
Chapter 1

Introduction

Discrete Differential Geometry (DDG) on polyhedral surfaces is concerned
with discrete counterparts to the various structural properties of smooth sur-
faces revealed by classical and modern differential geometry. Despite the
youth of the field, a systematic treatment of DDG has recently been rapidly
maturing – owed to a combined effort of pure and applied mathematicians as
well as computer scientists. From the point of view of DDG, the demarcation
line between pure and applied turns blurry – due to a unique combination of
rich mathematical structure and direct applicability to geometric algorithms.
In a similar vein, this thesis explores the mathematical structure behind some
of those loose ends of DDG which have been developed and indeed been ap-
plied in many fascinating ways over the past years.

This thesis deals with topological surfaces made up of (finitely) many Euclid-
ean triangles isometrically glued along their boundaries. Interchangeably we
call those surfaces Euclidean cone surfaces, triangulated meshes, polyhedral
surfaces, or simply polyhedra. We consider the following objects:

- Metric objects, such as the Laplace–Beltrami operator, gradient, diver-
gence, curl, the mean curvature vector, and geodesics.

- Algebraic objects, such as de Rham cohomology, Hodge decomposition,
the Hodge star operator, and spectral decomposition of the Laplacian.

We give a precise meaning to these objects on polyhedra, and prove conver-
gence to their corresponding smooth counterparts.

As a point of departure, we develop the theory of the Sobolev spaces W 1,p

on polyhedra in Section 2.2. In particular, we outline the theory of weak
derivatives, prove a Poincaré lemma, discuss the Dirichlet problem and give
an outlook on regularity theory. Although much of the material in Section 2.2
could be deduced from the more general framework of a Sobolev theory for
bi-Lipschitz maps (cf. [18, 83, 86]), we hold the view that such a general
treatment would obscure the subtle, yet crucial, peculiarities of Euclidean
cone structures. Perhaps the most prominent of those peculiarities is the
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failure of the shift theorem in the presence of cone singularities. Indeed, let
u be the variational solution to the model problem

−∆u = f in Ω,

u = g on ∂Ω,

on some bounded domain Ω ⊂ R2, with smooth boundary ∂Ω. The shift
theorem asserts that if f ∈ W k,p, with 1 < p < ∞, and g is a given smooth
function, then u ∈ W k+2,p. However, in general, this is no longer true for
cones: if a cone (of angle smaller than 2π) is cut open and laid out into the
plane, the resulting region is non-convex – and the shift theorem is in general
false for non-convex domains with non-smooth boundary, see [41].

Discrete differential operators, and the spaces these operators act on,
are introduced in Sections 2.3 and 2.4. In particular, we give a precise mean-
ing to discrete versions of the Laplace–Beltrami operator, divergence, curl,
and the mean curvature vector. These operators had been previously em-
ployed with much success for both, a discretization of minimal surfaces1, as
well as for applications in computer graphics2. However, in some instances
these operators were introduced in a rather ad hoc fashion. The theory of
Sobolev spaces on polyhedra allows for a precise treatment. In particular,
these operators act between the Sobolev spaces

L2 or H1 (functions) −→ H−1 (functionals).

We stress the point that the range does no longer consist of functions but
rather of functionals, or distributions. The strict discrimination between
functions and functionals is important when dealing with convergence.

Akin to the discretization of second order PDEs in the planar case, we dis-
cretize Sobolev spaces by piecewise linear functions which are either conform-
ing (the degree of freedom being at vertices) or nonconforming (the degree
of freedom being at edge midpoints),

Sh = {conforming elements} ⊂ {nonconforming elements} = S∗
h.

Considering both, Sh and S∗
h, turns out to be particularly useful for treating

algebraic-topological properties.

1For applications to discrete minimal surfaces see e.g. [38, 43, 44, 51, 61, 63, 64, 66, 69].
2For applications to computer graphics see e.g. [23, 40, 45, 47, 48, 56, 65, 78].
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Algebraic topology of polyhedra is developed in Section 2.5. Using discrete
differential operators, we derive a discrete de Rham complex whose cohomol-
ogy is isomorphic to singular cohomology. Furthermore, as a consequence of
mixing conforming and nonconforming elements, we obtain two distinct ver-
sions of a Hodge decomposition of the space Xh of piecewise constant vector
fields. For example, the conforming Hodge decomposition takes the form

Xh = im∇|Sh
⊕ im J∇|S∗

h

⊕ ker curl*h ∩ ker divh,

where ∗ denotes the nonconforming version of the involved operators, J de-
notes complex multiplication and the last summand, ker curl*h ∩ ker divh, con-
sists of harmonic vector fields. On the space of harmonic vector fields we
construct a discrete Hodge star operator, an isomorphism

⋆ : ker curl*h ∩ ker divh 	,

which is shown to converge to the classical Hodge star operator on a smooth
limit surface in Section 3.4. The discrete Hodge star operator is obtained
by composing complex multiplication with a certain L2-projection, and we
carefully distinguish between complex multiplication and the Hodge star op-
erator.

The observation that one obtains two distinct Hodge decompositions in
the discrete case – a doubling which is absent in the smooth setting – is in
close analogy to the work of Mercat [54, 55], who considers two distinct grids
(a primal and a dual one) and obtains Riemann period matrices of double
the dimension in his work on discrete conformal structures. Our view is also
closely linked to that of Desbrun et al. [22] and Glickenstein [36, 37]. Draw-
ing upon the work of Dodziuk and Patodi [24, 25] as well as Wilson [82], we
show that the two discrete Hodge decompositions converge to a single one in
the smooth limit in Section 3.4.

Convergence is treated in Chapter 3. The central result of this chapter
may be formulated as follows: discrete differential operators converge in
norm. Convergence in norm may stand, as in the case of mean curvature
vectors, for convergence of functionals (distributions) rather than functions.
This view is motivated by the observation that the mean curvature vector of
an isometrically embedded polyhedral surface has only distributional compo-
nents. Indeed, the mean curvature vector can be written as ~H = ∆ ~E – the
intrinsic surface Laplacian applied to the piecewise linear embedding of the
polyhedron – and since ∆ ~E vanishes in the interior of Euclidean triangles, it
follows that mean curvature is (distributionally) located at edges.
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Let us briefly recall the meaning of convergence in the sense of distributions.
Assume we were dealing with C2 surfaces. Then the mean curvature vectors
would be continuous, and their convergence, ~Hn → ~H in H−1(M), would
imply that

∫

M

~Hn · φ −→

∫

M

~H · φ ∀φ ∈ C1
0(M).

In other words, one obtains what could be called convergence of integrated
quantities. This interpretation carries over to Euclidean cone surfaces (which
are only of class C0,1) in the sense that

〈 ~Hn|φ〉 −→ 〈 ~H|φ〉 ∀φ ∈ H
1
0 (M),

where 〈·|·〉 denotes the dual pairing between H1
0 and H−1. To show that con-

vergence in the sense of distributions is the best one can generally hope for,
we provide a counterexample to L2-convergence of mean curvature vectors.
This is in accordance with what has been observed in geometric measure
theory: in general one cannot expect pointwise convergence of discrete cur-
vatures, but rather convergence in an integrated sense, compare Cheeger et
al. [19] and Cohen-Steiner and Morvan [21]. See also the comparative stud-
ies of Meek and Walton [53], Borrelli et al. [13], Xu [84, 85], and references
therein.

As a first step for establishing convergence we introduce the shortest distance
map – a bi-Lipschitz map between a smooth surface in R3 and a polyhedral
surface nearby (in its reach). The purpose of this map is to pull back objects
from polyhedral surfaces to the smooth reference surface. This technique has
been common practice, see e.g. [27, 58, 57]. In particular, for a sequence {Mn}
of polyhedra converging to a smooth surface M , the pulled-back polyhedral
metrics gn can be expressed in terms of the smooth Riemannian metric g by

gn(·, ·) = g(An·, ·),

where An is a symmetric positive definite 2×2 matrix field, called the metric
distortion tensor. We define metric convergence as

‖An − Id‖∞ −→ 0.

The main auxiliary result is to split An into a product of two parts: the first
one depending only on the pointwise distance between Mn and M as well as
the shape operator of M , and the second one depending only on the angle
between the normals of Mn and M (cf. Theorem 3.2.1). If both of these
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parts converge, we speak about totally normal convergence. Provided that
surfaces converge to each other in Hausdorff distance, Theorem 3.2.2 yields
equivalence of the following conditions:

- convergence of surface normals

- convergence of volume forms (area)

- convergence of Riemannian metrics

- convergence of Laplace–Beltrami operators.

This equivalence implies that the famous lantern of Schwarz constitutes a
very general example of what might go wrong – pointwise convergence of
surfaces without convergence of their normals. The quantitative relation be-
tween normal convergence and convergence of area has recently also been
investigated by Morvan and Thibert [58].

The above equivalent conditions for convergence are obtained from corres-
ponding equivalent properties of the metric distortion tensor:

‖An − Id‖∞ → 0 ⇐⇒ ‖(detAn)1/2 − 1‖∞ → 0 ⇐⇒

‖(detAn)1/2A−1
n − Id‖∞ → 0 ⇐⇒ ‖tr

(

(detAn)1/2A−1
n − Id

)

‖∞ → 0,

which hold as long as the surfaces converge in Hausdorff distance. As a con-
sequence of these equivalent conditions, we obtain equivalence of the Sobolev
spaces W k,p

n , with k ∈ {0, 1}, associated with the sequence. This fact allows
for proving (in a straightforward yet somewhat technically involved way) con-
vergence of metric properties: Laplace–Beltrami operators, solutions to the
Dirichlet problem, mean curvature vectors, and geodesics, see Section 3.3. A
slight complication occurs for showing convergence of solutions to the Dirich-
let problem in a finite element sense, because a (local) H2-estimate is needed.
Such an estimate is obtained by extending an argument of Dziuk [27] from
interpolating meshes to approximating meshes. One particularly interesting
consequence of totally normal convergence is the fact that a smooth limit
surface of a sequence of discrete minimal surfaces is a smooth minimal sur-
face in the classical sense, see Section 3.3.4.

In Section 3.4, we prove convergence of algebraic properties – Hodge decom-
position, Hodge star operator, and spectral decomposition of the Laplacian.
We obtain convergence of these objects by establishing their link to Whitney
forms [81]. This relation allows for applying convergence results for Whit-
ney forms obtained by Dodziuk and Patodi in the 1970’s (cf. [24, 25]) and
recently by Wilson [82].
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Related work

Polyhedral surfaces are source to a rich pool of fascinating structures. They
bear many more aspects than the (linear) setting explored in this thesis. We
list a few related milestone developments – a list which is clearly far from
complete.

The rigorous treatment of discrete differential structures has a long and ex-
citing history: Alexandrov [1] and Reshetnyak [68] developed the theory
of manifolds of bounded curvature. Thurston [77] and Schramm [70] used
circle packings to approximate holomorphic maps and proved a discrete Rie-
mann mapping theorem. Federer [32] and Fu [34] used geometric measure
theory, Banchoff [7] studied discrete Morse theory, Stone [75] related global
topology of PL-manifolds to their local geometry, Brehm and Kühnel [17]
treated approximations of polyhedra by smooth surfaces, Cheeger, Müller
and Schrader [19] employed Lipschitz–Killing curvatures, Morvan and Cohen-
Steiner [21, 57] studied the normal cycle, and Bobenko, Hoffmann, Mercat,
Pinkall, Springborn, and Suris studied discrete integrable systems and dis-
crete conformal structures, see e.g. [8, 9, 11, 12, 55].




