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Abstract 
Motivation: While the identification of small variants in panel sequencing data can be considered a 

solved problem, the identification of larger, multi-exon copy number variants (CNVs) still poses a con-

siderable challenge. Thus, CNV calling has not been established in all laboratories performing panel 

sequencing. At the same time such laboratories have accumulated large data sets and thus have the 

need to identify copy number variants on their data to close the diagnostic gap. 

Results: In this manuscript we present our method clearCNV that addresses this need in two ways. 

First, it helps laboratories to properly assign data sets to enrichment kits. Based on homogeneous 

subsets of data, clearCNV identifies CNVs affecting the targeted regions. Using real-world data sets 

and validation, we show that our method is highly competitive with previous methods and preferable in 

terms of specificity. 

Availability: The software is available for free under a permissible license at {{https://github.com/bi-

health/clear-cnv}} 

Contact: manuel.holtgrewe@bih-charite.de  

Supplementary information: Supplementary data are available at Bioinformatics online. 

 

 

1 Introduction 

Hybrid capture methods (Ng et al., 2009) allow for targeted sequencing 

ranging from whole exome sequencing to panel sequencing of few known 

disease genes. They have thus made high throughput sequencing afforda-

ble for clinical applications by strongly reducing the required sequencing 

data. From the perspective of bioinformatics there are few differences in 

analyzing small panels, whole exome (WES), or whole genome (WGS) 

sequencing data for single nucleotide variants (SNVs), and small inser-

tions and deletions. 

However, the detection (commonly also referred to as calling) of copy 

number variants (CNVs) is considerably harder because of structured but 

very inhomogeneous variances in depth of coverage that are typical for 

hybrid capture methods. Reasons for such variance include GC content of 

the targeted regions, biochemical properties of the used enrichment kits, 

and batch effects in producing the enrichment reagents (Daniel et al. 2011, 

Benjamini 2012).  
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Nevertheless, CNVs are of large interest as they account for 4.5 to 12 

percent of genome variation in humans (Sudmant,P.H. et al. 2015, Col-

lins,R.L. et al. 2020) and are implied in many diseases (Nowakowska 

2017, Conrad et al. 2010, Zhang et al. 2009). Copy number variants are a 

subclass of structural variants; the latter is commonly defined as variation 

with a size of larger than 50bp. The size of CNVs can range from the lower 

limit to the loss or amplification of whole chromosome arms or chromo-

somes. 

From the authors’ experience, CNV calling for panel sequencing data 

has not been systematically established in many laboratories performing 

targeted panel sequencing yet despite the wide use of panel sequencing. 

While many centers are now introducing WES or even WGS into standard 

care, they have considerable numbers of panel sequencing data already 

available (Marshall et al. 2020). Obviously, being able to reanalyze this 

data for CNVs is highly desirable to solve more cases without additional 

sequencing. 

Various tools for the CNV analysis of panel sequencing have recently 

been published in the literature including CoNVaDING (Johansson et al. 

2016) and AtlasCNV (Chiang et al. 2019). Further, tools for the analysis 

of exome data have been enabled for the analysis of panel data, including 

panelcn.MOPS (Povysil et al. 2017) or ExomeDepth (Plagnol et al., 2012). 

Some methods have been developed and evaluated solely for a single 

panel such as AtlasCNV while others can be used more widely such as 

panelcn.MOPS or ExomeDepth. Approaches to combine CNV calling 

tools to achieve the highest possible accuracy can differ in their results by 

a lot given different datasets (Moreno-Cabrera et al. 2020, Sadedin et al. 

2018) 

However, centers wishing to analyze their panel data in hindsight often 

also face unexpected challenges. From the experience of the authors, these 

also include missing, incomplete or incorrect documentation of which 

gene panel or gene panel version was used for a particular sample. 

In this manuscript we present our software package clearCNV that (1) 

contains a program that helps users to properly assign panel sequence data 

to the used panel and to separate sequencing batches, (2) provides a novel 

method that allows to analyze their data for copy number variations, and 

(3) provides an easy-to-use visualization of the coverage data and the 

called CNVs. 

2 Methods 

2.1 CNV Calling algorithm 

The first part of our method is the implementation of a novel algo-

rithm for the identification of CNVs from targeted sequencing data. Some 

steps are built on the ideas of already existing algorithms. The steps of the 

algorithm are described below and illustrated in Fig. 1. 

1. Target file creation. Overlapping and nearby targets are merged to avoid 

ambiguities further downstream. 

2. Fragment counting. We count the number of fragments (reads or read 

pairs) per target. Fragments overlapping with multiple targets are assigned 

to the one closest to the center. The results are tabulated in a matrix x with 

entries 𝑋(𝑖, 𝑗) in row i and column j; that is the number of fragments of 

sample j on target i. Samples with a median fragment count smaller than 

five are excluded to avoid downstream problems. 

3. Data normalization. The matrix is first normalized per sample (per col-

umn) by dividing each column’s values by the column’s median 

𝑋’(𝑖, 𝑗) ≔  𝑋(𝑖, 𝑗) / median(𝑋’(𝑖,∙)) and then per target (per row) 

𝑋’’(𝑖, 𝑗) ≔  𝑋’(𝑖, 𝑗) / median(𝑋’(∙, 𝑗)), where " ∙ " indicates all elements 

in that dimension. 

4. Match scores are a distance metric to identify samples with similar cov-

erage patterns (similarly used in the context of CNV calling by Johannson 

et al. (2016). A match score m of two samples (vectors) s and k is defined 

as the mean difference of two vectors. clearCNV additionally removes the 

𝜆 greatest differences before computing the mean: 

𝑚𝑠,𝑘 : =  mean(quantile1−𝜆(abs(𝑠 − 𝑘))), where 𝜆 (default is 0.02) is a 

user-adjustable factor that attributes for expected uneven variance. Such a 

Fig. 1. CNV calling algorithm. This figure is an illustrates the steps described in the main text. In step 3, green indicates a sample that is normalized in 
that step. In steps 5 & 6 orange indicates the sample group background and blue the CNV calling sample. In steps 6 and 7, green indicates the 

calculated (and scaled) z-score. 
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variance includes signals for CNVs as well as forms of noise. The final 

visualizations (Fig. 2) help to adjust this factor. 

5. Sample group. Each sample S gets assigned a set of background sam-

ples. Any sample x in each sample group satisfies that its match score 𝑚𝑥,𝑆 

is below the median match score of all match scores of all samples multi-

plied by a user-specifiable constant θ (default 2): 

𝑚(𝑥, 𝑆) ≤ median(𝑚(∙,∙)) ∙ 𝜃. This way each sample gets assigned an in-

dividually sized sample group. We determined the default value for θ em-

pirically by inspecting histograms of all match scores. No CNV calls are 

generated on a sample that has a sample group size below a user-specifia-

ble threshold γ (default 20), however it may appear in another sample’s 

sample group. θ and γ were determined by choosing a relative optimum 

between the number of samples and the variance in a sample group. In 

CNV calling, a subset of fragment counts normalized per sample is chosen 

according to the selected sample group of sample S. Let this table be 𝑋𝑆
′. 

6. Data normalization II & III. 𝑋𝑆
′ is normalized per target to get 𝑋𝑆

′′ and 

the vector 𝑋𝑆
′′(∙, 𝑆) in 𝑋𝑆

′′ containing all values of S is extracted. 

𝑋𝑆
′′ without S (𝑋𝑆

′′  \ 𝑆) is again normalized per target to remove any effect 

of S on the sample group’s statistics which yields 𝑋𝑆
′′′. The 10% columns 

of 𝑋𝑆
′′′ with greatest variance are then dropped from 𝑋𝑆

′′′ to further reduce 

variance. 

7. Scaled z-scores. z-scores are calculated for sample S, which is found in 

𝑋𝑆
′′ on each row i: 𝑧(𝑖) ∶=  𝑋𝑆

′′(𝑖, 𝑆) / 𝜎(𝑖), where σ is the vector of per 

row standard deviations of 𝑋𝑆
′′′. The resulting z-scores are then scaled to 

reduce the effects of noise in CNV calling: 𝑧’(𝑖) ∶=  𝑧(𝑖)2−α, where z(i) is 

the z-score of target i of sample S. The value α is the user-provided factor 

which is 0.65 by default. We determined the default for α in comparison 

with plotted heatmaps and checked where most CNV calls aligned with 

our judgement. The resulting vector of z’ is saved in a matrix Z which 

contains all scaled z-scores of all samples.  

8. r-scores approximate a copy number of a target in a sample. r-scores 

are created in the previous step on the vector 𝑋𝑆
′′(∙, 𝑆). Ideally, a r-score 

of 1.0 indicates a wild type, while 0.5 indicates a heterozygous deletion, 

1.5 indicates a heterozygous duplication and 2.0 indicates a homozygous 

duplication and so on. These values are saved to a matrix R for each target 

and sample. This matrix holds all r-scores at the end. 

9. CNV calling. Two types of CNVs are called: a) multi-exon CNVs and 

b) single-exon CNVs.  

9a) At first, the Viterbi algorithm is used on a Gaussian HMM (Hidden 

Markov Model). The means of the three states (deletion, wild type, dupli-

cation) are semi-automatically adjusted. For deletion, the mean is calcu-

lated as 𝑚𝑑𝑒𝑙 = −3 𝜎, for wild type it is 𝑚𝑤𝑡 = 𝑚̅, and for duplication it 

is 𝑚𝑑𝑢𝑝 = 4 𝜎, with 𝜎 the st.dev., and 𝑚̅ the median of all scaled z-scores. 

The Viterbi algorithm is then run on the z-scores in Z. The covariances are 

set to 1.0. The transition probability matrix is created from the user-ad-

justable transition probability τ (default τ = 0.001): 

(

1 − (τ ∗ 2) τ τ
τ 1 − (τ ∗ 2) τ
τ τ 1 − (τ ∗ 2)

). 

The resulting hidden states of each sample are saved in a matrix H that 

holds all hidden states of all targets and all samples. For each sample S, a 

consecutive interval T of targets is aggregated to a single CNV if the av-

erage ratio score 𝑟 = mean(𝑅(𝑇, 𝑆)) satisfies 𝑟 <  𝜇 (default is 0.75) or 

𝑟 >  𝜔 (default is 1.35) and all hidden states of H(T,S) are the same and 

not the wild type. µ and ω were chosen under the assumption that they 

separate the ratio scores well. The score function c of a CNV is the abso-

lute value of the mean of scaled z-scores of all contributing targets 

c(T,S) = mean(abs(Z(T,S))). 

9b) To call single-exon CNVs, two thresholds are applied to Z. A single 

target t of sample S is called a deletion if 𝑍(𝑡, 𝑆) <  − 3.5 and 

𝑅(𝑡, 𝑆) <  0.75 or a duplication if 𝑍(𝑡, 𝑆) >  4.5 and 𝑅(𝑡, 𝑆) >  1.35 and 

only if it is not contained in an already called multi-exon CNV by the 

HMM-guided method. All default values for parameters were determined 

by empirical methods, including comparisons with data visualizations. 

10. Output. The CNV calls are saved in a tabular file containing the gene 

names, aberration, size, score, and sample score. Furthermore, the scaled 

Z-scores matrix Z and the ratio-scores matrix R and a list of samples that 

failed to have a sufficient sample group size are written to output files. 

 

2.2 Result Visualization 

The second part of our method is a web browser—based visualization 

for the relative copy numbers per target and per sample represented by the 

ratio scores, as well as the scaled z-scores. This allows the user to visually 

screen the results of their experiments as well as the results of the CNV 

calling algorithm. 

Scaled z-scores and ratio-scores are both visualized in responsive 

heatmaps. Each heatmap additionally shows a track of mappability, target 

size and GC-content at each target. These are calculated from the target 

file, the reference and a uniqueness-of-reference file. The scaled z-scores 

are clipped to the interval [-6,6]. The ratio-scores are clipped to the inter-

val [0,2]. An example of such a heat map is shown in Fig. 2. 

Fig. 2. Example heatmap of r-scores. This is a small example of a 

heatmap showing the ratio scores of each target (row) for each sample 
(column). A darker spot indicates a lower r-sore and vice versa. Aligned 

to the targets are three tracks: 1. Mappability, GC-content and log bp, 

which is the size of a target in bp then log transformed. Each of these 
three tracks show a value of 0 if the colored curve is on the left side. The 

Mappability and GC-content tracks have a value of 1 if the curve is on 

the right side. Log bp can be any size if on the right side but it scales 
with the maximum value in the track. Additionally, we marked several 

phenomena in the heatmap to illustrate its potential. a) shows a possible 

copy number gain, b) shows a target with high variance (or copy number 
variability), c) shows a low-quality sample with high variance, d) shows 

several samples that were too noisy and whose r-scores were set to 1.0 

(imputed). 
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2.3 Sample to Panel re-assignment 

The third part of our method supports users in the assignment of aligned 

sequencing results in BAM format to panel target information in BED 

(Browser Extensible Format) files. This is important for retrospective 

analyses in the presence of artifacts such as sample swaps or erroneous 

documentation of the used sequencing kit. A BED file is a text file con-

taining genomic regions, e.g., exons. The following steps are illustrated in 

Fig. 3. The projection by PCA and TSNE, as well as the clustering can be 

interactively worked with in a plotly Dash app (https://plotly.com/dash/). 

When applied with clearCNV, batch separation (see 2.4) should be done 

before the CNV calling step. 

1. BED file merging. The panel re-assignment algorithm starts with 

merging all input target files to one union of target files. This is necessary 

to make the given samples comparable. 

2. Fragment counting is done the exact same way as in the CNV calling 

algorithm. An entry in the resulting matrix is addressed as 𝑋(𝑖, 𝑗) for the 

i-th row (target) and j-th column (sample).  

3. Binary matrix. We are interested only whether a target is covered and 

not in the depth of coverage. Since we expect off-target effects in the en-

richment, we call a target covered only if the per target fragment counts 

divided by target size is above 1/50. In the case of reads of 100bp size, 

this, for example, would correspond to a read depth coverage of two. The 

final matrix X is binary (1 = covered, 0 = uncovered). 

4. PCA and transformation. A principal component analysis (PCA) 

transformation is applied to X with δ dimensions (default is 20, adjustable 

by the user) yielding 𝑋’. The default of δ is chosen according to the order 

of magnitude of the number of targets per panel. 

5. TSNE. A t-distributed stochastic neighbor embedding (TSNE) pro-

jects 𝑋’ to a latent space (here with two components) which allows fast 

and simple clustering on the resulting matrix 𝑋’’. The random process 

within the TSNE makes it necessary for the user to occasionally re-run the 

process to arrive at a desired projection and clustering result. 

6. Clustering. An agglomerative clustering on 𝑋’’ finds the clusters. 

7. Cluster assignment. The resulting clustering is mapped to the pro-

vided target files. A majority vote is used to assign each cluster to a target 

file. This implies the constraint that each cluster must have a majority of 

correctly assigned samples to a target file. 

8. Output. At this point the data sets are untangled and new lists of bam-

files are written to the according output files. 

 

2.4 Batch separation 

We observed separable subsets in the data, which were not explained by 

erroneous sample–panel assignments. We suspect that limited numbers of 

well plate units may have introduced such batch effects. We suspected 

even more possible reasons such as the design of custom enrichment kits 

or flow cell biases. 

Batch separation is done for each cluster with its previously assigned 

panel resulting from the sample re-assignment. The batch-separation al-

gorithm is like the sample re-assignment algorithm. Again, the interactive 

parts are implemented in a plotly Dash app. 

1. Fragment counts sub setting. The matrix containing the fragment 

counts per target is subset to the samples found in the given cluster. The 

targets are subset from the union BED-file to contain only targets that are 

present in the assigned panel. Differently to the panel re-assignment pro-

cedure, the resulting matrix is not reduced to a binary matrix but holds the 

per sample and per target normalized fragment counts. 

2. PCA and transformation. Analog to panel re-assignment step 4. 

3. TSNE. Analog to panel re-assignment step 5. 

4. Clustering. The interactive interface lets the user control the number 

of batches on each set of samples for each panel. 

5. Output. A list of alignment file paths (BAM format) per identified 

batch is written to an output file for each found cluster. This file can be 

used in the CNV calling step. 

 

2.5 Evaluation 

To evaluate the performance of our algorithm, we compared it to exist-

ing approaches to call CNVs on targeted sequencing data. The tool selec-

tion was limited to those having a scientific publication and being freely 

available for research applications. We chose ExomeDepth (Plagnol et al., 

2012), CoNVaDING (Johansson et al. 2016), panelcn.MOPS (Povysil et 

al. 2017) to evaluate comparatively with clearCNV. We chose not to use 

Fig. 3. Sample to Panel re-assignment and batch separation. The steps are numbered according to the  main text’s steps. Sub figure A 

illustrates the sample re-assignment and sub figure B illustrates the batch separation. 𝑋, 𝑋′, 𝑎𝑛𝑑 𝑋’’ illustrate matrices, where “ . “ means any 

numerical entry. Colors blue and orange indicate different clusters (or with yellow different batches). Frames overlaying a matrix indicate the 

vector that is subject to an operation. 

https://plotly.com/dash/
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the recent tool Atlas-CNV by Chiang et al. (2019) in the evaluation be-

cause it was designed to find single Exon CNVs in the eMERGESeq panel, 

which we did not use (an earlier evaluation showed no competitive results 

on our data set, data not shown). 

We wrote CNV calls and internal or explicit scorings of clearCNV, 

CoNVaDING, ExomeDepth and panelcn.MOPS, each to a uniformly for-

matted file for a comparative evaluation. 

To compare the results of the CNV calling of each tool, we had two 

different approaches. First, we compared the scores given to each single 

target in each sample for each tool. We did this before we chose a subset 

of CNV calls to be validated via quantitative PCR (qPCR). The details can 

be found in section S2 of the supplement. Second, we compared the scores 

of the aggregated called CNVs after we had the qPCR results. We ranked 

the called CNVs for each tool to achieve comparability by rank. Finally, 

we visualized these rankings for each tool’s results, which can be seen in 

the results section and in Fig. 5. 

Regarding the results, two different parameters were scored. First, each 

tool scores single targets for each sample. These are the target scores. Sec-

ond, CNV calls are scored and the target scores are the underlying scores. 

They are aggregated in some way, e.g., by taking the mean of the consec-

utive targets that form the called CNV. These are the CNV scores. 

Each tool has a different scoring metric per target and only Exo-

meDepth and clearCNV aggregate called CNVs. In the case of CoNVaD-

ING we chose to score the targets according to the median 

“AUTO_ZSCORE” scores which are found in the matching *.totallist 

files. panelcn.MOPS does also not provide aggregated CNV calls and no 

target scores. After very helpful correspondence with the authors, we fol-

lowed their advice to calculate scores per target and used the RC ratio 

(RC.norm/medRC.norm) to score single targets per sample. To aggregate 

called CNVs, we merged consecutive targets if they were called the same 

copy number unequal two. clearCNV generates both the target scores and 

the CNV scores. 

We performed our evaluation on seven custom panels manufactured by 

Agilent from different genetic rare disease fields. Data was generated in a 

diagnostic setting and all patients gave informed consent for further re-

search. Four panels have about six thousand targets, the others have about 

one or two thousand. In total, we had data from 1407 different individual 

samples. More detailed information about the data can be found in the 

supplement section S1, Table S1, and Fig. S1. 

We chose not to evaluate with simulated data as targeted sequencing 

data is known to contain a large amount of noise and biases that have not 

been comprehensively characterized and modeled yet. 

3 Results 

3.1 Sample to panel re-assignment and batch separation 

38 out of 1407 total samples were re-assigned to different panels or panel 

versions, for which the documentation was not complete anymore. 16 

Samples had a fragment-per-target count so low that they were excluded 

from any further processing by clearCNV. A detailed log of the sample 

re-assignment and batch separation process can be found in the supple-

ment section S3. 

3.2 CNV calls 

The Venn diagram in Fig. 4.A shows all called CNVs on all data sets 

by CoNVaDING, ExomeDepth, panelcn.MOPS and clearCNV. As it can 

be seen, the results show a great discordance in terms of called CNVs. To 

select a feasible number of variants for validation by qPCR, we limited 

the results to those CNVs called by three tools or more. We finally had to 

exclude samples for which no DNA for validation was available. This re-

sulted in a set of 88 CNV calls to be validated. We could confirm 35 CNV 

calls, of which 15 were duplications and 20 were deletions. One deletion 

could be confirmed by inspecting the corresponding WGS track in IGV 

highlighting extended fragment spans (see section 2 and Fig. S2 in the 

supplement). The other 34 CNVs were confirmed via qPCR, following the 

protocol detailed in Ott et al. (2010).  

 

 

 

 

Tool Total CNV 
calls 

validated calls confirmed 
calls 

clearCNV 233 73 32 

CoNVaDING 3 711 46 17 

ExomeDepth 4 669 84 34 

panelcn.MOPS 40 081 82 33 

 

Even after several adjustments of the DNA melting temperatures, we 

were not able to identify the true copy number via qPCR of nine out of the 

88 CNV calls. We treated ambiguous results as unconfirmed calls (same 

as wild type). We analyzed mappability and GC-content of the CNV calls 

and our whole data. We found that for about 15% of the targets (data 

points) a too high GC content rendered qPCR validation infeasible. The 

details can be found in supplement section S4. 

Fig. 4B shows a Venn diagram of the 35 confirmed CNVs. The subsets 

overlapping only two or one tools are left blank, as these CNV calls were 

excluded from validation. Eleven CNV calls were made by all four tools 

and were successfully validated. Three CNV calls that were confirmed by 

qPCR were not called by clearCNV. CoNVaDING missed 18, pan-

elCN.MOPS missed two and ExomeDepth missed one. As can be seen in 

Tab. 1. CNV calls by all tools. This table shows the total number of CNV 

calls made by each tool and the according number of validated and confirmed 

CNV calls. The subsets can be inspected in Fig. 4. 

Fig. 4. Venn diagrams of called and confirmed CNVs. Sub figure A 
shows all CNV calls on all available data. CNVs selected for validation 

are marked in bold letters. Sub figure B shows only the confirmed (by 

qPCR) CNVs. Unlabeled subsets have a cardinality of zero. 
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Figure 4A, the overall number of CNV calls varies greatly between the 

tools. Besides the total number of true positives, one must consider the 

rank of the true within the false positives within each tool. 

Fig. 5 shows receiver/operator—characteristics like curves for each 

tool. All CNV calls were ranked according to the score attached to them 

by each tool. The horizontal axis shows the (log10-scaled) rank of the 

curve and the vertical axis shows the cumulative number of positively val-

idated CNVs. The curve ends for each tool where the lowest ranking CNV 

call was confirmed. 

It can be seen that ExomeDepth and clearCNV both created some true 

positive CNV calls among the highest ranks. Also, this approximation of 

specificity shows a difference in calling either deletions or duplications on 

our data set. ExomeDepth starts similarly specifically as clearCNV. The 

curve flattens and reaches into the 1000th rank to find all 20 deletions. The 

CNV calls by CoNVaDING and panelcn.MOPS start with lower ranks and 

end with very low ranks. But in the case of duplications, CoNVaDING’s 

results show even a slightly higher specificity than ExomeDepth’s. Over-

all, clearCNV misses three CNV calls but shows superior specificity when 

compared to other tools. A detailed analysis of the three missed CNVs can 

be found in Supplement section S5. 

4 Discussion 

clearCNV showed competitive sensitivity and excellent specificity on 

different real-world data sets, which were partially very heterogeneous in 

the underlying batches and unknown variances. High specificity is im-

portant in clinical applications as it reduces the number of false positive 

and effort for validation. 

Differences in specificity of the different tools can be attributed to dif-

ferent design decisions by their authors. panelcn.MOPS was not designed 

to operate at a high specificity, which is an intentional choice by the au-

thors who worked with very high quality data (see discussion on GitHub: 

https://github.com/bioinf-jku/panelcn.mops/issues/19). CoNVaDING and 

ExomeDepth were designed to handle noise and more difficult data, but 

both rely on the user to discard low-quality samples or to isolate reference 

samples which have low noise  

to be used as models to fit their models on. clearCNV works without 

such preparatory steps by clustering the data beforehand and then filtering 

out low quality samples. 

clearCNV also allows the user to visualize the results of the clustering 

and filtering steps to validate the parameter choices and allow to adjust 

parameters for fine-tuning when necessary. 

Adding preprocessing steps, such as clustering, and batch separation 

allowed clearCNV to compensate for greater structural difficulties observ-

able in the data. Other tools take similar but not as far-reaching approaches 

by finding subsets of samples that form a common statistical background 

for any single sample. clearCNV does that in addition to the two previous 

steps of panel-re-assignment and batch separation, which are also embed-

ded in a user-friendly interactive Dash interface. 
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Fig. 5. CNV calling score ranks vs. cumulated number of con-

firmed CNVs. All CNV calls are ranked for each tool and separately 
for deletions (sub fig. A) and duplications (sub fig. B). Each tool’s re-

sults with standard parameters are represented by a solid line. 
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S1 Data overview 

 
Table S1 shows the core characteristics of the panels used in our evaluation. 

Panel ID Panel 

Version 

Disease Field # 

Genes 

# Exons 

and targets 

Mbp target # Cases input # Cases resolved 

A (BM) 1 Bone Mass Disorders 76 833 0.21 172 164 

B (CBM) 2 Bone Mass Disorders 383 5866 1.60 95 94 

C (CBM2) 3 Bone Mass Disorders 384 6194 1.15 270 281 

D 

(SDAG1) 

1 Skeletal Disorders 407 6538 1.22 117 104 

E (SDAG2) 2 Skeletal Disorders 408 6233 1.71 345 340 

F (TAAD) 1 Connective Tissues 

Disorder 

37 972 0.13 252 252 

G 

(TAAD2) 

2 Connective Tissues 

Disorder 

89 1953 0.52 156 156 

 

 

Fig. S1. Venn diagram of panels A,C,E, and G. Panels A,C,E, (and B,D) all share a relatively great set of common genes, whereas G 

(and F) have relatively many exclusive genes. Eleven genes are part of each panel. 

  



S2 WGS read pair gap size based confirmation. 

We had a small subset of patients sequenced both as a WGS (whole genome sequencing) and a targeted sequencing panel sample. One CNV 

was found in both samples. This CNV could be validated via visual inspection in IGV. The corresponding screenshot is found in Fig. S2. 

S3 Sample to panel re-assignment and batch separation 

The following steps were done in an interactive plotly Dash environment. The graphics are screenshots taken from the responsive plots and 

all parameters are reported separately. The shown Figures represent the actual data (1407 samples in seven sequencing panels) and solutions 

we worked with. The final output was then used as the input of clearCNV’s CNV calling pipeline. 

I. The first step is the PCA transformation of the data to 20 dimensions. Depicted are the first two principal components. The 

underlying data matrix is a binary matrix (see paper section 2.4.). The colors indicate the underlying sequencing panel a sample 

is assigned to. The selected dimensions of the PCA ado not necessarily produce a nice cluster separation in the actual PCA plot, 

but rather in the following (tSNE) step. 

 

Fig. S3: Scatterplot of PCa transformed data.  The x-axis shows the first, the y-axis the second principal component of the PCA 

transformed data (samples) and coloring according to the per sample assigned panel. Note that there is no good separation visible. 

Fig. S2. IGV screenshot of heterozygous deletion found in WGS data. The top track shows the coverage per base. The aligned paired 
end reads are indicated by grey bars with thin strokes connecting them. Read pairs spanning a much larger region than a usual fragment does 

are marked in red color. The deletion can be seen in the coverage track in the form of a sudden interruption and a short area with a lower 

coverage, as well as it can be seen by the placement of the split reads. 



II. The data is transformed by a t-distributed stochastic neighbor embedding (tSNE). This brings the dimensions down from 20 to 

two and creates a much better separation. Again, the colors indicate the underlying sequencing panel a sample is assigned to. 

 

Fig. S4: Scatterplot of tSNE transformed data.  The x-axis shows the first, the y-axis the second dimension of the transformed data. 

Again, the coloring is according to the per sample assigned panel. Note how some samples from panels D and E appear clearly displaced. 

III. The two-dimensional data is clustered, and the samples are re-assigned. 

 

Fig. S5: Scatterplot of tSNE transformed data with re-assignment of samples to panels. Agglomerative clustering finds the clusters. 

The number is defined by input sequencing panels. To assign a panel to a cluster, a majority vote is held. This procedure assumes that only a 

minority of samples is wrongly assigned at the start of the analysis. 

IV. A clustermap is plotted for the original assignment of the samples. Samples and targets (or exons) are both subject to clustering. 

The aim is to show the user the difference of the panels and at the same time to control the threshold, when a target is considered 

covered or uncovered or find the right discimination between low coverage an off-target read alignments. The threshold can be 

adjusted in the plotly Dash UI. 



 

Fig. S6: Clustered heatmap of all samples on all targets from all sequencing panels. Each column represents a sample and each row a 
target (or exon). The horizontal colour-bar on top of the heatmap indicates the originally assigned sequencing panels each with one different 

colour - seven in this case. Displaced strokes indicate wrongly assigned samples. The heatmap shows if a target of a sample is considered 

covered (white or beige) or uncovered (black). 

V. The new assignment is shown again based on the clustered heatmap. A user can compare the new assignment with the clustering 

of the targets and samples. 

 

Fig. S7: Clustered heatmap with new sample-panel assignment. Same as Fig. S6. except for the color bar now showing the new sample 

to panel assignment. 



VI. Batches are separated. The user defines the number of clusters per given panel. The clusters are found in a Gaussian mixture 

clustering. The final assignments are then printed to text files, allowing the user to use the new assignments directly in 

downstream CNV calling. 

 

Fig. S8: Scatter plots of all batch separations. The seven Subfigures show how all batches within the seven panel-associated clusters of 

samples were resolved. The scatterplots are obtained by transforming the normalized coverage data via PCA and tSNE. For each panel, 
target fragment counts were obtained based on the provided BED-file. The underlying panel is found in each Subfigure’s description. The 

identified batches are indicated by color and description. 

S4 Ambiguous qPCR results and GC content analysis 

Nine out of 88 CNV calls showed ambiguous results in the qPCR validation. After trying several different DNA melting temperatures, we 

analyzed GC-content and mappability of the CNV calls. Fig. S9 shows a boxplot of the GC content of all CNV calls for each qPCR 

outcome. 



The GC-content of all ambiguous CNV calls was significantly higher (alpha=0.05) than the GC-content of unconfirmed and confirmed CNV 

calls joined together. We tested this in a one-sided t-test with p=0.0199. The presence of ambiguous validations on targets with a GC-

content of 0.55 to 0.4 shows that GC-content plays a role, but cannot fully explain why a CNV call can be validated via qPCR and why not. 

Therefore, we plotted another boxplot for the mappability (36-mers on Hg19) for each qPCR outcome in Fig.10. 

 

Fig. S10. Boxplot of the mappability of all confirmed, unconfirmed, and ambiguous results of the qPCR validation. Each box shows 

the min and max, the 0.1 and 0.9 quantiles and the median. The unconfirmed CNV calls (not) show regions with both low and high 

mappability. The confirmed CNV calls (confirmed) contain only targets with a mappability of 0.58 or greater. The ambiguous CNV calls 

have mappability values similar to the unconfirmed ones. 

As it can be seen on Fig.S11, CNV calls can have both a moderate GC-content and a high mappability. Therefore, there must be another 

factor that determines if a CNV call can be confirmed via qPCR. 

Fig. S9. Boxplot of the GC-content of all confirmed, unconfirmed, and ambiguous results of the qPCR 

validation. Each box shows the min and max, the 0.1 and 0.9 quantiles and the median. The unconfirmed 

CNV calls (not) joined with the confirmed CNV calls (confirmed) seem to have a lower GC-content than the 

ambiguous ones. Note that CNV calls from all three classes can have a GC-content higher than 0.6. 



 

Fig. S11. Scatterplot of the ambiguous qPCR results with GC-content vs. mappability. Each dot indicates the GC-content and the 

mappability of the genomic region corresponding to a CNV call that showed an ambiguous result in the qPCR validation. Note that CNV 

calls can have both a moderate GC-content and a high mappability. 

S5 False negatives in clearCNV’s calls 

Three true CNVs were not called by clearCNV. All three are deletions and two of them belong to the same sample. This sample was found 

in the data set corresponding to panel A, which was composed of two major batches. The failed sample was found in one of the two clusters 

where it failed to consult a sample group of sufficient size (its group held no other samples). ClearCNV is designed to avoid such samples to 
result in many CNV calls, which would achieve a high score due to extreme noise. By dropping this sample, clearCNV cleared some of the 

top ranks to be filled with candidates more likely to be true CNVs. 

The third missed CNV call is a small deletion spanning two exons. Its region is noisy, resulting in a low scaled z-score on which the 
Gaussian HMM then did not make the call. Even though this might seem like clearCNV is biased against small CNVs, Fig. S12 indicates 

that this is likely not the case. Small CNV calls are well present among all CNV calls of clear CNV as well as all confirmed CNV calls. 

 

 
Fig. S12. Distribution of CNV sizes (number of targets or exons in a CNV call) in clearCNV’s confirmed CNV calls. Sub Figure A 

shows the size of each called CNV and the number of those. Sub Figure B shows the distribution of CNV exon numbers among the 

confirmed CNV calls. 
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