energy difference Δ𝐸 between rock-salt and zinc-blende crystal structures. Shown are the prediction
bands (50th, 80th, 95th-percentiles of model predictions), the credibility Π (Eq. 4.29) at a confidence level
of 𝛼 = 0.95, the distribution of the prediction errors (diagram above the parity plot, Δ), and the errors of the
machine-learning model (diagram right of the parity plot, 𝜀 = |Δ𝐸− Δ̂𝐸 |). The numbers in the boxes report the
mean value, while the maximum errors are shown below or left of the diagrams. Units are in electronvolt (eV).
Predictions outside the prediction intervals are depicted as squares and anomalous materials as diamond-shape
symbols. In contrast to Fig. 5.6, octet-binary compound semiconductors with energy differences above the
95th-percentile in the data set (circles) were not used for model construction.
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uniquely determined by two atomic properties, investigated feature-identification methods assign
relevance to almost all features of the data set. With the exception of the TB3-algorithm, TCMI,
RFECV, FS-GBDT, and FS-SISSO identify more features as dependent than actually required for
creating machine-learning models. Thus, they can be viewed as conservative feature-identification
methods for quantitatively predicting the crystal structure of octet-binary compound semiconductors
(Tab. 5.1 and Fig. 5.5). In contrast, the TB3-algorithm (TB3) has been shown to yield the lowest
prediction errors and the smallest feature-subset cardinality, comprising at least one feature from each
atomic species 𝐴/𝐵. In particular, machine-learning models constructed with the identified feature
subset from TB3 have been shown to require fewer features, while achieving the same prediction error
as the investigated feature-identification methods TCMI, RFECV, FS-GBDT, and FS-SISSO (cf., [55,
161, 197]).

Despite the difficulties of the data set, the developed framework for feature identification and
model construction enables a systematic analysis of the data set, addresses the multiplicity of the
material’s problem, and provides a tool to estimate the prediction intervals of the machine-learning
model’s predictions. By comparing the identified non-minimal feature subsets of two differentmachine-
learning algorithms (GBDT and SISSO), it has been argued that the limited availability of materials
data led to differences in the identification of feature subsets of multi-collinear features (Fig. 5.3) and
that the TB3-algorithm can only identify a subset of all sub-optimal non-redundant feature subsets in
the data set (cf., Section 4.1). Common features subsets of both methods include the most frequently
identified features from a frequency analysis of all feature-identification methods (Fig. 5.4): the atomic
radii (r𝑠 and r𝑝), the Mulliken electronegativity (EN), and the electron affinity (EA). While there is
a clear indication that the atomic radii of the constituent elements statistically describe the energy
difference between rock-salt and zinc-blende crystal structures (Tabs. 5.2 and 5.3), there is no optimal
feature subset and single-best machine-learning model of the data set. It is rather the opposite. A set of
competing machine-learning models with distinct feature subsets but statistically equivalent prediction
performances have been constructed from the data set (Chapter 4). In addition, simpler models were
found than in previous studies [55, 161, 197] and machine-learning models constructed from the
TB3-SISSO algorithm (Tab. 5.3) outperformed those from the TB3-GBDT algorithm13 (Tab. 5.2).
Combined to an ensemble of machine-learning models, reliable uncertainty estimates revealed that
boron nitride and diamond are the two materials with the largest prediction errors and the inclusion
of crystal structures with a high Δ𝐸 into the training set is a necessary prerequisite for an accurate
modeling of the octet-binary compound semiconductor data set.

5.2.2 Perovskites

Perovskites1⁴ are compounds with the general chemical formula 𝐴𝐵𝑋3 (Fig. 5.8, right), where the 𝐴-
site cation is 12-fold coordinated, the 𝐵-site cation is octahedrally 6-fold coordinated (and smaller than
𝐴), and the 𝑋 -site is either a 2-coordinated oxygen (𝑋 =O) or halogen (𝑋 ={ F, Cl, Br, I, At, Ts }) anion
[410]. Common to all perovskite compounds is their structural and functional flexibility originating

13The energy difference between rock-salt and zinc-blende crystal structures of octet-binary compound semiconductors can
be better modeled with a symbolic-regression model than with a piecewise-constant model.

1⁴Named after the Russian mineralogist L. A. Perovski [436].
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Fig. 5.8. Crystal structure of the 𝐴𝐵𝑋3 perovskite and the used constituent elements in the 504 perovskite
oxides data set [411]. Highlighted are elements in the periodic table that occur in the crystal structures as
cations (𝐴/𝐵) and anions (𝑋). The cations of the 𝐴-site include alkali metals, alkaline-earth metals, and rare
earths, while the cations of the 𝐵-site comprise metals that form the center of a [𝐵𝑋6]4− octahedra surrounded
by oxygen anions (𝑋-site).

from the compositional incorporation of a wide range of cations 𝐴/𝐵 of different sizes and oxidation
states (𝐴1+𝐵5+𝑋2−

3 , 𝐴2+𝐵4+𝑋2−
3 , 𝐴3+𝐵3+𝑋2−

3 ), different dopant ratios and vacancies, and, by tilting or
distorting the 𝐵𝑂6 octahedron, the symmetry breaking of the perovskite’s cubic structure (Pm3m)
into a total of 14 space groups of tetragonal and rhombohedral phases [335, 437]. Owing to the
compositional and functional flexibility [438], the structural family of perovskite compounds exhibits a
large variety of interesting and intriguing physical and chemical properties including superconductivity
[439, 440], ferreoelectricity [441], thermodynamical stability [171, 442, 443], catalytic reactivity
[437, 438, 444], photoactivity [164, 445, 446], and electronic and ionic transport properties [447].

The dataset

The most common materials class of perovskite compounds are oxides 𝐴𝐵𝑂3. Perovskite oxides have
a high structural stability and are characterized by the possibility to control the oxidation state of
the 𝐵-cation and to correlate the physical and chemical properties of the constituent elements to the
property of interest by substituting the cation at the 𝐴-site with cations of different oxidation states or
radii [438, 448]. As their structural stability is crucial for establishing design principles and tailoring
perovskite oxides for catalysis [437, 438], Foppa, Scheffler et al. [411] analyzed a total of 504 cubic
perovskite oxides (Fig. 5.8, left) for predicting the bulk modulus using machine learning. In their
work, Foppa, Scheffler et al. successfully employed the symbolic-regression algorithm SISSO [197].
In particular, they modeled the explicit dependence of the bulk modulus 𝐵0 as a function of the lattice
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constant 𝑎0, the nuclear charges Z, and the ionic charge (= oxidation state) of the 𝐴-site cation c(A)1⁵
and, by applying SISSO [411] on the same set of features, achieved smaller prediction errors than
using a semi-empirical formula [410].

Foppa, Scheffler et al. [411] computed the materials properties of the 504 perovskite oxides with
the all-electron, full-potential electronic structure code FHI-aims [449] using numeric atom-centered
basis functions, highly accurate (“tight”) and scaled atomic zero-order regular approximation [450]
at the GGA level of the theory (cf., Section 2.2) with the PBEsol exchange-correlation functional
[451]. The 𝑘-points grids were converged with respect to the total energy (< 1meV per atom in the
unit cell) and a parametrically-constrained geometry relaxation [452] was performed to preserve the
ideal cubic perovskite structure (Pm3m space group), while optimizing the crystal-structure geometry
with the Broyden-Fletcher-Goldfarb-Shanno algorithm [453–456]. The bulk modulus 𝐵0 was then
determined by fitting the Birch-Murnaghan equation of state [457, 458] to three electronic energies at
and near (±1%) the equilibrium lattice constant 𝑎0. They further computed 16 atomic features based
on the non-spin polarized density-functional theory using the HSE exchange-correlation functional
[459, 460] (cf., Section 2.2).

In total the data set includes 16 features1⁶: eight for each atomic species (𝐴/𝐵). Among the atomic
features are the nuclear charge (Z), the ionization potential (IP), electron affinity (EA), Mulliken
electronegativity (EN), the energies of the highest-occupied and lowest-unoccupied Kohn-Sham levels,
H and L, and the radius of maximum electronic density for the valence 𝑠- and 𝑝-orbitals, 𝑟𝑠 and 𝑟𝑝
[411]. The property of interests are the bulk modulus 𝐵0 and the equilibrium lattice constant 𝑎0
based on the 16 atomic features.

The difficulty of the data set is to find the relevant (atomic) features for the target properties 𝐵0
and 𝑎0 from a larger class of materials as compared to the octet-binary compound semiconductors data
set. Thus, the feature identification and model construction is complicated by higher computational
requirements for the construction of symbolic-regression models1⁷, strongly related features of the
data set (cf., Fig. 5.12), and the modeling of the bulk modulus based on the atomic features from the
same composition but different oxidation states [410, 411].

Feature identification

To better understand the structural stability and thematerial’s behavior, relevant features are identified
with the tolerance-based branch-and-bound algorithm (TB-GBDT, TB3-SISSO) and the four feature-
identification methods from Chapter 3 (TCMI, RFECV, FS-GBDT, and FS-SISSO) on three randomly
chosen sample subsets of 126, 252, and 504 perovskites oxides. Machine-learning models are finally
built with the SISSO algorithm using fixed hyper-parameter settings [197] (cf., Sections 5.1.2 and
A.1). Results are summarized in Tables 5.5 and 5.6.

1⁵The ionic charge c(A) is the oxidation state of the cation at the site 𝐴, that roughly corresponds to the periodic table group
of the A element and is 1 for alkali metals, 2 for alkaline earth metals and 3 for rare earths, including lanthanides, in the
data set.

1⁶The data set was kindly provided by the authors in a private communication.
1⁷In contrast to the octet-binary compound semiconductor data set, the generation of a symbolic-regression model based
on the SISSO algorithm requires about 24 nodes (instead of 3 nodes), each with two Intel Xeon E5-2698 v3 processors
(= 32 cores/node) without hyper-threading, in order to build a machine-learning model within one day.

https://ark.intel.com/content/www/us/en/ark/products/81060/intel-xeon-processor-e5-2698-v3-40m-cache-2-30-ghz.html
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# Dependence
measure

Features Performance
# Relevant features 𝑅2 RMSE [mÅ]

12
6
sa
m
pl
es

TCMI 6 H(A), L(A), r𝑝(A), r𝑠(A), c(A), Z(B) 0.75±0.11 91±15
RFECV 7 IP(A), Z(A), r𝑠(A), EA(B), Z(B), r𝑝(B),

r𝑠(B)
0.83±0.06 80±15

FS-GBDT 6 Z(A), r𝑠(A), EA(B), Z(B), r𝑝(B), r𝑠(B) 0.86±0.09 64±16
FS-SISSO 4 r𝑠(A), EA(B), Z(B), r𝑠(B) 0.88±0.05 64±13
TB3-GBDT 14 EA(A), EN(A), H(A), IP(A), L(A), Z(A),

r𝑝(A), r𝑠(A), c(A), H(B), IP(B), Z(B), r𝑝(B),
r𝑠(B)

0.87±0.09/
0.69±0.12

68±22/
108±22

TB3-SISSO 15 EN(A), H(A), IP(A), Z(A), r𝑝(A), r𝑠(A),
c(A), EA(B), EN(B), H(B), IP(B), L(B),
Z(B), r𝑝(B), r𝑠(B)

0.88±0.05/
0.80±0.15

64±13/
83±40

25
2
sa
m
pl
es

TCMI 6 EA(A), IP(A), L(A), r𝑠(A), Z(B), r𝑠(B) 0.81±0.10 75±9
RFECV 6 Z(A), r𝑠(A), EA(B), Z(B), r𝑝(B), r𝑠(B) 0.83±0.09 72±6
FS-GBDT 7 Z(A), r𝑠(A), EA(B), L(B), Z(B), r𝑝(B), r𝑠(B) 0.83±0.06 74±7
FS-SISSO 10 Z(A), c(A), EA(B), EN(B), H(B), IP(B),

L(B), Z(B), r𝑝(B), r𝑠(B)
0.88±0.05 62±10

TB3-GBDT 15 EA(A), EN(A), H(A), IP(A), L(A), Z(A),
r𝑝(A), r𝑠(A), c(A), EA(B), H(B), IP(B),
Z(B), r𝑝(B), r𝑠(B)

0.87±0.08/
0.71±0.14

61±8/
95±18

TB3-SISSO 17 EA(A), EN(A), H(A), IP(A), L(A), Z(A),
r𝑝(A), r𝑠(A), c(A), EA(B), EN(B), H(B),
IP(B), L(B), Z(B), r𝑝(B), r𝑠(B)

0.87±0.08/
0.87±0.06

61±10/
64±11

50
4
sa
m
pl
es

TCMI 6 H(A), Z(A), r𝑠(A), Z(B), r𝑝(B), r𝑠(B) 0.86±0.03 66±5
RFECV 8 IP(A), Z(A), r𝑠(A), EA(B), L(B), Z(B),

r𝑝(B), r𝑠(B)
0.87±0.03 64±5

FS-GBDT 9 L(A), Z(A), r𝑠(A), EA(B), H(B), L(B), Z(B),
r𝑝(B), r𝑠(B)

0.84±0.03 70±4

FS-SISSO 12 H(A), Z(A), r𝑠(A), c(A), EA(B), EN(B),
H(B), IP(B), L(B), Z(B), r𝑝(B), r𝑠(B)

0.88±0.03 61±6

TB3-GBDT 16 EA(A), EN(A), H(A), IP(A), L(A), Z(A),
r𝑝(A), r𝑠(A), c(A), EA(B), H(B), IP(B),
L(B), Z(B), r𝑝(B), r𝑠(B)

0.88±0.03/
0.72±0.06

60±8/
93±7

TB3-SISSO 13 H(A), IP(A), Z(A), r𝑠(A), c(A), EA(B),
EN(B), H(B), IP(B), L(B), Z(B), r𝑝(B),
r𝑠(B)

0.88±0.03/
0.86±0.02

60±8/
67±4

Lattice constant Stats: 𝑎0 = [3.57 , 4.40] Å mean = 3.91 Å std = 0.18 Å

Tab. 5.5. Prediction performance of identified redundant feature subsets (normal face) and optimal non-
redundant feature subsets (bold face) of different feature-identification methods for estimating the equilibrium
lattice constant 𝑎0: total cumulative mutual information (TCMI, Section 3.3.3), recursive feature elimination
[263] using random forest (RFECV) [266], gradient-boosting decision trees using permutation feature impor-
tance (FS-GBDT) [252, 266, 338], SISSO using 10-fold cross-validation and hyper-parameter optimization
(FS-SISSO) [197] (cf., Section 2.5), and the tolerance-based branch-and-bound algorithm (TB3) with GBDT
and SISSO as feature-selection criterion (Section 4.1). Prediction performances were estimated using SISSO by
means of 10-fold cross-validation (cf., Section 5.1). Shown are the mean 𝑥 and standard deviation Δ𝑥 as 𝑥 ±Δ𝑥
of the Pearson’s coefficient of determination 𝑥 = 𝑅2 [101] and the root-mean-squared error (𝑥 = RMSE). The
RMSE is in the unit of milli angstrom (mÅ).
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# Dependence
measure

Features Performance
# Relevant features 𝑅2 RMSE [GPa]

12
6
sa
m
pl
es

TCMI 8 EN(A), L(A), r𝑝(A), EA(B), EN(B), IP(B),
Z(B), r𝑝(B)

0.47±0.20 32.7±7.4

RFECV 7 IP(A), L(A), c(A), EA(B), Z(B), r𝑝(B), r𝑠(B) 0.60±0.22 26.7±6.8
FS-GBDT 3 EA(B), Z(B), r𝑠(B) 0.55±0.17 28.4±7.2
FS-SISSO 6 r𝑠(A), c(A), EA(B), Z(B), r𝑝(B), r𝑠(B) 0.57±0.21 31.3±7.4
TB3-GBDT 14 EN(A), H(A), IP(A), Z(A), r𝑝(A), r𝑠(A),

c(A), EA(B), EN(B), IP(B), L(B), Z(B),
r𝑝(B), r𝑠(B)

0.65±0.19/
0.64±0.24

26.4±4.6/
24.9±5.1

TB3-SISSO 17 EA(A), EN(A), H(A), IP(A), L(A), Z(A),
r𝑝(A), r𝑠(A), c(A), EA(B), EN(B), H(B),
IP(B), L(B), Z(B), r𝑝(B), r𝑠(B)

0.63±0.19/
0.64±0.22

26.9±4.3/
28.0±7.7

25
2
sa
m
pl
es

TCMI 7 H(A), L(A), Z(A), r𝑝(A), r𝑠(A), H(B), Z(B) 0.46±0.18 29.7±3.8
RFECV 6 IP(A), c(A), EA(B), Z(B), r𝑝(B), r𝑠(B) 0.68±0.09 23.2±3.8
FS-GBDT 8 IP(A), r𝑠(A), c(A), EA(B), IP(B), Z(B),

r𝑝(B), r𝑠(B)
0.70±0.10 22.3±3.0

FS-SISSO 9 r𝑠(A), c(A), EA(B), EN(B), H(B), IP(B),
Z(B), r𝑝(B), r𝑠(B)

0.69±0.10 22.4±3.1

TB3-GBDT 16 EA(A), EN(A), H(A), IP(A), Z(A), r𝑝(A),
r𝑠(A), c(A), EA(B), EN(B), H(B), IP(B),
L(B), Z(B), r𝑝(B), r𝑠(B)

0.72±0.12/
0.55±0.08

21.7±4.6/
27.5±3.4

TB3-SISSO 17 EA(A), EN(A), H(A), IP(A), L(A), Z(A),
r𝑝(A), r𝑠(A), c(A), EA(B), EN(B), H(B),
IP(B), L(B), Z(B), r𝑝(B), r𝑠(B)

0.74±0.13/
0.59±0.10

21.2±4.3/
26.0±2.9
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TCMI 8 H(A), L(A), r𝑝(A), r𝑠(A), EA(B), EN(B),
H(B), IP(B)

0.58±0.11 26.6±2.8

RFECV 6 IP(A), c(A), L(B), Z(B), r𝑝(B), r𝑠(B) 0.69±0.03 22.8±2.4
FS-GBDT 13 H(A), IP(A), L(A), r𝑝(A), r𝑠(A), c(A), EA(B),

H(B), IP(B), L(B), Z(B), r𝑝(B), r𝑠(B)
0.73±0.05 21.4±1.6

FS-SISSO 10 IP(A), r𝑠(A), c(A), EA(B), EN(B), H(B),
L(B), Z(B), r𝑝(B), r𝑠(B)

0.75±0.05 20.3±2.0

TB3-GBDT 17 EA(A), EN(A), H(A), IP(A), L(A), Z(A),
r𝑝(A), r𝑠(A), c(A), EA(B), EN(B), H(B),
IP(B), L(B), Z(B), r𝑝(B), r𝑠(B)

0.75±0.04/
0.64±0.05

20.4±2.1/
24.9±2.2

TB3-SISSO 14 H(A), IP(A), L(A), Z(A), r𝑠(A), c(A),
EA(B), EN(B), H(B), IP(B), L(B), Z(B),
r𝑝(B), r𝑠(B)

0.75±0.04/
0.74±0.05

20.4±2.1/
21.1±2.5

Bulk modulus Stats: 𝐵0 = [59.9 , 238.1] GPa mean = 175.1GPa std = 41.0GPa

Tab. 5.6. Prediction performance of identified redundant feature subsets (normal face) and optimal non-
redundant feature subsets (bold face) of different feature-identificationmethods for estimating the bulkmodulus
𝐵0: total cumulative mutual information (TCMI, Section 3.3.3), recursive feature elimination [263] using ran-
dom forest (RFECV) [266], gradient-boosting decision trees using permutation feature importance (FS-GBDT)
[252, 266, 338], SISSO using 10-fold cross-validation and hyper-parameter optimization (FS-SISSO) [197]
(cf., Section 2.5), and the tolerance-based branch-and-bound algorithm (TB3) with GBDT and SISSO as feature-
selection criterion (Section 4.1). Prediction performances were estimated using SISSO by means of 10-fold
cross-validation (cf., Section 5.1). Shown are the mean 𝑥 and standard deviation Δ𝑥 as 𝑥 ± Δ𝑥 of the Pearson’s
coefficient of determination 𝑥 = 𝑅2 [101] and the root-mean-squared error (𝑥 = RMSE). The RMSE is in the
unit of gigapascal (1 GPa = 6.24 × 10−3 eV/Å3).
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Similar to the octet-binary compound semiconductor data set, there is a clear trend towards lower
prediction errors with increasing numbers of data samples and larger feature-subset cardinalities.
While all symbolic-regression models of the feature-identification methods (TCMI, RFECV, FS-GBDT,
FS-SISSO, TB3-GBDT, and TB3-SISSO) lead to similar prediction errors for the equilibrium lattice
constant, prediction errors of symbolic-regression models with TCMI are consistently 30% larger in
the case of the bulk modulus. A detailed analysis reveals that the poor prediction performance is due
to inherent issues of TCMI with discrete features (cf., Section 3.3.3), which affect more strongly the
prediction of the bulk modulus than the prediction of the equilibrium lattice constant (cf., Fig. 5.9).

Since the perovskite structure is further restricted to the cubic crystal structure, the chemical
formula uniquely determines the materials properties of the perovskite compounds as a non-linear
function of the three (atomic) features: the nuclear charges Z of the cations 𝐴/𝐵 and the ionic charge
c(A) [410]. However, feature-identification methods show a high variability in the identification
of relevant features, indicating multiple statistical relationships between the features and the prop-
erty of interests. For example, FS-GBDT identifies about 3–13, RFECV and TCMI about 6–8, and
FS-SISSO identifies about 4–12 features as relevant. The variability is also evident in the optimal
and redundant feature subsets of the developed tolerance-based branch-and-bound algorithm (TB3):
whereas minimal non-redundant feature subsets of TB3-GBDT or TB3-SISSO consist of 3–8 relevant
features, redundant feature subsets of the TB3-algorithm include almost all features of the data set.
Although the nuclear and ionic charges are not identified as relevant in all feature-identification meth-
ods, TB3-GBDT and TB3-SISSO identify them as one of the sub-optimal minimally non-redundant
feature subsets, which are also present in feature subsets of larger feature-subset cardinalities.

A comparison of all methods shows: In terms of prediction performance and feature-subset cardi-
nality (cf., Section 3.5), RFECV, FS-GBDT, and TB3-SISSO provide the smallest feature subsets, while
TB3-SISSO and FS-SISSO result in the lowest prediction errors overall. Therefore, the prediction
performance of the optimal feature subsets of TB3-SISSO are not only comparable to that of FS-SISSO,
but also offer a much more compact materials representation for the prediction of the bulk modulus
𝐵0 and the lattice constant 𝑎0.

A frequency analysis (Fig. 5.9) shows: the most frequently identified relevant features for predict-
ing the lattice constant 𝑎0 are r𝑠(A), r𝑠(B), r𝑝(B), Z(A), Z(B), and EA(B), while the most frequently
identified relevant features for the prediction of the bulk modulus 𝐵0 are r𝑠(B), Z(B), EA(B), and c(A).
From a physical point of view, the equilibrium lattice constant implicitly depends on the atomic radii,
nuclear charge, and electron affinity: the atomic radii r𝑠 and r𝑝 describe the size of atoms and as
such are related to the distance between atoms, the nuclear charges are strongly correlated to the
size of the atoms, and the electron affinity determines the strength and type of bonding. Further,
the nuclear and ionic charges are correlated to the chemical hardness of a material and hence to
the elastic properties of the crystals and the bulk modulus. The bulk modulus, in turn, is known to
have an explicit dependence on the equilibrium lattice constant as well as on the ionic charge of the
perovskite oxides [410].

Tests confirm the dependence of the bulk modulus on the ionic charge and the equilibrium lattice
constant (𝑎0). For example, an exclusion of the ionic charge in the model construction resulted in
about 10% higher prediction errors, while the lattice constant as an additional feature of the data
set had the effect that all investigated feature-identification methods identified 𝑎0 as relevant in
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b.) Bulk modulus (𝐵0)
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Fig. 5.9. Heat-map of most frequent identified (redundant) feature subsets of the perovskite oxides data set
across all investigated feature-identification methods (cf., Section 5.1). The size and color reflect the frequency
of the features (= relevance). A frequency analysis of identified minimally non-redundant feature subsets of
the tolerance-based branch-and-bound algorithm (TB3) with GBDT and SISSO is shown at the bottom.

predicting the bulk modulus. The fact that the ionic charge and the most frequently identified features
are consistently identified by the minimal non-redundant feature subsets of TB3 suggests that the
developed framework among the other feature-identification methods have the potential to identify
physically relevant features from a statistical analysis of the materials data.

Common to all feature-identification methods is the overall good prediction performance of the
lattice constant (𝑅2 ≈ 0.87, RMSE ≈ 60mÅ), but only moderate prediction performance of the bulk
modulus (𝑅2 ≤ 0.75, RMSE ≥ 20GPa).

The moderate prediction performance of the bulk modulus can be attributed to the multiple non-
linear statistical relationships present in the data and the chosen model settings for estimating the
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Performance
metric

Machine-learning algorithm
GBDT SISSO SISSO|c(A)

a.) Atomic features only
𝑅2 0.94 ± 0.02 0.75 ± 0.04 0.81 ± 0.08
RMSE [GPa] 9.8 ± 1.7 20.6 ± 1.3 16.0 ± 2.6
b.) Atomic features + estimated lattice constant (𝑎0)
𝑅2 0.93 ± 0.02 0.85 ± 0.04 0.87 ± 0.06
RMSE [GPa] 10.9 ± 1.7 15.7 ± 1.9 13.2 ± 4.0
c.) Atomic features + lattice constant (𝑎0)
𝑅2 0.93 ± 0.02 0.84 ± 0.03 0.90 ± 0.05
RMSE [GPa] 10.9 ± 1.8 16.5 ± 1.5 11.7 ± 3.2

Tab. 5.7. Comparison of different machine-learning algorithms and techniques for the quantitative prediction
of the perovskite’s bulk modulus 𝐵0, namely the gradient-boosting decision trees algorithm (GBDT) [249–
252, 267, 268], the sure-independence screening and sparsifying operator algorithm (SISSO) [197], and the
construction of independent machine-learning models for each value of the ionic charge with SISSO (SISSO|c(A)).
Shown are the prediction performances in terms of the Pearson’s coefficient of determination 𝑅2 [101] and
the root-mean-squared error (RMSE) of 10-fold cross-validated machine-learning models using (a) the atomic
features only, (b) the atomic features and an estimation of the lattice constant with the GBDT algorithm, or
(c) atomic features including the equilibrium lattice constant from DFT. The RMSE is in units of gigapascal
(1 GPa = 6.24 × 10−3 eV/Å3).

final prediction performance of the different feature-identification methods. For example, a machine-
learning model of the bulk modulus can be constructed with the same prediction performance as
the equilibrium lattice constant (Tab. 5.7) without requiring additional features. This is done by
either using the computed lattice constants from DFT (𝑎) or an estimation of the equilibrium lattice
constants (𝑎0) based on the 16 atomic features (cf., Eqs. 5.2 and 5.3). In addition, the prediction
error of the bulk modulus can be further reduced by creating independent machine-learning models
for each oxidation state as given by the ionic charge (SISSO|c(A))1⁸, by increasing the complexity of
the symbolic-regression model (i.e., by increasing the number of terms, the number of operators or
feature combinations in the symbolic expression), or by recursively applying SISSO [411] on the same
set of features at the cost of much higher computational requirements.

The moderate prediction performance can be further attributed to the combination of a GBDT
machine-learning algorithm used for the feature identification with a SISSO algorithm used for model
construction. For instance, as for the TB3-algorithm, the prediction error of the optimal minimally
non-redundant feature subsets of TB3-GBDT are larger than that of TB3-SISSO and larger than that of
their redundant feature subsets. First, because there is a larger variance in the prediction performance
of minimally non-redundant and redundant feature subsets of TB3-GBDT than for TB3-SISSO. And

1⁸SISSO creates very different symbolic-regression models for each ionic charge. A multi-task approach by simultaneously
modeling a symbolic-regression model (with the same symbolic expressions, but different coefficients [176]) for all
oxidation states therefore results in higher prediction errors (atomic features of the bulk modulus (cf., Tab. 5.7): 𝑅2 =

0.59 ± 0.09, RMSE = 25.9 ± 2.2, atomic features + 𝑎0: 𝑅2 = 0.74 ± 0.06, RMSE = 20.6 ± 1.9, atomic features + 𝑎0:
𝑅2 = 0.76 ± 0.06, RMSE = 20.0 ± 1.3) and hence was further not considered in the analysis.
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second, because the feature subsets of TB3-GBDT have a smaller feature-subset cardinality than feature
subsets of TB3-SISSO. That is, the construction of a symbolic-regression model requires a highermodel
complexity as the construction of a GBDT machine-learning model. This can be exemplified by the
feature subset {Z(A), Z(B), c(A)}. By using the GBDT machine-learning algorithm, the feature subset
{Z(A), Z(B), c(A)} is found to be among the best-performing feature-subsets, which are statistically
equivalent to a GBDT model constructed on the full set of features,

GBDT
lattice constant (𝑎0) : 𝑅2 = 0.99 ± 0.00 RMSE = (14 ± 2)mÅ ,

bulk modulus (𝐵0) : 𝑅2 = 0.94 ± 0.02 RMSE = (9.5 ± 1.8) GPa .
(5.2)

The same feature subset however is not among the best-performing feature subsets, when using a
SISSO model (cf., Tabs. 5.5 and 5.6),

SISSO
lattice constant (𝑎0) : 𝑅2 = 0.75 ± 0.04 RMSE = (89 ± 4)mÅ ,

bulk modulus (𝐵0) : 𝑅2 = 0.47 ± 0.07 RMSE = (30.0 ± 3.2) GPa .
(5.3)

As such, an identification of all relevant features with TB3-GBDT is hampered by the fact that
a piecewise-constant machine-learning algorithm performs better on the perovskite data set as a
symbolic-regression model: the TB3-GBDT algorithm identifies subsets of smaller feature-subset car-
dinality and hence not all features required for a highly predictive symbolic-regression model with
SISSO (Figs. 5.10 and 5.11).

Feature dependences

Feature-dependence maps generated with TB3-GBDT and TB3-SISSO reveal a block-like structure
of feature interactions between features of the same atomic species (Fig. 5.12). Whereas feature
interactions of the TB3-GBDT algorithm indicate a one-to-one correspondence between features (i.e.,
there is an exact statistical relationship between the features such that each feature can be used to
accurately predict all the other features of the same atomic species), not all features of the same atomic
species are statistically related by TB3-SISSO. This is due to the fact that feature subsets with a larger
feature-subset cardinality than the optimal feature subset are not identified by the TB3-algorithm and
hence are not considered as dependent at a confidence level of 𝛼 = 0.95 in the feature-dependence
maps (Section 4.2).

The oxidation state of atomic species 𝐴 can be exactly predicted with any (atomic) feature of 𝐴,
but conversely, the oxidation state is not sufficient to estimate the diversity of atomic properties in
each materials class of perovskites oxides with a GBDT model. Although there potentially exists a
relationship between atomic properties of atomic species 𝐴 and the ionic charge, it requires a much
larger set of features as compared to the minimally non-redundant feature subset as found by the
TB3-GBDT algorithm. It is therefore likely that the GBDT feature-dependence map simply does not
capture this relationship, as other strong feature interactions prevent the identification of weaker
statistical relationships in the data set as compared to the TB3-SISSO algorithm (Fig. 5.12).
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1 {Z(A), c(A), Z(B)}
2 {H(A), c(A), rs(B)}
3 {H(A), c(A), Z(B)}
4 {rs(A), c(A), Z(B)}
5 {Z(A), c(A), EA(B)}
6 {IP(A), c(A), Z(B)}
7 {Z(A), c(A), rs(B)}
8 {EN(A), c(A), Z(B)}
9 {rs(A), c(A), rp(B)}
10 {Z(A), c(A), rp(B)}
11 {EA(A), c(A), rs(B)}
12 {EA(A), c(A), Z(B)}
13 {H(A), c(A), rp(B)}
14 {rp(A), c(A), Z(B)}
15 {rp(A), c(A), rs(B)}
16 {rs(A), c(A), rs(B)}
17 {IP(A), c(A), rs(B)}
18 {EN(A), c(A), rs(B)}
19 {IP(A), c(A), rp(B)}
20 {rp(A), c(A), rp(B)}
21 {H(A), c(A), EA(B)}
22 {IP(A), L(B), rs(B)}
23 {IP(A), L(B), rp(B)}
24 {EN(A), c(A), rp(B)}
25 {EA(A), c(A), rp(B)}
26 {H(A), IP(A), rp(B)}
27 {Z(A), rp(A), Z(B)}

28 {IP(A), EA(B), rp(B)}
29 {Z(A), c(A), L(B)}
30 {EA(A), Z(A), Z(B)}
31 {rs(A), c(A), EA(B)}
32 {rp(A), c(A), EA(B)}
33 {H(A), c(A), IP(B)}
34 {Z(A), c(A), IP(B)}
35 {Z(A), c(A), H(B)}
36 {EN(A), Z(A), Z(B)}
37 {Z(A), rp(A), EA(B)}
38 {Z(A), rs(A), Z(B)}
39 {IP(A), c(A), EA(B)}
40 {H(A), c(A), L(B)}
41 {IP(A), Z(B)}
42 {IP(A), rp(B)}
43 {IP(A), rs(B)}
44 {IP(A), EA(B)}
45 {EN(A), Z(B)}
46 {rp(A), rp(B)}
47 {EN(A), EA(B)}
48 {rp(A), EA(B)}
49 {EA(A), Z(B)}
50 {EA(A), rp(B)}
51 {EA(A), EA(B)}
52 {EN(A), rp(B)}
53 {rp(A), rs(B)}
54 {IP(A), IP(B)}

55 {IP(A), L(B)}
56 {rs(A), EA(B)}
57 {rs(A), rp(B)}
58 {IP(A), H(B)}
59 {EN(A), rs(B)}
60 {EA(A), rs(B)}
61 {Z(A), EA(B)}
62 {H(A), EA(B)}
63 {rp(A), Z(B)}
64 {L(A), rs(B)}
65 {EA(A), L(B)}
66 {rs(A), rs(B)}
67 {Z(A), Z(B)}
68 {EN(A), L(B)}
69 {L(A), rp(B)}
70 {L(A), Z(B)}
71 {EA(A), H(B)}
72 {rs(A), Z(B)}
73 {rp(A), L(B)}
74 {EN(A), IP(B)}
75 {EA(A), IP(B)}
76 {EN(A), H(B)}
77 {L(A), EA(B)}
78 {Z(A), rs(B)}
79 {H(A), rs(B)}

n/a

80 {rs(A), c(A), EA(B), EN(B),
H(B), Z(B)}

81 {H(A), rs(A), EA(B), IP(B),
Z(B), rs(B)}

82 {rs(A), EN(B), IP(B), Z(B),
rp(B), rs(B)}

83 {rs(A), EA(B), IP(B), Z(B),
rp(B), rs(B)}

84 {Z(A), c(A), EN(B), IP(B),
Z(B), rs(B)}

85 {rs(A), EA(B), L(B), Z(B),
rs(B)}

86 {rs(A), EA(B), EN(B), Z(B),
rp(B)}

87 {H(A), rs(A), EA(B),
EN(B), Z(B)}

88 {Z(A), c(A), EA(B), Z(B),
rs(B)}

89 {IP(A), Z(A), L(B), Z(B),
rs(B)}

90 {IP(A), Z(A), EA(B), Z(B),
rs(B)}

91 {rs(A), EN(B), IP(B), Z(B)}
92 {rs(A), EA(B), IP(B), Z(B)}
93 {Z(A), c(A), Z(B), rs(B)}
94 {rs(A), EA(B), EN(B),

Z(B)}
95 {Z(A), L(B), Z(B), rs(B)}
96 {rs(A), Z(B), rs(B)}

TB
3-

GB
D

T
TB

3-
SI

SS
O

TB3-GBDT (1–79) TB3-GBDT ∩ TB3-SISSO (∅) TB3-SISSO (80–96)

Fig. 5.10. Identifiedminimally non-redundant (sub-optimal) feature subsets for the prediction of the equilibrium
lattice constant 𝑎0 using the tolerance-based branch-and-bound algorithm (TB3) and GBDT or SISSO as the
feature-selection criterion (Section 4.1). Shown is the intersection and the union of the two feature-identification
methods corresponding to a Jaccard similarity coefficient (Eq. 5.1) of zero. It should be noted that due to the
different machine-learning algorithms, a direct comparison between TB3-GBDT and TB3-SISSO may not be
appropriate. The numbering is used for referencing purposes.
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1 {Z(A), c(A), EA(B), rp(B)}
2 {rs(A), c(A), EA(B), rp(B)}
3 {Z(A), c(A), EA(B), rs(B)}
4 {Z(A), c(A), L(B), rp(B)}
5 {H(A), c(A), EA(B), rp(B)}
6 {Z(A), c(A), rp(B), rs(B)}
7 {Z(A), c(A), EA(B), IP(B)}
8 {H(A), IP(A), EA(B), rs(B)}
9 {Z(A), c(A), H(B), rp(B)}
10 {IP(A), c(A), EA(B), rs(B)}
11 {EN(A), c(A), EA(B), rs(B)}
12 {EN(A), c(A), EA(B), rp(B)}
13 {H(A), rs(A), EA(B), rp(B)}
14 {EN(A), c(A), EA(B), L(B)}
15 {Z(A), c(A), IP(B), L(B)}
16 {EN(A), c(A), L(B), rp(B)}
17 {IP(A), L(A), Z(B), rs(B)}
18 {rp(A), c(A), EA(B), rs(B)}
19 {H(A), rs(A), EA(B), rs(B)}
20 {H(A), rs(A), EN(B), rs(B)}
21 {rs(A), c(A), Z(B)}
22 {EN(A), c(A), Z(B)}
23 {Z(A), c(A), Z(B)}
24 {rs(A), c(A), rp(B)}
25 {rs(A), c(A), EA(B)}
26 {H(A), c(A), Z(B)}
27 {rs(A), c(A), rs(B)}
28 {EA(A), c(A), EA(B)}
29 {IP(A), c(A), Z(B)}
30 {H(A), c(A), rp(B)}
31 {H(A), IP(A), rp(B)}
32 {H(A), c(A), EA(B)}
33 {IP(A), c(A), rp(B)}
34 {Z(A), c(A), rp(B)}
35 {EN(A), c(A), rs(B)}
36 {Z(A), c(A), rs(B)}
37 {Z(A), c(A), EA(B)}
38 {H(A), c(A), rs(B)}
39 {IP(A), c(A), rs(B)}
40 {rp(A), c(A), Z(B)}
41 {H(A), IP(A), rs(B)}

42 {H(A), IP(A), Z(B)}
43 {rs(A), c(A), L(B)}
44 {H(A), rs(A), rp(B)}
45 {EN(A), c(A), EA(B)}
46 {H(A), rs(A), Z(B)}
47 {IP(A), L(A), rs(B)}
48 {EN(A), c(A), rp(B)}
49 {rp(A), c(A), rs(B)}
50 {IP(A), Z(A), Z(B)}
51 {IP(A), rp(A), rs(B)}
52 {EA(A), Z(A), Z(B)}
53 {Z(A), c(A), L(B)}
54 {IP(A), rp(A), Z(B)}
55 {EN(A), c(A), L(B)}
56 {rp(A), c(A), rp(B)}
57 {EA(A), c(A), rs(B)}
58 {IP(A), c(A), L(B)}
59 {IP(A), c(A), EA(B)}
60 {H(A), rs(A), rs(B)}
61 {rp(A), c(A), EA(B)}
62 {EA(A), c(A), Z(B)}
63 {H(A), IP(A), EA(B)}
64 {EN(A), IP(A), Z(B)}
65 {EA(A), c(A), L(B)}
66 {EN(A), Z(A), Z(B)}
67 {EN(A), H(A), Z(B)}
68 {rs(A), c(A), H(B)}
69 {H(A), IP(A), L(B)}
70 {H(A), c(A), L(B)}
71 {Z(A), rs(A), Z(B)}
72 {EA(A), c(A), rp(B)}
73 {IP(A), L(A), Z(B)}
74 {EA(A), H(A), Z(B)}
75 {IP(A), Z(B), rp(B)}
76 {IP(A), L(A), rp(B)}
77 {Z(A), c(A), H(B)}
78 {Z(A), c(A), IP(B)}
79 {rp(A), c(A), L(B)}
80 {rs(A), c(A), IP(B)}
81 {IP(A), rp(A), rp(B)}
82 {IP(A), rp(A), L(B)}

83 {rs(A), c(A), EN(B)}
84 {IP(A), rp(A), EA(B)}
85 {IP(A), L(B), rs(B)}
86 {H(A), c(A), EN(B)}
87 {IP(A), L(B), rp(B)}
88 {H(A), rp(A), rp(B)}
89 {IP(A), c(A), H(B)}
90 {EA(A), IP(A), EA(B)}
91 {H(A), c(A), IP(B)}
92 {H(A), IP(A), IP(B)}
93 {IP(A), EA(B), rp(B)}
94 {EN(A), c(A), H(B)}
95 {EN(A), IP(A), rs(B)}
96 {H(A), rp(A), Z(B)}
97 {Z(A), rp(A), Z(B)}
98 {rp(A), c(A), H(B)}
99 {EA(A), rs(A), Z(B)}
100 {H(A), IP(A), H(B)}
101 {H(A), c(A), H(B)}
102 {IP(A), rp(A), H(B)}
103 {IP(A), c(A), IP(B)}
104 {IP(A), Z(A), rs(B)}
105 {H(A), IP(A), EN(B)}
106 {H(A), rp(A), rs(B)}
107 {Z(A), c(A), EN(B)}
108 {IP(A), L(A), L(B)}
109 {EN(A), c(A), IP(B)}
110 {EN(A), c(A), EN(B)}
111 {EA(A), c(A), H(B)}
112 {EN(A), IP(A), EA(B)}
113 {IP(A), c(A), EN(B)}
114 {IP(A), rp(A), IP(B)}
115 {IP(A), L(A), EA(B)}
116 {EA(A), c(A), IP(B)}
117 {rp(A), c(A), IP(B)}
118 {EA(A), IP(A), L(B)}
119 {IP(A), Z(B)}

n/a

120 {H(A), IP(A), EA(B), EN(B),
IP(B), L(B), Z(B), rs(B)}

121 {L(A), Z(A), c(A), EA(B),
H(B), Z(B), rs(B)}

122 {rs(A), c(A), EA(B), EN(B),
H(B), Z(B)}

123 {H(A), IP(A), EA(B), Z(B),
rs(B)}

124 {c(A), EA(B), H(B), L(B),
rs(B)}

125 {c(A), EA(B), Z(B), rs(B)}
126 {c(A), EA(B), EN(B), rp(B)}

127 {c(A), EA(B), Z(B), rp(B)}
128 {c(A), EN(B), IP(B), rs(B)}
129 {IP(A), c(A), EA(B), rs(B)}
130 {c(A), Z(B), rs(B)}

TB
3-

GB
D

T
TB

3-
SI

SS
O

TB3-GBDT (1–119) TB3-GBDT ∩ TB3-SISSO (∅) TB3-SISSO (120–130)

Fig. 5.11. Identified minimally non-redundant (sub-optimal) feature subsets for the prediction of the bulk
modulus 𝐵0 using the tolerance-based branch-and-bound algorithm (TB3) and GBDT or SISSO as the feature-
selection criterion (Section 4.1). Shown is the intersection and the union of the two feature-identification
methods corresponding to a Jaccard similarity coefficient (Eq. 5.1) of zero. It should be noted that due to the
different machine-learning algorithms, a direct comparison between TB3-GBDT and TB3-SISSO may not be
appropriate. The numbering is used for referencing purposes.
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b.) TB3-SISSO

Fig. 5.12. Feature-dependence maps of the perovskite oxides data set created with the tolerance-based branch-
and-bound algorithm (TB3) and two different machine-learning algorithms: (a) gradient-boosting decision
trees (GBDT) [249–252, 267, 268] and (b) the sure-independence screening and sparsifying operator (SISSO)
[197]. Feature-dependence maps were created at a confidence level of 𝛼 = 0.95 and a convergence threshold of
𝜖 = 0.01 (cf., Section 4.2). The score (=strength) of the dependence is shown in the first column (Dep.). The
score is the Pearson’s 𝑅 coefficient of determination [101] of a 10-fold cross-validated machine-learning model
and by using the identified features of the TB3-algorithm (colored boxes). The dependence of the equilibrium
lattice constant (𝑎0) and bulk modulus (𝐵0) are given in the last two rows.

Both the bulk modulus (𝐵0) and the nuclear charge Z(B) are characterized by relatively low
dependence scores. In the case of the nuclear charge Z(B), for example, the feature-dependence map
of the TB3-SISSO algorithm identifies a statistical dependency with the ionization potential (IP) and
the lowest-unoccupied Kohn-Sham level (L) of atomic species 𝐴. Since there is no physically known
relationship between the atomic properties of two atomic species and the features of the atomic species
𝐵 are not strongly related to the other features of the atomic species 𝐴, it can be assumed that the
low dependence scores are due to an incorrect identification of dependent features at a confidence
level of 𝛼 = 0.95 (Section 4.2).

The block-like structure of feature interactions shows that all features of each atomic species can be
expressed as an implicit dependence on the nuclear charges Z. Hence, a machine-learning model for
predicting the equilibrium lattice constant 𝑎0 or the bulk modulus 𝐵0 requires at least one feature from
each atomic species 𝐴/𝐵. Most of these features are related by physical and statistical relationships
as like in the octet-binary compound semiconductor data set (Section 5.2.1). For example, there
is a strong statistical dependence between the atomic radii r𝑠 and r𝑝, the electron affinity (EA) is
physically related to the electronegativity (EN) and the ionization potential (IP), and the electron
affinity can also be expressed as a function of the ionization potential (IP) and the highest-occupied
Kohn-Sham level (H).
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# Features GBDT SISSO
+ Model 𝑅2 RMSE [mÅ] 𝑅2 RMSE [mÅ]

1 {r𝑠(A), Z(B)} 0.96±0.02 32±7 0.76±0.05 86±4
𝑎0 = 3.66 · 3

√︃
3
√︁
𝑍(𝐵) exp

(
𝑟𝑠 (𝐴)
𝑍(𝐵)

)
+ 0.183 ·

���log(𝑍(𝐵)3) − (
𝑍(𝐵) + 3

√︁
𝑍(𝐵)

)���
+ 0.93 ·

(
3
√︁
𝑍(𝐵)

√︁
𝑍(𝐵) − log(𝑍(𝐵))

√︁
𝑍(𝐵)

)
− 1.51

2 {Z(A), r𝑠(A), Z(B)} 0.98±0.01 21±4 0.75±0.04 88±6

𝑎0 = 0.139 ·
(exp(𝑟𝑠 (𝐴))√︁

𝑍(𝐵)
−

(
𝑍(𝐴)−1 −

√︁
𝑍(𝐵)

))
+ 0.0695 ·

3
√︁
exp{𝑍(𝐵)}

𝑍(𝐵)2 · 𝑍(𝐵)3

− 5.74 ·
3
√︁
exp{𝑍(𝐵)}
(𝑍(𝐵)2)3 + 2.89

3 {r𝑠(A), c(A), Z(B)} 0.99±0.00 15±4 0.75±0.04 88±7

𝑎0 = 2.46e-05 ·
3
√︁
exp{𝑍(𝐵)}
(𝑍(𝐵)2)2 + 0.0115 ·

(
𝑍(𝐵)2
3
√︁
𝑍(𝐵)

− 𝑍(𝐵)2
log(𝑍(𝐵))

)
+ 0.0083 · 𝑟𝑠 (𝐴)

3 · 𝑟𝑠 (𝐴)
𝑐(𝐴)

��𝑐(𝐴) − |𝑐(𝐴) − 𝑟𝑠 (𝐴) |�� + 3.47
4 {IP(A), c(A), Z(B)} 0.99±0.00 17±4 0.74±0.05 89±8

𝑎0 = 0.0988 ·
√︁
exp(𝑍(𝐵))
(𝑍(𝐵)3)3 + 40.2 · exp(−𝑐(𝐴))√︁

𝐼𝑃(𝐴) exp(𝐼𝑃(𝐴)/𝑐(𝐴))
+ 0.0116 ·

(
𝑍(𝐵)2√︁
𝑍(𝐵)

− 𝑍(𝐵)2
log(𝑍(𝐵))

)
+ 3.42

5 {IP(A), Z(B)} 0.98±0.01 21±4 0.73±0.05 91±9

𝑎0 = − 0.406 · 𝑍(𝐵)
2√︁𝐼𝑃(𝐴)

exp
(√︁
𝑍(𝐵)

) + 47.3 · (√︁𝐼𝑃(𝐴)√︁
𝑍(𝐵)

−
√︁
𝐼𝑃(𝐴)

log(𝑍(𝐵))

)
+ 0.0771 ·

√︁
exp(𝑍(𝐵))
(𝑍(𝐵)3)3 + 4.3

6 {Z(A), c(A), Z(B)} 0.99±0.00 14±3 0.72±0.06 93±7

𝑎0 = − 0.249 ·
((
𝑍(𝐴)−1 −

√︁
𝑍(𝐵)

)
− 𝑍(𝐴)
𝑍(𝐵) exp(−𝑐(𝐴))

)
+ 0.048 ·

√︁
exp(𝑍(𝐵))
(𝑍(𝐵)3)3

− 8.07e-06 ·
( (
𝑍(𝐴) + 𝑍(𝐵)

)2 − 𝑍(𝐴)3
|𝑍(𝐴) − 𝑍(𝐵) |

)
+ 3.03

Tab. 5.8. Ranked list of statistical equivalent symbolic-regression models for the prediction of the equilib-
rium lattice constant 𝑎0 in ascending order of the SISSO [197] prediction errors (RMSE - ΔRMSE). Shown
is the prediction performance of identified, best-performing, non-redundant, sub-optimal feature subsets of
the tolerance-based branch-and-bound algorithm (TB3) using the gradient-boosting decision trees (GBDT)
algorithm [249–252, 267, 268] as feature-selection criterion Sections 3.1.2 and 4.1). For comparison, 10-fold
cross-validated (cf., Section 5.1) prediction performance of SISSO and the gradient-boosting decision trees
(GBDT) algorithm [249–252, 267, 268] are reported in terms of the mean 𝑥 and standard deviation Δ𝑥 as
𝑥±Δ𝑥 of the Pearson’s coefficient of determination 𝑥 = 𝑅2 [101] and the root-mean-squared error (𝑥 = RMSE).
The RMSE is in the unit of milli angstrom (mÅ).
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# Features GBDT SISSO
+ Model 𝑅2 RMSE [mÅ] 𝑅2 RMSE [mÅ]

1 {H(A), r𝑠(A), EA(B), IP(B), Z(B),
r𝑠(B)}

0.99±0.01 20±4 0.87±0.03 62±6

𝑎0 = 1.82 · 𝑟𝑠 (𝐴)
𝑍(𝐵)

𝐸𝐴(𝐵) − 𝐼𝑃(𝐵)
exp(𝑟𝑠 (𝐴))

3
√︁
𝑍(𝐵) + 0.0209 ·

����𝑍(𝐵)𝐸𝐴(𝐵)𝐼𝑃(𝐵) −
(
exp(𝐻 (𝐴)) − exp(𝑟𝑠 (𝐵))

) ����
− 0.272 ·

(����exp(−𝐼𝑃(𝐵))log(𝑟𝑠 (𝐵))

���� − 𝐸𝐴(𝐵)
𝐻 (𝐴) log(𝑟𝑠 (𝐵))

)
+ 4.25

2 {r𝑠(A), EN(B), IP(B), Z(B), r𝑝(B),
r𝑠(B)}

0.98±0.01 26±6 0.87±0.03 63±4

𝑎0 = 0.291 ·
(exp(𝑟𝑝(𝐵))

𝑍(𝐵) + 3
√︁
𝑍(𝐵) + 𝑟𝑠 (𝐴)

𝑟𝑝(𝐵)

)
+ 0.306 ·

����√︁exp(𝑟𝑠 (𝐵)) −
(
𝐼𝑃(𝐵)
𝐸𝑁 (𝐵) −

𝐸𝑁 (𝐵)
𝐼𝑃(𝐵)

)����
− 0.00453 · |log(𝑟𝑠 (𝐵))𝑍(𝐵)𝐸𝑁 (𝐵) − exp(𝑟𝑠 (𝐵)) (𝐸𝑁 (𝐵) + 𝐼𝑃(𝐵)) | + 2.55

3 {r𝑠(A), EA(B), EN(B), Z(B)} 0.97±0.01 27±6 0.87±0.03 63±4

𝑎0 = 3.22 · 𝑟𝑠 (𝐴)
𝑍(𝐵)

𝐸𝐴(𝐵) − 𝐸𝑁 (𝐵)
exp(𝑟𝑠 (𝐴)) log(𝑍(𝐵))

− 1.26 ·
����� 3
√︁
log(𝐸𝑁 (𝐵)) − log(𝑍(𝐵))

3
√︁
𝑍(𝐵)

�����
+ 0.0123 ·

����𝑍(𝐵)𝐸𝐴(𝐵)log(𝑍(𝐵)) −
(
(𝐸𝐴(𝐵) − 𝐸𝑁 (𝐵)) − (𝐸𝑁 (𝐵) − 𝐸𝐴(𝐵))

) ���� + 4.27
4 {r𝑠(A), EN(B), IP(B), Z(B)} 0.97±0.01 29±5 0.87±0.02 64±3

𝑎0 = 3.01 · 𝑟𝑠 (𝐴)
𝑍(𝐵)

𝐸𝑁 (𝐵) − 𝐼𝑃(𝐵)
exp(𝑟𝑠 (𝐴))/log(𝑍(𝐵))

+ 0.0146 ·
����(𝑍(𝐵) − √︁

𝑍(𝐵)) − 𝑍(𝐵)𝐸𝑁 (𝐵)
𝐼𝑃(𝐵) − 𝐸𝑁 (𝐵)

����
− 1.23 ·

����� 3
√︁
log(𝐸𝑁 (𝐵)) − log(𝑍(𝐵))

3
√︁
𝑍(𝐵)

����� + 4.24
5 {H(A), r𝑠(A), EA(B), EN(B),

Z(B)}
0.98±0.01 21±4 0.87±0.03 64±4

𝑎0 = 3 · 𝑟𝑠 (𝐴)
𝑍(𝐵)

𝐸𝐴(𝐵) − 𝐸𝑁 (𝐵)
exp(𝑟𝑠 (𝐴))/log(𝑍(𝐵))

+ 0.0152 ·
���� 𝑍(𝐵)𝐸𝐴(𝐵)
𝐸𝐴(𝐵) − 𝐸𝑁 (𝐵) −

(√︁
𝑍(𝐵) − 𝐻 (𝐴)

𝐸𝑁 (𝐵)

)����
− 1.25 ·

����� 3
√︁
log(𝐸𝑁 (𝐵)) − log(𝑍(𝐵))

3
√︁
𝑍(𝐵)

����� + 4.24
6 {r𝑠(A), EA(B), IP(B), Z(B), r𝑝(B),

r𝑠(B)}
0.98±0.01 25±6 0.87±0.04 63±7

𝑎0 = 4.48 · 𝐸𝐴(𝐵) − 𝐼𝑃(𝐵)exp(𝑟𝑠 (𝐴))
𝑟𝑠 (𝐴)
𝑍(𝐵)

3
√︃
𝑟𝑝(𝐵) + 0.0125 ·

���� 𝑍(𝐵)𝑟𝑠 (𝐵)exp
(
𝑟𝑝(𝐵)

) − exp(𝑟𝑠 (𝐵))
(
𝑟𝑝(𝐵) + 𝑟𝑠 (𝐵)

) ����
+ 1.01 ·

����exp (
𝑟𝑠 (𝐵)
𝑍(𝐵)

)
− 𝐸𝐴(𝐵)
𝐸𝐴(𝐵) − 𝐼𝑃(𝐵)

���� + 4.09
(continues on next page)
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7 {r𝑠(A), EA(B), IP(B), Z(B)} 0.97±0.01 27±6 0.85±0.03 67±7
𝑎0 = 1.78 · 𝐸𝐴(𝐵) − 𝐼𝑃(𝐵)exp(𝑟𝑠 (𝐴))

𝑟𝑠 (𝐴)
𝑍(𝐵)

√︁
𝐼𝑃(𝐵) − 0.258 · 𝐸𝐴(𝐵)−1

𝐼𝑃(𝐵)3
(
𝐸𝐴(𝐵) + (𝐼𝑃(𝐵)/𝑍(𝐵))

)
+ 0.00565 ·

����𝑍(𝐵)𝐸𝐴(𝐵)log(𝐼𝑃(𝐵)) −
( (
𝐸𝐴(𝐵) − 𝐼𝑃(𝐵)

)
−

(
𝐼𝑃(𝐵) − 𝐸𝐴(𝐵)

) )���� + 4.15
8 {r𝑠(A), EA(B), EN(B), Z(B),

r𝑝(B)}
0.98±0.01 25±6 0.85±0.03 68±5

𝑎0 = 0.00974 · 𝑍(𝐵)𝑟𝑠 (𝐴)
𝐸𝐴(𝐵) + 𝐸𝑁 (𝐵)

(
exp(𝐸𝐴(𝐵)) + exp

(
−𝑟𝑝(𝐵)

) )
− 143 ·

3
√︁
𝐸𝑁 (𝐵)
𝑍(𝐵)2

���� 𝑟𝑠 (𝐴)𝐸𝐴(𝐵) −
𝑟𝑠 (𝐴)
𝐸𝑁 (𝐵)

����−1
− 0.000141 · 𝑍(𝐵)3

exp(𝐸𝑁 (𝐵)) ((𝐸𝐴(𝐵) − 𝐸𝑁 (𝐵)) − 𝑍(𝐵)𝐸𝐴(𝐵))
−1 + 3.77

9 {r𝑠(A), EA(B), L(B), Z(B), r𝑠(B)} 0.98±0.01 24±6 0.85±0.03 68±7
𝑎0 = − 0.083 ·

((
𝐸𝐴(𝐵)
𝐿(𝐵) −

√︁
𝑍(𝐵)

)
− exp(𝑟𝑠 (𝐴))

log(𝑍(𝐵))

)
+ 0.00294 ·

����exp(𝑟𝑠 (𝐵))2 − 𝑍(𝐵)𝐸𝐴(𝐵)
𝐿(𝐵) − 𝐸𝐴(𝐵)

����
+ 0.133 ·

����exp(𝑟𝑠 (𝐵)) log(𝑟𝑠 (𝐵))) − 𝐿(𝐵)
𝐿(𝐵) − 𝐸𝐴(𝐵)

���� + 3.09
10 {IP(A), Z(A), EA(B), Z(B), r𝑠(B)} 0.99±0.00 18±3 0.86±0.04 66±8

𝑎0 = − 0.121 ·
(
( 3
√︁
𝑍(𝐴) −

√︁
𝑍(𝐵)) −

√︁
(𝑍(𝐴))

log(𝐼𝑃(𝐴))

)
+ 16.8 ·

(
3
√︁
exp(−𝑍(𝐵)) − exp(−𝐸𝐴(𝐵))

𝑍(𝐵)2

)
− 1.26e-05 · 𝑍(𝐵)2 log(𝑟𝑠 (𝐵))

(
(𝐸𝐴(𝐵))−1 + 𝑍(𝐵)

𝐼𝑃(𝐴)

)
+ 3.19

Tab. 5.9. Ranked list of statistical equivalent symbolic-regression models for the prediction of the equilibrium
lattice constant 𝑎0 in ascending order of the SISSO [197] prediction errors (RMSE - ΔRMSE). Shown is
the prediction performance of identified, best-performing, non-redundant, sub-optimal feature subsets of the
tolerance-based branch-and-bound algorithm (TB3) using the sure-independence screening and sparsifying
operator (SISSO) [197] as feature-selection criterion Sections 3.1.2 and 4.1). For comparison, 10-fold cross-
validated (cf., Section 5.1) prediction performance of SISSO and the gradient-boosting decision trees (GBDT)
algorithm [249–252, 267, 268] are reported in terms of the mean 𝑥 and standard deviation Δ𝑥 as 𝑥 ± Δ𝑥 of
the Pearson’s coefficient of determination 𝑥 = 𝑅2 [101] and the root-mean-squared error (𝑥 = RMSE). The
RMSE is in the unit of milli angstrom (mÅ).
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# Features GBDT SISSO
+ Model 𝑅2 RMSE [GPa] 𝑅2 RMSE [GPa]

1 {IP(A), c(A), EA(B), r𝑠(B)} 0.95±0.02 9.3±1.6 0.69±0.05 22.8±1.1

𝐵0 = 0.607 ·
3
√︁
𝑐(𝐴) log(𝑟𝑠 (𝐵))

3
√︁
log(𝑟𝑠 (𝐵))

− 0.701 ·
���� 𝐸𝐴(𝐵)
𝐸𝐴(𝐵) − 𝐼𝑃(𝐴) − exp(𝐸𝐴(𝐵)) log(𝑟𝑠 (𝐵))

����
+ 0.0239 · |𝑐(𝐴) − 𝑟𝑠 (𝐵) |

𝐼𝑃(𝐴)2
(
𝐸𝐴(𝐵) + 𝐼𝑃(𝐴)

)3 + 0.809
2 {Z(A), c(A), EA(B), r𝑠(B)} 0.95±0.02 9.2±1.5 0.68±0.07 23.2±1.9

𝐵0 = − 2.09 · 𝑟𝑠 (𝐵)3√︁
𝑐(𝐴) exp(𝑟𝑠 (𝐵)3)

− 0.0244 · 𝑟𝑠 (𝐵)3 exp(𝐸𝐴(𝐵)) | exp(𝑟𝑠 (𝐵)) − exp(−𝐸𝐴(𝐵)) |

− 0.0552 ·
(

log(𝑐(𝐴))
exp(𝐸𝐴(𝐵)) −

exp(𝑐(𝐴))
3
√︁
𝑍(𝐴)

)
+ 1.41

3 {c(A), EA(B), r𝑝(B)} 0.91±0.02 12.2±1.7 0.67±0.06 23.7±1.7
𝐵0 = − 0.0688 ·

( (
𝑟𝑝(𝐵)2 exp(𝐸𝐴(𝐵))

)
−

(
𝑟𝑝(𝐵) (𝑐(𝐴) + 𝑟𝑝(𝐵))

) )
− 0.0551 ·

𝐸𝐴(𝐵)3(𝐸𝐴(𝐵)𝑟𝑝(𝐵))
| exp

(
𝑟𝑝(𝐵)

)
− exp(−𝐸𝐴(𝐵)) |

− 0.0886 ·
exp

(
𝐸𝐴(𝐵)−1

)
(𝑐(𝐴) − 𝑟𝑝(𝐵)) − 𝑟𝑝(𝐵)

+ 0.77

4 {r𝑠(A), c(A), EA(B), r𝑝(B)} 0.95±0.02 8.9±1.4 0.66±0.06 23.8±1.7
𝐵0 = 2.38 · 𝑐(𝐴)𝑟𝑠 (𝐴)exp(𝑐(𝐴))

1
exp(𝐸𝐴(𝐵)) − exp

(
𝑟𝑝(𝐵)

) + 0.126 · ���� 𝐸𝐴(𝐵)
log

(
𝑟𝑝(𝐵)

) − 𝐸𝐴(𝐵)
𝑟𝑝(𝐵)

(𝑐(𝐴) + 𝑟𝑝(𝐵))
����

− 0.131 ·
���� log(𝑟𝑝(𝐵))exp(𝐸𝐴(𝐵)) − | exp(𝐸𝐴(𝐵)) − exp(−𝐸𝐴(𝐵)) |

���� + 1.35
5 {c(A), EA(B), r𝑠(B)} 0.91±0.02 12.2±1.7 0.66±0.06 23.9±1.4

𝐵0 = − 3.09 · 𝑟𝑠 (𝐵)2√︁
𝑐(𝐴) exp(𝑟𝑠 (𝐵)2)

− 0.0532 · (𝑟𝑠 (𝐵)2𝑟𝑠 (𝐵)3) | exp(𝐸𝐴(𝐵)) − exp(−𝑟𝑠 (𝐵)) |

− 0.0961 ·
(
exp(−𝐸𝐴(𝐵)) − exp(𝑟𝑠 (𝐵))

) ���√︁𝑐(𝐴) − √︁
𝑟𝑠 (𝐵)

��� + 1.87
6 {c(A), EA(B), r𝑠(B)} 0.91±0.02 12.2±1.7 0.67±0.08 23.5±2.1

𝐵0 = − 6.9 · 𝑟𝑠 (𝐵)
exp(𝑟𝑠 (𝐵)) 3

√︁
𝑐(𝐴) + 𝑟𝑠 (𝐵)

− 0.0204 ·
(
𝑟𝑠 (𝐵)3 exp(𝐸𝐴(𝐵))

)2
+ 0.225 · 𝑟𝑠 (𝐵)

2(𝑐(𝐴)𝐸𝐴(𝐵))
exp(𝑟𝑠 (𝐵)3)

+ 2.85

7 {EN(A), c(A), EA(B), r𝑝(B)} 0.94±0.02 9.5±1.5 0.64±0.05 24.7±2.0
𝐵0 = − 0.0538 ·

(
(𝑟𝑝(𝐵)2 exp(𝐸𝐴(𝐵))) −

(
𝑟𝑝(𝐵) (𝑐(𝐴) + 𝑟𝑝(𝐵))

) )
− 0.0255 ·

exp(−𝐸𝐴(𝐵)) − exp
(
𝑟𝑝(𝐵)

)��𝑟𝑝(𝐵) − |𝑐(𝐴) − 𝑟𝑝(𝐵) |�� − 0.000465 ·
𝐸𝑁 (𝐴)3𝑟𝑝(𝐵)2

(𝑐(𝐴) − 𝑟𝑝(𝐵)) − 𝑟𝑝(𝐵)
+ 0.669

(continues on next page)
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(continued from previous page)

8 {Z(A), c(A), EA(B), r𝑝(B)} 0.95±0.02 8.9±1.5 0.64±0.05 24.9±2.2

𝐵0 = 0.884 ·
(

exp(𝑐(𝐴))
√︁
𝑟𝑝(𝐵)

exp(𝑐(𝐴)) + exp(𝐸𝐴(𝐵))

)
+ 0.0659 ·

(
exp(𝑐(𝐴))√︁
(𝑍(𝐴))

−
(
exp(𝐸𝐴(𝐵)) + exp(−𝐸𝐴(𝐵))

))
− 0.0676 ·

(���� 3
√︁
𝑍(𝐴) +

𝑟𝑝(𝐵)
𝑐(𝐴)

���� − | exp(𝑟𝑝(𝐵)) − exp(−𝐸𝐴(𝐵)) |
)
+ 0.198

9 {IP(A), L(A), Z(B), r𝑠(B)} 0.94±0.02 9.8±1.7 0.65±0.07 24.8±2.5

𝐵0 = − 0.182 · 𝑟𝑠 (𝐵)
3√︁𝑍(𝐵)

exp(𝑟𝑠 (𝐵)3)
− 3.05 · log(𝐼𝑃(𝐴) + 𝐿(𝐴))

(𝐼𝑃(𝐴)/𝐿(𝐴)) − 3
√︁
𝑍(𝐵)

+ 9.28e-06 · exp
(√︁
𝑍(𝐵)𝑟𝑠 (𝐵)

)
+ 0.726

10 {H(A), IP(A), EA(B), r𝑠(B)} 0.95±0.02 9.3±1.5 0.65±0.08 24.5±2.1
𝐵0 = − 3.87 · 𝑟𝑠 (𝐵)3

(𝐼𝑃(𝐴) + 𝐻 (𝐴)) exp(𝑟𝑠 (𝐵)3)
+ 0.000551 · 𝑟𝑠 (𝐵)−1

log(𝑟𝑠 (𝐵)) log(𝐸𝐴(𝐵)2)

− 0.137 ·
(���� 𝐼𝑃(𝐴) − 𝐸𝐴(𝐵)𝐸𝐴(𝐵) + 𝐼𝑃(𝐴)

���� − ��exp(𝑟𝑠 (𝐵)) − exp(−𝐸𝐴(𝐵))
��) + 1.57

Tab. 5.10. Ranked list of statistical equivalent symbolic-regression models for the prediction of the bulk mod-
ulus 𝐵0 in ascending order of the SISSO [197] prediction errors (RMSE - ΔRMSE). Shown is the predic-
tion performance of identified, best-performing, non-redundant, sub-optimal feature subsets of the tolerance-
based branch-and-bound algorithm (TB3) using the gradient-boosting decision trees (GBDT) algorithm [249–
252, 267, 268] as feature-selection criterion Sections 3.1.2 and 4.1). For comparison, 10-fold cross-validated
(cf., Section 5.1) prediction performance of SISSO and the gradient-boosting decision trees (GBDT) algorithm
[249–252, 267, 268] are reported in terms of the mean 𝑥 and standard deviation Δ𝑥 as 𝑥 ± Δ𝑥 of the Pearson’s
coefficient of determination 𝑥 = 𝑅2 [101] and the root-mean-squared error (𝑥 = RMSE). The RMSE is in units
of gigapascal (GPa).

# Features GBDT SISSO
+ Model 𝑅2 RMSE [GPa] 𝑅2 RMSE [GPa]

1 {H(A), IP(A), EA(B), EN(B), L(B),
Z(B), r𝑠(B)}

0.94±0.02 9.5±1.8 0.74±0.05 21.1±2.5

𝐵0 = − 2.8 · 𝑟𝑠 (𝐵)3
(𝐼𝑃(𝐴) + 𝐻 (𝐴)) exp(𝑟𝑠 (𝐵)3)

− 0.128 ·
����� (exp(𝐿(𝐵)) − exp(𝑟𝑠 (𝐵))

)
−
𝐿(𝐵) 3

√︁
𝑍(𝐵)

𝐸𝑁 (𝐵)

�����
+ 0.242 ·

����� 𝐸𝐴(𝐵) − 𝐼𝑃(𝐴)3
√︁
𝑍(𝐵)

− 𝐻 (𝐴) + 𝐿(𝐵)
exp(𝑟𝑠 (𝐵))

����� + 1.36
2 {L(A), Z(A), c(A), EA(B), H(B),

Z(B), r𝑠(B)}
0.93±0.02 10.2±1.9 0.73±0.05 21.5±1.5

𝐵0 = − 22.5 · 𝑟𝑠 (𝐵)3
3
√︁
𝑐(𝐴) (exp(𝑟𝑠 (𝐵)))3

− 0.14 ·
�����exp(𝑟𝑠 (𝐵)) log(𝑟𝑠 (𝐵)) − 𝐸𝐴(𝐵)

√︁
𝑍(𝐵)

𝐻 (𝐵)

�����
− 0.227 ·

(
𝑐(𝐴)𝐿(𝐴)
𝑍(𝐵)𝑟𝑠 (𝐵)

+ 𝐸𝐴(𝐵)𝐻 (𝐵)
𝑍(𝐴)𝐿(𝐴)

)
+ 1.97

(continues on next page)
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3 {c(A), EA(B), Z(B), r𝑠(B)} 0.91±0.02 12.2±1.7 0.72±0.05 21.5±1.7

𝐵0 = 5.34 ·
(
𝑟𝑠 (𝐵) log(𝑐(𝐴))

𝑍(𝐵) − 𝑟𝑠 (𝐵)
exp(𝑟𝑠 (𝐵))

)
− 0.0641 ·

�����
√︁
𝑍(𝐵)

exp(𝑟𝑠 (𝐵))
− exp(𝐸𝐴(𝐵))

exp(−𝑟𝑠 (𝐵))

�����
+ 0.00713 ·

����𝑍(𝐵) log(𝑟𝑠 (𝐵)) − exp(𝐸𝐴(𝐵))
exp(−𝑐(𝐴))

���� + 2.83
4 {c(A), EA(B), H(B), L(B), r𝑠(B)} 0.91±0.02 12.2±1.7 0.71±0.04 22.0±2.3

𝐵0 = − 0.688 ·
( (
exp(−𝑐(𝐴)) + exp(𝐿(𝐵))

)
−

(
log(𝑟𝑠 (𝐵))

)2)
− 0.22 ·

����exp(𝑟𝑠 (𝐵)) log(𝑟𝑠 (𝐵)) − 𝐸𝐴(𝐵) + 𝐿(𝐵)
𝐿(𝐵) − 𝐸𝐴(𝐵)

����
− 0.0601 · (𝑐(𝐴)𝐻 (𝐵) exp(𝐿(𝐵)) − 𝑟𝑠 (𝐵) (𝐻 (𝐵) − 𝐿(𝐵))) + 1.38

5 {r𝑠(A), c(A), EA(B), EN(B), H(B),
Z(B)}

0.95±0.02 9.1±1.8 0.73±0.07 21.2±2.1

𝐵0 = 3.59 ·
(
𝑐(𝐴)
𝑍(𝐵) log(𝐸𝑁 (𝐵)) −

𝑟𝑠 (𝐴)
𝑍(𝐵) exp(𝐸𝐴(𝐵))

)
+ 0.00279 · 𝑍(𝐵)

𝐻 (𝐵)
𝐸𝑁 (𝐵) + 𝐻 (𝐵)

(𝐸𝐴(𝐵) − 𝐸𝑁 (𝐵)) − 𝐻 (𝐵)

− 7.9e-06 · exp(𝐸𝐴(𝐵)𝐻 (𝐵))
3
√︁
𝑍(𝐵) + (𝐸𝑁 (𝐵)/𝐸𝐴(𝐵))

+ 0.981

6 {H(A), IP(A), EA(B), Z(B), r𝑠(B)} 0.94±0.02 9.4±1.7 0.69±0.05 23.0±2.0

𝐵0 = − 3.23 · 𝑟𝑠 (𝐵)3
(𝐼𝑃(𝐴) + 𝐻 (𝐴)) exp(𝑟𝑠 (𝐵)3)

− 0.0466 ·
�����

√︁
𝑍(𝐵)

exp(𝑟𝑠 (𝐵))
− exp(𝐸𝐴(𝐵))

exp(−𝑟𝑠 (𝐵))

�����
− 50.1 ·

(
𝐸𝐴(𝐵)
𝑍(𝐵)

𝐼𝑃(𝐴) + 𝐻 (𝐴)(
𝐼𝑃(𝐴) − 𝐻 (𝐴)

)
− 𝑍(𝐵)𝐸𝐴(𝐵)

)
+ 1.33

7 {c(A), EA(B), Z(B), r𝑝(B)} 0.91±0.02 12.6±1.7 0.67±0.05 23.4±2.4

𝐵0 = − 0.614 ·
(

3
√︁
𝑍(𝐵)

exp
(
𝑟𝑝(𝐵)

) + exp(−𝑐(𝐴)) exp(𝐸𝐴(𝐵))) + 1.27 · 𝑐(𝐴) − 𝑟𝑝(𝐵)

𝑍(𝐵) exp
(

3
√︁
𝐸𝐴(𝐵)

)
− 3.95e-06 ·

𝑍(𝐵)2(𝑐(𝐴) − 𝑟𝑝(𝐵))
log

(
|𝑐(𝐴) − 𝑟𝑝(𝐵) |

) + 1.46
Tab. 5.11. Ranked list of statistical equivalent symbolic-regression models for the prediction of the bulk mod-
ulus 𝐵0 in ascending order of the SISSO [197] prediction errors (RMSE - ΔRMSE). Shown is the prediction
performance of identified, best-performing, non-redundant, sub-optimal feature subsets of the tolerance-based
branch-and-bound algorithm (TB3) using the sure-independence screening and sparsifying operator (SISSO)
[197] as feature-selection criterion Sections 3.1.2 and 4.1). For comparison, 10-fold cross-validated (cf., Sec-
tion 5.1) prediction performance of SISSO and the gradient-boosting decision trees (GBDT) algorithm [249–
252, 267, 268] are reported in terms of the mean 𝑥 and standard deviation Δ𝑥 as 𝑥 ± Δ𝑥 of the Pearson’s
coefficient of determination 𝑥 = 𝑅2 [101] and the root-mean-squared error (𝑥 = RMSE). The RMSE is in units
of gigapascal (GPa).
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Statistical models

The prediction performance of statistical equivalent (cf., Section 5.1) non-redundant sub-optimal
feature subsets of TB3-GBDT and TB3-SISSO are summarized in (Tabs. 5.8 to 5.11). Specifically,
feature subsets of all machine-learning models consists of at least one feature from each atomic species.
Machine-learning models further show moderate to good prediction performances with comparatively
small prediction errors of less than 10% of the range of prediction values.

Of all identified feature subsets, only 6 of 79 (TB3-GBDT) and 14 of 17 (TB3-SISSO) feature subsets
are statistically equivalent to the optimal feature subset for the prediction of the equilibrium lattice
constant (𝑎0), while 14 of 119 (TB3-GBDT) and 7 of 11 (TB3-SISSO) feature subsets are statistically
equivalent to the optimal feature subset for the prediction of the bulk modulus (𝐵0). Consequently,
there is an ensemble of competing machine-learning models of different feature subsets for estimating
the equilibrium lattice constant and the bulk modulus (cf., Chapter 4). The most frequent occurring
features are c(A), r𝑠(A), Z(B), EA(B), r𝑠(B), r𝑝(B). These features have been identified in almost all
of the identified relevant features of the feature-identification methods (Tabs. 5.5 and 5.6). It can
therefore be argued that TCMI, RFECV, FS-GBDT, and FS-SISSO identify more features as dependent
as actually required for creating highly predictive machine-learning models, while the TB3-algorithm
is able to further reduce the number of features without degrading the prediction performance of the
machine-learning model.

Uncertainty estimation

Ensemble-based predictions strongly under-estimate the prediction intervals of the machine-learning
models (Figs. 5.13 and 5.14). In contrast, conformal prediction [62–64] correctly estimates the
prediction intervals at the specified confidence levels (Tab. 5.12). The validity (i.e., the percentage of
actual values outside the prediction interval) is only violated at a confidence level of 𝛼 = 0.50 as a
result of randomly halving the perovskite oxides data set and machine-learning models that become
significantly dependent on the choice of training data.

Ensemble-based prediction intervals are smaller than conformal-based prediction intervals at the
same confidence level 𝛼, but are as large as conformal-based prediction intervals at the same validity 𝛼̂
(Tab. 5.12). Therefore, conformal prediction is advantageous in estimating the target properties of the
perovskite oxides data set by providing statistical guarantees for the uncertainties of the predictions
[363, 366]. Although the maximum prediction intervals can be as large as the range of the property
of interests and not all predictions may be within the 95% prediction bands, constructed (ensemble)
machine-learning models clearly capture the underlying trend of the data. Overall, machine-learning
models slightly under-estimate the lattice constant, while machine-learning models over-estimate
perovskites with low and under-estimate perovskites with high bulk moduli (Figs. 5.13 and 5.14).

Due to the poor prediction performance of symbolic-regression models for the bulk modulus,
both neodymium zinc oxide (NdZnO3) and neodymium cadmium oxide (NdCdO3) cannot be reli-
ably predicted by the feature subsets of the TB3-GBDT algorithm with a symbolic-regression model
(Fig. 5.14). Much tighter prediction intervals can be obtained by applying ensemble-based and con-
formal predictions to the same feature subsets as identified by TB3-GBDT/TB3-SISSO but using a
piecewise-constant machine-learning models such as the gradient-boosting decision trees algorithm
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SISSO

� Algorithm (TB3-. . . ) Ensemble prediction Conformal prediction

Confidence level (𝛼) Validity (𝛼̂) Mean (Δ) Max (Δ) Validity (𝛼̂) Mean (Δ) Max (Δ)
a.) Lattice constant (𝑎0)

GB
DT

0.50 0.15 0.02 0.11 0.49 0.06 0.20
0.80 0.26 0.03 0.14 0.81 0.11 0.37
0.95 0.31 0.04 0.19 0.96 0.25 0.80

SI
SS

O 0.50 0.34 0.02 0.06 0.47 0.04 0.16
0.80 0.57 0.05 0.10 0.82 0.08 0.30
0.95 0.71 0.06 0.15 0.96 0.18 0.67

b.) Bulk modulus (𝐵0)

GB
DT

0.50 0.28 7.6 20.2 0.47 14.6 47.8
0.80 0.50 13.8 41.5 0.80 31.1 99.8
0.95 0.67 13.2 838.2 0.97 83.4 263.0

SI
SS

O 0.50 0.28 7.0 21.1 0.50 13.4 26.2
0.80 0.49 12.7 32.5 0.80 26.6 69.9
0.95 0.59 16.2 39.5 0.96 62.0 157.5

Tab. 5.12. Validity of ensemble and conformal prediction obtained from TB3-GBDT and TB3-SISSO at three
different confidence levels 𝛼 = [50%, 80%, 95%] using the sure-independence screening and sparsifying oper-
ator (SISSO) [197] as the machine-learning algorithm, where the confidence level of the ensemble prediction
was computed as the 𝛼th-percentile of the ensemble predictions. The validity (𝛼̂) specifies the probability
(𝛼̂% = 100𝛼̂) that the actual value 𝑥 of the underlying process is within the prediction interval 𝑥 ∈ [𝑥 − Δ̄,
𝑥 + Δ̄] (Eq. 4.22) of a (point) prediction 𝑥 with uncertainty ±Δ̄ (Δ̄ = Mean(Δ) ≤ Max(Δ)). Shown are the
performance statistics of the lattice constant (𝑎0) in units of milliangstroms (a) and the bulk modulus (𝐵0) in
units of gigapascals (b).

[249–252, 267, 268] (SISSO: Tab. 5.12, GBDT: Tab. 5.13) for the estimation of the equilibrium lattice
constant or bulk modulus. Compared to symbolic-regression models (Figs. 5.13 and 5.14), choosing
a GBDT machine-learning model would not only reduce the prediction errors by a factor of at least 2,
but would also lead to highly predictive machine-learning models (Figs. 5.15 and 5.16).

Anomalous materials

An analysis of the perovskites compounds shows that there are no anomalous materials in the data
set. Though, none of the perovskites are classified as anomalous, materials with low credibility scores,
i.e., Π < 0.2, provide insights into potential weaknesses of the constructed machine-learning models.
A more detailed investigation of these materials may therefore be desirable to improve the machine-
learning predictions for an actual application.

As the credibility score and the prediction intervals (Δ) exhibit a weak monotonic relationship
(𝜌2 ≈ 0.3) in terms of the Spearman coefficient of determination, materials with low credibility
score tend to have large prediction errors. For instance, perovskite compounds with comparatively
low credibility scores such as zirconium-based perovskites (e.g., LaZrO3, LiZrO3, LiZrO3, etc.) or
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GBDT
� Algorithm (TB3-. . . ) Ensemble prediction Conformal prediction

Confidence level (𝛼) Validity (𝛼̂) Mean (Δ) Max (Δ) Validity (𝛼̂) Mean (Δ) Max (Δ)
a.) Lattice constant (𝑎0)

GB
DT

0.50 0.25 0.00 0.05 0.49 0.01 0.05
0.80 0.40 0.01 0.07 0.81 0.02 0.14
0.95 0.49 0.01 0.09 0.97 0.05 0.34

SI
SS

O 0.50 0.25 0.01 0.05 0.49 0.01 0.05
0.80 0.50 0.01 0.07 0.82 0.02 0.13
0.95 0.67 0.01 0.08 0.97 0.06 0.31

b.) Bulk modulus (𝐵0)

GB
DT

0.50 0.42 3.6 15.6 0.50 4.2 20.0
0.80 0.59 5.4 20.2 0.80 10.5 48.7
0.95 0.72 6.7 23.0 0.97 32.2 138.6

SI
SS

O 0.50 0.32 3.4 15.1 0.50 4.7 21.3
0.80 0.46 4.6 17.8 0.80 10.9 46.1
0.95 0.57 5.3 19.5 0.96 29.3 127.6

Tab. 5.13. Validity of ensemble and conformal prediction obtained from TB3-GBDT and TB3-SISSO at three
different confidence levels 𝛼 = [50%, 80%, 95%] using the gradient-boosting decision trees (GBDT) algorithm
[249–252, 267, 268] as the machine-learning algorithm, where the confidence level of the ensemble prediction
was computed as the 𝛼th-percentile of the ensemble predictions. The validity (𝛼̂) specifies the probability
(𝛼̂% = 100𝛼̂) that the actual value 𝑥 of the underlying process is within the prediction interval 𝑥 ∈ [𝑥 − Δ̄,
𝑥 + Δ̄] (Eq. 4.22) of a (point) prediction 𝑥 with uncertainty ±Δ̄ (Δ̄ = Mean(Δ) ≤ Max(Δ)). Shown are the
performance statistics of the lattice constant (𝑎0) in units of milliangstroms (a) and the bulk modulus (𝐵0) in
units of gigapascal (b).

ferroelectric perovskites (e.g., NdFeO3) have widely dispersed lattice constants (𝑎0 = [3.6 , 4.3] Å)
and medium to high bulk moduli (𝐵0 = [90 , 180] GPa) with prediction errors (𝜀) and intervals
(Δ) larger than the mean of the full data set. Also, the credibility scores of constructed (ensemble
of) machine-learning models with SISSO (Figs. 5.13 and 5.14) show that perovskite compounds
containing bismuth (CaBiO3, CsBiO3, NaBiO3, etc.) have larger prediction errors, probably as a result
of being in the top 1% percentile of all perovskite compounds with a lattice constant greater than
𝑎0 > 4.2 Å. Finally, perovskites compounds based on neodymium and cadmium (namely NdCdO3,
NdZnO3, CeCdO3, LaCdO3) have lower credibility scores than other perovskites when using TB3-GBDT
prior to building symbolic-regression models with SISSO: The features as identified by TB3-GBDT
seem not to be sufficient to uniquely describe neodymium- and cadmium-based compounds.

Summary

The perovskite oxides data set is characterized by strong feature interactions between features for each
of the atomic species 𝐴/𝐵 and moderate to good prediction performances of machine-learning models
with comparatively small errors of less than 10% of the range of prediction values. In particular, it has
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been shown that TCMI, RFECV, FS-GBDT, and FS-SISSO identify more features as dependent than the
tolerance-based branch-and-bound (TB3) algorithm. Hence, the TB3-algorithm can efficiently reduce
the number of features without degrading the prediction performance of the generated machine-
learning models.

By construction, perovskites materials are uniquely determined by the nuclear and ionic charges
of the constituent elements: Z(A), Z(B), and c(A). Feature-dependence maps illustrate this finding
and show that all features of each atomic species can be expressed as an implicit dependence on the
nuclear charges Z. Therefore, a machine-learning model for the prediction of the equilibrium lattice
constant 𝑎0 or the bulk modulus 𝐵0 requires at least one feature from each atomic species. Most of
these features are related by physical or statistical relationships as like in the octet-binary compound
semiconductor data set (Section 5.2.1). Though the nuclear and ionic charges are not identified as
relevant in all feature-identification methods, TB3-GBDT and TB3-SISSO identify them as one of
the sub-optimal minimally non-redundant feature subsets or as a part of feature subsets with larger
feature-subset cardinalities.

The most frequently identified features with the TB3 algorithm for the prediction of the equilibrium
lattice constant and the bulk modulus are c(A), r𝑠(A), Z(B), EA(B), r𝑠(B), and r𝑝(B). Notably, these
features have been identified in almost all of the identified relevant features of the feature-identification
methods (Tabs. 5.5 and 5.6). The fact that the ionic charge and the most frequently identified
features are consistently identified by the minimal non-redundant feature subsets of the TB3-algorithm
therefore suggests that the developed framework has the potential to identify physically relevant
features from a statistical analysis of the materials data.

Common to all feature-identification methods is the good prediction performance of the lattice
constant, but only moderate prediction performance of the bulk modulus. A deeper investigation
reveals that a machine-learning model of the bulk modulus can reach a similar prediction performance
as the equilibrium lattice constant (Tab. 5.7) without requiring additional features by either using
the computed lattice constants from DFT (𝑎) or an estimation of the equilibrium lattice constants
(𝑎0) based on the 16 atomic features (Eq. 5.2). Furthermore, it has been demonstrated that the bulk
modulus have an explicit dependence on the equilibrium lattice constant, the nuclear, and the ionic
charges (cf., [410, 411]). Both, the lattice constant and the bulk modulus can be estimated with
high accuracy by the 16 atomic features, although implicitly a machine-learning model for the lattice
constant should be created first and this prediction used to estimate the bulk modulus. In addition,
the developed framework identified an ensemble of competing machine-learning models of different
features subsets for estimating the equilibrium lattice constant and the bulk modulus.

The ensemble of machine-learning models have been shown to strongly under-estimate the pre-
diction intervals of machine-learning predictions. By way of contrast, conformal prediction correctly
estimated the prediction intervals at the specified confidence levels (Tab. 5.12) and is therefore in-
dispensable for a reliable uncertainty estimation of machine-learning predictions of the perovskite
oxides data set.
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Fig. 5.13. Ensemble prediction performance of symbolic-regression models (SISSO [197]) constructed from
feature subsets of TB3-GBDT and TB3-SISSO to estimate the equilibrium lattice constant 𝑎0 of perovskites
materials. Shown are the prediction bands (50th, 80th, 95th-percentiles of the model’s predictions), the
credibility Π (Eq. 4.29) at a confidence level of 𝛼 = 0.95, the distribution of the size of prediction intervals
(diagram above the parity plot, Δ), and the errors of the machine-learning model (diagram right of the parity
plot, 𝜀 = |𝑎0 − 𝑎0 |). The numbers in the boxes display the mean values (Δ̄, 𝜀), while the maximum errors
are given in the texts below or to the left of the diagrams. Units are in angstrom (Å). Predictions outside the
prediction intervals are depicted as squares and anomalous materials as diamond-shape symbols.
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Fig. 5.14. Ensemble prediction performance of symbolic-regression models (SISSO [197]) constructed from
feature subsets of TB3-GBDT and TB3-SISSO to estimate the bulk modulus 𝐵0 of perovskites materials. Shown
are the prediction bands (50th, 80th, 95th-percentiles of the model’s predictions), the credibility Π (Eq. 4.29)
at a confidence level of 𝛼 = 0.95, the distribution of the size of prediction intervals (diagram above the parity
plot, Δ), and the errors of the machine-learning model (diagram right of the parity plot, 𝜀 = |𝑎0 − 𝑎0 |). The
numbers in the boxes display the mean values (Δ̄, 𝜀), while the maximum errors are given in the texts below
or to the left of the diagrams. Units are in gigapascal (GPa). Predictions outside the prediction intervals are
depicted as squares and anomalous materials as diamond-shape symbols.
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Fig. 5.15. Ensemble prediction performance of gradient-boosting decision tree (GBDT) models [249–252,
267, 268] constructed from feature subsets of TB3-GBDT and TB3-SISSO to estimate the equilibrium lattice
constant 𝑎0 of perovskites materials. Shown are the prediction bands (50th, 80th, 95th-percentiles of the
model’s predictions), the credibility Π (Eq. 4.29) at a confidence level of 𝛼 = 0.95, the distribution of the
size of prediction intervals (diagram above the parity plot, Δ), and the errors of the machine-learning model
(diagram right of the parity plot, 𝜀 = |𝑎0 − 𝑎0 |). The numbers in the boxes display the mean values (Δ̄, 𝜀),
while the maximum errors are given in the texts below or to the left of the diagrams. Units are in angstrom (Å).
Predictions outside the prediction intervals are depicted as squares and anomalous materials as diamond-shape
symbols.
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Fig. 5.16. Ensemble prediction performance of gradient-boosting decision tree (GBDT) models [249–252,
267, 268] constructed from feature subsets of TB3-GBDT and TB3-SISSO to estimate the bulk modulus 𝐵0 of
perovskites materials. Shown are the prediction bands (50th, 80th, 95th-percentiles of the model’s predictions),
the credibility Π (Eq. 4.29) at a confidence level of 𝛼 = 0.95, the distribution of the size of prediction intervals
(diagram above the parity plot, Δ), and the errors of the machine-learning model (diagram right of the parity
plot, 𝜀 = |𝑎0 − 𝑎0 |). The numbers in the boxes display the mean values (Δ̄, 𝜀), while the maximum errors are
given in the texts below or to the left of the diagrams. Units are in gigapascal (GPa). Predictions outside the
prediction intervals are depicted as squares and anomalous materials as diamond-shape symbols.
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5.2.3 Elastic property predictions of inorganic crystalline compounds

The elastic tensor of an inorganic crystalline compound describes the linear response of a material
to external forces [412, 461]. As such, it is correlated to many thermal and mechanical properties
[165, 462–467], inter-atomic bondings [468, 469], and forces [165]. However, the elastic tensor is
computationally intensive [166, 412, 470] and is difficult to estimate1⁹. Therefore, extensive studies
have been conducted to estimate the elastic tensor and derived quantities using machine learning.

Two of the many interesting derived macroscopic mechanical properties from the elastic tensor
are the bulk (𝐾) and shear modulus (𝐺). The bulk modulus describes the material’s resistance to
uniform compression under external loads and forces (cf., Section 5.2.2), whereas the shear modulus
describes the stiffness of a material with respect to forces parallel to the surfaces (Fig. 5.17). Both
quantities relate the stress to the strain of a material (Fig. 5.17) and can be used to investigate the
mechanical stability of a material.

Given their important role in the screening and development of new materials with targeted struc-
tural properties (cf., Section 5.2.2), numerous efforts have been undertaken to establish links between
the bulk and shear modulus of a crystal to their atomic properties. Because only a small fraction of all
known inorganic compounds have been determined so far2⁰, numerous machine-learning techniques
[165, 166, 186, 470, 473, 474] have been developed to both correct the elastic tensor by first-principles
calculations and to relate the bulk and shear modulus of an inorganic crystalline compound to the
atomic properties of the constituent elements. For example, de Jong, Chen et al. [165] used multivari-
ate local polynomial regression [475] and gradient boosting [249] to estimate elastic properties of
𝑘-nary compounds of diverse chemistries and structures. Isayev, Oses et al. [166] introduced the con-
cept of property-labeled material fragments to incorporate crystal-structure information for a variety
of electro-chemical properties. And Wang, Yang et al. and co-workers [186, 470, 474, 476] employed
convolutional neural networks [105] to estimate the bulk and shear modulus.

Most of these studies extensively investigated the applicability of machine learning to estimate
the bulk and shear modulus of inorganic crystalline compounds. Feature identification, if at all, was
discussed only on a simplified basis using either feature importance [249–252, 266–268] of decision-
tree algorithms [166, 473], partial-dependence plots [166, 249, 429], or prior knowledge [473].
Therefore, extending previous efforts in identifying the relevant features for estimating the bulk and
shear modulus, this thesis focuses on the systematic, statistical identification and characterization
of these features considering atomic properties to create predictive machine-learning models. In
particular, this thesis takes advantage of the feature-identification framework developed in Chapter 4
and Section 5.1 to directly link the feature identification to the prediction performance of the generated
machine-learning models.

1⁹The elastic tensor can be measured experimentally, for instance, through single-crystal Brillouin scattering [471, 472]
2⁰As of today about 20, 000 inorganic crystalline compounds are available in the materials databases AFLOW [16, 17, 33]
and Materials Project [13, 15, 35]. This represents about 10% of all materials stored in the Materials Project and < 1%
of materials in the AFLOW database.
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The dataset

The analysis is performed on the data set taken from Refs. [35, 412] using tabulated materials prop-
erties [151, 477–479] similar to Refs. [166, 473]. The data set consists of 1,181 inorganic crystalline
compounds and includes metallic, small-band-gap binary oxides, and semiconductor compounds of
varying numbers of compounds (1, . . . , 4). In total, the data set includes 63 elements, 87 space groups
and six lattice systems (Fig. 5.18) – cubic (452), hexagonal (261), rhombohedral (37), tetragonal
(193), orthorhombic (193), and monoclinic (45).

de Jong, Chen et al. used the projector-augmented wave method [480, 481] at the GGA level of
the theory (cf., Section 2.2) and the PBE exchange-correlation functional [482] at zero temperature
and pressure to compute the elastic tensor components from a linear fit of a generated set of distorted
structures. As the bulk 𝐾 and the shear𝐺 modulus are directional quantities, they determined the bulk
and shearmodulus with upper (𝐾 ≤ 𝐾𝑉 , 𝐺 ≤ 𝐺𝑉) and lower bounds (𝐾𝑅 ≤ 𝐾, 𝐺𝑅 ≤ 𝐺) in the isotropic
approximation assuming uniform strain (Voigt notation [483]) and stress (Reuss [484]) respectively21.
They also calculated the arithmetic mean of the two quantities (the so-called Voigt-Reuss-Hill (VRH)
notation [485]),

𝐾VRH =
1
2 (𝐾𝑉 + 𝐾𝑅) , 𝐺VRH =

1
2 (𝐺𝑉 + 𝐺𝑅) , (5.4)

to compare and validate them with the experimental data. de Jong, Chen et al. demonstrated that
the VRH estimates of the bulk and shear modulus were strongly linear related to the experimental

21In a single crystal, the Voigt notation [483] corresponds to the arithmetic mean of the stresses with respect to the given
strain, while the Reuss notation [484] corresponds to the arithmetic mean of the strains with respect to the given stress.
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Fig. 5.18. Crystal structures and used constituent elements of the 1,181 inorganic crystalline compounds in
the data set [412].

values with an error of less than 15% [412]. Subsequent studies [165, 166, 473] reported similar
agreements with the experimental values and demonstrated the applicability of machine learning to
estimate the bulk and shear modulus based on the elemental properties of the inorganic crystalline
compounds. The inorganic crystalline compounds data set is therefore ideally suited to investigate
different feature-identification methods and to relate the statistical relationships in the data to the
underlying elastic materials behavior through machine learning.
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Although it is known that many elemental properties such as the thermal conductivity [165, 462,
463], chemical hardness [434, 486, 487], the atomic weight [488], and volume [165, 487, 489, 490]
correlate well with the bulk and shearmodulus, it is typically unclearwhich features sufficiently explain
the diversity of the materials for a given data set. In general, promising features of the data set must
be capable of both uniquely characterizing the diversity of compounds and relating the essential
physics and chemistry to the properties of interest (cf., Section 2.4). For instance, de Jong, Chen et al.
used 18 features of compositional (group number, row number, atomic mass, . . . ), structural (density,
. . . ), and calculated properties from DFT calculations such as the cohesive and formation energy
[165]. Furmanchuk, Agrawal et al. considered fundamental and experimentally measured properties
of pure elements in their crystalline states [148, 149] and gradually extracted 50 out of 384 features
[473]. Finally, Isayev, Oses et al. incorporated structural properties of the compound and utilized 21
elemental, measured, and derived elemental properties [479] to construct pairwise combinations of
features and to compute a series of statistical attributes based on elemental properties (such as the
mean absolute deviation, minimum, maximum, sum, and mean of the constituent elements [56, 188])
leading to a total of 2,494 features [166].

Analogous to Refs. [166, 473], the features of the investigated data set are based on well-tabulated
fundamental, compositional, and structural properties for both uniquely characterizing the diverse
range of compounds and estimating the bulk and shearmodulus in the VRH notation [485] (Tab. 5.14).
However, in contrast to Refs. [166, 473], the present analysis neither requires 𝑛-wise combinations of
features nor features from experimentally demanding and computationally intensive first-principles
calculations. In total, features of fundamental properties include the location of the element in the
periodic table [188, 478, 479], the Mendeleev [491] (MN), group (𝑔P), and period numbers (𝑝P), the
total number of valence electrons (𝑛) and unfilled valence orbitals (𝑛̄) as well as those specified by their
s-, p-, and d-character. The features of the compositional properties include calculated, measured,
and derived properties of the compound such as the highest-occupied or lowest-unoccupied molecular
orbitals (𝐻, 𝐿) obtained from the non-spin polarized density-functional theory with the PBE exchange-
correlation functional [482] (cf., Section 2.2).Measured properties include the atomic weight (𝑚atom)
[477, 492, 493], electron affinity (EA) [477, 479, 494–497], absolute electronegativity (EN) [498],
thermal conductivity (𝜆) [478, 479], heat capacity (𝐶) [478, 479], heat of formation (𝐻form) [479],
enthalpies of atomization (Δ𝐻at), fusion (Δ𝐻fusion) and vaporization (Δ𝐻vapor) [478], the first three
ionization potentials (𝐼𝑃1,2,3) [499], bulk (𝐵) [151, 478, 489] and Young’s modulus𝑌 [151, 478]. And
derived properties include the effective nuclear charge (𝑍eff) [477, 500], molar volume (𝑉mol) [477],
chemical hardness (𝜂) [498, 501], covalent (𝑟cov) [502], absolute (𝑟abs) [503, 504], and van-der-Waals
radii (𝑟vdw) [479], dipole polarizability (𝜒) [505]. In addition, features of structural properties were
obtained from the crystal-structure of the inorganic compounds [412] such as the lattice parameters
(𝑎, 𝑏, 𝑐), ratios (𝑎/𝑏, 𝑏/𝑐, 𝑎/𝑐) and angles (𝛼, 𝛽, 𝛾), density (𝜌), weight (𝑚), volume (𝑉), volume
per atom (𝑉atom), number of atoms (𝑁), number of species (𝑋), total number of electrons (𝑒), and
number of electrons per atom (𝑒atom).

The features of the data set were constructed from the variable number of constituent elements of
the compounds. As such, there were many different contraction and weighting schemes to map the
elemental properties of the constituent elements to the one-dimensional features of the compounds
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Property name Symbol Unit Reference

Fundamental properties
Mendeleev number MN [491]
Group and perdiod numbers 𝑔P, 𝑝P [188, 478, 479]
Total number of valence electrons 𝑛 [188, 478, 479]
Total number of unfilled valence
orbitals

𝑛̄ [188, 478, 479]

Number of valence electrons of the
𝑠-, 𝑝-, and 𝑑-orbitals

𝑛𝑠, 𝑛𝑝, 𝑛𝑑 [188, 478, 479]

Number of unfilled valence 𝑠-, 𝑝-,
and 𝑑-orbitals

𝑛̄𝑠, 𝑛̄𝑝, 𝑛̄𝑑 [188, 478, 479]

Compositional properties (weighted arithmetic mean of constituent elements)
Highest-occupied molecular orbital H eV DFT+PBE
Lowest-unoccupied molecular
orbital

L eV DFT+PBE

Radius of the maximum electronic
density for the valence 𝑠-, 𝑝-, and
𝑑-orbitals

r𝑠, r𝑝, r𝑑 Å DFT+PBE

Atomic weight 𝑚atom u [477, 492, 493]
Atomic volume 𝑉atom Å3 [477]
Atomic bulk modulus 𝐵 GPa [151, 478, 489]
Atomic Young’s modulus 𝑌 GPa [151, 478]

Electron affinity EA eV [477, 479, 494–
497]

Absolute electronegativity EN eV [498]
Ionization potential IP1, IP2, IP3 eV [499]

Heat of formation 𝐻form kJmol−1 [478, 479]
Atomization enthalpy Δ𝐻at kJmol−1 [478, 479]
Evaporation enthalpy Δ𝐻vapor kJmol−1 [478, 479]
Fusion enthalpy Δ𝐻fusion kJmol−1 [478, 479]

Property name Symbol Unit Reference

Compositional properties (continued...)
Thermal conductivity 𝜆 Wm−1 K−1 [478, 479]
Heat capacity 𝐶 J kg−1 K−1 [478, 479]

Effective nuclear charge 𝑍eff eV [477, 500]
Chemical hardness 𝜂 eV [498, 501]
Dipole polarizability 𝜒 a.u. [505]
Absolute radius 𝑟abs Å [503, 504]
Covalent radius 𝑟cov Å [502]
van-der-Waals radius 𝑟vdw Å [479]

Structural properties (extracted from the POSCAR files of [412])
Lattice angles 𝛼, 𝛽, 𝛾 ° [412]
Lattice constants 𝑎, 𝑏, 𝑐 Å [412]
Lattice ratios 𝑎/𝑏, 𝑏/𝑐, 𝑎/𝑐 [412]

Density 𝜌 u/Å3 [412]
Weight 𝑚 u [412]
Volume 𝑉 Å3 [412]
Molar volume 𝑉mol Å3/mol [412]

Number of atoms 𝑁 [412]
Number of atomic species 𝑋 [412]
Total number of electrons 𝑒 [412]
Number of electrons per atom 𝑒atom [412]

Target properties
Bulk modulus (VRH [485]) 𝐾VRH GPa [412]
Shear modulus (VRH [485]) 𝐺VRH GPa [412]

Tab. 5.14. List of all 54 features for the prediction of the bulk (𝐾VRH) and shear modulus (𝑉VRH) in the VRH
notation. Fundamental and compositional features were taken from the Python package mendeleev [477],
the weighted arithmetic mean were computed with the matminer package [189], and structural features were
obtained from the pymatgen package [151]. Compositional features calculated from elemental properties were
computed with the non-spin polarized density-functional theory and the PBE exchange-correlation functional
(DFT+PBE) [482].

for each property. In this thesis, compositional properties were averaged and weighted22 by the sto-
ichiometry of the constituent elements [56, 166, 188]23. Other contraction and weighting schemes
were tested and added as features to the data set, i.e., harmonic, geometric, or quadratic means [506]
and statistical properties such as the minimum or maximum value of the elemental property [56, 188]
– the additional features resulted in an approximately quadratic increase in the computational require-
ments. It further led to larger feature-subset cardinalities of the identified feature subsets. However,
the additional features did not substantially improve the prediction performance of the constructed
statistical models, as many of the contraction and weighing schemes can be interrelated (e.g., the
standard deviation with the mean of the atomic properties and the arithmetic mean together with

22Weighted arithmetic mean: avg(®𝑥) = ∑
𝑖 𝑥𝑖𝑤𝑖/| ®𝑤|, where ®𝑥 is a feature and ®𝑤 are the weights.

23The use of a contraction or weighting scheme destroys any relationship between the properties of interest and the atomic
properties of the compound. Compositional properties, therefore, cannot be related to the atomic properties of the
constituent elements and have no explicit dependence on the atomic properties.
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harmonic mean to the geometric mean). Therefore, even though these additional features may be of
interest for the statistical modeling of the elastic behavior of the materials, only the weighted arith-
metic mean of the elemental properties is used in the following to focus on the statistical identification
of relevant feature subsets with the framework developed in Chapter 4 and Sec. 5.1.

Although a feature identification with the developed framework is not limited to the 54 features
presented above (Tab. 5.14), the number of features is essentially limited by the comparison to other
feature-identification methods. In particular, the larger number of compounds, materials classes,
and features as compared to the octet-binary compound semiconductors and perovskites data sets
(cf., Sections 5.2.1 and 5.2.2) prevented a feature identification with the FS-SISSO algorithm and the
construction of the symbolic-regression models for the assessment of the final prediction performance.
The main challenge of the data set was therefore to reduce the large number of features (and hence
the model complexity of the generated symbolic-regression models) prior to machine learning with
any of the investigated feature-identification methods from Section 5.1.2.

Because higher computational requirements prevented the generation of symbolic-regression
models from the identified subset of features to estimate the final prediction performance of the
machine-learning models, the final prediction performance of the feature-identification methods were
approximated as follows: Given an identified feature subset X∗ and an empty feature candidate set
Z = ∅, a symbolic-regression (SISSO) model with Z𝑖 = Z∪ {𝑋𝑖} was constructed for each of the
identified features 𝑋𝑖 ∈ X∗. Then, the candidate set was augmented by the feature 𝑋𝑖 (Z = Z𝑖),
whose symbolic-regression model resulted in the lowest root-mean-squared error, and the procedure
was repeated until the prediction error finally ceased to decrease. The approximation can be under-
stood as a greedy algorithm that systematically reduces the prediction error by iteratively selecting
the candidate features from an identified set of relevant features. However, prediction performances
of the generated machine-learning models cannot be directly related to previous studies, as these use
different machine-learning algorithms (piecewise-constant models [166], local-polynomial regres-
sion [165, 412]), different data sets (Materials Project [165, 412], AFLOW [166]), different data for
creation and testing, and features of the data set2⁴. As such, reported prediction performances are
limited to the comparison of the investigated feature-identification methods.

Feature identification

To identify the relevant features for the bulk and shear modulus in the VRH notation, tests were
performed on three randomly chosen subsets of 295, 590, and 1, 181 inorganic crystalline compounds,
different feature-identification methods taken from Chapter 3 (TCMI, RFECV, FS-GBDT, and FS-
SISSO), and the developed feature-identification framework from Sec. 5.1 (TB3-GBDT and TB3-
SISSO). Machine-learning models were finally built with the SISSO algorithm using fixed hyper-

2⁴Using a local-polynomial regression algorithm [475], de Jong, Chen et al. [165] achieve a prediction error of about
𝐾VRH = 18.3GPa for the bulk modulus and 𝐺VRH = 79.7GPa for the shear modulus with a model based on 40 features
of which some were derived from density-functional theory. Using a piecewise-constant machine-learning algorithm,
de Jong, Chen et al. [166] generated a set of 2,494 (fundamental, structural, and compositional) features and a model
with a prediction error of 𝐾VRH = 14.3GPa and 𝐺VRH = 18.4GPa, respectively. In comparison, the lowest prediction
errors of the generated machine-learning models with the TB3-algorithm are 𝐾VRH16.9GPa for the bulk modulus and
𝐺VRH = 18.8GPa) for the shear modulus using at most 50 features (cf., Tabs. 5.15 and 5.16).
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# Dependence
measure

Features Performance
# Relevant features 𝑅2 RMSE [GPa]

29
5
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TCMI 9 𝑛𝑠, 𝑛𝑝, 𝑌 , IP1, 𝐻form, 𝛼, 𝛽, 𝛾, 𝑋 0.80±0.06 34.2±5.9
RFECV 11 𝑛̄, L, 𝑉atom, 𝐵, 𝑌 , 𝐻form, Δ𝐻at, Δ𝐻vapor,

Δ𝐻fusion, 𝜌, 𝑉mol
0.95±0.03 17.4±4.9

FS-GBDT 12 𝑛̄, L, 𝑉atom, 𝐵, 𝑌 , 𝐻form, Δ𝐻at, Δ𝐻vapor,
Δ𝐻fusion, 𝑎, 𝜌, 𝑉mol

0.94±0.03 17.3±4.9

TB3-GBDT 14 𝑔P, 𝑝P, 𝒏, 𝑛𝑑 , 𝑛̄, 𝒎atom, 𝐻form, 𝚫𝑯at,
Δ𝐻vapor, Δ𝐻fusion, 𝐶, 𝑍eff, 𝜌, 𝑽mol

0.96±0.02/
0.94±0.03

14.1±2.7/
17.3±2.1

TB3-SISSO 15 𝒑P, 𝑛, 𝑛𝑑 , 𝑛̄, 𝒎atom, 𝑉atom, 𝐵, 𝑌 , 𝐻form,
𝚫𝑯at, Δ𝐻vapor, 𝐶, 𝑟cov, 𝝆, 𝑉mol

0.96±0.01/
0.95±0.01

14.3±1.6/
16.2±1.1
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TCMI 5 𝑛𝑝, 𝑛̄, 𝑛̄𝑝, 𝐵, 𝑋 0.73±0.05 38.7±4.3
RFECV 12 𝑉atom, 𝐵, 𝑌 , EN, 𝐻form, Δ𝐻at, Δ𝐻vapor,

Δ𝐻fusion, 𝜆, 𝜌, 𝑉, 𝑉mol
0.93±0.02 20.2±2.9

FS-GBDT 14 𝑛, 𝑛̄𝑑 , 𝑉atom, 𝐵, 𝑌 , 𝐻form, Δ𝐻at, Δ𝐻vapor,
Δ𝐻fusion, 𝜆, 𝑍eff, 𝜒, 𝜌, 𝑉mol

0.93±0.02 19.0±2.7

TB3-GBDT 35 MN, 𝑔P, 𝒑P, 𝒏, 𝑛𝑝, 𝑛𝑑 , 𝑛̄, 𝑛̄𝑠, 𝑛̄𝒑, 𝑛̄𝑑 , H, r𝑠,
r𝑝, r𝑑 , 𝑚atom, 𝑉atom, 𝐵, EA, IP1, IP3, 𝐻form,
Δ𝐻at, Δ𝐻vapor, Δ𝐻fusion, 𝜆, 𝑪, 𝑍eff, 𝑟abs, 𝑟cov,
𝑟vdw, 𝑎, 𝜌, 𝑉, 𝑽mol, 𝑒atom

0.95±0.02/
0.92±0.03

16.0±3.1/
21.0±3.9

TB3-SISSO 17 𝒑P, 𝑛, 𝑛𝑑 , r𝑠, 𝑚atom, 𝑽atom, 𝐵, 𝐻form, Δ𝐻at,
𝚫𝑯vapor, Δ𝐻fusion, 𝐶, 𝜂, 𝑟abs, 𝑟vdw, 𝜌, 𝑽mol

0.95±0.01/
0.93±0.02

16.1±2.4/
20.0±2.4
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TCMI 5 𝑛𝑠, L, IP2, Δ𝐻at, 𝑍eff 0.72±0.06 38.3±4.2
RFECV 11 𝑉atom, 𝐵, 𝑌 , 𝐻form, Δ𝐻at, Δ𝐻vapor, Δ𝐻fusion,

𝜆, 𝐶, 𝜌, 𝑉mol
0.93±0.01 18.7±2.6

FS-GBDT 17 𝑛, H, 𝑉atom, 𝐵, 𝑌 , IP2, IP3, 𝐻form, Δ𝐻at,
Δ𝐻vapor, Δ𝐻fusion, 𝜆, 𝜂, 𝑟abs, 𝑎, 𝜌, 𝑉mol

0.94±0.01 18.3±2.2

TB3-GBDT 38 MN, 𝑔P, 𝑝P, 𝑛, 𝑛𝑠, 𝑛𝑝, 𝒏𝒅 , 𝑛̄, 𝑛̄𝑠, 𝑛̄𝑝, 𝑛̄𝑑 , H, L,
r𝑠, r𝑝, r𝑑 , 𝑚atom, 𝑉atom, 𝐵, 𝑌 , EA, EN, IP1,
IP2, IP3, 𝐻form, 𝚫𝑯at, Δ𝐻vapor, Δ𝐻fusion, 𝜆,
𝐶, 𝒁eff, 𝜂, 𝑟abs, 𝑟cov, 𝑟vdw, 𝝆, 𝑽mol

0.94±0.03/
0.93±0.02

17.2±4.7/
19.5±2.4

TB3-SISSO 20 𝒑P, 𝑛, 𝑛𝑝, 𝑛𝑑 , 𝑛̄𝑝, 𝒎atom, 𝑉atom, 𝐵, EN, IP3,
𝐻form, 𝚫𝑯at, Δ𝐻vapor, Δ𝐻fusion, 𝐶, 𝜂, 𝑟abs,
𝑟vdw, 𝝆, 𝑉mol

0.95±0.01/
0.93±0.02

16.9±1.9/
18.8±2.0

Reference [166] 0.97 14.3

Bulk modulus Stats: 𝐾VRH = [6.5 , 435.7] GPa mean = 136.3GPa std = 72.9GPa

Tab. 5.15. Prediction performance of identified redundant feature subsets and optimal non-redundant fea-
ture subsets (bold) of different feature-identification methods for estimating the bulk modulus 𝐾VRH in the
Voigt-Reuss-Hill notation [485]: total cumulative mutual information (TCMI, Section 3.3.3), recursive feature
elimination [263] using random forest (RFECV) [266], gradient-boosting decision trees using permutation
feature importance (FS-GBDT) [252, 266, 338], and the tolerance-based branch-and-bound algorithm (TB3)
with GBDT as feature-selection criterion (Section 4.1). Prediction performances were estimated with SISSO
by means of 10-fold cross-validation (cf., Section 5.1) using the approximation procedure as described in
Section 5.2.3. Shown are the mean 𝑥 and standard deviation Δ𝑥 as 𝑥 ± Δ𝑥 of the Pearson’s coefficient of
determination 𝑥 = 𝑅2 [101] and the root-mean-squared error (𝑥 = RMSE). The RMSE is in units of gigapascal
(1 GPa = 10 × 109 Nm−2). The reported prediction performance from Ref. [166] is also shown.
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# Dependence
measure

Features Performance
# Relevant features 𝑅2 RMSE [GPa]

29
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TCMI 7 IP2, IP3, 𝐻form, 𝛼, 𝛽, 𝛾, 𝑋 0.60±0.15 29.0±5.1
RFECV 49 MN, 𝑔P, 𝑝P, 𝑛, 𝑛𝑠, 𝑛𝑝, 𝑛𝑑 , 𝑛̄, 𝑛̄𝑠, 𝑛̄𝑝, 𝑛̄𝑑 , H, L, r𝑠, r𝑝,

r𝑑 , 𝑚atom, 𝑉atom, 𝐵, 𝑌 , EA, EN, IP1, IP2, IP3, 𝐻form,
Δ𝐻at, Δ𝐻vapor, Δ𝐻fusion, 𝜆, 𝐶, 𝑍eff, 𝜂, 𝜒, 𝑟abs, 𝑟cov,
𝑟vdw, 𝑎, 𝑏, 𝑐, 𝑎/𝑐, 𝑏/𝑐, 𝜌, 𝑚, 𝑉, 𝑉mol, 𝑁, 𝑒, 𝑒atom

0.80±0.11 19.0±5.0

FS-GBDT 10 𝑛̄𝑑 , 𝑌 , 𝐻form, Δ𝐻at, Δ𝐻fusion, 𝜆, 𝑐, 𝑚, 𝑉, 𝑉mol 0.80±0.10 19.6±4.2
TB3-GBDT 40 MN, 𝑔P, 𝑝P, 𝑛, 𝑛𝑠, 𝑛𝑝, 𝑛𝑑 , 𝑛̄, 𝒏̄𝒑, 𝒏̄𝒅 , H, L, r𝑠, r𝑝, r𝑑 ,

𝑚atom, 𝑽atom, 𝐵, 𝑌 , EA, EN, IP1, IP2, 𝐻form, Δ𝐻at,
Δ𝐻vapor, Δ𝐻fusion, 𝝀, 𝐶, 𝒁eff, 𝜂, 𝜒, 𝑟abs, 𝑟cov, 𝒓vdw,
𝑎, 𝑏, 𝜌, 𝑉, 𝑽mol

0.81±0.10/
0.71±0.05

18.5±4.0/
28.3±7.9

TB3-SISSO 46 MN, 𝑔P, 𝑝P, 𝑛, 𝑛𝑠, 𝑛𝑝, 𝑛𝑑 , 𝑛̄, 𝑛̄𝑠, 𝒏̄𝒑, 𝑛̄𝑑 , H, L, r𝑠, r𝑑 ,
𝑉atom, 𝐵, 𝑌 , EA, EN, IP1, IP2, IP3, 𝑯form, Δ𝐻at,
Δ𝐻vapor, 𝚫𝑯fusion, 𝐶, 𝑍eff, 𝜂, 𝑟abs, 𝑟cov, 𝑟vdw, 𝑎, 𝑏, 𝑐,
𝑎/𝑏, 𝑎/𝑐, 𝑏/𝑐, 𝜌, 𝑚, 𝑉, 𝑽mol, 𝑁, 𝑒, 𝑒atom

0.77±0.14/
0.81±0.09

20.7±5.3/
19.3±3.6

59
0
sa
m
pl
es

TCMI 4 𝐻form, 𝐶, 𝛼, 𝑒atom 0.58±0.11 28.5±5.0
RFECV 19 MN, 𝑛, 𝑛𝑑 , 𝑛̄, 𝑛̄𝑑 , r𝑝, 𝑉atom, 𝑌 , EN, IP2, 𝐻form, Δ𝐻at,

Δ𝐻vapor, Δ𝐻fusion, 𝜆, 𝑐, 𝜌, 𝑉, 𝑉mol
0.80±0.08 19.4±3.6

FS-GBDT 20 MN, 𝑛𝑠, 𝑛𝑑 , 𝑛̄, 𝑛̄𝑑 , r𝑝, 𝑚atom, 𝑉atom, 𝑌 , EN, IP2,
𝐻form, Δ𝐻at, Δ𝐻vapor, Δ𝐻fusion, 𝜆, 𝑐, 𝑚, 𝑉, 𝑉mol

0.80±0.08 19.6±3.5

TB3-GBDT 42 MN, 𝑔P, 𝒑P, 𝑛, 𝑛𝑠, 𝒏𝒑, 𝑛𝑑 , 𝒏̄, 𝒏̄𝒔, 𝑛̄𝑝, 𝑛̄𝑑 , H, L, r𝑠, r𝑝,
r𝑑 , 𝑚atom, 𝑉atom, 𝐵, 𝒀 , EA, EN, IP1, IP2, IP3, 𝐻form,
Δ𝐻at, Δ𝐻vapor, 𝚫𝑯fusion, 𝜆, 𝐶, 𝜂, 𝑟abs, 𝑟cov, 𝑟vdw, 𝒄,
𝑎/𝑏, 𝑎/𝑐, 𝑏/𝑐, 𝜌, 𝑉, 𝑽mol

0.83±0.05/
0.76±0.07

18.4±2.5/
21.5±2.5

TB3-SISSO 51 MN, 𝑔P, 𝒑P, 𝑛, 𝑛𝑠, 𝑛𝑝, 𝒏𝒅 , 𝑛̄, 𝑛̄𝑠, 𝑛̄𝑝, 𝒏̄𝒅 , H, L, r𝑠, r𝑝,
r𝑑 , 𝑚atom, 𝑉atom, 𝐵, 𝑌 , EA, EN, IP1, IP2, IP3, 𝐻form,
Δ𝐻at, Δ𝐻vapor, Δ𝐻fusion, 𝜆, 𝐶, 𝑍eff, 𝜂, 𝜒, 𝑟abs, 𝑟cov,
𝛼, 𝛽, 𝛾, 𝑎, 𝑎/𝑏, 𝑎/𝑐, 𝑏/𝑐, 𝜌, 𝑚, 𝑉, 𝑽mol, 𝑁, 𝑋 , 𝑒,
𝑒atom

0.78±0.09/
0.79±0.05

21.3±6.3/
20.0±3.1
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TCMI 6 L, IP2, Δ𝐻at, 𝛼, 𝛽, 𝛾 0.49±0.06 31.7±3.9
RFECV 20 MN, 𝑛𝑑 , 𝑛̄, 𝑛̄𝑑 , L, r𝑝, 𝑉atom, 𝐵, 𝑌 , EN, IP2, 𝐻form,

Δ𝐻at, Δ𝐻fusion, 𝜆, 𝑟abs, 𝑎, 𝑐, 𝜌, 𝑉mol
0.82±0.04 19.0±2.8

FS-GBDT 6 𝑛̄𝑑 , 𝑉atom, 𝑌 , Δ𝐻at, Δ𝐻fusion, 𝑉mol 0.77±0.05 20.8±2.0
TB3-GBDT 50 MN, 𝑔P, 𝑝P, 𝑛, 𝑛𝑠, 𝑛𝑝, 𝒏𝒅 , 𝑛̄, 𝑛̄𝑠, 𝑛̄𝑝, 𝑛̄𝑑 , H, L, r𝑠, r𝑝,

r𝑑 , 𝑚atom, 𝑉atom, 𝐵, 𝒀 , EA, EN, IP1, IP2, IP3, 𝐻form,
𝚫𝑯at, Δ𝐻vapor, Δ𝐻fusion, 𝜆, 𝐶, 𝑍eff, 𝜼, 𝜒, 𝑟cov, 𝑟vdw,
𝑎, 𝑏, 𝒄, 𝑎/𝑏, 𝑎/𝑐, 𝑏/𝑐, 𝝆, 𝑚, 𝑉, 𝑽mol, 𝑵, 𝑋 , 𝑒, 𝑒atom

0.82±0.03/
0.77±0.04

18.8±2.2/
21.0±3.1

TB3-SISSO 50 MN, 𝑔P, 𝑝P, 𝑛, 𝑛𝑠, 𝑛𝑝, 𝑛𝑑 , 𝑛̄, 𝑛̄𝑠, 𝑛̄𝑝, 𝑛̄𝑑 , H, L, r𝑠, r𝑝,
r𝑑 , 𝑚atom, 𝑽atom, 𝐵, 𝑌 , EA, EN, IP1, IP2, IP3, 𝑯form,
Δ𝐻at, Δ𝐻vapor, Δ𝐻fusion, 𝜆, 𝑪, 𝑍eff, 𝜂, 𝜒, 𝑟abs, 𝑟cov,
𝑟vdw, 𝛼, 𝛽, 𝛾, 𝑏, 𝑐, 𝑎/𝑏, 𝑎/𝑐, 𝜌, 𝑚, 𝑉, 𝑽mol, 𝑋 , 𝑒

0.82±0.03/
0.77±0.05

18.8±2.2/
20.9±1.8

Reference [166] 0.88 18.4

Shear modulus Stats: 𝐺VRH = [2.7 , 523] GPa mean = 67.6GPa std = 44.6GPa

Tab. 5.16. Prediction performance of identified redundant feature subsets and optimal non-redundant fea-
ture subsets (bold) of different feature-identification methods for estimating the shear modulus 𝐺VRH in the
Voigt-Reuss-Hill notation [485]: total cumulative mutual information (TCMI, Section 3.3.3), recursive feature
elimination [263] using random forest (RFECV) [266], gradient-boosting decision trees using permutation
feature importance (FS-GBDT) [252, 266, 338], and the tolerance-based branch-and-bound algorithm (TB3)
with GBDT as feature-selection criterion (Section 4.1). Prediction performances were estimated with SISSO
by means of 10-fold cross-validation (cf., Section 5.1) using the approximation procedure as described in
Section 5.2.3. Shown are the mean 𝑥 and standard deviation Δ𝑥 as 𝑥 ± Δ𝑥 of the Pearson’s coefficient of
determination 𝑥 = 𝑅2 [101] and the root-mean-squared error (𝑥 = RMSE). The RMSE is in units of gigapascal
(1 GPa = 10 × 109 Nm−2). The reported prediction performance from Ref. [166] is also shown.
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parameter settings [197] (cf., Sec. 5.1.2 and Appendix A.1). Results are reported in Tables 5.15
and 5.16.

Of all the feature-identification methods, TCMI, FS-SISSO, and TB3-SISSO were particularly com-
puter intensive. Whereas TB3-SISSO completed within one week using 32 nodes2⁵ (cf., Sections 5.2.1
and 5.2.2), but required a limitation of the maximum cardinality of the feature subsets (number of
features ≤ 4, cf., Section 3.4) as like TCMI, FS-SISSO failed to complete due to high computer and
memory requirements. Technically, the limitation of the search depth may be a viable tool to adjust the
computational requirements of the developed feature-identification framework and the underlying
branch-and-bound algorithm – especially when other feature-identification methods are no longer
applicable as in the case of TB3-SISSO. However, as can be seen from the example of TCMI, limiting
the search depth can also lead to much larger prediction errors and a potential incorrect identification
of relevant features.

It is to be noted that the transferability of identified (sub-optimal) feature subsets is limited when
different machine-learning algorithms are applied for the search and model construction. For example,
a comparison shows that in all 292 non-redundant feature subsets identified by TB3-GBDT and 53
non-redundant feature subsets identified by TB3-SISSO, only 12 of the identified feature subsets are
found by both methods (Figs. 5.19 and 5.20). Due to different cardinalities of the feature subsets, this
corresponds to a Jaccard similarity coefficient of 0.04. Again, the low Jaccard similarity coefficient is
indicative of strong multivariate dependencies in the data set and a model-dependent identification
of feature subsets (cf., Sections 5.2.1 and 5.2.2).

Results further show that all feature-identification methods are characterized by a high variability
in the identification of relevant features. For example, TCMI identified about 5–9 features, RFECV 11–
49 features, and FS-GBDT 6–20 features, i.e., they identified a few to almost all features as relevant for
𝐾VRH or 𝐺VRH. While redundant feature subsets of TB3-GBDT and TB3-SISSO also varied significantly
(TB3-GBDT: 14–50 features, TB3-SISSO: 15–51), the optimal non-redundant minimally feature
subsets were more robust to the varying number of data samples (4–8 features).

A frequency analysis (Fig. 5.21) shows that the atomization enthalpy (Δ𝐻at), the density (𝜌),
and the molar volume (𝑉mol) are the most frequently identified features for the bulk modulus 𝐾VRH.
Likewise, the most frequently identified features for the shear modulus 𝐺VRH are the atomization en-
thalpy (Δ𝐻at), the atomic volume (𝑉atom), Young’s modulus (𝑌), and 𝑉mol. That is, taken together, the
frequency analyses are in agreement with most of the trends reported in prior works on investigating
the bulk and shear modulus of specific families of materials (cf., [165, 166, 473]). For example, the
averaged Bulk (𝐾) and Young’s modulus (𝑌) of the constituent elements are known to be physical
related to 𝐾VRH and 𝐺VRH. It is also known that the bulk and shear modulus are strongly statistical
related to the atomic volume [507], the bond length [434, 508, 509], and to the lattice constants
[510]. And it is known that the atomic properties, that are logically linked to the chemical bonding of
the materials (molar volume [166, 473] and heat of a material), are relevant and strongly correlated
to the bulk and shear modulus [166].

2⁵Feature identification was performed on 8 nodes, each with two Intel Xeon E5-2698 v3 processors (= 32 cores/node)
without hyper-threading.

https://ark.intel.com/content/www/us/en/ark/products/81060/intel-xeon-processor-e5-2698-v3-40m-cache-2-30-ghz.html
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1 {nd , Zeff, Vmol, ρ, ∆Hat}
2 {nd , Zeff, Vmol, Hform, ρ}
3 {n̄, Vmol, gP, ρ, ∆Hat}
4 {nd , Vmol, Hform, ρ, EA}
5 {ns , Zeff, Vmol, ρ, ∆Hat}
6 {n̄, Vmol, Hform, gP, ρ}
7 {n̄s , Zeff, Vmol, Hform, ρ}
8 {ns , Zeff, Vmol, Hform, ρ}
9 {nd , Vmol, ρ, ∆Hat, EA}
10 {n̄, nd , Vmol, ρ, ∆Hat}
11 {n̄s , Vmol, gP, ρ, ∆Hat}
12 {n, Vmol, C , ρ, ∆Hfusion}
13 {n̄, Vmol, ρ, ∆Hat, EA}
14 {n̄s , Zeff, Vmol, ρ, ∆Hat}
15 {n̄, nd , Vmol, Hform, ρ}
16 {n̄s , Vmol, Hform, gP, ρ}
17 {ns , Vmol, Hform, gP, ρ}

18 {Vmol, gP, ρ, ∆Hat, EA}
19 {n̄p , Vmol, rabs, ρ, ∆Hfusion}
20 {nd , Vmol, gP, ρ, ∆Hat}
21 {nd , Vmol, Hform, gP, ρ}
22 {ns , Vmol, gP, ρ, ∆Hat}
23 {Vmol, gP, ρ, ∆Hat, ∆Hfusion}
24 {n̄, pP, Vmol, MN, ∆Hat}
25 {n̄, Vmol, MN, ρ, ∆Hat}
26 {Vmol, Hform, gP, ρ, EA}
27 {n̄, pP, Vmol, Hform, MN}
28 {n̄, np , Vmol, ρ, ∆Hat}
29 {n̄, Vmol, η, ρ, ∆Hat}
30 {nd , Vmol, C , ρ, ∆Hfusion}
31 {n̄, Vmol, rabs, ρ, ∆Hfusion}
32 {ns , Vmol, ρ, ∆Hat, EA}
33 {IP1, Vmol, ρ, ∆Hat, EA}
34 {n̄, Vmol, Hform, η, ρ}

35 {n̄, n̄s , Vmol, ρ, ∆Hat}
36 {IP1, n̄, Vmol, ρ, ∆Hat}
37 {pP, Vmol, Hform, gP, Y }
38 {n̄, ns , Vmol, ρ, ∆Hat}
39 {n̄, Vmol, rabs, ρ, ∆Hat}
40 {n̄s , Vmol, ρ, ∆Hat, EA}
41 {Vmol, η, ρ, ∆Hat, EA}
42 {Vmol, Hform, B, rvdw, ρ}
43 {Vmol, Hform, B, ρ, EA}
44 {IP1, n̄, Vmol, Hform, ρ}
45 {Vmol, B, ρ, ∆Hat, EA}
46 {np , Vmol, Hform, rabs, ρ}
47 {n̄, nd , Vmol, ρ, ∆Hvapor}
48 {n̄, Vmol, B, ρ, ∆Hfusion}

...

281 {pP, Vmol, Hform}
282 {nd , Vmol, Hform, matom}
283 {pP, Vmol, ∆Hat}
284 {Vmol, Hform, B, ρ}

285 {n, Vmol, Hform, ρ}
286 {Vmol, C , ∆Hat}
287 {Vmol, Hform, C , ∆Hfusion}
288 {n, Vmol, ρ, ∆Hat}

289 {n, Vmol, Hform, matom}
290 {nd , Vmol, matom, ∆Hat}
291 {Vmol, Hform, η, ρ}
292 {Vmol, Hform, C}

293 {pP, matom, ρ, ∆Hat}
294 {pP, Hform, matom, ρ}
295 {pP, np , Vmol, ∆Hvapor}
296 {Vmol, Hform, η, matom}
297 {Vmol, η, ρ, ∆Hat}
298 {n, Hform, matom, ρ}
299 {Vmol, η, matom, ∆Hat}
300 {Vmol, matom, C , ∆Hat}
301 {IP3, Hform, matom, ρ}
302 {Vmol, Hform, matom, C}
303 {n, matom, ρ, ∆Hat}
304 {matom, C , ρ, ∆Hat}
305 {Vmol, Hform, C , ρ}
306 {n̄p , pP, Vmol, ∆Hfusion}

307 {pP, Vmol, EN, ∆Hfusion}
308 {IP3, matom, ρ, ∆Hat}
309 {Vmol, C , ρ, ∆Hat}
310 {Hform, matom, C , ρ}
311 {Hform, rvdw, matom, ρ}
312 {rvdw, matom, ρ, ∆Hat}
313 {IP3, Vmol, ρ, ∆Hat}
314 {Vmol, B, ρ, ∆Hat}
315 {pP, Vatom, Vmol, ∆Hvapor}
316 {IP3, Vmol, Hform, ρ}
317 {Vmol, Hform, rvdw, ρ}
318 {Hform, rabs, matom, ρ}
319 {Vmol, matom, ∆Hat, ∆Hfusion}
320 {IP3, Vmol, Hform, matom}

321 {Vmol, Hform, rabs, matom}
322 {matom, ρ, ∆Hat}
323 {Vmol, matom, ∆Hat}
324 {Vmol, Hform, matom}
325 {Hform, matom, ρ}
326 {Vmol, ρ, ∆Hat}
327 {Vmol, Hform, ρ}
328 {nd , Vmol, Hform}
329 {pP, nd , Vmol}
330 {Vmol, B, ∆Hat}
331 {Vmol, Hform, B}
332 {n, Vmol, Hform}
333 {n, Vmol, ∆Hat}

TB
3-
GB

D
T

TB
3-
SI
SS

O

TB3-GBDT (1–280) TB3-GBDT ∩ TB3-SISSO (281–292) TB3-SISSO (293–333)

Fig. 5.19. Identified minimally non-redundant (sub-optimal) feature subsets for the prediction of the bulk
modulus 𝐾VRH in the Voigt-Reuss-Hill notation [485] using the tolerance-based branch-and-bound algorithm
(TB3) and GBDT or SISSO as the feature-selection criterion (Section 4.1). Shown is the intersection and the
union of the two feature-identification methods corresponding to a Jaccard similarity coefficient (Eq. 5.1) of
0.04. It should be noted that due to the different machine-learning algorithms, a direct comparison between
TB3-GBDT and TB3-SISSO may not be appropriate. The numbering is used for referencing purposes.
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1 {c, nd , Vmol, η, Y , N, MN, ρ,
∆Hat}

2 {c, n̄p , ns , eatom, Vmol, Y ,
MN, ρ, ∆Hat}

3 {c, n̄, nd , ns , Vmol, rcov, MN,
∆Hat}

4 {c, n̄d , n, Vmol, Y , ρ, ∆Hat,
∆Hfusion}

5 {c, n̄d , n, nd , Vmol, Y , ρ,
∆Hat}

6 {c, nd , Vmol, gP, rcov, Y , MN,
∆Hat}

7 {c, n̄, pP, n, np , Vmol, Y ,
∆Hat}

8 {IP2, c, n, np , Vmol, Y , ρ,
∆Hat}

9 {c, n̄, n, Vmol, Hform, rp , MN,
∆Hfusion}

10 {c, n̄, n, np , Vmol, Y , ρ,
∆Hvapor}

11 {c, n̄, n, nd , Vmol, Y , ρ,
∆Hvapor}

12 {c, n̄, n, Vmol, Y , matom, C ,
∆Hat}

13 {c, n, nd , Vmol, Hform, gP,
∆Hfusion, λ}

14 {c, n̄, n, ns , Vmol, Hform, rcov,
MN}

15 {c, n̄, n̄s , n, Vmol, Hform, rcov,
MN}

16 {c, n̄d , n, Vmol, Y , MN, ρ,
∆Hvapor}

17 {c, n̄, n, np , Vmol, Y , matom,
∆Hat}

18 {n̄, n̄p , nd , Vmol, η, N, ∆Hat,
∆Hfusion}

19 {c, n̄, n̄p , Vmol, rvdw, MN,
∆Hat, ∆Hfusion}

20 {c, nd , np , Vmol, rcov, Y , MN,
∆Hat}

21 {c, rd , n, nd , Vmol, rvdw,
∆Hat, ∆Hfusion}

22 {n̄, nd , Vmol, Y , N, m, ρ, λ}

23 {b, n̄, Vmol, gP, Y , N, C , ρ}

24 {b, n̄, n̄s , pP, nd , Vmol, rp ,
MN}

25 {c, n̄, n̄p , Vmol, gP, ∆Hat, χ,
∆Hfusion}

26 {n̄, nd , eatom, Vmol, Y , N, ρ,
λ}

27 {c, n̄, n̄d , nd , Vmol, a/b, ρ,
∆Hfusion}

28 {c, n̄, ns , Vmol, Hform, rs , ρ,
λ}

...

n/a

487 {Vatom, Vmol, Hform, C}
488 {Vatom, Vmol, C , ∆Hat}
489 {rd , Vmol, matom, ∆Hat}
490 {rd , Vmol, Hform, matom}
491 {n̄p , Vmol, matom, ∆Hat}
492 {IP1, Vmol, ρ, ∆Hfusion}
493 {Vatom, Vmol, C , ∆Hvapor}
494 {pP, nd , Vmol, ∆Hvapor}
495 {n̄d , Vmol, ∆Hat, ∆Hfusion}
496 {n̄p , Vatom, Vmol, ∆Hat}
497 {pP, nd , Vmol, L}
498 {n̄p , Vatom, Vmol, Hform}
499 {n̄d , n̄p , Vmol, ∆Hat}
500 {pP, nd , Vmol, ∆Hfusion}
501 {n̄p , Vatom, Vmol, ∆Hvapor}
502 {IP3, Vatom, Vmol, ∆Hat}
503 {Vmol, C , m, ∆Hat}
504 {n̄p , pP, n, Vmol}

505 {Vatom, Vmol, B, ∆Hvapor}
506 {Vmol, Hform, C , m}
507 {n̄, Vmol, ∆Hat, ∆Hvapor}
508 {n̄, Vatom, Vmol, Hform}
509 {IP3, nd , Vmol, Hform}
510 {n̄d , pP, nd , Vmol}
511 {IP3, nd , Vmol, ∆Hat}
512 {n̄, Vatom, Vmol, ∆Hat}
513 {n̄, np , Vmol, ∆Hat}
514 {n̄, np , Vmol, Hform}
515 {n̄d , nd , Vmol, C}
516 {IP3, Vatom, Vmol, Hform}
517 {np , Vmol, MN, ∆Hat}
518 {pP, nd , Vmol, gP}
519 {nd , matom, ρ, ∆Hfusion}
520 {n̄p , Vmol, rs , ∆Hat}
521 {np , Vmol, ∆Hat, EA}
522 {n̄, Vmol, Hform, ∆Hvapor}

523 {Vatom, Vmol, C , ∆Hfusion}
524 {n̄, pP, nd , Vmol}
525 {nd , Vmol, Hform, ∆Hfusion}
526 {n̄s , pP, nd , Vmol}
527 {nd , Vmol, gP, ∆Hat}
528 {rd , Vmol, rp , ∆Hat}
529 {ns , Vmol, ∆Hat, ∆Hvapor}
530 {n̄p , pP, nd , Vmol}
531 {nd , Vmol, Hform, gP}
532 {Vatom, np , Vmol, Hform}
533 {Vmol, MN, ∆Hat, ∆Hvapor}
534 {nd , Vmol, Hform, MN}
535 {Vatom, Vmol, ρ, ∆Hvapor}
536 {pP, nd , Vmol, χ}
537 {rd , Vmol, m, ∆Hat}

...

TB
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T
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3-
SI

SS
O

TB3-GBDT (1–486) TB3-GBDT ∩ TB3-SISSO (∅) TB3-SISSO (487–537)

Fig. 5.20. Identified minimally non-redundant (sub-optimal) feature subsets for the prediction of the shear
modulus 𝐾VRH in the Voigt-Reuss-Hill notation [485] using the tolerance-based branch-and-bound algorithm
(TB3) and GBDT or SISSO as the feature-selection criterion (Section 4.1). Shown is the intersection and the
union of the two feature-identification methods corresponding to a Jaccard similarity coefficient (Eq. 5.1) of
zero. It should be noted that due to the different machine-learning algorithms, a direct comparison between
TB3-GBDT and TB3-SISSO may not be appropriate. The numbering is used for referencing purposes.
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a.) Bulk modulus (𝐾VRH)
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b.) Shear modulus (𝐺VRH)
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Fig. 5.21. Heat-map of most frequent identified (redundant) feature subsets of the elastic data set across
all investigated feature-identification methods (cf., Section 5.1). The size and color reflect the frequency of
the features (= relevance). A frequency analysis of identified minimal non-redundant feature subsets of the
tolerance-based branch-and-bound algorithm (TB3) andGBDT is provided in the last line of each target property.
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Feature identification further hints at the existence of a statistical relationship between the number
of unfilled valence orbitals (𝑛̄) and the bulk and shear moduli. There has been much speculation
about the relevance of unfilled valence orbitals [509, 511]. However, although 𝑛̄ can be considered
statistically as a rough characterization of the bulk and shear modulus, a physical relationship has yet
to be provided.

In contrast to the octet-binary compound semiconductors and perovskites data sets (cf., Sections
5.2.1 and 5.2.2), there is no trend towards lower prediction errors of symbolic-regression models
with increasing numbers of data samples and of identified relevant features. In particular, TB3-GBDT
machine-learning models of the redundant feature subsets have lower prediction errors than models
based on the optimal minimal non-redundant feature subsets. Although the effect is marginal, it is
possible that identified feature-subsets of the TB3-GBDT algorithm either do not identify some of
the relevant features for the estimation of 𝐾VRH or 𝐺VRH or the model construction requires a higher
flexibility in the symbolic-regression models in the assessment of the final prediction performance
(Section 5.2.2).

With respect to the estimation of the bulk and shear modulus, RFECV, FS-GBDT, and TB3 have
similar prediction errors, whereas the prediction errors of TCMI are about 50% to twice as large for the
bulk and shear modulus (Tabs. 5.15 and 5.16). In terms of feature identification, the non-redundant
optimal feature subsets of TB3 result in the highest prediction performance with the least number
of features, closely followed by RFECV and FS-GBDT. As such, the developed feature-identification
framework (cf., Section 3.5) is efficient in identifying the relevant features of the elastic data set
and in creating statistical models without significantly reducing the prediction performance of the
generated machine-learning models.

Feature dependences

A feature-dependence map generated with the TB3-GBDT algorithm2⁶ reveals multiple statistical
relationships between the features and the bulk or shear modulus (Fig. 5.22). In particular, the
feature-dependence map exhibits a block-like structure of feature interactions, of which features of
each type (fundamental, compositional, and structural properties) are more closely related to each
other than to the features of the other types. This leads to a partitioning of the feature-dependence
map into sub-blocks of feature interactions. Though, not all of the features of each sub-block are
found to be dependent in the feature-dependence map due to the high redundancy of the features
(cf., Section 2.4 and Chapter 3), features within these sub-blocks can be used interchangeably without
decreasing the prediction performance of a machine-learning model. As such, machine-learning
models are expected to require at least one feature from each sub-block to estimate the bulk or shear
modulus of the inorganic crystalline compound data set with the same accuracy as compared to a
machine-learning model constructed on the full set of features (cf., Tabs. 5.15 and 5.16).

There are a few features that are either independent or have very few feature interactions, such
as the atomic weight (𝑚atom, 𝑚), molar volume (𝑉mol, 𝑉), density (𝜌), number of electrons (𝑒atom,
𝑒), electron affinity (EA), chemical hardness (𝜂), or the formation (𝐻form) and atomization enthalpy

2⁶A feature-dependence map generated with the TB3-SISSO algorithm was attempted, but failed due to the higher compu-
tational requirements of the underlying SISSO algorithm.
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Fig. 5.22. Feature-dependence map of the crystalline inorganic compounds data set created with the tolerance-
based branch-and-bound algorithm (TB3) and the gradient-boosting decision trees algorithm (GBDT) [249–252,
267, 268]. The feature-dependence map was created with a convergence threshold of 𝜖 = 0.01 (cf., Section 4.2)
at a confidence level of 𝛼 = 0.95. The score (=strength) of the dependence is shown in the first column (Dep.).
The score was determined by the Pearson’s 𝑅 coefficient of determination [101] of a 10-fold cross-validated
machine-learning model using the identified features of the TB3-GBDT algorithm as feature subsets (colored
boxes). The dependences of the bulk (𝐾VRH) and shear modulus (𝐺VRH) in the Voigt-Reuss-Hill notation [485]
are shown in the last two rows.
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Features: 𝑉mol, 𝑝P, 𝑔P, Δ𝐻at, 𝐻form, Δ𝐻fusion, 𝜌, 𝐵, 𝑌 , 𝑛̄, 𝑛

a.) Bulk modulus (𝐾VRH)
Statistics: 𝑅2 = 0.94±0.01 RMSE = (17.0 ± 1.7) GPa
Regression model:

𝐾VRH = 55.9 · 𝑝PΔ𝐻at
𝑉2
mol

log(𝑉mol)
3√𝐻form

− 2.9 ·
(��(𝑌/𝐵) − |𝑝P − 𝑛|�� − (

(𝑝P + 𝑔P) + |𝑝P − 𝑛̄|
) )

− 8.62e+03 · | (𝑛 − 𝑝P) − (𝑛/𝑝P) |
𝑉4
mol/Δ𝐻fusion

− 36.9

b.) Shear modulus (𝐺VRH)
Statistics: 𝑅2 = 0.82±0.05 RMSE = (18.5 ± 2.0) GPa
Regression model:

𝐺VRH = 6.93 · 𝑝PΔ𝐻at
𝑉2
mol

√︂
𝑛

𝑔P
+ 0.00447 · 𝑌3

𝐻form𝑉mol

1
(𝑝P/𝑔P) + (𝑛 − 𝑔P)

− 0.383 · 𝐵𝜌
𝑉2
mol
|𝑛̄ + 𝑛̄ − 𝑔P | + 12.2

Fig. 5.23. Performance statistics and 10-fold cross-validated symbolic-regression models (SISSO [197]) of
1,181 inorganic crystalline compounds based on the eleven most frequently identified features from the non-
redundant sub-optimal feature subsets of TB3-GBDT (cf., Tabs. 5.17 and 5.18). The prediction performance
(cf., Section 5.1) is reported in terms of the mean 𝑥 and standard deviation Δ𝑥 as 𝑥 ± Δ𝑥 of the Pearson’s
coefficient of determination 𝑥 = 𝑅2 [101] and the root-mean-squared error (𝑥 = RMSE). The RMSE is in the
unit of gigapascals (GPa) and was approximated as described in Section 5.2.3.

(Δ𝐻at). Some of these features (namely the mass, molar volume, the formation and the atomization
enthalpy) are strongly statistically related to the bulk and shear modulus and therefore may play an
important role in the construction of a machine-learning model in the prediction of 𝐾VRH and 𝐺VRH.

Statistical models

The prediction performance of statistical equivalent (cf., Section 5.1) non-redundant sub-optimal
feature subsets of TB3-GBDT are summarized in (Tabs. 5.17 and 5.18). In total, 75 out of 292 (𝐾VRH)
and 201 out of 465 feature subsets (𝐺VRH) are found to be statistically equivalent at a confidence level
of 𝛼 = 0.95. Thus, as in the octet-binary compound semiconductors and perovskites data set, there
is an ensemble of competing machine-learning models of different feature subsets but statistically
equivalent prediction performances.

A frequency analysis suggests that both the bulk and shear modulus can be described by the same
set of features as given by the elastic tensor (Fig. 5.21). By far the most frequently identified features
are the molar volume (𝑉mol), the mean group (𝑔P), the mean period (𝑝P), heat of formation (𝐻form),
fusion (Δ𝐻fusion) and atomization enthalpy (Δ𝐻at), followed by the density (𝜌), the total number of
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valence electrons (𝑛), the total number of unfilled valence orbitals (𝑛̄), and the averaged atomic bulk
(𝐵) and Young’s modulus (𝑌).

Logically, a symbolic-regression model based on the eleven features outperforms the investi-
gated feature-identification methods in terms of feature-subset size and prediction performance
(cf., Tabs. 5.15 and 5.16). That is, the tolerance-based branch-and-bound algorithm identifies the
smallest possible materials representation as compared to TCMI, RFECV, and FS-GBDT: namely, 4–5
features for estimating the bulk modulus 𝐾VRH, 6 features for estimating the shear modulus 𝐺VRH, and
a total of 11 features for estimating both properties.

The framework further relates the input features to the prediction performance of the generated
machine-learning models, while providing a means to investigate the statistical relationships using
deterministic, symbolic-regression models (Fig. 5.23). Although such models (and machine-learning
models in general) only capture an overall statistical trend in the data and therefore cannot be regarded
as a physical law2⁷ [55], several interesting relationships can be identified. For instance, bulk and
shear moduli can be considered intrinsically related to the atomic bulk and Young’s modulus. Second,
compounds that require higher energies for breaking the inter-atomic bonds (Δ𝐻at) seem to be more
resistant to external stresses and forces than compounds whose atoms are only weakly bonded. And
third, compounds with a low molar volume (𝑉mol) of the constituent elements show to have a higher
bulk and shear modulus in general.

Quantitatively, both symbolic-regression models (Fig. 5.24) correctly model the trends of the bulk
and shear modulus as a function of the marginal contributions of the mean atomization enthalpy
(Δ𝐻at) and the molar volume (𝑉mol), but fail to model the mean fusion enthalpy (Δ𝐻fusion), heat
of formation (𝐻form), bulk (𝐵) and Young’s (𝑌) modulus. The inaccurate modeling of the relevant
features Δ𝐻fusion, 𝐻form, 𝐵, and 𝑌 severely limits the applicability of the generated symbolic-regression
models. However, both symbolic-regression models have been shown to be capable of estimating the
bulk and shear modulus for a wide range of 𝑘-nary compounds of different chemical compositions
and structures (Fig. 5.23), while expressing the statistical relationships in simple analytical terms.
Therefore, even though the models cannot fully describe the material’s behavior, they may still prove
useful in specific materials-science applications or in the pre-screening over larger databases.

Uncertainty estimation

The inaccurate modeling of some of the statistical trends (Fig. 5.24) prevents a direct application of
the generated symbolic-regression models. Without knowing the error made in the material-property
estimations, the difference between the estimated and the actual value of the target properties can
be quite large. Uncertainty estimates account for the model’s prediction errors and quantify the prob-
ability that the actual target properties will be within the predicted range of the generated symbolic-
regression models. In Section 4.3 two kinds of uncertainty methods were discussed: ensemble [52]
and conformal prediction [60–64]. Both methods are known to be more robust [416] and reliable in
terms of estimating the model’s variance in the material-property predictions [360, 363, 378] and
of providing a more comprehensive understanding of the machine-learning model (cf., [358]). More
specifically, they take advantage of the fact that the prediction mean and uncertainty can be computed
2⁷At the microscopic level, bulk and shear modulus are determined by the inter-atomic potential of crystalline materials.
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# Features GBDT SISSO
+ Model 𝑅2 RMSE [GPa] 𝑅2 RMSE [GPa]

1 {𝒏̄, 𝒏̄𝑠, 𝒑P, 𝑽mol, 𝚫𝑯at} 0.93±0.03 18.2±3.7 0.94±0.01 17.3±1.9
𝐾VRH =55.9 · 𝑝PΔ𝐻at log(𝑉mol)

𝑉2
mol

3√Δ𝐻at
− 0.00145 · Δ𝐻2

at
exp(𝑝P)

��(𝑛̄ − 𝑝P) − 3√𝑝P
��

− 24.1 ·
���� 𝑛̄

log𝑉mol
−

(
𝑛̄𝑠 +

𝑛̄

𝑝P

)���� + 10.7
2 {𝒑P, 𝑽mol, 𝚫𝑯at, 𝚫𝑯fusion} 0.93±0.03 19.2±3.5 0.94±0.01 18.0±1.5

𝐾VRH =27 · 𝑝P
𝑉mol

Δ𝐻at + Δ𝐻fusion
log(𝑉mol) 3√Δ𝐻at

− 0.121 ·
���� Δ𝐻at
log(𝑝P)

−
(
(Δ𝐻at − Δ𝐻fusion) − 𝑝PΔ𝐻fusion

) ����
+ 4.13e+03 · 𝑝PΔ𝐻fusion exp(−Δ𝐻fusion)

(𝑉mol/Δ𝐻fusion)3
− 8.43

3 {𝒑P, 𝑽mol, 𝑯form, 𝚫𝑯fusion} 0.93±0.03 19.1±3.6 0.94±0.01 18.1±1.5
𝐾VRH =27 · (𝑝P/𝑉mol) (𝐻form + Δ𝐻fusion)

log(𝑉mol) 3√𝐻form
− 0.121 ·

���� 𝐻form
log(𝑝P)

−
(
(𝐻form − Δ𝐻fusion) − 𝑝PΔ𝐻fusion

) ����
+ 4.16e+03 · 𝑝PΔ𝐻fusion exp(−Δ𝐻fusion)

(𝑉mol/Δ𝐻fusion)3
− 8.65

4 {𝒑P, 𝑽mol, 𝑯form, 𝒈P, 𝒀} 0.94±0.03 17.9±3.9 0.94±0.01 18.0±2.1

𝐾VRH =40.3 ·
𝑝P𝐻form𝑉2

mol
log(𝐻form) log(𝑉mol)

− 0.0586 ·
(
𝑌 log(𝐻form)

𝑝P
− 𝑌𝑔P

log(𝐻form)

)
+ 554 · exp

(
− 𝑌
𝑔P

)
𝑌2

𝑉3
mol
+ 7.67

5 {𝒏̄, 𝒑P, 𝑽mol, MN, 𝚫𝑯at} 0.94±0.03 17.8±3.9 0.94±0.01 18.2±1.9
𝐾VRH =56 · 𝑝PΔ𝐻at

𝑉2
mol

log(𝑉mol)
3√Δ𝐻at

− 0.00135 · Δ𝐻2
at

exp(𝑝P)
·
��(𝑛̄ − 𝑝P) − 3√𝑝P

��
− 4.02e+03 ·

���� log(MN)
MN · 𝑉mol

− exp(−𝑝P)
𝑝P𝑉mol

���� + 16.1
6 {𝒏̄, 𝒑P, 𝑽mol, 𝑯form, MN} 0.94±0.03 17.9±3.9 0.94±0.01 18.0±1.8

𝐾VRH =9.24 · 𝑝P
√
𝐻form

𝑉mol
3
√︁
𝑉mol/MN

+ 1.79 ·
(
𝑝P𝐻form −

𝐻form
MNexp

(√
𝑉mol

) )
− 0.00112 ·

𝐻2
form

exp(𝑝P)
(
(𝑛̄ − 𝑝P) − 3√𝑝P

)
+ 6.13

(continues on next page)
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7 {𝒑P, 𝒁eff, 𝑽mol, 𝚫𝑯at} 0.93±0.03 18.5±3.6 0.94±0.01 18.3±1.7

𝐾VRH =38.6 · 𝑝PΔ𝐻at log(𝑉mol)
log(Δ𝐻at)𝑉2

mol
− 0.00368 · Δ𝐻

2
at

3√Δ𝐻at
𝑝3P exp(𝑍eff)

+ 80.8 ·
��exp(𝑝P) − exp(𝑍eff)

��√︁
exp(𝑉mol)

+ 13.8

8 {𝒑P, 𝒁eff, 𝑽mol, 𝑯form} 0.93±0.03 18.3±3.6 0.94±0.01 18.2±2.1

𝐾VRH =38.6 · 𝑝P𝐻form log(𝑉mol)
log(𝐻form)𝑉2

mol
− 0.00365 ·

𝐻2
form

3√𝐻form

𝑝3P exp(𝑍eff)
+ 81.4 ·

��exp(𝑝P) − exp(𝑍eff)
��√︁

exp(𝑉mol)
+ 13.5

9 {𝒑P, 𝑽mol, 𝑯form, H} 0.93±0.03 19.4±3.8 0.93±0.03 19.6±3.8
𝐾VRH =1.92 · 𝑝P𝐻form − 𝐻form/𝑝P

exp
(√
𝑉mol

) − 29.7 · 3√
𝐻
√︁
𝐻form

log(𝑝P)
𝑉mol

+ 5.53 ·
𝑝3P

exp(𝑉mol) ·
(
exp(𝐻) − exp(−𝑉mol)

) − 7.59

10 {𝒑P, 𝑽mol, 𝑯form, 𝒀} 0.93±0.03 19.5±3.5 0.94±0.01 18.0±2.1

𝐾VRH = − 182 · 𝐻form − 𝑝P𝐻form
𝑉2
mol

3√𝐻form
+ 918 · exp

(
− 𝑌

𝑉mol

)
𝑌3

exp(𝑉mol)
− 2.15e+04 ·

(𝑝3P)3

exp(𝑉mol)𝑝P𝐻form

+ 10.6

Tab. 5.17. The first 10 best-performing symbolic-regression models for the prediction of the bulk modulus
𝐾VRH in the Voigt-Reuss-Hill notation [485]. Shown is the prediction performance of the statistical equivalent
sub-optimal non-redundant feature subsets of the tolerance-based branch-and-bound algorithm (TB3) using
the gradient-boosting decision trees (GBDT) algorithm [249–252, 267, 268] as the feature-selection criterion
(Sections 3.1.2 and 4.1). Statistical equivalent feature subsets were sorted in increasing order of the SISSO [197]
prediction errors (RMSE - ΔRMSE). Prediction errors of SISSO were approximated as described in Section 5.2.3.
For comparison, 10-fold cross-validated prediction performances of SISSO and of GBDT (cf., Section 5.1) are
reported in terms of the mean 𝑥 and standard deviation Δ𝑥 as 𝑥±Δ𝑥 of the Pearson’s coefficient of determination
𝑥 = 𝑅2 [101] and the root-mean-squared error (𝑥 = RMSE). The RMSE is in the unit of gigapascals (GPa).

# Features GBDT SISSO
+ Model 𝑅2 RMSE [GPa] 𝑅2 RMSE [GPa]

1 {𝒑P, 𝒏, 𝑽mol, 𝒈P, 𝒀 , 𝚫𝑯at} 0.82±0.08 18.7±6.4 0.82±0.04 18.6±1.9
𝐺VRH =2.72 ·

(𝑔P/𝑛 + 3√𝑝P) (𝑝PΔ𝐻at)
𝑉2
mol

+ 0.00201 · 𝑌3

𝑛Δ𝐻at

1
(𝑛 − 𝑔P) + (𝑝P/𝑔P)

− 189 · |𝑛𝑝P − (𝑔P + 𝑝P) |
𝑛2

𝑝P
𝑉mol
+ 20.5

(continues on next page)
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2 {𝒄, 𝒏𝒅, 𝒏𝒑, 𝑽mol, 𝒓cov, 𝒀 , MN,
𝚫𝑯at}

0.83±0.09 18.1±7.1 0.82±0.05 18.4±2.2

𝐺VRH = − 0.0398 · (𝑛𝑑 −MN)𝑟cov · Δ𝐻at 3√Δ𝐻at
𝑉2
mol

− 0.00236 ·
exp

(
3√
𝑌
)

𝑛𝑝𝑟cov − 𝑐/MN + 665 ·
𝑛𝑑 3√𝑛𝑝𝑟2cov
𝑉mol exp(𝑛𝑑)

+ 15.5

3 {𝒏̄, 𝒏𝒑, 𝑽mol, 𝑯form, 𝒀 , 𝒎atom, 𝝀} 0.82±0.09 18.5±6.8 0.82±0.04 19.1±2.7

𝐺VRH =7.79 · 𝐻form log(𝑚atom)
𝑉mol(log(𝑉mol))3

+ 0.0892 ·
(
𝑛𝑝

𝑉mol

)2
𝜆𝑛̄4 + 0.0057 ·

𝑌3 exp
(
−𝑛𝑝 · 𝑚atom

)
𝐻form𝑉mol

+ 12.8

4 {𝒏, 𝑽mol, 𝒈P, 𝒀 , 𝝆, 𝚫𝑯at} 0.82±0.07 18.6±5.7 0.81±0.04 19.0±1.7

𝐺VRH =28.7 ·
Δ𝐻at 3√𝜌
𝑉2
mol
√
𝑛
+ 0.00431 ·

exp
(

3√
𝑌
)

𝑛−1 + (𝑛 − 𝑔P)
+ 43.8 ·

(
𝑛 − 𝑔P
exp(𝜌) +

√
𝑔P

3√𝑛

)
− 47.5

5 {𝒏̄, 𝒏, 𝒏𝒑, 𝑽mol, 𝒀 , 𝒎atom, 𝚫𝑯at} 0.82±0.09 18.6±6.7 0.80±0.04 19.6±2.1
𝐺VRH =5.77 · Δ𝐻at + (Δ𝐻at/𝑛) log(𝑚atom)

𝑉2
mol

+ 918 · log
(
𝑚atom
𝑉mol

)
∗

𝑛̄ · 𝑛𝑝
𝑛 · 𝑚atom

+ 0.032 · 𝑌3

Δ𝐻2
at

1
𝑛−1 − 3√𝑛𝑝

+ 6.87

6 {𝒏̄, 𝒏̄𝒑, 𝒏̄𝒔, 𝒑P, 𝒏𝒅, 𝑽mol, 𝑯form} 0.82±0.08 18.6±6.4 0.82±0.05 18.7±1.8

𝐺VRH =978 ·
(
𝑝P
𝑉mol

)3 √
𝐻form

𝑛𝑑 + 𝑝P
− 6.18 ·

�� (𝑛̄𝑠 + (𝑛̄𝑝 + 𝑛̄𝑠)) − (
(𝑛̄ − 𝑛̄𝑠) − |𝑝P − 𝑛̄|

) ��
− 3.6e+04 · 𝑛̄ · 𝑉mol

exp
(
𝑛̄𝑝

) 3
√︁
𝑛̄𝑝

exp
(
𝑉mol

) + 31.8
7 {𝒏̄, 𝒑P, 𝒏, 𝒏𝒑, 𝑽mol, 𝒀 , 𝚫𝑯at} 0.82±0.09 18.5±6.6 0.81±0.05 19.2±1.4

𝐺VRH = − 18.3 · 𝑝PΔ𝐻at
𝑉2
mol

(𝑛𝑝
𝑛
−
√
𝑛
)
− 0.013 · exp

(
3√
𝑌
) 𝑛̄ − 𝑝P
exp

(
𝑛𝑝

) + 1.45 · (𝑛 + 𝑛̄) + (𝑛̄ · 𝑛𝑝)
exp

(
𝑝P

)
/𝑝3P

− 9.51

8 {𝒏̄𝒑, 𝒏, 𝑽mol, 𝑯form, 𝒀 , 𝝆} 0.81±0.07 18.9±5.8 0.81±0.05 19.3±2.3
𝐺VRH =10.5 ·

(𝑛 + 𝑛̄𝑝)𝐻form log(𝜌)
𝑛𝑉2

mol
− 0.0139 · 𝑌

3

𝑉2
mol

(
𝑛̄𝑝𝐻form −

𝐻form
𝑛

)
+ 32.5 ·

3√𝐻form√
𝑉mol

exp
(
𝑉mol
𝜌

)
− 16.4

(continues on next page)
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9 {𝒏̄, 𝒏𝒅, 𝒏𝒑, 𝑽mol, 𝑯form, 𝝆,
𝚫𝑯fusion}

0.82±0.08 18.4±6.1 0.80±0.04 19.5±1.9

𝐺VRH =6.67 · 𝐻form
𝑉2
mol

log(𝜌𝑉mol) + 0.363 ·
����𝑛𝑑 · Δ𝐻fusion

exp
(
𝑛𝑝

) − 𝐻form + Δ𝐻fusion
log(𝐻form)

����
− 0.14 ·

����𝑛̄2 − 𝐻form
Δ𝐻fusion

���� Δ𝐻fusion
𝑉mol

|𝑛𝑑 − 𝑛𝑝 | + 5.48

10 {𝒑P, 𝑽atom, 𝑽mol, 𝒈P, 𝒀 , 𝚫𝑯vapor} 0.81±0.09 19.2±6.8 0.80±0.04 19.6±1.8

𝐺VRH =6.9 ·
√︁
𝑝P𝑉atom

Δ𝐻vapor𝑉atom
𝑉3
mol

+ 5.42 · 𝑌 exp(𝑝P)
exp(𝑔P) + exp(𝑉atom)

+ 3.02 · 𝑔P
3√
𝑌

𝑝P exp
(
𝑌/Δ𝐻vapor

)
− 5.77

Tab. 5.18. The first 10 best-performing symbolic-regression models for the prediction of the shear modulus
𝐺VRH in the Voigt-Reuss-Hill notation [485]. Shown is the prediction performance of the statistical equivalent
sub-optimal non-redundant feature subsets of the tolerance-based branch-and-bound algorithm (TB3) using
the gradient-boosting decision trees (GBDT) algorithm [249–252, 267, 268] as the feature-selection criterion
(Sections 3.1.2 and 4.1). Statistical equivalent feature subsets were sorted in increasing order of the SISSO [197]
prediction errors (RMSE - ΔRMSE). Prediction errors of SISSO were approximated as described in Section 5.2.3.
For comparison, 10-fold cross-validated prediction performances of SISSO and of GBDT (cf., Section 5.1) are
reported in terms of the mean 𝑥 and standard deviation Δ𝑥 as 𝑥±Δ𝑥 of the Pearson’s coefficient of determination
𝑥 = 𝑅2 [101] and the root-mean-squared error (𝑥 = RMSE). The RMSE is in the unit of gigapascals (GPa).

as the average and the 𝛼th-percentile of the different model’s predictions on the same set of data
(Section 4.3).

Ensemble-based prediction intervals from resampling methods are smaller than conformal-based
prediction intervals at the same confidence level 𝛼. However, they are as large as conformal-based
prediction intervals at the same validity2⁸ 𝛼̂ (Tab. 5.19). In particular, the validity of ensemble-
based methods is always less than that of the specified confidence level. A smaller validity than a
specified confidence level results in uncertainty estimates being largely determined by the choice of
training data (Section 4.3). Unlike ensemble-based methods, the validity of conformal prediction is
expected to be at least as large as the confidence level on average (Section 4.3.1). Though, the validity
of conformal prediction can be lower than the confidence level (e.g, at a confidence level of about
𝛼 = 50%), conformal prediction is expected to produce more robust estimates than ensemble-based
resampling methods, especially for the screening and application of the symbolic-regression models
on new data.

The choice of conformal prediction comes at a cost (cf., [386]): for instance, at a confidence level of
𝛼 = 0.95, the prediction intervals are on average about three to four times larger than the root-mean-
squared error of the generated symbolic-regression models. However, the prediction performances
(Fig. 5.25) show that bulk and shear moduli are typically within the 50% confidence prediction bands
and are about the same size as the root-mean-squared error of the generated symbolic-regression
models.
2⁸The probability that in about 𝛼̂% of the cases the actual values of the target property are within the prediction interval at
a confidence level of 𝛼%.
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� Algorithm (TB3-. . . ) Ensemble prediction Conformal prediction

Confidence level (𝛼) Validity (𝛼̂) Mean (Δ) Max (Δ) Validity (𝛼̂) Mean (Δ) Max (Δ)
a.) Bulk modulus (𝐾VRH)

GB
DT

0.50 0.27 4.9 34.6 0.50 10.9 73.7
0.80 0.55 11.1 83.3 0.80 23.3 152.4
0.95 0.76 17.9 157.0 0.95 56.6 371.1

b.) Shear modulus (𝐺VRH)

GB
DT

0.50 0.24 5.3 65.0 0.49 11.6 189.9
0.80 0.47 10.2 143.6 0.80 27.7 449.0
0.95 0.67 16.0 247.5 0.96 67.5 1111.7

Tab. 5.19. Validity of ensemble and conformal prediction of TB3-GBDT at three different confidence levels
𝛼 = [50%, 80%, 95%]. The validity (𝛼̂) specifies the probability (𝛼̂% = 100𝛼̂) that the target property
is within the prediction interval 𝑥 ∈ [𝑥 − Δ̄, 𝑥 + Δ̄] of the statistical model (Eq. 4.22), where 𝑥 and ±Δ̄
(Δ̄ = Mean(Δ) ≤ Max(Δ)) denote the (point) estimation and variance of the ensemble or conformal prediction.
The validity of the ensemble prediction and prediction intervals were computed as the 𝛼th-percentile of the
ensemble machine-learning predictions. The validity and prediction intervals of conformal prediction were
computed using the setup as described in Sections 4.3.2 and 5.1. Performance statistics of the bulk (𝐾VRH, a)
and the shear modulus (𝐺VRH, b) were approximated with the approach as described in Section 5.2.3 using the
sure-independence screening and sparsifying operator (SISSO) [197]. Units are in gigapascal (GPa).

Anomalous materials

One of the key advantages of conformal prediction is the identification of materials that are underrep-
resented or cannot be adequately estimated from the full set of data (so-called anomalous materials,
Section 4.4). Although none of the inorganic crystalline compounds can be classified as anomalous
(Fig. 5.25), there are some materials with very large prediction intervals. These include unary and
binary oxide and nitride compounds such as Iridium (Ir), aluminum oxide (Al2O3), and platinum
nitride (PtN2), contributing most to the high uncertainty in the bulk and shear moduli in the range
of 100GPa–300GPa of the predictions (depicted as squares in Fig. 5.25, not marked separately).

The largest prediction intervals occur for carbon2⁹ (C) and related compounds such as tungsten
carbide (WC) all with bulk or shear moduli above 300GPa. All of these compounds have a low molar
volume and a high enthalpy of atomization and as such exhibit high bulk and shear moduli in line with
the statistical trends as shown in the partial-dependence plots (Fig. 5.24) of the generated symbolic-
regression models (Fig. 5.23). In total, there are less than 25 compounds with bulk and shear moduli
above 300GPa (Fig. 5.25). Because the mean predictions of most of these compounds are close to the
actual values, but the prediction intervals are large, conformal prediction indicates that compounds
with bulk and shear moduli above 300GPa are underrepresented in the data set. As a result, the
generated symbolic regression models should generally not be used to for the screening or estimation
of ultrahigh bulk and shear modulus of inorganic crystalline compounds.

2⁹Carbon in the diamond structure has the highest bulk and shear modulus in the data set (𝐾VRH = 436GPa and 𝐺VRH =

523GPa).
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� Target property Performance statistics
Model applied to Materials Project data 𝑅2 RMSE [GPa]

a.) Bulk modulus (𝐾VRH)
Elastic data (TB3-GBDT) 0.81 ± 0.09 31.6 ± 9.6
Elastic data (TB3-GBDT→ SISSO) 0.79 ± 0.01 34.7 ± 0.6
Materials Project (TB3-GBDT) 0.84 ± 0.00 29.1 ± 0.3

b.) Shear modulus (𝐺VRH)
Elastic data (TB3-GBDT) 0.18 ± 0.03 73.1 ± 8.0
Elastic data (TB3-GBDT→ SISSO) 0.17 ± 0.00 73.7 ± 0.4
Materials Project (TB3-GBDT) 0.23 ± 0.04 71.1 ± 2.1

Tab. 5.20. Comparison of machine-learning models applied to the Materials Project data set. The machine-
learning models were constructed based on the 1,181 inorganic crystalline compounds [35, 412] data set using
TB3-GBDT algorithm (cf., Tabs. 5.17 and 5.18), based on the same data set but using symbolic regression
(SISSO [197]) with the most frequent identified feature subsets of TB3-GBDT (Fig. 5.23), and on the Materials
Project data set [13, 15, 35] using TB3-GBDT. Prediction errors are in units of gigapascal (GPa).

Machine-learning predictions

The central objective of using machine learning in materials science is to build statistical models from
easily accessible features and to apply these models to estimate otherwise difficult to measure or
to calculate properties (cf., [55]). The quality and usefulness therefore crucially depends on how
well these models perform on new data. In the following, the generalizability of the generated
machine-learning models (Tabs. 5.15 and 5.16 and Fig. 5.23) is investigated on a much larger set
of inorganic crystalline compounds than were available for statistical modeling, thus simulating a
potential screening application in materials science.

A total of 13,172 inorganic crystalline compounds were downloaded from the Materials Project
[13, 15, 35] with reported space group, volume, formula, and elastic properties. Of these, 2,566
compounds had to be removed because they were either already included in the curated data set
(cf., Section 5.2.3) or had missing tabulated elemental properties for one of the compounds. The
remaining 10,606 inorganic crystalline compounds were then used to test the generalizability of the
generated machine-learning models from the elastic data set by comparing their prediction perfor-
mance to machine-learning models constructed directly on the Materials Project data. Results are
reported in Table 5.20.

Overall, it is observed that the machine-learning models applied to or constructed from the Mate-
rials Project data have larger prediction errors and higher variances (Tab. 5.20) as compared to the
elastic data set (Tabs. 5.15 and 5.16 and Fig. 5.23) and that the prediction performance for the bulk
modulus is still good given that the models were applied on a much larger and more diverse data set.
However, the prediction performances of the elastic and Materials Project data are hardly compara-
ble. First, because the prediction performances of the machine-learning models were estimated on
materials other than those included in the elastic data set. And second, because the Materials Project
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Fig. 5.24. Partial-dependence plots of the generated symbolic-regression models (Fig. 5.23) for the bulk (𝐾VRH)
and the shear (𝐺VRH) modulus as a function of the atomization (Δ𝐻at), fusion enthalpy (Δ𝐻fusion), formation
enthalpy (𝐻form), the molar volume (𝑉mol), and the atomic bulk (𝐵) and Young’s modulus (𝑌). Shown are the
distribution of actual values of the inorganic crystalline compounds (points) and the statistical trend (line)
obtained by marginalizing each feature (Δ𝐻at, Δ𝐻fusion, . . . ) over the values of all other features of the data set
[249].
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Fig. 5.25. Ensemble prediction performance of machine-learning models from TB3-GBDT using the sure-
independence screening and sparsifying operator (SISSO) [197] to estimate the bulk (𝐾VRH) and shear (𝐺VRH)
modulus in the Voigt-Reuss-Hill notation [485] from the set of statistically equivalent feature subsets. The
prediction errors of SISSO were approximated using the setup as described in Section 5.2.3. Shown are the
prediction bands (50th, 80th, 95th-percentiles) of the model’s predictions, the credibility Π (Eq. 4.29) at a
confidence level of 𝛼 = 0.95, the distribution of the size of prediction intervals (diagram above the parity plot,
Δ), and the errors of the machine-learning model (diagram right of the parity plot, 𝜀 = |𝑎0− 𝑎0 |). The numbers
in the boxes display the mean values (Δ̄, 𝜀), while the maximum errors are given in the texts below or to the
left of the diagrams. Units are in gigapascal (GPa). Machine-learning estimates outside the prediction intervals
are depicted as squares.
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were constructed based on the 1,181 inorganic crystalline compounds [35, 412] data set using TB3-GBDT
algorithm (cf., Tabs. 5.17 and 5.18), based on the same data set but using symbolic regression (SISSO [197])
with the most frequent identified feature subsets of TB3-GBDT (Fig. 5.23), and on the Materials Project data
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data set includes compounds of all 7 lattice systems3⁰ and covers a wider range of space groups (174
instead of 87) and elements (78 instead of 63).

Interestingly, the differences in the prediction errors are only less than 3GPa and 6GPa between
the generatedmachine-learningmodels applied to theMaterials Project data and themachine-learning
models constructed directly on the Materials Project data (Tab. 5.20). This is surprising as the
generated machine-learning models from the elastic data set were not re-generated (cf., Section 2.4)
and there is an almost tenfold difference in the amount of data used to build these models. Yet,
the elastic-data models either have low variances in the predictions and do not perform as good
as a machine-learning model constructed on the full set of data (as in the case for the generated
symbolic-regression models from the ensemble of elastic-data models (Fig. 5.23) due to their limited
description of the material’s behavior, cf., Section 5.2.3 and Fig. 5.24), or the elastic-data models have
a large variance in the predictions, but are statistically equivalent to the Materials Project models.
Still, the overall good performance of the elastic-data models emphasizes that both the bulk and shear
moduli can in principle be described by a set of elemental properties and that their relationships can
be represented as simple analytical expressions.

In terms of prediction performance, it is observed that the generated machine-learning models
cannot estimate the bulk and shear modulus of the compounds equally well for all crystal structures
(Fig. 5.26). In particular, compounds with low or high crystal symmetries (triclinic, monoclinic, and
cubic) show larger prediction errors than compounds with orthorhombic, tetra-, and rhombohedral
crystal structures independent of the applied machine-learning model. While these differences are
only a few gigapascals for the bulk modulus, particularly large errors occur for the shear modulus of
rhombohedral and cubic inorganic crystalline compounds. Both rhombohedral and cubic inorganic
crystalline compounds have been shown to contribute most to the prediction errors of the machine
learning models by having 2–3 times larger standard deviations in the shear modulus than the rest of
the compounds in the Materials Project dataset. Furthermore, it has been found that rhombohedral
and cubic compounds with shear moduli greater than 300GPa have standard deviations up to 30
times larger than all other compounds of the same crystal structure. Given that both the elastic-data
and Materials Project models (Figs. 5.27 and 5.28) under-estimate bulk and shear moduli greater
than 300GPa, none of the models can therefore reliably estimate ultrahigh bulk and shear modulus
of inorganic crystalline compounds.

Among the compounds with the largest prediction intervals are oxide (AlNiO3, CuAgO2, EuGeO3)
and nitride materials (Ca3AsN, TaCuN2), but also various other compounds of transition metals
such as BaMg6Nb, FeSn or MgNiH2 (cf., Section 5.2.3). Conformal prediction further identifies a
few anomalous materials with either relatively low (< 50GPa) and high (> 200GPa) bulk and shear
moduli. Just as in the modeling of the symbolic-regression models (cf., Section 5.2.3), ensemble-based
prediction intervals are smaller than conformal-prediction intervals at the the same confidence level
𝛼, but are as large as conformal-prediction intervals at the same validity 𝛼̂ (Tab. 5.21). Because the
elastic-data set comprises a smaller materials space than the Materials Project data set (lattice systems,
space groups, and elements), there is no guarantee that the validity of the elastic-data conformal-

3⁰Cubic (4,200), hexagonal (1,698), rhombohedral (665), tetragonal (1,402), orthorhombic (566), monoclinic (1,967),
and triclinic (108).
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prediction intervals correspond to the confidence level on average (cf., Section 4.3.1). As such, in
contrast to the Materials Project data set, the validity of elastic-data conformal prediction intervals
is smaller than the actual confidence level, but is still substantially larger than estimates based on
ensemble predictions. Although the difference between the validity and the confidence level of the
conformal prediction lessens with higher confidence levels, the generated machine-learning models
of the elastic-data set generally under-estimate the size of the prediction intervals in the screening of
new inorganic crystalline compounds.

Due to the lack of materials data for statistical modeling (cf., Section 5.2.3), especially for com-
pounds with bulk and shear moduli above 300GPa31, large errors occur in the estimation of elastic
properties. As such, for an actual materials-science application or the screening of thousands or
more compounds, the developed machine-learning models may be too inaccurate. Nevertheless, the
elastic-data models show good prediction performances on the Materials Project data as compared
to models constructed directly on the Materials Project data. In particular, the elastic-data models
provide useful estimates for triclinic crystal structures, although no inorganic crystalline compounds
with triclinic crystal structure were included in the elastic data set. Consequently, the developed
feature-identification framework is able to identify a subset of relevant features in the description of
the elastic properties of the inorganic crystalline compounds and is able to create generalizable statis-
tical models from a smaller set of materials data with similar prediction performances as compared
to statistical models constructed directly on larger sets of materials data.

Summary

The present analysis statistically identifies and characterizes compositional properties that are directly
linked to the prediction performance of the generated machine-learning models such as the mean
atomization enthalpy (Δ𝐻at) and the molar volume (𝑉mol). Although only averaged atomic features
were used, the prediction performances of the generated machine-learning models for the bulk and
shear modulus are comparable to previous studies (cf., [166, 412, 470, 473]). It should be emphasized
that neither the developed feature-identification framework (Sec. 5.1) nor the model construction is
limited to the bulk and shear modulus. In principle, the developed framework can be applied to other
derived properties such as the elastic anisotropy or the isotropic Poisson’s ratio.

In contrast to previous studies [166, 473], the features of the data set are based on a total of
54 fundamental, compositional, and structural properties that can be easily derived from tabulated
elemental properties for a machine-learning model without having to compute 𝑛-wise combinations or
to use experimentally demanding and computationally intensive first-principles calculations. Because
some of the feature-identification methods were too computationally intensive to be applied to the
full set of features (among them symbolic-regression algorithms), the main challenge of the data set
was to reduce the large number of features prior to machine learning (cf., Section 5.1.2).

Feature-identification methods were characterized by a high variability in the identification of
relevant features, while strong feature interactions complicated the identification of relevant features
and the construction of machine-learning models. Results demonstrated that the feature-dependence

31The Materials Project data set contains only 154 and 39 inorganic crystalline compounds with bulk and shear moduli
larger than 300GPa, or less than 1.5% and 0.4% of all compounds in the data set.
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� Algorithm Ensemble prediction Conformal prediction

Confidence level (𝛼) Validity (𝛼̂) Mean (Δ) Max (Δ) Validity (𝛼̂) Mean (Δ) Max (Δ)
a.) Bulk modulus (𝐾VRH)

Elastic data
(TB3-GBDT)

0.50 0.19 6.5 49.2 0.33 12.3 76.8
0.80 0.40 14.0 161.0 0.60 27.2 171.9
0.95 0.61 23.3 895.4 0.84 66.5 417.4

Elastic data
(TB3-GBDT→
SISSO)

0.50 0.03 1.3 19.2 0.32 13.0 69.0
0.80 0.08 2.7 33.3 0.58 29.2 152.4
0.95 0.14 5.3 80.8 0.85 78.8 414.3

Materials Project
(TB3-GBDT)

0.50 0.18 4.4 44.0 0.49 15.7 267.1
0.80 0.32 8.2 78.2 0.80 34.1 577.5
0.95 0.47 12.5 108.1 0.96 85.3 1455.1

b.) Shear modulus (𝐺VRH)

Elastic data
(TB3-GBDT)

0.50 0.21 5.4 66.5 0.33 9.4 62.5
0.80 0.40 10.9 125.5 0.64 23.3 156.0
0.95 0.61 18.1 309.9 0.90 61.0 412.4

Materials Project
(TB3-GBDT)

0.50 0.11 3.3 45.8 0.34 10.4 60.0
0.80 0.18 5.4 66.9 0.68 25.4 145.3
0.95 0.22 6.5 73.9 0.90 56.8 325.4

Materials Project
(TB3-GBDT)

0.50 0.23 5.7 56.4 0.49 14.0 494.0
0.80 0.44 11.1 264.7 0.80 29.5 1037.3
0.95 0.64 17.8 731.6 0.96 73.2 2581.2

Tab. 5.21. Validity of ensemble and conformal prediction of TB3-GBDT from three machine-learning models at
three different confidence levels 𝛼 = [50%, 80%, 95%]. The validity (𝛼̂) specifies the probability (𝛼̂% = 100𝛼̂)
that the target property is within the prediction interval 𝑥 ∈ [𝑥 − Δ̄, 𝑥 + Δ̄] of the statistical model (Eq. 4.22),
with 𝑥 and ±Δ̄ (Δ̄ = Mean(Δ) ≤ Max(Δ)) being the (point) estimation and variance of the ensemble or
conformal prediction. The validity of the ensemble prediction intervals were computed as the 𝛼th-percentile of
the ensemble machine-learning predictions. The validity and prediction intervals of conformal prediction were
estimated using the setup as described in Sections 4.3.2 and 5.1. Performance statistics of the bulk (𝐾VRH, a)
and the shear modulus (𝐺VRH, b) notation [485] were approximated using the sure-independence screening
and sparsifying operator (SISSO) [197] with the approach as described in Section 5.2.3. The machine-learning
models were constructed based on the 1,181 inorganic crystalline compounds [35, 412] data set using TB3-
GBDT algorithm (cf., Tabs. 5.17 and 5.18), based on the same data set but using symbolic regression (SISSO
[197, 371]) with the most frequent identified feature subsets of TB3-GBDT (Fig. 5.23), and on the Materials
Project data set [13, 15, 35] using TB3-GBDT. All machine-learning models were applied to the Materials
Project data set. Units are in gigapascal (GPa).

maps exhibit a block-like structure of feature interactions (Fig. 5.22), both the bulk and shear modulus
can in principle be described by the same set of features (Fig. 5.23), and the developed feature-
identification framework (cf., Section 3.5) substantially simplifies the construction ofmachine-learning
models as compared to TCMI, RFECV, and FS-GBDT (Tabs. 5.15 and 5.16 and Fig. 5.23). In addition,
it was demonstrated that the developed feature-identification framework is able to relate the input
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features to the prediction performance of the generated machine-learning models, while providing a
means to investigate the statistical relationships using symbolic-regression models (Fig. 5.23). Though
the generated symbolic-regression models could not fully describe the material’s behavior (Fig. 5.24),
they have been shown to be capable of estimating the bulk and shear modulus for a wide range of
𝑘-nary compounds of different chemical compositions and structures (Fig. 5.23), even for compounds
that were not included in the training data set (Fig. 5.26). It should be noted that such models (and
machine-learning models in general) only capture an overall statistical trend in the data and therefore
cannot be regarded as a physical law [55]. In particular, there is the risk of inaccurately modeling
some of the statistical trends with the machine-learning models, which may significantly limit their
applicability to new data. For example, the symbolic-regression models (Fig. 5.24) correctly captured
the statistical trends of the bulk and shear modulus as a function of the marginal contributions of the
mean atomization enthalpy (Δ𝐻at) and the molar volume (𝑉mol), but failed to reproduce the statistical
trends of the mean fusion enthalpy (Δ𝐻fusion), heat of formation (𝐻form), bulk (𝐵) and Young’s (𝑌)
modulus.

Overall, constructed machine-learning models were affected by large errors in the prediction of
oxide and nitride materials due to the lack of inorganic crystalline compounds in the data set for the
estimation of ultrahigh elastic moduli (≥ 300GPa, Section 5.2.3). For example, at a confidence level
of 𝛼 = 0.95 prediction intervals were on average about three to four times larger than the root-mean-
squared error of the generated symbolic-regression models. While ensemble-based prediction intervals
were always much lower than the specified confidence level, conformal-prediction intervals were only
lower when the elastic-data models were applied to the Materials Project data set (Section 5.2.3).
As a result, the generated machine-learning models have the tendency to under-estimate the size of
the prediction intervals and the errors made in the machine-learning predictions. Moreover, it has
been shown that machine-learning models are not reliable in estimating ultrahigh bulk and shear
moduli of inorganic crystalline compounds and hence are not useful for screening materials with
bulk or shear moduli greater than 300GPa. It may be possible though to create a machine-learning
model specifically for ultrahigh bulk or shear moduli by identifying anomalous materials (Sec. 4.4) or
a domain of applicability [208], but the small number of materials may actually prevent a practical
screening application using these models.

The present study can be considered as one of the largest studies to date on the extrapolation be-
havior of machine-learning models for estimating elastic properties of inorganic crystalline compounds.
The efficiency of the developed framework was therefore of central importance for the identification
of relevant features and the construction of predictive models. Despite the limitations of the generated
machine-learning models, it was highlighted that the developed feature-identification framework is
capable of (1) modeling the overall elastic behavior of the inorganic-crystalline compounds by rep-
resenting the statistical relationships as simple analytical expressions and (2) building generalizable
machine-learning models from a smaller set of materials data with similar prediction performance as
models built directly on a larger materials data set.
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Fig. 5.27. Ensemble prediction performance of machine-learning models from TB3-GBDT using the sure-
independence screening and sparsifying operator (SISSO) [197] to estimate the bulk (𝐾VRH) modulus in the
Voigt-Reuss-Hill notation [485] from the set of statistically equivalent feature subsets. The prediction errors
of SISSO were approximated using the setup as described in Section 5.2.3. Shown are the prediction bands
(50th, 80th, 95th-percentiles) of the model’s predictions, the credibility Π (Eq. 4.29) at a confidence level of
𝛼 = 0.95, the distribution of the size of prediction intervals (diagram above the parity plot, Δ), and the errors of
the machine-learning model (diagram right of the parity plot, 𝜀 = |𝑎0 − 𝑎0 |). The numbers in the boxes display
the mean values (Δ̄, 𝜀), while the maximum errors are given in the texts below or to the left of the diagrams.
The machine-learning models were constructed based on the 1,181 inorganic crystalline compounds [35, 412]
data set using TB3-GBDT algorithm (cf., Tabs. 5.17 and 5.18), based on the same data set but using symbolic
regression (SISSO [197]) with the most frequent identified feature subsets of TB3-GBDT (Fig. 5.23), and on
the Materials Project data set [13, 15, 35] using TB3-GBDT. All machine-learning models were applied to the
Materials Project data set. Units are in gigapascal (GPa). Machine-learning estimates outside the prediction
intervals are depicted as squares and anomalous materials as diamond-shape symbols.
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Fig. 5.28. Ensemble prediction performance of machine-learning models from TB3-GBDT using the sure-
independence screening and sparsifying operator (SISSO) [197] to estimate the shear (𝐺VRH) modulus in
the Voigt-Reuss-Hill notation [485] from the set of statistically equivalent feature subsets. The prediction errors
of SISSO were approximated using the setup as described in Section 5.2.3. Shown are the prediction bands
(50th, 80th, 95th-percentiles) of the model’s predictions, the credibility Π (Eq. 4.29) at a confidence level of
𝛼 = 0.95, the distribution of the size of prediction intervals (diagram above the parity plot, Δ), and the errors of
the machine-learning model (diagram right of the parity plot, 𝜀 = |𝑎0 − 𝑎0 |). The numbers in the boxes display
the mean values (Δ̄, 𝜀), while the maximum errors are given in the texts below or to the left of the diagrams.
The machine-learning models were constructed based on the 1,181 inorganic crystalline compounds [35, 412]
data set using TB3-GBDT algorithm (cf., Tabs. 5.17 and 5.18), based on the same data set but using symbolic
regression (SISSO [197]) with the most frequent identified feature subsets of TB3-GBDT (Fig. 5.23), and on
the Materials Project data set [13, 15, 35] using TB3-GBDT. All machine-learning models were applied to the
Materials Project data set. Units are in gigapascal (GPa). Machine-learning estimates outside the prediction
intervals are depicted as squares and anomalous materials as diamond-shape symbols.
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5.3 Discussion

The three materials-science applications considered in this chapterwere selected based on the availabil-
ity of curated materials data. All three data sets proved challenging in terms of feature identification
and were large and diverse enough to estimate the properties of interest with machine learning. In
the first application, the energy difference between two crystal structures of octet-binary compound
semiconductors was modeled. The most frequently identified features were the atomic radii of the
𝑠- and 𝑝-orbital, the Mulliken electronegativity, and the electron affinity. In the second application,
the lattice constant and bulk modulus of perovskite oxides were studied. The atomic radii of the 𝑠-
and 𝑝-orbital, the nuclear and ionic charges, as well as the electron affinity were the most frequently
identified features. In the third application, the bulk and shear modulus of inorganic crystalline com-
pounds were estimated, where the most frequently identified features were the mean atomization
enthalpy and the molar volume.

Common to both the octet-binary compound semiconductors and the perovskite oxides data set is a
strong feature interaction between features from each atomic species. Due to these feature interactions,
many features were identified as relevant, with each feature subset containing at least one feature
from each atomic species. In both data sets the materials are uniquely defined by their two constituent
elements, i.e., confirming that at least one feature of each atomic species is needed to actually describe
the property of interest. In contrast, the elastic data set contains materials with varying number of
constituent elements. Therefore, properties of the constituent elements were averaged. Strong feature
interactions were found between features of each type (fundamental, compositional, and structural
properties). Due to the larger number of features requiring higher computational efforts as compared
to the other data sets, not all machine-learning algorithms were applicable with the full set features.
Feature identification prior to model construction reduced the computational complexity and allowed
these machine-learning algorithms to be applied to the data set using the identified feature subsets.

In the octet-binary compound semiconductors data set, boron nitride and diamond were identified
as anomalousmaterials. In the elastic data set, oxide and nitridematerials were found to be anomalous.
All these anomalous materials are characterized by a large prediction uncertainty due to lack of similar
materials. They are underrepresented in the data set and hence cannot be reliably predicted. No
anomalous materials were found in the perovskite oxides data set, as the values of the properties of
interest are more evenly distributed across the materials of the data set.

The search for an accurate machine-learning model for predicting the property of interest includes
a comparison of the prediction performance for each machine-learning model on the same set of
features. As it turns out, all feature-identification methods from Section 3.5 identify more features as
relevant than the TB3-algorithm with a larger variance in the prediction errors. Although FS-SISSO,
RFECV, and FS-GBDT were performed with 10-fold cross-validation, the TB3-algorithm performs
cross-validation during feature-subset search and as such provides more stable feature subsets and
lower variances in the prediction errors. All machine-learning models based on the feature subsets
identified by the TB3-algorithm are competitive with or are better than the models reported in the
literature in terms of prediction performance and the required number of features [55, 161, 165, 166,
186, 410, 411, 470, 473, 474].
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Amodel-independent feature selection with TCMI characterizes features as relevant only, if there is
a sufficient number of materials in the data set showing a statistical relationship between the features
and the property of interest. This is in contrast to machine learning, which improves as more data
are available. By using an evaluation measure from a machine-learning model as a feature-selection
criterion (e.g., the Pearson’s determination coefficient 𝑅2), the identification of relevant feature subsets
can be directly linked to the prediction performance of the machine-learning models. Higher scores of
the identified feature subsets are thus equivalent to higher prediction performances of the generated
models.

Both GBDT and SISSO models were used for feature identification with the same feature-selection
criterion (the Pearson’s determination coefficient) and search strategy (the TB3-algorithm). Whereas
a feature-subset search with the GBDT algorithm (TB3-GBDT) is based on constructing piecewise-
constant models, a search with the SISSO algorithm (TB3-SISSO) is based on constructing functional
relationships between a set of features and the property of interest. Generally, TB3-GBDT found feature
subsets with a smaller cardinality, but with similar prediction performance as TB3-SISSO. However, in
cases where the property of interest can be modeled more accurately with a functional interpolation
than with piecewise-constant models, TB3-SISSO identified more compact feature subsets than TB3-
GBDT (in the case of the shear modulus of the elastic data set) or achieved lower prediction errors
(in the case of the octet-binary compound semiconductors data set).

The Jaccard similarity coefficient was used to compare feature subsets found with TB3-GBDT and
TB3-SISSO. However, only a fraction of the identified feature subsets were found by both methods:
first, because the search was not exhaustive. And second, the models required different number
of features to achieve optimal performance. Nevertheless, a frequency analysis showed that many
features were shared across the two different methods.

In order to compare the prediction performance of identified feature subsets, models were built
with SISSO. Many different models based on different feature subsets achieved similar prediction
performance. Each model can be considered as a single representation of the relationships between
the features of the data set and the property of interest. Since many models are statistically equivalent,
the physical interpretation of a single model is not meaningful.

In all materials-science applications considered in this chapter, elemental properties of the con-
stituent elements were used to represent the materials as a function of their chemical composition
and stoichiometry. Since features based on elemental properties do not require any information other
than the elements and stoichiometry, they can be used to screen and estimate the target properties
of materials whose structure are not known. However, machine-learning models based solely on the
elemental properties neither account for atomic interactions nor for structure-related phenomena
such as high-temperature superconductivity [167, 512, 513]. As such, these models are usually not
based on any physical models of the target properties and therefore are expected to require either
larger amounts of materials data or a combination of the features, if a highly predictive model can
be generated at all. Moreover, elemental properties are strongly statistically related because both the
features and the property of interest are determined by the Kohn-Sham equations with the atomic
species, charges, and positions as the only physically relevant input variables. Therefore, statistical re-
lationships between a subset of the relevant features and the properties of interest cannot be regarded
as physical laws.
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All machine-learning models were able to qualitatively capture the overall trend in the data,
but were unreliable when estimations were made in regions of the materials space that were not
part of the training data. The difference between the estimated and actual values of the property
of interest were quite large. The multiplicity of the machine-learning models was therefore used
to compute prediction intervals. Further, a heuristic measure, called credibility, was introduced
to identify anomalous materials, which cannot be predicted well by the machine-learning models.
Prediction intervals and the credibility measure can thus help to explore the materials space more
efficiently and guide further investigations of materials with large prediction errors or low credibility.

Quantitatively, all investigated machine-learning algorithms had problems in accurately repre-
senting the statistical trends in the data: the applicability of the generated machine-learning models
therefore remains limited and a problem yet to be solved in a potential high-throughput application
for discovering new materials with targeted materials properties.

Two criteria give confidence that the developed framework is applicable to a wider range of
materials-science applications: First, the analysis is neither limited to a particular machine-learning
algorithm nor to the specific materials-science application. And second, the framework creates pre-
dictive machine-learning models with fewer features but with the same prediction performance as
compared to a machine-learning model built on the full set of features. Nevertheless, the developed
framework for feature-identification and model construction may not perform well for all materials-
science applications, e.g., on imbalanced data sets or in cases where the features of the data set are
completely unrelated to the properties of interests.



Chapter 6

Conclusion

With the increasing availability of materials data from first-principles electronic-structure codes and
high-throughput experiments, machine learning is taking on an important role in materials science,
offering new techniques for analyzing materials properties, screening materials spaces, and designing
new materials. To date, many applications have been investigated [55, 161–168, 171, 172, 177, 179,
335], but the identification and characterization of relationships between one or more features and
the creation of highly predictive machine-learning models are still challenging.

6.1 Challenges

The first challenge is related to the choice of relevant features: materials data sets can be represented in
terms of hundreds to thousands of features. As a result, the generation of statistical models places high
demands on computational resources. Sets of features are therefore constructed iteratively [55, 161],
selected on the basis of predefined criteria or intuition [171, 172, 177, 179], or introduced without
extensively and systematically analyzing their relevance [162, 163, 165–168, 335]. The second
challenge is related to the multi-collinearity of features: different feature subsets may lead to the same
prediction performance. As such, selecting only one feature subset can neither fully represent all the
relationships present in the data nor ensure a robust prediction of the machine-learning models [358].
The third challenge is related to the inherent statistical modeling of feature-property relationships:
Even though statistical models are optimized for the highest prediction performance, the prediction
errors of the models are typically unknown, leading to potentially large uncertainties in the predictions
when applied to new data.
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6.2 Feature identification and model construction

With the framework and tools developed in this thesis, the complexity of machine-learning models can
be reduced by identifying the relevant features for estimating the property of interest prior to machine
learning. An extensive and systematic search of relevant features was carried out, identified feature
subsets were related to the prediction performance of the machine-learning models, and (based on
these subsets) an ensemble of machine-learning models was constructed to estimate the prediction
uncertainty on new data. Combining all these steps, the developed framework deals comparatively
well with small data sets (of about 50 data samples) and relatively large number of features (more
than 50 features). In particular, it successfully identifies sets of features that lead to simpler predictive
models without significantly decreasing the prediction performance of the generatedmachine-learning
models.

6.2.1 Feature identification

In Chapter 3, sets of features related to the property of interest were identified using a score, which
allows feature subsets to be ranked and ordered by relevance. There is a plethora of methods, all
with different criteria for quantifying the relevance of features. One of these is feature selection with
information theory. Information-theoretic feature-selection methods do not require the explicit mod-
eling of the actual relationship and further have the advantage of being deterministic and providing a
non-parametric quantification of relevance based on mutual dependence between a set of features and
a property of interest. However, current information-theoretic methods involve probability densities
which cannot be obtained directly from (real-valued) sample data, such as those found in materials
science. Thus, a generalization called total cumulative mutual information (TCMI) was developed in
this thesis, which is based on cumulative probability distributions. Cumulative probability distribu-
tions can be calculated directly from the data set without the need for discretization or additional
parameters. The cumulative mutual dependence as obtained by TCMI was further corrected with
respect to the baseline dependence when all features are completely independent prior to estimating
the relevance of feature subsets.

The search for relevant feature subsets is a combinatorial optimization problem. As an exhaustive
search is impractical for data sets with large number of features, the branch-and-bound algorithm was
used. The branch-and-bound algorithm enumerates all combination of features and stops exploring
further subsets whose feature-selection criterion (e.g., the score from TCMI) cannot be improved.

Finally, three examples with known as well as empirically identified feature-property relationships
were discussed and TCMI was compared with existing methods for identifying relevant features.
Overall, feature-selection methods based on machine learning are sensitive to multi-collinear features
and are therefore not reliable for identifying the relevance of features. In contrast, TCMI is stable
with increasing numbers of data samples, but requires more data to identify the same set of features
than the other methods.

6.2.2 Conceptual framework

In Chapter 4, a framework for feature identification was developed that is applicable to any information-
theoretic method or machine-learning algorithm. In the framework, the branch-and-bound algorithm
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was extended to work with non-monotonically increasing feature-selection criteria. This so-called
tolerance-based branch-and-bound (TB3) algorithm identifies feature subsets that are close to the
optimal subset within a specified tolerance. All identified feature subsets were then used to build
machine-learning models. Because models based on different subsets led to similar prediction perfor-
mances, a probabilistic threshold was introduced to determine which models are statistically equiv-
alent. This ensemble of models was then used to estimate the prediction uncertainty by utilizing
the ensemble mean and standard deviation to define a prediction interval for each prediction. In
addition, conformal prediction was applied to estimate the prediction intervals based on the available
materials data. Unlike ensemble-based prediction intervals, conformal prediction statistically ensures
that the actual value of the targeted property lies within the prediction interval at a given confidence
level. A comparison between these two approaches showed that ensemble-based prediction intervals
under-estimate the error made in the prediction of the machine-learning models and uncertainty es-
timates from conformal prediction only hold on average. Therefore, a measure was developed (called
credibility) to identify anomalous materials that cannot be predicted well by the machine-learning
models. Credibility is calculated heuristically by comparing the prediction of a new material to known
values of similar materials in the data set. In a simplistic example with known ground truth, the
credibility measure identified all materials whose actual values could not be reliably estimated by the
machine-learning model and were outside the prediction interval as estimated by conformal prediction
within the specified probabilistic tolerance.

Like TCMI, the scaling behavior of the developed framework has a worst-case exponential compu-
tational time complexity in the number of features, but largely depends on the information-theoretic
method or machine-learning algorithm in the scaling behavior on the number of data samples. How-
ever, by using branch and bound, which terminates the search for relevant subsets of features as early
as possible, the TB3-algorithm can be used even when other feature-identification methods are no
longer applicable (cf., Section 5.2.3).

6.2.3 Materials-science applications

Finally, in Chapter 5, TCMI, two machine-learning methods combined with the TB3-algorithm, and
three further feature-identification methods were applied to the quantitative prediction of the crys-
tal structure of octet-binary compound semiconductors, the prediction of structural properties of
perovskites, and the prediction of elastic properties of inorganic crystalline compounds. The SISSO
algorithm was used as the reference machine-learning algorithm for estimating the prediction per-
formance of identified feature subsets. All methods resulted in similar prediction performance of the
generated machine-learning models. However, unlike machine-learning methods combined with the
TB3-algorithm, all other methods identified more features as dependent than were actually needed
to generate predictive machine-learning models. In comparison, the TB3-algorithm achieved the best
prediction performance in all applications with the least number of features.

Machine-learning models from the octet-binary compound semiconductors data set were charac-
terized by large prediction errors and strong feature inter-correlations between the features of each
atomic species: At least one feature from each atomic species was required to estimate the energy
difference between the two crystal structures, rock salt and zinc blende. Boron nitride and diamond
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have been found to be anomalous materials: They exhibit a rare or otherwise unusual energy differ-
ence between rock salt and zinc blende crystal structures compared to the investigated data set of
octet-binary compound semiconductors, consistent with the fact that they are the hardest naturally
occurring materials on Earth.

Perovskites oxides are uniquely determined by the nuclear and ionic charges of the two non-oxygen
constituents. These features have been consistently identified as relevant by all feature-identification
methods. All generated machine-learning models performed well in predicting the lattice constant,
but only moderately well in predicting the bulk modulus. The prediction of the bulk modulus became
more accurate when the lattice constant was included as a feature. No anomalous materials were
found in the data set.

Due to the varying number of constituent elements, averaged atomic properties were used to
estimate the bulk and shear moduli of inorganic crystalline compounds. All feature-identification
methods were characterized by a high variability in the identification of relevant features. Overall,
constructed machine-learning models were affected by large errors in the prediction of oxide and
nitride materials due to the lack of similar materials with ultrahigh elastic moduli in the data set.
Both the bulk and shear modulus can in principle be described by the same set of features. Although
the machine-learning models generated by SISSO could not fully capture the statistical relationship
in the data, they were capable of estimating the bulk and shear modulus for a wide range of 𝑘-
nary compounds of different chemical compositions and structures. In addition, their prediction
performance was comparable to that of models constructed using all features, even when applied to
a much larger data set of inorganic crystalline compounds than was available for statistical modeling.

6.2.4 Summary

The developed framework and additional diagnostic tools for feature identification and model con-
struction provide some approaches to solving the above-mentioned challenges. To start with, feature
identification was addressed by a systematic search using the (tolerance-based) branch-and-bound
algorithm. Further, problems with multi-collinearity were addressed by exploring simple to more
complex feature subsets. In particular, the inherent statistical nature of predictions from the statistical
modeling was addressed by estimating the uncertainty in the model predictions based on an ensemble
of models rather than a single model. In addition, a heuristic was developed to identify materials that
cannot be predicted well.

A model-independent identification of feature subsets was aimed for, but failed for several reasons:
first, the limited availability of materials data induced spurious relationships in the data. Second, a
comparison of identified feature subsets across different machine-learning algorithms was hindered
by the limited flexibility of the applied methods due to inherent assumptions made in the statistical
modeling. Third, a model-independent feature-selection criterion such as TCMI identified fewer
number of features as relevant as other feature-identification methods. As such, models built using
these feature subsets did not achieve the same performance as models based on feature subsets
identified using the other methods. Finally, a partial exploration of feature combinations in the search,
as opposed to exhaustive search, prohibited the identification of all relevant (non-optimal) feature
subsets in a data set.
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Overall, the developed framework is effective in reducing the number of features in a data set
prior to statistical modeling of relationships between a set of features and the property of interest.
Using feature identification prior to machine learning has the advantage that, first, the number of
features can be reduced independently of a machine-learning algorithm and, second, a more effective
feature-selection criterion can be used to handle larger volumes of data. In addition, the framework
goes beyond the pairwise identification of related features (that is used in essentially all feature-
identification methods presented in the materials-science literature) by identifying the features that
are multivariately and non-linearly related to a property of interest prior to statistical modeling. Thus,
rather than expending time trying to intuit the relevant features with a feature-identification method
specific to a machine-learning algorithm or from pairwise relationships, the developed framework
can be utilized as a standardized procedure to automatically identify the relevant set of features in a
data set as well as to generate predictive models including prediction intervals in the discovery and
design of new materials.

6.3 Outlook

A data-driven extensive and systematic identification of features is pivotal for achieving a physical
understanding of the existing relationships between a set of features and a property of interest.
Currently, TCMI has exponential time complexity with increasing number of features. Thus, the faster
feature identification based on machine learning seems to be the most viable approach in creating
predictive models from data sets with a large number of features. However, TCMI can potentially
be optimized by introducing an effective summation scheme to improve the computational efficiency
of the cumulative joint mutual dependence (similar to the baseline adjustment approach of TCMI).
There is also further potential for improvement in the construction of machine-learning models. For
example, symbolic-regression models could be optimized by automatically adjusting the required
complexity of the model. In addition, this thesis focused exclusively on available curated materials
data sets. In practical application, it would be useful to interactively search the materials space for
materials with desired properties. By using the tolerance-based branch-and-bound algorithm to first
identify the features related to a property of interest and then constructing a statistical model, an
active-learning workflow [102–104] could be designed that suggests new materials based on the
developed credibility measure in this thesis for computation or synthesis that have a low credibility
score. Last but not least, it would be desirable if machine-learning models could be optimized for
their ability to represent the trend in the data rather than for prediction performance. Even though
machine-learning models perform well, they have narrow applicability outside their training scope
and therefore do not generalize well (cf., Section 5.2). Although the framework has been applied to
only a few materials-science data sets in this thesis, it is promising to apply it to a wider range of
applications and models. So far, the framework was only used to predict materials properties, but
it would also be interesting to combine the framework with techniques for extracting fundamental
equations from data [190, 514].





Appendix A

Machine-learning algorithms

A.1 The sure-independence screening and sparsifying
operator (SISSO)

The sure-independence screening and sparsifying operator (SISSO) [197] is a compressed-sensing
method [191] for generating explicit, analytic symbolic-regression models 𝑓 based on the algebraic
combination of physical quantities ®𝑋 = {𝑋1, . . . , 𝑋𝑑} (the features of the data set). SISSO can
be applied to millions and billions of feature-candidate combinations and is not affected by inter-
correlated features [197, 371, 515].

Sure-independence screening (SIS [371, 515]) means that SISSO optimally estimates the property
of interest from a set of initial or constructed candidate-feature combinations with a probability
approaching one, the more candidate-feature combinations are screened for fitting the machine-
learning model to the samples of the data set. Sparsifying means that SISSO uses a sparse-solution
algorithm (a sparsifying operator, SO [516]) to build a machine-learning model of dimensionality
desc_dim1 based on a component-wise regression or equivalently correlation-learning technique to
search the space and reduce the number of feature combinations (the so-called descriptors 𝑑𝑖) in the
final model,

𝑓 ( ®𝑋) =
desc_dim∑︁

𝑖=0
𝑐𝑖𝑑𝑖( ®𝑋) , 𝑑0 ≡ 1 . (A.1)

The coefficients 𝑐𝑖 are obtained from a least-squares solution of fitting 𝑓 ( ®𝑋) to the material’s property
of interest 𝑌 , with 𝑑𝑖 as the 𝑖-th descriptors of the “desc_dim”1-dimensional model 𝑓 . The feature
combinations are formed by recursively applying a set of functional/algebraic (unary, binary, etc.)
operators

Φ𝑘 = Υ[ ®Φ𝑘−1, . . . , ®Φ0] , 𝑘 = 1, . . . , rung1
Υ =

{
• + •, • − •, • × •, •/•, | • − • |, •−1, •2, •3, •1/3, exp(−•), exp •, ln •,√•

} (A.2)

1The name refer to the setting defined in the Fortran code of the SISSO paper [197].
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∆1D

∆2D

∆(n-1)D

Features:
~X = {X1, . . . , Xd}

Operator set:
Υ = { • + •, •/•, . . .︸ ︷︷ ︸

binary operators

, exp •,
√
•, . . .︸ ︷︷ ︸

unary operators

}

Feature-space construction:
~Φk = Υ[~Φk−1, . . . , ~Φ0] = Υ ◦ . . . ◦Υ︸ ︷︷ ︸

k-times
[~Φ0]

Example:
~Φ0 = {X1, . . . , Xd}
~Φ1 = {X1 + X2, X1/X2, . . . ,

exp(X1), exp(X2),
√

X1,
√

X2, . . .}
~Φ2 = {X1 + X2

X1
,
X1 + X2
exp(X1) , . . .

X1
X2

+ exp(X1), . . .}

Feature subspace:

SnD ⊆
rung⋃

k=1

~Φk

Y – Propery of interest
f̂nD – Least-squares

regression model
∆nD – Residual

Y

1st iteration

S1D ...
2nd iteration

S2D

...

nth iteration

SnD

...

f̂nD

Error

Fig. A.1. Feature combinations are generated by recursively applying a set of functional/algebraic (unary,
binary, etc.) operators Υ to the features ®𝑋 of a data set. The resulting candidate feature-combinations 𝑆nD
are then scored with a metric (correlation magnitude, i.e., the absolute of inner product between the feature
combination and the property of interest 𝑌 or the residual ΔnD in subsequent iterations). Next, a least-squares
symbolic regression model is built to select the next subspace of candidate-feature combinations and to reduce
the residual error ΔnD to the property of interest in each step. This procedure is repeated iteratively until the
error is within the expected error tolerance.

to a subset of (constructed) features, e.g., ®Φ0 ⊆ {𝑋1, . . . , 𝑋𝑑}, where “•” is a placeholder for any
constructed feature combination in ®Φ𝑘−1. New feature combinations are then formed by recombining
previous feature combinations. As the number of constructed feature-combinations scales exponen-
tially with the number of recursive feature combinations (rung1), the SIS-step of SISSO scores each
candidate-feature combination (standardized) with a metric (correlation magnitude 〈•, •〉, i.e., the
absolute of inner product between the residual and the candidate-feature combination) and keeps only
the top-ranked subs_sis1 feature combinations 𝑆𝑛𝐷 with less than or equalmaxcomplexity1 features of
the data set (Fig. A.1). Generally, the larger the set, the higher the probability it contains the optimal
descriptor [371, 515].

SISSO then iteratively selects a set of candidate-feature combinations 𝑆nD in a beam-search-like
approach, effectively reducing the residual error ΔnD to the property of interest in each step. The
residual error of an 𝑛-dimensional model is defined as ΔnD = 𝑌−∑𝑛

𝑖=0 𝑐𝑖𝑑𝑖( ®𝑋) with 𝑐𝑖 as the coefficients
from the solution of fitting the descriptors ®𝑑 = {𝑑1, . . . , 𝑑𝑛} to the property of interest 𝑌 . In the first
iteration, the first-ranked feature of

𝑆1D =

{
𝑍 |𝑍 ∈

rung1⋃
𝑘=1

Φ𝑘, sorted in desc. order of 〈𝑍, 𝑌〉
}

(A.3)
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is the best 1D descriptor for a one-dimensional model. Next, the residual error between a least-squares
fit of the first-ranked feature to the property of interest is computed, Δ1𝐷 = 𝑌 − ∑1

𝑖=0 𝑐𝑖𝑑𝑖( ®𝑋), and
the residual error is used to select a new set of subs_sis1 features 𝑆2D with the highest correlation to
the residual error Δ1D. A 2D descriptor is then constructed by performing a least-squares regression
among all possible pairs contained in the union of the setsS= 𝑆2D∪𝑆1D selected in the first and second
iteration. The procedure can be repeated to create higher dimensional models by testing progressively
larger number of feature-combinations. For an 𝑛-dimensional model, SIS selects a subspace

𝑆nD =

{
𝑍 |𝑍 ∈

rung1⋃
𝑘=1

Φ𝑘, sorted in desc. order of 〈𝑍, Δ(n-1)D〉
}

(A.4)

of feature combinations from the residual error of the model Δ(n-1)D, i.e., those with the largest
correlation to the residual error of the previous (𝑛 − 1)-dimensional model. The best 𝑛-dimensional
descriptor ®𝑑 (an 𝑛-tuple of feature-combinations) is then determined by constructing the 𝑛-dimensional
model from the union all previously selected subspaces S= 𝑆nD ∪𝑆(n-1)D ∪ . . .∪𝑆1D until the residual
error of the generated 𝑛-dimensional symbolic-regression model reaches a desired level of accuracy,
that most likely models the underlying trend in the data.

A.2 Gradient-boosting decision trees (GBDT)

The gradient-boosting decision tree (GBDT) [249–252, 267, 268] is a machine-learning method for
generating piecewise-constant models 𝑓 ( ®𝑋) by creating an ensemble of tree-like models ℎ𝑚 ( ®𝑋) from
the features ®𝑋 = {𝑋1, . . . , 𝑋𝑑} of a data set (Fig. A.2). An ensemble is a combination of individual
models,

𝑓 ( ®𝑋) =
n_estimators∑︁

𝑚=1
𝛼𝑚ℎ𝑚 ( ®𝑋) + const. , 𝛼𝑚 ∈ ℝ , (A.5)

that is expected to perform better than models individually fitted to the data alone. Gradient boosting
means that decision trees ℎ𝑚 ( ®𝑋) are constructed sequentially to minimize the errors 𝐿(𝑌, 𝑓 ) = 𝑌 −
𝑓(𝑚−1) ( ®𝑋) of the previous models 𝑓(𝑚−1) in a forward stage-wise approach2,

𝑓𝑚 ( ®𝑋) = 𝑓(𝑚−1) ( ®𝑋) + 𝛾 · 𝛼𝑚ℎ𝑚 ( ®𝑋) , 0 < 𝛾 ≤ 1 , 𝛼𝑚 ∈ ℝ . (A.6)

As with each tree-like model (decision tree) the overall prediction error (i.e., the loss function 𝐿(𝑌, 𝑓𝑚))
is continuously reduced,

𝛼𝑚 = argmin
𝛼

𝑛∑︁
𝑖=1

𝐿(𝑦𝑖, 𝑓(𝑚−1) (®𝑥𝑖) + 𝛼ℎ𝑚 (®𝑥𝑖)) , ®𝑥𝑖 ∈ ®𝑋 , (A.7)

GBDT is known to create highly efficient and accuratemodels. Decision trees are constructed iteratively
(Fig. A.2), consisting of nodes (features) and leaves (predictions). A splitting criterion is used to find
the best feature to separate the samples of the data set with respect to the property of interest 𝑌 . This
2Parallel constructed decision trees are used in bagging methods such as the random-forest algorithm [266]).
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Fig. A.2. Gradient boosting continuously reduces the overall prediction error |𝑌 − 𝑓 | by sequentially minimizing
the residual errors of decision trees ℎ𝑚 ( ®𝑋) subject to a property of interest 𝑌 . At each step, gradient boosting
iteratively constructs the decision trees ℎ𝑖 ( ®𝑋) as tree-like models with nodes (features) and leaves (predictions)
based on a splitting criterion to find the feature 𝑋 ∈ ®𝑋 = {𝑋1, . . . , 𝑋𝑑} that best separates the samples of the
data. This procedure is repeated until the requirements are within the expected error of tolerance.

procedure is repeated until the requirements are within the expected tolerance of error, i.e., when
the overall prediction error has converged, there are no more than min_child_samples3 samples left
to split, or the specified maximum tree depth has been reached (max_depth3).

The efficiency and scalability of the piecewise-constant machine-learning model is largely de-
termined by the shrinkage factor 𝛾 (learning_rate3, cf., Eq. A.6) and the number of decision trees
(n_estimators3). In general, high shrinkage factors and large number of decision trees increase the
accuracy of the overall model, whereas lower shrinkage factors and smaller number of decision trees
lead to more robust and generalizable models. Learning rate and number of decision trees can be
adjusted by a hyper-parameter optimization and monitored during model creation (eval_metric3) by
stopping the addition of new decision trees as soon as a stopping criterion (e.g., the �1- or the �2-norm
[52, 249]) has not improved in the last early_stopping_rounds3 iterations.

3All names in the parentheses refer to the parameters in the documentation of the LightGBM package (https://lightgbm.
readthedocs.io/) [252, 267, 268].

https://lightgbm.readthedocs.io/
https://lightgbm.readthedocs.io/
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