
Chapter 3

Convergence and Approximation

3.1 Overview

What do we mean by convergence? Consider two smooth Riemann manifolds
(M1, g1) and (M̃2, g̃2) and a bi-Lipschitz map

Φ : M1 → M̃2.

The map Φ can be used to pull back the Riemannian metric g̃2 on M̃2 to
a Riemannian metric g2 on M1. Indeed, due to Rademacher’s theorem, dΦ
exists and is regular almost everywhere. Consequently, there exists a positive
definite tensor field A on M1 such that

g2(X,Y ) = g̃2( dΦ(X), dΦ(Y )) = g1(AX, Y ) a.e.

for any vector fields X and Y on M1. A is (pointwise) symmetric with respect
to g1 (and g2) and has positive eigenvalues. Henceforth the tensor A will be
referred to as the metric distortion tensor.

Let (M, g) be a smooth Riemannian manifold. For any g-symmetric ten-
sor field S on M , let ‖S‖∞ denote the essential supremum of the scalar field
formed by the eigenvalues of S of pointwise largest absolute value. With this
definition one obtains

‖A− Id‖∞ = sup
X,Y

∥

∥

∥

∥

|g(AX, Y )− g(X,Y )|

‖X‖g · ‖Y ‖g

∥

∥

∥

∥

∞

,

where ‖X‖g and ‖Y ‖g denote pointwise norms and the supremum is taken
over all measurable vector fields X,Y on M .

Definition 3.1.1 (metric convergence). Let (M, g) be a Riemannian man-
ifold. By metric convergence we mean a sequence of Riemannian manifolds
{M̃n, g̃n} and a sequence of bi-Lipschitz maps {Φn : M → M̃n} such that

‖An − Id‖∞ → 0,

i.e. metric distortion vanishes in the limit.
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50 Convergence and Approximation

The essential technical tool of this chapter is to express An in a geomet-
rically meaningful way. For the case of surfaces in R3 such an expression
is obtained by representing An in terms of pointwise distance and normal
distance between surfaces (cf. Theorem 3.2.1).

3.1.1 What will be shown?

It will follow from Theorem 3.2.1 that pointwise convergence of surfaces in
R3 together with the convergence of their normals provides convergence of
the metric distortion tensors An. This will be used to show convergence of
the following objects:

- intrinsic length and area

- Laplace–Beltrami operators

- solutions to the Dirichlet problem

- mean curvature vectors

- geodesics

- Hodge decomposition

- Hodge star operators

- eigenvalues of Laplace–Beltrami operators

Throughout we make a point that the correct spaces and norms in which
convergence occurs have to be chosen carefully. For example, the Laplace–
Beltrami operators converge in their operator norm but there is no hope for
pointwise convergence. Likewise, mean curvature vectors will be shown to
converge as functionals (as elements of the Sobolev space H−1(M)), whereas
a counterexample to their L2-convergence will be provided.

3.1.2 What can go wrong?

If one requires pointwise convergence of surfaces, then all that could possibly
go wrong for metric convergence is the failure of convergence of normals
(Theorem 3.2.1). The most prominent example of this failure is the lantern
of Schwarz dating back to 1890 (cf. Schwarz [71]).
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Figure 3.1: The Lantern of Schwarz illustrates pointwise convergence of discrete meshes
(all of whose vertices reside on the smooth limit surface) without convergence of normals.

Example (Schwarz lantern). Consider a straight smooth cylinder C ⊂ R3

of finite radius and finite height. Divide this cylinder into m evenly spaced
circles, and divide each of these circles into n equal segments, thus obtaining
a (m×n) grid of points on C which can be connected by flat triangles. Now
twist every other horizontal ring by π/2n to generate an alternating grid of
points (cf. Figure 3.1). All triangles of the so obtained discrete cylinder Cm,n

are congruent. Now let m and n approach infinity. The main observation is
that the normals of the triangles of the discrete cylinders Cm,n will approach
the normals of C if and only if

m

n2
−→ 0.

The next section will establish that the Schwarz lantern constitutes the
most general example of what can go wrong for metric convergence: pointwise
convergence of surfaces without convergence of their normals.

3.2 Normal convergence

3.2.1 Shortest distance map

In this section we introduce the shortest distance map as an auxiliary tool for
comparing a smooth surface to a Euclidean cone surface nearby. Considering
this map has been common practice, see e.g. Dziuk [27] and Morvan et al. [57,
58].

Definition 3.2.1 (medial axis, reach). Let M ⊂ R3 be a topologically closed
subset of R3. The medial axis of M is the set of those points in R3 which do
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Figure 3.2: Illustration of several branches of the medial axis of a smooth shape.

not have a unique closest neighbor in M . The reach of M is the distance of
M to its medial axis.

If M ⊂ R3 is a smoothly embedded surface, then locally the reach is
bounded above by the radii of osculating spheres of M . In other words,

reach(M) ≤ inf
x∈M

1

|κ|max(x)
, (3.1)

where |κ|max(x) denotes the maximal absolute value of the normal curvatures
at x ∈M . Globally, the reach depends on how close (measured in R3) surface
points come to each other. Note that a compact and smoothly embedded
surface M always has positive reach (whereas a polyhedron does certainly
not). For a general treatment of sets of positive reach we refer to Federer [32].

Let Mh is a polyhedral surface within the reach of M . Mapping each
point of Mh to its closest point on M is then a well-defined operation.

Definition 3.2.2 (normal graph, shortest distance map). A polyhedral sur-
face Mh is a normal graph over a smooth surface M if its distance to M is
strictly less than the reach of M , and the map Φ : M → Mh which takes
p ∈M to the intersection point Φ(p) ∈Mh of the normal line through p with
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Figure 3.3: Mh is a normal graph over M . At each point x ∈M , the map Φ takes x to
the intersection of the normal line through x with the polyhedral surface Mh.

the polyhedral surface Mh is a bijection onto the image1 up to, and including,
the possibly non-empty boundary, ∂M , see Figure 3.3. We sometimes work
with the inverse Ψ = Φ−1.

The shortest distance map, Φ, splits into a tangential and a normal com-
ponent,

Φ(x) = IdM(x) + φ(x) ·N(x), (3.2)

where N is the oriented normal of M , IdM is the embedding of M into R3

and φ is the (signed) scalar-valued distance function.
The shortest distance map Φ can be used to pull back the metric of the

Euclidean cone surface Mh to the smooth surface M . More precisely, one can
almost everywhere on M (except for the pre-image of edges and vertices of
Mh) define a metric gA by:

gA(X,Y ) := gMh
( dΦ(X), dΦ(Y )) = 〈 dΦ(X), dΦ(Y )〉R3 a.e., (3.3)

where 〈·, ·〉R3 denotes the standard inner product on R3. Then there exists a
symmetric positive definite 2× 2 matrix field A(x), x ∈M , uniquely defined
M -almost everywhere, such that for all vector fields X and Y on M

gA(X,Y ) = g(A(X), Y ) a.e.. (3.4)

As before, A is referred to as the metric distortion tensor.

1Specifically, this implies that we require the image of M under Φ to be contained in
Mh, i.e., Φ(M) ⊂Mh. However, if ∂M 6= ∅, we do not require that Φ(M) = Mh.
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3.2.2 Metric distortion in geometric terms

The metric distortion tensor A is smooth on the pre-image of the interior of
triangles ofMh. The next theorem shows that A only depends on the distance
between the surfaces M and Mh, the angle between their normals and the
curvature of the smooth surface M . A similar result has been obtained by
Morvan and Thibert, cf. Remark 3.2.2.

Theorem 3.2.1 (geometric splitting of metric distortion tensor). Let Mh

be a polyhedral surface which is a normal graph over an embedded, smooth
surface M . Let N denote the normal field to M , and let Nh denote the
pullback under Φ of the (piecewise constant) normal field of Mh to M . Then
the metric distortion tensor A satisfies

A = P ◦Q−1 ◦ P a.e., (3.5)

a decomposition into symmetric positive definite matrices P and Q which can
be diagonalized (possibly in different ON-frames) to take the form

P =

(

1− φ · κ1 0
0 1− φ · κ2

)

(3.6)

Q =

(

〈N,Nh〉
2 0

0 1

)

, (3.7)

where κ1 and κ2 denote the principal curvatures of the smooth surface M and
φ is the signed scalar distance as in equation (3.2).

Remark 3.2.1. The matrix P is positive definite by the assumption that Mh

is in the reach of M so that 1− φ · κi > 0 by inequality (3.1).

Remark 3.2.2. Let Ψ = Φ−1 be the inverse of the shortest distance map.
Morvan and Thibert [58] obtain

dΨ(X) = (Id− φS)−1(X) for all X parallel to TΨ(·)M

dΨ(N) = 0 for all N perpendicular to TΨ(·)M

Our splitting of the metric distortion tensor is equivalent to their result.

Proof of Theorem 3.2.1. It suffices to consider a single triangle Th of Mh.
Denote by Ψ = Φ−1 : Mh →M the inverse of the shortest distance map. For
any map f : M → R let fTh

= f ◦ Ψ|Th
: Th → R denote its pullback to Th.

By equation 3.2, Ψ, restricted to Th, can be written as

Ψ = Id− φTh
·NTh

. (3.8)
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Note that NTh
stands for the pullback of the normal N of M to the triangle

Th, rather than the normal to Th. Let d denote the outer differential on Th.
Differentiating Ψ yields

dΨ = Id−NTh
· dφTh

− φTh
· dNTh

. (3.9)

Using that dNTh
= dMN ◦ dΨ = −S ◦ dΨ, where S = − dMN is the

Weingarten operator on M , gives

dΨ = (Id− φ · S)−1 ◦ (Id−NTh
· dφTh

) : TTh → TM.

Setting

P := (Id− φ · S) : TM → TM, (3.10)

Q̃ := (Id−NTh
· dφTh

) : TTh → TM, (3.11)

we obtain dΨ = P−1 ◦ Q̃ and hence dMΦ = Q̃−1 ◦ P . For each x ∈ M we
define a symmetric positive definite operator Q on TxM by

〈Q−1(X), Y 〉R3 = 〈Q̃−1(X), Q̃−1(Y )〉R3 .

The definition of the metric distortion tensor, A, and the symmetry of P
yield

〈A(X), Y 〉R3 = 〈 dMΦ(X), dMΦ(Y )〉R3

= 〈PQ−1P (X), Y 〉R3 ,

proving the splitting (3.5) of the distortion tensor. Equation (3.6) follows
from (3.10). It remains to show (3.7). Let Y be a vector field on the triangle
Th. Taking into account that with respect to ambient Euclidean space, R3,
we have NTh

⊥ im( dΨ) and NTh
⊥ im( dNTh

), we obtain from (3.9) that

0 = 〈 dΨ(Y ), NTh
〉 = 〈Y,NTh

〉 − dφTh
(Y ). (3.12)

By identifying tangent spaces with linear subspaces of R3, we obtain that Q̃
is the projection operator

Q̃(Y ) = Y −NTh
· 〈NTh

, Y 〉, (3.13)

and a straightforward calculation delivers that Q can be diagonalized as
claimed. QED

The convergence of distance and normals implies convergence of surface
area (cf. [58] for the same result):
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C

Ch

Figure 3.4: The shortest distance map may induce isometrics between non-congruent
shapes. Left: The shortest distance map of the half unit circle C induces an isometry to
a circle Ch of radius 1/2. Right: By patching together pieces of the left picture one gets
isometrics of the unit circle with a dented circle.

Corollary 3.2.1 (area distortion). Under the assumptions of Theorem 3.2.1,
the volume elements of M and Mh satisfy

dvolMh

dvolM
= (detA)1/2 =

1 + φ2 · κ− φ · H

〈N,Nh〉
a.e., (3.14)

where κ denotes the Gauss curvature, and H denotes the scalar mean curva-
ture of M .

Proof. Equation (3.14) follows immediately from the explicit representation
of the distortion tensor A in Theorem 3.2.1, and by using that κ = κ1 · κ2 as
well as H = κ1 + κ2. QED

By bounding the smallest and largest eigenvalue of A we find that:

Corollary 3.2.2 (length distortion). The infinitesimal distortion of length
satisfies

min
i

(1− φ · κi) ≤
dlMh

dlM
≤

maxi(1− φ · κi)

〈N,Nh〉
a.e. (3.15)

Example (dented circle). Even if the metric distortion induced by the short-
est distance map equals the identity (so that the surfaces are isometric) the
surfaces need not be congruent. As a consequence, one needs to require
pointwise convergence to obtain congruence in the limit.

We give an example of this fact for planar curves; the extension to surfaces
is obtained by considering cylinders with cross-sections equal to these planar
curves. Consider the half unit circle C = {(cos t, sin t) : t ∈ [0, π]}. Any
normal graph Ch over C can be written as

Ch =
{

((1− φ(t)) · cos t, (1− φ(t)) · sin t) ∈ R2 : t ∈ [0, π]
}

,
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where φ is the (signed) distance from C to Ch along the unit circle’s (inward)
normal N . Setting

φ(t) := 1− sin t,

one readily checks that Ch becomes a circle of radius 1/2 with center (0, 1/2),
compare Figure 3.4. The inner product between the normals N of C and Nh

of Ch is given by

〈N,Nh〉 = sin t = 1− φ(t). (3.16)

Let κ = 1 denote the curvature of C. As a special case of (3.5), the met-
ric distortion between the two planar curves C and Ch with respect to the
shortest distance map Φ is given by

a =
1− φ · κ

〈N,Nh〉
=

1− φ

〈N,Nh〉
= 1. (3.17)

Hence, in this case, the metric distortion is the identity, although the shapes
of C and Ch are clearly not congruent.

3.2.3 Equivalent conditions for convergence

In this section we provide a central result which establishes several equiva-
lent conditions for metric convergence. Before stating our main result, we
fix relevant terminology. Specifically, we discuss how the shortest distance
map, Φ, can be used to pull back Sobolev spaces on polyhedra to (metrically)
equivalent spaces on the smooth reference surface, M . Throughout we write
‖ · ‖∞ as shorthand for ‖ · ‖L∞(M).

Hausdorff distance. Let M1,M2 ⊂ R3 be non empty subsets. Then the
Hausdorff distance between M1 and M2 is given by

dH(M1,M2) = inf {ε > 0 |M1 ⊂ Uε(M2) and M2 ⊂ Uε(M1)} ,

where Uε(M) = {x ∈ R3 | ∃y ∈M : d(x, y) < ε}.

Normal convergence. Let {Mn} be a sequence of normal graphs over M .
For each n let Nn = NMn

◦Φn be the pullback of the normal field of Mn to M .
The sequence {Mn} is said to converge normally to M if ‖Nn − N‖∞ → 0.
We talk about totally normally convergence if additionally dH(Mn,M)→ 0.
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Sobolev norms and spaces. Let Mh be a normal graph over M , so that
Mh induces the polyhedral metric gA on M . In addition to the standard
L2-norm on the smooth reference surface M , the metric gA yields another
norm on L2(M). These norms are denoted by

‖u‖2L2 =

∫

M

u2 dvol, (3.18)

‖u‖2L2
A

=

∫

M

u2(detA)1/2 dvol, (3.19)

respectively, where dvol is the volume form onM induced by the Riemannian
metric g. Similarly, let H1

0 (M) ⊂ L2(M) be the space of weakly differentiable
functions u on M which either vanish along the (non empty) boundary of M
or for which

∫

M
u dvol = 0 if M has no boundary. The space H1

0 (M) can be
equipped with the two norms

‖u‖2H1
0

=

∫

M

g(∇u,∇u) dvol, (3.20)

‖u‖2H1
0,A

=

∫

M

g(A−1∇u,∇u)(detA)1/2 dvol, (3.21)

where ∇ denotes the gradient on M induced by the metric g. The last
definition is justified by the fact that the perturbed metric, gA, induces the
gradient ∇A = A−1∇. Compactness of M implies that (3.18), (3.19) and
(3.20), (3.21) induce pairwise equivalent (but not equal) norms, which, by
Theorem 3.2.1, converge to each other under totally normal convergence.

Lemma 3.2.1 (equivalence of norms). Let u ∈ L2(M). Setting C1 =
‖(detA)−1/2‖∞ and C2 = ‖(detA)1/2‖∞ we obtain

1

C1

‖u‖2L2 ≤ ‖u‖2L2
A
≤ C2‖u‖

2
L2 .

Similarly, for u ∈ H1
0 (M), we get

1

CA

‖u‖2H1
0
≤ ‖u‖2H1

0,A
≤ CA‖u‖

2
H1

0
,

with CA := (detA)1/2‖A−1‖∞.

Proof. The L2-estimate is a simple consequence of (3.18) and (3.19). The
H1

0 -estimate follows from (3.20) and (3.21) by applying Hölder’s inequality
and the fact that the 2×2 symmetric tensor field (detA)1/2A−1 has constant
determinant 1, so that ‖(detA)1/2A−1‖∞ = ‖(detA)−1/2A‖∞. QED
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Remark 3.2.3. If the smooth reference surface, M , has empty boundary then
u ∈ H1

0,A implies 0 =
∫

M
u(detA)1/2 dvol. However, this does strictly speak-

ing not imply that u ∈ H1
0 since the mean value,

∫

M
u dvol, does not need to

vanish. Nonetheless,

[u] = u−
1

|M |

∫

M

u dvol

certainly lies in H1
0 . Since the non-standard inner product on H1

0 vanishes
on constants, we are in the sequel silently going to identify u with [u].

Laplace–Beltrami operators. The metrics g and gA both induce a Laplace–
Beltrami operator on M . The weak form of these operators is given by

〈∆u|v〉 = −

∫

M

g(∇u,∇v) dvol, (3.22)

〈∆Au|v〉 = −

∫

M

g(A−1∇u,∇v)(detA)1/2 dvol, (3.23)

respectively, where 〈·|·〉 denotes the pairing between H1
0 (M) and its dual

H−1(M). Both ∆u and ∆Au are elements of H−1(M) and act on H1
0 (M) as

bounded linear functionals2. Convergence of these operators is understood
in the operator norm (denoted by ‖ · ‖op) of linear bounded maps between
the spaces H1

0 (M) and H−1(M).

Consistency with Sobolev spaces on polyhedra. The next lemma shows
that our definitions of L2

A(M) and H1
0,A(M), obtained by pulling back the

polyhedral metric back to the smooth reference surface, M , agree with our
previous definitions of L2(Mh) and H1

0 (Mh) for Euclidean cone surfaces made
in Section 2.2. This lemma therefore justifies, a posteriori, our previous
definitions of Sobolev spaces on Euclidean cone surfaces.

More precisely, if Φ denotes the shortest distance map fromM to Mh then
Φ(M) ⊂Mh is a Euclidean cone surface (possibly with piecewise curvilinear
boundary)3, and we can define the spaces L2(Φ(M)) and H1

0 (Φ(M)) as in
Section 2.2. The lemma then shows that L2

A(M) and L2(Φ(M)) are equal

2If u ∈ C∞(M), then certainly ∆u ∈ C∞(M) as well, but ∆Au does not even have to
be in L2(M) since the metric distortion tensor, A, is usually discontinuous; in fact, the
distributional components of ∆Au (located at the pre-image of the edges of Mh) must not
be neglected.

3Notice that the presence of curvilinear boundaries (as opposed to piecewise linear
ones) does not pose real difficulties. Indeed, the key points of Section 2.2 are to correctly
treat cone singularities – necessary adjustments from linear to curvilinear boundaries are
straightforward as long as ∂Mh is piecewise smooth.
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as metric spaces, and similarly for H1
0,A(M) and H1

0 (Φ(M)). To show this,
notice that all we need to prove is equality of sets, i.e. that u ∈ L2(Φ(M)) if
and only if u ◦Φ ∈ L2(M), and u ∈ H1

0 (Φ(M)) if and only if u ◦Φ ∈ H1
0 (M).

Equality of norms then follows automatically, by construction.

Lemma 3.2.2 (consistency with polyhedral theory). Let Mh be a polyhe-
dral surface which is a normal graph over the smooth surface M with cor-
responding shortest distance map, Φ. Then u ∈ L2(Φ(M)) if and only if
u ◦ Φ ∈ L2(M). Similarly, u ∈ H1

0 (Φ(M)) if and only if u ◦ Φ ∈ H1
0 (M).

Proof. Let u ∈ L2(Φ(M)). Since Φ is continuous, it follows that u ◦ Φ is
measurable on M , and by Corollary 3.2.1 we obtain

‖u ◦ Φ‖2L2(M) ≤ ‖(detA)−1/2‖∞ · ‖u‖
2
L2(Φ(M)). (3.24)

Hence u ◦Φ ∈ L2(M). The opposite direction follows by a similar argument.
Now let u ∈ H1

0 (Φ(M)). By definition, there exist a sequence {un} ⊂
C∞

0 (Φ(M)) such that un → u in H1
0 (Φ(M)). Each un is continuous on

Φ(M) and smooth outside cone singularities (in the sense of Definition 2.2.2).
Moreover, Φ−1 is continuous on Φ(M) and smooth on individual triangles.
Hence, un ◦Φ is continuous on M and smooth on the pre-image of individual
triangles, so that the differential dM(un◦Φ) is well-defined almost everywhere
on M . We obtain

‖ dM(un ◦ Φ)‖g ≤ ‖ dMΦ‖ · ‖ dMh
un‖gMh

a.e.. (3.25)

Since ‖ dMΦ‖ is uniformly bounded, ‖∇M(un ◦ Φ)‖g = ‖ dM(un ◦ Φ)‖g is
square integrable on M . We claim that un ◦ Φ ∈ H1

0 (M). It suffices to show
that integration by parts holds for un ◦ Φ. To show this, let X ∈ X∞(M) be
a smooth vector field which is compactly supported on M . Let Dj ⊂ M be
small disks around the pre-image of cone singularities. Consider the integral

∫

M\∪Dj

g(∇M(un ◦ Φ), X) dvol +

∫

M\∪Dj

(un ◦ Φ) divX dvol. (3.26)

We have to show that this integral tends to zero as the disks Dj tend to
points. Let Ti ⊂ M denote the pre-images of the triangles of Mh under Φ.
Then (3.26) can be split up as a sum over these Ti. The contribution of each
individual triangle can be written as a boundary integral,

∮

∂(Ti\∪Dj)

(un ◦ Φ)g(X, η) ds,
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where η is the normal to ∂(Ti\∪Dj) in Mh. Taking the sum over all triangles,
the integrals over inner edges cancel out since un ◦ Φ and X are continuous.
Because X is compactly supported and un is continuous, we obtain that the
last integral tends to zero as the disks, Dj, converge to points,

∮

∂(M\∪Dj)

(un ◦ Φ)g(X, η) ds −→ 0.

Moreover, since {un} is a Cauchy sequence in H1
0 (Φ(M)), it follows from

(3.24) and (3.25) that {un ◦ Φ} is a Cauchy sequence in H1
0 (M) which con-

verges to some element v ∈ H1
0 (M). In particular, {un ◦ Φ} is a Cauchy

sequence in L2(M) which converges to u ◦ Φ by (3.24). Hence u ◦ Φ = v ∈
H1

0 (M).

The opposite direction i.e., that u ◦ Φ ∈ H1
0 (M) implies u ∈ H1

0 (Φ(M)),
is proved in a similar fashion. QED

Main result. The following equivalent conditions relate convergence of
normals, convergence of Riemannian metrics, and convergence of Laplace–
Beltrami operators. This result generalizes a result of Morvan and Thib-
ert [58] who have recently related convergence of normals to convergence of
area.

Theorem 3.2.2 (equivalent conditions for convergence). Let M ⊂ R3 be a
compact smooth surface, and let {Mn} be a sequence of Euclidean cone sur-
faces which are normal graphs over the smooth surface M and which converge
to M in Hausdorff distance. Then the following conditions are equivalent:

i ‖Nn −N‖∞ → 0 (normal convergence).

ii ‖An − Id‖∞ → 0 (metric convergence).

iii ‖ dvoln − dvol‖∞ → 0 (convergence of area).

iv ‖∆n −∆‖op → 0 (convergence of Laplace–Beltrami operators).

Proof. The proof is based on translating conditions (ii), (iii) and (iv) into
corresponding properties of the metric distortion tensors An: convergence of
metric tensors by definition means ‖An − Id‖∞ → 0, convergence of area
measure is equivalent to ‖ detAn‖∞ → 1, and Lemma 3.2.3 will provide
conditions for convergence of Laplace–Beltrami operators. Each single of
these conditions can now be shown to be equivalent to the convergence of
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normals. To see this, let An = Pn ◦ Q
−1
n ◦ Pn as in Theorem 3.2.1, and let

Ān = (detAn)1/2A−1
n . We claim that

‖An − Id‖∞ → 0 ⇐⇒ ‖ detAn‖∞ → 1 ⇐⇒ ‖Ān − Id‖∞ → 0

⇐⇒ ‖tr(Ān − Id)‖∞ → 0

are all equivalent conditions to normal convergence. Indeed, by assumption
the surfaces converge in Hausdorff distance, so that ‖Pn − Id‖∞ → 0, and
from the diagonalization

Qn =

(

〈N,Nn〉
2 0

0 1

)

,

one obtains that the above algebraic expressions involving An converge if and
only if 〈N,Nn〉 → 1 in L∞ - which is normal convergence. To complete the
proof of the theorem, it remains to show Lemma 3.2.3. QED

Lemma 3.2.3 (convergence of Laplace–Beltrami operators). Let Mh ⊂ R3

be an embedded compact polyhedral surface which is a normal graph over
a smooth embedded surface M . Let A be the metric distortion tensor and
Ā := (detA)1/2A−1. Then

1

2
‖tr(Ā− Id)‖∞ ≤ ‖∆A −∆‖op ≤ ‖Ā− Id‖∞. (3.27)

Proof. The upper bound is a straightforward application of definitions (3.22),
(3.23), and Hölder’s inequality. To prove the lower bound, let K ⊂ M be
the pre-image under the shortest distance map Φ of the 1-skeleton of Mh (its
edges and vertices). Then K is a measure zero set. For an arbitrary (but
fixed) x ∈M \K we will construct a family of functions {fε} ⊂ H1

0 (M) such
that

lim
ε→0

|〈(∆A −∆)fε|fε〉|

‖fε‖2H1
0

=
1

2
tr(Ā− Id)(x). (3.28)

This will prove the lower bound since it implies

‖∆A −∆‖op ≥
1

2
sup

x∈M\K

tr(Ā− Id)(x).

To construct such a family, let Dε(x) ⊂ M \K be a small ε-disk around
x, and define in polar coordinates, (r, ϕ), (induced by the exponential map
expx(r, ϕ) : TxM →M)

fε(r, ϕ) =

{

ε− r for r < ε
0 else.
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Then fε ∈ H
1
0 (if M has empty boundary take fε −

1
|M |

∫

fε). By the Gauss

lemma, expx is a radial isometry so that g(∇fε,∇fε) = 1 on Dε(x)\{x}. By
construction, ∇fε = 0 on M \Dε(x). It follows that

‖fε‖
2
H1

0
=

∫

M

g(∇fε,∇fε) dvol = |Dε(x)|.

Moreover,

〈(∆A −∆)fε|fε〉 = −

∫

M

g((Ā− Id)∇fε,∇fε) dvol,

so that (3.28) is equivalent to

lim
ε→0

1

|Dε(x)|

∫

Dε(x)

g(Ā∇fε,∇fε) dvol =
1

2
tr(Ā)(x). (3.29)

In a first step we are going to prove (3.29) for the case of constant metric
and constant Ā. In a second step we will deduce the general case.

1. Step. Let dvolx denote the volume form on the tangent space TxM
induced by gx, and let ∂r denote the unit radial vector field on TxM . The
coefficients of gx in polar coordinates are given by

(gx)12 = 0, (gx)11 = 1, (gx)22 = r2.

The matrix Āx := Ā(x) acts as a linear map from TxM to itself with eigen-
values λ and 1/λ (since det Āx = 1). On the disk of radius ε, Bε(0) ⊂ TxM ,
we have

∫

Bε(0)

gx(Āx∂r, ∂r) dvolx =

∫ ε

0

∫ 2π

0

(λ cos2 ϕ+
1

λ
sin2 ϕ)r dr dϕ

=
1

2
(λ+

1

λ
) · |Bε(0)|

=
1

2
trĀx · |Bε(0)|,

proving (3.29) for the case of the constant g = gx and constant Ā = Āx.

2. Step. To complete the proof, we show that for ε→ 0 one has

1

|Dε(x)|

∫

Dε(x)

g(Ā∇fε,∇fε) dvol −→
1

|Bε(0)|

∫

Bε(0)

gx(Āx∂r, ∂r) dvolx.
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Define a 2-form ω0 on Bε(0) ⊂ Tx(M) and a 2-form ω1 on Dε(x) by

ω0 = gx(Āx∂r, ∂r) dvolx

ω1 = g(Ā∇fε,∇fε) dvol.

Let Ā∗ be the pullback of Ā, let ω∗
1 denote the pullback of ω1, and let dvol∗

denote the pullback of the volume form dvol from Dε(x) to Bε(0). Since
expx is a radial isometry (so that d expx(∂r) = ∇fε), it follows that

ω∗
1 = gx(Ā

∗∂r, ∂r) dvol∗.

From this, and since Ā and the metric are continuous on Dε(x), we obtain

‖ω∗
1 − ω0‖∞,Bε(0) −→ 0 and

|Bε(0)|

|Dε(x)|
−→ 1.

Hence
∣

∣

∣

∣

1

|Dε(x)|

∫

Dε(x)

ω1 −
1

|Bε(0)|

∫

Bε(0)

ω0

∣

∣

∣

∣

=

∣

∣

∣

∣

1

|Dε(x)|

∫

Bε(0)

ω∗
1 −

1

|Bε(0)|

∫

Bε(0)

ω0

∣

∣

∣

∣

≤

∣

∣

∣

∣

1

|Dε(x)|
−

1

|Bε(0))|

∣

∣

∣

∣

∫

Bε(0)

|ω∗
1|+

1

|Bε(0)|

∫

Bε(0)

|ω∗
1 − ω0|

≤

∣

∣

∣

∣

|Bε(0)|

|Dε(x)|
− 1

∣

∣

∣

∣

‖ω∗
1‖∞,Bε(0) + ‖ω∗

1 − ω0‖∞,Bε(0) −→ 0,

proving our claim. QED

3.3 Convergence of metric properties

In this section, convergence of solutions to the Dirichlet problem, convergence
of mean curvature, convergence of discrete minimal surfaces and convergence
of geodesics are derived from the results of the previous section. Throughout,
Mh is assumed to be a normal graph over the smooth surface M .

3.3.1 Dirichlet problem

As before we consider the variational formulation (2.8) of the Dirichlet prob-
lem. Using the pullback via the shortest distance map, all of objects are
considered to live on the smooth reference surface, M .
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Dirichlet problem. Let V ⊂ H1
0 (M) be a closed linear subspace. If M has

boundary, let VA = V . If M has empty boundary, let VA = {v − v̄ | v ∈ V },
where

v̄ =

∫

M
v(detA)1/2 dvolM

∫

M
(detA)1/2 dvolM

.

Let f ∈ L2(M). The approximate Dirichlet problem is to find solutions u ∈ V
and uA ∈ VA such that

−〈∆u|v〉 = (f, v)L2 ∀ v ∈ V, (3.30)

−〈∆AuA|v〉 = (f, v)L2
A
∀ v ∈ VA. (3.31)

Notation. Here we let

E : H1
0 (M) →֒ L2(M) (3.32)

denote the natural embedding, and we let

CE := sup
u∈H1

0

‖E(u)‖L2

‖u‖H1
0

denote the operator norm of E. Since we use the inner product (∇·,∇·)L2

on H1
0 , it follows that CE is the Poincaré constant of M .

The next theorem slightly generalizes a result of Dziuk [27] who consid-
ered interpolating sequences of polyhedral surfaces (i.e. all vertices of the
approximating sequence reside on the smooth limit surface M).

Theorem 3.3.1 (consistency error of Dirichlet problem). The solutions to
the approximate Dirichlet problems satisfy

‖u− uA‖H1
0
≤ CE ·

(

(CA − 1) + cA · CA

∥

∥1− (detA)1/2
∥

∥

∞

)

· ‖f‖L2 .

Here CA = ‖(detA)1/2A−1‖∞, and cA = 1 + ‖ detA1/2‖∞‖ detA−1/2‖∞ if
∂M = ∅, whereas cA = 1 if ∂M 6= ∅.

Proof. Let Ā := (detA)1/2A−1. First assume that ∂M 6= ∅. By the weak
definition of the Dirichlet problems and equations (3.22) and (3.23) we have

∫

M

g(∇u,∇v) dvol =

∫

M

fv dvol (3.33)
∫

M

g(Ā∇uA,∇v) dvol =

∫

M

fv(detA)1/2 dvol, (3.34)
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for all v ∈ V . Subtracting the last equations from each other and dividing
by ‖∇v‖L2 gives

(

∇u− Ā∇uA,∇v
)

L2

‖∇v‖L2

≤ CE‖1− (detA)1/2‖∞‖f‖L2 , (3.35)

Writing

∇u−∇uA = Ā−1(∇u− Ā∇uA) + (Id− Ā−1)∇u,

and using (3.35) gives

‖u− uA‖H1
0

= sup
v∈V

(∇u−∇û,∇v)L2

‖∇v‖L2

≤ CE‖Ā
−1‖∞‖1− (detA)1/2‖∞‖f‖L2 + ‖Id− Ā−1‖∞‖u‖H1

0
.

Using (3.33), it follows that ‖u‖H1
0
≤ CE‖f‖L2 . The final estimate for the

case ∂M 6= ∅ follows from the fact that the 2×2 matrix field Ā has pointwise
positive eigenvalues and det Ā = 1 so that CA = ‖Ā‖∞ = ‖Ā−1‖∞ as well as

‖Id− Ā−1‖∞ = ‖Ā‖∞ − 1 = CA − 1.

For the case ∂M = ∅ equation (3.34) needs to be adjusted as follows:

∫

M

g(Ā∇uA,∇v) dvol =

∫

M

f · (v − v̄) · (detA)1/2 dvol (3.36)

for all v ∈ V with

v̄ =
1

|Φ(M)|

∫

M

v(detA)1/2 dvol.

Using Hölder’s inequality and the fact that
∫

M
v dvol = 0 gives

|v̄| ≤

√

|M |

|Φ(M)|
‖1− (detA)1/2‖∞‖v‖L2 .

This implies

∣

∣

∣

∣

∫

M

fv̄(detA)1/2 dvol

∣

∣

∣

∣

≤ |v̄|
√

|M | · ‖ detA1/2‖∞‖f‖L2

≤
|M |

|Φ(M)|
‖ detA1/2‖∞‖1− (detA)1/2‖∞‖f‖L2‖v‖L2 .
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Using that |M |
|Φ(M)|

≤ ‖ detA−1/2‖∞ in the last estimate and dividing by

‖∇v‖L2 implies together with (3.35) that

(

∇u− Ā∇uA,∇v
)

L2

‖∇v‖L2

≤ CE‖1− (detA)1/2‖∞‖f‖L2 · cA,

with cA = 1+‖ detA−1/2‖∞‖ detA1/2‖∞. What remains to prove for the case
∂M = ∅ is identical to the discussion following (3.35) for ∂M 6= ∅. QED

Corollary 3.3.1 (convergence of Dirichlet problem). Let f ∈ L2(M). If
the sequence of polyhedral surfaces {Mn} converges totally normally to the
smooth surface M , then the solutions to the Dirichlet problems (3.31) on Mn

converge in H1
0 (M) to the solution of the Dirichlet problem (3.30) on M .

Proof. Let CA := ‖(detA)1/2A−1‖∞ as in Theorem 3.3.1. Using Theo-
rem 3.2.1, one verifies that totally normal convergence implies CA → 1 as
well as ‖1−(detA)1/2‖∞ → 0, so that Theorem 3.3.1 guarantees convergence
in H1

0 (M). QED

3.3.2 Finite Element discretization of the Dirichlet problem

In the last section we derived the consistency error of the Dirichlet prob-
lem. It remains to estimate the interpolation error using nodal elements. We
closely follow the arguments of Dziuk [27] in this section – with the exception
that we extend the results of [27] from interpolating sequences of polyhedral
meshes to approximating sequences which converge totally normally.

FE discretization. Using the shortest distance map, Φ : M → Mh, the
finite element space, Sh ⊂ H1(Mh), gets mapped to a linear subspace, Ŝh ⊂
H1(M)4. We let Ŝh,0 = Ŝh ∩ H

1
0 (M); in particular, any ûh ∈ Ŝh,0 vanishes

along the boundary, ∂M . The objective of this subsection is to compare the
solutions u ∈ H1

0 (M) and û ∈ Ŝh,0 to the Dirichlet problems

−〈∆u|v〉 = (f, v)L2 ∀ v ∈ H1
0 , (3.37)

−〈∆Aûh|v〉 = (f, v)L2
A
∀ v ∈ Ŝh,0. (3.38)

Assumption. We will assume that the solution satisfies u ∈ H2(M) (see
Definition 3.3.2 for a precise definition of the Sobolev space H2(M)) together

4In the case ∂M = ∅, the shortest distance map, Φ, induces a bijection form Sh to Ŝh.
In the case ∂M 6= ∅, however, where we require only that Φ(M) ⊂Mh (but not necessarily
Φ(M) = Mh), the map from Sh to Ŝh is in general not injective.
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with an a priori estimate

|u|H2(M) ≤ c‖f‖L2(M). (3.39)

This regularity assumption holds for all f ∈ L2(M) if ∂M = ∅ (by classi-
cal regularity, cf. [35]), but depends on properties of the boundary if ∂M 6= ∅.

Overview. In order to provide an upper bound for the difference (u−ûh), we
take the usual approach of first estimating the interpolation error (u− Ihu),
where

Ih : H2(M) −→ Ŝh, (3.40)

is a suitable interpolation operator. We construct Ih(u) as follows. Since
we assume that u ∈ H2(M), the Sobolev embedding theorem asserts that
u ∈ C0(M). Hence Ih is well defined by point-sampling u at the vertices
obtained by pulling back Mh to M via Φ. Recall from the planar case that

‖∇u−∇Ihu‖L2(Th) ≤ Ch|u|H2(Th), (3.41)

where h denotes the diameter of the flat Euclidean triangle Th, the constant
C > 0 depends on the shape regularity of Th (see Definition 3.3.1 below),
and |u|H2(Th) denotes the H2-seminorm, see [14]. In Theorem 3.3.2, we prove
an estimate similar to (3.41) by bounding ‖∇u−∇Ihu‖L2(T ), for the curved
triangle, T ⊂M , given by

T := {x ∈M |Φ(x) ∈ Th ⊂Mh}. (3.42)

In order to estimate ‖∇u−∇Ihu‖L2(T ), we make use of (3.41) and bound the
seminorm |u|H2(Th) on the flat triangle, Th, in terms of the seminorm |u|H2(T )

on the curved triangle, T , see Lemma 3.3.1. In particular, we will give a
precise meaning to the space H2(Ω) for any subdomain Ω ⊂M . Finally, the
bound on ‖∇u−∇Ihu‖L2(T ) will enable us to estimate the difference (u− ûh)
in H1

0 (M) in Theorem 3.3.3.

Definition 3.3.1 (shape regularity). The shape regularity (aspect ratio) of
a planar triangle Th is the ratio of the radius R(Th) of its circumcircle to
the radius r(Th) of its incircle. A sequence of triangulations is called shape
regular if there exists a constant κ < ∞ such that κ ≥ R(Th)/r(Th) for all
triangles Th in the sequence.

Theorem 3.3.2 (interpolation error). Let u ∈ H2(M), and let T be a curved
triangle, as defined in (3.42), which does not touch the boundary, ∂M . Then

‖∇u−∇Ihu‖L2(T ) ≤ Ch
(

|u|H2(T ) + (‖N −Nh〈N,Nh〉‖R3 + |φ|) ‖∇u‖L2(T )

)

,
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where h denotes the diameter of the planar triangle Th. The constant C only
depends on the aspect ratio of Th, the distance, |φ|, between T and Th, and
the angle between the normals, N of T and Nh of Th.

Proof. Lemma 3.2.1 together with the estimate (3.41) in the planar case gives

‖∇u−∇Ihu‖L2(T ) ≤ CA‖∇u−∇Ihu‖L2(Th) ≤ CACh|u|H2(Th),

where the constant C only depends on the shape regularity of Th and the con-
stant CA is given by CA := ‖A−1(detA)1/2‖∞. It remains to relate |u|H2(Th)

to |u|H2(T ), which will be done in Lemma 3.3.1. QED

The Sobolev space H2(M). We now give a precise meaning to |u|H2(T )

for the curved triangle T . One way to define H2(M) involves a partition of
unity subordinate to a locally finite cover of M by open charts. Two such
partitions can be shown to give rise to equivalent norms on H2(M) provided
that M is compact. Here we prefer to give a different, intrinsic, definition of
H2(M) which is not based on charts. Given a Riemannian manifold (M, g),
let Hessg u denote the Hessian of u. Hessg u is a symmetric bilinear form
whose action on pairs of vector fields (X,Y ) is given by

Hessg u(X,Y ) = g(∇X∇u, Y ) = X(Y u)− (∇XY )u. (3.43)

Here, as usual, ∇X denotes the covariant derivative in the direction of X and
we write Xu short for the scalar field du(X).

Definition 3.3.2 (Hessian and H2). Let (e1, e2) be a smooth SO(2)-framing
in the tangent bundle of the Riemann surface (M, g). Define the (pointwise)
norm of Hessg u by

|Hessg u|
2 =

∑

i,j

(Hessg u(ei, ej))
2 .

For any open Ω ⊂M , define a seminorm on H2(Ω) by

|u|2H2(Ω) :=

∫

Ω

|Hessg u|
2 dvol.

Finally,

‖u‖2H2(M) := |u|2H2(M) + ‖∇u‖2L2(M) + ‖u‖2L2(M)

gives rise to a norm on H2(M).
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It is straightforward to check that the definition of |Hessg u| is independ-
ent of any particular SO(2)-framing and that ‖ · ‖H2(M) is a norm which is
equivalent to the usual definition involving local charts (provided that M is
compact). Clearly, for the planar case, the above definition of | · |H2 coin-
cides with the classical definition in that for standard Euclidean coordinates
(x1, x2) on a planar domain Ωh, one has

|u|2H2(Ωh) =
∑

i,j

∫

Ωh

(Hess u(∂i, ∂j))
2 dx1 ∧ dx2.

To complete the proof of Theorem 3.3.2, we need the following H2-estimate.

Lemma 3.3.1 (H2-estimate). Let u ∈ H2(M), and let T be a curved triangle,
as defined in (3.42), which does not touch the boundary, ∂M . Then

|u|H2(Th) ≤ C
(

|u|H2(T ) + (‖N −Nh〈N,Nh〉‖R3 + |φ|) ‖∇u‖L2(T )

)

.

The constant, C = C(M, ‖A−1‖∞, ‖P
−1‖∞, ‖ detA‖∞) > 0, only depends

on M , the metric distortion tensor, A, and on P = (Id − φS) (see Theo-
rem 3.2.1).

Proof. Let (x1, x2) be standard Euclidean coordinates on the flat triangle Th.
Then (x1 ◦ Φ, x2 ◦ Φ) are coordinates on the curved triangle T . Let (∂1, ∂2)
denote the framing corresponding to these coordinates on T ⊂M . From the
definition of the metric distortion tensor A (cf. equation (3.4)) it follows that

(e1, e2) = (A1/2∂1, A
1/2∂2)

is an SO(2)-framing on the curved triangle T . This gives the pointwise
relation

∑

i,j

(Hessg u(∂i, ∂j))
2 ≤ ‖A−1‖2L∞(T )|Hessg u|

2. (3.44)

By equation (3.43), the terms under the sum can be written as

Hessg u(∂i, ∂j) = Hess u(∂i, ∂j)− (∇∂i
∂j)u, (3.45)

with Hess u(∂i, ∂j) = ∂i(∂ju) = ∂j(∂iu). Note that

∇∂i
∂j =

(

∂2Φ−1(x)

∂xi∂xj

)tan

,
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where Φ−1 : Th → T ⊂ R3 and (·)tan denotes the projection to the tan-
gent space TΦ−1(x)M . Using equations (3.9) and (3.12) from the proof of
Theorem 3.2.1, a straightforward calculation shows

∇∂i
∂j = S(∂i)〈N, dΦ(∂j)〉R3 + S(∂j)〈N, dΦ(∂i)〉R3 + φ∇∂i

(S(∂j)),

where φ denotes the (signed) shortest distance (cf. equation (3.2)), N is the
normal field of T , and S is the shape operator on T ⊂M . From

∇∂i
(S(∂j)) = (∇∂i

S)(∂j) + S(∇∂i
∂j),

it follows that

∇∂i
∂j = P−1 (S(∂i)〈N, dΦ(∂j)〉R3 + S(∂j)〈N, dΦ(∂i)〉R3 + φ · (∇∂i

S)(∂j)) ,

with P = (Id − φS) as in Theorem 3.2.1. If gA denotes the pullback of the
flat metric from Th to T then ‖∂i‖gA

= 1 and hence we have the pointwise
relation

‖∇∂i
∂j‖gA

≤ C‖P−1‖L∞(T ) (‖N −Nh〈N,Nh〉‖R3 + |φ|) ,

where Nh is the (constant) normal field to Th and C only depends on prop-
erties of M . Applying relation (3.44) and equation (3.45), we find that there
exists a constant C = C(M, ‖A−1‖∞, ‖P

−1‖∞) > 0 such that pointwise

|Hess u|2 ≤ C
(

|Hessg u|
2 + (‖N −Nh〈N,Nh〉‖R3 + |φ|)2 ‖∇u‖2g

)

.

The claim follows by integrating the above. QED

Main result. We can now give the main result of this subsection, which
compares the solution, u, to the continuous Dirichlet problem (3.37) with
the FE solution, ûh, to the discrete Dirichlet problem (3.38). In the case
∂M 6= ∅, we assume that the solution, u, to (3.37) satisfies Ihu ∈ Ŝh,0, i.e., u
is supported sufficiently far away from the boundary5.

Theorem 3.3.3 (FE error estimate). Let h denote the mesh size of Mh, and
let η > 0 be a positive constant such that under the shortest distance map

‖∠(N,Nh)‖∞ ≤ η · h and ‖φ‖∞ ≤ η · h. (3.46)

5This condition is to avoid technical issues when estimating (u − Ihu) for functions u
for which Ihu does not vanish along the boundary, ∂M . The condition can be satisfied, for
example, if the right hand side, f , is supported sufficiently far away from the boundary.
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Then there exists a constant C > 0, which only depends on M , η, and the
aspect ratio of the triangles of Mh – but not on h itself – such that

‖u− ûh‖L2(M) + h‖u− ûh‖H1
0 (M) ≤ Ch2‖f‖L2(M) if ∂M 6= ∅,

‖u− ûh‖L2(M)/R + h‖u− ûh‖H1
0 (M) ≤ Ch2‖f‖L2(M) if ∂M = ∅.

Here ‖u‖L2(M)/R is the L2-norm of the unique representative of [u] ∈ L2/R
having zero mean.

Remark. For interpolating meshes the constant η in (3.46) only depends onM
and the aspect ratio of the triangles of Mh (cf. Lemma 3.5.1 below). This led
Dziuk [27] to the same error estimate as the above for interpolating meshes.

Proof. Let A be metric distortion tensor induced by the shortest distance
map, and let CA := ‖(detA)1/2A−1‖∞. It follows from assumption (3.46)
and the splitting of the metric distortion tensor of Theorem 3.2.1 that

CA − 1 = O(h) and (detA)1/2 − 1 = O(h).

Let uh ∈ Ŝh,0 be the FE solution to the Dirichlet problem with respect to
Riemannian metric on M , that is

−〈∆uh|v〉 = (f, v)L2 ∀ v ∈ Ŝh,0(M).

Since uh ∈ Ŝh,0(M) is the projection of u ∈ H1
0 (M) with respect to the inner

product (·, ·)H1
0 (M), it follows that

‖u− uh‖H1
0 (M) ≤ ‖∇u−∇Ihu‖L2(M).

Moreover, Theorem 3.3.1 implies

‖ûh − uh‖H1
0 (M) ≤ Ch‖f‖L2(M).

Together with Theorem 3.3.2 and the a priori estimate (3.39) we obtain

‖u− ûh‖H1
0 (M) ≤ ‖u− uh‖H1

0 (M) + ‖ûh − uh‖H1
0 (M)

≤ ‖∇u−∇Ihu‖L2(M) + ‖ûh − uh‖H1
0 (M)

≤ Ch‖f‖L2(M).

This gives the H1
0 -estimate. Finally, the L2-estimate on ‖u− ûh‖L2(M) follows

by employing the Aubin-Nitsche-trick (cf. Dziuk [28]). QED
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3.3.3 Mean curvature as a functional

In this section we show that mean curvature vectors converges in the sense of
distributions or functionals, that is, as elements of the Sobolev spaceH−1(M)
(Theorem 3.3.4). This result is used to show: if a sequence of discrete min-
imal surfaces converges totally normally to a smooth surface then the limit
surface is minimal in the classical sense (Theorem 3.3.5). Finally, we give a
counterexample to the convergence of mean curvature vectors in L2.

As before, let Φ : M → Mh be the shortest distance map. Additionally,
let ~E : M → R3 and ~EMh

: Mh → R3 denote the isometric embeddings of M

and Mh, respectively. Set ~Eh = ~EMh
◦Φ : M → R3. Recall from Section 2.4.5

that weak mean curvature vectors are functionals, respectively given by

~H = ∆ ~E ∈ (H−1(M))3,

~HA = ∆A
~Eh ∈ (H−1(M))3.

In particular, we regard both ~H and ~HA as R3-valued functionals on H1
0 (M).

We define the norm of these R3-valued functionals by

‖ ~H‖H−1 = sup
06=u∈H1

0

‖〈 ~H|u〉‖R3

‖u‖H1
0

.

Theorem 3.3.4 (approximation of weak mean curvature). Let Mh be a nor-
mal graph over the smooth surface M . Then

‖ ~H − ~HA‖H−1(M) ≤
√

|M | · (CA − 1 + CA‖Id− dΦ‖∞) , (3.47)

where CA = ‖(detA)1/2A−1‖∞, |M | is the total area of M , and ‖Id− dΦ‖∞
denotes the essential supremum over the pointwise operator norm of the op-
erator (Id− dΦ)(x) : TxM → R3.

Proof. We apply the triangle inequality to

~H − ~HA = (∆ ~E −∆A
~Eh) = (∆ ~E −∆A

~E) + (∆A
~E −∆A

~Eh).

For any vector field X on M one has 〈∇ ~E,X〉R3 = X, and 〈∇ ~Eh, X〉R3 =
dΦ(X) almost everywhere. Applying (3.22), (3.23), and Hölder’s inequality,
we obtain

∥

∥

∥
〈∆ ~E −∆A

~E|u〉
∥

∥

∥

R3
=

∥

∥

∥

∥

∫

M

(A−1(detA)1/2 − Id)∇u dvol

∥

∥

∥

∥

R3

≤
√

|M | · (CA − 1) · ‖u‖H1
0
.
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and similarly

∥

∥

∥
〈∆A

~E −∆A
~Eh|u〉

∥

∥

∥

R3
=

∥

∥

∥

∥

∫

M

〈

(∇ ~E −∇ ~Eh), A
−1(detA)1/2∇u

〉

dvol

∥

∥

∥

∥

R3

=

∥

∥

∥

∥

∫

M

(Id− dΦ)(A−1(detA)1/2)∇u dvol

∥

∥

∥

∥

R3

≤
√

|M | · CA · ‖Id− dΦ‖∞ · ‖u‖H1
0
,

proving the claim. QED

Corollary 3.3.2 (convergence of weak mean curvature). If a sequence of
polyhedral surfaces {Mn} converges totally normally to the smooth surface
M , then the corresponding mean curvature functionals converge in H−1(M).

Proof. Under the assumption of totally normal convergence, we get CA → 1.
It remains to show that ‖Id − dΦ‖∞ → 0. Consider a single triangle Th of
Mh. LetNTh

= N◦Φ−1 denote the pullback of the normal fieldN onM to the
triangle Th. From the proof of Theorem 3.2.1 we know that dΦ = Q̃−1 ◦ P ,
where Q̃ is given by Q̃(Y ) = Y −NTh

· 〈NTh
, Y 〉 (cf. equation (3.13)). Totally

normal convergence implies P → Id as well as Q̃→ Id, and hence dΦ→ Id
almost everywhere. QED

3.3.4 Discrete minimal surfaces

In this section we show that if a sequence of discrete minimal surfaces con-
verges totally normally to a smooth surfaces, then this limit surface must be
a minimal surface in the classical sense.

Although existence and regularity of minimal surfaces spanning a given
boundary is a well-studied problem, it remains a challenge to explicitly
construct minimal surfaces with prescribed boundary data. Pinkall and
Polthier [61] suggested an algorithm for numerically approximating area-
minimizing polyhedral surfaces by sequentially solving the Dirichlet problem
with respect to the metric of the current iterate. For the same purpose,
Dziuk [28] used a discretization of the mean curvature flow. Similarly, Ken
Brakke’s Surface Evolver [15] produces numerical approximations of area-
minimizing surfaces. Later, various examples of explicitly computable dis-
crete minimal surfaces were discovered [38, 51, 63, 64, 66, 69]. However, it is
an open problem whether one can find discrete minimal surfaces arbitrarily
close to a given smooth (and possibly unstable) minimal surface. Dziuk and
Hutchinson [29, 30] give a positive answer to this problem for the case of
minimal surfaces having the topology of a disk, and Pozzi [67] extends their
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result to annuli6. Another related problem is the design a converging refine-
ment scheme of discrete minimal surfaces yielding a smooth minimal surface
in the limit. The convergence result of this section provides a step into this
direction.

Große-Brauckmann and Polthier [44] constructed examples of compact
constant mean curvature (CMC) surfaces of low genus numerically, based on
a discrete version of the conjugate surface construction [60]. It is an inter-
esting question whether the convergence results of this section can help to
prove that these numerical examples yield smooth CMC surfaces.

Recall from Definition 2.4.1 that discrete minimality implies 〈 ~HA|uh〉 = 0

for all uh ∈ Sh,0, so that it is a weaker condition than ~HA = 0. In view of
this fact, the following result is surprising:

Theorem 3.3.5 (convergence of discrete minimal surfaces). Let {Mn} be a
sequence of polyhedral minimal surfaces comprised of triangles with uniformly
bounded aspect ratio. Assume {Mn} converges totally normally to a smooth
surface M ⊂ R3. Then the smooth limit surface, M , is a minimal surface in
the classical sense.

Proof. Let ~H denote the (smooth) mean curvature vector of the smooth
surface M . We are going to show that

〈 ~H|u〉 =

∫

M

~H · u dvol = 0

for all u ∈ C∞
0 (M) which are supported away from the boundary, ∂M . As

in Section 3.3.2, let Ŝn,0 ⊂ H1
0 (M) denote the finite element spaces induced

by linear Lagrange elements on the meshes Mn, pulled back under Φ and
intersected with H1

0 (M). Let ûn be the orthogonal projection of u to Ŝn,0

with respect to the H1-inner product (∇u,∇v)L2(M). We have

∥

∥

∥
〈 ~H|u〉

∥

∥

∥

R3
≤

∥

∥

∥
〈 ~H|u− ûn〉

∥

∥

∥

R3
+

∥

∥

∥
〈 ~H|ûn〉

∥

∥

∥

R3
. (3.48)

We are going to show that the right hand side of (3.48) tends to zero as the

6Recently Bobenko et al. [8] provided a different (’non-linear’) view of discrete mean
curvature. They show that their approach allows for finding discrete minimal surfaces
arbitrarily close to smooth ones.
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mesh size of Mn goes to zero. Indeed, since ~H is smooth, it follows that

∥

∥

∥
〈 ~H|u− ûn〉

∥

∥

∥

R3
=

∥

∥

∥

∥

∫

M

~H · (u− ûn) dvol

∥

∥

∥

∥

R3

≤
∥

∥

∥

~H
∥

∥

∥

L2(M)
‖u− ûn‖L2(M)

≤
∥

∥

∥

~H
∥

∥

∥

L2(M)
· CE · ‖u− ûn‖H1

0 (M)

≤
∥

∥

∥

~H
∥

∥

∥

L2(M)
· CE · ‖u− Inu‖H1

0 (M) ,

where CE is the Poincaré constant defined of M , and In denotes the inter-
polation operator (cf. Section 3.3.2). The last inequality holds since ûn is
the projection of u. Finally, since u ∈ C∞

0 (M) and u can be assumed to be
supported sufficiently far away from the boundary, we obtain Inu ∈ Ŝn,0 and
hence ‖u − Inu‖H1

0 (M) → 0 by Theorem 3.3.2 (indeed we assume the aspect
ratios of the triangles of {Mn} to be uniformly bounded).

To estimate the last term in (3.48), let ~Hn denote the weak mean curva-

ture associated with Mn. By assumption, ~Hn vanishes on Ŝn,0 and hence
∥

∥

∥
〈 ~H|ûn〉

∥

∥

∥

R3
=

∥

∥

∥
〈 ~H − ~Hn|ûn〉

∥

∥

∥

R3

≤
∥

∥

∥

~H − ~Hn

∥

∥

∥

H−1(M)
· ‖ûn‖H1

0 (M)

≤
∥

∥

∥

~H − ~Hn

∥

∥

∥

H−1(M)
· ‖u‖H1

0 (M).

From Corollary 3.3.2 it follows that ‖ ~H − ~Hn‖H−1(M) → 0. From (3.48) we

obtain ~H = 0, as asserted. QED

3.3.5 Mean Curvature as a function

Weak mean curvature is a R3-valued functional. Discrete mean curvature
is the R3-valued piecewise linear function associated with this functional, in
the sense of discretized functionals of Section 2.3.4. Corollary 3.3.2 shows
that the mean curvature functionals converges in H−1. The objective of this
section is to show that the associated discrete mean curvature functions in
general fail to converge in L2. This failure comes to no surprise consider-
ing the various recently observed counterexamples to pointwise convergence
of discrete differential operators: see e.g. Meek and Walton [53], Borrelli et
al. [13], Xu [84, 85], and references therein. The main obstacle seems to
be that surface normals of polyhedra approximate normals of smooth sur-
faces only to order O(h); whereas, in order to obtain pointwise convergence,



3.3 Convergence of metric properties 77

one would need O(h2)-approximation since curvatures correspond to normal
derivatives.

Definition 3.3.3 (discrete mean curvature). Discrete mean curvature is the

R3-valued piecewise linear function ~Hh ∈ Sh defined by
∫

Mh

~Hh · uh dvolMh
= 〈 ~HA|uh〉 ∀uh ∈ Sh. (3.49)

Note that, only because the dimension of Sh is finite, it is possible to
associate a discrete function to the mean curvature functional. There is no
infinite-dimensional analogue of this construction. As in Definition 2.3.5, the
discrete mean curvature function can be computed explicitly on a polyhedral
surface Mh:

~Hh =
∑

p,q

〈 ~HA|φp〉M
pqφq, (3.50)

where 〈 ~HA|φp〉 denotes the evaluation of the mean curvature functional ~HA

on the nodal basis function φp, and Mpq denotes the inverse of the mass
matrix,Mpq.

Example (counterexample to L2-convergence). Denote by ~H the smooth

mean curvature vector of the smooth surface M , and let { ~Hn} denote the
sequence of discrete mean curvature vectors associated with the sequence of
polyhedral surfaces {Mn}. We show that in general ‖ ~Hn − ~H‖L2 does not
converge to zero. Consider the cylinder M of height 2π and radius 1. We
construct a sequence, {Mn}, of polyhedral surfaces whose vertices lie on this
cylinder and which converges to M totally normally. Let the cylinder be
parameterized as

x = cosu, y = sinu, z = v.

Let the vertices of Mn be given by

u =
iπ

n
i = 0, ..., 2n− 1

v =

{

2j sin π
2n

j = 0, ..., 2n− 1
2π j = 2n

This corresponds (up the uppermost layer) to folding along the vertical lines
a regular planar quad-grid of edge length

hn = 2 sin
π

2n
.
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p

h

h p
8

4

Figure 3.5: Discrete mean curvature does not converge in L2 for a 4 − 8 tessellation of
a regular quad grid, because the ratio between the areas of the stencils of p4 and p8 does
not converge to 1.

In other words, all faces of Mn are rectangular (in fact quadratic except for
the uppermost layer). It will now depend on the tessellation pattern of this
quad-grid whether there is L2-convergence of discrete mean curvature or not.
Indeed, consider the regular 4− 8 tessellation scheme depicted in Figure 3.5.
There are two kinds of vertices - those of valence 4 and those of valence 8.
Call them p4 and p8, respectively. Let φp4

and φp8
denote the corresponding

Lagrange basis functions. Using the cotan-formula, it is easy to see that the
coefficients of the weak mean curvature satisfy

〈 ~H|φp4
〉 = 〈 ~H|φp8

〉 = −2
(

1− cos
π

n

)

· ∂r,

where ∂r denotes the (radial) outward cylinder normal field. By the symmetry
of the problem there exist constants an, bn ∈ R such that

~Hn =
∑

p4

an · φp4
· ∂r +

∑

p8

bn · φp8
· ∂r + boundary contributions,

where the contributions from the boundary include all vertices one layer away
from the upper boundary (as symmetry breaks there). Set

λn := −
(

1− cos
π

n

)

.

One verifies that

an = 12 ·
λn

h2
n

·
4 + λn

8− λ2
n

and bn = 12 ·
λn

h2
n

·
λn

λ2
n − 8

.

Since limn→∞(λn/h
2
n) = −1/2, it follows that

lim
n→∞

an = −3 and lim
n→∞

bn = 0,
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so that asymptotically only the vertices of valence 4 but not those of valence
8 contribute to discrete mean curvature,

~Hn ∼ −3
∑

p4

φp4
· ∂r + boundary contributions.

Hence, ~Hn is a family of PL-functions oscillating between −3 (at the vertices
of valence 4) and 0 (at the vertices of valence 8) with ever growing frequencies.
Such a family does not converge in L2.

3.3.6 Geodesics

Let {Mn} be a family of polyhedral surfaces converging totally normally to
a compact smooth surface M with associated shortest distance maps Φn. By
the Hopf-Rinow theorem (cf. Proposition 2.1.1), any two points of Mn can
be connected by a minimizing geodesic.

Recall that if U is a locally compact Hausdorff space and V is a metric
space then the compact-open topology on C0(U, V ) is induced by the uniform
metric on C0(U, V ), i.e., the metric given by

dist(f, g) = sup{dist(f(u), g(u)) |u ∈ U}.

Theorem 3.3.6 (convergence of geodesics). Let p, q ∈ M , and let γn be a
minimizing geodesic connecting Φn(p) to Φn(q) on Mn. Each accumulation
point of {γn} in the compact-open topology on C0(R,R3) is a minimizing geo-
desic on M . The set of such accumulation points is not empty. In particular,
there exists a minimizing geodesic γ on M and a sub-sequence of minimizing
geodesics {γni

} on Mni
such that γni

→ γ uniformly.

Proof. We consider all objects to be defined on the smooth reference surface
M by using the pull-backs via Φn. In particular, we will (by abuse of notation)
refer to γn as the minimizing gn-geodesic between p and q on M . Let An

denote the metric distortion tensor corresponding to gn, and let

cn := ‖A−1
n ‖

−1/2
∞ and cn := ‖An‖

1/2
∞ .

If β is a Lipschitz curve on M , then the gn-length ln(β) and the g-length l(β)
are related by

cn · l(β) ≤ ln(β) ≤ cn · l(β).

The geodesic distance between the points p and q on M equals the infimum
over the lengths of all Lipschitz curves connecting these points. The last
inequality therefore implies

cn · d(p, q) ≤ dn(p, q) ≤ cn · d(p, q).
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Hence, if γn is a minimizing geodesic connecting p and q in the gn-metric,
then

cn · d(p, q) ≤ dn(p, q) = ln(γn) ≤ cn · l(γn),

cn · d(p, q) ≥ dn(p, q) = ln(γn) ≥ cn · l(γn).

This implies

cn
cn
· d(p, q) ≤ l(γn) ≤

cn
cn
d(p, q).

By the assumption of totally normal convergence we have cn → 1 and cn → 1,
so that

l(γn)→ d(p, q). (3.51)

Now, assume γ is an accumulation point of {γn}. Since the length functional
l : C0(R,R3)→ R is lower semi-continuous, (3.51) implies

l(γ) ≤ lim inf l(γn) = d(p, q).

Hence γ is indeed a minimizing geodesic connecting p to q. It remains to
show that the set of such accumulation points is not empty. Note that

d(γn(t), γn(t′)) ≤
1

cn
· dn(γn(t), γn(t′)) =

1

cn
· |t− t′|,

for each t, t′ in the domain of γn. Hence the family {γn} is equicontinuous.
Since |t − t′| is bounded by supn diam(Mn) ≤ supn cn · diam(M), it follows
from the Arzelà-Ascoli theorem that there is an accumulation point in the
compact-open topology on C0(R,R3). QED

3.4 Convergence of algebraic properties

In Section 2.5 we have established a de Rham theory built on discrete dif-
ferential operators and a corresponding Hodge theory. Our approach was
based on mixing conforming and nonconforming finite elements. We derived
a discrete Hodge star operator acting on the 2g-dimensional space of har-
monic vector fields, and have obtained a corresponding splitting of harmonic
fields into holomorphic and anti-holomorphic ones. Here we will show that
totally normal convergence provides convergence of all of these objects to
their smooth counterparts.

For proving convergence, we draw upon the work by Dodziuk and Patodi
from the 1970’s, who established a purely discrete theory based on Whitney
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forms. Recently Wilson has picked up some loose ends of their work, and
has extended it by a discrete Hodge star and a discrete wedge product.

We first review Whitney forms and the convergence results by Dodziuk,
Patodi, and Wilson. Then we extend these results to perturbed Riemannian
metrics. This will finally allow for proving convergence of Hodge splitting,
star operator, and spectral decomposition of the Laplace–Beltrami operator
in the FE sense.

3.4.1 Whitney forms I: Overview

Let (M, g) be smooth closed and oriented Riemannian manifold. In his book
Geometric Integration Theory [81], Whitney constructed a chain map from
simplicial cochains to Lipschitz differential forms which is the right-inverse of
the de Rham map. To construct this map, Whitney considers finite smooth
triangulations ofM (e.g. a mesh pulled back toM under the shortest distance
map). Any fixed such triangulation gives rise to the spaces of q-chains Cq(M)
and q-cochains Cq(M), equipped with the usual boundary, and coboundary
operators

∂q : Cq → Cq−1 and δq : Cq → Cq+1.

Whitney constructs a linear chain map from the space of cochains Cq(M) to
the space of L2-forms on M :

W : Cq(M)→ L2Λq(M).

This map is constructed by identifying chains and cochains of the finite com-
plex. Each cochain c ∈ Cq can be represented as a sum c =

∑

τ cτ · τ with
cτ ∈ R and τ running over all q-simplices τ = [p0, p1, ..., pq] (with respect
to some fixed ordering of the vertices). For every vertex p let µp be the pth

barycentric coordinate in the triangulation. The Whitney map is defined as

Wτ = q!

q
∑

i=0

(−1)iµpi
dµp0

∧ · · · ∧ d̂µpi
∧ · · · ∧ dµpq

.

This map is a chain map, i.e., dW = Wδ, where d denotes the Cartan outer
differential. There exists a chain map in the opposite direction from the
Whitney map,

R : L2Λq(M)→ Cq(M),

given by integrating a L2-form ω over chains, i.e.

R(ω)(τ) =

∫

τ

ω.
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This map is called the de Rham map. It is a chain map by Stokes’ theorem.
W is the right inverse of the de Rham map R:

RW = Id.

Conversely, Dodziuk and Patodi show that WR is a good approximation of
the identity provided that the triangulation behaves well. Let h denote the
mesh size of the triangulation (the length of the longest edge) of the Euclidean
cone surface Mh. Following Whitney we call

θ = inf
τ

area(τ)

h2

the fullness of Mh. Fullness is related to shape regularity of the triangulation.

Lemma 3.4.1 (shape-regular implies bounded fullness). A shape-regular se-
quence {Mn} of polyhedral surfaces is of bounded fullness.

Proof. We work over a single triangle Th with side lengths a ≥ b ≥ c, and
corresponding opposite angles α, β, γ. Recall that shape regularity means
that there exists a constant κ <∞, independent of Th, such that

R(Th)

r(Th)
≤ κ,

where R(Th) is the radius of the circumcircle, and r(Th) is the radius of the
incircle of Th. The radius of the incircle is given by

r(Th) =
2 area(Th)

a+ b+ c
.

The radius of the circumcircle is given by

R(Th) =
a

2 sinα
=

b

2 sin β
=

c

2 sin γ
.

Consequently,

0 <
1

κ
≤

r(Th)

R(Th)
=

4 sinα · area(Th)

a(a+ b+ c)
≤

4 area(Th)

a(a+ b+ c)
≤

4 area(Th)

a2
,

which completes the proof. QED

Throughout we are going to assume that the fullness of the meshes Mn

is bounded below. Dodziuk and Patodi show:
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Theorem 3.4.1 (Whitney-approximation). There exist a constant C and a
positive integer k which only depend on the fullness of the triangulation (but
not the triangulation itself) such that

‖ω −WR(ω)‖L2 ≤ Ch‖(Id+ ∆)kω‖L2

for all smooth q-forms ω on M .

To derive a discrete Hodge splitting on (Cq, δ), Dodziuk and Patodi de-
fine an inner product on cochains using the Whitney map and the smooth
Riemannian metric on M :

(τ, σ)Cq =

∫

M

g(Wτ,Wσ) dvol ∀ τ, σ ∈ Cq.

The adjoint δ∗ of δ with respect to this inner product is defined as

(τ, (δq)∗σ)Cq = (δqτ, σ)Cq+1 .

Due to the finite dimension of Cq, the operators δ and δ∗ give rise to a Hodge
decomposition of Cq (cf. Lemma 2.5.2)

Cq = im δq−1 ⊕ im(δq)∗ ⊕ ker δq ∩ ker(δq−1)∗,

which is an orthogonal decomposition with respect to (·, ·)Cq . Dodziuk and
Patodi show that this discrete Hodge decomposition is a good approximation
of the smooth Hodge decomposition. In what follows, we are going to omit
the superscript q unless this causes confusion.

Theorem 3.4.2 (Whitney-approximation of Hodge decomposition). Let ω ∈
Λq. Then Rω ∈ Cq. Consider the Hodge decompositions

ω = df + d∗g + h and

Rω = δf̃ + δ∗g̃ + h̃.

Then there exist a constant C and a positive integer k which only depend on
the fullness of the triangulation (but not the triangulation itself) such that

‖ df −Wδf̃‖L2 ≤ Ch‖(Id+ ∆)kω‖L2

‖ d∗g −Wδ∗g̃‖L2 ≤ Ch‖(Id+ ∆)kω‖L2

‖h−W h̃‖L2 ≤ Ch‖(Id+ ∆)kω‖L2 ,

where h denotes the mesh size of the triangulation.
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Finally, Dodziuk and Patodi use the above approximation theorems to
show that the eigenvalues {λ̃i} of the combinatorial Laplace–Beltrami opera-
tor

∆̃ = δδ∗ + δ∗δ

converge to the eigenvalues {λi} of the smooth Laplace–Beltrami operator

∆ = d d∗ + d∗ d.

The same result had been obtained by two of the pioneers of the Finite
Element method at the same time – see Strang and Fix [76]. The proof
relies on the Rayleigh-Ritz method for characterizing eigenvalues (Min-Max
Principle).

Theorem 3.4.3 (spectral approximation of Laplace–Beltrami). There exist
constants C1 and C2 and a positive integer k which only depend on the fullness
of the triangulation (but not the triangulation itself) such that

λ̃i ≤ λi

(

1 + C1h(1 + λi)
k
)

if h(1 + λi)
k ≤ C2

λi ≤ λ̃i

(

1 + C1h| log h|(1 + (λ̃i)
1/2)

)

if h| log h|(1 + (λ̃i)
1/2) ≤ C2.

In particular, for fixed i, λ̃i → λi with the mesh size h tending to 0.

Recently Wilson [82] has extended the theory of Whitney forms to com-
binatorial wedge product and a combinatorial Hodge star, both of which are
shown to converge to their smooth counterparts. The combinatorial wedge
product ∪ : Cq ⊗ C l → Cq+l is defined through

τ ∪ σ = R(Wτ ∧Wσ).

This product is graded-commutative (τ ∪σ = (−1)deg σ deg τσ∪ τ), and agrees
with the usual Alexander-Whitney cup product on cohomology (but not on
the cochain level). However, ∪ is not associative. Note that δ and ∪ satisfy
a Leibniz rule (δ(τ ∪ σ) = δτ ∪ σ + (−1)deg ττ ∪ δσ). The following theorem
is due to Wilson.

Theorem 3.4.4 (Whitney-approximation of wedge product). There exist a
constant C and a positive integer k which only depend on the fullness of the
triangulation (but not the triangulation itself) such that

‖W (Rω1 ∪Rω2)− ω1 ∧ ω2)‖L2 ≤ Chλ(ω1, ω2),

where

λ(ω1, ω2) = ‖ω1‖∞ · ‖(Id+ ∆)kω2‖L2 + ‖ω2‖∞ · ‖(Id+ ∆)kω1‖L2

for all smooth ω1, ω2.
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From this combinatorial wedge product, Wilson obtains a combinatorial
Hodge star. Let σ ∈ Cdim(M)−q and τ ∈ Cq, then

(⋆σ, τ)Cq = (σ ∪ τ)[M ],

where [M ] is the fundamental class (orientation class) of M . ⋆ is a chain
map (⋆δ = ±δ∗⋆), it is (graded) skew-adjoint ((⋆σ, τ) = ±(σ,⋆τ)), and it
induces an isomorphism on cohomology (⋆ : Hq ∼= Hdim(M)−q). However, in
general ⋆2 6= ±Id and also δ⋆ 6= ±⋆δ∗, which is in contrast to the smooth
case.

Theorem 3.4.5 (Whitney-approximation of Hodge star). Given ω ∈ Λq,
there exist a constant C and a positive integer k which only depends on the
fullness of the triangulation (but not the triangulation itself) such that

‖ ⋆M ω −W⋆Rω‖L2 ≤ Ch‖(Id+ ∆)kω‖L2

where ⋆M is the smooth Hodge star on (M, g) and h denotes the mesh size of
the triangulation.

3.4.2 Whitney forms II: Metric perturbation

The results of the previous section show how Whitney forms can be used to
impose metric structures on combinatorial data of Riemannian manifolds –
in such a way that the smooth structure arises as a limit case. Throughout
the previous section we assumed that the Riemannian metric stays fixed.

However, a fixed metric does not suffice for our purposes: a sequence
of polyhedra converging totally normally to a smooth surface, (M, g), in-
duces two structures on M – a sequence of triangulations and a sequence of
Riemannian metrics. While the previous section covers the case of refining
triangulations, it does not cover the case of metric changes. Hence it remains
to treat metric perturbation in conjunction with Whitney elements.

As before, we let A denote the metric distortion tensor. In order to
obtain a perturbed discrete Hodge splitting on the space of cochains, (Cq, δ),
we first define an inner product on cochains using the Whitney map and the
perturbed Riemannian metric:

(τ, σ)A = (Wτ,Wσ)L2
A

=

∫

M

g(AWτ,Wσ)(detA)1/2 dvol ∀ τ, σ ∈ Cq.

Recall that the simplicial coboundary operator, δ, is metric independent. Its
adjoint operator, δ∗A, is metric dependent and defined by

(δτ, σ)A = (τ, δ∗Aσ)A.
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In the sequel, we shall use

- (·, ·)L2 to denote the unperturbed inner product on L2Λq,

- (·, ·)L2
A

to denote the perturbed inner product on L2Λq,

- (·, ·) to denote the unperturbed inner product on Cq,

- (·, ·)A to denote the perturbed inner product on Cq.

A straightforward calculation shows the following useful lemma:

Lemma 3.4.2. Let σ and τ be two q-cochains. Then

|(τ, σ)A − (τ, σ)|

(τ, τ)1/2(σ, σ)1/2
≤ C(A) · |M |,

where C(A) = ‖A−Id‖∞‖(detA)1/2‖∞+‖1−(detA)1/2‖∞, and |M | denotes
the total area of M .

In the sequel, we use the subscript n simultaneously for both, an index into
the metric independent sequence of simplicial structures on M , as well as for
metric dependent operators, such as δ∗n, associated with the metric distortion
tensors, An. Throughout we have in mind the picture of polyhedral meshes,
Mn, converging to the smooth limit surface, M . Notice that neither the de
Rham map R nor the Whitney map W are metric dependent.

Theorem 3.4.6 (convergence of perturbed Hodge decomposition). Consider
the Hodge decomposition of ω ∈ Λq with respect to the unperturbed smooth
inner product (·, ·) and of Rnω ∈ Cq

n with respect to the perturbed inner
products (·, ·)An

:

ω = df + d∗g + h and

Rnω = δnfn + δ∗ngn + hn.

Assume metric convergence, i.e., ‖An − Id‖∞ → 0, and that the mesh size,
h, approaches zero. Then

‖ df −Wnδnfn‖L2 → 0

‖ d∗g −Wnδ
∗
ngn‖L2 → 0

‖h−Wnhn‖L2 → 0,

where ‖ · ‖L2 is the L2-product with respect to (the smooth metric) g.
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Proof. Consider the unperturbed Whitney Hodge decomposition of Rnω with
respect to the smooth metric (·, ·) as in Theorem 3.4.2, that is

Rnω = δnf̃n + δ̃∗ng̃n + h̃n.

Note carefully that δ does not depend on the metric (but just on the com-
binatorics), whereas δ∗ does, so that indeed δ̃∗n 6= δ∗n. By Theorem 3.4.2, it
suffices to show that

‖Wnδnf̃n −Wnδnfn‖L2 → 0

‖Wnδ̃
∗
ng̃n −Wnδ

∗
ngn‖L2 → 0

‖Wnh̃n −Wnhn‖L2 → 0.

We start by showing that ‖Wnδnf̃n −Wnδnfn‖L2 → 0. Note that

- δnf̃n is the projection of Rnω to im δn with respect to (·, ·).

- δnfn is the projection of Rnω to im δn with respect to (·, ·)An
.

For better readability, we drop the subscript n in the next calculation.

‖Wδf̃ −Wδf‖2L2 =
(

Wδf̃ −Wδf,Wδf̃ −Wδf
)

L2

=
(

δf̃ − δf, δf̃ − δf
)

=
(

δf̃ − δf, (δf̃ −Rω) + (Rω − δf)
)

=
(

δf̃ − δf,Rω − δf
)

(since (δf̃ −Rω) ⊥ im δ).

Note that (δf − Rω) ⊥A (im δ), so that (δf̃ − δf,Rω − δf)A = 0. Together
with Lemma 3.4.2 this implies

‖Wδf̃ −Wδf‖2L2 =
(

δf̃ − δf,Rω − δf
)

−
(

δf̃ − δf,Rω − δf
)

A

≤ C(A) · |M | · ‖Wδf̃ −Wδf‖L2 · ‖WRω −Wδf‖L2 .

Dividing by ‖Wδf̃ −Wδf‖L2 and taking into account that C(A)→ 0 by as-
sumption, it suffices to show that ‖WRω−Wδf‖L2 stays bounded: ‖WRω‖L2

stays bounded by Theorem 3.4.1, and δf is the (·, ·)A-projection of Rω. Ap-
plying Lemma 3.4.2 again shows that ‖Wδf‖L2 stays bounded as well.
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We have established that the (·, ·)An
-projections of Rnω to (im δn) and

the (·, ·)-projections of Rnω to (im δn) converge to each other. The exact
same proof delivers that the projections of Rnω to (ker δn) converge to each
other. Consequently, since harmonic forms are the orthogonal complement
of (im δn) in (ker δn), it follows that

‖Wnh̃n −Wnhn‖L2 → 0.

Since Wn and Rn are metric-independent, it follows for the remaining terms
in the Hodge decompositions that

‖Wnδ̃
∗
ng̃n −Wnδ

∗
ngn‖L2 → 0,

which completes the proof. QED

The perturbed combinatorial Laplace–Beltrami operator is obtained by

∆̃A = δδ∗A + δ∗Aδ.

The next theorem shows that the eigenvalues of this perturbed combinato-
rial Laplace–Beltrami operator converge to the eigenvalues of the smooth
Laplace–Beltrami operator.

As noted by Dodziuk and Patodi, half the spectrum of ∆̃A (resp. ∆),
acting on q-forms, is redundant: if Eq(λ) is the eigenspace of ∆ corresponding
to an eigenvalue λ 6= 0 then Eq(λ) = Eq

d(λ) ⊕ Eq
d∗(λ), where Eq

d(λ) is the
λ-eigenspace corresponding to d∗ d and similarly Eq

d∗(λ) is the λ-eigenspace

corresponding to d d∗. Moreover, d takes Eq
d(λ) isomorphically to Eq+1

d∗ (λ)
(in particular, on surfaces, the spectrum of the Laplace–Beltrami on 1-forms
does not contain any more information than the spectrum of the Laplace–
Beltrami on functions). Hence, all spectral information of the full Laplace–
Beltrami ∆̃A (resp. ∆) is already encoded in the half Laplace–Beltrami δ∗Aδ
(resp. d∗ d). To study convergence of eigenvalues, it therefore suffices to
consider the eigenvalues of δ∗Aδ and d∗ d.

The non-zero eigenvalues of the smooth operator d∗ d acting on Λq are
enumerated by 0 < λ1 ≤ λ2 ≤ · · · . Similarly, the eigenvalues of the per-
turbed combinatorial operator δ∗nδn acting on Cq

n (for henceforth fixed q) are
enumerated by 0 < λn

1 ≤ λn
2 ≤ · · · .

Theorem 3.4.7 (spectral conv. of perturbed Laplace–Beltrami). Let {λn
i }

denote the eigenvalues of the perturbed combinatorial operators δ∗nδn corres-
ponding to the perturbed Riemannian metrics g(An·, ·), and let {λi} denote
the eigenvalues of the smooth operator d∗ d. Then, for fixed i,

λn
i → λi
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as h→ 0 and ‖An − Id‖∞ → 0. As a consequence, the spectrum of the per-
turbed combinatorial Laplacians, ∆n = δ∗nδn+δnδ

∗
n, converges to the spectrum

of the smooth Laplace–Beltrami operator, ∆ = d∗ d + d d∗.

Proof. We use the classical Rayleigh-Ritz method (Min-Max principle) for
characterizing eigenvalues. The ith non-zero eigenvalue of δ∗nδn is given by

λn
i = min

Vi⊂C
q
n

dim Vi=i

max
06=f∈Vi

(δ∗nδnf, f)An

(f, f)An

= min
Vi⊂C

q
n

dim Vi=i

max
06=f∈Vi

(δnf, δnf)An

(f, f)An

.

As in Theorem 3.4.3, let λ̃n
i be the ith eigenvalue of the unperturbed combi-

natorial (half) Laplace–Beltrami δ̃∗nδn. It suffices to show that

|λn
i − λ̃

n
i | → 0.

Fix i and n. Let Vi denote the space spanned by the eigenvectors correspond-
ing to the first i non-zero eigenvalues of δ̃∗nδn acting on Cq

n. The eigenvalue
λ̃n

i is then given by

λ̃n
i = sup

f∈Vi

(δnf, δnf)

(f, f)
.

Moreover, let λn
i denote the ith non-zero eigenvalue of the perturbed oper-

ator δ∗nδn. Then, by the Min-Max principle and Lemma 3.4.2 (assuming
C(An)|M | < 1),

λn
i ≤ sup

f∈Vi

(δnf, δnf)An

(f, f)An

≤ sup
f∈Vi

(δnf, δnf)

(f, f)
·
1 + C(An) · |M |

1− C(An) · |M |

= λ̃n
i ·

1 + C(An) · |M |

1− C(An) · |M |
.

A similar argument shows that

λ̃n
i ≤ λn

i ·
1 + C(An) · |M |

1− C(An) · |M |
.

By assumption, C(An)→ 0, and hence, for fixed i, |λn
i − λ̃

n
i | → 0. QED
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Recall that neither R nor W are metric-dependent, so the combinatorial
wedge product ∪ is not metric-dependent either. The perturbed combinatorial
Hodge star is defined by

(⋆Aσ, τ)A = (σ ∪ τ)[M ],

where [M ] is the fundamental class (orientation class) of M . ⋆A is a chain
map, it is (graded) skew-adjoint, and it induces an isomorphism on cohomol-
ogy.

Theorem 3.4.8 (convergence of perturbed Hodge star). Let ⋆M denote the
smooth start operator on (M, g), and let ω ∈ Λq. Then

‖ ⋆M ω −Wn⋆An
Rnω‖L2 → 0,

as the mesh size h tends to 0 and the metric distortion approaches the iden-
tity, i.e., ‖An − Id‖∞ → 0.

Proof. By Theorem 3.4.5, it suffices to show that the perturbed combinatorial
Hodge star operators, {⋆An

}, converge to the unperturbed combinatorial
Hodge star operators, {⋆̃n}. First, note that the Whitney map commutes
with the Hodge star up to a projection:

W⋆A = PA ⋆M W,

where PA is the orthogonal projection in Λq to the image of Cq under W with
respect to (·, ·)L2

A
(cf. Wilson [82]). Indeed, let σ ∈ Cq and τ ∈ Cdim(M)−q,

then

(W⋆Aσ,Wτ)L2
A

= (⋆Aσ, τ)A =

∫

M

Wσ ∧Wτ dvolA = (⋆MWσ,Wτ)L2
A
.

By the same token, W⋆̃ = P̃ ⋆M W where P̃ is the orthogonal projection
in Λq to the image of Cq under W with respect to the unperturbed metric
(·, ·)L2 . Since, by assumption, ‖An − Id‖∞ → 0, it follows that PAn

→ P̃n,
and hence

Wn⋆An
= PAn

⋆M Wn −→ P̃n ⋆M Wn = Wn⋆̃n,

which finishes the proof. QED
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3.4.3 Convergence of algebraic FE

We are now in the position to prove convergence of Hodge splitting, star
operator and eigenvalues of the Laplace–Beltrami in the FE setting. What
remains to be done is twofold: (i) to show that, given totally normal conver-
gence, piecewise constant vector fields, associated with a sequence of Euclid-
ean cone surfaces, approximate arbitrary L2-vector fields on the limit space
M , and (ii) to relate the algebraic-topological FE theory of Section 2.5 to
the Whitney setting, so that the convergence results of the last section can
be exploited. Throughout this section we assume that the Euclidean cone
surfaces, Mn, are normal graphs over the smooth surface M ⊂ R3.

1. step. Let Xn ∈ Xh(Mn) be a vector field which is constant on the
triangles of Mn. By abuse of notation, we let Xn also denote the pullback to
X(M) via the shortest distance map.

Lemma 3.4.3 (L2-density of piecewise constant vector fields). Let the se-
quence {Mn} converge totally normally to M , and let X ∈ X(M) be a smooth
vector field. Let Πc

n denote the projections Πc
n : L2X(M)→ Xh(Mn) to piece-

wise constant vector fields with respect to the L2-product (·, ·)L2(M) on M .
Then

‖X − Πc
n(X)‖L2(M) → 0

in the L2-norm of M .

Proof. The assertion is a consequence of a L∞-estimate on individual trian-
gles. First, let T ⊂ R2 be a triangle equipped with the standard flat metric.
Let X ∈ X(T ) be a smooth vector field on T . Define Xh := X(p0) for an
arbitrary point p0 ∈ T . Then

‖X −Xh‖L∞(T ) ≤ h · ‖ dX‖L∞(T ),

where h denotes the diameter of T , dX(p) is the Jacobian matrix of X
(thought of as a map from T ⊂ R2 to R2). Extending this construction to all
triangles of Mn, we obtain a vector field Xh ∈ L

2(Mn). Applying Hölder’s
inequality, it follows that

‖X −Xh‖L2(Mn) ≤
√

vol(Mn) · h · ‖ dX‖L∞(Mn) −→ 0.

Certainly,

‖X − Πc
n(X)‖L2(Mn) ≤ ‖X −Xh‖L2(Mn).
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Moreover, by assumption, Mn converges totally normally to M , which im-
plies that ‖X−Πc

n(X)‖L2(Mn) approaches ‖X−Πc
n(X)‖L2(M) (Lemma 3.2.1).

Consequently,

‖X − Πc
n(X)‖L2(M) −→ 0,

which proves the assertion. QED

Remark 3.4.1. Note that the proof of the previous lemma shows that piece-
wise constant vector fields yield O(h)-convergence on triangles. Interestingly,
approximations by Whitney forms do not give better local convergence rates.
In fact, by [25],

‖X♭ −WRX♭‖L∞(T ) ≤ C · h · ‖ dX‖L∞(T ),

where X♭ denotes the dual 1-form corresponding to X.

The last lemma completes the first step toward showing convergence of
Hodge decomposition, spectrum of the Laplace–Beltrami, and star operator
in the FE setting.

2. step. In a second step we shall establish how our algebraic-topological
FE theory relates to the Whitney setting. Let the Euclidean cone surface
Mh be equipped with the usual (simplicial) co-differentials

δq : Cq → Cq+1

and their adjoints (induced by the cone metric and the Whitney map),

(δq)∗ : Cq+1 → Cq.

The cone metric provides an identification between 1-forms and vector fields
in a L2-sense:

♯ : L2Λ1(Mh)→ L2X(Mh) such that

∫

Mh

gA(α♯, Y ) =

∫

Mh

α(Y ),

♭ : L2X(Mh)→ L2Λ1(Mh) such that

∫

Mh

X♭(Y ) =

∫

Mh

gA(X,Y ).

We have the following first set of relations:

Lemma 3.4.4 (FE-Whitney relations I). Let the Whitney map be denoted
by W : Cq(Mh)→ L2Λq(Mh). Then

σ ∈ im δ0 ⇐⇒ (Wσ)♯ ∈ im∇|Sh
,

σ ∈ ker δ1 ⇐⇒ (Wσ)♯ ∈ ker curl*h,

σ ∈ ker δ1 ∩ ker(δ0)∗ ⇐⇒ (Wσ)♯ ∈ ker curl*h ∩ ker divh .
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Proof. Let σ = δ0f for some f ∈ C0. By the definition of Whitney forms we
can write

f =
∑

fi · µi,

where fi ∈ R and µi is the barycentric coordinate corresponding to the
ith vertex. Since W is a chain map, Wσ = Wδf = dWf . Therefore,
Wσ =

∑

fi dµi, so that

(Wσ)♯ =
∑

fi∇µi = ∇(Wf).

This shows (Wσ)♯ ∈ im∇|Sh
. Vice versa, let (Wσ)♯ ∈ im∇|Sh

for some
σ ∈ C1. By applying the ♭ operator, we get Wσ ∈ im d|Sh

. Hence there
exists f ∈ C0 such that Wσ = d(Wf) = Wδ0f . Since W is injective
(because RW = Id), it follows that σ = δ0f . This shows the first statement.

For the second statement, notice that a simplicial 1-form, σ ∈ C1, is
closed if and only if it is locally integrable by an element from C0. Similarly,
a piecewise constant vector field is in ker curl*h if and only if it is locally
integrable by a function from Sh. The previous argument can now be applied
(locally) to get the stated relation between ker δ1 and ker curl*h.

The last statement follows from the previous two because harmonic forms
(resp. harmonic vector fields) are the orthogonal complement of im δ0 in ker δ1

(resp. im∇|Sh
in ker curl*). Indeed, let σ ∈ ker δ1 ⊂ C1. Then

(σ, δ0f)C1 = (Wσ, dWf)L2(Mh)

=
(

(Wσ)♯, ( dWf)♯
)

L2(Mh)

=
(

(Wσ)♯,∇(Wf)
)

L2(Mh)
,

which vanishes for every f ∈ C0 if and only if σ is a harmonic 1-form
(resp. (Wσ)♯ is a harmonic vector field). QED

There is a second set of FE-Whitney relations concerning the respective
Hodge decompositions. Recall that in Section 2.5.3 we derived that

Xh(Mh) = im∇|Sh
⊕ im J∇|S∗

h

⊕ ker curl*h ∩ ker divh .

The following lemma relates this splitting to the Whitney Hodge decompo-
sition.

Lemma 3.4.5 (FE-Whitney relations II). Let the Whitney map be denoted
by W : Cq(Mh) → L2Λq(Mh), and let Πc denote the projection of X(M) to
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Xh(Mh) with respect to the L2-product on L2X(M). Let σ ∈ C1(Mh), and
consider the Whitney Hodge decomposition

σ = δ0f + (δ1)∗g + h.

Then the FE Hodge decomposition of Πc(Wσ)♯ ∈ L2Xh(Mh) is given by

Πc(Wσ)♯ = Πc(Wδ0f)♯ + Πc(W (δ1)∗g)♯ + Πc(Wh)♯.

In other words, the FE Hodge splitting is obtained from the Whitney Hodge
splitting by projecting each component separately to the space of piecewise
constant vector fields.

Proof. We have to show that

Πc(Wδ0f)♯ ∈ im∇|Sh

Πc(W (δ1)∗g)♯ ∈ im J∇|S∗

h

Πc(Wh)♯ ∈ ker curl* ∩ ker div .

The first and last line follow directly from Lemma 3.4.4. It remains to show
that Πc(W (δ1)∗g)♯ ∈ im J∇|S∗

h

. By Lemma 3.4.4,

(W ·)♯ : im δ0 ⊕ (ker δ1 ∩ ker(δ0)∗) −→ im∇|Sh
⊕ (ker curl*h ∩ ker divh)

is an isomorphism. Now let k ∈ im δ0 ⊕ (ker δ1 ∩ ker(δ0)∗). Then
(

Πc(W (δ1)∗g)♯, (Wk)♯
)

L2(Mh)
=

(

(W (δ1)∗g)♯,Πc(Wk)♯
)

L2(Mh)

=
(

(W (δ1)∗g)♯, (Wk)♯
)

L2(Mh)

=
(

(δ1)∗g, k
)

C1

=
(

g, δ1k
)

C2

= 0.

This implies that Πc(Wδ∗g)♯ ⊥ (im∇|Sh
⊕ (ker curl*h ∩ ker divh)), and hence

Πc(Wδ∗g)♯ ∈ im J∇|S∗

h

. QED

We can now prove convergence of the FE Hodge splittings. For notation,
let JM denote complex multiplication acting on vector fields on the smooth
surface (M, g), and let Jn denote complex multiplication induced by the cone
metrics on the Euclidean cone surfaces (Mn, gn). We show convergence of the
Hodge splitting

Xh(Mn) = im∇n|Sh
⊕ im Jn∇n|S∗

h

⊕ ker curl*n ∩ ker divn,

for sequences of Euclidean cone surfaces, Mn →M .
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Theorem 3.4.9 (FE-convergence of Hodge decomposition). Assume Mn →
M converges totally normally with mesh size h tending to zero. Let X ∈
X(M) be a smooth vector field. Then the components of the smooth Hodge
decomposition

X = ∇u+ JM∇v +Xh,

are approximated by the components of the FE Hodge decomposition,

Πc
nX = ∇nun + Jn∇nvn +Xh,n,

of the piecewise constant vector fields Πc
n(X) ∈ Xh(Mn). Indeed,

‖∇u−∇nun‖L2 → 0

‖JM∇v − Jn∇nvn‖L2 → 0

‖Xh−Xh,n‖L2 → 0

in the L2-norm of M .

Proof. Consider the Hodge decompositions ofRnX
♭ ∈ C1

n as in Theorem 3.4.6:

RnX
♭ = δnfn + δ∗ngn + hn.

By assumption, Mn → M converges totally normally, so that the corres-
ponding metric distortion tensors tend to the identity. Theorem 3.4.6 asserts
that the Whitney extensions of the components of the above combinatorial
Hodge splitting of RnX

♭ converge to the components of the smooth Hodge
splitting of X♭ on M . Hence, by Lemma 3.4.5, the components of the FE
Hodge decomposition of the piecewise constant vector fields

Xn = Πc
n

(

WnRnX
♭
)♯
.

converge to the components of the smooth Hodge decomposition of X on
M . In particular, Xn approaches X. Furthermore, by Lemma 3.4.3, Πc

nX
also approaches X. This implies that Xn and Πc

nX tend to one another,
and so must their FE Hodge decomposition because each component in this
decomposition is obtained by a projection. QED

As a corollary we obtain that the two FE Hodge splittings in Theo-
rem 2.5.2 converge to each other (and to the smooth Hodge splitting on
the limit surface).
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Corollary 3.4.1. Assume Mn → M converges totally normally. Let X ∈
X(M) be a smooth vector field on M , and let Πc

n(X) ∈ Xh(Mn) be the pro-
jections to piecewise constant vector fields. Then the components of Πc

n(X)
corresponding the two Hodge splittings

Xh(Mn) = im∇n|Sh
⊕ im Jn∇n|S∗

h

⊕ ker curl*n ∩ ker divn

= im∇n|S∗

h

⊕ im Jn∇n|Sh
⊕ ker div*

n ∩ ker curln

converge to each other (and to the components of the smooth Hodge splitting
of X).

Proof. By Theorem 3.4.9, it suffices to show that the components of Πc
nX ac-

cording to the bottom row Hodge decomposition converge to the components
of the smooth Hodge decomposition ofX. This is a simple consequence of the
fact that the bottom row is the Jn-transformed version of the top row and the
fact that metric convergence implies convergence of complex multiplication,
i.e., Jn → JM . QED

The preceding theorem can be interpreted as J-invariance of the FE
Hodge decomposition in the limit. In particular, since Jn exchanges the two
(conforming and nonconforming) harmonic parts of the above splittings,

Jn : ker curl*n ∩ ker divn −→ ker div*
n ∩ ker curln,

it follows that these two spaces must agree in the limit. This implies that the
discrete star operator (see Definition 2.5.3) converges to the smooth Hodge
star:

Theorem 3.4.10 (convergence of FE Hodge star). Assume Mn → M con-
verges totally normally. Let h ∈ ker curlM ∩ ker divM be a smooth harmonic
vector field, and let hn be the discrete harmonic part of its L2-projection,
Πc

n(h), to the space of piecewise constant fields. Let ⋆M = JM denote the
smooth star operator on M , and let ⋆n denote the FE Hodge star operators
acting on the space of conforming harmonic fields. Then

‖ ⋆M h− ⋆nhn‖L2 −→ 0,

in the L2 metric of M .

As a last point, we show convergence of the spectrum of the FE Laplace–
Beltrami operators. In order to be able to speak about eigenvalues of the
discrete Laplace–Beltrami operator, this operator needs to be a map from
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Sh(Mh) to itself. In other words, we need the discretized, pointwise version
of the Laplacian in the sense of Definition 2.3.5:

∆h = − divh∇ : Sh −→ Sh.

The minus sign amounts to requiring the Laplacian to be positive semi-
definite (as opposed to treating negative semi-definite Laplacians as in Sec-
tion 2.2.5). Computationally, this yields

∆h =M−1L,

with conforming mass matrixM (cf. Section 2.3.4) and conforming stiffness
matrix L (cf. Section 2.4.4). Equivalently, the eigenvalue problem can be
written in weak form: find all pairs (λ, uh) ∈ R× Sh such that

∫

Mh

gMh
(∇uh,∇vh) dvolMh

= λ

∫

Mh

uhvh dvolMh
for all vh ∈ Sh.

For sequences of polyhedral surfaces {Mn}, we denote by ∆n
h the discretized

Laplace–Beltrami operators acting on Sh(Mn).

Theorem 3.4.11 (FE-conv. of spectrum of Laplace–Beltrami). Assume Mn →
M converges totally normally with mesh size h tending to zero. Then for fixed
i, the ith non-zero eigenvalues λn

i of ∆n
h converge to the ith non-zero eigen-

values of ∆,

|λn
i − λi| −→ 0,

where ∆ is the smooth Laplace–Beltrami operator viewed as an unbounded
map ∆ : L2(M)→ L2(M).

Proof. The Whitney map, W , takes 0-forms to elements of Sh. Since it is a
chain map, it follows for u, v ∈ C0 that

(δ∗δu, v)C0 = (δu, δv)C1

= (W (δu),W (δv))L2

= ( d(Wu), d(Wv))L2

= (∇(Wu),∇(Wv))L2

= (∆h(Wu),Wv)L2 .

Applying Theorem 3.4.7 completes the proof. QED
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3.5 Convergence rates for inscribed meshes

A Euclidean cone surface is called inscribed or interpolating if all of its ver-
tices reside on the smooth limit surface M . Recall that the constants in our
approximation estimates have been explicitly stated in terms of the metric
distortion tensor A. Indeed, there are three constants, which occur through-
out this work:

- ‖A− Id‖L∞ : metric distortion,

- ‖(detA)1/2 − 1‖L∞ : area distortion,

- ‖(detA)1/2A−1 − Id‖L∞ : conformal distortion.

By Theorem 3.2.1, the metric distortion tensor A is the product of two parts,
both of which can be expressed entirely in terms of h for inscribed meshes: the
first part involves the shortest distance map, and the second part involves the
(squared) inner product between the surface normals. The following lemma
gives a qualitative estimate for the angle between the surface normals in
the case of inscribed meshes, compare Nédélec [59], Amenta et al. [4], and
Morvan and Thibert [58].

Lemma 3.5.1 (normal lemma). Let the polyhedral surface Mh be inscribed
into the smooth surface M , and assume that Mh is within the reach of M .
Then the angles between the normals Nh (of Mh) and N (of M), compared
under the shortest distance map, satisfy

∠(N,Nh) ≤ C · h,

where h denotes the mesh size of M and C only depends on the curvature of
M and the aspect ratios of the triangles of Mh.

As a consequence of the normal lemma, ‖φ‖L∞ ∼ O(h2), where φ is the
(signed) distance between Mh and M as in equation (3.2). The splitting of
A as in Theorem 3.2.1 then shows that:

- ‖A− Id‖L∞ ∼ O(h2),

- ‖(detA)1/2 − 1‖L∞ ∼ O(h2),

- ‖(detA)1/2A−1 − Id‖L∞ ∼ O(h2).

In summary, most of the estimates in this work are quadratic in mesh size
when it comes to interpolating meshes. For a discussion of best possible con-
stants (and in particular, best constants involved in the approximation error
of the Dirichlet problem), see Shewchuk [72]. A more thorough discussion of
the best possible constants for all of the estimates in this work would require
a work of its own.




