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Abstract
In this thesis, we study different kinds of packing problems. A packing is an arrangement
of geometric objects in Euclidean space of any fixed dimension such that the interiors
of the packed objects are pairwise disjoint. The aim is to optimize some goal function
such as the area of the smallest convex container enclosing the objects or the number of
objects that can be packed into a given container. Here, we study problems only in two
or three dimensions.
The thesis is divided into two parts. In the first part, we study packing equal objects.

In most cases, we are given a container and want to compute the maximum number of
copies of an object that can be packed into it. We obtain the following results:

The container is a fat parallelogram or triangle. Given a container parallelogram by
a base edge and an additional point, there is a polynomial-time approximation scheme
(PTAS) to compute the maximum number of copies of an object that can be packed into
the container under translation or rigid motions if the following conditions hold:

• The inner angles of the container are bounded from below by a constant, i.e., the
container is fat.

• Either the object to be packed is part of the problem description and not part of
the algorithm input or the area of the object to be packed is bounded from below
by a constant times its squared diameter.

The same holds for a triangular container given by its side lengths.

The container is an arbitrary triangle. If the container is an arbitrary non-fat triangle
given by its side lengths, there can be a constant factor approximation for the maximum
number of unit disks that can be packed into it obtained in polynomial time.

The objects to be packed are unit disks or unit spheres. Given a convex container,
such that its area is bounded from below by a constant times its squared diameter, there
is a PTAS for computing the maximum number of unit disks that can be packed into
it. The same holds for any polygonal container, if its description is not part of the
input but part of the problem description and the input is just a scaling factor for it.
We also obtain a PTAS for a similar problem in three dimensions: Given a sphere by
its radius, what is the maximum number of unit spheres that can be packed into it?
For this result, we revisit parts of the proof of Hales [29] to obtain the following result:
There exists a constant c such that for every packing of infinitely many unit spheres into
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three dimensional space, the density inside a sphere of radius r is bounded from above
by π/

√
18 + c/r. It is crucial, that c is, in contrast to the proof of Hales et al. [30, 29],

independent of the packing.

Most variants of the problems just mentioned have in common that their input is very
concise, i.e., it consists only of a constant number of numbers. Therefore, it seems hard
to prove any kind of hardness or give algorithms and indeed, neither one of the problems
just mentioned is known to be NP-hard nor to be in NP. To our knowledge, these are
the first results of the approximability for this kind of problems with mentioned concise
input and therefore, the first about the complexity of this kind of problems.
The next result differs from the previously studied problems in the sense that the

input is larger. It is the last result in the first part of the thesis.

Packing unit disks in 3D under translation. In three dimensions, there is to our
knowledge no approximation algorithm known for packing objects different from axis-
parallel boxes under translation whereas in two dimensions, there is a constant factor
approximation for packing convex polygons under translations minimizing the area of
the smallest axis-parallel rectangular or convex container [6]. We make a step towards
packing more general objects in three dimensions by giving a constant factor approxi-
mation for packing unit disks under translation into an axis-parallel box with minimum
volume. Furthermore, we show that there can not be a convex container of bounded
volume such that all possible unit disks can be packed into it. This is in contrast to the
equivalent two dimensional problem where all possible segments with length one can be
packed for example into half a circle of radius two.

The second part of the thesis studies the complexity of two basic two-dimensional
packing problems.

Minimum area container packing. It is known that there can not be a PTAS for
Strippacking unless P = NP but there exists a constant factor approximation algo-
rithm (see e.g. [5]). For packing convex polygons under translation into minimum area
convex or axis-parallel rectangular containers, there is a constant factor approximation
[6]. Unlike for Strippacking, it is not known whether a PTAS can exist or not. We
narrow this gap by showing that there can not exist a FPTAS unless P = NP. The same
holds when we allow rotations by 90◦ additionally to translations.

Line segment packing. Kim and Miltzow showed that maximizing the number of line
segments from a given set of line segments that can be packed into a simple polygon is
NP-hard[40]. We strengthen this result by showing that packing the maximum number
of line segments into a square is NP-hard, albeit we allow parallel line segments, which
is not necessary for Kim and Miltzows result.
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Chapter1
Introduction
Packing problems are an issue probably since the dawn of mankind. They have been
investigated intensively at least for centuries. One of the arguably most famous ones first
popularized by 17th-century-mathematician Johannes Kepler is the following: What is
the densest arrangement of equally sized spheres in three dimensions? Allegedly, Kepler
came up with it when corresponding with the English mathematician Thomas Harriot
who was assigned to study how to stack cannonballs most efficiently by a befriended ship-
owner. Kepler conjectured that the most efficient way would be to place the spheres like
one would stack oranges (or cannonballs) intuitively (see Fig. 1.1).

Going forward in history, during the industrial revolution other packing problems
became of interest. For example when manufacturing clothes, one would like to waste
as little fabric as possible when cutting out the pieces the clothes are composed from.
The problem can be modeled as a two dimensional strip of infinite length and the goal
is to minimize the used length (strip packing) and is known to be NP- hard (see the
reduction from Partition in [5]). Similar problems arise when cutting metal sheets or
other materials or - a more every day like problem - when baking cookies and trying to
minimize the times one has to roll out the dough.
The increasing globalization made packing problems in the literal sense an issue: To

Figure 1.1: Spheres packed according to the Kepler conjecture.
Credits: User:Greg L, CC BY-SA 3.0 http://creativecommons.org/licenses/by-sa/3.0/, via Wikimedia Commons
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2 Introduction

save money, it is important to save space when packing goods into parcels and parcels
into ship or plane containers. Saving space would also save resources , e.g. cardboard
(lots of online traders are not really good at it these days...) and fuel, and eventually
the environment. This is true for a lot of applications of packing problems.
In todays digital era, the world is embraced by a network of cables, many of whom are

connecting continents through the oceans. To save money and resources when producing
and installing the cables it is a good idea to minimize the diameter of the cables. Since
one cable is composed of several cores, this can be modeled as packing equally sized
circles into a larger circle, see Fig. 1.2. In the beginning of 2020 another unpleasant

Figure 1.2: Profile of wires.

application of packing equally sized circles emerged. The pairwise distance of people is
of high interest to contain the Corona-pandemic. So, asking how many people can be in
one room with enough distance between them can be modeled as packing equally sized
circles into the shape of the room. This issue and its mathematical formulation has even
been discussed on Twitter, see Fig. 1.3.
The last two problems mentioned consider packing equally sized circles, so these prob-

lems are related to the two dimensional version of the problem studied by Kepler. It
took more than 200 years from Keplers conjecture to a first proof of the two dimensional
equivalent of the problem by Thue in 1890. A complete and rigorous proof was given
later by Fejes Tóth [23] (see Chapter 2 for details) and the actual three dimensional
Kepler conjecture was proven only recently by Hales et al.[29, 30] under the massive
usage of computers to e.g. check huge case-distinctions and verify the correctness with
theorem provers (we revisit a no-computer part of the proof in Chapter 6).

1.1 This Thesis
This thesis is divided into two parts. The first part is focused on packing congruent
objects. We start with packing unit circles, i.e., we study the "corona-problem" of how
many people are allowed in a room (see Fig. 1.3). In more detail, we are given a container
shape and ask how many unit circles can be packed into it. It is not known, whether this
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(i) How many kids are allowed in one
room? From www.twitter.com on
14/04/2020.

(ii) Answer from another user. From
www.twitter.com on 15/04/2020.

Figure 1.3

kind of problem is NP-hard. A similar problem is the pallet-loading-problem that asks
for the maximum number of rectangles with side lengths a, b that can be packed into a
container rectangle with side lengths A,B [45]. The problems have in common that the
input is very concise, i.e., in many cases it is only a constant number of numbers (for
instance when the container is a circle given by its radius). This concise input makes it
hard to show any kind of hardness or give efficient algorithms since the computation time
for reduction algorithms or algorithms solving the problems is very limited when aiming
for polynomial running time. When the input is larger, more is known: Packing unit
circles into a rectilinear polygon with holes is NP-hard[27]. Note, that here the container
polygon has many vertices making the input larger. The decision problem if a given set
of circles with different radii can be packed into a triangle, rectangle or container circle
is also NP-hard [18]. Again, the input is larger since the radius for every input circle is
given.
In Chapters 3 and 5, we give PTASs for packing unit circles into different shapes

of containers like so called fat parallelograms and triangles (see Definition 3.4 for a
precise definition of fatness), circles, fixed simple polygons and so called thick convex
containers (see Definition 3.12 for the definition of thickness). We generalize some of
the used ideas to pack objects other than circles like fixed or thick polygons into fat
parallelograms or triangles under translations only or rigid motions, or spheres into a
sphere in 3D. To achieve the generalization in 3D, we revisit a part of the proof of
the Kepler conjecture in Chapter 6 (this result has been made public via arXiv [46]).
Furthermore, we give a constant factor approximation for packing unit circles into a
general triangle in Chapter 4. These results are to our knowledge the first about the
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approximability, and hence the complexity, of this kind of problems. Extended abstracts
of the results in Chapters 3 to 5 have been presented on Workshops [11, 10].
For packing in 3D, Alt and Scharf [9] give constant factor approximation algorithms

for the NP-hard problems of packing axis-parallel boxes under translation or convex poly-
hedra under rigid motions (the hardness follows form the two-dimensional equivalent, see
[5]). To our knowledge there is no result to pack objects different from axis-parallel boxes
under translation only. In contrast, in 2D, there is a constant factor approximation by
Alt et al. to pack convex polygons under translation [6]. In Chapter 7 we give a constant
factor approximation for packing unit disks in 3D under translation and, therefore, a first
result for packing objects different from boxes under translation. The used techniques
lead to the additional result, that not all possible unit disks in 3D can be packed into a
container of constant size. This is in contrast to the equivalent two dimensional problem
of packing unit line segments since all unit line segments can for instance be packed into
a half circle. A preliminary version of Chapter 7 has been presented at a conference [8].
The second part deals with the complexity of some packing problems. Nevertheless,

we already give two results concerning the complexity of packing in the preliminaries
(Chapter 2) since we use it later: a wide range of packing problems can be formulated
as first-order sentences of the reals and hence they are in PSPACE[15] and can be solved
in exponential time. We use a similar argument to show that packing a set of polygons
under translation into a polygonal container is in NP. In a nutshell, there is a set of
linear inequalities that have to be fulfilled when the objects can be packed into the
container. These inequalities divide the space of possible solutions into cells and we can
nondeterministically guess a vertex in this arrangement by picking the right number of
inequalities. Afterwards, we check if the picked vertex corresponds to a valid solution.
This result seems to be folklore but we could not find a rigorous written down proof.
In Chapter 8 we study packing polygons into minimum area axis-parallel rectangles or

convex containers under translations or allowing rotations by 90◦. There is a constant
factor approximation by Alt, de Berg and Knauer [5] for packing under translation but it
is not known whether a PTAS can exist. We show a weaker result, i.e. that no FPTAS
can exist for this problem unless P = NP. In Chapter 9, we show that the decision
problem if a given set of line segments can be packed into a square is NP-hard by a
reduction from Partition.

1.2 Further Related Work
Packing has been studied extensively, see e.g. [5] for a survey on complexity and approx-
imability of packing problems,[47] for a survey on different kinds of packing problems
and algorithms to tackle them (in German), [33] for a survey of packing circles in the field
of operations research or [32, 35] for exemplary results. Also solving packing problems
up to optimality for a fixed number of objects is a wide field of research, see e.g. [22]
and [42] for overviews of the best known results for numbers partially up to thousands.

Besides the result that packing unit disks or squares into a rectilinear polygon with
holes is NP-hard by Fowler, Paterson and Tanimoto [27], it is also known that packing
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2x2 squares into an integer-grid polygon is NP-complete [39] (again, the input is large
since each grid-cell that is part of the container is given). The framework from Hochbaum
and Maas [34] can be used to obtain a PTAS for packing 2x2 squares into an integer-
grid polygon. We will use the idea of dividing the container into cells and computing
solutions for each cell individually in Chapter 3, however, our approach is much simpler.
For packing disks, the optimal worst case density, i.e., the maximum total area of a

set of disks that can always be packed into the container, is known for triangular, square
and circular containers by the split-packing-approach by Fekete et al. [26, 25]. Their
algorithms subdivide the container and input circles further in a divide and conquer
manner.
A very recent result by Abrahamsen, Miltzow and Seiferth shows that many variants

of packing polygons or similar objects is ∃R- complete [1]. There is a wide range of
other packing problems such as the well studied bin and strip packing, and geometric
knapsack problems, see e.g. [36, 2, 41, 19, 3], and variants of those that allow for example
to augment resources or ask for online algorithms, see e.g. [41, 24]. There are also more
specialized packing problems that have been studied recently, like placing coins on a shelf
[7] or minimizing the perimeter of the convex hull [38]. Even though we only mentioned
a small number of packing problems and known results, one can already imagine that
packing is an interesting and broad field of research. To give a full overview would go
beyond the scope of this introduction.





Chapter2
Preliminaries
In this chapter we introduce basic notations and concepts that we are going to use
throughout the thesis and give some preliminary results.

When talking about unit circles, unit spheres, unit disks or unit balls, we always mean
that they have radius one. We use the terms circle or sphere for container shapes and
disk or ball for the objects packed to emphasize that their interior is of relevance since
it has to be disjoint from other packed objects. Vectors will be denoted in boldface to
make it easier to distinguish them from numbers.
We start with the two dimensional equivalent of the Kepler conjecture proven by Fejes

Tóth [23]. It says that packing unit disks with their center on an equilateral triangular
grid with side length two (also called hexagonal grid, see Fig. 2.1) yields the highest
density, i.e., the portion of space covered by the packed disks is maximal. This packing
has a density of π/

√
12 ≈ 0.9069. It follows immediately by a limit argument from the

following theorem in [23].

Theorem 2.1. Let S be a set of congruent disks and S the total area of the disks in S.
Let R be a convex region with area R such that at least two disks from S can be packed
into R. If all disks in S can be packed into R, then S < π√

12R.

2.1 Model of Computation
In contrast to most literature on geometric algorithms, we do not use the real-RAM-
model to analyze our algorithms. Even though the analysis would be easier in some parts,
the real-RAM-model has downsides. For instance, one has to be extremely careful when
defining the operation set of the real-RAM. Since one operation has unit cost, even a
reasonable operation set might enable it to solve NP-complete or even PSPACE-complete
problems in polynomial time [48, 31]. Hence, analyzing the complexity of an algorithm in
the real-RAM- model is not very meaningful and it is not always obvious how to translate
given algorithms to a suitable model like Turing Machines or equivalents. In his paper
on shortest path in 3D [44], Papadimitriou tries to avoid this challenge by analyzing

7



8 Preliminaries

Figure 2.1: Optimal packing of unit disks in the plane.

his algorithm in the bit-model. Unfortunately he leaves gaps and misses details that
have later been given in the follow-up paper by Choi, Sellen and Yap[16]. This example
shows, how careful the analysis has to be made.

To circumvent the difficulties with the real-RAM-model, we use bit-complexity to
analyze our algorithms, i.e., the number of bit operations used. Additionally, this model
resembles reality more closely and is equivalent to Turing Machines under polynomial
time reductions. Since we have a finite number of bits as input, we can assume that all
input numbers are integers. Note that this also allows us to have rational numbers as
input represented by their integer nominator and denominator.

2.2 First-Order Formulas, NP, and Packing
2.2.1 First-Order Formulas of the Reals and Packing
One of the main ingredients for some of the algorithms given later is a subroutine to
decide if n identical objects can be packed into a given shape. The idea is to formulate
the decision problem as first-order formulas with polynomial inequalities as predicates
that we interpret over the reals. These formulas are called first-order formulas of the
reals.
Assume the shape and the objects to be packed can be described as quantifier free
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first-order formulas of the reals. We can use these formulas as subformulas to build a
first-order formula with no free variables (first-order sentence) representing our packing
problem as described later. Then, we can use an algorithm for the general decision
problem for the first-order theory of the reals, e.g. the algorithm of Basu et al. [12], to
decide whether it is true. Since this approach works in any dimension d, we describe it
here for the general d-dimensional case.
Let c(x1, . . . , xd) be a quantifier free first-order formula that describes a container

object, i.e., the formula evaluates to true if and only if we instantiate x1, . . . , xd with a
d-dimensional point (p1, . . . , pd) that lies in the interior of the container. The atoms of
c are polynomial inequalities and equalities with variables x1, . . . , xd. Analogously, let
f(x1, . . . , xd) be another quantifier free first-order formula that describes the objects to
be packed at some fixed position. In the following, we abbreviate ∃x1, ∃x2, . . .∃xl by
(∃x1 . . . xl) and ∀x1, ∀x2, . . .∀xl by (∀x1 . . . xl). For t = (t1, . . . td), we use ∃t and ∀t
as short notation for (∃t1, . . . td) and (∀t1, . . . td), respectively. The decision problem if
n copies of the object described by f can be packed under translation into the object
described by c can be formulated with the following formula:

(∃t1, . . . , tn)∀x
n∧
i=1

(f(x− ti)⇒ c(x))∧∧
1≤i<j≤n

(f(x− ti)⇒ ¬f(x− tj)) (2.1)

Each ti consists of d real valued variables and describes the translation vector for the i-th
object to be packed. Also, x consists of d real valued variables and is used to check in
the first part of the formula, that a point that is contained in an object is also contained
in the container, i.e., the translated objects lie inside the container. The second part
ensures that a point x cannot lie inside two objects at the same time, i.e., the objects to
be packed do not overlap.
Let p1 be the number of polynomial inequalities and equalities in c and a1 their

maximum degree. Let p2 be the number of polynomial inequalities and equalities in
f and a2 their maximum degree. Let l1 be the length of a description of c and l2 be
the length of a description of f in some constant size alphabet. Observe that formula
(2.1) consists of n · d+ d variables, p1 + n · p2 different polynomials and has a maximum
degree of a = max(a1, a2) and length O

(
n(l1 + l2) + n2l2

)
. From Theorem 1.3.2 in

[12] we get the following insights. The truth of such a formula can be decided with
(p1 + n · p2)(nd+1)(d+1)aO(nd2)O

(
n(l1 + l2) + n2l2

)
arithmetic and boolean operations. If

we can ensure that all coefficients in the equalities and inequalities are integers of bit-size
at most s then the bit-size of all output and intermediate integers is bounded by saO(nd2).
Let M(k) be the running time to multiply two k-bit integers. Since multiplication is the
most expensive arithmetic operation (in terms of used boolean operations), we get the
following theorem.

Theorem 2.2. If the coefficients in the inequalities and equalities that form the atoms of
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c and f are integers with maximum bit-size s, we can decide in time

(p1 + n · p2)(nd+1)(d+1)aO(nd2)O
(
n(l1 + l2) + n2l2

)
M
(
saO(nd2)) (2.2)

if n copies of the object described by f can be packed into the container described by c
under translation.

If the maximum number of copies of the object described by f that can be packed
into the container is at most N for some N ∈ N, we can find the maximum number in
the following way: We perform binary search on the number of objects packed where in
each step, we call the decision algorithm just described with n set to the number that is
tested in the step. Therefore, the following corollary follows directly form Theorem 2.2.

Corollary 2.3. If the coefficients in the inequalities and equalities that form the atoms of
c and f are integers with maximum bit-size s and the maximum number of (translated)
copies of the object described by f that can be packed into the object described by c is
bounded from above by N , we can calculate in time

(p1 +N · p2)(Nd+1)(d+1)aO(Nd2)O
(
N(l1 + l2) +N2l2

)
M
(
saO(Nd2))O(logN)

the maximum number of copies of the object described by f that can be packed into the
container described by c under translation. If p1, p2, a, d are constants and l1, l2 ∈ O(s),
and assuming M(k) ∈ O(km) for some constant m < 2, the running time simplifies to

NO(N)O(s ·M(s)). (2.3)

Similar results can be obtained when rotations are allowed. We will show exemplary
how to obtain them for packing in two dimensions under rigid motions next.

Packing under Rigid Motions As before, c(x, y) is a quantifier free first-order formula
that evaluates to true if and only if x, y are instantiated with p, q where the point (p, q)
lies inside the container and, analogously, f(x, y) is a formula describing the object to be
packed. The decision problem if n copies of the object described by f can be packed into
the container described by c under rigid motions can be formulated with the following
formula (recall that we are packing in two dimensions now):

(∃t1,x, . . . , tn,x, t1,y, . . . , tn,y, c1, . . . , cn, s1, . . . , sn)(∀x, y)
n∧
i=1

(
c2
i + s2

i = 1
)

∧
n∧
i=1

(f(x · ci − y · si − ti,x, y · ci + x · si − ti,y)⇒ c(x, y))

∧
∧

1≤i<j≤n
(f(x · ci − y · si − ti,x, y · ci + x · si − ti,y)⇒

¬f(x · cj − y · sj − tj,x, y · cj + x · sj − tj,y)). (2.4)
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Again, (ti,x, ti,y) describes the translation of the i-th object. ci and si are the cosine and
sine, respectively, of the angle that the i-th object is rotated by (the equation c2

i +s2
i = 1

ensures that they are valid values). The rest of the formula is analogous to the one for
packing without rotation.
As before, let p1 be the number of polynomial inequalities and equalities in c and a1

their maximum degree. Let p2 be the number of polynomial inequalities and equalities
in f and a2 their maximum degree. Let l1 be the length of a description of c and
l2 be the length of a description of f in some constant size alphabet. Observe that
formula (2.4) consists of 4n+ 2 variables, n+ p1 +n · p2 different polynomials and has a
maximum degree of a = max(a1, a2, 2) and length O

(
n(l1 + l2) + n2l2

)
. From Theorem

1.3.2 in [12] we get the following insights. As before, the truth of such a formula can be
decided with (n+ p1 + n · p2)(4n+3)·3aO(n2)O

(
n(l1 + l2) + n2l2

)
arithmetic and boolean

operations. Again, if we can ensure that all coefficients in the equalities and inequalities
are integers of bit-size at most s then the bit-size of all output and intermediate integers
is bounded by saO(n2). Let M(k) be the running time to multiply two k-bit integers.
Since multiplication is the most expensive arithmetic operation (in terms of used boolean
operations), we get the following theorem.

Theorem 2.4. If the coefficients in the inequalities and equalities that form the atoms of
c and f are integers with maximum bit-size s, we can decide in time

(n+ p1 + n · p2)O(n)aO(n2)O
(
n(l1 + l2) + n2l2

)
M
(
saO(n2)) (2.5)

if n copies of the object described by f can be packed into the container described by c
under rigid motions.

It should be noted that depending on the objects and container it might be necessary
to solve large first- order formulas of the reals. Therefore, the algorithms are not really
applicable in practice.
Similar to before, we can use binary search to compute the maximum number of copies

of the object that can be packed under rigid motions into the container if we have an
upper bound N for this number. Similar to Corollary 2.3, the running time would be
exponential in N , but polynomial in the encodings of f and c.

A formula similar to (2.4) can also be obtained for higher dimensions. It requires
inventing more variables beeing entries of a rotation matrix and additionally a polynomial
number of inequalities ensuring that the variables indeed are the entries of a rotation
matrix. Even though the formulas will get more complicated, it is still only a constant
factor if the dimension is fixed. So, the running times are analogous.
In the remainder of this thesis, we will refer to solving packing problems with the

approach discussed above as solving them with the exact algorithm. Whether we use the
approach for packing under translation only or under rigid motions will become clear
from the context.
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2.2.2 Packing Polygons and NP

In the following, we will show that deciding whether a given set P of n polygons can
be packed into a polygonal container C under translation is in NP. This seems to be
folklore, but we could not find a rigorous written down proof of that. We believe that
there are many other ways to prove this.
We will use the following intuitive definition in the proof in order to make it easier to

read.

Definition 2.5. Let ψ be a quantifier free first-order formula of the reals using variables
x1, . . . , xm. We say a point r ∈ Rm fulfills ψ, if and only if ψ evaluates to true when
replacing x1, . . . , xm by the coordinates of r in this order.

First, assume there is a quantifier free formula χ(A,B,C,D, t1, t2) that is true if and
only if the line segments AB translated by t1 and CD translated by t2 do not cross
and the atoms of χ(A,B,C,D, t1, t2) are a constant number of linear non-strict (≤,≥)
inequalities. By crossing we mean that they have exactly one point in common in their
relative interiors. Furthermore, we assume that Pi ∈ P is given by the sequence of its
vertices vi,1, . . . ,vi,ki ,vi,ki+1 where vi,1 = vi,ki+1 and analogously also C is given by the
sequence of its vertices vC,1, . . . ,vC,kC ,vC,kC+1. Then, the following first-order formula
of the reals is true, if the polygons in P can be packed into C under translation:

(∃t1, . . . , tn)
n∧
i=1

n∧
j=1

ki∧
l=1

kj∧
m=1

χ(vi,l,vi,l+1,vj,m,vj,m+1, ti, tj)

∧
n∧
i=1

ki∧
j=1

kC∧
l=1

χ(vi,j ,vi,j+1,vC,l,vC,l+1, ti,0). (2.6)

Observe that there are values for t1, . . . , tn that fulfill Eq. (2.6) even though they do not
give valid packings, namely when objects are packed into other objects or placed outside
the container. However, the inequalities in Eq. (2.6) form an arrangement of halfspaces
A with the following properties:

• Let t1, . . . , tn be a set of translations which gives a valid packing. Let C be the
cell in A containing the point corresponding to t1, . . . , tn. Then, all points in C
correspond to valid packings. This also holds for points on the boundary of C since
the polygons are allowed to touch (share points on their boundary) or touch the
boundary of the container polygon.

• The cells in A containing points that correspond to translations giving valid pack-
ings are bounded. This follows immediately from the fact that the polygons need
to be packed inside a bounded container.

• The number of halfspaces in A is bounded by a polynomial in the total number of
vertices of objects in P and vertices of C since χ(A,B,C,D, t1, t2) is build from a
constant number of linear inequalities.



2.2 First-Order Formulas, NP, and Packing 13

From the first two properties, it follows that there is a vertex in A representing a valid
packing if the objects can be packed into the container. Due to the third property, we
can guess nondeterministically such a vertex in A and check afterwards if it gives a valid
packing in order to decide if the polygons in P can be packed into C nondeterministically.
In more detail, we guess 2n inequalities that define a vertex in A, i.e. by replacing the
≤,≥ by =, and solving the resulting system of linear equalities. Solving a system of
linear equalities in polynomial time in the bit model is not trivial. However, with a
careful analysis it can be shown to be possible with a variant of Gaussian elimination
[21, 49].
Afterwards, we check if the packing corresponding to the point that is the guessed

vertex ofA is valid, i.e. if all polygons lie inside the container and no to polygons intersect
in their interior (see e.g. algorithms in 2.4 and 2.5 in [13] and the references therein on
how to do that). In order to ensure polynomial running time with this procedure, we
will show that indeed there exists χ(A,B,C,D, t1, t2) build from a constant number of
linear inequalities as assumed and furthermore the coefficients in the linear inequalities
are polynomials of bounded degree in the coordinates of A,B,C,D.
To obtain χ(A,B,C,D, t1, t2), we first generate equalities describing the lines sup-

porting the line segments of the form mx+ n = y. If the slope of the two line segments
is equal, we set χ(A,B,C,D, t1, t2) to true and we are done.

Otherwise, we get from the equalities representing the supporting lines formulas for
the coordinates of the intersection point of the two lines. Observe that m is independent
of t1, t2 and therefore, these formulas are linear in the coordinates of t1 and t2. The line
segments do not cross, if and only if

the x-value of the intersection point does not lie in the interior of the interval of
the x-values of A and B translated by t1,

or the x-value of the intersection point does not lie in the interior of the interval of
the x-values of C and D translated by t2.

or the y-value of the intersection point does not lie in the interior of the interval
between the y−values of A and B translated by t1,

or the y-value of the intersection point does not lie in the interior of the interval
between the y−values of C and D translated by t2.

This can easily be expressed as a disjunction of linear non-strict inequalities with co-
efficients being polynomials of the coordinates of A,B,C,D of bounded degree. This
concludes the proof of the following theorem.

Theorem 2.6. Packing polygons under translation into a polygonal container is in NP.
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Chapter3
PTAS for Packing into Fat
Parallelograms and
Triangles
In this chapter, we start with packing unit disks into fat parallelograms and fat triangles
(see Definition 3.4 for the definition of fatness) and show afterwards how to generalize
the used techniques to pack other objects. We will give a PTAS for all mentioned
problems, i.e., the algorithms achieve a (1 − ε) approximation ratio and their running
time is polynomial in the input size for any fixed ε. Recall that the complexity measure
used to analyze the running time of the algorithms is the bit-complexity, i.e., the number
of bit-operations (which is within a constant factor of operations in any other constant
size alphabet). The idea for the PTAS is to divide the container into small equal cells
and compute optimal solutions for these cells. The solution returned is the sum of the
solutions for the small cells. Even though this idea is seemingly simple, the algorithms
give a first result on the approximability of these problems and the challenge lies in
working out the details and proving their approximation factors and running times.

3.1 Preliminaries
In this section, we state some minor findings that will be useful to prove the main results
of this chapter later on.
When analyzing our algorithms in the remainder of this section, we will use the fol-

lowing Lemma to get an upper and a lower bound on the maximum number of unit disks
that can be packed into a parallelogram. Recall that unit disks have radius one.

Lemma 3.1. Let n be the maximum number of unit disks that can be packed into a

17
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parallelogram with side lengths a, b and smaller angle γ. If n ≥ 2 then

n >
ab sin2 γ

16
and

1√
12
ab sin γ > n. (3.1)

Proof. The second inequality follows immediately from Theorem 2.1. For the first in-
equality, consider a packing on a rhombus-grid with side length 2

sin γ into the container
parallelogram as shown in Fig. 3.1 ( 2

sin γ is the smallest side length of a rhombus grid
such that unit disks can be packed onto it). This packing has size

2
sin γ

Figure 3.1: Lower Bound on the number of unit disks that can be packed into a paral-
lelogram.

⌊
a sin γ

2

⌋⌊
b sin γ

2

⌋
.

It is known that bxc > x
2 for x > 1. Since at least two unit disks can be packed into the

container, we know that a sin γ
2 > 1 and b sin γ

2 > 1. This gives⌊
a sin γ

2

⌋⌊
b sin γ

2

⌋
>
ab sin2 γ

16 ,

and completes the proof.

Therefore, to apply the upper bound given in Lemma 3.1 when packing into a parallel-
ogram with side lengths a, b and smaller angle γ we have to make sure that at least two
unit disks can be packed into the parallelogram. We will use the following observation
in the analysis of our algorithm to justify the application of this lemma. See Fig. 3.2 for
illustration.

Observation 3.2. Let C be a parallelogram with side length w, h and smaller angle γ
where w ≥ 2

sin γ and h ≥ 4
sin γ . Then, at least two unit disks can be packed into C.
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2
sin γ

4
sin γ

2

Figure 3.2: Two unit disks can be packed into a parallelogram with side lengths 2
sin γ and

4
sin γ .

The side lengths given in the observation above are obviously not optimal but they
are good enough for our purpose.
In the approximation algorithms given in the remainder of this problem, it is sometimes

necessary to calculate rounded down values of fractions, where the numerator is of the
form f1 +

√
(f2) and f1, f2 and the denominator are polynomials with integer coefficients

of bounded degree. We can calculate these values exactly by the following observation.

Observation 3.3. Let a1, . . . , ak be a set of integers. Let f1(x1, . . . , xk), f2(x1, . . . , xk),
g(x1, . . . , xk) be polynomials with integer coefficients of constant maximum degree. As-
sume g(x1, . . . , xk) > 0. Then, we can calculate⌊

f1(a1,...,ak)+
√

f2(a1,...,ak)
g(a1,...,ak)

⌋
in time polynomial in the total length of the bit-representation

of a1, . . . , ak.

Proof. Observe that f1(a1, . . . , ak), f2(a1, . . . , ak), g(a1, . . . , ak) are integers and can be
computed with standard computer arithmetic in polynomial time. Assume, we know the
integer part s of

√
f2(a1, . . . , ak), i.e., s2 ≤ f2(a1, . . . , ak) < (s+ 1)2. Then, we can com-

pute
⌊

f1(a1,...,ak)+
√

f2(a1,...,ak)
g(a1,...,ak)

⌋
in polynomial time with standard computer arithmetic al-

gorithms [14] since
⌊

f1(a1,...,ak)+
√

f2(a1,...,ak)
g(a1,...,ak)

⌋
=
⌊

f1(a1,...,ak)+s
g(a1,...,ak)

⌋
. Since s can also be calcu-

lated with standard computer arithmetic [14], we can compute
⌊

f1(a1,...,ak)+
√

f2(a1,...,ak)
g(a1,...,ak)

⌋
in polynomial time.

3.2 PTAS for Packing Unit-Disks into Fat
Parallelograms and Triangles

In this subsection, we will give PTASs to pack unit disks into fat parallelograms or
triangles, i.e., additional to the input container we are given an ε with 0 < ε < 1 and
want to compute solutions of size at least (1 − ε) times the size of an optimal solution
in time polynomial in the input size for fixed ε. The next definition specifies what we
mean by fat.
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Definition 3.4 (α0-fatness). For a constant α0 with 0 < α0 ≤ π
2 , we call parallelograms

and triangles α0-fat iff all inner angles are at least α0.

In the following, we assume that α0 is some fixed constant and call α0-fat parallelo-
grams and triangles just fat.

The basic idea of the algorithms given in this section is similar to the approach by
Hochbaum and Maass [34]: We divide the container into smaller cells such that we can
compute the optimal solution inside one cell in polynomial time for fixed ε. The solution
returned is the sum of the partial solutions in the cells. To calculate the optimal solution
in a grid-cell, we will use the approach discussed in Section 2.2.1.
To guarantee that the running time of the approach just described is polynomial, we

would like to have among others three properties:

P1 The cells are not too big such that there is a constant upper bound that depends
only on ε. See Corollary 2.3 for how this upper bound effects the running time
(There, this upper bound is called N).

P2 There is only a polynomial number of differently shaped cells on the boundary of
the container, since we need to run the exact algorithm discussed in Section 2.2.1
for each cell-shape.

P3 The formulas describing the cell-shapes are not too complicated, meaning that the
number of different polynomials and the maximum degree are constants and that
the length of the formula is a linear in the input-length. See Corollary 2.3 for the
resulting running time.

Note that one could adapt the framework given by Hochbaum and Maass to approximate
the maximum number of unit disks that can be packed into a fat parallelogram. Such an
adaptation would also need to fulfill P1 to P3 despite others and hence, our algorithm
is much simpler.

The following lemma will be the key-ingredient for the analysis of our algorithms for
fat parallelograms and triangles.

Lemma 3.5. Let optγ(a, b) be the maximum number of unit disks that can be packed into
a parallelogram with side lengths a, b and smaller angle γ. Let 0 < ε < 1.
If a ≥ 37

ε sin2 γ
and b ≥ 2

sin γ then

optγ(a, b)
optγ

(
a+ 2

sin γ , b
) > 1− ε.

If a, b ≥ 37
ε sin2 γ

then

optγ(a, b)
optγ

(
a+ 2

sin γ , b+ 2
sin γ

) > 1− ε.
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Proof. We start with proving the first inequality. Observe that optγ(a + 2/ sin γ, b) ≥
optγ(a, b) > 1 since a > 4/ sin γ and b ≥ 2/ sin γ (see Observation 3.2). Consider an opti-
mal packing into the enlarged parallelogram with side lengths a+2/ sin γ, b together with
a smaller parallelogram with side lengths a, b where all sides except one are aligned with
the enlarged parallelogram (see Fig. 3.3i). Observe that all disks in the optimal packing
that are not contained in the smaller parallelogram are contained in a parallelogram
with side lengths 4/ sin γ, b. Hence, the following holds

optγ(a, b)
optγ

(
a+ 2

sin γ , b
) ≥ optγ(a, b)

optγ(a, b) + optγ
(

4
sin γ , b

)
≥ 1−

optγ
(

4
sin γ , b

)
optγ(a, b)

≥ 1−
4

sin γ · b · sin γ ·
1√
12

ab · sin2 γ · 1
16

,

where the last inequality follows from Lemma 3.1. Further rearranging gives

optγ(a, b)
optγ

(
a+ 2

sin γ , b
) ≥ 1− 4 · 16√

12
· 1
a sin2 γ

≥ 1− 64√
12
· sin2 γ · ε

37 · sin2 γ
> 1− ε,

by the definition of a.

The proof of the second inequality is similar. Consider an optimal packing of unit disks
into a parallelogram with side lengths a + 2/ sin γ, b + 2/ sin γ together with a smaller
parallelogram with side lengths a, b aligned with two sides of the enlarged parallelogram
as shown in 3.3ii. All disks packed into the enlarged parallelogram that are not contained
in the smaller parallelogram, are contained in two parallelograms with side lengths a+
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2/ sin γ, 4/ sin γ and 4/ sin γ, b+ 2/ sin γ, respectively. Hence, the following holds

optγ(a, b)
optγ

(
a+ 2

sin γ , b+ 2
sin γ

)
≥

optγ(a, b)
optγ(a, b) + optγ

(
a+ 2

sin γ ,
4

sin γ

)
+ optγ

(
4

sin γ , b+ 2
sin γ

)
≥ 1−

optγ
(
a+ 2

sin γ ,
4

sin γ

)
+ optγ

(
4

sin γ , b+ 2
sin γ

)
optγ

(
a+ 2

sin γ , b+ 2
sin γ

)
≥ 1−

optγ
(
a+ 2

sin γ ,
4

sin γ

)
optγ

(
a+ 2

sin γ , b
) −

optγ
(

4
sin γ , b+ 2

sin γ

)
optγ

(
a, b+ 2

sin γ

)
≥ 1−

(
a+ 2

sin γ

)
4

sin γ · sin γ ·
1√
12(

a+ 2
sin γ

)
b · sin2 γ · 1

16

−
4

sin γ

(
b+ 2

sin γ

)
· sin γ · 1√

12

a
(
b+ 2

sin γ

)
· sin2 γ · 1

16

,

where the last inequality follows from Lemma 3.1. Further rearranging gives

optγ(a, b)
optγ

(
a+ 2

sin γ , b+ 2
sin γ

)
≥ 1− 4 · 16√

12

( 1
b sin2 γ

+ 1
a sin2 γ

)
≥ 1− 64√

12
· 2 · sin2 γ · ε

37 · sin2 γ
> 1− ε,

by the definition of a and b.

3.2.1 Packing into Fat Parallelograms
The idea of the PTAS in more detail is as follows: We divide the container parallel-
ogram by a rhombus-grid with grid-lines parallel to the boundaries of the container-
parallelogram into parallelogram-shaped cells. The container-parallelogram is given by
the length of the base parallel to the x-axis a and a point (bx, by) with a, bx, by ≥ 0. We
assume that the smaller angle γ of the parallelogram is at least α0, i.e., the parallelogram
is fat (see Definition 3.4). Let b =

√
b2x + b2y be the side length of the container different

from a. We will use b and γ in the following only for notation and will never calculate
these values explicitly as we will see later.
We place the grid with side length m ∈ O(1/ε) such that it is aligned with the left

and bottom boundary of the container parallelogram. See Fig. 3.4 for illustration.
Observe that we create only 4 different cell-shapes in this way. We calculate the opti-

mal solution for every occurring cell-shape with the algorithm discussed in Section 2.2.1.
The returned result is the sum of the optimal values multiplied by the number of occur-
rences of the corresponding cell-shape.
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γ

a 2
sin γ

2 · 2
sin γ

b
2

(i) All disks packed into the larger parallelogram with side lengths a + 2/ sin γ, b that are not
contained in the smaller parallelogram with side lengths a, b are contained in the grey paral-
lelogram.

γ

a 2
sin γ

2 · 2
sin γ

b

2
sin γ

2 · 2
sin γ

2

(ii) All disks packed into the larger parallelogram with side lengths a+ 2/ sin γ, b+ 2/ sin γ that
are not contained in the smaller parallelogram with side lengths a, b are contained in the two
grey parallelograms.

Figure 3.3

In the following, let optγ(v, w) denote the maximum number of unit disks that can
be packed into a parallelogram with side lengths v, w and smaller angle γ. For ease of
notation, we use the mod-operator for real values in the same way as for integers: Let
x, y, r ∈ R with x =

⌊
x
y

⌋
· y + r. Then x mod y = r.

Algorithm 3.1 summarizes the idea of the algorithm just described. We assume that
all input-numbers are given as fractions of integers, i.e. an input-number x is given
as (xn, xd) with x = xn

xd
and xn, xd ∈ Z+. For the calculation of the side length of the

rhombus-grid m that we use to partition the container, we would like to use sinα0. Since
α0 is a constant, there exists s > 0 with s ≤ sinα0 and s = sn

sd
with sn, sd ∈ N+.
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γ

a

(bx, by)

m
×m

(0, 0)

Figure 3.4: Parallelogram divided into cells defined by rhombus-grid with side length m.

Algorithm 3.1:
Input: Number a ∈ Q+, point (bx, by) ∈ Q2

+, parameter ε ∈ Q+
Output: Nonnegative integer n

1 m := 37s2d
s2n·ε

;
2 Compute the following values with the exact algorithm (see Section 2.2.1):

(i) n1 = optγ(m,m);

(ii) n2 = optγ(a mod m,m);

(iii) n3 = optγ(m, b mod m);

(iv) n4 = optγ(a mod m, b mod m);

3 Calculate n =
⌊
a
m

⌋⌊
b
m

⌋
· n1 +

⌊
b
m

⌋
· n2 +

⌊
a
m

⌋
· n3 + n4;

4 return n

To show that Algorithm 3.1 is a PTAS we have to show that the algorithm computes
indeed a (1 − ε)-approximation and that it can be implemented with running time
polynomial in the input size for fixed ε. We start with analyzing the running time.

Lemma 3.6. Algorithm 3.1 can be implemented with polynomial running time for fixed
ε.

Proof. As mentioned earlier, we will not calculate b or γ explicitly and will show later
how to calculate the values depending on b and γ. We can store m as a fraction mn

md
,

where mn = 37 · εd · s2
d and md = s2

n · εn can obviously be calculated in constant time for
fixed ε.

As described earlier in P1 to P3, we need to ensure that there exists an upper bound
on the number of unit disks that can be packed into a cell, and the formulas describing
the objects to be packed and the cells are not too complex.
The number of unit disks that can be packed in any of the cells is trivially upper

bounded by m2

π = O
(

1
ε2

)
. The objects to be packed, i.e., unit disks, can easily be
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described with f(x, y) = x2 + y2 < 1. In the following, we derive formulas for the
different cell-shapes.
A rhombus with side length m and smaller angle γ can be seen in Fig. 3.5. We obtain

the following formula for the container-shape:

c1(x, y) : y > 0 ∧ y < by
bx
x ∧ y > by

bx
x− by ·mn

bx ·md
∧ y < by ·mn

md

√
b2x + b2y

. (3.2)

Eq. (3.2) can obviously transformed such that all coefficients are integers which results

(0, 0)

y =
by
bx
x y =

by
bx
x− by

bx
m

y =
by·m√
b2x+b2y

y = 0
m

m

Figure 3.5: Rhombus with side length m and equalities defining its boundaries.

partially in quadratic inequalities. Similarly, a parallelogram with side lengths m and
b mod m, and smaller angle γ can be described with the following formula (see Fig. 3.6):

c2(x, y) : y < by ∧ y >

md

√
b2x + b2y

mn

 bymn√
b2x + b2y

∧ y < by
bx
x ∧ y > by

bx
x− bymn

bxmd
. (3.3)

Observe that
⌊
md
√
b2x+b2y
mn

⌋
=
⌊
md
√
b2x,nb

2
y,d

+b2y,nb2x,d
mnbx,dby,d

⌋
, where bx = bx,n

bx,d
, by = by,n

by,d
with

bx,n, bx,d, by,n, by,d ∈ N. Therefore, we can calculate
⌊
md
√
b2x+b2y
mn

⌋
exactly by Observa-

tion 3.3. So, we can easily rewrite Eq. (3.3) such that all coefficients are integers as for
the rhombus-shaped cell. We do the same for the other two cell-types,i.e., cells on the
right boundary of the container-parallelogram and the cell in the upper right corner:

c3(x, y) :y > 0 ∧ y < bx
by
x ∧ y < by

bx
x− by

bx

⌊
a ·md

mn

⌋
mn

md
∧ y > by

bx
x− by

bx
a, (3.4)

c4(x, y) :y < by ∧ y >

md

√
b2x + b2y

mn

 bymn√
b2x + b2y

∧ y < by
bx
x− by

bx

⌊
a ·md

mn

⌋
mn

md
∧ y > by

bx
x− by

bx
a. (3.5)
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(0, 0)

y =
by
bx
x y =

by
bx
x− by

bx
m

y =

⌊√
b2x+b2y
m

⌋
by·m√
b2x+b2y

y = by

container
parallelogram

cell parallelogram on
upper boundary

Figure 3.6: Parallelogram with side lengths m, b mod m and equalities defining its
boundaries.

Summarizing, each cell can be described by a formula consisting of 4 quadratic inequal-
ities with only integer coefficients. We observed earlier that in each of the cells at
most m2 = O

(
1
ε2

)
unit disks can be packed and a unit disk can be described with one

quadratic inequality. Let l be the bit length of the largest integer in the input (remember
that bx, by, a, ε ∈ Q, i.e., they consist of two integers). So, the bit length of the largest
coefficient that we create and the total length of the formula when rearranging the in-
equalities such that all coefficients are integers is bounded by O(l). By Corollary 2.3,
we can compute the optimal solution for one cell in time(1

ε

)O( 1
ε2
)
O(l ·M(l))

which is polynomial in the input size for fixed ε. Hence, n1, n2, n3, n4 in Algorithm 3.1
can be calculated in time polynomial in the input size for fixed ε. Since

⌊
a
m

⌋
can be

easily calculated in polynomial time by algorithms from [14] and
⌊
b
m

⌋
=
⌊√

b2x+b2y
m

⌋
can

be calculated in polynomial time by Observation 3.3, the overall running time of the
algorithm is polynomial in the input size for fixed ε.

It remains to analyze the approximation factor of Algorithm 3.1.

Lemma 3.7. Algorithm 3.1 computes a (1− ε)-approximation.

Proof. In the following, we call grid-lines of the rhombus grid described in the beginning
of this section horizontal if they are parallel to the x-axis and vertical otherwise. Consider
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an optimal packing of optγ(a, b) =: OPT unit disks into the container parallelogram
together with the following assignment to the cells: If a unit disk is completely contained
in a cell, assign it to that cell. If a unit disk intersects a horizontal grid-line and no
vertical grid-line, assign it to the lower cell that it intersects. If a unit disk intersects
only a vertical grid-line and no horizontal grid-line, assign it to the left cell that it
intersects. If a unit disk intersects a horizontal and a vertical grid-line, assign it to
the cell at the bottom left of the intersection of the vertical and the horizontal grid-
line intersected. See Fig. 3.7 for illustration. Observe that a disk cannot intersect
more than one horizontal or vertical grid line since the distance of the grid lines is
m · sin γ = 37s2d

s2n·ε
· sin γ ≥ 37

sin2 α0·ε
· sin γ ≥ 37

sin γ·ε > 2.

Figure 3.7: All depicted disks are assigned to the grey cell.

In order to show that Algorithm 3.1 is a PTAS, we need to show n
OPT ≥ (1−ε), where

n is the return value from the algorithm with

n =
⌊
a

m

⌋⌊
b

m

⌋
· optγ(m,m) +

⌊
a

m

⌋
· optγ(m, b mod m)+⌊

b

m

⌋
· optγ(a mod m,m) + optγ(a mod m, b mod m).

Let assignγ(v, w) denote the maximum number of unit disks that is assigned to a
parallelogram-cell with side lengths v, w and smaller angle γ in the assignment described
above. Then

OPT ≤
⌊
a

m

⌋⌊
b

m

⌋
· assignγ(m,m) +

⌊
a

m

⌋
· assignγ(m, b mod m)+⌊

b

m

⌋
· assignγ(a mod m,m) + assignγ(a mod m, b mod m).

So, if we can show

1. optγ(m,m) ≥ (1− ε) assignγ(m,m) and
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2. optγ(a mod m,m) ≥ (1− ε) assignγ(a mod m,m) and

3. optγ(m, b mod m) ≥ (1− ε) assignγ(m, b mod m) and

4. optγ(a mod m, b mod m) ≥ (1− ε) assignγ(a mod m, b mod m),

the desired approximation factor follows immediately. We will prove these four inequal-
ities in the following.

1. optγ (m,m) ≥ (1 − ε)assignγ (m,m) First, we want an upper bound on the
number of unit disks that are assigned to a rhombus-shaped cell. Recall that only disks
completely contained in the cell or disks close to the upper and/or right boundary of the
cell are assigned to the cell. So, all disks assigned to a rhombus-cell with side length m
are contained in a rhombus with side length m+ 2

sin γ (see Fig. 3.8).

2

γ

m+ 2
sin γ

m

Figure 3.8: All disks assigned to the rhombus-cell with side length m are completely
contained in the rhombus with side length m+ 2

sin γ .

Therefore, we get

optγ(m,m)
assignγ(m,m) ≥

optγ(m,m)
optγ

(
m+ 2

sin γ ,m+ 2
sin γ

) .
Since m = 37s2d

s2n·ε
≥ 37

sin2 α0·ε
≥ 37

sin2 γ·ε , we get by Lemma 3.5

optγ(m,m)
assignγ(m,m) > 1− ε.

2. optγ (a mod m,m) ≥ (1−ε)assignγ (a mod m,m) We make a case-distinction
depending on the value of a mod m. The first case follows the same idea as the previous
paragraph.
Case 1: a mod m ≥ 2

sin γ
All unit disks that get assinged to a parallelogram-cell with side lengths a mod m,m

are completely contained in a parallelogram with side lengths a mod m,m+ 2
sin γ . Observe
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that we do not need to enlarge the other side of the parallelogram since this cell-shape
only occurs on the boundary of the container. Thus,

optγ(a mod m,m)
assignγ(a mod m,m) ≥

optγ(a mod m,m)
optγ

(
a mod m,m+ 2

sin γ

) .
Since a mod m ≥ 2

sin γ and m ≥ 37
sin2 γ·ε , we get by Lemma 3.5

optγ(a mod m,m)
assignγ(a mod m,m) > 1− ε.

Case 2: a mod m < 2
sin γ

In this case either a = a mod m < 2
sin γ which means that no disk can be packed into

the container-parallelogram. Algorithm 3.1 returns 0 if this happens. Or a 6= a mod m
which means that no disks are assigned to this cell shape, i.e., assignγ(a mod m,m) =
0 = optγ(a mod m,m).

3. optγ (m,b mod m) ≥ (1 − ε)assignγ (m,b mod m) Since optγ(m, b mod m) =
optγ(b mod m,m), the calculations are analogous to the previous paragraph.

4. optγ (a mod m,b mod m) ≥ (1 − ε)assignγ (a mod m,b mod m) Recall that
a parallelogram-cell with side lengths a mod m, b mod m only occurs once at the upper
right corner of the container. Therefore, only disks completely contained in that cell are
assigned to the cell. This immediately gives

optγ(a mod m, b mod m) ≥ assignγ(a mod m, b mod m)
≥ (1− ε) assignγ(a mod m, b mod m).

This concludes the proof as described earlier.

Lemma 3.6 and Lemma 3.7 together give one of the main results of this chapter.

Theorem 3.8. Algorithm 3.1 is a PTAS for packing the maximum number of unit disks
into a given fat container-parallelogram.

3.2.2 Packing into Fat Triangles
We will use the same overall idea for packing unit disks into fat triangles, i.e., we divide
the container with a grid into smaller cells, calculate the optimal solution for each cell
type with the algorithm described in Section 2.2.1 and return the sum of the results
multiplied by the number of occurrences of the cell-type. We assume that the triangle
is given by its side lengths a, b, c ∈ Q with a ≥ b ≥ c and all inner angles are at least
α0, i.e., the triangle is fat. There is one detail that does not work in the same way as
for parallelograms (see Fig. 3.9): If we divide the triangle with a rhombus-grid of side
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length O
(

1
ε

)
into cells, we get Ω

(
c
ε

)
many different cell shapes and we have to calculate

the optimal solution for each of them. This is not polynomial in the input size and so
the running time of the algorithm would not be polynomial in the input size.

Figure 3.9: Dividing a triangle into cells with a rhombus-grid yields too many different
cell-shapes.

This is why we will use another approach for the grid: The grid-cells will be paral-
lelograms with side lengths a

g ,
b
g for some g ∈ N with g ∈ Θ(ε · b). We give the exact

definition of g later. As one can see in Fig. 3.10, this partitioning yields only two differ-
ent cell-types. As for Algorithm 3.1, we would like to use sinα0 to calculate g. Again,

b

b
g

a
g

a

c

Figure 3.10: Dividing a triangle into cells with a parallelogram-grid with side lengths
a
g ,

b
g yields only two cell-types. Here g = 8.

since α0 is a constant, there exist constants sn, sd ∈ N+ such that sinα0 ≥ sn/sd > 0.
Let γ be the angle between the sides with length a and b. We only use it for notation
in the algorithm and will never calculate it or use it otherwise. We state the detailed
algorithm including the definition of g in the following. Again, we assume that rational
numbers x ∈ Q are given as two integers xn, xd with x = xn/xd.
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Algorithm 3.2:
Input: Number a, b, c ∈ Q+, parameter 0 < ε < 1 ∈ Q+
Output: Nonnegative integer n

1 g :=
⌊

1
37 · εb ·

s2n
s2
d

⌋
;

2 if g ≤ 1 then
3 Compute the maximum number of unit disks that can be packed into a

triangle with side lengths a, b, c with the exact algorithm (see
Section 2.2.1) and return it;

4 Compute n1 = optγ
(
a
g ,

b
g

)
with the exact algorithm;

5 Compute the maximum number n2 of unit disks that can be packed into a
triangle with side lengths a

g ,
b
g ,

c
g with the exact algorithm;

6 Calculate n = g2−g
2 · n1 + g · n2;

7 return n

As for parallelogram-shaped containers, we will first analyze the running time of the
algorithm and afterwards its approximation factor.

Lemma 3.9. Algorithm 3.2 runs in time polynomial in the input size.

Proof. Since we use the exact algorithm described in Section 2.2.1 to calculate n1 and n2,
we need to show that the number of unit disks that can be packed into a parallelogram
with side lengths a

g ,
b
g and smaller angle γ is bounded by a constant, and that the two

different cell-shapes can be described with a polynomial-size formulas. The objects to
be packed can be described easily with f(x) = x2 + y2 ≤ 1. Observe that if the optimal
value for the whole triangle is calculated in Line 3, we have g ≤ 1, which implies a ≤ a

g ,
b ≤ b

g , and c ≤
c
g . So, the analysis of the running time in this case is analogous to the

analysis of the running time of the calculation of n2.
The number of unit disks that can be packed in any of the cells is clearly upper

bounded by

a · b
g2 · π

= a · b⌊
1
37 · εb ·

s2n
s2
d

⌋2
· π

= O
(
a · b
ε2 · b2

)
= O

( 1
ε2

)
(b ≥ a

2 since a ≥ b ≥ c).

Similarly to the proof of Lemma 3.6, the cells can be described by first-order formulas
with polynomial length description.
So, we have the same bounds as in the proof of Lemma 3.6. Again, let l be the

maximum bit length of any input integer. Then, analogously to the proof of Lemma 3.6,
the running time to compute the optimal solution for one cell is (1/ε)O(1/ε2)O(l ·M(l))
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which is polynomial in the input size for fixed ε. Hence, n1 and n2 in Algorithm 3.2 can
be computed in polynomial time. Afterwards, n can easily be calculated and therefore,
the complete algorithm has polynomial running time.

Next, we analyze the approximation factor of Algorithm 3.2.
Lemma 3.10. Algorithm 3.2 computes a (1− ε)-approximation.
Proof. Let OPT be the maximum number of unit disks that can be packed into the
input triangle with side lengths a, b, c. We like to show n

OPT ≥ (1− ε), where n is the
return value from Algorithm 3.2. Consider an optimal packing of OPT disks together
with the same assignment to the cells as in the proof of Lemma 3.7: If a unit disk is
contained in a cell, assign it to that cell. If a unit disk intersects only the horizontal
boundary of a cell, assign it to the lower cell that it intersects. If a unit disk intersects
only a vertical boundary of a cell, assign it to the leftmost cell that it intersects. If a
unit disk intersects a horizontal and a vertical grid-line, assign it to the cell at the lower
left of the intersection of these two grid-lines. Observe that g ≤ εb sin2 γ

37 implies
a

g
≥ b

g
≥ 37

sin2 γε
≥ 37

sin γ , (3.6)

i.e., a disk cannot intersect two horizontal or two vertical grid-lines. Furthermore, in the
assignment described above, no unit disk not completely contained in a triangular cell
gets assigned to a triangular cell. Therefore, it suffices to show

optγ
(
a
g ,

b
g

)
assignγ

(
a
g ,

b
g

) ≥ (1− ε),

i.e., that the number of disks packed into a parallelogram-cell by Algorithm 3.2 is at
least (1− ε) times the maximum number of disks that get assigned to a parallelogram-
cell in an optimal packing. We use the same observations as in the proof of Lemma 3.7,
namely that all disks assigned to a cell are contained in a parallelogram with side lengths
a
g + 2

sin γ ,
b
g + 2

sin γ . This gives

optγ
(
a
g ,

b
g

)
assignγ

(
a
g ,

b
g

) ≥ optγ
(
a
g ,

b
g

)
optγ

(
a
g + 2

sin γ ,
b
g + 2

sin γ

) .
As observed in (3.6) above, ag ≥

b
g ≥

37
sin2 γ·ε holds. So we get by Lemma 3.5

optγ
(
a
g ,

b
g

)
assignγ

(
a
g ,

b
g

) > 1− ε.

As described earlier, this concludes the proof.

Lemma 3.9 and Lemma 3.10 together give the following theorem.
Theorem 3.11. Algorithm 3.2 is a PTAS for computing the maximum number of unit
disks that can be packed into a fat triangle given by its side lengths a, b, c ∈ Q.
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3.3 Generalization
We believe that the approach given in the previous section (Section 3.2) can easily be
generalized for packing very many different objects than unit disks.

We assume in the following that for parallelogram-shaped and triangular containers,
the edge with length a is parallel to the x-axis (See the inputs of Algorithms 3.1 and 3.2).
There are two main ways to generalize the problem:

(a) The objects to be packed are part of the problem description, not part of an
instance of the problem. Hence, all parameters of the objects to be packed are
constants.

(b) The objects to be packed are part of an instance of the problem, i.e., they are part
of the input for the algorithms to compute an approximate solution.

We will address both variants in the remainder of this section. Most of the time, the
generalizations work for both variants and we will address explicitly, if they do not. In
the following, we will give an outline on how to generalize the approach and afterwards
follow this outline showing exemplary how to generalize the approach for packing copies
of a polygon P under translation and, afterwards, under rigid motions.

Outline for Generalization Observe that there are four major points in the approach
above that need to be modified:

1. We need an equivalent to Lemma 3.1, i.e., an upper and a lower bound for the
maximum number of copies of P that can be packed into a parallelogram.

2. Following the proof of Lemma 3.5, we get from the modified version of Lemma 3.1
a modified version of Lemma 3.5 with adapted lower bounds on a and b, i.e., lower
bounds for the side lengths of the cells such that we obtain a (1−ε)-approximation
for each cell-type.

3. From the modified version of Lemma 3.5, we obtain updated values for m and g in
Algorithm 3.1 and Algorithm 3.2, respectively. We need to ensure that these values
or close enough approximations can be computed in polynomial time in order to
obtain a polynomial running time for the algorithms.

4. We need to ensure that it is possible to calculate the optimal solution for one grid-
cell in polynomial time. Therefore, we need to show that the object to be packed
can be encoded with a polynomial length formula, and the number of objects that
can be packed into one cell is bounded from above by a constant for fixed ε (see
P1 and P3).
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3.3.1 Packing Polygons under Translation
Next, we will generalize the approach following the outline above for packing copies of a
simple polygon P under translation instead of unit disks. We assume that the polygon is
given by a sequence of vertices (v1, . . . , vk) ∈ Q2·k. We address the issues in the outline
for packing polygons one after another. It should become clear that this is easily possible
for many different shapes other than polygons.

1. An equivalent for Lemma 3.1 Let A be the area of P . We get a simple upper
bound on the number n of copies of P that can be packed into a parallelogram with side
lengths a, b and smaller angle γ by dividing their volumes:

n ≤ ab sin γ
A

. (3.7)

Let h be the maximum difference between the y-coordinates of any two vertices of P .
Consider a smallest enclosing parallelogram for P with smaller angle γ and two edges
parallel to the x-axis. Let wγ be the side length of the edge parallel to the x-axis of this
parallelogram. See Fig. 3.11 for illustration. We get a lower bound for n by packing

h

wγ

P

γ

Figure 3.11: The smallest enclosing parallelogram with smaller angle γ and two sides
parallel to the x-axis defines wγ . h is the maximum difference between two
points of P in their y-coordinates.

copies of P on a parallelogram-grid with side lengths wγ , h/ sin γ:

n ≥
⌊
a

wγ

⌋⌊
b sin γ
h

⌋
≥ ab sin γ

4wγh
, (3.8)

for a ≥ wγ and b ≥ h/ sin γ since bxc ≥ x/2 for x ≥ 1. Observe that these bounds hold
independent of P being part of the problem description or an instance of the problem.
Indeed, these bounds hold for all kinds of shapes, not only polygons when h and wγ are
defined accordingly.
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2. A modified version of Lemma 3.5 Recall that Lemma 3.5 is used in the analysis
of the approximation factors of Algorithms 3.1 and 3.2 (see the proofs of Lemmas 3.7
and 3.10) to compare the optimal number of objects that can be packed into a cell with
the maximum number assigned to a cell. Recall also that the objects assigned to a cell
lie completely in a cell enlarged to the top and right. Since P does not need to be
symmetric as unit disks are, the values the cell needs to be enlarged to the top and
right are not identical. See Fig. 3.12 for illustration. Therefore, the modified version of

γ

b

h
sin γ

a wγ

Figure 3.12: All copies of P that are assigned to a parallelogram shaped cell with side
length a, b (see proofs of Lemmas 3.7 and 3.10) are contained in a parallel-
ogram with side lengths a+ wγ , b+ h

sin γ .

Lemma 3.5 needs to contain three inequalities: Two when analyzing the factor between
the number of copies of P assigned to a cell in an optimal packing and the number of
copies packed into a cell by the algorithm for cells at the boundaries in parallelogram-
shaped containers (Eqs. (3.9) and (3.10), see the proof of Lemma 3.7) and one for the
inner cells (Eq. (3.11), see the proofs of Lemmas 3.7 and 3.10). From now on, optγ(x, y)
denotes the maximum number of copies of P that can be packed into a parallelogram
with side lengths a, b and smaller angle γ. Hence, we want the following inequalities to
hold:

optγ(a, b)
optγ

(
a, b+ h

sin γ

) ≥ 1− ε, (3.9)

optγ(a, b)
optγ(a+ wγ , b)

≥ 1− ε, (3.10)

optγ(a, b)
optγ

(
a+ wγ , b+ h

sin γ

) ≥ 1− ε. (3.11)
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Eq. (3.9) is true for b ≥ h
sin γ and a ≥ 8h2wγ

A sin γ ·
1
ε , Eq. (3.10) is true for a ≥ wγ and

b ≥ 8hw2
γ

A · 1
ε , and Eq. (3.11) is true for a ≥ 16w2

γh

A · 1
ε and b ≥ 16wγh2

A sin γ ·
1
ε by similar

arguments as in the proof of Lemma 3.5 using the bounds for the maximum number
of copies of P that can be packed into a parallelogram obtained previously (Eqs. (3.7)
and (3.8)).

3. Update values for m and g in Algorithms 3.1 and 3.2 Following the proof of
Lemma 3.7, we see that the bounds for a and b in the updated version of Lemma 3.5
need to hold for m. Hence, we would like to set m to be 16wγh

A · max
(
wγ ,

h
sin γ

)
· 1
ε .

Since we may not be able to compute sin γ exactly, sin γ ≥ sinα0, and α0 is a constant,
we replace sin γ by the lower bound sn

sd
for sinα0 as before. h can be calculated in a

straightforward manner from the vertices of P . Likewise, wγ can be calculated from the
vertices of P by solving a set of linear equalities. h and wγ can be computed in time
polynomial in the size of the bit-description of the vertices of P . Hence, it can be done
in polynomial time independent of whether P is part of the input for the algorithms or
not. Similarly, the area of a simple polygon can be computed using Gauss’s well known
area formula 1

2

∣∣∣∑k
i=1(yi + yi+1)(xi − xi+1)

∣∣∣ where (xi, yi) are the coordinates of the vi.
To sum up, if P is not part of the input, we first calculate wγ . The area A and

height h of P are constants. As mentioned before, there exist constants sn, sd ∈ N+ with
sn/sd ≤ sinα0 ≤ sin γ. If P is part of the input we calculate h, wγ , and A in polynomial
time, sn, sd are constants as before. Afterwards, we set m to 16wγh

A ·max
(
wγ ,

hsd
sn

)
· 1
ε in

both cases and proceed analogous to Algorithm 3.1.
One can obtain the updated value for g in Algorithm 3.2 in a similar way since we

know that b
g needs to meet the updated bounds in Lemma 3.5. Since a ≥ b, it follows

immediately that a
g also fulfills the desired bounds.

4. Calculating the optimal solution in a cell in polynomial time P can be represented
as a disjunction of conjunctions of linear inequalities of polynomial size (for example by
triangulating P and each conjunction represents a triangle). It remains to show that
the optimum in one cell can be computed in polynomial time. Since the cells are still
parallelograms or triangles and the object to be packed, i.e. P , can be described by a
polynomial length formula, the only thing we need to show is that there is a constant
upper bound for the number of copies of P that can be packed into one cell for fixed ε
(recall P1 to P3 given in the beginning of Section 3.2 or see Corollary 2.3 for how this
bound affects the running time). We get a simple upper bound on the number of copies
of P that can be packed into a cell under translation by dividing their areas. Recall that
when packing into parallelograms, one cell is a parallelogram with side lengths at most
m and smaller angle γ and, therefore, with area

(
16wγh
A ·max

(
wγ ,

hsd
sn

)
· 1
ε

)2
sin γ. So, if

P is part of the problem description and not part of the input, at most O
(

1
ε2

)
copies of

P can be packed into one cell.
To obtain the same result if P is part of the input, we need to make further assumptions
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on the shape of P .

Definition 3.12 (c-thickness). Let P be a polygon, A its area and d its diameter. We call
P c-thick if and only if A ≥ c · d2.

This definition is stronger than Definition 3.4 in the following way: There exists an
angle δ such that all parallelograms that are c′-thick for some constant c′, are δ-fat. This
is not true the other way around.
If P is part of the problem instance and c-thick we get the following when dividing

the area of a cell by the area of P :(16wγh
A

·max
(
wγ ,

hsd
sn

)
· 1
ε

)2
sin γ · 1

A

≥
(16wγh
c · d2 ·max

(
wγ ,

hsd
sn

)
· 1
ε

)2
sin γ · 1

A
(by the def. of c-thickness)

≤
(16d sin γd

cd2 · dsd
sn

1
ε

)2
sin γ · 1

A
(since h ≤ d)

= O
( 1
ε2

)
(since d2 ≤ A

c
).

Hence, at most O
(

1
ε2

)
copies of P can be packed into one cell under translation. Sim-

ilarly, we get a constant upper bound if ε is fixed for the maximum number of copies
of P that can be packed in a parallelogram with side lengths a

g ,
b
g and smaller angle γ

under translation in Algorithm 3.2.
Summarizing, we get the two following theorems.

Theorem 3.13. Let α0 be a constant with 0 < α0 ≤ π
2 .

(a) Given an α0-fat parallelogram by the length of an edge parallel to the x-axis and
a point that describes the upper left corner, there exists a PTAS to approximate
the maximum number of copies of a fixed Polygon P that can be packed into the
parallelogram under translation.

(b) Let f be a constant with 0 < f < 1. Given an α0-fat parallelogram by the length
of an edge parallel to the x-axis and an additional point that describes the upper
left corner, and a f -thick polygon P by the sequence of its vertices, there exists a
PTAS to approximate the maximum number of copies of P that can be packed into
the parallelogram under translation.

Theorem 3.14. Let α0 be a constant with 0 < α0 ≤ π
2

(a) Given an α0-fat triangle by its side lengths, there exists a PTAS for approximating
the maximum number of copies of a fixed polygon P that can be packed into the
triangle under translation.
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(b) Let f be a constant with 0 < f < 1. Given an α0-fat triangle by its side lengths
and a f -thick polygon P by the sequence of its vertices, there exists a PTAS to ap-
proximate the maximum number of copies of P that can be packed into the triangle
under translation.

3.3.2 Packing Polygons under Rigid Motions
In most parts, the generalization works analogous to the one without rotation shown
before. Therefore, we will focus on the parts where it differs. Again, we will follow the
outline for generalization.

1. An equivalent for Lemma 3.1 The upper bound of n ≤ ab sin γ
A still holds. We obtain

a lower bound by replacing wγ and h by the following values. Consider a smallest enclos-
ing parallelogram for P rotated by β with smaller angle γ and two sides parallel to the x-
axis. Let wγ,β be the width of this parallelogram and hβ the maximum difference between
the y-coordinates of any two vertices of P rotated by β. Let βmin = argmin0≤β≤2π(wγ,β).
Replacing wγ and h by wγ,βmin and hβmin , respectively, in Eq. (3.8) gives:

n ≥
⌊

a

wγ,βmin

⌋⌊
b sin γ
hβmin

⌋

≥ ab sin2 γ

4wγ,βminhβmin

, (3.12)

where the last inequality only holds for a ≥ wγ,βmin and b ≥ hβmin
sin γ .

2. A modified version of Lemma 3.5 Since we do not know how the copies of P are
rotated, we need to enlarge the cells when analyzing the approximation factor (see the
proof of Lemma 3.7) by the same amount to the top and right for the inner cells, namely
by d

sin γ where d is the diameter of P . Therefore, we would like the following inequalities
to hold:

optγ(a, b)
optγ

(
a, b+ d

sin γ

) ≥ 1− ε, (3.13)

optγ(a, b)
optγ

(
a+ d

sin γ , b+ d
sin γ

) ≥ 1− ε. (3.14)

Eq. (3.13) holds for a ≥ wγ,βmin and b ≥ 8dwγ,βminhβmin
A sinγ · 1

ε , and Eq. (3.14) is true
for a, b ≥ 16dwγ,βminhβmin

A sinγ · 1
ε by similar arguments as in the proof of Lemma 3.5 using

Eqs. (3.7) and (3.12).
When proving the approximation factor of the algorithm analogously to the proof of

Lemma 3.7, it might happen that we encounter a cell C that does not fulfill the bounds
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for a, b for Eq. (3.13) to hold even though copies of P are assigned to C. This only
happens if C is the upper right cell and only copies of P completely contained in C get
assigned to C or C equals the complete container parallelogram and we compute the
exact solution with the exact algorithm (see the proof of Lemma 3.7 for the assignment
and 2.2.1 for the exact algorithm).

3. Update values for m and g in Algorithms 3.1 and 3.2 We want the bounds
for a, b from above to hold for m. Again, there exist constants sn, sd ∈ N such that
sn/sd ≤ sinα0 ≤ sin γ since the container parallelogram is α0-fat. If P is part of the
problem description, then there exist constants dn, dd ∈ N with dn/dd ≥ d. So, we can
set m to

16d3
ns

2
d

d3
dAs

2
n

· 1
ε
≥ 16dwγ,βminhβmin

A sin γ · 1
ε
,

since d ≥ wγ,βmin sin γ and d ≥ hβmin.
If P is part of the input and f -thick, the following holds:

16dwγ,βminhβmin
A sin γ ≤ 16d

sin γ (since wγ,βminhβmin ≤ A)

≤ 16
√
A

f · sin γ (since P is f -thick)

≤ 16 max(w, h)
f · sin γ ,

where w and h are the maximum differences between the x- and y coordinates, respec-
tively, of any two points of the unrotated given P . Observe that w and h can easily
be computed. Again, we use the existing bound sn/sd for sin γ as before and set m to
16 max(w,h)sd

fsn
· 1
ε . Afterwards, we proceed analogously to Algorithm 3.1.

Again, one can obtain updated values for g in Algorithm 3.2 for packing into a fat
triangle in a similar way.

4. Calculating the optimal solution in a cell in polynomial time Since the description
of a cell and P is equivalent to before, it suffices to show that there is a constant upper
bound for the number of copies of P that can be packed into one cell under rigid motions
(see P1 to P3 and Theorem 2.4). If P is part of the problem description and not part

of the input, one cell has area at most
(

16d3
ns

2
d

d3
d
As2n
· 1
ε

)2
sin γ. Since all parameters of P are

constants, O
(

1
ε2

)
copies of P can be packed into one cell.

If P is part of the input and f -thick, dividing the area of a cell by the area of P gives



40 PTAS for Packing into Fat Parallelograms and Triangles

at most(16 max(w, h)sd
fsn

· 1
ε

)2
sin γ · 1

A
≤
(16dsd
fsn

· 1
ε

)2
sin γ · 1

A
(since max(w, h) ≤ d)

≤
(16sd
fsn

· 1
ε

)2
sin γ · 1

f
(since d2 ≤ A

f
by def.)

= O
( 1
ε2

)
.

Hence, at most O
(

1
ε2

)
copies of P can be packed into one cell under rigid motions.

Similarly, one can get a constant upper bound for fixed ε on the maximum number of
copies of P that can be packed into one cell in Algorithm 3.2 when packing into a fat
triangle.
Summarizing, Theorems 3.13 and 3.14 also hold for packing under rigid motions.

Theorem 3.15. Let α0 be a constant with 0 < α0 ≤ π
2 .

(a) Given an α0-fat parallelogram by the length of an edge parallel to the x-axis and
a point that describes the upper left corner, there exists a PTAS to approximate
the maximum number of copies of a fixed Polygon P that can be packed into the
parallelogram under rigid motions.

(b) Let f be a constant with 0 < f < 1. Given an α0-fat parallelogram by the length of
an edge parallel to the x-axis and an additional point that describes the upper left
corner, and a f -thick polygon P by a sequence of its vertices, there exists a PTAS
to approximate the maximum number of copies of P that can be packed into the
parallelogram under rigid motions.

Theorem 3.16. Let α0 be a constant with 0 < α0 ≤ π
2

(a) Given an α0-fat triangle by its side lengths, there exists a PTAS for approximating
the maximum number of copies of a fixed polygon P that can be packed into the
triangle under rigid motions.

(b) Let f be a constant with 0 < f < 1. Given an α0-fat triangle by its side lengths
and a f -thick polygon P by a sequence of its vertices, there exists a PTAS to ap-
proximate the maximum number of copies of P that can be packed into the triangle
under rigid motions.



Chapter4
Packing Unit Disks into
General Triangles
In the previous chapter, we gave a PTAS to pack unit disks into triangles where all
inner angles were lower bounded by a constant. In this chapter, we will turn to general
triangles, i.e., the inner angles of the triangle can be arbitrarily small.

4.1 Preliminaries
In the following, we discuss some properties of packings of unit disks that we will use
afterwards to give a constant factor approximation algorithm.

Consider a packing of unit disks in the plane, i.e., possibly infinitely many unit disks
placed nonoverlappingly in the plane, together with a given container such that no disk
can be added to the packing inside the container. We call such a packing maximal. The
following lemma relates a maximal packing to an optimal packing.

Lemma 4.1. For a maximal packing of s unit disks together with a given container 4 it
holds that s ≥ 1

5 OPT, where OPT is the size of any optimal packing into 4.

Proof. Consider a maximal packing P of t unit disks together with 4 and an optimal
packing of OPT unit disks into 4. Every disk in P intersects at most 5 unit disks in
the optimal packing since a unit disk can touch 6 but intersect only 5 pairwise disjoint
disks (see Fig. 4.1). Every disk d in the optimal packing is intersected by at least one
and at most 5 disks in P , since otherwise d could be added to P generating a larger
valid packing contradicting that P is maximal. Thus, 5t ≥ OPT.

Observe that Lemma 4.1 implies that every maximal packing completely contained in
the container is a 1

5 -approximation of the optimal packing. So, if we can find a packing

41
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Figure 4.1: A disk can touch 6 pairwise disjoint disks of the same size simultaneously, i.e.,
the 2D-kissing number is 6. It is not possible that the center disk intersects
all 6 surrounding disks since neighboring disks around the center disk touch.

that has size within a constant factor of the size of a maximal packing, we have a constant
factor approximation. The idea of our algorithm is to arrange the disks in layers of height
2 inside the triangle as can be seen in Fig. 4.2i. We assume in the following that the
container triangle is given by its side lengths a, b, c. Furthermore, we assume that the
side of the triangle with length a is horizontal and the layers are parallel to that side.
Then, the just described packing has size

k∑
i=1

⌊
si
2

⌋
(4.1)

where si is the width of the triangle at height 2i, i.e., the width of the ith layer and
s0 = a, and k ∈ N is the largest integer such that sk ≥ 2. Let

h =

√
b2 − b2 − c2 + a2

4a2 (4.2)

be the height of the container triangle based on the side with length a. Then, we get for
the widths of the layers

si = a− 2i · a
h
. (4.3)

So, k is supposed to be the maximum integer such that

a− 2ka
h
≥ 2 ,i.e.,

k =
⌊(a− 2)h

2a

⌋
. (4.4)
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s3
s2

s1

(i) Disks packed in layers of height 2 into a general triangle.

(ii) The packing in Fig. 4.2i is not maximal since the red disk can be added to the packing.

Figure 4.2

Observe that the described packing is not necessarily maximal as depicted in Fig. 4.2ii.
We will show that this packing is within a constant factor of a maximal packing. The
maximal packing discussed in the following lemma is the one we will compare our packing
with.

Lemma 4.2. There is a maximal packing for the triangle with side lengths a, b, c of size⌈ s1
2
⌉

+
∑k
i=1
⌈ si

2
⌉
with si and k defined as in Eqs. (4.3) and (4.4) respectively.

Proof. Consider a placement of unit disks in horizontal layers of height 2 parallel to the
side with length a as depicted in Fig. 4.3. The first layer is constructed from the first

Figure 4.3: Disks placed in layers of height 2 onto a general triangle.

layer in Fig. 4.2i by enlarging its width to an integral multiple of 2, i.e. its width is
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⌈ s1
2
⌉
·2. The ith layer for 2 ≤ i ≤ k+1 is constructed from the (i−1)th layer in Fig. 4.2i

by enlarging its width to an integral multiple of 2 and placing it on top of the (i− 1)th
layer such that its left boundary is aligned with the intersection of the top boundary of
the layer below with the left triangle boundary. By construction, its width is

⌈ si−1
2
⌉
· 2.

Observe that the triangle is almost entirely covered by rectangles forming the layers.
It is not possible to pack a disk using the areas not covered at the bottom left and bottom
right due to the definition of s1. See Fig. 4.4 for illustration. It is also not possible to

(k + 1) · 2

k · 2

Figure 4.4: Extra disks cannot be packed in the corners of the triangle.

pack another disk at the top of the triangle. This is because even if there is an uncovered
area, the width of the triangle at height (k + 1) · 2 is less than 2 due to how we defined
k. Obviously, it is not possible to pack further disks inside a layer. The gaps between
disks of two consecutive layers are also not large enough to pack more disks. Therefore,
this placement is maximal and has size

⌈ s1
2
⌉

+
∑k
i=1
⌈ si

2
⌉
, concluding the proof.

We will use this maximal packing later in the analysis of the approximation factor.

4.2 Approximation Algorithm

Recall that the idea for the approximation algorithm is to compute the number of unit
disks that can be packed inside the container triangle in layers of height 2, and the idea
for the proof of the approximation factor is showing that this number is within the size
of the maximal packing discussed in Lemma 4.2. The exact value for the packing in
layers of height 2 as given in Eq. (4.1) is

∑k
i=1
⌊ si

2
⌋
. Observe that we cannot compute

this value simply by a loop over k since k might be exponentially large in the input size.
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Instead, we want to use the following approximation:
k∑
i=1

⌊
si
2

⌋
>

k∑
i=1

(
si
2 − 1

)
=

k∑
i=1

(
a

2 −
ia

h

)
− k

= ka

2 −
ak(k + 1)

2h − k

>

⌊
ka

2 −
ak(k + 1)

2h − k
⌋
.

Recall that a is given as a fraction of two integers, k is an integer (see (4.4)) that can
be computed in polynomial time by Observation 3.3, and h is given by the formula in
(4.2). It is easy to see that this formula can be rewritten in the form⌊

v√
w

⌋
=
⌊
v
√
w

w

⌋

=
⌊√

v2w

w

⌋
,

where v and w are polynomials over input-integers and k. Hence, this value can be
calculated in polynomial time by Observation 3.3.
It might happen due to these approximations and the structure of the packing that the

formula given above evaluates to zero even though at least one unit disk can be packed
into the container. This would mean that the solution of the algorithm is infinitely worse
than the optimal solution. To prevent this, we check also the following two lower bounds.
First, we know that k is chosen in such a way, that si ≥ 2 for 1 ≤ i ≤ k and therefore at
least k unit disks can be packed into the triangle. Second, if k is zero at most one unit
disk can be packed into the triangle (see case 1 in the proof of Lemma 4.4). We check if
the inradius of the triangle is at least one and therefore one unit disk can be packed.
We summarize the ideas previously given in the following algorithm.
Algorithm 4.1:
Input: Numbers a, b, c ∈ Q+
Output: Nonnegative integer n

1 Calculate k =
⌊

(a−2)h
2a

⌋
;

2 Calculate n = max
(
k,
⌊
ka
2 −

ak(k+1)
2h − k

⌋)
, where h :=

√
b2 − b2−c2+a2

4a2 ;
3 if n = 0 then
4 Calculate the inradius r of a triangle with side lengths a, b, c.;
5 if r ≥ 1 then
6 return 1;
7 else
8 return 0;
9 end

10 end
11 return n
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We will first analyze the running time of the algorithm and afterwards its approxima-
tion factor.

Lemma 4.3. Algorithm 4.1 runs in time polynomial in the number of input bits.

Proof. Recall that k can be computed in polynomial time by Observation 3.3. We
do not calculate h but plug it into the formula for n. Recall, that we can rewrite⌊
ka
2 −

ak(k+1)
2h − k

⌋
such that we can use again Observation 3.3 to calculate it in poly-

nomial time. Hence, n can be calculated in polynomial time. The inradius of a triangle
with side lengths a, b, c is

√
(b+c−a)(a+c−b)(a+b−c)

4(a+b+c) . Since we only need to know if the

inradius is at least one, it suffices to check if (b+c−a)(a+c−b)(a+b−c)
4(a+b+c) is at least one and this

is possible in polynomial time. Summarizing, Algorithm 4.1 runs in time polynomial in
the input size.

The following lemma relates the value n returned by the algorithm with the optimum
and will yield the approximation factor and the asymptotic approximation factor.

Lemma 4.4. Let OPT be the maximum number of unit disks that can be packed into a
triangle with side lengths a ≥ b ≥ c ∈ Q+. Then, for the return value n of Algorithm 4.1
the following holds: 4n+ 5 ≥ 1

15 OPT.

Proof. Case 1: k = 0
We will show that the algorithm returns the optimal solution in this case. First, we

show that if k = 0 at most one unit disk can be packed into the triangle. Recall that we
assume the longest side of the container triangle with length a to be parallel to the x-
axis. Let l be the longest possible line segment parallel to the x-axis inside the container
triangle at height 2 (the red line segment in Fig. 4.5i). Observe that the length of l is
s1 by definition (see Eq. (4.3)). From the definition of k in Eq. (4.4), we get

s1 < 2, (4.5)

i.e., the length of l is less than 2. We will prove by contradiction that at most one disk
can be packed in such a triangle. We assume there exists a packing of two unit disks D1
and D2 with centers d1 and d2 respectively. Without loss of generality, we assume that
the y-coordinate of d2 is at most as large as the y-coordinate of d1, i.e., D2 lies lower
than D1, and the x-coordinate of d1 is less than the x-coordinate of d2, i.e., D1 lies to
the left of D2. We observe that no disk can lie with its center above l since the width of
the triangle above that line is less than 2. Obviously, we can move D2 downwards until
it touches the lower boundary of the container triangle without intersecting D1 or any
triangle-boundary. We show in the following that the width of the triangle at height 2,
i.e., s1, has to be at least 2, so, l has length at least 2, contradicting the assumption
that k = 0 as described before.
Let p be the leftmost intersection of D1 with l, and d′1,d′2 the orthogonal projections

of d1,d2 onto l respectively. See Fig. 4.5ii for illustration. Let d(q, r) be the euclidean
distance between any two points q and r. Since D1 and D2 lie inside the triangle,
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2

l

(i) k = 0 implies that the red line segment has length less than 2.

d1 d2

y

p d′
1

d′
2

(ii) Setting of the proof. The figure is not up to scale since we show that this is not possible.

Figure 4.5: If k = 0 at most one unit disk can be packed into the container triangle.

d(p,d′2) ≤ s1. We will show in the following that d(p,d′2) has to be at least 2 in order
to fit D1 and D2 inside the triangle.

Let y be the difference of d1 and d2 in their y-coordinates. The following holds by
the Pythagorean Theorem:

d(d′1,d′2)2 + y2 ≥ 22,

so d(d′1,d′2) ≥
√

4− y2. (4.6)

The following holds again by the Pythagorean Theorem:

d(p,d′1)2 + (1− y)2 = 12,

so d(p,d′1) =
√

1− (1− y)2 =
√

2y − y2. (4.7)

By Eqs. (4.6) and (4.7) we get

s1 ≥ d(p,d′2) = d(p,d′1) + d(d′1,d′2)

≥
√

2y − y2 +
√

4− y2

≥
√

2y − y2 + 4− y2

=
√

4 + 2(y − y2)

≥
√

4 = 2 (since y ∈ [0, 1]).

This is a contradiction to Eq. (4.5). We just showed that k = 0 implies that at most
one unit disk can be packed. Since k = 0 implies n = 0 in Line 2 in Algorithm 4.1,
the if-condition in Line 3 evaluates to true and the algorithm computes the inradius of
the triangle. If the radius is at least one, one unit disk can be packed into the triangle
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and the algorithm returns 1. If the inradius is less than one, no unit disk can be packed
into the triangle and the algorithm returns 0. So, in this case Algorithm 4.1 returns the
optimal solution, i.e. n = OPT.
Case 2: k ≥ 1
Observe that

n ≥
⌊
ka

2 −
ak(k + 1)

2h − k
⌋

(see Algorithm 4.1), so

n ≥ ka

2 −
ak(k + 1)

2h − k − 1

=
k∑
i=1

(
a

2 −
ia

h
− 1

)
− 1

= a

2 −
a

h
− 1 +

k∑
i=2

(
a

2 −
ia

h
− 1

)
− 1

≥ a

2 −
a

h
− 2 +

k∑
i=2

(
a

2 −
(a− 2)ha

2ah − 1
)

(since i ≤ k ≤ (a− 2)h
2a by (4.4))

= s1
2 − 2 (by Eq. (4.3)). (4.8)

In the following, we consider the maximal packing of s disks as discussed in Lemma 4.2:

s =
⌈
s1
2

⌉
+

k∑
i=1

⌈
si
2

⌉

≤ s1
2 + 1 + k +

k∑
i=1

si
2

= s1
2 + 1 + k + ka

2 −
ak(k + 1)

2h (by the def. of si (4.3))

= s1
2 + 1 + 2k + ka

2 −
ak(k + 1)

2h − k

≤ s1
2 + 2 + 2n+ ka

2 −
ak(k + 1)

2h − k − 1 (k ≤ n, see Algorithm 4.1)

≤ s1
2 + 2 + 2n+ n (see Algorithm 4.1)

≤ n+ 2 + 2 + 3n = 4n+ 4 (see (4.8)).

From Lemma 4.1 we know that for a maximal packing of s unit disks it holds that
s ≥ 1

5 OPT. Together, we get

4n+ 4 ≥ s ≥ 1
5 OPT .
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The following theorem follows from Lemma 4.3 and Lemma 4.4.

Theorem 4.5. Algorithm 4.1 computes in polynomial time a 40-approximation for the
maximal number of unit disks that can be packed into a given triangle with side lengths
a, b, c. It has an asymptotic approximation factor of 20.

Proof. Since the algorithm returns the optimal solution if no unit disk can be packed and
otherwise for the return value n holds 1

5 OPT ≤ 4n+ 4 ≤ 8n by Lemma 4.4, it computes
a 40-approximation. Similarly, from 1

5 OPT−4 ≤ 4n follows that the algorithm has an
asymptotic approximation factor of 20. It runs in polynomial time by Lemma 4.3.

4.3 Remarks
The approximation factors obtained above are forbiddingly high to use the algorithms in
practice. But they show that the problem of finding the maximum number of unit-disks
that can be packed into a triangle can generally be approximated within a constant
factor.

The approach of packing unit-disks in layers of height two does not yield a constant-
factor approximation for parallelograms: Assume that the parallelogram is given by
its base-edge length a and a point (bx, by) as in the algorithm for fat parallelograms.
Consider a parallelogram with smaller angle γ > 0, where the two non-horizontal edges
have distance two and the height of the parallelogram is by = 2. The number of unit-
disks that can be packed into this parallelogram in layers of height two is two, as can
bee seen in Fig. 4.6, whereas the maximum number of unit-disks that can be packed
tends to infinity when γ tends to zero. Observe that we cannot just compute a similar
parallelogram where the other edges are horizontal since the distance of (bx, by) to the
origin involves a square root.

γ

Figure 4.6: When γ tends to zero while the distance between the two non-horizontal
edges stays two, the number of unit-disks that can be packed into this paral-
lelogram grows to infinity while the number of unit-disks packed in horizontal
layers of height two stays two.





Chapter5
PTAS for Packing Unit Disks
In this chapter, we will give another PTAS for packing unit disks. We start with packing
unit disks into circles and show afterwards how this approach can be used as a framework
to pack into other container shapes such as polygons and general convex shapes or to
the three dimensional equivalent problem of packing balls into spheres. Differently to
Chapter 3, the container shape is for most variants studied here not part of the problem
input but part of the problem description, i.e., only a factor r ≥ 1 is given as input
for fixed ε. The goal is to approximate the maximum number of unit disks that can be
packed into the container shape scaled by r. As before, the input is very concise since
only r is given by a fraction where nominator and denominator are given in binary. So,
the complexity seems considerably high. However, also for these variants of the problem
slightly different from the problems studied in the previous chapters, not much is known
about their complexity, for example if they are NP-hard or not.
We will give polynomial time approximation schemes (PTAS) and therefore a first

result on the complexity and approximability of this kind of problem.
The approximation algorithms are based on the simple idea of just multiplying the

volume of the given container with the density of the optimal packing of the entire plane
or space. For large containers, dividing this value by the volume of a unit disk or ball
is a reasonably good approximation (where a few correction terms are necessary). For
small containers, we could just run the exact algorithm given in Section 2.2.1. Observe
that we will again not actually return a packing in the sense that we give centers for
each disk packed. We will rather give the number of disks that can be packed since
otherwise the output might have exponential size in the mentioned concise input. Later
on, we will show how to extend these ideas to other container shapes. We believe that
the ideas given here can also be used as a framework to derive PTAS for other container
shapes than the ones studied here.
Although the idea of our algorithms just explained is quite simple, the actual challenge

lies in working out the details and proving their correctness, i.e., that they are indeed
PTASs for the problems stated. It should be noted that, especially since large first-
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order formulas of the reals need to be solved, the algorithms are not really applicable
in practice. The major contribution of this result is rather the theoretical result that
PTASs exist for this kind of packing problems with concise input.

5.1 Packing Unit Disks into a Circle
Let us first consider the problem of finding the maximum number nmax of unit disks to
be packed into a container circle of a given radius r. In the following, we will describe
the approximation algorithm in more detail. The input consists of a radius r > 3 given
as a fraction p

q and some ε > 0 given as fraction u
v with p, q, u, v ∈ N. Recall that the

idea is to calculate the exact value for small r and returning an approximate value for
the rest based on the area of the container multiplied by the density of the hexagonal
packing.
Algorithm 5.1 states the algorithm in more detail. We will explain possible implemen-

tations of Line 2 and Lines 5 to 8 later when analyzing the running time.

Algorithm 5.1:
Input: Number r > 3 given as p

q , parameter ε > 0 given as u
v , with p, q, u, v

positive integers
Output: Nonnegative integer napprox

1 if r < 6 · 1
ε then

2 Compute napprox with the exact algorithm;
3 end
4 else
5 k = 2(blog pc+ 1− blog qc) + 3 ;
6 compute some a with π ≥ a ≥ π − 2−k;
7 compute some b with

√
12 ≤ b ≤

√
12 + 2−k;

8 napprox =
⌈
a(r−3)2

b

⌉
;

9 end
10 return napprox;

Observe that it is not possible to give the packing explicitly since napprox is exponential
in the input size (the actual value, not its representation) and therefore giving the
position of every disk in the packing would take exponential time. Nevertheless, the
packing is implicitly given by the points of a hexagonal grid that lie inside the container
and have distance at least 1 from the boundary or by the semialgebraic set returned by
the exact algorithm (see [12] for details).
What remains to be done is to fill in the details of each step, i.e., how to compute k,

a, and b, to show that the algorithm is correct, and to analyze its runtime, i.e. show
that it really is a PTAS.

First, we show a lower bound for nmax and then use it to show napprox unit disks can
indeed be packed into the container. Afterwards, we will show that napprox lies within a
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factor (1− ε) of nmax by using Theorem 2.1. Lastly, we will analyze the running time.
The following Lemma gives a lower bound for nmax.

Lemma 5.1. nmax ≥
⌈
π(r−3)2
√

12

⌉
.

Proof. Consider the dense hexagonal packing of the plane with unit disks, i.e., the centers
of the disks form a triangular grid with side length 2 (see Fig. 2.1). The vertices of every
triangle of the triangular grid at least partially contained in the circle with radius r− 3
have distance at most two from the boundary of the circle with radius r− 3. Therefore,
they have distance at least 1 from the boundary of the container circle, i.e., unit disks can
be packed with their centers on the vertices of these triangles (see Figs. 5.1i and 5.1ii).

3

(i) The vertices of triangles intersecting the
circle of radius r−3 have distance at least
one from the boundary of the container
circle with radius r.

(ii) Disks placed on the vertices of triangles
intersecting the circle with radius r − 3
are completely contained in the container
circle with radius r and, therefore, form a
valid packing.

Any triangle contains in total at most half a disk of the packing. Hence, if we divide
the area of the circle with radius r − 3 by the area of a triangle, we get a lower bound
for twice the number of disks that can be packed into the container. The area of an
equilateral triangle with edge length 2 is

√
3. The Lemma follows immediately.

Now, we use this lower bound for nmax to show that napprox unit disks can surely be
packed.

Lemma 5.2. napprox ≤ nmax.

Proof. If napprox is computed with the exact algorithm, we know that napprox = nmax. If
napprox is not computed with the exact algorithm, we know that

napprox ≤
⌈
π√
12

(r − 3)2
⌉
,

since a ≤ π and b ≥
√

12. So following Lemma 5.1 napprox ≤ nmax.
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Next, we prove the approximation factor of the algorithm.

Lemma 5.3. napprox ≥ (1− ε) · nmax.

Proof. To compute the approximation factor of the algorithm, we first determine bounds
for a and b.

Since k = 2(blog pc+ 1− blog qc) + 3, we get

a ≥ π − 2−k = π − 1
22(blog pc+1−blog qc)+3 ≥ π −

1
22(log p−log q) · 8

= π − 1
8r2 ,

similarly, we get

b ≤
√

12 + 2−k ≤
√

12 + 1
8r2 .

Now, we are going to use these bounds to calculate a lower bound on napprox in case it
is not calculated with the exact algorithm. Then,

napprox =
⌈
a(r − 3)2

b

⌉
,

so, using the bounds for a and b:

napprox ≥
π − 1

8r2√
12 + 1

8r2
(r − 3)2

=
(

π − 1
8r2√

12 + 1
8r2

+ π√
12
− π√

12

)
(r − 3)2

= π√
12

(r − 3)2 +

√
12
(
π − 1

8r2

)
− π

(√
12 + 1

8r2

)
√

12
(√

12 + 1
8r2

) (r − 3)2

= π√
12

(r − 3)2 −
√

12 + π

8r2
(
12 +

√
12

8r2

)(r − 3)2

>
π√
12

(r − 3)2 −

√12 + π

96 +
√

12
r2

+
9
(√

12 + π
)

96r2 +
√

12


≥ π√

12
(r − 3)2 −

√12 + π

96 +
9
(√

12 + π
)

96 +
√

12

 (since r ≥ 1)

≈ π√
12

(r − 3)2 − 0.67

>
π√
12

(r − 3)2 − 1. (5.1)
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The following upper bound for nmax follows directly from Theorem 2.1:

nmax ≤
π√
12
r2. (5.2)

With the lower bound on napprox given in (5.1) and the upper bound on nmax given in
(5.2), we can compute the approximation factor of the algorithm stated above:

napprox
nmax

≥
π√
12(r − 3)2 − 1

π√
12r

2

=
π√
12r

2 − π√
126r + π√

12 · 9− 1
π√
12r

2

> 1−
π√
126r
π√
12r

2

= 1− 6
r
.

Since we calculate the exact solution for r < 6
ε , we can assume that r ≥ 6

ε and therefore
obtain the approximation factor of 1− ε, i.e.

napprox
nmax

≥ 1− ε.

The last component for showing that Algorithm 5.1 is a PTAS is its running time and
filling in the details for the calculation of k, a, b and napprox.

Lemma 5.4. Algorithm 5.1 can be realized with running time polynomial in the input size
for fixed ε.

Proof. Let L be the bit-length of the input, i.e. the total length of the encodings of
p, q, u, v. The decision if r is small, i.e. r < 6 · 1

ε can be made by calculating pu < 6qv
which can be done in O(M(L)) time.
If r < 6 · 1

ε the exact algorithm is executed (see Section 2.2.1). Since the disks to be
packed can be represented by the inequality x2+y2 ≤ 1 and the container by x2+y2 ≤ r2

and at most O
(

1
ε2

)
unit disks can be packed into the container, the running time is by

Corollary 2.3 (1
ε

)O( 1
ε2
)
O(L ·M(L)).

Observe, that this bound depends only polynomially on the length L of the input.
Otherwise, first the algorithm computes k. This can be done in O(L) time since
blog pc+ 1 is the bit length of p and therefore we can compute blog pc+ 1 and blog qc by
counting.
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The value for a can be computed by calculating π with precision k, i.e. calculating
the binary representation of π up to the bit representing 1

2k . In the same way, we can
compute b by calculating

√
12 up to the bit representing 1

2k and then adding 1
2k . These

calculations can be done in O(M(k) log k) or O(M(k)) time, respectively (see e.g. [14]).
Since k = O(log r), the running time to compute a and b is in O

(
L3).

The computation of napprox is then a constant number of arithmetic operations on at
most L-bit integers, so in total it is possible in O

(
L3) time.

In total, the running time is polynomial in L for constant ε.

Lemmas 5.1 to 5.4 together show the following theorem.

Theorem 5.5. Algorithm 5.1 is a PTAS for finding the maximal number of disks that can
be packed into a circle of given radius.

5.2 Packing Unit Disks into Simple Polygons
Now, we use the ideas given in the previous section to pack disks into polygons. For
now, we assume that the polygon is part of the problem description and not part of the
input. Hence, the input is again just a scaling factor r.

5.2.1 Packing into Triangles
First, we consider the slightly easier problem of finding the maximal number nmax of
unit disks that can be packed into a fixed triangle with side length a, b, c scaled by r
given as fraction p

q with p, q ∈ N+. The approximation algorithm is mainly analogous to
the algorithm described in Section 5.1 but with different constants that also depend on
the side lengths of the container triangle.

Algorithm 5.2:
Input: Number r given as p

q , parameter 1 > ε > 0 given as u
v , with p, q, u, v

positive integers
Output: Nonnegative integer napprox

1 k = log(ab) + 2(blog pc+ 1− blog qc) ;
2 Compute some h with sin γ ≥ h ≥ sin γ − 2−k;
3 if r < 6(a+b+c)+7

abh · 1
ε then

4 Compute napprox with the exact algorithm;
5 end
6 else
7 Compute some g with

√
12 ≤ g ≤

√
12 + 2−k;

8 napprox =
⌈

1
g

(
hab2 r

2 − 3(a+ b+ c)r
)⌉

;
9 end
10 return napprox;
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The analysis of the algorithm works analogously to the analysis in Section 5.1. In
the proof of Lemma 5.1, replace the container circle by the triangle scaled by r and the
circle of radius r− 3 by a triangle similar to the container triangle such that each point
in the smaller triangle has distance at least 3 to the boundary of the container triangle.
We estimate the area of the smaller triangle by the area of the container triangle minus
3(a+ b+ c)r. It is well known that the area of the triangle is ab sin γ

2 . In this way, we get
the following lemma.

Lemma 5.6. nmax ≥
⌈

1√
12

(
ab sin γ

2 r2 − 3(a+ b+ c)r
)⌉
.

It is easy to see that napprox is at most this lower bound or the optimal value and so
napprox ≤ nmax, i.e. naprox disks can indeed be packed. Next, we analyze the approxi-
mation factor of the algorithm.

Lemma 5.7. napprox ≥ (1− ε) · nmax.

Proof. First, we will show that at least two unit disks can be packed into the container
if Lines 7 and 8 get executed in order to apply Theorem 2.1 later in the analysis. The
radius d of the incircle of a triangle T is given by the well known formula

d = 2 · area(T )
perimeter(T ) .

Line 8 gets executed for triangles with inradius

d = ab sin γ
a+ b+ c

· r

≥ ab sin γ
a+ b+ c

· 6(a+ b+ c) + 7
abh · ε

(by the bound for r in the if-condition)

≥ ab sin γ
a+ b+ c

· 6(a+ b+ c) + 7
ab sin γ · ε (since h ≤ sin γ)

≥ 6 · 1
ε
> 6 (since ε < 1).

This implies that at least three unit disks can be packed into the container triangle by
simply placing them on top of each other.
Now, as before, we calculate a lower bound for napprox from the bounds for g, h. Since

k = log(ab) + 2(blog pc+ 1 + blog qc), we have

h ≥ sin γ − 2k = sin γ − 1
2log(ab)+2(bpc+1+bqc) ≥ sin γ − 1

ab · 22(log p−log q) = sin γ − 1
abr2 .

In the same way we get

g ≤
√

12 + 1
abr2 .
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Plugging in these bounds for h and g into the formula for the return value in Line 8 of
Algorithm 5.2 gives

napprox ≥
⌈1
g

(
h
ab

2 r
2 − 3(a+ b+ c)

)
r

⌉
≥ 1√

12 + 1
abr2

((
sin γ − 1

abr2

)
ab

2 r
2 − 3(a+ b+ c)r

)

>

(
1√
12
− 1√

12
+ 1√

12 + 1
abr2

)(
sin γ − 1

abr2

)
ab

2 r
2 − π√

12
· 3(a+ b+ c)r

= 1√
12

(
ab sin γ

2 r2 − 3(a+ b+ c)r
)

−

√12 + 1
abr2 −

√
12

12 +
√

12
abr2

sin γ + 1√
12abr2 + 1

ab
2 r

2

≥ 1√
12

(
ab sin γ

2 r2 − 3(a+ b+ c)r
)

−

 abr2(
12 · abr2 +

√
12
)
· 2

+ abr2(√
12abr2 + 1

)
· 2

,

since sin γ ≤ 1. Further rearranging gives

napprox >
1√
12

(
ab sin γ

2 r2 − 3(a+ b+ c)r
)
−
( 1

24 + 1
2
√

12

)
>

1√
12

(
ab sin γ

2 r2 − 3(a+ b+ c)r
)
− 1. (5.3)

As we explained earlier, we return the optimal value if not at least two unit disks (we
showed three indeed) can be packed into the container. Hence, we have by Theorem 2.1
nmax ≤ π√

12
ab sin γ

2 . Together with Eq. (5.3) we get

napprox
nmax

≥
1√
12

(
ab sin γ

2 r2 − 3(a+ b+ c)r
)
− 1

1√
12
ab sin γ

2 r2

= 1− 3(a+ b+ c)
ab sin γ

2 r
− 2

√
12

ab sin γ · r2

≥ 1− 6(a+ b+ c) + 2
√

12
ab sin γ · r ,
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since we may assume that r ≥ 1. Otherwise we can calculate the optimal solution in
constant time. Furthermore, the approximate value is only computed for r ≥ 6(a+b+c)+7

ab sin γ ·
1
ε , so we get

napprox
nmax

≥ 1− 6(a+ b+ c) + 2
√

12
ab sin γ · ab sin γ

6(a+ b+ c) + 7 · ε

= 1− 6(a+ b+ c) + 2
√

12
6(a+ b+ c) + 7 · ε

> 1− ε.

It remains to analyze the running time of the algorithm.

Lemma 5.8. Algorithm 5.2 can be realized with running time polynomial in the input for
fixed ε.

Proof. Analogous to the algorithms studied before, blog pc + 1, blog qc be calculated in
time polynomial in the input size. We do not need the exact value of log ab but an upper
bound for it, so we can simply count the bits in the representations of a and b which can
be done in constant time since a and b are not part of the input. Then, we can compute

g in polynomial time as before. Also, since sin γ =
√

1−
(
a2+b2−c2

2ab

)2
, we can use the

same techniques to calculate h as for the calculation of g. The running time of the exact
algorithm is analogous to the algorithms described before. In total, the running time is
polynomial in the input size for fixed ε.

Altogether we have the following result.

Theorem 5.9. Algorithm 5.2 is a PTAS for calculating the maximal number of unit disks
that can be packed into a fixed triangle scaled by a given factor r.

5.2.2 Packing into Simple Polygons
Now, we turn to packing unit disks into a fixed simple polygon scaled by r (given as frac-
tion of positive integers p and q). The idea is to calculate the optimal solution for small r
depending on 1

ε by using the approach discussed in Section 2.2.1 (see Corollary 2.3). For
large r we triangulate the polygon and reduce the problem to finding approximations in
each triangle and return the summed up approximations of all triangles. For describing
the algorithm in more detail, we need the following definitions. Let a triangulation T of
a polygon with v vertices be given as a set of triangles T = {T1, . . . , Tv−3} with Ti having
side lengths ai, bi, ci and angle γi between the sides of length ai and bi. We assume in
the following, that the container polygon has v vertices.
For the analysis of the algorithm, we will first give a lower bound on the number Nmax

of unit disks that can be packed. It follows directly from Lemma 5.6.
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Algorithm 5.3:
Input: Number r given as p

q , parameter 1 > ε > 0 given as u
v , with p, q, u, v

positive integers
Output: Nonnegative integer Napprox

1 Compute a triangulation T = {T1, . . . , Tv−3} for the container polygon;

2 k = log
(

max
i∈{1,...,v−3}

(aibi)
)

+ 2(blog pc+ 1− blog qc);

3 for i := 1to v − 3 do
4 Compute some hi with sin γi ≥ hi ≥ sin γi − 2−k;
5 end
6 Calculate z = max

i∈{1,...,v−3}

(
(8(ai+bi+ci)+7)(aibihi)+(ai+bi+ci)2

(aibihi)2

)
;

7 if r < z · 1
ε then

8 Compute Napprox with the exact algorithm;
9 end
10 else
11 Compute some g with

√
12 ≤ g ≤

√
12 + 2−k;

12 for i := 1to v − 3 do
13 Calculate napproxi =

⌈
1
g

(
hi
aibi

2 r2 − 3(ai + bi + ci)r
)⌉

;
14 end
15 Compute Napprox =

∑v−3
i=1 napproxi ;

16 end
17 return Napprox;

Lemma 5.10. Let nmaxi be the maximum number of unit disks that can be packed in
Ti ∈ T . Then Nmax ≥

∑v−3
i=1 nmaxi ≥

∑v−3
i=1

⌈
1√
12

(
aibi sin γi

2 r2 − 3(ai + bi + ci)r
)⌉

.

Since napproxi ≤ nmaxi as described in the previous section, Lemma 5.10 directly
implies that Napprox ≤ Nmax and therefore Napprox unit disks can surely be packed into
the scaled polygon. Next, we will prove the approximation factor of the algorithm.

Lemma 5.11. Napprox ≥ (1− ε)Nmax.

Proof. First, we need a lower bound on Napprox if not the optimal value is returned

and therefore we will give lower bounds for the napproxi . Since k = log
(

max
i

(aibi)
)

+
2(blog pc+ 1− blog qc), we get

hi ≥ hi − 2−k = sin γi −
1

2
log
(

max
i

(aibi)
)

+2(blog pc+1−blog qc)

≥ sin γi −
1

2log((aibi))+2(blog pc+1−blog qc) = sin γi −
1

aibir2 ,
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for all i = 1, . . . , v − 3. Analogously, we get g ≥
√

12 + 1
aibir2 for all i = 1, . . . , v − 3. As

in the proof of Lemma 5.7, this gives napproxi ≥
1√
12

(
aibi sin γi

2 r2 − 3(ai + bi + ci)r
)
− 1.

So, together we get

Napprox ≥
v−3∑
i=1

napproxi ≥
v−3∑
i=1

( 1√
12

(
aibi sin γi

2 r2 − 3(ai + bi + ci)r
)
− 1

)
.

Next, we need an upper bound for Nmax. Consider an optimal packing of Nmax disks
together with the triangulation T . Observe, that we cannot directly apply Fejes Tóths
Theorem 2.1 to the container since it is only stated for convex regions. Therefore, we
consider the container split up into triangles but have to be careful since we might cut
packed disks into pieces when dividing the polygon into triangles. Let Ci be the set of
disks in the optimal packing with their disk centers in Ti. Let d be the inradius of Ti.
Then define T ′i to be the triangle similar to Ti with the same center of the incircle but
with inradius d+ 1. Then, the disks in Ci are completely contained in T ′i (see Fig. 5.2).

1

Figure 5.2: All disks with center in the grey triangle Ti of the triangulation are contained
in the larger triangle T ′i that is similar to Ti and has the same incircle center
and incircle radius enlarged by one.

The area of T ′i can be obtained in the following way. The inradius d of Ti is given by
the well known formula

d = 2 · area(Ti)
perimeter(Ti)

= aibi sin γi · r2

(ai + bi + ci)r
. (5.4)
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T ′i is a scaled copy of Ti so the following equality must hold for some constant λ:

d+ 1 = λ2aibi sin γi · r
λ(ai + bi + ci)

.

It follows that λ = 1 + ai+bi+ci
aibi sin γi·r and therefore

area
(
T ′i
)

= λ2area(Ti)

=
(

1 + ai + bi + ci
aibi sin γi · r

)2aibi sin γi
2 r2

=
(

1 + 2(ai + bi + ci)
aibi sin γi · r

+ (ai + bi + ci)2

a2
i b

2
i sin2 γi · r2

)
aibi sin γi

2 r2

= aibi sin γi
2 r2 + (ai + bi + ci)r + (ai + bi + ci)2

2aibi sin γi
.

Observe, that the inradius of T ′i is by Eq. (5.4)

aibi sin γi · r2

(ai + bi + ci)r
+ 1 ≥ aibi sin γi

(ai + bi + ci)
· (8(ai + bi + ci) + 7)(aibihi) + (ai + bi + ci)2

(aibihi)2 · ε
+ 1,

by Line 7 in Algorithm 5.3. Hence,

aibi sin γi · r2

(ai + bi + ci)r
+ 1 ≥ 9.

So, at least four unit disks can be packed into T ′i . Hence, we can apply Theorem 2.1 to
T ′i and get

|Ci| ≤
1√
12

(
aibi sin γi

2 r2 + (ai + bi + ci)r + (ai + bi + ci)2

2aibi sin γi

)
.

Since for every disk in the optimal packing there exists an i such that its center is
contained in Ci, we have

Nmax ≤
v−3∑
i=1
|Ci| ≤

v−3∑
i=1

1√
12

(
aibi sin γi

2 r2 + (ai + bi + ci)r + (ai + bi + ci)2

2aibi sin γi

)
. (5.5)

In order to complete the proof, we will show that napproxi ≥ (1− ε)|Ci| for all 1 ≤ i ≤
v − 3.
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napproxi
|Ci|

≥
1√
12

(
aibi sin γi

2 r2 − 3(ai + bi + ci)r
)
− 1

1√
12

(
aibi sin γi

2 r2 + (ai + bi + ci)r + (ai+bi+ci)2

2aibi sin γi

)
=

1√
12

(
aibi sin γi

2 r2 − 4(ai + bi + ci)r + (ai + bi + ci)r + (ai+bi+ci)2

2aibi sin γi −
(ai+bi+ci)2

2aibi sin γi

)
− 1

1√
12

(
aibi sin γi

2 r2 + (ai + bi + ci)r + (ai+bi+ci)2

2aibi sin γi

)
= 1−

1√
12

(
4(ai + bi + ci)r + (ai+bi+ci)2

2aibi sin γi

)
+ 1

1√
12

(
aibi sin γi

2 r2 + (ai + bi + ci)r + (ai+bi+ci)2

2aibi sin γi

)
> 1−

1√
12

(
4(ai + bi + ci)r + (ai+bi+ci)2

2aibi sin γi

)
+ 1

1√
12
aibi sin γi

2 r2

= 1−
(

8(ai + bi + ci)
aibi sin γi · r

+ (ai + bi + ci)2

(aibi sin γi · r)2 + 2
√

12
aibi sin γi · r2

)

≥ 1−

(
8(ai + bi + ci) + 2

√
12
)
aibi sin γi + (ai + bi + ci)2

(aibi sin γi)2r
,

since we can assume r ≥ 1 as described above. Furthermore, the approximate solution
is only computed for r ≥ (8(ai+bi+ci)+7)aibi sin γi+(ai+bi+ci)2

(aibi sin γi)2 , so we get

napproxi
|Ci|

> 1− ε.

This immediately gives

Napprox ≥
v−3∑
i=1

napproxi ≥ (1− ε)
v−3∑
i=1
|Ci| ≥ (1− ε)Nmax,

by Eq. (5.5).

It remains to analyze the running time of the algorithm.

Lemma 5.12. Algorithm 5.3 can be realized in time polynomial in the input size for fixed
ε.

Proof. The analysis of the running time is similar to the one for triangular containers. If
the algorithm computes the optimal value for the maximal number of disks that can be
packed by solving first-order-formulas as described in Section 2.2.1, we have r = O

(
1
ε

)
(see Lines 7 and 8 in Algorithm 5.3), since ai, bi, ci, sin γi are independent of the input
for all i = 1, . . . , v − 3 and therefore constants. So, in this case, the running time is
polynomial in the input size by Corollary 2.3. Now we study the case where the algorithm
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returns the approximate solutionNapprox. Initially, assume the container polygon is given
together with a triangulation T = {T1, . . . , Tv−3} and the triangle Ti is given by its side
length ai, bi, ci. Then, the algorithm computes constantly often approximations napproxi
analogously to the algorithm for triangles described in the previous section. Since the
running time of the algorithm for triangles is polynomial in the input size, the running
time for the algorithm described in this section is polynomial in the input size, too.
Unfortunately, if the triangulation of the container polygon is not given, we have to
compute it. Since v is a constant, we can compute the triangles in constant time but
it may happen, that the side lengths of the triangles have no rational values. In this
case, we have to use the same trick as for the angles γi and

√
12, namely computing the

side lengths with suitable precision depending on r. In this way, we can achieve overall
polynomial running time in the input size.

Altogether we have the following result.

Theorem 5.13. Algorithm 5.3 is a PTAS for calculating the maximal number of unit
disks that can be packed into a fixed simple polygon scaled by a given factor r.

5.3 Packing Unit Balls into Spheres
In this section, we use the ideas from packing unit disks into circles to find the maxi-
mum number nmax of unit balls that can be packed into a container sphere of radius r.
The exact solution can again be obtained by solving first-order-formulas as discussed in
Section 2.2.1. As for the 2D-problem, the algorithm solves the problem exactly for small
radii and calculates an approximation for bigger radii using the density of an optimal
packing of infinitely many balls in 3D proven by Hales et al. [29, 30]. Basically, the
3D-algorithm is the same as the 2D-algorithm (Algorithm 5.1), but of course it uses
other constants.
We will do the analysis of the algorithm in the same order as for the 2D-algorithm.

First, we show that napprox balls can indeed be packed by giving a lower bound for
nmax and proving that napprox is smaller than this bound. Then, we will give an upper
bound for nmax and use it to show that the algorithm computes a (1− ε)-approximation.
Finally, we analyze the running time to show that the algorithm is truly a PTAS.

Lemma 5.14. nmax ≥
⌈

π√
18(r − 4)3

⌉
.

Proof. A packing with optimal density of infinitely many unit balls in 3D is the face-
centered cubic packing (see Section 6.2 for details). The volume of a cell in the Voronoi-
Diagram of the ball centers in the FCC-packing is 4

√
2 (see e.g. [29]). Such a Voronoi-cell

is contained in a sphere of radius 2 [29]. Now, we consider the intersection of the FCC-
packing with a container sphere. Since the diameter of a cell is at most 4, every cell that
intersects a sphere with radius r− 4 centered at the origin is contained in a sphere with
radius r centered at the origin. Therefore, to get a lower bound for nmax we divide the
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Algorithm 5.4:
Input: Number r ≥ 2 given as p

q , parameter ε > 0 given as u
v , with p, q, u, v

positive integers
Output: Nonnegative integer napprox

1 if r < 32992 · 1
ε then

2 Compute napprox with the exact algorithm;
3 end
4 else
5 k = 3(blog pc+ 1− blog qc) + 6 ;
6 compute some a with π ≥ a ≥ π − 2−k;
7 compute some b with

√
2 ≤ b ≤

√
2 + 2−k;

8 napprox =
⌈
a(r−4)3

3b

⌉
;

9 end
10 return napprox;

volume of the sphere with radius r − 4 by the volume of a Voronoi-cell:

nmax ≥
⌈ 4

3π

4
√

2
(r − 4)3

⌉
=
⌈
π√
18

(r − 4)3
⌉
.

If napprox is not computed with the exact algorithm, we know that
napprox ≤ π

3
√

2(r − 4)3, since a ≤ π and b ≥
√

2. So following Lemma 5.14, napprox
unit balls can surely be packed. Next, we need an upper bound for nmax. The formu-
lation of Kepler’s conjecture which has been proven by Hales et al. is as follows: For
any ball packing there exists a constant c such that the volume of the intersection of the
union of the unit balls with a container sphere of radius r is at most π√

18 + c
r times the

volume of the container sphere. For our purpose, we need a slightly stronger statement,
namely that c is universal, i. e., independent of the particular packing. Hales et al. state
in their paper [30] that this is possible but do not show the solution. We do this in
the following chapter (Chapter 6) by modifying Hales’s proof from [29] and come up
with the constant c = 24373 (Theorem 6.24). This bound also takes balls only partially
contained in the container into account.
The actual maximum ratio between the volume of the union of balls completely con-

tained in the container sphere and the volume of the container sphere is nmax
4
3π

4
3πr

3 . To-
gether, this gives

nmax
4
3π

4
3πr

3 ≤ π√
18

+ 243731
r
,
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which implies

nmax ≤
π√
18
r3 + 24373r2.

Hence, we have shown the following lemma.

Lemma 5.15. For r ≥ 1 it holds that nmax ≤ π√
18r

3 + 24373r2.

Now, we use the upper bound to prove the approximation ratio of Algorithm 5.4.

Lemma 5.16. napprox ≥ (1− ε)nmax

Proof. The proof is analogous to the proof of Lemma 5.3. As before, we compute bounds
for a and b. Since k = 3(blog pc+ 1− blog qc) + 6, we get

a ≥ π − 2−k = π − 1
23(blog pc+1−blog qc)+6 ≥ π −

1
23(log p−log q) · 64

= π − 1
64r3 ,

similarly, we get

b ≤
√

2 + 2−k ≤
√

2 + 1
64r3 .

napprox is either the exact value or we have

napprox ≥
⌈
a

3b(r − 4)3
⌉

With the bounds for a and b we get

napprox ≥
π − 1

64r3

3
(√

2 + 1
64r3

)(r − 4)3.

=

 π − 1
64r3

3
(√

2 + 1
64r3

) + π√
18
− π√

18

(r − 4)3

= π√
18

(r − 4)3 −
π
(√

18 + 3
64r3

)
−
√

18
(
π − 1

64r3

)
√

18
(√

18 + 3
64r3

) (r − 4)3

= π√
18

(r − 4)3 − 3π +
√

18
18 · 64r3 + 3

√
18

(
r3 − 12r2 + 48r − 64

)
≥ π√

18
(r − 4)3 − 3π +

√
18

1152r3

(
r3 + 48r

)
≥ π√

18
(r − 4)3 − 3π +

√
18

1152r3

(
49r3

)
(since r ≥ 1)

= π√
18

(r − 4)3 −
49
(
3π +

√
18
)

1152
≈ π√

18
(r − 4)3 − 0.59 < π√

18
(r − 4)3 − 1. (5.6)
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Next, we will give the approximation factor using the bound from Eq. (5.6) and the
upper bound for nmax given in Lemma 5.15:

napprox
nmax

≥
π√
18(r − 4)3 − 1
π√
18r

3 + 24373r2

>
π
(
r3 − 12r2 − 64

)
πr3 + 24373

√
18r2 (since r ≥ 1)

= 1−

(
12π + 24373

√
18
)
r2 + 64π

πr3 + 24373
√

18r2

≥ 1−

(
76π + 24373

√
18
)
r2

πr3 + 24373
√

18r2 (also since r ≥ 1)

> 1−

(
76π + 24373

√
18
)
r2

πr3

= 1−

(
76π + 24373

√
18
)

πr
.

Since we calculate the optimal solution for r < 32992
ε we can assume r ≥ 32992

ε . Plugging
in this bound for r gives

napprox
nmax

> 1− ε.

It remains to analyze the running time. Analogous to the 2D-algorithm blog pc + 1,
blog qc, a, and b can be calculated in time polynomial in the input size. Therefore, the
critical term in the calculation of the running time is the running time of the exact
algorithm, which is polynomial in the input size by Corollary 2.3 for fixed ε. So, we get
the following lemma.

Lemma 5.17. Algorithm 5.4 can be realized with running time polynomial in the inputsize
for fixed ε.

Lemmas 5.14, 5.16 and 5.17 directly imply the following theorem.

Theorem 5.18. Algorithm 5.4 is a PTAS for computing the maximum number of unit
balls that can be packed into a sphere with given radius r.

5.4 Packing Unit Disks into Thick Convex
Containers

In this section, we will again pack unit disks into polygons. This time, the container
polygon is part of the input and not part of the problem description with the extra
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requirement that the container polygon is c-thick by Definition 3.12 for a constant c.
Instead of Definition 3.12, we will use the following definition in this section after we
have proven that they are equivalent for convex polygons.

Definition 5.19 (c-chunkiness). Let P be a polygon, A its area and U its perimeter. We
call P c-chunky if and only if A ≥ c · U2.

Lemma 5.20. If a convex polygon P is c-chunky then there exists a c′ such that P is
c′-thick. If P is c-thick then there exists a c′ such that P is c′-chunky.

Proof. Observe that the perimeter U of P is at least twice the diameter d of P . Hence,
A ≥ cU2 implies A ≥ 4cd2. Consider the smallest enclosing circle of P with radius
s. Since the smallest enclosing circle is defined by at most three points of P , s ≤ d√

3
(consider an equilateral triangle). For convex polygons, the perimeter is smaller than
the perimeter of any enclosing circle. Hence, A ≥ cd2 implies A ≥ c · 3

4π2U
2.

The idea of the algorithm is analogous to the one for packing unit disks into a circle
(see Section 5.1). For small areas of P , where the definition of small depends on ε, we
compute the optimal solution using the approach given in Section 2.2.1. Otherwise, we
multiply the area of P without a strip of width 3 at its boundary by the density of
the optimal infinite packing for the plane. Again, we will need some correction terms.
Algorithm 5.5 gives more details. We assume that the container polygon P is c-chunky
for a constant c and given by the rational coordinates of its vertices v1, . . . vl.

Algorithm 5.5:
Input: Convex polygon P = (v1, . . . , vl), parameter ε > 0 given as u

v , with u, v
positive integers

Output: Nonnegative integer napprox
1 Compute area A of P ;
2 if At least two unit disks can be packed into P and A ≥ 43

cε2 then
3 k = blog(A+ 1)c+ 1 ;
4 compute some a with

√
A
c ≤ a ≤

√
A
c + 2−k;

5 compute some b with
√

12 ≤ b ≤
√

12 + 2−k;
6 napprox =

⌈
A−3a
b

⌉
;

7 end
8 else
9 Compute napprox with the exact algorithm;

10 end
11 return napprox;

Since the idea of the algorithm is very similar to the one for packing unit disks into
circles, the analysis is analogous. We start by giving a lower bound for nmax that shows
that napprox unit disks can surely be packed. Afterwards, we will prove the approximation
factor of Algorithm 5.5 and then its running time.
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Lemma 5.21. nmax ≥
⌈
A−3

√
A
c√

12

⌉
, where A is the area of the c-chunky container polygon

P .

Proof. The proof is mostly analogous to the proof of Lemma 5.1 and additionally uses
Definition 5.19.
Consider a polygon P ′ inside P that consists of all points that have distance at least

3 to the boundary of P together with the triangular grid of the optimal packing of unit
disks in the plane (see Fig. 5.3i). Vertices of triangles at least partially contained in
P ′ have distance at least one from the boundary of P . Hence, unit disks placed with
their centers at these vertices are completely contained in P (see Fig. 5.3ii). Let A be
the area of P and U its perimeter. Then, the area A′ of P ′ can be approximated with
A′ ≥ A − 3U since P is convex. Using Definition 5.19 gives A′ ≥ A −

√
A
c . Since each

triangle of the grid contains half a unit disk, dividing this approximation of A′ by the
area of a triangle

√
3 gives a lower bound for 2 · nmax.

3

(i) The vertices of triangles intersecting
smaller polygon have distance at least one
from the boundary of the container poly-
gon.

(ii) Disks placed on the vertices of triangles
intersecting the smaller polygon are com-
pletely contained in the container poly-
gon.

Since a ≥
√

A
c and b ≥

√
12, Lemma 5.21 implies that napprox unit disks can surely be

packed. Next, we prove the approximation factor of Algorithm 5.5.

Lemma 5.22. napprox ≥ (1− ε)nmax

Proof. As in the many proofs of approximation factors before, we first determine upper
bounds for a and b.

Since k = blog(A+ 1)c+ 1, we have

a ≤

√
A

c
+ 2−k =

√
A

c
+ 1

2blog(A+1)c+1

≤

√
A

c
+ 1
A+ 1 .
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Similarly, we get

b ≤
√

12 + 1
A+ 1 .

Now, as before, we use these bounds to obtain a lower bound for napprox in case it is not
calculated with the exact algorithm. Then,

napprox =
⌈
A− 3a
b

⌉

≥
A− 3

(√
A
c + 1

A+1

)
√

12 + 1
A+1

≥ A√
12 + 1

A+1
−

3
(√

A
c + 1

A+1

)
√

12

= A√
12

(
1−

1
A+1√

12 + 1
A+1

)
−

3
√

A
c√

12
−

3 1
A+1√
12

≥
A− 3

√
A
c√

12
−
(

A

12(A+ 1) + 3√
12(A+ 1)

)

=
A− 3

√
A
c√

12
− A+ 3

√
12

12(A+ 1)

≥
A− 3

√
A
c√

12
− 1. (5.7)

By the upper bound nmax ≥ A√
12 that follows from Theorem 2.1 and the lower bound

just given in Eq. (5.7), we get

napprox
nmax

≥
A−3

√
A
c√

12 − 1
A√
12

= 1− 3√
c ·A

−
√

12
A

.

Observe that the convexity of P implies that c ≤ 1. Since at least two unit disks can be
packed if we do not return the optimal value, we have A ≥ 1. Hence,

napprox
nmax

≥ 1− 3 +
√

12√
c ·A

≥ 1− 6.5√
c ·A

≥ 1− ε,

since A ≥ 43
cε2 if we do not return the optimal solution. Summarizing, Algorithm 5.5

returns an (1− ε)-approximation if it does not return the optimal solution.
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It remains to analyze the running time.

Lemma 5.23. Algorithm 5.5 can be implemented with polynomial running time.

Proof. The area A of P in Line 1 can be computed with Gauss’s well known area formula
1
2

∣∣∣∑k
i=1(yi + yi+1)(xi − xi+1)

∣∣∣ where (xi, yi) are the coordinates of the vi. Observe that
the formula is polynomial and hence, the bit-representation of A is polynomial. The con-
dition of the if-statement in Line 2 can be implemented by solving the decision problem
if two unit disks can be packed into P as discussed in Section 2.2.1 (see Theorem 2.2)
and a simple test if A− 43

cε2 ≥ 0. Computing k means adding one to A and determining
the bit length of its representation. Since the bit-representation of A is polynomial in
the input size, so is k. Hence, computing a and b means computing a polynomial number
of bits of

√
A
c and

√
12 which can be done in polynomial time with techniques from [14].

Line 9 can be implemented in time polynomial in the input size if the maximum number
of unit disks that can be packed into P is bounded from above by a constant (N in
Corollary 2.3). Since this step is only performed for A ∈ O

(
1
ε2

)
, this is the case for fixed

ε. Therefore, Algorithm 5.5 runs in polynomial time for fixed ε.

Lemmas 5.21 to 5.23 together directly imply the following theorem.

Theorem 5.24. Algorithm 5.5 is a PTAS for determining the maximum number of unit
disks that can be packed into a convex c-thick polygon for a fixed constant c given by its
vertices.

Observe that the theorem above also holds if the container is not a polygon as long as
its area can be computed in polynomial time and it can be described with polynomially
many inequalities and polynomially bounded degree in order to apply Corollary 2.3.

5.5 Remarks, Conclusion, and Open Problems for
Chapters 3 to 5

Packing Unit Disks is in ∃R
In Chapters 3 and 5, we used the approach discussed in Section 2.2.1 to pack unit
disks, i.e., we solved first-order-sentences of the reals containing ∃-quantifiers and an
∀-quantifiers. However, the ∀-quantifier is not necessary for all problems discussed. For
example, the following sentence is true if and only if n unit disks can be packed into a
circle of radius r:

(∃x1, . . . , xn, y1, . . . , yn)
n∧
i=1

(
x2
i + y2

i ≤ (r − 1)2
)

∧
∧

1≤i<j≤n

(
(xi − xj)2 + (yi − yj)2 ≥ 4)

)
.
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In the formula above (xi, yi) is the coordinate of the center of the ith disk, the first part
ensures that the disks lie inside the container circle (their centers have distance at most
r − 1 from the origin) and the second part ensures that no two disks intersect in their
interior (their centers have distance at least 2). Hence, the problem if n unit disks can
be packed into a circle with radius r lies in ∃R. When packing unit disks into containers
different from circles, only the first part of the formula has to be adapted. So, for
all container shapes where this is possible, such as convex polygons, the corresponding
problem is in ∃R and hence lies in PSPACE[15]. The same holds obviously for packing
spheres in 3D.
Even though these formulas can be solved faster by the algorithm of Basu et al.[12],

using these formulas instead would not change the asymptotic overall running time of
our algorithms.

Reverse Problem
Considering the reverse problem, i.e., given n, what is the smallest scaling factor of a
given container such that n copies of an object can be packed into it, one might think it
can be solved with the same approach. Let φ(r) be the formula in (2.1) with c describing
the container scaled by r. At first sight, the following formula seems to solve the problem:

∃r
(
φ(r) ∧ ∀r′

(
r′ < r

)
⇒ ¬φ(r′)

)
.

However, this formula is either true or false (it is probably mostly true) and the algo-
rithm by Basu et al.[12] does not return an actual value for r. Even worse, for packing
unit disks into a circle, already for small n (3,4,5,8,...) is the optimal r not a rational
number. Omitting the first quantifier in the formula above and using quantifier elimina-
tion (e.g.[12]) would return a semialgebraic set. Unfortunately, it is not obvious how to
extract a good approximation for r from that set, this might have potential for further
research.

Conclusion and further Open Questions
Table 5.1 summarizes the results of the previous chapters.
The main observation for the results in Chapters 3 and 5 was that the maximum

number of unit disks (or other objects that can be described with first-order-formulas)
that can be packed into a container described by a first-order-formula can be computed
by solving first-order-formulas of the reals. The idea is then to solve the problem for small
containers (depending on ε) and either compose an approximation for bigger containers
from these small solutions (Chapter 3) or to approximate it by using the packing with
maximum density in the plane (Chapter 5).
In Chapter 3, the container is a fat parallelogram or triangle whereas the objects can

not only be unit disks but also copies of a fixed or thick object and we can even allow rigid
motions and not just translations. The algorithm highly uses the shape of the container,
so it is not clear if and how this can be adapted to more general container shapes. In
contrast to this, in Chapter 5 the approach generalizes from circles as container to scaled
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ob-
jects

con-
tainer fat

parallelogram
fat

triangle
gen.

triangle

scaled
fixed

polygon

thick
convex

container
sphere

gen.
simple
polygon
with
holes

unit
disks PTAS PTAS const.

factor PTAS PTAS NP-hard
[27]

fixed
objects PTAS PTAS NP-hard

[27]

thick
objects PTAS PTAS NP-hard

[27]

unit
spheres PTAS

Table 5.1: Summarized results of Chapters 3 to 5

fixed polygons, thick containers and even packing spheres in 3D into a ball. However,
since its analysis highly depends on the theorem given by Fejes Tóth (Theorem 2.1) for
the packing of unit disks in the plane with highest density (and in 3D on the equivalent
theorem by Hales et al.), it is open if and how this result can be used to pack more
general objects. Observe, that in Chapter 3 and Chapter 5, the container is either fat or
thick or a scaled copy of a fixed container. In Chapter 4 we made a small step towards
more general containers by packing unit disks into general triangles, where, in contrast
to Chapter 5, the triangle is neither fixed nor need to be fat. We achieved a constant
factor approximation, it remains open if also a PTAS is possible as for more restricted
containers.
Anyhow, these are the first approximability results for this kind of problems to our

knowledge. Since not much is known about the complexity of these problems in general,
this and the fact that they can be solved by solving first-order-formulas hopefully helps
understanding and researching them in the future.





Chapter6
ANote on Hales’ "Dense
Sphere Packing: A Blueprint
to Formal Proofs"
6.1 Introduction
In [29] Hales proves that for every packing of infinitely many unit balls into three di-
mensional space, there exists a constant c such that the density inside a sphere of radius
r is bounded from above by π/

√
18 + c/r. Here, the density is defined as the volume of

the intersection of the packed unit balls with the container sphere of radius r divided
by the volume of the container sphere. The famous Kepler conjecture states that the
density tends to π/

√
18 when r tends to infinity which is implied by the density bound

shown by Hales.
To make, for example, statements about bounds for finite packings inside a container,

we need c to be independent of the packing, i.e., we want a statement of the form: There
exists a constant c′ such that for every infinite sphere packing the density inside a ball
of radius r is upper bounded by π/

√
18 + c′/r. If it holds for an infinite packing, then

this statement would also hold for a finite packing.
First, we give some definitions that are necessary to understand the crucial lemmas

from [29]. Then, we follow the proofs of the lemmas and calculate a constant c′ inde-
pendent of the packing. Instead of using O-Notation as in [29], we give more detailed
calculations to be able to give an actual value for c′. When we cite lemmas or definitions
from [29] (with occasional slight modifications) we give the corresponding number of
the lemma or definition in [29] parenthesized. We try to give definitions as closely as
possible to the point where we use them. This chapter is thought as an supplement to
[29], therefore, we stick as closely as possible to the notation of Hales.

75
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6.2 Main Lemmas
Let us denote by vol the Lebesgue measure on Euclidean space R3.
In the sequel, let V ⊂ R3 be a point set that induces a packing of infinitely many

unit spheres, i.e., the points in V are the centers of the spheres and thus have pairwise
distance at least 2. Let B(p, r) be the open sphere centered at point p with radius r.
Let V (p, r) = V ∩ B(p, r). The density δ(V,p, r) inside a container sphere centered at
point p with radius r is defined by

δ(V,p, r) = vol(B(p, r) ∩
⋃

v∈V B(v, 1))
vol(B(p, r)) .

In [29], it is shown that the face-centered cubic (FCC) packing of unit spheres has
optimal density when r tends to infinity. In the FCC-packing, the spheres are arranged
in layers. In each layer, the spheres are arranged with their centers on a hexagonal
grid where neighboring grid points have distance 2. The vertices of the second layer lie
above centers of the triangles in the first layer. In the third layer, the vertices lie above
centers of triangles in the first and in the second layer. These three layers are then
repeated infinitely often. The layers are pushed together until the spheres touch. See
the following picture for illustration. Consider the Voronoi diagram of the circle centers

Figure 6.1: Three layers of the FCC-packing

in a FCC-packing. The Voronoi cells are rhombic dodecahedra with volume 4
√

2 which
yields a density of the packing of π/

√
18.

Let Ω(V,v) denote the cell of v in the Voronoi diagram of V and, more generally, let
Ω(V,u) be the intersection of the Voronoi cells for points in the list u = [u0; u1, . . . ].

Definition 6.1 (Definition 6.11 ). A function G: V → R on a set V ⊂ R3 is negligible if
there is a constant c1 such that for all r ≥ 1,∑

v∈B(0,r)∩V
G(v) ≤ c1r

2.

A function G: V → R is FCC-compatible if for all v ∈ V

4
√

2 ≤ vol(Ω(V,v)) + G(v).
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FCC-compatible means that the volume of every Voronoi cell is close to the volume of
those in the FCC-packing (or larger). Then, negligible means, that the error is small.
Now we are ready to look at a lemma in [29] from which the Kepler conjecture follows

under certain assumptions.

Lemma 6.2 (Lemma 6.13 from[29]). If there exists a negligible FCC-compatible function
G: V → R for a saturated packing V , then there exists a constant c = c(V ) such that
for all r ≥ 1

δ(V,0, r) ≤ π√
18

+ c

r
.

Since this lemma is not sufficient to show the Kepler conjecture, two more lemmas are
required. Therefore, we need two more definitions.

Definition 6.3 (Definition 6.34 ). If u = [u0; . . . ; uk] is a list of points in Rn, then let
h(u) be the circumradius of its point set {u0; . . . ; uk}.

Definition 6.4 (Definition 6.88 ). Set

h0 = 1.26.

Let L: R→ R be the piecewise linear function

L(h) =
{
h0−h
h0−1 , h ≤ h0

0 , h ≥ h0.

We call a packing saturated if no unit sphere can be added to the packing.

Lemma 6.5 (Lemma 6.95). For any saturated packing V and any u0 ∈ V ,∑
u1∈V :h([u0,u1])≤h0

L(h([u0; u1)]) ≤ 12. (6.1)

We will not discuss the proof of this lemma since it is irrelevant to calculate the
constant c′ explained in Section 6.1. It is a computer proof anyways.

Lemma 6.6 (Lemma 6.97 ). Inequality (6.1) implies that for every saturated packing V ,
there exists a negligible FCC-compatible function G: V → R.

Lemmas 6.2, 6.5 and 6.6 together imply the Kepler conjecture. As mentioned above,
we are interested in replacing the constant c in Lemma 6.2 by a constant c′ that is
independent of the packing V . In the proof of Lemma 6.2 in [29] it is shown that

δ(V,0, r) ≤ π√
18

(
1 + 3

r

)3
+ c1

(r + 1)2

r34
√

2
, (6.2)
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where c1 is the constant from Definition 6.1 for the FCC-compatible negligible function
G: V → R that exists by assumption. So, what we need to show in order to find c′ is
the following: There exists a constant d independent of the function G and therefore of
the packing V such that we can set c1 = d in Definition 6.1 and Lemma 6.6 still holds.

In the following, we derive such a constant d, reproduce the proof of Lemma 6.6, and
show that the constructed FCC-compatible function also fulfills the stronger definition
of negligible for c1 = d.

6.3 Proof of Lemma 6.6
For the following function, we will show that it is FCC-compatible and negligible:

G(u) = − vol(Ω(V,u)) + 8m1 −
∑

v∈V \{u}
8m2 L(h([u; v])) (6.3)

for constants m1 and m2 defined later and the function L as described in Definition 6.4.
To prove that this function is FCC-compatible and negligible, another lemma is used.

For this lemma we need more definitions.
In the following, if we talk about cells, we mean so called Marchal cells. We refer the

reader to Definition 6.51 in [29] since we will not need most of the definition for the
calculations made here. Cells are defined by four points in V and a number 0 ≤ k ≤ 4
and are denoted by cell(u, k) ("k-cell") where u is a list of four points with some extra
property to be explained later. 4-cells are always tetrahedra. The cells form a partition
of R3. For a cell X 6= ∅, let V (X) = X ∩ V for a saturated packing V (Definition 6.62
and Lemma 6.63 in [29]).
The following three definitions build upon each other.

Definition 6.7 (Definition 3.7). A set C is r-radial at center v if the two conditions
C ⊂ B(v, r) and v + u ∈ C imply v + tu ∈ C for all t satisfying 0 < ‖u‖t < r. A set C
is eventually radial at center v if C ∩ B(v, r) is r-radial at center v for some r > 0.

Definition 6.8 (Definition 3.11 ). When C is measurable and eventually radial at center
v, define the solid angle of C at v to be

sol(C,v) = 3vol(C ∩ B(v, r))
r3 ,

where r is as in the definition of eventually radial. By Lemma 3.10 in [29], this yields
the same value when replacing r by r′ for any 0 ≤ r′ ≤ r.

Definition 6.9 (Definition 6.66). Define the total solid angle of a cell X to be

tsol(X) =
∑

v∈V (X)
sol(X,v).

We will use this definition later. The following seven definitions build upon each other.
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Definition 6.10 (Definition 5.43). Recall that a set A ⊂ Rn is affine if for every v,w ∈ A
and every t ∈ R,

tv + (1− t)w ∈ A.

Recall that the affine hull of P ⊂ Rn (denoted aff(P )) is the smallest affine set containing
P . The affine dimension of P (written dimaff(P )) is card(S) − 1, where S is a set of
smallest cardinality such that P ⊂ aff(S). In particular, the affine dimension of the
empty set is −1. [...]

Definition 6.11 (Definition 6.18). Let V be a saturated packing. When k = 0, 1, 2, 3, let
V (k) be the set of lists u = [u0; . . . ; uk] of length k + 1 with ui ∈ V such that

dimaff(Ω(V, [u0; . . . ; uj ])) = 3− j

for all 0 < j ≤ k. Set V (k) = ∅ for k > 3.

Definition 6.12 (Definition 6.24). Let V be a saturated packing and let u = [u0; . . . ; uk] ∈
V (k) for some k. Define points ωj = ωj(V,u) ∈ R3 by recursion over j ≤ k

ω0 = u0

ωj+1 = the closest point to ωj on Ω(V, [u0; . . . ; uj+1]),

set w(V,u) = ωk(V,u), when u ∈ V (k). The set V is generally fixed and is dropped from
the notation.

Let conv{v0, . . . ,vn} denote the convex hull of the point set {v0, . . . ,vn}.

Definition 6.13 (Definition 6.51). Let V be a saturated packing. Let u = [u0; . . . ; u3] ∈
V (3). Define ξ(u) as follows. If

√
2 ≤ h([u0; . . . ; u2]), then let ξ(u) = ω([u0; . . . ; u2]).

If h([u0; . . . ; u2]) <
√

2 ≤ h(u), define ξ(u) to be the unique point in

conv{ω([u0; . . . ; u2]), ω(u)}

at distance
√

2 from u0. [...]

Definition 6.14 (Definition 2.66). When v0 6= v1, write dihV ({v0,v1}, {v2,v3}) for the
angle γ ∈ [0, π] formed by

w2 = (w1 ·w1)w2 − (w1 ·w2)w1 and
w3 = (w1 ·w1)w3 − (w1 ·w3)w1,

where wi = vi − v0.

Definition 6.15 (Definition 6.67). Let E(X) be the set of extremal edges of the k-cell X
in a saturated packing V . More precisely, let

E(X) = {{ui,uj} : ui 6= uj ∈ V (X)}.

In particular, E(X) is empty for 0 and 1-cells and contains
(k

2
)
pairs when 2 ≤ k ≤ 4.
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Definition 6.16 (Definition 6.68). Let V be a saturated packing. Let X be a k-cell, where
2 ≤ k ≤ 4. Let ε ∈ E(X). We define the dihedral angle dih(X, ε) of X along ε
as follows. Explicitly, if X is a null set, then set dih(X, ε) = 0. Otherwise, choose
u = [u0; u1; u2; u3] ∈ V (3) such that X = cell(u, k) and ε = {u0,u1}. Set dih(X, ε) =
dihV ({u0,u1}, {v,w}), where

{v,w} =


{ξ(u), ω(u)} , k = 2
{u2, ξ(u)} , k = 3
{u2,u3} , k = 4.

This is independent of the choice of u defining X.

Now, we need just two more definitions before we can state the lemma mentioned
above. The second one builds upon all the previously given definitions.

Definition 6.17 (Definition 6.70). Define the following constants [...]:

sol0 = 3 arccos
(1

3

)
− π

τ0 = 4π − 20 sol0

m1 = sol0 2
√

2
τ0
≈ 1.012

m2 = (6 sol0−π)
√

2
6τ0
≈ 0.0254

[...]

Definition 6.18 (Definition 6.79). For any cell X of a saturated packing, define the func-
tion γ(X, ∗) on {f : R→ R} by

γ(X, f) = vol(X)−
(2m1

π

)
tsol(X) +

(8m2
π

) ∑
ε∈E(X)

dih(X, ε)f(h(ε)).

Now, we can state the lemma.

Lemma 6.19 (Lemma 6.86). Let f be any bounded, compactly supported function. Set

G(u0, f) = − vol(Ω(V,u0)) + 8m1 −
∑

u∈V \{u0}
8m2f(h([u0; u])).

If ∑
v∈V \{u}

f(h([u; v])) ≤ 12,
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then G(∗, f) is FCC-compatible. Moreover, if there exists a constant c0 such that for all
r ≥ 1 ∑

X⊂B(0,r)
γ(X, f) ≥ c0r

2,

then G(∗, f) is negligible. 1

This Lemma almost implies that there is a FCC-compatible negligible function. Using
this Lemma, it is sufficient to show that Lemma 6.5 implies the existence of suitable G
and f in Lemma 6.19 to prove Lemma 6.6. We will turn to this later. Now, we focus on
the proof of Lemma 6.19. Since we are only interested in the constant in the definition
of negligible, we will only outline this part of the proof here. The idea of the proof of
negligibility is as follows. If one can show that

−
∑

u∈V (0,r)
G(u, f) ≥

∑
X⊂B(0,r)

γ(X, f) + c2r
2 (6.4)

for some constant c2. Then by the assumption in Lemma 6.19

−
∑

u∈V (0,r)
G(u, f) ≥ (c0 + c2)r2, (6.5)

which directly implies, that G(∗, f) is negligible for c1 = −(c0 + c2) in Definition 6.1.
Since we are only interested in the independence of c1 of the packing V , we will now
focus on calculating the constant c2 and thereby showing that c2 is independent of the
packing. We will get an estimate on c0 later satisfying the conditions in Lemma 6.19.

6.3.1 Calculation of c2

In this section we go through the proof of Lemma 6.19 and show that

−
∑

u∈V (0,r)
G(u, f) ≥

∑
X⊂B(0,r)

γ(X, f) + c2r
2

for some constant c2 independent of the packing V .
Observe that the equalities

−
∑

u∈V (0,r)
G(u, f) =

∑
u∈V (0,r)

vol(Ω(V,u))−
∑

u∈V (0,r)
8m1 +

∑
u∈V (0,r)

∑
v∈V \{u}

8m2f(h([u; v]))

1In the sequel, by slight abuse of notation
∑

X⊂B(0,r) refers to the summation only over all Marchal
cells X ⊂ B(0, r).



82 A Note on Hales’ "Dense Sphere Packing: A Blueprint to Formal Proofs"

and ∑
X⊂B(0,r)

γ(X, f) =

∑
X⊂B(0,r)

vol(X)−
∑

X⊂B(0,r)

(2m1
π

)
tsol(X) +

∑
X⊂B(0,r)

(8m2
π

) ∑
ε∈E(X)

dih(X, ε)f(h(ε))

have each three summands and we will relate them in this order. So, we start by showing
that ∑

u∈V (0,r)
vol(Ω(V,u)) ≥

∑
X⊂B(0,r)

vol(X)− 56
3 πr

2. (6.6)

By Lemma 6.7 in [29], Ω(V,v) ⊂ B(v, 2), so we have∑
u∈V (0,r)

vol(Ω(V,u)) ≥ vol(B(0, r − 2))

= vol(B(0, r))− vol(B(0, r) \ B(0, r − 2))

≥
∑

X⊂B(0,r)
vol(X)−

(4
3πr

3 − 4
3π(r − 2)3

)
,

since Marchal cells form a partition of space as mentioned above. So we get

∑
u∈V (0,r)

vol(Ω(V,u)) ≥
∑

X⊂B(0,r)
vol(X)− 8πr2 − 32

3 π.

Since negligible is only defined for r ≥ 1, we can assume r ≥ 1 here. So we have

∑
u∈V (0,r)

vol(Ω(V,u)) ≥
∑

X⊂B(0,r)
vol(X)− 56

3 πr
2,

which proves Eq. (6.6).
Next, we will show that

−
∑

u∈V (0,r)
8m1 ≥ −

(2m1
π

) ∑
X⊂B(0,r)

tsol(X)−m1 · 2240r2. (6.7)

First, we need to estimate the diameter of a Marchal cell. For a cell X = cell(u, k) for
u = [u0; . . . ] ∈ V (3) it holds that

X = cell(u, k) ⊂ Ω(V,u0) ∪ · · · ∪ Ω(V,uk−1)

(see the proof of Lemma 6.63 in [29]). By Lemma 6.7, Ω(V,v) ⊂ B(v, 2), so we get

X ⊂ B(u0, 2) ∪ · · · ∪ B(uk−1, 2).
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By Definition 6.11, the Voronoi cells Ω(V,u0), . . . ,Ω(V,uk−1) share at least one point
and so the spheres B(u0, 2), . . . ,B(uk−1, 2) do. Therefore, we can conclude that the
diameter of a Marchal cell is at most 4.
Now,∑
X⊂B(0,r)

tsol(X) =
∑

X⊂B(0,r)

∑
v∈V (X)

sol(X,v)

by definition. Since the diameter of each cell is at most 4, we can rewrite this as∑
X⊂B(0,r)

tsol(X) =
∑

X⊂B(0,r+4)

∑
u∈V (X)

sol(X,u)−
∑

X⊂B(0,r+4):X*B(0,r)

∑
u∈V (X)

sol(X,u)

≥
∑

v∈V (0,r)

∑
X:v∈V (X)

sol(X,v)−
∑

u∈V (0,r+4)\V (0,r−4)

∑
X:u∈V (X)

sol(X,u),

since V (X) = X∩V and a cell with diameter at most 4 that is not completely contained in
a sphere of radius r cannot intersect the sphere with the same center of radius r−4. Next,
we use that the solid angles around one point sum up to 4π. Furthermore, to estimate
the number of points u ∈ V (0, r+4)\V (0, r−4), we use the following volume argument.
Each u ∈ V (0, r+ 4) \V (0, r− 4) is the center of a packed unit sphere and therefore the
volume of those unit spheres sum up to less than the volume of B(0, r+ 5) \B(0, r− 5).
Vice versa dividing vol(B(0, r + 5) \ B(0, r − 5)) by the volume of a unit sphere yields
an upper bound on the number of points, so we get

∑
X⊂B(0,r)

tsol(X) ≥
∑

v∈V (0,r)
4π −

( 4
3π(r + 5)3 − 4

3π(r − 5)3

4
3π

)
4π

=
∑

v∈V (0,r)
4π − (30r2 + 250)4π

≥
∑

v∈V (0,r)
4π − 1120πr2,

since r ≥ 1.

By rearranging, we obtain

−
(2m1

π

) ∑
X⊂B(0,r)

tsol(X)− 2240m1r
2 ≤ −

∑
v∈V (0,r)

8m1,

proving Eq. (6.7).
Finally, we show that∑

u∈V (0,r)

∑
v∈V \{u}

8m2f(h([u; v])) ≥ 8m2
π

∑
X∈B(0,r)

∑
ε∈E(X)

dih(X, ε)f(h(ε)). (6.8)
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For any ε ∈ E(X) it holds that ε ⊂ V (X) ⊂ X by Definition 6.15, and Lemma 6.63 in
[29]. This implies∑

X⊂B(0,r)

∑
ε∈E(X)

dih(X, ε)f(h(ε)) ≤
∑

ε={u,v}⊂B(0,r)

∑
X:ε∈E(X)

dih(X, ε)f(h(ε))

=
∑

ε⊂B(0,r)
2πf(h(ε)),

since the dihedral angle around an edge sums up to 2π.2When summing over ordered
pairs, each edge appears twice, so we have to divide by two and get∑

X⊂B(0,r)

∑
ε∈E(X)

dih(X, ε)f(h(ε)) ≤
∑

u∈V (0,r)

∑
v∈V (0,r)\{u}

πf(h(u,v)).

So, for the last summand we get by rearrangement
8m2
π

∑
X∈B(0,r)

∑
ε∈E(X)

dih(X, ε)f(h(ε)) ≤
∑

u∈V (0,r)

∑
v∈V (0,r)\{u}

8m2f(h(u,v)),

showing Eq. (6.8).
Combining Eqs. (6.6) to (6.8), we have

−G(u, f)
=

∑
u∈V (0,r)

vol(Ω(V,u))−
∑

u∈V (0,r)
8m1 +

∑
u∈V (0,r)

∑
v∈V \{u}

8m2f(h([u; v]))

≥
∑

X⊂B(0,r)
vol(X)− 56

3 πr
2 −

(2m1
π

) ∑
X⊂B(0,r)

tsol(X)−m1 · 2240r2+

8m2
π

∑
X∈B(0,r)

∑
ε∈E(X)

dih(X, ε)f(h(ε))

=
∑

X⊂B(0,r)
γ(X, f)−

(56
3 +m1 · 2240

)
r2,

i.e. Eq. (6.4) holds with c2 = −56
3 −m1 · 2240.

As mentioned above, we only need to show that the conditions in Lemma 6.19 hold
for some f to prove Lemma 6.6. The first condition holds for f = L by Lemma 6.5. It re-
mains to show that the second condition also holds for f = L, namely∑
X⊂B(0,r) γ(X,L) ≥ c0r

2. Then, we will have showed that the function G(∗,L) is
FCC-compatible and negligible for c1 = −(c0 + c2) in Definition 6.1. For c2 we already
showed that it is independent of the packing, now, we will do so for c0, i.e. prove that∑
X⊂B(0,r) γ(X,L) ≥ c0r

2 holds for a c0 independent of the packing.
2Here, we follow the argumentation of Hales [29]. The author noticed that in Lemma 6.69 in [29], it is
required that h(ε) <

√
2 to have that the dihedral angles sum up to 2π. Since Lemma 6.19 is only

used for f = L and L(h(ε)) = 0 for h(ε) ≥
√

2, this does not cause any problems.
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6.3.2 Calculation of c0

In this section, we will show that

∑
X⊂B(0,r)

γ(X, f) ≥ c0r
2 (6.9)

holds for f = L for a constant c0 independent of the packing that defines the cells X.
We will need more definitions for this proof and we will try to give them as closely as
possible to the point where they are used.

Definition 6.20 (Definition 6.70 and 6.88). Set

h+ = 1.3254.

Let M: R→ R be the piecewise polynomial function

M(h) =


√

2−h√
2−1

h+−h
h+−1

17h−9h2−3
5 , h ≤

√
2

0 , h >
√

2.

Let h− ≈ 1.23175 be the unique root of the quadratic polynomial M(h) − L(h) that lies
in the interval [1.231, 1.232].

Definition 6.21 (Definition 6.89). A critical edge ε of a saturated packing V is an un-
ordered pair that appears as an element of E(X) for some k-cell X of the packing V such
that h(ε) ∈ [h−, h+]. Let EC(X) be the set of critical edges that belong to E(X). If X is
any cell such that EC(X) is not empty, let the weight wt(X) of X be 1/ card(EC(X)).
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Now, we can start with estimating
∑
X⊂B(0,r) γ(X,L).

∑
X⊂B(0,r)

γ(X,L) =
∑

X⊂B(0,r):EC(X)6=∅
γ(X,L) +

∑
X⊂B(0,r):EC(X)=∅

γ(X,L)

︸ ︷︷ ︸
≥0 by Lemma 6.92 in [29]

≥
∑

X⊂B(0,r):EC(X)6=∅
γ(X,L)

=
∑

X⊂B(0,r):EC(X)6=∅

γ(X,L)
∑

ε∈EC(X)
wt(X)

︸ ︷︷ ︸
=1 by Definition 6.21


=

∑
X⊂B(0,r):EC(X)6=∅

∑
ε∈EC(X)

γ(X,L) wt(X)

=
∑

ε⊂B(0,r)

∑
X:ε∈EC(X)

γ(X,L) wt(X)

−
∑

ε⊂B(0,r)

∑
X:ε∈EC(X),X*B(0,r)

γ(X,L) wt(X)

︸ ︷︷ ︸
=:α

(6.10)

Next, we will show that the term α is bounded from above by a constant times r2.

α =
∑

ε⊂B(0,r)

∑
X:ε∈EC(X),X*B(0,r)

γ(X,L) wt(X)

≤
∑

X⊂B(0,r+4)\B(0,r−4)

∑
ε∈EC(X)

γ(X,L) wt(X), (6.11)

since the diameter of X is at most 4 and X intersects the boundary of B(0, r). By
Eq. (6.11),

α ≤
∑

X⊂B(0,r+4)\B(0,r−4)

γ(X,L)
∑

ε∈EC(X)
wt(X)

︸ ︷︷ ︸
=1 by Definition 6.21

. (6.12)
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Next, we plug in the definition of γ(X,L). By Eq. (6.12),

α ≤
∑

X⊂B(0,r+4)\B(0,r−4)

vol(X)−
(2m1

π

)
tsol(X)︸ ︷︷ ︸

≥0 by definition

+
(8m2

π

) ∑
ε∈E(X)

dih(X, ε) L(h(ε))


≤

∑
X⊂B(0,r+4)\B(0,r−4)

vol(X) +
∑

X∈B(0,r+4)\B(0,r−4)

(8m2
π

) ∑
ε∈E(X)

dih(X, ε) L(h(ε)).

(6.13)

Since Marchal cells are a partition of the space, the volume of the cells contained in a
spherical shell sums up to at most the volume of the spherical shell. Furthermore, it
holds for any ε ∈ E(X) that ε ⊂ V (X) ⊂ X, so we get from Eq. (6.13)

α ≤ 4
3π(r + 4)3 − 4

3π(r − 4)3 + 8m2
π

∑
ε⊂B(0,r+4)\B(0,r−4)

∑
X:ε∈E(X)

dih(X, ε) L(h(ε)).

(6.14)

Since the dihedral angle for edges ε with h(ε) <
√

2 sums up to 2π (see Lemma 6.69 in
[29]) and for h(ε) ≥

√
2 the factor L(h(ε)) = 0, we obtain from Eq. (6.14)

α ≤ 32πr2 + 512
3 π +

∑
ε⊂B(0,r+4)\B(0,r−4)

16m2 L(h(ε)). (6.15)

Now, we want to estimate the number of edges such that L(h(ε)) > 0. First, we give
an upper bound on the number of points in V inside the spherical shell as follows. By
decreasing the inner radius and increasing the outer radius by 1, all unit spheres packed
with centers in the original shell are completely contained in the enlarged shell. Then,
we divide the volume of the enlarged shell by the volume of a unit sphere. Next, we want
to give an upper bound on the number of points in V with distance at most 2.52 from
a given point, since for longer edges L(h(ε)) = 0. We do this in a similar way as before
by a volume argument. By multiplying these two values, we count each edge twice, so
we have to divide by 2. In addition, the function L is upper bounded by 1.26/0.26. So,
by Eq. (6.15)

α ≤ 32πr2 + 512
3 π +

4
3π(r + 5)3 − 4

3π(r − 5)3

4
3π︸ ︷︷ ︸

≥|V ∩(B(0,r+4)\B(0,r−4))|

·
4
3π · 3.523

4
3π︸ ︷︷ ︸

≥|V ∩B(v,2.52)| for any v

·12 · 16m2 ·
126
26

≤ 32πr2 + 512
3 π +

(
30r2 + 250

)
· 3.523 · 8 · 63

13 · 0.0255

≤ 1394.1r2 + 11315.6.
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As mentioned before, we can assume r ≥ 1 and obtain

α ≤ 12710r2. (6.16)

Now, we know from Eqs. (6.10) and (6.16) that∑
X⊂B(0,r)

γ(X,L) ≥
∑

ε⊂B(0,r)

∑
X:ε∈EC(X)

γ(X,L) wt(X)− 127102. (6.17)

To proceed with the estimation, we need two more definitions.

Definition 6.22 (Definition 6.90). Set

β0(h) = 0.005
(

1− (h− h0)2

(h+ − h0)2

)
.

If X is a 4-cell with exactly two critical edges and if those edges are opposite, then set

β(ε,X) = β0(h(ε))− β0
(
h
(
ε′
))
, where EC(X) = {ε, ε′}.

Otherwise, for all other edges in all other cells, set β(ε,X) = 0.

Definition 6.23 (Definition 6.91). Let V be a saturated packing. Let ε ∈ EC(X) be a
critical edge of a k-cell X of V for some 2 ≤ k ≤ 4. A cell cluster is the set

CL(ε) = {X : ε ∈ EC(X)}

of all cells around ε. Define

Γ(ε) =
∑

X∈CL(ε)
γ(X,L) wt(X) + β(ε,X).

Using these definitions, we can rewrite Eq. (6.17) as follows:∑
X⊂B(0,r)

γ(X,L) ≥
∑

ε⊂B(0,r)

∑
X:ε∈EC(X)

γ(X,L) wt(X)− 127102

=
∑

ε⊂B(0,r)

Γ(ε)−
∑

X∈CL(ε)
β(ε,X)

− 12710r2

=
∑

ε⊂B(0,r)
Γ(ε)−

∑
ε⊂B(0,r)

∑
X∈CL(ε)

β(ε,X)

︸ ︷︷ ︸
=:ζ

−12710r2. (6.18)
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Next, we will upper bound the term ζ.

ζ =
∑

ε⊂B(0,r)

∑
X∈CL(ε)

β(ε,X)

=
∑

ε⊂B(0,r)

∑
X∈CL(ε):X⊂B(0,r)

β(ε,X) +
∑

ε⊂B(0,r)

∑
X∈CL(ε):X*B(0,r)

β(ε,X)

=
∑

X⊂B(0,r)

∑
ε∈EC(X)

β(ε,X) +
∑

ε⊂B(0,r)

∑
X∈CL(ε):X*B(0,r)

β(ε,X)

= 0 +
∑

ε⊂B(0,r)

∑
X∈CL(ε):X*B(0,r)

∧X is 4-cell with|EC(X)|=2

β(ε,X), (6.19)

since β(ε,X) > 0 only for 4-cells with exactly two critical edges ε, ε′ and β(ε,X) +
β(ε′, X) = 0. Furthermore, β(ε,X) ≤ 0.005, so we get from Eq. (6.19)

ζ ≤
∑

ε⊂B(0,r)

∑
X∈CL(ε):X*B(0,r)

∧X is 4-cell with |EC(X)|=2

0.005. (6.20)

Next, we want to exchange the inner and outer sum. Since the inner sum is zero for
non-critical edges and the cells intersect the boundary of B(0, r), we get from Eq. (6.20)

ζ ≤
∑

X⊂B(0,r+4)\B(0,r−4):
X is a 4-cell with |EC(X)|=2

∑
ε∈EC(X)

0.005

≤
∑

X⊂B(0,r+4)\B(0,r−4):
X is a 4-cell

0.01. (6.21)

Now, we will estimate the number of points in V inside the sperical shell as before. A
4-cell is the convex hull of four points in V with circumradius at most

√
2 (see Defini-

tion 6.51 in [29]). Therefore, for a fixed point v ∈ V all points that can form a 4-cell
with v must lie inside a ball of radius 2

√
2 centered at v. As before, we calculate an

upper bound on the number of points in V inside a ball of radius 2
√

2. Then, the number
of subsets of size three that can be formed with these points is an upper bound on the
number of 4-cells a point in V can be part of. By multiplying these numbers, we count
each 4-cell 4 times, so we divide by 4. So, we get from Eq. (6.21)

ζ ≤
4
3π(r + 5)3 − 4

3π(r − 5)3

4
3π

·
(⌊ 4

3π(2
√

2+1)3

4
3π

⌋
3

)
· 1

4 · 0.01

=
(
30r2 + 250

)
4 ·

(⌊(
2
√

2 + 1
)3
⌋

3

)
· 0.01

=
(
7.5r2 + 62.5

)
· 27720 · 0.01

= 2079r2 + 17325.
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Again, we can assume r ≥ 1, so

ζ ≤ 19404r2. (6.22)

Now, we plug this into Eq. (6.18) and obtain∑
X⊂B(0,r)

γ(X,L) ≥
∑

ε⊂B(0,r)
Γ(ε)− 19404r2 − 12710r2

=
∑

ε⊂B(0,r)
Γ(ε)

︸ ︷︷ ︸
≥0 by Theorem 6.93 in [29]

−32114r2

≥ −32114r2,

i.e. Eq. (6.9) holds for c0 = −32114.
We showed that both conditions in Lemma 6.19 hold and therefore the function G(∗,L)

is FCC-compatible and negligible (see Eq. (6.5) and the explanation thereafter) for

c1 = −(c0 + c2) = 56
3 +m1 · 2240 + 32114

≤ 56
3 + 1.013 · 2240 + 32114

≤ 34402.

By Eq. (6.2), the constant in Lemma 6.2 only depends on constants and c1. So it is
independent of the packing since we showed that c1 is. Therefore, we turn now to
Eq. (6.2) and will later plug in c1 as calculated above:

δ(V,0, r) ≤ π√
18

(
1 + 3

r

)3
+ c1

(r + 1)2

r34
√

2

= π√
18

(
1 + 9

r
+ 27
r2 + 27

r3

)
+ c1

r2 + 2r + 1
r34
√

2

= π√
18

+ π√
18

(9
r

+ 27
r2 + 27

r3

)
+ c1

( 1
r4
√

2
+ 2
r24
√

2
+ 1
r34
√

2

)
.

Since r ≥ 1, we have 1
r3 ≤ 1

r2 ≤ 1
r and get

δ(V,0, r) ≤ π√
18

+ 63π√
18r

+ c1√
2r

= π√
18

+ 21π + c1√
2r

= π√
18

+ 21π + 34402√
2

· 1
r
.

Summarizing, we showed that the constant in Lemma 6.2 does not depend on the
particular packing V but only on the constant for the assumed existing FCC-compatible
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negligible function. Then, we showed that there is a FCC-compatible negligible function
for which the definition for negligible holds for a constant independent of the packing.
So, we can state the main result of this work as follows.

Theorem 6.24. For a saturated packing V and all r ≥ 1 it holds that

δ(V,0, r) ≤ π√
18

+ 21π + 34402√
2

· 1
r
≤ π√

18
+ 24373 · 1

r
.





Chapter7
Packing 2D-Disks into a
3D-Container
In three dimensions, most previous results on packing problems are concerned with pack-
ing “regular” objects like axis-parallel boxes, see e.g. [36]. In particular, approximation
algorithms for packing rectangular cuboids or convex polyhedra into minimum volume
rectangular cuboids or convex containers under rigid motions are known [9]. Whether
this is possible under only translations remains open.

In this chapter, we give a positive answer for a restricted set of possible objects,
namely disks of unit radius and axis-parallel box containers (see Fig. 7.1) by describ-
ing a constant-factor approximation algorithm. Currently, our approximation factor is
forbiddingly high but it should be of theoretical interest that the problem, which is nei-
ther known to be NP-hard nor if its corresponding decision problem is in NP, can be
approximated in polynomial time at all.

Overview
We say that two disks are identical (modulo translation) if their normal vectors are
multiples of each other. Note that the normal vectors do not need to be normalized,
i.e., they can have a length different from 1. Anyhow, they define a plane (the plane
to which they are perpendicular) and therefore a disk. We say that two disks are in
a position where they touch if their intersection contains only one point and that two
disks intersect if their intersection consists of more than one point. By nonoverlapping,
we mean a placement of disks such that no two disks intersect whereas it is allowed that
two disks touch. The main problem we study in this work is then defined as follows:

Definition 7.1 (DiskPacking). Given a set of nonidentical unit disks in R3 by their
normal vectors in Z3, the goal is to find

93
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(i) Input (ii) Solution

Figure 7.1: Example for disk-packing

• an axis-parallel box of minimum volume such that all disks can be packed without
overlapping under translation inside the box

• and the actual packing of the disks inside the box.

For an example, see Fig. 7.1.

Definition 7.2 (length of an ordering, DiskStabbing). Let O be a given ordering of a
set of unit disks and s ∈ R3. We define the length of O in the following way. If the disks
are placed nonoverlappingly with their centers in order O on a line supported by s such
that consecutive disks touch, we call the distance from the first disk center to the center
of the last disk the length of the ordering O with respect to s.
For the DiskStabbing-problem, we are given a set of nonidentical unit disks by their

normal vectors in Z3 and an additional vector s ∈ Z3 defining the direction of a line. A
solution to the DiskStabbing-problem is an ordering of the disks with minimum length.

See Figures 7.2i and 7.2ii for 3D-disk-stabbing and Fig. 7.3 for 2D-disk-stabbing.

(i) Input (ii) Solution

Figure 7.2: Example for 3D-disk-stabbing
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length of the ordering

stabbing line

1D unit disks in 2D

Figure 7.3: Example for 2D-disk-stabbing. Here, the unit disks are unit line segments.
Note the length of the ordering.

In Section 7.1, we show that DiskPacking can be approximated by a constant factor
in polynomial time. We will reduce approximating DiskPacking by a constant factor
to approximating DiskStabbing by a constant factor. DiskStabbing then again will
be reduced to finding the shortest Hamiltonian path in a complete weighted graph. In
general, approximating the shortest Hamiltonian path is hard, but if the graph satisfies
the triangle inequality, the problem admits a polynomial time approximation. In Sec-
tion 7.2 we address more general inputs like squares. These results are complemented
by Section 7.3, where we show that there is no container of constant size in which all
unit disks can be packed.

7.1 Approximation Algorithms
In the following, we first define the distance between two given disks stabbed by a given
line, which will be used as weights in a complete graph on the disks. Then, we use
this graph to show how to reduce DiskStabbing to finding the shortest Hamiltonian
path in a complete weighted graph so as to obtain a constant-factor approximation
algorithm. Afterwards, we will use this approximation algorithm to compute a constant-
factor approximation for DiskPacking.

7.1.1 Measuring the Distance Between Disks
Definition 7.3. Given a vector s and two disks D1 and D2 in R3, the distance hs(D1, D2)
between D1 and D2 with respect to s is defined by the distance of the centers of D1 and
D2 when placed with their centers on a line supported by the vector s such that D1 and
D2 touch. For the special case, that D1 and D2 are identical, we define hs(D1, D2) = 0.

Fix a vector s in Z3. We show that hs forms a metric on unit disks and that h2
s can

be computed easily.

Lemma 7.4. For any s ∈ S2, hs is a metric on the set of unit disks (modulo translation).
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Proof. If D1 and D2 are not identical, it is clear that hs(D1, D2) > 0. Otherwise,
hs(D1, D2) = 0 by definition.

Symmetry also can easily be observed: assume that D1 and D2 are stabbed in that
order so that they touch by a line with direction s through the origin. Then a point
reflection about the origin will preserve the orientation of the disks (invert their normal
vectors) and the distance of their centers, whereas their order on the stabbing line is
reversed.
The triangle inequality holds obviously, if at least two of three disks are identical.

Hence, we focus on the case where all three disks are different. We will show the
triangle inequality by showing that if three disks D1, D2, and D3 with centers c1, c2, c3
respectively are stabbed in that order so that D1 touches D2 and D2 touches D3 then
D3 cannot intersect into D1 (they may touch in a point contained in D2), i.e., the
distance from the center of D1 to the center of D3 is at least hs(D1, D3). This is done
by contradiction: assume that D1 and D3 intersect, i.e., D1 ∩ D3 is a non-degenerate
line segment meaning that hs(D1, D2) + hs(D2, D3) < hs(D1, D3). Let v be any point
in the interior of D1 ∩D3. This implies that the distances from v to c1 and from v to
c3 are both less than one. Observe that if v cannot be contained in the interior of D2,
since otherwise D1 would intersect D2.

c3

c2

c1

w

v

stabbing line
l3

l2

l1

D′
1

D′
2

D′
3

Figure 7.4: Situation in plane E. Length of D′1, D′2, D′3 not drawn to scale.

The following proof setup is illustrated in Fig. 7.4. Consider the plane E spanned by
v, c1, c3. Observe that c2 lies in that plane since c1, c2, c3 lie on the stabbing line. Let



7.1 Approximation Algorithms 97

D′1, D
′
2, D

′
3 be the intersections of D1, D2, D3 with E and l1, l2, l3 the lines supporting

D′1, D
′
2, D

′
3 respectively. D′1, D

′
2, D

′
3 are line segments of length two since the centers

of the disks are contained in E. Without loss of generality, we assume that E is the
xy-plane, the y-axis is the stabbing line, c1, c2, c3 have increasing y-coordinates in this
order, c1 lies at the origin, and v has positive x-coordinate. Letm1,m2,m3 be the slopes
of l1, l2, l3 respectively. Observe thatm1 > m3 for the setting described before. For three
pairwise distinct points p,q, r ∈ E, we denote by pq the line segment with endpoints
p,q, by |pq| its length, and by 4(p,q, r) the triangle with vertices p,q, r. Let w be the
intersection of l2 and either c1v or c3v. Observe that l2 intersects 4(c1, c3,v) exactly
twice, at c2 and w. Furthermore, |c2w| ≥ 1 since otherwise D2 would intersect D1 or
D3. We will contradict this inequality in the following case distinction.
Case 1: m2 ∈ [m3,m1]

stabbing line
l3

l2

l1

l′2

c′2

c3

c2

c1

w

v

Figure 7.5: The distance from c2 to w is at most the distance from c′2 to v which is less
than one.

Consider the line l′2 passing through v and parallel to l2, intersecting the stabbing line
at c2

′ (see Fig. 7.5), and notice that |c2w| ≤ |c′2v|. However, since c1v is the longest edge
in 4(c1, c′2,v) or c3v is the longest edge in 4(c3, c′2,v), |c′2v| ≤ max(|c1v|, |c3v|) < 1,
contradicting our assumption.
Case 2: m2 > m1

We summarize the following setting in Fig. 7.6. The case constraint m2 > m1 implies
that there is an intersection of l1 and l2 with negative x-coordinate. Let u be this
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c3

c1

v

stabbing linel3

l1

l2

c2

w

u

γ

β

α

α− β

Figure 7.6: Situation in E when c1c3 is longest edge in 4(c1, c3,v) and m2 > m1

intersection point. Furthermore, w has to lie on the line segment c3v. Let α be the
inner angle at c1 and γ be the inner angle at c3 in the triangle 4(c1, c3,v). Let β be the
inner angle at c2 in 4(c2, c3,w). Since |c2w| ≥ 1, the longest side of 4(c1, c3,v) has
length at least 1, and since other sides have length less than 1, the longest side should
be c1c3. This implies that

0 < α, γ < π/2, (7.1)

and together with m2 > m1 that u has a negative y-coordinate. We do another case
distinction depending on α and γ.
Case 2.1: γ ≤ α
We will show that the following function f gives an upper bound for |c2w| depending

on β:

f(β) := (sin(α+ γ)− sin(α− β)) sin γ
sin(β + γ) sinα . (7.2)

Furthermore, we will see that f is strictly monotone increasing for β ∈ [0, α] and we have
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0 < β < α from the case constraint m2 > m1. Together, this implies

|c2w| < f(α)

= (sin(α+ γ)− sin(α− α)) sin γ
sin(α+ γ) sinα

= sin γ
sinα ≤ 1,

since 0 < γ ≤ α < π/2 by the case constraint.
It remains to show that f(β) is an upper bound for |c2w| and that f is strictly monotone

increasing for β ∈ [0, α]. We start with the former.
We first apply the sine law in 4(c2, c3,w):

|c2w| = |c2c3| sin(γ)
sin(β + γ) = (|c1c3| − |c1c2|) sin(γ)

sin(β + γ) . (7.3)

Recall that |c3v| < 1. From the sine law in 4(c1, c3,v) we get:

|c1c3| =
|c3v| sin(α+ γ)

sin(α) <
sin(α+ γ)

sin(α) . (7.4)

Recall that max(|c1u|, |c2u|) ≥ 1 and notice that |c2u| > |c1u| since u has a negative
y-coordinate. We get an inequality for |c1c2| by the sine law in 4(c1, c2,u):

|c1c2| =
|c2u| sin(α− β)

sin(α) ≥ sin(α− β)
sin(α) . (7.5)

Plugging Eqs. (7.4) and (7.5) into Eq. (7.3) gives

|c2w|
sin(γ) = (|c1c3| − |c1c2|) sin(γ)

sin(β + γ)

<
(sin(α+ γ)− sin(α− β)) sin γ

sin(β + γ) sinα
= f(β).
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Now, we show that f(β) is strictly monotonically increasing:

f ′(β) = df(β)
dβ

= sin γ
sinα ·

sin(β + γ) cos(α− β)− (sin(α+ γ)− sin(α− β)) cos(β + γ)
sin2(β + γ)

= sin γ
sinα ·

sin(β + γ) cos(α− β) + cos(β + γ) sin(α− β)− sin(α+ γ) cos(β + γ)
sin2(β + γ)

= sin γ
sinα ·

sin(β + γ + α− β)− sin(α+ γ) cos(β + γ)
sin2(β + γ)

= sin γ
sinα ·

sin(α+ γ)(1− cos(β + γ))
sin2(β + γ)

.

Since 0 < α, γ < π/2 (Eq. (7.1)), we have sin γ/ sinα > 0 and sin(α + γ) > 0. Since
0 < β ≤ α, we have sin2(β + γ) > 0 and cos(β + γ) < 1. Together, we have f ′(β) > 0 for
β ∈ [0, α]. This completes the argument for this case.
Case 2.2: γ > α

We have a situation as shown in Fig. 7.7. We adjust the situation in the following
way in order to apply case 2.1. Let c′3 be the second point at distance |c1v| from v on
the stabbing line (the first is c1), forming an isosceles triangle 4(c1, c′3,v). Let w′ be
the intersection point of l2 with c′3v. Observe that since α < γ, we have |c1v| > |c3v|.
Therefore, c′3 has a larger y-coordinate than c3 and c2w′ is longer than c2w Hence,
showing |c2w′| < 1 will complete the proof. Analogously to the proof in case 2.1 when
using c′3 instead of c3 and w′ instead of w, we get the desired result |c2w′| < 1.
Case 3: m2 < m3

This case is symmetric to case 2 and can therefore be handled analogously.
In all cases, we showed |c2w| < 1. This concludes the proof.

As explained before, we show next, that h2
s(D1, D2) can be easily computed, i.e., we

show the following theorem.

Lemma 7.5. Given two disks D1 and D2 by their normal vectors n1,n2 in Z3, h2
s(D1, D2)

is a rational number whose numerator and denominator can be computed in time poly-
nomial in the length of the bit-representations of the coordinates of n1, n2, and s.
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c3

c1

v

stabbing line

l3

l1

l2

c2

w

u

γ

β

α

w′

c′3

α

Figure 7.7: Situation in E when c1c3 is longest edge in 4(c1, c3,v), m2 > m1, and
γ > α.

Proof. Let

n1 =

n1,x
n1,y
n1,z


n2 =

n2,x
n2,y
n2,z

 ,
s =

sxsy
sz

 .
We assume without loss of generality that D1 and D2 are not identical. Place the center
of D1 at the origin and denote the line in direction s through the origin by l. Place
D2 with its center p on l at distance hs(D1, D2) from the origin, i.e., D1 and D2 touch.
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Since p lies on l, its coordinates have the form p = (h · sx, h · sy, h · sz). We can
assume without loss of generality that h > 0 since hs is symmetric by Lemma 7.4. Note
that in this setting, h = hs(D1,D2)

|s| . Hence, we will show how to obtain h2 in order to
compute (hs(D1, D2))2. Let E1, E2 be the planes containing D1, D2 respectively and g
the intersection line between E1 and E2.
E1, E2 can be described by the following equations:

E1 : n1 ·

xy
z

 = 0,

E2 : n2 ·

xy
z

 = h · (n2 · s).

The intersection line g is the set of solutions for this system of equations. It can be
described in parameter form with parameter t ∈ R:

g :

xy
z

 = h ·

axay
az

+ t ·

kxky
kz

 .

The components of the vector k =

kxky
kz

 can easily be obtained by computing the

cross product of the normal vectors n1 and n2. h · (ax, ay, az) is a point on g and can be
obtained in the following way. Note that there is at least one plane among the x-y-plane,
the y-z-plane, and the x-z-plane such that g is not parallel to this plane, i.e., g intersects
this plane. Let without loss of generality this plane be the x-y-plane. Hence, we set
z = 0 in the system of equations above (given by the planes spanned by the two disks)
and solve it to obtain values for x and y. Then, we have hax = x, hay = y and haz = 0.
Note that the formulas for kx, ky, kz, ax, ay, az are fractions of quadratic polynomials of
bounded length consisting only of the components of n1, n2, and s.
Recall, that D1 and D2 are stabbed by the line l in direction s and they touch. This

implies that there is exactly one point on g that has distance exactly one to one of the
centers of D1, D2 (the origin and p) and distance at most one to the other.

Let d1(t) be the squared distance of the origin to the point on g given by t. Likewise,

let d2(t) be the squared distance of p to the point on g given by t. Let a =

axay
az

. So,
d1(t) =(h · a + t · k)2

=h2 · a · a + 2ht · a · k + t2 · k · k, (7.6)
d2(t) =(h · a + t · k− h · s)2

=h2 · (a − s) · (a − s) + 2ht · ((a − s) · k) + t2 · k · k. (7.7)
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Since the coefficients of t2 are equal in d1, d2, their graphs are identical modulo transla-
tion. Therefore, there are three possibilities to meet the requirement explained before,
i.e., that there exists exactly one value t∗ such that d1(t∗) = 1 and d2(t∗) ≤ 1 or
d2(t∗) = 1 and d1(t∗) ≤ 1 (see Fig. 7.8 for examples).

1. mint(d1(t)) = d1(t∗) = 1 and d2(t∗) ≤ 1. This means that D1 touches D2 in its
interior (g is a tangent of D1 and intersects D2).

2. mint(d2(t)) = d2(t∗) = 1 and d1(t∗) ≤ 1. This means that D2 touches D1 in its
interior (g is a tangent of D2 and intersects D1).

3. d1(t∗) = d2(t∗) = 1. This means that D1 and D2 touch at their boundaries. In
this case, it is possible that D1 ∩ g and D2 ∩ g are line segments of positive length.
Note that it is crucial to test 1 and 2 first since in these cases it is possible to place
D1, D2 such that there exist t′, t′′ with d1(t′) = d2(t′) = 1 and d1(t′′) < 1 and
d2(t′′) < 1, i.e., D1 and D2 intersect.

Note that in any other case the disks intersect (there is more than one t that fulfills the
requirement) or do not touch at all (no t fulfills the requirement). In the following, we
explain how to check the possibilities and obtain h2.
First, we check if there is an h such that the minimum of d1 is one and lies above d2.

To obtain the minimum of d1, we set its derivative to zero and get

tmin1 = −h · a · kk · k .

Now, we plug this formula into d1(tmin1) = 1 and get:

1 =h2 · a · a − 2hh · a · kk · k · a · k

+
(
h · a · k

k · k

)2
· k · k

=h2 ·
(

a · a − (a · k)2

k · k

)
. (7.8)

In case a · a − (a·k)2

k·k = 0, we have

a · a = (a · k)2

k · k ,

which is equivalent to

|a|2 = (|a||k| cos(a,k))2

|k|2
,

so cos(a,k) = 1, which implies that g contains the center of D1. In this case, we proceed
with checking if there is a t∗ with mint(d2(t)) = d2(t2) = 1 and d1(t∗) ≤ 1.
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(i) One example for mint(d2(t)) = d1(t∗) = 1
and d1(t∗) ≤ 1.

(ii) Another example for mint(d2(t)) =
d1(t∗) = 1 and d1(t∗) ≤ 1.

(iii) An example for d1(t∗) = d2(t∗) = 1.

Figure 7.8: Examples for d1 and d2 if D1 and D2 touch.

If a · a − (a·k)2

k·k 6= 0, we obtain immediately from Eq. (7.8)

h2 = 1
a · a − (a·k)2

k·k

. (7.9)

Observe that this value can be computed in polynomial time from the input integers.
Now, we need to check if d2(tmin1) ≤ 1. We have

d2(tmin1) =h2(a − s)2 − 2hh · a · kk · k · (a − s) · k +
(
h · a · k

k · k

)2
k2

=h2
(

(a − s)2 − 2a · k
k · k · (a − s) · k + (a · k)2

k · k

)
.

We can now insert Eq. (7.9) and check in a straight forward manner if this term evaluates
to at most one.
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If not, we proceed with the second possibility, i.e., we perform the same steps with
d1, d2 exchanged. If the minimum of d2 for the obtained value of h2 does not lie above
d1, we proceed with the third possibility.

Therefore, set d1(tχ) = d2(tχ) = 1. Since h > 0, d1(tχ) = d2(tχ) gives

h · a · a + 2tχ · a · k = h · (a − s)2 + 2tχ · (a − s) · k,

so,

a · a − (a − s)2 = 2tχ · ((a − s) · k− a · k),

which is equivalent to

((2a − s) · s) · h = −s · k · 2tχ. (7.10)

Note that s ·k = 0 would imply (2a − s) ·s = 0 as well, since we know that h > 0. Hence,
all coefficients in d1 are equal to the corresponding ones in d2 (see Eqs. (7.6) and (7.7)),
i.e., the functions d1 and d2 are equal. This was already handled when checking if there
exists a t∗ such that mint(d1(t)) = d1(t∗) = 1 and d2(t∗) ≤ 1. So, we obtain

tχ = −(2a − s) · s
2 · s · k · h.

Hence, we get

d1(tχ) = h2 · a · a + 2h ·
(
−(2a − s) · s

2 · s · k · h
)
· a · k +

((2a − s) · s
2 · s · k · h

)2
· k · k

= h2 ·
(

a · a − (2a − s) · s
s · k · a · k +

((2a − s) · s
2 · s · k

)2
· k · k

)
.

Observe that tχ describes the point on g with equal distance to the origin and p. This
distance can only be zero if the origin and p are identical, i.e., h = 0. Since we know,
that h > 0, we can conclude that a ·a− (2a−s)·s

s·k ·a ·k +
(

(2a−s)·s
2·s·k

)2
·k ·k > 0. So, setting

d1(tχ) = 1 gives

h2 = 1

a · a − (2a−s)·s
s·k · a · k +

(
(2a−s)·s

2·s·k

)2
· k · k

.

Altogether, we obtained for every possibility how D1 and D2 can touch a formula for
h2 that is a rational function of constant degree in the input integers. Hence, we can
compute the numerator and denominator of the rational number h2 in polynomial time.
This completes the proof.
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Algorithm 7.1: Approximation algorithm for disk-stabbing
Input: n unit disks given by their normal vectors, vector s
Output: Ordering of the n disks

1 Generate a complete weighted graph G with n vertices:
2 Set the weight of the edge (i, j) to hs(Di, Dj) for all 1 ≤ i, j ≤ n, i 6= j;
3 Approximate the shortest Hamiltonian path on the graph with the tree

heuristic;
4 return the ordering of the overall shortest path;

7.1.2 Disk-stabbing Approximation
We determine an approximate solution for the DiskStabbing-problem in Algorithm 7.1.
The idea is to consider a complete weighted graph, where the vertices correspond to the
disks and the weight of an edge (D1, D2) is hs(D1, D2). A Hamiltonian path in this
graph corresponds to an ordering of the disks.

Theorem 7.6. Algorithm 7.1 computes a 2-approximation for disk-stabbing in polynomial
time.

Proof. By Lemma 7.4 the triangle inequality holds in G. Let O = Di1 , Di2 , . . . Din be
the optimal ordering for the input instance and OPT the length of O when stabbed by
a line in direction s in order O. Then, there is a path in G from vertex i1 to in visiting
each vertex exactly once, i.e., a Hamiltonian path, of length OPT. Now, we can utilize
the tree heuristic (see e.g. [17]), which finds in polynomial time a Hamiltonian path
of length at most 2 OPT with no specified starting and ending point in a graph that
satisfies the triangle inequality. To implement the tree heuristic in polynomial time, we
use for example Kruskals Algorithm to build an MST on the graph. Therefore, we have
to sort the edges by length. The resulting ordering is equal when using instead of the
actual values the squared values of the hs(Di, Dj) that we can compute in polynomial
time by Lemma 7.5. Hence, we can compute an ordering of length at most 2 OPT in
polynomial time.

In the next section, we will use Algorithm 7.1 to approximate disk-packing.

7.1.3 Disk-packing Approximation
The idea for the approximation algorithm for disk-packing is as follows. We divide the
disks into three subsets corresponding to the three axes such that the disks are almost
orthogonal to the assigned axis. Then, we use Algorithm 7.1 to compute disk-stabbings
of the three sets on the corresponding axes. The result can be interpreted as three
containers, of which one is possibly very wide, one very high and the third very deep.
The other two dimensions are relatively small. The last step is to divide these three
boxes into pieces and arrange those pieces such that they form one single axis-parallel
box. To describe the details of the algorithm, we use the following definitions.
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We define wmax, dmax, hmax to be the maximum extent of any disk in x-,y-, and z-
direction respectively and, thus, the minimum width, depth, and height any container
for the disks must have. Let w̃max be an approximation of wmax with wmax ≤ w̃max ≤(
1 + 1

2k
)
wmax for an integer k defined later and define d̃max, h̃max analogously. Let the

width and depth of the final box be wbox = a · w̃max and dbox = a · d̃max, respectively,
for a constant a > 1 to be defined later. Algorithm 7.2 gives the details of the idea
described above. For an illustration see Fig. 7.9.

Algorithm 7.2: Approximation algorithm for disk-packing
Input: n unit disks given by their normal vectors
Output: nonoverlapping packing of the disks into an axis-parallel box

1 Partition the n disks into three sets X ,Y,Z according to the axis their normal
vectors form the smallest angle with;

2 Call Algorithm 7.1 for the disks in X and vector (1, 0, 0). Approximate the
distances of consecutive disks in the returned ordering with a factor(
1 + 1

2k+1

)
by rational numbers with bounded length and obtain an

approximate length of the ordering Lx from it. This can be interpreted as a
packing of the disks in X into an axis-parallel box of width W = Lx + w̃max,
depth d̃max, and height h̃max;

3 Analogously to Step 2 apply Algorithm 7.1 for the disks in Y and Z giving
lengths Ly and Lz, respectively. This can be seen as packing Y and Z into
boxes of dimensions w̃max ×D × h̃max and w̃max × d̃max ×H, respectively,
where D = Ly + d̃max and H = Lz + h̃max;

4 Divide the box obtained for X into pieces of width (a− 1) w̃max;
5 Assign each disk to the piece where the point in the disk with smallest

x-coordinate lies;
6 Enlarge each piece from width (a− 1) w̃max = wbox − w̃max to width wbox s.t.

all disks that are assigned to a piece are completely contained in that piece;
7 Divide the box obtained for Y into pieces of depth d̃box analogously to Steps 4

to 6;
8 Divide the box obtained for Z into bac2 pieces of width w̃max and depth d̃max;
9 Analogously to Steps 5 and 6, enlarge the height of each piece from step 8 by

h̃max;
10 Arrange all pieces into a box of width wbox and depth dbox, so that the pieces

containing disks of X form
⌈⌈

W
wbox−w̃max

⌉
/
⌊
dbox
d̃max

⌋⌉
layers of height h̃max, the

pieces containing disks of Y form
⌈⌈

D
dbox−d̃max

⌉
/
⌊
wbox
w̃max

⌋⌉
layers of height h̃max,

and the pieces containing disks from Z form one layer of height
H/
(⌊

wbox
w̃max

⌋⌊
dbox
d̃max

⌋)
+ h̃max (See Fig. 7.9 for an example);

11 return the resulting box with the packed disks;

To analyze Algorithm 7.2 we first give a bound on W , D, and H as defined in Al-
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dmax

wmax

hmax

wbox

dbox

Figure 7.9: Example container for, e.g., a = 10.5. The green boxes are the enlarged
pieces obtained by dividing the container-box computed by Algorithm 7.1
for the disks in X . Here, they form two layers. The blue boxes contain disks
from Y and the orange boxes contain disks from Z.

gorithm 7.2. Observe that the angle between the normal vector of a disk and the axis
it gets stabbed by in Algorithm 7.2 is maximal when it is equal to the angle with the
other two axis. Vector v = (1, 1, 1) forms the same angle with all three axis. The x-axis
can be represented by the vector x = (1, 0, 0) and let ϕ be the maximum angle between
a normal vector and the axis the corresponding disk gets stabbed by, i.e., the angle
between v and x. Then cosϕ = (1,1,1)·(1,0,0)

‖(1,1,1)‖ = 1√
3 . Hence, the maximum angle between

the normal vector of any disk and the axis it gets stabbed by is ϕ = arccos( 1√
3).

Lemma 7.7. It holds that

W ≤
(

130 + 66 · 1
2k
)
· OPT
dmaxhmax

,

D ≤
(

130 + 66 · 1
2k
)
· OPT
wmaxhmax

,

H ≤
(

130 + 66 · 1
2k
)
· OPT
wmaxdmax

,

where OPT is the volume of an optimal container.

Proof. Consider an optimal container with width WOPT, depth DOPT, and height HOPT
and let X ,Y,Z be the partition of disks into subsets as in Algorithm 7.2. Furthermore
consider a square grid of grid cells with side length g on the xz-plane and lines parallel
to the y-axis through the grid cell centers (see Fig. 7.10i for illustration). Then, each
point has distance at most g√

2 to the closest line. So, in the optimal packing, every
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disk in Y is stabbed by a line in a point of distance at most g√
2 sin(π2−ϕ) from the disk

center if g is small enough, i.e., cg < 1, where c = 1√
2 sin(π2−ϕ) =

√
3
2 . See Fig. 7.10ii

for illustration. Therefore, each disk in Y contains a disk of radius 1− cg stabbed by a

x

y
z

(i) Optimal container with grid and line segments stabbing the disks.

≤ ϕ

≥
π
2 −

ϕ

≤ g√
2

unit disk

normal vector of disk
projected onto E

disk center

stabbing line

(ii) Distance of a disk center to the stabbing line. The figure shows the cross section with the
plane E that contains the stabbing line and the center of the disk.

Figure 7.10: Tools for disk-packing.

line through its center. So, by placing the
⌈
HOPT
g

⌉⌈
WOPT
g

⌉
line segments of length DOPT

that are the intersection of the container and the lines behind each other so that they
touch, we get a solution to the disk-stabbing problem for the disks in Y but with radius
1− cg. By stretching this solution by 1/(1− cg), we get a solution for disks of radius 1
of length

⌈
HOPT
g

⌉⌈
WOPT
g

⌉
DOPT · 1

1−cg . Let LOPTY be the length of an optimal solution
for the disk-stabbing problem for the disks in Y. Then, this length can be at most the
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length of the solution just described, i.e.,

LOPTY ≤
⌈
HOPT
g

⌉⌈
WOPT
g

⌉
DOPT ·

1
1− cg

≤ (HOPT + g)(WOPT + g)DOPT
g2(1− cg)

= HOPTWOPTDOPT + gWOPTDOPT + gHOPTDOPT + g2DOPT
g2(1− cg)

= 1
g2(1− cg)

(
OPT +gOPT

HOPT
+ gOPT
WOPT

+ g2 OPT
HOPTWOPT

)
.

As observed earlier, we have HOPT ≥ hmax and WOPT ≥ wmax. So, we get

LOPTY ≤
OPT

g2(1− cg)

(
1 + g

hmax
+ g

wmax
+ g2

hmaxwmax

)

= OPT
g2(1− cg) ·

hmaxwmax + gwmax + ghmax + g2

hmaxwmax
.

Since the extent of a disk in any direction is at most two, we have hmax, wmax ≤ 2. This
gives

LOPTY ≤
4 + 4g + g2

g2(1− cg) ·
OPT

wmaxhmax

= (g + 2)2

g2(1− cg) ·
OPT

wmaxhmax
. (7.11)

Since we use Algorithm 7.1 to compute a disk-stabbing solution for Y, we get by Theo-
rem 7.6

D = Lx + d̃max

≤ 2
(

1 + 1
2k+1

)
· LOPTY + 1 + 1

2k · dmax,

where the extra term d̃max comes from the fact that the length of a disk-stabbing is
defined as the distance of the center of the first disk to the center of the last disk and
we are interested in the total depth of the packing.
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By inequality (7.11),

D ≤
(

2 + 1
2k
) (g + 2)2

g2(1− cg) ·
OPT

wmaxhmax
+
(

1 + 1
2k
)
· dmax

≤
((

2 + 1
2k
) (g + 2)2

g2(1− cg) +
(

1 + 1
2k
))
· OPT
wmaxhmax

,

since dmax ≤ DOPT = OPT
WOPTHOPT

≤ OPT
wmaxhmax

. Optimizing for g (e.g. with programs

like MAPLE) yields g =
√

1
3

(
27 + 4

√
6
)
− 3 (≈ 0.5022) and (g+2)2

g2(1−cg) ≈ 64.49. Hence,

we obtain a factor of approximately 130 + 66 · 1
2k . The calculations for W and H are

analogous. This implies the lemma.

Now, we are ready to state the main theorem of this chapter.

Theorem 7.8. Algorithm 7.2 computes a constant-factor approximation for disk-packing
in polynomial time.

Proof. The container computed by Algorithm 7.2 is a box with base area wbox ·dbox and
height


⌈

W
wbox−w̃max

⌉
⌊
dbox
d̃max

⌋
h̃max +


⌈

D
dbox−d̃max

⌉
⌊
wbox
w̃max

⌋
h̃max + H(⌊

wbox
w̃max

⌋⌊
dbox
d̃max

⌋) + h̃max (7.12)

(see step 10 in Algorithm 7.2). Define

t1 := wbox · dbox


⌈

W
wbox−w̃max

⌉
⌊
dbox
d̃max

⌋
h̃max

,
t2 := wbox · dbox


⌈

D
dbox−d̃max

⌉
⌊
wbox
w̃max

⌋
h̃max

,
t3 := wbox · dbox

 H(⌊
wbox
w̃max

⌋⌊
dbox
d̃max

⌋) + h̃max

,
i.e., the volume of the container-box is V = t1 + t2 + t3. To estimate the ratio of V to
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the volume of an optimal container OPT, we consider t1, t2, t3 separately.

t1 = aw̃max · ad̃max


⌈

W
aw̃max−w̃max

⌉
⌊
ad̃max
d̃max

⌋
h̃max

 (by def. of wbox, dbox)

= a2w̃maxd̃maxh̃max


⌈

W
(a−1)w̃max

⌉
bac


≤ a2w̃maxd̃maxh̃max


(

W
(a−1)w̃max

+ 1
)

(a− 1) + 1



≤ a2w̃maxd̃maxh̃max


( (

130+66· 1
2k

)
OPT

(a−1)w̃maxdmaxhmax
+ 1

)
(a− 1) + 1

 (by Lemma 7.7)

≤ a2
(

1 + 1
2k
)3
wmaxdmaxhmax


( (

130+66· 1
2k

)
OPT

(a−1)wmaxdmaxhmax
+ 1

)
(a− 1) + 1


by the definition of w̃max, d̃max, h̃max. So,

t1 ≤ a2
(

1 + 1
2k
)3
(

130 + 66 · 1
2k

(a− 1)2 OPT +
( 1
a− 1 + 1

)
wmaxdmaxhmax

)

≤ a2
(

1 + 1
2k
)3
(

130 + 66 · 1
2k

(a− 1)2 + 1
a− 1 + 1

)
OPT, (7.13)

since wmaxdmaxhmax ≤WOPTDOPTHOPT = OPT. Analogoulsy, we get for t2

t2 ≤ a2
(

1 + 1
2k
)3
(

130 + 66 · 1
2k

(a− 1)2 + 1
a− 1 + 1

)
OPT . (7.14)

For t3, we get

t3 = aw̃max · ad̃max

 H(⌊
aw̃max
w̃max

⌋⌊
ad̃max
d̃max

⌋) + h̃max

 (def. of wbox, dbox)

≤ a2w̃maxd̃max

(
H

(a− 1)2 + h̃max

)

≤ a2w̃maxd̃max


(
130 + 66 · 1

2k
)
·OPT

(a− 1)2wmaxdmax
+ h̃max

 (by Lemma 7.7)

≤ a2
(

1 + 1
2k
)2
wmaxdmax


(
130 + 66 · 1

2k
)
·OPT

(a− 1)2wmaxdmax
+
(

1 + 1
2k
)
hmax


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by the definitions of w̃max, d̃max, h̃max. So,

t3 ≤ a2
(

1 + 1
2k
)3
(

130 + 66 · 1
2k

(a− 1)2 + 1
)

OPT . (7.15)

Eqs. (7.13) to (7.15) immediately give the following estimation for the volume V of the
container computed by Algorithm 7.2:

V ≤ a2
(

1 + 1
2k
)3
3 ·

(
130 + 66 · 1

2k
)

(a− 1)2 + 2
a− 1 + 3

OPT .

Obviously, the factor of OPT is monotonically decreasing if k increases (at a cost in
running time as we will see afterwards). Hence, we can chose a value for k, for example
k = 7 and optimize for a afterwards by computing the derivative and its real root. For
k = 7 we get the root at approximately a ≈ 5.9852 and an approximation factor of
approximately 692.
It remains to analyze the running time of Algorithm 7.2. Step 1 runs in polyno-

mial time since each disk gets assigned to the axis corresponding to the component
with largest absolute value in its normal vector. The calls of Algorithm 7.1 in steps 2
and 3 run in polynomial time by Theorem 7.6. The computation of the approximate
distance of two disks in the stabbing can be done in time polynomial in the input and
k with techniques from [14]. Note that the extent of a disk D in x-, y-, or z-direction is
h(1,0,0)((1, 0, 0), D),h(0,1,0)((0, 1, 0), D),h(0,0,1)((0, 0, 1), D) respectively which can be ap-
proximated in the same way. These approximate values can also be used to obtain the
division into the smaller boxes in Steps 4, 7 and 8. So, Algorithm 7.2 can be implemented
with polynomial running time.

7.2 Other objects
Observe that our approximation algorithm can be extended to any arbitrary fixed planar
shape A, provided that A can be enclosed by some disk D (i.e., is bounded) and contains
some disk d (i.e., it has nonempty interior). More precisely, if we are given a finite set of
congruent copies of A in three dimensions we can approximate the smallest axis-parallel
box into which it can be packed by translations.

This can be done by just applying our algorithm to the corresponding set of copies of
D. Since it gives a constant-factor approximation of the optimal packing of the D’s it
also gives an approximation of the optimal packing of the d’s. Observe however, that the
approximation factor is multiplied by r3 where r is the ratio between the radii of D and
d. Since the optimal packing of the A’s provides some packing of the d’s its container
must be at least as large from which we obtain an approximation for the A’s.
Notice however, that the approximation factor obtained this way depends on the shape

of A. For standard shapes such as squares (r =
√

2), equilateral triangles (r = 2) etc.,
we can directly compute it from the approximation factor of Algorithm 7.2.
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7.3 Unbounded containers are necessary
At first glance, the question may seem strange whether all, uncountably many, unit disks
in three-space can be packed into a finite volume container. However, in dimension two,
obviously all unit length line segments can be packed nonoverlapping into a rectangle
of area 2, as Fig. 7.11 shows (There are even smaller containers). Observe that no two
distinct segments intersect in interior points.

Figure 7.11: How to pack all unit length segments into a container of area 2.

However, as a corollary of our previous results we will conclude that there is no
bounded size container into which all unit disks can be packed. More precisely, we will
show that even for a subset of all disks there is no bounded size container into which all
unit disks from that subset can be packed. To do so, we need the following lemma.

Lemma 7.9. Let D1 and D2 be two disks whose normal vectors form an angle ξ smaller
than π

2 . Then their distance hs(D1, D2) when stabbed by a line in direction s is at least
sin ξ for any s ∈ S2.

Proof. Let c1 and c2 be the positions of the two disk centers on the line. Consider the
shortest path P from c1 to c2 on the planes E1 containing D1 and E2 containing D2.
It is easy to see that P contains only one bend on the intersection line l of E1 and E2.
We refer to this point by b (see Fig. 7.12). Observe that c1 or c2 must have distance at
least 1 to b since otherwise D1 and D2 would intersect in b. Furthermore, P forms an
angle η of at least ξ at b. To see that, suppose c1 is fixed and c2 can move parallel to l
inside E2. Observe that the smallest angle P can form in this way is ξ.
Now, we consider the triangle formed by c1, c2, and b, so |c1c2| = hs(D1, D2)). Let

without loss of generality the distance |c1b| of c1 to b be at least 1. Then, within the
plane through c1, c2, and b we have the situation shown in Fig. 7.12. Consider the ray
in this plane emanating from b that has an angle of ξ with the line segment c1b which
hits the line segment c1c2 in some point m since η ≥ ξ. By the law of sines, we have

|c1b|
sinχ = |c1m|

sin ξ .

Hence,

hs(D1, D2) = |c1c2| ≥ |c1m| = |c1b| · sin ξ
sinχ ≥ sin ξ,
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where the last inequality holds since |c1b| ≥ 1 and sinχ ≤ 1.

b

c2

c1

χ

η

ξ

m

Figure 7.12: Triangle formed by c1, c2, and b.

Theorem 7.10. Packing a set of n unit disks requires a container of volume Ω(
√
n) in

the worst case.

Proof. In the following, we will show that Ω(
√
n) is a lower bound for the volume of the

container constructed by Algorithm 7.2 which is within a constant factor of the optimal
container. From that the theorem follows immediately.
We identify every unit disk with its normal vector in the upper half of a unit sphere S2

centered at the origin. Observe that for every normal vector in the lower half (negative
z-coordinate) of the unit sphere there is a vector in the upper half corresponding to the
same disk.
Consider the projection parallel to the z-axis of a c×c-square partitioned into a square

grid of grid cells with side length ε in the xy-plane centered at the origin onto the upper
half sphere, see Fig. 7.13. Choose the constant c to be sufficiently small so that all points
contained in the projection correspond to disks contained in set Z in Algorithm 7.2 and
their normal vectors pairwise form an angle of at most π/2 . Note that the grid contains
n = Ω(1/ε2) points.

For any two grid-points p1,p2 corresponding to disks D1 and D2 it holds that
hs(D1, D2) ≥ sin ξ with s = (0, 0, 1) and ξ is the angle between the two normal vec-
tors by Lemma 7.9.
By construction, see Fig. 7.14, the projected points p′1,p′2 ∈ S2 have Euclidean dis-

tance 2 · sin(ξ/2) which is at least ε. So we have

ε ≤ 2 sin ξ2 ≤ 2 sin ξ.

So by Lemma 7.9, for any two disks D1, D2 corresponding to grid-points in the c× c-
square we have hs(D1, D2) ≥ ε/2. Therefore, no matter in which order these disks are
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ε

c

Figure 7.13: Projecting a grid onto the unit sphere.

stabbed they will occupy a segment of length Ω((1/ε2) · ε), i.e., Ω(1/ε) of the stabbing
line which is Ω(

√
n) since n = Ω(1/ε2). From Lemma 7.7 it follows that this is also a

lower bound for the volume of a container computed by Algorithm 7.2, and, since that
is within a constant factor of the optimum, of any container for the set of disks.

p1 p2
0

ξ

S2

≥ ε

p′
1

p′
2

≥
ε

Figure 7.14: Two grid points p1,p2 and their projection onto S2 with center 0.

From Theorem 7.10, we obtain immediately the following corollary.

Corollary 7.11. There is no bounded size container into which all unit disks can be packed.
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7.4 Conclusion and Open problems
Summarizing, we showed that there are constant factor approximation algorithm for
DiskPacking and DiskStabbing and how to generalize these algorithms. Even though
the approximation factor of these algorithms are forbiddingly high, it is interesting that
they can be approximated within a constant factor from a theoretical point of view, since
it is neither known if these problems are NP-hard nor in NP. It remains an open problem
whether an optimal packing of disks of different radii can be efficiently approximated.
In particular, approximating the packing of arbitrarily oriented boxes or convex poly-

hedra seems to be much more difficult.
We showed further that not all unit disks in 3D can be packed into a constant size

convex container which is in contrast to the 2D-case, where all unit line segments can
easily be packed into a rectangle with area two. It is an interesting question, if this
translates to higher dimensions.
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Chapter8
No FPTAS for Packing
Polygons
In this chapter, we discuss the inapproximability of packing polygons into minimum-
area convex polygonal containers. From Theorem 2.6, we know that the decision problem
whether a given set of polygons can be packed into a given polygonal container using only
translations is in NP. By a simple reduction from Partition, it can be shown that this
problem is NP-hard (see e.g. [5]), hence, it is NP-complete. In the following, we ask about
the approximability of these kind of problems. There is a constant factor approximation
by Alt, de Berg, and Knauer for packing convex polygons into a minimum area axis-
parallel rectangle or convex container under translation[6]. It is known by a reduction
form Partition almost identical to the one for NP-hardness, that Strip-Packing and
Bin-Packing cannot be approximated better than with a factor of 3

2 unless P = NP.
This means under the assumption that P 6= NP, that there is no PTAS for minimizing
the area of a rectangular container for a given set of polygons when the width of the
container is fixed. It is not clear if this also holds if the width of the container is not
fixed. In the following, we will show a weaker result, i.e., that there is no FPTAS for
minimizing the area of a convex container unless P = NP. In more detail, we study the
following set of problems.

Definition 8.1 ((o,m,c)-minimum area container packing). An instance of the problem
of (o,m,c)-minimum area container packing is a set of convex polygons of type o (e.g.
rectangles or general polygons). The aim is to pack these polygons non-overlappingly
into a convex container of type c (e.g. axis-parallel rectangles or convex polygons) of
minimum area using only motions of type m (e.g. translations or rigid motions).

We will first show that there is no FPTAS for packing axis-parallel rectangles un-
der translation into an axis-parallel rectangle of minimum area ((axis-parallel rectangle,
translation, axis-parallel rectangle)-minimum area container packing) unless P = NP.
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This implies directly that the same holds for packing arbitrary polygons into an axis-
parallel rectangle under translation ((polygon, tranlsation, axis-parallel rectanlge)-minimum
area container packing). The proof will be by a reduction from the well studied strongly
NP-hard problem 3-Partition.

Definition 8.2 (3-Partition). An instance of the 3-Partition-problem is a multiset
A of 3n positive integers where the following holds: B

4 < a < B
2 for all a ∈ A with

B = 1
n

∑
a∈A a. A is in 3-Partition if and only if A can be partitioned into triplets

{aj1 , aj2 , aj3} with aj1 + aj2 + aj3 = B.

Observation 8.3. We can assume without loss of generality that B > 3 since a ≥ 1 for
all a ∈ A and B = 3 is trivial.

In Section 8.1, we give the reduction from 3-Partition and use it to prove the fol-
lowing theorem.

Theorem 8.4. There can not be an FPTAS for packing axis-parallel rectangles under
translation into a minimum-area rectangle unless P = NP.

We will use the term YES-instance simultaneously for an instance A ∈ 3-Partition
and the set of objects obtained by the reduction from A. Analogously, we will use NO-
instance. It should be clear from the context if we refer to a 3-Partition-instance or
the set of objects obtained from a 3-Partition-instance by the reduction.

In Section 8.2 we will turn to other variants of the problem.

8.1 No FPTAS for Packing Rectangles under
Translation into Minimum-Area
Axis-Parallel Rectangles

Algorithm 8.1 computes from an instance of 3-Partition a set of rectangles that can be
used as an instance for the (axis-parallel rectangle, translation, axis-parallel rectangle)-
minimum area container packing problem. If an instance A is in 3-Partition, then the
rectangles computed by Algorithm 8.1 on input A can be packed into a container with
height (n+ 1)B + n and width B (see Fig. 8.1i). Observe that the area of the container
equals the total area of the rectangles packed, i.e. there are no parts of the container
that are not covered by rectangles packed.
Now, consider an instance A /∈ 3-Partition and let R be the output of Algorithm 8.1

on input A. In any packing, all rectangles in R can be moved to the left until they
either touch the boundary of the container or another rectangle and downwards in the
same way and this does not increase the area of the container. Therefore, and since all
rectangles have integer width and height, an optimal container for the rectangles in R
has integer width and height. Observe that

∑
a∈A′ a = B for A′ ⊆ A is only possible if

|A′| = 3 since B
4 < a < B

2 by Definition 8.2. Since R was computed from an instance
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Algorithm 8.1:
Input: Multiset of 3n positive integers A = {a1, a2, . . . , a3n}
Output: Multiset of 3n+ 1 rectangles R = {r1, r2, . . . , r3n+1} given by their

height and width ri = (hi, wi)
1 B ← 1

n

∑
a∈A a;

2 foreach ai ∈ A do
3 ri ← (1, ai);
4 end
5 r3n+1 ← ((n+ 1)B,B);
6 return {r1, r2, . . . , r3n+1}

A /∈ 3-Partition, this implies that the rectangles in R\ {r3n+1} cannot be partitioned
into subsets such that the total sum of the width of rectangles in each subset equals B.
Therefore, the rectangles in R cannot be packed above (or below) r3n+1 into a container
with width B and height (n+ 1)B+n like a YES-instance. Hence, any container has to
be wider than B or higher than (n+ 1)B+n. So, for an instance A not in 3-Partition,
the area of any container for R is at least

min{(n+ 1)B · (B + 1), ((n+ 1)B + n+ 1)B} = (n+ 1)(B + 1)B,

since r3n+1 still needs to be packed and the width and height of an optimal container
for the instance are integers as observed earlier (see Fig. 8.1ii for illustration). Note,
that this is an alternative proof for the NP-completeness of packing rectangles into the
minimum-area axis-parallel rectangle under translation. Since 3-Partition is strongly
NP-hard and the integers generated in the reduction are polynomially bounded from
above by the maximum integer in the given 3-Partition-instance and the total size of
the instance, this reduction shows indeed that packing rectangles into the minimum-area
axis-parallel rectangle is strongly NP-hard. It follows from [28] that there cannot be an
FPTAS for packing rectangles into the minimum-area axis-parallel rectangle under the
assumption P 6= NP.

8.2 Other Variants of the Problem
In the following, we will generalize the idea from above to show that there cannot exist
an FPTAS for other variants of minimum area container packing unless P = NP. First,
we make the crucial observation for our proofs:

Observation 8.5. Given a container and a packing of axis-parallel rectangles into it under
translation or rigid motions. If the container is convex and not a rectangle, its area is
larger than the sum of the areas of the rectangles packed.

First, we use this observation to show that there cannot be an FPTAS for packing
rectangles under translation into a minimum-area convex container unless P = NP and
afterwards turn to packing under rigid motions.
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1

(n+ 1)B

B

aj1 aj2 aj3

triplets

r3n+1

(i) Optimal packing for A ∈ 3-
PARTITION.

r3n+1 r3n+1

(ii) In a packing for A /∈ 3-PARTITION the
container needs to be wider or higher than
the optimal container (bold rectangle).

Figure 8.1: Packing examples with n = 3

8.2.1 No FPTAS for Packing Rectangles under Translation into
Minimum-Area Convex Container

Consider the rectangles obtained from a 3-Partition-instance by Algorithm 8.1 that
are to be packed under translations into a minimum area convex container ((rectangle,
translation, polygon)-minimum area container packing). The area of the optimal con-
tainer for a YES-instance is as before the sum of the areas of the rectangles packed.
Hence, if the container is not a rectangle, the given instance is a NO-instance by Obser-
vation 8.5. If the container is a rectangle, we can decide by its area if the given instance
is a YES- or a NO-instance analogously to the proof in Section 8.1. Therefore, Algo-
rithm 8.1 is a reduction from 3-Partition to (rectangle, translation, polygon)-minimum
area container packing preserving strong NP-hardness as before. Again, this implies that
there cannot be an FPTAS for (rectangle, translation, polygon)-minimum area container
packing unless P = NP. Observe that this directly generalizes to (polygon, translation,
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polygon)-minimum area container packing.

8.2.2 No FPTAS for Packing Rectangles under Rigid Motions
First, we consider packing rectangles under rigid motions into a rectangle. Observe that
since we allow to rotate the rectangles, we can assume without loss of generality that the
container rectangle is axis-parallel. We will use a reduction from 3-Partition similar to
Algorithm 8.1 to show that (rectangle, rigid motion, rectangle)-minimum area container
packing is stronlgy NP-hard. The following observation will simplify the proof.

Observation 8.6. Given an axis-parallel container rectangle and a set of rectangles packed
into it under rigid motions. If there is at least one rectangle packed such that it is not
axis-parallel, then the area of the container rectangle is larger than the sum of the areas
of the packed rectangles.

Consider a 3-Partition-instance. Intuitively, Observation 8.6 tells us that we can
restrict the rectangles to be rotated not at all or by 90◦. We adapt the reduction given
in Algorithm 8.1 in such a way that rotating rectangles corresponding to integers in
the given 3-Partition-instance and packing them above r3n+1 will result always in a
container with height greater than the height of an optimal container. The idea is that
rotation does not help to fit a NO-instance into the optimal container. In detail, the
reduction works as follows: For every integer a in the given 3-Partition instance, we
generate a rectangle with width n · a instead of a and height 1 as before. The extra
rectangle defined in Line 5 in Algorithm 8.1 gets width nB and height n(n+ 1)B. Note
that the dimensions of the rectangles are still polynomial in the size of the integers in
the given 3-Partition-instance as before. The area of an optimal container for a YES-
instance is as before the sum of the areas of the packed rectangles: nB ·n((n+ 1)B + 1).
Observe that in such a packing no rectangle is rotated. Consider now an optimal packing
of rectangles obtained by the described reduction from a 3-Partition-instance. If a
rectangle is rotated other than by 90◦, the area of the container is larger than the sum
of the areas of the rectangles packed by Observation 8.6 and therefore we can tell from
the container area that the given instance is a NO-instance. Therefore, we assume in
the following that all rectangles are either not rotated at all or by 90◦. Furthermore, we
assume without loss of generality that r3n+1 is not rotated. Let amin = min(A). As soon
as we rotate one rectangle and place it above the extra rectangle r3n+1 (see Fig. 8.2ii),
the container has height at least

n(n+ 1)B + n · amin > n(n+ 1)B + n

since amin is greater than one by Observation 8.3 and Definition 8.2. So, as before, the
container for a NO-instance has to be wider or higher than an optimal container for a
YES-instance. Hence, the container for a NO-instance has area at least

min(nB(n(n+ 1)B + n+ 1), (nB + 1)n(n+ 1)B)
= nB(n(n+ 1)B + n+ 1).
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which is larger than the area of an optimal container for a YES-instance. Therefore,
the reduction described before shows that (rectangle, rigid motion, rectangle)-minimum
area container packing is strongly NP-hard and hence, there cannot be an FPTAS for it
unless P = NP.
Analogously to the proof in Section 8.2.1, this proof generalizes to packing rectangles

under rigid motions into convex polygons and hence, (rectangle, rigid motions, polygon)-
minimum area container packing can also not have an FPTAS unless P = NP.

8.3 Conclusion
Summarizing, we showed the following theorem.

Theorem 8.7. Under the assumption P 6= NP there cannot be an FPTAS for minimizing

• the area of a rectangular container
– for packing a given set of axis-parallel rectangles under translations, or
– for packing a given set of rectangles under rigid motions,

• nor the area of a convex container
– for packing a given set of axis-parallel rectangles under translations, or
– for packing a given set of rectangles under rigid motions.

The theorem directly generalizes to packing general polygons instead of rectangles. It
would be interesting to see if there can be a PTAS for this kind of problem or if there
cannot be a PTAS like for Strip-Packing and Bin-Packing.
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r3n+1

n(n+ 1)B

nB

(i) The Optimal packing for A ∈ 3-PARTITION looks similar as without rotations

r3n+1

(ii) In a packing for A /∈ 3-PARTITION, rotation does not help.

Figure 8.2: Packing examples with n = 3 for packing under translation and rotation by
90◦.





Chapter9
Line Segment Packing is
NP-hard
In this chapter we discuss the complexity of line segment packing, i.e., given a set of
line segments, can they be packed into a given container under translation. Note that
this problem becomes trivial for polygonal containers when allowing rotations: one only
needs to check if the longest line segment can be packed by computing the diameter of
the container. The other segments can then be packed parallel and arbitrarily close to
the longest segment.

Related Work The most famous problem related to packing line segments might be
the Kakeya Problem introduced in 1917 [37]: What is the smallest area convex set such
that a unit line segment can be rotated in it continuously by 360◦? Pál showed that the
solution is an equilateral triangle with area 1/

√
3 [43]. Ahn et al. studied a generalization

of this problem, i.e., given a set of line segments, what is the smallest area convex set
that contains a translate of each input line segment? They show that there is always
an optimal set that is a triangle and give an O(n logn) time algorithm to compute
such a triangle [4]. We can reformulate this result in the following way: Given a set
of line segments, a smallest area container to pack the line segments under translation
is a triangle that can be computed in O(n logn) when we allow the line segments to
intersect in their interior. When intersections are not allowed, the problem of packing
line segments becomes hard: Dobbins and Kim showed that it is NP-hard to find the
maximum number of line segments from a given set of input line segments that can be
packed into a convex polytope in three dimensions[20]. Kim and Miltzow showed that
the same holds for two dimensions and simple polygonal containers [40]. In the following,
we will show that this also holds for square containers under certain assumptions.
In detail, we will show that the following problem is NP-hard.

Definition 9.1 (line segment packing). Given a multiset of open line segments and a closed

129
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square container, can the line segments be packed nonoverlappingly into the container
under translation?

Observe that, since the line segments are open, they are allowed to touch at their
endpoints and an endpoint can lie on the interior of another line segment. Since the
container is closed, line segments are allowed to lie on the boundary of the container. In
particular, we do not allow to pack parallel line segments such that they overlap. Our
proof will heavily rely on these properties. This is in contrast to the constructions by
Dobbins and Kim, and Kim and Miltzow where two line segments only touch at their
endpoints and no two line segments have the same slope such that line segments with
same slope could be identified with each other by definition. Nevertheless, our version
of the problem is in accordance to packing higher dimensional objects where the interior
of the objects is not allowed to overlap.
In Section 9.1, we will prove the following theorem by a reduction from the well known

problem Partition i.e., given a set of positive integers, can they be partitioned into
two subsets such that the sum of both subsets is equal.

Theorem 9.2. Line segment packing is NP-hard.

9.1 Packing Line Segments into a Square is
NP-hard

First, we describe a reduction from Partition to line segment packing as defined in
Definition 9.1. Afterwards, we use it to prove Theorem 9.2.

9.1.1 Reduction from Partition
Given a multiset S of positive integers, we construct a multiset L of line segments and
a side length a such that L can be packed into a square with side length a if and only if
S can be partitioned into two subsets such that the sum of both subsets is equal. The
idea is to construct a vertical line segment for each integer in S and force them with
diagonal line segments to be packed on the vertical boundaries of the container square
(see Fig. 9.1 for an example). Hence, every vertical line segment should be at least as
long as the difference between the endpoints of diagonal line segments in Fig. 9.1ii and
there is only a polynomial number of diagonal line segments. One way to achieve this
is by ensuring that the factor between the lengths of the shortest and longest vertical
segment is bounded by a constant. We implement this by creating for each si ∈ S a line
segment of length si + sΣ where sΣ =

∑
1≤i≤n si. To ensure that a possible partition of

S is reflected by a packing of the line segments on the two different vertical boundaries
of the container square, we introduce n extra vertical line segments of length sΣ such
that on both vertical boundaries n line segments need to be packed in order to pack all
the line segments. The reduction in more detail is described in Algorithm 9.1
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Algorithm 9.1:
Input: Multiset of n integers S = {s1, s2, . . . , sn}
Output: Multiset of open line segments L given by their endpoints and an

integer a
1 sΣ ←

∑
1≤i≤n si;

2 a← 1
2sΣ + nsΣ;

3 for i← 1 to n do
4 li ← (0, 0), (0, si + sΣ);
5 end
6 for i← n+ 1 to 2n do
7 li ← (0, 0), (0, sΣ);
8 end
9 k ←

⌊
a
sΣ

⌋
;

10 for i← 1 to k do
11 l2n+i ← (0, 0), (a, i · sΣ);
12 l2n+k+i ← (0, 0), (a, i · sΣ);
13 end
14 l2n+2k+1 ← (0, 0), (a, a);
15 L ← {l1, l2, . . . , l2n+2k+1};
16 return L, a

9.1.2 Proof of Theorem 9.2
We will show that the multiset of line segments L created by Algorithm 9.1 from a set
S of positive integers can be packed into a square with side length a under translation
if and only if S can be partitioned into two subsets S1,S2 with

∑
s′∈S1 s

′ =
∑
s′′∈S2 s

′′.
For ease of notation, we call the line segments Lo = {l1, . . . ln} object line segments,
Lv = {l1, . . . , l2n} vertical line segments, and Ld = L \ Lv diagonal line segments.
First, we prove that if S can be partitioned into two subsets S1,S2 with

∑
s′∈S1 s

′ =∑
s′′∈S2 s

′′, then L can be packed into a square of side length a. We start by placing the
diagonal line segments like in Fig. 9.1ii, i.e., l2n+2k+1 on the diagonal from bottom left to
top right of the container square, and from each of the remaining diagonal line segment
pairs l2n+i, l2n+k+i one with one endpoint in the lower left corner, the other with one
endpoint at the upper right corner . It remains to show that Lv can be packed into the
container square afterwards. Since S1,S2 is a valid partition, we have∑

s′∈S1

s′ =
∑
s′′∈S2

s′′ = 1
2
∑
s∈S

s.

So, ∑
s′∈S1

s′ + nsΣ =
∑
s′′∈S2

s′′ + nsΣ = 1
2
∑
s∈S

s+ nsΣ,
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and rearranging gives
∑
s′∈S1

(
s′ + sΣ

)
+ (n− |S1|)sΣ =

∑
s′′∈S2

(
s′′ + sΣ

)
+ (n− |S2|)sΣ = a,

by the definition of a. Let L1 ⊆ Lo be the set of line segments generated from integers
in S1. Since S1,S2 is a partition, we get

∑
l′∈L1

∣∣l′∣∣+ (n− |S1|)sΣ =
∑

l′′∈Lo\L1

∣∣l′′∣∣+ (n− |S2|)sΣ = a,

where |l| denotes the length of the line segment l. Observe that n − |S2| = |S1| since
S1,S2 is a partition. Hence,

∑
l′∈L1

∣∣l′∣∣+ n−|S1|∑
i=1
|ln+i| =

∑
l′′∈Lo\L1

∣∣l′′∣∣+ n∑
i=n−|S1|+1

|ln+i| = a,

since the length of a line segment in {ln+1, . . . l2n} is precisely sΣ.

That means that we can place the line segments in L1 and n − |S1| line segments in
Lv \ Lo on top of each other on the left vertical boundary of the container square and
the remaining line segments in Lv, i.e., the line segments in Lo \ L1 and the remaining
|S1| line segments in Lv \Lo, on top of each other on the right boundary of the container
square as in Fig. 9.1ii. So, all line segments are packed into the container square.
Now, we turn to showing that if all line segments in L can be packed into the container

square, then S can be partitioned into two subsets S1,S2 with
∑
s′∈S1 s

′ =
∑
s′′∈S2 s

′′.
Observe that l2n+2k+1 can only be packed on the diagonal of the container square from
bottom left to top right. Afterwards, the remaining diagonal line segments have to be
placed with one endpoint either in the top right or the bottom left corner. Since the
diagonal line segments l2n+i and l2n+k+i are identical for 1 ≤ i ≤ k and we do not allow
the segments to intersect in their interior, one of them is placed with one endpoint in
the lower left corner and the other with one endpoint in the top right corner. Observe
that the endpoints not placed at a corner lie either on the right or left vertical boundary
of the container square. Now, consider the endpoints of the diagonal line segments in
the partial packing just described on the left vertical boundary of the container square
in increasing order by their y-coordinates. The distance between the bottom left corner
and the first endpoint, the distance between two consecutive endpoints, and the distance
between the last endpoint and the top left corner of the container square is at most sΣ
by construction. The same holds for the right vertical boundary of the container square.
Since the vertical line segments have length at least sΣ, this implies that they have to
be packed onto the vertical boundaries of the container square, i.e., the packing has
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to look like in Fig. 9.1ii. Hence, Lv can be partitioned into two subsets L1,L2 with∑
l′∈L1 |l

′| ≤ a and
∑
l′′∈L2 |l

′′| ≤ a. Since
∑
l∈Lv |l| = 2a, the following holds∑

l′∈L1

∣∣l′∣∣ = a =
∑
l′′∈L2

∣∣l′′∣∣.
Since all line segments in Lv \ Lo have length sΣ,∑

l′∈L1∩Lo

∣∣l′∣∣+ |L1 \ Lo| · sΣ = a =
∑

l′′∈L2∩Lo

∣∣l′∣∣+ |L2 \ Lo| · sΣ.

Let S1 be the set of integers the line segments in L1 ∩ Lo have been created from and
alogoulsy let S2 be the set of integers the line segments in L2 ∩ Lo have been created
from. Observe that, since L1 ∩Lo,L2 ∩Lo is a partition of Lo, S1,S2 is a partition of S.
We get ∑
s′∈S1

s′

+ |L1 ∩ Lo| · sΣ + |L1 \ Lo| · sΣ = a

=

 ∑
s′′∈S2

s′′

+ |L2 ∩ Lo| · sΣ + |L2 \ Lo| · sΣ,

which is equivalent to ∑
s′∈S1

s′

+ |L1| · sΣ = a =

 ∑
s′′∈S2

s′′

+ |L2| · sΣ.

By the definition of a, we have ∑
s′∈S1

s′

+ |L1| · sΣ = 1
2sΣ + nsΣ =

 ∑
s′′∈S2

s′′

+ |L2| · sΣ.

Recall that S1,S2 is a partition of S. Hence,
∑
s′′∈S2 s

′′ = sΣ −
∑
s′∈S1 s

′. Therefore,∑
s′′∈S2 s

′′ < sΣ or
∑
s′∈S1 s

′ < sΣ (or both). Furthermore, we know that |L1|+ |L2| = 2n
since L1,L2 is a partition of Lv. Together with the equation above, this gives |L1| =
n = |L2|. Hence, ∑

s′∈S1

s′ =
∑
s′′∈S2

s′′.

Summarizing, if the line segments in L can be packed into the container, there is a
partition S1,S2 of S with

∑
s′∈S1 s

′ =
∑
s′′∈S2 s

′′.
It remains to show that the reduction runs in polynomial time. Line 1 to Line 8 obvi-

ously run in polynomial time. Observe, that k ∈ O(n) and hence, also the computation
of the diagonal line segments runs in polynomial time. Therefore, Algorithm 9.1 runs in
polynomial time. This concludes the proof of Theorem 9.2.
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9.2 Conclusion
We showed that packing line segments as defined in Definition 9.1 is NP-hard, i.e. de-
ciding whether a given set of open line segments can be packed into a closed square
container such that their interiors do not overlap is NP-hard. We explicitly do not al-
low parallel line segments to intersect, which is in contrast to other definitions of the
problem. The result directly translates to other containers such as convex or polygonal
containers. It is still open if this result also holds for, e.g., open convex containers or
when there are no parallel line segments allowed.
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(i) Multiset of line segments and container square with side length a generated from multiset
of integers by Algorithm 9.1. The object line segments in Lo are depicted in orange, Lv is
formed by the orange and green line segments, the diagonal line segments are grey.

(ii) The only way to pack the diagonal line segments is as depicted. Then, the vertical line
segments have to be packed on the vertical boundaries of the container square.

Figure 9.1: Example for generated line segments and packing into container for YES-
instance {1, 2, 2, 3, 4} of Partition.
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Zusammenfassung
Die Arbeit ist in zwei Teile unterteilt, wobei im ersten Teil Packungsprobleme untersucht
werden, in denen gleiche Objekte gepackt werden:

Der Container ist ein fettes Parallelogramm oder Dreieck. Wir zeigen, dass es für folgen-
des Problem ein PTAS gibt: Gegeben ein Containerparallelogram, dessen Innenwinkel
nach unten durch eine Konstante beschränkt sind (es ist fett), wie viel Kopien eines
Objekts, das entweder Teil der Problembeschreibung und nicht Teil der Eingabe für
den Algorithmus ist oder dessen Fläche dividiert durch seinen quadrierten Umfang nach
unten beschränkt ist durch eine Konstante, können unter Translation oder euklidischen
Transformationen in den Container gepackt werden? Gleiches gilt für ein Container-
dreieck.
Der Container ist ein beliebiges Dreieck. Wir beschreiben einen Algorithmus mit kon-
stantem Approximationsfaktor, der gegeben ein beliebiges Dreieck in Polynomialzeit eine
Näherung für die maximale Anzahl an Einheitskreisen, die in das Dreieck gepackt werden
können, berechnet.
Packen von Einheitskreisen und Einheitskugeln. Wir geben für jedes der folgende Prob-
leme einen PTAS an: Gegeben einen konvexen Container, dessen Fläche dividiert durch
seinen quadrierten Umfang nach unten durch eine Konstante beschränkt ist, was ist
die maximale Anzahl an Einheitskreisen, die hineingepackt werden können. Wie viel
Einheitskreise können in ein festes skaliertes Polygon gepackt werden? Wieviel Einheit-
skugeln können in eine gegebene Kugel gepackt werden in drei Dimensionen? Um das
letzte Ergebnis zu erhalten, verstärken wir ein Theorem von Hales et al. [29, 30], indem
wir die entsprechenden Beweise modifizieren.
Packen von Einheitskreisscheiben in 3D unter Translation. Gegeben eine Menge von
Kreisscheiben in 3D, was ist der achsenparallele Quader kleinsten Volumens, sodass alle
Kreisscheiben hineingepackt werden können? Für dieses Problem beschreiben wir einen
Algorithmus mit konstantem Approximationsfaktor und polynomieller Laufzeit. Zusätz-
lich zeigen wir, dass es keinen konvexen Container endlichen Volumens geben kann, in
den wir alle möglichen verschiedenen Einheitskreisscheiben zusammen packen können.

Im zweiten Teil der Arbeit untersuchen wir die Komplexität von zwei grundlegenden
Packungsproblemen. Wir zeigen, dass es für folgendes Problem keinen FPTAS geben
kann: Was ist der kleinste konvexe Container, in den eine gegebene Multimenge von
Polygonen gepackt werden kann unter Translation. Selbiges gilt, wenn wir zusätzlich
Rotationen um 90◦ erlauben. Als zweites zeigen wir, dass es NP-schwer ist zu entscheiden,
ob eine Multimenge von offenen Strecken in ein gegebenes geschlossenes Quadrat gepackt
werden kann. Die Strecken dürfen sich dabei nicht in ihrem Inneren schneiden.
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