DISCRETE DIFFERENTIAL OPERATORS ON POLYHEDRAL SURFACES — CONVERGENCE AND APPROXIMATION

MAX WARDETZKY

A Dissertation submitted to the Fachbereich Mathematik und Informatik, Freie Universität Berlin in partial fulfillment of the requirements for the degree of doctor rerum naturalium

Referees:

Prof. Dr. Konrad Polthier, Freie Universität Berlin Prof. Dr. Alexander I. Bobenko, Technische Universität Berlin Prof. Dr. Jean-Marie Morvan, Université Claude Bernard Lyon 1

Defended 8 November 2006

ACKNOWLEDGMENTS

I thank my advisor, Konrad Polthier, for providing fertile ground on which this thesis could grow. I am deeply indebted to my friend Michael Herrmann, in particular, for numerous discussions which tremendously helped to clarify the functional analytic concepts of this work. I thank Klaus Hildebrandt, friend and colleague, for not getting tired of listening, and having critically discussed many aspects of this thesis with me.

I am grateful to several people for their encouragement and for many stimulating discussions: Alexander I. Bobenko, Eitan Grinspun, Anil Hirani, Tim Hoffmann, Jean-Marie Morvan, Peter Schröder, and Günter M. Ziegler. It has been a pleasure to work in an environment where many aspects of discrete differential geometry saw the light of the day. I thank Richard Evan Schwartz and William Goldman, my mentors at the University of Maryland, for sharing with me their beautiful and inspirational ways of thinking about geometry.

I thank my family, my wife and two daughters, for their support and understanding. At times they have had to endure a bad husband and neglectful father. The last day before handing in this work, I had the following conversation with my older daughter: "Daddy, you are always so busy. Can I help you?" "How do you want to help me?" "Well, I already know that hundred plus hundred is two hundred..."

My research was support by the DFG Research Center MATHEON "Mathematics for key technologies" in Berlin.

CONTENTS

1	Inti	roduct	ion	1			
2	Polyhedral surfaces						
	2.1			7			
	2.2			9			
		2.2.1	L^p -spaces	0			
		2.2.2	Calculus of variations	0			
		2.2.3	Weak derivatives	2			
		2.2.4	Rellich lemma and Poincaré inequality	6			
		2.2.5	Laplace–Beltrami and Dirichlet problem 1	7			
		2.2.6	A glimpse at regularity	8			
	2.3	Discre	ete function spaces	0			
		2.3.1	Conforming and nonconforming elements	0			
		2.3.2	Discrete Dirichlet problem	3			
		2.3.3	Delaunay discretization	3			
		2.3.4	Mass matrices and discretized functionals	4			
	2.4	Discre	ete differential operators	5			
		2.4.1	Complex structure	6			
		2.4.2	Divergence and Gauss' theorem 2	7			
		2.4.3	Curl and Stokes' theorem	8			
		2.4.4	Laplace-Beltrami	9			
		2.4.5	Mean curvature	0			
	2.5	raic topology from FE					
		2.5.1	Discrete de Rham complex				
		2.5.2	de Rham cohomology				
		2.5.3	Hodge decomposition	8			
		2.5.4	Local parameterization and Poincaré index theorem 4				
		2.5.5	Hodge-star for harmonic vector fields 4				
		2.5.6	Holomorphic and anti-holomorphic vector fields 4				
		2.5.7	CR equations and parameterization 4	6			
3	Convergence and Approximation 49						
	3.1	Overv					
		3.1.1	What will be shown?	0			

ii Contents

	3.1.2	What can go wrong?	50
3.2	Norma	al convergence	51
	3.2.1	Shortest distance map	51
	3.2.2	Metric distortion in geometric terms	54
	3.2.3	Equivalent conditions for convergence	57
3.3	Conve	ergence of metric properties	64
	3.3.1	Dirichlet problem	64
	3.3.2	Finite Element discretization of the Dirichlet problem .	67
	3.3.3	Mean curvature as a functional	73
	3.3.4	Discrete minimal surfaces	74
	3.3.5	Mean Curvature as a function	76
	3.3.6	Geodesics	79
3.4	Conve	ergence of algebraic properties	80
	3.4.1	Whitney forms I: Overview	81
	3.4.2	Whitney forms II: Metric perturbation	85
	3.4.3	Convergence of algebraic FE	
3.5	Conve	ergence rates for inscribed meshes	