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Abstract: 
 
Objective: Brain connectivity profiles seeding from deep brain stimulation (DBS) 

electrodes have emerged as informative tools to estimate outcome variability across 

DBS patients. Given the limitations of acquiring and processing patient-specific 

diffusion-weighted imaging data, a number of studies have employed normative 

atlases of the human connectome. To date, it remains unclear whether patient-specific 

connectivity information would strengthen the accuracy of such analyses. Here, we 

compared similarities and differences between patient-specific, disease-matched and 

normative structural connectivity data and estimated the clinical improvement that they 

may generate. 

Methods: Data from 33 patients suffering from Parkinson’s disease who underwent 

surgery at three different centers were retrospectively collected. Stimulation-

dependent connectivity profiles seeding from active contacts were estimated using 

three modalities, namely, either patient-specific diffusion-MRI data, disease-matched 

or normative group connectome data (acquired in healthy young subjects). Based on 

these profiles, models of optimal connectivity were constructed and used to estimate 

the clinical improvement in out-of-sample data. 

Results: All three modalities resulted in highly similar optimal connectivity profiles that 

could largely reproduce findings from prior research based on a novel multicenter 

cohort. In a data-driven approach that estimated optimal whole-brain connectivity 

profiles, out-of-sample predictions of clinical improvements were calculated. Using 

either patient-specific connectivity (R = 0.43 at p = 0.001), an age- and disease-

matched group connectome (R = 0.25, p = 0.048) or a normative connectome based 

on healthy/young subjects (R = 0.31 at p = 0.028), significant predictions could be 

made, and the underlying optimal connectivity profiles were highly similar. 

Conclusion: Our results of patient-specific connectivity and normative connectomes 

lead to similar main conclusions about which brain areas are associated with clinical 

improvement. Nevertheless, although the results were not significantly different, they 

hint at the fact that patient-specific connectivity has potential for estimating slightly 

more variance when compared to group connectomes. Furthermore, the use of 
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normative connectomes involves datasets with high signal-to-noise acquired on 

specialized MRI hardware, while clinical datasets such as the ones used here may not 

exactly match their quality. Our findings support the role of DBS electrode connectivity 

profiles as a promising method to investigate DBS effects and to potentially guide DBS 

programming. 
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Zusammenfassung 
 
Zielsetzung: Konnektivitätsprofile des Gehirns, die von Elektroden zur 

Tiefenhirnstimulation (THS) ausgehen, haben sich als informativ für die Schätzung 

von Variabilität im Behandlungserfolg bei THS-PatientInnen erwiesen. Angesichts von 

Einschränkungen bei der Erhebung und Verarbeitung patientenspezifischer, 

diffusionsgewichteter Bilddaten wurden in einer Reihe von Studien normative Atlanten 

des menschlichen Konnektivitätsprofils verwendet. Bis heute ist unklar, ob 

patientenspezifische Konnektivitätsinformation die Genauigkeit solcher Analysen 

verbessern würde. Ziel dieser Studie war der Vergleich zwischen Ähnlichkeiten und 

Unterschieden patientenspezifischer, krankheits-gematchter und normativer, 

struktureller Konnektivitätsdaten, sowie der Fähigkeit dieser Methoden zur 

Vorhersage eines etwaigen klinischen Behandlungserfolges. 

Methoden: Die Analysen basierten auf retrospektiven Daten von 33 Parkinson-

PatientInnen, welche an drei verschiedenen Zentren operiert worden waren. 

Stimulationsabhängige Konnektivitätsprofile mit Ursprung in aktiven DBS-Kontakten  

wurden mittels der drei Modalitäten geschätzt, also entweder basierend auf 

patientenspezifischen, diffusionsgewichteten MRT-Daten, oder auf krankheits-

gematchten sowie auf normativen Gruppenkonnektivitätsdaten (erhoben an 

gesunden, jungen ProbandInnen). Auf Grundlage dieser Profile wurden Modelle 

optimaler Konnektivität konstruiert und zur Schätzung des klinischen 

Behandlungserfolgs in unabhängigen Daten herangezogen.  

Ergebnisse: Alle drei Modalitäten führten zu sehr ähnlichen optimalen 

Konnektivitätsprofilen, mit Hilfe derer sich auf Grundlage einer neuartigen 

multizentrischen Kohorte vorherige Forschungsbefunde weitgehend reproduzieren 

ließen. In einem datengesteuerten Ansatz, bei dem optimale Konnektivitätsprofile 

über das gesamte Gehirn hinweg geschätzt wurden, wurden Vorhersagen über den 

klinischen Behandlungserfolg in unabhängigen Daten berechnet. Unter Verwendung 

entweder der patientenspezifischen Konnektivität (R = 0,43 bei p = 0,001), eines 

alters- und krankheits-gematchten Gruppenkonnektivitätsprofils (R = 0,25, p = 0,048) 

oder eines normativen Konnektivitätsprofils basierend auf Daten gesunder/junger 

ProbandInnen (R = 0,31 bei p = 0,028) konnten signifikante Vorhersagen getroffen 
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werden, wobei die zugrunde liegenden optimalen Konnektivitätsprofile große 

Ähnlichkeit aufwiesen. 

Schlussfolgerung: Unsere Ergebnisse, welche patientenspezifische sowie 

normative Konnektivitätsprofile einbeziehen, führen zu ähnlichen 

Hauptschlussfolgerungen darüber, welche Hirnareale mit klinischem 

Behandlungserfolg assoziiert sind. Obwohl sich die Ergebnisse nicht signifikant 

unterschieden, deuten sie dennoch darauf hin, dass patientenspezifische 

Konnektivität über Potenzial zur Schätzung geringfügig höherer Varianz im Vergleich 

zu gruppenbasierten Konnektivitäsprofilen verfügt. Darüber hinaus stützen sich 

Analysen, welche auf normativen Konnektivitätsprofile basieren, auf Datensätze mit 

hohem Signal-Rausch-Verhältnis, welche durch spezialisierte MRT-Technologie 

erfasst wurden, während klinische Datensätze, wie sie auch in dieser Studie 

herangezogen wurden, diesen an Qualität möglicherweise nicht gleichkommen. 

Unsere Befunde stützen die Rolle von Konnektivitätsprofilen, welche von THS-

Elektroden ausgehen, als eine vielversprechende Methode zur Untersuchung von 

THS-Effekten und möglicherweise zur Verbesserung der THS-Programmierung. 
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List of Abbreviations 
 
DBS                   Deep brain stimulation 
 
PD                      Parkinson’s disease 
 
STN                    Subthalamic Nucleus; 
 
MRI                     Magnetic Resonance Imaging.    
 
dMRI                   diffusion-weighted Magnetic Resonance Imaging  
  
SMA                    Supplementary motor area  
 
pre-SMA              pre-Supplementary Motor Area  
 
M1                       Primary motor cortex  
 
PFC                     Prefrontal cortex  
 
LEDD                   L-dopa equivalent dose  
 
UPDRS-III            Unified Parkinson’s Disease Rating Scale Part III  
 
TR                        Repetition time  
 
TE                        Echo time  
 
ANTs                    Advanced Normalization Tools 
 
CT                        Computed tomography 
 
VTA                      Volumes of tissue activated  
 
HCP                      Human Connectome Project 
 
PPMI                     Parkinson’s Progression Markers Initiative  
 
DWI                       Diffusion weighted imaging 
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1 Introduction: 
 
1.1 Deep brain stimulation in Parkinson’s disease 
 
Parkinson's disease is the second most common neurodegenerative disorder and it 

involves multiple motor and nonmotor neural circuits in the basal ganglia1,2,3. Normally, 

patients have a good response to medications at an early stage. However, medication-

related complications develop in a majority of patients, usually 5 years later4. Deep 

brain stimulation (DBS) is one of the most effective treatments for advanced 

Parkinson's disease, alleviating motor symptoms and improving quality of life5,6. DBS 

does not only exert focal stimulation of specific brain nuclei (i.e., at the subthalamic 

nucleus; STN) but also modulates distributed basal-ganglia cortical cerebellar 

networks7,8,9,10,11,12,13. The impact of DBS on pathological networks has been 

highlighted in PD7,10,11 as well as other diseases such as essential tremor14, dystonia 
15 and obsessive-compulsive disorder16,17. 

 

1.2 Patient-specific connectivity in deep brain stimulation 
 
Preoperative diffusion-weighted imaging (dMRI) has been used to explore the 

structural connectivity of DBS in previous studies18,19. Structural connectivity patterns 

of clinically beneficial DBS electrodes were assessed in PD patients. Specifically, 

modulation of white matter tracts directed to the superior frontal gyrus and the 

thalamus was associated with effective DBS outcomes18. Similarly, Akram and 

colleagues investigated the cortical connectivity patterns associated with treatment 

efficacy based on individual dMRI acquisition19. Different cortical connectivity 

patterns were associated with maximum clinical improvements: tremor control with 

connectivity to the primary motor cortex (M1), bradykinesia with the supplementary 

motor area (SMA) and rigidity to both the prefrontal cortex (PFC) and SMA. 

However, a practical limitation of using individual dMRI is small cohort sizes, high 

cost and nonstraightforward pooling across centers due to inconsistencies in MR 

acquisition protocols, which leads to the use of individual brain connectivity 

measures not being feasible. Considering the limited numbers of patients who 

undergo surgery worldwide, the limitation of dMRI is particularly obvious in dystonia 
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that is treated with nontraditional targets (for example, the STN)20,21 and in new 

indications such as Alzheimer’s disease 22,23 or psychiatric indications 24,25. 

 

1.3 Normative connectome 

A novel development to overcome this limitation is to use normative connectomes –, 

i.e., atlases of average brain connectivity developed from large cohorts of 

subjects26,27,28,29,30,31. The advantages of normative connectomes are a high N, the 

acquisition with specialized MRI hardware and, as a result, a better definition of the 

wiring diagram of the brain32. A previous article demonstrated the feasibility in the 

field of DBS by estimating functional and structural connectivity profiles of the ventral 

intermediate nucleus of the thalamus33. A second study estimated the optimal 

structural and functional connectivity profiles for STN-DBS9. Specifically, a 

connectivity fingerprint of effective DBS electrodes was estimated by the correlation 

between the structural and functional connectivity after DBS and UPDRS-III changes 

across patients. Next, the connectivity profiles from another independent cohort were 

calculated and then used to obtain the similarity between this connectivity and the 

optimal fingerprint. The degree of similarity was used to estimate the variability in 

clinical improvement. This concept has since been widely applied to explore 

connectivity associated with clinical or behavioral changes in multiple 

diseases14,16,34,17,35,36,37,38. However, one main limitation of the approach is that 

connectivity data taken from connectome atlases can never represent individual 

differences in connectivity profiles from the actual DBS patients of the study. With 

the increasing use of the normative connectome, it is necessary to directly compare 

the connectivity profiles achieved by patient-specific dMRI with those obtained when 

using normative connectivity data. 

1.4 The aim of this study 

The main goal of this study was to explore the specific similarities and differences 

between patient-specific connectivity and normative connectome information when 

seeding from DBS electrodes to the rest of the brain. To achieve this aim, three main 

steps were performed. First, based on individual diffusion imaging acquisition 

scanned from each individual patient undergoing STN-DBS, individual structural 

connectivity was estimated. Second, we substituted these data with either a disease- 
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and age-matched group connectome or a normative connectome acquired from 

young healthy subjects. Third, we compared the amount of variance in clinical 

improvements that could be estimated by using individualized DTI data versus either 

of the two group connectome atlases that were based on either healthy subjects or 

PD patients. 

2 Materials and methods 
 
2.1 Patient cohorts and imaging 
 
Thirty-three DBS patients from 3 different DBS centers (Center 1 (London): N = 17, 

Center 2 (Mainz): N = 12, Center 3 (New York): N = 4) were included in this 

retrospective study. The patient demographics are summarized in Table 1. 

 

All patients underwent stereotactic DBS surgery for the treatment of PD and received 

bilateral DBS electrodes (Table 1). Clinical variables, including age, sex, disease 

duration before surgery, and L-dopa equivalent dose (LEDD) at baseline, were 

recorded. Clinical improvement was measured by comparing Unified Parkinson’s 

Disease Rating Scale Part III (UPDRS-III) scores OFF medication preoperatively 

(baseline) and postoperatively ON DBS OFF medication. This study was approved by 

the local ethics committee of the Charité, University Medicine Berlin (master vote 

EA2/186/18). The study in London received ethical approval from the West London 

NHS Research Ethics Committee (10/H0706/68). At Columbia and Mainz University, 

all procedures were also approved by the local Institutional Review Board. 

 

2.2 Preoperative diffusion MRI acquisition and tractography 

Preoperative diffusion MRI acquisition came from the above 3 centers. For the 

London and New York cohorts, the diffusion data were preprocessed, including 

topup and Eddy (FSL v5.0), as implemented in FSL39,40. In the Mainz cohort, only 

Eddy was applied. Tractography was performed using the generalized Q-sampling 

imaging method41 as implemented in DSI studio (http://dsi-studio.labsolver.org) using 

the default parameter sets implemented in Lead-Connectome27. 
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2.3 Localization of DBS electrodes and VTA estimation 

DBS electrodes were localized using the Lead-DBS toolbox (https://www.lead-

dbs.org/; 42) in the current form (version 2.2.3,10) using PaCER43 or the TRAC/CORE 

approach 42 for either postoperative CT or MRI, respectively. Based on the long-term 

DBS settings, volumes of tissue activated (VTA) were estimated using a finite 

element method (FEM)-based model as implemented in Lead-DBS (Horn et al., 

2019). This model estimates the E-field on a tetrahedral four-compartment mesh 

including gray & white matter, electrode contacts, and insulating parts. 

2.4 Structural connectivity and optimal model estimation 

Whole-brain structural connectivity profiles seeding from the bilateral VTA for each 

patient were calculated using patient-specific dMRI data, a disease- and age-

matched connectome estimated based on a cohort of 85 Parkinson’s disease 

patients acquired within the Parkinson’s Progression Markers Initiative (www.ppmi-

info.org,29), and a state-of-the-art multishell dMRI dataset based on 32 healthy young 

subjects within the Human Connectome Project at Massachusetts General Hospital 

(https://ida.loni.usc.edu/login.jsp,44). Then, structural connectivity maps (based on 

either patient specific, age- and disease-matched or young/healthy data) seeded 

from the bilateral VTA were Spearman rank-correlated with %-UPDRS-III change 

across patients in a voxelwise fashion, which led to a map that showed positive or 

negative associations with UPDRS-III improvements (henceforth referred to as R-

maps). 

2.5 Estimating improvement in out-of-sample patients 

To estimate the DBS outcome in out-of-sample data, spatial correlations between 

the optimal structural connectivity model (defined by data-driven R-maps or a 

previously published optimal model from9) and the VTA-derived structural 

connectivity profile in each patient were calculated. The resulting similarity indices – 

again expressed as (spatial) Spearman’s rank correlation coefficients – estimate 

‘how optimal’ each connectivity profile was and were used to explain the variability of 

clinical improvement (%UPDRS-III improvement) in a linear regression model. An 

overview of the methodology applied is shown in Figure 1 in45. 
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Table 1: Patient demographics of the cohorts analyzed 

Coho
rt 

No. 
(femal
e) 
 

Age, 
[yrs] 

Diseas
e 
Duratio
n, [yrs] 

UPDRS-
III 
baseline, 
OFF 
medicati
on 

LEDD 
Reducti
on [%] 

Clinical 
Assessm
ent 

UPDRS-
III 
postop, 
OFF 
medicati
on 

Preop 
Imagi
ng 

 
 
   dMRI 
resolution 
 
 

Posto
p 
Imagi
ng 

Registrati
on 

Modalitie
s 

Electrod
e 
type 

Cent
er 1 17(4) 59.9±2

.3 11±1.1 50.5±4.3 60±4.1 
On vs. 
OFF one 
year 
postop 

27±3 

T1, 
T2, 
PD*, 
R1, 
R2*, 
MT 

 
 
 
1.5×1.5×1.5 MRI 

T1, T2, 
PD*, R1, 
R2*, MT, 

3389 
Medtron
ic 

Cent
er 2 12(3) 66.7±2

.4 
15.7±1.
1 34.1±2.2 64.7±6.

2 

On vs. 
OFF 6 
months 
postop 

14.9±1.8 T1, T2 

 
 
 
2×2×2 MRI T1, T2, 

3389 
Medtron
ic 

Cent
er 3 4(0) 59±3.7 12.3±1.

3 31±1.9 58±18.2 

On vs. 
OFF 2.5-7 
months 
postop 

13.8±3.2 T1, T2 

 
1.88×1.88×
2.5 

MRI, 
CT T1, T2, 

3387, 
6179, 
Boston
Sci 
Vercise 
8 
contact 
linear 

PD*, effective proton density; R1, 1 mm high-resolution maps of the longitudinal relaxation rate (R1 = 

1/T1)); R2*, effective transverse relaxation rate (R2* = 1/T2*)); MT, magnetization transfer saturation 

3 Results 

In the current study, 33 patients were from 3 independent centers (7 women, mean 

age 62.5 ±1.6 years). The disease duration in the entire sample was 12.9 ±0.8 years. 

The reduction in LEDD from baseline to post-DBS on average was 61.5 ±3.6%. The 

preoperative UPDRS-III score was 42.0 ±2.8 compared to a postoperative score of 

28.1 ±2.1 points. LEDD reduction and UPDRS-III improvements were not 

significantly different across the three datasets (p > 0.05 for both variables). Patient 

demographics of the cohorts analyzed are shown in Table 1 45. 

Electrode localization confirmed accurate placement across the three cohorts (Fig. 2 

and Fig. S1 in 45). The special relationships of active electrode contacts and STN are 

shown in S4 in 45. A total of 57 contacts were inside, 8 at the border region and 4 

outside the STN. Structural connectivity profiles based on three connectomes from 

two patient cases are shown in Figure 5. For most patients, the fibers were 

predominantly connected to the sensorimotor strip (M1, SMA or pre-SMA). However, 

in a few patients, the patient-individual structural connectivity estimates differed (Fig. 

3 in 45). 
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Correlations between connectivity metrics across the group of patients were high for 

apical cortical regions but lower for more frontal regions (see Fig. S4 and Fig. S5 in 
45). The specific correlations between patient-specific and age-/disease-matched 

connectivity and young-/healthy and age-/disease-matched connectivity are shown in 

Table 2 in 45. 

One previous optimal connectivity model (defined by 95 patients) in Horn et al. 2017 

was used to predict clinical outcome based on patient-specific connectivity (Fig. 4 in 
45; R = 0.28, p = 0.045), the age- and disease-matched connectome (R = 0.30, p = 

0.031) or the young/healthy connectome (R = 0.33, p = 0.021). Furthermore, data-

driven optimal connectivity maps (R-maps) were estimated using individual dMRI, 

the age-/disease-matched connectome or the young-/healthy connectome. 

Using either metric, connectivity to the primary motor cortex (M1) and primary 

somatosensory cortex (S1) was associated with worsening of motor symptoms, 

whereas connectivity to the pre-SMA, anterior cingulate and medial frontal cortices 

was associated with symptom improvement (Fig. 1). All three metrics, i.e., patient-

specific connectivity (R = 0.43; 95% CI = 0.1, 0.68; p = 0.001), age-/disease-matched 

connectome (R = 0.25; 95% CI = -0.09, 0.55; p = 0.048) and healthy-/young 

connectome (R = 0.31; 95% CI = -0.03, 0.59; p = 0.028) could account for a significant 

part of the variance in clinical outcome in a leave-one-out design (Fig. 1). Based on 

the above results, 6-18% of the variance in clinical outcomes could be explained by 

out-of-sample data. 

 

Correlations derived from either metric were not significantly different from each other 

in head-to-head comparisons based on a Fisher r-to-z transformation (p > 0.4 for all 

comparisons). Furthermore, cross-estimates between metrics were worse and not 

significant, i.e., when the R-map was based on a group connectome, structural 

connectivity maps were based on patient-specific structural connectivity or vice versa 

(Fig. 6 in 45). This may underline the importance of consistency in the choice of metric 

when performing such dMRI-based connectivity analyses. 
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Figure 1: Structural connectivity (patient-specific connectome, age-/disease-matched and healthy-

/young) estimated change in UPDRS-III score using a leave-one-patient-out model (N = 33) 45. The 

optimal structural connectivity model generated with the patient-specific connectome (A), age-/disease-

matched connectome (C) and young-/healthy connectome (E) effectively estimated patient 
improvement based on the respective connectome (B, D, F). Slightly more variance was estimated from 

the patient-specific connectivity model than from the other two metrics. Please note that the values 

shown on the R-maps are not necessarily significant since mass-univariate tests were applied. Rather, 

the spatial profile of these maps was used to make predictions for out-of-sample data, which were then 

tested for significance. 
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4 Discussion: 
 
4.1 Normative group connectomes vs. patient-specific connectivity 
 
Recent studies have introduced and validated the normative connectome for motor 

improvement 9,37, change in depression36, behavioral effects including movement 

speed35 and motor learning34 within the DBS context, as well as side effects such as 

DBS-induced seizures46, weight-changes47 and panic attacks48. This method was 

also used in DBS for essential tremor 14, obsessive-compulsive disorder16,17 and 

epilepsy49. However, there is a lack of research directly comparing the use of the 

normative connectome and patient-specific connectivity. 

 

In the current study, we directly compared the similarity and difference of patient-

specific connectivity estimates to those derived from group connectomes (which 

were either age-/disease-matched or were even acquired in a young-/healthy 

cohort). Our optimal connectivity profiles, which followed the same overall 

distribution irrespective of the applied connectivity metric, show that structural 

connectivity with M1 was negatively associated with optimal improvement, while 

more frontal regions (such as SMA, pre-SMA and dorsomedial PFC) were positively 

associated. Using either method, connectivity profiles were able to estimate the 

variability in clinical improvement in a leave-one-out design. Furthermore, a previous 

optimal model could estimate the outcome using either method, which suggests that 

optimal profiles could potentially be learned based on large cohorts (and even using 

normative connectomes) and still be applied to patient-specific data. This is crucial 

since it is complicated to obtain diffusion-weighted imaging data from large cohorts 

of DBS patients, particularly some DBS cohorts from patients suffering from 

Alzheimer’s disease stimulated with fornicals within the ADvance trials50 or rare 

diseases such as Tourette’s syndrome38 or STN-DBS datasets for the treatment of 

cervical dystonia20. 

 

4.2 The case for using brain connectivity to investigate STN-DBS 
 
Previous studies have found significant relationships between electrode placements 

and clinical outcomes, without the need to add connectivity information. Specifically, 

there are significant correlations between coordinate proximity to the dorsolateral 
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STN and clinical improvements19,51,52. While the variance in clinical outcomes is 

explained by such coordinate-based approaches, investigating connectomic 

mapping could add more information within the DBS context. 

First, brain connectivity may provide insights into the potential mechanism of DBS. 

The concept that strong connectivity to M1 is counterproductive for optimal outcomes 

but more frontal connections seem favorable qualitatively goes beyond knowledge of 

an optimal sweet spot in the STN. Second, individual patient-specific connectivity may 

differ from the norm and could help identify patient-specific DBS targets53. In essential 

tremor, where clear associations between clinical outcomes and specific structural 

bundles (the dentatothalamic tract) have been established, this concept has already 

become clinical practice54 and has been methodically explored using functional MRI55. 

Third, modulation networks of side effects by DBS could be identified as well. In 

essential tremor, Al-Fatly and colleagues similarly defined networks that were 

associated with the occurrence of side effects such as ataxia and dysarthria14. Finally, 

considering that the same networks across 14 diseases seem to be modulated by both 

invasive and noninvasive neuromodulation, connectivity profiles could be the bridge 

between the two modulation approaches56. 

 

4.3 Pros and Cons of normative vs. patient-specific connectivity data 
 
In previous studies, network targets based on the normative connectome have been 

widely investigated 19,14,16,57,58,9,59,60. It has the advantage of large subject numbers, 

excellent signal-to-noise ratios, and acquisition using unique high-power MRI 

scanners specifically designed for connectivity imaging. For instance, a 200 μm 

isotropic postmortem scan of the brainstem acquired at 7T was applied to resolve the 

Wernekinck decussation of the dentatothalamic tract57. Weigand et al. applied 

functional imaging data averaged across 1000 subjects, leading to a high signal-to-

noise ratio61. The structural connectome used in Horn et al. was acquired on a 

customized Siemens 3T Connectome scanner with multishell diffusion-encoding 

gradients and b-values reaching up to 10,00044. Clinically approved 7T systems may 

offer novel opportunities for preoperative imaging in the near future. 

 

Acquiring connectivity data from each patient provides the best sensitivity for individual 

differences but has poor signal-to-noise and test-retest reliability. This was 
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demonstrated in a study by Petersen and colleagues in which the same subject was 

scanned ten times. In each, the peak of connectivity to motor/premotor cortices was 

identified within the STN. Distances across peaks were 0.5–1 mm on average60. In 

addition, Jakab et al. 62 used connectivity data to create thalamic subparcellations that 

are relevant for DBS surgery (such as the ventral intermediate nucleus). The variability 

of these targets introduced by the choice of MRI hardware was similar to or higher 

than the intersubject variability. 
Given that patient-specific connectivity provides the best sensitivity for individual 

differences, it is necessary to reach the ultimate goal of deriving personalized deep 

brain stimulation. One answer would be to scan patients repeatedly and to quantify 

test-retest reliability. Currently, openly available datasets could be used to investigate 

the test-retest reliability of individualized subjects. For example, 45 of the 1200 human 

connectome project participants were scanned twice to allow for quantification of 

retest error63. Similar data would be needed in patients who will undergo DBS in the 

near future, particularly image data scanned using state-of-the-art methods or 7T 

systems. In the future, as new methods for direct dMRI registrations, the quality and 

speed of patient-specific dMRI sequences will improve, and the indication or need for 

group average templates may be challenged. 
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5 Conclusions 

Our study analyzed optimal connectivity profiles seeding from STN-DBS electrodes 

based on patient-specific vs. group-level structural connectivity profiles. We 

demonstrated that on a group level, the results from individualized, age- and disease-

matched connectomes and healthy/young connectomes are comparable but not 

completely interchangeable. Although the differences were not significant, the results 

suggest that individualized structural connectivity has the potential to estimate clinical 

outcomes following STN-DBS slightly more accurately. Nevertheless, the use of 

normative connectomes seems sensible in cases where individualized connectivity 

data are lacking. 
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